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PREFACE

This textbook is written to support a bioengineering course covering material tra-
ditionally taught in an electrical engineering service course. The course is intended
to be taken by second-semester sophomores or first-semester juniors and introduces
basic engineering concepts related to signal processing and linear systems analysis.
Major topics include the Fourier transform, the Transfer function, the Laplace 
transform, time and frequency domain representations, and sinusoidal (phasor)
analysis.

The primary motivation for this text is to give bioengineering students signal pro-
cessing and linear systems tools relatively early in their studies. Not only will this
allow them to apply these skills earlier in their application courses, but should foster
a sense of ownership of these tools. Approaches such as the Transfer function and
the Fourier and the Laplace transforms should no longer be considered tools “bor-
rowed” from electrical engineering, but techniques that are used by, and belong to,
bioengineering. As long as these tools are taught outside the context of bioengi-
neering (often without enthusiasm) they may not be identified as ours.

With this objective in mind, the textbook contains a number of special features.
Most significantly, the text relies heavily on the use of basic MATLAB® in both
examples and problems. I have found this software package to be an invaluable
educational tool for teaching concepts in linear systems analysis, and believe that
not using this resource would be a pedagogical mistake. MATLAB is particularly
useful in demonstrating graphically the dynamics of linear systems, the spectra
arising from the Fourier transform, and Transfer function frequency plots. It is also
very useful in sinusoidal analysis of mechanical and electrical systems. The latter
might be more appropriately analyzed using software dedicated to electrical and
electronic analysis such as “pSpice,” but the educational objectives of this text are
served adequately by MATLAB.

The text is written in a casual, almost breezy style in an effort to appear more
accessible to younger students. I have tried to develop some of the deeper concepts,
such as the Fourier series analysis and the Transfer function, using a highly intui-
tive approach. For example, the Fourier transform is presented as an extension of
basic correlation, but with sinusoids as probing functions. Many of the problems
may be considered somewhat dry, but I believe that drill is essential for learning this



material. A few more open-ended problems are included in each problem set, usually
in the section involving MATLAB. The overriding objective of this text is to give
students a solid foundation in the concepts of linear systems analysis. Examples
were chosen to be instructive and are not always immediately relevant to bioengi-
neering. Examples of biomedical applications are presented throughout the text, but
only if they provide educational support to the topics being covered.

This text is intended to support a one-semester course, although not all of the
material can be covered in a three-hour-per-week format. The additional material
is included to give the instructor some options and allow the course to be tailored
to specific bioengineering programs. One option is to omit the last chapter on elec-
tronic devices, and teach only the first nine chapters which fit comfortably into one
semester. Alternatively, some of the sections on mechanical systems could be omitted
and the chapter on basic electronics included. Finally, a few sections are marked as
optional (such as nodal analysis), and these could also be omitted. Ultimately, the
instructor may wish to pick and choose within and among the chapters.

The text comes with a number of educational support materials. An enclosed CD
contains data and MATLAB functions needed to solve the problems, a few helpful
MATLAB routines, and all of the MATLAB examples given in the book. Since many
of the problems are extensions or modifications of examples, these CD files can be
helpful in reducing the amount of typing required to carry out an assignment. For
instructors, a set of PowerPoint files is available that includes all of the figures and
most of the equations along with supporting text for each of the chapters. In 
addition, there are a set of files that contain the solutions to the problems at the
end of each chapter. These files are available for download from the publisher at
www.books.elsevier.com. At Rutgers University, this course is offered in conjunc-
tion with a laboratory called “Signals and Measurements”—a manual covering this
laboratory is in preparation and should be available shortly.

I am deeply indebted to the assistance provided by two Rutgers undergraduate
students who helped with the editing of this text. I especially thank Ms. Jenner Yeh
for the outstanding job she did in correcting my many errors, and rewriting par-
ticularly obscure passages. In addition, Mr. Mohammad Zia was very helpful in
checking the MATLAB problems and other examples. Their contributions were
exceptional and any errors or shortcomings that remain are entirely my responsi-
bility. I am also very much indebted to four anonymous reviewers who carefully
scrutinized the first three chapters as part of a Whitaker review process. Although
funding was not forthcoming, their reviews were invaluable, and I hope that have
met at least some of their challenges. Regarding the effort and concern they gave
to their reviews, I wish that I could thank them personally, but given the situation
this is the best I can do. I also wish to thank Susanne Oldham (to whom this book
is dedicated) for her patient editing and unwavering support. Thanks also to Lynn
Hutchings and Peggy Christ who demonstrated great understanding during the 
frenetic preparation of this manuscript.

John L. Semmlow, Ph.D.
New Brunswick, NJ 2004

viii PREFACE



CONTENTS

1 BIOENGINEERING SIGNALS AND SYSTEMS 1

1.1 Biological Systems 1
1.2 Biosignals 3

1.2.1 Signal Encoding 6
1.3 Linear Signal Analysis: Overview 9

1.3.1 Analysis of Linear Systems 11
1.3.2 Analog Analysis and Analog Models 11
1.3.3 Systems Analysis and Systems Models 15
1.3.4 Systems and Analog Analysis: Summary 22

1.4 Noise and Variability 23
1.4.1 Electronic Noise 24
1.4.2 Signal-to-Noise Ratio 27

1.5 Summary 27
Problems 29

2 BASIC SIGNAL PROCESSING 31

2.1 Basic Signals: The Sinusoidal Waveform 31
2.1.1 Sinusoidal Arithmetic 34
2.1.2 Complex Representation 36

2.2 Signal Properties: Basic Measurements 38
2.2.1 Decibels 42

2.3 Advanced Measurements: Correlations and Covariances 44
2.3.1 Standard Correlation and Covariance 45
2.3.2 Autocorrelation and Cross-Correlation 48

2.4 MATLAB Implementation 54
2.4.1 Mean, Variance, and Standard Deviation 54
2.4.2 Ensemble Averaging 57
2.4.3 Covariance and Correlation 58



2.4.4 Autocorrelation and Cross-Correlation 61
2.5 Summary 65
Problems 66

3 FREQUENCY TRANSFORMATIONS 69

3.1 Useful Properties of the Sinusoidal Signal 72
3.2 Fourier Series Analysis 75

3.2.1 Symmetry 79
3.3 Frequency Representation 80
3.4 Complex Representation 82
3.5 The Continuous Fourier Transform 85
3.6 Discrete Data: The Discrete Fourier Transform 87

3.6.1 Data Sampling: Sampling Theorem 88
3.6.2 Amplitude Slicing: Quantization (Optional) 93
3.6.3 Data Length: Truncation 95

3.7 Power Spectrum 97
3.7.1 Spectral Averaging 99

3.8 Signal Bandwidth 101
3.9 MATLAB Implementation 102
3.10 Summary 115
Problems 116

4 CIRCUIT AND ANALOG ANALYSIS IN SINUSOIDAL STEADY 
STATE 121

4.1 Circuits and Analog Systems 121
4.2 System Variables and Elements 123

4.2.1 Electrical Variables 125
4.2.2 Electrical Elements 127
4.2.3 Active Elements 135
4.2.4 The Fluid Analogy 137

4.3 Phasor Analysis 139
4.3.1 Phasor Representation: Electrical Elements 144

4.4 Mechanical Elements 147
4.4.1 Passive Elements 148
4.4.2 Elasticity 151
4.4.3 Sources 153

4.5 Summary 157
Problems 158

x CONTENTS



5 ANALYSIS OF ANALOG MODELS AND PROCESSES 161

5.1 Conservation Laws: Kirchhoff’s Voltage Law 161
5.1.1 Mesh Analysis: Single Loops 162
5.1.2 Mesh Analysis: Multiple Loops 168
5.1.3 Mesh Analysis: MATLAB Implementation 171

5.2 Conservation Laws: Kirchhoff’s Current Law—Nodal Analysis 173
5.3 Conservation Laws: Newton’s Law—Mechanical Systems 178
5.4 Summary 186
Problems 187

6 FREQUENCY CHARACTERISTICS OF CIRCUITS AND ANALOG
PROCESSES: THE TRANSFER FUNCTION 193

6.1 The Circuit or Mechanical System as a Process 193
6.1.1 Superposition 195
6.1.2 The Transfer Function 196
6.1.3 Transfer Function Characteristics 197

6.2 Transfer Function Frequency Plots: The Bode Plot 198
6.2.1 Frequency Characteristics of Bode Plot Primitives 201

6.3 Filters 213
6.3.1 Filter Types 214
6.3.2 Filter Bandwidth 215
6.3.3 Filter Order 216
6.3.4 Filter Initial Sharpness 217
6.3.5 Evaluating Filter Frequency Characteristics 217
6.3.6 Filter Design 219

6.4 MATLAB Implementation 221
6.4.1 Transfer Function 221
6.4.2 System Identification 227
6.4.3 The Transfer Function and Fourier Series Decomposition 230

6.5 Summary 234
Problems 234

7 RELATIONSHIPS BETWEEN ANALOG ELEMENTS 239

7.1 System Simplifications: Passive Network Reduction 239
7.1.1 Series Electrical Elements 240
7.1.2 Parallel Elements 242
7.1.3 Network Reduction: Passive Networks 244

7.2 Ideal and Real Sources 252
7.2.1 The Voltage–Current or v-i Plot 252

CONTENTS xi



7.2.2 Real Voltage Sources: The Thévenin Source 255
7.2.3 Real Current Sources: The Norton Source 258
7.2.4 Thévenin and Norton Circuit Conversion 261

7.3 Thévenin and Norton Theorems: Network Reduction with Sources 264
7.4 Measurement Loading 269

7.4.1 Ideal and Real Measurement Devices 270
7.4.2 Maximum Power Transfer 273

7.5 Mechanical Systems 275
7.6 Multiple Sources: Revisited 281
7.7 Summary 283
Problems 283

8 THE ANALYSIS OF TRANSIENTS: THE LAPLACE TRANSFORM 289

8.1 The Laplace Transform 289
8.1.1 Definition of the Laplace Transform 290
8.1.2 Laplace Representation of Elements: Calculus Operations in the

Laplace Domain 292
8.1.3 Initial Conditions 293
8.1.4 Voltage–Current and Force–Velocity Relationships in the Laplace

Domain 294
8.1.5 Sources: Common Signals in the Laplace Domain 296
8.1.6 Converting the Laplace Transform to the Frequency Domain 298
8.1.7 The Time-Delay Element 299
8.1.8 The Inverse Laplace Transform 300

8.2 Laplace Analysis: The Laplace Transfer Function 300
8.2.1 First-Order Processes 302
8.2.2 Second-Order Processes 306

8.3 Nonzero Initial Conditions 316
8.4 Initial and Final Value Theorems 320
8.5 The Laplace Domain and the Frequency Domain 321
8.6 Summary 330
Problems 330

9 SYSTEM MODELS AND BEHAVIOR 335

9.1 The System Model 335
9.1.1 Feedback 337

9.2 The Convolution Integral 340
9.2.1 MATLAB Implementation 343

9.3 Resonance 354
9.3.1 Resonant Frequency 355
9.3.2 Resonant Bandwidth, Q 355

xii CONTENTS



9.4 Summary 365
Problems 367

10 BASIC ANALOG ELECTRONICS: OPERATIONAL 
AMPLIFIERS 371

10.1 The Amplifier 372
10.2 The Operational Amplifier 374
10.3 The Noninverting Amplifier 376
10.4 The Inverting Amplifier 379
10.5 Practical Operational Amplifiers 381

10.5.1 Limitations in Transfer Characteristics of Real Operational 
Amplifiers 382

10.5.2 Input Characteristics 389
10.5.3 Output Characteristics 396

10.6 Power Supply 398
10.7 Operational Amplifier Circuits, or 101 Things to Do with an Operational

Amplifier 399
10.7.1 The Differential Amplifier 400
10.7.2 The Adder 401
10.7.3 The Buffer Amplifier 402
10.7.4 The Transconductance Amplifier 403
10.7.5 Analog Filters 405
10.7.6 Instrumentation Amplifier 407

10.8 Summary 411
Problems 411

APPENDIX A 415

A.1 Derivation of Euler’s Formula 415
A.2 Confirmation of the Fourier Series 416
A.3 Derivation of the Transfer Function of a Second-Order Op Amp 

Filter 417
A.4 Derivation of the Transfer Function of an Instrumentation Amplifier 418

APPENDIX B Laplace Transforms 421

APPENDIX C Trigonometric and Other Formulas 423

CONTENTS xiii



APPENDIX D Units 425

APPENDIX E Complex Arithmetic 429

E.1.1 Addition and Subtraction 430
E.1.2 Multiplication and Division 430

APPENDIX F LF 356 Specifications 433

APPENDIX G Determinants and Cramer’s Rule 435

BIBLIOGRAPHY 437

INDEX 439

xiv CONTENTS



1 BIOENGINEERING
SIGNALS AND SYSTEMS

1.1 BIOLOGICAL SYSTEMS

A system is a collection of processes or components that interact for some common
purpose, although that purpose may only be the invention of human intellect. Many
systems of the human body are based on function. The cardiovascular system’s func-
tion is to deliver oxygen-carrying blood to the peripheral tissues. The pulmonary
system is responsible for the exchange of gases [primarily oxygen (O2) and carbon
dioxide (CO2)] between the blood and air, whereas the renal system regulates water
and ion balance and adjusts the concentration of other types of ions and molecules.
Some systems are organized around mechanism rather than function. The endocrine
system mediates a range of communication functions using complex molecules 
distributed through the blood stream. The nervous system performs an enormous
number of tasks using neurons and axons to process and transmit information coded
as electrical impulses.

The study of classical physiology and of many medical specialties is structured
around human physiological systems. (The term classical physiology is used here to
mean the study of whole organs or organ systems as opposed to newer molecular-
based approaches.) For example, cardiologists specialize in the cardiovascular
system, neurologists in the nervous system, ophthalmologists in the visual system,
nephrologists in the kidneys, pulmonologists in the respiratory system, gastroen-
terologists in the digestive system, and endocrinologists in the endocrine system.
There are medical specialties or subspecialties to cover most physiological systems.
(Another set of medical specialties is based on common tools or approaches, includ-
ing surgery, radiology, and anesthesiology, whereas one specialty, pediatrics, is based
on the type of patient.)

Given this systems-based approach to physiology and medicine, it is not sur-
prising that early bioengineers applied their engineering tools, especially those
designed for the analysis of systems, to some of these physiological systems. Early
applications in bioengineering research include the analysis of breathing patterns
and the oscillatory movements of the iris muscle. Applications of basic science to
medical research date from the eighteenth century. In the late nineteenth century,



Einthoven (Raju, 1998) recorded the electrical activity of the heart, and through-
out that century, electrical stimulation was used therapeutically (largely to no avail).
Although early researchers may not have considered themselves engineers, they did
draw on the engineering tools of their day.

The nervous system, with its apparent similarity to early computers, was another
favorite target of bioengineers, as was the cardiovascular system with its obvious
links to hydraulics and fluid dynamics. Some of these early efforts are discussed in
the sections on system and analog models (Sections 1.3.2 and 1.3.3). As bioengi-
neering has expanded into areas of molecular biology, systems on the cellular, or
even subcellular levels, have become of interest.

Regardless of the type of biological system, its scale, or its function, we must
have some way of interacting with that system. Interaction or communication with
a biological system is done through biosignals. The communication may only be
one-way, such as when we attempt to infer the state of the system by measuring
various biological or physiological variables to make a medical diagnosis. From a
systems analytic point of view, changes in physiological variables constitute biosig-
nals. Common signals measured in diagnostic medicine include electrical activity of
the heart, muscles and brain; blood pressure; heart rate; blood gas concentrations
and concentrations of other blood components; and sounds generated by the heart
and its valves.

Often it is desirable to send signals into a biological system for purposes of exper-
imentation or therapy. In a general sense, all drugs introduced into the body can be
considered biosignals. We often use the term stimulus for signals directed into some
physiological process, and if an output signal is evoked by these inputs we term it
a response. (Terms shown in italics are an important part of a bioengineer’s vocab-
ulary.) In this scenario, the biological system is acting like an input–output system,
a classic construct or model used in systems analysis (Figure 1.1).

2 CHAPTER 1 BIOENGINEERING SIGNALS AND SYSTEMS

Figure 1.1 A classic systems view of a phys-
iological system that receives an external
input, or stimulus, that evokes an output, or
response.

Classical examples include the knee-jerk reflex, where the input is a mechanical
force and the output is mechanical motion, and the pupillary light reflex, where the
input is light and the output is a mechanical change in the iris muscles. Drug treat-
ments can be included in this input–output description, where the input is the mol-
ecular configuration of the drug and the output is the therapeutic benefit (if any).
Such representations are further explored in the sections on systems and analog
modeling (Sections 1.3.2 and 1.3.3).

Systems that produce an output without the need for an input stimulus, for
example the electrical activity of the heart, can be considered biosignal sources.



(Although the electrical activity of the heart can be moderated by several different
stimuli, exercise for example, the basic signal does not require a specific stimulus.)
Input-only systems are not usually studied, because the purpose of any input signal
is to produce some sort of response: even a placebo, which is designed to produce
no physiological response, often produces substantive results.

Because all of our interactions with physiological systems are through biosignals,
the characteristics of these signals are of great importance. Indeed, much of modern
medical technology is devoted to extracting new physiological signals from the body
or gaining more information from existing biosignals. The next section discusses
some of the basic aspects of these signals.

1.2 BIOSIGNALS

Much of the activity in biomedical engineering, be it clinical or research, involves
the measurement, processing, analysis, display, and/or generation of signals. Signals
are variations in energy that carry information. The variable that carries the infor-
mation (the specific energy fluctuation) depends upon the type of energy involved.
Table 1.1 summarizes the different energy types that can be used to carry informa-
tion, and the associated variables that encode this information. Table 1.1 also shows
the physiological measurements that involve these energy forms as discussed later
in the chapter.

Biological signals are usually encoded into variations of electrical, chemical, or
mechanical energy, although occasionally variations in thermal energy are of inter-
est. For communication within the body, signals are primarily encoded as variations
in electrical or chemical energy. When chemical energy is used, the encoding is
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TABLE 1.1 Energy Forms and Associated Information-Carrying Variables

Energy Variables (Specific Fluctuation) Common Measurements

Chemical Chemical activity and/or concentration Blood ion, oxygen, carbon dioxide, pH,
hormonal concentrations, and other
chemistry

Mechanical Position Muscle movement, cardiovascular
Force, torque, or pressure pressures, muscle contractility

Valve and other cardiac sounds
Electrical Voltage (potential energy of charge carriers) EEG, ECG, EMG, EOG, ERG, EGG,

Current (charge carrier flow) GSR
Thermal Temperature Body temperature, thermography

ECG, electrocardiogram; EEG, electroencephalogram; EGG, electrogastrogram; EMG, electromyogram;
EOG, electrooculogram; ERG, electroretinogram; GSR, galvinic skin response.



usually done by varying the concentration of the chemical within a physiological
compartment, for example, the concentration of a hormone in the blood. Bioelec-
tric signals use the flow or concentration of ions, the primary charge carriers within
the body, to transmit information. Speech, the primary form of communication
between humans, encodes information as variations in air pressure.

Outside the body, information is commonly transmitted and processed as varia-
tions in electrical energy, although mechanical energy was used in the seventeenth
and early eighteenth centuries to send messages. The semaphore telegraph used the
position of one or more large arms placed on a tower or high point to encode letters
of the alphabet. These arm positions could be observed at some distance (on a clear
day), and relayed onward if necessary. Information processing can also be accom-
plished mechanically, as in the early numerical processors constructed by Babbage
(Dodge, 2000). More recently, mechanically based digital components have been
attempted using variations in fluid flow. Modern electronics provides numerous
techniques for modifying electrical signals at very high speeds. The body also uses
electrical energy to carry information when speed is important. Since the body does
not have many free electrons, it relies on ions, notably Na+, K+, and Cl-, as the
primary charge carriers. Outside the body, electrically based signals are so useful
that signals carried by other energy forms are usually converted to electrical energy
when significant transmission or processing tasks are required. The conversion of
physiological energy to an electric signal is an important step, often the first step,
in gathering information for clinical or research use. The energy conversion task is
done by a device termed a transducer, specifically a biotransducer.

A transducer is a device that converts energy from one form to another. By this
definition, a light bulb or a motor is a transducer. In signal processing applications,
the purpose of energy conversion is to transfer information, not to transform energy
as with a light bulb or a motor. In physiological measurement systems, all trans-
ducers are so-called input transducers: they convert nonelectrical energy into an elec-
tronic signal. An exception to this is the electrode, a transducer that converts
electrical energy from ionic to electronic form. Usually, the output of a biotrans-
ducer is a voltage (or current) whose amplitude is proportional to the measured
energy. Figure 1.2 shows a device to measure the movements of the intestine during
surgical procedures. The mechanical transducers used in the device are called strain
gages and they change their electrical resistance when stretched even slightly.

The energy that is converted by the input transducer may be generated by the
physiological process itself, may be energy that is indirectly related to the physio-
logical process, or may be energy produced by an external source. In the latter case,
the externally generated energy interacts with, and is modified by, the physiologi-
cal process, and it is this alteration that produces the measurement. For example, 
when externally produced x-rays are transmitted through the body, they are
absorbed by the intervening tissue, and a measurement of this absorption is used to
construct an image. Most medical imaging systems are based on this external energy
approach.

Images can also be constructed from energy sources internal to the body as in
the case of radioactive emissions from radioisotopes injected into the body. These
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techniques make use of the fact that selected, or tagged, molecules will collect in
specific tissue. The areas where these radioisotopes collect can be mapped using a
gamma camera or, with certain short-lived isotopes, better localized using positron
emission tomography (PET).

Many physiological processes produce energy that can be detected directly. For
example, cardiac internal pressures are usually measured using a pressure transducer
placed on the tip of a catheter introduced into the appropriate chamber of the heart.
The measurement of electrical activity in the heart, muscles, or brain provides other
examples of the direct measurement of physiological energy. For these measure-
ments, the energy is already electrical and only needs to be converted from ionic to
electronic current using an electrode. These sources are usually given the term ExG,
where the x represents the physiological process that produces the electrical energy:
ECG, electrocardiogram; EEG, electroencephalogram; EMG, electromyogram;
EOG, electrooculogram; ERG, electroretinogram; and EGG, electrogastrogram. An
exception to this terminology is the galvanic skin response, GSR, the electrical activ-
ity generated by the skin. Typical physiological measurements that involve the con-
version of other energy forms to electrical energy are shown in Table 1.1. Figure
1.3 shows the early ECG machine where the interface between the body and the
electrical monitoring equipment was buckets filled with saline (Figure 1.3E).

The biotransducer is often the most critical element in the system because it con-
stitutes the interface between the subject or life process and the rest of the system.
The transducer establishes the risk, or invasiveness, of the overall system. For
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Figure 1.2 A device used to measure small movements of the intestine
during surgery. These movements can be used to assess the viability of a
segment of intestine. The device consists of an inflexible lower plate and a
flexible upper plate. Movement of the upper plate is detected by two strain
gages placed on its upper and lower surfaces. Strain gage transducers change
their resistance in response to small changes in length. Subsequent electron-
ics detect these resistance changes.



example, an imaging system based on differential absorption of x-rays, such as a
CT (computed tomography) scanner, is considered more invasive than an imaging
system based on ultrasonic reflection, because CT uses ionizing radiation that may
have an associated risk. (The actual risk of ionizing radiation is still an open ques-
tion, and imaging systems based on x-ray absorption are considered minimally inva-
sive.) Ultrasound and radiographic imaging would be considered less invasive than,
for example, monitoring internal cardiac pressures through cardiac catheterization
in which a small catheter is threaded into the heart chamber. Indeed, many of the
outstanding problems in biomedical measurement, such as noninvasive measure-
ment of internal cardiac pressures or intracranial pressure, await an appropriate
(and undoubtedly clever) transducer mechanism.

1.2.1 Signal Encoding

Given the importance of electrical signals in biomedical engineering, much of the
discussion in this text is based on electrical or electronic signals. Nonetheless, many
of the principles described are general and could be applied to signals carried by
any energy form. Regardless of the energy form or specific variable used to carry
information, some type of encoding scheme is necessary. Encoding schemes vary in
complexity: human speech is so complex that automated decoding is still a chal-
lenge for voice-recognition computer programs. Yet, the exact same information

6 CHAPTER 1 BIOENGINEERING SIGNALS AND SYSTEMS

Figure 1.3 An early electrocardiogram machine.



could be encoded into the relatively simple series of long and short pulses known
as Morse code.

Most encoding strategies can be divided into two broad categories or domains:
continuous and discrete. The discrete domain is used almost exclusively in com-
puter-based technology, because such signals are easier to manipulate electronically.
Discrete signals are usually transmitted as a series of pulses at even (synchronous
transmission) or uneven (asynchronous transmission) intervals. These pulses may
be of equal duration, or the information can be encoded into the pulse length.
Within the digital domain, many different encoding schemes can be used. For encod-
ing alphanumeric characters, those featured on the keys of a computer keyboard,
the ASCII (American Standard Code for Information Exchange) code is used. Here
each letter, the numbers 0 through 9, and many characters are encoded into an 8-
bit binary number. For example, the letters a though z are encoded as 97 (for a)
through 122 (for z) whereas the capital letters A through Z are encoded by numbers
65 (A) through 90 (Z). The complete ASCII code can be found in some computer
texts or on the Internet.

In the continuous domain, information is encoded in terms of signal amplitude,
usually the intensity of the signal at any given time. For an electronic signal, this
could be the value of the voltage or current at a given time. Note that all signals
are by nature time varying, because a single constant value contains no informa-
tion. (Modern information theory makes explicit the difference between informa-
tion and meaning. The latter depends upon the receiver; that is, the device or person
for which the information is intended. Many students have attended lectures with
a considerable amount of information that, for them, had little meaning. This text
strives valiantly for both information and meaning.) If the information is linearly
encoded into signal amplitude, the signal is referred to as an analog signal. For
example, the temperature in a room can be encoded so that 0 V represents 0.0°C,
5 V represents 10°C, 10 V represents 20°C, and so on, so that the encoding equa-
tion for temperature would be as follows:

Analog encoding is common in consumer electronics such as high-fidelity amplifiers
and television receivers, although many applications that traditionally used analog
encoding, such as sound and video recording, now use discrete or digital encoding.
Nonetheless, analog encoding is likely to remain important to the biomedical engi-
neer, if only because many physiological systems use analog encoding, and most bio-
transducers generate analog-encoded signals.

The typical analog signal is one whose amplitude varies in time as follows:

[Eq. 1.1]

When a continuous analog signal is converted to the digital domain, it is represented
by a series of numbers that are discrete samples of the analog signals at a specific
point in time:

[Eq. 1.2]X n x x x x n[ ] = [ ] [ ] [ ] [ ]1 2 3, , , . . .

x t f t( ) = ( )

Temperature 2 Voltage amplitude= ¥
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Usually this series of numbers would be stored in sequential memory locations with
x1 followed by x2, then x3, and so forth. {It is common to use brackets to identify
a discrete variable (i.e., x[n]); but note that the MATLAB® (MathWorks, Natick,
MA) programming language used throughout this text also uses brackets in a dif-
ferent context.} Because digital numbers can only represent discrete or specific
amplitudes, the analog signal must also be sliced up in amplitude. Hence, to 
digitize an analog signal requires slicing the signal in two ways: in time and in 
amplitude.

Slicing the signal into discrete points in time is termed time sampling or simply
sampling. Time slicing samples the continuous waveform, x(t), at discrete prints in
time, nTs, where Ts is the sample interval. The consequences of time slicing are dis-
cussed in Chapter 3. Slicing the signal amplitude in discrete levels is termed quan-
tization (Figure 1.4). The equivalent number can only approximate the level of the
analog signal, and the degree of approximation will depend on the range of binary
numbers and the amplitude of the analog signal. For example, if the signal is con-
verted into an 8-bit binary number, this number is capable of 28 or 256 discrete
values. If the analog signal amplitude ranges between 0.0 and 5.0 V, the quantiza-
tion interval in volts will be 5/256 or 0.019 V. If, as is usually the case, the analog
signal is time varying in a continuous manner, it must be approximated by a series
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Figure 1.4 Digitizing a continuous signal (upper left) requires slicing the signal
in time and amplitude (right side). The result is a series of discrete numbers (x’s)
that approximate the original signal, and the resultant digitized signal (lower left)
consists of a series of discrete steps in time and value.



of binary numbers representing the approximate analog signal level at discrete
points in time (Figure 1.4). The errors associated with amplitude slicing, or quan-
tization, are also described in Chapter 3.

Example 1.1: A 12-bit analog-to-digital converter (ADC) advertises an accuracy
of ± the least significant bit (LSB). If the input range of the ADC is 0 to 10 V, what
is the resolution of the ADC in analog volts?

Solution: If the input range were 10 V, the analog voltage represented by the LSB
would be as follows:

Hence, the resolution would be ± 0.0024 V.
It is relatively easy, and common, to convert between the analog and digital

domains using electronic circuits specially designed for this purpose. Many medical
devices acquire the physiological information as an analog signal but convert it to
digital format using an ADC so that it can be processed using a computer. For
example, the electrical activity produced by the heart can be detected using prop-
erly placed electrodes, and the resulting signal, the ECG, is an analog-encoded
signal. This signal might undergo some preprocessing or conditioning using analog
electronics before being converted to a digital signal using an ADC. The converted
digital signal would be sent to a computer for more complex processing and storage.
(In fact, conversion to digital format is usually done even if the data are only to be
stored for later use.) Conversion from the digital to the analog domain is possible
using a digital-to-analog converter (DAC). Most personal computers include both
ADCs and DACs as part of a sound card. This circuitry is specifically designed for
the conversion of audio signals, but can be used for other analog signals. Data trans-
formation cards designed as general-purpose ADCs and DACs are readily available
and offer greater flexibility in sampling rates and conversion gains. These cards
provide multichannel ADCs (usually eight to 16 channels) and several channels of
DAC.

Basic concepts that involve signals are often introduced or discussed in terms of
analog signals, but most of these concepts apply equally well to the digital domain.
In this text, the equivalent digital domain equation is often presented alongside the
analog equation to emphasize the equivalence. Many of the problems and examples
use a computer, so they obviously are being implemented in the digital domain even
if they are presented as analog-domain problems.

1.3 LINEAR SIGNAL ANALYSIS: OVERVIEW

From a mechanistic point of view, all living systems are composed of processes.
These processes act, or interact, through manipulation of molecular mechanisms,
chemical concentrations, ionic electrical current, and/or mechanical forces and 
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displacements. A physiological process performs some operation(s) or manipula-
tion(s) in response to a specific input (or inputs), which gives rise to a specific output
(or outputs). In this regard, a process is the same as a system and would be sys-
tematically represented as shown in Figure 1.1. Sometimes the term system is
reserved for larger structures composed of several processes, but the two terms are
often used interchangeably, as they will be throughout this text. To study and quan-
tify complex processes, we often impose rather severe simplifying constraints. The
most common assumption is that the process and its components or subprocesses
behave in a linear manner, and that their basic characteristics do not change over
time. This assumption is referred to as the ‘linear time-invariant’ model (LTI). Such
an assumption allows us to apply a powerful array of mathematical tools that are
known collectively as linear systems analysis. Of course, most living systems change
over time, are adaptive, and are often nonlinear. Nonetheless, the power of linear
systems analysis is sufficiently seductive that assumptions or approximations are
often made so that these tools can be used. Linearity can be approximated by using
small-signal conditions where many systems behave more or less linearly. Alterna-
tively, piecewise linear approaches can be used where the analysis is confined to
operating ranges over which the system behaves linearly. One approach to dealing
with a process that changes over time is to study that process within a short enough
timeframe that it can be considered time-invariant.

The concept of linearity has a rigorous definition, but the basic concept is one
of proportionality of response. If you double the stimulus into a linear system, you
will get twice the response. One way of stating this proportionality property math-
ematically is the following: if the independent variables of linear function are mul-
tiplied by a constant, k, the output of the function is simply multiplied by k (Johnson
et al., 1989):

[Eq. 1.3]

Note that:

[Eq. 1.4]

Hence, differentiation and integration are linear operations. The major transforms
described in this text, the Fourier transform (Chapter 3) and the Laplace transform
(Chapter 8), are also linear processes.

Response proportionality, or linearity, is required for the application of an impor-
tant concept known as superposition. Superposition states that if there are two (or
more) stimuli acting on the system, the system responds to each as if it were the
only stimulus present. The combined influence of the multiple stimuli is simply the
addition of each stimulus acting alone. This allows complex stimuli to be broken
down so that the problem of determining a system’s response to such stimuli is
greatly reduced. Approaches that rely on superposition will be found throughout
this text.

ky
df kx

dt
ky f kx dt=

( )
= ( )Ú and 

ky f kx= ( )
y f x= ( );  where f is a linear function, then:
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1.3.1 Analysis of Linear Systems

A linear system is usually viewed as acting on a specific input signal to produce an
output as shown in Figure 1.1. This is a very general concept: inputs can take many
different energy forms (chemical, electrical, mechanical, or thermal), and outputs
can be of the same or different energy forms. There are several ways to study a
linear system. In this text, two different approaches are developed and explored:
analog analysis using analog models, and systems analysis using systems models.
There is potential confusion in this terminology. Although analog analysis and
systems analysis are two different approaches, both are included as tools of linear
systems analysis. Hence, linear systems analysis includes both analog and systems
analysis.

The primary difference between analog and systems analysis is the way the under-
lying physiological processes are represented. In analog analysis, individual com-
ponents are represented by analogous elements. Often these elements show detailed
structures and provide some insight into the way in which a given process is im-
plemented, although they may also represent processes more globally. In systems
analysis, a whole process can be represented by a single mathematical equation. The
advantage of using analog analysis is that the model is often closer to the underly-
ing physiological processes. Conversely, analyzing at the process level, as in systems
analysis, provides a more succinct description and offers a better overall view of the
system under study. In addition, the more abstract representation provided by
systems models emphasizes behavioral characteristics and may aid in identifying
behavioral similarities between processes that contain quite different elements.

1.3.2 Analog Analysis and Analog Models

In analog analysis, there is a direct relationship between the physiological mecha-
nism and the analog elements used in the model, although the elements may not
necessarily be in the same energy modality as the physiological mechanism. For
example, Figure 1.5 shows what appears to be an electric circuit. Of course it is an
electric circuit, but it is also an early analog model of the cardiovascular system
known as the windkessel model. In this circuit, voltage represents blood pressure,
current represents blood flow, RP and CP are the resistance and compliance of the
systemic arterial tree, and Zo is the characteristic impedance of the proximal aorta.
Later we will find that using an electrical network to represent what is a mechani-
cal system is mathematically appropriate. In this analog model, the elements are not
very elemental, because they represent processes distributed throughout various 
segments of the cardiovascular system; however, the model can be expanded to 
represent the system at a more detailed level.

Figure 1.6 shows an analog model of the muscle skeletal muscle that uses mechan-
ical elements. The muscle’s force originates at the contractile element, but this force,
Fo, is modified by the muscle mechanical processes before it appears at the output,
F. The internal mechanical processes include the tissue viscosity, a sort of internal
friction, the parallel elastic element which represents the elastic properties of the
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sarcolemma, and the series elastic element that reflects the elastic behavior of muscle
tendons. In real muscle, these elements are nonlinear, but are often approximated
as linear providing a linearized skeletal muscle model. (For a detailed look at skele-
tal muscles, see Devasahayam, 2000.)

This basic model of skeletal muscle shown in Figure 1.6 has been used with addi-
tional mechanical elements to construct a mechanical model of the eye movement
system including a pair of extraocular muscles, the lateral and medial rectus (Figure
1.7). These muscles are the mechanical elements involved in controlling the hori-
zontal position of the eye. Each of the two extraocular muscles shown, the lateral
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Figure 1.6 A mechanical analog model of
skeletal muscle. The various elements correspond
to specific properties of real muscle.

Figure 1.5 An early analog model of the
cardiovascular system that used electrical
elements to represent mechanical processes.
In this model, voltage is equivalent to blood
pressure and current to blood flow.



and medial rectus, is represented by a force generator FANT (or FAG), a viscous
element BANT (or BAG), a series elastic element, kSE, and a parallel elastic element,
kPE. The two muscle representations also include an additional elastic element kLT.
Three other elements represent the mechanical properties of the eyeball and the
orbit: an inertial component, J, representing the moment of inertia of the eyeball;
a viscous element Bo, representing the friction between the eye and orbit; and a par-
allel elastic element, kP¢, representing the elastic properties of the eye in the orbit.
The neural signals, NANT and NAG, are the inputs and the angular position, q, is the
output.

With the aid of a computer, this model, and all quantitative models, can be tested
to see if they predict reasonable results. This is one of the primary motivations for
construction of any model, the ability to ‘try out’ the model to see if it behaves in
a manner similar to the process it represents. Programming a model into a com-
puter to see how it behaves is known as simulation. Simulations of the model in
Figure 1.7 have produced highly accurate predictions of the behavior of real eye
movements and have also provided insight into the nature of the neural signals that
activate the two muscles.

An appealing aspect of the analog-modeling approach is the relative simplicity
of the mathematical description of the elements. All linear analog elements can be
represented by scaling, integration, or differentiation operations between the asso-
ciated variables:

1.3 LINEAR SIGNAL ANALYSIS: OVERVIEW 13

Figure 1.7 Analog model of the lateral and medial rectus muscles and
associated mechanical involved in directing horizontal eye position. The
neural signals, NANT and NAG, are the inputs and the angular position, q,
is the output. The function of the various analog components is discussed
in the text. (Adapted from Bahill and Stark, 1979.)



One of the advantages of analog models is that although the systems they rep-
resent can be quite complicated, the individual analog components behave in a
straightforward manner as noted in Equation 1.5. Analog models become compli-
cated because of the number of elements involved and their configuration, but the
elements themselves are simple. Another advantage of analog analysis is that given
the configuration of elements, a mathematical description of the overall model
follows directly. We will find that by applying the conservation laws (conservation
of charge, energy, and force) to a specific configuration of elements, a mathemati-
cal description follows in algorithmic fashion. One need merely follow a set of rules
to obtain a mathematically complete description of the model.

It is possible to introduce nonlinear components into an analog model, but this
complicates the analysis. For example, the model shown in Figure 1.5 is actually
nonlinear because the capacitance changes its value as blood pressure changes.
Often, a piecewise linear approach can be used where the model is analyzed over
several different operating regions within which the nonlinear elements can be taken
as linear.

Example 1.2: A constant force of 4 dyne is applied to a 2-g mass. Find the veloc-
ity of the mass after 5 seconds.

14 CHAPTER 1 BIOENGINEERING SIGNALS AND SYSTEMS

TABLE 1.2 Variables Associated with Analog Elements and Related Conservation Laws

Element Type Variable Conservation Law Element (Type)

Electrical Voltage, V (volts) Charge (Kirchhoff’s current law) Resistor (dissipative)
Current, i (amps) Energy (Kirchhoff’s voltage law) Inductor (inertial)

Capacitor (capacitive)
Mechanical Force, F (newtons) Force (Newton’s law) Friction (dissipative)

Velocity, u (cm/sec) Mass (inertial)
Elasticity (capacitive)

[Eq. 1.5]

where v1 and v2 are the variables associated with the analog element. The specific
variables depend on the type of elements. For electrical elements, they are voltage
and current, whereas for mechanical elements they are force and velocity (Table
1.2). The reason the various relationships are associated with dissipative, inertial,
and capacitive elements is explained in Chapter 4.

v A v dt1 2= ( )Ú Time integration Capacitive elements

v A
dv
dt1

2= ( )Time differentiation Inertial elements

v Av1 2= ( )Scaling Dissipative elements



Solution: Inertia is one property of mass that is defined as an integral relationship
between the mechanical variables force (F) and velocity (u):

a modification of Newton’s equation, F = ma. To find the velocity of the mass, solve
for u in the above equation by time integrating both sides of the equation.

1.3.3 Systems Analysis and Systems Models

Systems models usually represent whole processes using so-called black box com-
ponents. Each element of a systems model consists only of an input–output rela-
tionship defined by an equation and represented by a geometric shape, usually a
rectangle. No effort is made to determine what is actually inside the box; hence the
term black box. The modeler pays no heed to what is the inside the box, only its
overall input–output (or stimulus/response) characteristics. A typical element in a
systems model is shown graphically as a box or sometimes as a circle when an arith-
metic process is involved (Figure 1.8). The inputs and outputs of all elements are
signals with a well-defined direction of flow or influence. These signals and their
direction of influence are shown by lines and arrows connecting the system elements
(Figure 1.8).

The letter G in the right-hand element of Figure 1.8 represents the mathemati-
cal operation that converts the input signal into an output signal, usually expressed
as a ratio of output to input:

[Eq. 1.6]G
Output
Input

Output Input G= = ( );

u = = ( ) =
4
2

2 5 10t cm sec

Fdt m
m

Fdt dtÚ Ú Ú= = =u u;
1 1

2
4

F m d dt= ( )u
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Figure 1.8 Typical elements in a system
model. The left-hand element is an ‘adder’
whose output signal is the sum of the two
inputs x1 and x2. The right-hand element is a
general element that takes the input (x1 + x2 in
this case) and operates on it with the mathe-
matical operation G to produce the output
signal.



For many elements, the mathematical operation defined by the letter G in Figure
1.8 can be quite complex, involving integral and differential operations, just as in
an analog model. In fact, it is a straightforward task to convert from an analog
model to a systems model, but not vice versa. It requires some mathematical tricks
to structure calculus operations into a format that involves simply algebraic multi-
plication, and these techniques are described in Chapters 4 and 8.

Occasionally, the operation performed by an element is simple, such as a scaling
of the input; that is, the output is the same as the input, but multiplied by a con-
stant gain. In such cases, the equation for G would be a simple constant defining
the multiplying gain. Under static or steady-state conditions when the inputs have
a constant value, and all internal signals have also settled to a constant value, the
element equations, the G’s, can usually be reduced to constants. If all the element
functions are constants, the model can be solved, that is, the value of the output
and all internal signals determined, using algebra. A steady-state solution of a
systems model is given in Example 1.4 below.

One of the earliest physiological systems models, the pupil light reflex, is shown
in Figure 1.9, and includes two processes. The pupil light reflex is the response of
the iris to changes in light intensity falling on the retina. Increases or decreases in
ambient light cause the muscles of the iris to change the size of the pupil in an effort
to keep light falling on the retina constant. (This system was one of the first to be
studied using engineering tools.) The two-component system receives light as the
input and produces a movement of the iris muscles that changes pupil area, the
aperture in the visual optics. The first box represents all of the neural processing
associated with this reflex, including the light receptors in the eye. It generates a
neural control signal, which is sent to the second box. The second box represents
the iris musculature, including its geometric configuration. The input to this second
box is the neural control signal from the first box and the output is pupil area.
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Figure 1.9 A system model of the pupil light reflex.
Light falling on the retina stimulates a neural controller
that generates a neural signal that is sent to the iris
muscles, the plant or effector apparatus. The system
involves feedback because as the pupil (the hole in the iris)
reduces in size, it reduces the light falling on the retina.
This is considered a negative feedback system because a
positive increase in the response (in this case a reduction
in pupil size), leads to a decrease in the stimulus (i.e., the
light falling on the retina).



The systems model shown in Figure 1.9 demonstrates the strengths and the weak-
nesses of systems analysis. By compressing a number of complex processes into a
single black box, and representing these processes by a single input–output equa-
tion, a systems model can provide a concise, highly simplified representation of a
very complex system. You need not understand how a biological process accom-
plishes a given task. As long as you can document some of its behavior quantita-
tively (which allows you to construct the input–output equation), you can usually
construct a system representation. This will allow you to analyze the system’s behav-
ior over a large (perhaps nonphysiological) stimulus range or incorporate that
process into the analysis of a larger system. However, this ability to reduce complex
processes to a few elements, each represented by a single equation, means that these
models do not provide much insight into how the process or processes are imple-
mented by the underlying physiological mechanisms.

The effector apparatus in Figure 1.9, the iris musculature, is often termed the
plant in systems models. This curious terminology comes from early applications of
linear systems analysis to study the control of large chemical plants. These large
systems were divided into control processes under the heading controller, and 
effector processes grouped under the heading plant. This terminology has been
transferred to physiological control models, especially those involving motor control
systems.

To complete this system description of the light reflex, note that changes in pupil
area, the output of the system, will alter the light falling on the retina, the input to
the system. Hence, the output feeds back to the input, creating a classic feedback
control system (Figure 1.9). The feedback is negative because an increase in light
stimulation will generate an increase in the response—in this case a decrease in pupil
area—decreasing the light falling on the retina and offsetting, to some extent, the
increase in light stimulus. In the pupil light reflex, the decrease in retinal light pro-
duced by the decrease in pupil size does not fully compensate for the increase in
stimulus, so the feedback gain is less than one (unity).

Systems models often provide more detail than that given in the very basic struc-
ture of the model in Figure 1.9. Figure 1.10 shows a more detailed model of the
neural pathways that mediate the vergence eye movement response, the processes
used to turn the eyes inward to track visual targets at different depths. The model
shows three neural paths converging on the elements representing the oculomotor
plant (the two right-most system elements). Neural processes in the upper two path-
ways provide a velocity-dependent signal to move the eyes quickly to approximately
the right position. The lower pathway represents the processes that use visual feed-
back to more slowly fine-tune the position of the eyes and attain a very accurate
final position. The error between the angle required to precisely image a stimulus
in the two eyes and that actually attained by this neural controller is generally less
than a tenth of a degree.

As with analog models, systems models can be evaluated by simulating their
behavior on a computer. This not only provides a reality check—do they produce
a response similar to that of the real system—but also permits evaluation of inter-
nal components and signals not available to the experimentalist. For example, what
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would happen in the vergence model if the neural components responsible for 
the pulse signal (upper pathway) were not functioning, or functioning erratically
perhaps due to a brain tumor? Systems-type models are even easier to simulate than
analog models because MATLAB provides a software package known as Simulink
that uses graphics to convert a system model into computer code. Simulink simu-
lations of the vergence model produce responses that are very close to actual ver-
gence eye movements. Although Simulink is only developed for systems models, it
is easy to convert analog models into system format so this software can be used
to simulate analog models as well. Alternatively, there are programs such as pSpice
specifically designed to simulate electronic circuits that can also be used for analog
models.

Figures 1.9 and 1.10 show another important property of systems models. The
influence of one process on another is explicitly stated and indicated by the line con-
necting two processes. This line has a direction usually indicated by an arrow, which
implies that the influence or information flow travels only in that direction. If there
is also a reverse flow of information, such as in the case in feedback systems, this
must be explicitly stated in the form of an additional connecting line showing infor-
mation flow in the reverse direction.

The next example has some of the flavor of the simulation approach, but will
not require the use of Simulink.

Example 1.3: There is a MATLAB function on the disk that simulates some
unknown process. The function is called process_x and takes an input variable,
x, and generates a variable signal, y. (The Courier typeface is used to indicate a
MATLAB variable, function, or code.) The function expects the input to be a signal
represented by an array of numbers (as if x were a digitized signal), and produces
an output signal that will be an array of number the same length as the input. We
are to determine if process_x is a linear process over an input stimulus range of
0 to ±100. We can input to the process any signal we desire and examine the output.

Solution: Our basic strategy will be to input different signals having values within
the desired range and see if the outputs are proportional. However, what is the best
signal to use? The easiest might be to input two or three signals that have a con-
stant value; for example, x(t) = 1, then x(t) = 10, then x(t) = 100, along with the
negative values. The output should be proportional. However, what if the process
contains a derivative operation? Although the derivative is a linear operation, the
derivative of a constant is zero, and so we would get zero out for all three signals.
Similarly, if the process contains integrations, the output to a constant could be dif-
ficult to interpret. Going back to basic calculus, recall that the derivative of a sine
is a cosine, and the integral of a sine is a negative cosine. Thus, if the input signal
were a sine, the output would still be sinusoidal even if the process contained inte-
grations and/or differentiations. If the process contained derivative or integral oper-
ations, the sinusoidal output would be scaled (by the frequency), but this scaling
would apply to all sine inputs.
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Our strategy will be to input different sines having different amplitudes. If the
output signals are proportional to the input amplitudes, we would guess that
process_x is a linear process over the values tested. Because the work will be done
on a computer, we can use any number of sine inputs, so let us try 100 different
input signals ranging in amplitude from ±1 to ±100. If we plot the amplitude of the
sinusoidal output, it should plot as straight line if the system is linear, and some
other curve if it is not. The MATLAB code for this evaluation is as follows:

% Example 1.3 Example to evaluate an unknown process
% called ‘process_x’ to determine if it is linear.
%
t = 0:2*pi/500:2*pi; % Sine wave argument
for k = 1:100 % Amplitudes will vary from 1

% to 100
x = k*sin(t); % Generate a 1 cycle sine wave
y = process_x(x); % Input sine to process
output(k) = max(y); % Save max value of output
end
plot(output); % Plot and label output
xlabel(‘Input Amplitude’);
ylabel(‘Output Amplitude’);

Analysis: Within the for-loop, the program generates a one-cycle sine wave
having the desired amplitude. The amplitudes are incremented from 1 to 100 as the
loop progresses. The sine wave, stored as variable x, becomes the input signal to
process_x. The function produces an output signal, y. The maximum value of
the output signal it found using MATLAB’s max routine, and save in variable array,
output. When the loop completes, the 100 values of output are plotted.

The figure below shows one of the input signals (solid curve) and the corre-
sponding output (dashed curve) produced by process_x. The input signal looks
like a sine function as expected, whereas the output looks like a cosine function.
This suggests that the process contains a derivative operation. The output signal is
also slightly larger than the input signal.
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Figuring out exactly what the process is solely by testing it with external signals
can be a major challenge. The field of system identification deals with approaches
to obtain a mathematical representation for an unknown system by probing it with
external signals. A few examples and problems later in this text show some of the
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The plot of maximum output values (i.e., variable output) is a straight line indi-
cating a linear relationship between the amplitude of output and input signal. What-
ever the process really is, it appears to be linear.



Solution: Generate an algebraic equation based on the configuration of the system
and the fact that the output of each process is just the input multiplied by the asso-
ciated gain term as stated in Eq. 1.6.

[Eq. 1.7]

The solution is the classic feedback equation. Since the two elements, G and H,
could be represented by simple gain constants, algebra alone can be used to work
out the input–output equations. What of more complicated situations where the
model is not in steady state and/or the processes must be defined using differential
and integral operations? In Chapters 4 and 8 we develop techniques that encode
calculus operations into algebraic manipulations so that this equation, along with
the other algebraic operations used in this example, still applies.

1.3.4 Systems and Analog Analysis: Summary

The basic differences and relative strengths and weaknesses of systems analysis
versus analog analysis have already been described. Systems analysis only tries to
represent the behavior of a process whereas analog analysis makes some effort to
mimic the way in which the process produces that behavior. This is done in analog
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techniques used to evaluate linear systems in this manner. Comparing the input and
output sinusoids it looks like process_x contains a derivative and a multiplying
factor that increases signal amplitude, but more input–output combinations would
have to be evaluated to confirm this guess.

Example 1.4: Find the overall input–output relationship for the systems model
below. Assume that the system is in steady-state condition so that all the signals
have constant values and the two elements, represented by the equations G and H,
are simply gain constants.



models by representing the process using elements that are, to some degree, analo-
gous to those in the actual process. Analogous elements have the same general
behavior as the physiological elements they represent; hence, analog models usually
represent the system at a lower level, and in greater detail, than do systems models.
However, not all analog models offer this detail. This can be seen in the windkessel
cardiovascular model of Figure 1.5. The single capacitor, Cp, represents the com-
bined elastic behavior, or springlike characteristics, of the entire arterial tree. Analog
models often provide better representation of secondary features such as energy use,
which is usually similar between analog elements and the actual components they
represent.

System models provide better clarity, particularly with regard to information flow
or influences. In analog models, all components may interact to some extent and
this interaction may not be obvious from inspection of the model. Referring to the
eye muscle model of Figure 1.7, a change in just one parallel elastic element, kP,
will modify the force on every element in the model. In systems models, all influ-
ences are explicitly shown and their interactions are immediately apparent from an
inspection of the model. For example, in the model of Figure 1.9, the fact that the
iris also influences the neural controller is explicitly shown by the feedback pathway.
This can be of great benefit in clarifying the control structure of a complex system.
Perhaps the most significant advantage of the systems approach is that it allows
processes to be rigorously represented without requiring the modeler to know the
details of the underlying physiological mechanism.

1.4 NOISE AND VARIABILITY

Where there is signal, there is noise. Occasionally, the noise will be at such a low
level that it is of little concern, but usually the noise limits the usefulness of the
signal. This is especially true for physiological signals because they experience many
potential sources of noise or variability. In most usages, noise is a general and rel-
ative term: noise is what you do not want, and signal is what you do want. This
leads to a definition of noise as any form of unwanted variability. Noise is inherent
in most measurement systems and is often the limiting factor in the performance of
a medical instrument. Indeed, many medical instruments go to great lengths in terms
of signal-conditioning circuitry and signal-processing algorithms to compensate for
unwanted variability.

In biomedical measurements, noise or variability has four possible origins: (a)
physiological variability; (b) environmental noise or interference; (c) measurement
or transducer artifact; and (d) electronic noise. Physiological variability comes about
because the information you desire is based on measurements subject to biological
influences other than those of interest. For example, assessment of respiratory func-
tion based on the measurement of blood Po2 could be confounded by other physi-
ological mechanisms that alter blood Po2. Measurement errors due to physiological
variability can be a very difficult to resolve, sometimes requiring a total redesign 
(or rethinking) of the approach.
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Environmental noise can come from sources external or internal to the body. A
classic example is the measurement of the fetal ECG signal where the desired signal
is corrupted by the mother’s ECG. Because it is not possible to describe the specific
characteristics of environmental noise, typical noise reduction approaches such as
filtering (described in Chapter 4) are not usually successful. Sometimes environ-
mental noise can be reduced using adaptive filters or noise cancellation techniques
that adjust their filtering properties on the basis of the current environment.

Measurement artifact is produced when the measurement device, or transducer,
responds to energy modalities other than those desired. For example, recordings of
electrical signals of the heart, the ECG, are made using electrodes placed on the
skin. These electrodes are also sensitive to movement, so-called motion artifact,
where the electrodes respond to mechanical movement as well as to the desired 
electrical activity of the heart. This artifact is not usually a problem when the ECG
is recorded in the physician’s office, but it can be if the recording is made during a
patient’s normal daily living, as in a Holter recording. Measurement artifacts can
sometimes be successfully addressed by modifications in transducer design. Aero-
space research has led to the development of electrodes that are relatively insensi-
tive to motion artifact.

Unlike the other sources of variability, electronic noise has well-known sources
and characteristics. Electronic noise falls into two broad classes: thermal or Johnson
noise, and shot noise. The former is produced primarily in resistor or resistance
materials whereas the latter is related to voltage barriers associated with semicon-
ductors. Both sources produce noise that contains energy over a broad range of fre-
quencies, often extending from DC to 1012 to 1013 Hz. Such broad-spectrum noise
is referred to as white noise because it contains energy at all frequencies (or at least
all the frequencies of interest to bioengineers) just as white light contains energy at
all frequencies (or at least, all the frequencies we can see). Figure 1.11 shows a plot
of the energy in a simulated white-noise waveform (actually, an array of random
numbers) plotted against frequency. This is similar to a plot of the energy in a beam
of light versus wavelength (or frequency) and, as with light, is also referred to as a
spectral plot or spectrum. (A method for generating such a spectral or frequency
plot from the noise waveform, or any other waveform, is developed in Chapter 3.)
Note that the energy of the simulated noise is constant across the spectral range.

The various sources of noise or variability along with their causes and possible
remedies are presented in Table 1.3. Note that in three of four instances, appropri-
ate transducer design may aid in the reduction of the variability or noise. This
demonstrates the important role of the transducer in the overall performance of the
instrumentation system.

1.4.1 Electronic Noise

Johnson or thermal noise is produced by resistance sources and the amount of noise
generated is related to the resistance and to the temperature:

[Eq. 1.8]V kTRBWJ = 4 volts
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where R is the resistance in ohms, T the temperature in degrees Kelvin, and k Boltz-
man’s constant (k = 1.38 ¥ 10-23 Joules/°Kelvin). (A temperature of 310°K is often
used as room temperature, in which case 4kT = 1.7 ¥ 10-20 J.) Here BW is the range
of frequencies that is included in the signal. This range of frequencies is termed
bandwidth and is better defined in Chapter 3. This frequency range is usually deter-
mined by the characteristics of the measurement system, often the filters used in the
system. Because Johnson noise is spread over all frequencies, the greater the signal’s
bandwidth, the greater the noise in any given signal.

If noise current is of interest, the equation for Johnson noise current can be
obtained from Eq. 1.8 in conjunction with Ohm’s law:

[Eq. 1.9]I kTBW RJ = 4 amps
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Figure 1.11 A plot of the energy in white noise as a func-
tion of frequency. The noise has a flat spectral characteristic
showing similar energy levels over a wide range of all fre-
quencies plotted. This equal-energy characteristic gives rise
to the term white noise. Techniques for producing a signal’s
spectral plot are discussed in Chapter 3.

TABLE 1.3 Sources of Variability

Source Cause Potential Remedy

Physiological variability Measurement only indirectly related Modify overall approach
to variable of interest

Environmental (internal Other sources of similar energy form Noise cancellation
or external) Transducer design

Artifact Transducer responds to other energy Transducer design
sources

Electronic Thermal or shot noise Transducer or electronic design



In practice, there will be limits imposed on the frequencies present within any 
waveform (including noise waveforms), and these limits are used to determine band-
width. In the problems given here the bandwidth is simply stated. Bandwidth is
usually specified in hertz with units of inverse seconds (i.e., 1/second). Because 
bandwidth is not always known in advance, it is common to describe a relative
noise, specifically the noise that would occur if the bandwidth were 1.0 Hz. Such
relative noise specification can be identified by the unusual units required: 

or ampere . Shot noise is defined as a current noise and is pro-
portional to the baseline current through a semiconductor junction:

[Eq. 1.10]

where q is the charge on an electron (1.602 ¥ 10-19 coulomb [coul]), and Id is the
baseline semiconductor current. (In photodetectors, the baseline current that gen-
erates shot noise is termed the dark current, hence the letter d in the current symbol,
Id in Eq. 1.9.) Again, the noise is spread across all frequencies so the bandwidth
must be specified to obtain a specific value, or a relative noise can be specified in

.
When multiple noise sources are present, as is often the case, their voltage or

current contributions add to the total noise as the square root of the sum of the
squares, assuming that the individual noise sources are independent. For voltages:

[Eq. 1.11]

A similar equation applies to current noise.

Example 1.5: A 20-mA current flows through a diode (i.e., a semiconductor) and
a 200-W resistor. What is the net current noise, in? Assume a bandwidth of 1 MHz
(1 ¥ 106 Hz).

V V V V VT N= + + + ◊ ◊ ◊1
2

2
2

3
2 2

A Hz

I qI BWs d= 2 amps

A Hz( )V Hz
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Solution: Find the noise contributed by the diode using Eq. 1.10, the noise con-
tributed by the resistor using Eq. 1.9, then combine them using Eq. 1.11.

Note that most of the current noise is coming from the diode, so the addition of
the resistor’s current noise does not contribute much to the diode noise current. The

i i inT nd nR= + = ¥ + ¥ = ¥- - -2 2 15 17 86 4 10 8 5 10 8 1 10. . . amps

i kT BW RnR = = ¥ ( ) = ¥- -4 1 7 10 10 200 9 22 1020 6 9. . amps

i qI BWnd d= = ¥( ) ¥( ) = ¥- - -2 2 1 602 10 20 10 10 8 00 1019 3 6 8. . amps



mathematics in this example could be simplified by calculating the square of the
noise current (i.e., not taking the square roots) and using those values to get the
total noise before taking the square roots.

1.4.2 Signal-to-Noise Ratio

Most waveforms consist of signal plus noise mixed together. As noted previously,
signal and noise are relative terms, relative to the task: the signal is that portion of
the waveform of interest whereas the noise is everything else. Often the goal of
signal processing is to separate out a signal from noise, identify the presence of a
signal buried in noise, or detect features of a signal buried in noise.

The relative amount of signal and noise present in a waveform is usually quan-
tified by the signal-to-noise ratio (SNR). As the name implies, this is simply the ratio
of signal to noise, both measured in RMS (root-mean-squared) amplitude. This mea-
surement is rigorously defined in the next chapter. The SNR is often expressed in
decibels (dB) where:

[Eq. 1.12]

To convert from decibel scale to a linear scale:

[Eq. 1.13]

For example, a SNR of 20 dB means that the RMS value of the signal is 10 times
the RMS value of the noise (10(20/20) = 10), +3 dB indicates a ratio of 1.414 (10(3/20)

= 1.414), 0 dB means the signal and noise are equal in RMS value, -3 dB means
that the ratio is 1/1.414, and -20 dB means the signal is 1/10 of the noise in RMS
units. Figure 1.12 shows a sinusoidal signal with various amounts of white noise.
Note that is it is difficult to detect the presence of the signal visually when the SNR
is -3 dB, and impossible when the SNR is -10 dB.

1.5 SUMMARY

Biological systems include a variety of physiological processes ranging from the
organ level through the cellular level to the molecular level. Classic physiology is
structured around large-scale biological systems such as the cardiovascular system,
the endocrine system, the gastrointestinal system, and others. All biological systems
communicate with one another, and with themselves, via biosignals. Such signals
are be carried by electrical, chemical, mechanical, or thermal energy. All signals
involve some form of coding process. For analog signals, the information is encoded
into the amplitude of the signal at any given instant in time. If these analog signals
are processed by digital computers, they must be converted to digital format, a
process that involves slicing the signal in both amplitude and time. Amplitude slicing
is known as quantization, whereas time slicing is known as sampling.

SNRLinear
dB= 10 20

SNR
signal
noise

= Ê
Ë

ˆ
¯20 log
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The field of linear systems analysis encompasses analog and systems processes.
Both representations use linear elements so that this analysis only applies to linear
processes or processes that can be taken, or approximated, as linear. Electrical
analog models are used to analyze electric circuits and to represent physiological
processes. Mechanical analog models can also be used from either of these two 
perspectives. Examples were given of the early use of an electric circuit model to
represent the cardiovascular system and an early mechanical model of skeletal
muscle.

All signals are contaminated by noise, variability, or other artifact. Efforts to
obtain meaningful information from physiological processes are often thwarted by
the inability to directly measure variables of interest. All too frequently variables
only loosely related to the process of interest are readily available, and these may
be altered by the physiological process itself or the influence of other processes. The
measurement device, the biotransducer, is often a major source of measurement
errors because it responds to influences of other energy forms or environmental
factors. Finally, all electrically based measurements are contaminated by thermal
and/or shot noise. These two noise processes are well defined and contain noise
energy over a wide range of frequencies. This broad distribution of energy means
that thermal and shot noise can always be improved by limiting the frequencies con-
tained in the signal. A variety of filters exists in analog and digital forms to limit
the frequencies in a signal to only those that carry the desired information.
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Figure 1.12 A 30-Hz sine wave with varying amounts of added noise. The
sine wave is barely discernible when the signal-to-noise ratio is -3 dB and not
visible when the signal-to-noise ratio is -10 dB.



PROBLEMS

1. An electrical inductor has a defining equation that is the same as a mass if the
variable voltage and current are substituted for force and velocity (specifically,
VL = L di/dt). A constant voltage of 10 V is placed across a 1-H inductor. How
long will it take for the current through the inductor to reach 1 A? (See Example
1.2.)

2. Assume that the feedback control system presented in Example 1.4 is in steady-
state or static conditions. If G = 100 and H = 1 (i.e., a unity gain feedback control
system), find the output if the input equals 1. Find the output if the input is
increased to 10. [Note how the output is proportional to the input, which
accounts for why a system (having this configuration) is sometimes termed a pro-
portional control system.] Now find the output if the input is 10 and G is
increased to 1,000. Note that the difference between the input and output values
depends on the value of G.

3. In the system given in Problem 1.2, the input is changed to a signal that smoothly
goes from 0.0 to 5.0 in 10 seconds [i.e., In(t) = 0.5t seconds]. What will the
output look like? (Note: G and H are simple constants, so Eq. 1.7 still holds.)

4. A resistor produces 10-mV noise when the room temperature is 310°K and the
bandwidth is 1 kHz. What current noise would be produced by this resistor?

5. The noise voltage out of a 1-MW resistor is measured using a digital volt meter
as 1.5 mV at a room temperature of 310°K. What is the effective bandwidth of
the voltmeter?

6. If a signal is measured as 2.5 V and the noise is 28 mV (28 ¥ 10-3 V), what is
the SNR in decibels?

7. A single sinusoidal signal is found in a large amount of noise. (If the noise is
larger than the signal, the signal is sometimes said to be ‘buried in noise.’) The
RMS value of the noise is 0.5 V and the SNR is 10 dB. What is the RMS ampli-
tude of the sinusoid?

MATLAB Problems

8. Use the approach presented in Example 1.3 to determine if either of two
processes, process_y or process_z, are linear. The two processes are found
on the disk as MATLAB functions.

9. Write a MATLAB function that takes in two variables, and input variable x and
gain variable G, and produces and output variable y. This function should imple-
ment the feedback equation Eq. 1.7, with the variable H set to 1.0 (i.e., a unity
gain feedback system). (Name the function ‘fbk_system.’) Input a two-cycle
sine wave as in Example 1.3 having an amplitude of 1. Plot the maximum values
of the input–output relationship for this process [i.e., max(y)/max(x)] as a
function of G, where G ranges between 1 and 1,000. (Hint: Put the process in a
for-loop as in Example 1.3 and increment G. This will provide a more detailed
demonstration of the relationship between the input–output ratio and the 
importance of the value of G in a feedback system.)

PROBLEMS 29





2 BASIC SIGNAL
PROCESSING

2.1 BASIC SIGNALS: THE SINUSOIDAL WAVEFORM

Signals are the foundation of information processing, transmission, and storage.
Signals also provide the interface with physiological systems and are the basis for
communication between biological processes (Figure 2.1). Given the ubiquity of
signals within and outside the body, it should be no surprise that understanding at
least the basics of signals is fundamental to understanding, and interacting with,
biological processes.

A few signals are simple and can be defined analytically, that is as mathematical
functions. For example, a sinusoidal signal is defined by the equation:

[Eq. 2.1]

where A is the signal amplitude, or more accurately the peak-to-peak amplitude, wp

is the frequency in radians per second, fp is the frequency in hertz, and T is the
period in seconds, and t is time in seconds. Recall that frequency can be expressed
in either radians or hertz (the units formerly known as cycles per second) and are
related by 2p:

[Eq. 2.2]

Both forms of frequency are used in the text, and the reader should be familiar with
both. The frequency in Hz is also the inverse of the period, T:

[Eq. 2.3]

The signal presented in Eq. 2.1 is completely defined by A and fp (or wp, or T); once
you specify these two terms, you have characterized the sine signal for all time. The
sine wave signal is rather boring: if you have seen one cycle, you have seen them
all. Moreover, because the signal is completely defined by A and fp, if neither the
amplitude, A, nor the frequency, fp, changes over time, it is hard to see how this

f
Tp =
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signal could carry much information. These limitations notwithstanding, sine waves
(and cosine waves) are at the foundation of many signal analysis techniques. In part,
their importance stems from their simplicity and the way they are treated by linear
systems. (Chapter 3 covers the ‘magical’ properties of sine waves in some detail.)
Sine wave–like signals can also be represented by cosines, and the two are related.

[Eq. 2.4]

Note that the second representations [i.e., Asin(wt + 90 degrees) and Acos(wt - 90
degrees)] have conflicting units: the first part of the sine argument, wt, is in radians,
whereas the second part is in degrees. Nonetheless, this is common usage and is the
form that is used throughout this text.

A t A t A tsin cos cosw w
p

w( ) = -Ê
Ë

ˆ
¯ = -( )

2
90 degrees

A t A t A tcos sin sinw w
p

w( ) = +Ê
Ë

ˆ
¯ = +( )

2
90 degrees

Figure 2.1 Signals continuously pass between various parts
of the body. These biosignals are carried either by electrical
energy, as in the nervous system, or by molecular signatures,
as in the endocrine system and many other biological
processes. Measurement of these biosignals is fundamental to
diagnostic medicine and to bioengineering research.



A general sinusoid (as opposed to a pure sine wave or pure cosine wave) is a sine
or cosine with a general phase term as shown in Eq. 2.5:

[Eq. 2.5]

where again the phase, q, would be expressed in degrees even though the frequency
descriptor (wpt, or 2pfpt, or 2pt/T) is expressed in radians or hertz. Many of the
sinusoidal signals described in this text are expressed as in Eq. 2.5. Figure 2.2 shows
two sinusoids that differ by 60 degrees.

To convert the difference in phase angle to a difference in time, note that the
phase angle varies through 360 degrees during the course of one period, T seconds.
To calculate the time difference or time delay between the two sinusoids, td, given
the phase angle q:

[Eq. 2.6]t T
f

t
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q q
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Figure 2.2 Two 2-Hz sinusoids that differ in phase by 60 degrees. This phase 
difference translates to a time difference or delay of 83.3 msec.



where f = fp = 1/T. For the 2-Hz sinusoids in Figure 2.2, T = 1/f = 0.5 seconds, so:

Example 2.1: Find the time difference or delay between two sinusoids:

Solution: Convert both to a sine or cosine (here we convert to cosines):

Thus, the angle between the two sinusoids is 120 degrees [30 - (-90)]. The period
is given by:

and the time delay is:

2.1.1 Sinusoidal Arithmetic

Equation 2.5 describes an intuitive way of thinking about a sinusoid, as a sine 
wave with a phase shift. Alternatively, Eq. 2.5 shows that a cosine could just as well
be used instead of the sine to represent a general sinusoid, and in this text, we use
both. Sometimes it is mathematically convenient to represent a sinusoid as a com-
bination of a pure sine and a pure cosine. This representation can be achieved using
the well-known trigonometric identity for the sum of two arguments of a cosine
function:

[Eq. 2.7]

Based on this identity, the equation for a sinusoid can be written as:

where: [Eq. 2.8]

To convert from a sine and cosine to a single sinusoid with angle q, start with Eq.
2.8.

If a = Ccos(q) and b = Csin(q), then to determine C:

[Eq. 2.9]C a b= +2 2
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Equation 2.10 shows the calculation for q given a and b:

[Eq. 2.10]

Care must be taken in evaluating Eq. 2.10 to ensure that q is determined to be in
the correct quadrant on the basis of the signs of a and b. If both a and b are posi-
tive, q must be between 0 and 90 degrees; if b is positive and a is negative, q must
be between 90 and 180 degrees (a calculator or MATLAB will not know this and
will put any negative product in the fourth quadrant); if both a and b are negative,
q must be between 180 and 270 degrees (calculators and MATLAB put positive
arguments in the first quadrant even if they result from two negative numbers); and
finally, if b is negative and a is positive, q must be between 270 and 360 degrees.
Again, it is common to use degrees for phase angle.

To add sine waves, simply add their amplitudes. The same applies to cosine
waves:

[Eq. 2.11]

To add two sinusoids [i.e., Csin(wt + q) or Ccos(wt - q)], convert them to sines and
cosines using Eq. 2.8, add sines to sines and cosines to cosines, and convert back
to a single sinusoid if desired.

Example 2.2: Convert the sum of a sine and cosine wave, x(t) = -5 cos(10t)
-3 sin(10t) into a single sinusoid.

