ELETTRONICA

ICAR - INDUSTRIA CONDENSATORI APPLICAZIONI RADIOELETTRICHE

TELEFON: 872.870 - 898-871 - MILANO - CORSO MAGENTA, 65 - STABILIMENTO: MONZA

Ing. S. \& Dr. GUIDO BELOTTI

GENOVA - VIA G. D'ANNUNZIO
ROM - VIA DEL TRITONE 201 NAPOLI - VIA MEDINA 61

TEL. 52.309
TEL. 61.709 - TEL. 23.279

Pila campione Weston

Wattmetro e eletrodiamico
porataile di precisione Westo

Ci è grato informare la ns. Spett. Clientela che abliamo ripreso l'importazione dei prodotti delle Case sottoindieate, per parechi dei quali teniamo già Latqo deposito a Milano.

WESTON

Strumenti di alta precisione per laboratorio - Voltmetri, amperometri, wattmetri
 Strumenti per riparatori radio e elevevisione - Analizzatori ad alta sensibiilita -
Analizatori elettronici - Volmetri a valvola - Ohmmetri - Provavalvole-

 applicazioni industriali.
 per misure di eletritisisi - Strumenti per indicazione della temperatura - Densimetri

- Indicatori
in cont in umiditit - Termomerti
in laboratorio ed industrial - Tachimetri seletricic in continua ed alitrnata - Strumenti per aviazione - Indicatori id temperatura, quata e
direzione - Strumenti regolatori e registratori automatici di pressione e temperatura.

GENERAL RADIO COMPANY

 Strumenti prer laboratori radioolettrici - Ponti per misure dimpedenza a basse,medie ed alte frequenze - Amplificatori - Oscillatoria bassa distorsione per alte ed

 Eliementi coassiali per misure a frequenze ultra elevate - Linee fessurate - Rive-
 Strumenti per stazioni trasmittenti AMM, FM e e elevisive - Monitori di modula-
zione - Indicatori id distorsione ed rimumere di fondo - Indicatori di spostamento di fre-
quenza
Strumenti per applicazioni industriali - Misuratori portatili del livello dei suoni Antirzatorit dei suoni - Misuratori di vibrazioni -Trasduttori piezoeletetrici e dinamici

ALLEN B. DU MONT
Oscillografi per riparatori radio e televisione - Ossillografi d'applicazione gene-
rale - Oscillografia raggio semplice e doppio ad elevata sensibilita per alternata e con-
 sientie ericorrentit ultra-rapaidi, per andisisis segnaili teelevisisivi, per studid di impulsi id breve
durata, per prove ad impulso ad alta tensione, per studi su apparechiature meccaniche).

 Sonde per alla frequenza - Lenti per proiezione - Accessorit
LABORATORIO DI RIPARAZIONI E TARATURE

Macchina cinematografica Du Monit per oscillograf

AESSE

APPARECCHI E STRUMENTI SCIENTIFICI ED ELETTRICI VIA RUGAbella, 9-MILANO - TEL. 891.896-896.334 Ind. Telegraf. AESSE . Milano

APPARECHIATURE PERTVEXHF

RIBET \& DESJARDINS - Parigi
Vobulatore: $2 \div 300 \mathrm{MHz}$ Oscillografo: $2 \mathrm{~Hz} \div 10 \mathrm{MHz}$

FERISOL - Parigi

Generatore: $8 \div 220 \mathrm{MHz}$
Generatore: $5 \div 400 \mathrm{MHz}$
Voltmetro a valvole: $0-1000 \mathrm{MHz}$ $0-30000$ V c.c.

S.I.D.E.R. - Parigi

Generatore d'immagini con quarzo pilota alta definizione

KLEMT - Olching (Germania)
Generatore di monoscopio
Vobulatore-Oscillografo con generatore di barre
Apparecchiatura portatile per controllo televisori
Q-metri
Voltmetri a valvole
FUNKE - Adenau (Germania)
Misuratori di campo relativo per installazione antenne
Provavalvole

KURTIS - Milano

Stabilizzatori di tensione a ferro saturo ed elettronici
laboratori costrulione strumenti elettronici CORSO XXII MARZO, 6 - MILANO - TELEF. 58.56.62-59.33.16

ANNUNCIAMO IL NUOVO

OSClLLOSCOPIO D'ALTA CLASSE MOD. 554

LE CUI CARATTERISTICHE LO PONGONO IN POSIZIONE DI INCONTRASTABILE PRIVILEGIO FRA GLI STRUMENTI DESTINATI A SERVIRE I CENTRI MISURE DELLE INDUSTRIE

CARATTERISTICHE PRINCIPALI

TUBO A RAGGI CATODICI «DU MONT» TIPO 5ADPI a SCHERMO PIATTO
FATTORE DI DEFLESSIONE VERTICALE: $0,35 \mathrm{MV} / \mathrm{MM}$ PICCO A PICCO
COSTANZA DI AMPLIFICAZIONE VERTICALE ENTRO 3 DB PER fREQUENZE COMPRESE FRA 10 Hz E 10 MHz
INGRESSO VERTICALE BILANCIATO E NON BILAN. CIATO
IMPEDENZA INGRESSO BILANCIATO: $2 \mathrm{M} \Omega 20 \mathrm{PF}$ IMPEDENZA INGRESSO NON BILANCIATO: I M $\Omega 30 \mathrm{PF}$

FATTORE DI DEFLESSIONE ORIZZONTALE: $2 \mathrm{MV} / \mathrm{MM}$ PICCO A PICCO

COSTANZA DI AMPLIFICAZIONE ORIZZONTALE ENTRO 3 DB PER FREQUENZE COMPRESE FRA $10 \mathrm{~Hz} \mathrm{E} 1,5 \mathrm{MHz}$
IMPEDENZA INGRESSO ORIZZONTALE: I M $\Omega 30 \mathrm{PF}$
ASSE DEI TEMPI LINEARE, COMANDATO E RICORRENTE DA 18 Hz A 350 KHz

MASSIMA VELOCITA DI DEVIAZIONE $10 \mathrm{CM} / \mu \mathrm{SEC}$
CALIBRATORE D'AMPIEZZA CALIBRATOREDI TEMPO attacco per probe esterno

Serie Super"M"
1954-1955

espressione della tecnica piui avanzata

* Trasmettitori per radio diffusione a Trasmettitori per radio diffusione a
onde corte e medie, di qualsiasi tipo e potenza.
* Trasmettitori per televisione.
* Ponti televisivi a microonde.
* Apparati radio navali.
* Complessi ricetrasmittenti per aviazione sia per aerei che per aeroporti.
* Complessi ricetrasmittenti a modulazione di frequenza per ponti radio semplici e pluricanali (60-120-480960 canali).
* Complessi ricetrasmittenti a modulazione di impulsi per ponti radio (4-8-12-24 canali).
* Apparati ricetrasmittenti campali per forze Hrmate.
* Ricevitori Professionali.
* Impianti di diffusione sonoza.
* Radioricevitori domestici.
* Ricevitori per televisione.

FABBRICA ITALIANA MAGNETI MARELLI - MILANO

ELETTRONICA
 Televisione Dialiana

RIVISTA bimestrale - Dot dotorist
edoardo cristofaro VITTORIO MALINVERNI

$$
\begin{aligned}
& \text { vice diretrore tecnico: } \\
& \text { GIUSEPPE DILD }
\end{aligned}
$$

drezione e amministrazton direzione e amministrazione:
via Arsenale 21 - telef. 4 I. 17
Conessionaria esclusiva della pubbicita:

Pubblicita Periodici (cipp)

Le telecamere della Radiotelevisione Ita
liana ai Campionati Europei di Nuoto d liana ai Campionatorino

Smmavia.

FRANCO PINOLINI
Calcolatrice elettronica analogica ripetitiva
gian franco raffo
Liinee di ritardo elettromagnetiche per TV
enzo Castelly
Antenne televisive a larga banda
B. C. S .

Congresso sui procedimenti di registrazione sonora e loro estensione alla registrazione dell'informazione 183

EDIZIONI RADIO ITALIANA

costa in italia itre 300 (Areetrati lire 4oo) - in versament possono essere fatti sul conto corrente postale n. $2 / 37800$ ll'estero lire 500 (Arretrati lire 6oo)
bbonamento annuale: in italia lire i500-ALI'estero l. 2500
 Slat publilicaxtoni della EDIZIONI RADIO ITALIANA: radiocorriere settimanale della Radio italiana
ersazioni di maggior UADERN DELLA RADIO Raccolta
INTERESSE tenute alia radio
la radio per le scuole illustrazione dei programmi radioscolastic

CALCOLATRICE ELETTRONICA ANALOGICA RIPETITIVA

Dott. Ing. FRanco Pinolini
del Dip. Esperienze della FIAT
SOMMARIO - Premesso un breve esame dei tipi fondamentali di calcolatrici analogiche, vengono considerati gli amplificatori operazionali ed il loro uso per eseguire le operazioni semplici di somma, moltiplicazione per una costante, derivazione ed integrazione. Dopo aver mostrato come connettere tra loro alcuni amplificatori operazionali per risolvere un'equazione differenziale del secondo ordine a coefficienti costanti, si descrive breve-
mente una calcolatrice analogica ripetitiva costruita dal Dipartimento Esperienze della Fiat. Si riferiscono mente una calcolatrice analogica ripetitiva costruita dal Dipartimento Esperienze della Fiat. Si riferiscono infine alcuni risultati ottenuti risolvendo, con la calcolatrice descritta, due problemi caratteristici per lo studio della sospensione degli autoveicoli.

1. Introduzione.

Nei paesi che sono all'avanguardia del progresso tecnico-scientifico, l'uso delle calcolatrici elettroniche per risolvere i problemi più diversi si estende molto rapidamente

Non tutte le calcolatrici elettroniche sono ugual mente complesse e costose e si possono ottenere risul tati già buoni con le calcolatrici analogiohe, che son relativamente semplici ed economiche.
dento Tiat appita dal Diparti, appartiene a questa egoria.
Ensa puo per ora risolvere equazioni differenzial sesto ordine
cari a coefficienti costanti fino al di $1 / 100$ di secondo e ciascuna soluzione viene ripe tuta 50 volte al secondo
variabili in funzione del tempo forma di tension osservare sullo schermo di un comune oscillografo raggi catodici, permettendo una visione immediata dell'effetto di qualsiasi variazione dei coefficienti, delle condizioni iniziali dell'equazione in esame e l'esplora zione rapida di un gran numero di soluzioni. costruiti con componenti comuni, cioè precisi al mas simo entro il $+5 \%$; il loro costo totale, compres 140 tubi elettronici che, per ora, fanno parte della calcolatrice, non supera il mezzo milione.
La calcolatrice è stata usata con risultati soddifacenti per risolvere alcuni problemi tra cui due, rappresentativi per lo studio della sospensione degli auto-
veicoli. Sono tuttora in corso altre aggiunte e perfeionamenti ai circuiti per estendere ancora il campo di applicazione della calcolatrice.
2. Generalità sulle calcolatrici elettroniche analogiche

Le calcolatrici elettroniche analogiche sono formate da un insieme di operatori analogici elementari costiuiti da amplificatori a controreazione per tension continue che prendono il nome di «amplificatori ope azionali " (operational amplifiers)
el tempo che è, di solito, la variabile indipendente del tempo che e, di solito, la variabile indipendente
Ciascun operatore analogico elementare è capace di eseguire sulle tensioni applicate ai suoi morsetti di
ingresso una o più operazioni matematiche elementar come la somma, la moltiplicazione per una costante, integrazione, ecc.
Connettendo opportunamente tra loro i diversi operatori analogici elementari della calcolatrice, si fa che nella calcolatrice rappresentano le variabili, siano e stesse che compaiono nella equazione o nelle equazioni da risolvere.
L'analogia che dà il nome alle calcolatrici elettroniche analogiche è quindi puramente «formale» o indiretta" e completamente diversa da quella che si potrebbe chiamare "strutturale» o "diretta" e che rze e tensioni, masse e induttanze, ricidezze e capacità, ecc.
L'uso delle analogie di quest'ultimo tipo e ormai quasi completamente abbandonato sia per la difficoltà di realizzare fisicamente con sufficiente approssimazione e costo ragionevole le analogie dirette, sia per la mancanza di generalità del metodo di analogia, Le calcolatrici elettroniche
sere «non ripetitive» (d.c. analog computers) possono «ripetitive» (repetitive analog computers). Nel primo caso la soluzione delle equazioni che costituiscono il problema da risolvere avviene in qualche minuto ed una sola volta. Nel secondo caso, il tempo necessario per la soluzione è molto più breve (di solito $1 / 100$ (di solito 50 o 60 volte) Le soluzioni delle
no con un oscillografo colatrici ripetitive si osserdi potere descilografo a raggi catodici col vantaggio pie determinare istantaneamente leffetto delle e dei valori delle concienti dei termini della equazione nare in breve de condizioni iniziali e di poter esamiare in breve tempo un gran numero di soluzioni.
Le calcolatrici ripetitive sono inoltre più semplici meno costose di quelle non ripetitive perchè il diverso campo delle frequenze di lavoro permette di ridurre notevolmente l'amplificazione degli amplificatori operazionali con vantaggio per la loro stabilità e facilità di alimentazione

Tuttavia i vantaggi citati offerti dalle calcolatrici ripetitive rispetto a quelle non ripetitive, si pagano alla scarsa precisione di lettura propria dell'oscillografo a raggi catodici nei confronti degli oscillografi a scrittura diretta che si usano per registrare le solu-
zioni delle calcolatrici non ripetitive. Così, mentre per una calcolatrice ripetitiva una approssimazione sui valori della soluzione del $\pm 5 \%$ e gia buona, con difficoltà, approssimazioni del $+1 \%$ ed anche meno. Inoltre, i moltiplicatori ed i generatori di funzioni arbitrarie e di non linearita delle calcolatrici non ripetitive sono piu facili da costruire di quelli per calcola trici ripetitive perchè le frequenze di lavoro sono molto più basse e si possono usare sistemi elettroQuesto spiega perchè
Questo spiega perchè, nonostante il costo più elenetto nei confronti delle calcolatrici ripetitive a cui molto sovente sono riservati compiti di tipo qualitativo e di "pilota» per calcolatrici più lente ma più precise
3. Gli amplificatori operazionali ed il loro uso nelle calcolatrici analogiche
Le operazioni proprie degli operatori elementari delle calcolatrici analogiche potrebbero essere facilmente eseguite con circuiti formati esclusivamente da capacità.

In figura 1 sono infatti rappresentati i circuiti pas sivi che possono servire per sommare, moltiplicare per una costante, integrare e derivare. Accanto a ciascu di uscita a quella di ingresso.

I circuiti di figura 1 presentano però gravi limita zioni per quanto riguarda l'intervallo di frequenza in cui essi possono servire senza che l'attenuazione che producono diventi eccessiva. Inoltre essi non possono essere connessi tra loro per costituire una calcolatrice analogica propriamente detta senza influenzarsi a vitamente le proprie caratteristiche di operatori elementari
Per queste ragioni gli operatori elementari delle calcolatrici analogiche si valgono di tubi elettronici per compensare le perdite che avvengono negli elementi passivi dei circuiti e per disaccoppiarli tra loro in

modo da evitare qualsiasi effetto dell'uno sulle carat eristiche dell'altro.
Gli operatori elementari delle calcolatrici analogiche assumono perciò l'aspetto di amplificatori a contro teristiche, prendono il nome, come si è già detto, d «amplificatori operazionali i.
Negli amplificatori a controreazione per mezzo d un circuito apposito che prende appunto il nome d «circuito di controreazione», una parte della tensione fase tale da produrre un'azione contraria (contro reazione) alla tensione applicata ai morsetti di entrata dell'amplificatore. Perchè questo avvenga è ovvia mente necessario che il numero di stadi di amplificazione dell'amplificatore sia dispari.
La figura 2 rappresenta un amplificatore a controreazione per tensioni continue che fornisce una
tensione di uscita - V_{2} quando all'entrata del primo tensione di uscita - V_{2} quando all entrata del prim
stadio amplificatore è applicata la tensione V^{\prime}.
Indicando con A il guadagno di tutto l'amplificatore, risulta quindi:
[1] $\quad A=-V_{2} / V^{\prime}$
La controreazione è fornita attraverso all'impedenza Z_{f} che connette l'uscita all'entrata del primo tadio dell'amplificatore
La tensione V_{1} da amplificare è applicata all'en di ingresso Z_{i} di valore elevato ad una impedenza ircuito di ingresso.
Il rapporto tra le tensioni di ingresso V_{1} e di uscita V_{2} si calcola facilmente tenendo conto che essendo il guadagno A dell'amplificatore molto forte (per esempio maggiore od uguale a qualche migliaio), Inoltre, poichè i morsetti di ingresso dell'amplificatore sono connessi all'entrata del primo stadio attraverso ad una impedenza di valore elevato, la corrente di griglia nel primo tubo è trascurabile e quindi tale anche il valore della corrente che entra nel nodo P dell'amplificatore. Di conseguenza, poichè la somma elle correnti nel nodo P deve essere nulla, si ha [2]

$$
i_{1}-i_{2}=0
$$

ossia
3] $\quad \frac{V_{1}-V^{\prime}}{Z_{\mathrm{i}}}-\frac{V^{\prime}-V_{2}}{Z_{\mathrm{f}}}=0$.
Poichè, come si è detto, V^{\prime} è trascurabile, ne segue: [4]

$$
V_{2}=-V_{1} Z_{\mathrm{f} /} / Z_{\mathrm{i}}
$$

Dall'equazione [4] si deduce che, fino a quando il alore di è trascurabile cioè l'amplificazione A dilamplificatore è sufficientemente grande, il rapporto tra le tensioni di ingresso e di uscita dell'amplificatore a controreazione dipende soltanto dal rap porto delle impedenze Z_{f} e Z_{i} ed è quindi anche indiparticolare da quelle dei tubi elettronici che lo costituiscono.
Per trasformare l'amplificatore a controreazione he si è considerato in un amplificatore operazionale, basta quindi scegliere la natura ed i valori di Z_{f} e di $Z_{\text {i }}$ della [4] in modo opportuno per far sì che V_{2} ${ }_{1} 1$ diano legati lle oraionic che si vogliono eseguire

a) Moltiplicazione per una costante.

Se le impedenze Z_{f} e Z_{i} dell'amplificatore operazionale di figura 2 sono resistenze uguali, per esempi di 1 megaohm ciascuna, dalla [4] si deduce che la tensione di uscita V_{2} è uguale ed opposta alla ten sione di ingresso i cioe l'amplificatore eseg
Se invece le impedenze Z_{5} e $Z_{\text {s }}$ sono segno resistenze di valore diverso cioè se è $Z_{\mathrm{f}}=k Z_{\mathrm{i}}$ (op pure $Z_{i}=Z_{\mathrm{f}} / k$, la tensione di uscita V_{2} risulta ugual a k volte la tensione di ingresso V_{1} e di segno opposto Poichè $k=Z_{i} / Z_{i}$ può essere un qualsiasi numero positivo maggiore o minore dell'unità, la tensione d nagroiore o minore dell'unità maggiore o minore dell unita.
di 20
B) Derivazione.