Solution: Apply Eq. 2.9 and Eq. 2.10:

but q must be in the third quadrant since both a and b are negative:

Therefore, the single sinusoid representation would be as follows:

Analysis: Using Equations 2.8 through 2.11, any number of sines, cosines, or sinu-
soids can be combined into a single sinusoid if they are all at the same frequency.
This is demonstrated in Example 2.3.
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Example 2.3: Combine x(t) = 4 cos(2t - 30 degrees) + 3 sin(2t + 60 degrees) into
a single sinusoid.

Solution: Expand each sinusoid into a sum of cosine and sine, algebraically add
the cosines and sines, and recombine them into a single sinusoid. Be sure to convert
the sine into a cosine [recall Eq. 2.4: sin(w) = cos(wt - 90 degrees)] before expand-
ing this term.

where:

Converting the sine to a cosine then decomposing the sine into a cosine plus a sine:

Combining cosine and sine terms algebraically:

This approach can be extended to any number of sinusoids. An example involving
three sinusoids is found in Problem 4.

2.1.2 Complex Representation

An even more compact representation of a sinusoid is possible using complex 
notation. A complex number combines a real number and an imaginary number. Real
numbers are commonly used, whereas imaginary numbers are the product of square
roots and are represented by real numbers multiplied by the In mathematics, the

is represented by the letter i, whereas engineers tend to use the letter j, the letter
i being reserved for current. A complex variable simply combines a real and an 
imaginary variable: z = x + jy. Hence, although 5 is a real number, j5 is an imaginary
number, and 5 + j5 is a complex number. The arithmetic of complex numbers 
and some of their important properties are reviewed in Appendix E. We will use
complex variables and complex arithmetic extensively in later chapters so it will be
worthwhile to review these operations.

The beauty of complex numbers and complex variables is that the real and imag-
inary parts are orthogonal. One consequence of orthogonality is that the real and
complex numbers (or variables) can be represented as if they are plotted on per-
pendicular axes (Figure 2.3).
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Orthogonality is discussed in more detail later, but the importance of orthogo-
nality with respect to complex numbers is that the real number or variable does not
‘interfere’ with the imaginary number or variable and vice versa. Operations on one
component do not affect the other. This means that a complex number behaves like
two separate numbers rolled into one, and a complex variable like two variables in
one. This feature comes in particularly handy when sinusoids are involved because
a sinusoid at a given frequency can be uniquely defined by two variables: its mag-
nitude and phase angle (or equivalently, using Eq. 2.8, its cosine and sine magni-
tudes, a and b). It follows that a sinusoid at a given frequency can be represented
by a single complex number.

To find the complex representation, we will use the identity developed by the
Swiss mathematician, Euler (Leonhard Euler’s last name is pronounced ‘oiler’. The
use of the symbol e for the basis of the natural logarithmic system is a tribute to
his extraordinary mathematical contributions):

[Eq. 2.12]

The derivation for this equation is given in Appendix A. This equation links sinu-
soids and exponentials, providing a definition of the sine and cosine in terms of
complex exponentials (Eq. 20 and Eq. 21 in Appendix C). It also provides a concise
representation of a sinusoid since a complex exponential contains both a sine and
a cosine, although a few extra mathematical features are required to account for
the fact that the second term is an imaginary sine term. This equation will prove
very useful in two sinusoidally based analysis techniques: Fourier analysis described
in the next chapter and phasor analysis described in Chapter 4.

e x j xjx = +cos sin
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Figure 2.3 A complex number 
represented as an orthogonal com-
bination of a real number on the 
horizontal axis and an imaginary
number on the vertical axis. This
graphic representation is useful for
understanding complex numbers and
aids in the interpretation of some
arithmetic operations.



2.2 SIGNAL PROPERTIES: BASIC MEASUREMENTS

Biosignals and other information-bearing signals are often quite complicated and
defy a straightforward analytical description. An archetype biomedical signal is the
electrical activity of the brain as it is detected on the scalp by electrodes, the elec-
troencephalogram (EEG) shown in Figure 2.4. Although a time display of this signal,
as in Figure 2.4, constitutes a unique description, the information carried by this
signal is not apparent from the time display, at least not to the untrained eye.
Nonetheless, physicians and technicians are trained to extract useful diagnostic
information by examining the time display of biomedical signals including the EEG.
The time display of the electrocardiogram (ECG) signal is so medically useful that
it is displayed continuously for patients undergoing surgery or those admitted to
intensive care units (ICUs). This signal has become an indispensable image in 
television and movie medical dramas. Medical images, which can be thought of as
two-dimensional signals, often need only visual inspection to provide information
useful for diagnosis.

For some signals, a simple time display provides useful information, but many
biomedical signals are not easy to interpret from their time characteristics alone.
Nearly all signals will benefit from some additional signal processing. For example,
the time display of the EEG signal in Figure 2.4 may have meaning for a trained
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Figure 2.4 Segment of an electroencephalogram signal. (From the PhysioNet
data bank, Goldberger et al., 2000.)



neurologist, but it is likely to be uninterpretable to most readers. A number of basic
measurements can be applied to a signal to extract more information, while other
analyses can be used to probe the signal for specific features. Transformations can
be used to provide a different view of the signal. In this section, basic measurements
are described followed by more involved analyses. In the next chapter a basic trans-
formation is developed.

One of the most straightforward of signal measurements is the assessment of its
average value. Averaging is most easily described in the digital domain. To deter-
mine the average of a series of numbers, simply add the numbers together and divide
by the length of the series (i.e., the number of numbers in the series). This is math-
ematically stated as follows:

[Eq. 2.13]

where k is an index number indicating a specific number in the series. The bar over
the x in Eq. 2.13 stands for ‘the average of . . .’. Equation 2.13 would be appro-
priate only for finding the average of a digital signal. An analog signal is a continu-
ous function of time, x(t), so the summation becomes an integration. The average
or mean of a continuous signal, the continuous version of Eq. 2.13, is obtained by
integrating the signal over time and dividing by the time length of the signal:

[Eq. 2.14]

Note that the primary difference between digital and analog domain equations is
the conversion of summation to integration and the use of a continuous variable,
t, in place of the discrete integer, k. These conversion relationships are generally
applicable, and most digital-domain equations can be transferred to continuous or
analog equations in this manner. In this text, usually the reverse operation is used:
the continuous domain equation is developed first, then the corresponding digital-
domain equation is derived by substitution of summation for integration and an
integer variable for the continuous time variable. The conditions under which a 
continuous analog signal and a digitized version of that signal can be considered
equivalent are presented in Chapter 3.

Although the average value is a basic property of a signal, it does not provide
any information about the variability of the signal. The root-mean-squared (RMS)
value is a measurement that includes the signal’s variability and its average. Obtain-
ing the RMS value of a signal is just a matter of following the measurement’s
acronym in reverse: first squaring the signal, then taking its average, and finally
taking the square root of this average:

[Eq. 2.15]

The discrete form of the equation can be obtained by following the simple rules
described above.
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[Eq. 2.16]

Example 2.4: Find the RMS value of the sinusoidal signal:

Solution: Because this signal is periodic, with each period the same as the previ-
ous one, it is sufficient to apply the RMS equation over a single period. (This is true
for most operations on sinusoids.) Neither the RMS value nor anything else about
the signal will change from one period to the next. Applying Eq. 2.15:

Hence, there is a proportional relationship between the peak-to-peak amplitude of
a sinusoid (A in this example) and its RMS value: specifically, the RMS value is

times the peak-to-peak amplitude, rounded in this text to 0.707. This rela-
tionship is only true for sinusoids. For other waveforms, the application of Eq. 2.15
or Eq. 2.16 is required.

A statistical measure related to the RMS value is the variance, s 2. The variance
is a measure of signal variability regardless of its average. The calculation of vari-
ance for discrete and continuous signals is as follows:

[Eq. 2.17]

[Eq. 2.18]

where is the mean or signal average. In statistics, the variance is defined in terms
of an estimator known as the expectation operation applied to the probability dis-
tribution function of the data. Because the distribution of a signal is rarely known
in advance, the equations given here are used to calculate variance in practical 
situations.

The standard deviation is another measure of a signal’s variability and is simply
the square root of the variance:
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[Eq. 2.19]

[Eq. 2.20]

In determining the standard deviation and variance from discrete or digital data, it
is common to normalize by 1/N - 1 rather than 1/N. This is because the former
gives a better estimate of the actual standard deviation or variance when the data
being used in the calculation are samples of a larger data set that has a normal dis-
tribution (rarely the case for signals). If the data have zero mean, the standard devi-
ation is the same as the RMS value except for the normalization factor in the digital
calculation. Nonetheless, they are from different traditions (statistics versus mea-
surement) and are used to describe conceptually different aspects of a signal: signal
magnitude for RMS and signal variability for standard deviation. Figure 2.5 shows
the EEG data in Figure 2.4 with positive and negative values of standard deviation
indicated by horizontal dotted lines.

When multiple measurements are made, multiple values or signals will be gen-
erated. If these measurements are combined or added together, the means add so
that the combined value, or signal, has a mean that is the average of the individual
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Figure 2.5 A segment of electroencephalogram signal shown in Figure 2.4 with
the positive and negative standard deviation (dotted horizontal line).



means. The same is true for the variance: the variances add and the average 
variance of the combined measurement is the mean, or average, of the individual
variances:

[Eq. 2.21]

where N is the number of signals being averaged. The standard deviation of the
averaged signal is the square root of the variance so the standard deviations add 
as the times the average standard deviation. Accordingly, the mean standard
deviation is the average of the individual standard deviations divided by Stated
mathematically, from Eq. 2.21:

Taking the square root of both sides:

The mean standard deviation becomes:

[Eq. 2.22]

In other words, averaging measurements from different sensors, or averaging mul-
tiple measurements from the same source, will reduce the standard deviation of the
measurement’s variability by the square root of the number of averages. For this
reason, it is common to make multiple measurements whenever possible and average
the results. This approach can also be applied to entire signals, a technique known
as ensemble averaging. An example of ensemble averaging is given in the MATLAB
implementation section of this chapter.

2.2.1 Decibels

It is common to compare the intensity of two signals using ratios, VSig1/VSig2, and 
to represent such ratios in units of decibels. Actually, decibels (dB) are not really
units, but are simply a logarithmic scaling of ratios. The decibel has several advan-
tageous features: (a) It provides a measurement of the effective power, or power
ratio; (b) the log operation compresses the range of values (for example, a range 
of 1 to 1,000 becomes a range of 1 to 3 in log units); (c) when numbers or ratios
are to be multiplied, they simply add if they are in log units; and (d) the logarith-
mic characteristic is similar to human perception. This latter feature motivated
Alexander Graham Bell to develop the logarithmic unit called the bel. Audio power
increments in logarithmic bels were perceived as equal increments by the human
ear. The bel turned out to be inconveniently large, so it has been replaced by the
decibel (1/10 bel). While originally defined only in terms of a ratio, decibel units
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are also used to express the intensity of a single signal. In this case, it has a dimen-
sion, the dimension of the signal (volts, amps, dynes, and so forth), but these units
are often ignored.

When applied to a power measurement, the decibel is defined as 10 times the log
of the power ratio:

[Eq. 2.23]

When applied to a voltage ratio (or simply a voltage), the decibel is defined as 10
times the log of the RMS value squared, or voltage ratio squared. Because the log
is taken, this is the same as 20 times the unsquared ratio or value. If a ratio of sinu-
soids is involved, then peak-to-peak voltages (or whatever units the signal is in) can
also be used, because they are related to RMS values by a constant (0.707), and the
constants will cancel in the ratio.

[Eq. 2.24]

The logic behind taking the square of the RMS voltage value before taking the log
is that the RMS voltage squared is proportional to signal power. Consider the case
where the signal is a time-varying voltage, v(t). To draw energy from this signal, it
is necessary to feed it into a resistor, or a resistor-like element that consumes energy.
(Recall from basic physics that resistors convert electrical energy into thermal
energy, i.e., heat.) The power (energy per unit time) transferred from the signal to
the resistor is given by the following equation:

[Eq. 2.25]

where R is the resistance. This equation shows that the power imparted to a resis-
tor by a given voltage depends, in part, on the value of the resistor. Assuming a
nominal resistor value of 1 W, the power will be equal to the voltage squared;
however, for any resistor value, the power transferred will be proportional to the
voltage squared. When decibel units are used to describe a ratio of voltages, the
value of the resistor is irrelevant, because the resistor values will cancel out:

[Eq. 2.26]

If decibel units are used to express the intensity of a single signal, the units will be
proportional to the log power in the signal.

To convert a voltage from decibel to RMS, use the inverse of the defining 
equation (Eq. 2.26):

[Eq. 2.27]

Decibel units are particularly useful when comparing ratios of signal and noise, the
so-called signal-to-noise ratio (SNR) discussed in the last chapter.
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Example 2.5: A sinusoidal signal is fed into an attenuator that reduces the inten-
sity of the signal. The input signal has a peak-to-peak amplitude of 2.8 V and the
output signal is measured at 2 V peak-to-peak. Find the ratio of output to input
voltage in decibels. Compare the power-generating capabilities of the two signals in
linear units.

Solution: Convert each peak-to-peak voltage to RMS, then apply Eq. 2.26 to the
given ratio. Calculate the ratio without taking the log.

The power ratio is:

Analysis: The ratio of the amplitude of a signal coming out of a process to that
going into the process is known as the gain, and is often expressed in decibels. When
the gain is less than 1, it means there is a loss, or reduction, in signal amplitude. In
this case, the signal loss is 3 dB, so the ‘gain’ of the attenuator is actually -3 dB. To
add to the confusion, you can reverse the logic and say that the attenuator has an
attenuation (i.e., loss) of +3 dB. In this example, the power ratio was 0.5, meaning
that the signal coming out of the attenuator has half the power-generating capabili-
ties of the signal that went in. A 3-dB attenuation is equivalent to a loss of half the
signal’s energy. Of course, it was not necessary to convert the peak-to-peak voltages
to RMS because a ratio of these voltages was taken and the conversion factor
(0.707) cancels out.

2.3 ADVANCED MEASUREMENTS: CORRELATIONS AND COVARIANCES

Applying the basic measurements we have just learned to the EEG data in Figure
2.4, we find the signal has a comparatively small mean of -29.8, an RMS value of
2,309 (or 67 dB), and a standard deviation of 2,310 (Figure 2.5). (These numbers
are all in relative units that relate to voltage in the brain by an unknown calibra-
tion factor.) These basic measurement numbers are not enlightening about the EEG
signal or the processes that created it. More insight might be gained by comparing
the EEG signal with one or more reference signals, or mathematical functions. For
example, we might ask, ‘How much is the EEG signal like a 10-Hz sinusoid?’ Or,
‘How much is it like a 12-Hz sinusoid, or a 12-Hz diamond-shaped wave, or any
other function/waveform that might shed some light on the nature of the signal?’
(We will find in the next chapter that comparisons to sinusoids can be surprisingly
enlightening.) Such comparisons can be carried out using an operation known as
correlation.
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2.3.1 Standard Correlation and Covariance

Although it is common in everyday language to take the word uncorrelated as
meaning unrelated (and thus independent), this is not the case in mathematical
analysis, particularly if variables are related in a nonlinear manner. In the statisti-
cal sense, if two (or more) variables are independent, they are uncorrelated, but the
reverse is not generally true. Moreover, signals that are very much alike can still
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Figure 2.6 The reference waveform (A) is compared with the electroen-
cephalogram signal (B) using a running correlation to determine to what extent
the electroencephalogram signal contains this pattern. The running correlation
between the two waveforms varies over time, but at maximum is only around 0.5.
The running correlation operation is described and carried out in Section 2.3.2.

Another somewhat-related question we might ask of an unknown waveform such
as the EEG signal is whether the EEG signal contains anything like a brief wave-
form such as that shown in Figure 2.6A, or other short time period waveform. This
second question requires a running correlation as described in the next section.



have a mathematical correlation of zero. With these caveats in mind, correlation
seeks to quantify (i.e., to assign a number to) how much one thing is like another. 
When comparing two mathematical functions, we use the technique of multiplying
one by the other, then averaging the results. This average is often scaled by a nor-
malizing factor. This gives us what is known as the linear association between 
two sets of variables. The same approach is used when correlation is applied to 
two signals. Given two functions, their average product will have the largest pos-
sible positive value when the two functions are identical. This process, since it is
based on multiplication, will have the largest negative value when the two fun-
ctions are exact opposites of one another (i.e., one function is the negative of the
other). The average product will be zero when the two functions are, on aver-
age, completely dissimilar, again in a mathematical sense. Stated as an equation, 
the correlation between two signals, x(t) and y(t), over a time frame T is as 
follows:

[Eq. 2.28]

The integration (or summation in the discrete form) and scaling (dividing by T or
N) simply take the average of the product. It is common to modify Eq. 2.28 by
dividing by the square root of the product of the variances of the two signals. This
will make the correlation value equal to 1.0 when the two signals are identical and
-1 if they are exact opposites:

[Eq. 2.29]

where the variances, s2, are defined in Eq. 2.17 and Eq. 2.18. The term correlation
implies this normalization.

Correlation between two signals is illustrated in Figure 2.7, which shows various
pairs of waveforms and the correlation between them. Note that a sine and a cosine
have no (zero) correlation even though the two are alike in the sense that they are
both sinusoids (upper plot). Intuitively, we see that this is because any positive cor-
relation between them over one portion of a cycle is canceled by negative correla-
tion over the rest of the cycle. Mathematically, this is a demonstration that a sine
and a cosine of the same frequency are orthogonal functions, functions that, by def-
inition, are uncorrelated. Indeed, a good way to test if two functions are orthogo-
nal is to assess their correlation. Correlation does not necessarily measure general
similarity, so a sine and a cosine of the same frequency are, by this mathematical
definition, as unalike as possible, even though they have very similar oscillatory 
patterns.
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Figure 2.7 Three pairs of signals
and the correlation between them as
given by Equation 2.28 and normal-
ized as in Equation 2.29. Note the
high correlation between the sine and
triangle wave (center plot) correctly
expressing the general similarity
between them. However, the correla-
tion between a sine and cosine (upper
plot) is zero, even though they are
both sinusoids.

Example 2.6: Use Eq. 2.28 (continuous form) to find the correlation (unnormal-
ized) between the sine wave and the square wave shown below. Both have an ampli-
tude of 1.0 V (peak-to-peak) and a period of 1.0 second.



Solution: By symmetry, the correlation in the second half of the 1-second period
equals the correlation in the first half, so it is only necessary to calculate the corre-
lation period in the first half period.

Covariance computes the variance that is shared between two (or more) signals.
Covariance is usually defined in discrete format as follows:

[Eq. 2.30]

The equation for covariance is similar to the discrete form of correlation except that
the average values of the signals have been removed. Of course, if the signals have
average values of zero, the two discrete operations (unnormalized correlation and
covariance) are the same. More extensive use of correlation is presented in the
section on MATLAB Implementation.

2.3.2 Autocorrelation and Cross-Correlation

The mathematical dissimilarity between a sine and a cosine is disconcerting and a
real problem if you are trying to determine if a signal has general sinusoidal-like
features. For example, a signal could quite similar to a cosine, but if you are cor-
relating using a sine wave reference, you would find only a small correlation. The
same would be true is you were probing a sinelike signal with a cosine reference
function. You might think that these signals are not sinusoidal when in fact they
were very much like a sinusoid, just not the one you selected as a reference. To cir-
cumvent this problem, you could still use only a sine (or cosine) reference, but shift
this reference signal in time, performing the correlation for many different time
shifts. For example, comparing a cosine with a shifted sine shows increasing corre-
lation with greater shifts. When the sine is shifted so that its phase is modified by
90 degrees, it will be identical to a cosine and will have a correlation of 1.0. Figure
2.8 shows the correlations between a sine and a cosine as the sine is shifted relative
to the cosine. Figure 2.8 (lower right) plots a cosine/sine correlation against time
shift for a 2-Hz sine. When the sine is shifted by 0.125 seconds, corresponding to
a phase shift of 90 degrees, the correlation reaches a maximum value of 1.0, after
which it begins to decrease to a minimum of -1.0 at 0.375 seconds, corresponding
to a shift of 270 degrees.

The effect of shifting the reference waveform shown in Figure 2.8 suggests an
approach for using correlation to search for general signal properties such as oscil-
latory behavior. Rather than correlate the signal with either a sine or a cosine, cor-
relate the signal using a sine time-shifted by different amounts, performing the
correlation operation (Eq. 2.28) at each time shift. The maximum correlation will
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describe how much the signal is like a sinusoid. (Alternatively, a cosine could be used
as the reference with similar results, although the shift required for maximum cor-
relation would be different.) This approach also provides information on how much
time shifting is required to achieve the maximum correlation, which may be of inter-
est in some applications. This approach is demonstrated in Example 2.11 at the end
of this chapter and a faster technique for probing the sinusoidal content using simple
correlation (as opposed to cross-correlation) is presented in the next chapter.

When correlation is performed by time-shifting one waveform with respect to
another, it is termed cross-correlation. This shifting correlation can be achieved by
introducing a variable time delay, or time lag, or simply lag, into one of the two
waveforms in the correlation. It does not matter which function is shifted with
respect to the other, although shifting the reference waveform is more common. The
correlation operations of Eq. 2.28 then become a series of correlations over differ-
ent time shifts or lags. For continuous signals, the time shifting can be continuous
and the correlation becomes a continuous function of the time shift. This leads to
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Figure 2.8 Upper left: The correlation between a 2-Hz cosine reference
(dashed line) and an unshifted 2-Hz sine is 0.0. Upper right: When the sine time
is shifted by the equivalent of 45 degrees, the correlation is 0.71. Lower left:
When the sine is shifted by 90 degrees, the two functions are identical and the
correlation is 1.0. Lower right: A plot of the correlation between cosine and sine
as a function of the sine shift shows a peak value of 1.0 for a shift of 0.125
seconds corresponding to a shift of 90 degrees, a zero at 0.25 seconds corre-
sponding to a shift of 180 degrees, and a correlation of -1.0 at a time shift of
0.375 seconds, corresponding to a shift of 270 degrees.



an equation for cross-correlation that is an extension of Eq. 2.28 that adds a time
shift variable, t:

[Eq. 2.31]

The variable t is a continuous variable of time used to shift x(t) with respect to y(t).
The variable t is a time variable, but not the time variable (which is t). To empha-
size this t is sometimes curiously referred to as a dummy time variable. The corre-
lation is now a function of the time shift, t, also known as lag. Cross-correlation is
often abbreviated as rxy, where x and y are the two functions being correlated. Again,
this equation can be converted to a discrete form by substituting summation for
integration and the integers i and k for the continuous variables t and t:

[Eq. 2.32]

Figure 2.9A (lower plot) shows the cross-correlation function for a sinusoid and a
triangle waveform. The cross-correlation shows that they are most similar (i.e., have
the highest correlation) when one signal is shifted 0.18 seconds with respect to the
other. This is demonstrated by shifting one of the functions by that amount in Figure
2.9B to provide a visual demonstration of this similarity. This also suggests a useful
application of cross-correlation–alignment of similar waveforms that are shifted
with respect to each other.

It is also possible to shift one function with respect to itself, a process called auto-
correlation. The autocorrelation function describes how the value of the variable at
one time depends on the values at other times. This will show how well a signal
correlates with various shifted versions of itself. Another way of looking at auto-
correlation is that it shows how the signal correlates with neighboring portions of
itself. As the shift variable t increases, the signal is compared with more distant
neighbors. A signal’s autocorrelation function provides some insight into how the
signal was generated or altered by intervening processes. For example, a signal that
remains highly correlated with itself over a long time shift must have been produced,
or modified, by a process that took into account past values of the signal. Such a
process can be described as having ‘memory’ (Bruce, 2001), because it must remem-
ber past values of the signal (or input) and use this information to shape the signal’s
current values. The longer the memory, the more the signal will remain partially
correlated with shifted versions of itself. Just as memory tends to fade over time,
the autocorrelation function usually goes to zero for large enough time shifts.

To perform an autocorrelation, simply substitute the same variable for x and y
in Eq. 2.31 or Eq. 2.32:

[Eq. 2.33]
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Figure 2.9 A (upper plot): a sinusoid and triangular wave at the same frequency,
but not the same phase. Lower plot: The cross-correlation function for these two
waveforms shows a peak at around -0.18 seconds when the functions are most
alike. B: The two functions in A (upper plot) after shifting the sinusoid by an
amount corresponding to the maximum cross-correlation given in A (lower plot).



Figure 2.10 shows the autocorrelation of several different waveforms. In all cases,
the correlation has a maximum value of 1 at zero lag (i.e., no time shift) because
when the lag (t or n) is zero, this signal is being correlated with itself. The auto-
correlation of a sine wave is another sinusoid (Figure 2.10A) because the correla-
tion varies sinusoidally with the lag, or phase shift.

In Figure 2.10A, the sinusoidal pattern produced by autocorrelation falls off with
increasing lags because this sinusoid had finite length. If the sinusoid were infinite
in length, the autocorrelation function would be a constant amplitude cosine. A
rapidly varying signal (Figure 2.10C) decorrelates quickly; that is, the self-
correlation falls off rapidly for even small shifts of the signal with respect to itself.
One could say that this signal has a very poor memory of its past values and was
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Figure 2.10 Four different signals (left side) and their autocorrelation functions
(right side). A: A truncated sinusoid. The reduction in amplitude is due to the finite
length of the signal. A true (i.e., infinite) sinusoid would have a nondiminishing
cosine wave as its autocorrelation function. B: A slowly varying signal. C: A rapidly
varying signal. D: A random signal.



probably the product of a process with a short memory. For slowly varying signals,
the correlation falls slowly (Figure 2.10B). Nonetheless, for all of these signals, there
is some time shift for which the signal becomes completely decorrelated with itself.
For a random signal, the correlation falls to zero instantly for all positive and 
negative lags (Figure 2.10D). This indicates that each instant of the random signal
(each instantaneous time point) is completely uncorrelated with the next instant. A
random signal has no memory of its past and could not be the product of, or altered
by, a process with memory.

Because shifting the waveform with respect to itself produces the same results
regardless of which way the function is shifted, the autocorrelation function will be
symmetrical about lag zero. Mathematically, the autocorrelation function is an even
function:

[Eq. 2.35]

In addition, the value of the function at lag zero, where the waveform is correlated
with itself, will be as large, or larger than, any other value. If the autocorrelation
is normalized by the variance, the value will be one. (Because only one function is
involved in autocorrelation, the normalization equation given in Eq. 2.29 reduces
to 1/s2.)

Figure 2.11 shows the autocorrelation function of the EEG signal shown previ-
ously. The signal decorrelates quickly, reaching a value of zero correlation after a

r rxx xx-( ) = ( )t t
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Figure 2.11 Autocorrelation function of the electroencephalogram signal
in Figure 2.4. The autocorrelation function decorrelates rapidly probably due
to the noise in the signal. Some correlation is seen out to 0.5 seconds.



time shift of approximately 0.03 seconds. However, the EEG signal is likely to be
contaminated with noise and the autocorrelation function of a signal plus noise is
the sum of the autocorrelation function of the signal plus the autocorrelation of the
noise. Because noise decorrelates instantly (Figure 2.10D), some of the rapid decor-
relation seen in Figure 2.11 is due to the noise. A common approach to estimating
the autocorrelation of the signal without the noise is to draw a smooth curve across
the peaks and use that curve as the estimated autocorrelation function of signal
without noise. From Figure 2.11, we see that such an estimated function would
decorrelate at a longer time shift of 0.5 to 0.6 seconds.

Two operations closely related to autocorrelation and cross-correlation are auto-
covariance and cross-covariance. The relationship between correlation and covari-
ance functions is similar to the relationship between standard correlation and
covariance given in the last section. Covariance and correlation functions are the
same except that in covariance, the means have been removed from the input signals,
x(t) and y(t) [or just x(t) in the case of autocovariance]:

[Eq. 2.36]

[Eq. 2.37]

The autocovariance function can be thought of as measuring the memory or 
self-similarity of the deviation of a signal about its mean level. Similarly, the cross-
covariance is a measure of the similarity of the deviation of two signals about 
their respective means. An example of the application of the autocovariance to 
the analysis of heart rate variability is given in the next section on MATLAB 
Implementation.

2.4 MATLAB IMPLEMENTATION

All of the analyses described thus far are relatively easy to implement in MATLAB.
In most cases, MATLAB has function that will perform these operations.

2.4.1 Mean, Variance, and Standard Deviation

Many of the techniques described in this chapter can be expeditiously, and conve-
niently, implemented in MATLAB. For example, the mean, variance, and standard
deviations are implemented as shown in the three code lines below.
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y k y k x k i x kxy i
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=

Â1

1

Cross ariance C
T

y t y t x t x t dtxy

T

cov ∫ ( ) = ( ) - ( )[ ] +( ) - ( )[ ]Út t
1

0

C i
N

x k x x k i xxx
k

N

[ ] = ( ) -[ ] +( ) -[ ]
=

Â1

1

Auto ariance C
T

x t x t x t x t dtxx
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xm = mean(x); % Evaluate mean of x
xvar = var(x); % Variance of x normalizing by N-1
xnorm = var(x,1); % Variance of x normalizing by N
xstd = std(x); % Evaluate the standard deviation of x

If x is an array or series of numbers (also termed a vector for reasons given later)
the output of these routines is a scalar representing the mean, variance, or standard
deviation. If x is a matrix, the output is a row vector resulting from applying the
appropriate calculation (mean, variance, or standard deviation) to each column of
the matrix.

Example 2.7: Figure 2.12 shows heart rate variability for one subject under normal
conditions (left side) and during a meditative state. Find the mean and standard
deviation for the two conditions.

Solution: Apply the MATLAB routines mean and std (standard deviation) to the
data. The program below loads the heart rate data from the .mat files HR_pre and
HR_med. These files are assumed to be in workspace in this example, but are found
on the accompanying CD. These files were originally obtained from the PhysioNet
data base (Goldberger et al., 2000 or http://www.physionet.org) and contain
approximately 500 seconds of heart rate data from a subject in a normal
(Hr_pre.mat) and meditative state (Hr_med.mat). Each file contains a time vari-
able (t_pre or t_med) and a heart rate variable (hr_pre or hr_med). The mean
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Figure 2.12 Heart rate over time during normal conditions (left) and during
meditation (right). (From the PhysioNet database, Goldberger et al., 2000.)



and standard deviation of the two heart rate variables will be determined using the
appropriate MATLAB routines and the two variables plotted as functions of time.

Example 2.7: Plot the mean and standard deviation of the heart rate before and
after meditation.

% Plots Figure 2.12.
%
load Hr_pre % Pre-meditative HR
load Hr_med % Meditative HR
%
% Calculate the averages and standard deviations
Avg_pre = mean(hr_pre) % Average HR, normal
SD_pre = std(hr_pre) % Standard deviation, normal
Avg_med = mean(hr_med) % Average and std
SD_med = std(hr_med) % HR meditative
%
% Plot the heart rate data. Label axes
subplot(1,2,1);
plot(t_pre,hr_pre,’k’); % Plot normal HR data
xlabel(‘Time (sec)’); ylabel(‘HR (beats/min)’);
axis([t_pre(1) t_pre(end) 0 120]);
title(‘Preliminary HR’);
subplot(1,2,2);
plot(t_med,hr_med,’k’); % Plot meditative HR data
xlabel(‘Time (sec)’); ylabel(‘HR (beats/min)’);
axis([t_med(1) t_med(end) 0 120]);
title(‘Meditative HR’)

Analysis: The program is a straightforward application of routines mean and std.
The var routine could have been used if the variance was desired. In the plotting
section, the axis routine was used to scale the vertical axis to be between 0.0 and
120 beats per minute. Because the time variables had different beginning and end
times, the time limits were specified using the time array (t_pre or t_med) end-
points. (Recall that MATLAB is case sensitive.) The MATLAB files Hr_pre and
Hr_med contain variables: hr_pre, t_pre, hr_med, and t_med.

Results:
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Premeditative Meditative

Average heart rate (beats/min.) 66.5 81.33
Standard deviation (beats/min.) 5.36 9.35

In this subject, meditation increased the heart rate by about 22% and the standard
deviation by almost 75%, not a result that might be anticipated by this Yoga-based



meditation. (See the PhysioNet database for more details on the meditative 
conditions.)

2.4.2 Ensemble Averaging

Equation 2.22 indicates that averaging can be a simple yet powerful signal-
processing technique for reducing noise when multiple observations of the signal
are possible. Such multiple observations could come from multiple sensors, but in
many biomedical applications, the multiple observations come from repeated
responses to the same stimulus. In ensemble averaging, a group, or ensemble, of
time responses is averaged together on a point-by-point basis; that is, an average
signal is constructed by taking the average, for each point in time, over all signals
in the ensemble. A classic biomedical engineering example of the application of
ensemble averaging is the visual evoked response (VER) in which a visual stimulus
produces a small neural signal embedded in the EEG. Usually this signal cannot be
detected in the EEG signal, but by averaging hundreds of observations of the EEG,
time-locked to the visual stimulus, the visually evoked signal emerges.

There are two essential requirements for the application of ensemble averaging
for noise reduction: the ability to obtain multiple observations and a reference
closely time-linked to the response. The reference shows how the multiple observa-
tions are to be aligned for averaging. Usually a time signal linked to the stimulus is
used. An example of ensemble averaging is given in Example 2.8.

Example 2.8: Find the average response given a number of individual responses
from the vergence eye movement system. The vergence eye movement system is
responsible for turning the eye inward to view a near target. These responses are
stored in MATLAB file vergence.mat.

Solution: Use the MATLAB averaging routine mean. If this routine is given a
matrix variable, it averages each column. Hence, if the various signals are arranged
as rows in the matrix, the mean routine will produce the ensemble average.

Example 2.8: Load eye movement data, plot the data, then construct and plot the
ensemble average.

close all; clear all;
load vergence; % Get vergence eye movement data
Ts = .005; % Sample interval = 5 msec
[nu,N] = size(data_out); % Get data length (N)
t = (1:N)*Ts; % Generate time vector (t = N Ts)
%
% Plot ensemble data superimposed
plot(t,data_out,’k’); hold on;
%
% Construct and plot the ensemble average
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avg = mean(data_out); % Calculate ensemble average and
plot(t,avg-3,’k’); % plot, separate from the other

% data
xlabel(‘Time (sec)’); % Label axes
ylabel(‘Eye Position’);

plot([.43 .43],[0 5]); % Plot horizontal line
’–k’);

text(1,1.2,’Averaged . . . % Label data average
Data’);

The results are shown in Figure. 2.13.

2.4.3 Covariance and Correlation

MATLAB has specific functions for determining the correlation and/or covariance
between two or more signals. Correlation or covariance matrices are calculated
using the corrcoef or cov functions, respectively. Again, the calls are similar for
both functions:
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Figure 2.13 Upper traces: An ensemble of individual (vergence) eye movement
responses to a step change in stimulus. Lower trace: The ensemble average, dis-
placed downward for clarity. The ensemble average is constructed by averaging
the individual responses at each point in time. Hence, the value of the average
response at time T1 (vertical line) is the average of the individual responses at that
time.



Rxx = corrcoef(x); % Signal correlation
S = cov(x); % Signal covariance

where x is a matrix that contains the various signals to be compared in columns.
Some options are available as explained in the associated MATLAB help file. The
output, Rxx, of the corrcoef routine will be an n-by-n matrix where n is 
the number of signals (i.e., columns of x). The diagonals of this matrix represent
the correlation of the signals with themselves, rxx (and, hence, will be 1), and the
off diagonals represent the correlations of the various combinations. For example,
r12 is the correlation between signals 1 and 2. Because the correlation of signal 1
with signal 2 is the same as signal 2 with signal 1, r12 = r21, and in general rm,n =
rn,m, so the matrix will be symmetrical about the diagonals:

[Eq. 2.38]

The cov routine produces a similar output, except the diagonals are the variances
of the various signals and the off-diagonals are the covariances as shown in Eq. 2.39
below.

[Eq. 2.39]

Example 2.8 uses covariance and correlation analysis to determine if sines and
cosines of the same frequency and sine waves at multiple frequencies are orthogo-
nal. Recall that two orthogonal signals will have zero correlation. Either covariance
or correlation could be used to determine if signals are orthogonal. Example 2.9
uses both.

Example 2.9: Determine if a sine wave and a cosine wave at the same frequency
are orthogonal and if sine waves at harmonically related frequencies are orthogo-
nal. Include one sinusoid at a nonharmonic frequency.

Solution: Generate a data matrix where the columns consist of a 1.0-Hz sine and
cosine, a 2.0-Hz sine and cosine, and a 3.0-Hz sine and a 3.5-Hz (i.e., nonharmonic)
cosine. The six sinusoids should all be at different amplitudes. Apply the covariance
(cov) and correlation (corrcoef) MATLAB functions. All of the sinusoids except
the 3.5-Hz cosine are orthogonal and should show negligible correlation and 
covariance.

% Example 2.9: Application of the correlation and
% covariance matrices to sinusoids that are orthogonal and
% nonorthogonal
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%
clear all; close all;
N = 256; % Number of points in waveform
fs = 256; % Assumed sample frequency
n = (1:N)/fs; % Time vector: 1 sec of data
%
% Generate the sinusoids as columns of the matrix
x(:,1) = sin(2*pi*n)’; % Generate a 1 Hz sin
x(:,2) = 2*cos(2*pi*n)’; % Generate a 1 Hx cos
x(:,3) = 1.5*sin(4*pi*n)’; % Generate a 2 Hz sin
x(:,4) = 3*cos(4*pi*n)’; % Generate a 2 Hx cos
x(:,5) = 2.5*sin(6*pi*n)’; % Generate a 3 Hx sin
x(:,6) = 1.75*cos(7*pi*n)’; % Generate a 3.5 Hz cos
%
S = cov(x) % Print covariance matrix
Rxx = corrcoef(x) % and correlation matrix

Analysis: The program defines a time vector n that is 256 points long and achieves
the proper time interval by dividing by the sampling frequency, fs (also 256).
(Because MATLAB is case sensitive, n and N are different variables.) The program
then generates the six sinusoids using this time vector in conjunction with sin and
cos functions, arranging the signals as columns of x. The program then determines
the covariance (cov) and correlation (corrcoef) matrices of x.

Results: The output from this program is a covariance and correlation matrix. The
covariance matrix is as follows:

Covariance Matrix s =
0.5020 0.0000 0.0000 0.0000 0.0000 -0.0497
0.0000 2.0078 -0.0000 -0.0000 -0.0000 -0.0137
0.0000 -0.0000 1.1294 0.0000 -0.0000 -0.2034
0.0000 -0.0000 0.0000 4.5176 -0.0000 -0.0206
0.0000 -0.0000 -0.0000 -0.0000 3.1373 -1.2907
-0.0497 -0.0137 -0.2034 -0.0206 -1.2907 1.5372

The diagonals of the covariance matrix give the variance of the six signals and these
differ since the amplitudes of the signals are different. The correlation matrix shows
similar results except that the diagonals are now 1.0 because these reflect the cor-
relation of the signal with itself.

Correlation Matrix Rxx =
1.0000 0.0000 0.0000 0.0000 0.0000 -0.0566
0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0078
0.0000 -0.0000 1.0000 0.0000 -0.0000 -0.1544
0.0000 -0.0000 0.0000 1.0000 -0.0000 -0.0078
0.0000 -0.0000 -0.0000 -0.0000 1.0000 -0.5878
-0.0566 -0.0078 -0.1544 -0.0078 -0.5878 1.0000
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The covariance and correlation between the various signals are given by the off-
diagonals and are zero for all combinations between signals 1 and 5, demonstrat-
ing the orthogonality of all of these harmonic signals. Conversely, nonzero
covariances and correlations are found between signals 1 through 5 and signal 6,
the 3.5-Hz cosine. This shows that the nonharmonically related cosine is not orthog-
onal to any of the other sines or cosines. Note that the bottom row is the same as
the last column, reflecting the symmetry of these matrices.

It may seem a little surprising that a 1-Hz sine wave and a 2-Hz sine wave are
orthogonal, but is easily demonstrated by sketching the two waveforms. Consider
the product of two sine waves seen in Figure 2.14. The first half of the 1-Hz sine
wave will be multiplied by a full cycle of the 2-Hz sine wave and the result will be
0.0. This would be true for any higher harmonic signal: if the 2-Hz sine wave were
a 4-Hz sine wave, for example. The orthogonality of harmonically related sinusoids
is a feature that will be used in the Fourier Transform described in the next chapter.
It means that operations (such as correlation) involving a sinusoid do not interfere
with operations that involve sinusoids at harmonically related frequencies.
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Figure 2.14 A 1-Hz sine wave plotted with a 2-Hz sine wave.
The product of the two will clearly average to 0.0.

2.4.4 Autocorrelation and Cross-Correlation

The cross-correlation and autocorrelation operations are performed with the same
MATLAB routine, with autocorrelation being treated as a special case. The
program, axcor, is supplied on the accompanying CD:

Only the first input argument, x, is required. If no y variable is specified, autocor-
relation is performed and the output is normalized to be 1.0 at zero lag. If both

r,lags axcor x,y ;[ ] = ( )



variables are given, the cross-correlation is normalized as in Eq. 2.29. The time shift
extends over the entire range of the longer variable. If the MATLAB signal-
processing toolbox is available, a MATLAB routine called xcorr is available that
features a wider range of options. The axcor function produces an output argu-
ment, r, that is an array that is twice the length of the shortest input array. The
optional output argument, lags, is simply an array containing the lag values, which
is helpful in plotting the function.

Recall that auto- and cross-covariance are the same as auto- and cross-
correlation if the data have zero means. Hence, autocovariance or cross-covariance
can be determined using axcor simply by subtracting the variable means before
calling the function.

The autocorrelation and autocovariance functions describe how one segment of data
is correlated, on average, with adjacent segments. Such correlations could be due
to memory-like properties in the process that generated the data. Many physiolog-
ical processes are repetitive, such as respiration and heart rate, yet vary somewhat
on a cycle-to-cycle basis. Autocorrelation and cross-correlation can be used to
explore this variation. For example, considerable interest revolves around the heart
rate and its beat-to-beat variations. Autocovariance can be used to tell us if these
variations are completely random or if there is (again, on average) some correlation
between beats or over several beats. In this instance, we use autocovariance, not
autocorrelation, because we are interested in correlation of heart rate variability,
not the correlation of heart rate per se. (Recall that autocovariance will remove the
mean value of the heart rate from the data and analyze only the variation.) Example
2.10 analyzes the normal heart rate data presented in Figure 2.12 (Preliminary Heart
Rate) to determine the correlation over successive beats.

Example 2.10: Determine if there is any correlation in the variation between the
timing of successive heart beats under normal resting conditions.

Solution: Load the heart rate data taken during normal resting conditions (file
Hr_pre.mat). Isolate the heart rate variable (the second column) and then take the
autocovariance function. Plot this function to show potential correlation over
approximately 30 successive beats.

% EXAMPLE 2.10 and Figure 2.15
% Use of autocovariance to determine the correlation
% of heart rate variation between heart beats
%
clear all; close all;
figure;
load Hr_pre % Load data
[c,lags]=axcor(hr_pre-mean(hr_pre)); % Autocovariance

(mean subtracted)

c,lags axcor x-mean x ,y-mean x ;[ ] = ( ) ( )( )
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plot(lags,c,’k’); hold on; % Plot autocovariance
plot([lags(1) lags(end)], [0 0],’k’) % Plot zero line for

% reference
xlabel(‘Lags (N)’); ylabel(‘Autocovariance’); grid on;
axis([-30 30 -.2 1.2]); % Limit plot range

% to ± 30 beats

Analysis: After loading the data file, the program calculates the autocovariance
using routine axcor. The mean is subtracted from the data variable so that auto-
covariance will be performed. The data are then plotted along with a zero line and
the axis is rescaled to show only the first ± 30 lags. The plotting grid is enabled.

Results: The results in Figure 2.15 show there is high correlation for heart beats
that are within a few seconds of each other (approximately 0.5 within ±
4 sec). This correlation falls off rapidly so there is little or no correlation between
beats that are more than about 15 seconds apart. If the variability were completely
random, the autocovariance function would be 1.0 for zero lag and 0.0 everywhere
else (Figure 2.10D). Problem 15 applies this analysis to the heart rate data taken
during the meditative state.

One of the most popular reference signals is the sinusoid. It is common to
compare the signal of interest not just with one sinusoid but with a range of sinu-
soids having different frequencies. To ensure that we correlate with a sinusoid
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Figure 2.15 Autocovariance function of the heart rate from one subject
under normal resting conditions. Some correlation is observed over approx-
imately 10 successive heart beats.



having the most appropriate phase shift, we use cross-correlation and take the
maximum cross-correlation values as related to the amount of sinusoid ‘in’ the signal
at a given frequency. This strategy is demonstrated in the next example.

Example 2.11: Find the sinusoidal content in the EEG signal over a range of fre-
quencies from 0.5 to 50 Hz. The frequency resolution of the comparison should be
0.5 Hz.

Solution: Generate a series of sine waves from 0.5 to 50 Hz in 0.5-Hz increments.
(Cosine waves would work just as well.) Cross-correlate these sine waves with the
EEG signal and find the maximum cross-correlation. Plot this maximum correla-
tion as a function of the sine wave frequency. This procedure is remarkably easy to
program in MATLAB.

% Example 2.11 and Figure 2.16
% Comparison of sinusoids at different frequencies with

the EEG signal using cross-correlation.
%
clear all; close all;
load eeg_data; % Get EEG data
eeg = eeg/max(eeg); % Normalize eeg data
fs = 50; % Sampling frequency
t = (1:length(eeg))/fs; % Time vector
% Cross-correlate over a range of frequencies.
for i = 1:100
f(i) = i/2; % Frequency range: 0.5 - 50 Hz
x = sin(2*pi*f(i)*t); % Generate sin
r = axcor(eeg,x); % Perform cross-correlation
rmax(i) = max(r); % Store max value

end
.......labels and plot.......

Results: The result of the cross-correlations is seen in Figure 2.16 and an inter-
esting structure is seen to emerge. Some frequencies show much higher correlation
with sine and EEG, indicating more sine wave content at these frequencies. A par-
ticularly strong peak is seen in the region of 7 to 9 Hz, indicating the presence of
an oscillatory pattern known as the alpha wave. A more efficient method for obtain-
ing the same information will be given in the next chapter.

64 CHAPTER 2 BASIC SIGNAL PROCESSING



2.5 SUMMARY

The sinusoidal waveform is arguably the single most important waveform in signal
processing. Some of the reasons for this importance are provided in the next chapter.
Because of their importance, it is essential to know the mathematics associated with
sines, cosines, and general sinusoids, including complex representations.

Several basic measurements apply to any signal including mean value, RMS value,
and variance or standard deviation. Although these measurements provide some
essential basic information, they do not provide much information on signal content
or meaning. A common approach to obtaining more information is to probe a signal
by correlating it with one or more reference waveforms. One of the most popular
probing signals is the sinusoid, and sinusoidal correlation is covered in detail in the
next chapter.

Sometimes a signal will be correlated with another signal in its entirety, a process
known as correlation, or the closely related covariance. If the correlation between
the signal of interest and the reference is zero, it does not necessarily mean the two
signals have nothing in common, but it does mean the signals are mathematically
orthogonal.

If the probing signal is short, a running correlation known as cross-correlation
may be appropriate. Cross-correlation not only shows the match between the
probing signal and the signal of interest, but also where that match is greatest. A
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Figure 2.16 The maximum cross-correlation between sine waves and
the electroencephalogram signal plotted as a function of the sine
wave’s frequency. A peak is seen between 7 and 9 Hz, which indicates
the presence of an oscillatory pattern known as the ‘alpha wave.’



signal can also be correlated with shifted versions of itself, a process known as auto-
correlation. The autocorrelation function describes the period for which a signal
remains partially correlated with itself and this relates to the structure of the signal.
For example, a signal consisting of random noise decorrelates immediately, whereas
a slowly varying signal will remain correlated over for long period. Correlation,
cross-correlation, autocorrelation, and the related covariances are all easy to imple-
ment in MATLAB.

PROBLEMS

1. Two 10-Hz sine waves have a relative phase shift of 30 degrees. What is the
time difference between them? If the frequency of these sine waves doubles, but
the time difference stays the same, what is the phase difference between 
them?

2. Convert x(t) = 6 sin(5t) - 5 cos(5t) into a single sinusoid [i.e., M sin(5t + q)].
3. Convert x(t) = 30 sin(2t + 50) into sine and cosine components.
4. Convert x(t) = 5 cos(10t + 30) + 2 sin(10t - 20) + 6 cos(10t + 80) into a single

sinusoid as in Problem 2.
5. Find the delay between x1(t) = cos(10t + 20) and x2(t) = sin(10t - 20).
6. Equations 2.8, 2.9, and 2.10 were developed to convert a sinusoid such as

cos(wt - q) into a sine and cosine wave and vice versa. Derive the equations to
convert between a sinusoid based on the sine, sin(wt + q) and a sine and cosine
wave. (Hint: Use the appropriate identity from Appendix C.)

7. Find the RMS value of the square wave with amplitude of 1.0 V and a period
0.2 seconds.

8. If a signal is measured as 2.5 V peak-to-peak and the noise is measured as 28
mV RMS, what is the SNR in decibels?

9. Use Eq. 2.28 to find the correlation (unnormalized) between sin(2pt) and
cos(2pt).

10. Use Eq. 2.28 to find the correlation between a cosine and a square wave as
shown below. This is the same as Example 2.6 except that the sine has been
replaced by a cosine.
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MATLAB Problems

11. Load the data in ensemble_data.mat found on the CD. This file contains a
data matrix labeled ‘data.’ The data matrix contains 100 responses of a signal
in noise. Determine whether the responses are stored in the rows or columns
of the matrix. Plot several randomly selected samples of these responses. Is 
it possible to identify the signal from any single record? Construct and plot 
the ensemble average for these data. (Be sure that the matrix is in the correct
orientation.) Also construct and plot the ensemble standard deviation.

12. Demonstrate that 1-Hz and 4-Hz cosine waves are orthogonal by multiplying
them together and averaging the product. (Note when you multiply be sure to
use the point-by-point multiplication, ‘.*’.)

13. The file two_var.mat contains two variables x and y. Are either of these vari-
ables random? Are they orthogonal to each other?

14. The file nerve.mat contains two signals, x and y, along with a time vector, 
t. The two signals represent nerve action potentials taken simultaneously at 
two different sections of a nerve axon along with inevitable noise. Use cross-
correlation to determine the average time delay between the two signals. Assume
the sampling frequency of the nerve signals was 2 kHz.

15. Develop a program along the lines of Example 2.10 to determine the correla-
tion in heart rate variability during meditation. Load file Hr_med.mat, which
contains the heart rate (beats/min as a function of time) in variable hr_med

PROBLEMS 67



and the time in variable t_med, then determine and plot the autocovariance.
The result will show that the heart rate under meditative conditions contains
some periodic elements. Can you determine the frequency of these periodic 
elements? The answer is presented in the next chapter, which shows how to
identify the frequency characteristics of any waveform.
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3 FREQUENCY
TRANSFORMATIONS

The electroencephalogram (EEG) signal originally shown in Figure 2.4 looks, and
is, quite complicated. Yet, in Example 2.11 this complicated waveform was probed
with sinusoids at different frequencies and some semblance of internal structure was
revealed: sinusoids at some frequencies showed much higher correlation with the
EEG signal than sinusoids at other frequencies. This cross-correlation approach
could be applied to examine the structure of any waveform using sinusoids or any
other probing signals. When a high correlation is found between the signal and
probe (or reference) waveform, we might say the signal is made up of, or contains,
some of that probing waveform. The higher the correlation, the more the probing
signal is contained in the signal being analyzed.

There are two problems with using this approach to analyze the structure of a
signal. The first is that it is computationally intensive, but this may not be so serious
with modern high-speed computers. The second is that you have to know what you
are looking for, at least in terms of general shape. If you are probing with sinusoids,
you have to know the frequencies to use in your sinusoidal probe (but not the exact
phase since the cross-correlation operation evaluates correlation at all possible time
shifts). For example, suppose you are examining a signal that is made up of three
sinusoids, each at a different frequency. If your cross-correlation search includes the
three frequencies, you should get an accurate picture of the three sinusoids con-
tained in the signal. However, what if your search does not include the exact fre-
quencies, but examines frequencies close to but not identical to the ones contained
in the signal? As will be demonstrated in Example 3.1, you would likely get an inac-
curate picture of the sinusoidal composition of the signal.

Example 3.1: Use cross-correlation to probe the two signals each containing a
mixture of three sinusoids. One signal should contain sine waves at 100, 200, and
300 Hz, while the other should contain sine waves at 100, 204, and 306 Hz. Begin
your search at 10.0 Hz and continue up to 500 Hz, cross-correlating every 10 Hz.
Generate the signals to be analyzed assuming a sample frequency of 1.0 kHz. Use
three different sine wave amplitudes to test the quantitative ability of the cross-
correlation analysis.



Solution: Modify the MATLAB code in Example 2.11 to include the generation
of the two sine wave mixtures. Plot out the maximum correlation for the two mix-
tures side-by-side.

% Example 3.1 and Figure 3.1
% Correlation analysis of two signals each containing

three sinusoids
%
clear all; close all;
fs = 1000; % Sample frequency
N = 2000; % Number of points in the test

% signal
t = (1:N)/fs; % Time vector
f = [100 200 300]; % Test signal frequencies
%
% Generate the test signal as a mixture of three sinusoids

at different freq.
x = 1.5*sin(2*pi*f(1)*t) + 1.75*sin(2*pi*f(2)*t) +...
2.0*sin(2*pi*f(3)*t);

%
for i = 1:50 % Analysis loop
f(i) = i*10; % Frequency range: 10 – 500 Hz
y = cos(2*pi*f(i)*t); % Generate sinusoid
[r,lags] = axcor(x,y); % Cross-correlate
[rmax(i),ix(i)] = max(r); % Find maximum value

end
subplot(1,2,1); % Plot and label cross-
plot(f,rmax,’k’); correlation results
xlabel(‘Frequency (Hz)’); ylabel(‘Correlation’);
title(‘100, 200, 300 Hz’); axis([0 400 0 1]);

% Now redo for a test signal having slightly different
frequencies.

f = [100 204 306]; % Next test signal frequencies
x = 1.5*sin(2*pi*f(1)*t) + 1.75*sin(2*pi*f(2)*t) +
2.0*sin(2*pi*f(3)*t);

%
for i = 1:50
f(i) = i*10; % Frequency range: 10 - 500 Hz
y = cos(2*pi*f(i)*t); % Generate sinusoid
[r,lags] = axcor(x,y); % Cross-correlate
[rmax(i),ix(i)] = max(r); % Find maximum values

end
subplot(1,2,2); % Plot and label cross-
plot(f,rmax,’k’); correlation results
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xlabel(‘Frequency (Hz)’,); ylabel(‘Correlation’);
title(‘100, 204, 306 Hz’); axis([0 400 0 1]);

Results: As shown Figure 3.1A, the cross-correlation analysis correctly identifies the
three sinusoids found in the first mixture. The analysis even shows the relative
strengths of the three sine waves. However, this analysis fails to find the two sine
waves in the second mixture where the frequency of these sine waves is slightly dif-
ferent. This is because the program is searching in increments of 10 Hz and does
not compare the signal with sinusoids at exactly their frequencies of 204 Hz and
306 Hz. Moreover, this program takes over a minute and a half to run on at 1.5-
GHz computer.

From Example 3.1, we can see that using cross-correlation to probe the contents
of a signal works well if we know the specific pattern for which we are looking,
but often we do not know what patterns a signal may contain. Of course, we could
have decreased the frequency increment and used more sinusoids to probe the
signals, but this would increase the computation time even further and we still may
have missed some important frequencies. The question is, what probing frequencies
should we use with a signal whose characteristics are unknown? If we are probing
with sinusoids (a very common probing signal), and the signal we are probing is
periodic, or can be taken as periodic, the answer to the question of which frequen-
cies to use is found in an important theorem known as the Fourier series theorem.
Before describing this theorem, it is useful to examine the sinusoid further and high-
light some of its important mathematical properties.
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Figure 3.1 Cross-correlation analysis of two very similar signals, both
containing mixtures of three sinusoids. The amplitudes of the three
sine waves are 1.5, 1.75, and 2.0 (relative units) in both mixtures. A:
The analysis of a mixture containing 100-, 200-, and 300-Hz sine waves
clearly identifies the three sinusoids at the correct frequency. B: The
analysis of the other mixture of 100, 204, and 306 Hz identifies the
first sinusoid correctly, but fails to find the other two correctly.



3.1 USEFUL PROPERTIES OF THE SINUSOIDAL SIGNAL

Sinusoids have four unique properties that make them extraordinarily useful for
signal and systems analysis.

1. Many signals can be broken down, or decomposed, into an equivalent repre-
sentation as a series of sinusoids (Figure 3.2). The only constraint on the signal
is that it be periodic, or can be taken to be periodic; that is, it repeats exactly
after some period. Stated the other way, different sinusoids can be added together
to reconstruct any periodic signal (or signals that can be assumed to be periodic
as explained later). You may need a large number of sinusoids to represent some
signals, and there are a few exceptions, but when applicable the sinusoidal rep-
resentation is complete and works in both directions: Signals decomposed into
a sinusoidal series can be accurately reconstructed from that series (Figure 3.2).
(Because it works both ways, decomposing a signal into a sinusoidal series is
known mathematically as a bilateral transform.) This property of sinusoids is at
the heart of Fourier series analysis as described below. Why would you want to
represent a waveform by a series of sinusoids? This is explained by the next two
unique sinusoidal properties.

2. Sinusoids are the only functions to have energy at only one frequency, the fre-
quency of the sinusoid. Because of this property, sinusoids are sometimes referred
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Figure 3.2 Any periodic signal (including those that can be assumed to be periodic)
can be decomposed into a series of sinusoids which, in turn can be used to reconstruct
the original signal. Here only three sinusoidal components are used to reconstruct the
original triangle waveform. Even with only three components, the reconstruction is quite
good. More components would lead to a more accurate representation and a better
reconstruction (see Figure 3.6).



to as pure and the tones they produce as sound waves sound somehow pure or
basic. Because they have energy at only one frequency, sinusoids can be easily
converted to an alternate representation known as the frequency representation
or frequency domain. Specifically, any specific sinusoid can be represented as two
points on a frequency plot, one specifying the amplitude the other the phase, at
the frequency of the sinusoid (Figure 3.3). Combining this characteristic with the
decomposition properties described above provides us with a technique for con-
verting any periodic waveform into a frequency representation. If a waveform
can be decomposed into equivalent sinusoids, and each sinusoid plots directly
into the frequency domain, sinusoids can be used as an intermediary between
any periodic function and its frequency representation. The frequency represen-
tation of a signal is also referred to as its spectrum. Thus, any periodic signal
can be represented by a magnitude and phase spectrum (Figure 3.4), a feature
that is exploited in the rest of this chapter.

3. If the input to any linear system, no matter how complex, is a sinusoid, the output
is a similar sinusoid. The only differences between the input and output are the
magnitude and phase of the sinusoid: the frequency and sinusoidal wave shape
will be the same (Figure 3.5). Combining this feature with the above two sinu-
soidal characteristics, we develop a powerful paradigm for analyzing the behav-
ior of linear systems, at least for periodic input signals. If any periodic function
can be broken down into sinusoids, and the magnitude and phase change pro-
duced by the linear system can be determined for each sinusoid, then the output
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Figure 3.3 A sinusoid is completely represented by its magnitude
and phase at a given frequency. In general, the frequency charac-
teristics of a signal are presented as plots of magnitude and phase
against frequency.



of the system to any periodic function can be determined. Simply decompose the
signal into its sinusoidal constituents, finding the output for each sinusoid, then
reconstruct the actual output signal from the sinusoidal components. This sounds
involved but is actually quite easy to implement with computer processing. This
decompose and conquer approach is developed in Chapter 6.

4. If the sinusoids are harmonically related, they are orthogonal. This means that
if we can restrict our decomposition of periodic waveforms to harmonically
related sinusoids, each of the components in the decomposition will be inde-
pendent of the others. For example, suppose we decided to decompose a wave-
form into 10 harmonically related sinusoids, but later decided to use more
components to attain a more accurate decomposition. Adding more components
will not change the value of the components we already have because all com-
ponents are orthogonal.
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Figure 3.4 Combining the simplicity of a sinusoid’s frequency repre-
sentation (a single point on the magnitude and phase frequency plot)
with the decomposition feature stated above, sinusoids can be used to
convert any periodic signal from a time representation to a frequency
representation: if the sinusoidal components of a signal can be deter-
mined its frequency characteristics can also be determined.

Figure 3.5 The output of any linear system
driven by a sinusoid is a sinusoid at the same fre-
quency. Only the magnitude and phase of the
output sinusoid differ from the input.



3.2 FOURIER SERIES ANALYSIS

The Fourier series theorem states that any periodic signal, no matter how compli-
cated, can be represented by a sum of sinusoids; specifically, a series of sinusoids
that are the same or multiples of the signal frequency. That is, the signal can be
equivalently represented by sinusoids that are harmonically related to the base fre-
quency of the signal. Harmonically related means that sinusoids are related by fre-
quencies that are multiples of a base frequency. Thus, the signals sin(2t), sin(4t),
and sin(6t) are harmonically related. Stated another way, sin(4t) and sin(6t) are both
harmonics of the base frequency sin(2t). For example, if a nonsinusoidal, periodic
signal repeats every 10 seconds (or can be taken to repeat every 10 seconds for the
sake of analysis), that signal can be completely represented by sinusoids having fre-
quencies of 0.1 Hz (base frequency = 1/10 Hz), 0.2 Hz, 0.3 Hz, 0.4 Hz, and so on.
In theory, we may need a large, possibly infinite, number of sinusoids to achieve an
accurate breakdown of a given periodic signal, but for most real signals, the mag-
nitude of the sinusoidal components becomes negligibly small as frequency increases
so these components contribute little to the signal representation.

To put the Fourier series theorem in mathematical terms, note that if the period
of a periodic function xT(t) is T, the base or fundamental frequency is:

[Eq. 3.1]

then the base cosine wave, the cosine at the fundamental frequency, becomes:

[Eq. 3.2]

and the series of harmonically related cosine waves becomes:

[Eq. 3.3]

The Fourier series theorem states that a signal can be represented by a series of sinu-
soids (not necessarily only a sine wave, or only a cosine wave), so the cosine may
contain a phase term, q. The amplitude and phase of these cosines must be allowed
to vary for different values of components in the series (i.e., different value of n).
Allowing the amplitude and phase to vary, the harmonically related series would be
stated mathematically as:

[Eq. 3.4]

The Fourier series theorem simply states that any periodic function can be com-
pletely and equivalently represented by a summation of this series, as specifically
stated in Eq. 3.5.
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[Eq. 3.5]

where xT(t) is a periodic function of period T, and the first term, C0, accounts for
any nonzero average value of the signal. The term is also known as the direct current
(DC) term. (The term DC is used broadly to mean any signal or signal component
that is constant over time, even though most signals have nothing to do with
current.) If the signal has zero mean, as is often the case, then this term will be zero.
Often 2pnf1 is represented in terms of radians, where 2pnf1 = nw1. Using frequency
in radians makes the equations look cleaner, but in practice frequency is usually
measured in hertz. Both will be used here.

As mentioned previously, and as Eq. 3.5 states, the number of sinusoids in the
sum required to represent vT(t) is theoretically infinite, but in practice, the number
of sine and cosine components that have significant amplitudes is limited. Often,
only a few sinusoids are required to represent the signal. Figure 3.6 shows the recon-
struction of a square wave using Eq. 3.5 and a series consisting of three, six, 12,
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Figure 3.6 Reconstruction of a square wave using three, six, 12, and 24 sinu-
soids. The square wave is one of the most difficult signals to represent with a sinu-
soidal series. The oscillations seen in the sinusoidal approximations are known as
Gibbs oscillations, and they increase in frequency, but do not diminish in ampli-
tude as more sinusoids are added to the summations.



and 24 sinusoids. The square wave is one of the most difficult waveforms to rep-
resent using a sinusoidal series because of the sharp transitions. The reconstruction
produces a fair representation of a square wave using only six sinusoids.

The cosine wave series of Eq. 3.5 can also be represented in terms of a sine and
cosine series. Substituting the sine/cosine representation in Eq. 2.8 for the sinusoidal
function in Eq. 3.5, the Fourier series equation becomes:

[Eq. 3.6]

The fact that periodic functions can be completely represented by sinusoids at the
same or multiple frequencies tells us that if we are looking for sinusoids in a signal,
we need only cross-correlate the periodic signal with sinusoids at those specific fre-
quencies. When cross-correlating a signal with

sinusoids, it is easier mathematically to vary the phase of the cosine rather than shift
the time. Time shifting and phase shifting are proportionally related by the period
[t = q (T/360); Eq. 2.6]. This leads to an extension of the cross-correlation 
equation (Eq.2.31):

[Eq. 3.7]

where, again, f1 = 1/T.
The Fourier series theorem tells us that we need only one sinusoid per frequency

component (i.e., each value of n). This sinusoidal component will have the specific
phase shift q that maximizes the cross correlation rxy(q). To find this component
analytically, it would be necessary to set drxy(q)/dq = 0, solve for qmax, then find
rxy(qmax). This is not too difficult to do using a computer program such as MATLAB
and was the approach used to find the sinusoidal components in Example 2.11 and
Figure 3.1. However, following this procedure analytically can be tedious, especially
if x(t) is a complicated function.

There are two ways to simplify the calculations to find the sinusoidal compo-
nents: Convert the sinusoid in Eq. 3.7 to a sine and cosine or use complex notation
to represent the sinusoid. Both allow the direct calculation of the sinusoidal com-
ponent values. Under the first approach, the sinusoid is divided into a sine and cosine
and each is correlated with x(t) separately. Because the sine and cosine do not have
a phase, there is no time shift required and the cross-correlation becomes simple
correlation as in Eq. 2.28:
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These equations solve for the series coefficients in Eq. 3.6. It is not difficult to derive
these equations directly from Eq. 3.6 as shown in Appendix A. The factor of 2 is
required because the coefficients an and bn are defined in Eq. 3.5 and Eq. 3.6 as
amplitudes, not correlations (other scalings may be used). The digital versions of
these equations are given in the discussion of the complex representation.

The a0 term comes directly from Eq. 3.8 when n = 0:

[Eq. 3.9]

This equation explains why a0 is divided by two in Eq. 3.5 and Eq. 3.6. It is cal-
culated as twice the average value in order to be compatible with the Fourier trans-
form equations of Eq. 3.8.

To carry out the correlation and integration in Eq. 3.8, there are a few constraints
on x(t). First, x(t) must be capable of being integrated; that is:

[Eq. 3.10]

Second, while x(t) can have discontinuities, they must be finite in number and have
finite amplitudes. Finally, the number of maxima and minima must also be finite.
These three criteria are sometimes referred to as the Dirichlet conditions and are
generally met by real-world signals.

If we are decomposing the signal into sinusoidal components to plot the signal’s
frequency components (Figure 3.4), it is desirable to represent the signal by a series
of single sinusoids with varying magnitude and phase. This allows us to plot the
magnitude and phase frequency characteristics directly as shown in Figure 3.4. This
single sinusoidal representation can be obtained by first calculating the cosine and
sine coefficients using Eq. 3.8, then converting to a single sinusoid using Eq. 2.9
and Eq. 2.10, and repeated here:

[Eq. 3.11]

Because qn is negative in the equation that led to Eq. 2.10 [i.e., Cncos(2pnf1t - qn)],
but positive in the equation above, qn equals the negative of tan-1(bn/an).

The fact that periodic signals can be completely represented by a sinusoidal series
has implications well beyond simply limiting the appropriate sinusoids for probing
a periodic signal. It implies that any periodic signal, xT(t), is as well represented by
the sinusoidal series as by the signal itself. In other words, the series of sine and
cosine coefficients, an and bn in Eq. 3.8, or the equivalent single sinusoid magni-
tudes and phases, Cn and qn in Eq. 3.11, are as good a representation of xT(t) as
xT(t) itself. This is evident from the fact that, given only an and bn (or, equivalently
Cn and qn) and the frequencies at which they occur (or simply the fundamental fre-
quency, f1), you could reconstruct the signal, xT(t) using Eq. 3.6.

Converting a signal into its sinusoidal series equivalent using Eq. 3.8 is known
as a transformation since it transforms xT(t) into an alternative representation. This
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transformation based on sinusoids is often referred to as the Fourier transform, but
this term should be reserved for aperiodic (sometimes referred to as transient) signals
as described below. It is important to use technical terms carefully, so here the term
Fourier series analysis will be used to describe the transformation between the time
and frequency representation of a periodic signal. In general, a transformation can
be thought of as a remapping of the original signal into an alternative form in the
hope that the new form will be more useful or have more meaning. Because it is
possible to reverse the transformation and go from the sinusoidal series back to the
original function using Eq. 3.5 or Eq. 3.6, the Fourier series transformation would
be referred to as a bilateral transformation.

3.2.1 Symmetry

Some waveforms are symmetrical or antisymmetrical about t = 0, so that one or the
other of the components, an or bn in Eq. 3.7, will be zero. Specifically, if the wave-
form has mirror symmetry about t = 0; that is, x(t) = x(-t) (Figure 3.7, upper plot),
multiplications with sine functions will be zero leading to bn terms that are zero.
Such mirror symmetry functions are termed even functions. Similarly, if the func-
tion has antisymmetry, xT(t) = -x(t) (Figure 3.7, middle plot), termed an odd func-
tion, all multiplications with cosines will be zero resulting in an coefficients that are
zero. Finally, functions that have half-wave symmetry will have no even coefficients,
and both an and bn will be zero for n = even. These are functions where the second
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Figure 3.7 Waveform symmetries. Each waveform has a
period of 1 second. Upper plot: even symmetry; middle
plot: odd symmetry; lower plot: half-wave symmetry. Note
that the upper plot is also half-wave symmetric and the
lower waveform has even symmetry.



half of the period looks like the first half flipped left to right [i.e., x(t) = x(T - t)
(Figure 3.7, lower plot)]. Functions having half-wave symmetry can also be either
odd or even functions. These symmetries were useful for reducing the complexity
of solving for the coefficients when such computations were done manually. Even
when the Fourier series is calculated on a computer (usually the case), these prop-
erties can help verify the computer solution. Table 3.1 and Figure 3.7 summarize
these properties.

3.3 FREQUENCY REPRESENTATION

Functions other than sinusoids can be, and are, used to perform transformations,
but sinusoids are especially useful because of their unique frequency characteristics
mentioned earlier: a sinusoid contains energy at only one frequency (Figure 3.3).
Hence, if we know the sinusoidal makeup of a signal, it is easy to determine its fre-
quency characteristics, or spectrum. A complete description of a waveform’s fre-
quency characteristics consists of two plots (or two sets of data points): a plot of
the magnitude versus frequency and a plot of the phase versus frequency. Although
both magnitude and phase plots are necessary to completely represent the signal
and to convert the frequency representation back into the time representation, often
only the magnitude spectrum is of interest. Each sinusoidal component gives us a
single point on the two frequency curves (magnitude and phase) at a frequency
related to the component number n; specifically:

[Eq. 3.12]

For example, each Cn (from Eq. 3.11) would appear as a single point on the mag-
nitude (upper) plot while each qn would show as a single point on the phase (lower)
curve (Figure 3.3). These frequency plots (or equivalent set of data values) are
known as the ‘frequency domain’ representation, just as the untransformed wave-
form, xT(t), is known as the time domain representation. Hence, the Fourier series
analysis in Eq. 3.8 can be used to convert a periodic signal into its equivalent fre-
quency representation. Indeed, this time-to-frequency conversion is the primary
raison d’être for Fourier analysis. The Fourier series (and related Fourier transform)
is not the only path to a signal’s frequency or spectral characteristics, but it is the
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TABLE 3.1 Function Symmetries

Function Name Symmetry Coefficient Values

Even x(t) = x(-t) bn = 0
Odd x(t) = -x(-t) an = 0
Half-wave x(t) = x(T - t) an = bn = 0; for n even



most general approach; it makes the fewest assumptions about the signal, and its
digital version can be calculated with great speed using an algorithm known as the
fast Fourier transform (FFT). To go in the reverse direction, from the frequency to
the time domain, the Fourier series equations, Eq. 3.5 or Eq. 3.6, can be used.

The resolution of a spectrum can be loosely defined as the frequency difference
that a spectrum can resolve; that is, how close two frequencies can get and still be
identified as two frequencies. This resolution clearly depends on the frequency
spacing between harmonic numbers which in turn is equal to 1/T (Eq. 3.12). Hence,
the longer the data period being analyzed, the higher the spectral resolution. This
holds for discrete data as well.

Example 3.2: Find the Fourier series of the triangle waveform defined below. Find
the first four Fourier series components.

Solution: Use Eq. 3.8 to find the cosine (an) and sine (bn) coefficients. Then convert
to magnitude (Cn) and phase (qn) if desired. The magnitude and phase representa-
tion is more useful for plotting.
To find the sine coefficients use the lower equation in Eq. 3.8:

To find the cosine coefficients, apply the upper equation of Eq. 3.8:

These two coefficient terms can then be combined into the single sinusoidal rep-
resentation as magnitude (Cn) and phases (qn) using Eq. 3.11. Care must be taken
in computing the angle to ensure that it represents the proper quadrant:
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For a complete description of x(t) we would need more components and the a0 term.
The a0/2 term is twice the average value of x(t), which can be obtained using 
Eq. 3.9:

The most common way of presenting the frequency information determined in
Example 3.2 is as a plot of the single sinusoid coefficients, Cn and qn, against fre-
quency. Since the period of the function is 1.0 seconds, the fundamental frequency
f1 is 1 Hz. Hence, the first four values of n represent 1 Hz, 2 Hz, 3 Hz, and 4 Hz.
The magnitude plot is shown in Figure 3.8.

3.4 COMPLEX REPRESENTATION

Euler’s identity, Eq. 2.12, allows us to describe the sine and cosine functions in terms
of imaginary exponentials as shown below and derived in Appendix A:
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Figure 3.8 Magnitude plot of the frequency characteristics
of the waveform given in Example 3.2. Only the first four
components are shown. These components were deter-
mined by taking the square root of the sum of squares of the
first four cosine and sine terms.



[Eq. 3.13]

Substituting these definitions into the Fourier series equation, Eq. 3.6:

Removing the j terms from the denominator (multiplying numerator and denomi-
nator by j), and collecting terms:

Now defining a new coefficient, Cn:

[Eq. 3.14]

Then substituting for an and bn in Eq. 3.14, the integral term from the Fourier series
equations given in Eq. 3.8 becomes:

Combining:

Using Euler’s identity (Eq. 2.12), the term in the brackets can be replaced by 
a single imaginary exponential giving the complex form of the Fourier series 
analysis as:

[Eq. 3.15]

where f1 = 1/T. In this complex representation, the a0/2 term (the average value or
DC term) does not require a separate equation since when n = 0 the exponential
reduces to 1, and the integral computes the average value. From the definition of
Cn (Eq. 3.14), it can be seen that this single complex variable contains both the
cosine and sine coefficients. The cosine coefficients (an) can be obtained by taking
twice the real part of Cn, whereas the sine coefficients (bn) can be obtained as twice
the imaginary part of Cn. Note that from the complex arithmetic:
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[Eq. 3.16]

[Eq. 3.17]

Hence the magnitude of Cn is equal to 0.707 times the magnitude of the sinusoidal
components and the angle of Cn is equal to the phase of the sinusoidal component.
The complex variable Cn not only contains both sine and cosine coefficients, but
these components can be readily obtained in either the single sinusoidal magnitude
and phase form (most useful for plotting) or the sine/cosine form.

The complex version of the inverse Fourier series requires the summation be done
for n = ±•:

[Eq. 3.18]

Example 3.3: Find the Fourier series of the pulse waveform shown below with a
period T and a pulse width of W. Use the complex equation.
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Solution: Apply Eq. 3.15 directly except since the signal is and even function [x(t)
= x(-t)], it is easier to integrate from t = -T/2 to +T/2.

Given specific values for T and W it is possible to solve for the complex values of
Cn. The magnitude spectrum would be equal to |Cn|/0.707, whereas the phase spec-
trum would be equal to the angle of Cn (i.e., –Cn, see Appendix A). In general, it
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is easier to solve for the Fourier series analytically using the sine and cosine equa-
tions, Eq. 3.8, but the complex representation is more often used when discussing
the digital implications of Fourier series analysis because of its succinct presenta-
tion. It is also the approach used in computer algorithms, and is the format cited
in journal articles.

3.5 THE CONTINUOUS FOURIER TRANSFORM

The Fourier series analysis is a good approach to determining the frequency or spec-
tral characteristics of a periodic waveform, but what if the signal is not periodic?
Most real signals are not periodic, and for many physiological signals, such as the
EEG signal in Figure 2.4, only a part of the signal is available. The segment of EEG
signal shown in Figure 2.4 is much less than the amount of data actually recorded,
but no matter how long the recording, the EEG signal existed before the recording
and will continue after the recording session ends (unless the EEG recording session
was so traumatic as to cause untimely death!). If the signal is aperiodic, an exten-
sion of the Fourier series analysis can be used. An aperiodic signal is one that exists
for a finite period, but is zero at all other times (Figure 3.9). Aperiodic signals are
sometimes referred to as transient signals.

To extend the Fourier series analysis to aperiodic signals, such signals could be
treated as a periodic, but where the period goes to infinity, (i.e., T Æ •). Note that
if T Æ •, then f1 = 1/T Æ 0; however, nf1 does not necessarily go to zero because
n may still go to infinity. Rather as f1 becomes smaller and smaller, so does the 
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Figure 3.9 An aperiodic function exists for a finite length
of time and is zero everywhere else.



increment between harmonics and nf1 becomes a continuous variable f. Thus, in the
Fourier series equations (Eq. 3.8 and 3.15), the 2pnf1 becomes 2pf for aperiodic
functions. If radians are used instead of Hz, then nw1 goes to w in all these equa-
tions. This leads to the equation for the continuous Fourier transform:

[Eq. 3.19]

or, in terms of the sine and cosine equations:

[Eq. 3.20]

These transforms now produce a continuous function as an output and it is common
to denote these Fourier transform variables with capital letters. In addition, the
transform equation is no longer normalized by the period because 1/T Æ 0 since T
Æ •. Although the transform equation has limits between ±•, the actual limits will
be over the length of x(t), which must be finite or the transform does not exist.

Although it is rarely used in analytical computations, the inverse continuous
Fourier transform is given as:

[Eq. 3.21]

where again, w is frequency in radians.

Example 3.4: Find the Fourier transform of the pulse in Example 3.3 assuming
the period, T, goes to infinity.

Solution: We could apply Eq. 3.19, but because x(t) is an even function, we could
also use cosine portion of the Fourier transform in Eq. 3.20.

A plot of X(f) is shown in Figure 3.10. Note that this is a complex function so the
magnitude is just the absolute value of the function shown in Figure 3.10, and the
phase would alternate between 0 degrees when the function is positive and 180
degrees when the function is negative.
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3.6 DISCRETE DATA: THE DISCRETE FOURIER TRANSFORM

Most Fourier analysis is done using a digital computer and is applied to discrete
data. Discrete data differ from continuous, periodic data in two fundamental ways:
They are time- and amplitude-sampled, as discussed in Section 1.2.1, and they are
finite. The finite data can be considered as an aperiodic signal or as one period of
a periodic signal. Either way, the analysis is the same: a discrete version of the
Fourier analysis equations:

[Eq. 3.22]

where m is the index of the data array of length M, and n is the harmonic number.
In the most common implementation of this equation, the length of n and m are
equal. Equation 3.22 produces a series of numbers that describe the amplitude and
phase of a harmonic series of sinusoids. The fundamental period of this series is still
1/T, which can also be given in terms of the data length, M, and the sampling fre-
quency, fs:

[Eq. 3.23]

If M is finite, as must always be the case, Eq. 3.23 is actually the discrete version
of the Fourier series; if the data are actually periodic, this equation is performing a
discrete Fourier series analysis. On the other hand, if the assumption is that the data
represent an aperiodic function (commonly made, even if untrue), and the data at
hand are a truncated version of infinitely long data, this equation can be taken as
performing the discrete Fourier transform (DFT). Regardless of how this equation
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Figure 3.10 The complex spectrum of an aperiodic
pulse as determined in Example 3.4.



is interpreted, it is usually implemented using a high-speed algorithm know as the
FFT.

It should be apparent that terminology associated with Fourier analysis is com-
plicated by the use of several different terms and abbreviations. There is the temp-
tation to simply call all these operations Fourier transforms, or even worse, FFTs.
Using appropriate terminology will reduce confusion about what you are actually
doing and may even impress less informed bioengineers. To aid in being linguisti-
cally correct, Table 3.2 summarizes the terms and abbreviations used to describe
the various aspects of Fourier analyses.

The discrete form of the inverse Fourier transform is similar to the inverse Fourier
series equation (Eq. 3.18):

[Eq. 3.24]

Again, discrete-time data differ from continuous data in two important ways: The
data are time- and amplitude-sampled and the data are shortened to fit within the
finite constraints of computer memory. Each of these operations has an effect on
the discrete Fourier transform, particularly time sampling and data truncation. The
influence of each of these operations on the digitized signal is described in the next
section.

3.6.1 Data Sampling: Sampling Theorem

To import a continuous time domain (i.e., analog) signal into a digital computer
requires, among other things, slicing that signal into discrete time intervals (usually
evenly spaced), a process known as sampling (Figure 3.11).

This sampling process has some very peculiar effects on the discrete Fourier trans-
form (or discrete Fourier series). Figure 3.12A shows an example of the magnitude
frequency spectrum of a 1-second periodic, continuous signal that might be found
using continuous Fourier series analysis (Eq. 3.8 or Eq. 3.15). The fundamental fre-
quency is 1/T = 1 Hz and the first 10 harmonics are plotted out to 10 Hz. For this
particular signal, there is little energy above 7.0 Hz. Figure 3.12B shows the theo-
retical magnitude spectrum that would be obtained by applying the DFT to the same
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TABLE 3.2 Terms and Abbreviations Used in Fourier Analysis

Type of Signal Type of Analysis Method

Periodic and continuous (analog) Fourier series Analytical Eq. 3.8 or Eq. 3.18
Periodic and discrete Discrete Fourier series Eq. 3.21, DFT or FFT
Aperiodic and continuous Fourier transform Analytical Eq. 3.19
Aperiodic (assumed) and discrete DFT Eq. 3.21, DFT or FFT

DFT, discrete Fourier transform; FFT, fast Fourier transform.



signal that produced the spectrum in Figure 3.12A, but after it is sampled at 20 Hz.
Due to the sampling process, many more frequencies exist than those in the origi-
nal. The output of the DFT is itself periodic, with the period equal to the sample
frequency, fs (in this case 20 Hz). The spectrum even contains negative frequencies
and has even symmetry about f = 0.0 Hz as well as about positive and negative 
multiples of fs. Because of the even symmetry, the portion between 0 and 20 Hz 
has mirror symmetry about fs/2 (in this case 10 Hz).

The spectrum of the sampled signal presents a problem because if the sampled
signal spectrum is different from the original, unsampled signal spectrum (which it
is), it stands to reason that the sampled signal is different from the original. If the
sampled signal is different from the original and if we cannot recover the sampled
signal from the original, digital signal processing is a lost cause. We will be pro-
cessing something unrelated to the original signal. The critical question then
becomes, Given that the sampled signal is different from the original, can we at least
reconstruct the original signal from the sampled signal? The frequency domain
version of that question is, Can we reconstruct the unsampled spectrum from the
sampled spectrum? The answer is, Well, maybe. It depends on the sampling 
frequency—as shown below.

Figure 3.13 shows just one period of the DFT shown in Figure 3.12B, the period
between 0 and fs Hz. In fact, this is the only portion of the DFT spectrum that is
produced by the DFT algorithm, the rest of the frequencies are theoretical (but not
inconsequential). Comparing this spectrum to the spectrum of the original signal
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Figure 3.11 A continuous signal (upper trace) is sampled at dis-
crete points in time and stored in memory as an array of numbers
proportional to the continuous signal’s amplitude at the time it was
sampled (lower trace).
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Figure 3.12 A: The spectrum of a continuous signal. B: The
spectrum of this signal after being sampled at fs = 20 Hz. Sam-
pling produces a larger number of frequency components not
in the original spectrum, even components having negative fre-
quency. The sampled signal has a spectrum that is periodic at
the sampling frequency (20 Hz) and has even symmetry about
0.0 Hz and positive and negative multiples of the sampling fre-
quency, fs. Since the sampled spectrum is periodic, it goes on
forever and only a portion of can be shown.



(Figure 3.12A), we see that the two are the same for the first half of the spectrum
up to fs/2, and the second half is just the mirror image. The spectrum above fs/2 is
a result of the periodicity produced by the sampling process combined with the even
symmetry. (Because of the periodicity, it is in the frequency range above fs/2 where
the theoretical negative frequencies make their impact.) It would appear that in this
case at least, we could obtain a frequency spectrum that was identical to the orig-
inal if we simply disregarded all frequencies above fs/2. Under this strategy, these
frequencies are ignored because they are generated by the sampling process and do
not belong to the original, continuous signal. The frequency fs/2 is often referred to
as the Nyquist frequency.

This strategy of ignoring all frequencies above the Nyquist frequency (fs/2), works
well and is the approach that is commonly adopted. But, it only works if the orig-
inal signal did not have components at, or above fs/2. For example, consider a sit-
uation where four sinusoids having frequencies of 100, 200, 300, and 400 HZ are
sampled at a sampling frequency of 1,000 Hz. The spectrum produced by the DFT
actually contains eight frequencies (Figure 3.14A): the four original frequencies plus
the four mirror image frequencies reflected about fs/2 (500 Hz). As long as we know,
in advance, that the sampled signal does not contain any frequencies above the
Nyquist frequency (500 Hz), we will not have a problem. We know that the first
four frequencies are those of the signal and the second four, above the Nyquist fre-
quency, are the reflections that can be ignored. However, a problem occurs if the
signal contains frequencies higher than the Nyquist frequency. The reflections of
these frequency components will carry back into the lower half of the spectrum.
This is shown in Figure 3.14B where the signal now contains two additional fre-
quencies at 650 and 850 Hz. These frequency components have their reflections in
the lower half of the spectrum—at 350 and 150 Hz, respectively. It is now no longer
possible to determine if the 350-Hz and 150-Hz signals are part of the true 
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Figure 3.13 One period of the discrete Fourier trans-
form shown in Figure 3.12B, the period between 0 and
fs Hz.



spectrum of the signal (i.e., the spectrum of the signal before it was sampled) or
whether these are the reflections of signals with frequency components greater than
fs/2. Both halves of the spectrum now contain mixtures of frequencies above and
below the Nyquist frequency, and it is impossible to know where they really belong.
This confusing condition is known as aliasing. One obvious way—in fact the only
way—of resolving this ambiguity is to insure that all frequencies in the original
signal are less than the Nyquist frequency, and this is exactly what is done.

Because the Fourier transform is bilateral, if you cannot determine the original
spectrum from the one in the computer, you cannot reconstruct the original signal
from the one stored in the computer. The frequencies above the Nyquist frequency
have hopelessly corrupted the signal stored in the computer. Fortunately, the con-
verse is also true. If there are no corrupting frequency components in the original
signal (i.e., the signal contains no frequencies above half the sampling frequency),
the spectrum in the computer will be a true reflection of the signal’s spectrum, if we
eliminate or disregard the frequencies above the Nyquist frequency. Elimination of
frequencies above the Nyquist frequency can be achieved by lowpass filtering, so
the original signal can be reconstructed from the one in the computer by lowpass
filtering. This leads to the famous sampling theorem of Shannon: The original signal
can be recovered from a sampled signal if the sampling frequency is more than twice
the maximum frequency contained in the original:
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Figure 3.14 A: Four sine waves between 100 and 400 Hz are
sampled at 1 kHz. Only one period of the sampled spectrum is shown,
the period between 0 and fs Hz. Sampling essentially produces new
frequencies not in the original signal. Because of the periodicity and
even symmetry of the sampled spectrum, the additional frequencies
are a mirror image reflection around fs/2, the Nyquist frequency. If all
the frequency components of the sampled signal are below the
Nyquist frequency, the upper frequencies can be ignored. B: If the
sampled signal contains frequencies above half the sampling fre-
quency, these are reflected in the lower half of the spectrum (large
asterisks). It is no longer possible to determine which frequencies
belong where, a problem known as aliasing.



[Eq. 3.25]

Usually the sampling frequency is under software control, and it is up to the bio-
medical engineer doing the sampling to ensure that fs is high enough. To make elim-
ination of the unwanted higher frequencies easier, it is common to sample at three
to five times fmax. This increases the spacing between the frequencies in the original
signal and those generated by the sampling process (Figure 3.15). The temptation
to oversample, setting fs to be much higher than is really necessary, is strong, and
it is a strategy often pursued. However, excessive sampling frequencies leads to large
data storage and processing requirements that could overtax the computer system.

3.6.2 Amplitude Slicing: Quantization (Optional)

By selecting an appropriate sampling frequency, it is possible to circumvent prob-
lems associated with time slicing, but the digitization process also requires the data
be sliced in amplitude because the signal value must be represented by a discrete
number (usually in binary format). Amplitude resolution is given in terms of the
number of bits in the binary output with the assumption that the least significant
bit (LSB) in the output is accurate (which may not always be true). Typical analog-
to-digital converters (ADCs) feature 8-, 12-, and 16-bit output with 12 bits pre-
senting a good compromise between conversion resolution and cost. In fact, most
signals do not have sufficient signal-to-noise ratio to justify a higher resolution; you
are simply obtaining a more accurate conversion of the noise.

The number of bits used for conversion sets an upper limit on the resolution, and
determines the quantization error (Figure 3.16). The more bits that are used to rep-
resent the signal, the finer the resolution of the digitized signal and the smaller the

f fs > 2* max
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Figure 3.15 The same signal is sampled at two different
sampling frequencies. The higher sampling frequency pro-
vides much greater separation between the signals of interest
and those produced by the sampling process.



quantization error. The quantization error is the difference between the original,
continuous signal value and the digital representation of that value after it is
sampled. This error can be thought of as a noise process added to the digitized
signal. If a sufficient number of quantization levels exist (say n above 64, equiva-
lent to 7 bits), the distortion produced by quantization error may be modeled as
additive independent white noise with zero mean and a variance determined by the
quantization step size, d. The quantization step size is just the maximum voltage
the ADC can convert divided by the number of steps which is 2n - 1; hence, d =
VMAX/2n-1. Assuming that the error, h, is uniformly distributed between -d/2 to +d/2,
the variance of the noise would be:

[Eq. 3.26]

where VMAX is the maximum voltage the ADC can convert and n is the number of
bits out of the ADC. Assuming a uniform distribution for the quantization noise,
the RMS (root mean square) value of the noise would be approximately equal to
the standard deviation, s, as shown in Chapter 2.

Example 3.5: What is the equivalent quantization noise (RMS) of a 12-bit ADC
that has an input voltage range of ±5.0 V.
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Figure 3.16 Quantization (amplitude slicing) of a continuous waveform. The
lower trace shows the error between the quantized signal and the input.



Solution: Apply Eq. 3.26

3.6.3 Data Length: Truncation

The digitized waveform must necessarily be truncated to the length of the memory
storage array, a process described as windowing. The windowing process can be
thought of as multiplying the data by some window shape. If the waveform is simply
truncated and no further shaping is performed on the resultant digitized waveform
(as is often the case), then the window shape is rectangular by default (Figure 3.17).
Other shapes can be imposed on the data by multiplying the digitized waveform by
the desired shape. The influence of windowing is generally quite subtle and, except
for very short data segments, a rectangular window (i.e., simple truncation) is
usually acceptable. (See Semmlow, 2004, for a thorough discussion of the influence
of various nonrectangular window functions.)

The length of a truncated data segment is determined during the data acquisition
process and is usually a compromise between the desire to acquire enough of the
signal and the need to minimize computer memory usage.
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Figure 3.17 Data truncation or shortening can be thought of math-
ematically as multiplying the original data by a window function that
is one over the length of the truncated data and zero everywhere else.



The length of the data segment determines the apparent period of the data and
hence the frequency range of the DFT. Recall that the frequency components
obtained by the Fourier series analysis depend on the period, specifically:

[Eq. 3.27]

where n is the harmonic number and f1 the fundamental frequency which equals
1/T. For a discrete signal where N is the total number of points in the digitized
signal, the equivalent period is the total number of points, N, divided by the sample
frequency, fs:

[Eq. 3.28]

and the equivalent frequency, f, can be written as:

[Eq. 3.29]

This equation is often used in the MATLAB routines to generate the horizontal axis
of a frequency plot (i.e., f = (1:N)*fs/N, where N is the length of the signal.
See Example 3.6). The last data point from the DFT would have a frequency value
of fs because:

[Eq. 3.30]

In the continuous Fourier series, the frequency increases for each harmonic number
by 1/T (Eq. 3.12). Accordingly, the resolution of the continuous Fourier series
depends on the period; that is, the time length of the data. For the DFT, the same
relationship between data length and frequency resolution holds; specifically, the
resolution is proportional to fs/N as given in Eq. 3.29. Hence, for a given sampling
frequency, the larger N, the smaller the frequency increment between successive DFT
data points. In other words, the more points sampled, the higher the spectral 
resolution.

Once the data has been acquired, it would seem that the number of points rep-
resenting the data, N, is fixed, but there is a method that can be used to increase
the data length post hoc. We can extend the data simply by tacking on constant
values, usually zeros. This may sound like cheating, but it is justified by the under-
lying assumption that the signal is zero outside of the actual data segment. In signal
processing, adding zero data points to extend the period of a signal is known as
zero padding. Other, more complicated, padding techniques can be used, such as
padding with the end points, but zero padding is by far the most common strategy
for extending data.) This gives the appearance of a spectrum with higher resolution.
Figure 3.18 shows what appear to be advantages of extending the period by adding
zeros to the data segment. The signal is a triangle wave with an actual period of 1
second but which has been extended to 2 and 8 seconds with zero padding. Zero
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padding the data seems to improve resolution because the more closely spaced fre-
quency points show more of the spectrum’s details. In fact, extending the period
with zeros does not increase the information in the signal, and the resolution of the
signal is not any better. Zero padding provides an interpolation of the points in the
unpadded signal; that is, it fills in the gaps of the original spectrum using an esti-
mation process. Overstating the value of zero padding is a common mistake of prac-
ticing engineers. Zero padding does not increase the resolution of the spectrum, only
the apparent resolution. However, the interpolated spectrum will certainly look
better when plotted.

3.7 POWER SPECTRUM

The power spectrum is commonly defined as the Fourier transform of the autocor-
relation function. In continuous notation and discrete notation, the power spectrum
equation becomes the following:
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Figure 3.18 A waveform having an original period of one
second (upper left) and its associated frequency spectrum (upper
right). Extending the period to 2 and 8 seconds (middle and lower
plots) by adding zeros decreases the spacing between frequency
points, producing a smoother-looking frequency curve.



[Eq. 3.31]

where rxx[n] is the autocorrelation function described in Chapter 2. Because the
autocorrelation function has even symmetry, the sine terms, bn, will all be zero (Table
3.1), and Eq. 3.31 can be simplified to include only real cosine terms:

[Eq. 3.32]

Equation 3.32 is sometimes referred to as the cosine transform. A more popular
method for evaluating the power spectrum is the so-called direct approach. The
direct approach is motivated by the fact that the energy contained in an analog
signal, x(t), is related to the magnitude of the signal squared integrated over time:

[Eq. 3.33]

By an extension of a theorem attributed to Parseval (Stearns and David, 1996) it is
easy to show that:

[Eq. 3.34]

The term |X(f)|2 is called the periodogram and equals the energy density function
over frequency, also referred to as the energy spectral density, the power spectral
density, or simply the power spectrum. (Traditionally, evaluation of the power spec-
trum involved the averaged periodogram as described in Section 3.7.1, but it is now
common to refer to the unaveraged periodogram as the power spectrum; hence the
two terms have become interchangeable.) In the direct approach, the power spec-
trum or periodogram is calculated as the magnitude squared of the Fourier trans-
form (or Fourier series) of the waveform of interest:

[Eq. 3.35]

This direct approach of Eq. 3.35 has displaced the cosine transform for determin-
ing the power spectrum because of the efficiency of the FFT. (However, a variation
of this approach is still used in some advanced signal processing techniques involv-
ing time and frequency transformation.) One of the problems compares the power
spectrum obtained using the direct approach of Eq. 3.35 with the traditional cosine
transform method represented by Eq. 3.32.

Unlike the Fourier transform, the power spectrum does not contain phase infor-
mation. Hence, the power spectrum is not a bilateral transformation—it is not 
possible to reconstruct the signal from the power spectrum. However, the power
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spectrum has a wider range of applicability and is defined for some signals that do
not have a meaningful Fourier transform (such as those resulting from random
processes). Because the power spectrum does not contain phase information, it is
applied in situations where phase is not considered useful or to data that contain a
lot of noise, since phase information is easily corrupted by noise.

3.7.1 Spectral Averaging

Although the power spectrum can be evaluated by applying the FFT to the entire
waveform, it can also be applied to isolated segments of the data. The periodogram
determined from each of these segments can then be averaged to produce a power
spectrum that better represents the overall, or global, features of the spectrum. This
approach is popular when the available waveform is only a sample of a longer signal.
In such very common situations, spectral analysis is necessarily an estimation
process, and averaging improves the statistical properties of the result.

Averaging is usually achieved by dividing the waveform into a number of possi-
bly overlapping segments and evaluating the periodogram on each of these segments
(Figure 3.19). The final power spectrum is constructed from the ensemble average
of the power spectra obtained from each segments.
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Figure 3.19 A waveform is divided into three segments with a 50% overlap
between each segment. As described below, in the Welch method of spectral
analysis, the power spectrum of each segment would be computed separately and
an average of the three transforms would provide the result.



Averaging involves tradeoffs between spectral resolution, which is reduced by
averaging, and the desire for better statistical reliability. Segmentation necessarily
reduces the number of data samples evaluated by the periodogram in each segment.
As stated in Eq. 3.29, frequency resolution of a spectrum is proportional to fs/N,
where N is now the number of samples in a segment. Choosing a short segment
length (a small N) will provide more segments for averaging and improve the reli-
ability of the spectral estimate, but will also decrease frequency resolution. Figure
3.20 shows spectra obtained from a 1,024-data array consisting of a 100-Hz sinu-
soid and white noise. In Figure 3.20A, the periodogram is taken from the entire
waveform, whereas in Figure 3.20B, the waveform is divided into 32 nonoverlap-
ping segments and the power spectrum from each segment is averaged. The peri-
odogram produced from the segmented data is much smoother, but the loss in
frequency resolution is apparent because the 100-Hz sine wave is no longer visible.
In practice, the selection of segment length and averaging strategy is usually based
on experimentation with the actual data.

One of the most popular procedures to evaluate the average periodogram is
attributed to Welch and is a modification of the segmentation scheme originally
developed by Bartlett (Maple, 1987). In this approach, overlapping segments are
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Figure 3.20 Power spectra obtained from a waveform consisting of a 100-Hz
sine wave buried in white noise (signal-to-noise ratio of -16 dB) with (B) and
without (A) averaging. In the unaveraged spectrum, a spike at 100 Hz is clearly
seen. For the averaged spectrum, the 100-Hz component is not as obvious and
could easily be missed; however, the averaging technique produces a smoother
estimate of the white noise spectrum, which ideally should be a flat horizontal line.



used and a shaping window is applied to each segment. By overlapping segments,
more segments can be averaged for a given segment and data length. Power spectra
based on averaged periodograms obtained from noisy data traditionally use half-
overlapping segments, that is, segments that overlap by 50%. Higher amounts of
overlap have been recommended in other applications and, when computing time
is not a factor, maximum overlap has been recommended. Maximum overlap means
shifting over by just a single sample to get the new segment. Examples of this
approach to estimating the power spectrum are provided in a subsequent section
on MATLAB implementation.

3.8 SIGNAL BANDWIDTH

The concept of representing a signal in the frequency domain brings with it addi-
tional concepts relating to a signal’s spectral characteristics. One of the most impor-
tant of these new concepts is signal bandwidth. Later we will extend the concept of
bandwidth to processes as well as signals, and we will find that the definitions
related to bandwidth are essentially the same. The bandwidth of a signal is defined
by the range of frequencies found in the signal. Figure 3.21A shows the spectrum
of a hypothetical signal that contains energy at frequencies in equal measure up to
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Figure 3.21 Frequency characteristics of ideal and realistic signals.
The frequency plots shown here have a linear vertical axis, but often
the vertical axis is plotted in decibels. The horizontal axis is in log fre-
quency. A: Idealized signal having a sharp attenuation in energy at
frequency fc. B: Realistic signal with a gentle attenuation of energy.
C: Realistic signal with a sharp attenuation characteristic. D: Signal
with attenuation at both low and high frequencies.



frequency fc, above which no energy is found. We would say that the signal has a
flat spectrum up to fc, the cutoff frequency, above which its spectrum is zero. Because
the signal contains energy only between 0 and fc Hz, the bandwidth of this signal
would be 0 to fc Hz, or simply fc Hz.

Although some real signals can be quite flat over selected frequency ranges, they
are unlikely to show such an abrupt cessation of energy above a given frequency.
Figure 3.20B shows a more realistic spectral characteristic, where signal energy
begins to decrease at a specific frequency but decreases gradually with frequency
until there is no more energy in the signal. When the decrease in signal energy takes
place gradually, as in Figure 3.20B, defining the bandwidth is problematic. If we are
to define a single bandwidth for this signal, we need to define a cutoff frequency: a
frequency boundary between the region of substantial energy and the region of
minimal energy. This boundary has been somewhat arbitrarily defined as the fre-
quency when the signal’s RMS value has declined by 3 dB with respect to its average
unattenuated value. (In Figure 3.21, the unattenuated value for all filters is 1.0.)
The 3-dB boundary is not entirely arbitrary, because when the signal is attenuated
3 dB, its RMS amplitude is 0.707 of its unattenuated value and it has half the power
of its unattenuated power. (Recall the previous section on decibels: 0.7072 = 1/2.)
Accordingly, this boundary point is also known as the half-power point. The terms
cutoff frequency, minus 3-dB point, and half-power point are synonymous. In Figure
3.21B, the signal would have a bandwidth of 0.0 to fc Hz, or simply fc Hz. The
signal in Figure 3.21C has a sharper decline in energy, referred to as the frequency
rolloff, but it would still have a bandwidth given by the 3-dB point at fc Hz.

It is possible that a signal rolls off at both the low-frequency and high-frequency
ends as shown in Figure 3.21D. In this case, the signal’s frequency characteristic has
two cutoff frequencies, one labeled flow and the other fhigh. In this case the band-
width is defined as the range between the two cutoff frequencies (or 3 dB points),
that is, fhigh - flow Hz.

3.9 MATLAB IMPLEMENTATION

MATLAB provides a variety of methods for calculating spectra, particularly if the
signal processing toolbox is available. The basic Fourier transform routine is imple-
mented as:

Xf = fft(x,n) % Calculate the Fourier Transform

where x is the input waveform and Xf is a complex vector providing the sinusoidal
coefficients. (It is common to use capital letters for the Fourier transformed vari-
able.) The argument n is optional and is used to modify the length of data analyzed:
If n is less than the length of x, the analysis is performed over the first n points. If
n is greater than the length of x, the signal is padded with trailing zeros to equal
n. The fft routine implements Eq. 3.22 above and uses a high-speed algorithm.
The FFT algorithm requires the data length to be a power of two, and although the
MATLAB routine will interpolate, calculation time then becomes highly dependent
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on data length. The algorithm is fastest if the data length is a power of two or if
the length has many prime factors. For example, on one machine a 4,096-point FFT
takes 2.1 seconds, but requires 7 seconds if the sequence is 4,095 points long, and
58 seconds if the sequence is 4,097 points long. If possible, use data lengths that
are powers of two.

The magnitude of the frequency spectra can be easily obtained by applying the
absolute value function, abs, to the complex output Xf:

Magnitude = abs(Xf); % Take the magnitude of Xf

This MATLAB function simply takes the square root of the sum of the real part of
Xf squared plus the imaginary part of Xf squared. The phase angle of the spectra
can be obtained by application of the MATLAB angle function:

Phase = angle(Xf) % Find the angle of Xf

The angle function takes the arc tangent of the imaginary part divided by the real
part of Xf. Unlike most handheld calculators (and the MATLAB atan function),
the angle routine does take note of the signs of the real and imaginary parts and
will generate an output in the proper quadrant. The magnitude and phase of the
spectrum can then be plotted using standard MATLAB plotting routines.

Example 3.6: Construct the waveform used in Example 3.2 (repeated below) and

determine the Fourier transform using both the MATLAB fft routine and a direct
implementation of the defining equations (Eq. 3.8).

Solution: The MATLAB fft routine does no scaling, so its output should be 
multiplied by 2/N, where N is the number of points to get the correct coefficients
in RMS value. To get the peak-to-peak values the output will have to be further
scaled by dividing by 0.707.

% Example 3.6 and Fig 3.22
% Find the Fourier Transform of half triangle waveform
% used in Example 3.2. Use both the MATLAB fft and a
% direct implementation of Eq. 3.8
%
clear all; close all;
N = 256; % Data length
t = (1:N)/N; % Generate time vector 1 sec long
fs = N; % fs for 1 sec data
f = (1:N)*fs/N; % Frequency vector for plotting
x = t; % Generate the signal: initial
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x(129:N) = 0; % section is a ramp, then zeros
%
Xf = fft(x); % Take Fourier Transform, scale
Mag = abs(Xf(2:end))/... % remove first point (DC value)

(N/2);
Phase = angle(Xf(2:end))*(360/(2*pi));
%
plot(f(1:20),Mag(1:20),’xb’); hold on; % Plot magnitude
xlabel(‘Frequency (Hz)’); ylabel(‘|X(f)|’);
%
% Calculate the Fourier series using the basic equations
% (Eq. 3.8)
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)));
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)));
% Calculate magnitude and phase
C(n) = sqrt(a(n).^2 + b(n).^2);
theta(n) = -(360/(2*pi)) * atan(b(n)./a(n));

end
plot(f(1:20),C(1:20),’sr’); % Plot superimposed
%
% Output numerical values
disp([a(1:4)’ b(1:4)’ C(1:4)’ Mag(1:4)’ theta(1:4)’
Phase(1:4)’])

The spectrum produced by the two methods is identical as seen by the perfect
overlap of the x points and square points in Figure 3.22.

The numerical values produced by this program are given below.

104 CHAPTER 3 FREQUENCY TRANSFORMATIONS

Both methods produce identical magnitude spectra as seen in both Figure 3.22 and
the data above (compare Cn with Mag[fft]) The column Theta shows the angles cal-
culated using Eq. 3.8 and these are incorrect because the MATLAB atan function
does not determine the correct quadrant. Both magnitudes and the phase found by
the fft routine closely match the values determined analytically in Example 3.2.
Note that the values for a2 and a4 are not exactly zero as they were determined to
be analytically. Because of these small errors, the phase angle for the second and

an bn Cn Mag(fft) Theta Phase (fft)

-0.1033 0.1591 0.1897 0.1897 -57.0182 121.5756
0.0020 -0.0796 0.0796 0.0796 -88.5938 -91.4063

-0.0132 0.0530 0.0546 0.0546 -76.0053 99.7760
0.0020 -0.0398 0.0398 0.0398 -87.1875 -92.8125



fourth components is not exactly -90 degrees as determined analytically. It is worth
noting that analytic solutions can be more accurate than computer solutions, and
that computer solutions are prone to small errors even for a simple problem such
as given in this example.

An example applying the MATLAB fft to a waveform containing sinusoids and
white noise is provided below along with the resultant spectra in Figure 3.23. Other
applications are explored in the problem set at the end of this chapter. Example 3.7
uses a special routine, sig_noise, found on the enclosed CD. This routine gen-
erates data consisting of sinusoids and noise and can be useful in evaluating spec-
tral analysis algorithms. The calling structure for sig_noise is:

[x,t] = sig_noise([f],[SNR],N); % Generate a signal
% in noise

where f specifies the frequency of the sinusoid(s) in hertz, SNR specifies the desired
noise associated with the sinusoid(s) in decibels, and N is the number of points. If
f is a vector, a number of sinusoids are generated, each with a signal-to-noise ratio
specified by SNR assuming it is a vector. If SNR is a scalar, its value is used for the
SNR of all the frequencies generated. The output waveform is in x and t is a time
vector useful in plotting. The routine assumes a sample frequency of 1 kHz.

Example 3.7: Construct a waveform consisting of a single 250-Hz sine wave and
white noise with an SNR of -14 dB. Calculate the Fourier transform of this wave-
form and plot the magnitude spectrum.
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Figure 3.22 Magnitude frequency spectra produced by the MATLAB
fft routine (* points) and a direct implementation of the Fourier trans-
form equations (Eq. 3.8) (square boxes).



Solution: Use sig_noise to generate the waveform, take the Fourier transform
using fft, obtain the magnitude using abs, and plot.

% Example 3.7 and Figure 3.23 Determine the Power Spectrum
% of a noisy waveform
% First generate a waveform consisting of a single sine in
% noise, calculate the Power Spectrum from FFT and plot
%
clear all; close all;
N = 1024; % Number of data points
% Generate data using ‘sig_noise’
% 250 Hz sin plus white noise; N data points; SNR = -14 dB
[x,t] = sig_noise (250,-14,N); % Generate signal and noise
%
fs = 1000; % Sample frequency is 1 kHz.
Xf = fft(x); % Calculate FFT
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Figure 3.23 Plot produced by the MATLAB program. The peak at 250 Hz is appar-
ent. The sampling frequency of these data is 1 kHz, hence, the spectrum is sym-
metric about the Nyquist frequency, fs/2 (500 Hz). Normally, only the first half of
this spectrum would be plotted. (Signal-to-noise ratio equals -14 dB; N = 1,024.)



Mag = abs(Xf); % Calculate the magnitude
f = (1:N)*fs/N; % Frequency vector for plotting
plot(f,Mag,’k’); % Plot the magnitude spectrum

title(‘Spectrum (symmetric about fs/2)’);
xlabel(‘Frequency (Hz)’); ylabel(‘Magnitude’);

Analysis: The program is straightforward. After constructing the waveform using
the routine sig_noise, the program takes the discrete Fourier transform with fft
and then plots the magnitude (constructed using abs) versus frequency. A frequency
vector the same length as the data (N points) is generated to aid in plotting. The fre-
quency vector is based on Eq. 3.29 and increases linearly from 1.0 to fs.

Results: The spectrum is shown in Figure 3.23 and the peak related to the 250-
Hz sine wave is clearly seen. As expected, the spectrum above fs/2 (i.e., 500 Hz) is
a mirror image of the lower half of the spectrum. The white noise is not very well
represented in this analysis because averaging is not used. Ideally, the background
spectrum should be a constant value, yet the background is highly variable, with
occasional peaks that could be mistaken for signals. A better way of determining
the spectrum of a broadband feature such as white noise would be to use an aver-
aging strategy as shown in Examples 3.8 and 3.9.

The heart rate data shown in Figure 2.12 show considerable differences in the
mean and standard deviation of the rate between meditative and normal states.
Applying the autocovariance to the meditative heart rate data (Problem 2.15 in
Chapter 2) indicates a possible repetitive structure for the variation in heart rate
during the meditative average rate and variance. Example 3.8 searches for possible
structure in the frequency characteristics of both normal and meditative heart rates
using the Fourier transform.

Example 3.8: Determine and plot the power spectra of heart rate variability during
normal and meditative states.

Solution: The frequency characteristics may be found by Fourier transform using
the direct method given in Eq. 3.35. However, the heart rate data should first be
converted to time data, and this is a bit tricky. The data set obtained by a down-
load from the PhysioNet database provides the heart rate at unevenly spaced times,
where the sample times are provided as a second vector. The heart rate data need
to be rearranged into even time positions. This will be done through interpolation
using MATLAB’s interp1 routine. This routine takes in the unevenly spaced x-y
pairs as two vectors along with a vector containing the desired evenly spaced x
values. The routine then uses linear interpolation (other options are possible) to
approximate the y values that match the evenly spaced x values. Details can be
found in the MATLAB help file for interp1. In the program below, the uneven 
x-y pairs are in vectors t_pre and hr_pre, respectively, the evenly spaced vector
is xi, and the corresponding y values are placed in vector yi.
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% Example 3.8 and Figure 3.24
% Frequency analysis of heart rate data in the
% normal and meditative state
% After loading the data, the program converts the data
% to evenly spaced time data using interpolation
%
clear all; close all;
%
fs = 1.0; % Sample interval
load Hr_pre; % Load normal and meditative data

%
% Convert to evenly spaced time data using interpolation
% First generate and evenly space time vectors having one
% second intervals and extending over the data time range
%
xi = (ceil(t_pre(1)):fs:floor(t_pre(end)));
yi = interp1(t_pre,hr_pre,xi’); % Interpolate
yi = yi - mean(yi); % Remove average
f = (1:length(yi))*fs/... % Vector for plotting

length(yi);
%
% Now determine the Power Spectrum
YI = abs((fft(yi)).^2); % Direct approach (Eq. 3.35)
subplot(1,2,1);
plot(f,YI,’k’); % Plot spectrum
xlabel(‘Frequency (Hz)’); ylabel(‘Power Spectrum’);
axis([0 .15 0 max(YI)*1.25]);

%
% Repeat for meditative data

Analysis: To convert the heart rate data to a sequence of evenly spaced points 
in time, a time vector, xi, is first created that increases in increments of 1.0 
second between the lowest and highest values of time in the original data. A 
1.0-second increment was chosen because this was approximately the average 
time spacing of the regional data. Evenly spaced time data, yi, were generated 
using the MATLAB interpolation routine interp1. The example requested the
power spectrum of heart rate variability, not heart rate per se; in other words, 
the changes in beat-to-beat rate, not the beat-to-beat rate itself. To get this 
change, we simply subtract out the average heart rate before evaluating the power
spectrum.

After interpolation and removal of the mean heart rate, the spectrum is deter-
mined using fft as in the last example. The power spectrum is calculated by taking
the square of the magnitude component. The frequency plot is limited to an area
of interest between 0.0 and 0.15 Hz by the axis routine.
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Results: The power spectrum of normal heart rate variability is low and decreases
with frequency, showing little energy above 0.1 Hz (Figure 3.24). The meditative
state shows large peaks at around 0.1 to 0.12 Hz, indicating some repetitive process
is active at these frequencies, frequencies corresponding to a time frame of around
10 seconds. Speculation as to the mechanism behind this heart rate rhythm is left
to the reader, who may be more knowledgeable in Yoga meditation than the author.

As stated in Section 3.7.1, averaging can be used to improve the spectral repre-
sentation of broadband processes. Example 3.9 explores this notion by applying
spectral averaging to the same heart rate variability data used in Example 3.8.

Example 3.9: Determine and plot the frequency characteristics of heart rate vari-
ability during normal and meditative states using averaging.

Solution: Write a general program called welch to generate an average power
spectrum given the data, segment size, and the number of overlapping points in
adjacent segments. This routine should also take in, as an optional parameter, the
sampling frequency to be used in generating a frequency vector. Output the power
spectrum and the frequency vector. Output only the nonredundant points (i.e., up
to fs/2).

% Example 3.9 Influence of averaging on heart rate data.
% Loads files Hr_pre and Hr_med that contain the heart rate
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Figure 3.24 A: Power spectrum of heart rate variability under
normal conditions. The power decreases with frequency. B: Power
spectrum of heart rate variability during meditation. Strong peaks
in power around 0.12 Hz are seen indicating that some of the vari-
ation in heart rate is organized around these frequencies. Note the
larger scale of the meditative power spectrum.



% data.
% Calculates the Power Spectrum using signal averaging.
% Uses eight segments with a 99% overlap. Assumes the
% heart rate variable is yi with fs = 1.0 Hz
%
... Data loading and restructure as in Example 3.8 ...
%
segment_length = fix(length(yi)/8); % Average 8 segments
[PS_avg,f] = welch(yi,segment_length,segment_length-1,fs);
subplot(1,2,1)
plot(f,PS_avg,’k’); % Plot averaged PS
xlabel(‘Frequency (Hz)’); ylabel(‘Power Spectrum’);
axis([0 .2 0 max(PS_avg)*1.2]); % Limit horizontal axis

....... Repeat for meditative data ........

This example uses the routine welch shown below to do the averaging.

function [PS,f] = welch(x,nfft,noverlap,fs);
%Function to calculate averaged spectrum
%[ps,f] = welch(x,nfft,noverlap,fs);
% Output arguments
%  sp spectrogram
%  f frequency vector for plotting
% Input arguments
%  x data
%  nfft window size
%  noverlap number of overlapping points in adjacent
%  segments
%  fs sample frequency
% Uses Hanning window
[N xcol] = size(x); % Make row vector
if N < xcol
x = x’;
N = xcol;

end
half_segment = fix(nfft/2); % Half segment length
if isempty(noverlap) == 1
noverlap = half_segment; % Default overlap at 50%

end
if isempty(fs) == 0
f = (1:half_segment)* % Calculate freq. vector

fs/nfft;
else
f = (1:half_segment)* % Default freq. vector

pi/nfft;
end
increment = nfft - noverlap;
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nu_avgs = fix((N-nfft)/... % Find number of segments
increment)-1;

%
for i = 1:nu_avgs % Calculate spectra
first_point = 1 + (i-1) % Isolate the correct

* increment; % data segment
data = x(first_point: first_point+nfft-1);
if i == 1

PS = abs((fft(data)).^2)/... % Calculate PS (1st time)
(nfft*nu_avgs);

else
PS = PS + abs((fft(data))... % Calculate PS avg

.^2)/(nfft*nu_avgs);
end

end
PS = PS(1:half_segment); % Remove redundant points

Analysis: The coding of routine welch illustrates a number of MATLAB tricks.
The initial section tests the dimensions of the input to determine if it is arranged as
a row or column vector. If it is a row vector, the number of rows, N, will be less
than the number of columns, xcol, and the vector is transposed insuring that x
is now a column vector. Next, the program checks if a desired overlap is specified
(i.e., if noverlap is not an empty variable) and if so, sets the overlap to a default
value of 50% (i.e., half the segment length, nfft). Then a frequency vector, f, is
generated from 1 to p if fs is unspecified, or from 1 to fs if it is given. Next, the
number of segments to be averaged is determined based on the segment size (nfft)
and the overlap (noverlap). A loop is used to take the Fourier transform of each
segment, calculate the power spectrum, and sum the individual spectra. Note that
the spectra are normalized by both the number of spectra in the average and the
segment length. Finally, the averaged power spectrum is shortened to eliminate
redundant points.

The welch routine is used in Example 3.9 in a straightforward manner to cal-
culate the average power spectrum. The heart rate data are divided into eight seg-
ments somewhat arbitrarily. In practice, the best segment length would have to be
determined empirically. The segment length chosen (1/8 of the data length) seems
to give a good representation of the background level without losing the peaks in
the meditative state spectrum.

Results: The results in Figure 3.25 show much smoother spectra than those of
Figure 3.23, but they also lose some of the detail. The power spectrum of heart rate
variability taken under normal conditions now appears to decrease smoothly with
frequency. In fact, replotting the spectra in Figure 3.26 in decibels, by taking 20 log
(power spectrum) before plotting, shows that the normal spectrum in dB actually
decreases linearly with log frequency. The decibel plot also indicates a similar linear
decrease for the meditative spectrum, but with a large peak at 0.12 Hz superim-
posed on this decrease.
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Example 3.10 explores the effects of averaging on a controlled data set consist-
ing of a mixture of signals: a broadband signal, two closely spaced sinusoidal
signals, and noise. The spectrum of the broadband signal and the sinusoids without
the noise are shown in Figure 3.27 and the spectrum with the noise added with and
without averaging is shown in Figure 3.28.
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Figure 3.25 Power spectra taken from the same heart rate vari-
ability data used to determine the spectra in Figure 3.24, but con-
structed using an averaging process. The spectra produced by
averaging are considerably smoother. A: Normal conditions. B: Med-
itative conditions.

Figure 3.26 Spectra of Figure 3.25 replotted in decibels. The spec-
trum obtained under normal conditions (A) is now seen to decrease
linearly with frequency. The spectrum obtained under meditative
conditions (B) also shows a linear decrease but with a large peak at
0.12 Hz superimposed on this decrease.
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Figure 3.27 The power spectrum of a mixture of signals
used to create the test signal in file broadband1. The mixture
consists of the output of a lowpass filter and two sinusoidal
signals at 390 and 410 Hz. Noise was then added to this
mixture to create the test signal.

Figure 3.28 A: Standard spectral analysis identifies the two closely spaced sinu-
soids at 390 and 410 Hz, but the broadband signal between 0 and 300 Hz is noisy
and poorly defined. B: Spectral averaging significantly improves the spectrum of
the broadband signal, but the two sinusoids can barely be seen.



Example 3.10: Evaluate the influence of power spectrum averaging on a combi-
nation of broadband and narrowband processes with added noise. The data may
be found in file broadband1.mat.

Solution: Load the test data file broadband1 containing the narrowband and
broadband processes shown in Figure 3.27. First, calculate and display the unaver-
aged power spectrum. Then apply power spectrum averaging using routine welch
as in Example 3.5.

% Example 3.10 Investigation of the influence of averaging
% to improve broadband spectral characteristics in the
% Power Spectrum.
% Loads file broadband1 that contains broadband and
% narrowband signals (i.e., sinusoids)and noise.
% Calculates the standard Power Spectrum and one obtained
% using segment averaging. The averaging uses 80 segments
% with a 99% overlap
% The data is variable x in the .mat file and is assumed
% to be acquired at a sampling frequency of 1.0 kHz
%
close all; clear all;
load broadband1; % Load data (variable x)
fs = 1000; % Sampling frequency
PS = abs((fft(x)).^2)/length(x); % Calculate unaveraged PS
half_length = fix(length(PS)/2); % Find data length /2
f = (1:half_length)*... % Frequency vector for

fs/(2*half_length); % plotting
subplot(1,2,1)
plot(f,PS(1:half_length),’k’); % Plot unaveraged Power

% Spectrum
xlabel(‘Frequency (Hz)’); ylabel(‘Power Spectrum’);
title(‘Standard Spectrum’);

%
seg_length = fix(length(x)/80); % Average 80 segments
% Use 99% overlap
[PS_avg,f] = welch(x,seg_length,seg_length-1,1000);
%
subplot(1,2,2)
plot(f,PS_avg,’k’); % Plot averaged Power

% Spectrum
xlabel(‘Frequency (Hz)’); ylabel(‘Power Spectrum’);
title(‘Averaged Spectrum’);

Analysis: The procedure is similar to that used in Example 3.9 except the number
of segments was increased to 80 because the data set was longer (4,000 points) and
a good estimate of the broadband process was desired.
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Results: In the unaveraged power spectrum (Figure 3.28A) the two sinusoids are
clearly seen at 390 and 410 Hz; however, the broadband signal is noisy and poorly
defined. Averaging greatly improves the representation of the broadband signal, but
now the two sinusoids are not evident although there is a very small peak where
they should be. This demonstrates one of those all-so-common engineering com-
promises. Spectral techniques that produce good representation of global features
such as broadband signals are not good at resolving narrowband or local features
such as sinusoids and vice versa.

3.10 SUMMARY

The sinusoid [i.e., C cos(wt + q)] is a unique signal with a number of special prop-
erties. A sinusoid can be completely defined by three values: its amplitude, C, its
phase, q, and its frequency, w (or 2pf). Any periodic signal can be broken down
into a series, possibly infinite, of harmonically related sinusoids. Similarly, any peri-
odic signal can be reconstructed from a series of sinusoids. Thus, any periodic signal
can be equivalently represented by a sinusoidal series. A sinusoid is also a pure signal
in that has energy at only one frequency, the only waveform to have this property.
This means that the sinusoids can serve as intermediaries between the time domain
representation of a signal and its frequency domain representation. When the input
to a linear system is a sinusoid, the output will also be a sinusoid at the same fre-
quency. Only the magnitude and phase of a sinusoid can be altered by a linear
system. Finally, harmonically related sinusoids are orthogonal so they operate 
independently.

The technique for determining the sinusoidal series representation of a periodic
signal is known as Fourier series analysis. To determine the equivalent sinusoidal
series, the signal of interest is correlated with sinusoids at harmonically related fre-
quencies. This correlation provides the amplitude and phase of the sinusoidal series
that represents the periodic signal. The equivalent sinusoidal series can be used to
construct a plot of the frequency composition of the signal: plots of the magnitude
and phase compositions of the signal over a range of frequencies. Fourier series
analysis is often described and implemented using the complex representation of a
sinusoid.

If the signal is not periodic, but exists for finite time, Fourier decomposition is
still possible by assuming this aperiodic signal is in fact periodic, but the period is
infinite. This approach leads to the Fourier transform where the correlation is now
between the signal and infinite number of sinusoids at continuously varying 
frequencies. The frequency plots then become continuous curves. The inverse
Fourier transform can be also constructed from the continuous frequency 
representation.

Fourier decomposition can be applied to digitized data and is known as the dis-
crete Fourier analysis or discrete Fourier transform. In fact, most all Fourier analy-
sis is done in a computer usually using a high-speed algorithm known as the FFT
(Fast Fourier Transform). The equations follow the same pattern as those developed
for continuous time signals except integration becomes summation and both the

3.10 SUMMARY 115



sinusoidal and signal variables are discrete. The discrete Fourier transform can be
used to understand the relationship between a continuous time signal and the
sampled version of that signal. This frequency based analysis shows that the origi-
nal, unsampled signal can be recovered if the sampling frequency was more that
twice the highest frequency component in the unsampled signal, a rule known as
Shannon’s sampling theorem.

The Fourier series or Fourier transform can be used to construct the power spec-
trum of a signal. The power spectral curve describes how the signal’s power varies
with frequency. The power spectrum is particularly useful for random data were
phase characteristics have little meaning. By dividing the signal into a number of
possibly overlapping segments and averaging the spectrum obtained from each
segment, a smoothed power spectrum can be obtained. The resulting frequency
curve will emphasize the broadband or general characteristics of a signal’s spectrum,
but may lose some of the fine detail.

PROBLEMS

1. Find the Fourier series of the square wave below using Eq. 3.8. (Hint: Take
advantage of symmetries to simplify the calculation.)
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2. Find the Fourier series of the waveform below. The period, T, is 1 second.



3. Find the Fourier series of the half-wave rectified sinusoidal waveform below.
Use symmetry properties.
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4. Find the Fourier series of the sawtooth waveform below.

5. Find the continuous Fourier transform of an aperiodic pulse signal given in
Example 3.4 using the complex equation, Eq. 3.19.



MATLAB Problems

6. Generate a 512-point waveform consisting of two sinusoids at 200 and 400 Hz.
Assume a sampling frequency of 1 kHz. Also generate another waveform con-
taining frequencies at 200 and 900 Hz. Take the Fourier transform of both
waveforms and plot the magnitude of the full spectrum (i.e., 512 points). [Hint:
To generate the sine waves, first construct a time vector:

t = (1:N)T = (1:N)/fs using the MATLAB code:
t = (1:512)/1000.

Then generate the signal using the code: x = sin(2*pi*f1*t) +
sin(2*pi*f2*t) where f1 = 200 for both signals, while f2 = 400 for one
waveform, and f1 = 900 for the other.]

7. Load the file sample_rate that contains signals x and y. Are either of these
signals oversampled (i.e., fs/2 ≥ fmax)? Alternatively, could the sampling rate of
either signal be safely reduced? Justify your answer.

8. Construct two arrays of white noise: one 128 points in length and the other
1,024 points in length. Take the Fourier transform of both. Does increasing the
length improve the spectral estimate of white noise? (Eliminate the first point—
the average or DC term—when you plot the spectra and plot only nonredun-
dant points.)

9. Generate a 256-point waveform consisting of a 300 Hz signal in 12 dB of noise
(i.e., SNR = -12 dB). (MATLAB call: x = sig_noise(300, -12,256);)
Calculate and plot the Fourier transform using two different methods. In the
first method, use fft applied directly to the waveform, x. In the second
method, use the traditional approach of taking the Fourier transform of the
autocorrelation function; that is, calculate the autocorrelation function using
axcor, then take the fft of the autocorrelation function. Plot magnitude and
phase for both techniques.

10. Use MATLAB routine sig_noise to generate two arrays, one 128 points long
and the other 512 points long. Include two closely spaced sinusoids having fre-
quencies of 320 and 340 Hz with an SNR of -12 dB. The MATLAB call should
be:
x = sig_noise([320 340],-12,N); where N = either 128 or
512.
Calculate and plot the (unaveraged) power spectrum.

11. Use sig_noise to generate a 128-point array containing 320- and 340-Hz
sinusoids as in Problem 10. Calculate and plot the unaveraged power spectrum
of this signal for an SNR of -12 dB, -14 dB, and -16 dB. How does the pres-
ence of noise affect the ability to detect and distinguish between the two 
sinusoids?

12. Load the file broadband2 that contains variable x, a broadband signal with
added noise. Assume a sample frequency of 1 kHz. Calculate the averaged
power spectrum using routine welch. Evaluate the influence of segment length
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using segment lengths of N/4 and N/16, where N is the length of the variable,
x. Use the default overlap.

13. Load the file eeg_data that contains the EEG data shown in Figure 3.1 as
variable eeg. Analyze these data using the unaveraged power spectral technique
and an averaging technique using the welch routine. Find a segment length
that smoothes the background spectrum but retains any important spectral
peaks. Use a 99% overlap.

14. Load the file chirp that contains a sinusoidal signal, x, which increases its fre-
quency linearly over time. This type of signal is called a chirp signal because of
the sound it makes when played through an audio system. [If you have an audio
system, you can listen to this signal after loading the file using the MATLAB
command: sound(x,1,000).] Take the Fourier transform of this signal and
plot magnitude and phase. Note that the signal frequencies are merged together
and there is no information on the timing. (Actually, information on signal
timing is buried in the phase plot.) Time-frequency methods covered in more
advanced signal processing are necessary to recover the timing information.
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4 CIRCUIT AND ANALOG
ANALYSIS IN SINUSOIDAL
STEADY STATE

4.1 CIRCUITS AND ANALOG SYSTEMS

The next two chapters provide the tools for analyzing systems containing analog
elements. The major application of these tools is the analysis of electrical and elec-
tronic circuits. Biomedical instrumentation often contains analog circuitry that 
provides an interface between devices that monitor physiological variables 
(biotransducers) and the computer that processes the data. Figure 4.1 shows an
example electronic circuit that was used in another common application: as an inter-
face between the computer and an effector device, in this case an electrode that
delivers electrical stimulation. Based on the computer’s digital-to-analog converter
output, this circuit delivers controlled high voltage pulses for stimulation of elec-
trically excitable tissue. The analysis of electronic circuits is further explored in
Chapter 10.

A second application of these tools is the analysis of analog models of physio-
logical systems. Figure 4.2 shows what looks like an electric circuit but is actually
an analog model of the cardiovascular system. In this representation, model cur-
rents describe blood flow in different parts of the cardiovascular system while volt-
ages describe various cardiovascular pressures.

To analyze an electric circuit or analog model generally calls for the solution of
one or more differential equations. Even the solution of a simple circuit or model
that can be defined by a first-order differential equation can become tedious if the
signals are complicated. Two popular techniques exist for simplifying the analysis
of processes or systems that are represented by differential equations. (The terms
system and process are used interchangeably in this text. The system term is more
common when coupled with the word analysis, as in systems analysis.) Both
methods transform the differential equations into algebraic equations, obviously a
highly desirable modification. In addition, these techniques generate equations that
provide more insight into the underlying processes than classical differential equa-
tions. Both approaches require that the underlying processes be linear. This can
present severe constraints for bioengineers, because most living systems are nonlin-
ear. Nonetheless, the power of these simplifying techniques is so seductive that 
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Figure 4.1 An electronic circuit that provides an interface between a com-
puter output (‘from DAC’ on the schematic, the output of the computer’s 
digital-to-analog converter) and stimulation electrodes. This circuit generates a
high-voltage stimulus (up to 100 V) where the stimulus current is proportional
to the computer control voltage.

Figure 4.2 Analog model that represents elements of the cardiovascular system as electrical
elements. (From Prof. J.-K. Li, Rutgers University, with permission.)



linearity is often assumed (rightly or wrongly) or imposed using the methods men-
tioned in Chapter 1.

Which of the two simplifying approaches is used depends on the type of signals
or operating conditions encountered by the system. The Laplace transform is the
most general approach and is the most frequently used simplification technique. It
applies to systems exposed to one-time, or transient stimulus signals or steplike
changes in operating conditions. The Laplace transform is covered in Chapter 8.
The phasor approach described in this chapter applies to systems exposed to sinu-
soidal stimulation, yet as we will discover over the next three chapters, it has many
additional applications. Nearly all of the techniques associated with phasor analy-
sis apply equally well to the Laplace transform approach. Before we can adopt these
tools, we need to know something about what electrical and mechanical systems
are made of and what variables are used to describe their behavior.

4.2 SYSTEM VARIABLES AND ELEMENTS

Electric or electronic circuits consist of an arrangement of elements that define rela-
tionships between voltages and currents. In electric circuits, such a configuration of
elements may be used to generate, detect, and/or process signals. In analog models,
elements are used to represent a biological mechanism with an analogous electrical
or mechanical element. For example, a voltage source in combination with a resis-
tor might be used to represent sodium conduction across a nerve membrane as
shown in the next chapter. In the cardiovascular model shown in Figure 4.2, the
analogous elements do not process the same type of energy as the elements they rep-
resent: mechanical cardiovascular processes are represented by electrical elements.
Regardless of the type of elements used, the mathematical representations and the
tools for analyzing these representations are the same. The approaches developed
over the next three chapters are of value to biomedical engineers for the design of
medical instruments, but also for the analysis of physiological systems. Many of the
tools developed in these chapters are used again in the chapter on basic electronics
(see Chapter 10).

In both electric circuits and mechanical system, only two variables are needed to
describe the system’s behavior. An element, be it electrical or mechanical, can be
viewed as simply defining the relationship between these two variables. Although
these variables are different for electrical and mechanical systems, they share much
in common: one variable is associated with potential energy, and the other variable
is related to kinetic energy or movement. The potential energy variable may be
viewed as the cause of an action whereas the kinetic energy variable is the effect.
In mechanical systems, the two variables are force and velocity. Force applied to a
movable object will cause that object to have a velocity. Force is related to poten-
tial energy because energy, or work, is the integral of force over distance:

[Eq. 4.1]

where F is force in newtons and x is distance in meters.

E Work Fds Fx F x= = = ( )Ú  joules if  constant over 
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The kinetic energy variable, also called the flow variable, is velocity and is directly
related to the kinetic energy of a mass by the well-known equation:

[Eq. 4.2]

Power, the energy per unit time, is always the product of the potential and kinetic
energy variables. For a mechanical element:

[Eq. 4.3]

where P is power, F is force, x is distance, and u is velocity.
The mechanical analysis described in Section 4.4 of this chapter, is sometimes

applied to mechanical systems, but for biomedical engineers, the main application
is in mechanical analog models of physiological processes.

For electric circuits or electric analog models, the major variables are voltage and
current. Voltage is related to potential energy and is sometimes even called poten-
tial. Voltage applied to a circuit element will cause a current to flow through that
element. Voltage is the potential energy with respect to a given charge:

[Eq. 4.4]

where v is voltage, E is the energy of an electric field, and q is charge. (Slightly 
different typeface will be used to represent voltage, v, and velocity, u, to minimize
confusion.)

The kinetic energy or flow variable is current that is simply the flow of charge:

[Eq. 4.5]

where i is current and q is charge.
The relationship for power and energy is the same in the electrical domain as in

the mechanical domain; specifically, power is the product of the two variables v and
i. Rearranging the equation that defines voltage (Eq. 4.4):

and from the definition of P in Eq. 4.3:

[Eq. 4.6]

Table 4.1 summarizes the variables used to describe the behavior of mechanical and
electrical systems. Because the tools that will be developed in this chapter are more
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TABLE 4.1 Major Variables in Mechanical and Electrical Systems

Domain Potential Energy Variable (Units) Kinetic Energy Variable (Units)

Mechanical Force, F (J/m = newton) Velocity, u (m/sec)
Electrical Voltage, v (J/coulomb = volts) Current, i (coulomb/sec = ampere)



often used to analyze electric circuits (or electric analog models), they will be intro-
duced in the electrical domain. However, these tools apply equally well to certain
mechanical systems as shown later in the chapter.

4.2.1 Electrical Variables

The two variables that describe the behavior of electric circuits and electric analog
models are voltage and current. Voltage is always a relative variable: it is the dif-
ference between the voltages at two points. In fact, the proper term for voltage is
potential difference (abbreviated p.d.), but this term is rarely used in electronics.
Subscripts are sometimes used to indicate the points from which the potential dif-
ference is measured. For example, in Eq. 4.7 the notation vba means ‘the voltage at
point b with respect to point a’:

[Eq. 4.7]

The positive voltage point, point b in Eq. 4.7, is indicated by a plus sign when drawn
on a circuit diagram, as shown in Figure 4.3.

It is also common to say that there is a voltage drop from point b to point a, or
a voltage rise from a to b. By this convention, it is logical that vab should be the
negative of vba: vab = -vba. Voltage always has a direction, or polarity, that is usually
indicated by a plus sign to show the side assumed to have a greater voltage (Figure
4.3). A source of considerable confusion is that the plus sign only indicates the point
that is assumed to have a more positive value for the purpose of analysis or dis-
cussion. In fact, it could be that the voltage polarity is the opposite of what was
originally assumed or assigned. As an example, suppose there is actually a rise in
voltage from b to a in Figure 4.3 even though we assumed that b was the more pos-
itive as indicated by the plus sign. When this occurs, we do not change our origi-
nal polarity assignment. We merely state that vba has a negative value. So a negative
voltage does not imply negative potential energy, it is just that the actual polarity
is the reverse of that assumed or assigned.

By convention, but with some justification as shown later, the voltage of the earth
is assumed to be at 0.0 V, so voltages are often measured with respect to the voltage
of the earth, or some common point referred to as ground. A common ground point
is indicated by either of the two symbols shown at the bottom of the simple circuit
shown in Figure 4.4. Some sources use the symbol on the right side to mean a ground

v v vba b a= -
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Figure 4.3 A generic electric circuit element demon-
strating how voltage and current directions are speci-
fied. The straight lines on either side indicate wires
connected to the element.



that is actually connected to earth and the symbol on the left side to mean a common
reference point not necessarily connected to the earth, but still assumed to be 
0.0 V. However, this usage is not standardized and the only assumption that can be
made with certainty is that both symbols represent a common grounding point,
which may or may not be connected to earth. Hence when a voltage is given with
only one subscript, va, it is understood that this is voltage at a with respect to ground
or a common reference point.

Current is a flow so it must have a direction. This direction, or rather the assumed
direction, is indicated by an arrow as in Figure 4.4. By convention, the direction of
the arrow indicates the direction of assumed positive charge flow. In electronic cir-
cuits, charge is usually carried by electrons, which have a negative charge, so the
particles that are actually flowing, the electrons, are flowing in the opposite direc-
tion of (assumed) positive charge flow. Nonetheless, the convention of defining pos-
itive charge flow was established by Benjamin Franklin before the existence of
electrons was known and has not been modified because it really does not matter
which direction is taken as positive as long as we are consistent. As with voltage,
it may turn out that positive charge flow is actually in the direction opposite that
indicated by the arrow and, again, we do not change the direction of the arrow, but
rather give the current a negative value. Thus, a negative value of current flow does
not mean that some strange antiparticles are flowing, but only that the actual current
direction is opposite to our assumed/assigned direction.

This approach to voltage polarity and current direction may seem confusing, but
it is actually quite liberating. It means that we can make our polarity and direction
assignments without worrying about reality; that is, the voltage polarity or current
direction that actually exists in a given circuit. We can make these assignments more
or less arbitrarily (there are some rules that must be followed as described below)
and allow the positive or negative values to indicate the actual direction or 
polarity.
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Figure 4.4 A simple circuit consisting of
a voltage source, Vs and a resistor R. Two
different symbols for the grounding point
are shown. Sometimes the symbol on the
right is taken to mean an actual connection
to earth, but this is not standardized.



4.2.2 Electrical Elements

The elements as described here are idealizations: true elements only approximate
the characteristics described. However, actual electrical elements come quite close
to these idealizations, so their shortcomings can often be ignored, at least with
respect to that famous engineering phrase ‘for all practical purposes.’

Electrical elements are divided into two categories based on their energy gener-
ation characteristics: active elements can supply energy to a circuit, whereas passive
elements do not. Active elements do not always supply energy, in some cases they
actually absorb energy. For example, a battery is an active element that can supply
energy, but when it is being charged it is absorbing energy. Passive elements are
divided into two categories: those that use up, or dissipate, energy and those that
store energy.

4.2.2.1 Resistors

The only element in the first group of passive elements, elements that dissipate
energy, is the resistor, which dissipates energy in the form of heat. The basic equa-
tion that describes the two-variable, voltage–current relationship for a resistor is the
classic Ohm’s law:

[Eq. 4.8]

where R is the resistance in volts/amp, better known as ohms (W); i is the current
in amps (A); and v is the voltage in volts (V). The resistance value of a resistor is a
consequence of a natural property of the material from which it is made, known as
resistivity, r. Specifically:

[Eq. 4.9]

where r is the resistivity of the resistor material, l is the length of the material, and
A is the area of the material. Table 4.2 shows the resistivity, r, of several materials
commonly used in electric components.

R
l
A

= r W

v RiR = RV
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TABLE 4.2 Resistivity

Conductors r (Ohm-Meters) Insulators r (Ohm-Meters)

Aluminum 2.74 ¥ 10-8 Glass 1010–1014

Nickel 7.04 ¥ 10-8 Lucite >1013

Copper 1.70 ¥ 10-8 Mica 1011–1015

Silver 1.61 ¥ 10-8 Quartz 75 ¥ 1016

Tungsten 5.33 ¥ 10-8 Teflon >1013

The power that is dissipated by a resistor can be determined by combining 
Eq. 4.6 and Eq. 4.8:



[Eq. 4.10]

The voltage–current relationship expressed by Eq. 4.8 can also be stated in terms
of the current:

[Eq. 4.11]

The inverse of resistance, R, is termed the conductance, G, and has the units of
mhos (ohms spelled backward, a subtle example of engineering humor) and is sym-
bolized by the upside-down omega, υ (even more amusing). Equation 4.9 can be
exploited to make a device that varies in resistance, usually by varying the length l,
as shown in Figure 4.5. Such a device is termed a potentiometer or pot for short.