Se l'impedenza di controreazione Z_{f} è una resi stenza pura R e l'impedenza di ingresso Z_{i} una capa cita pura C_{i} l'amp

Infatti nel nodo P , per quanto si è già detto, si ha $i_{1}-i_{2}=0$. Per ipotesi è trascurabile il valore d V^{\prime}, inoltre si ha:
[5]

$$
i_{1}=C_{1} \frac{\mathrm{~d} V_{1}}{\mathrm{~d} t}
$$

ne segue: $\quad C_{\mathrm{i}} \frac{\mathrm{d} V_{1}}{\mathrm{~d} t}-\frac{-V_{2}}{R_{\mathrm{f}}}=0 \quad$ da cui si deduce
[6]

$$
V_{2}=-R_{\mathrm{f}} C_{\mathrm{i}} \frac{\mathrm{~d} V_{1}}{\mathrm{~d} t}
$$

L'equazione ottenuta mostra che la tensione d uscita V_{2} dell'amplificatore operazionale di figura 3 posto della derivata rispetto al tempo della tensione di ingresso V_{1}.

Se il prodotto $R_{\mathrm{f}} C_{\mathrm{i}}$ della [6] è uguale all'unita (per esempio $R_{\mathrm{f}}=1 \mathrm{M} \Omega, C_{\mathrm{i}}=1 \mu \mathrm{~F}$) l'amplificator operazionale deriva senza moltiplicare per una costante Se invece per esempio è $R_{\mathrm{f}}=5 \mathrm{M} \Omega$ e $C_{\mathrm{i}}=1 \mu \mathrm{~F}$ la tensione di ingresso all'amplificatore operazionale erivata e moltiplicata per - 5
troniche, i derivatori sono usati molto raramente perchè, essendo il valore delle loro tensioni di uscita funzione crescente della frequenza, essi possono introdurre facilmente disturb di valore notevole nella calcolatrice sia in seguito ad accoppiamenti casuali anche piccoli con circuiti. ali mentati alla frequenza di rete, oppure per insufficiente mentatori.
C) Integrazione.

Se l'impedenza di ingresso Z_{i} dell'amplificatore operazionale è una resistenza pura R_{i} e l'impedenza di controreazione Z_{f} una capacità pura C_{f}, ,'ampliInfatti dalla relazione tra le correnti nel
$-i_{2}=0$ risulta, trascurando, come al solito, il valore di V^{\prime}, si ha:

$$
\begin{gathered}
\frac{V_{1}}{R_{\mathrm{i}}}=-C_{\mathrm{f}} \frac{d V_{2}}{\mathrm{~d} t} \text { da cui si ottiene } \\
{[7] \quad V_{2}=-\frac{1}{C_{\mathrm{f}} R_{\mathrm{i}}} \int_{1} V_{1} \mathrm{~d} t .}
\end{gathered}
$$

Da quest'ultima equazione si deduce che un amplificatore operazionale avente una resistenza pura come impedenza di ingresso Z_{i} ed una capacità pura C_{f} come impedenza di controreazione Z_{f}, integra e molmorsetti di ingresso. Se quindi è per esempio $R_{\mathrm{i}}=5 \mathrm{M} \Omega$ e $C_{\mathrm{f}}=1 \mu \mathrm{~F}$ la tensione di ingresso all'amplificatore operazionale è integrata e moltiplicata per - $1 / 5$.
La figura 4 rappresenta un amplificatore operazionale adatto a funzionare come integratore.

D) Sомма.

La somma è una delle operazioni più importanti che gli amplificatori operazionali possono eseguire. Si supponga per esempio che sị debbano sommare tre tensioni variabili $V_{\mathrm{a}}, V_{\mathrm{b}}$ e V_{c}. La figura 5 rappresenta il
eseguire questa operazione
Con le stesse ipotesi che sono servite per ricavare l'equazione [4] nel nodo P deve essere:
$i_{\mathrm{a}}+i_{\mathrm{b}}+i_{\mathrm{c}}-i_{2}=0$

$$
\text { ossia } \frac{V_{\mathrm{a}}}{Z_{\mathrm{a}}}+\frac{V_{\mathrm{b}}}{Z_{\mathrm{b}}}+\frac{V_{\mathrm{c}}}{Z_{\mathrm{c}}}-\frac{-V_{2}}{Z_{\mathrm{f}}}=0
$$

Si ottiene quindi:
[8] $\quad V_{2}=-\left(\frac{Z_{\mathrm{f}}}{Z_{\mathrm{a}}} V_{\mathrm{a}}+\frac{Z_{\mathrm{f}}}{Z_{\mathrm{b}}} V_{\mathrm{b}}+\frac{Z_{\mathrm{f}}}{Z_{\mathrm{c}}} V_{\mathrm{c}}\right)$
Se la impedenza di controreazione Z_{f} e le impedenze di ingresso $Z_{\mathrm{a}}, Z_{\mathrm{b}}$ e Z_{c} sono tutte resistenze
uguali (per esempio di $1 \mathrm{M} \Omega$ ciascuna) la tensione di uscita V_{2} è uguale ed opposta alla somma delle tre tensioni di ingresso V_{a}, V_{b} e V_{c}.
Se una o più delle resistenze di ingresso hanno un valore diverso da Z_{f} la tensione di ingresso corri-
spondente risulta sommata spondente risulta sommata alle altre e moltiplicata
per il valore del rapporto Z_{f} / Z_{i}.
E) Risoluzione di una equazione pifferenZIALE DEL SECONDO ORDINE
Nelle pagine che precedono si è visto come trasformare un amplificatore a controreazione in un ammoltiplicare per una costante, derivare, integrare e sommare. Si puó quindi ora mostrare come si debbano connettere tra loro diversi amplificatori operazionali, capaci ognuno di una operazione semplice tra quelle elencate, per risolvere un'equazione differenziale.

Si consideri a questo scopo l'equazione differenziale del secondo ordine a coeffienti costanti

[9]

$$
y^{\prime \prime}+\frac{c}{m} y^{\prime}+\frac{k}{m} y=0
$$

che descrive le oscillazioni proprie di una massa m che descrive le oscillazioni proprie di una massa m_{1}
sostenuta da una molla di rigidezza k; il sistema è anche dotato di uno smorzamento viscoso e e si supanche dotato di uno smorzamento viscoso o e si sup-
ponga di voler conoscere la soluzione della $[9]$ per condizioni iniziali di velocità y^{\prime} finita e di spostamento y nullo.

La figura 6 rappresenta 10 schema del circuito formalmente analogo alla equazione considerata. Gli amplificatori operazionali sono quattro. La tensione rappresenta lo spostamento y.
rappresenta io spostamento y.
Perció se il prodotto $R C$ tra il valore della resistenza di ingresso R e della capacità di controreazione C è uguale all'unità, la tensione di ingresso all'amplificatore considerato è uguale a $-y^{\prime}$.

Analogamente la tensione di ingresso al primo amplificatore imegratore A_{3}, supponendo che anche per quest'ultimo il prodotto $R C$ sia uguale all'unità,

Dalla [9], essendo $y^{\prime \prime}=-\left(\frac{c}{m} y^{\prime}+\frac{k}{m} y\right)$,si deduce che $y^{\prime \prime}$ deve essere uguale ed opposto alla somma degli altri due termini dell'equazione.

Fig. 6. - Circuito per la soluzione della equazione I9 con condizion

Quindi la tensione di uscita dell'amplificatore som matore A_{2}, al cui ingresso sono applicate le tension matore A_{2}, al cui ingresso sono applicate le L'uscita di A_{2} è perció connessa all'ingresso de primo integratore A_{3} e le resistenze di ingresso al sommatore sono scelte rispetto a quella di controrea zione in modo da ottenere che le tensioni di ingresso siano non solo sommate tra loro ma anche ciascuna
moltiplicata per il rispettivo coefficiente c / m o k / m.
Poichè la tensione di uscita del primo integratore A_{3} è proporzionale a - y^{\prime} anzichè ad y^{\prime} quest'ultima deve essere cambiata di segno prima di essere inviata all'ingresso del sommatore per sommarla con y. A questo serve l'amplificatore invertitore di segno A_{1} i ui ingresso è collegato coll'uscita del primo inte ratore A_{3}.

Per ottenere la soluzione desiderata della equa dizioni in iziziali quindi introdurre nel circuito le con essere, per $t=0$ opportune che, come si è detto, devon funzione del tempo le variazioni delle tensioni che corrispondono alle variabili che interessano
Poichè, come si è visto, la tensione V^{\prime} all'ingresso del primo stadio di ciascun amplificatore operazionale sione di uscita y del secondo integratore A_{4} coincide praticamente con la tensione ai capi del condensatore di controreazione dello stesso amplificatore. La ten sione di uscita y può quindi essere resa nulla scaricando 1 condensatore di controreazione cortocircuitandolo coll'interruttore S_{2}
Analogamente la tensione di uscita - y^{\prime} del primo condensatore di controreazione. Quindi le condizion niziali desiderate $y^{\prime}=y^{\prime}$ per $t=0$ possono esser ottenute chiudendo l'interruttore \mathcal{S}_{1} inserito in serie con la batteria B_{1} connessa ai capi del condensator di controreazione di A_{3}. La tensione di B_{1} deve corripondere, nella scala opportuna, ad $y_{0}{ }_{0}$
La soluzione del problema proposto ha inizi \mathbf{S}_{2} ed avviene registrando per esempio la tensione d uscita y che comincia a variare in funzione del tempo in modo da soddisfare in ogni istante all'equazione [9] a partire dalle condizioni iniziali fissate.
Se si desidera conoscere anche i valori della velo cità - y^{\prime} oppure dell'accelerazione $y^{\prime \prime}$ basta connet tere il registratore ai morsetti di uscita degli amplifi catori corrispondenti
Se invece delle oscillazioni proprie del sistema già considerato si dovesse esaminarne le os
[10] $\quad y^{\prime \prime}+\frac{c}{m} y^{\prime}+\frac{k}{m} y=\frac{1}{m} \mathrm{f}(t)$
serve evidentemente ancora lo stesso circuito di figura 6. Basta soltanto introdurre opportunamente a tensione corrispondente al termine noto $\mathrm{f}(t) / m$.

Essendo per la [10]

$$
y^{\prime \prime}=\frac{1}{m} \mathrm{f}(t)-\left(\frac{c}{m} y^{\prime}+\frac{k}{m} y\right)
$$

la tensione corrispondente al termine noto $\mathrm{f}(t) / m$ deve essere applicata all'ingresso dell'amplificatore inver titore A_{1} come è indicato in figura 7

Fig. 7. - Cirinuito per la asoluzione dellal equazione 11001 con condizioni
La figura 8 è un esempio di soluzione di una equaione differenziale del tipo [9] con condizioni inizial simili a quelle considerate poco fa. La soluzione e stata ottenuta con la calcolatrice analogica ripetitiva oggetto di questo articolo e descritta nel paragraf che segue

Sul fotogramma di figura 8 sono visibili sia 10 pastamento y sia la velocità - y^{\prime} della massa m della calcolatrice di $1 / 100$ di secondo equivale a 0,5 secondi.

Come si vedrà meglio in seguito, al termine delintervallo di soluzione, tutte le tensioni della calco iniziale e rimangono tali per un altro centesimo di secondo al termine del quale riprende il ciclo delle soluzioni e degli azzeramenti che come già detto si ripete 50 volte al secondo. L'inizio dell'intervallo di zzeramento coincide con il termine dell intervallo di soluzione ed è chiaramente visibile a destra sul fotogramma di figura 8 , sotto forma di una discontinuità ella traccia

Fig. 8. - Esempio dii soluzione di un'equazione difierenziale del se

4. Descrizione della calcolatrice elettronica

a) Gli amplificatori operazional

La figura 9 rappresenta lo schema del circuito degl amplificatori operazionali.
Salvo qualche piccolo ritocco, lo schema è identico a quello degli amplificatori operazionali di una calcoatrice analogica ripetitiva costruita nel «Research Laboratory of Electronics» del Massachusetts Institute of Technology di Cambridge, Mass. U.S.A., sotto la direzione del Dr. A.B. Mac Nee (1).

'amplificatore propriamente detto è costituito dal pentodo V_{1} e dal doppio triodo V_{2} (fig. 9).
I due tubi finali V_{3} e V_{4} sono invece trasferitori catodici. Il primo di essi serve per ottenere che, con tensione di ingresso zero, sia nulla anche la differenza di potenziale ai capi della impedenza di contro reazione Z_{t}

Il secondo trasferitore catodico serve per introdi uscita molto bassa in modo che il funzionamento di ciascun amplificatore operazionale sia il più possibile indipendente dal valore del «carico» connesso ai suoi morsetti di uscita.

L'amplificazione totale dell'amplificatore operazionale di figura 9 è di poco inferiore a 400 e la tensione massimasita di $\pm 25 \mathrm{~V}$
ro tutte le tensioni dell'amplificatono riportando a ciascun intervallo di soluzione ed introducendo impulsi rettangolari di tensione di ampiezza opportuna, corrispondenti alle condizioni iniziali di ciascun amplificatore operazionale, all'inizio del successivo intervallo di soluzione.

Fig. 9. - Schema dell'amplificatore operazionale.
Il pregio principale dell'amplificatore operazionale di figura 9 è quello di essere un amplificatore per tensioni alternative anzichè per tensioni continue,
benchè, durante l'intervallo di soluzione, esso si comporti come se fosse un amplificatore per tensioni continue.

Infatti, durante l'intervallo citato, le griglie dei tubi V_{2} e V_{3} sono isolate da massa ed i condensatori di accoppiamento C_{1} e C_{2} non possono ne caricarsi
ne scaricarsi. Tutto avviene quindi come se essi non esistessero.

Al termine di ciascun intervallo di soluzione, tutte le tensioni della calcolatrice ritornano a zero ed i condensatori C_{1} e C_{2} di accoppiamento tra i diversi stadi sono scaricati per mezzo di interruttori elet-
tronici simili ai reinseritori di componente continua usati nei circuiti per televisione ${ }^{(2)}$
Al termine di ciascun intervallo di soluzione, si applicano impulsi rettangolari di tensione di segno positivo e negativo, della durata di $1 / 100$ di secondo
nei punti adatti indicati in figura 9. Gli impulsi di tensione permettono ai diodi V_{5} e V_{6} di condurre e di ridurre quindi a zero la tensione di uscita di ciascun stadio amplificatore, misurata nei punti indicati cJn P nello schema dell amplificatore operazionale.
Questo naturalmente quando le ampiezze degli impulsi rettangolari di tensione di segno positivo e negativo sono regolati in modo corretto per mezzo di potenziometri visibili sullo schema di figura 9.
L'uso dei circuiti di azzeramento garantisce il ritorno di tutte le tensioni della calcolatrice ai valori iniziali, qualunque sia il tipo della "soluzione» ed inoltre consente notevoli semplificazioni soprattutto per quanto riguarda gli alimentatori.

La figura 10 e una fotografia dell'amplificatore setti di ingresso e di uscita e la manopola del potenziometro che serve a regolare le condizioni iniziali.
Gli impulsi di tensione rettangolare di segno positivo e negativo, della durata di $1 / 100$ di secondo, che servono per azzerare le tensioni di uscita degli ampli-
ficatori operazionali della calcolatrice, sono ottenuti con un multivibratore bistabile, comandato a sua volta da un multivibratore monostabile.
Quest'ultimo, che fornisce un impulso di tensione rettangolare ad intervalli di 1100 di secondo l'uno dall'altro, è pilotato dalla tensione di rete trasformata da un raddrizzatore in tensione pulsante di frequenza doppia.

Gli impulsi di tensione rettangolare, forniti dal
multivibratore bistabile, sono trasformati in impulsi multivibratore bistabile, sono trasformati in impulsi
uguali e di segno opposto con un circuito molto semplice, comprendente un solo tubo usato come invertitore.

L'uscita di quest'ultimo è connessa all'ingresso di un gruppo di trasferitori catodici, ognuno dei quali serve tre amplificatori operazionali, fornendo oro gli
impulsi in controfase che servono per l'azzeramento e per introdurre le condizioni iniziali.
B) Gli alimentatori.

Gli alimentatori della calcolatrice elettronica che, per il momento, è formata da 12 amplificatori operazionali, sono tre.
Ciascuno di essi, del tipo comune stabilizzato, fornisce le tensioni continue di +250 V con $300 \mathrm{~mA}_{\text {max }}$,

Fig. 10. - Un amplificatore operazionale.

Fig. 11. - Un alimentatore stabilizato.
-110 V con $250 \mathrm{~mA}_{\text {max }} \mathrm{e}+60 \mathrm{~V}$ con $5 \mathrm{~mA}_{\text {max }}$ necessarie per alimentare un gruppo di amplificator di circuiti accessori
Ciascun alimentatore fornisce inoltre circa 20 A grappo di tubi elettronici.

- circuiti degli alimentatori stabilizzati sono de uno degli alimentatori.
togh alne tari. La potenza totale di rete, necessaria per alimentare gli alimentatori della calcolatrice, compreso l'oscil osservare le soluzioni, è di circa $2,5 \mathrm{~kW}$.
C) I generatori di funzioni arbitrarie.

Per risolvere equazioni differenziali del tipo. [10] e necessario applicare all ingresso della calcolatric arbitrarie che costituiscono il termine noto $\mathrm{f}(t)$ delle equazioni da risolvere.
Le tensioni $\mathrm{f}(t)$ che si possono per ora applicare all'ingresso della calcolatrice sono di forma semplice. Esse sono:

1) tensioni rettangolari positive e negative della durata di $1 / 100$ di secondo (le stesse che servono per azzerare la calcolatrice);
2) tensioni rettangolari positive e negative di durata variabile di 500 in $500 \mu \mathrm{sec}$, a partire da $500 \mu \mathrm{se}$ bistabile;
3) tensioni di forma variabile ottenute dalla somma di 10 impulsi rettangolari successivi, ciascuno della durata costante di $500 \mu \mathrm{sec}$ e di ampiezza rego funzione $f(t)$ da riprodurre.
Gli impulsi successivi di ampiezza regolabile sono ottenuti ciascuno con un multivibratore monostabile Il termine dell'impulso generato da ciascun multivibratore monostabile comanda linizio dell impulso di tensione del successivo. La serie di impulsi cosi ottenuta è miscelata con trasferitori catodici, previa
regolazione dell'ampiezza di ciascun impulso golazione deli ampiezza di ciascun impulso,
come somma di impulsi rettangolari di tensione, di durata costante e di ampiezza diversa.

La calcolatrice completa è visibile in figura 13. Gli amplificatori operazionali sono tutti sistemati nell parte sinistra, mentre la parte destra contiene i gene

Fig. 12. - Tensione $f(t)$ generata come somma di impulsi rettangolari.
ratori di funzioni arbitrarie ed il pannello generale della calcolatrice con tutte le connessioni ai singoli amplificatori operazionali ed i morsetti per sistemare e impedenze di ingresso Z_{i} di ciascun amplificatore In basso sono sistemati ali alimentatori

Fig. 13. - La calcolatrice completa.
5. Approssimazione delle soluzioni ottenute con la calcolatrice.
L'approssimazione dei risultati forniti dalla calolatrice è stata controllata confrontando, con quella calcolata analiticamente, una soluzione ottenuta risol-
vendo una equazione differenziale lineare del secondo rdine a coéfficienti costanti, del tipo [9] già considerato.
Per la verifica è stata usata l'equazione differenziale:

$$
\text { [11] } \quad y^{\prime \prime}+20 y^{\prime}+4000 y=0
$$

calcolandone la soluzione per le condizioni iniziali $y_{0}=0$ e $y^{\prime}=1000$ all'istante $t=0$.
L'oscillogramma fornito dalla calcolatrice è quello In figura 8
In figura 14 si confronta la soluzione della [11]

Fig. 14. - Confronto tra una aoluzione calcolata analiticamente ed
a tratto continuo, con alcuni valori ricavati dall'oscillogramma citato e segnati con cerchietti sulla stessa figura 14.
I punti che corrispondono ai valori dedotti dall'oscillogramma fotografato sullo schermo del tubo a raggi catodici dell oscilloscopio, concordano abbastanza bene con la curva calcolata analiticamente. Le differenze sono infatti abbastanza piccole (delbili se considerate sotto l'aspetto dell'approssimazione che di solito si richiede nella maggior parte dei calcoli tecnici.
6. Alcuni risultati.

La calcolatrice elettronica descritta è stata usata per risolvere alcune equazioni differenziali lineari e non lineari a coefficienti costanti.

Tra l'altro sono state risolte le equazioni del moto di due sistemi meccanici semplici, rispettivamente ad uno ed a due gradi di libertà che rappresentano un moicolo. La non linearità considerata nelle equazioni è quella che corrisponde alla dissimmetria delle azioni dell'ammortizzatore.
La figura 15 rappresenta un sistema meccanico ad un grado di libertà formato da una massa m, da unt smorente di rigidezza r ed P. rispettivamente di rigidezza r ed R

Il sistema di figura 15 equivale alla ruota di un di rigidezza r ed unita al telaio dalla balestra di rigi dezza R e dall'ammortizzatore di smorzamento c
Se si immagina che il telaio sia fisso, come è in figura 15 , il sistema serve per studiare l'effetto sul moto della ruota delle irregolarità del fondo della strada su cui si muove il veicolo.
L'equazione che descrive il moto del sistema rap presentato in figura 15 è del secondo ordine, a coefficienti costanti, e cioè:

$$
y^{\prime \prime}+\frac{c}{m} y^{\prime}+\frac{r+R}{m} y=\frac{1}{m} \mathrm{f}(t) .
$$

L'equazione è stata risolta per i seguenti valori dei parametri del sistema:
$m=0,005 \mathrm{~kg} \mathrm{sec}{ }^{2} / \mathrm{mm}$
$r=15 \mathrm{~kg} / \mathrm{mm}$
$R=2 \div 5 \mathrm{~kg} / \mathrm{mm}$

$$
c=0,1 \div 1 \mathrm{~kg} \mathrm{sec} / \mathrm{mm}
$$

eccitando il sistema con spostamenti $\mathrm{s}(t)$ di 50 mm di ampiezza, applicati all'estremità inferiore della molla di rigidezza r.
In queste condizioni risulta pertanto $\mathrm{f}(t)=r \cdot \mathrm{~s}(t)$ l'equazione diviene, introducendo in essa i valori numerici,

12] $y^{\prime \prime}+(20 \div 200) y^{\prime}+(3400 \div 4000) y=3000 \mathrm{~s}(t)$.
La figura 16 rappresenta il circuito della calcolarice che si è usata per risolvere la [12].

Esso è ovviamente identico a quello di figura 7 . Le figure $17 a)$ e b) rappresentano due soluzioni eccitazione «a gradino» applicata all'estremità inferiore della molla di rigidezza r. Nei due fotogrammi considerati, la $s(t)$ è rappresentata dalla traccia inferiore. Da un caso all altro varia soltanto lo smorzamento c del sistema, il cui valore è segnato su entrambe le figure. La durata dell'intervallo di soluzione della alcolatrice equivale a 0,5 secondi
La figura 18 a) e b) rappresenta due altre soluzioni della [12] per $\mathrm{s}(t)$ uguale ad un impulso di forma zioni della [12] per $s(t)$ uguale ad un impulso di forma
rettangolare della durata di 0,125 secondi. I valori dello smorzamento c del sistema sono gli stessi considerati prima.
La figura 19 a) e b) rappresenta due altre soluzioni della [12] per $s(t)=s_{o} 1(t)$, ma con smorzaseconda traceia rappresenta la forza F_{0} esercitata

Ris. 16 - Ciresito per ha

Fig. $17 a_{-}^{-b}$
dallo smorzatore, diversa, come è in realtà nelle sospen sioni degli autoveicoli, per velocità verticali della ruota - La figura 20 illustra 10 schema del circuito usato per risolvere la [12] con smorzamento non lineare L'amplificatore operazionale A_{5} serve per introdur

Fig. $18 a-b$

Fig. $19 a-b$
questo, il valore dell'impedenza di ingresso Z_{i} di A_{b} \hat{e} stato reso funzione del segno della tensione di ingresso, ponendo in parallelo alla resistenza di ingresso un raddrizzatore a cristallo di germanio.
Sostituendo una massa M al vincolo fisso alla estremità della molla di rigidezza R opposta a quella collegata con la massa m, il sistema ad un grado di
libertà di figura 15 si trasforma nel sistema a due gradi di libertà della figura 21 e permette di studiare effetto delle irregolarità del fondo stradale anche sul moto del telaio dell'autoveicolo.
indicando con y_{1} e con y_{2} rispettivamente gli postamenti verticali delle masse m ed M, le equazioni del motó del sistema di figura 21 sono: $y^{\prime \prime}{ }_{1}+\frac{c}{m} y^{\prime}{ }_{1}+\frac{r+R}{m} y_{1}=\frac{r}{m} \mathrm{~s}(t)+\frac{R}{m} y_{2}+\frac{c}{m} y^{\prime}{ }_{2}$

$$
y^{\prime \prime}{ }_{2}+\frac{c}{M} y^{\prime}{ }_{2}+\frac{R}{M} y_{2}=\frac{R}{M} . y_{1}+\frac{c}{M} y_{1}^{\prime}
$$

Per una massa M di $0,05 \mathrm{~kg} \mathrm{sec}{ }^{2} / \mathrm{mm}$, mantenendo per gli altri parametri gli stessi valori già usati per 1 sistema ad un grado di libertà considerato prima introducendo nelle equazioni del moto, al posto dei coefficienti, i loro valori numerici, risulta: [13]
$y^{\prime \prime}{ }_{1}+(20 \div 200) y^{\prime}{ }_{1}+(3400 \div 400) y_{1}=3000 \mathrm{~s}(t)+$ $+(400 \div 1000) y_{2}+(20 \div 200) y^{\prime}$
$y^{\prime \prime}{ }_{2}+(2 \div 20) y^{\prime}{ }_{2}+(40 \div 100) y_{2}=(40 \div 100) y_{1}+$
$+(2 \div 20) y^{\prime}{ }_{1}$.
La figura 22 riproduce lo schema del circuito della calcolatrice usato per risolvere la [13].

La figura $23 a$), b), c) e d) rappresenta quattro soluzioni per una eccitazione a gradino $s(t)=s_{0} \cdot 1(t)$ applicata sempre all'estremita della molla di rigi dezza r. La traccia superiore di ciascun oscillogramm lo spostamento y_{1} di m . La durata dell'intervallo di soluzione equivale a 1 secondo. Le soluzioni differi scono tra loro per i diversi valori dello smorzamento e della rigidezza della molla R. I valori corrispondent

Fig. 20. - Circuito per la soluzione della equazione 112] con smor

Fig ${ }^{22}$ - Circuito per la soluzione della equazione (13)

(2) b)

Fig. $26 a-b$
che la massa M riceve dallo smorzatore soltanto forze dirette verso il basso

Nella figura $27 a$) e b) sono visibili lo spostamento verticale y_{2} di M e la sua accelerazione $y^{\prime \prime}$. I valor sono gli stessi coi quali si sono ottenute le soluzioni della figura 26 a) e b).

Fig. $27 a-b$

L'autore è molto grato alla Direzione Generale della FIAT che ha permesso la pubblicazione di questo articolo e ringrazia vivamente l'ing. G. Reviglio ed il sig. C. Gianotti per il loro contributo al progetto ed al montaggio dei circuiti della calcolatrice.
(180)

G. B. Angioletti - Piero Bigongiar

TESTIMONE IN GRECIA

In questo libro, frutto di un lungo viaggio compiuto per incarico della RAI, Radiotelevisione
Italiana, che ne ha realizzato un ciclo di trasmissioni, gli autori risalgono il più possibile Italiana, che ne ha realizzato un ciclo di trasmissioni, gli autori risalgono il più possibile
lontano nel tempo e affrontano miti inconsueti. Sono cosi illuminate in particolare quelle zone lontano nel tempo e affrontano miti inconsueti. Sono così illuminate in particolare quelle zone
dell'antichissima civiltà greca ed egea, che per lo più vengono trascurate dalla frettolosa cultura scolastica, laddove il lettore viene accompagnato, senza subire il tedio di erudite sottigliezze, attraverso un succedersi di scoperte e di ritrovamenti affascinanti. Perché gli autori, uomini
di lettere, si rivelano spettatori attivi e conoscono l'arte di comunicare sensazioni ed entusiasmi di lettere, si rivelano spettatori attivi e conoscono l'arte di comunicare sensazioni ed entusiasmi
personali. Il commento non segue alcun ordine cronologico, ma si adegua a certe tappe obbligate, a certi suggestivi ritorni o riprese. II lettore, comunque, apprenderà che questo divagare nella storia
è soltanto occasionale e che tutto doval concorrere a mostrare come dalle regge di Cnosso o di e soltanto occasionale e che tutto dovrà concorrere a mostrare come dalle regge di Cnosso o o di
Festo, e dalle tombe degli Atridi fino al Partenone, il genio umano, sulle rive del Mediterraneo, si ia sempre più affinato nella conquista di una forma più pura, senza però accusare soste o manca

Raffinata pubblicazione d'arte. Edizione numerata di 248 pagine, con 202 illustrazioni delle quali 12 in quadricromia - Lire 7000

ERI
EDIZIONI RADIO ITALIANA - TORINO - VIA ARSENALE, 21

LINEE DI RITARDO ELETTROMAGNETICHE PER TV

Dott. Ing. GIan franco rafeo

della RAI
SOMMARIO - Dopo un richiamo sul calcolo di una catena infinita di quadripoli passivi in regime perma nente, si descrivono linee di ritardo a larga banda con cellule a k costante, metaderivate con mutua induzione, metaderivate con mutua induzione e ponte capaciinio. si descrive un nuovo tipo di inea con avvolgimento con inuo e capacitd concentrate, dotata di particolari caratteristiche funzionali e costruttive. Si danno formule alcolo per i tipi di linee esaminate, in funzione della frequenza di taglio, dell'impedenza caratteristica e de ritardo totale.

. Premessa.

In alcuni problemi della tecnica TV accade di dover ritardare opportunamente i segnali di sincronismo da inviare alle apparecchiature di ripresa (telecamere, telecinema) onde equalizzare i ritardi introdotti da
cavi di varia lunghezza. In un precedente scritto (${ }^{(1)}$ si è trattato il problema da un punto di vista generale, descrivendo poi un dispositivo elettronico atto ad introdurre un ritardo variabile con continuità su segnali a forma di impulsi. Un quadripolo passivo però, uperiori per quanto riguarda la sicurezza di funzio namento : esaminiamo quindi alcuni tipi di linee di itardo elettromagnetiche a parametri concentrati atte a risolvere il problema.
2. Generalità sui quadripoli passivi.

Una linea di ritardo elettromagnetica può in geneale essere considerata come un quadripolo lineare passivo: il suo comportamento può quindi essere utilmente studiato in base a tre funzioni complesse della
frequenza: la funzione propagazione $\gamma(\omega)$ e le due frequenza: la funzione propagazione $\gamma(\omega)$ e le due
unzioni impedenza immagine $Z_{01}(\omega)$ e $Z_{02}(\omega)\left({ }^{2}\right)$. Il significato fisico delle tre funzioni è precisato con

Fig. 1. - Linea di ritardo considerata come un quadripoio.

In condizioni di regime permanente si ha:
[1] $\quad E_{0}=\frac{E_{\mathrm{g}}\left(Z_{01}+Z_{02} r_{\mathrm{r}}\right)}{\left(Z_{\mathrm{r}}+Z_{01}\right)\left(e^{\gamma}-r_{\mathrm{r}} r_{\mathrm{r}}{ }^{-\gamma}\right)}$
dove Z_{s} è l'impedenza del generatore, Z_{r} è l'impedenza del carico, r_{r} e r_{s} sono i coefficienti di riflessione, definiti da

$$
r_{\mathrm{r}}=\frac{Z_{\mathrm{r}}-Z_{01}}{Z_{\mathrm{r}}+Z_{02}} \quad ; \quad r_{\mathrm{s}}=\frac{Z_{\mathrm{s}}-Z_{02}}{Z_{\mathrm{s}}+Z_{01}}
$$

E_{p} è una tensione sinoidale espressa da

$E_{g} \mid \ell^{j \omega t}$.

La funzione impedenza immagine Z_{01} è l'impedenza fra i morsetti $A A$, supposti isolati dal generatore quando ai morsetti $B B$ sia collegata una catena infinita di quadripoli uguali a quello in esame e tutti simil
mente orientati. Analogamente si definisce la funzione impedenza immagine Z_{02}, come l'impedenza fra i mor setti $B B$, supposti isolati dal carico, quando ai morset $A A$ sia collegata una catena infinita di quadripol uguali a quello in esame e tutti similmente orientati
[2]

$$
E_{0}=E_{\mathrm{g}} \frac{Z_{01}}{Z_{\mathrm{s}}+Z_{01}} e^{-\gamma}
$$

Se inoltre Z_{01} e Z_{r} sono resistenze pure, ponendo:

$$
\gamma=\alpha+j \beta
$$

ove α e β sono funzioni reali della frequenza, si ved che, a meno del fattore costante $Z_{01}\left(Z_{8}+Z_{01}\right), e^{-}$ tensione all'ingresso E_{g}, mentre β è l'angolo di fase di E_{0} relativo ad E
Per analogia con le linee a parametri distribuiti chiamiamo α funzione attenuazione e β funzione fase
Nel caso in cui il quadripolo sia simmetrico due coppie di terminali non siano distinguibili, le due funzioni impedenze-immagine coincidono e il loro co mune valore $Z_{0}(\omega)$ prende il nome di funzione impe
3. Linea di ritardo con cellule a «k» costante

Il tipo più semplice di linea di ritardo elettroma gnetica a parametri concentrati e il filtro passa-bass a k costante di figura 2. Come è noto, per tale filtro esiste un intervallo di frequenze, detto banda passante
in cui il filtro stesso presenta un'impedenza iterativa reale, consentendo quindi il trasferimento d'energia dall'ingresso all'uscita; esiste poi un altro intervallo detto banda oscura, o attenuata, in cui la struttura

presenta impedenza iterativa immaginaria; il che pr clude la possibilità di trasferire energia attiva. Le du bande so

$$
\omega_{\mathrm{c}}=2 / V \overline{L C} .
$$

Le funzioni attenuazione e fase per ogni singola cellula di una tale struttura hanno andamenti divers nella banda passante e nella banda attenuata. Nell

$$
\alpha=0 ; \beta=2 \operatorname{arcsen}\left(\omega / \omega_{c}\right) .
$$

Nella banda attenuata cioè per $\omega \geq \omega_{c}$ è:

$$
\alpha=2 \operatorname{arcosh}\left|\omega / \omega_{c}\right| ; \quad \beta=\pi
$$

La funzione impedenza caratteristica è espressa per tutti i valori della pulsazione da:

$$
\text { [3] } \quad Z_{0}=\sqrt{\frac{L}{C}} \sqrt{1-\left(\frac{\omega}{\omega_{\mathrm{c}}}\right)^{2}}
$$

Come si vede anche in figura 3, nella banda passante attenuazione è nulla: entro tale banda la rete può saria perché tutte le frequenze della banda passante siano ugualmente ritardate è:
$\beta=k \omega$
ove k è una costante reale
Purtroppo le funzioni attenuazione e fase non sono fra loro indipendenti : fissato l'andamento di una, ri avendo stabilito che nella banda passante l'attenua zione sia nulla, dobbiamo rinunciare ad ottenere per la funzione fase una relazione lineare nella frequenza Di conseguenza, il ritardo τ per ogni cellula, subito
da una pulsazione ω compresa fra zero e ω_{c} viene da una pulsazione ω compresa fra z
dipendere dalla frequenza. Infatti è:
[4] $\tau=\frac{d \beta}{d \omega}=\frac{2}{\omega_{c}} \frac{1}{\sqrt{1-\left(\frac{\omega}{\omega_{c}}\right)^{2}}}=\left\lvert\, \sqrt{L C} \frac{1}{\sqrt{1-\left(\frac{\omega}{\omega_{c}}\right)^{2}}}\right.$
Restringendo però il campo di impiego a una frazione
della banda passante (fig. 3), frazione limitata supe-

riormente da una pulsazione ω_{0} molto minore della taglio, si può conseguire una soddisfa cente equalizzazione dei ritardi
1 rapporto $\omega / \omega_{\mathrm{c}}$, otteniamo le:
[5] $\quad Z_{0}=1 \overline{L / C} ; \tau=1 \overline{L C}$
che, insieme alla:
[6] $\quad \omega_{c}=2 / / \overline{L C}$
rvono al dimensionamento pratico di una linea di uesto tipo; per un ritardo totale τ_{+}occorrerà un nu$N=\pi \tau_{t} f_{c}$.
Dato che si deve costruire la rete in modo che sia $\omega_{c} \geqslant \omega_{0}$, il ritardo per cellula è piccolo e bisogna usare nesso il ritardo yoro di cellule per conseguire in comlesso il ritardo voluto
fino a qualche migliaio di ohm, sistema impedenze microsecondi, bande passanti dell'ordine del megahertz. Costruttivamente, le bobine costituenti le induttanze posssono essere di filo smaltato o cotonato avvolto
a nido d'ape su un unico supporto di plexiglas o di altro materiale a basse perdite dielettriche. Si avrà cura di disporre le bobine a distanze almeno pari al loro diametro esterno, per evitare accoppiamenti ines I corati.
I condensatori possono essere del tipo ceramico o a
mica argentata, onde garantire la stabilità del valore mica argentata, onde garantire la stabilita deve superare il 2%; entro questo campo è bene disporre i condensatori. sulla linea scalarmente, anziche a casaccio,
ordinati secondo i valori crescenti della capacità. Con questo accorgimento si limitano le differenze di impedenza da cellula a cellula, che sono causa di riflessioni
con conseguenti distorsioni del segnale da ritardare Allo stesso scopo si possono disporre, in parallelo ai condensatori principali, dei compensatori da tarare con l'aiuto di un oscillografo a larga banda e un generatore di onde rettangolari.
di una linea con cellule a k costante, destinata a ritardare di 1 us un segnale del tipo degli impulsi di sincronismo TV, su un'impedenza di 75 ohm :

$$
\begin{array}{ll}
\text { frequenza di taglio } & f_{c}=40 \mathrm{MHz} \\
\text { induttanza di una cellula } & L=0,6 \mu \mathrm{H} \\
\text { capacita di una cellula } & C=107 \mathrm{pF} \\
\text { numero di cellule } & N=126
\end{array}
$$

olo, la banda richieme dimostrato nel sopracitato artisalita dei fronti dei ser non aumentare il tempo di ${ }_{2} \mathrm{MHz}$. La frequenza di taglio è èstata perciò scelta e 20 volte maggiore della massima frequenza da trasmettere - esiguo valore di L rappresenta una delle difficoltà che si incontrano per realizzare tali linee con una larga banda su un'impedenza bassa

4. Generalità sulle strutture metaderivate

Come è noto, da una struttura a T a k costante si può derivare un'altra struttura a T detta metaderivata (fig. 4) con le condizioni :
[7] $\quad X^{\prime}=m X ; \quad Z_{o}^{\prime}=Z_{o} ; \quad \omega_{c}^{\prime}=\omega_{c}$
Rispetto alla cellula a k costante si consegue il vantaggio che i parametri della

Nel campo dei filtri si sfrutta questa ulteriore possibilità scegliendo per m un valore che realizzi partico
lari andamenti dell'attuazione nella banda attenuata nel caso delle linee di ritardo, invece, si cerca di realiz zare la massima equalizzazione del ritardo alle vari Per ogni tipo di struttura bisognerà quindi esprimere τ in funzione di ω e di m, onde poter attribuire ad
m il valore più opportuno. m il valore più opportuno
5. Linea con cellule in «m» accoppiate magneticamente.
Introducendo una mutua induzione M fra le semibobine di ogni cellula di un filtro a k costante e sup ponendo nulla la mutua induzione fra le semibobine adiacenti non separate da condensatore, si ottiene un
semplice tipo di struttura metaderivata di cui un elemento è rappresentato in figura 5 . Applicando a questa rete la trasformazione di Campbell ${ }^{(}{ }^{3}$) si elimina la
mutua induttanza ottenendo il circuito di figura 6 .