By convention, power is positive when it is being lost or dissipated. Hence, resis-
tors must always have a positive value for power. In fact, one way to define a resis-
tor is to say that it is a device for which P > 0 for all t. For P to be positive, the
voltage and current must be in the same direction; that is, the current direction must
point in the direction of the voltage drop. This polarity restriction is indicated in
Figure 4.6A along with the symbol that is used for a resistor in electric circuit dia-
grams or electric schematics. Stated another way, the voltage and current polarities
must be set so that current flows into the positive side of the resistor. Either the
voltage polarity (the plus side) or the current direction can be chosen arbitrarily,
but not both. Hence, once the voltage polarity or the current direction is selected,
the other is fixed by power considerations. The same will be true for other passive
elements, but not for source elements. This is because source elements can, and do,
supply energy, so their associated power is usually negative. In this case, current
would flow out of the positive side of the element rather than into it. Figure 4.6B
shows two symbols used to denote a variable resistor such as shown in Figure 4.5.

Example 4.1: Determine the resistance of 100 feet of no. 14 American Wire Gauge
(AWG) copper wire.

i
R

v Gv= =
1

 A

P vi iR i i R= = ( ) = 2  watt

P vi v v R v R= = ( ) = 2  watt or
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Figure 4.5 A variable resistor made by changing the
effective length, Dl, of the resistive material.



Solution: A no. 14 AWG (also known as or B & S which stands for Brown and
Sharpe gauge) wire has a diameter of 0.064 inches (see Appendix D). The value of
r for copper is 1.70 ¥ 10-8 W-m. Converting all units to the centimeters, grams, and
dynes (cgs) metric unit and applying Eq. 4.9:

4.2.2.2 Inductors

Energy storage devices can be divided into two classes: inertial elements and capac-
itive elements. The corresponding electrical elements are the inductor and capaci-
tor, respectively, and the voltage—current equations for these elements involve
differential or integral equations. Current flowing into an inductor carries energy
that is stored in a magnetic field. The voltage across an inductor is the result of a
self-induced electromotive force, which opposes that voltage and is proportional to
the time derivative of the current:

[Eq. 4.12]

where L is the constant of proportionality termed the inductance measured in henrys
(h). (The henry is actually Weber-turns per ampere, or volts per ampere per second,
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Figure 4.6 A: The symbol for a resistor along with its polarity
conventions. For a resistor, as with all passive elements, the current
direction must be such that it flows from positive to negative. 
In other words, current flows into the positive side of the 
element. B: Two symbols that represent a variable resistor or
potentiometer.



and is named for the American physicist Joseph Henry, 1797–1878.) An inductor
is simply a coil of wire that uses mutual flux coupling (i.e., mutual inductance)
between the wire coils. The inductance is related to the magnetic flux, F, carried
by the inductor and by the geometry of the coil and the number of loops, or turns,
N:

[Eq. 4.13]

The energy stored can be determined from the equation for power (Eq. 4.6) and the
voltage–current relationship of the inductor (Eq. 4.12):

[Eq. 4.14]

The total energy stored as current increases from zero to some value i is:

The similarity between the equation for kinetic energy of a mass (Eq. 4.2) and the
energy in an inductor (Eq. 4.14) explains why an inductor is considered an inertial
element. It behaves as if the energy is stored as kinetic energy associated with a mass
of moving electrons, although it is actually stored in an electromagnetic field. Induc-
tors follow the same polarity rules as resistors. Figure 4.7 shows the symbol for an
inductor, a schematic representation of a coil, with the appropriate voltage–voltage
directions.

If the current through an inductor is constant, so-called direct current (DC), then
there will be no energy stored in the inductor and the voltage across the inductor
will be zero, regardless of the amount of steady current flowing through the induc-
tor. (The term DC stands for direct current, but it has been modified to mean con-
stant value and can be applied to either current or voltage, as in DC current or DC
voltage, or even non-electrical variables). The condition when voltage across an
element is zero for any current is known as a short circuit. Hence, an inductor
appears as a short circuit to a DC current.
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Figure 4.7 Symbol for an inductor
showing the polarity conventions for this
passive element.



The v-i relationship of an inductor can also be expressed in terms of current.
Solving Eq. 4.12 for i:

[Eq. 4.15]

The integral of any function will be continuous, even if that function contains a dis-
continuity as long as that discontinuity is finite. A continuous function is one that
does not change instantaneously. Thus, for a continuous function, f(t):

[Eq. 4.16]

Because the current through an inductor is the integral of the voltage across the
inductor, the current will be continuous in real situations since any voltage discon-
tinuities will surely be finite. Thus, the current though an inductor can change slowly
or rapidly (depending on the voltage), but it can never change in a discontinuous
(i.e., steplike) manner. In mathematical terms, for an inductor:

[Eq. 4.17]

The integral relationship between current and voltage in an inductor ensures that
inductor current is always continuous. Indeed, one of the popular usages of an
inductor is to reduce current spikes by passing the current through an inductor. The
integration property tends to choke off the current spikes, so an inductor used in
this manner is sometimes called a choke.

4.2.2.3 Capacitors

A capacitor also stores energy, in this case in an electromagnetic field created by
oppositely charged plates. (Capacitors are nicknamed caps and engineers frequently
use that term. Curiously, no such nicknames exist for resistors or inductors,
although in some applications inductors are called chokes as noted in the previous
paragraph.) In the case of a capacitor, the energy stored is proportional to the charge
on the capacitor, and charge is related to the time integral of current flowing through
the capacitor. This gives rise to voltage–current relationships that are the opposite
of the relationships for an inductor:

[Eq. 4.18]

or solving for iC:

[Eq. 4.19]

where C, the capacitance, is the constant of proportionality and is given in units 
of farads, which are coulombs per volt. (The farad is named after Michael 
Faraday, an English chemist and physicist who, in 1831, discovered electromagnetic
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induction.) The inverse relationship between the voltage–current equations of induc-
tors and capacitors is an example of duality, a property that occurs often in elec-
tric circuits. The symbol for a capacitor is two short parallel lines reflecting the
parallel plates of a typical capacitor (Figure 4.8).

The capacitance describes the ability of a capacitor to store (or release) charge
with respect to changes in voltage, specifically:

[Eq. 4.20]

where q is charge in coulombs and v is volts. A large capacitor can take on or release
charge, q, with little change in voltage, whereas a small capacitor shows a larger
change in voltage for a given in charge. The largest capacitor readily available to
us, the earth, is considered a near-infinite capacitor (C = •, almost): its voltage
remains constant no matter how much current flows into or out of it. This is why
the earth is a popular ground point or reference voltage; it is always at the same
voltage, so we just all agree that it is at 0.0 V.

Most capacitors are constructed from two approximately parallel plates, which
are often rolled up to make a circular tube. The charge is held on the opposing
plates. The capacitance for such a parallel plate capacitor is given as:

[Eq. 4.21]

where A is the area of the plates, d is the distance separating the plates, and e is a
property of the material separating the plates termed the dielectric constant.
Although Eq. 4.21 is only an approximation for a real capacitor, it does correctly
indicate that capacitance can be increased either by increasing the plate area, A, or
by decreasing the plate separation, d. However, decreasing plate separation will also
decrease the voltage-handling capabilities of the capacitor and increase its leakage
characteristics (described below). For this reason, real capacitors having larger
capacitance values usually require larger physical volume, and capacitors with
higher voltage-handling characteristics require a larger volume, because the plate
separation of these capacitors must be larger. Alternatively, special dielectrics that
can sustain higher voltages with smaller plate separations can be used, but they are
more expensive.

C q v
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Figure 4.8 The symbol for a capacitor
showing the polarity conventions.



Example 4.2: Calculate the dimensions of a 1-f capacitor. Assume a plate separa-
tion of 1.0 mm with air between the plates.

Solution: Use Eq. 4.21 and the dielectric constant for a vacuum. The dielectric
constant for a vacuum is e0 = 8.85 ¥ 10-12 C2/mm2 and is used for air.

This is an area of about 6.5 miles on a side! This large size is related to the units
of farads, which are very large for practical capacitors. Typical capacitors are in the
microfarads (10-6) or picofarads (10-12), giving rise to much smaller plate sizes. An
example calculating the dimensions of a practical capacitor is given in the problems
at the end of this chapter.

The energy stored in a capacitor can be determined using modified versions of
Eq. 4.4 and Eq. 4.20:

Hence, for a capacitor holding a specific charge, Q:

[Eq. 4.22]

Capacitors in parallel essentially increase the effective size of the capacitor plates so
when two or more capacitors are connected in parallel, their values add. If they are
connected in series, their values add as reciprocals. Such series and/or parallel com-
binations are discussed at length in Chapter 7.

Whereas inductors will not allow an instantaneous change in current, capacitors
will not allow an instantaneous change in voltage. Because the voltage across a
capacitor is the integral of the current, capacitor voltage will be continuous on the
basis of the same arguments used for inductor current. Thus, for a capacitor:

[Eq. 4.23]

It is possible to change the voltage across a capacitor slowly or rapidly depending
on the current, but never instantaneously. For this reason, capacitors are frequently
used to reduce voltage spikes just as inductors are sometimes used to reduce current
spikes. The fact that the behavior of voltage across a capacitor is similar to the
behavior of current through an inductor is an example of a principle termed duality.

Capacitors and inductors have reciprocal responses to situations where their volt-
ages and currents are constant. Again, such conditions are referred to as DC con-
ditions. Because the current through a capacitor is proportional to the derivative of
voltage (Eq. 4.19), if the voltage across a capacitor is constant, the capacitor current

v v tC C-( ) = +( )

Substituting  joules  joules2V Q C E CV= =
1
2

E dE
C

qdq
Q
C

Q

= = =Ú Ú
1 1

20

2

v q C dE vdq
C

qdq= = = and from Eq. 4.4: 
1

A
Cd

= =
( )

¥
= ¥

-

-e0

3
81 10

1 13
f m

8.85 10 coul newtonm
10 m

12 2 2
2.

4.2 SYSTEM VARIABLES AND ELEMENTS 133



will be zero regardless of the value of the voltage. An open circuit is defined as an
element having zero current for any voltage; hence, capacitors appear as open cir-
cuits to DC current. For this reason, capacitors are said to block DC and are some-
times used for exactly that purpose.

The continuity and DC properties of inductors and capacitors are summarized
in Table 4.3. A general summary of passive and active electrical elements will be
presented later in Table 4.4 at the end of Section 4.2.3.

4.2.2.4 Electrical Elements: Reality Check

The equations given above for passive electrical elements are idealizations of the
actual elements. In fact, the elements do have voltage–current characteristics that
are nearly linear. However, all real electric elements will contain some resistance,
inductance, and capacitance, and these undesired characteristics are termed para-
sitic elements. For example, a real resistor will have some inductor- and capacitor-
like characteristics, although these will generally be small and can be ignored except
at very high frequencies. (Resistors made by winding resistance wire around a core,
so-called wire-wound resistors, have a large inductance as might be expected for
this coillike configuration. However, these are rarely used in electronic applications.)
Similarly, real capacitors also closely approximate ideal capacitors except for some
parasitic resistance. This parasitic element appears as a large resistance in parallel
with the capacitor (Figure 4.9), leading to a small leakage current through the capac-
itor. Low-leakage capacitors can be obtained at additional cost with parallel resis-
tance exceeding 1012 to 1014 W, resulting in very small leakage currents. Inductors
are constructed by winding a wire into coil configuration. Because all wire contains
some resistance, and a considerable amount of wire may be used in an inductor,
real inductors generally include a fair amount of series resistance. This resistance
can be reduced by using wire having a larger diameter (as suggested by Eq. 4.9),
but this results in increased physical size.

In most electrical applications, the errors introduced by real elements can be
ignored. It is only under extreme conditions, involving high-frequency signals or the
need for very high resistances, that these parasitic contributions need be taken into
account. While the inductor is the least ideal of the three passive elements, it is also
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TABLE 4.3 Energy Storage and Response to Discontinuous and Direct Current Variables in 
Inductors and Capacitors

Element Energy Stored Continuity Property Direct Current Property

Inductor Current continuous If ic = constant (direct current)
iL(0-) = iL(0+) vL Æ 0 (short circuit)

Capacitor Voltage continuous If vC = constant (direct current voltage)
vC(0-) = vC(0+) iC Æ 0 (open circuit)

E CV= 1
2

2

E LI= 1
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the least used in conventional electronic circuitry, so its shortcomings are not that
consequential.

4.2.3 Active Elements

Active elements can supply energy to a system and in the electrical domain come in
two flavors: voltage sources and current sources. These two devices are somewhat
self-explanatory. Voltage sources supply a specific voltage that may be constant or
time varying but is always defined by the element. In the ideal case, the voltage is
independent of the current through the source: a voltage source is concerned only
about maintaining its specified voltage; it does not care about what the current is
doing. The voltage polarity is part of the voltage definition and must be given with
the symbol for a voltage source as shown in Figure 4.10. The current through the
source can be in either direction (again, the source does not care). If the current is
flowing into the positive end of the source, the source is being ‘charged’ and is
removing energy from the circuit. If current flows out of the positive side, the source
is supplying energy. The equation for a voltage source is simply v = VSource. The
energy supplied or taken up by the source is given by Eq. 4.6 (P = vi). The voltage
source in Figure 4.10 is shown as grounded; that is, one side is connected to ground.
Voltage sources are commonly used in this manner, and many commercial power
supplies have this grounding built in. Voltages sources that are not grounded are
referred to as floating sources. A battery is an example of a floating voltage source.

An ideal current source supplies a specified current, which can be fixed or time
varying. It cares only about the current running though it. Current sources are less
intuitive because current is thought of as an affect (of voltage) not as a cause. One
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Figure 4.9 The schematic
of a real capacitor showing
the parasitic resistance that
would lead to a leakage 
of current through the 
capacitor.



way to think about a current source is that it is a voltage source whose output
voltage is somehow automatically adjusted to produce the desired current. A current
source manipulates the cause, voltage, to produce a desired affect, current. The
current source does not set the voltage across it: it will be whatever it has to be to
produce the desired current. The ideal current source shown in Figure 4.11 shows
the symbol used to represent a current source. Current direction is given as part of
the current specification. Because a current source does not regulate the voltage
(except indirectly), the symbol does not specify a voltage polarity. As with the
voltage across a current source, the voltage polarity will be whatever it has to be
to produce the desired current.

Again, these are idealizations, and real current and voltage sources usually fall
short. Real voltage sources care about the current they have to produce and their
voltages will decrease if the current requirement becomes too high. Similarly, real
current sources care about the voltage across them, and their current output will
decrease if the voltage required to produce the desired current gets too large. More
realistic representations for voltage and current sources are given in Chapter 7 under
the topic of Thévenin and Norton equivalent circuits.

Table 4.4 summarizes the various electrical elements giving the associated units,
the defining equation, and the symbol used to represent that element in a circuit
diagram.
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Figure 4.10
Schematic representa-
tion of a voltage source,
Vs. This element speci-
fies only the voltage,
including the direction
or polarity. The current
value and direction are
unspecified and depend
on the rest of the
circuit. Voltage sources
are often used with 
one side connected to
ground as shown.



4.2.4 The Fluid Analogy

One of the reasons analog modeling is popular is that it parallels human intuitive
reasoning. To understand a complex notion, we often describe something that is
similar but easier to comprehend. Some intuitive insight into the characteristics of
electrical elements can be made using an analogy based on the flow of a fluid such
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Figure 4.11 Schematic
representation of a
current source, Is. This
element specifies only 
the current; the voltage
value and polarity are
unspecified and depend
on the rest of the circuit.

TABLE 4.4 Electrical Elements: Basic Properties

Element Units Equation v(t) = f[i(t)] Symbol

Resistor (R) W (volt/ampere) v(t) = R i(t)

Inductor (L) Henry (weber turns/ampere) v(t) = L di/dt

Capacitor (C) Farad (coulombs/volt)

Voltage source (Vs) Volt (joules/coulomb) v(t) = Vs(t)

Current source (Is) Ampere (coulombs/second) i(t) = Is(t)

v t
C

idt( ) = Ú
1



as water. In this analogy, the flow rate of the water would be analogous to the flow
of charge in an electric circuit (i.e., current), and the pressure behind that flow would
be analogous to voltage. In this analogy, a resistor would be a constriction, or pipe,
inserted into the path of water flow. As with a resistor, the flow through this pipe
would be linearly dependent on the pressure (voltage) and inversely related to the
resistance offered by the constructing pipe. The equivalent of Ohm’s law would be:
flow equals pressure/resistance. As with a resistor, the resistance to flow generated
by the construction would increase linearly with its length and decrease with its
cross-sectional area, as in Eq. 4.9 (pipe resistance is proportional to length/area).

The fluid analogy to a capacitor would be that of a container with a given cross-
sectional area. The pressure at the bottom of the container would be analogous to
the voltage across the capacitor, and the water flowing into or out of the container
would be analogous to current. As with a capacitor, the height of the water (pro-
portional to the amount of charge) would be proportional to the pressure at the
bottom, and would be linearly related to the integral of water flow and inversely
related to the area of the container (Figure 4.12). A container with a larger area
(i.e., a larger capacity) would have the ability to accept larger amounts of water
(charge) with little change in pressure (voltage), whereas a vessel with a small area
would fill quickly. Just as in a capacitor, it would be impossible to change the height
of the water, and therefore the pressure at the bottom, instantaneously (unless you
had an infinite flow of water). With a high flow, you could change the height quickly,
but not instantaneously. If the flow is outward, water will continue to flow until the
vessel is empty. This is analogous to fully discharging a capacitor. In fact, even the
time course of the outward flow would parallel that of a discharging capacitor. Also,
for the pressure at the bottom of the vessel to remain constant, the flow into, or
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Figure 4.12 Water analogy of a capacitor. Water
pressure at the bottom is analogous to voltage across
a capacitor and water flow is analogous to the flow of
charge. The amount of water contained in the vessel is
analogous to the charge on a capacitor.



out of, the vessel would have to be zero, just as the current must be zero for con-
stant capacitor voltage.

A water container, like a capacitor, stores energy. In a container, the energy is
stored as the potential energy of the contained water. Using a dam as an example,
the amount of energy stored is proportional to the amount of water contained
behind the dam and the pressure squared. A dam, or any other real container, would
have a limited height, and if the flow of water into it continued for too long, it
would overflow. This is analogous to exceeding the voltage rating of the capacitor
where continuous charge going in would cause the voltage to rise until some type
of failure occurred. It is possible to increase the overflow value of a container by
increasing its height, but this would also lead to an increase in physical size just as
in the capacitor. A real container might also leak; in which case water stored in the
container would be lost rapidly or slowly, depending on the size of the leak. This
is analogous to the leakage of current that exists in all real capacitors. Eventually
all charge on the capacitor will be lost due to leakage, and a capacitor’s voltage
becomes zero.

In the fluid analogy, the element analogous to an inductor would be a large pipe
with negligible resistance to flow, but where any change in flow would require some
pressure just to overcome the inertia of the fluid. This parallel with inertial prop-
erties of a fluid again demonstrates why an inductor is sometimes referred to as an
inertial element. The change in flow velocity (the time derivative of flow) would be
proportional to the pressure applied to the water in the pipe, and the constant of
proportionality would be related to the mass of the water. Hence, the relationship
between pressure and flow in such an element would be:

[Eq. 4.24]

Energy would be stored in this pipe as kinetic energy of the moving water.
The greater the applied pressure, the faster the water would change velocity.

However, just as with an inductor, it would not be possible to change the flow veloc-
ity of a mass of water instantaneously using finite pressures. Also, as with an induc-
tor, it would be difficult to construct a large pipe holding a substantial mass of water
without some associated or parasitic resistance, even if the size was quite large.

In the fluid analogy, a current source would be an ideal, constant-flow pump. It
would generate whatever pressure was required to maintain its specified flow. A
voltage source would be similar to a very large–capacity vessel, such as a dam. It
would supply the same pressure stream, no matter how much water was flowing
out of it, or even if water was flowing into it, or if there were no flow at all.

4.3 PHASOR ANALYSIS

If the system and its signals or variables are responding in a sinusoidal manner (or
can be converted to sinusoids using the Fourier series or transform), then a tech-
nique known as phasor analysis can be used. As used here, the term phasor analy-
sis is considerably more mundane than the name implies: the analysis of phasors,

p k kd dt= = ( ) flow velocity flow
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such as used on ‘Star Trek’ is, unfortunately, beyond the scope of this text. Phasor
analysis is confined to systems whose variables or signals vary sinusoidally, have
always been varying sinusoidally, and always will be varying sinusoidally (again,
for all practical purposes). These eternally sinusoidal situations are referred to as
sinusoidal steady state conditions. In this phrase, the term steady-state is used in a
more general sense: it does not mean static because there is sinusoidal variation.
Rather, sinusoidal steady state means that the sinusoid is unchanging: it has the
same magnitude, phase, and frequency for all time. (Sometimes steady-state does
mean static, so the phrase needs to be interpreted in context.)

Recall that one of the great virtues of the sinusoid was that its frequency is not
modified by linear processes. Because all of the electrical elements discussed above
are linear, circuits consisting of those elements are linear processes. Under sinusoidal
steady state conditions, all system variables would be sinusoidal and could be
described by the same general equation:

[Eq. 4.25]

where the values of A and q can be modified by electric circuit elements, but the
value of w (or f) will be the same throughout the circuit. Thus, if the system is linear
and the input to the system is a sinusoidal steady state signal, all variables/signals
will be sinusoids at the same frequency. In fact, the input need not be sinusoidal,
merely periodic, because periodic functions can be reduced to a series sinusoids using
Fourier series analysis.

As mentioned earlier, the reason that linear elements and aggregations of linear
elements do not alter the frequency of sinusoids relates to their mathematical defi-
nitions and the unique mathematical properties of a sinusoid. All linear elements
can be defined in terms of integrals, differentials, or scalings, and such operations,
when applied to sinusoids, do not change their frequency, only their amplitude
and/or phase. The derivative or integral of a sinusoid is another sinusoid at the same 
frequency.

All sinusoids require three variables for complete description: amplitude, phase,
and frequency (Eq. 4.25). However, if the frequency is always the same, as it would
be for any variable of a linear system, then we need to keep track of only two vari-
ables: amplitude (or magnitude, an equivalent term1) and phase. This suggests that
complex variables and complex arithmetic may be useful in simplifying the mathe-
matics of sinusoids, because a single complex variable is actually two variables rolled
into one (a + jb). Perhaps a single complex number (or variable) could be used to
describe the amplitude and phase of a sinusoid.

Returning again to the complex representation of sinusoids given up by Euler’s
equation:

[Eq. 4.26]e x j xjx = +cos sin

x t A t A ft( ) = +( ) = +( )cos cosw q p q2
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1 There is a tendency to use the word amplitude when referring to the peak-to-peak value of the sinu-
soid and the word magnitude when referring to the RMS value. Here the words amplitude and magni-
tude are used interchangeably.



or, in terms of the general equation for a sinusoid, Eq. 4.25:

[Eq. 4.27]

Comparing Eq. 4.25 with Eq. 4.27 shows that a general sinusoid can be represented
by only the real part (i.e., Re) of ejx:

[Eq. 4.28]

If all variables in an equation contain the real part of the complex sinusoid, the real
terms can be eliminated, because if:

then

[Eq. 4.29]

In general, if Re A = Re B, A does not necessarily equal B. However the only way
the Re Aejw t can equal the Re Bejw t at all values of t is if A = B. (Appendix E pre-
sents a review of complex arithmetic.) Because all variables in a sinusoidal steady-
state system are the same except for amplitude and phase, they will all contain the
‘Re’ operator, and these terms can be removed from the equations as was done in
Eq. 4.29 (they do not actually cancel, they are just unnecessary since the equality
stands just as well without them). Similarly, because all variables will be at the same
frequency, the ejw t term will appear in each variable and will cancel (once the Re’s
are eliminated). Therefore, the general sinusoid of Eq. 4.25 can be represented in a
linear system by a single complex number:

[Eq. 4.30]

where Aejq is the phasor representation of a sinusoid. Equation 4.30 does not rep-
resent a mathematical equivalence, but a transformation from the standard sinu-
soidal representation to a complex exponential representation without loss of
information. In the phasor representation, the frequency, w, is not explicitly stated,
but is understood to be conceptually a part of every term. Because the phasor, Aejq,
is defined in terms of the cosine (Eq. 4.30), sinusoids defined in terms of sine waves
must first be converted to cosine waves.

If phasors (i.e., Aejq) only offered a more succinct representation of a sinusoid,
their usefulness would be limited. It is their calculus-friendly behavior that endears
them to engineers. To determine the derivative of the phasor representation of a
sinusoid, we return to the original complex definition of a sinusoid (i.e., Re 
Aejqejw t):

[Eq. 4.31]

The derivative of a phasor is the just the original phasor, but multiplied by 
jw. Hence, in phasor representation, taking the derivative is accomplished by 
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multiplying the original term by jw, and a calculus operation has been reduced to
a simple arithmetic operation:

[Eq. 4.32]

Similarly, integration can be performed in the phasor domain simply by dividing by
jw:

[Eq. 4.33]

and the operation of integration becomes, again, an arithmetic operation, in this
case division:

[Eq. 4.34]

The basic rules of complex arithmetic are covered in Appendix E; however, a few
properties of the complex operator j will be noted here. Note that 1/j is the same
as -j, because:

[Eq. 4.35]

So, Eq. 4.34 could also be written as:

[Eq. 4.36]

Multiplying by j in complex arithmetic is the same as shifting the phase by 90
degrees, which follows directly from Euler’s equation:

Substituting in cos(x + 90) for -sin x, and sin(x + 90) for cos x; jex becomes:

This is the same as ex+90, which equals exe90:

[Eq. 4.37]

Similarly, dividing by j is the equivalent of shifting the phase by -90 degrees:

Substituting in cos(x - 90) for sin x, and sin(x - 90) for cos x; ex/j becomes:

[Eq. 4.38]

Equations 4.32, 4.34, and 4.36 demonstrate the benefit of representing sinusoids by
phasors: the calculus operations of differentiation and integration become the alge-
braic operations of multiplication and division. Moreover, the bilateral transfor-
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mation that converts between the time domain and phasor domain (Eq. 4.30) is
very easy to implement going in either direction.

Example 4.3: Find the derivative of x(t) = 10 cos(2t + 20) using phasor analysis.

Solution: Convert x(t) to phasor representation [represented as X(jw)], multiply
by jw, then take the inverse phasor transform:

Because cos(x) = sin(x + 90) = -sin(x - 90), this can also be written as 
-20 sin(2t + 20), which would be obtained from straight differentiation.

A shorthand notation is common for the phasor description of a sinusoid. Rather
than write Vejq, we simply write V–q. When a time variable such as v(t) is con-
verted to a phasor variable, it is common to write it as a function of w: V(w). This
acknowledges that phasors represent sinusoids at a specific frequency even though
the ejw t term is not explicitly shown in the phasor itself. (Although the frequency is
part of the phasor equations for inductors and capacitors and will be embedded in
the phasor values of these components.) When discussing phasors and implement-
ing phasor analysis, it is common to represent frequency in radians per second, w,
rather than in hertz (Hz), f, even though hertz is more likely to be used in practi-
cal settings. It is also common to use capital letters for the phasor variable, a con-
vention followed here. Hence, the time-phasor transformation for variables v(t) and
i(t) can be stated as:

[Eq. 4.39]

In this notation, the phasor representation of 20 cos(2t + 110) would be written as
20 –110 rather than 20 ej110. Often, the phasor representation of a sinusoid
expresses the amplitude of the sinusoid in RMS values rather than peak-to-peak
values, in which case the phasor representation of 20 cos (2t + 110) would be written
as: (0.707) 20 –110 = 14.14 –110. In this text, peak-to-peak values are used simply
because it saves converting back and forth between RMS and peak-to-peak.

The phasor approach is an excellent method for simplifying the mathematics of
linear systems. It can be applied to all systems that are driven by sinusoids, or with
the use of the Fourier series analysis or the Fourier transform, to systems driven by
any periodic signal.

To formalize the analysis of circuits and analog models using the phase repre-
sentation of sinusoids, electrical elements will be reintroduced, but now the math-
ematical description of their voltage–current relationships will be given in the phasor
domain. After describing electrical elements, mechanical elements will be covered.
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4.3.1 Phasor Representation: Electrical Elements

Using phasor analysis, it is possible to recast the differential/integral equations defin-
ing an inductor and a capacitor (Eq. 4.12 and Eq. 4.18) into algebraic equations.
Differentiation becomes simply multiplication by jw (or j2pf) and integration
becomes division by jw.

Converting the voltage–current equation for a resistor from time to phasor
domain is not difficult, nor is it particularly consequential because the time domain
equation (Eq. 4.8) is already an algebraic relationship. Accordingly, the conversion
is only a matter of restating the voltage and current variable in phasor notation:

[Eq. 4.40]

Rearranged as a voltage–current ratio:

[Eq. 4.41]

Because the voltage–current relationship of a resistor was algebraic, nothing is
gained by converting it to the phasor domain. However, converting the
voltage–current equation of an inductor or capacitor to phasor notation does make
a considerable difference as the differential or integral relationships become alge-
braic. For an inductor, the voltage–current equation in the time domain is given in
Eq. 4.12 and repeated here:

[Eq. 4.42]

But in phasor notation, the derivative operation becomes multiplication by jw:

so the voltage–current operation for an inductor becomes:

[Eq. 4.43]

Now it is possible to solve Eq. 4.43 using algebra to obtain a voltage-to-current
ratio similar to that for the resistor (Eq. 4.41):

[Eq. 4.44]

The ability to express the voltage–current relationship as a ratio is part of the power
of the phasor domain method. Thus, the term jwL is something like the equivalent
resistance of an inductor. It is termed the impedance, represented by the letter Z,
and has the units of ohms (volts per ampere), the same as for a resistor:

[Eq. 4.45]

Impedance, the ratio of voltage-to-current, is not defined for inductors or capaci-
tors in the time domain because the voltage–current relationships for these elements
contain integrals or differentials and it is not possible to determine a V/I ratio. In
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general, the impedance will be a function of frequency, w (except for resistors),
although often the impedance is written simply as Z with the frequency term under-
stood. Because impedance is a generalization of the concept of resistance (it is the
V/I ratio for any passive element), the term is often used in discussion of any V/I
relationships, even when only resistances are involved.

For the moment, the concept of impedance will be limited to the phasor domain,
and hence to circuits that involve only sinusoidal signals. In Chapter 8, we will see
how to extend this concept to a broader class of signals using the Laplace trans-
form. As with many other concepts presented in this text, impedance is a useful and
broadly used concept found in electrical, mechanical, and thermal processes.

To extend the concept of impedance and algebraic operations to the capacitor,
we start with the basic voltage–current equation for a capacitor (Eq. 4.17), repeated
here:

[Eq. 4.46]

and noting that integration becomes the operation of dividing by jw in the phasor
domain:

so the phasor voltage–current equation for a capacitor becomes:

[Eq. 4.47]

The capacitor impedance then becomes:

[Eq. 4.48]

These voltage–current relationships and impedances are summarized in Table 4.5.
Remember that the phasor notation only applies if all voltage and currents are

sinusoids at the same frequency, so the relationships given in Table 4.5 only hold
for these conditions. Table 4.5 also gives the impedance, Z, the voltage current ratio.
In the time domain, impedance can only be defined for a resistor (i.e., Ohm’s law),
but in the phasor domain, impedance is defined for inductors and capacitors as well.
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TABLE 4.5 V/I Relationships and Impedance for Electrical Elements

Element v/i Time Domain V/I Phasor Domain Impedance Z(w) Phasor Domain

Resistor v = Ri V(w) = R I(w) R W
Inductor v = Ldi/dt V(w) = jwL I(w) jwL W
Capacitor v = 1/CÚidt V(w) = I(w)/jwC 1/jwC W



(Impedance is also defined for these elements in the Laplace domain.) Using phasors,
it is possible to treat the so-called reactive elements, inductors and capacitors, as if
they were effectively resistors. This allows us to introduce a generalization of Ohm’s
law that applies to inductors and capacitors as well: voltage is equal to a constant
times current, only in the case of inductors and capacitors the constant is imaginary
(jwL, 1/jwC). This allows the construction of relatively simple algebraic descriptions
of circuits that involve these elements.

Active elements producing sinusoidal voltages or currents can also be represented
in the phasor domain by returning to the original phasor description of sinusoid,
Eq. 4.30, repeated here:

[Eq. 4.49]

Using this equation, the phasor representation for a voltage source becomes:

[Eq. 4.50]

and for a current source:

[Eq. 4.51]

(Again, capital letters are used for phasor variables.) Thus converting active sources
to phasor representation is straightforward and easy. These principles are demon-
strated in the example below. If a source produces a current of:

The phasor representation of the current source will be:

Again note that the frequency, w, is not explicitly shown in this representation, but
it will be expressed in the circuit impedances.

Example 4.4: Find the current through the capacitor in the circuit below.
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Solution: Because the voltage across the capacitor is known (it is the voltage of
the voltage source, Vs), the current through the capacitor can be determined by a
phasor extension of Ohm’s law: V = I Z:

v i Z i v Zc c c c c c= =;  solving for i :  Ac



The voltage across the capacitor is the same as the source voltage, VS:

Next, we find the phasor notation of the capacitor:

Then solving for IC using Ohm’s law:

To divide two complex numbers, convert then to polar notation (these already are
in polar notation) and divide the magnitudes and subtract the denominator angle
from the numerator angle. (See Appendix E for details.)

The solution to the problem requires only algebra, but it does involve complex
algebra. Again, the rules for arithmetic operations (addition, subtraction, multipli-
cation, and division) involving complex numbers are given in Appendix E.

4.4 MECHANICAL ELEMENTS

The mechanical properties of a material often vary across and through the mater-
ial so that a mechanical analysis involving this material must be made using 
continuous mathematical methods known as continuum mechanics. If only the
overall behavior of an element, or collection of elements, is needed, the properties
of each element can be lumped together and a lumped-parameter analysis can be
performed. An intermediate approach facilitated by high-speed computers is to
apply lump-parameter analysis to small segments of the material, then compute 
how each of these segments is to interact with its neighbors; a technique known as
finite element analysis. Lumped-parameter mechanical analysis is similar to that
used for electrical elements and most of the mathematical techniques described
above and developed in the next several chapters can be applied to this type of
mechanical analyses. In lumped-parameter mechanical analysis, the major variables
are force and velocity, and the mechanical element produces a well-defined rela-
tionship between these variables that is similar to the voltage–current relationship
defined by electrical elements. In mechanical systems, the flowlike variable analo-
gous to current is velocity, whereas the potential energy variable analogous to
voltage is force. Thus, mechanical elements define a relationship between force and
velocity. Mechanical elements can be active or passive, and passive elements can dis-
sipate or store energy.
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4.4.1 Passive Elements

Dynamic friction is the only mechanical element that dissipates energy and, as with
the resistor, that energy is converted to heat. The force–velocity relationship for a
friction element is also similar to a resistor: the force generated by the friction
element is proportional to its velocity:

[Eq. 4.52]

where kf is the constant proportionality and is termed simply friction (F) is force,
and u is velocity.

In the cgs metric system used in this text, the unit of force is dynes and the unit
of velocity is centimeters per second (cm/sec), so the units for friction are
dyne/cm/sec (force/velocity) or dyne-sec/cm. The other commonly used measurement
system is the mks (meters, kilograms, seconds) system preferable for systems having
larger forces and velocities. Conversion between the two is straightforward (see
Appendix D).

The equation for the power lost as heat in a friction element is analogous to that
of a resistor:

[Eq. 4.53]

The symbol for such a friction element is termed a dash-pot, and is shown in Figure
4.13. Friction is often a parasitic element, but a device that is specifically constructed
to produce friction can be made using a piston that moves through a fluid (or air);
for example, the shock absorbers on a car or some door-closing mechanisms. This
construction approach, a moving piston, forms the basis for the schematic repre-
sentation of the friction element shown in Figure 4.13.

As with passive electrical elements, passive mechanical elements have a specified
directional relationship between force and velocity: specifically, the direction of pos-
itive force is opposite that of positive velocity. Again, the direction of one of the
variables can be chosen arbitrarily after which the direction of the other variable is
determined.

P F= u

F kf= u
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Figure 4.13 The schematic representa-
tion of a friction element showing the 
convention for the direction of force and
velocity.



In addition to elements specifically designed to produce friction (such as shock
absorbers), friction occurs in association with other elements, just as resistance is
unavoidable in other electrical elements (particularly inductors). For example, a
mass sliding on a surface would exhibit some friction no matter how smooth the
surface. Regardless of whether friction arises from a dash-pot element specifically
designed to create friction or is associated with another element, it is usually rep-
resented by the dash-pot schematic shown in Figure 4.13.

There are two mechanical elements that store energy just as there are two elec-
trical elements. The inertial type element corresponding to inductance is, not sur-
prisingly, inertia associated with mass. It is termed simply mass, and is represented
by the letter m. The equation for the force–velocity relationship associated with
mass is as follows:

[Eq. 4.54]

The mass element is schematically represented as a rectangle, again with force and
velocity in opposite directions (Figure 4.14).

A mass element stores energy as kinetic energy following the well-known equa-
tion given in Eq. 4.2 and repeated here:

[Eq. 4.55]

The parallel between inertial electrical elements and the analogous mechanical
element, mass, extends to variable continuity. Just as current moving through an
inductor must be continuous and cannot be changed instantaneously, moving
objects tend to continue moving (to paraphrase Newton), and the velocity of a mass
cannot be changed instantaneously without applying infinite force. Hence, the veloc-
ity of a mass is continuous, so that um(0-) = um(0+). It is possible to change the
force on a mass instantaneously, just as it is possible to change the voltage applied
to an inductor instantaneously, but not the velocity.

E m=
1
2

2u

F ma m
d
dt

= =
u

4.4 MECHANICAL ELEMENTS 149

Figure 4.14 The schematic representation of a mass
element that features the same direction conventions as the
friction element.



The capacitor-like energy storage element in mechanical systems, the element
analogous to a capacitor, is a spring, and it has a force–velocity equation that is in
the same form as the equation of a capacitor:

[Eq. 4.56]

where ke is the spring constant in dyne/cm. A related term frequently used is the
compliance, Ck which is just the inverse of the spring constant (1/ke) and its use
makes the equations of spring and capacitor even more similar in form:

[Eq. 4.57]

Although the spring is analogous to a capacitor, the symbol used for a spring is
similar to that used for an inductor as shown in Figure 4.15. (Springs in schemat-
ics look like inductors, but they act like capacitors.)

As with a capacitor, a spring stores energy as potential energy. A spring that is
stretched or compressed generates a force that can do work if allowed to move
through distance. The work or energy stored in a spring is:

[Eq. 4.58]

because displacement, x, is analogous to charge, q, in the electrical domain, the
equation for energy stored in a spring is analogous to a form of the equation for
energy stored in a capacitor (Eq. 4.22).

As with a capacitor, it is impossible to change the force on a spring instanta-
neously using finite velocities. This is because force is proportional to length (Fs =
kex) and the length of a spring cannot change instantaneously. Using high veloci-
ties, it is possible to change spring force quickly, but not instantaneously; hence for
a spring, FS(0-) = FS(0+).

Because passive mechanical elements have defining equations similar to those of
electrical elements, the same useful analysis techniques, such as phasor analysis, can
be applied under the same constraints (i.e., sinusoidal steady state conditions).
Moreover, the rules for analytically describing combinations of elements (i.e.,
mechanical systems) are similar to those for describing electrical circuits. Table 4.6
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Figure 4.15 The symbol for a spring showing
the direction conventions for this passive
element.



is analogous to Table 4.3 and shows the energy, continuity, and DC properties of
mass and elasticity.

4.4.2 Elasticity

Elasticity is most often distributed through or within a material and is defined by
the relationship between stress and strain. Stress is force normalized by the cross-
sectional area:

[Eq. 4.59]

Strain is elongation, or stretching, that is normalized by the rest length, the length
the material would assume if no force were applied:

[Eq. 4.60]

The ratio of stress to strain is a normalized measure of the ability of a material to
stretch and is an elastic coefficient termed Young’s modulus:

[Eq. 4.61]

If a material is stretched by a load or weight produced by a mass, m, then the equa-
tion for Young’s modulus can be written as:

[Eq. 4.62]

where g is the gravitational constant, 980.665 cm/sec2. Values for Young’s modulus
for a wide range of materials can be found in traditional references such as the
Handbook of Physics and Chemistry (Lide, 2004). Some values for typical materi-
als are shown in Table 4.7. The examples below illustrate applications of Young’s
modulus and related equations.

Example 4.5: A 10-lb. weight is suspended by a no. 12 (AWG) wire 10 inches
long. How much does the wire stretch?

Y
mg r

M =
p 2

Dl l

Y Stress Strain
F A

M = =
D
Dl l

Strain = Dl l

Stress F A= D
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TABLE 4.6 Energy Storage and Response to Discontinuous and Direct Current Variables in Mass and
Elasticity

Element Energy Stored Continuity Property DC Property

Mass Velocity continuous If um = constant (DC velocity)
um(0-) = um(0+) F Æ 0

Elastic element Force continuous If Fe = constant (DC force)
Fe(0-) = Fe(0+) um Æ 0

DC, direct current.

E k xe= 1
2

2

E mv= 1
2

2



Solution: To find the new length of the wire, use Eq. 4.62 and solve for D�. First
convert all constants to cgs units:

To find the diameter of 12-gauge (AWG) wire used in the table for wire gauges in
Appendix D:

Then solve for Dl:

Example 4.6: Find the elastic coefficient of a steel bar with a diameter of 0.5 mm
and length of 0.5 m.

Solution: From Eq. 4.56: F = Kex; ke = F/x, where x = D�. Find ke in terms of
Young’s modulus, then solve the equations below:
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TABLE 4.7 Young’s Modulus of Selected Materials

Material YM (dyne/cm2)

Steel (drawn) 19.22 ¥ 1010

Copper (wire) 10.12 ¥ 1010

Aluminum (rolled) 6.8–7.0 ¥ 1010

Nickel 20.01–21.38 ¥ 1010

Constantan 14.51–14.89 ¥ 1010

Silver (drawn) 7.75 ¥ 1010

Tungsten (drawn) 35.5 ¥ 1010



4.4.3 Sources

Sources supply mechanical energy and can be sources of force, velocity, or dis-
placement. Displacement is another word for a change in position, and is just the
integral of velocity: x = Úudt. As mentioned earlier, displacement is analogous to
charge in the electrical domain because q = Úidt. While sources of constant force or
constant velocity do occasionally occur in mechanical systems, most sources of
mechanical energy are much less ideal than their electrical counterparts. Sometimes
the same mechanical source can look like a velocity (or displacement) generator or
a force generator depending on the characteristics of the load; that is, the mechan-
ical properties of the elements connected to the source. For example, consider a
muscle contracting under a light, constant load, a so-called isotonic contraction
because the force (i.e., tonus) opposing the contraction is constant (i.e., iso). Under
these load conditions, the muscle would appear to be a velocity generator, although
the velocity would not be constant throughout the contraction. However, if the
muscle’s endpoints were not allowed to move, a so-called isometric contraction
because the muscle’s length (i.e., metric) is constant (again, iso), the muscle would
look like a force generator.

In fact, a muscle is neither an ideal force generator nor an ideal velocity genera-
tor. An ideal force generator would put out the same force no matter what the con-
ditions; however, the maximum force developed by a muscle depends strongly on
its initial length. Figure 4.16 shows the classic length–tension curve for skeletal
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Figure 4.16 The length–tension relationship of skeletal muscle.
The relationship between the maximum force a muscle can produce
depends strongly on its length. An ideal force generator would
produce the same force regardless of its length (or velocity for that
matter). (Based on historical data from the human triceps muscle.)



muscle and the strong relationship between maximum force and the change in posi-
tion from rest length. (The rest length is the position the muscle assumes where there
is no force applied to the muscle.) When operating as a velocity generator under
constant load, muscle is far from ideal as the velocity generated is highly dependent
on the load. As shown in the also-classic force–velocity curve, as the force resisting
the contraction of a muscle is increased, its velocity decreases and can even reverse
if the opposing force becomes great enough (Figure 4.17). Of course, electrical
sources are not ideal either, but they are generally more nearly ideal than mechani-
cal sources. The characteristics of real sources, mechanical and electrical, are
explored in Chapter 7.

With these practical considerations in mind, a force generator is usually repre-
sented by a circle or simply an F with a directional arrow (Figure 4.18).
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Figure 4.17 As a velocity generator, muscle is hardly ideal. As the
load increases the maximum velocity does not stay constant as would
be expected of an ideal source, but decreases with increasing force
and can even reverse direction if the force becomes too high. This is
known as the force–velocity characteristics of muscle. (Based on his-
torical data from the human pectoralis major muscle.)

Figure 4.18 Two schematic representations
of an ideal force generator showing direction of
force.



In addition to the property of inertia described by Eq. 4.54, a mass generates a
force when placed in a gravitational field. The inertial properties of a mass, or iner-
tial mass, and its gravitational properties, gravitational mass, need not necessarily
be coupled if they are the result of two separate physical mechanisms. However,
experimentally they have been shown to be linked down to the most sensitive mea-
surement resolution indicating that they are somehow related to the same underly-
ing physics. The force is proportional to the value of the mass and the gravitational
constant:

[Eq. 4.63]

where m is the mass in grams and g is the gravitational constant in cm/sec2. Note
that a gm-cm/sec2 equals a dyne of force. The value of g at sea level is 980.665
cm/sec2 Provided the mass does not change significantly in altitude (which would
vary g), the force produced by a mass due to gravity is nearly ideal: the force pro-
duced would be independent of velocity (as long as it is in a vacuum so there is no
wind resistance at higher velocities).

In some mechanical systems that include mass, the force due to gravity must be
considered; in other systems, it is canceled by some sort of supporting structure. In
Figure 4.19, the system on the left side has a mass supported by a surface (either a
frictionless surface or with the friction incorporated in kf) and exerts only the iner-
tial force defined in Eq. 4.54. In the system on the right-hand side, the mass is under
the influence of gravity and produces both an inertial force that is a function of
velocity (Eq. 4.54) and a gravitational force that is constant and defined by Eq.
4.63. This additional force would be represented as a force generator acting in the
downward direction with a force of mg.

F mg=
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Figure 4.19 Two mechanical systems containing mass, m. In the left-hand system,
the mass is supported by a surface so the only force involved with this element is the
inertial force. In the right-hand system, gravity is acting on the mass so that it pro-
duces two forces: a constant force due to gravity (mg) and its inertial force.



Motors, which can be sources of torque (i.e., force generators) or velocities (in
rotations per minute [rpm] or rad/sec), are represented as shown in Figure 4.20. A
motor can be regarded as either a velocity or displacement generator, so a similar
symbol could be used, but the letters used would be either VS if it were a velocity
generator or XS for a displacement generator.

The mechanical elements, their differential and integral equations, and their
phasor representations are summarized in Table 4.8 just as the electrical elements
are summarized in Table 4.4. Note that impedance can also be defined for mechan-
ical elements and has the units of dyne-cm/sec.

Example 4.7: Find the velocity of the mass in the mechanical system below. The
force, FS, is 5 cos(10t) dyne and the mass is 5 gm. The mass is supported by a fric-
tionless surface.
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Figure 4.20 Symbol used to represent a motor. A
motor can be either a force (torque) generator or a
velocity [rotations per minute (rpm)].

TABLE 4.8 Mechanical Elements

Element (Units) Equation Phasor Equation Impedance Z(w) Symbol
F(t) = f[u(t)]

Friction (kf) F(t) = kfu(t) F(w) = kfu(w) kf

(dyne-sec/cm)

Mass (m) (gm) F(t) = m du/dt F(w) = jwmu(w) jwm

Elasticity (ki) F(t) = keÚidt F(w) = keu(w)/jw ke/jw
(spring) (dyne/cm)

Force generator (FS) F(t) = FS(t) F(w) = FS(w) —

Velocity or u(t) = VS(t) u(w) = VS(w) —
displacement x(t) = XS(t)
generator (VS or XS)



Solution: Convert the force to a phasor and apply the appropriate phasor equa-
tion from Table 4.5. Solve for u(w).
Converting the force to phasor notation:

Converting back to the time domain (if desired):

The analysis of more complicated systems is presented in the next chapter.

4.5 SUMMARY

The most complicated electrical and mechanical systems are constructed from a
limited set of basic elements. These elements fall into two general categories: active
elements, which usually supply energy to the system, and passive elements, which
dissipate or store energy. In electrical systems, the passive elements are described by
the relationship they enforce between voltage and current, whereas in mechanical
systems the relationship is between force and velocity. These relationships are linear
and involve scaling, differentiation, or integration. Active electrical elements supply
either a specific well-defined voltage (i.e., voltage sources), or a well-defined current
(i.e., current sources). Active mechanical elements are sources of force or sources of
velocity. All elements are described as idealizations, and although many practical
elements closely approach these idealizations, some of the major deviations have
been noted.

These basic elements are combined to construct electrical and mechanical
systems. Because some of the passive elements involve calculus operations, differ-
ential equations are required to describe most electrical and mechanical systems.
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However, if we restrict our signals to sinusoids, it is possible to represent elements
in such a manner that algebra can be used. This analysis is known as phasor analy-
sis and uses complex variables to represent the basic electrical or mechanical vari-
ables. A complex variable can represent both the magnitude and phase of a sinusoid.
Differentiation of a sinusoid just multiplies the sinusoid by the frequency and
changes its phase by 90 degrees, an operation that can be achieved by multiplying
a phasor by jw. Similarly, integration becomes division by jw in the phasor domain.
Hence, when circuits are represented in the phasor domain, only algebraic equa-
tions are required to analyze electrical and mechanical systems.

PROBLEMS

1. A resistor is constructed of thin copper wire wound into a coil (a wire-wound
resistor). The wire has a diameter of 1 mm.
a. How long is the wire required to be to make a resistor of 12 W?
b. If this resistor is connected to a 5-V source, how much power will it dissi-

pate as heat?
2. a. A length of no. 12 (AWG) copper wire has a resistance of 0.05 W. It is

replaced by no. 16 (AWG) wire. What is the resistance of this new wire?
b. Assuming both wires carry 2 A of current, what is the power lost in the two

wires?
3. The figure below shows the current passing through a 2-h inductor.

a. What is the voltage drop across the inductor?
b. What is the energy stored in the inductor after two seconds?
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4. The voltage drop across a 10-h inductor is measured as 10 cos(20t) V. What is
the current through the inductor?

5. A parallel-plate capacitor has a value of 1 mf(10-6 f). The separation between
the two plates is 0.2 mm. What is the area of the plates?

6. The current waveform shown in Problem 3 passes through a 0.1-f capacitor.
a. What is the equation for the voltage across the capacitor?
b. What is the charge, q, contained in the capacitor after 2 seconds (assuming

it was unchanged or t = 0)?



7. A current of 1 A has been flowing through a 1-f capacitor for 1 second.
a. What is the voltage across the capacitor, and what is the total energy stored

in the capacitor?
b. Repeat for a 100-f capacitor.

8. Convert the following to phasor representation:
a. 10 cos(10t);
b. 5 sin(5t);
c. 6 sin(2t + 60);
d. 2 cos(5t) + 4 sin(5t) (Hint: see Example 2.2):
e. Ú5 cos(20t)dt

f.

9. Add the following real, imaginary, and complex numbers to form a single
complex number: 6, j10, 5 + j12; 8 + j3, 10–0, 5– -60, 1/(j.1)

10. Evaluate the following expressions:
a. (10 + j6) +10– -30 - 10–30

b.

c.

d.

11. Find the value of the current through the inductor using the phasor extension
of Ohm’s law.
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12. A constant force of 10 dyne is applied to a 5-gm mass. The force is initially
applied at t = 0 when the mass was at rest.
a. At what value of t does the speed of the mass equal 6 dyne/second?
b. What is the energy stored in the mass after 2 seconds?

13. A force of 10 cos(6t + 30) dynes is applied to a spring having a spring constant
of 20 dyne/cm.
a. What is the equation for the velocity of the spring?
b. What is the instantaneous energy stored in the spring at t = 2 seconds?

14. A 100-foot length of silver wire having a diameter of 0.02 inches is stretched
by 0.5 inches. What is the tension (stretching force) on the wire?



MATLAB Problem

15. Find the velocity of the mass in Example 4.7 for the 5-dyne cosine source where
frequency varies from 1 to 40 rad/sec in increments of 1 rad/sec. Plot the veloc-
ity as a function of frequency. (Hint: Make frequency a vector between 1 and
40 using the MATLAB command w = 1:40, then solve for a velocity vector,
vel, by dividing the source value, 5, by j*5*w. Since w is a vector you will
need to do point-by-point division using the ./ command. Also you will need
to plot the magnitude of the velocity vector [plot(w,abs(vel))] since it will
be imaginary.)
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5 ANALYSIS OF ANALOG
MODELS AND PROCESSES

5.1 CONSERVATION LAWS: KIRCHHOFF’S VOLTAGE LAW

In this chapter, we continue to learn how to analyze systems composed of analog
elements, be they electric circuits or physiological models. Eventually, these analy-
sis techniques will not only describe behavior to specific inputs or stimuli but also
enable us to estimate the response to any input. The analysis will also give us general
information about the system. For now, we are still restricted to sinusoidal sources,
but even with that restriction, much useful information can be extracted. Having
defined the players (i.e., the elements) in the last chapter, we now need to set the
rules of the game: the rules that describe the interactions between elements. For both
mechanical and electrical elements, the rules are based on conservation laws: con-
servation of energy and conservation of mass (or charge). For electrical elements,
related rules are termed Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law
(KCL). Either of these laws can be used in the analysis of electric circuits (or net-
works) and physiological models based on electrical analogs.

KVL is based on conservation of energy: the total energy in a closed system must
be zero. Because voltage is related to potential energy, the law implies that voltage
increases or decreases around a closed loop must sum to zero. Simply stated: what
goes up must come down (in voltage):

[Eq. 5.1]

This law will allow us to write an equation for all electrical elements connected in
a loop, and since current can only flow in a closed circuit or loop, all elements that
do anything must be in some kind of loop. Figure 5.1 illustrates a loop containing
three generalized elements to which KVL applies. The voltages across the three ele-
ments must sum (algebraically) to zero: V1 + V2 + V3 = 0. Circuits that are more
complicated may contain a number of loops and some elements may be involved in
more than one loop, but KVL still applies to each of the loops and the analysis for
any number of loops becomes a straightforward extension of the analysis for a single
loop. The first example applies KVL to a single-loop problem.

v =Â 0
Loop



While all circuits can be analyzed using only KVL, in some situations the analy-
sis is simplified by using the other conservation law that is based on the conserva-
tion of charge. This law is known as KCL and states that the sum of currents into
a connection point (otherwise known as a node) must be zero:

[Eq. 5.2]

In other words, what goes in, must come out (with respect to charge at a con-
nection point). For example, consider the three currents going into the connection
point or node in Figure 5.2. According to KCL, the three currents must sum to zero:
i1 + i2 + i3 = 0. Of course we know that one, or maybe two, of the currents are actu-
ally flowing out of the node, but this just means that one (or two) of the current
values will be negative.

Either of these laws can be employed in the service of network analysis. When
KVL is applied the analysis is termed mesh analysis (a mesh is a specific type of
loop) while when KCL is applied the analysis is termed nodal analysis. Mesh analy-
sis is introduced here first and is better for circuits with many connection points,
but not so many loops.

5.1.1 Mesh Analysis: Single Loops

Which law is most appropriate depends on which results in the fewest number of
equations that need to be solved, and this depends on the circuit configuration. If
there are many loops in a circuit but only a few nodes, using KCL will lead to fewer
equations. A circuit consisting of many nodes but few loops is best approached by
applying KVL in mesh analysis. The terminology makes more sense when you under-
stand that a mesh is just a technical word for circuit loop. A detailed, step-by-step
example of mesh analysis based on KVL is given in Example 5.1.

i =Â 0
Node
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Figure 5.1 Illustration of Kirchhoff’s
voltage law. The three voltages must sum
to zero: V1 + V2 + V3 = 0.



Example 5.1: Find the voltage across the capacitor in the network below.
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Figure 5.2 Illustration of Kirch-
hoff’s current law. The sum of the
three currents flowing into the con-
nection point, or node, must be
zero. In reality, one (or two) of
these currents will actually be
flowing out of the node and these
currents will have negative values.

Solution: The circuit has one mesh (i.e., loop) and three nodes. Nodal analysis
would require the (simultaneous) solution of two equations: the number of nodes
-1 because one node can be assumed to be at 0.0 V. Mesh analysis would require
the solution of only one equation, the number of meshes or loops, making it the
obvious choice. In mesh analysis, you write an equation based on voltages in 
the mesh (applying KVL), but actually solve for the mesh current. Once you find
the mesh current you can find the voltage across any element from its voltage-current
relationship. (As you might guess, in nodal analysis it is the opposite: you write an
equation or equations based on currents, but end up solving for node voltages.) The



only trick in mesh analysis is to keep straight the direction, or polarity, of the voltage
changes (up or down corresponding to voltage increases or decreases). Actually, this
is not too difficult since mesh analysis can be approached in an algorithmic manner,
proceeding in a series of simple steps.

Step 1: Apply a network transformation so that all elements are represented by
their phasor domain notation. Use Table 4.4 to get the phasor representations of
the various elements. In the transformed circuit, sources (which must be sinusoidal
or phasor techniques do not apply) will be represented by phasor variables such as
VS –q whereas passive elements will be given their respective phasor impedances:
R W, jwL W, or 1/jwC W. Converting elements to the phasor representation would
be the first step in any analysis involving phasor techniques. Sometimes voltage
sources use RMS values in the phasor domain, but peak-to-peak values will be used
in this text as is more common. It really does not matter as long as you are con-
sistent and know which units are being used.

Step 2: In mesh analysis, step 2 consists of defining the mesh current, or currents
if more than one loop is involved. The loop in this example is closed by the two
groundsthat are essentially connected. The mesh current will go completely around
the loop in either a clockwise or counterclockwise direction, theoretically your
choice. For consistency, in this text we assume current always travels clockwise
around the mesh. (Of course, the current might actually be traveling in a direction
opposite to that assigned; however, this means that the value obtained for this
current will be negative.) Defining the current then defines the voltage polarities for
the passive elements, since current must flow into the positive side of a passive
element. Remember, the voltage source does not care about current and comes with
its polarity already assigned. Application of Steps 1 and 2 lead to the modified circuit
shown.
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Example 5.1B The circuit after steps 1 and 2. The ele-
ments and source have been converted to their phasor
representation (ohm symbol) and the mesh current, I(w),
has been assigned.



Step 3: Now we simply go around the mesh summing the voltages, but it is an
algebraic summation. Assign positive values if there is an increase in voltage and
negative values if there is a decrease in voltage. Start at the lower left corner (below
the source) and mentally proceed around the loop in a clockwise direction: tra-
versing the source leads to a voltage rise so this entry is positive, the next two com-
ponents encountered have a voltage drop (from + to -) so their entries will be
negative:

Step 4: Solve for the current. Put the source(s) on one side and the terms for the
passive elements on the other. Then solve for I(w):

To divide (or multiply) complex numbers, put terms in polar notation:

Step 5: Solve for the voltage of interest. We want the voltage across the capacitor
which, from the equation that defines a capacitor, is VC(w) = (1/jwC) I(w). Substi-
tuting our solution for I(w) above:

There are times when you do not know the specific values of R, L, or C or when
several different values may be substituted into the circuit. In such situations, it is
necessary to write the equations in terms of general R’s, L’s, or C’s, and possibly a
general VS. However, when the values are known, it is advantageous to substitute
these values into the equations as early as possible, as this simplifies the complex
arithmetic and leads to fewer errors.

Example 5.2: Example of the general solution of an RLC circuit. Find the general
solution for Vout in the circuit below. The arrows on either side of Vout indicate that
this voltage is to be taken as the voltage across the capacitor. As is often the case,
the connection between ground voltage points is not explicitly shown.
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Steps 1 and 2 lead to the circuit below. Passive elements carry the units of ohm,
which help remind us that we are now in the phasor domain.
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Step 3: Now write the basic equation going around the loop:

Step 4: Solve for I(w):

To clean things up a bit, clear the fraction in the denominator and rearrange it into
real and imaginary parts. Note j2 = -1:

Step 5: Now to find Vout, multiply I(w) by the capacitance impedance, 1/jwC:
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To find a specific value for Vout, it is necessary to put in specific values for R, L, and
C as well as for VS (which would also specify w). However, much can be learned
from the general equation above as will be shown in Chapter 6.

The network in this example can also be viewed as a linear process or
input–output function, where the voltage source is the input and Vout is the output
(Figure 5.3).

From this viewpoint, it is possible to represent the network by a single equation
that quantitatively describes the output Vout(w) to any input VS(w). This equation
relates the output to the input as a ratio and is known as the transfer function of
the linear process. If we really want to be precise, the term transfer function should
only be used for a function that is written in terms of the Laplace variables as
described in Chapter 8. However, the concept is so powerful that it is used to
describe almost any input–output relationship, even qualitative relationships. To
find the transfer function for this network when viewed as a linear process (Figure
5.3), simply divide both sides of the equation above by VS(w).

[Eq. 5.3]

The transfer function completely defines the input–output relationship of this
process. Although this transfer function is limited to sinusoid and periodic func-
tions, the concept will be expanded to cover just about any input function. Implicit
assumptions in the transfer function concept are that the input is an ideal voltage
source and nothing is connected to the output: nothing meaning that no current
flows out of the output terminals (also known as an ideal load). Of course, in 
practice, neither of these assumptions can be true, but in many electronics 
circuits the conditions are close enough to these idealizations that ‘for all practical
purposes’ the assumptions are valid. The transfer function is fully explored in the
next chapter.

V
V LC j RC

out

S

w
w w w
( )

( ) =
- +

1
1 2

5.1 CONSERVATION LAWS: KIRCHHOFF’S VOLTAGE LAW 167

Figure 5.3 The network used in Example 5.2 viewed as a
linear process or input–output mechanism. The input and output
voltages are assumed to be referenced to ground.



5.1.2 Mesh Analysis: Multiple Loops

Any single-loop circuit can be solved using this five-step process and a surprising
number of useful circuits consist of only a single loop. Nonetheless, it is not diffi-
cult to extend the approach to contend with two or more loops, although the
complex arithmetic can become tedious for three loops or more. (This is not really
a problem because MATLAB can handle the necessary math for a large number of
loops without breaking a sweat.) The example below uses the five-step approach to
solve a two-loop network and indicates how larger networks can be solved.

Example 5.3: Find the voltage across the capacitor in the network below. In this
circuit, there are no grounds shown; the elements are simply shown as connected
together. This convention is less common than the one that uses ground 
connections.
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Step 1: Represent all elements by their equivalent phasor representation. This step
is always the same in any analysis. Note that the capacitor impedance in phasor
notation becomes:

Step 2: Define the mesh currents. This step is essentially the same as for single loop
circuits. The only trick is that there is a mesh current for each loop and that current
is limited, by definition, to its specific loop. So the left hand most loop has a mesh
current labeled I1(w) and is strictly limited to go around that loop. Of course, real
currents would not be limited to individual loops in such an organized fashion, but
these currents are simply constructs that aid in solving the multi-loop problems.
Nonetheless, in a two-mesh circuit, the two mesh currents can account for all pos-
sible currents in the circuit. For example, the current through the 30-W resistor
would be the difference between the two mesh currents, I1(w) - I2(w). This is no
problem as long as this difference current is used when solving for the voltage across
that resistor.

Steps 1 and 2 lead to the circuit below.
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Step 3: Apply KVL around each loop, keeping in mind that the voltage drop (or
rise) across the resistor shared by both meshes will be due to two currents, and since
the currents are flowing in opposite directions their voltage contributions will have
opposite signs: I1(w) will produce the usual voltage drop, but I2(w) will give rise to
a voltage increase (going clockwise around the loop) because it is flowing into the
bottom of the resistor. The equations developed from each loop become:

Mesh 1 KVL following standard procedure, beginning in the lower left-hand corner.

Mesh 2 KVL using the same procedure:

Step 4: Solve for the current(s). Rearranging the two equations, placing current
on the right side and sources on the left, and separating the coefficients of the two
current variables, gives us two equations to be solved simultaneously. Pay particu-
lar attention to keeping the signs straight.

With only two equations, it is possible to solve for the currents using substitution,
avoiding matrix methods. However, with more than two meshes, matrix methods
are easier and lend themselves to computer solutions. (The solution of a three-mesh
circuit using MATLAB is given in Example 5.4.) The spacing facilitates transform-
ing the equation into matrix notation for easier solution:

Solve for I1(w) using the method of determinants (see Appendix G):
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Even this relatively simple two-mesh circuit involved considerable complex arith-
metic with multiple conversions between polar and rectangular form and some
tricky sign changes [e.g., -j20(j50) = -j21,000 = +1,000].

Step 5: Solve for the voltage of interest, the capacitor voltage.

This solution could easily be converted to the time domain if required.

5.1.2.1 Shortcut Method for Multimesh Circuits

A shortcut method enables writing the matrix equation directly from inspection of
the circuit. Regard the matrix equation and circuit of the example above:

Note that it has the general form of V = ZI, that is, the left-hand vector contains
only the sources, and the right-hand side contains a matrix of impedances and a
vector containing only the mesh currents. Moreover, the source vector has the source
of mesh 1 in the upper position and the source of mesh 2 in the lower position (with
appropriate sign). A similar arrangement holds for the current vector with the mesh
1 current above the mesh 2 current. The impedance matrix also relates topograph-
ically to the circuit: the upper left entry is the sum of impedances in mesh 1, the
lower right is the sum of impedances in mesh 2, and the off-diagonals (upper right
and lower left) contain the negative of the sum of impedances common to both
loops. In this circuit there is only one element common to both elements, so the off
diagonals contain the negative of that one element, but other circuit arrangements
could have several elements common to the two meshes. Putting this verbal descrip-
tion into mathematical form:

[Eq. 5.4]

This shortcut method still requires some care, since the summations must take the
signs into consideration, particularly the voltage sources. For example, the source
in mesh 2 of the example above had a negative sign because it represented a voltage
drop when going around the loop clockwise. This shortcut rule can easily be
extended to circuits having any number of meshes, although the subsequent calcu-
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lations become tedious for three or more meshes unless computer assistance is used.
The extension to three meshes is given in the example below, but the solution is
determined using MATLAB.

5.1.3 Mesh Analysis: MATLAB Implementation

Example 5.4: Solve for Vout in the three-mesh network below. This circuit uses
more realistic values for R, L, and C.
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Solution: Follow the steps used in the previous examples, but use the shortcut
method in Step 3, In Step 4, solve for the currents using MATLAB.

Steps 1 and 2: The figure shows both the original circuit and the circuit after steps
1 and 2 with the elements represented in phasor representation and the phasor cur-
rents defined.

Recall that the impedances for L and C are determined as:

Step 3: The matrix equation for step 3 is an extension of Eq. 5.4 where the voltage
and current vector would have three elements each and the impedance matrix would
be extended to a 3 ¥ 3 matrix written as:

[Eq. 5.5]

where SZmesh1, SZmesh2, and SZmesh3 are the sum of impedances in the three meshes;
SZmesh1,2 is the sum of impedances common to meshes 1 and 2; SZmesh1,3 is the sum
of impedances common to meshes 1 and 3; and SZmesh2,3 is the sum of impedances
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common to meshes 2 and 3. The impedance matrix has symmetry about the diag-
onals. Such symmetry is often found in matrix algebra and a matrix with this sym-
metry is termed a Toplitz matrix. In this particular network, there are no impedances
common to meshes 1 and 3, but the MATLAB section of the problems has an
example of a three-mesh circuit in which all three meshes have elements in common.

Applying Eq. 5.5 and the extension of Eq. 5.4 that includes voltages and cur-
rents gives rise to the matrix equation for this network:

Step 4: Solve for the currents, in this case I3(w). The MATLAB program first defines
the voltage vector and impedance matrix:

V = [5 0 0]’; % Note the use of the
% transpose symbol

Z= [1000 - j*1592, j*1592, 0; j*1592, 890-j*964;...
-j*628; 0, -j*628, 2200-j*95];

I = Z\V % Solve for the currents
Vout = I(3)*(-j*723) % Output the requested voltage
Vmag = abs(Vout) % also as magnitude and phase
Vphase = angle(Vout)

Results: The output of this program is:

I = 0.0021 + 0.0004i
0.0019 - 0.0015i
0.0004 + 0.0005i

Vout = 0.3954 - 0.2829i Vmag = 0.4862 Vphase = -0.6211

Some of the extra lines and spaces generated by MATLAB have been eliminated.
MATLAB accepts i or j to represent an imaginary number, but outputs using i. If
you use either i or j as program variables, this will take priority over their repre-
sentation as imaginary, so it is best to use capital I for current and avoid using i
or j as program variables. Finally, most versions of MATLAB do not require a mul-
tiplier sign if the i or j follows the number (i.e., j*1234 ∫ 1234j).

The time domain output is directly determined from the phasor output given
above. Note that the output of the MATLAB routine angle is in radians and
remember that w = 2p ¥ 104 rad/sec:

Analysis: In the MATLAB program the voltage vector is written as a row vector,
but it should be a column vector as in Eq. 5.4, so the MATLAB transpose opera-
tor (single quote) is used. Alternatively, the voltage vector could have been entered
as a column vector directly: V = [5; 0; 0]. The second line defines the imped-
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ance matrix using standard MATLAB notation. The third line solves for the three
currents by matrix inversion, implementing the equation I = Z-1 V using the back-
slash (\) operator. The fourth line multiplies the third mesh current, I3(w), by the
capacitor impedance to get Vout. The next two lines convert Vout into polar form.

5.2 CONSERVATION LAWS: KIRCHHOFF’S CURRENT LAW—
NODAL ANALYSIS

Kirchhoff’s current law can also be used to analyze circuits. This law, based on the
conservation of charge, was given in Eq. 5.2 and is repeated here:

[Eq. 5.6]

KCL is best suited to analyzing circuits with many loops, but only a few connec-
tions points. Figure 5.4 shows the Hodgkin–Huxley model for nerve membrane.
The three voltage-resistor combinations represent the potassium membrane channel,
the sodium membrane channel, and the chloride membrane channel while C is the
membrane capacitance. Analyzing this circuit would require four mesh equations,
but only one nodal equation. In this model, most of the components are nonlinear,
at least during an action potential, so the model could not be solved analytically as
is done with our linear processes. Nonetheless, the defining or governing equation(s)
would be generated using nodal analysis and could be solved using computer 
simulation.

Another example of a circuit appropriate for nodal analysis is shown in 
Figure 5.5. This circuit has four meshes and mesh analysis would give rise to four

i =Â 0
Node
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Figure 5.4 Model of nerve membrane developed by
Hodgkin and Huxley. The three voltage-resistor com-
binations represent ion channels in the membrane that
sustain the resting voltage and mediate an action
potential. The equation describing this model is best
developed using Kirchhoff’s current law and nodal
analysis.



simultaneous equations. This same circuit only has two nodes (marked A and B,
again ground points do not count), and would require solving only two nodal equa-
tions. If MATLAB is used, solving a four-equation problem is not much more dif-
ficult than solving a two-equation problem. However, when circuits are used as
models representing physiological processes as in Figure 5.4, the more concise
description given by nodal equations is of great value. This circuit contains a current
source as opposed to the voltage sources that have become familiar. This is because
nodal analysis is an application of a current law so it is easier to implement if the
sources are current sources. A similar statement could be made about mesh analy-
sis: mesh analysis involves voltage summation and it is easier to implement if all
sources are voltage sources. The need to have only current sources may seem like
a drawback to the application of nodal analysis, but we will see in Chapter 7 that
it is easy to convert voltage sources to equivalent current sources and vice versa, so
this requirement is not really a handicap. In this chapter, nodal analysis examples
use current sources with the understanding that the technique can be applied equally
well to voltage sources after a simple conversion.