Fig. 5. - Cellula in m ac

Mediante la [7] si ottiene allora

$$
M=\frac{1-m^{2}}{4 m} L
$$

[8] $L_{1}=\frac{m L}{2}-M=\frac{m^{2}+1}{4 m} L$

$$
C_{2}=m C
$$

Si noti che M ha segno negativo quando le bobine sono equiverse: ciò significa che nel circuito di fi è negativa. Il parametro m ha quindi valori >1 quando gli avvolgimenti sono equiversi.
Il coefficiente di accoppiamento è:
[9]

$$
k=\frac{M}{L_{1}}=\frac{m^{2}-1}{m^{2}+1}
$$

La funzione impedenza caratteristica è sempre La funzione fase per ogni singola cellula nella banda passante è:

$$
\beta=2 \operatorname{arcsen} \frac{m \omega / \omega_{c}}{\sqrt{1-\left(\omega / \omega_{c}\right)^{2}\left(1-m^{2}\right)}}
$$

Il ritardo per cellula è
[10] $\tau=\frac{d \beta}{d \omega}=\frac{2 m / \omega_{c}}{\sqrt{1-\left(\omega / \omega_{c}\right)^{2}\left[1-\left(\omega / \omega_{c}\right)^{2}\left(1-m^{2}\right)\right]}}$
In figura 7 sono rappresentati a tratto pieno diagrammi della [10] per diversi valori interessant di m. Si noti che per $\omega=0$ è sempre $\tau \omega_{c}=2 m$. Il caso $m=1$ corrisponde al filtro a k costante trattato al paragrafo 3 .

Il valore $m=1,27$ offre la massima possibile equalizzazione del ritardo che, per tutte le frequenze com-
prese fra $\omega=0 \mathrm{e} \omega=0,5 \omega_{c}$, può considerarsi pari a: $\tau=\underline{2 m}$. Questo tipo di linea richiede quindi per un ritardo ${ }^{\omega_{c}} \tau_{t}$ un numero di cellule:
[11]

$$
N=\pi \frac{\tau_{\mathrm{t}} f_{\mathrm{c}}}{m}
$$

assai minore a parità di ritardo che non linea a k costante
Per
essenziale coguire una buona equalizzazione del ritardo quella richiesta: un sistema conveniente per controllare l'accoppiamento fra le semibobine (per i valori zioni) consiste nell'avvolgere le due semibobine a un solo strato in modo continuo su un unico supporto, collegando il condensatore a una presa centrale (fig. 8). Mediante una opportuna costruzione grafica sul
diagramma rappresentante il coefficiente di Nagaoka nella formula per l'induttanza di un solenoide cilindrico a un solo strato, si è trovato il solo valore del rapporto $l_{\text {tot }} / d$ capace di assicurare al coefficiente di ac-
coppiamento il valore $M=0,236$ e quindi, al coefficiente di metaderivazione il valore $m=1,27$. Tale rapporto è
$l_{\text {tot }} / d=1,55$.

Anche qui si avra cura di distanziare le bobine di na lunghezza almeno pari al loro diametro. A titolo di esempio da confrontare col caso precelinea di ritardo con cellule metaderivate accoppiate magneticamente, con le stesse caratteristiche dell'e
sempio precedente:

$$
\begin{array}{ll}
\text { recedente: } & \\
\text { frequenza di taglio } & f_{c}=8 \mathrm{MHz} \\
\text { induttanza } & L_{1}=1,53 \mu \mathrm{H} \\
\text { mutua induzione } & M=0,361 \mu \mathrm{H} \\
\text { capacità } & C_{2}=675 \mathrm{pF} \\
\text { numero di cellule } & N=20
\end{array}
$$

6. Cellule a «T» accoppiate magneticamente, con condensatori in ponte. Linea compensata
Se alla cellula in figura 5 calcolata con le [8] aggiungiamo un condensatore

$$
\text { [12] } \quad C_{1}=\frac{C}{4 m}
$$

tteniamo una cellula passa-tutto (fig. 9) dotata di particolari caratteristiche. La sua funzione impedenza

Fig. 9. - Cellula in m a T con ponte capacitivo.
aratteristica, pur essendo alquanto più complessa della [3], è assai più costante al variare della frebanda passante, è:

$$
\beta=2 \operatorname{arctg} \frac{m \omega^{\prime} \omega_{c}}{1-\left(\omega / \omega_{c}\right)^{2}}
$$

Il ritardo per cellula è
[13] $\tau=\frac{\mathrm{d} \beta}{\mathrm{d} \omega}=\frac{\frac{2 m}{\omega_{c}}\left(1+\frac{\omega^{2}}{\omega_{c}{ }^{2}}\right)}{\left[1-\left(\omega^{\prime} / \omega_{c}\right)^{2}\right]^{2}+m^{2}\left(\omega_{c}{ }^{\prime} \omega_{c}\right)^{2}}$
In figura 7 è rappresentata tratteggiata la [13] per $\omega_{\mathrm{c}}=2 m$. L'equalizzazione del ritardo con questo tipo di cellule è meno buona che per le cellule a T senza condensatore.
Si noti però che tanto la famiglia delle curve per
le cellule a T, quanto quella relativa alle cellule a T e cellule a T, quanto quella relativa alle cellule a T in un punto; si noti altresì che le curve delle due famiglie che siano disposte simmetricamente rispetto ai
due punti di incontro, hanno andamenti complementari. Nasce così la possibilità di costruire una linea composta, compensando mediante cellule a T con ponte apacitivo la distorsione di fase introdotta dalle celLa
e a T combinazione migliore è quella con cellule a capacitivo, ambedue con $m=1,49$ il che permette di avere bobine uguali nei due tipi di ellule. Il ritardo, come appare dalla curva a tratto e ${ }^{\text {punto }} \omega=0,9 \omega_{c}$.
Il numero di cellule necessario a conseguire un de-
T seriormente riaotto rispetto alla linea con cellule T semplice.
Anche in questo caso si può, come nel caso precedente, controllare l'accoppiamento delle semibobine
avvolgendole di seguito su un solo strato. Per conse guire una buona equalizzazione dei strato. Per conse sabile ottenere una discreta precisione nei valori delle capacita e delle induttanze: l'inevitabile sensibilit
termica ed igroscond quindi il campo d'impiego di questo dispositivo ad applicazioni di qualità non molto elevata.

A titolo di esempio, una linea con cellule di questo edenti, viene ad avere le se

$$
\begin{array}{ll}
\text { frequenza di taglio } & f_{c}=8 \mathrm{MHz} \\
\text { induttanza } & L_{1}=3,22 \mu \mathrm{H} \\
\text { mutua induzione } & M=1,22 \mu \mathrm{H} \\
\text { capacità derivata } & C_{2}=1850 \mathrm{pF} \\
\text { capacità in ponte } & C_{1}=177 \mathrm{pF} \\
\text { numero di cellule } & N=9
\end{array}
$$

7. Linea con induttanza avvolta in modo continuo

Allo scopo di diminuire l'ingombro della linea con costruzione in serie, si è pensato di accostare tutte bobine fino ad avere un avvolgimento continuo, con prese equidistanti per i condensatori.
Il calcolo rigoroso di una simile struttura, supposta pratici il rapporto tra la distanza dei condesso. Nei ca diametro dell'avvolgimento è tale da permettere di trascurare la mutua induzione fra sezioni non adia centi. Per il caso di linea con cellule in m con mutua figura 10. ${ }^{\text {si }}$ Al fine di ottenere l'equivalenza elettrica di que sta struttura e quella di figura 5 basta diminuire di M tenere conto della mutua induzione fra cellula a T, pe tenere conto della mutua induzione fra cell
lula. Si avrà perció, tenuto conto della [8]:

$$
L_{1}^{\prime}=L_{1}-M=\frac{L}{2 m}
$$

Il coefficiente di accoppiamento fra i tratti $A B$ e $B C$ è

$$
k^{\prime}=\frac{M}{L_{\cdot 1}^{\prime}}=\frac{M}{L_{1}-M}
$$

Fis 13 - Curva livellofrequenza per la linea di figura 11
La figura 13 mostra la curva livello-frequenza per La figura 1 mostra la curva livello-frequenza per
la linea da $0,9 \mu \mathrm{~s}$, curva rilevata con un «Video Sweep
generator $»$;il taclio è a 8 MHz ;'indicatore (Marker) generator», ili taglio è a 8 MHz ; l'indicatore (Marker)
è a 2 MHz . La figura 14 mostra, sullo schermo di un oscillografo a larga banda, la forma di un impulso d sincronismo di riga all'uscita dalla linea in questione.
I1 rapporto «distanza fra condensatori/diametro delavvolgimento», capace di realizzare questo accop dalla formula di Nagaoka; esso risulta prossimo a 1,05 . Nelle cellule terminali, i rami esterni dei I a anno un'induttanza L_{1} invece di L_{1}, realizzata pero con per non variare M
t toto originale avvolgere le bobine in modo continuo, del tutto originale a quanto ci consta, consente di ri-
durre i disadattamenti tra cellula e cellula, permettendo di conseguire una migliore risposta di frequenza.

8. Conclusioni

Dall'analisi teorica e sperimentale condotta sui vari tipi di linee sopra descritte, si conclude che, ove l'ingombro non sia di preminente importanza, il tipo con da preferirsi ovunque si richieda una buona prestazione, una costruzione semplice e robusta e una relativa insensibilità termica.
In uno dei grandi centri di generazione dei programmi Tuestella RAI sono state installate alcune
serie di queste linee, di cui le figure 11 e 12 mostrano serie di queste inee, de cemplari delle seguenti caratteristiche: ritardo totale rispettivamente 0,9 e $1,85 \mu \mathrm{~s}$; impedenza 75Ω; frequenza di taglio 8 MHz

Fig 14.-Impulso di sıncronismo di riza all' uscita dalla linea di figura 11.
In figura 15 è possibile esaminare più accuratament il secondo fronte dell'impulso; gli indicatori distano di $1 \mu \mathrm{~s}$.

Fig. 15. - Secondo fronte jellimpulso di figura 11.

		0	
N	$\pi r_{r} r_{c}$	$\frac{1}{1.27} \pi \tau_{r} \mathrm{Ic}$	$\frac{1}{1.49} \pi \tau_{\mathrm{f}} \mathrm{tc}$
\llcorner	$\frac{z_{0}}{\pi r_{c}}$	-	-
4	-	$0.153-\frac{Z_{0}}{f_{c}}$	$0.172 \frac{\mathrm{z}_{0}}{\mathrm{f}_{\mathrm{c}}}$
c	$\frac{1}{\pi z_{0} t_{c}}$	-	-
c_{3}	--	$\frac{0,404}{z_{0} T_{c}}$	$\frac{0.475}{z_{0} F_{c}}$
c.	-	-	$\frac{0.0531}{Z_{0} f_{c}}$
m	-	$0,0384 \frac{2_{0}}{\mathrm{f}_{\mathrm{c}}}$	$0.065 \frac{z_{o}}{t_{c}}$

E＇chiaro come le linee rispondano al loro compito sura tale da generare quelle caratteristiche oscillazioni parassite（OVvershoot）originate dalla risposta dei qua－ dripoli reattivi alla funzione unitaria． Per concludere，si ritiene di fare cosa utile ripor
tando in tabella（fig．16）le formule di dimensiona mento per gli elementi delle linee sopra esaminate in funzione della frequenza di taglio prescelta f_{c} ，del ritardo totale da introdurre τ_{t} ，e della impedenza ca atteristica
（160）
BIbliografis

1 Turner A：H．：Artifcoial Lines for Video Distribution and Delay．«R．C．A．Rev．》，X，dic．1949，p． 477.
2 －Kallmann H．E．：Equalized Delay Lines．«Proc．I．R．E．》 XXXIV，sett．1946，p． 646.

3 －Lestrer J．M．：Transient Delay Line．«Electronics»，X apr．1946，p． 14.
4－Moline J．：Les Lignes de retard．«La radio frangaise» mar．1951，p．16，apr．1951，p． 5.

5－Thomson W．E．：Delay Networks having Maximally Flat Frequency Characteristics．«Proc．I．E．E．》．III，1949，p． 487
6 ．Thonson W．E．：Networks With Maximally Flat Delay《Wireless Eng．》．1952，p． 256
－Macdiarmid I．F．：A testing Pulse for Television Links． «Proc．I．E．E．》．IC，1952，p． 436

SAETRON s．r．l． SOCIETA APPLICAZIONI ELETTRONICHE VIA INGEGNOLI， 17 ，TELEFONI $280.280,243.368$ MILANO
Trasformatore d＇uscita riga
Costruzioni elettroniche Parti staccate per televisori Scatole di montaggio per televisori Stabilizzatori di tensione per TV

TECNICA－ELETTTRONICA－SYSTEM

 MILANO＊VIA MOSCOVA， $40 / 7$＊TELEFONO 667.326GENERATOIRE TV mod. DJE

LOSCILLOGRAFO A LARGA BANDA E AD IMPULSI APPARECCHIO INDISPENSABILE NELLA MODERNA
 TECNICA DELIETELECOMUNICAZIONI

L＇impiego sempre crescente nelle telecomunica zioni di impulsi di ogni tipo in luogo di onde sinu－ soidali，ha portato ad una nuova tecnica delle misure e．quindi alla necessità di nuovi apparecchi di misura．
L＇apparecchio più importante in questo nuovo campo è l＇oscillografo a raggi catodici．

Strumento indispensabile per studi，esperienze ed Strumento indispensabile per studi，es

Tenica generale degli impulsi；
Televisione
Tecnica di misura radio（Radar）； Contatori elettronici；
andulazione ad impuls
Nella seguente breve illustrazione sono indicate le caratteristiche indispensabili di un tale oscillo－ grafo；dette caratteristiche sono pienamente soddi－
sfatte dal tipo OBF della Ditta Rohde \＆Schwarz di Monaco．
L＇amplificatore Y ha un campo di frequenza da 3 Hz a 10 MHz ed un＇amplificazione di 600 ，corri－ spondente ad una sensibilità di 200 mm per Volt picco－a－picco o 1 mm per 5 mV pr．Il tempo di pas－
saggio di un impulso dal 10% al 90% è di $0,06 \mu \mathrm{~s}$ saggio di un impulso dal alcun guizzo（overshoot）．Onde rettangolari senza alcun guizzo（overshoot）．Onde rettangotari
di frequeuze più basse sono riprodotte senza abbas． samento del tratto orizzontale dell＇onda，cosicché possono essere accuratamente provati anche collega－ menti televisivi．In relazione al tempo finito di avvia－
mento del circuito di spazzolamento，l＇amplifica－ tore Y comprende un ritardo di segnale di $1 / 4 \mu \mathrm{~s}$
che agisee in pieno a tutte le frequenze，cosicché le orme d＇onda in，esame non vengono deformate．
L＇amplificatore X può trasmettere frequenze da a 700 kHz ．Comprende un attenuatore a due stadi d un regolatore fine．La sensibilità di deviazione con ＇amplificatore è di $100 \mathrm{~mm} / \mathrm{V}_{\mathrm{pp}}$ ossia $1 \mathrm{~mm} / 10 \mathrm{~m} V_{\mathrm{pp}}$ ．＇oscillatore genera frequenze da 15 IIz a 500 kHzz in 7 camp con regolazione fine．Il circuito di rilassamento può cronizzazione ；oppure dipendente e sincronizzato al－ la fine di ogni periodo del segnale，in modo da ga－ rantire un accoppiamento rigido tra segnale e asse dei tempi．In tal modo possono venir rappreselltati scegliendo quale istante di partenza dello spazzola－ mento il fianco ascendente o discendente del segnale． Particolarmente vantaggiosa è la possibilità di os servare un impulso，dilatando
attraverso ad una dei
ante a sei ingrandimenti： possono in tal modo rilevare tutti i particolari del－ ＇onda，anche quelli che provocano effetti perturba ori e che con 1 normali sistemi in uso non sono visi bili per difetto di potere risolutivo
ebe incompleto se，insieme col segnale，non potesse essere registrata anche una sala dee tempi．Gli oscillografi precedenti richie devano l＇impiego di un secondo raggio oppure
la sostituzione del segnale con una frequenza sinu－ soidale e successivo confronto delle posizioni sullo schermo．Il nuovo oscillografo Rohde \＆Schwarz compie automaticamente tale difficile lavoro，inter－ rompendo periodicamente a intervalli prefissabili
$0,04 / 0,1 / 1 / 10$ e $100 \mu \mathrm{~s}$ la traccia che risulta quindi tratteggiata．Un particolare circuito provvede che tale linea tratteggiata risulti sempre stabile sullo scillogramma in modo che si mente i tratti di marcatura． a larga banda OBF della ditta Rohde \＆Schwarz possiede i soliti dispositivi come：

Postaccelerazione di 4000 Volt；
Comando automatico di luminosita per la pro－ Comando automatico di luminosita per la pro－
tezione contro《bruciature»；
Spostamento orizzontale e verticale del punto
$\xrightarrow{\text { luminoso ；}}$ Possibilità di taratura dell＇amplificatore Y
Oscillazione retangolare e rispett．trapezoi dale incorporata di 50 Hz per la taratura alle basse frequenze；
Comando esterno di luminosità sul cilindro di Wehnelt；

Collegamento diretto alle placehette deviatrici Alimentatore stabilizzato．
Particolarmente comodo è il partitore incorpo－ a un decimo la sensibilità mentre possiede al con empo una capacità di ingresso dai soli 8 pF ，tale da consentire I＇esame anche di circuiti con limitata pos sibilità di carico aggiuntivo

ANTENNE TELEVISIVE A LARGA BANDA
soluzione grafica dei problemi di adattamento

$$
\begin{aligned}
& \text { Dott. Ing. ENZO CASTELLI } \\
& \text { della RAI. }
\end{aligned}
$$

SOMMARIO - Si espongono i concetti generali concernenti l'adattamento delle antenne su larga. banda e si esaminano le proprietà dei più comuni circuiti di compensazione facendo uso del procedimento grafico.

1. Introduzione

L'adattamento di impedenza dell'antenna su larga banda di frequenze, oggetto di particolari cure negli impianti trasmittenti e riceventi di televisione, costituisce in generale un problema complesso, perchè, caso per caso, la soluzione è legata alla caratteristica
di impedenza dell'antenna, alla frequenza di lavoro, a di impedenza dell'antenna, alla frequenza di lavoro, a
dimensioni obbligate del sistema di compensazione, alla larghe obza relativa della banda per la quale richiede la compensazione, al massimo errore ammis sibile. Si possono pero enunciare alcuni concetti basilari che possono orientare il costruttore verso la soluzione più soddisfacente del suo particolare problema. Qui di seguito, dopo aver fissato poche regole generali, si prenderanno in considerazione alcuni fra i più usati sistemi di compensazione, facendo uso esclusivo dei metodi grafici.
prest forma Dato un carico $\mathbf{Z}=\mathrm{R}(\mathrm{f})+\mathrm{j} \mathrm{X}(\mathrm{f})$ le cui compotrovare un quadripolo con narametri reattivi che, chiuso su tale impedenza, offra all'ingresso una resistenza costante indipendente dalla frequenza ed uguale all'impedenza caratteristica Z_{0} della linea che trasferisce 'energia al carico.
In pratica non si richiede una soluzione rigorosa del problema, ma si ammette che l'impedenza su cul si chiude la linea possa assumere, col variare della frequenza, valori arbitrari, purchè il rapporto di onde stazionarie della linea stessa non superi un certo limite carico da compensare è un circuito oscillatorio in serie o in parallelo risonante al centro della banda e caricato da una resistenza costante R_{0}, e se è possibile

scegliere una linea di alimentazione di impedenza caratteristica $Z_{0}=R_{0}$: in questo caso si può infatti
calcolare un quadripolo che forma, con la parte reattiva dell'impedenza del radiatore, uno o più elementi di un filtro passa banda avente impedenza immagine uguale a R_{0}. Questo quadripolo verrà inserito fra il circuito da compensare e la linea di alimentazione come è indicato in figura $1 a$ e $1 b$

La curva dell'impedenza $\boldsymbol{Z}(f)$ di un circuito risonante parallelo caricato con la resistenza R_{0} riportata sul piano cartesiano delle impedenze è un cerchio passante per R_{0} e per l'origine degli assi con centro sull'asse reale; mentre la curva dell'impedenza di un è una retta passante per R_{0} e parallela all'asse immaginario (fig. 2); al crescere della frequenza il cerchio è percorso in senso orario e la retta dal basso all'alto. Tali curve intersecano normalmente l'asse reale alla frequenza di risonanza.

Si deduce che il metodo di compensazione cui si e accennato è applicabile approssimativamente ad un radiatore solo se:

1) la sua caratteristica di frequenza interseca ortogonalmente l'asse reale onde la si possa confondere nella banda delle frequenze utili con la caratteristica del circuito risonante ser:e o con quella del circuito risonante parallelo (si tenga anche conto del verso di percorso al crescere della frequenza), caricato intersezione;
2) è possibile scegliere una linea di alimentazione avente impedenza caratteristica $Z_{0}=R_{0}$

Se la prima ipotesi non è verificata si può ricorrere ad un artificio con il quale è possibile trasformare un tratto di caratteristica di un radiatore comunque giacente sul piano cartesiano in una curva normale
all'asse reale. Esso consiste nello sfruttare la trasforall'asse reale. Esso consiste nello sfruttare la trasfor-
mazione di impedenza di una linea di lunghezza e mazione di impedenza di una linea
impedenza caratteristica opportune.

Se non è possibile soddisfare alla seconda ipotesi occorre procedere contemporaneamente alla compendenza onde consentire l'uso di una linea con impedenza caratteristica prefissata.
In accordo con queste osservazioni il problema della compensazione di un radiatore investe i seguenti punti:
a) trasformazione della sua curva caratteristica in un'altra che interseca normalmente l'asse reale (in R_{0});
b) compensazione senza adattamento di impe-
($Z_{0}=R_{0}$); denza ($Z_{0}=R_{0}$);
$\left(Z_{0}=R_{0}\right)$ compensazione con adattamento di impedenza
.
2. Traslazione della curva caratteristica del radiatore.

Se la caratteristica del radiatore è riportata sul piano cartesiaño si può ricorrere alla soluzione grafica indicata in figura 3. Essa consente di trovare la lunghezza e l'impedenza caratteristica di una linea, che

Fig. 3. - Determinazione grafica su un piano cartesiano dellimpe.
denza caratteristica e della luyghezza della linea di correzione.
un'impedenza che varia con la frequenza secondo una curva che interseca normalmente l'asse reale (${ }^{(1)}$. della frequenza, si sviluppa sul piano cartesiano nel
(1) Si premette che le soluzioni al problema sono teori-
camente infinite. Si indichi con f_{B} la frequenza alla quale camente infnite.
la curva trasformata interseca ortogonalmente l'asse reale
e con l^{\prime} la lunghezza della più corta linea che esegue la e con l^{\prime} la lunghezza della più corta linea che esegue la
trasformazione: si otterranno ancora curve che intersecano ortogonalmente li lasterreane reale anda frequequenza che usandorsocano
linee
ounghe $l^{\prime}+n \lambda_{B} / 4$. Nella trattazione si considerano solo le linee lunghe $l^{\prime}+n \lambda_{\mathrm{B}} / 4$. Nella trattazione si considerano solo le linee
lunghe l^{\prime} e $l^{\prime}+\lambda_{B} / 4$ le quali consentono di trasformare, con
il minimo ing lunghe l^{\prime} e $l^{\prime}+\lambda_{\mathrm{B}} / 4$ le quali consentono di trasformare, con
il minimo ingombro, la caratteristica del radiatore in quella
di un circuito risonante serie o in quella di un circuito
risonate parallelo.
senso indicato dalle lettere. Si traccia un cerchio tangente ad A B C in B con centro sull'asse reale e si conduce da O la tangente O D al cerchio. La misura pedenza caratteristica Z_{0} del tratto di linea da usare Si traccia ora la tangente al cerchio in B: essa interseca in E l'asse immaginario. Si porta sull'asse reale il segmento OF uguale OD e si congiunge E
con F . La metà dell'angolo α^{\prime}, compreso fra E F e la verticale passante per F, dà la lunghezza elettrica della linea che trasforma la curva A B C nella $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. La metà dell'angolo $\alpha^{\prime \prime}=\alpha^{\prime}+\pi$ dà la lunghezza elettrica della linea che trasforma la curva A B C nella $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$.
Si deduce che le lunghezze lineari l^{\prime} e $l^{\prime \prime}$ dei due tratti di linea sono date rispettivamente da:
[1] $\quad 2 \pi f_{B} l^{\prime} / c=\alpha^{\prime} / 2 \quad 2 \pi f_{B} l^{\prime \prime} / c=\alpha^{\prime \prime}=\alpha^{\prime} / 2+\pi / 2$ dove con f_{B} si indica la frequenza corrispondente al punto B della curva e con c la velocità di propaga ione sulla linea (${ }^{2}$).
Desiderando risolvere lo stesso problema sulla carta di Smith si fara uso di quella in cui e ie impe
denze sono rappresentate in modulo e fase (vedi Appendice).
Si riporta sulla carta (fig. 4) la funzione $\boldsymbol{Z}(f) / R$ dove $\boldsymbol{Z}(f)$ è l'impedenza del radiatore ed R una resistenza scelta in modo che la curva giaccia in una zona della carta tale da conferire maggior chiarezza alla costruzione. Si traccia un cerchio con centro sul-
l'asse reale (punto P) e tangente in B alla curva di impedenza del radiatore. Per il punto D di tangenza del cerchio con la curva di fase costante passa una curva di modulo costante. Il numero con cui è quo tata questa curva moltiplicato per R dà l'impedenza caratteristica della linea di correzione.
delle osservazioni ${ }^{(2)}$ La può essere dimostrata tenendo conto delle osservazioni fatte in appendice circa la rappresenta zione grafica sul piano cartesiano della trasformazione d
impedenza operata da una linea. Si osserva in primo luogo che il cerchio tangente in B
con centro in P è una curva $|\rho|=$ cost $(|\rho|$ è il modulo con centro in P è una curva $|\rho|=$ cost $(|, \rho|$ è il modulo
del coefficiente riflessione), è cioè una curvà che individua sul pianfficiente rartesiantessionen), et ciote le possibibili impedenze che che si hanno all' ingresso di una linea senza perdite, chiusaze cull' 'impedenza
and punto B quando la sua lunghezza varia .impedenza del punto B quando la sua lunghezza varia. L'impedenza
caratteristica Z_{0} di questa linea e fissata dalla condizione
 ghezza e e $\lambda_{\mathrm{B}} / 4$; infatti il cerchio passa per tali punti. L'im-
pedenza caratteristica è pertanto data dalla media geome-
trica dei segmentio $0 \mathrm{~B}^{\prime}$ e $0 \mathrm{~B}^{\prime \prime}$, cioè da 0 D. E ancora noto, come risulta dall'appendice, che il cerchio
passante per F e B con centro in E interseca l'asse immapassante per Fe B con centro in E intersecal l'asse imma ginario in un punto G tale che $O G=Z_{0} \operatorname{tg} \beta l=Z_{0} \operatorname{tg} \frac{2 \pi f_{\mathrm{B}}}{c}$ dove βl è la lunghezza elettrica (in radianti) della linea di
impedenza caratteristica Z_{0} che trasforma il punto $\mathrm{B}^{\prime \prime}$ in B . Poichè la tangente dell'angolo $E \widehat{G F}=\gamma$ e uguale a $O F / O G=$
$=\cot g \beta l$, cioè $\gamma=\pi / 2-$ el, e il triangolo $E G F$ é isoscele Gi ha \quad G E F $F=\pi-2 \gamma=2 \beta l$.

Pertanto la lunghezza elettrica della linea che trasforma B in $\mathrm{B}^{\prime} \mathrm{e}$ ertanto

$$
\frac{\pi}{2}-\frac{1}{2}(\mathrm{G} \hat{\mathrm{E} F})=\frac{\alpha^{\prime}}{2}
$$

mentre quella della linea che trasforma B in $B^{\prime \prime}$

Nel caso di figura 4 risul ta $Z_{0}=0,45 R\left({ }^{3}\right)$. La curva di fase costante D_{1} la curva di modulo 1 . S tracci, con centro in P_{1}, un secondo cerchio passante per D_{1}; si trasli il punto B in
B_{1} lungo una curva di fase costante e si tracci la rett $\mathrm{P}_{1} \mathrm{~B}_{1}$. Si trovano così gli angoli α^{\prime} ed $\alpha^{\prime \prime}$ con i qual è possibile calcolare con la [1] la lunghezza delle linee d correzione (${ }^{4}$).

Trovati con uno dei du metodi i valori di Z_{0}, l^{\prime} e le impedenze $\boldsymbol{Z}^{\prime}(f)$ e $\boldsymbol{Z}^{\prime \prime}(f)$ risultanti dalla trasformazio ne dell'impedenza $\boldsymbol{Z}(f)$ de radiatore mediante le linee di lunghezza l^{\prime} e $l^{\prime \prime}$ rispetti-
vamente. Conviene ricavarle vamente. Conviene ricavarle
graficamente sulla carta figura 4 sotto forma di curve di impedenza relativa $\boldsymbol{Z}^{\prime}(f) / Z_{0}$ e $\boldsymbol{Z}^{\prime \prime}(f) / Z_{0}$, data la semplicita del procedimento Si riporta in primo luogo la curva $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ della fun-
zione $\boldsymbol{Z}(f) / Z Z_{0}$, di' cui si ha già il punto B_{1} per la costruzione precedente: il punto A si ottiene da A traslandolo lungo una curva di fase co

Fig. 4. - Determinazione grafica sulla carta di Smith dellimpedenza caratteristica e della lunghezza stante in modo che il rap porto fra il modulo letto in A_{1} e quello letto in A sia R / Z_{0} e lo stesso si fa per gli altri punti.

Dalla $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ si ricava per punti la curva $\mathrm{A}^{\prime}{ }_{1} \mathrm{~B}^{\prime} \mathrm{C}^{\prime}{ }_{1}$ della funzione $\boldsymbol{Z}^{\prime}(f) / Z_{0}$: si ha A^{\prime} traslando in senso
orario A_{1} lungo un cerchio $|\rho|=$ cost di centro P_{1} passante per A_{1} in modo da descrivere l'angolo $2 \pi f_{A} l^{\prime} / c$ (f_{A} è la frequenza corrispondente ad A_{1}). In modo analogo si trovano gli altri punti.

Le stesse considerazioni valgono per ricavare la curva $\mathrm{A}^{\prime \prime}{ }^{\prime} \mathrm{B}_{1}{ }^{\prime \prime} \mathrm{C}_{1}{ }^{\prime \prime}$ della funzione $\boldsymbol{Z}^{\prime \prime}(f) / Z_{0}$: basta sostituire $l^{\prime \prime}{ }^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$,
è una resistenza e vale il modulo letto in B^{\prime} moltiplicato per Z_{0} (in figura, $R_{0}^{\prime}=2,24 \cdot Z_{0}$).
(3) La costruzione è del tutto analoga a quella di figura 2
perchè fra la carta di Smith di figura 4 ed il piano cartesiano esiste una corrispondenza conforme, cioè una corriretta OD del piano cartesiano, che e luogo delle impedenze aventi fase costante (arctg $X / R=$ cost), e all'arco di cerchio
D F che e una curva di modulo costante $\left(\sqrt{R^{2}+X^{2}}=\right.$ cost) corrispondono sulla carta di Smith due curve coordinate la prima di fase cost, la seconda di modulo costante. ${ }^{(4)}$ La traslazione di B in B_{1} lungo una curva di fase
costante equivale a riportare sulla carta di Smith la quanrelativa d'ingresso $Z^{\prime}\left(f_{\mathrm{B}}\right) / Z_{0}$ di una linea di impedenza caratrelativa d'ingresso $Z^{\prime}(f \mathrm{fB}) / Z_{0}$ di una linea di impedenza carat-
teristica Z_{0} chiusa su $\boldsymbol{Z}\left(f f_{B}\right)$ e lunga l^{\prime}, si trova traslando il punto B_{1} di un angolo $\alpha^{\prime}=2 e 2 l^{\prime}$ in senso orario sul cerchio
di centro ${ }_{P}{ }_{1}$. Nel caso in esame, essendo conosciuta la quantità Z^{\prime} / Z_{0} (punto B_{1}) si ricava $\alpha^{\prime}=\mathrm{B}_{1} \widehat{\mathrm{P}}_{1} \mathrm{~B}_{1}^{\prime}$ e quindi l^{\prime}.
$\mathrm{A}_{1}{ }^{\prime \prime} \mathrm{B}_{1}{ }^{\prime \prime} \mathrm{C}_{1}{ }^{\prime \prime}$ interseca l'asse reale in $\mathrm{B}^{\prime \prime}$, cui cor isponde la resistenza $R^{\prime \prime}{ }^{\prime \prime}$ (in figura $\left.R^{\prime \prime}{ }_{0}=0,41 \cdot Z_{0}\right)$
Tenendo ora conto del senso con cui le curve $\mathrm{A}^{\prime} \mathrm{B}^{\prime}{ }_{1} \mathrm{C}^{\prime}$ e e $\mathrm{A}_{1}{ }^{\prime \prime} \mathrm{B}_{1}{ }^{\prime \prime} \mathrm{C}_{1}{ }^{\prime \prime}$ sono percorse al crescere della frequenza, si può discutere della loro coincidenza nell'intorno di f_{B}, rispettivamente con la caratteristica di un circuito risonante parallelo caricato con R_{0}^{\prime} con quella $R^{\prime \prime}$, ircito risonante serie caricat con $R^{\prime \prime}{ }_{0}$.
Si prenda anzitutto in esame la curva $\mathrm{A}^{\prime}{ }_{c} \mathrm{~B}^{\prime}$, $\begin{array}{llll}\mathrm{C}^{\prime}{ }^{1} \text { della funzione } \boldsymbol{Z}^{\prime}(f) / Z_{0} \text { e si ricavi la curva } \\ \mathrm{A}^{\prime}{ }_{0} \mathrm{P}_{1} \mathrm{C}^{\prime} & \text { (fig. 4) dell'impedenza relativa } \boldsymbol{Z}^{\prime}(f) / R^{\prime}\end{array}$ nello stesso modo in cui A BC è stata trasformata n $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
Si possono conoscere le componenti reale e imma ginaria della grandezza $\boldsymbol{Z}^{\prime}(f) / R_{0}^{\prime}$ riportando la $\mathrm{A}^{\prime}{ }_{0} \mathrm{P}_{1} \mathrm{C}^{\prime}$ ulla carta di Smith di figura 5 sovrapponendola ad per trasparenza. er trasparenza
elativa ad R^{\prime} di un circuita la curva dell'impedenza caricato con R_{0}^{\prime} che si consider quenza f_{B}. Si tratta del cerchio che, con centro sul 'asse reale, passa per i punti O e P_{1} della carta.
Con H si indica il punto in cui le due curve si ritengono ancora coincidenti alla frequenza $f_{\mathrm{H}}>f_{\mathrm{B}}$.
A tale frequenza l'impedenza d'ingresso $\boldsymbol{Z}^{\prime}\left(f_{\mathrm{H}}\right)$ del sistema radiatore-linea di correzione si può scrivere sotto la forma $R^{\prime}-j X^{\prime}$ e può essere considerata come la risultante del parallelo della conduttanza

La reattanza X_{p} si puó graficamente. Dalla [2] si ha
[5] $\quad j \frac{R_{0}^{\prime}}{X_{\mathrm{p}}}=j \frac{1}{x_{\mathrm{p}}}=$

$$
\begin{gathered}
=\frac{1}{R^{\prime} / R_{0}^{\prime}-j X^{\prime} \mid R_{0}}-1= \\
=\frac{1}{r-j x}-1
\end{gathered}
$$

dove
$x_{\mathrm{p}}=X_{\mathfrak{p}} / R_{0}^{\prime}, \quad x=X^{\prime} / R_{0}^{\prime}$
a quantità X_{p} si trova La quantità X_{p} si trova
con la costruzione indicata in figura 5. Del punto H, cui corrisponde l'impedenza relativa r - $j x$ si trova il simmetrico H_{1} rispetto al centro della carta: si ottiene La quantità $1 / x_{\mathrm{p}}$ è data La quantità $1 / x_{p}$ è data di reattanza costante pas di reattanzaa
sante pertante pas-
H_{1} con il cerchio limite della carta (punto M). Con l'inversione di M rispetto al centro si trova ora il del quale si legge x_{p}. Si del quale si legge x_{p}. S
ottiene così $X_{\mathrm{p}}=x_{\mathrm{p}} \cdot R_{0}^{\prime}$ (nel caso in esame $X_{\mathrm{p}}=2,9 R_{0}^{\prime}$). Ripetendo considerazioni analoghe circa la equivalenza fra la caratteristica
costante $1 / R_{0}^{\prime}$ e della suscettanza capacitiva j / X_{p} del circuito oscillatorio cioe:

$$
[2] \quad \frac{1}{1 / R_{0}^{\prime}+j / X_{\mathrm{p}}}=R^{\prime}-j X^{\prime} .
$$

L'impedenza - $j X_{\mathrm{p}}$ può essere scritta sotto la forma
[3]
$-j X_{\mathrm{p}}=\frac{1}{\frac{1}{j \omega_{\mathrm{H}} L}+j \omega_{\mathrm{H}} C}=-j \sqrt{\frac{L}{C}}\left(\frac{1}{f_{\mathrm{H}} / f_{\mathrm{B}}-f_{\mathrm{B}} / f_{\mathrm{H}}}\right)$
dove $X_{0}=\sqrt{L / C}$
Introducendo la quantità $h=\left(f_{\mathrm{H}}-f_{\mathrm{B}}\right) / f_{\mathrm{B}}$ e suppo nendola molto piccola, la [3] pud essere scritta in questa semplice forma:

$$
\text { [4] } \quad j X_{\mathrm{p}} \cong-\frac{j}{2 h} \cdot \sqrt{\frac{L}{C}} .
$$

Le espressioni [3] o [4] permettono di valutare la grandezza $X_{0}=\sqrt{L / C}$ che con $R^{\prime}{ }^{\prime}$ definisce la struttura del circuito risonante equivalente quando siano
note $X_{\mathrm{p}}, f_{\mathrm{B}}$ e f_{H}. Resta inteso che l'equivalenza ha significato solo se la reattanza del sistema radiatore linea di correzione varia con continuità nel campo di frequenza $f_{B} \pm h f_{B}$.