Analyzing circuits using nodal analysis follows the same five-step procedure used
in mesh analysis. In fact, steps 4 and 5 are the same. Step 1 could also be the same,
but often elements are converted to 1/Z, instead of simply Z. The inverse imped-
ance, Y = 1/Z, is termed the admittance. In step 2, node voltages are assigned rather
than the mesh currents, and in step 3 the equations are generated using KCL.

The equations developed from KCL have a sort of inverse symmetry with those
of mesh analysis. In mesh analysis, we write matrix equations of the form:

[Eq. 5.7]v Zi=
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Figure 5.5 A circuit consisting of four meshes, but only two nodes. The
nodes are the connection points (A and B). Nodes include all the connec-
tions that are at the same voltage as indicated by the dashed lines. The
ground point (line across the bottom) is not considered an independent node
since its voltage is, by definition, fixed at zero. Nodal analysis works with
currents using Kirchhoff’s current law and is easiest if the sources are current
sources.



where v is a voltage vector, i is a current vector, and Z is an impedance matrix (see
Eq. 5.4). In nodal analysis, we are writing matrix equations in the form:

[Eq. 5.8]

where Y is a matrix, termed the admittance matrix containing the inverse of the
impedances. The terms v and I are vectors as in Eq. 5.7.

Example 5.5: Find the voltage, VA, in the circuit below.

i Yv=
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Solution: This circuit would require two mesh equations and the conversion of the
current source to an equivalent voltage source (as explained in Chapter 7). Using
nodal analysis, no conversion is required and only one nodal equation is required
to find the required voltage. There are four currents flowing into or out of the single
node at the top of the circuit labeled A. The current in the current source branch
(left side) will be 0.1 cos(2p 10t) and the current in the other three branches will be
equal to the voltage, VA, divided by the impedance of the branch [i.e., I(w) =
VA(w)/ZBranch]. By KCL, these four currents will sum to zero.

After applying steps 1 and 2, the network becomes as shown below. If we define
VA(w) as a positive voltage, the current though the passive elements will be flowing
downward as shown due to the voltage-current polarity rule for passive elements.
In addition, the frequency becomes: w = 2pf = 62.8 rad/sec.



Step 3: Apply the fact that the four currents sum to zero:

Now we can solve this single equation for VA(w). The equation would be easier if
written in terms of admittances: Y = 1/Z. The values of the admittances are shown
in parentheses in the circuit above. Using admittances, the nodal equation becomes:

Moving to multinodal systems, we go directly to the shortcut, matrix equation. If
we were to apply KCL to circuits we would find that equations would fall into a
pattern similar to that described by Eq. 5.4, except that it would have the specific
form of Eq. 5.8, where: the admittance matrix would consist of the summed admit-
tances common to each node along the diagonal and the negative summed admit-
tances between nodes on the off-diagonals. This general format is shown here for
a three-node circuit:

[Eq 5.9]

The application of Eq. 5.9 is straightforward and follows the same pattern as in
mesh analysis. An example of nodal analysis to the two-node circuit is given in
Example 5.6.

Example 5.6: Find the voltage, �2 in the circuit shown here. This circuit is similar
to the one shown in Figure 5.5 except an additional component has been added
between the two nodes.

Solution: Apply nodal analysis to this two-node circuit. Follow the step-by-step
procedure outlined above, but in Step 3 write the matrix equation directly as given
in Eq. 5.9. Implement Step 4 to solve for �2 using MATLAB.
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Step 1: Convert all the elements to phasor admittances. Note that w = 20 rad/sec.

Step 2: Assign nodal voltages. This has already been done in the circuit. Follow-
ing these two steps, the circuit becomes:
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Step 3: Generate the matrix equations directly following Eq. 5.9. Since we are
using admittances, inductors now have -j values while conductors have a +j values.
In addition, because the two nodes share two components, the shared admittance
will be the sum of the admittances from each component:

Hence, the circuit equation becomes:

Step 4: This matrix equation could be solved using determinants, but is even easier
to solve using MATLAB as illustrated by the code below.

0 5

0

0 014 003 0 004 007

0 004 007 0 004 008
1

2

. . . . .

. . . .
=

+ - +
- + -

j j

j j

V

V

0 5

0

0 01 0 004 01 007 0 004 007

0 004 007 0 004 005 007 004
1

2

. . . . . . .

. . . . . .
=

+ + - - +
- + - - +

j j j

j j j j

V

V

Y jnode1 2 0 004 007, . .Â = -



% Example 5.6 Solution of 2 node matrix equation
%
%Assign current vector and admittance matrix
i = [0.5; 0];
G = [.014+.003j -.004+.007j; -.004+.007j .004-.008j];
v = G\i;
disp([abs(v(2)) angle(v(2))*360/(2*pi)])

The output of the is program, the magnitude and phase of �2 is:

32.2425 -38.9801

Hence, in the time domain:

This approach could be extended to three-nodes or even higher node circuits without
a great deal of additional difficulty. A three-node problem is given at the end of the
chapter.

The basic five-step approach to analyzing electrical circuits can be used to analyze
lumped-parameter mechanical systems as described in the next section.

5.3 CONSERVATION LAWS: NEWTON’S LAW–MECHANICAL SYSTEMS

The analysis of lumped-parameter mechanical systems also uses a conservation law,
one based on conservation of energy; specifically, the sum of the forces around any
one connection point must be zero. This is a form of the classic law associated with
Newton:

[Eq. 5.10]

In this application, a connection point includes all connections between mechanical
elements that are at the same velocity. Figure 5.6 shows a linear model for skeletal
muscle similar to the one presented in Chapter 1 (Figure 1.6). Skeletal muscle has
two different elastic elements, a parallel elastic element, Cp and a series elastic
element, Cs. (Note the symbol C indicates they are given as compliances, 1/ke.) The
force generator, Fo, represents the active contractile element and kf represents viscous
properties inherent in the muscle tissue. The muscle model has two connection
points that could have different velocities, labeled Point 1 and Point 2. The posi-
tive force is defined inward reflecting the fact that muscles can only generate con-
tractile force. This is the reason they are so often found in agonist–antagonist pairs.

Since this system has two different velocities, its analysis would require the simul-
taneous solution of equations similar to those of Eq. 5.6. The system is the mechan-
ical equivalent of a two-mesh electrical circuit. The two equations would be written
around points 1 and 2: the sum of forces around each point must be zero. The
graphic on the left represents a zero-velocity point or a solid wall, the analog of a
ground point in an electrical system.

F =Â 0
Point

�2 32 2 20 139t t( ) = -( ). cos V
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The muscle model will be analyzed in a subsequent example, but for a first
example of the application of Newton’s law (Eq. 5.10), we will analyze a less com-
plicated, one-equation system with single velocity point shown in Figure 5.7. Recall
that in mechanical systems, friction elements are analogous to resistors, elastic ele-
ments are analogous to capacitors, and masses are analogous to inductors.

Example 5.7: Find the velocity and displacement of the mass in the mechanical
system shown in Figure 5.7. The force, FS(t) = 5 cos(2t + 30) dyne. The following
parameters also apply:

k k mf e= = =5 8 3dyne-sec cm dyne cm gm; ; .
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Figure 5.6 Linear mechanical model of skeletal
muscle. Fo is the force produced by the active con-
tractile element, Cp and Cs are known as the paral-
lel and series elasticity, and kf is viscous damping
associated with the tissue.

Figure 5.7 A mechanical system with one independent velocity u used
in Example 5.7. The connections on either side of the mass are essen-
tially the same point since they are at the same velocity.



Solution: In this example, the units are comparable and are in the cgs (centime-
ters, grams, dynes) metric system, the standard for this text. (In Example 5.9, con-
siderable conversion of units is required.) To analyze this system, we follow the same
five-step plan developed for electric circuits.

Step 1: Convert variables to phasor notation and represent the passive elements
by their phasor impedances. Because w = 2:

(The units for all these impedances would be dyne-sec/cm.)

Step 2: Assign variable directions. In mechanical systems, we will use the conven-
tion of assigning the force and velocity in the same direction, but the direction (right
or left) will be arbitrary (in this example it is to the right). This is analogous to
assigning currents as counterclockwise and keeping track of voltage polarities by
going in the same direction. By assigning force and velocity in the same direction,
the force polarity of passive elements will always be negative just as in electric cir-
cuits, so the equations will look similar. Note that the velocity on both sides of the
mass is the same.

Step 3: Apply Newton’s law about the point(s) around the mass:

The first three steps follow a path parallel to that followed in circuit analysis while
the last two steps are essentially identical: solve for the velocity, then any other vari-
able of interest such as a force or, in this case, a displacement.

Step 4: Solve for the phasor velocity:

Step 5: Solve for displacement. Since x(t) = Úudt; and integration in the phasor
domain is division by jw; then: x(w) = u(w)/jw:

Both u(w) and x(w) can be converted to the time domain if desired:
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The next example is more complicated because there are two summation points in
the problem so there will be two equations that must be solved simultaneously.

Example 5.8: Find the force out of the skeletal muscle model in Figure 5.6.

Solution: After converting to the phasor domain, write Newton’s law (Eq. 5.10)
around points 1 and 2. In this solution, the algebra is a bit tedious because 
the various parameters remain as variables, but the procedure is otherwise 
straightforward.

Steps 1 and 2: The force and velocity assignments are given in Figure 5.7. In this
model the letter C, which stands for compliance, is used to represent elastic com-
ponents. To be consistent with other section of the text, keP and keS will be used.
The various components transformed to the phasor domain become:

Step 3a: Write the equations about the two points. The equation around point 1
is:

The force generated by the elastic element keS depends on the difference in veloci-
ties between points 1 and 2. (Specifically, it depends on difference in the positions
of the points, which is the integral of the difference in the two velocities.) The force
that is generated by u1(w) - u2(w) will be in the opposite direction of F1, which
accounts for the negative sign in front of this term.

Step 3b: The equation around point 2 is:

The leading zero term just states that there are no active force generators connected
to this node, only passive elements. Rearranging to separate coefficients of u1(w)
and u2(w):
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Step 4: Solving u2(w):

Canceling the two terms and multiplying through by j2 and w2:

Step 5: Now to find the force at the output, multiply u2(w) by the impedance of
the parallel elastic element.

In the next chapter, we will find that this has the properties of a lowpass filter. While
real muscle can be fairly well described by the elements in Figure 5.6, the equation
does not take into account the component nonlinearities. Nonetheless, this linear
analysis provides a starting point for models that are more complicated.

The next example solves a two-equation system that includes a mass. Unlike pre-
vious examples, the values of the elements are not all given in cgs units so it is first
necessary to convert all parameter to the cgs system.

Example 5.9: Find the velocity of the mass in the system shown in the figure below.
Assume that FS(t) = 0.001 cos(20t) newtons and that the following parameter assign-
ments apply:
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Solution: We first need to convert FS, m, and ke2 to cgs units.1 Converting FS is rel-
atively straightforward since it is already in MKS metric units. Using the conver-
sion factors in Appendix D: 1 newton = 105 dyne. Hence, FS = 100 cos(20t) dyne.
To convert m from English units (oz) to cgs metric units, use conversion factors in
Appendix D in conjunction with dimensional analysis:

Both pound and gram are measures of mass, but are often used as a measure of
force. The assumption is that a pound weight, or force, is the mass of a pound accel-
erated by gravity (i.e., F = mg). Similarly, a 1 gram weight (gm wt) equals 1 gm ¥
g where g = 980.665 cm/sec2 so as a measure of force, 1 gm wt = 980.665 dyne.
(Similarly, a kilogram weight is 9.807 newtons). Applying the conversion factors
from pound (lb) weight to dyne and inches to centimeters:

Step 1: Following the conversion to cgs units, the determination of the phasor
impedances is straightforward. With w = 20 rad/sec:
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1 To add to the confusion of unit conversion, there are two units of mass in the English system termed
pounds and abbreviated lb. The most commonly used pound is termed the commercial or avoirdupois
pound whereas a less commonly used measure is the troy or apothecary pound. To convert: 1 troy lb =
0.822857 avoirdupois lb. In this text, only avoirdupois pounds are used, but conversions for both can
be found in Appendix D.



Step 2: The force and velocity directions have already been assigned with F1 and
F2 as positive to the right. After the first two steps, the system becomes:
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In writing the equations about the two points, we must take into account the
fact that the spring and friction on the right side of the mass have nonzero veloci-
ties on both sides. Therefore, the net velocity across these two elements is u2 - u1.
Thus, the force across the right-hand spring is ke2/jw(u2 - u1). With this in mind,
the equation around point 2 becomes:

For point 2, the force exerted by the spring has the same magnitude, but is oppo-
site in direction (i.e., positive with respect to F1). Thus the equation for the force
around point 1 is:

Rearranging the two equations as coefficients of u1 and u2:

and in matrix notation:

Solving for u1, the velocity of the mass:
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Of course, this solution could also be obtained with greater ease using MATLAB.

Example 5.10: Find the output of the network below to a 1-V input at three dif-
ferent frequencies: f = 6, 60, and 600 Hz.
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Solution: Since the circuit contains three meshes and must be solved three times
at three different frequencies, using MATLAB is a clear choice. The first two steps
are included in the figure, and the equations required in step 3 can be written directly
into matrix form.

The appropriate MATLAB code is as follows:

%Example 5.10 Three mesh problem to be solved at three
frequencies
%
clear all; close all;
wn = 2*pi*[6 60 600]; % Desired frequencies
V = [1; 0; 0;];
for k = 1:length(wn) % Solve for each frequency
w = wn(k); % Set w
Z= [10^4 - j*10^7/w, j*10^7/w, 0; j*10^7/w,...

-j*10^7/w + 50*10^3 + j*w*10^-3, -50*10^3;...
0, -50*10^3, 50*10^3 + 10^5 - j*2*10^7/w];

v = Z\V;
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Vout(k) = v(3)*10^5; % Save desired output
end
disp([abs(Vout) angle(Vout)... % Output results
*360/(2*pi)])

Results: The output for Vout produced by the code is shown below in tabular
form.
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As expected, the output voltage depends on the frequency and is higher for a 60-
Hz signal than for frequencies above or below this frequency. For signals composed
of a range of frequencies, this circuit could be used to enhance frequencies around
60 Hz. With only a minor modification, the MATLAB code in this example could
be modified to determine Vout over a wide range of frequencies. This task is given
for a single mesh circuit in Problem 5.16. The way in which circuits and other
systems behave over a range of frequencies is often of considerable interest to bio-
engineers and is the subject of the next chapter.

5.4 SUMMARY

Conservation laws are invoked to generate an orderly set of descriptive or govern-
ing equations from any collection of mechanical or electrical elements. In electric
circuits, the law of conservation of energy leads directly to KVL, which states that
the voltages around the loop must sum to zero. Combining this rule with the phasor
representation of network elements leads to an analysis technique known as mesh
analysis. In mesh analysis, equations are constructed in the general from of v = Zi
that can be solved for the mesh or loop currents, i. These currents can then be used
to determine any voltage in the system. The law of conservation of charge leads to
KCL, which can also be used to find the voltages and currents in any network.
Application of KCL leads to an equation of the form i = v/Z, which is solved for
the node voltages, v, and from the node voltages any desired current. This analy-
sis, termed nodal analysis, leads to fewer equations in networks that contain many
loops, but only a few nodes.

The conservation law active in mechanical systems is Newton’s law, which states
that the forces on any element must sum to zero. Again using phasor representa-
tion of mechanical elements, this law can be applied to generate equations of the
form F = Zu. These equations are solved for velocities and these velocities can be
used to determine all of the forces in the system.

These conservation laws and the analysis procedures they lead to, allow us to
develop equations for even very complex electrical or mechanical systems. These

Frequency Magnitude (V) Phase (deg)
6 Hz 0.1538 76.6656

60 Hz 0.6569 9.8193
600 Hz 0.2501 -67.9720



equations can then be used to provide very concise representations of even the most
complex systems as described in the next chapter.

PROBLEMS

1. In the circuit shown, the voltage across element 1 is: 2 cos(2t + 60)
What is the voltage, V2, across element 2?
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2. Find the voltage across the 50-W resistor.

3. The loop current in the circuit below is 0.2 cos(5t - 53). What is element 2 (i.e.,
R, L, or C) and what is its value?



4. Find the voltage across the inductor, vL, for w = 5 and 20 rad/sec.
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5. Find the voltage across the 5-h inductor in the network below.

6. What is the voltage across the center 80-W resistor in the network given in
Problem 5? (Note: The total current through the resistor is iR = i1 - i2.)

7. Find the current through the 2-h inductor in the circuit below. Is the voltage
source on the right, V2, supplying energy or storing energy?

8. Find V1.



9. Find the voltage across the 10-W resistor.
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10. Given the mechanical system shown where kf = 8 dyne-sec/cm; ke = 12 dyne/cm;
m = 2 gm; Fs(t) = 10 cos(2t) dyne.
Find the length of the spring when t = 0.5 seconds. [Hint: Solve for x(w) where
x(w) = u(w)/jw. Then convert to time domain x(t) and solve for t = 0.5 seconds.]

11. In the mechanical system of Problem 10, what must be the value of kf to limit
the maximum velocity to ±1 cm/sec?

MATLAB Problems

12. Find Vout using MATLAB.
Hint: modify the code in Ex. 5.4 appropriately.



13. Find Vout using MATLAB and nodal analysis.
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Remember: 10 sin(10t) = 10 cos(10t - 90).

14. Find vout for the circuit below for frequencies ranging between 1 and 1,000
rad/sec. Plot the magnitude of vout as a function of frequency. [Hint: write the
MATLAB impedance matrix in terms of a variable frequency, set up w as a
vector, then solve for vout. The vector w should range between 1 and 1,000
rad/sec in increments of 1 rad/sec. Then plot abs(vout(w)).] You are able to
do this because of a principle known as superposition. Basically, you are solving
the problem a number of times each at a different frequency. The fact that the
overall answer can be obtained as just the sum of all the individual solutions
is possible because superposition holds for linear system. This principle is used
extensively in the next chapter.

15. Repeat the analysis in Problem 5.14 for the mechanical system shown in
Problem 5.10. Use the parameter values: kf = 10 dyne-sec/cm; ke = 150 dyne/cm;
m = 1.5 gm; FS(t) = cos(wt).

16. Find and plot Vout (w) over a range of frequencies from 0.1 to 100 rad/sec.



17. Modify Example 5.10 to solve for Vout over a range of frequencies 
between 0.1 and 500 Hz. Plot the magnitude voltage as a function of frequency.
(Hint: Change the vector wn in the code of Example 5.10 to: wn =
2*pi*(.1:.1:500);).
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6 FREQUENCY
CHARACTERISTICS OF
CIRCUITS AND ANALOG
PROCESSES: THE
TRANSFER FUNCTION

6.1 THE CIRCUIT OR MECHANICAL SYSTEM AS A PROCESS

The last chapter described circuits and mechanical systems as self-contained with
their own sources and internal voltages. Yet, frequently they are used as modules
in a larger system. In such cases, the circuit or mechanical system must have a well-
defined input and output. The module can then be thought of in terms of informa-
tion processing; that is, the module is a process that transforms the input signal to
an altered output signal (Figure 6.1).

For electrical circuits, the input and output are usually voltages, whereas for
mechanical systems they could be either forces or velocities. When the module 
represents a biological process, it is not uncommon for inputs and outputs to be
different variable types, such as force in and velocity out, or even variables of 
different energy modalities. For example, the eye movement muscle model shown
in Figure 1.7 uses mechanical elements to represent muscle properties, but the input
is an electrical signal (agonistic and antagonistic neural signals) and the output is a
mechanical variable (eye position).

Whether a circuit or mechanical system is thought of as an input–output process
or as a self-contained system, it is analyzed the same way, using the methods

Figure 6.1 A circuit or mechanical system can be
viewed as an information processing module, often
part of a larger system. The module must have well-
defined inputs and outputs, which could be voltages,
forces, velocities, or even some mixture of these 
variables.



Example 6.1: Find the output Vout(w) for the RLC (resistor, inductor, capacitor)
circuit shown in Figure 6.2. The input is given only as Vin(w), but is assumed to be an
ideal source. It is also assumed that there is no current flowing out of the circuit; in
other words, Vout(w) is connected to an open circuit (which is the same as saying it is
connected to nothing). The values for R, L, and C are: R = 10 W; L = 3 h; C = 0.01 f.

Solution: Under these conditions, it is easy to see that Vout(w) is just the voltage
across the capacitor. Under the assumption that Vin(w) is an ideal source, we can
apply KVL to the single loop produced by the source and R, L, and C.
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Figure 6.2 An RLC (resistor, inductor, capacitor)
circuit arranged as an input–output system. The input
is assumed to be an ideal source and the output is
assumed to be unconnected.

Example 6.1 The RLC circuit of Figure 6.2 with the
ideal input explicitly shown. It is clear that this single-loop
circuit can be solved with the application of Kirchhoff’s
voltage law.

described in the previous chapter. When the system is analyzed as an input–output
process, two critical assumptions are made: (a) The input is assumed to be an ideal,
but otherwise unspecified, source such as a voltage source [the output is then deter-
mined by the rules based on conservation laws described previously (KVL, KCL,
Newton’s law)]; and (b) no energy is supplied by the output to any subsequent
processes that may be connected to the output. For example, if the output were a
voltage then there would be no current flowing in the output path. When a system
is connected between other processes, these two assumptions will not be met exactly,
but often they are very close to true. In Chapter 7, we will explore the consequences
of interconnecting systems. Operating under these basic assumptions, the method
for determining the output for a general input is shown in Example 6.1.



Transforming the network into the phasor domain and writing the single-loop
KVL equation:

Substituting in the values of R, L, and C and solving for I(w):

Substituting in: 

When working with phasors, it is common to normalize this type of equation so
that the constant in the denominator is 1.0 as is done here. In addition, when
working with analog equations in complex arithmetic, it is best to substitute in the
component values, if available, as early as possible into the equations. This gener-
ally simplifies the arithmetic and results in fewer errors.

To find a specific Vout(w) we need to assign a specific Vin(w) with an associated
value of w. An example of this is shown below.

Example 6.2: Assume the Vin(w) in the RLC circuit of Figure 6.2 is 4 cos(10t +
30) V. Find Vout(w) and vout(w).

Solution: Substitute in the phasor representation of vin(t) into the solution of
Example 6.1 and solve.

Often the phasor representation is sufficient; however, it is easy to convert Vout(w)
to the time representation:

6.1.1 Superposition

Up until now, we have dealt with problems in which there was only one input. In
Example 6.1, the input, Vin(w), was not specified, but it was assumed to be a single
input. However, what if the input was connected to a number of different sources,
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or equivalently, what if Vin(w) was not a sinusoid, but a periodic function contain-
ing sinusoids at many different frequencies? Intuitively, you might think we could
solve for the output to each input separately, or each sinusoidal component sepa-
rately and just add up the individual solutions to get the total response. In fact, this
divide-and-conquer approach is valid if the system is linear.

For linear systems, the principle of superposition holds, which states that if two
or more sources are active in a circuit, a valid solution can be obtained by solving
for each source as if it were acting alone, then algebraically summing these partial
solutions. In fact, the sources could be anywhere in the network, even at different
locations. Multiple sources at different locations will be covered at the end of the
next chapter. In this chapter, the multiple sources will be at only one location, the
location defined as the input.

The superposition principle is a consequence of linearity and only applies to linear
systems. It makes the tools that we have studied much more powerful since now
they can be applied to any periodic function by treating each of the sinusoidal com-
ponents as a separate source. Examples using the principle of superposition will be
found throughout this text.

6.1.2 The Transfer Function

Representing circuits or analog models as processes with well-defined inputs and
outputs opens up a new way of thinking about and analyzing these processes. Rather
than solve the output of the processes to a specific input as in Example 6.2, we can
just as easily develop a more general solution where the input is not specified. Armed
with the principle of superposition, we know that such a solution applies not only
to sinusoids at any given frequency, but also to any waveform that can be decom-
posed into sinusoids. Returning to the general solution obtained in Example 6.1:

[Eq. 6.1]

Dividing both sides by Vin(w), we obtain a function of w that is independent of the
input:

[Eq. 6.2]

This function is known as the transfer function because it describes how the input,
Vin(w), is transferred to the output, Vout(w). The concept of the transfer function is
so compelling that it has been generalized to include many different types of
processes or systems with different types of inputs and outputs. A general defini-
tion for a transfer function becomes:

[Eq. 6.3]

While the transfer function itself is independent of the input (because it was divided
out), it is, in general, a function of the frequency, w. Later, we will see that this
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concept can be expanded beyond sinusoidal and periodic signals using the Laplace
transform. In the Laplace transform, the sinusoidal frequency, w, is replaced by a
complex frequency, s. By strict definition, the transfer function should always be a
function of either s or w, but the idea of expressing a process by its transfer func-
tion is so powerful that it is sometimes used in a nonmathematical, conceptual sense.

6.1.3 Transfer Function Characteristics

Given the power of the transfer function it is worth exploring some of its general
properties. One of the more useful features of the transfer function is its frequency
or spectral characteristics. This is similar to the spectral analysis concept developed
in Chapter 3 except that now we are describing spectral characteristics of a process,
not a signal. The transfer function spectral characteristics will tell us how the process
influences input signals at different frequencies. With the application of superposi-
tion, transfer function spectral characteristics also tell us how a process influences
signals that contain components over a range of frequencies.

If the entire spectral range of a process is explored, the transfer function fre-
quency characteristics provide a complete description of the way in which the
process alters the input signal, including any and all of its frequency components,
to produce an output signal. In Chapter 3, we learned that a signal could be equally
well represented in either the time or the frequency domain. The same is true of a
process: the frequency characteristics of the transfer function provide a complete
description of the process’s input–output characteristics. In fact, the input–output
or transfer properties of a process are most often represented in the frequency
domain. There is also a way to represent these properties in the time domain as
shown in Chapter 9.

Because the transfer function is already a function of frequency, w, its frequency
characteristics can be displayed simply by plotting the function, Out(w)/In(w),
against frequency. In general, the transfer function is a complex function of fre-
quency such as in Eq. 6.2, so a complete graphic description will require two plots
just as in signal spectral analysis. As with signal spectra, it is more informative to
plot the magnitude and phase of the transfer function than its real and imaginary
parts. With the aid of a computer program such as MATLAB this is easy to do for
transfer functions of almost any complexity. Figure 6.3 shows the magnitude and
phase characteristics of the of the RLC circuit given in Figure 6.2. These plots were
obtained simply by plotting the system transfer function (Eq. 6.2). The MATLAB
code that generated these plots can be found in Example 6.7.

It is easy to generate the frequency characteristics of a transfer function using
MATLAB software; yet, as is often the case, relegating the problem to a computer
does not provide as much insight as working it out manually. To really understand
the frequency characteristics of transfer functions, it is necessary to examine the
typical components of a general transfer function. In so doing, we will learn how
to plot transfer functions without the aid of a computer. More important, by exam-
ining the component structure of a typical transfer function, we also gain insight
into what the transfer function represents. This knowledge will often be sufficient
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to allow us to examine processes strictly within the frequency domain without the
need to look at time domain responses.

6.2 TRANSFER FUNCTION FREQUENCY PLOTS: THE BODE PLOT

At first sight, it may appear that separating out and plotting the magnitude and
phase of a transfer function equation such as Eq. 6.2 is quite difficult. However, a
number of tricks make this task easy. These tricks also provide insight into the struc-
ture of the transfer functions.

We begin with a description of the most general form of a transfer function; 
specific transfer functions will be less complicated. In this framework, a transfer
function consists of numerator and denominator terms and these terms, in the most
general case, will be polynomials of w. In the relatively simple transfer function of
Eq. 6.2, the numerator was only a constant and the denominator was a quadratic
polynomial of w (note the w2 in the denominator). The numerator and deno-
minator terms can always be factored, at least in theory, into combinations of 
quadratics or lower-order polynomials of w. Under this assumption, the general
expression for a transfer function becomes:

[Eq. 6.4]

where B is a constant and k1, k2, k3, and so forth, are coefficients of the various
polynomials of w. Equation 6.4 is a general representation: If the numerator and
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Figure 6.3 Magnitude (left) and phase (right) frequency charac-
teristics of the transfer function of the RLC circuit shown in Figure
6.2.



denominator both contained a jw, or any other identical terms, they would, of
course, cancel. It is more common to use constants that are a little different from
those in Eq. 6.4. These new coefficients are more directly linked to the frequency
characteristics and to the behavior of the system as shown later.

[Eq. 6.5]

where w1, w2, wn1, wn2, d1 and d2 are the new constants. The parameter d is called
the damping factor and wn the undamped natural frequency. These terms relate to
specific time domain behaviors and the names will take on more meaning when we
look at this behavior in Chapter 8. Repeating the transfer function for the RLC
circuit of Figure 6.2 (Eq. 6.2):

The appropriate values of these new coefficients can be found by equating 
coefficients:

The other constants in Eq. 6.5 do not exist for this particular transfer function, nor
are there jw’s in the numerator or denominator.

The magnitude of a transfer function is usually plotted in decibels (dB); hence,
the magnitude of the transfer function will be 20 times the log of the magnitude of
the function:

[Eq. 6.6]

Putting the magnitude of the transfer function in decibels may seem like an added
complication, but it actually makes the analysis easier. Applying Eq. 6.6 to the
general transfer function in Eq. 6.4 gives a formidable looking equation for the mag-
nitude transfer function, but one that is surprisingly easy to dissect:

[Eq. 6.7]

In this equation, the equivalent numerator and denominator terms are of similar
form except for a sign: Numerator terms are positive and denominator terms are
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negative. In addition to the constant term, there are only three different types of
polynomials: (a) a ‘20 log|jw|’; (b) a ‘20 log|1 + jw/w1|’; and (c) the quadratic term,
‘20 log|1 - (w/wn)2 + j2dw/wn|’. Moreover, each of the terms is either added to, 
or subtracted from, the other terms to make up the overall magnitude of transfer
function. If we were to plot each of these terms separately, then we could construct
a plot for the entire magnitude transfer function by graphically combining 
the individual plots. This approach is termed the Bode plot technique, and the 
individual terms are call Bode plot primitives because they cannot be reduced into
subcomponents. (Technically, the second-order term is not a primitive since it can
be factored into two first-order terms, as is sometime done, but often it is easier to
treat as a primitive.) As we will see below, the Bode plot approach produces a plot
that is only approximate and often somewhat crude, but usually sufficient to rep-
resent the general characteristics of the transfer function.

The different primitives of the magnitude transfer function (and their associated
phase characteristics described below) occur so often, and are of sufficient impor-
tance, that they are given names, sometimes more than one name. A primitive’s
name sometimes depends on whether it is found in the numerator or denominator.
The various primitives and their names are given in Table 6.1. The rationale behind
some of the stranger terms, such as poles and zeros, will be given later.

The phase portion of the transfer function can also be dissected into individual
components:

[Eq. 6.8]

However, by the rules of complex arithmetic, the angles simply add if they are in
the numerator or subtract if they are in the denominator:
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TABLE 6.1 Bode Plot Primitives

Function Function Name(s)

Numerator Denominator

B Constant —
jw Isolated zero Isolated pole
1 + jw /w1 Real pole or just pole Real zero or just zero

Lead element Lag element
First-order element* First-order element*

1 - (w /wn)2 + j2dw /wn Complex zeroes† Complex poles†

Second-order element* Second-order element*

* Name most commonly used in this text.
† Depends on the values of d.



[Eq. 6.9]

As with the magnitude transfer function, the phase transfer function consists of indi-
vidual components that add or subtract from one another. In the generalized-phase
transfer function, there are only three different terms corresponding to the last three
entries in Table 6.1. This is because the phase angle of the constant term, B, is zero.
Again, if we are able to construct a frequency plot for these three terms, we could
simply add them together graphically to get the overall phase plot. As with the 
magnitude plot, this approach will lead to a sometimes crude, but usually sufficient,
approximation. In fact, often only the magnitude plot is of interest and it is not 
necessary to construct the phase plot. The magnitude and phase frequency charac-
teristics of the various terms are developed in the following section.

6.2.1 Frequency Characteristics of Bode Plot Primitives

The magnitude and phase frequency characteristics of the four components in Table
6.1 are presented here.

6.2.1.1 The Constant Primitive: TF(w) = B

The constant primitive does not contribute to the phase plot because the angle of
a real variable is zero. In the magnitude plot, it simply scales the vertical axis by:

[Eq. 6.10]

When constructing the overall magnitude plot, it is easiest to leave the influence of
this term until the end. After all the other terms have been plotted and summed,
the vertical axis is rescaled so that the former zero line now equals 20 log(B). This
rescaling will be shown in the examples below.

Again, the angle of a real constant is zero, so the constant term makes no con-
tribution the phase plot.

[Eq. 6.11]

6.2.1.2 Isolated Zero or Pole Primitive: TF(w) = jw or 1/jw
The magnitude frequency plot of 20 log|jw | is a logarithmic function of w if plotted
on a linear axis. However, it is common to plot transfer function spectra using a
log function of w, because the frequency range of interest often spans several orders
of magnitude. Since the magnitude of jw is just w, the function log|jw | becomes log
w which plots as a straight line against log w on the frequency axis. This line inter-
sects the 0-dB line at 1.0 rad/sec because 20 log(w = 1) = 0 dB. The magnitude plot
of this term is shown in Figure 6.4.

To determine the slope of this line, note that when w = 10 rad/sec, 20 log|jw | =
20 log(10) = 20 dB, and when w = 100, 20 log|jw | = 20 log(100) = 40 dB. Therefore,

– =B 0

TF BConstant = ( )20 log dB

– ( ) = – + – + – +( ) + – - ( ) +( )
- – - – +( ) - – - ( ) +( )

TF B j j j

j j j

n n

n n

w w w w w w d w w

w w w w w d w w

1 1 2

1 1 2

1 1
2

1 1

2 2
2

2 2

6.2 TRANSFER FUNCTION FREQUENCY PLOTS: THE BODE PLOT 201



for every order-of-magnitude increase in frequency, there is a 20-dB change in the
value of the function. This leads to unusual dimensions for the slope; specifically 
20 dB/decade, but this is the result of the logarithmic scaling of the horizontal and
vertical axes. The slope will be positive 20 dB/decade if the primitive is in the numer-
ator and -20 dB/decade if the primitive is in the denominator (Figure 6.4).

The angle of jw is 90 degrees, so in the phase plot this just adds or subtracts 
90 degrees. If the term is in the denominator, the angle is -90 degrees (1/jw = -jw,
which has an angle of -90 degrees) otherwise it is +90 degrees.

[Eq. 6.12]

As with the constant term, this simply adds plus or minus 90 degrees to the 
vertical axis of the phase plot, which can be accomplished by rescaling the vertical
axis, when the rest of the plot is complete.

6.2.1.3 First-Order Primitive TF(w) = (1 + jw/w1) or 1/(1 + jw/w1)

The magnitude of the frequency plot of the first-order primitive is established by 
two asymptotes: a high-frequency asymptote and a low-frequency asymptote. The
high-frequency asymptote is defined for the frequencies w >> w1, and the low-
frequency asymptote is defined for frequencies w << w1 (wlow). To determine these
two asymptotes:

– = – = -j jw w90 1 90degrees degrees;
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Figure 6.4 Frequency plot of an isolated zero (jw) or pole (-jw). These
functions plot as a straight line when magnitude is plotted in decibels and
frequency is plotted logarithmically.



[Eq. 6.13]

[Eq. 6.14]

The low-frequency asymptote given by Eq. 6.13 plots as a straight line at 0 dB. The
high-frequency asymptote given in Eq. 6.14 has the plot the same as 20 log|jw | term
described above, except that the intercept with the 0-dB line will now be at w = w1

because 20 log(w1/w1) = 0 dB.. Thus, the high-frequency asymptote plots as a straight
line, intersecting 0 dB at frequency w1 and has a slope of 20 dB/decade. Errors
between the actual curve and the asymptotes will occur when the assumptions are
least true: when the frequency, w, is neither much greater than, nor much less than,
w1. In fact, the greatest error will occur when w exactly equals w1. At that frequency
the value of the magnitude of the first-order term will be:

[Eq. 6.15]

The high- and low-frequency asymptotes are plotted for a first-order numerator and
denominator primitives in Figure 6.5 along with actual curves. Note that the actual
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Figure 6.5 Magnitude plot of a first-order primitive in the numerator or
denominator. In this plot, w1 has been normalized to 1.0 rad/sec. The low-
frequency asymptote is valid for frequencies w << w1 and is just a straight
line at 0 dB. The high-frequency asymptote is valid for frequencies w >> w1

and plots as a line with a slope of 20 dB/decade. The high-frequency asymp-
tote intersects the 0 dB line at w = w1 Thus the two curves intersect at w =
w1 (1.0 rad/sec). The greatest deviation between the actual curves and their
asymptotes occurs at w1 and this error is small (3 dB).



curves are very close to the asymptotes and deviate only slightly even at w = w1. For
frequencies much above w1, the curve closely follows the asymptote, increasing or
decreasing in magnitude at a slope of 20 dB/decade. Often, only asymptotes are used
to plot this primitive. For greater accuracy, a curve can be drawn freehand through
the 3-dB point.

The phase plot of the first-order term can be estimated using the same approach
by taking the asymptotes and the worst-case point, w = w1:

[Eq. 6.16]

[Eq. 6.17]

These are both straight lines at 0 and 90 degrees. In this case, the assumption is
that much much less than means one order of magnitude, so that the low-frequency
asymptote is assumed to be valid from 0.1 w1 on down. By the same reasoning the
high-frequency asymptote is assumed to be valid from 10 w1 and up.

Again the greatest difference between the asymptotes and the actual curve will
be when w equals w1:

[Eq. 6.18]

This value, 45 degrees, will be exactly between the high-frequency and low-
frequency asymptote. What is usually done is to draw a straight line between the
high end of the low-frequency asymptote at 0.1 w1 and the low end of the high-
frequency asymptote at 10 w1, passing through 45 degrees. Although the phase curve
is nonlinear in this range, the error induced by a straight-line approximation is sur-
prisingly small as shown in Figure 6.6, which shows the actual phase plots and
asymptotes of a first-order term in both the numerator and denominator.

6.2.1.4 Second-Order Term: TF(w) = (1 - (w/wn)2 + j2dw/wn) or the Inverse

As mentioned, the second-order term is not really a primitive since it can be fac-
tored into two first order terms. In cases where the roots are real, factoring can
provide a more accurate frequency plot, particularly for phase. However, if the roots
are complex, this term is best treated as a primitive. Treating the second-order term
as a primitive will be used here for Bode plots regardless of the roots.

Not surprisingly, the second-order term is the hardest to plot. The same approach
is used as for the first-order term except special care must be taken when w = wn.
Again we begin with the high- and low-frequency asymptotes. These occur when w
is either much greater or much less than wn.

[Eq. 6.19]

[Eq. 6.20]
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The low-frequency asymptote is the same as for the first-order term, while the high-
frequency asymptote is similar, but with double the slope: 40 dB/decade instead of
20 dB/decade. However, a major difference occurs when w = wn:

[Eq. 6.21]

The magnitude function at w = wn is not a constant, but depends on d: specifi-
cally, it is 20 log (2d). If d is less than 1.0 then the log operation will produce a
negative value and the curve will dip below the 0.0 dB axis. If the second-order term
is in the denominator as is usually the case, a value of d is less than 1.0 will result
in a positive value for the log operation (the inverse of the log of a number less than
1.0 is positive). In this case the magnitude curve will have a peak above the 0.0 dB
axis and the smaller the d the greater the peak. Hence, the value of d can radically
alter the shape of the magnitude curve so it must be taken into account when plot-
ting. Usually the magnitude plot is determined by calculating the value of TF(w) at
w = wn using Eq. 6.21, plotting that point, then drawing a curve freehand through
that point converging smoothly with the high and low-frequency asymptotes above

TF j jn n nw w w w dw w d d=( ) = - ( ) + = = ( )20 1 2 20 2 20 2
2

log log log dB
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Figure 6.6 Phase plot of a first-order term in the numerator and denomi-
nator. For this plot, w1 has been normalized to 1.0 rad/sec. The low-frequency
asymptotes are 0.0 degrees for both numerator and denominator curves up
to 0.1 w1. The high-frequency asymptotes begin at 10 w1 and are at ± 90
degrees. The intermediate asymptotes are drawn as straight lines that pass
through ± 45 degrees at w = w1 and these asymptotes approximate the actual
curves shown as solid lines.



and below wn. The second-order magnitude plot is shown in Figure 6.7 for various
values of d. The plot is drawn only for a second-order denominator term; if the
term were in the numerator it would plot as the inverse of the curves in Figure 6.7.

The phase plot of a second-order system is also approached using the asymptote
method. For phase angle the high- and low-frequency asymptotes are given as:

[Eq. 6.22]

[Eq. 6.23]

This is similar to the asymptotes of the first-order process except the high-frequency
asymptote is at ±180 degrees. The phase angle when w = wn can be easily deter-
mined:

[Eq. 6.24]

So the phase at w = wn is 90 degrees, halfway between the two asymptotes. Unfor-
tunately, the shape of the phase curve between 0.1 wn and 10 wn is a function of d
and can no longer be approximated as a straight line except at larger values of d
(>2.0). Phase curves are shown in Figure 6.8 for the same range of values of d used
in Figure 6.7. Again, the plot is only for a denominator term. The curves for low
values of d have steep transitions between 0 and 180 degrees while the curves for
high values of d have gradual slopes approximating the phase characteristics of a
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Figure 6.7 Magnitude frequency plot for a second-order term in the
denominator for several values of d. The value of wn has been normalized to
1.0 rad/sec. The values of d range between 0.01 and 2.0 (0.01, 0.5, 1, 0.707,
1.0, and 2.0). Only the denominator curves are shown for clarity.



first-order primitive except for the larger phase change (0 to 180 degrees for the
second-order term as opposed to 0 to 90 degrees for the first-order term). Hence,
if d is 2.0 or more, the phase curve can be approximated by a straight line between
the low-frequency asymptote at 0.1wn and the high-frequency asymptote at 10wn.
If d is much less that 2.0, the best that can be done is to approximate, freehand,
the appropriate curve in Figure 6.8.

The frequency characteristics of the four Bode plot primitives are summarized in
Table 6.2. If a transfer function contains only one primitive the plotting is straight-
forward, but usually a number of these primitives are found in a typical transfer
function. In such cases, the magnitude plots of each primitive are plotted on the
same graph and the same is done for the phase plots. Usually only the asymptotes
and a few other important points are plotted (such as the value of a second-order
term at w = wn), then the individual plots are summed graphically. This graphic sum-
mation requires some care, but is usually not too difficult. This approach is illus-
trated in the next example.

Example 6.3: Find the magnitude and phase curves (Bode plots) for the transfer
function.
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Figure 6.8 Phase curves for a second-order term in the denominator. The
value of wn has been normalized to 1.0 rad/sec. The values of d are the same
as in Figure 6.7.



Solution: The transfer function contains four elements: a constant, an isolated zero
(i.e., a jw in the numerator), and two first-order terms in the denominator. For the
magnitude curve, plot the asymptotes for all but the constant term. Add these
asymptotes together graphically to get an overall asymptote. At the end, use the
constant term to scale the value of the vertical axis. For the phase plot, construct
the asymptotes for the two first-order denominator elements, then rescale the axis
by +90 degrees to account for the jw in the numerator. Recall that the constant term
does not contribute to the phase plot.

Regarding the two first-order terms in the denominator, the general form for these
primitives is (1 + jw/w1) where w1 is the point at which the high and low-frequency
asymptotes intersect. In this transfer function, these two frequencies, w1 and w2, are
1/1 = 1.0 rad/sec and 1/0.1 = 10 rad/sec. Figure 6.9 shows the asymptotes obtained
for the two first-order primitives and the jw primitive.

Graphically adding the three asymptotes shown in Figure 6.9 gives the curve con-
sisting of three straight lines shown in Figure 6.10. Note that the numerator and
denominator asymptotes cancel out at w = 1.0 rad/sec, so the overall asymptote is
flat until the additional downward asymptote comes in at w = 10 rad/sec. The actual
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TABLE 6.2 Bode Plot Primitives

Denominator Term Magnitude Plot Phase Plot
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Figure 6.9 Asymptotes for the magnitude transfer function given
in Example 6.3. These asymptotes are graphically added to get the
overall asymptote in Figure 6.10.

Figure 6.10 Magnitude plot for the transfer function given in Example 6.3. The 
solid line shows the graphical addition of the individual asymptotes shown in Figure
6.9. The dashed line shows the actual magnitude transfer function. The vertical axis
has been rescaled by 40 dB on the right side to account for the 100 in the numerator
[20 log (100) = 40 dB].



magnitude transfer function is also shown in Figure 6.10 and closely follows the
overall asymptote. A small error (3 dB) is seen at the two breakpoints: w = 1.0 and
w = 10 as expected. A final step in constructing the magnitude curve is to rescale
the vertical axis so that 0 dB corresponds to 20 log(100) = 40 dB.

The asymptotes of the phase curve are shown in Figure 6.11 along with the
overall asymptote that is obtained by graphical addition. Also shown is the actual
phase curve, which, as with the magnitude curve, closely follows the overall asymp-
tote. As a final step the vertical axis of this plot has been rescaled by +90 degrees
on the right side to account for the jw term in the numerator.

In both the magnitude and phase plots, the actual curves follow the overall
asymptote closely and this will be true for all transfer functions that have terms no
higher than first-order. Tracing freehand through the 3 dB points would further
improve the match, but often the asymptotes are sufficient. As we will see in the
next example this is not true for transfer functions that contain second-order terms.
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Figure 6.11 Phase frequency characteristics for the transfer function given in
Example 6.3. The two first-order terms in the denominator produce downward
curves that cross the 45-degree mark at w = 1.0 and w = 10. The actual curve
closely follows the overall asymptote that is created by graphically adding the
two first-order curves. To complete the plot, the vertical axis has been rescaled
to account for the jw term in the numerator by +90 degrees as shown on the
right axis.

Example 6.4: Find the magnitude and phase curves (Bode plots) for the transfer
function:



Solution: This transfer function contains four primitives: a constant, a numerator
first-order term, an isolated pole in the denominator, and a second-order term in
the denominator. For the magnitude curve, plot the asymptotes for all primitives
except the constant, then add these up graphically. Lastly, use the constant term to
scale the value of the vertical axis. For the phase curve, plot the asymptotes of the
first-order and second-order terms, then rescale the vertical axis by -90 degrees to
account for the jw term in the denominator. To plot the magnitude asymptotes, it
is first necessary to determine w1, wn, and d from the associated coefficients:

Note that the second-order term is positive 14 dB when w = wn. This is because the
second-order term is in the denominator. Otherwise this term would have a value
of -14 dB at w = wn. Using these values, the asymptote magnitude plot becomes as
shown in Figure 6.12.
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Figure 6.12 The individual and combined asymptotes for the mag-
nitude plot of the transfer function given in Example 6.4. The value
of the second-order term at w = wn is also shown. The vertical axis
will be rescaled in the final plot. The position of 0.5 rad/sec and 
5.0 rad/sec are indicated on the log frequency horizontal axis.
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Figure 6.13 Overall asymptote of the magnitude frequency characteristic of the
transfer function given in Example 6.4. The actual curve (dotted line) follows the overall
asymptote fairly closely except for the region on either side of wn. To find the actual
value at wn where the second-order term has a 14-dB peak, the value of the overall
asymptote at that point (about 5 dB) must be added to the 14-dB peak. The vertical
axis is rescaled on the right side to account for the constant term.

The log frequency scale can be a little confusing so the positions of 0.5 rad/sec
and 5.0 rad/sec are indicated on the frequency axis. The overall asymptote and the
actual curve for the magnitude transfer functions are shown in Figure 6.13. The
second-order denominator system will reach a value that is 14 dB above 0-dB value.
This is a positive value because the second-order term is in the denominator. This
14 dB should be added to the net asymptote to get the peak point for the summed
curve. Note that the net asymptote at w = wn is approximately +5 dB. Finally, the
vertical axis is rescaled by 20 log(10) = 20 to account for the constant term.

The individual phase asymptotes are shown in Figure 6.14, whereas the overall
asymptote and the actual phase curve are shown in Figure 6.15. Note that the actual
phase curve is quite different from the overall asymptote because the second-order
term has a small value for d. Recall that this low value of d means the phase curve
has a sharp transition between 0 and -180 degrees and will deviate substantially
from the asymptote.

The Bode plot approach may seem like a lot of effort to achieve a graph 
that could be better done with a couple of lines of MATLAB code. However, these
techniques provide us with a mental map between the transfer function and the fre-
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Figure 6.14 Asymptotes for the phase frequency characteristics on the
transfer function in Example 6.4. Only two terms, the first-order term in
the numerator and the second-order term in the denominator, contribute
to the phase curve. The overall asymptote and actual phase curve are
shown in Figure 6.15. The vertical axis has been rescaled on the right side
to account for the jw primitive in the denominator.

quency characteristics via the Bode plot primitives. In addition, Bode plot techniques
can help go the other way, from frequency curve to transfer function. Given a desired
frequency response curve, we can use Bode plot methods to construct a transfer
function that will match that frequency curve. It is then only one more step to design
a process that has this transfer function. Therefore, if we can get the frequency 
characteristics of a physiological process, we ought to be able to quantify its behav-
ior with a transfer function and ultimately design a quantitative model for this
system. These approaches are explored in subsequent sections.

6.3 FILTERS

The transfer function provides a mathematical description of how input signals are
modified as they pass through a process and the Bode Plot describes this alteration
in the frequency domain. Some processes are specifically designed to alter the 
frequency characteristics of an input signal in a well-defined manner. Their purpose
is to produce an output signal that has reduced or enhanced frequencies within 
specific frequency ranges. Such processes are called filters. Filters can be constructed
using electronic components or implemented in software on a digital computer. The
former are usually referred to as analog filters, whereas the latter are termed digital



filters. This text covers only the analog variety. (In the spirit of full disclosure, some
of the figures in this text were generated with the aid of MATLAB digital filters.)

6.3.1 Filter Types

Filters are usually named according to the range of frequencies they do not sup-
press. Thus, lowpass filters allow low frequencies to pass with minimum reduction
or attenuation, while higher frequencies are attenuated. Conversely, highpass filters
pass high frequencies, but attenuate low frequencies. Bandpass filters reject fre-
quencies above and below a passband region. An exception to this terminology 
is bandstop filters that pass frequencies on either side of a range of attenuated 
frequencies. Figure 6.16 shows typical frequency characteristics for these four 
different types of filters.

Within each class, filters are defined by the frequency range that they pass, termed
the filter bandwidth, and the sharpness with which they increase (or decrease)
attenuation as frequency varies. Spectral sharpness is further specified in two ways:
as an initial sharpness in the region where attenuation first begins and as a slope
further along the attenuation curve. These various filter properties are best described
graphically using Bode plots. The term filter gain is another name for the filter’s
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Figure 6.15 Overall asymptote and actual phase curve (dotted line) for the transfer
function given in Example 6.4. The actual curve deviates from the asymptote due to the
phase characteristics of the second-order term. The jw term in the denominator scales
the axis as shown on the right side.



transfer function, Vout(w)/Vin(w) and is usually in decibels. Technically the frequency
characteristic should be defined for all frequencies for which it is nonzero, but prac-
tically it is usually given only for the frequencies of interest.

6.3.2 Filter Bandwidth

All real filters make the transition between the unattenuated or passband frequency
region and the attenuated or stopband region in a smooth manner such as seen in
Figure 6.16. For purposes of discussion, a boundary is established between pass-
band and stopband frequencies known as the cutoff frequency, and this boundary
is the same as used for signal frequency characteristics. (See Chapter 3, Section 3.8.)
Frequencies on one side of this cutoff are taken as unattenuated while frequencies
on the other side are taken as attenuated. As for signals, the cutoff boundary is
defined as the frequency when the attenuation is 3 dB; that is, the gain of the filter
is 3 dB below the unattenuated gain. As stated in Section 3.8, this point is also
known as the half-power point because the power of the signal out is half that of
the input signal at 3-dB attenuation.

6.3 FILTERS 215

Figure 6.16 The magnitude frequency characteristics of the four
basic filter types. A: A lowpass filter allows low frequencies to pass
through, but attenuates (i.e., suppresses) higher frequencies. B: A
highpass filter is the opposite of a lowpass filter, attenuating low fre-
quencies while letting high frequencies pass through unattenuated.
C: A bandpass filter combines features of the lowpass and highpass
filters to allow a range of frequencies through, attenuating frequen-
cies outside that range. D: A bandstop filter is the inverse of a band-
pass filter: it attenuates frequencies within a certain range, but lets
others pass through unattenuated.



6.3.3 Filter Order

The slope of a filter’s attenuation curve is related to the complexity of the filter:
Filters that are more complex have a steeper slope, better approaching the ideal. In
analog filters, complexity is proportional to the number of energy storage elements
in the circuit (either inductors or capacitors, but usually capacitors for practical
reasons). As you may have observed in some of the previous examples, each inde-
pendent energy storage device (i.e., capacitor or inductor) leads to an additional
order of w in the denominator polynomial of the filter’s transfer function. From
Bode plot analysis, we find that with each additional order of w in the denomi-
nator polynomial, there is an increase in the asymptote slope by 20 dB/decade.

In electrical engineering, it has long been common to call the roots of the denomi-
nator equation poles. Thus the terms filter order and filter poles are used synony-
mously and they relate directly to the order of w in the denominator of the transfer
function. The larger the filter order, the greater the number of poles, the steeper the
attenuation slope, and the greater the filter’s complexity in terms of number of 
elements. Figure 6.17 shows two circuits that are one-pole (left circuit) and two-
pole (right circuit) lowpass filters. The single-pole filter will have a slope of 20
dB/decade (see Example 6.5), whereas the two-pole filter has a slope of 40 dB/decade
(see Problem 6.7). As mentioned above, the number of poles correlates to the
number of energy storage devices, which in these circuits are capacitors. Again, each
additional filter pole (or order) increases the downward slope (sometimes referred
to as the rolloff ) by 20 dB/decade.

Figure 6.18 shows the frequency plot of a second-order or two-pole filter, which
will have a slope of 40 dB/decade, the same slope produced by the right-hand circuit
in Figure 6.17. Also plotted is the frequency curve of a 12th-order lowpass filter
that has the same cutoff frequency as the two-pole filter, and, hence the same band-
width. The steeper slope, or rolloff, of the 12-pole filter is apparent. In principle, a
12-pole lowpass filter would have a slope of 240 dB/decade (12 ¥ 20 dB/decade). In
fact, this frequency characteristic is theoretical because in real analog filters, para-
sitic components and inaccuracies in the circuit elements limit the actual attenua-
tion that can be obtained. All of the above arguments also apply to highpass filters
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Figure 6.17 Two circuits that act as lowpass filters. The left circuit is a one-pole filter
and has a high-frequency attenuation of 20 dB/decade (as will be shown in Example
6.5). The left circuit is a two-pole lowpass filter with a high-frequency attenuation of 
40 dB/decade.



except that the frequency plot decreases with decreasing frequency at a rate of 
20 dB/decade for each highpass filter pole.

6.3.4 Filter Initial Sharpness

Figure 6.18 shows that the both the slope and the initial sharpness increase with
filter order (number of poles), but increasing filter order also increases the com-
plexity, and hence the cost, of the filter. It is possible to increase the initial sharp-
ness of the filter’s attenuation characteristics without increasing the order of the
filter if you are willing to make other compromises; specifically, if you are willing
to accept some unevenness, or ripple, in passband. Figure 6.19 shows two lowpass,
fourth-order (or four-pole) filters, differing in the initial sharpness of the attenua-
tion. The one marked Butterworth has a smooth passband, but the initial attenua-
tion is not as sharp as the one marked Chebyshev, which has a passband that
contains ripples. However, most Biomedical filter applications require a smooth
passband characteristic, so a Butterworth-type filter is required with its more
gradual initial attenuation.

6.3.5 Evaluating Filter Frequency Characteritics

Calculating the transfer function and frequency characteristic of a filter is no more
different than for any other circuit. Designing a filter (as opposed to analyzing an
existing filter circuit) is a bit more complicated. Design approaches for some of the
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Figure 6.18 Frequency plot of a second-order (two-pole) and 12th-
order lowpass filter with the same cutoff frequency. The higher order
filter more closely approaches the sharpness of an ideal filter.



more common filters are given in the Chapter 10. The analysis of a simple filter is
given in the next example.

Example 6.5: Determine the transfer function and frequency characteristics of the
circuit shown in the left hand side of Figure 6.17. This circuit, consisting of only a
resistor and a capacitor, is known as an RC circuit.

Solution: Because the circuit has one energy storage device (a capacitor), you
already know it is a first-order filter and will have an attenuation slope of 
20 dB/decade. You do not know what filter type this is (highpass and lowpass, etc.),
but it is not difficult to find both the transfer function and the frequency charac-
teristics using basic circuit analysis tools. Under the standard assumptions (an ideal
source at Vin and no current flowing out at Vout), the circuit can be analyzed as a
one-mesh problem. In this solution, R and C will be left as variables to show their
relationship to the bandwidth of the filter. Applying KVL:
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Figure 6.19 Two filters having the same order (four-pole) and cutoff
frequency, but differing in the sharpness of the initial slope. The filter
marked Chebyshev has a steeper initial slope or rolloff, but contains
ripples in the passband.



Substituting in the specific values for R and C: w1 = 1/RC = 1/500(0.001) = 1/0.5 =
2 rad/sec.

To plot the frequency curves, note that the transfer function has only a constant
in the numerator and one first-order primitive in the denominator. Thus the mag-
nitude asymptote will be a straight line up to w1 (2 rad/sec) and then a straight line
that falls off at 20 dB/decade (Figure 6.20). The bandwidth of this filter is simply
w1 or 1/RC.

The phase plot has a low-frequency asymptote of 0 degrees up to 0.2 rad/sec, 
a high-frequency asymptote of -90 degrees above 20 rad/sec, and passes through 
-45 degrees at w1 (i.e., 2.0 rad/sec).

6.3.6 Filter Design

Bode plot techniques provide a method for quickly plotting the frequency charac-
teristics of a transfer function, provided it is not too complicated (in which case you
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Figure 6.20 Magnitude frequency curve of the transfer function obtained from
the RC circuit in Example 6.5. This curve shows that the circuit is a first-order, or
one-pole, lowpass filter with a bandwidth of 2.0 rad/sec.



would probably use a computer as described in the next section). These same tech-
niques also allow you to go the other way: to estimate a transfer function that has
frequency characteristics matching a given frequency curve. This transfer function
can then be used to guide the development of an analog or digital filter having the
desired frequency characteristics, at least for relatively simple filters. This approach
can also be used to construct models of biological processes as shown later. The
design of complex filters is a well-developed area with entire texts devoted to the
subject. The design of a filter or other network is a process known as synthesis,
whereas the analysis of an existing circuit is termed, logically, analysis. The 
following example illustrates the design of a simple filter using this approach.

Example 6.6: Find the equivalent transfer function that produces the magnitude
frequency curve shown below.
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Solution: We begin by noting the obvious: the frequency curve of a lowpass filter.
Next, we measure the high-frequency slope and find that it decreases at 
20 dB/decade; hence, this must be the product of a first-order transfer function.
Drawing the high-frequency asymptote, we find that it intersects the low-frequency
asymptote (the 0-dB line) at 20 rad/sec. This gives us the cutoff frequency of the
filter and the bandwidth (20 rad/sec). This information is all we need to reconstruct
the equivalent transfer function:
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To design a circuit that matches this transfer function, we rely on experience: knowl-
edge of what circuits produce this type of transfer function. From the previous
example, we know that an RC circuit produces this type of first-order transfer func-
tion. This may be the only transfer function for which you have this prior knowl-
edge, but the ability to design circuits with more complicated transfer functions will
be gained with experience.

To complete the design, we only need to give values to R and C. From the analy-
sis of Example 6.5, we know that the cutoff frequency, wn, is given by:

[Eq. 6.25]

In this case, we have two unknowns constrained by only one equation, so we can
pick one of the element values arbitrarily. Usually the capacitor value is selected first
because the range of commercial capacitor values is more limited than that of resis-
tor values. We will choose a value for C of 1.0 mf (1 ¥ 10-6 f) because this is a readily
obtained value. (Again, experience helps.) In this case, the value of R becomes:

So the desired frequency characteristic can be attained from an RC circuit as shown
on the left hand side of Figure 6.17, with C = 1 mF and R = 50 kW.

The characteristics of other more complicated filters will be explored in the next
section with the aid of MATLAB.

6.4 MATLAB IMPLEMENTATION

6.4.1 Transfer Function

Because transfer functions are already functions of frequency, it is easy to plot these
functions using MATLAB. Simply define the function with the aid of a frequency
vector, then plot. The plot can be either linear or logarithmic in the frequency axis.
To plot logarithmically, use the MATLAB plotting function semilogx. To plot in
decibels, simply take 20 times the log (the log10 command in MATLAB) of the
magnitude before plotting. (Recall the magnitude is obtained using the abs func-
tion and the phase using the angle function.) These points are illustrated in the
example below, which plots the graphs in Figure 6.3.

Example 6.7: Plot the magnitude and phase frequency characteristics of the trans-
fer function given as Eq. 6.2 (repeated below) and plotted in Figure 6.3.

Solution: Because the transfer function was obtained from an RLC circuit that has
two energy-storage devices, we know it should have a second-order denominator
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as, indeed, it does. We also expect a frequency characteristic with a slope of 
-40 dB/decade. The graph used in Figure 6.3 is plotted using linear horizontal and
vertical axes, but the transfer function will be plotted in this solution using decibels
and log frequency for variety.

To plot the transfer function using MATLAB we first generate a frequency vector
over the range of frequencies desired (0.1 to 1,000 rad/sec in this example), then
code the transfer function directly using this vector for w.

% Example 6.7 Plots the transfer function given in Eq.
6.2% in both linear and dB/log coordinates

%
clear all; close all;
% Generate frequency vector between .1 and 100 rad/sec
w = (.1:.1:100); % Generate freq. Vector 
%
% Generate the Transfer Function directly from Eq. 6.2
TF = 1./(1-.03*w.^2 + j*.1*w); % Transfer Function
Mag = 20*log10(abs(TF)); % Take magnitude, 

% convert to dB
Phase = angle(TF)*360/(2*pi); % Put phase in degrees.
%
% The remainder of the program is just plotting. First
% plot in linear coordinates (not shown), then dB/log
%
figure; % Plot in dB/log plots
subplot(2,1,1);
semilogx(w/(2*pi),Mag,’k’); % Plot magnitude in Hz
xlabel(‘Frequency (Hz)’); ylabel(‘Magnitude (db)’);

subplot(2,1,2)
semilogx(w/(2*pi),Phase,’k’); % Plot phase in Hz
xlabel(‘Frequency (Hz)’); ylabel(‘Phase (deg)’);

Analysis: Generating the transfer function, TF, requires only two lines of
MATLAB code (in bold): One to produce the frequency vector w, and a second,
which uses w to generate the transfer function. Because w is a vector, the transfer
function division must be done using point-by-point division implemented with the
MATLAB ‘./’ command. The same is true when squaring w. We are relying on the
principle of superposition here, since we are actually solving the equation many
times over (1,001 times to be exact), each using a different value of frequency. The
magnitude and phase curves plotted using a linear horizontal and vertical axis are
shown in Figure 6.3 while the dB/log plots are shown below.
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In this example, we were given the transfer function, but in most situations, we
would have to determine the transfer function from the configuration of the circuit
or mechanical system. If we are only interested in the system’s frequency charac-
teristics as is often the case, it is not necessary to determine the transfer function.
The frequency characteristics can be determined directly from the system equations
if we use a phasor domain input of 1.0 over all frequencies. With such an input,
the system’s output will be identical to the transfer function in the frequency domain:

[Eq. 6.26]

Therefore, in the frequency (or phasor) domain, the output of any system given a
phasor input of 1.0–0 at all frequencies will be the transfer function of that system
and the frequency characteristics of the system’s transfer function. This is illustrated
in the example below.

Example 6.8: Find the frequency characteristics of the transfer function of the
mechanical system below given F(w) as the input and u(w) as the output. Plot 
the magnitude and phase characteristics in log frequency with frequency in hertz.
The element parameters are:
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Solution: It may seem a little peculiar to have a system where force is the input
and velocity is the output, but there is really nothing wrong with it: Biological
systems have such mixed units all the time (neural signals in, movement out, and
so forth). Applying Newton’s law to this system:

Assuming F(w) = 1.0, and solving for u(w):

It would be good practice to put this equation into the standard transfer function
format for a second-order denominator (such as in Eq. 6.2) by multiplying through
by jw and dividing by ke. However, because we will be using MATLAB, and
MATLAB does not care, the equation can be used as is. Programming the equation
directly into MATLAB:

% Ex 6.8 Plot frequency characteristics of a second-order
% mechanical system directly
%
close all; clear all;
kf = 0.5; % Set m, kf, and ke values
m = 5;
ke = 2;
w = (.01:.01:100); % Set frequency vector, w
%
% Now construct Impedance vector for this frequency
Z = kf + ke./(j*w) + j*w*m;
TF = 1./Z; % Solve for v = TF, (F = 

% 1.0)
%
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Mag = 20*log10(abs(TF)); % Calculate magnitude in dB
Phase = angle(TF)*360/(2*pi); % and phase in degrees
%
% Plot magnitude and phase using code similar to that in

Example 6.7

Analysis: After assigning the parameters, the program constructs a vector, w, that
ranges between 0.01 rad/sec and 100 rad/sec in steps of 0.01. Assigning the vari-
ables at the beginning rather than embedding them in the code as constants allows
easy modification of these variables if need be. The impedance variable is con-
structed based on the equation for u(w) above. (Again, note the use of the ‘./’
command.) Next, the transfer function is determined by solving for u, with the force
input set to 1.0 for all values of w. After converting the magnitude to decibels and
the phase to degrees, the two are plotted using code similar to that in the last
example.

6.4 MATLAB IMPLEMENTATION 225

Again, this solution relies on superposition because we are essentially solving for
u(w) (i.e., the transfer function) at each frequency using MATLAB’s vector arith-
metic. When displaying all of these solutions on a single plot we are combining the
different solutions to produce a seemingly continuous curve. Direct plotting of the
frequency characteristics in MATLAB can be particularly advantageous in more
complicated systems such as the two-mesh circuit given in the next example.

Example 6.9: Find the frequency characteristics of the transfer function, Vout/Vin,
of the two-mesh circuit shown below.



Solution: Circuit equations can be programmed directly to give the frequency char-
acteristics; however, since this is a two-mesh circuit, matrix algebra will be required.
The basic matrix equation applied using KVL was given in Chapter 5 and is repeated
here:

[Eq. 6.27]

If Vin = 1, Vout will equal the transfer function. To find Vout, use Eq. 6.27 to find I2,
then multiply by the output impedance (the 50 W resistor). As with the previous
example, do this for each specific value of w, using a loop to iterate w over the
desired range of values. In this solution, we must use a ‘for loop’ instead of
MATLAB’s vector math because of the matrix involved. The two previous exam-
ples could also be programmed this way, but they would execute slower. Some trial
and error may be required to find an appropriate range of frequencies.

By inspection of the circuit, we find that:

% Ex 6.9 To plot frequency characteristics of a second-
order, two-mesh circuit directly
%
close all; clear all;
V = [1; 0]; % Set Vin = 1.0
for k=1:10000
w = .005 + .01*k; % Set frequency, w
% Now construct Impedance matrix for this frequency
Z = [100 + (50/(j*w)), -50/(j*w); ...

-50/(j*w), 50 + 50/(j*w) + 100/(j*w)];
I = Z\V; % Solve matrix equation
TF = I(2) * 50; % Find Vout from current I2
Mag(k) = 20*log10(abs(TF)); % Convert to dB
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Phase(k) = angle(TF)*360/(2*pi);
f(k)= w/(2*pi); %freq. vector

end
%
...Plot as in Example 6.7.

The plot produced by this program is shown below.
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6.4.2 System Identification

Bioengineers are often faced with complex systems whose internal components are
unknown. In such cases, it is clearly impossible to develop equations for system
behavior to construct the frequency characteristics. However, if you can control the
stimulus to the system, and measure its response, you should be able to determine
the frequency characteristics experimentally, if the system is linear or can be taken
as linear. To determine the frequency response experimentally, we take advantage
of the fact that a sinusoidal stimulus will produce a sinusoidal response at the same
frequency. By stimulating the biological system with sinusoids over a range of 
frequencies and measuring the change in amplitude and phase of the response, we
can construct a plot of the frequency characteristics by simply combining all the
individual measurements (Figure 6.21).

Figure 6.22 shows the magnitude frequency plots obtained in this way for the
pupillary light reflex. In these classic studies, performed by L. Stark and colleagues
in the 1960s, the eye was stimulated with light of sinusoidally varying intensity 
and the change in area of the pupil was measured using a technique based on
infrared reflection. The response of the pupil to light is seen to decrease rapidly with



increasing frequency. The transfer function of the pupillary light reflex, Darea/Dlight
intensity, can be determined directly from these plots and is left as an exercise.

A taste of this experimentally based approach is given in the next example. To
carry out what would normally be laboratory experiment, a MATLAB function
termed X_perimental is used to simulate the unknown system. This function can
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Figure 6.21 A If an unknown process can be stimu-
lated with sinusoids and the resulting response 
measured, it is possible to determine its frequency 
characteristics experimentally. For each stimulus 
frequency, calculate the change in amplitude and 
phase (if desired) induced by the process. Combine the
measurements over all frequencies to generate a
frerquency plot.

Figure 6.22 The magnitude frequency response of the change in
pupil area when stimulated by sinusoidal variations of light intensity
at different frequencies. (From L. Stark, Berkeley, CA, with permission.)



be found on the CD. It takes in an input variable and produces an output variable,
but what the function does is a mystery.

Example 6.10: Find the magnitude frequency characteristics of the process X_
perimental.

Solution: Generate a sinusoid with a root-mean-squared (RMS) value of 1.0 (i.e.,
a peak-to-peak amplitude of 1.414). Input this sinusoid to the unknown process
and measure the RMS value of the output. The RMS value is usually a more accu-
rate measurement of a signal’s value than the peak-to-peak amplitude as it is less
susceptible to noise induced error. Repeat this protocol for a large number of fre-
quencies (in this case up to 100 Hz). Plot the results as a single magnitude curve. If
the phase was also desired, the phase of the input and output could be compared
using cross-correlation.

% Example 6.10 Tests an unknown process termed 
% ‘X_perimental’ by inputting
% sinusoidal at different frequencies and measuring the 
% response amplitude.
% Combines the measurements into a single magnitude plot
%
clear all; close all;
N = 1000; % Input signal length
t = (0:N)/N; % Time vector ( 1 sec)
for k = 1:100
f(k) = k; % Freq = k = 1 to 100Hz
x = 1.414*cos(2*pi*f(k)*t); % Sinusoid with Vrms = 1.0
y = X_perimental(x); % Input stimulus to process
Y(k) = sqrt(sum(y.^2)); % Take RMS value as 

% magnitude
end
Y = 20*log(Y); % Convert to dB
semilogx(f,Y); % Plot magnitude as dB 

% versus log
xlabel(‘Frequency (Hz)’); ylabel(‘Magnitude (dB)’);

The results from this “experiment” are shown in the figure below.
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The process appears to be second-order with a damping factor less than 1. From
the frequency characteristic, wn is approximately 8 Hz and the peak is approximately
15 dB above the low-frequency value. Hence, 20 log(2d) = -15 so d is approximately
0.18. The gain term is around 91 dB, or 35,481 in relative units. From these
numbers, a good estimate for the transfer function of this process would be:

Sometimes it is not possible to stimulate a physiological system sinusoidally. In
Chapter 9, we will extend the approach used in Example 6.10 to functions that are
often easier to generate as physiological stimuli.

6.4.3 The Transfer Function and Fourier Series Decomposition

As mentioned previously, the transfer function can be used to find the output to any
input, although in the phasor domain we are limited to sinusoidal or periodic
signals. The next, and last, example shows how to combine MATLAB implemen-
tation of the transfer function with Fourier decomposition to find the output of any
network to very complex signals.

Example 6.11: Find the output of the network below when the input is the elec-
troencephalogram (EEG) signal first shown in Figure 2.4. Plot both input and output
signals in both the time and frequency domain. For the circuit, R = 3 W, L = 2 h,
and C = 0.001 f.
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Solution: Using standard KVL analysis the transfer function of the circuit shown
can be determined as:

In the MATLAB program, this transfer function will be applied to the EEG data
after it is converted to the frequency domain using the MATLAB fft command.
The output, Vout(w) will be determined by multiplying the converted signal by the
transfer function and will then be converted back into the time domain using the
inverse Fourier transform command, ifft. The program plots the input EEG
signal, the time domain reconstruction of the output, vout(t) and the frequency
domain representation of both the input and output signals. Again, this approach
takes advantage of the principle of superposition. This approach is summarized in
the figure below followed by the MATLAB code. The conversions are highlighted
in boldface type.
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% Example 6.11 Applies an RLC Transfer Function to
% the EEG data stored in eeg_data.
%
clear all, close all;
%
% Section 1 Get and plot original EEG data
load eeg_data;
n = length(eeg);
fs = 50; % Sample frequency is 50 Hz
t = (1:n)/fs; % Construct time vector
subplot(2,1,1);
plot(t,eeg,’k’); % Plot time data
xlabel(‘Time (sec)’); ylabel (‘EEG’);

%
% Section 2 Decompose data



Vin = (fft(eeg)); % Vin to freq. domain
f = (1:n)*fs/n; % Construct freq. vector(Hz)
%
% Section 3 Now solve for output using Vin components as 
% input
Vout = Vin./(1 - .002*(2*pi*f).^2 + j *.003*2*pi*f);
%
% Section 4 Now reconstruct time data of output and plot
vout = ifft(Vout);
t = (1:length(vout))/fs; % Construct new time vector
subplot(2,1,2); % Plot time domain output data
plot(t,real(vout),’k’);
xlabel(‘Time (sec)’); ylabel (‘EEG’);

%
% Section 5 Plot frequency domain data
figure;
nf = fix(length(Vout)/2); % Plot only nonredundant 

% points
subplot(2,1,1) % Plot frequency domain data 

% for both input and output
plot(f(1:nf),...
abs(Vin(1:nf)),’k’);
xlabel(‘Frequency (Hz)’); ylabel(‘Vin’);

subplot(2,1,2);
plot(f(1:nf),abs(Vout(1:nf)),’k’);
xlabel(‘Frequency (Hz)’); ylabel (‘Vout’);

The program is divided into five sections. The first section loads the data, constructs
a time vector based on the sampling frequency, and plots these data. The second
section uses the fft command to convert the EEG data to the frequency domain
and constructs a frequency vector in Hz based on the sampling frequency (recall the
highest frequency in the frequency data is fs). The third section applies the transfer
function to the Fourier Transform of the EEG data (Vin) and the fourth section
converts the output of the transfer function back into the time domain using the
inverse Fourier Transform program, ifft. The last section plots the frequency data.
As with many MATLAB programs, much of the code is devoted to plotting. The
Fourier series conversion, multiplication by the transfer function and the inverse
Fourier series conversion require only one line of code each (shown in bold).

The plots generated by this program are shown in Figures 6.23 and 6.24. It is
clear from the frequency plots that this circuit acts as a narrowband bandpass filter
with a peak frequency around 4 Hz. This filter emphasizes the EEG activity in the
region of 4 Hz as suggested by the time domain plots. Note how this filtering 
significantly alters the time domain appearance of the EEG waveform. Although an
effective filter, this circuit would not make a practical filter due to the problems
associated with real inductors, notably parasitic elements.

232 CHAPTER 6 FREQUENCY CHARACTERISTICS OF CIRCUITS AND ANALOG PROCESSES



6.4 MATLAB IMPLEMENTATION 233

Figure 6.23 Electroencephalogram data before (upper plot) and 
after (lower plot) processing by the circuit of Example 6.11. Note the
strong oscillatory behavior seen in the filtered data.

Figure 6.24 The frequency characteristics of the original elec-
troencephalogram signal (upper plot) and the signal coming out of
the RLC circuit (lower plot). A comparison of the two spectra shows
the circuit acts as a filter removing frequencies outside a small pass-
band range between approximately 3 and 6 Hz.



6.5 SUMMARY

The transfer function can represent complex networks or systems by a single equa-
tion. As presented here, the transfer function can only deal with signals that are
sinusoidal or can be decomposed into sinusoids, but the transfer function concept
will be extended to a wider class of signals in Chapter 8. The transfer function not
only offers a succinct representation of the system, but also gives a direct link to
the frequency characteristics of the system. Frequency plots can be constructed
directly from the transfer function using MATLAB, or they can be drawn by hand
using a graphical technique based on Bode plot primitives. With the aid of Bode
plot primitives, we can also go the other way: from a given frequency plot to the
corresponding transfer function. This would be the first step in the design of a
network, system, or model with specific frequency characteristics.

Filters are circuits designed to modify the frequency characteristics of an input
signal in a well-defined manner. Filters are categorized by their general type,
lowpass, highpass, bandpass, and band stop, as well as by their bandwidth. Other
important specifications include the filter order, which determines how steeply filter
attenuation changes with frequency, and the initial sharpness. Filters are an impor-
tant part of many analog circuit designs, and can also be implemented on a com-
puter to process digitized signals.

The transfer function can provide the output of the system to any input signal
as long as that signal can be decomposed into sinusoids. We first transform the
signal into its frequency domain representation (i.e., its sinusoidal components)
using Fourier series decomposition. We then multiply the frequency characteristics
of the signal by those of the transfer function to obtain the frequency domain 
representation of the output signal. We then take the inverse Fourier transform to
get the time domain output signal. In MATLAB, this three-step process takes only
three lines of code.

When an unknown system is available to us for experimentation, we can input
sinusoids at different frequencies, measure the magnitude and phase of the response,
and plot the frequency characteristics of this unknown system. This strategy 
has been applied to many physiological systems. Using Bode plot primitives, we
should be able to estimate a transfer function to represent the system. This trans-
fer function can then be used to predict the system behavior to other input signals,
including signals that might be difficult to generate experimentally. Thus, 
the transfer function concept coupled with Bode plot primitives can be a 
powerful tool for determining the transfer function representation of a wide range
of physiological systems, and for predicting their behavior to an equally broad range
of stimuli.

PROBLEMS

1. Find the transfer function, Vout(w)/Vin(w), for the circuit below.
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2. Find the transfer function of the circuit below.

PROBLEMS 235

3. Plot the Bode plot (magnitude and phase) for the circuit in Problem 1 when 
R = 100 W and C = 0.0001 f. Plot over three orders of magnitude from 1 to
1,000 rad/sec.

4. Plot the Bode plot (magnitude and phase) for the transfer function:

5. Plot the Bode plot (magnitude and phase) for the transfer function:

6. Plot the Bode plot (magnitude and phase) for the circuit in Problem 6.2 where
R = 10 W, L = 2 h, C = 0.0002 f. Plot between 1 and 1,000 rad/sec.

7. Determine the Bode plot of the circuit on the right side of Figure 6.17.
8. Plot the Bode plot (magnitude and phase) of the mechanical system shown

below, where the input is Fs(t) and the output is x(t). kf = 10 dyne-sec/cm, ke =
500 dyne/cm, m = 5 gm. Plot between 1 and 1,000 rad/sec.
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9. Find the transfer function that produces the magnitude frequency curve shown
below.

236 CHAPTER 6 FREQUENCY CHARACTERISTICS OF CIRCUITS AND ANALOG PROCESSES

10. Find the transfer function that produces the magnitude frequency curve shown
below. (Hint: This curve was produced by a second-order transfer function and
could be represented by a single second-order term with a larger d, but would
be more accurately represented by two first-order terms.)



11. Estimate the magnitude transfer function of the pupil light reflex data in Figure
6.22. (Hint: Several answers are possible, but the original researchers used a
series of first-order terms.)

MATLAB Problems

12. Plot the Bode plot (magnitude and phase) for the transfer function of the circuit
in Problem 6.2 for values of R = 1 W, 10 W, 70 W, and 500 W. Assume that L
= 1 h and C = 0.0001 f. How does the resistance affect the shape of the fre-
quency plot?

13. Plot the Bode plot (magnitude and phase) for the transfer function for the
mechanical system in Problem 6.8 for values of ke = 2 dyne/cm, m = 3 gm, and
kf = 1, 10, 70, and 500 dyne-sec/cm. How does the friction element affect the
shape of the frequency plot? (Hint: Modify the code in Example 6.7.)

14. Plot the Bode plot (magnitude and phase) of the transfer function of the circuit
below. Note the units for the various elements. What type of filter is it? Plot
between 100 and 106 rad/sec, but plot in Hz. (Hint: Extend the approach used
in Example 6.9.)
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15. Plot the Bode plot (magnitude and phase) for the transfer function of the circuit
in Problem 6.14, but reverse the position of the resistors and capacitors. That
is, put the capacitors across the top and connect the resistors to ground. How
does this change the filter?

16. Repeat Example 6.11 except change the values of the components to: R = 2 W,
L = 0.25 h, and C = 0.001 f. You will have to derive the transfer function for
the circuit in Figure 6.1 for the new values of R, L, and C. What change has
this made in the properties of the filter?

17. The function unknown found on the disk represents a biological system. Deter-
mine the magnitude transfer function for this unknown process using the
approach outlined in Example 6.10.
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7 RELATIONSHIPS BETWEEN
ANALOG ELEMENTS

7.1 SYSTEM SIMPLIFICATIONS: PASSIVE NETWORK REDUCTION

Sometimes it is desirable to simplify a circuit or system by combining elements.
Many quite complex circuits can be reduced to just a few elements using an
approach known as network reduction. Such simplifications can be very valuable:
They can be used to simplify analysis and provide a summary-like representation
of a complicated system. New insights can be had on the properties of a network
after it has been simplified. Network reduction can be particularly useful when two
networks or systems are to be connected together as the reduced forms show how
their interconnection will affect each network and the passage of information
between them. Finally, the principles of network reduction are useful in under-
standing the behavior of real sources.

Reduction principles are sometimes necessary to understand and analyze the bio-
medical measurements. Making a measurement on a biological system can be viewed
as connecting two systems together: the biological system and the measurement
system. All measurements require drawing some energy from the system being mea-
sured. How much energy is taken depends on a match between the biological and
measurement system and this match may be defined in terms of impedance. This
match between the biological and measurement system may be quantified in terms
of a generalized concept of impedance; specifically, the difference between the output
impedance of the biological system and the input impedance of the measurement
system.

Before we can reduce complex networks or systems, we must first learn to reduce
simple configurations of elements such as series and parallel combinations. Network
reduction is based on a few simple rules for combining series and/or parallel ele-
ments. The approach is straightforward, although implementation can become quite
tedious for large networks. After introducing the reduction rules for networks con-
sisting only of passive elements, the guidelines will be expanded to include networks
with sources. These reduction tools will then be applied to problems were two
systems are interconnected.



7.1.1 Series Electrical Elements

Electrical elements are said to be in series when they are connected end-to-end and
no other elements share that common connection as shown in Figure 7.1A. Although
series elements are often drawn as in line with one another, they can be drawn in
other configurations and still be in series. The three elements in Figure 7.1B are also
in series as long as no other elements are connected between the elements. By simple
application of Kirchhoff’s voltage law (KVL) it can be demonstrated that when ele-
ments are in series, their impedances add: The voltage across three series elements
is:

The total voltage can also be written as:

Thus, series elements can be represented by a single element that is the sum of the
individual elements (Eq. 7.1 and Figure 7.1A):

[Eq. 7.1]

If the series elements are all resistors or all inductors, they can be represented by a
single resistor or inductor that is the sum of the individual elements:

Z Z Z Zeq = + + + ◊ ◊ ◊1 2 3

v Z i Z Z Z Ztotal eq eq= = + +; .where 1 2 3

v v v v Z Z Z itotal = + + = + +( )1 2 3 1 2 3 .
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Figure 7.1 A: Elements in series, Z1, Z2, and Z3, can be converted into a single
equivalent element, Zeq that is the sum of the three individual elements. Elements
are in series when they share one node and no other elements share this node. 
B: Series elements are often drawn in line, but these elements are also in series.
(As long as nothing else is connected between the elements.)



[Eq. 7.2]

[Eq. 7.3]

If the elements are all capacitors, then their reciprocals add, since the impedance of
a capacitor is a function of 1/C:

[Eq. 7.4]

If the string of elements includes different element types, the individual impedances
can be added using complex arithmetic to determine a single equivalent impedance.
In general, this element will be complex, as shown in Example 7.1

Example 7.1: Series element combination. Find the equivalent single impedance,
Zeq, of the series combination below.

1 1 1 11 2 3C C C Ceq = + + + ◊ ◊ ◊

L L L Leq = + + + ◊ ◊ ◊1 2 3

R R R Req = + + + ◊ ◊ ◊1 2 3
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Solution: It is possible first to combine the two resistors into a single 25-W resis-
tor, then combine the two inductors into a single 11-H inductor, and then add the
three impedances (Req, jwLeq, and 1/jwC). Alternatively, simply convert each element
to its equivalent impedances, then add these impedances.

If a specific frequency is given, for example, w = 2.0 rad/sec, then Zeq can be eval-
uated as a single complex number.

Example 7.2: Find the equivalent capacitance for the three capacitors in series
below.

Z j jw =( ) = + ( ) -( ) = - = – -2 25 11 2 100 2 25 28 37 5 48W W.

Z j
j

j j
jeq = + + + + = + +10 5

1
01

15 6 25 11
100

w
w

w w
w.

Solution: Because all the elements are capacitors, they add as reciprocals:

Ceq = =1 17 0 059. f

1 1 1 1 1 0 1 1 0 5 1 0 2 10 2 5 171 2 3C C C Ceq = + + = + + = + + =. . .



7.1.2 Parallel Elements

Elements are in parallel when they share both connection points as shown in Figure
7.2. For parallel electrical elements, it does not matter if other elements share these
mutual connection points, as long as both ends of the elements are connected to
one another.

When looking at electrical schematics, it is important to keep in mind the defin-
ition of parallel and series elements because series elements may not be drawn in
line (Figure 7.1B) and parallel elements may not be drawn as geometrically paral-
lel. For example, the two elements, Z1 and Z2 on the left side of Figure 7.3 are in
parallel because they connect at both ends even though they are not drawn in par-
allel geometrically. Conversely, elements Z1 and Z2 in the right hand figure are drawn
parallel, but they are not in parallel electrically because they do not connect at each
end (in this case, they are not connected at all).

As can be shown by Kirchhoff’s Current Law (KCL), parallel elements combine
as the reciprocal of the sum of the reciprocals of each impedance. Applying KCL
to the upper node of the three parallel elements in Figure 7.2, the total current
flowing through the three impedances would be: itotal = i1 + i2 + i3. Substituting in
v/Z for the currents through the impedances, the total current becomes:

This equation, restated in terms of an equivalent impedance, becomes:

i v Z Z Z Z Ztotal eq eq= = + +, .where 1 1 1 11 2 3

i v Z v Z v Z v Z Z Ztotal = + + = + +( )1 2 3 1 2 31 1 1 .
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Figure 7.2 Parallel elements share both end connection points. Three ele-
ments in parallel, Z1, Z2, and Z3, can be converted into a single equivalent
element, Zeq, that is the reciprocal of the sum of the reciprocals of the three
individual elements.

Figure 7.3 Left circuit: The elements Z1 and Z2 are connected at both
ends and are therefore electrically in parallel even though they are not
drawn parallel. Right circuit: Although they are drawn parallel, elements
Z1 and Z2 are not electrically parallel because they are not connected at
both ends.



Hence,

[Eq. 7.5]

Eq. 7.5 also holds for the value of parallel resistor and inductors:

[Eq. 7.6]

[Eq. 7.7]

Parallel capacitors, however, simply add because C is in the denominator of the
impedance term:

[Eq. 7.8]

Hence, if the three capacitors in Example 7.2 were in parallel, their equivalent capac-
itance would be simply the addition of the three values:

Example 7.3: Find the equivalent single impedance for the parallel RLC combi-
nation below.

Ceq = + + =0 1 0 5 0 2 0 8. . . . f

C C C Ceq = + + + ◊ ◊ ◊1 2 3

1 1 1 11 2 3L L L Leq = + + + ◊ ◊ ◊

1 1 1 11 2 3R R R Req = + + + ◊ ◊ ◊

1 1 1 11 2 3Z Z Z Zeq = + + + ◊ ◊ ◊
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Solution: First take the reciprocals of the impedances:

Then add, and invert:

Once a value of frequency, w, is given, this equation could be solved for a specific
impedance value. Alternatively, we could solve for Zeq over a range of frequencies
using MATLAB This is given as Problem 15 at the end of the chapter.

Example 7.4: Find the equivalent resistance of the parallel combination of three
resistors: 10 W, 15 W, and 20 W.
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1 1 10 0 1 1 1 5 0 01R j L j j C j= = = =. ; ; .W W Ww w w w



Solution: Calculate reciprocals, add them, then invert:

Note that the equivalent resistance of a parallel combination of resistors will always
be less than the smallest resistor in the group. The same will be true for inductors
while the opposite is true for parallel capacitors.

7.1.2.1 Combining Two Parallel Impedances

Combining parallel elements via Eq. 7.5 is mildly irritating with its double inver-
sions. Most parallel element combinations involve only two elements, so it is useful
to have an equation that directly states the equivalent impedance of two parallel
elements without the inversion. Starting with Eq. 7.5 for two elements:

[Eq. 7.9]

Hence the equivalent impedance, Zeq, of two parallel elements equals the product
of the two impedances divided by their sum.

7.1.3 Network Reduction: Passive Networks

The rules for combining series and parallel elements can be applied to networks that
include a number of elements. Even very involved configurations of passive elements
can usually be reduced to single element. Obviously, it is easier to grasp the signif-
icance of a single element than a confusing combination of many elements.

7.1.3.1 Network Reduction: Successive Series—Parallel Combination

In the last section, we saw that it is possible to combine a number of series or par-
allel combinations. Even when most of the elements are not in either series or par-
allel configurations, it is possible to combine them into a single impedance using
the techniques of network reduction. In this section, the networks being reduced
consist only of passive elements, but in the next section, we will learn how to expand
the concepts of network reduction to include networks with sources.

In the network in Figure 7.4, most of the elements are neither in series nor in
parallel. It is important to realize that the combination of elements across the top
of this network—inductor, resistor, inductor—are not in series because their con-
nection points are shared by other elements, capacitors in this case. To be in series,
the elements must not only share one connection point, they must be the only ele-
ments to share that point. If we could somehow eliminate the two capacitors (we

Inverting:  Z
Z Z

Z Zeq =
+
1 2

1 2

1 1 1

1 2

2

2 1

1

1 2

1 2

1 2Z Z Z
Z

Z Z
Z

Z Z
Z Z
Z Zeq

= + = + =
+

Req = =1 0 217 4 61. . W

1 1 1 1 1 10 1 15 1 20 0 1 0 0667 0 05 0 2171 2 3R R R Req = + + = + + = + + =. . . . W

244 CHAPTER 7 RELATIONSHIPS BETWEEN ANALOG ELEMENTS



cannot), then these three elements would be in series. Nor are any of the elements
in parallel since no elements share both connection points. If they did, they would
be in parallel even if other elements shared these connection points. However, there
are two elements in series: the 4-h inductor and the 20-W resistor on the right-hand
side of the network. We could combine these two elements using Eq. 7.1. After com-
bining these two elements, we now find that the new combined element is in par-
allel with the 0.02-f capacitor. We can then combine these two parallel elements
using the parallel rule given in Eq. 7.9. Although the argument may become diffi-
cult to follow at this point, the newly combined parallel element is now in series
with the 15-W resistor. Most reductions of passive networks proceed in this fashion:
Find a series or parallel combination to start with, combine them, and look to see
if the new combination produces a new series or parallel combination. Then just
continue down the line.

The example below uses the approach based on sequential series–parallel com-
binations to reduce the network in Figure 7.4 to a single equivalent impedance.

Example 7.5: Network reduction using sequential series-parallel combinations.
Find the equivalent impedance between the nodes A and B in Figure 7.4. Find the
impedance at only one frequency, w = 5.0 rad/sec. {Using network reduction, we
could find the equivalent impedance leaving frequency as a variable [i.e., Z(w)], but
this would make the algebra more difficult. With a specific frequency, we are able
to use complex arithmetic instead of complex algebra.}

Solution: Convert all elements to their equivalent impedances at w = 5.0 rad/sec.
(to simplify subsequent calculations). Then begin the reduction by combining the
two series elements on the right-hand side together. As a first step, the elements are
first converted to their phasor impedances (at w = 5 rad/sec). Then the two series
elements are combined using Eq. 7.1 leading to the network shown below on the
right-hand side.
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Figure 7.4 A network containing R, L, and C’s where
most of the elements are neither in series nor in parallel.
Nonetheless, this network can be reduced to a single
equivalent impedance (with respect to nodes A and B) as
is shown in Example 7.5.



This combination puts two elements in parallel: the newly formed impedance and
the -j10 W capacitor. These two parallel elements can be combined using Eq. 7.9:

This leaves a new series combination that can be combined as shown below. In the
third step of network reduction, the newly formed element from the parallel com-
bination (4 - j12 W) is now in series with the 15-W resistor, and this equivalent series
element will be in parallel with the 0.01-f capacitor.

Z jeq = – - = -12 65 72 4 12. W W

Z
Z Z

Z Z
j j
j j

j
jeq =

+
=

+( ) -( )
+ -

=
-
+

=
– -
–

1 2

1 2

20 20 10
20 20 10

200 200
20 10

282 8 45
22 36 27

.
.
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Combining these two parallel elements:

This leads to the final series combination and a single equivalent impedance as
shown. In the final step, the two series elements are combined to a single equiva-
lent impedance.

Z jeq = – = -12 07 297 5 48 10 75. . .W W

Z
j j
j j

j
jeq =

- -( )
- + -

=
- -

-
=

–
– -

20 19 12
20 19 12

240 380
19 32

449 4 238
37 2 59

.
.

Network reduction is always done from the point of view of two nodes, such as
nodes A and B in this example. In principle, any two nodes can be selected for analy-
sis and the equivalent impedance can be determined between these nodes. Gener-
ally the nodes selected have some special significance; for example, the nodes that
make up the input or output of the circuit. Network reduction usually follows the
format of this example: sequential combinations of series elements, then parallel ele-
ments, then series elements, and so on. In a few networks, there are no elements



that are either in series or in parallel to start with, and an alternative method
described in the next section must be used. (In these cases, a transformation in the
configuration of three elements called a pi to T transformation can be used, but 
the application of this transformation is rare in electronics and will not be covered
here.) The voltage-current method described in the next section works for all net-
works and any combination of two nodes, but it is usually more computationally
intensive. On the other hand, it does lend itself to computer solution using
MATLAB.

7.1.3.2 Network Reduction: Voltage–Current Method

The other way to find the equivalent impedance of a network follows the approach
that would be used given an actual network in a laboratory setting. Suppose you
were asked to determine the impedance between two nodes of a network (a classic
so-called two-terminal problem). Perhaps the actual network was inaccessible to
you and all you had available were the two nodes as shown in Figure 7.5.

The actual network could contain any number of nodes, but we assume that only
two are accessible for measurement, or are of interest. Even without opening the
box, it is possible to determine the equivalent impedance between these two termi-
nals. What you would do in this situation (or, at least, what I would do) is to apply
a known voltage to the two terminals, measure the resulting current, and calculate
the equivalent impedance Zeq, using Ohm’s law:

[Eq. 7.10]

Of course, Vknown would have to be a sinusoidal source of known amplitude, phase,
and frequency unless you knew, a priori, that the network was purely resistive, in
which case a DC (direct current) source would suffice. Moreover, you would be
limited to determining Zeq at only one frequency, the frequency of the voltage source,
but most laboratory sinusoidal sources offer a range of selectable frequencies so the
impedance could be determined over a range of frequencies. If the unknown network
contained sources, a slightly different strategy developed in the next section could
be used instead.

Z
V
Ieq

known

measured

=
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Figure 7.5 An unknown network that has
only two terminals available for use or 
for measurements. This is a classic two-
terminal device.



This same approach can be applied to a network that exists only on paper, such
as the network in the last example. Using the tools that we have acquired thus far,
we simply connect a voltage source of our choosing to the network and solve for
the current into the network. The source could be of any voltage, frequency, or
phase. Moreover, this approach can be applied to simplify any network, even one
that does not have any series or parallel elements. This method is applied to the
network in Example 7.6 and, in the subsequent example, to an even more chal-
lenging network.

Example 7.6: Passive network reduction using the source-current method. Find
the equivalent impedance between nodes A and B in the network of Figure 7.4 for
a frequency of w = 5 rad/sec.

Solution: Apply a known source across nodes A and B and solve for the resulting
current using mesh analysis. For a source, we could chose any sinusoidal source at
5 rad/sec, but why not choose something simple like 1 volt at 0.0 degree phase. The
desired impedance Zab will then be Zab = 1/I1(w) and mesh analysis can be used to
solve for /I1(w). Going directly to phasor notation, the network as a standard 3 mesh
is shown below.
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To find the input current, we could analyze this as a straightforward three-mesh
problem solving for I1. Several alternatives are also possible: using network reduc-
tion to convert the last three elements to a single element and solving as a two-mesh
problem; converting the voltage source to an equivalent current source (as shown
later in this chapter) and solving as a two-node problem; or combining these
approaches and solving as a one-node problem. In this example, we will chose the
first suggestion and solve the three-mesh problem directly with the aid of MATLAB.
Applying standard mesh analysis to the network above, the basic matrix equation
can be written as:

1 0

0

0

20 20 20 0

20 15 20 10 10

0 10 20 20 10

1
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3

.
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- +

+ - - +
+ + -

j j j

j j j j

j j j

i

i

i



Simplifying by complex addition:

Solving for I1, then Zeq using MATLAB:

% Example 7.6 Find the equivalent impedance of a network 
% by applying a source and solving for the resultant 
% current.
%
% First assign values for v and Z
v = [1 0 0];
Z = [0 20j 0; 20j 15-30j 10j; 0 10j 20+10j];
%
i = Z\v % Solve for currents
Zeq = 1/i(1); % Solve for Zeq
Zeq = [abs(Zeq) angle(Zeq)*360/(2*pi)]

Again note that the product symbol, *, can be omitted if the j follows the number.
The output from this program is: Zeq = 10.75 –59.3.

This answer is the same as that found by standard reduction in Example 7.5.
Again, this approach could be used to reduce any passive network of any complexity
to an equivalent impedance between any two terminals. The latter portion of this
chapter shows how to reduce, and think about, networks that also contain sources.
Before proceeding to the next section, a final example will show how to reduce a
passive network when the two terminals of interest are in more complicated posi-
tions (for example, separated by more than a single element). In this example, we
will also solve for the impedance over a range of frequencies.

Example 7.7: Find the equivalent impedance of the circuit shown in Figure 7.6
between terminals A and B. Use MATLAB to find Zeq over a range of frequencies,

1 0

0

0

0 20 0

20 15 30 10

0 10 20 10

1

2

3

.
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+

j

j j j

j j

i
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Figure 7.6 Network used in Example 7.7. The goal is to find
the equivalent impedance between nodes A and B over a fre-
quency range of 0.01 to 100 rad/sec.



w, and plot Zeq as a function of log frequency. Use a frequency range of 0.01 to 
100 rad/sec. (This frequency range showed the most interesting behavior as deter-
mined by trial and error using MATLAB.)

Solution: Apply a source between terminals A and B and solve for the current
flowing out of the source. In this problem, the source will have a fixed amplitude
(1.0 V), a fixed phase (0.0 degrees), but the frequency must be variable so that Zeq

can be determined over the specified range of frequencies. Before applying the
source, it is helpful to rearrange the network so that the meshes can be more readily
identified. Sometimes this topographical reconfiguration can be the most challeng-
ing part of the problem, especially to individuals who are spatially challenged.

In this network, simply rotating the network by 90 degrees makes the mesh
arrangement evident as shown in the figure below.
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Unfortunately, this network cannot be reduced by simple series-parallel 
combinations as used previously. While transformations that are more complicated
can be used,1 we can just as easily use the voltage–current method used in the 
previous example. Again, the problem is solved by applying standard network 
analysis. Assigning a voltage source and mesh currents as shown above, the total

1 Two slightly more complicated transformations exist that allow configurations such as this to be
reduced by the first method. These transformations are known as the P(pi) to T transformation and vice
versa. However, the voltage–current approach applies to any network and lends itself well to computer
analysis as shown here.



current out of the source will flow into both the 15-W resistor and the 0.01-f capac-
itor. Hence, the current into node B, the current we are looking for, will actually be
the sum of i1 + i2.

After converting all elements to phasor notation, the matrix equation can be
written as:

Note that the frequency, w, must remain a variable in this equation because we 
need to find the value of Zeq over a range of frequencies. MATLAB can be used 
to find specific values of Zeq over the range of frequencies, and these will be 
plotted:

%Example 7.7 To find and plot the values of an equivalent
%impedance between .01 and 100 rad/sec
clear all; close all;
%
% Define frequency, use .01 rad/sec increments
w = .01:.01:50; % Define frequency vector
v = [1; 0; 0]; % Define voltage vector
%
% Loop over all frequencies, solving for Zeq
for k = 1:length(w)
% Define impedance vector (Use continuation statement)
Z = [15+4j*w(k), -15, -4j*w(k); -15, 15-120j/w(k),... 

20j/w(k); -4j*w(k), 20j/w(k), 
15+4j*w(k)-20j/w(k)];

i = Z\v; % Solve for current
Zeq (k) = 1/(i(1) + i(2)); % Solve for Zeq

end
.......plot and label magnitude and phase.

The graph produced by this program is shown in Figure 7.7. Both the magnitude
and phase of Zeq are functions of frequency.

It is easy to find the maximum and minimum of MATLAB variables using the
MATLAB max or min functions. Applying these functions to the Zeq:

[max_Zeq _abs, abs_freq] = max(abs(Zeq));
[max_Zeq_phase, phase_freq] = min(angle(Zeq)*360/(2*pi));
%
%Now display the maximum and minimum values including
frequency
disp([max_Zeq_abs, w(abs_freq); max_Zeq_phase,... 
w(phase_freq)])
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This produces the values:

Note that the max or min functions give the maximum or minimum and the vari-
able index at which these values occur. To convert the index to the appropriate fre-
quency, just take w(index), as in the code above.

The remainder of this chapter examines the characteristics of sources, both real
and ideal, and develops methods for reducing networks that contain sources. Many
of the principles used here in passive networks apply equally well to networks that
are more general.

7.2 IDEAL AND REAL SOURCES

Before developing methods to reduce networks that contain sources, it is helpful to
revisit the properties of ideal sources described in Section 4.2.3 and to examine how
ideal and real sources differ. In this discussion, only constant output sources (i.e.,
DC sources) are considered, but the arguments presented generalize without only
minor modification to time varying sources as shown in the next section.

7.2.1 The Voltage–Current or v-i Plot

Essentially an ideal source can supply any amount of energy that is required by
whatever is connected to that source. Discussions of real and ideal sources often use

– = - =Zeq max max_ . .21 48 8 15degrees rad secw

Zeq max max= =15 43 1 6. .W w rad sec
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Figure 7.7 The value of Zeq as a function of frequency for
the network in Example 7.7. The impedance is plotted in
terms of magnitude and phase. These plots were obtained
from the MATLAB code used in Example 7.7.



plots of voltage against current (or force against velocity), which provide a visual
representation of the source characteristics. Such ‘v-i’ plots are particularly effective
at demonstrating the equivalent resistance of an element.

Recall that the equation for a straight line is y = mx + b, where m is the slope
of the line and b is the intercept. From Ohm’s law, v = Ri, so the voltage–current
relationship for all resistors will plot as straight lines with a slope equal to the value
of the resistance and an intercept of 0.0. The v-i plots of five different resistors are
shown in Figure 7.8: 0, 10, 100, 1,000, and infinity W.

Taking the reverse argument, an element that plots as a straight line on a v-i plot
is either a resistor or contains a resistance, and the slope of the line indicates the
value of the resistance. The steeper the slope, the greater the resistance: a vertical
line that has a slope of infinity indicates the presence of an infinite resistance and a
horizontal line that has a slope of zero indicates the presence of a 0.0-W resistance.

The v-i plot of an ideal DC voltage source follows directly from the definition:
a source of voltage that is constant regardless of the current though it. For a time-
varying source, such as a sinusoidal source, the voltage would vary as a function of
time, but not as a function of the current. An ideal voltage source cares naught
about the current through it. Hence, the v-i plot of an ideal DC voltage source, VS,
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Figure 7.8 A v-i plot, showing voltage against current, for resistors having
5 different values between 0.0 W and infinity W. This shows that the v-i plot
of a resistor is a straight line passing through the origin and having a slope
equal to the resistance.



would be a flat line intersecting the horizontal (voltage) axis at v = VS (Figure 7.9).
If the voltage source were time varying, the v-i plot would look essentially the same
except that the height of the horizontal line would vary in some specific manner
with time.

This straight-line plot with zero slope clearly demonstrates that the resistive com-
ponent of an ideal voltage source is zero. In other words, the equivalent resistance
of an ideal voltage source is 0.0 W. With regard to the v-i plot, an ideal source looks
like a resistor of 0.0 W with an offset of VS. It may seem strange to talk about the
equivalent resistance of a voltage source, especially when the resistance is zero, but
the concept of equivalent resistance, the resistance of a component ignoring its other
electrical properties, becomes important in real sources where the equivalent resis-
tance is no longer zero. The concept of equivalent resistance, or more generally
equivalent impedance, is a useful concept in network reduction and has important
implications in transducer analysis and design.

Resistive elements having either zero or infinite resistance have special signifi-
cance and have their own terminology. Resistances of zero will produce no voltage
drop regardless of the current running through them. As stated in Chapter 4, an
element that has zero voltage for any current is termed a short circuit because
current flows freely through such elements. Resistors with infinite resistance have
the opposite voltage–current relationship, they allow no current regardless of the
voltage (assuming that it is finite). Again in Chapter 4, devices that have zero current
for any voltage are termed open circuits because they do not provide a path for
current. Hence, elements having infinite resistance are open circuit. To summarize,
short circuits have zero resistance and zero voltage drop for any current while open
circuits have infinite resistance and zero current for any voltage.

The v-i plot of an ideal current source is also evident from its definition: an
element that produces a specified current regardless of the voltage across it. This
leads to the v-i plot shown in Figure 7.10 of a vertical line that intersects the current
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Figure 7.9 A v-i plot of an ideal voltage source.
This plot shows that the resistor-like properties of a
voltage source have a zero value.



axis at i = IS. By the arguments above, the equivalent resistance of an ideal current
source is infinite.

The concepts of ideal voltage and current sources are somewhat counterintuitive.
An ideal voltage source has the resistive properties of a short circuit, but also
somehow maintains a nonzero voltage. The trick is to understand that an ideal
voltage source is a short circuit with respect to current, but not with respect to
voltage. Understanding this apparent contradiction is critical to understanding the
properties of ideal voltage (or force) sources. A similar apparent contradiction
applies to current sources: They are open circuits with respect to voltage yet produce
a specified current.

In this section, voltage and current sources are described in terms of fixed values
(i.e., DC sources), but the basic arguments do not change if VS or IS are time varying.
This generalization will hold true for the other arguments presented below.

7.2.2 Real Voltage Sources: The Thévenin Source

Unlike ideal sources, real voltage sources are not immune to the current flowing
through them, nor are real current sources immune to the voltage falling across
them. In real voltage sources, the source voltage drops as more current is drawn
from the source. This gives rise to a v-i plot such as shown in Figure 7.11, where
the line is no longer horizontal but decreases with increasing current. The decrease
indicates the presence of an internal, nonzero, resistance having a value equal to the
negative slope of the line. The slope is negative because the voltage drop across the
internal resistance is opposite in sign to Vs and hence subtracts from the values of
Vs.
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Figure 7.10 A v-i plot of an ideal current
source. This plot shows that the resistor-like
properties of a current source have an infi-
nite value.



Real sources, then, are simply ideal sources with some nonzero resistance. They
can be represented as an ideal source in series with a resistor as shown in Figure
7.12. This configuration is also known as a Thévenin source, named after an engi-
neer who developed a network reduction theory described below. Finding values for
VT and RT given a physical (and therefore real ) source is straightforward. The value
of the internal ideal source, VT, is just the voltage that would be measured at the
output, vout, if no current was flowing through the circuit; that is, if the output was
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Figure 7.11 The v-i plot of a real voltage
source (solid line). The nonzero slope of this
line shows that the source contains an inter-
nal resistor. The slope indicates the value of
this internal resistance.

Figure 7.12 Representation of a real source also known as a
Thévenin circuit shown with a load resistor, RL that is used draw
current from the source. This circuit is used in Example 7.8.



an open circuit. For this reason, VT is described as equivalent to the open circuit
voltage voc. To find the value of the internal resistance, RT, we need to draw current
from the circuit and measure how much the output voltage decreases. A resistor
placed across the output of the Thévenin source will do the trick. This resister, RL,
is often referred to as a load resistor or just the load because it makes the Thévenin
source do work by drawing current from the source (P = vout

2/RL). The smaller the
resistor, the more current that will be drawn for the source, and the more work
required by the source. For this reason, decreasing RL is referred to as increasing
the loading on the source. Assuming a current iout is being drawn from the source
and the voltage measured is vout, the difference in voltage between the no-current
voltage and current conditions is vD = VT - vout. Because the voltage difference vD

is due entirely to RT, the value of RT can be determined as:

[Eq. 7.11]

The maximum current out of the source will occur when the source is connected
to a short circuit, and the current that will flow, the short-circuit current, isc, will
be:

[Eq. 7.12]

Remembering that VT is the voltage that would be measured under open circuit con-
ditions and defining the open circuit voltage as voc, we can write:

[Eq. 7.13]

In words, the internal resistance is equal to the open circuit voltage (voc) divided by
the short-circuit current (isc). Eq. 7.13 is a viable method for determining RT in the-
oretical problems, but is not practical in real situations with real sources because
shorting a real source may draw excessive current and damage the source. When
dealing with real sources, it is safer to draw only a small amount of current out of
the source by placing a large resistor across the source, not a short-circuit. In this
case, Eq. 7.11 can be used to find to find RT since vout and iout can be measured and
VT can be determined by a measurement of open-circuit voltage. Example 7.8 takes
this approach to determine the internal resistance of a voltage source.

Example 7.8: In the laboratory, the voltage of a real source is measured using a
device that draws negligible current from the source; hence the voltage recorded can
be taken as the open-circuit voltage. This voltage is measured as 9.0 V. A resistor,
RL, is placed across the output terminals of the device as in Figure 7.12 and a current
of iout = 5 mA (5 ¥ 10-3 A) flows from the source. (Assume this current is measured
using an ideal current measurement device, although it could also be calculated from
vout if the value of RL is known.) Under this load condition, the output voltage falls
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to 8.6 V. What is the internal resistance of the source, RT? What is the resistance of
the load, RT, that produced this current?

Solution: When there is no load resistor (i.e., RL = •), then iout = 0 and vout = VT.
When the load resistor is attached to the output, iout = 5 mA, and vout = 8.6 V. Apply-
ing Eq. 7. 11:

To find the load resistor, RL, use Ohm’s law:

In summary, a real source can be represented by an ideal source with a series resis-
tance. In the examples shown here, the sources were DC and the series element a
pure resistor. In the more general case, the source could generate sinusoids or other
waveforms (but would still be ideal) and the series element would be an impedance.
In the case where the source was sinusoidal, the equations above still hold, but
would require phasor analysis for their solution.

7.2.3 Real Current Sources: The Norton Source

As mentioned in Chapter 4, current sources are somewhat counterintuitive since
current is really an affect of voltage not a causal process. Current sources actually
adjust the voltage to produce the desired current. For an ideal current source, the
larger the load resistor, the more work they have to do since they must generate a
larger voltage to get the desired current. Current sources prefer small load resistors,
the opposite for voltage sources. For a real current source, as the load resistor
increases, the voltage requirement increases, and limits on the ability to generate
this voltage cause a reduction of the output current. This is reflected by the v-i plot
circuit in Figure 7.13, and can be represented by an internal resistor.
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Figure 7.13 The v-i plot of a real current source (solid line). The
noninfinite slope of this line shows that the current cannot keep
up with the voltage required when high voltages are necessary to
produce the desired current so the current decreases. The reduc-
tion in current output with increased voltage can be represented
by an internal resistor and the slope is indicative of its value.



For current sources, the negative slope of the line in the v-i plot is equal to the
internal resistance just as for voltage sources. The circuit diagram of a real current
source is shown in Figure 7.14 as an ideal current source in parallel with an inter-
nal resistance. This configuration is often referred to as a Norton equivalent circuit.
Inspection of this circuit shows how this circuit will produce a falloff in current
output at higher voltages. As the voltage at the source output increases more current
flows though the internal resistor, RN, and less comes out of the source. If there were
no internal resistor, all of the current would have to flow out of the source regard-
less of the output voltage and the source would be ideal.

Referring to Figure 7.14, when the output is a short circuit (i.e., RL = 0.0 W),
then no current will flows through RN and all the current will flow though the
output. (Note that like the open-circuit condition for a voltage source, the short-
circuit condition produces the least work for a current source—in fact, no work at
all.) By KCL:

[Eq. 7.14]

Hence IN equals the short-circuit current, isc. When RL is not a short circuit, some
of the current will flow through RN and iout will decrease. Essentially, the internal
resistor steals current from the current source when the output voltage is anything
other than zero. Applying KCL to the upper node of the Norton circuit (Figure
7.14), paying attention to the current directions:

[Eq. 7.15]I
v
R

iN
out

N
out- - = 0

I i iN R outN- - = 0

i i Iout sc N= =

I i iN R outN- - = 0;

7.2 IDEAL AND REAL SOURCES 259

Figure 7.14 A circuit diagram of a real current source connected
to a resistor load. The current source circuit is often referred to as
a Norton equivalent circuit.



Solving for RN:

[Eq. 7.16]

When the output of the Norton circuit is an open circuit (i.e., RL Æ •), all the
current flows through the internal resistor, RN. Hence:

[Eq. 7.17]

Combining this equation with Eq. 7.14, we can solve for RN in terms of the open
circuit voltage, voc, and the short-circuit current, isc.

[Eq. 7.18]

This relationship is the same as for the Thévenin circuit as given in Eq. 7.13 if we
make RT = RN.

Example 7.9: A real current source produces a current of 500 mA under short-
circuit conditions and a current of 490 mA when the short is replaced by a 20-W
resistor. Find the internal resistance.

Solution: Given isc as 500 mA, find vout when the load is 20 W, then apply Eq. 7.16
to find RN.

The Thévenin and Norton circuits have been presented in term of sources, but 
they can also be used to represent entire networks as well as mechanical and other
nonelectrical systems. These representations can be especially helpful when two
systems are being connected. Imagine you are connecting two systems and you want
to know how the interconnection will affect the behavior of the overall system. If
you could represent the system serving as a source as a Thévenin or Norton source
and determine the effective input impedance of the system serving as load, you
would be able to calculate the loss of signal due to the interconnection. The same
could be stated for a biological measurement where the biological system is the
source and the measurement system is the load. You may not have much control
over the nature of the source, but as a biomedical engineer, you will have some
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control over the effective impedance of the load. These concepts are exploded
further in a later section.

7.2.4 Thévenin and Norton Circuit Conversion

It is easy to convert between the Thévenin and Norton equivalent circuits, that is,
to determine a Norton circuit that has the same voltage–current relationship as a
given Thévenin circuit and vice versa. Such conversions would allow you to apply
KVL to system with current sources (by converting them to an equivalent voltage
source) or to use KCL in system with voltage sources (by converting them to an
equivalent current). Consider the voltage current relationship shown in the v-i plot
of Figure 7.15. Because the curve is a straight line, it is uniquely determined by any
two points. The horizontal and vertical intercepts, voc and isc, are particularly con-
venient points to use.

The equations for equivalence are easy to derive based on previous definitions:

For a Norton circuit to have the same v - i relationship as a Thévenin, iscN = iscT

and vocN = vocT. Equating these terms in the equations above:

For a Norton circuit: and since I i R
v
i

v R iN scN N
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For a Thévenin circuit: and since v V R
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Figure 7.15 The v-i plot of the
output of some device to be repre-
sented as either a Thévenin or
Norton circuit. The voltage–current
relationship plots as a straight line
and can be uniquely represented by
two points: voc and isc, for example.



[Eq. 7.19]

[Eq. 7.20]

To go the other way and convert from a Norton to an equivalent Thévenin:

[Eq. 7.21]

[Eq. 7.22]

These four equations allow for easy conversion between Thévenin and Norton cir-
cuits. Note that the internal resistance, RN or RT, is the same for either configura-
tion. This is reasonable, since the internal resistance defines the slope of the v-i curve
so to achieve the same v-i relationship you need the same sloped curve and hence
the same resistor.

The ability to represent any linear v-i relationship by either a Thévenin or a
Norton circuit implies that, given a real source, it is impossible to determine whether
it is, in reality, a current or voltage source based solely on external measurement of
voltage and current. If the v-i relationship of a source is more-or-less a vertical line
as in Figure 7.13, indicating a large internal resistance, we might guess that the
source is probably a current source, or at least more appropriately represented as
such. In fact, one simple technique for constructing a current source in practice is
to place a voltage source in series with a large resistor. Alternatively, if the v-i rela-
tionship is approximately horizontal as in Figure 7.11, a nonideal voltage source
would be a better guess. However, if the v-i curve is neither particularly vertical nor
horizontal, as in Figure 7.15, it is anyone’s guess as to whether it is a current or
voltage source and either would be an equally appropriate representation unless
other information was available.

Conversion between Thévenin and Norton circuits can be used in order to apply
nodal analysis in circuits that contain voltage sources or to use mesh analysis in cir-
cuits that contain current sources. This application of Thévenin-Norton conversion
is shown in the example below.

Example 7.10: Find the voltage, VA, in the circuit shown below using nodal 
analysis.
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Solution: This circuit can be viewed as containing two Thévenin circuits: a 5-V
source and 10-W resistor, and a 10-V source and 40-W resistor. After converting
these two Thévenin circuits to equivalent Norton circuits using Eq. 7.19 and 
Eq. 7.20, apply standard nodal analysis.

After Thévenin-Norton conversion, the circuit becomes:
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Writing the KCL equation around node A.

The Thévenin and Norton circuits and their inter-conversions are also of value in
reducing or simplifying networks that contain sources as shown in the next section.
These concepts also apply to mechanical systems, with appropriate modifications,
as shown in Section 7.5.
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7.3 THÉVENIN AND NORTON THEOREMS: NETWORK REDUCTION 
WITH SOURCES

The Thévenin theorem states that any network of passive elements and sources can
be reduced to a single voltage source and series impedance. Thus the reduced
network would look like a Thévenin circuit such as that shown in Figure 7.12,
except that the internal resistance, RT, would be replaced by a generalized imped-
ance, Z–q. The Norton theorem makes the same claim for Norton circuits, which
is reasonable because Thévenin circuits can easily be converted to Norton circuits
via Eq. 7.19 and Eq. 7.20.

There are a few constraints on these theorems. The elements in the network being
reduced must be linear, and if there are multiple sources in the network, they must
be at the same frequency. As has been done in the past, the techniques for network
reduction will be developed using phasor representation and hence limited to net-
works with sinusoidal sources. However, the approach for generalizing this and
other techniques involving phasor analysis to a wide range of signals is presented
in the next chapter.

There are two approaches to finding the Thévenin or Norton Equivalent of a
circuit. One is based on the strategy used above to find the equivalence between
Thévenin and Norton circuits: find the open-circuit voltage, voc, and the short-circuit
current, isc. The other method evaluates only the open-circuit voltage, voc, then deter-
mines RT (or RN) through network reduction. During network reduction, a source
is replaced by its equivalent resistance, that is, open circuits (R Æ • W) substitute
for voltage sources, and short circuits (R = 0.0 W) substitute for current sources.
Both these approaches are straightforward to implement and are best shown though
examples.

Example 7.11: Find the Thévenin equivalent of the circuit below using both the
voc-isc method and the voc-network reduction technique.
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Solution: voc-Reduction method: First find the open-circuit voltage, voc, using stan-
dard network analysis. Convert all network elements to their phasor representation
as shown below.



Because in the open-circuit case no current flows through the 15-W resistor, there is
no voltage drop across this resistor. Therefore, the open-circuit voltage is the same
as the voltage across the capacitor. The 15 W resistor is essentially not there with
respect to open-circuit voltage. (The resistor is not totally useless: it does play a role
in determining the equivalent impedance and also the short-circuit current.) The
open-circuit voltage, the voltage across the capacitor, can be determined by writing
the mesh equation around the loop consisting of the capacitor, inductor, and source.
Using the usual directional conventions, defining the mesh current as clockwise and
going around the loop in a clockwise direction, note that the voltage source will be
negative since there is a voltage drop going around in the clockwise direction.

Note that the Thévenin equivalent voltage is actually larger than the source voltage.
This is the result of a partial resonance between the inductor and capacitor as dis-
cussed in Chapter 9.

Next, find the equivalent impedance by reduction. To reduce the network, essen-
tially turn off the sources and apply network reduction techniques to what is left.
Turning off a source does not mean you remove it from the circuit, rather to turn
off a source, you replace it by its equivalent resistance. For an ideal voltage source
RT Æ 0.0 W, so the equivalent resistance of an ideal voltage source is 0.0 W. To turn
off a voltage source you replace it by a short circuit. After replacing the source by
a short circuit, we are left with the network shown below on the left-hand side.
Series-parallel reduction techniques will work for this network.
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After replacing the voltage source by a short circuit, we are left with a parallel
combination of inductor and capacitor. This combines to a single impedance, ZP:

We are left with the series combination of ZP and the 15-W resistor:

Hence, the original circuit can be equivalently represented by the Thévenin circuit
shown below.

Z jT = + – = + = –15 33 33 90 15 33 33 36 55 65 8. . . . W

ZP = –33 33 90. W

Z
Z Z

Z Z
j j
j j jP

C L

C L

=
+

=
- ( )
- +

=
-

=
– -

50 20
50 20

1 000
30

1 000
30 90

, ,

266 CHAPTER 7 RELATIONSHIPS BETWEEN ANALOG ELEMENTS

Solution: voc-isc: In this method, we solve for the open-circuit voltage and short-
circuit current. We have already found the open-circuit voltage above so it is only
necessary to find the short-circuit current. After shorting out the output and con-
verting to phasor notation, the circuit is as shown.

If we solve this using mesh analysis, it is a two-mesh circuit, but if we convert
the inductor-source combination to a Norton equivalent, it becomes a single-node
equation. To implement the conversion, use Eq. 7.19 and Eq. 7.20:
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The network becomes:
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Writing KCL about the single node:

Now solve for RT:

This is the same value for RT as found by network reduction above.
Networks that are more complicated can be reduced using MATLAB as shown

in the example below.

Example 7.12: Find the Norton Equivalent of the circuit below with the aid of
MATLAB.
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Solution: The open-circuit voltage and short-circuit current can be solved directly
using mesh analysis in conjunction with MATLAB. In fact, the mesh equations in
both cases (solving for voc and isc) will be similar. The only difference is that when
solving for the short-circuit current, the 20-W resistor will be short-circuited and
not appear in the equation. First convert to phasor notation, then encode the
network directly into MATLAB. Because we are using MATLAB and the computa-
tional load is reduced, we will keep w as a variable in case we want to find the
Norton equivalent for other frequencies.

After converting to phasor notation and assigning the mesh current, the circuit
is as shown below. Note that the open-circuit voltage, voc, is the voltage across the
20-W resistor and the short-circuit current, isc, is just i3, when the resistor is shorted.
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Writing the KVL equations for the open-circuit condition:

where voc = 20i3.
The mesh equation for the short-circuit condition is quite similar:

where isc = i3
The program to solve these equations and find IN and RN is shown below:

%Example 7.12 To find the Norton equivalent of a three mesh
%circuit
clear all; close all;
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w = 20; % Define frequency
theta = 60*2*pi/360;
VS = 6*cos(theta) + ... % Define Vs as rectangular
6*sin(theta)*j;

v = [VS 0 0]’; % Define voltage vector
%
% Define open-circuit impedance matrix
Zoc = [4j*w+100/(j*w), -100/(j*w), 0; -100/(j*w),...

15+1100/(j*w), -1000/(j*w),...
0, -1000/(j*w), 20+6j*w+1000/(j*w)];

ioc = Zoc\v; % Solve for currents
voc = 20*ioc(3); % and open-circuit voltage
%
% Define short-circuit impedance matrix and solve for

short-circuit current
Zsc = [4j*w+100/(j*w), -100/(j*w), 0; -100/(j*w),...

15+1100/(j*w), -1000/(j*w);...
0, -1000/(1j*w), 6j*w+1000/(j*w)];

i = Zsc\v % Solve for currents
isc = i(3); % Find isc
Zn = voc/isc; % Solve for ZN (Eq. 7.18)
%
% Output magnitude and phase of IN and RN

IN_mag = abs(isc)
IN_phase = angle(isc)*360/(2*pi)
ZN_mag = abs(Zn)
ZN_phase = angle(Zn)*360/(2*pi)

This program produces the following outputs:

It would be easy to modify this program to find, and perhaps plot, the Norton
element values over a range of frequencies. A similar exercise is given in Problem
16 the end of the chapter.

7.4 MEASUREMENT LOADING

We now have the tools to analyze the situation when two systems are connected
together. For Bioengineers not involved in electronic design, this situation most fre-
quently occurs when making a measurement so we will analyze the problem in that
context. However, the approach followed here applies to any situation when two
processes are connected together.

ZN = –19 36 9 8. . W

IN = –0 0031 20 6. . A
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7.4.1 Ideal and Real Measurement Devices

One of the important tasks of biomedical engineers is to make measurements,
usually on some physiological system. Any measurement requires withdrawing some
energy from the system of interest and that, in turn, will alter the state of the system
and the value of the measurement. This alteration is referred to here as measure-
ment loading. The word load is applied to any device or system that is attached to
the system of interest and loading is the influence the attached device has on the
system. Hence, measurement loading is the influence a measurement device has on
the system being measured. This well-known phenomenon extends down to the
smallest systems and has a significant impact on fundamental principles of particle
physics. The concepts developed above can be used to analyze the effect of a mea-
surement device on a given system. In fact, the evaluation of the influence of a mea-
surement device is one of the major applications of the Thévenin and Norton
equivalent circuits.

Just as there are ideal and real sources, there are ideal and real measurement
devices or loads. An ideal source is one that can supply any amount of energy or
power required by its load. For voltage and current sources, P = vi, so an ideal
voltage source supplies a given voltage at any current and an ideal current source
supplies a given current at any voltage. Both these devices can supply infinite power
(vi) if need be. Ideal measurement devices have the opposite characteristics: they can
make a measurement without drawing any energy or power from the system being
measured. Of course, we know from basic physics that such an idealization is impos-
sible, but some measurement devices can provide nearly ideal measurements, at least
for all practical purposes.

The goal in practical situations is to be able to make a measurement without sig-
nificantly altering the system being measured. The ability to attain this goal will
depend on the characteristics of the source as well as the load; a given device might
have little effect on one system providing a reliable measurement, yet significantly
alter another system giving a measurement that does not reflect the underlying con-
ditions. It is not just a matter of how much energy a measurement device requires,
but how much energy the system being measured can supply without significant
change.

Just as ideal voltage and current sources have quite different properties, ideal
measurement devices for voltage and current differ significantly. A device that mea-
sures voltage is termed a voltmeter. An ideal voltmeter would draw no power from
the circuit being measured. Since P = vi, and v cannot be zero (that is what is being
measured), an ideal voltmeter must draw no current while making the measurement.
The current will be zero for any voltage only if the equivalent resistance of the volt-
meter is infinite. An ideal voltmeter is effectively an open circuit, and the v-i plot is
a vertical line. Practical voltmeters do not have infinite resistances, but they do have
very large impedances, of the order of hundreds of megaohms (100 ¥ 106 W), and
this can be considered ideal for all but the most challenging conditions. The char-
acteristics of ideal sources and loads are summarized in Table 7.1.
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Current measuring devices are termed ammeters. An ideal ammeter also needs
no power from the circuit to make its measurement. Again, since P = vi, and i cannot
be zero in an ammeter, voltage must be zero if no energy is to be drawn from the
system being measured. This means that an ideal ammeter is effectively a short
circuit having an equivalent resistance of 0.0 W. The v-i plot of an ideal ammeter
would be a horizontal line. Practical ammeters are generally not very ideal having
resistances approaching a tenth of an ohm or more. However, current measurements
are rarely made in practice because that usually involves breaking a circuit connec-
tion to make the measurement.

An illustration of the error caused by a less-than-ideal ammeter is given in the
example below.

Example 7.13: A practical ammeter having an internal resistance of 2 W is used to
measure the short-circuit current of the three-mesh network used in Example 7.12.
How large is the error—that is, how much does the measurement differ from the
true short-circuit current?

Solution: As with all issues of measurement loading, it is easiest to use the
Thévenin or Norton representation of the system being loaded. The Norton equiv-
alent of the three-mesh circuit was determined in Example 7.12 and is shown below
loaded by the ammeter. From the Norton circuit, we know the true short-circuit
current is: isc = IN = 0.0031–||20.6 A. The measured short-circuit current can be
determined by applying nodal analysis to the circuit.
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TABLE 7.1 Electrical Characteristics of Ideal Sources and Loads

Characteristic Source Measurement Device
(Load)

Voltage Current
Voltage Current

Impedance 0.0 W • W • W 0.0 W
Voltage VS up to • v Vmeasured 0.0 v
Current up to • A IS 0.0 A Imeasured



Applying KCL:

The short-circuit current actually measured is slightly less that the actual short-
circuit current which is equal to IN. The error is:

The difference in the measured current and the actual short-circuit current repre-
sents the current flowing through the internal resistor. Since the external load is
much less (an order of magnitude) than the internal resistor, the current taking the
internal pathway is small. So the smaller the external impedance with respect to the
internal impedance, the more ideal the measurement. In this case, the load resistor
as approximately one-tenth the value of internal resistor, leading to an error of
approximately 10%. For some measurements, this may be sufficiently accurate.
Usually a ratio of one to 100 (i.e., two orders of magnitude) between the internal
and load resistor is adequate for the type of accuracy required in biomedical engi-
neering measurements.

The same rule of thumb can be used for voltage measurements, except now the
load resistance should be much greater than the internal resistance (or impedance).
In voltage measurements, if the load resistor is 100 or more times the internal resis-
tance, the loading can usually be considered negligible and the measurement suffi-
ciently accurate.

These general rules also apply whenever one network is attached to another. If
voltages carry the signal (usually the case), the influence of the second network 
on the first can be ignored if the effective input impedance of the second network
is much greater than the effective output impedance of the first network (Figure
7.16). In other words, if ZL, >> ZT, the transfer functions derived for each of the
two networks independently, can be taken as valid when the two are interconnected.
Recall that the two basic assumptions in deriving the transfer function were that
the input was an ideal source and the output was an ideal load (ZL Æ •). If ZL >>
ZT (say, 100 times) these assumptions are reasonably met, at least with respect to
these two networks. (The input to network 1 and the load on network 2 could still
present problems, but with respect to the interconnection shown, the two assump-
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tions would hold reasonably well.) An analysis of voltage loading is found in the
problems.

If the signal is carried as a current, then the opposite would be true. The output
impedance of network 1 should be much greater than the input impedance of
network 2: ZL << ZT. In this situation the current loading of network 2 can be con-
sidered negligible with respect to network 1. Signals are rarely carried as current
except for the output of certain transducers, particularly those that respond to light
and in these cases the signal is converted to a voltage by a special amplifier circuit
(see Chapter 10).

What if these conditions are not met; for example, if ZL were approximately
equal to ZT? In this case, you have two choices: Calculate the transfer function of
the two-network combination or estimate the error that will occur due to the inter-
connection as in the last example. Sometimes you actually want to increase the load
on a system, purposely making ZL, close to the value of ZT. The motivation for such
a strategy is explained in the next section.

7.4.2 Maximum Power Transfer

The goal in most measurement applications is to extract minimum energy from the
system. This is also the usual goal when one system is connected to another. In these
situations, the load resistance (or impedance) should be either much less than the
internal resistance if the output is current or much greater than the internal resis-
tance if the output is a voltage. However, what if the goal is to extract maximum
energy from the system? To determine the conditions for maximum power out of
the system, we consider the Thévenin circuit with its load resistor in Figure 7.17.

To address this question, we assume that RT is part of a source and cannot be
adjusted; that is, it is an internal (and therefore inaccessible) property of the system
from which we are trying to extract the maximum power. If only RL can be adjusted,
the question becomes, what is the value of RL that will extract maximum power
from the system? The power out of the system is P = voutiout or P = RLiout

2. To find
the value of the load resistor RL that will deliver the maximum power to itself, we
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Figure 7.16 The input of network 2 is connected to the output of network 1.
If the equivalent input impedance of network 2, ZL, is much greater than the
output impedance of network 1, ZT, the alternation of the networks by the con-
nection can be ignored.



use the standard calculus trick for maximizing a function: Solve for power in terms
of RL, then take dP/dRL and set it to zero:

[Eq. 7.23]

So for maximum power out of the system, RL should equal RT (or, more generally,
ZL = ZT), a condition known as impedance matching. This is known as the
maximum power transfer theorem. Using this theorem, it is possible to find the value
of load resistance that extracts maximum power from any network. Just convert
the network to a Thévenin equivalent and set RL equal to RT. Recall that the
maximum power theorem applies when RT is fixed and RL is varied. If RT can be
adjusted, then just by looking at Figure 7.17 we can see that maximum power will
be extracted from the circuit when RT = 0.

When sinusoidal signals are involved, Eq.7.23 can be modified to include imped-
ances in the Thévenin equivalent circuit and the load. When impleances are involved,
maximum power transfer occurs when the resistors are matched (RL = RT) and the
reactive components are also equal but opposite in sign:

[Eq. 7.25]

where RL and RT are the same as in Eq. 7.25 and XL and XT are the reactive or
none-resistive components of ZL. Complex variables with the same real part but
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Figure 7.17 A Thévenin circuit is shown with a load
resistor, RL. For minimum power out of the system RL should
be much greater than RT. In this section we seek to deter-
mine the value ofRL that will extract maximum power from
the Thévenin source.



oppositely signed imaginary parts are called complex conjugates. Putting the
maximum power transfer theorem in more general context, for maximum power
transfer the load impedance should be the complex conjugate of the Thévenin
impedance.

7.5 MECHANICAL SYSTEMS

All of the concepts described in this chapter are applicable to mechanical systems
with only minor modifications. The concepts of equivalent impedances and imped-
ance matching are often used in mechanical systems, particularly in acoustic appli-
cations. Of particular value are the concepts of real and ideal sources and real and
ideal loads or measurement devices. As mentioned in Chapter 4, an ideal force gen-
erator produces a specific force regardless of the velocity, just as an ideal voltage
source produces the required voltage at any current. An ideal force generator would
generate the same force at 0.0 velocity, or 10 miles per hour (mph), or 10,000 mph,
or even beyond the speed of light (clearly impossible), if necessary. The force pro-
duced by a real force generator would decrease with velocity. This can be expressed
in a force–velocity plot (analogous to the v-i plot) as shown in Figure 7.18A. An
ideal velocity (or displacement) generator would produce a specific velocity against
any force, be it 1 oz. or 1 ton, but the velocity produced by a real velocity genera-
tor would decrease as the force against it increased (Figure 7.18B). Again, there can
be an ambiguity between real force and velocity generators. The device producing
the force–velocity curve shown in Figure 7.18C could be interpreted as a nonideal
force generator or a nonideal velocity generator, and it is not possible to determine
its true nature from only the force–velocity plot.

Ideal measurement devices follow the same guiding principle in mechanical
systems: they should extract no energy from the system being measured. For a 
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Figure 7.18 A: The force–velocity plot of an ideal (dashed line) and a real (solid line) 
force generator. The force produced by a real generator decreases the faster it must move
to generate that force. B: The force–velocity plot of an ideal (dashed line) and a real (solid
line) velocity generator. The velocity produced by a real generator decreases as the strength
of the force that opposes its movement increases. C: The force–velocity plot of a genera-
tor that may be interpreted as either a nonideal force or velocity transducer.



force-measuring device, a force transducer, velocity should be zero and position a
constant (the isometric condition). An ideal force transducer would require no
movement to make its measurement—it would appear as a solid, immobile wall to
the system being measured. This corresponds to infinite mechanical impedance. For
an ideal velocity transducer, the force required to make a measurement would be
zero. This is equivalent to a mechanical impedance of zero. The characteristics of
ideal mechanical sources and loads are given in Table 7.2 in a fashion analogous to
the electrical characteristics on Table 7.1.

The concept of equivalent impedances and sources is useful in determining the
alteration produced by a nonideal measurement device or load on a mechanical
system. The analog of Thévenin and Norton equivalent circuits can also be con-
structed for mechanical systems. The mechanical analog of a Thévenin circuit is a
force generator with an effective impedance in parallel (the configuration is reversed
in a mechanical system), while the mechanical equivalent analog of a Norton circuit
is a velocity (or displacement) generator in series with the equivalent impedance
(Figure 7.19). To find the values for either of the two equivalent mechanical systems
in Figure 7.19, we will use the analog of the voc - isc method: find isometric force,
the force when velocity is zero (position is constant), and the unloaded velocity, the
velocity when no force is applied to the system.

Most practical lumped-parameter mechanical systems are not so complicated and
do not usually require reduction to a Thévenin or Norton-like equivalent circuit.
Nonetheless, all of the concepts regarding source and load impedances developed
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TABLE 7.2 Mechanical Characteristics of Ideal Sources and Loads

Characteristic Source Measurement Device
(Load)

Force Velocity
Force Velocity

Impedance 0.0 W • W • W 0.0 W
Force FS up to • dynes Fmeasured 0.0 dynes
Velocity up to • cm/sec uS 0.0 cm/sec umeasured

Figure 7.19 A mechanical analog of a Thévenin (left side) and Norton (right
side) equivalent system. These configurations can be used to determine the effect
of loading by a measurement device or by another mechanical system.



previously apply to mechanical systems. If the output of the mechanical system is a
force, the minimum load, and most accurate measurement, is produced by a system
with a large equivalent mechanical impedance, one that tends to produce a large
opposing force and allows little movement. Conversely, if the output of the mechan-
ical system is a velocity, the minimum load is produced by a system having very
small equivalent mechanical impedance, one that produces very little force. Finally,
if the goal is to transfer maximum power from the source to the load, the mechan-
ical impedances of each should be equal. These principles are explored in the exam-
ples below.

Example 7.14: The mechanical elements of a real force generator are shown on
the left side of the figure below. The mechanical elements of a real force transducer
are shown on the right-hand side.
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The left side shows a real force generator consisting of an ideal force generator
(FS) in parallel with friction and mass. The right side is a real force transducer con-
sisting of a displacement transducer (marked X) with a parallel spring. This trans-
ducer actually measures the displacement of the spring that is proportional to force
(F = keX).

First find the force that would be measured by an ideal force generator, that is,
the force produced by the force generator when the velocity is zero. The force trans-
ducer actually measures displacement of the spring (the usual construction of a force
transducer). What is the force that would be measured by this transducer? How
could this transducer be improved to make a measurement with less error? The
system parameters are:

Solution: To find the force measured by an ideal force transducer, write the equa-
tions for the force generator and set velocity to zero as would be the case for an

k m k F tf e S= = = = ( )20 5 2 400 10 4dyne-sec cm gm dyne cm; ; , ; cos .



ideal force transducer. Note that FS is negative based on its defined direction (the
arrow pointing to the left).

When the measurement transducer is attached to the nonideal force generator, the
velocity will no longer be zero. To measure the force out of the force generator
under this load write the equations for the combined system. Because there is the
equivalent of only one node in the combined system, only a single equation will be
necessary, but we need to pay attention to the signs.

Hence, the measured force is 3% larger than the actual force. The measured force
is larger because of a very small resonance between the mass in the force generator
and the elastic element in the transducer. Resonance is explored in Chapter 9. Note
that the elastic element is very stiff (ke = 2,400 dyne/cm) in order to make the trans-
ducer a good force transducer: the stiffer the elastic element, the closer the velocity
will be to zero. To improve the measurement further, this element could be made
even stiffer. For example, if the elasticity, ke, were increased to 9,600 dyne/cm, the
force measured would be 10.08 – - 0.5 reducing the error to less than a percent.
This evaluation is presented in Problem 17 at the end of the chapter.

The next example involves the measurement of a velocity generator.

Example 7.15: The mechanical elements of a real velocity generator are shown on
the left side of the figure below.
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The left side shows real velocity generator consisting of an ideal velocity gener-
ator ( S) in series with friction and elastic element. The right side is a real velocity
transducer consisting of an ideal velocity transducer (marked X, its output is pro-
portional to u2) with a parallel spring. Assume S is a sinusoid with w = 4 rad/sec
and: kf = 20 dyne sec/cm; ke1 = 20 dyne/cm; ke2 = 2 dyne/cm.

Find the velocity that would be measured by the velocity transducer on the right
side of the figure. Note that this transducer is the same as the force transducer except
the elasticity is very much lower. Improvement in the accuracy of this transducer is
given in Problem 18 at the end of the chapter.

Solution: The solution proceeds in exactly the same manner as in the previous
problem except that now there are two velocity points. However, because velocity
u1 is equal to S, it is not independent and only one equation need be solved.

Writing the sum of forces equation about the point indicated by u2 point:

The measured value of u2 is very close to that of S, i.e., the value that would be
measured by an ideal velocity transducer, one that produced no resistance to move-
ment. This is because the impedance of the transducer is much less than that of the
source (ke2 = 0.1 ke1). If the elasticity of the transducer, which provides the only
resistance to movement, is increased the error increases, and if it is reduced the error
is reduced. The influence of transducer impedance is demonstrated further in several
of the problems.

Matching mechanical impedances is particularly important in ultrasound
imaging. In this imaging technology, a high-frequency (1 MHz and up) pressure
pulse wave is introduced into the body and reflects off various internal surfaces.
The time-of-flight for the return signal is used to estimate the depth of a given
surface. Using a scanning technique, a large number of individual pulses are directed
into the body at different directions and a two-dimensional image is constructed.
Because the return signals can be very small, it is important that the maximum
energy be obtained from the return signals. The following example illustrates the
advantage of matching acoustic (i.e., mechanical) impedances in ultrasound
imaging.

Example 7.16: An ultrasound transducer that uses a barium titinate piezoelectric
device is applied to the skin. Calculate the percent power returned to the transducer.
The transducer is round with a diameter of 2.5 cm. Use an acoustic impedance of
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24.58 ¥ 106 kg-sec/m2 for barium titinate and an acoustic impedance of 1.63 ¥
106 kg-sec/m2 for the skin. What is the maximum percent power that could be
returned?