Fig. 6. - Filtri di banda compensanti
quenza f_{0} in cui l'impedenza immagine si mantiene pressocchè costante, possono avere la struttura indidizione di livellamento:
[7]

$$
X / R_{0}=B R
$$

ed a quella di frontiera
[8] $X B=4$
alle frequenze f_{1} ed f_{2}
Il primo o il secondo membro della [7] sono noti dalla struttura del circuito da compensare: trattandosi infatti di un circuito risonante serie (fig. 6a)
è noto X / R_{0}, mentre si conosce $B R_{0}$ se il circuito è risonante parallelo (fig. 6b). È quindi immediato calcolare con la [7] il parametro ignoto del filtro (5). Sostituendo nella [8] i valori di B e X del filtro che si intende usare si trovano le frequenze di frontiera f_{1} ed f_{2} con cui si pud valutare lefficacia della sua azione compensatrice: si comprende infatti che quanto più f_{1} ed f_{2} differiscono tra loro, tanto più
grande è la banda di frequenze nell'intorno di f_{0} in cui l'impedenza d'ingresso dei circuiti di figura 6 si può ritenere uguale a R_{0}.

Volendo studiare in dettaglio l'azione compensatrice di questi filtri si farà riferimento alla struttura di figura $6 a$ e si riporteranno sulla porzione di carta mith di figur

$$
\boldsymbol{z}_{\mathrm{a}}=\frac{\boldsymbol{Z}_{\mathrm{a}}(f)}{R_{0}}, \quad \boldsymbol{z}_{\mathrm{b}}=\frac{\boldsymbol{Z}_{\mathrm{b}}(f)}{R_{0}} \text { e } \boldsymbol{z}_{\mathrm{c}}=\frac{\boldsymbol{Z}_{\mathrm{c}}(f)}{R_{0}}
$$

La equazione [7] applicata ai parametri di figura $6 a$, ndica che il circuito deve essere dimensionato come in figura $7 b$, dove tutte le grandezze sono riferite a R_{0}.
${ }^{(5)}$ I parametri delle figure $6 a$ e $6 b$ sono noti conoscendo f_{0}
e la quantità ${ }^{\prime} \bar{L} / \bar{L}$. Indicando quest'ultima con X. e la quantità $1 \overline{L / O}$. Indicando quest'ultima con $X_{\text {os }}$ per
un circuito risonante serie, e con X op per un circuito risoun circuito risonante eserie, e e en X
nante parallelo, si ottiene dalla [7]:

$$
\frac{X_{05}}{R_{0}} \cdot \frac{X_{0 \mathrm{P}}}{R_{0}}=\frac{1}{2}
$$

nel caso di figura $6 a$, oppure
$\frac{X_{05}}{R_{0}} \cdot \frac{X_{0 \mathrm{p}}}{R_{0}}=2$
nel caso di figura $6 b$

In figura $7 a$ è riportata la curva I della impe denza $\boldsymbol{z}_{\mathrm{a}}=1+j x_{\mathrm{s}}$ di un circuito risonante serie avente $\operatorname{denza} \boldsymbol{z}_{\mathrm{a}}=1+j x_{\mathrm{s}}$ di un circuito risonante serie avente
$X_{0} / R_{0}=5$. I valori di x_{s} sono ricavati dall'equa $X_{0} / R_{0}=5$. I valori di x_{s} sono ricavati dall'equa
zione $[6]$. I numeri riportati sulle curve danno gli scarti percentuali di frequenza rispetto alla frequenza di risonanza f_{0}.
L'impedenza z_{b}, risultante dal parallelo della suscet $\operatorname{tanza} j b=2 j x_{\mathrm{s}}$ con il circuito da compensare, si ricava
trasformando la curva I dell'impedenza \boldsymbol{z}_{2} nella curva II di ammettenza mediante l'inversione rispetto al centro della carta (vedi Appendice) e aggiungendo ad ogni punto della curva il corrispondente valore di $j b$: si ottiene cosi il luogo III che rappresenta ammettenza $1 / z_{\mathrm{b}}$. Per inversione si ricava allora la curva IV che è il luogo di $\boldsymbol{z}_{\mathrm{b}}$. Aggiungendo a $\boldsymbol{z}_{\mathrm{b}}$ per infine il luogo dell'impedenza \boldsymbol{z}_{c} (curva V).
Questa costruzione mostra che si ottiene un per fetto adattamento di impedenza per una banda di requenze uguale a $f_{0} \pm 2 \%$ circa (curva II di fig. 9), Normalmente, come si è già detto, non si esige un adattamento perfetto, ma si assegna in simili problemi un rapporto di onde stazionarie σ che non σ non deve superare il valore di 1,1 si nota che, mentr

to aveva una banda utile uguale a $f_{0} \pm 1 \%$ (curva I fig. 9), ora con la com pensazione, si cura una ban, $\pm 4 \%$ circa (curva 11 fig. 9).
mportante considerazione. Si osserva che per aftett della suscettanza $j b$, la curva I dell'impedenza z^{2} del circuito serie da compensare è stata trasformata in un'altra curva IV di impedenza $\boldsymbol{z}_{\mathrm{b}}$ la quale, per quanto concerne il tratto AB , si pud considerare all'asse reale della stessa curva $z_{\text {a }}$. Cosicchè, mentre al crescere della frequenza la componente reattiva dell'impedenza $\boldsymbol{z}_{\mathrm{a}}$ assume valori positivi, quella del
l'impedenza $\boldsymbol{z}_{\mathrm{b}}$ assume nel tratto AB valori all'incirca uguali ma negati nente reale di entrambe
Si spiega ora facilmente l'azione compensatrice che si ottiene quando si aggiunge in serie all'impedenza z_{b}, la stessa reattanza che il circuito da compensare presenta alle diverse frequenze.
Si comprende inoltre come

Si comprende inoltre come la larghezza di banda teristiche di frequenza delle impedenze cui le carat

Fig. 8. - L'azione compensatrice del filtro di figura 7 , con $j b=1,6 j x$
 pedenza z_{c}.
sono ritenere (tenuto anche conto dell'errore ammis sibile per un dato σ) ottenute l'una dall'altra per suscettanza $j b$ è maggiore di quello calcolato, l'am piezza del tratto AB diminuisce; se $j b$ è invece minore la curva z_{b} che prima giaceva tutta esterna al cerchio z_{a} passa per un certo tratto all'interno di questo cerchio cioè per così dire le due curve si intrecciano, come si vede in figura 8, dove la curva di impedenza è
stata tracciata prendendo $j b=1,6 j x_{s}$. Aggiungendo in serie a $\boldsymbol{z}_{\mathrm{b}}$ la reattanza $j x_{\mathrm{s}}$ si ottiene in questo caso una particolare curva dell'impedenza $\boldsymbol{z}_{\mathrm{c}}$, la quale passa tre volte per il punto 1.
In figura 9 è riportato, in funzione dello scarto relativo di frequenza, il rapporto di onde stazionari di una linea con impedenza caratteristica uguale ad R_{0} inferiore a 1,1 per una \boldsymbol{Z}_{c} digura 8 . si noti che σ cirea (curva III).
Si è voluto dimostrare con questo esempio che assegnato un certo σ massimo, è possibile, con l'op

Fig. 9.- Rapporto di onde stazionarie in funzione dello scarto relation
di frequenza per una linea ai impedenza caratteristica R_{0} chiusa.

Ortuna scelta della suscettanza $j b$, aumentare note volmente la banda passante. Analoghe considerazioni possono essere fatte sul filtro di figura $6 b$ per quanto riguarda il
ramo serie.
Concludendo, il progetto dei circuiti di compen azione a costanti concentrate, avviene nel modo seguente:

1) Si trasforma la caratteristica di frequenza el radiatore in un'altra normale all'asse reale della carta delle impedenze: in tal modo il circuito da compensare si puo ritenere, in un certo campo di
frequenze, con buona approssimazione equivalente ad n circuito risonante serie o parallelo caricato con una resistenza costante R_{0}.
2) Si compongono i filtri di figura 6 del tipo a) o b) a seconda del caso, tenendo conto che deve essere: [9a]

$$
B R_{0}=k\left(X / R_{0}\right),
$$

nel caso a), e
[9b]

$$
X / R_{0}=k\left(B R_{0}\right),
$$

nel caso b), essendo k un numero minore od uguale a 1 . Per frequenze elevate si può prendere in esame a convenienza di comporre i filtri con elementi di ture di figura 10 , la cui equivalenza con i circuiti a costanti concentrate si fonda sul fatto che una linea lunga $\lambda / 4$ chiusa in corto-circuito ad un estremo equi-

vale ad un circuito risonante parallelo, una linea lunga $\lambda / 4$ aperta ad un estremo equivale ad un circuito risonante serie.

Nel progetto dei filtri a costanti distribuite occorre calcolare l'impedenza caratteristica di questi tratti di linea. A questo scopo si possono stabilire delle semplici relazioni approssimate fra impedenza caratteristica circuito a costanti concentrate La reattanza d’ingresso di
cortocircuitata ad un estremo è: [10]

$$
j X_{1}=j Z_{0} \operatorname{tg} \beta l .
$$

Alla frequenza f_{0} per la quale la linea è lunga esattamente un quarto d'onda questa reattanza è
infinita, mentre per una frequenza maggiore di questa, di una quantità $h f_{0}$ molto piccola, la reattanza assum il valore:
[11] $\quad j X_{1}=-j Z_{0} \operatorname{cotg} \frac{\pi}{2} h \cong-2 j \frac{Z_{0}}{\pi h}$.
La reattanza di un circuito risonante parallelo, per risonanza, vale:

$$
j X_{\mathrm{p}} \cong-j X_{0} \frac{1}{2 h}
$$

Pertanto l'equivalenza fra una linea lunga $\lambda / 4$ e cortocircuitata ad un estremo, di impedenza cara nell'intorno della frequenza di risonanza, dalla rela zione approssimata:
[12]

$$
Z_{0} \cong \frac{\pi}{4} X_{0}=\frac{\pi}{4} \cdot \sqrt{\frac{L}{C}} .
$$

La reattanza di ingresso di una linea senza perdite aperta all'altro estremo è:
[13] $j X_{1}=-j Z_{0} \operatorname{cotg} \beta l$
Per una frequenza maggiore di quella f_{0} di riso nanza, di una quantità $h f_{0}$ molto piccola, si ha:
[14] $\quad j X_{1}=j Z_{0} \operatorname{tg} \frac{\pi}{2} h \cong j Z_{0} \cdot \frac{\pi}{2} h ;$
mentre la reattanza di un circuito risonante serie, per lo stesso incremento di frequenza rispetto a quella di risonanza, vale:

$$
j X_{\mathrm{s}} \cong j X_{0} \cdot 2 h
$$

Pertanto l'equivalenza fra una linea lunga $\lambda / 4$ aperta ad un estremo ed un circuito risonante serie

Fig. 11. - Lazione compensatrice del circuito di figura 10 b .

in prossimità della frequenza di risonanza è fissata dalla relazione:
[15] $\quad Z_{0} \cong X_{0} \cdot \frac{4}{\pi}=\sqrt{\frac{L}{C}} \cdot \frac{4}{\pi}$.
Tenendo conto di queste equivalenze elettriche è così possibile calcolare le singole parti dei circuiti di figura $10 a$ e b.
In figura 11 è schematizzata l'azione trasformatrice del circuito di figura $10 b$: il circuito utilizzatore è un circuito risonante parallelo con $X_{0} / R_{0}=0,6$ Tenendo conto delle relazioni [96] e [15] è facile $\lambda / 4$ aperta deve essere:

$$
z_{0 \mathrm{~s}}=2 k \frac{4}{\pi} \cdot \frac{R_{0}}{X_{0}} \cdot=2 k \frac{1}{0,6} \cdot \frac{4}{\pi} .
$$

Scegliendo $k=0,945$ si ha $z_{05}=4$.

Dall'equazione [12] si ricava che la linea $\lambda / 4$ chiusa c.c. deve avere la seguente impedenza caratteri stica relativa:

$$
z_{\mathrm{op}}=\frac{\pi}{4} \frac{X_{0}}{R_{0}}=0,786 \cdot 0,6=0,47 .
$$

Se. $R_{0}=40$ ohm si ottiene: $Z_{0 \mathrm{~s}}=160$ ohm $Z_{0 \mathrm{o}}=18,7$ ohm.

Questo esempio mette in evidenza come sussistan pesso limitazioni all'attuazione pratica del progetto limitazioni dovute all'impossibilità di realizzare line coassiali o bifilari di impedenza caratteristica troppo elevata o troppo bassa.
Così se nel caso precedente la resistenza R_{0} fosse a linea coassiale $\lambda / 4$ aperta con impedenza caratteristica di 320 ohm.
In tal caso conviene sostituire questa linea con un circuito equivalente.
Si può sfruttare allo scopo l'equivalenza fra i quadripoli di figura $12 a$ e $12 b$. Tale equivalenza sussiste se la frequenza f_{0} alla quale la reattanza X di figura 1 figura $12 b$ sono lunghe $\lambda / 4$ e se vale la relazione $X / B=Z_{0}{ }^{2}$. Infatti per f_{0} le impedenze d'ingresso dei due quadripoli sono uguali sia cortocircuitandone le uscite, sia lasciandole aperte. sostituendo nel circuito di figura $6 b$ il quadripolo di figura $12 a$, si ottiene il pircuito di figura 13 , il quale e compensante se l'im

Fig. 13. - Circuito di compensazione con linee in quarto d'ond
L'azione compensatrice su un circuito risonante paral elo con $X_{0} / R_{0}=0,6$ (cioè uguale a quello di figura 11 è dimostrata in figura 14 dove sono riportate le curve

Fig. 14. - Azione compensatrice del circuito di figura 13.

delle ammettenze relative $\boldsymbol{y}_{\mathrm{a}}, \boldsymbol{y}_{\mathrm{b}}, \boldsymbol{y}_{\mathrm{c}}, \boldsymbol{y}_{\mathrm{d}} \mathrm{e} \boldsymbol{y}_{\mathrm{e}}$ di figura 13 Anche in questo caso si può osservare che con B posta fra le due linee in quarto d'onda si può far modo che la curva dell'ammettenza $\boldsymbol{y}_{\mathrm{d}}$ si intrece con il cerchio $r=$ cost $=1$ in modo da ottenere la massima larghezza di banda per un dato valore di σ. Volendo riprodurre le suscettanze parallelo con circuiti a costanti distribuite si potrà adottare la circuito da compensare di figura 11 riferiment

ig. 15. - Altro circuito di compensazione ottenuto applicando ancora

Per concludere questo argomento si tratterà ora basato sull'azione di uno o più tratti di linea lunghi $\lambda / 2$ di impedenza caratteristica opportuna.
Si consideri una linea lunga $\lambda / 2$ chiusa sulla impedenza $\boldsymbol{Z}_{\mathrm{p}}$ (fig. 16a): l'impedenza d'ingresso $\boldsymbol{Z}_{\mathrm{i}}$ è in queste condizioni eguale a \boldsymbol{Z}_{p}. Variando la frequenza di lavoro varia contemporaneamente $\boldsymbol{Z}_{\mathrm{p}}$ e il valore della lunghezza elettrica della linea. Si pud notare azione compensatrice sulla variazione di $\boldsymbol{Z}_{\mathrm{p}}$.
Se la frequenza f_{0} cresce di una quantità abbastanza piccola, l'impedenza d'ingresso della linea vale approssimativamente
[17]

$$
Z_{\mathrm{i}}=Z_{0} \frac{\boldsymbol{Z}_{\mathrm{p}} / Z_{0}+j \pi h}{j \pi h Z_{\mathrm{p}} / Z_{0}+1}
$$

Trascurando i fattori che contengono h^{2} si ricava:

$$
[18] \quad \boldsymbol{Z}_{\mathrm{i}}=\boldsymbol{Z}_{\mathrm{p}}+j Z_{0}\left(1-Z_{\mathrm{p}}{ }^{2} / Z_{0}{ }^{2}\right) \pi h
$$

Se la reattanza X di figura $16 a$ è molto grande rispetto ad R_{0} e se è $R_{0}<Z_{0}, \boldsymbol{Z}_{\mathrm{i}}$ può essere consiserie avente (fig 16b):
[19]

$$
X_{0}=Z_{0}\left(1-R_{0}{ }^{2} / Z_{0}{ }^{2}\right) \frac{\pi}{2}
$$

Se si calcola l'ammettenza $\boldsymbol{Y}_{\mathrm{i}}=1 / \boldsymbol{Z}_{\mathrm{i}}$ del circuito di figura $16 c$ e si eseguono le opportune semplificazioni dovuter
si ricava
[20]

$$
\mathbf{Y}_{\mathrm{i}}=\frac{1}{\boldsymbol{Z}_{\mathrm{i}}}=\frac{1}{\boldsymbol{Z}_{\mathrm{s}}}-j \pi h \frac{1-Z_{0}{ }^{2} / Z_{\mathrm{s}}{ }^{2}}{Z_{0}} .
$$

Fig. 16. - Trasformazione d'impedenza ottenuta con una linea in

Si deduce allora che se la reattanza X di figura $16 c$ è sufficientemente piccola e se $R_{0}>Z_{0}$ l'impedenza d'ingresso $\boldsymbol{Z}_{\mathrm{i}}$ della linea si può rappresentare con l'impedenza $\boldsymbol{Z}_{\mathrm{s}}$ in parallelo ad un circuito risonante di tensione avente (fig. 16d):
[21]

$$
X_{\mathrm{op}}=Z_{0} \frac{2}{\pi} \frac{1}{1-Z_{0}{ }^{2} / R_{0}{ }^{2}}
$$

Si supponga ora di dover compensare il circuito risonante parallelo di figura $17 a$: l'inserzione di una linea lunga $\lambda / 2$ con impedenza caratteristica Z_{0} magfigura $17 b$; l'inserzione di una seconda linea lunga $\lambda / 2$

Fig. 17. - Trasformazione di impedenza ottenuta con due linee in
on Z_{0} minore di R_{0} equivale all'aggiunta del circuito 2 di figura 17b: si compone cosi un filtro passa banda avente proprietà compensanti
Queste considerazioni che si basano su sviluppi nalitici approssimati trovano conferma nel procedimento grafico che conduce anche alla determinazione delle impedenze caratteristiche delle linee in questione. Allo scopo si usa la carta di Smith (possibilmente con appresentazione delle impedenze in modulo e fase), rasformazioni che vi intervengono.
Si consideri ad esempio (fig. 18) un circuito riso nante parallelo alla frequenza f_{0}, caricato con una esistenza R_{0} ed avente un certo valore del numero X_{0} / R_{0}, e si voglia calcolare l'impedenza caratteristica

di una linea lunga $\lambda / 2$ tale da compensare la reattanza dell'impedenza relativa $\frac{R_{\mathrm{A}}}{R_{0}}-j \frac{X_{\mathrm{A}}}{R_{0}}=r_{\mathrm{A}}-j x_{\mathrm{A}}$ che il circuito presenta alla frequenza $f_{0}+h f_{0}$

Si consideri allora la curva $\varphi_{\mathrm{A}}=\operatorname{arctg} \frac{x_{\mathrm{A}}}{r_{\mathrm{A}}}=\operatorname{cost}$ passante per A (ved. Appendice) ed una retta pasantiorario rispetto all'asse reale. Per il punto $A^{\prime} \mathrm{di}^{\prime}$ intersezione fra la curva $\varphi_{1}=$ cost e la retta, passa il cerchio $\mathrm{O}^{\prime \prime} \mathrm{A}^{\prime} \mathrm{O}^{\prime}$ il quale interseca l'asse reale nel punto O^{\prime} cui corrisponde la resistenza relativa $r=k$.
L'impedenza caratteristica della linea è allora $Z_{0}=R_{0} / k$.

Nel caso di un circuito risonante serie, desiderando compensare la reattanza dell'impedenza $1+j x_{\mathrm{A}}$ vare l'intersezione A^{\prime} tra la curva $\varphi_{A}=\operatorname{arctg} x_{\mathrm{A}}=$ cost e la retta passante per l'origine della carta ruotata in senso orario di $2 \pi h$ e procedere poi come per il circuito risonante parallelo. C'è da tener conto che nei due casi k risulterà rispettivamente minore di uno e maggiore di uno.
Per rendersi ragione della costruzione descritta si per mezzo della linea di impedenza caratteristica ${ }_{Z_{0}}=R_{0} / k$ con le note regole sull'uso della carta di Smith (ved. Appendice). La curva d'impedenza del circuito risonante parallelo riferita all'impedenza caratteristica R_{0} / k è il cerchio $O^{\prime \prime} \mathrm{A}^{\prime} \mathrm{O}^{\prime}$: in particolare il punto A si trasla in A^{\prime}.
A causa dell'azione trasformatrice della linea $\lambda / 2$ il punto O^{\prime} descrive un cerchio completo con centro
in O , mentre il punto A^{\prime} descrive un arco di cerchio di $2 \pi(1+h)$ radianti traslandosi in $\mathrm{A}^{\prime \prime}$. Si ottiene in tal modo la compensazione di reattanza del punto A^{\prime}.

Ripetendo la costruzione per ogni punto del cerchio OAO" si trova una curva con cappio e si puo così notare che, anche con una sola linea lunga $\lambda / 2$, si può ottenere una buona compensazione di frequenza nell'intorno del punto O

Desiderando ottenere un miglior risultato conviene prendere in considerazione l'aggiunta di una seconda una considerazione che si era fatta parlando dei circuiti di compensazione a costanti concentrate. Si era messo allora in evidenza che per ottenere una buona compensazione di impedenza (ved. fig. 8) era necessario dimensionare il primo elemento del circuito di compensazione in modo che la curva dimpera che, per la banda delle frequenze utili, si dovera scostare il meno possibile dal cerchio luogo di $\boldsymbol{z}_{\mathrm{a}}$ ed in particolare, fissato il massimo rapporto di onde stazionarie, si otteneva la massima banda passante facendo in modo che le due citate curve si incrociassero per due frequenze della banda opportunanl sistema di sempensazione con due linee in mea z'onda occorre innanzi tutto ridurre il più possibile l'ampiezza del cappio della curva ottenuta per mezzo della prima linea, allo scopo di ottenere un avvicinamento di $\mathrm{A}^{\prime \prime}$ od O^{\prime}. La riduzione del cappio si ottiene eseguendo la compensazione di reattanza per due frequenze molto prossime ad f_{0}.

Fig. 19 .- Aziont: compensatrice di una linea lunga $2 \lambda 2$ sulla carat
teristica di un circuito risonante serie con $X_{0} / R_{0}=4$.

In figura 19 sono rappresentate due curve di impe denze quali si trovano all'uscita di due linee lunghe $\lambda /$ chiuse sullo stesso circuito serie con $X_{0} / R_{0}=4$.
Nel primo caso l'impedenza caratteristica dell linea è $Z_{0}=0,5 R_{0}$ e la compensazione della reat tanza è fatta per le frequenze $1,08 f_{0}$ e $0,92 f_{0}$ circa
Nel secondo caso l'impedenza caratteristica $Z_{0}=0,32 \quad R_{0}$ e la compensazione della resistenza avviene per le frequenze $1,01 f_{0}$ e $0,99 f_{0}$: il cappio

è ora abbastanza piccolo per sperare in un buon adattamento su una più larga banda usando una seconda linea lunga $\lambda / 2$ di impedenza caratteristica tale da operare una ulteriore compensazione di reattanza per due frequenze appartenenti all'estremo della con la quale si determinano graficamente le impedenze caratteristiche delle due linee per il caso di un circuito risonante parallelo.

Con la prima linea si intende compensare la reattanza del punto A cui compete la frequenza $f_{0}+h_{1} f_{0}$. Il punto A viene scelto opportunamente in relazione al rapporto di onde stazionarie e alla larghezza di banda desiderata. Si considera la curva $\varphi_{A}=\operatorname{cost}$
passante per A (curva I e si trova la sua intersezione A^{\prime} con la retta (2) che forma con l'asse reale l'angolo $2 \pi h_{1}$. Per A^{\prime} passa il cerchio $\mathrm{O}^{\prime \prime} \mathrm{A} \mathrm{O}^{\prime}$ avente centro sull'asse reale. Al punto O^{\prime} corrisponde la resistenza $r=k^{\prime}$ e l'impedenza della prima linea è $Z_{01}=R_{0} / k^{\prime}$. Per effetto della trasformazione operata da questa linea si trova la curva luogo 4 con cappio

Fig. 21. - Trasformazione della curva II id ifgura $\begin{gathered}\text { avente } Z_{0}=2,5 \\ Z_{0} \text { con una linea }\end{gathered}$
Scelto su questa curva un punto B^{\prime} appartenente all'estremo della banda (frequenza $f_{0}-h_{2} f_{0}$) si conali estremo della banda frequenza side $_{0}-h_{2} f_{0}$ si con-
sidera l'intersezione della $\varphi_{B}=$ cost con la retta 6 , ottenuta ruotando l'asse reale dell'angolo $2 \pi h_{2}$ (punto $\mathrm{B}^{\prime \prime}$) in senso orario.
Per i punti B^{\prime} e $\mathrm{B}^{\prime \prime}$ passano le curve $\left|z^{\prime}\right|=$ cost
$\left|z^{\prime \prime}\right|=$ cost $\mathrm{e}\left|z^{\prime \prime}\right|=$ cost rispettivamente e l'impedenza caratteristica della seconda linea di compensazione è:
[22]

$$
Z_{02}=\frac{R_{0}}{k^{\prime}} \frac{\left|z^{\prime \prime}\right|}{\left|z^{\prime}\right|}=\frac{R_{0}}{k^{\prime \prime}} .
$$

Riferendo $\boldsymbol{Z}_{\mathrm{b}}$ all'impedenza Z_{02} (curva VII) ed eseguendo per punti la trasformazione operata da questa all'ingresso del sistema. Questa curva luogo è contenuta nel cerchio tratteggiato il cui raggio dipende dalla scelta dei punti A e B
A titolo di esempio si riporta in figura 21 la curva di impedenze che si ottiene trasformando la curva II di figura 19 con una linea lunga $\lambda / 2$ avente $Z_{0}=2,5 R_{0}$.
(continua)

LE VITAMINE L. 300
 Storia, problemi e applicazioni della vitaminologia nella divulgazione di scienziati italiani e stranieri.

I ricetrasmettitori ELIT

a modulazione di frequenza sul Cervino
per la
RAI - Radiotelevisione Italiana

RICEVITORE RMF 31

TRASMETTITORE TMF 41
"......un complesso super-leggero a modulazione di frequenza certo alavanguardia nel campo dei collegamenti mobili a onde metriche. SBALORDITIVI I RISULTATI".
(Dal «Radiocorriere» n. 33: |5-2| agosto 1954)
\qquad

PER INFORMAZIONI TECNICHE E PREVENTIVI:

UIASALUIONI, IU - MILANO - TELEF. 9 II. 898

con nastro di Styroflex avvolto ad elica

FeltensGuilleaume Carlswerk Af Kïln-Millheim

Rappresentante Generale
Ing. OSCAR ROJE MILANO - Via T. Tasso 7 Tel. 42.241

CONGRESSO SUI PROCEDIMENTI DI RIEGISTRAZIONE SONORA E LORO ESTENSIONE ALLA REGISTRAZIONE

DELL'INFORMAZIONE

Facendo seguito a quanto pubblicato a pagina 137 del numero precedente diamo i riassunti delle comunicazioni più significative che abbiamo potuto ascoltare, dato che i lavori del Congresso
ni separate

SEZIONE I -Generalità, storia, proble-
Aginski P. Cytrin O. Kahn A.: Le candenze di registrazione.
In un canale di registrazione si devono sil
mentali
$a)$ ottenere il massimo rapporto
segnale-disturbo per permettere la mas. segnale-disturbo per per
sima dinamica possibile;
b) evitare i sovraccarichi, per non
generare distorsioni.
generare distorsioni
Gli amplificatori di registrazione
devono consentire un esercizio su vasta gamma di frequenze (da 40 a
15000 Hz), con elevate 15000 Hz), con elevate potenze di
uscita: più precisamente per ogni freuscita: piu precisamente per ogni fre-
quenzaz si deve poter disporre di ten-
sioni e correnti considerevoli a seconda sioni e correnti ponsiderevoli a seconda del valore della frequenza stessa.
Per diminuire il rumore di fondo ricorre a particolari schermature, contro
l'ind uzione magnetica, all'alimentazione dei filamenti con corrente continua, a compensazione con tensione di ampiezza
e fase opportuna ricavate dal disturbo e fase opportuna ricavate dal disturbo
e, infine, alla reazione negativa insieme ad un uso assai limitato di induttori e trasformatori.
L'autore prende in esame anche gli
amplificatori che, in un canale di registrazione, pos. sono trovare ripiego per aumenta
dinamica consentita dal mezzo. L'autore ricorda i sistemi di do-
saggio: a) a bassa impedenza; b) ad saggio: aed anza.
alta impedenza Il dosaggio a bassa impedenza è stato il piiu usato fino ad oggi, ma ha
Y'inconveniente di richiedere molti re linconveniente di richiedere molti re-
sistori con ingombro e costi elevati e sistori dà una grande attenuazione. Un miglioramento di questo sistema si
ottiene con l'aggiunta di trasformatori per ridurre la perdita di inserzione. può fare nei due modi seguenti: 1) tutti puo fare ne1 die modis seguenti: 1 ,
gli anodi dei tubi amplificatori sono in parallelo sulla stessa resistenza di carico ed il guadagno è regolabile sulla ariglia
di ognuno dei tubi; 2) i potenziometri di regolazione di opgi ingresso sono
accoppiati per capacita agli anodi dei accoppiati per capacità agli anodi dei
tubi degli ingressi corrispondenti e sono essi stessi collegati in parallelo.
Pell gii attenuatori i'autore ricorda quetevoli vantaggi pratici rispetto a quelli a movimento circolare e cita
alcuni esempi in cui si hanno oltre alcuni esempi in cui si
60 dB di attenuazione.
Per i.
Per i filtri di un canale di registra-
zione si deve tener presente che gli zione
scopi di essi sono:
a) limitazione della banda tra-
and
nori
b) realzzazione di certi effetti

In questi ultimi tempi si è ottenuta
na riduzione noterole di volume di questi elementi e se ne ne è migliorata la qualità utilizzando i moderni circuiti condensatori a mica o styroflex. I tipi
più utilizzati sono i seguenti: più utilizzati sono seguenti: 1). passa alto per eliminare
quenze al disotto di 40 Hz ;
2) passa basso per eliminare le fre-
quenze superiori a $6000 / 15000 \mathrm{~Hz} \mathrm{a}$ quenze superiori a 600015000 Hz a
seconda del tipo di registrazione: 3) filtri combinati passa alto e basso per effetti sonori. I correttori prendono varie deno-
minazioni come: a) correttori di parola (attenuano la zon) correttori di presenza (esaltano la zona delle frequenze medio-alte); c) correttori di registrazione (per
incisione su dischi); $d)$ correttori che trasformano la
registrazione
a registrazione a tensione costante in
quella a corrente costante (registrazione e) correttori universali con regolazione indipendente delle frequenze o basse e limitazione di banda
f) correttori di curva di Fletcher sione di avvicinamento o allontanamento alla o dalla sorgente sonora
Chavasse e Vallancten: Applicazione della registrazione allo studio del.
l'udito e dell'audiometria
L'audiometria si è basata in un voce, e in un secondo tempo sulla misura dell'intensità di soglia di suoni
di frequenza pura con l'ausilio dell'audiometro. Oggi si riconosce che questo secondo metoodo non è sufficiente per un esame completo, ed è opportuno
ritornare ai metodi di audiometria vocale, pur non trascurando le possibilità che ci offre l'audiometria tonale.
La possibilita di registrazione di alta qualità può rendere molto più precisa l'audiometria vocale ricorrendo ad
apparecchiature che consentono esami apparecchiature che consentono esami
in condizioni simili a quelle della vita corrente. Questa audiometria registrata
è poi particolarmente utile nella scelta è poi particolarmente utile nella scelta
DIDIER A.: Evoluzione della tecnica della regi.
dei suoni.
L'autore espone una particolareg.
giata rassegna storica delle tappe scorse diala rassegna storica delle tappe scorse
deil vari sistemi dio regopastrazato ad oggio sonora.

Per la registrazione meccanica: dal tipo oscillografico su carta affumicata) si passa nel 1878 al noto fonomatafo a cilindro rivestito di stagnola di Thomas
Edison, nel 1889 Edison stesso pro cedeva, alla registrazione su cera. Nel
1890 Berliner introduce la registrazione 1890 Berliner introduce la registrazione
laterale su disco e i perfezionamenti di questo tipo di registrazione sono stati portati ad alto livello prima dall'inci sione e
solec.
La
La registrazione magnetica ha inizio col Telegraphone di M. Poulsen (1898)
per registrazioni su filo. Allo stesso Poulsen si devono vari perfezionamenti del suo sistema: nel 1903 applica la nel 1908 esegue registrazioni su nastro di acciaio esu foglio cilindrico di acciaio Questo sistema non ha avuto applica-
zioni pratiche fino al 1930 quando la compangia Marconi con i brevetti Stille ostrui la prima macchina industriale
on nastro di acciaio largo 3 mm che con hevastro alla velocità di metri 1,50 al secondo.
Nel 1927 Pfleumer brevetta il nastro
carta o di materia plastica rivestito di carta o di materia plastica rivestito cipi nel 1931 l'AEG tedesca costruisce "Magnetophone". Durante la seconda guerra mondiale questi sistemi hanno avuto grande
sviluppo per scopi bellici. Nel 1927 Carlson e Carpentier bre vettano il sistema a premagnetizzazione ad alta frequenza
Numerosissime sono le applicazion dei sistemi di registrazione magnetica e gli avviati studi per correnti ad altis-
sima frequenza ne fanno prevedere nuovi e importanti impieghi. La nascita del cinematografo av-
viene nel 1895, il primo cinema par. lante si ha nel 1910 , e da allora si sono niziati gli studi che hanno portato alla registrazione fotografica dei suoni che
presenta il grande vantaggio di una sincronizzazione automatica con l'im magine e la possibilità di una riprodu Altri sistemi di registrazione, quali alcusistema di Miller, possono presentare Tra le osservazioni con le quali autore conchiude la sua esposizione ha ad esempio stabilizzato la durata della canzone popolare moderna a tre minuti di fronte alla variabilita de
durata che avevano le canzoni dei tempi andati.
Tutti io sistemi ricordati hanno in comune lo soopo di registrare e diffon
dere il suono creando cosi una forma di espressione che viene ad avere un
riflesso sulle arti sonore in generale e riflesso sulle arti sonore in generale e
che nei secoli a venire potrà forse essere
giudicata d'una portata sociale para
Gonabile a quella prodotta dall'inven zione della stampa. Radio, cinema
televisione della nostra vita sociale e noi siam gli spettatori di
zione audio-visiva.

GARRET J. W.: Evoluzione dei metodi
di ricostruzione dello spazio uditivo In una diffusa comunicazione l'au
tore tratta dapprima dei parametri
fisici e psicologici che consentono d apprezzare la distanza e la direzione d consentono di apprezzare la distanz ono essenzialmente lo spettro sonoro per il fatto che la ricchezza dei tran col diminuire della distanza; il rapporto suono diretto, suono riverberato ch stanza ed infine l'intensità del suono parametro che non ha valore che nella di un'intensit $\grave{2}$ di ci siferimeò ricordar di un'intensita di riferimento, quind genti sonore mobili.
dii elementi che invece permetton di apprezzare la direzione del suono
sono: gii effetti di diffrazione delle onde
acustich intor acustiche intorno al capo per i suon siunge alle due orecchie nel caso d suoni gravi
L'autore si occupa, stabiliti questi
principi generali, di ricostruire con principi generali, di ricostruire con
mezzi elettroacustici lo spazio sonoro I metodi pratici per ristabilire lo spazio
sonoro si basano sulla possibilità d prese multiple microfoniche e di tra smissioni su più altoparlanti, sia me
diante incisioni diverse per ciascun iante 1 incisioni diverse per ciascu
altoparlante, sia con opportune regola altoparlante, sia con opportune regola
zioni di intensità. Sii possono aver effetti stereofonici reali come pure effet
L'autore parla di diverse realiz azioni attuate in questo campo, fra le quali particolarmente interessante
quellaa dei grandiosi spettacoli "Sons
et Lumieres" attuati nei castelli storic francesi nei quali, unitamente ad una
fastosa illuminazione notturna, si univa un'animazione sonora rievocante episodi storici arvenuti nel castello: pas
saggi di truppe, scene di battaglie, cori di popolani che si spostano e via di ceado. L'interesse spetta colare di queste realizzazioni è notevole anche dal punt
di vista pratico, e le recenti applica zioni di di cinematografa su su prande
schermo schermo
attualità.

Grutzmacher M. e Kallenbach W La registrazione delle ftuttuazioni di
velocita dei registratori mediante un

Gli autori espongono due metodi di un nastro magnetico, sul quale e incis una frequenza pura costante.
II primo metodo si basa su un ponte
di fase, il secondo fa ricorso ad un metodo, usato in ricerche fonetiche privo di inerzia, che registra seperarata Secondo gli autori le fluttuazioni d velocità in una registrazione di qualit

KORN I.: Contatore eletlronico per livello del segnale registrato.
Ricorrendo ad un contatore elettro si misura lappertuni circuale di tempo du rante la quale il livellolo di una reqistra-
zione è compreso entro due limiti zione è̀ compreso entro due limiti pre
fissati. Si ha cosi la possibilità di trac ciare una curva statistica la quale dei livelli di una data registrazione. se condo l'autore dall'esame di que elementi utili al giudizio della bontà della qualità della registrazione.