Solution: The interface between the skin and transducer can be represented as two
series mechanical impedances as shown below.
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The ratio of pressure in and pressure out (which is the same as force in and force
out since the areas are the same) can be determined by a force divider equation anal-
ogous to the voltage divider equation:

[Eq. 7.26]

Note that the impedances are given in MKS units not the cgs units used through-
out this text. However, since they are used in a ratio, the units would cancel anyway
(along with the 106) so there is no need to convert them to cgs.

If the impedances are matched, Z1 = Z2, then the pressure ratio is 0.5 as given
by the maximum power transfer theorem. Under the unmatched conditions, the
pressure ratio can be calculated as the following:

The power ratio would actually be equal to the pressure ratio squared because
power is proportional to pressure, or force, squared. Hence, the power ratio in the
unmatched case becomes 0.0039 as opposed to 0.25 in the matched case. This shows
the importance of matching impedances to improve power transfer. By matching
impedances, the power transferred into the body would be 64 times larger
(0.25/0.0039) than without impedance matching. Because we have no control over
the impedance of the skin, we must adjust the impedance of the ultrasound trans-
ducer. In fact, special coatings can be applied to the active side of the transducer
that will match tissue impedance. In addition, a gel having the same acoustic (i.e.,
mechanical) impedance is used to improve coupling and insure impedance match-
ing between the transducer and skin.

pressure
pressure

Z
Z Z

out

in

=
+

=
+

=2

1 2

1 63
24 58 1 63

0 062
.

. .
.

pressure
pressure

Z
Z Z

out

in

=
+

2

1 2



7.6 MULTIPLE SOURCES: REVISITED

In Chapter 6, we applied multiple sources in the form of sinusoids at different fre-
quencies to a single input to find the frequency characteristics of a system. Super-
position allows us to compute the transfer function for variable frequencies with
the assurance that if multiple frequencies were applied to the system, the response
would just be the summation of the responses to individual frequencies. However,
what if the sources have both different frequencies and different locations? (If the
sources are at the same frequency, but different locations, we have no problem as
standard analysis techniques apply, see Example 5.3.) Even if the sources have dif-
ferent locations and different frequencies, superposition, still can be used to analyze
the network. We can solve the problem for each source separately knowing that the
total solution will be the algebraic summation of all the partial solutions. We simply
“turn off” all sources but one, solve the problem using standard techniques, and
repeat until the problem has been solved for all sources. Then we add all the partial
solutions for a final solution. As stated previously, turning off a source does not
mean removing it from the system; rather, it means replacing it by its equivalent
impedance. Hence, voltage sources are replaced by short circuits and current sources
by open circuits (so current sources are essentially removed from the circuit). Sim-
ilarly, force sources become straight connections and velocity sources essentially dis-
appear. The example below uses superposition in conjunction with source equivalent
impedance to solve a circuit problem with two sources having different frequencies.

Example 7.17: Find the voltage across the 30-W resistor in the circuit below.
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Solution: First turn off the right-hand source by replacing it with a short circuit
(its internal resistance), solve for the currents through the 30-W resistor, and then
solve for the voltage across it. Then turn off the left-hand source and repeat the
process. Note that the impedances of the inductor and capacitor will be different
since the frequency is different. Add the two partial solutions to get the final voltage
across the resistor.

Turning off the right-hand source and converting to the phasor domain gives
circuit shown below.



Again, apply the standard analysis.

Solving: I1(w = 5) = 0.274 – - 175; I2(w = 5) = 0.457 – 131;

The total solution is just the sum of the two partial solutions:

This approach extends directly to any number of sources. It applies equally well to
current sources as shown in Problem 7.13.
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Applying KVL leads to a solution for the voltage across the center resistor:

Solving: I1 (w = 10) = 0.217 –17; I2 (w = 10) = 0.112– - 42:

Now turning off the left-hand source and converting to the phasor domain leads to
the circuit below. Note that the impedances are different since the new source has
a different frequency.
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7.7 SUMMARY

Even very complicated circuits can be reduced using the rules of network reduction.
These rules allow networks containing one or more sources (at the same frequency)
and any number of passive elements to be reduced to a single source and a single
impedance. This single source–impedance combination could be either a voltage
source in series with the impedance, a so-called Thévenin source, or a current source
in parallel with the impedance, a Norton source. Conversion between the two rep-
resentations is straightforward.

One of the major applications of network reduction is to evaluate the perfor-
mance of the system when circuits are combined together. The transfer function of
each isolated network was determined based on the assumption that the circuit was
driven by an ideal source and connected to an ideal load. This can be taken as true
if the impedance of the source driving the network is much less than the network’s
input impedance, and the equivalent impedance of the load is much greater than
the network’s output impedance. Network reduction techniques provide a method
for determining these input and output impedances.

The ratio of input to output impedance is particularly important when making
physiological measurements. Usually the goal is to make the input impedance of the
measurement device as high as possible to minimally load the process being mea-
sured; that is, to draw minimum energy from the process. Sometimes it is desirable
to transfer a maximum amount of energy between the process being measured and
the measurement system. This is often true if the measurement device must also
inject energy into the process in order to make its measurement. In such situations,
an impedance matching strategy is used where the input impedance of the measur-
ing device is adjusted to equal the output impedance of the process being measured.

All of the network reduction tools apply equally to mechanical systems. Indeed,
one of the major applications of impedance matching in bioengineering is in ultra-
sound imaging where the ultrasound transducer mechanical impedance must be
matched the impedance of the tissue.

This chapter concluded with the analysis of networks containing multiple sources
at different frequencies. To solve these problems, the effect of each source on the
network must be determined separately and to the solutions for each source added
together, an approach supported by the principle of superposition. To solve for the
influence of each source on the network, the other sources are turned off by replac-
ing them by their equivalent impedances: Voltage sources are replaced by short cir-
cuits and current sources are replaced by open circuits.

PROBLEMS

1. Find the combined values of the elements below.
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2. Find the value of R so the resistor combination equals 10 W. (Hint: Use Eq.
7.9.)
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3. A two-terminal element has an impedance of 100 – -30 W at w = 2 rad/sec.
The element consists of two components in series. What are they: Two resis-
tors, two capacitors, resistor capacitor, resistor inductor, or two inductors?
What are their values?

4. An impedance, Z, has a value of 60 – 25 W at w = 10 rad/sec. What type of
element should be added in series to make the combination look like a pure
resistance at this frequency? What is the value of the added element at w =
10 rad/sec? What is the value of the combined element at w = 10 rad/sec?

5. Find the equivalent impedance of the network below between terminals A 
and B.

6. Find the equivalent impedance of the network in Problem 7.5 between termi-
nals A and C.



7. Find the equivalent impedance of the network below between terminals A and
B as a function of frequency.
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8. The following v-i characteristics were measured on a two-terminal device.
Model the device by a Thévenin circuit and a Norton circuit.

9. Plot the v-i characteristics of this network at two different frequencies w = 2
and w = 200 rad/sec. Note: the v-i plot is a plot of the voltage magnitude against
current magnitude.

10. Two different resistors were placed across a two-terminal source (a battery)
known to contain an ideal voltage source in series with a resistor. The voltages
measured using the two load resistors are V = 8.5 V when R = 1,000 W; and 
V = 8.2 V when R = 100 W. Find the load resistor, RL, that will extract the
maximum power from this source. What is the power extracted?



11. The following magnitude v-i plot was found for a two-terminal device at the
two frequencies shown. Model the device as a Thévenin equivalent. (Hint: to
find ZT, use Eq. 7.13 generalized for impedances.)
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12. The voltage of a nonideal voltage source shown below is measured with two
voltmeters. One has an internal resistance of 10 MW whereas the other, a
“cheapie,” has an internal resistance of only 100 KW. What are the two volt-
ages read? How do they compare with the true Thévenin voltage? (Assume the
voltmeter reads peak-to-peak voltage, although voltmeters usually read in rms.)
Note: The Thévenin source is composed of more realistic values normally
encountered in electronics.

13. Find the voltage across the 0.01-f capacitor in the circuit below. Note that the
two sources are at different frequencies.



MATLAB Problems

14. Find the Thévenin equivalent circuit of the network below. (Hint: Modify the
code in Example 7.12.)
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15. Plot the magnitude and phase of the impedance, Zeq, in Example 7.3 over a
range of frequencies from w = 0.01 to 1,000 rad/sec. Plot both magnitude and
phase in log frequency and plot the phase in degrees.

16. For the circuit in Problem 7.14, further modify the code in Example 7.12 to
determine and plot the Norton current source and Norton impedance as a func-
tion of frequency. Plot both magnitude and phase of both variables for a range
of frequencies between 0.1 and 100 Hz.

17. For the mechanical system shown in Example 7.14, find the difference between
the measured force Fmeasured, and FS (the ideal source) if the friction in the source,
kf, increased from 20 dyne-sec/cm to 60 dyne cm/sec. Find the difference
between Fmeasured, and FS with the increased friction in the source if the elastic-
ity of the transducer were also increased by a factor of 3.

18. For the mechanical system shown in Example 7.15, find the difference between
the measured velocity, u2, and S if the elastic coefficient of the transducer, ke2

were doubled, quadrupled, or halved.
19. For the mechanical system shown in Example 7.15, find the difference between

the measured velocity, u2, and S if the velocity transducer contained a mass
of 4 gm.

20. For the network shown below, what should the value of ZL be to extract
maximum power from the network? (Hint: Use the same approach as in
Example 7.12, but remember ZL equals the complex conjugate of Zequv.) If the
voltage source were increased to 15 cos(20t), what should the value of ZL be
to extract maximum power from the network?



21. In the network shown in Problem 7.20, what is the impedance between nodes
A and B? Use the approach shown in Example 7.7. Apply a hypothetical 1-V
source between these two points and use MATLAB-aided mesh analysis to find
the current. In addition, you need to remove the influence of the 5-V source by
turning it off; that is, replacing it by a short circuit. (Note: This becomes a four-
mesh problem, but still requires only three lines of MATLAB code to solve!)

22. The Thévenin equivalent of a circuit consists of a 1 volt source and a Thévenin
impedance of 10 + j10 W. Using MATLAB plot the power transferred to the
load impedance of ZL = RL + jXL where RL varies between 1 and 100 W in 1 W
increments. Plot P transferred to RL as a function of RL for five values of XL:
-50, -10, -5, 0.0, and +10 W. Plot the five curves superimposed and label each
curve. (Note: The power transferred to the load is only to the load resistor and
is equal to the load resistance times the absolute value of the current squared.)

288 CHAPTER 7 RELATIONSHIPS BETWEEN ANALOG ELEMENTS



8 THE ANALYSIS OF
TRANSIENTS: THE
LAPLACE TRANSFORM

8.1 THE LAPLACE TRANSFORM

Phasor analysis allows us to analyze any linear system using algebraic operations,
provided all sources are sinusoidal and in steady-state. With the aid of the Fourier
series analysis, any periodic signal can be broken down into sinusoidal components.
Using phasor analysis and the principle of superposition, we can analyze each com-
ponent separately, then add all the individual contributions to get the total response
(see Example 6.11). This approach can be extended to aperiodic functions through
the application of the continuous Fourier transform. What phasor analysis cannot
handle are waveforms that suddenly change and never return to a baseline level. A
classic example is the step function, which changes from one value to another 
at one point in time (often taken as t = 0) and remains at the new value for all 
eternity (Figure 8.1).

One-time changes, or changes that do not return to some baseline level, are
common in nature and even in one’s life. For example, this text should leave the
reader with a lasting change in his or her knowledge of biosystems and biosignals,
a knowledge that will not return to the baseline, pre-course level. (However, this
change is not expected to occur instantaneously as with the step function.) A signal
or input could also change any number of times in any manner, but if it is not peri-
odic, or does not return to a baseline level so it could be considered aperiodic, we
do not have the tools to analyze a system’s response to these signals. Of course, we
could always return to calculus, but the analysis would soon become very compli-
cated particularly for large systems. It would be extraordinarily useful to have a
transformation such as phasors that would enable an algebraic treatment of
processes driven by signals that do not return to a baseline level. With such a tool,
it would be possible to extend all of the techniques developed with phasors (mesh
and nodal analysis, network reduction, Thévenin and Norton equivalent circuits)
to systems exposed to this wider class of signals. Fortunately, a technique based on
the Laplace transform allows us to analyze, using only algebra, processes exposed
to so-called transient signals, those such as the step function that do not return to
a baseline. (As all signals vary in time they could be called transient signals, but this



term is often reserved for signals that have one-time, or steplike, changes. This is
another term where the context can vary its meaning.)

8.1.1 Definition of the Laplace Transform

The reason that phasor analysis cannot be used when signals change in a steplike
manner is simply that functions such as the step function do not have a Fourier
series or Fourier transform representation. If they did, they could be decomposed
in sinusoids and phasor techniques could be applied. Consider a function similar to
that shown in Figure 8.1, a function that is 0.0 for a t £ 0 and 1.0 for all t > 0:

[Eq. 8.1]

This special case of the function in Figure 8.1 is known as the unit step function
because it begins at zero and jumps to 1.0 at t = 0. The Fourier transform of this
function would be taken as:

[Eq. 8.2]

In the continuous Fourier transform, the function, x(t), has a finite life span: It is
nonzero over some period but is zero outside the time period. The Fourier trans-
form integral need only be taken over the time when the function is nonzero.
However, if the function never returns to zero, the integration must be carried out
to infinity. Because the sinusoidal function e-jwt has nonzero values out to infinity,
the integral goes to infinity. The integral does not converge as t becomes large. The
trick that is used to solve this problem of nonconvergence is to modify the expo-
nential function so that it does converge to zero at large values of t even if the signal,
x(t), does not. This could be accomplished by multiplying the sinusoidal term, e-jwt,
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Figure 8.1 The time plot of a step function
which changes from value V1 to value V2 at 
t = 0.0 seconds. It will remain at this value for
all time.



by a decaying exponential such as e-s t where s is some positive real variable. In this
case, the sinusoid becomes a complex sinusoid, or rather a sinusoid with a complex
frequency:

[Eq. 8.3]

where s = s + jw and is termed the complex frequency because it is a complex vari-
able having both a real and imaginary part, but fulfills the same role as frequency,
w, in the Fourier transform exponential. The complex variable, s, is also known as
the Laplace variable because it plays a critical role in the Laplace transform. A mod-
ified version of the Fourier transform can now be constructed using complex fre-
quency in place of real frequency; that is, s = s + jw instead of just jw. This modified
transform is termed the Laplace transform:

[Eq. 8.4]

For a given function, x(t), the product of x(t)e-st = x(t)e(s+jw)t may not necessarily
converge to zero as t Æ •, in which case the Laplace transform does not exist.1

Some advanced signal processors spend a lot of time worrying about such functions:
Which functions converge, their ranges of convergence, or how to get them to con-
verge. Such matters need not concern us because most common transient functions,
including the step function, do converge for some value of s and do have a Laplace
transform. The range of s’s over which a given product of x(t) and e-(s+jw)t converge
is of interest to mathematicians and some signal processing theoreticians, but also
does not concern us here. If a signal has a Laplace transform (as given in Appen-
dix B), obviously the product must converge for that signal.

The Laplace transform has two downsides: It cannot be applied to functions for
negative values of t, and it is difficult to evaluate from the definition (Eq. 8.4) 
for any but the simplest functions. The restriction against representing functions for
negative times comes from the fact that e-st becomes a positive exponential and will
go to infinity as t goes to large negative values: for negative t, the real part of the
exponential becomes est and does exactly the opposite of what we want it to do; it
diverges rather than forces convergence. The only way around this is to limit our
analyses to t > 0, but we will see that this is not a severe restriction. The other down-
side, the difficulty in evaluating Eq. 8.4, stems from the fact that s is complex, so
although the integral in Eq. 8.4 does not look that complicated, the complex inte-
gration becomes very involved for all but a few simple functions of x(t). To get
around this problem we use tables that give the Laplace transform of often-used
functions. Such a table is given in Appendix B, and a more extensive list can be
found in references such as the Handbook of Physics and Chemistry (Lide, 2004).
The Laplace transform table is used to calculate both the Laplace transform of 
a signal and the inverse Laplace transform of the output or response. The only 
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1 For example, the function x(t) = et2 will not converge when multiplied by est and hence does not have
a Laplace transform.



difficulty in finding the inverse Laplace transform is rearranging the output Laplace
function into the same format that is found in the table.

Example 8.1: Find the Laplace transform of the step function in Eq. 8.1.

Solution: The step function is one of the few functions that can be evaluated easily
using the basic defining equation of the Laplace transform, Eq. 8.4.

8.1.2 Laplace Representation of Elements: Calculus Operations in the
Laplace Domain

The Laplace transform of the derivative operation can be determined from the defin-
ing equation, Eq. 8.4.

But from the definition of the Laplace transform, so the right

term in the summation is just sX(s), and the equation becomes:

[Eq. 8.5]

Equation 8.5 shows that differentiation in the Laplace domain becomes multiplica-
tion by the Laplace variable s with the additional subtraction of the value of the
function at t = 0. The value of the function at t = 0 is known as the initial condi-
tion. This value can be used, in effect, to account for all negative time history of
x(t). In this approach, all of the behavior of x(t) when t was negative is lumped
together as a single initial condition at t = 0. This trick allows us to include some
aspects of the system’s behavior over negative values of t even if the Laplace trans-
form does not itself apply to such time values. If the initial condition is zero, as is
frequently the case, differentiation in the Laplace domain is simply multiplication
by s paralleling the differentiation operation in the phasor domain, multiplication
by jw.
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Multiple derivatives can also be taken in the Laplace domain, although this is
not such a common operation. Multiple derivatives involve multiplication by sn

times, and taking the derivatives of the initial conditions:

[Eq. 8.6]

Again if there are no initial conditions, taking n derivatives becomes just a matter
of multiplying x(t) by sn.

Integration in the Laplace domain is simply a matter of dividing by s, just as inte-
gration involved dividing by jw in the phasor domain. Again, the initial conditions
need be taken into account:

[Eq. 8.7]

If there are no initial conditions, then integration is accomplished by simply divid-
ing by s. The direct integral that accounts for the initial conditions is again a way
of accounting for the negative time history of the system. Although it looks com-
plicated, we will find that elements whose variable relationships involve integration
(the capacitive elements) provide this integral easily.

8.1.3 Initial Conditions

As noted previously, the Laplace transform cannot be used in situations where 
t < 0 since the transform equation (Eq. 8.4) diverges for negative time. By defini-
tion, t < 0 is the time before the signal transition, and t(0-) is the time immediately
before the transition. The transient signal is defined to begin at t = 0 (or later) with
the initial, and perhaps only, transition usually taking place at this time. However,
Laplace analysis can be applied to components that have nonzero variable values
at t = 0, by making use of the initial conditions feature of the Laplace transform.
Using this concept, a system that was active during negative t (i.e., before the onset
of the transient) can still be analyzed as long as that prior activity can be summa-
rized down to an initial condition at t = 0.

As an example, consider a capacitor that has had various amounts of current
flowing, perhaps in and out, during negative time. This entire t < 0 history can be
summarized into a single voltage at t = 0 using the basic equation that defines the
voltage–current relationship of a capacitor:

[Eq. 8.8]

This equation has the same form as the right-hand term in Eq. 8.7, the initial 
condition term. Hence, the initial voltage on a capacitor can be included in the
Laplace equation for integration, although the Laplace analysis itself is still limited
to times greater than zero. Because it is not possible to change the voltage across a
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capacitor instantaneously (Eq. 4.23), the voltage on the capacitor when t is on the
negative side of zero (t = 0-) will be the same as when t is on the positive side of
zero (t = 0+). Hence, if conditions change at t = 0, the voltage on the capacitor just
before that time, VC(0-), should be used as the initial voltage. A similar argument
holds for the initial force on a spring.

The application of initial conditions to account for behavior during negative time
also applies to an inductor. In an inductor, energy is stored in the form of current
flow, so the salient initial condition is the current at t = 0. This can be obtained
based on the history of the inductor’s voltage:

[Eq. 8.9]

An inductor treats current flowing through it the same way a capacitor treats
voltage: The current flowing through an inductor cannot be changed instanta-
neously and is continuous (Eq. 4.17) so the current just before the t = 0 transition,
IL(0-) will be the same after the transition, IL(0+). Again, a similar argument could
be made for the initial velocity for a mass.

8.1.4 Voltage–Current and Force–Velocity Relationships in the
Laplace Domain

Combining the derivative and integral operations in the Laplace domain with inte-
gration, it is possible to construct the equations for the various passive electrical
and mechanical elements. Because the Laplace transform of a constant is just the
same constant (by inspection of Eq. 8.4), resistor and friction elements have the
same representation in both the time domain and Laplace domain, just as they have
the same representation in the time and phasor domains.

To find the v-i relationship for an inductor in the Laplace domain, substitute i(t)
for x(t) in Eq. 8.5:

[Eq. 8.10]

A similar relationship holds for the force–velocity relationship of a mass:

[Eq. 8.11]

If the initial current, i(0), or velocity, u(0) is nonzero, is must be included in the
relationship equations. Often these values are known, but in some cases, they must
be calculated from the history of the system.

The v-i relationship for a capacitor is obtained using Eq. 8.7 substituting in i(t)
for x(t):

[Eq. 8.12]v t
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From Eq. 8.8 we see that the second term is just the initial voltage, VC(0), divided
by s, so Eq. 8.12 becomes:

[Eq. 8.13]

Similarly, the force–velocity relationship for a mass in the Laplace domain can be
written as:

[Eq. 8.14]

As with phasors, Laplace domain variables are usually given capital letters.
Using these definitions it is also possible to represent these elements as imped-

ances (or admittances), similar to the impedances defined in the phasor domain, but
now they will be functions of s instead of jw. Ignoring for the moment the initial
condition term (or assuming the initial conditions are zero), these impedances would
be defined for inertial elements as:

[Eq. 8.15]

[Eq. 8.16]

and for capacitive elements as:

[Eq. 8.17]

[Eq. 8.18]

There is a clever way to deal with the initial condition terms and retain the concept
of impedance even when the initial conditions are nonzero. Regarding the two terms
in the v-i equation for an inductor (Eq. 8.10), the first term is the impedance, sL,
and the second term is a constant, Li(0). The constant term can be viewed as a con-
stant voltage source with a value of Li(0). It is a strange voltage source, being depen-
dent on the initial current and the inductance, but is still clearly a voltage source in
the Laplace domain. [To verify this, just set the first term to zero, then V(s) = Li(0).]
Thus the symbol for an inductor in the Laplace domain would actually be two ele-
ments in series: a Laplace impedance representing the inductor impedance (sL), and
a peculiar voltage source [Li(0)] representing the initial current (Figure 8.2). Because
the second term in Eq. 8.10 is negative, the voltage source would have its positive
terminal on the side that current was exciting the device.

A similar situation holds for the v-i equation for a capacitor (Eq. 8.13): It is made
up of an impedance term, 1/Cs, and what can be taken as a voltage source of VC(0)/s.
This leads to the combined Laplace elements of capacitor impedance in series with
a voltage source that is dependent on initial voltage. This voltage source would have
the same polarity as the voltage charge on the capacitor. This would lead to the
phasor domain symbol for a capacitor shown in Figure 8.3.
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In an analogous manner, the mechanical elements mass and elasticity would have
force generators added to their Laplace representation if initial conditions were
present. These Laplace domain representations are summarized with the other
passive elements in Table 8.1.

8.1.5 Sources: Common Signals in the Laplace Domain

Sources are also represented by functions of s and these functions depend on the
specific source signal and are the Laplace transforms of that signal. Although it
might seem that there could be a large variety of such signals, in practice only a few
different signal types commonly occur in Laplace analysis. The signal most fre-
quently encountered in Laplace analysis is the step function shown in Figure 8.1,
or its more constrained version, the unit step function given in Eq. 8.1 and repeated
here:
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Figure 8.2 The symbol for an inductor in the
Laplace domain showing the impedance term as
a standard inductor, sL, and the initial condition
term as a voltage source, Li(0). Note the polar-
ity of the initial condition voltage source, which
is due to the negative sign in Eq. 8.10.

Figure 8.3 Symbol for a capacitor in the Laplace
domain with an impedance element, 1/Cs, and a
voltage source element representing the initial condi-
tion VC(0)/s. The initial condition term is positive in Eq.
8.13 so the polarity of the voltage element is in the
same direction as the polarity of the impedance
element.



The symbol u is frequently used to represent the unit step function. The Laplace
transform of the step function was found in Example 8.1:

[Eq. 8.20]

Again, it is common to use capital letters to represent the Laplace transform of a
function. Two functions closely related to the unit step function are the ramp and
impulse function (Figure 8.4).

These functions are related to the step function by differentiation and integra-
tion. The unit ramp function is just a straight line with slope of 1.0.

[Eq. 8.21]

Because the unit ramp function is just the integral of the unit step function, its
Laplace transform will be that of the step function divided by s:
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TABLE 8.1 Representation of Electrical and Mechanical Elements in the Laplace Domain

Element (Symbol) Laplace Equation Laplace Impedance Z(s) Modified Symbol

Resistor (R) V(s) = R I(s) ZR(s) = R W

Inductor (L) V(s) = sL I(s) ZR(s) = sL W

Capacitor (C)

Friction (kf) F(s) = kfu(s) Z(s) = kf

(dyne-sec/cm)

Mass (m) (gm) F(s) = msu(s) Z(s) = ms

Elasticity (ke)
(spring) (dyne/cm)
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The impulse function is the derivative of a unit step that leads to one of those math-
ematical fantasies: a function that is infinitely short, infinite in amplitude, and yet
the area under the function is one as shown in Eq. 8.23. From the defining equa-
tion, we see that as t Æ •, the pulse becomes infinitely tall, infinitely narrow, but
retains an area of 1.0.

[Eq. 8.23]

In practice, an impulse function would be a pulse with decidedly finite amplitude
and finite pulse width, but the pulse width would be short (Figure 8.4, right-side
plot). In real situations, it is only necessary that the pulse be much shorter (say, an
order of magnitude) than the fastest process in the system that is driven by this
signal. The method to determine when a pulse can be taken as a practical impulse
function is demonstrated in Example 9.3 in the next chapter.

Because the impulse response is the derivative of the unit step function, its Laplace
transfer function would be that of a unit step multiplied by s:

[Eq. 8.24]

Hence, the Laplace transform of an impulse function is a constant, and if it is a unit
impulse (the derivative of a unit step), that constant is 1. As you might guess, this
fact will have special relevance with regard to transfer functions analyzed in the
Laplace domain. The Laplace transform of other common signal functions are given
in Appendix B.

8.1.6 Converting the Laplace Transform to the Frequency Domain

Remember that s is complex frequency and equals a real term plus the standard fre-
quency term jw (s = a + jw). To convert a Laplace function to the phasor domain,
we simply substitute in jw for s. Essentially we are agreeing to restrict ourselves to
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Figure 8.4 The ramp and impulse are two functions related to the step function
and commonly encountered in Laplace analysis. The ideal impulse occurs at t = 0 and
is infinitely narrow and infinitely tall. A real impulse function looks like a short pulse
(right-hand plot).



sinusoidal steady-state signals, so the real component of s is no longer needed.
(Recall that the real component was introduced to ensure convergence in the Fourier
integral and is not needed for sinusoidal steady-state signals.) Converting the
Laplace transform function back to the phasor domain then allows us to determine
the frequency characteristics of that function using Bode plot techniques or plotting
with MATLAB. This approach is used in the next section to evaluate the frequency
characteristics of a time-delay process.

8.1.7 The Time-Delay Element

Many physiological processes have a delay before they even begin to respond to the
stimulus. Such delays are termed reaction time, or response latency, or simply
response delay. In these processes, there is a period between stimulus onset when
nothing happens, before the transient response begins. In neurological control
systems, this delay is due to processing delays in the brain. The Laplace transform
can be used to represent such delays.

The time-delay theorem can be derived from the defining equation of the Laplace
transform (Eq. 8.4). Assume a function x(t) that is zero for negative time. If this
function is delayed from t = 0 by a time of t seconds, the delayed function would
be x(t- t), where again t is the delay. From the defining equation, the Laplace trans-
form of such a delayed function would be:

But the integral in the right-hand term is just the Laplace transform of the function,
x(t), before it was shifted. Hence, the Laplace transform of the shifted function
becomes:

[Eq. 8.25]

Equation 8.25 is known as the time-delay theorem. This theorem can also be used
to construct an element that represents a pure time delay; specifically an element
that has a transfer function:

[Eq. 8.26]

Where T = the delay usually in seconds. Just as an element having a transfer func-
tion of 1/s is an integrator, an element of e-sT is a pure time delay of T seconds. Such
an element is commonly found in systems models of neurological control processes
where it represents neural processing delays.

To determine the frequency characteristics of the transfer function of a process
that consists of a pure time delay, substitute jw for s in Eq. 8.26.
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As shown in Eq. 8.27, a pure time delay has a magnitude transfer function of 1.
A signal that experiences a pure time-delay process has the same magnitude fre-
quency characteristics as the original signal. The time-delay process does have a 
frequency-dependent phase term, one that increases linearly with frequency (-wT).
Hence, a pure time-delay process increases the phase component of a signal’s fre-
quency characteristics in a linear manner. The larger the delay, T, the greater 
the linear increase in the signal’s phase component. Such a process is explored in
Problem 8.16.

8.1.8 The Inverse Laplace Transform

Working in the Laplace domain is essentially the same as working in the phasor
domain. First, the system elements are converted to Laplace notation using the con-
ventions shown in Table 8.1. Next, the signals or sources are converted to Laplace
functions using the table in Appendix B. Equations are then formulated using the
techniques described in Chapters 5 and/or 7, and are solved using algebra for the
output or other desired variables. You are left with a solution in the Laplace domain
that is a function of s. Sometimes the Laplace representation of the solution or trans-
fer function is sufficient, but if a time domain solution is desired then the inverse
Laplace transform must be determined. The equation for the inverse Laplace trans-
form is given as:

[Eq. 8.28]

Unlike the inverse Fourier transform, this equation is quite difficult to solve even
for simple functions. So to evaluate the inverse Laplace transform, we use the
Laplace transform table in Appendix B in the reverse direction: Find a transform
function (on the right side of the table) that matches your output function and
convert to the equivalent time domain function. The trick is usually in rearranging
your output function to conform to one of the Laplace functions given in the table.
Methods for doing this are described next and specific examples given.

8.2 LAPLACE ANALYSIS: THE LAPLACE TRANSFER FUNCTION

The analysis of systems using the Laplace transform is no more difficult than in the
phasor domain, except that there may be the added task of accounting for initial
conditions. In addition, to go from the Laplace domain back to the time domain
may require some algebraic manipulation of the Laplace output function.

The transfer function, introduced for phasors in Chapter 6, is ideally suited to
Laplace domain analysis, particularly when there are no initial conditions. In the
phasor domain, the transfer function was used primarily to determine the frequency
characteristic of a system. It can also be used to determine the system’s output or
response to any input provided that input can be expressed as a phasor; that is, as
a sinusoid or series of sinusoids. In the Laplace domain, the transfer function can
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be used to determine the output response of a system to a much broader class of
inputs. In fact, the Laplace domain transfer function is a widely applied concept
that has applications in a number of biomedical engineering specialties and in many
other areas of science and engineering. The Laplace domain transfer function is
similar to its cousin in the phasor domain, except the frequency variable, w, is
replaced by the Laplace variable, s:

[Eq. 8.29]

As mentioned in Section 8.1.1, the Laplace variable s is often called the complex
frequency as it contains a real term along with the imaginary frequency term 
(s = a + jw). Like its phasor domain cousin, the general Laplace domain transfer
function will consist of a series of polynomials (see Eq. 6.4) and can be written as:

[Eq. 8.30]

Again, the assumption is that any higher order polynomial (third-order or above)
can be factored into the first- and second-order terms shown.

A comparison of the general Laplace transform equation above with its phasor
domain equivalent (Eq. 6.5) shows two major differences: It is a function of s instead
of w (well, of course), and the polynomials have all been normalized so that the
highest power of s has a coefficient of 1. This is opposite to the normalization strat-
egy used in the phasor transfer function where the lowest power of s, usually the
constant term, is set to 1. However, in all other respects the Laplace domain trans-
fer function is quite similar to its phasor cousin. The coefficients terms that are used,
w1, w2, wn, d, and so forth, have the same definitions as in the phasor domain, and
techniques used to determine a system’s transfer function are the same. Even the
terminology used to describe the elements is the same as those given for the phasor
domain in Table 6.1. For example an (s + w1) in the numerator is called a zero, or
a first-order term, and an (s2 + 2dws + wn1

2) is known as a second-order term. It is
also possible to go from the Laplace domain transfer function to the phasor repre-
sentation simply by substituting jw for s.

In analyzing the inverse Laplace transform, it makes sense to discuss the various
components of the transfer function individually as we did in our discussion of Bode
plots.

The isolated s terms have already been discussed. When the isolated s appears in
the numerator, it is a derivative operation and when it is in the denominator, it is
a pure integrator. Physical systems consisting only of a pure differentiator [i.e., TF(s)
= s] or integrator [i.e., TF(s) = 1/s] are rare and relatively simple to understand:
Their outputs are the same as the inputs either integrated or differentiated. Of much
greater interest are the (s + w1)—type terms, or first-order terms. We begin describ-
ing the behavior of systems that can be represented by these first-order terms, then
continue to the intriguing behavior of systems that are represented by second-order
terms.
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8.2.1 First-Order Processes

First-order processes will contain an (s + w1) or similar term in the denominator. As
noted in Chapter 6, first-order systems contain a single energy-storage device, either
a capacitor or inductor in electric circuits, or a mass or elastic element in mechan-
ical circuits. The RC and RL circuits shown in Figure 8.5 are examples of first-order
processes.

From Example 6.5, we know that the phasor domain transfer function of the RC
circuit is:

[Eq. 8.31]

To determine the Laplace transfer function, we apply the same analysis techniques,
except using the Laplace representation of the elements given in Table 8.1 and
assuming zero initial conditions as shown in Figure 8.6.

A KVL (Kirchhoff’s voltage law) analysis of this system gives rise to the equa-
tions below:
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Figure 8.5 Two first-order systems that give rise to similar transfer functions.

Figure 8.6 The RC circuit after assigning the
mesh current and converting the elements and vari-
ables to Laplace notation.



[Eq. 8.32]

To standardize the first-order Laplace transfer function, a new variable is introduced
so that the first-order transfer function has the form:

[Eq. 8.33]

Equating coefficients with the transfer function for an RC circuit (Eq. 8.32), it is
evident that the new variable, t is equal to the product of RC. The new variable, t,
is termed the time constant for reasons that will become apparent. Comparing the
Laplace transfer function in Eq. 8.33 with the phasor transfer function in Eq. 8.31,
we note that the time constant, t, is just the inverse of the cutoff frequency, w1:

[Eq. 8.34]

A similar analysis applied to the circuit on the right-hand side of Figure 8.5
would produce the transfer function:

[Eq. 8.35]

The two circuits will have similar transfer functions, and identical responses to the
same stimulus if the component values are adjusted so that:

[Eq. 8.36]

From Example 6.5, we know that these two systems have the frequency character-
istics of a lowpass filter, a first-order lowpass filter. These frequency characteristics
are shown in Figure 6.20. The cutoff frequency and bandwidth of the LR (inductor-
resistor) filter is just w1 = 1/t = L/R.

Now that the transfer function is in the Laplace domain, we can explore the
response of these two similarly behaving circuits using input signals other than sinu-
soids. Two popular signals that are used are the step function, Eq. 8.19 (also shown
in Figure 8.1), and the impulse function, Eq. 8.23. Typical impulse and step
responses of a first-order system are shown in Figure 8.7 for two time constant
values. Both the impulse and step response are exponential with time constants of
t = RC. When the time variable equals the time constant (i.e., t = t), the value of
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the exponential becomes: e-t/t = e-1 = 0.37. Hence at time t = t, the exponential is
within 37% of its final value. An alternative, equivalent statement is that the expo-
nential has attained 63% of its final value in one time constant. The time constant
makes a good measure of the relative “speed” of an exponential. As a rule-of-thumb,
an exponential is considered to have reached its final value when t > 5t, although
in theory the final value is reached only then t = •. The determination of the impulse
and step response of the circuit in Figure 8.6 is given in the next example and was
plotted with the aid of MATLAB.

Example 8.2: Find the output of the RC circuit to a unit step function input. This
is sometimes referred to as the step response of the system. Also find the output of
the RC circuit to an impulse function. Not surprisingly, this is also known as the
impulse response of the system.

Solution: Step Response: Often the first step in these types of problems is to deter-
mine the transfer function; however, in this example we already have the transfer
function. Accordingly, we need only use the transfer function equation to solve for
the output, Vout(s):

[Eq. 8.37]V s V s TF sout in( ) = ( ) ( )
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Figure 8.7 The impulse response (left) and unit step response (right) of a first-
order process, in this case the RC circuit shown in Figure 8.6. The responses are
shown for two different time constants: t = 0.5 seconds and t = 2 seconds.
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In this example, Vin(s) is the step function:

After we insert Vin(s) into the transfer function equation, we need to rearrange the
resulting Laplace function so that it has the same form as one of the functions in
the Laplace transform table (Appendix B). Often, this can be the most difficult part
of the problem. Solving for Vout(s):

[Eq. 8.38]

Referring to the Laplace transform table in Appendix B, we see that the form of the
equation for Vout(s) matches the Laplace function in entry no. 4. Thus, the inverse
Laplace transform for Vout(s) in Eq. 8.38 can be obtained as

Where a = 1/t = 1/RC. Hence, the step response in the time domain for this system
is a simple exponential:

Solution: Impulse Response: Solving for the impulse response is even easier since
for the impulse function, Vin(s) = 1. Therefore, the response of a system to an impulse
function in the Laplace domain is the transfer function itself, and the impulse
response in the time domain is the inverse Laplace transform of the transfer func-
tion:

The Laplace function is matched by entry no. 3 in the Laplace transform table except
for the constant term. From the definition of the Laplace transform (Eq. 8.4), any
constant term can be removed from the integral, so the Laplace transform of a con-
stant times a function is just the constant times the Laplace transform of the func-
tion. Similarly, the inverse Laplace transform of a constant times a Laplace function
is just the constant times the inverse Laplace transform. Stating these two charac-
teristics formally:

[Eq. 8.39]
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So the time domain solution for Vout(s) is obtained:

There are many other possible input waveforms in addition to the step and
impulse function. As long as they have a Laplace representation, the response to
any signal can be found using Eq. 8.37. However, the response of the system to a
step and/or impulse usually provides the most insight into the general behavior of
the system.

There are also other configurations for first-order circuits in addition to those
shown in Figure 8.5. For example, reversing the position of the resistor and capac-
itor (or the resistor and inductor) gives rise to a highpass filter having the same
cutoff frequency (i.e., w1 = 1/RC = L/R as was shown for RC circuits in Problem
6.15). Of course, the transfer function will be slightly different for this con-
figuration; specifically, it will contain an extra s in the numerator. This transfer func-
tion and the related time response are evaluated in Problem 8.4 at the end of this
chapter.

What bonds all first-order systems is the denominator term, (s + 1/t). All first-
order systems will contain this term in the denominator, although they might have
different numerator terms. In the next section, we will find that all second-order
systems contain a quadratic polynomial of s in the denominator of the transfer func-
tion. The close link between the denominator term and the system order explains
why the denominator of the transfer function is sometimes called the characteristic
equation: The characteristic equation defines the type of system associated with the
transfer function. The characteristic equation also tells us something about the
behavior of the system even without evaluating the time domain solution. For
example, a characteristic equation such as (s + 3), tells us: (a) the system is a first-
order system, and (b) the system’s response will include an exponential having a
time constant of 1/3 or 0.33 seconds. Second-order characteristic equations are even
more informative as shown in the next section.

8.2.2 Second-Order Processes

Second-order processes will have quadratic polynomials of s in the denominator of
the transfer functions:

[Eq. 8.41]

The right-hand term is the familiar notation for a standard quadratic equation and
can be factored using Eq. 8.42 below. As noted in Section 6.6.3, second-order
systems contain two energy storage devices. In electrical systems, this could be two
independent inductors or capacitors, or both an inductor and capacitor. For
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mechanical systems, there must be two independent masses or elasticities, but often
it is a mass and an elastic element.

One method for dealing with second-order terms would be to factor them into
two first-order terms. We could then treat these two factors, which would have the
form (s + a), as two first-order terms. Indeed this method is perfectly satisfactory
if the factors, the roots of the quadratic equation, are real. Examination of the classic
quadratic equation demonstrates when this approach will work. Since the coeffi-
cient of the s2 term is always normalized to 1.0, the a coefficient is always one and
the roots of the quadratic equation become:

[Eq. 8.42]

If b2 ≥ 4c, the roots will be real and the quadratic can be factored into two first-
order terms. However, if b2 < 4c, both roots will be complex and have real and
imaginary parts:

[Eq. 8.43]

If the roots are complex, they will both have the same real part (b/2) while the imag-
inary parts also have the same values, but opposite signs. Complex number pairs
that feature this relationship, the same real part, but oppositely signed imaginary
parts, are called complex conjugates. Whether the roots of a second-order charac-
teristic equation are real or complex has important consequences on the behavior
of the system. Sometimes all we want to know about a second-order system is the
type of roots in the characteristic equation. This saves the effort of finding the
inverse Laplace transform.

The RLC circuit shown in Figure 8.8 is a familiar example of a second-order
process.
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Figure 8.8 A second-order RLC circuit.

We can determine the transfer function by writing applying KVL for the single
mesh. In this example we will assume the initial conditions are zero:



[Eq. 8.44]

To standardize the second-order transfer function, the variables d and wn were first
introduced in Section 6.2.1.4 and reintroduced in Eq. 8.30. The names of these
terms were given, but not explained, in Chapter 6. The parameter d is called the
damping factor and wn is called the undamped natural frequency. As with the name
time constant, these names relate to the step and/or impulse response behavior of
the second-order transfer function. As shown later, second-order systems with low
damping factors will respond with an exponentially decaying oscillation and the
smaller the damping factor, the longer it will take for the oscillation to damp out
to zero. The rate of oscillation is related to wn. Specifically, the rate of oscillation,
wd, when it occurs is:

[Eq. 8.45]

So as d becomes smaller and smaller, the oscillation frequency wd approaches wn.
When d equals 0.0, the system is undamped and the oscillation frequency is wn.
Hence, the term undamped natural frequency for wn, the frequency at which the
system oscillates if the damping factor was zero and the system was undamped.
Using these two terms, the transfer function for a second-order system is:

[Eq. 8.46]

To determine the values of wn and d in terms of R, L, and C, we equate coefficients
between Eq. 8.44 and Eq. 8.46:

[Eq. 8.47]

[Eq. 8.48]

Equating the variables wn and d to variables a and b in Eq. 8.42 and inserting them
into the solution to the quadratic equation:
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From Eq. 8.49 we see that the damping factor, d, alone determines if the roots will
be real or complex. Specifically, if d ≥ 1, the constant under the square root is pos-
itive and the roots will be real. Conversely, if d < 1 the square root will contain a
negative number and the roots will be complex. If d = 1, the two roots are also real
and are the same: both roots are equal to -wn.

As mentioned, the behavior of the system is quite different if the roots are real
or imaginary and the form of inverse Laplace transform used is different. Accord-
ingly, it is best to examine the behavior of a second-order system with real roots
separately from that of a system with complex roots, acting as if they were two dif-
ferent animals.

8.2.2.1 Second-Order Processes with Real Roots

After constructing the transfer function and finding that it is second-order (i.e.,
having the same characteristic equation as in Eq. 8.46), the next step is to evaluate
the value of d. If d ≥ 1, the roots are real, and the procedure outlined here should
be used. Second-order systems that have a d ≥ 1 and real roots are said to be over-
damped because they do not exhibit oscillatory behavior in response to a step or
impulse input. Such systems have responses that consist of two exponentials.

The best way to analyze overdamped second-order systems is to factor the qua-
dratic equation into two first-order terms each with its own time constant, t1 and
t2:

[Eq. 8.50]

These two time constants can be determined from the roots of the quadratic equa-
tion, Eq. 8.42. Note that the actual equation could have numerator terms (here
shown only as 1), but the evaluation strategy would be the same. Typical over-
damped impulse and step responses are shown in Figure 8.9 for different values of
t1 and t2.

After factoring the quadratic equation, the next step is to either separate this

function into two individual first-order terms, using partial

fraction expansion (see below), or, if available, find a Laplace transform that
matches the form in Eq. 8.50. If the numerator is a constant (i.e., not a function 
of s), then entry no. 9 in the Laplace transform table (Appendix B) matches 
this form. If the numerator is more complicated, a match may not be found and
partial fraction expansion will be necessary. Both these strategies are presented as
examples.

Example 8.3: Find the impulse response and step response of the RLC circuit
shown in Figure 8.8. Component values are: R = 50 W; L = 4 h; C = 0.01 f.
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Solution: Impulse Response: As in the last example, we already have the transfer
function. Inserting the values of R, L, and C into Eq. 8.44:

We can find the values of d and wn by equating coefficients with Eq. 8.46 or 
by using Eq. 8.47 and Eq. 8.48 entering the values of R, L, and C. Equating 
coefficients:

Alternatively we can evaluate d directly from Eq. 8.48:

Encouragingly, both approaches give the same results. Because d > 1, the roots will
be real. In this case, the next step is to factor the denominator using the quadratic
equation, Eq. 8.42:
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Figure 8.9 Typical response of a second-order system with real roots.
These responses are termed overdamped because of the exponential-like
behavior of the response. Four different combinations of t1 and t2 are
shown. The speed of the response depends on both time constants.
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For an impulse function input, the output Vout(s) is the same as the transfer func-
tion because Vin(s) = 1. The output function can be rearranged to match entry no.
9 in the Laplace transform table:

This matches:

where a = 2.5 and g = 10.
So Vout(t) becomes:

The time response of this function is shown in Figure 8.10 (dashed line).

Solution: Step Response: The same initial steps apply: construct the transfer func-
tion, and if it is second-order, find d. If d > 1, factor the denominator into two first-
order terms. These steps have all been performed in the solutions above. To find
Vout(s), multiply the transfer function by the Laplace transform of the step function:

[Eq. 8.51]V t
s s s s s sout ( ) = Ê

Ë
ˆ
¯ +( ) +( ) =

+( ) +( )
1 25

2 5 10
25

2 5 10. .

v t e e e eout
t t t t( ) = Ê

Ë
ˆ
¯ -( ) = -( )- - - -25

7 5
3 332 5 10 2 5 10

.
.. . V

g a
a g

a g-
+( ) +( ) ¤ -- -

s s
e et t

V s
s s s sout ( ) =

+( ) +( ) = Ê
Ë

ˆ
¯ +( ) +( )

25
10 2 5

25
7 5

7 5
10 2 5. .

.
.

;

Figure 8.10 The impulse (dashed curve) and step response (solid curve) of
the RLC circuit used in Example 8.3.



With the extra s added to the denominator, this function no longer matches any in
the Laplace transform table. However, we can expand this function using partial
fraction expansion. The expansion will have the form:

8.2.2.2 Partial Fraction Expansion

Partial fraction expansion is the opposite of finding the common denominator:
Instead of trying to combine fractions into a single fraction, we are trying to break
them apart to determine what series of simple fractions will add up to the faction
we are trying to decompose. The technique described here is a simplified version of
partial fraction expansion that deals with distinct linear factors; that is, denomina-
tor components of the form (s - p). Moreover, this analysis will be concerned only
with single poles, not multiple poles such as (s - p)2.

Under these restrictions, the partial fraction expansion can be defined as:

[Eq. 8.52]

where:

[Eq. 8.53]

Because the constants in the Laplace equation denominator will always be positive,
the values of p will always be negative. Applying partial fraction expansion to
Laplace function of Eq. 8.51, the values for p1, p2, and p3 are, respectively, -0, 
-2.5, and -10, which produces the numerator terms:

This gives rise to the expanded version of Eq. 8.51:

Each of the terms in Eq. 8.53 has an entry in the Laplace table. Taking the inverse
Laplace transform of each of these terms gives the following:

This response is shown along with the impulse response is shown Figure 8.10
(solid line).
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Example 8.4: Find the velocity of the mass in the mechanical system below to a
unit step input F(S) = u(t) (a step function). The parameters for the mass, spring,
friction are as follows:

k m kf e= = =60 4 200dyne-sec cm gm dyne cm; ;

Again, the basic analysis is the same as with phasors, the application of Newton’s
law, except the variables and elements are represented slightly differently.

Normalizing the denominator:

Where the constants, wn and d are now defined as:

[Eq. 8.54]

[Eq. 8.55]

From Eq. 8.55, we see that the friction element, kf, is the only element that can
produce an increase in damping by increasing its value. The other two elements
decrease the damping when their values increase. In many mechanical systems,
damping values much below 0.707 are detrimental since they produce an oscilla-
tory response.

Inserting the values for kf, ke, and m:
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Next, we evaluate the value of d by equating coefficients:

Of course d could have also been obtained from the component values using 
Eq. 8.55. Because d = 1.06, the roots will be real and the system will be overdamped.
Accordingly, the next step is to factor the roots using the quadratic equation 
(Eq. 8.42):

The inverse Laplace transform for this equation can be found in Appendix B (no.
9) where g = 10 and a = 5. Then multiplying top and bottom by 10 - 5 = 5, the
equation becomes:

This leads to the time function:

Alternatively, we could decompose this second-order polynomial in the denomina-
tor into two first-order terms using partial fraction expansion.

Taking the inverse Laplace transform of the two first-order terms leads to the same
time function found directly. Figure 8.11 compares this response (Figure 8.11A) with
an underdamped response from the same system (Figure 8.11B).

If the friction were reduced in the mechanical system (WD-40!) to less than
approximately 56 dyne-sec/cm, d would be less than 1 and the roots would become
complex. This would result in quite different behavior as shown in Figure 8.11. In
the next section, we will look at these underdamped systems.

8.2.2.3 Second-Order Processes with Complex Roots

If after determining the transfer function of a second-order system the damping
factor, d, is found to be less than 1, the roots of the characteristic equation will be
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complex and the impulse response will have the behavior of a damped sinusoid–a
sinusoid that decreases in amplitude exponentially with time (i.e., of the general
form e-at sin wnt). Second-order systems that have complex roots are said to be
underdamped, a term relating to the oscillatory behavior of such systems. (This ter-
minology can be a bit confusing. Underdamped systems have damped sinusoidal
responses Overdamped responses have double exponential, not sinusoidal, 
behavior.) If the roots are complex, the quadratic equation is not factored. Rather,
an inverse Laplace transform can usually be determined directly. Inverse Laplace
transforms for second-order, underdamped responses are provided in the table both
in terms of wn and d and in terms of general coefficients (transform nos. 13–16).
Usually the only difficulty in finding the inverse Laplace transform to these systems
is in matching coefficients and scaling the transfer function to match the constant
term in the table. The next example demonstrates the solution of a second-order
underdamped system.

Example 8.5: In the mechanical system of Figure 8.10, the friction coefficient is
lowered to kf = 5. Find the step response for u(t) under these conditions.

Solutions: After inserting the component values, the transfer function becomes:

For a step input, F(s) = 1/s, so u(s) becomes:
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Figure 8.11 Two velocity step responses of the second-order
mechanical system analyzed in Example 8.4. The only difference is the
coefficient of friction: (A) kf = 60 dyne-sec/cm; (B) kf = 5 dyne-sec/cm.



Two of the transforms given in the Laplace tables will work (no. 13 and no. 15).
Entry no. 13 will be used here:

Substituting these values into the time domain equivalent on the left side gives u(t):

This response is plotted in Figure 8.11B. Other examples of second-order under-
damped responses will be presented in the next section, which explores systems that
have nonzero initial conditions.

8.3 NONZERO INITIAL CONDITIONS

Problems with initial conditions can be divided into two classes: those in which the
initial conditions are given, and those in which they have to be determined by analy-
sis of the system’s responses over past time. Analysis of problems that have initial
conditions is straightforward: It is only a matter of including the initial condition
sources (given in Table 8.1) in the transformed network. When initial conditions
are known to exist, but not given, there is the extra burden of determining the initial
condition values. An example with known, given initial conditions is presented first.

Example 8.6: Find the voltage, Vout(t), of the circuit in Figure 8.12. The capacitor
is initially charged to 15 V with the positive side indicated. The switch closes at t
= 0 attaching the resistor to the capacitor.
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Figure 8.12 The circuit used in
Example 8.6. The resistor is attached
(instantaneously) to the capacitor at t =
0. The capacitor is initially charged to 15
V.



This circuit does not have a separate voltage source; however, the initial charge
on the capacitor acts as a voltage source. As with all system’s analyses described
thus far, the first step is to transform the system into the appropriate domain for
analysis, in this case the Laplace domain with initial conditions. This involves all
the transformations described previously (variables to Laplace variables, elements
to Laplace impedances) along with the addition of sources to account for the initial
conditions. In the case of a charged capacitor, the appropriate source is a voltage
source of VC /s (Table 8.1). The transformed circuit is shown in Figure 8.13.

The remainder of the problem is straightforward following the lines of other
circuit problems. Applying KVL:

The next example is considerably more challenging. It includes a mass and a spring,
both of which have nonzero initial conditions. Moreover, the initial conditions are
not given, but must be determined, in this case using phasor analysis. Hence, this
problem uses both phasor and Laplace analysis.

Example 8.7: In the mechanical system used in Example 8.4, FS is now a sinu-
soidal force generator that applies a force of 10 cos(2t) dyne. It has been applied
for a long time, so we can assume the system is in sinusoidal steady state. At t = 0
the connection to the source breaks, so the force is no longer applied to the mechan-
ical system. Find x(t) for t > 0. For this problem, the values for the elements are: 
kf = 3 dyne/cm; ke = 20 dyne-sec/cm; m = 10 gm.

Solution: Even though we are only interested in the output for t > 0, we need to
find the initial conditions and this necessitates analyzing the problem for negative
times to find the initial state at t = 0. Because we have both a mass and a spring in
the problem, we will need to find the initial position for the spring and the initial
velocity for the mass. During negative times, the source is sinusoidal and it has been
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Figure 8.13 The circuit in Figure 8.12 after trans-
formation to the Laplace domain.



connected for long time so we can use phasor analysis for this portion of the
problem.

For t < 0, we first convert the elements and variables to the phasor domain to
obtain the system shown in Figure 8.14.
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Figure 8.14 Phasor representation of the mechanical
system in Figure 8.10.

Writing the basic conservation equation:

Substituting in t = 0 and solving for u(0) and x(0):

With these initial conditions, we can now transform the mechanical system into
the Laplace domain for t > 0. For t > 0 there is no force applied to the system (FS

has broken off); only the initial conditions drive the response. Care must be taken
with the direction of the initial condition force generators. Since the spring is actu-
ally compressed (x is negative), the force produced by the initial condition will be
in the positive (rightward) direction. The value of the force is kex(0)/s = -0.46(20)/s
= -9.2/s dyne. The velocity is positive (i.e., moving to the right), so the mass will
also generate a rightward force with a value of mu(0) = 10(0.28) = 2.8 dyne. The
transformed system is shown in Figure 8.15.

From here on, the problem is similar to any of the others we have solved. Apply-
ing Newton’s law about the point indicated by the dashed vertical line:
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The damping is:

The system is clearly underdamped and the appropriate transfer function should be
used for matching X(s) (entry nos. 13–16 in the Laplace transform table). The func-
tion x(s) matches entry no. 14 in the Laplace transform table, but will require some
rescaling to match the numerator. Considering only the dominator, a2 + b2 = 0.5,
but the constant in the numerator is a2 + b2 and must also equal 0.5. To make this
match, we need to multiply the numerator by 0.5/0.46 = 1.09. Multiplying top and
bottom by 1.09 the rescaled Laplace function becomes:
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Figure 8.15 Laplace representation of the mechanical system in
Example 8.4 showing additional force generators to account for the
nonzero initial conditions in both velocity and position.



Now equating coefficients with entry no. 14:

The inverse Laplace transform becomes:

This could also be put in terms of a single sinusoid using the Eq. 2.9 and Eq. 2.10
presented in Chapter 2.

8.4 INITIAL AND FINAL VALUE THEOREMS

The time representation of a Laplace function is obtained by taking the inverse
Laplace transform using tables such as found in Appendix B. Sometimes we are only
looking for the value of the function at its very beginning, x(t = 0), or at its very
end as x(t Æ •). Two useful theorems that can supply us with this information are
the initial and final value theorems. These theorems can give us the function’s initial
and the final value without the need for taking the inverse Laplace transform. 
The initial value theorem provides us with the value of the function at t = 0, while
the final value theorem, as you might expect, gives us the value of the function as
t Æ •.

Because the Laplace variable, s, is a form of complex frequency and frequency
is inversely related to time, you might expect that the value of a Laplace function
at t = 0 might be obtained by letting s Æ •. In particular, the initial value theorem
states:

[Eq. 8.56]

This is easy to demonstrate. Beginning with the definition of the Laplace transform
of the time derivative of x(t):

[Eq. 8.57]

Assuming that x(t) is continuous at t = 0, and taking the limit of both sides:

The validity of the theorem can also be demonstrated if there is a discontinuity at
t = 0.
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The final value theorem follows the same logic, except s Æ 0. Specifically, the
final value theorem states:

[Eq. 8.58]

To validate this theorem, taking the limit as s Æ 0 of Eq. 8.57:

Evaluating the integral:

Which reduces to Eq. 8.58.
The application of either of the theorems is straightforward as shown in the fol-

lowing example.

Example 8.8: Use the final value theorem to find the final of x(t) in the previous
example.

Solution: Apply Eq. 8.58 to the Laplace function found for X(s):

Substituting into Eq. 8.58:

This is the same value that is obtained when letting t Æ 0 in the time solution x(t).
An example of the application of the initial value theorem is found in the 

problems.

8.5 THE LAPLACE DOMAIN AND THE FREQUENCY DOMAIN

Because s is a complex frequency variable, there is a relationship between the
Laplace domain and the frequency domain. Given a Laplace transfer function, it is
easy to find the phasor or frequency equivalent by substituting s = jw. After renor-
malizing, the coefficients so the constant term equals 1, the frequency plot can be
constructed using the Bode plot techniques described in Chapter 6. Some of the rela-
tionships between the Laplace transfer function and the frequency characteristics
have already been mentioned, and these depend largely on the characteristic 
equation. A first-order characteristic equation gives rise to first-order frequency
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characteristics such as shown in Figures 6.5 and 6.6. A classic example of a first-
order circuit is the RC lowpass filter whose frequency characteristics are shown in
Figure 6.20.

Second-order frequency characteristics, like second-order time responses, are
highly dependent on the value of the damping coefficient, d. As shown in Figure
6.7, the frequency curve develops a peak of values of d < 1, and the height of that
peak increases as d decreases. In the time domain, this corresponds to an overshoot
response. In the frequency domain, the peak in the frequency curve occurs at fre-
quency wd which is close to wn, the undamped natural frequency, Eq. 8.45. In the
time domain, the response will oscillate at frequency wd. As shown in Eq 8.45, the
oscillating frequency is not quite the same as the undamped frequency, the resonant
frequency at which the system would like to oscillate. This is because the decay in
the oscillation due to the damping (i.e., the e-wnt term) lowers the actual resonant
frequency to wd. As the damping factor, d, decreases, the resonant frequency, wd,
approaches the undamped natural frequency, wn.

The next example in this chapter uses MATLAB to compare the frequency and
time characteristics of a second-order system for various values of damping.

Example 8.9: In the RLC circuit of Figure 8.8, assume L = 1 mh (10-3 h) and C =
0.1 mf. These are more realistic values for L and C. Find values for R correspond-
ing to damping factors of 0.1, 0.5, and 2.0. Plot the frequency characteristics (i.e.,
Bode plot) of the transfer function and the step response of the system. Use
MATLAB for both calculation and plotting.

Solution: To find the required resistor values use Eq. 8.48:

Now solve for the Laplace transfer function leaving R as a variable. The transfer
function of the RLC circuit has already been found in a previous example and is
given in Eq. 8.44:

The step response can be obtained by multiplying the transfer function by 1/s, then
determining the inverse Laplace transform:

This matches entry no. 16 for d < 1 with no rescaling required:
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where:

The equivalent time response will be programmed directly in to the MATLAB code.
To find the frequency response, convert the Laplace transfer function to phasor

by substituting s = jw and rearranging:

This can also be programmed directly into MATLAB. The resulting program and
plots are shown below.

% Example 8.9 Comparison of Time and Frequency 
% characteristics of a second-order system.
%
close all; clear all;
w = 10000:1000:1000000; % Set frequency vector, w
R = [2 .5 .1 ]*200; % Set values of R
%
% Calculate and plot frequency characteristics
for k = 1:length(R)
TF = 1./(1 - 10.^-10*w.^2 + j*R(k)*10.^-7.*w); % Transfer 

% function
Mag = 20*log10(abs(TF)); % Take magnitude in dB
semilogx(w,Mag,’k’); hold on;% Plot dB against log freq.

end
%
...... Label axes .......
%
% Calculate and plot time characteristics of step response
figure;
t = 0:10.^-8:2*10.^-4; % Set time vector, t
for k = 1:length(R)
wn = 10^5 % Undamped natural frequency
del = R(k)/200; % Delta
c = sqrt(1-del^2); % Sqrt of 1- delta squared
theta = atan(c/del); % Theta
% Time function
xt = 1 - (1/c)*(exp(-del*wn*t)).*(sin(wn*c*t + theta));
plot(t,xt,’k’); hold on; % Plot

end
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%
....... Label axes .......

The results are shown in Figure 8.16. Comparing Figure 8.16A with Figure 8.16B,
the correspondence between the frequency characteristics and the time responses is
evident. A frequency response with a peak corresponds to a time domain response
with overshoot. Note that the frequency peak associated with a d of 0.5 is small,
but this time domain response still has some overshoot. As shown here and in one
of the problems, the larger the peak, the greater the overshoot. The minimum d for
no overshoot in the response is left as an exercise.

The last example is quite challenging but fun and it touches on some real-world
concerns of bioengineers. You are given the impulse response to a biological system
and want to find the transfer function of that system so that you can predict its
response to other inputs. This problem is another form of systems identification
introduced in Section 6.4.2, except now you have the impulse response, not the
response to a series of sinusoids at different frequencies. Often it is not practical to
simulate biological systems with sinusoids while it may be possible to generate an
impulse input. For example, it is impractical to stimulate a pharmacological system
sinusoidally, but a sudden infusion of a given drug, a drug bolus, is a common input.
The knee-jerk response is another example of the use of an impulse input.

Example 8.10: The data file ‘biologic’ contains the impulse response of a bio-
logical system. You have reason to believe that the system can be adequately rep-
resented as a second-order system, but have no other knowledge about the system.
You want to estimate the Transfer function of the system. The impulse response was
obtained using a sampling frequency of 100 Hz.

Solution: There are several approaches you might use to estimate the transfer func-
tion from the impulse response data. Since you already know that the transfer 
function is second-order, you only need to find three parameters, the constant ampli-
tude term A, the damped natural frequency, wn, and the damping, d.

Just as the impulse response is the Laplace transform of the transfer function, it
is also the inverse Fourier transform of the transfer function in the frequency domain
(where s = jw). Hence, you could take the Fourier transform of the impulse response,
plot the magnitude (and possibly phase) and use the Bode plots techniques to esti-
mate A, wn, and d.

Another method would be to try to generate a number of second-order impulse
responses with different combinations of A, wn and d and pick the parameter set
that produces the best match to the data. This may seem like a more complicated
and less elegant approach, but might work better if the data contained noise, as is
usually the case. This trial and error approach is an example of an important process
known as optimization. It could take awhile to find the best match, but MATLAB
provides a method for automating the search.

Both methods are tried in the MATLAB program below. The first step in any
identification process is to plot the data as is done in the program. Such a plot is

324 CHAPTER 8 THE ANALYSIS OF TRANSIENTS: THE LAPLACE TRANSFORM



shown in Figure 8.17 and shows overshoot behavior. The overshoot behavior indi-
cates that system is underdamped. Comparing the general overshoot behavior with
that seen for different damping factors in Figure 8.16B suggests the damping factor
is somewhere between 0.5 and 0.1. (Figure 8.16B shows step responses while Figure
8.17 is an impulse response, but the decay of the oscillation will be similarly 
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Figure 8.16 A: Comparison of Bode plots for a second-order
system having three different damping coefficients: d = 0.1, 0.5, and
2.0. B: Comparison of step response for the same second-order
system having the three different damping coefficients in A.



dependent on d.) The program to calculate and plot the Fourier transform of the
response and then to try to match the time response follows.

% Example 8.10 Identify a biological system from impulse 
% response data.
% The data are in file ‘biologic’ and where sampled at 100 
% Hz.
%
clear all; close all;
fs = 100; % Sampling frequency
load biologic; % Get the data
ln = length(x); % Data Length
t = (1:ln)/100; % Construct time vector
plot(t,x,’k’); % Plot time data
...... label.......
%
% Take fft of data and plot
figure;
X = 20*log10(abs(fft(x)));
f = (1:ln)*fs/ln; % Generate frequency vector

for plotting
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Figure 8.17 A plot of the unknown system’s response to an impulse input
indicates the system is underdamped (i.e., d < 1). An envelope of the
response, a curve that traces the peaks is shown (dotted curve) is helpful in
estimating the amplitude.



semilogx(f,X,’k’); % Plot frequency
.......label......
%
% Estimate parameters
param0 = [1 1 1]; % Initial parameter 

% estimates (all ones)
param = fminsearch(‘second_order’,param0,[],x,t);
disp(param)
%
% Plot time estimate and original impulse superimposed
x_trial = param(1)*(exp(-param(2)*param(3)*t)...
.*sin(param(3)*t));

figure;
plot(t,x,’k’,t,x_trial,’:k’);
....... label .......

Analysis: After getting the data from file ‘biologic,’ the program calculates
and plots the Fourier transform in a straightforward manner. The frequency char-
acteristics are shown in Figure 8.18.

The plot indicates an underdamped system with an undamped natural frequency
of approximately 1.2 Hz and a peak of approximately 10 dB. This corresponds to
an wn of:

w p pn nf= = =2 2 1 2 7 5. . rad sec
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Figure 8.18 The frequency characteristics or Bode plot of the
unknown system. This plot will be used to estimate the second-order
parameters wn and d.



To find d, we note that the peak is the negative of 20 log(2d). Solving for d:

It is difficult to estimate the constant gain term A from the frequency plot, but
this is not a problem since the constant term can be estimated directly from the time
plot. Drawing an exponential envelope over the impulse response curve in Figure
8.17 suggests that the peak amplitude was around 2.0.

The next section of the program estimates the parameters of the impulse response
by a trial an error method also known as optimization. The three unknown para-
meters are initially set to 1.0. The program uses MATLAB’s fminsearch to find
the parameters that produce a second-order curve that best matches the impulse
response. The optimization routine fminsearch calls a function, second-order,
that generates the trial response, compares it to the actual response, and outputs
the difference as the RMS (root-mean-squared) error. The function second-order
is given below.

function rms = second_order(param,x,t);
% Function used by fminsearch to compare trial second-
% order response with that of data.
% The output is the RMS error between the trial function 
% and the actual data.
% Generate trial second-order system
x_trial = param(1)*(exp(-param(2)*param(3)*t).*sin(param(3)
*t));
%
% Calculate RMS error
rms = sqrt(sum((x - x_trial).^2));

Note that the function second-order is quite short consisting of only two lines
of code: One to generate a second-order damped sinusoid and the other to calcu-
late the RMS error which is the output of the function. The equation for the damped
sinusoid makes the assumption that wd = wn, which is true for small values of d (see
Eq. 8.45). The optimization routine fminsearch calls this routine repeatedly
passing to the routine its estimates of the three parameters. The initial values of
these parameters were in the first calling argument of fminsearch (param) and the
size of the vectors tell fminsearch how many parameters to optimize. It also has the
optional capability of passing other arguments, in this case the data variable (x) and
the time variable (t), both useful to the function. The routine fminsearch adjusts
the parameters until finds it can no longer reduce the RMS error below a certain
criterion (see help fminsearch for details). It then outputs the parameters
(param) to the main program. The main program displays these parameters and

d = = =
- -10

2
10

2
0 158

20 10 20peak

.

328 CHAPTER 8 THE ANALYSIS OF TRANSIENTS: THE LAPLACE TRANSFORM



uses them to construct an impulse response, which it plots along with the original
data. As shown in Figure 8.19, the estimated response (dotted line) is very close to
the system’s actual impulse response (solid line). Table 8.2 compares the values
found by the two methods with the actual parameters.

The values found by both approaches are very close to the actual values, but this
was a comparatively simple system with noiseless data. One of the problems applies
this approach to step response.
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Figure 8.19 The impulse response of the unknown second-order system
(solid curve) and the response found by optimization (dashed curve). The two
curves are so similar that it is difficult to tell them apart.

TABLE 8.2 Identification of a Second-Order System

Actual Bode Plot Optimization

A 2.0 2.0 1.98
wn 7.0 7.5 6.85
d 0.15 0.158 0.15



8.6 SUMMARY

With the Laplace transform, all of the analysis tools developed in Chapters 5
through 7 can be applied to systems exposed to a broader class of signals. Trans-
fer functions written in terms of the Laplace variable s (i.e., complex frequency)
play the same role as transfer functions that use frequency (w), but to other types
of signals. Here, only the responses to the step and impulse signals were explored
because these are the two most commonly used stimuli in practice. Their popula-
rity stems from the fact that they provide a great deal of insight into system beha-
vior and they are usually easy to generate in practical situations. However, responses
to other signals such as ramps or exponentials, or any signal that has a Laplace
transform, can be analyzed using these techniques. Laplace transform methods can
also be extended to systems with nonzero initial conditions, a particularly useful
feature.

The Laplace transform can be viewed as an extension of the Fourier transform
where complex frequency, s, is used instead of imaginary frequency, jw. With this
in mind, it is easy to covert from the Laplace domain back to the frequency domain
by substituting jw for s in the Laplace transfer functions. Bode plot techniques can
then be applied to these converted transforms. Thus, the Laplace transform serves
as a gateway into both the frequency domain (through Bode plots) and the time
domain (through the inverse Laplace transform).

PROBLEMS

1. Find the Laplace transform of the following time functions:
A.
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C. (e-2t - e-5t)
D. 2e-3t - 4e-6t

E. 5 + 3e-10t

2. Find the inverse Laplace transform of the following Laplace functions:

A.

B.

C. (Hint: Check roots.)

D.

3. Use partial fraction expansion to find the inverse Laplace transform of the fol-
lowing functions:

A.

B.

4. Find the transfer function and unit step response of the circuit below.
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5. Find the transfer function and unit step response of the circuit below.
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6. Find the transfer function and unit step response of the circuit in Problem 8.5
if the resistance is lowered to 5 W.

7. Find the transfer function and ramp response of the network below.

8. An RLC circuit contains a 0.02-f capacitor. Find R and L such that the damping
factor, d, is 0.5 and the response oscillates at 10 rad/sec. (Hint: The response
oscillates at wd not wn. See Eq. 8.45.)

9. In the circuit below, the capacitor is charged to 6 V. At t = 0 the switch closes.
Find the voltage across the resistor for t > 0.