Rovget G.: Registrazione sonora ed
Mediante la registrazione sonora possono costruire archivi musicali
linguistici che possono darci documen di primaria importanza soprattutto sul popoli primitivi che non conoscono la mitive ed esotiche, quello fonetico fonologico delle lingue, sono molto age
volati dai moderni metodi di reg strazione.
Le apparecchiature che debbon essere trasportate anche in paesi tro-
piacali debbono avere particol anche per quanto rearticolari qualit l'ingombro; come pure gli apparecch che acompagnano queste spedizion con energia prodotta anche meccanica mente, o elettricamente con accumu Tutto il materiale e commutatric poi essere sottoposto ad analisi coi essere sottoposto ad analisi
carattere fisioc, come rilievo di spettro
grammi, analisi cendo. Un problema particolarment importante er quello di risalire dal documento registrato alla struttura
delle gamme musicali usate dai pope dele gamme music

SEZIONE II - Registrazione magnetie
Arvaud P.: Magnetofoni, edizione
Nello stesso tempo che la registra istema nastro magnetico diventementa sistema prevalentemente adottato dagli
editori di dischi, dal cinema e dalla
and radiodiffusione, una società francese a prima nel mondo - propose repi-
strazioni musicali su nastro da utiliz. zare in affitto con magnetofoni privati semiprofessionali.
E stata creata una rete di distrialle quali. ogni settimana sono distri
buiti nastri per molte ore di musica buiti nastri per molte ore di musica
ogni nastro ritorna all'origine per riregistrazione di nuovi programmi.
Alcini stabilimenti industriali ricevono Alcuni stabilimenti industriali ricevono
in affitto programmi intitolati «Lavo in affitto programmi intitiolati "Lavo ricevono musiche indicate alla trasmis
sione nei locali stessi. Questo tipo di distribuzione ha già superato lo stadio sperimentale e solleva numerosi pro-
blemi di normalizzazione quali: sens blemi di normalizzazione quali: sens
di marcia, tipo di riproduttore magne di marcia, tipo di riproduttore magne
tico, velocità di scorrimento, curva d
risposta, ecc.
rilet F.: Origine e particolarità del magnetica.

Un registratore magnetioo di elevata qualità, deve possedere oggi le seguenti a) distorsione
$12000 \mathrm{~Hz}+1 \mathrm{~dB}$; lineare massib) distorsione armonica al livello massimo 2%; c) rapporto segnale massimo di-
sturbo 50 dB ;
d) flutuazione di velocità $0,25 \%$. Questi risultati sono normalmente
raggiunti con dei buoni registratori: l'autore si occupa in modo particolare della questione del rumore di fondo che
classifica in dodici tipi diversi di classifica in dodici tipi diversi di ru-
more possibile; perôo soltanto alcuni tipi, presentano un interesse pratico e p
a) rumore di modulazione;
b) rumore di fondo di nastro
cellato: produz) ronzio del dispositivo di riproduzione;
d) ronzio del dispositivo di regi-
strazione; $e)$ soffio dell'amplificatore di ri-
produzione; f) soffio dell'amplificatore di re gistrazione. di disturbo e considera questi vari tipi larmente dettagliato in rumori doviti alle variazioni di carattere periodico
della velocita del nastro. Si dimostra della velocità del nastro. Si dimostra di modulazione che l'autore ha messo in evidenza ricorrendo ad
tore di grande selettività
Vengono riportati numerosi esempi di misure eseguite con questo metodo;
secondo 'latore questo tipo di rumore, indipendente dal segnale stesso, è oggi
fra i difetti maggiori degli apparecchi fra i difetti maggiori degli apparecchi
di alta qualità ed ha dato finora luogo a limitate ricerche

Gallet F.: Controllo della qualità dei nastri magnetici.
Per ottenere risultati soddisfacenti
nella registrazione ad alta fedeltà, occorrono tolleranze di fabbricazione assai severe sulle grandezze che caratteriz zano la qualità del nastro magnetico
Per un esercizio che Per un esercizio che si proponga
un certo rendimento industriale e risultati accettabili, è indispensabile un
controllo minuzioso dei nastri utilizzati Questi problemi si pongono parti-
colarmente acli organismi di radiocolarmente agli orsanismi di radio
diffusione, forti consumatori di nastro costante nelle registrazioni.
A questo scopo la Radio Francese
(R.T.F.) ha studiato, realizzato e messo (R.T.F.) ha studiato, realizzate e messo
in servizio da qualche mese due tipi
interamente nuovi di apparecchi di in servizio da qualche mese due tipi
interamente nuovi di apparechi di
controllo: controllo:
a) macchine di misura rapidissime che controllano esclusivamente alcunee
caratteristiche sulla totalità dei nastri impiegati;
plesse a macchine di misura punziona com plesse a funzionamento lento ma au-
tomatico che rilevano le più important
caratteristiche del nastro.

Klers D.: Dinamica della registrazione L'autore studia la possibilità di
migliorare la dinamica
della registrazione magnetica ricorrendo ad apposisitiproprietà statistiche del segnale si po-
trebbe incorporare nell'amplificatore di registrazione un filtro tale che la pro-
babilita di saturare il nastro magnetico sia la stessaturare in tutte le le magnetico
frequenze.
Nel caso della musica zerà le note alte e le note basse, poichè Inntensità delle componenti al di sopra
di 3000 Hz e al di sotto di 300 Hz diminuisce. In tal modo la dinamica del nastro magnetico aumenta, poichè one compensatrice nei per circuiti di di riproduzione.

Lovichi A.-Deriaud J. P.: Gli ossidi
di ferro utilizati nella fabbricazione degli strati magnetici.
Soltanto le due forme di ossidi di
ferro $\mathrm{Fe}_{0} \mathrm{~A}_{\mathrm{e}} \mathrm{Fe}$. fase gamma) presentano proprietà ma-
gnetiche. Ambedue questi tipi d'ossido possono. Ampque e essere utilizzati per
la fabbricazione degli strati magnetici; ma si utilizza piu correntemente l'osmetodi differenti di preparazione: nel primo si precipita direttamente in so-
Iuzione acquosa l'ossido $\mathrm{Fe}_{3} 0_{4}$ che per ossidazione controllata da ${ }^{2}$ in seguito
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ in fase gamma; nel secondo si rietà di ossido di ferro non magnetico rieta ${ }^{2}$ ossido di ferro non magnetico
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} 0$ che successivamente per.
mette di ottenere mette di ottenere, prima per disidra-
tazione $\mathrm{Fe}_{2} \mathrm{O}_{3}$ fase gamma, poi per
riduzione in fase secca $\mathrm{Fe}_{3} \mathrm{O}_{4}$ ed inf infine $\mathrm{Fe}_{3} \mathrm{O}_{4}$ ed infine
ata $_{4} \mathrm{Fe}_{2} \mathrm{O}_{3}$ fase $\underset{\mathrm{I} \text { due ossidi } \mathrm{Fe}_{2} 0_{3} \text { fase gamma così }}{\text { gamma. }}$ ottenuti con i due metodi, seppure di
natura chimica identica e di identica struttura cristallina differiscono per la
forma dei loro cristalli elementari: questa differenza provoca numerose
variazioni nelle proprietà fisiche delle variazioni nelle proprieta fisiche delle
polveri dossido ed in particolare nelle proprieta magneto-statiche di esse. latore ad alta frequenza. Questo appa-
rechio può essere utilizzato in sincro-
nismo con una machina da presa (19
CORSO DI PERFEZIONAMENTO IV ELE da differenti fabbricanti, permettono
di ottenere due tipi di strato magnetico
aventi proprietà elettroacustiche assai venti proprieta
diverse
fra loro
Schiesser H.: I nuovi magnetofoni delle
società di radioditfusione
Repubblica Federale Tedesca.
rechi:
a) appae magnetica per registrazioni di alta qua tita
$76,2 \mathrm{~cm} / \mathrm{sec}$; b) apparecchio di registrazione magnetica a due velocità con alimene) apparecchio vetture attrezzate, magnetica portatile con alimentazione d) e velocità di $19 \mathrm{~cm} / \mathrm{sec}$; magnetica pere i segnali dintintervallo coartificiale apparecchio di riverberazione artificiale per le trasmissioni di prosa per televisione, per mezzo del quale
si puo far variare il tempo di riverberazione, il volume apparente della sorgente sonora e liascoltatore. Circa il punto a) l'autore si intrat-
tiene sui particolari tennici zazione, come per esempio sul motore principale di trascinamento del nastro, motore con doppio avvolgimento com-
mutabile per ottenere 1500 e 750 giri al minuto e sui motori di avvolgimento riavoolgimento del nastro. adatterà tutti i magnetofoni per utilizzare il nuovo nastro magnetico ad alta coercività per basse velocità e verranno
utilizzati su larga scala i nuovi materiali di ferrite, per la costruzione dei nuclei delle testine magnetiche a limi-
tato consumo per attrito col nastro Per il punto b in magnetofono a
due velocità è alimeta due velocità è alimentato da una bat-
teria di accumulatori a teria di accumuatori a centrifugo ad
dotato di un regolatore ce azione elettrica; 1 'limpiego di tentestine di cancellazione di ferrite permette una
economia nella costruzione dell'oscil.

6 mm per gli usi della televisione.
Si può conseguire il sincronismo me.
diante due sistemi, nel primo una fre diante due sistemi, nel primo una fre-
quenza pilota di 50 Hz è registrata sullo, stesso nastro, contemporaneamente alla modulazione, con un'appo quella di modulazione: la diafonia tra le due registrazioni si mantiene al d
sotto di 60 dB. Nel secondo sistema na tensione di alta frequenza è modu ata dalla nota pilota. Durante la frequenza è amplificata, limitata demodulata: la tensione pimitata consi
ricostruita può essere direttamente ricostruita può essere direttamente
amplificata e utilizzata per il proiettore oppure comparata per mezzo di un ponte di fase con la frequenza fondaDato che con questo secondo metodo si deve registrare una frequenza molto elevata sul nastro; con velocità dati
$76,2 \mathrm{~cm}$ si ottengono bunit risultati $76,2 \mathrm{~cm}$ si ottengono buoni risultati:
più difficile è utilizzare la velocita di $\stackrel{\mathrm{cm} .}{\mathrm{Il} \text {. }}$
magnetofono portatile (c) pesa atteria con una autonomia motore
L'apparechio
di riverberazione ar tificiale (e) eh un'interessante applica ione che risolve il problema delle
camere riverberanti; è costituito da un cilinerro riverberanti; de costituito da un di 33 cm sul quale é stato depositato magnetici. Le testine di riproduzione sono nove e noul tocano lo strato 20 micron. Una testina di cancellazione una di registrazione completano l'ap parecchio: le velocità di scorrimento condo: le nove testine di riproduzione sono collegate fra loro per dare un
segnale di uscita gia riverberato in unzione della loro reciproca distanza circa 100 millisecondi). Inoltre il se con opportuni amplificatori ed atte gistri e rinviato all'amplificatore di ffetti sonori di riverberazione varia e da 0,5 a 4 secondi. L'apparecchio
progettato per il comando a distanza (194)
B. C. S.

CORSO DI PERFEZIONAMENTO IN ELETTROTECNICA

 DEL POLITECNICO DI TORINOCome di consueto presso l'Istituto Elettrotecnico Nazio
nale «G. Ferraris» si terrà anche quest'anno, il Corso d
perfezionamento in Elettrotecnica suddiviso in due sezioni perfezionamento in
Elettromectrontecnica sudation e
Comunicazioni Elettriche (sottosezioni Radiotecnica e Telefonia).
Per ciascuna delle Sezioni o Sottosezioni il Corso con siste in insegnamenti speciali, integrati da gruppi di con-
ferenze di carattere monografico, da esercitazioni. e prove teoriche e sperimentali e da visite e sopraluoghi. Il Corso ha la durata di un anno accademico. Ad esso
possono essere iscritti i laureati in ingegneria, in fisica od in matiematica e fisica. Il Corso rilascia un certificato di perfezionamento in elettrotecnica.
Possono venir ammessi al Co Possono venir ammessi al Corso gli ufficiali di arti-
glieria, genio e marina, che abbiano superato gli esami dei rispettivi corsi di applicazione, anche se sprovvisti di
diploma di ingegnere. Ad essi viene riasciato un certificato degli esami superati.
Gli esami delle materie speciali per ciascuna Sezione
si svolgono durante la sessione estiva ed autunnale. si svolgono durante la sessione estiva ed autunnale. La
prova finale ha luogo nella sessione autunnale, non oltre
il 15 dicembre, dopo che il candid.
di carattere teorico-sperimentale.
Gli iscritti al Corso a seguirlo come allievi interni. Gli allievi interni frequentano IIstituto con orario normale dal 10 gennaio alla fine di
dicembre esclusi due mesi di ferie: essi seguono l'attività normale del Reparto dell'Istituto cui vengono assegnati. Agli allievi interni più meritevoli possono essere asseondazione Politecnica Piemontese, dall'Istituto Elettro ecnico Nazionale e da altri Enti. Possono altresì essere concessi agli allievi speciali premi. L'esito del Corso può
essere considerato come titolo di preferenza per un'evenssere considerato come titolo di preferenza per un even
tuale assunzione nel personale dell' Istituto.
te le le lizini avranno inizio il 10 gennaio 1955 e termi Le lezioni avranno inizio il 10 gennaio 1955 e termi.
Luale asunion
nerano il 30 giugno 195. neranno il norme relative alle iscrizioni e alle borse di Per le norme relative alle iscrizioni e alle borse di
studio che i candidati possono godere e per ogni altra
informazione, rivolgersi alla Segreteria del Politecnico (Ca. nformazione, rivolgersi alla Segreteria del Politecnico (Ca-
stello del Valentino). Torino. $\underset{(195)}{\substack{\text { stello } \\(195}}$

dappertutto...

ANTENNE PER TELEVISIONE

agente di vendita per l'italia:
s.R.L. CARLO ERBA MILANO
VIA CLERICETTI, 40 - TELEF. 292-867
*
CAVI PER ALTA FREQUEVZA E TEEEVYISONE
call per radar
CAUI PER Ponti Rado
CANI PER RAGEI X
call per a.t. In politeene
CAN PER MACCHINE ELETTRONCHE E APPARECCH DI MISURA
FILI II RAME CON SMALTO TIPO SALLDBLLE SOLLIT FIII Smaliati autolupreeanant
FILI PER CABLLAGEI E CONNESSIONE M. 49 Dätwyler
(Brevetati)
CORDONCIN LITL SALDABLII
GIUNTI E TERMNNAL PER CAVI T.V. E A.F.
DEPOSITIA:
MILANO - ROMA - FIRENZE - BOLOGNA - TORIND - padova

GAVI ALTA FREQUENZA E TELEVISIONE
 MANIFATtURA SVIZZERA
OI FILI. CAVI E CAUCCIU Dätwyler s.A. Altoobf-uRI

"VORAX RADIO"

MILANO

Viale Piave N. 14 - Telef. 793.505
SISTEMA COASSIALE A 960 CANALI

STRUMENTI DI MISURA, SCATOLE DI MONTAGGIO, MINUTERIE, VITERIE E PEZZI STACCATI PER LA RADIO E TELEVISIONE
*
Avvertiamo la ns. Spett. Clientela che la ns. ditta NON ESPORRA YUEICNE, Sarà gradita una visita RADIO E TELEVISIONE. Sara gradita una visione
alla ns. sede dove sarà esposta la nuova produzione 1954-1955 e verrà praticato uno sconto extra dall'll al 20 settembre 1954.

Alla
mostra della radio tv
Posteggio N. 28
Abbiamo esposto
i campioni dei nostri prodotti:

* TELEVISORI «TELEMARK» 17" E 21"
* RADIORICEVITORI
* SCATOLE MONTAGGIO RADIO E TV
* antenne radio tV e accessori
* TUTTE LE PARTI STACcate radio E TV
* REGOLATORI DI TENSIONE A VOLTMETRO
* REGOLATORI DI TENSIONE AUTOMATICI
* attrezti per Radiotecnici e TV
* MACCHINE BOBINATRICI
* VISITATECI*

CHIEDETECI PROSPETTI
M. MARCUCCI \& C. - MILANO FABBRICA RADIO TELEVISORI E ACCESSORI Via F.Ili Bronzetti, 37-Telef. 52.775-72.33.54

Paddinuatori al Selenio

di G. Gamba

Sede:

MILANO - Via G. Dezza N. 47 Telef. 44.330-44.321 - 48.78.27

Stabilimenti:
Milano - Via G. Dezza N. 4 (f
BREMEILLA (Bergamo)
ESPORTAZIONE

\%IUS' AMBROSETIII

TRASPORTI INTERNARIONALI

torivo - Via Cellini, $2 \cdot$ Tel. 693-435-690-603/607

-

MILANO-GENOVA-SA VONA COMO-FIRENZE-ROMA-NAPOLI

Casa dlleata
ZUSI' \& BACHMEIER Soc. An. con Filiali ad
amburgo-barmen - berlino brema - duesselidorf - Francoforte LIPSIA - NORIMBERGA - STOCCARDA

NON PERDETE TEMPO!

RITAGLIATE IL TALLONCINO IN CALCE E SPEDITELO ALLA DITTA

Vi saranno inviate le ultime pubblicazioni e i famosissimi "PACCHI STANDARD"

Ditta G. B. CASTELFRANCHI MILANO - Via Petrella, 6

NOME
COGNOME
VIA
CITTA

La F.A.C.E. costruisce colonne di raddrizzatori montate per qualsiasi impiego

Le loro principali caratteristiche sono:

- Impiego di piastre raddrizzanti di altissima qualità aventi minima corrente inversa e con perdite quindi trascurabili.
- Durata massima dell'elemento e possibilità di assorbire senza danno temporanei sovraccarichi.
- Semplicità di montaggio dovuto all'impiego di piastre raddrizzanti del tipo brevettato "centro carta" che consente l'allestimento con ranella distanziatrica gida anzichè con disco di contatto elastico.
- Assoluta sicurezza del contatto elettrico tra le piastre e resistenza minima al passaggio della corrente di erogazione.
- Possibilità di verniciatura dell'elemento per immersione.
- Possibilità di protezione dell'elemento con vernici del tipo tropicale per garantire il funzionamento dell'ele. mento stesso in qualsiasi ambiente.
- Gamma vastissima di tipi realizzati tale da consen tire per ogni impiego la scelta più opportuna.

La F.A.C.E. è in grado di dare una completa assistenza tecnica.
Dettagliati prospetti illustrativiv saranno inviati
richiesta. a richiesta.

MACCHINE ELETTRICHE - POMPE - VENTILATORI DI OGNI TIPO E POTENZA PER QUALSIASI APPLICAZIONE - CONDIZIONAMENTO, RAFFRESCAMENTO, REFRIGERAZIONE, RISCALDAMENTO, UMIDIFICAZIONE, VENTILAZIONE, PER USI CIVILI, INDUSTRIALI, NAVALI.

convertitore di frequenza per applicalioni elettroniche

ERCOLE MARELLI \& C. S.P.A. - MILLANO
FILIALE DI TORINO: CORSO MATTEOTTI, I 3 TELEF. 43.679-520.734

OM AM
 oc MF
 oce TV ove

(IIRHPRD

1919 | 35 ANWI DI ESPERENZA 1954 E SPECIALIZZAZIONE

condensatori a dielettrico ceramico di alita qualità eid a coefficiente di temperatura preciso

 STRINA SUBMINIATURA, ULTRAMINIA BICCHIERE, si adattano a tutte le esigenze tecniche di moritaggio

Rispondenti alle Norne JAN - MIL - RCS e CCTU
Costruiti su licenza L.C.C. C.ie Gén.le de T.S.F., da MICROFARAD in Italia; AEROVOX Co. in U.S.A. A. H. HUNTS LTD. in Gran Bretagha,
LELAND INSTRUMENTS in Gran Bretana: LELAND INSTRUMENTS in
FERROPERM in Danimarca : DUCON in Australia.

Fabbrica Italiana Condensatori S. p. A.