10. The mass shown is supported by two springs, each with coefficients, ke = 1,000
and is pulled doward by gravity. The mass is 100 gm and is initially at rest. At



t = 0, one of the springs breaks. Find x(t) for t > 0. Assume the only friction is
due to the resistance of the air and has a value of kf = 0.01 dyne-sec/cm.
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11. The inductor has an initial current of 2.0 A and the capacitor has an initial
charge of 10 V when the switch opens at t = 0. Find the value of the voltage
across the capacitor for t > 0. (Hint: This becomes a two-mesh problem.)

12. At t = 0, the mass in the system below is moving at 2 cm/sec to the left, but the
spring is uncompressed [ke(0) = 0]. At t = 0, a force of 4 dyne is applied in the
direction shown (to the right).
A. Find u(t) for t > 0.
B. Find the force produced by the spring (only the spring for t > 0). (Remem-

ber: At t = 0 it is uncompressed, so its initial force is zero.)



13. In the mechanical system of Problem 8.12, a force is applied that pulls the mass-
spring to the right at a steady 2 cm/sec. At 5 seconds, the force is disconnected
and the system no longer has an outside force pulling on it. Find the velocity
from that time on.

m = 10 gm; ke = 2 dyne/cm; kf = 3 dyne-sec/cm.

14. The impulse response of a first-order RC filter in the Laplace domain was found
in Example 8.2 to be:

Use the initial value theorem to find the filter output’s value at t = 0 [i.e., 
Vout(t = 0)] for the filter.

15. The transfer function of an electronic system has been determined as:

Use the final value theorem to find the value of this system’s output for t Æ •
if the input is a 5.0-V step function.

MATLAB Problems

16. Demonstrate the effect of a 0.2-second delay on the frequency characteristics
of a second-order system. The system should have a wn of 10 rad/sec and a d
of 0.7. Plot the magnitude and phase with and without the delay. (Hint: Plot
the Bode plot of a standard second-order system by substituting jw for s. Then
add an e-0.25 [= e-j0.2w] to the transfer function and replot.) Plot for a frequency
range of 1 to 100 rad/sec. Note the phase curve with the delay will exceed 
-180 degrees and will wraparound. [You can use the MATLAB command
unwrap to correct for this phase wrapping.]

17. For the mechanical system of Problem 8.12, plot the velocity in response to a
unit step input for values of mass that produce damping factors of 0.9, 0.5, and
0.2. Assume ke = 5 dyne/cm and kf = 10 dyne-cm/sec. (Hint: Modify the code
in Example 8.9.)
If the mass is such that the damping factor is 0.1, how and by how much, should
the friction be changed to produce a damping of 0.707?

18. The file ‘step_response’ contains a data variable x, which is the step
response of an unknown system. Use MATLAB’s fminsearch in conjunction
with a modified version of the function second_order to find the variables
that best match the curve. Assume the unknown system can be represented by
a second-order process and that it is overdamped which you can easily tell from
the time plot of the response. (Hint: You can model the step response of a
second-order overdamped system as x = A(e-at - e-g t).)
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9 SYSTEM MODELS 
AND BEHAVIOR

9.1 THE SYSTEM MODEL

Most physiological and biological systems are quite complex and lead to compli-
cated analog models, if they can be represented by analog models at all. Moreover,
while analog models often provide a good quantitative representation of a physio-
logical system, they are not very effective in describing the general flow of infor-
mation through the system. For example, when a resistor is connected to a Thévenin
source, the source has an influence on the resistor and the resistor affects the source,
but these mutual influences are not explicit in the analog representation. In an
analog model, every component can interact with every other component and that
interaction may not be evident. Many physiological components act this way with
distributed, mutually interacting influences, but a model should clarify as well as
represent.

The systems model is a process-oriented representation that emphasizes the influ-
ences, or flow of information, between modules. A systems model describes how
processes interact and what operations these processes perform but does not go into
details as to how these processes are implemented. The basic module of the system
model is the black box process, so-called because the module describes an input–
output relationship but is not concerned with the internal mechanism that achieves
that relationship: systems modules only define the input-output relationship. Since
transfer functions are mathematical correlates of systems modules; they only de-
scribe input–output relationships; it is only natural that systems modules be 
represented by transfer functions. Ignoring the details of mechanism and empha-
sizing module interactions are both the greatest strengths and greatest weaknesses
of systems models.

The graphic symbols used to represent system model elements are straightfor-
ward with little artistic merit. Since the basic element of a system model is so general,
it is usually represented by a simple rectangle. This element may contain the related
Laplace transfer function or simply a symbol for the transfer function. Exceptions
are made for a few specific processes such as those that perform arithmetic opera-
tions on two or more signals. These are usually represented as circles containing the



appropriate arithmetic symbol: S for addition or subtraction; ¥ for multiplication;
∏ for division. (The latter two are rare in systems models since they are nonlinear
processes.) An example of such elements is shown in Figure 9.1 The summation
device subtracts x2 from x1 as indicated by the plus or minus signs next to the inputs.
As shown in Figure 9.1, a system model also contains lines with arrows. These indi-
cate the flow of information, or influence, between the various model elements.
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Figure 9.1 Typical systems model elements. The
left-hand element is a subtractor whose output
signal is the difference between two inputs: x1 - x2.
The output of the subtractor feeds a process repre-
sented by a transfer function.

Most system elements are represented by transfer functions, although a module’s
impulse response would constitute an equivalent representation since in the last
chapter we found that the impulse response is just the inverse Laplace transform of
the transfer function. The geometry of the systems model shows how these trans-
fer functions interact. Inherent in the representation of a systems module are the
assumptions required for the development of the transfer function itself: The source
is ideal and there is no effective load on the module’s output (the output supplies
no energy). In context with the concepts developed in Section 7.4.1, the second
assumption could also be stated as: “the output is connected to an ideal load.” These
assumptions are usually assumed to be met as long as the input impedance of a
process is much greater (say, by two orders of magnitude) than the output imped-
ance of the process connected to it. Verifying these assumptions in order to validate
a specific systems model is one of the major applications of the source-load con-
cepts presented in Chapter 7. Equation 9.1 restates the definition of a transfer func-
tion as a quantitative description of an input–output relationship:

[Eq. 9.1]

and

[Eq. 9.2]

In systems models, all interactions are explicitly shown by lines and arrows. For
example, in the systems model of Figure 9.2, the process, G1(s), influences the
process, G2(s), but G2(s) has no influence on G1(s).

Output s Input s TF s( ) = ( ) ( )

TF s G s
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Input s

( ) = ( ) =
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( )



When two processes are connected together, the overall transfer function is simply
the product of the individual transfer functions:

[Eq. 9.3]

This generalizes to any number of sequential processes:

[Eq. 9.4]

If a second process also influences the first process, that influence must be explic-
itly shown through an additional pathway. Figure 9.3 presents a model in which
process G(s) influences process H(s), but process H(s) also influences, along with
another signal, process G(s). This is an example of a classic feedback system. As
will be shown, feedback can be used to great advantage in certain circumstances.
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Figure 9.2 In this model, the process described
by transfer function G1(s) sends its output to process
G2(s), but G2(s) has no influence on G1(s).

Figure 9.3 A systems model in which the output of process
G(s) is fedback to its input after being modified by another
process H(s). This is known as a feedback system where G is
the feedforward process and H is the feedback process. G and
H are commonly used symbols for the feedforward and feed-
back processes.

9.1.1 Feedback

In a feedback system, G(s) is referred to as the feedforward processes or Transfer
Function, and the upper pathway is known as the feedforward pathway. The letter
G is commonly used for feedforward processes. If the feedback in the model of
Figure 9.3 were missing, the output, Xout(s), would be equal to the input times the
feedforward transfer function; i.e., G(s)Xin(s). The lower pathway is termed the 



feedback pathway, and the letter H is also commonly used to denote the feedback
process. The output of the feedback process is H(s)Xout(s). In Example 1.4, we solved
for the output of a feedback system. This solution gave rise to the classic feedback
equation given in Eq. 1.7 and restated here in terms of Laplace variables:

[Eq. 9.5]

In some systems, H(s) = 1 and such systems are referred to as unity gain feedback
systems.

Transforming an analog model into a system element is only a matter of solving
for the analog model transfer function as has been done for both mechanical and
electrical systems in numerous previous examples. Transforming a systems model
back into an analog model is not so easy, since the whole point of the systems model
is to hide the internal processes represented by an analog model. If something is
known about the internal components, it may be possible, but the analog model
constructed may not be unique; that is, it may not be the only analog model capable
of generating the transfer function and/or meeting other known conditions. In some
cases, it may be desirable to combine the two modeling approaches and use analog
models for detailed representation of specific processes, and then construct an
overall model in which the various processes are represented by system elements
derived from the analog models.

Example 9.1: The RC circuit shown below is the feedforward element in a unity
gain feedback control system. Compare the frequency characteristics of the feed-
forward element along with that of a unity gain feedback system that has this
element in the feedforward path.
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Solution: Find the transfer function for this analog circuit and then use that as
G(s) in the feedback equation. Convert both G(s) and the feedback transfer func-
tion into the frequency domain (s Æ jw) and plot the Bode plots.

From several previous examples, we know the transfer function for this simple
circuit in the Laplace domain is:
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and in the frequency domain:

From experience we know that the frequency characteristics of this transfer 
function are those of a first-order lowpass filter with a cutoff frequency of 
w1 = 104 rad/sec. This feedforward process is placed in a unity gain feedback con-
figuration as shown below. Since this is a unity gain feedback system H(s) = 1.
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Using the feedback equation (Eq. 9.5), the overall system transfer function
becomes:

and in the frequency domain:

The new, closed-loop transfer function differs in two ways from the original
transfer function: Its gain is now half that of the open-loop function and its cutoff
frequency has now doubled to 2 ¥ 104 rad/sec. This is demonstrated in the frequency
plot of the two transfer functions shown (next page). Thus, we have made a trade-
off between gain and bandwidth, increasing the latter at the expense of the former.
Indeed, electronic feedback was initially invented to implement this tradeoff. We
will see feedback used again in the next chapter on electronic circuits to exactly the
same end. Other examples of the use of feedback are found in the problems.
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9.2 THE CONVOLUTION INTEGRAL

One of the powerful features of the transfer function is that it allows us to calcu-
late the output to any input (Eq. 9.2) as long as the input has a Laplace transform.
Alternatively, if the input can be represented by sinusoids, the transfer function can
be rewritten in phasor notation and the output computed. It would be convenient
to have a time domain equivalent to the transfer function that would allow the same
determination of output to any input, but obtained using only time functions. Such
a procedure would eliminate going back and forth into the Laplace or frequency
domain, but we should not expect the procedure, whatever it is, to be as simple as
the multiplication procedure in the Laplace or frequency domain.

To find such an operation, assume that the input to a system is xin(t) and that
the system has a transfer function G(s). From Eq. 9.2 we know that the output of
the system in the Laplace domain will be:

[Eq. 9.6]

Taking the defining equation of the Laplace transform (Eq. 8.4), but using the alter-
native symbol t for time, Xin(s) can be written as:

[Eq. 9.7]

When Eq. 9.7 is multiplied by G(s), the equation becomes:
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Using time delay equation presented in the last chapter (Eq. 8.25), the term inside
the brackets can also be written as:

where g(t) = L-1G(s); and Eq. 9.8 becomes:

[Eq. 9.9]

Interchanging the order of integration, Eq. 9.9 becomes:

[Eq. 9.10]

Referring back to the defining equation of the Laplace transform (Eq. 8.4), the right-
hand side of Eq. 9.10 is just the Laplace transform of the second integral in that
equation:

[Eq. 9.11]

Since the roles of G(s) and Xin(s) could have been reversed in the derivation above,
the roles of xin(t) and g(t) can also be reversed in Eq. 9.11, giving an equivalent
equation:

[Eq. 9.12]

These equations (Eq. 9.11 and Eq. 9.12) are known as the convolution equations
and the operation they perform is known as convolution. The convolution opera-
tion may also be abbreviated by using an * to indicate the convolution:

[Eq. 9.13]

There are a number of ways of looking at convolution. The one most compati-
ble with our use of this operation is that it is the integration of a weighting func-
tion, g(t) moving over the signal. If the weighting function has unit area, convolution
is nothing more than a moving weighted average. If the weighting function happens
to be the impulse response of a system, convolution gives the time domain output
of that system to any input signal.

As mentioned several times in the last chapter, the transfer function is the Laplace
transform of the impulse response. Going the other way around, the impulse
response, g(t), is the inverse Laplace transform of the transfer function. Given the
transfer function, the impulse response can be determined directly. The impulse
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response can also be obtained empirically from a system by monitoring its response
to an impulse input.

The basic concept behind convolution is superposition. The impulse function is
an infinitely short signal so the impulse response describes how the system responds
to an infinitely short input. Using the concepts of basic calculus, any input can be
viewed as an infinite string of such infinitesimal segments. Each of these infinitesi-
mal input signal segments will generate its own little impulse response. All of these
little impulse responses will look the same except their amplitude will be scaled by
the amplitude of the infinitesimal signal segment they represent. These impulse
responses will also be shifted in time to correspond with the infinitesimal segment
that generated them. If the input signal is large at a given instant, it will give rise
to a large impulse response, beginning at that instant. If the infinitesimal segment
is negative, is associated impulse response will be negative. If superposition holds,
then the output can be determined by summing, or integrating, the impulse res-
ponses from all the input signal segments.

An example of the convolution process is given in Figures 9.4 through 9.7. Figure
9.4 shows the impulse response of an example system in the left plot and the input
to that system in the right plot. Note the different time scales: the impulse response
is much shorter than the input signal as is generally the case.

In Figure 9.5, the impulse responses to four infinitesimal signal segments at 2, 4,
6, and 8 seconds are shown. Each segment produces an impulse response that begins
when the segment occurs and is scaled by the amplitude of the input signal at that
time. Some responses are larger, some negative, but they all have the basic shape
shown in Figure 9.4 (left side).
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Figure 9.4 The signal on the right is the input to a system having
the impulse response shown on the left.



We begin to get the picture in Figure 9.6 (next page) where the impulse responses
to 50 infinitesimal segments are shown. The summation of all these responses is also
shown as a dashed line. This summation begins to look like the actual output.

In Figure 9.7, 150 impulse responses are used and the summation of all these
impulse responses (dotted line) now looks quite similar to the actual output signal
(solid line). (The output signal is scaled down slightly to aid comparison.) Convo-
lution of a continuous signal would require and infinite number of segments, but
the digital version is limited to one for each data point in the input signal. (The
input signal used in the figures above had 1,000 points.)

9.2.1 MATLAB Implementation

The convolution integral can quickly become tedious for more complicated inputs
or input response functions, but it is very easy to implement on a computer. One
important application of convolution is in digital signal processing where it is 
frequently used to apply filtering to signals. Example 9.2 explores just such an 
application. For discrete signals, the integration becomes a summation and the 
convolution equation becomes:

[Eq. 9.14]

where N is the length of the shorter function, usually h[n]. (In digital systems it is
common to use h[n] to represent the impulse response, and this term should not be
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Figure 9.5 The output response produced by four infinitesimal seg-
ments of the input signal seen in Figure 9.4 (right plot). Impulse
responses from input segments at 2, 4, 6, and 8 seconds are shown in
this figure.
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Figure 9.6 The scaled impulse responses produced by 50 segments of the
input signal are shown (solid curves) along with the summation of those
signals. The summation begins to approximate the actual output signal.

Figure 9.7 The summation of 150 impulse responses (dotted curve) from input
segments spaced evenly over the input signal now closely resembles the actual
output curve (solid line).



confused with H(s) used to denote feedback gain in a feedback system.) It does not
really matter whether h[n] or xin[n] is shifted, the net effect will be the same, so Eq.
9.14 can also be written as:

[Eq. 9.15]

For discrete data, both h[n] and xin[n] must be finite (they are stored in finite
memory), so the summation is also finite. It is not difficult to program Eq. 9.14 
or 9.15, but in MATLAB it is not necessary since a function to compute 
convolution already exists. To implement convolution in MATLAB use the conv
function:

xout = conv(xin,h)

where xin and h are vectors containing the waveforms to be convolved, and xout
is the output signal. The length of the output waveform is equal to the length of
xin plus the length of h minus 1. This will produce additional data points (the
output will be longer than the input) and often these additional data points are
simply discarded. An example of the use of this routine is given in the next two
examples.

An alternative routine termed filter can be used to implement convolution and
this routine does not generate any extra points. When used for convolution, the
calling structure is:

xout = filter(h,1,xin);

where the variables are the same as described above. In the examples, the conv
route is used and extra points are simply truncated, but the reader is encouraged to
experiment using filter where appropriate in the problems.

Example 9.2: Find the output of the electroencephalogram (EEG) signal after fil-
tering by an RC circuit such as in Example 9.1 where R = 40 W and C = 0.025 f.
Use convolution in conjunction with the impulse response of the RC circuit to imple-
ment the RC filter. Plot the time domain signal before and after filtering and plot
the frequency characteristics of these signals. Finally, calculate and plot the Bode
plot of the RC circuit (magnitude only) from its impulse response, h(t).

Solution: First construct the Laplace transform for the RC circuit and then com-
pute the impulse response by taking the inverse Laplace transform of the transfer
function. Generate that impulse response function in MATLAB, load the EEG 
signal, then convolve the two signals together to get the output, vout[n]. Plot the EEG
signal along with vout[n].

Next, take the Fourier transform of these two signals (using fft), and plot. To
plot the frequency characteristics of the RC circuit, note that the Fourier transform
of the impulse response, h[t], is the transfer function in the frequency domain. Plot
the magnitude of the Fourier transform in decibels.

x n h n x k n h n x nout in
k

N

in[ ] = [ ] -[ ] ∫ [ ] [ ]
=

Â
1

*
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From previous examples, we know that the inverse Laplace transform of the RC
circuit is:

In this case RC = 1 so the impulse response is just h(t) = e-1. This is used in the
program below.

% Example 9.2 Find the output of the EEG signal after 
% filtering by an RC circuit. 
% Use convolution in conjunction with the impulse response
% of the RC circuit to implement the RC filter.
%
clear all; close all;
%
fs = 50; % Sample frequency 50 Hz
t1 = 0:1/fs:10; % Time vector from 1 to 

% 10 sec .02 sec. 
% intervals

h = exp(-t1); % Define h(t) based on 
% inverse Laplace 
% Transform

load eeg_data; % Get EEG data
%
out = conv(eeg,h); % Perform convolution
out = out(1:length(eeg)); % Truncate extra points
t = (1:length(eeg))/fs; % Construct time vector 

% for plotting
%  ...Plot the input and output signals   ....
%
figure;
Vin = abs(fft(eeg)); % Determine Fourier 

% Transform of EEG
Vout = abs(fft(out)); % and Vout
nf = fix(length(Vout)/2); % Plot only non-

% redundant points
f = (1:nf)*fs/(2*nf); % Construct frequency 

% vector for plotting
% ....... plot and label frequency curves .......
%
% Calculate and plot Bode plot of H(w)
H = 20*log10(abs(fft(h,1024))); % Zero pad the impulse 

% response

TF s
RC

s RC RC
e t RC( ) =

+
¤ -1

1
1
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nf = fix(length(h)/2); % plot only non-
% redundant points

f = (1:nf)*fs/(2*nf); % Construct frequency 
% vector for plotting

semilogx(f,H(1:nf)); % Plot filter frequency 
% curve

....... labels .......

Analysis: Two aspects of this program deserve special notice. First, in plotting the
frequency plots, only the first half of the Fourier transform is plotted since the
second half contains redundant points. Second, when taking the Fourier transform
of the impulse response, the response was zero-padded to 1,024 points to improve
the apparent resolution of the plot (see Section 3.6.3 and Figure 3.18). The fre-
quency spectrum of the transfer function was then plotted in Bode plot format (deci-
bels against log w). The plots produced by this program are shown in the next three
figures.

As introduced in the last chapter, the ideal impulse function is a pulse that is infi-
nitely tall and infinitely narrow. Of course, such an idealization is not compatible
with the real world, and what is actually used is a pulse that is narrow with respect
to the response time of the system being impulsed. (Note: impulse is not a verb,
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Figure 9.8 An electroencephalogram signal before (upper) and after
(lower) filtering by an RC lowpass filter. Convolution was used to implement
the RC filter in the time domain. The filtering process emphasizes the lower
frequencies.
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Figure 9.9 Frequency characteristics of the original electroencephalo-
gram signal (upper plot) and the lowpass filtered electroencephalogram
signal (lower plot). The action of the lowpass filter is evident when com-
paring the two curves.

Figure 9.10 Magnitude frequency response of an RC lowpass filter
obtained by taking the Fourier transform of its impulse response. As
expected, this is the frequency characteristic of a lowpass filter with
a cutoff frequency around 1/(2pt) = 0.16 Hz.



yet.) A good rule of thumb is that the impulse function should be at least 10 times
shorter than the fastest time constant in the system. Unfortunately, you rarely know
the system’s time constants, but in many cases, an empirical approach can be used.
If the pulse being used is more-or-less an impulse with respect to a system’s dynam-
ics, decreasing its width should not change the output dynamics. In other words, if
the pulse is acting like an impulse, decreasing its width will not make it act any
more like an impulse. Finding the right pulse width then is just a matter of decreas-
ing the pulse width until further decreases no longer change the general shape of
the response. The amplitude will decrease as pulse width decreases since there is less
energy in the pulse (unless there is a compensatory increase in pulse amplitude), but
the general shape of the response should stay the same. This approach is explored
in the next example.

Example 9.3: Use an empirical approach to find the maximum pulse width that
can still be considered an impulse input with respect to a given system. In this
example, use convolution to simulate the response of a system to various pulse
inputs. Assume the system has a transfer function of:

[Eq. 9.16]

Solution: This transfer function could be simulated quite easily using MATLAB’s
Simulink program. However, here we will use convolution in conjunction with the
system’s impulse response. With this approach, we could find the output of the
system to any input, but in this case, we are only interested in pulse inputs. To find
the impulse response, we take the inverse Laplace transform of the system’s trans-
fer function, and for that we need to evaluate the damping coefficient to determine
the proper Laplace transform equation. The damping coefficient can be obtained
from the transfer function coefficients:

Thus, the system is overdamped and could be factored, or Laplace transform entry
no. 11 can be used directly.

where b = 0; c = 1; 2a = 25; a = 12.5; a2 - b2 = 70; b = (156.25 - 70)1/2 = 9.29
Hence, the impulse response becomes:

This impulse response is programmed into MATLAB below and the responses to
various pulse widths are plotted. To aid comparison the responses are plotted 
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normalized to the same maximum amplitude. (Alternatively, the pulse amplitude
could have be changed to keep the pulse area constant.) In addition, some care has
to be taken to ensure that the impulse response, h(t), is appropriately represented
in the program; that is, the time vector used to generate h(t) is long enough to gen-
erate the entire response. This can be done by trial and error, but we note that the
slowest time constant is in the first exponential: t1 = 1/3.21 = 0.31 seconds. Based
on this, a one and a half second period (5t1) should be adequate to represent the
impulse response. Since the fastest time constant is in the second exponential, t2 =
1/21.79 = 0.046 sec, we will experiment with pulses around 0.01 and shorter. Given
these numbers, a sampling frequency of 2 kHz should lead to signal representations
with a reasonable number of points.

% Example 9.3 Example to simulate a second-order Transfer 
% Function and evaluate the responses to pulses 
% of various widths
close all; clear all;
fs = 2000; % Sample frequency
PW = [50 25 25 10 10 5 5 2.5]*2; % Pulse width in msec
t = 0:1/fs:1.5; % Generate a time

% vector: 0-1.5 sec.
%
% Now construct the impulse response
h = .05*(exp(-3.21*t) - exp(-21.79*t));
....... plot and label .......
%
figure;
%
for i = 1:length(PW)
pulse = ones(1,PW(i)); % Generate pulse of 

% desired width
x = conv(pulse,h); % Simulate response
x = x/max(x); % Normalize peak to 

% 1.0
subplot(2,2,floor((i+1)/2)); % Plots pairs of 

% curves
plot(t,x(1:length(t)),’k’); % Plot, but not extra

% points
hold on; axis([0 0.2 0 1.2]);
xlabel(‘Time (sec)’); ylabel(‘\itx(t)’);

end

Analysis: The program first specified the sampling frequency that will be used in
msec. Next the desired pulse widths are specified in pairs (for plotting) and in msec.
Because the sampling frequency is assumed to be 2 kHz, the sample interval, the
distance between points is 0.5 milliseconds. Thus, the pulse widths are multiplied
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by two to give the pulse width in number of points. A time vector is then generated
ranging between 0 and 1.5 seconds in increments of the sample interval: 1/fs. The
impulse response h is then constructed using this time vector. Again, this impulse
response is just the inverse Laplace transform of the transfer function given in Eq.
9.16. The impulse response is plotted and shown in the figure below. The 1.5-second
data length is adequate to represent the full response.
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Next, the computer enters a loop in which the pulse is generated by construct-
ing an array containing 1.0’s having the desired length specified by the PW vector.
The simulated output is generated by convolving this pulse with the impulse
response. The output is then plotted in pairs so that pulses of a given width can be
compared with shorter pulses. The results are shown in the figure below.



The results show that as pulses reduce in width, the differences in response
dynamics decrease. There is very little difference between the responses generated
by the 5- and 2.5-millisecond pulses, so that a 5-millisecond pulse is probably close
enough to a true impulse for this system. This example is a realistic simulation of
the kind of experiment one might do to determine empirically if a given pulse width
were short enough to be considered an impulse input.

The next example revisits an empirical approach to system identification devel-
oped in Section 6.4.2 where we evaluated the frequency characteristics (i.e., 
Bode plot) of an unknown system by probing it with sinusoids at different fre-
quencies. Since the frequency characteristics are also the Fourier transform of 
the impulse response, we can also probe the system with a single impulse and take
the Fourier transform of the impulse response. This not only makes the experiment
much quicker as only a single stimulus is required, but it also extends this iden-
tification approach to a broader class of real systems. As mentioned earlier, for 
many real systems it is not possible to produce and effective a sinusoidal stimulus,
but it is still possible to stimulate the system with an impulse. In this example, 
we will compare the frequency curves produced by both the sinusoidal approach 
of Section 6.4.2 and impulse response approach to the system used in the last
example.

Example 9.4: Find and plot the frequency characteristics of the transfer function
given in Example 9.3 using an empirical approach based on simulation. Probe the
simulated system with both a series of sinusoids and an impulse function. Of course,
since we know the Laplace transfer function we could easily convert it to the fre-
quency domain (s Æ jw) and use Bode plot techniques or MATLAB to construct
the frequency curves. Here we pretend that the system is unknown and only its
inputs and outputs are accessible to us. The approaches used here mimic a situa-
tion where the system itself is unknown but is available for empirical evaluation. In
such a situation, you could evaluate the system’s frequency response using a series
of sinusoids as in Example 6.10, or a single impulse input and Fourier transform
the resulting impulse response. The latter approach is much faster since it requires
only a single stimulus signal, but may be more sensitive to noise from the system
or in the measurement process.

Solution: The following MATLAB program uses convolution and the system
impulse response (taken directly from the last example) to simulate the response of
the system to a series of sinusoids and an impulse input. With the sinusoids, some
trial and error may be required to find the most interesting frequency range. This
would also need to be done in a real-world situation. You simply try a range of fre-
quencies, plotting the magnitude (and possibly the phase) as you go until you have
a respectable looking Bode plot.

% Example 9.4 Example to simulate a second-order Transfer 
% Function
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% and evaluate the responses to a sinusoidal series and an
% impulse.
%
close all; clear all;
fs = 2000; % Sample frequency
t = 0:1/fs:1.5; % Generate a time vector
ln = length(t);
% Now construct the impulse response
h = .05*(exp(-3.21*t) - exp(-21.79*t));
%
% Stimulate with sinusoids
for f = 1:100
f1(f) = f; % Set frequency (1-100 Hz)
input = 1.414 *... % Generate sinusoid
cos(2*pi*f*t);
x = filter(input,1,h); % Simulate response (use filter)
Mag(f) = sqrt(mean(x.^2));% Calculate RMS value

end
subplot(1,2,1);
semilogx(f,20*log10(Mag),...% Plot frequency response in
’k’); % dB
....... labels and axis .......
%
% Now determine the Transfer Function from the impulse

response
Mag = abs(fft(h)); % Take Fourier Transform
subplot(1,2,2);
f = (1:length(Mag))*fs/...% Frequency vector for plotting
length(Mag);
semilogx(f,20*log10(Mag), ’k’);
.......labels and axis.......

Analysis: The two magnitude frequency curves are shown in the figure on the next
page and are seen to be similar and have the same slopes but differ slightly in ver-
tical values and the sinusoidal method appears to have a lower limit of around 
-40 dB. These differences are likely due to small computational errors.

9.2 THE CONVOLUTION INTEGRAL 353



The impulse response was constructed as in the last example using the same sam-
pling frequency. In this program, the MATLAB filter routine was used to imple-
ment convolution just for variety. The root-mean-squared (RMS) value of the output
sinusoid was taken as the magnitude ratio, Vout/Vin, because the input sinusoid has
an RMS value of 1.0. In the section that involved the impulse response, it was not
necessary to use convolution to get the impulse response since we already have the
impulse response. In a practical situation with a real system, you would need to
stimulate the system with an impulse to find this response. One of the problems pre-
sents a more realistic situation where the system input and output are available, and
the impulse response must be found in order to determine the system’s frequency 
characteristics.

9.3 RESONANCE

Resonance is a behavior that may occur in almost any system. It is a frequency-
dependent behavior characterized by a sharp increase (or decrease) in some system
variables over a limited range of frequencies. It occurs frequently in mechanical and
electrical systems and is a particularly useful behavior in chemical and molecular
systems. Sometimes it is beneficial and exploited: Proton resonance is used in mag-
netic resonance imaging and optical resonance is used in spectroscopy to identi-
fying molecular systems. However, it can also be undesirable, particularly in
mechanical systems: Shock absorbers are placed on cars to increase damping and
reduce the resonant properties of automotive suspension systems. Resonance will
be discussed in terms of mechanical and electrical systems because these systems
have already been well studied here, but most of the concepts are broadly 
applicable.
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9.3.1 Resonant Frequency

In electrical and mechanical systems, resonance occurs when the impedance of an
inertial-type element (mass or inductor) equals and cancels the impedance of a
capacitive-type element. Consider the impedance of a series RLC circuit shown in
Figure 9.11.

In the frequency (phasor) domain, the impedance of this series combination is:

[Eq. 9.17]

At some value of w, the capacitor’s impedance will be equal to the inductor’s imped-
ance and the two impedances will cancel. This will leave only the resistor to con-
tribute to the total impedance. To determine the frequency at which this cancellation
takes place, simply set the impedances equal and solve for frequency:

[Eq. 9.18]

where wo is the resonant frequency. Note that this is the same equation as for the
undamped natural frequency, wn, in a second-order representation of the RLC circuit
(see Eq. 8.47). If we were to plot the magnitude of the impedance in Eq 9.17, we
would get a curve that reached a minimum value of R at w = wo with the curve
increasing on either side (Figure 9.12). The sharpness of the curve would relate to
the bandwidth of the resonant system as discussed in the next system.

9.3.2 Resonant Bandwidth, Q

When a system approaches the resonant frequency, the system variables (voltage–
current or force–velocity) will increase (or decrease) to a maximum (or minimum).
The sharpness of that curve will depend on the energy dissipation element (resis-
tance or friction). Figure 9.13 shows an RLC circuit configured as an input–output
system and Figure 9.14 shows the magnitude frequency characteristics for four
values of resistance: 0.1, 1, 10, and 100 W. Figure 9.14 shows that the transfer func-
tion peak occurs at the same frequency for all values of R. This is expected since
the resonant frequency is a function of only L and C (Eq. 9.18). Specifically, the
peak occurs at wo LC= = =- -1 1 10 10 100 0004 6 , .rad sec
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Figure 9.11 A series RLC circuit.



Peak sharpness increases as R decreases. In the configuration shown in Figure
9.13, the circuit is a bandpass filter; however, if the resistor and capacitor were inter-
changed, the circuit would be a lowpass filter as used in previous examples.
Nonetheless, it would still have a resonant peak at the same frequency and the sharp-
ness of the peak would vary in the same manner. This is demonstrated in a problem
at the end of this chapter.

The sharpness of the frequency curve around the resonant frequency is a very
important property of a resonant system. This characteristic is often described by
a number know as Q, which is defined as the resonant frequency divided by the
bandwidth:

[Eq. 9.19]Q
BW

o=
w
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Figure 9.12 The impedance of series RLC combi-
nation as a function of frequency. R = 10 W, L = 1 h,
and C = 1 f.

Figure 9.13 RCL circuit with realistic
values for L and C. The transfer function
frequency characteristics of this circuit are
shown in Figure 9.14 for four different
values of R.



where wo is the resonant frequency and BW is the bandwidth, the difference between
the high frequency cutoff and the low frequency cutoff (-3-dB points). This defin-
ition is also referred to as selectivity as Q has an alternate, classical definition
described below.

Classically, Q was defined in terms of energy storage and energy loss to describe
how close energy storage elements such as inductors and capacitors approach the
ideal. Ideally, such elements should only store energy, but real elements also dissi-
pate energy due to parasitic resistance. In this context, Q is defined as the energy
stored over the energy lost in one cycle:

[Eq. 9.20]

To calculate this for an inductor, assume an inductor having inductance L also has
a parasitic resistance of R W. The energy lost in this resistor over one sinusoidal
cycle would be equal to the power integrated over the cycle, and power is just V i,
or for a resistor, Ri

2. Assuming the current through the resistor is iR(t) = I sin(wot),
the energy lost becomes:

The energy stored in an inductor is also the integral of v i over one cycle. The current
through the inductor is the same as through the resistor, iL(t) = I sin(wot), and the
voltage is L times the derivative of the current:
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Figure 9.14 Magnitude frequency characteristics of the
transfer function of the RLC circuit shown in Figure 9.13 with
four different resistor values. The resonant frequency 
100,000 rad/sec depends only on L and C, but sharpness of
the curve depends strongly on R.



Plugging in the two energies into Eq. 9.20, the Q of an inductor becomes:

[Eq. 9.21]

Similarly, it is possible to derive the Q of a capacitor having a capacitance value
C and a parasitic resistance R as:

[Eq. 9.22]

However, in an LC circuit, most of the parasitic resistance will be from the inductor.
Based on these definitions, it is possible to derive Eq. 9.19 from the definition of

bandwidth. Returning to the RLC circuit in Figure 9.13, the transfer function of
this circuit can be written as:

where Z(w) is just the series R, L, C impedance. Z(w)/R can also be written as:

This allows us to substitute in the definitions of Q for an L and C into the equa-
tion for Z/R:

[Eq. 9.2]

The bandpass frequency curves shown in Figure 9.14 have two cutoff frequencies,
wlow and whigh. From the definition of bandwidth, at these two cutoff frequencies the
Transfer function is reduced by 0.707|TF(whigh and low)| = 0.707 |TF(w = wo)|. However,
at the resonant frequency, Z(w = wo) = R, and TF(w = wo) = 1.0. Hence, at the cutoff
frequencies |TF(whigh and low)| = 0.707. So to find the bandwidth (which is just
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the difference between the cutoff frequencies), set and solve 

for whigh and wlow. Setting the magnitude of Eq. 9.23 to , we get the following:

There are two solutions to the equation: one for +1 and the other for -1:

We can also relate Q to the standard coefficients of a second-order underdamped
equation. Again referring to the RLC circuit in Figure 9.13, the transfer function in
terms of the Laplace variable s is:

where wn ∫ wo. Equating coefficients:

[Eq. 9.24]

The inverse relationship between Q and d is straightforward.

Example 9.5: Find the Q of the mechanical system below. The system coefficients
are kf = 6 dyne-sec/cm; m = 8 gm; ke = 10 dyne/cm.
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Solution: Q can be determined directly from d in transfer function using Eq. 9.24.
(Alternatively, we could determine d directly from the Eq. 8.55.) Applying standard
analysis:

Equating coefficients:

Example 9.6: Plot the frequency characteristics and impulse response of a second-
order system in which Q = 1, 10, and 100. Assume a resonant frequency of 
1,000 rad/sec and use MATLAB.

Solution: Begin by using the standard second-order transfer function, but substi-
tute Q for d. Convert to phasor domain to plot the frequency response and to a
time function for the time responses.

To find the frequency response, convert to phasor and plot for the requested values
of Q:

To find the impulse response, take the inverse Laplace transform of the transfer
function. Since Q is equal to, or greater than 1.0, d will be less than, or equal to
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0.5, so the system is underdamped and entry no. 15 in the Laplace transform table
can be used:

The frequency and time domain equations are incorporated into the program below.

% Example 9.6
%
clear all; close all;
wn = 1000; % Define resonant frequency
w = (100:10:10000); % Define a frequency vector
t = (10^-5:10^-5:.2); % Define a time vector
Q = [1 10 100]; % Define Q’s
for k = 1:3 % Calc and plot the 

% frequency plots
TF = 1./(1-(w/1000).^2 + j*w/(Q(k)*1000));
TF = 20*log10(abs(TF));
semilogx(w,TF,’k’); hold on;

end
xlabel(‘Frequency (rad/sec)’); ylabel(‘TF(w) (dB)’);
axis([100 10000 -40 50]);
%
% Now construct the impulse responses
figure;
for k = 1:3 % Cal. and plot the time 

% response
d =sqrt(1-1/(4*Q(k)^2)); % Define -d2
x = (wn/d)*(exp(-wn*t/(2*Q(k)))).*sin(wn*d*t);
subplot(3,1,k); % Plot separately for 

% clarity
plot(t,x,’k’);
ylabel(‘x(t)’);

end
xlabel(‘Time (sec)’);

This program generates the plots shown in Figures 9.15 and 9.16. Figure 9.15 reit-
erates the message in Figure 9.14; that high-Q systems have sharp resonance peaks.

In the time domain, high Q corresponds to sustained oscillations, a sinusoid at
the resonance frequency that diminishes very slowly (Figure 9.16). A common
example of a high-Q mechanical system is a large church bell where the tone con-
tinues to sound long after it is stuck with something very like an impulse. In fact,
this sustained oscillation is a characteristic of a high-Q system and is sometimes
referred to as ringing.
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Figure 9.15 Frequency characteristic of a second-order system with
a Q of 1, 10, and 100.

Figure 9.16 Time plot of the impulse response of a second-order
system with a Q of 1, 10, and 100.



If a high-Q circuit is used as a filter, it can be quite selective with regard to the
frequencies it allows to pass though. This is demonstrated in Example 9.7.

Example 9.7: Generate a sinusoidal waveform that continually increases in fre-
quency with time. The frequency should increase from 1 to 500 rad/sec over a 5-
second period. Assume a sampling frequency of 1 kHz. Pass this signal though the
RLC circuit of Figure 9.13 with a Q of 10 and plot the output. Repeat for three
values of resonant frequency: wo = 50, 125, and 250 rad/sec. Use convolution in
conjunction with the filter’s impulse response to implement the filter. (To make life
easier for us, we can use the impulse response from Example 9.6 setting wo and Q
as desired.)

Solution: One of the challenges of this problem is generating the input signal. We
need a sinusoid that linearly increases with frequency over a 5-second period
between 1 and 1,000 rad/sec. Such a signal is termed a chirp signal because of the
way it sounds if it is sent to an audio device. (If you have a sound system on your
computer, try typing sound(xin,1000) in MATLAB after executing Example 9.7
from the disk.) The chirp signal can be very useful in certain signal processing oper-
ations since it contains a range of frequencies that vary in a well-defined manner
with time.

To construct the chirp signal, we first define a time vector, t, that goes from 0 to
5 in steps of 0.001. This time vector is then used to construct a frequency vector of
the same length that ranges from 0 to 250 (i.e., w = 50 t) adding 1 to account for
the beginning frequency of 1.0 rad/sec. The chirp signal is then constructed as the
sine of the product of w and t (i.e., sin(w.*t)) so that the frequency increases as
t increases. We then define the impulse response used in Example 9.6 to have a Q
of 10, but use three different resonant frequencies, wn. Convolve the input signal
with the impulse response and remove the additional points produced by MATLAB’s
conv routine. (Alternatively, we could use filter.) This strategy is implemented in
the code below.

% Example 9.7
%
clear all; close all;
wn = [50 125 250]; % Define resonant 

% frequencies
Q = 10; % Define Q
t = (0:.001:5); % Define time vector (0-1 

% sec; Ts = .001)
w = 50*t + 1; % Frequency goes from 1 

% to .250 rad/sec
xin = sin(w.*t); % Generate input signal 

% (a “chirp” signal)
plot(t(1:1000),xin(1:1000),’k’); % Plot a segment of the 

% chirp signal
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xlabel(‘Time (sec)’); ylabel(‘xin(t)’)
%
figure;
for k = 1:3 % Calculate impulse 

% response
d =sqrt(1-1/(4*Q^2));
delta = (wn(k)/d)*(exp(-wn(k)*t/(2*Q))).*sin(wn(k)*d*t);
xout = conv(xin, delta); % Filter xin
xout = xout(1:length(t)); % Remove extra points
subplot(3,1,k); % Plot separately
plot(t,xout,’k’);
ylabel(‘xout(t)’);

end
xlabel(‘Time (sec)’);
%
figure;
% Plot frequency characteristics of chirp
XOUT = abs(fft(xin));
f = (1:5000)/5; % Construct frequency

vector for plotting
plot(2*pi*f(1:1000),XOUT(1:1000));
xlabel(‘Frequency (rad/sec)’); ylabel(‘Mag. Chirp’);

Analysis: After defining the constants wn and Q, the time and frequency vectors
are constructed. The chirp signal is generated by taking the sin of the (point-by-
point) product of the frequency and time vectors. The first 1 second of the chirp
signal is plotted in Figure 9.17 and shows the expected sinusoid that is increasing
with frequency.
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Figure 9.17 Time plot of a chirp signal, a sinusoidal signal whose
frequency increases linearly with time.



The rest of the program is the similar to that of Example 9.6 except that Q is
constant and the resonant frequency is modified. When the chirp passes thought
this moderately high-Q filter, only that portion of the signal that is around the res-
onant signal is allowed to pass. Since the chirp signal’s frequency depends on time,
the signal will pass though the RLC filter at a time corresponding to the filter’s res-
onant frequency. For example, the chirp signal’s frequency approaches 50 rad/sec at
0.5 seconds so when the resonant frequency of the filter is 50 rad/sec, only the signal
around 0.5 seconds passes through the filter to the output (Figure 9.18, upper
curve). The chirp signal reaches a frequency of 250 rad/sec at 2.5 seconds so this
portion of the signal is selected when the filter resonant frequency is 250 rad/sec
(Figure 9.18, lower curve). The frequency selectivity of a high-Q filter is well demon-
strated in Figure 9.18.

The last section of the programs plots the frequency spectrum of the chirp signal
using the standard fft command. The spectrum is seen in Figure 9.19 to be rela-
tively flat, containing a mixture of all frequencies between 0 and 100 rad/sec.

9.4 SUMMARY

Complex systems composed of many modules represented by transfer functions can
easily be analyzed using algebra. The overall transfer function of two or more
modules in sequence is just the product of the individual transfer functions. In feed-
back systems, the output of a module is connected to the input of a preceding
module. Again, using algebra, it is easy to determine the transfer function for the
feedback system (i.e., the closed-loop transfer function) as was done in Chapter 1
(Eq. 1.7). However, we should remember that the underling assumption regarding
input and output impedances of connected systems must be met (Zin >> Zout).

Convolution is a technique for determining the output of a system to any general
input without leaving the time domain. The approach is based on the impulse
response: the impulse response is used as a representation of the system’s response
to an infinitesimal segment of the input. If the system is linear and superposition
holds, the impulse response from each input segment can be summed to produce
the system’s output. The convolution integral (Eq. 9.12 and Eq. 9.13) is a running
correlation between the input signal and the impulse response. This integration can
be cumbersome for complicated input signals or impulse responses, but is easy to
program on a computer. Basic MATLAB provides two routines, conv and filter,
to perform convolution. (The conv routine actually converts to the frequency
domain using the Fourier transformation, multiplies the two signals, then converts
back to the time domain using the inverse Fourier transform, and this makes it faster
than the filter routine.) Convolution is very commonly used in signal processing
to implement digital filtering, and a simple example of such an application was
found in Example 9.2.

Resonance is a phenomenon commonly found in nature. In electrical and
mechanical systems, it occurs when two different energy storage devices have equal
(but oppositely signed) impedances. During resonance, energy is passed back and
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forth between the two energy storage devices. For example, in an oscillating mechan-
ical system, the moving mass stretches the spring transferring the kinetic energy of
the mass to potential energy in the spring. Once the spring is appropriately com-
pressed (or extended), the energy is passed back to the mass as the spring uncoils.
Without friction, this process would continue forever, but friction removes energy
from the system so the oscillation gradually decays. The quantity Q, is a measure
of the ratio of energy storage capabilities of the mass and spring to the energy dis-
sipation caused by the friction. The higher the Q, the longer the resonance will con-
tinue, before all the energy is removed. Electrical RLC circuits behave in exactly the
same way passing energy between the inductor and capacitor while the resistor
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Figure 9.18 The output of the RLC filter to the chirp signal shown in Figure 9.17. The
filter’s ability to select a specific frequency range is shown for three different resonant fre-
quencies: wo = 50, 125, and 200 rad/sec.



removes it from the system. (Recall both friction and resistance remove energy in
the form of heat.)

PROBLEMS

1. A second-order system has an wn of 10 rad/sec and a d of 0.5. This system
becomes the feedforward element [i.e., G(s)] of a feedback system where the
feedback element, H(s), is a constant of k [i.e., H(s) = k]. What should be the
value of k to double the resonant frequency of the overall feedback system?
What is the value of d in the feedback system? (Hint: For G(s) use the standard

(unity gain) second-order transfer function: )

2. A second-order system has an wn of 1 rad/sec and a d of 0.1. This system
becomes the feedforward element [i.e., G(s)] of a feedback system where the
feedback element, H(s), has a transfer function of ks [i.e., H(s) = ks]. What
should be the value of k to make the overall feedback system critically damped
(i.e., d = 0.707)? Use the same transfer function for G(s) as in Problem 9.1.

(Note: Feedback of the form ks is referred to as

derivative feedback for obvious reasons.)
3. In the RLC circuit shown below, what should be the values of C and R so the

circuit has a resonant frequency of 1,000 rad/sec and a bandwidth of 50 rad/sec.
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s

s a+
Ê
Ë

ˆ
¯

w
dw w

n

n ns s

2

2 22+ +
.

9.2 THE CONVOLUTION INTEGRAL 367

Figure 9.19 Frequency spectrum of the chirp signal shown in Figure 9.17.
The spectrum is essentially flat between 0 and 500 rad/sec.



(Hint: To meet the bandwidth requirements, find Q, then the required value for
R.)
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MATLAB Problems

4. Use convolution to solve for the step response, u(t), of the mechanical system
in Figure 9.13. First find the transfer function, F(s)/u(s), then take the inverse
Laplace transform to get the impulse response. Program this inverse impulse
response in MATLAB as in Example 9.2. (Hint: You can use a modified version
of the code in Example 9.3 to generate the step input and response.)

5. The impulse response of a filter is given by the four sequential data points below.

(A) Apply this filter to the same chirp signal used in Example 9.5 except make
the maximum chirp frequency 1,500 rad/sec and plot the response.

(B) Determine and plot the frequency characteristics of this filter by taking the
Fourier transform of the impulse response. To improve the frequency plot,
pad the response to 256 points or more.

This filter is known as a four-coefficient Daubechies filter, and is one of
a family of filters used in Wavelet analysis.

6. Repeat Problem 9.5 above using a simple three-coefficient moving average–type
filter.

Note that when this impulse response is applied to input data through convo-
lution, it constructs an output that is an average of every three points in the
input. Intuitively, this will reduce large point-to-point changes in the data. Such
sharp changes are associated with high frequencies so this should act as a
lowpass filter. Plotting the Fourier transfer in part B will confirm this. Finally,
make note of the fact that even a very simple impulse response function can
have a significant impact on the data when applied as a filter. (Hint: this problem
and the next can be solved with only minor modifications of the code devel-
oped to solve Problem 9.5.)
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7. Repeat Problem 9.4 for one of the simplest of all filters consisting of only two
coefficients:

This filter which acts as a two-point moving average is known as the Haar filter,
and although it is not a very strong filter, it is useful in demonstrating some of
the principles of Wavelet analysis.

8. Load the MATLAB data file “filter1.mat” and apply the impulse response vari-
able h contained in that file using convolution to the EEG signal in
eeg_data.mat. (Recall this file contains variable eeg.) Plot the EEG data before
and after filtering as in Example 9.2. What does this mystery filter do?

9. Load the MATLAB file bp_filter that contains the impulse response of a band-
pass filter in variable h. Apply this filter to a chirp signal used in Problem 9.5.
Apply the filter in two ways:
A. In the time domain using convolution.
B. In the frequency domain using multiplication. Get the transfer function of

the filter, and the frequency domain representation of the chirp, using the
fft. Multiply the two frequency domain functions (point-by-point), then take
the inverse Fourier transform using MATLAB’s ifft function to get the
time domain output. Compare the two time-domain responses. (Hint: To
multiply the two frequency domain functions together using point-by-point
multiplication, they must be at the same length, so when you take the fft
of the filter impulse response, pad it to be the same length as the chirp signal.
In addition, ifft produces a very small imaginary component in the output,
which will generate an error message in plotting, although the plot will still
be correct. This error message can be eliminated by plotting only the real
part of the output variable [e.g., real(xout)].)

10. Load the MATLAB data file “x_impulse,” that contains the impulse response
of an unknown system in variable h. Find the frequency characteristics of that
unknown system in two ways: (a) use convolution to probe the system’s
response to a series of sinusoids; and (b) by taking the Fourier transform of the
impulse response as in Example 9.4. When generating the sinusoids you will
have to guess at how long to make them and what sampling rate to use. (Sug-
gestion: A 1.0-second period and a sampling frequency of 2 kHz would appear
to be a good place to start.)

11. Find the transfer function in the phasor domain of an RLC circuit similar to
that of Figure 9.11 except reverse the positions of the resistor and capacitor.
Plot the frequency characteristics for the same four values of R (0.1, 1.0, 10,
100 W).

12. Repeat Problem 9.11 above, but reverse the positions of the resistor and 
inductor.
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10 BASIC ANALOG
ELECTRONICS:
OPERATIONAL AMPLIFIERS

Electronics circuits come in two basic varieties: analog and digital. Digital circuits
feature electronic components that produce only two voltage levels, one high, and the
other low. This limits the signals they can process to only two values such as zero and
one. To transmit information, these high/low values, termed bits, are combined in
groups to make up a binary number. Groupings of eight are common and an 8-bit
binary number is called a byte. Bytes can be combined to make larger binary numbers
or can be used to encode alphanumeric characters, most often in a coding scheme
know as American Standard Code for Information Exchange (ASCII) code. Digital
circuits form the basis of all modern computers and microprocessors. Although most
medical instruments contain one or more small computers (i.e., microprocessors)
along with related digital circuitry, bioengineers are not usually concerned with their
design. They may be called on to develop some, or all, of the software, but not the
actual electronics, except perhaps for some basic interface circuits.

Analog circuit elements support a continuous range of voltages and the infor-
mation they carry is usually encoded as a time-varying continuous signal, similar to
those used throughout this text. All of the circuits described thus far have been
analog circuits. Analog circuitry is a necessary part of most medical instrumenta-
tion because the devices that perform physiological measurements, so-called trans-
ducers or biotransducers, usually produce analog electric signals. This includes
devices that measure movement, pressure, bioelectric activity, sound and ultrasound,
light, and other forms of electromagnetic energy. Bioelectric signals such as the 
electroencephalogram (EEG), electrocardiogram (ECG), and electromyelogram
(EMG) are also considered analog signals. Before any of these analog signals can
be processed by a digital computer, some type of manipulation is usually required
while the signals are still in the analog domain. This analog signal processing may
consist only of increasing the amplitude of the signal, but may also include filtering
and other basic signal-processing operations. Unlike digital circuitry, the design of
analog circuits is often the responsibility of the bioengineer. After analog signal pro-
cessing, the signal is usually converted to a digital signal using an analog-to-digital
converter. The components of a typical biomedical instrument are summarized in
Figure 10.1.



This chapter discusses the design and construction of some basic analog circuits
such as amplifiers and filters. The design of biotransducers, often the most impor-
tant biomedical instrument, can be found elsewhere (Northrop, 2004) along with
the development of signal-processing software (Semmlow, 2004).

10.1 THE AMPLIFIER

Increasing the amplitude or gain of an analog signal is termed amplification and is
achieved using an electronic device known as an amplifier. The properties of an
amplifier are commonly introduced using a simplification called the ideal amplifier.
Under this pedagogical scenario, the properties of a real amplifier are described as
deviations from the idealization. In many practical situations, real amplifiers closely
approximate the idealization in most of their properties: The limitations of real
amplifiers, the deviations from the ideal, become important only in more challeng-
ing applications. Nevertheless, the bioengineer involved in circuit design must know
these limitations to understand when a typical amplifier circuit is being challenged.

An ideal amplifier is one that has a well-defined gain at all frequencies (or at least
over a specific range of frequencies), has an ideal source for an output (i.e., Zout is
zero), and presents an ideal load to the input (i.e., an infinite input impedance, Zin).
As a systems element, an ideal amplifier is simply a pure gain term, with ideal input
and output properties. The electrical schematic and system representation of an ideal
amplifier is shown in Figure 10.2.

The transfer function of this amplifier would be:

[Eq. 10.1]

where G would usually be a constant, or a function of frequency.
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Figure 10.1 Basic elements of a typical biomedical instrument.



Many amplifiers have a differential input configuration; that is, there are two
separate inputs and the output is a constant times the difference between the two
inputs. Stated mathematically:

[Eq. 10.2]

The schematic for such a differential amplifier is shown in Figure 10.3. Note that
one of the outputs is labeled +, the other -, to indicate how the difference is taken.
(It is common to draw the negative input above the positive input.) The + the ter-
minal is known as the noninverting input, whereas the - terminal is referred to as
the inverting input.

V G V Vout in in= -( )2 1
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Figure 10.2 Schematic (left) and block diagram (right) of an ideal ampli-
fier with gain of G.

Figure 10.3 An amplifier with a
differential input configuration.
The output of this amplifier would
be G times Vin2 - Vin1; i.e., Vout =
G(Vin2 - Vin1).

Some transducers, and a few amplifiers, produce a differential signal, actually
two signals that move in opposite directions with respect to the information they
represent. For such differential signals, a differential amplifier is ideal, because it
takes advantage of both input signals. Moreover, the subtraction tends to cancel
any signal that is common to both inputs, and noise is often common (that is,
similar) to both inputs. However, usually only a single signal is available. In these
cases, a differential amplifier can still be used, but one of the inputs is set to zero
by grounding. If the positive input is grounded and the signal is sent into the neg-
ative input (Figure 10.4, left side), the output will be the inverse of the input:

[Eq. 10.3]

In this case the amplifier can be called an inverting amplifier for obvious reasons.
If the opposite strategy is used and the signal is sent to the positive input while the

V GVout in= -



negative input is grounded as in Figure 10.4 (right side), the output will have the
same direction as the input. This amplifier is termed a noninverting amplifier.
(Somewhat of a double negative.)

10.2 THE OPERATIONAL AMPLIFIER

The operational amplifier, or op amp for short, is a basic building block for a wide
variety of analog circuits. One of its first uses was to perform mathematical oper-
ations, such as addition and integration in analog computers, hence the name oper-
ational amplifier. Although the functions provided by analog computers are now
performed by digital computers, the op amp remains a valuable, perhaps the most
valuable, tool in analog circuit design.

In its idealized form, the op amp has the same properties as the ideal amplifier
described above except for one curious departure: it has infinite gain. Thus, an ideal
op amp has infinite input impedance (i.e., an ideal load), zero output impedance
(i.e., an ideal source), and a gain, Av, of infinity. (The symbols Av or AVOL are com-
monly used to represent the gain of an operational amplifier.) Obviously, an ampli-
fier with a gain of infinity is of limited value, so an op amp is rarely used alone but
usually used in conjunction with other elements that reduce its gain to a finite level.
Negative feedback can be used to limit the gain.

Consider the feedback system in Figure 10.5. The gain of the system can be found
from the basic feedback equation first introduced in Chapter 1 (Eq. 1.7) and again
in the last chapter (Eq. 9.3). Inserting AV and b into the feedback equation, the
overall system gain, G, becomes:

[Eq. 10.4]

Letting the feedforward gain, AV (the gain of the operational amplifier) go to 
infinity:
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Figure 10.4 A differential amplifier configured as an inverting (left) and
noninverting (right) amplifier.



If the overall gain is expressed in decibels (dB), then:

[Eq. 10.6]

If b < 1, then the gain G will be >1 and if b = 1, G = 1. A b > 1 would lead to a
gain <1 and a reduction in signal amplitude. If a reduction is gain is desired, it is
easier to use a passive voltage divider, so in operational amplifier circuits, the feed-
back gain, b, will always be £1 to achieve a gain ≥1. The need for a feedback gain
that is £1 turns out to be advantageous since gains <1 can be easily achieved using
a simple voltage-divider network. A voltage divider network is just a pair of resis-
tor in series where one of the resistors is attached to ground and the reduced voltage
is taken from the point between the two resistors (details will be given in the next
section). A feedback gain of b = 1 can be obtained even easier, just feedback all of
the output back to the input.

The approach of beginning with an amplifier that has infinite gain, then reduc-
ing that gain to a finite level with the addition of feedback, would appear to be
needlessly convoluted. Why not design the amplifier to have a fixed, finite gain to
begin with? The answer to this question can be summarized in two words: flexibil-
ity and stability. If feedback is used to set the gain of an op amp circuit, only one
basic amplifier needs to be produced and the desired gain for a specific application
can be achieved by the feedback network. More important, the feedback network
is usually implemented using passive resistors (sometimes a capacitor may also be
involved) and such passive components are more stable than transistor-based ampli-
fiers—that is, they are more immune to fluctuations due to temperature, age, and
other environmental factors than active elements. Passive elements can also be more
easily manufactured to tighter tolerances than active elements. For example, it is
easy to buy resistors that have a 1% error in their values while most common tran-
sistors have variations in their gain by a factor of two or more (i.e., 100% error).
Finally, a wide variety of different feedback configurations can be used allowing one
operational amplifier chip to perform many different signal-processing operations.
Some of these different functions are explored in the section on op amp circuits at
the end of this chapter.
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Figure 10.5 A basic feedback control system used to
illustrate the use of feedback to set a finite gain in a
system that has infinite feedforward gain, AV.



10.3 THE NONINVERTING AMPLIFIER

Negative feedback can be achieved by feeding the output back to the inverting (i.e.,
negative) input of an op amp using a simple voltage divider. Consider the voltage
divider network in Figure 10.6.

The feedback voltage can be found by the simple application of KVL. Assuming
that Vout is an ideal source (which it will be because it will be the output of an ideal
amplifier):

[Eq. 10.7]

For the system diagram in Figure 10.5, we see that b = Vfbk/Vout. Using Eq. 10.7 we
can solve for b in terms of the voltage divider network:
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Figure 10.6 A voltage divider network
that can be used to feed back a portion
of the output signal to the inverting 
or negative input of an operational
amplifier.



The transfer function, or gain, of an operational amplifier circuit that uses feedback
to set the gain is just 1/b (Eq. 10.5):

[Eq. 10.9]

An op amp circuit using this feedback network is shown in Figure 10.7. The gain
of this amplifier is given in Eq. 10.10. Because the input signal is fed to the posi-
tive side of the op amp, this circuit is a noninverting amplifier.

The transfer function for this circuit for the circuit in Figure 10.7 can also be
found by circuit analysis, but a couple of helpful rules are needed.

1. Since the input resistance of the op amp approaches infinity, there will be no
current flowing into, or out of, either of the op amp’s input terminals.

2. Since the gain of the op amp approaches infinity, the only way the output can
be finite is if the input is zero—that is, the difference between the plus input and
the minus input must be zero. Stated yet another way, the voltage on the plus
input terminal must be the same as the voltage on the minus input terminal of
the op amp and vice versa.

In practical op amps, the gain is large (up to 106) but not infinite, so the voltage
difference in a practical op amp circuit might be a few millivolts, but this small dif-
ference can generally be ignored. Similarly, the input resistance, while not infinite,
is quite large: values of rin (resistances internal to the op amp are denoted in lower
case) are usually greater than 1012 W so that any input current will be very small
and can be disregarded (especially since the input voltage must be zero or at least
very small). Note that the input characteristics of an op amp with feedback are a
little peculiar: no current flows into its inputs and its differential input voltage is
zero. We use these two observations to solve for the transfer function of a nonin-
verting amplifier in the following example.
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Figure 10.7 Noninverting op amp
circuit. The gain of this op amp circuit
in terms of the feedback resistors is
given in Eq. 10.9.



Example 10.1: Find the transfer function of the noninverting op amp circuit in
Figure 10.7 using network analysis.

Solution: First note that by Rule 2, the voltage between the two resistors must be
Vin since Vin is applied to the lower terminal and the voltage difference between the
two terminals is zero. Next, define the three currents in and out of the node between
the two resistors and apply KCL to that node. Substitute in the voltages for the cur-
rents and solve for Vout/Vin.
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by KCL: -i1 - iin + if = 0, but iin = 0 according to Rule 1.
Hence, if -i1 - iin + if = 0; then i1 = if.
Applying Ohm’s law:

Solving for Vout:

and the transfer function becomes:

This is the same transfer function that was found using the feedback equation 
(Eq. 10.9).
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The transfer function of the inverting amplifier circuit is somewhat different from
that of the noninverting amplifier, but can be easily found using the same approach
(and tricks) used in Example 10.1.

Example 10.2: Find the transfer function, or gain, of the inverting amplifier circuit
shown in Figure 10.8.

Solution: Define the currents and apply KCL to the point between the two resis-
tors. Note that in this circuit the point between the two resistors must be at 0 V
according to Rule 2. Since the plus side is grounded and the difference between the
plus and minus side must be zero, the minus side is effectively grounded. The invert-
ing input terminal is sometimes referred to as a virtual ground in the inverting ampli-
fier configuration.
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Figure 10.8 The operational amplifier circuit
used to construct an inverting amplifier.

As in Example 10.1, we apply KCL to the inverting terminal and find that: 
i1 = if and by Ohm’s law:
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10.4 THE INVERTING AMPLIFIER

To construct an amplifier circuit that inverts the input signal, the ground and signal
inputs of the noninverting amplifier are reversed as shown in Figure 10.8.



Again solving for Vout/Vin:

[Eq. 10.10]

Note the negative sign demonstrating that this is an inverting amplifier: The output
is the negative, or inverse, of the input. The output is also larger than the input by
a factor of Rf/R1. If R1 > Rf, the output will actually be reduced. The important
factor is that the circuit designer has control over the gain of this circuit simply by
varying the values of R1 and/or Rf. If one of the resistors were variable (i.e., a poten-
tiometer), the amplifier would have a variable gain. This holds for both inverting
and noninverting amplifier circuits although the gain equations are different 
(Eq. 10.9 versus Eq. 10.10).

Example 10.3: Design an inverting amplifier circuit with a variable gain between
10 and 100. Assume you have a variable 1-MW potentiometer; that is, a resistor
that can be varied between 0 and 1 MW. Also assume you have available a wide
range of fixed resistors.

Solution: The amplifier circuit will have the general configuration of Figure 10.8.
It is possible to put the variable resistance as part of either Rin or Rf, but let us
assume that the potentiometer is part of the latter along with a fixed series resis-
tance. (Later we will see that there is some advantage to putting the variable 
resistor in the feedback path, Rf. The circuit then becomes:
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Because the variable resistor is in the feedback path, we will vary feedback resis-
tance, Rf, to get the desired gain variation. Assume that the variable resistor will be
0 W when the gain is 10 and 1 MW when the gain is 100. We can write two equa-
tions based on Eq. 10.10 for the gain limits and solve for our two unknowns, R1

and R2.
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For G = 100 the variable resistor is 106 W:

The final circuit becomes:
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The equation for gain of noninverting and inverting op amp circuits can be
extended to include feedback networks that contain capacitors and inductors. To
modify these equations to include components other than resistors simply substi-
tute impedances for resistors. So the gain equation for a noninverting op amp circuit
becomes:

[Eq. 10.11]

and the equation for an inverting op amp circuit becomes:

[Eq. 10.12]

10.5 PRACTICAL OPERATIONAL AMPLIFIERS

Practical op amps, the kind that you buy from electronics supply houses, differ in
a number of ways from the idealizations used above. In many applications, perhaps
most applications, the limitations inherent in real devices can be ignored. The
problem is that the bioengineer designing analog circuitry must know when the lim-
itations are important and when they are not, and to do this, it is necessary to under-
stand the characteristics of real devices. Only the topics that involve the type of
circuits the bioengineer is likely to encounter are covered here. Several excellent ref-
erences can be found to extend these concepts (particularly Horowitz and Hill,
1989).

Deviations of real op amps from the ideal op amp can be classified into 
three general areas: deviations in input characteristics, deviations in output 
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characteristics, and deviations in transfer characteristics. Each of these areas is dis-
cussed in turn, beginning with the area likely to be of utmost concern to biomed-
ical engineers, transfer characteristics.

10.5.1 Limitations in Transfer Characteristics of Real 
Operational Amplifiers

The most important limitations in the transfer characteristics of real op amps are
bandwidth limitations and stability. In addition, real op amps have large, but not
infinite, gain. Bandwidth limitations occur because an op amp’s magnitude gain is
not only finite, but decreases with increasing frequency. Stability, or rather the lack
of stability that results in oscillations, is due to the op amp’s increased phase shift
with increasing frequency.

10.5.1.1 Bandwidth

The magnitude frequency characteristics of a popular op amp, the LF 356, are
shown in Figure 10.9. Not surprisingly, even at low frequencies, the gain of this op
amp is less than infinity. This in itself would not be a cause for much concern because
the gain is still quite high: approximately 106 dB or 199,530. The problem is that
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Figure 10.9 The open-loop magnitude gain characteristics of a popular opera-
tional amplifier, the LF 356.



this gain is also a function of frequency, so that at higher frequencies, the gain
becomes quite small. In fact, there is a frequency above which the gain is actually
less than 1. Thus, at higher frequencies the transfer function equations no longer
hold because they were based on the assumption that op amp gain was infinite.
Because the bandwidth of a real op amp is limited, the bandwidth of an amplifier
using such an op amp must also be limited. Essentially, the gain of an op amp circuit
is limited by the bandwidth limitations of the op amp or the feedback, whichever
is lower. An easy technique for determining the bandwidth of an op amp circuit is
to plot the gain that should be produced by the feedback circuit superimposed on
the bandwidth curve of the real op amp. The former is referred to as the closed-
loop gain because it includes the feedback, whereas the latter is termed the open-
loop gain because it is the gain of the op amp without feedback.

To determine the transfer function of a real op amp circuit, we start with the fact
that the theoretical closed-loop transfer function is 1/b (Eq. 10.5). Since the real
transfer function gain is either this value or the op amp’s open-loop gain, we plot
1/b superimposed on the open-loop curve. The real gain is simply the lower of the
two curves. If the feedback network consists only of resistors, b will be constant for
all frequencies, so 1/b will plot as a straight line on the frequency curve. (Although
real resistors have some small inductance and capacitance, the effect of these para-
sitic elements can be ignored except at very high frequencies.)

For example, assume that 1/10 of the signal is fed back to the inverting terminal
of a real op amp. Then, feedback gain is:

Figure 10.10 shows the open-loop gain characteristics of a typical op amp (LF
356) with the plot of 1/b superimposed (dashed line). The overall gain will follow
the dashed line until it intersects the op amp’s open-loop curve (solid line) where it
will follow that curve (solid line) since this is less. Hence, the amplifier’s magnitude
frequency characteristic will follow the heavy dash-dot lines seen Figure 10.10.
Given this particular op amp and this value of b, the bandwidth of the amplifier
circuit is approximately 50 kHz. The feedback gain, b, is the same for both invert-
ing and noninverting op amp circuits, so this approach for determining amplifier
bandwidth is the same in both configurations. The value 1/b is sometimes referred
to as the noise gain because it is also the gain factor for input noise and errors,
again irrespective of the specific configuration.

Example 10.4: Find the bandwidth of the inverting amplifier circuit below.

b b= = - = =0 1 20 1 10 20. dB and dB
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Solution: First determine the feedback gain, b, then plot the inverse on top of the
open-loop gain curve obtained from the op amp’s specification sheets.

From the superimposed plot, we see that the bandwidth is approximately 200 kHz.
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Figure 10.10 The open-loop magnitude characteristics of the LF 356 (solid line) as
shown in Figure 10.9, with a plot of 1/b = 20 dB superimposed (dashed line). The
overall gain follows the dashed line until it intersects the solid open-loop curve then
follows the open-loop curve.



As shown in Figure 10.9, the magnitude curve of a typical op amp has very high
values at low frequencies, but a fairly low cutoff frequency, followed by a rolloff of
20 dB/decade as in a first-order (or one-pole) lowpass filter. For example, the LF
356 has a low frequency gain of around 106 dB, but a cutoff frequency of only
around 25 Hz. The addition of feedback dramatically lowers the overall gain, but
just as dramatically increases the cutoff frequency. Indeed, the idea of using nega-
tive feedback in amplifier circuits was first introduced to improve bandwidth by
trading reduced gain for increased cutoff frequency.

If the feedback gain is a multiple of 10, as is often the case, the bandwidth can
be determined without actually plotting the two curves. The bandwidth can be deter-
mined directly from the amplifier gain and the frequency at which the open-loop
curve intersects 0 dB. This is the frequency at which the op amp has a gain of 1.0
and is termed the gain bandwidth product (GBP). The GBP is given in the op amp
specifications. For example, the GBP of the LF 356 is 5.0 MHz. Because the high
frequency slope of the op amp magnitude curve is 20 dB/decade, for every 20 dB in
gain, the closed-loop bandwidth decreases 1 decade. At a closed-loop gain of 0 dB,
the bandwidth equals the GBP. For every 20 dB (or factor of 10) above 0, the band-
width is reduced 1 decade. Hence, if an LF 356 with a GBP of 5 MHz is used to
build an amplifier with a gain of 10 (20 dB), the bandwidth will be 5/10 MHz or
500 kHz. If the gain were 100 (40 dB), the bandwidth would be 50.0 kHz, whereas
if the gain were 1,000 (60 dB), the bandwidth would be 5 kHz. Thus, it is often
possible to determine the bandwidth directly, from the GBP, without resorting to
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the open-loop and 1/b plots. If the 1/b gain is not a power of 10, a logarithmic
interpolation is required and it may be easier to revert to the plotting technique.

Example 10.5: Using LF 356, what is the maximum amplifier gain (i.e., close-loop
gain) that can be obtained with a bandwidth of 100 kHz?

Solution: From the open-loop curved given in the Figure 10.9, the open-loop gain
at 100 kHz is approximately 30 dB. Hence, this is the maximum close-looped gain
that will reach the desired cutoff frequency. Designing the appropriate feedback
network to attain this gain (and bandwidth) is straightforward using Eq. 10.9 or
Eq. 10.10.

10.5.1.2 Stability

Most op amp circuits use negative feedback, which is why the feedback voltage, Vfbk,
is fed to the inverting (i.e., minus) input of the op amp. Except in very special situ-
ations, positive feedback is to be avoided. Positive feedback creates a vicious circle:
The feedback signal enhances the feedforward signal which enhances the feedback
signal which enhances . . . , and so forth. A number of things can happen to a posi-
tive feedback network, most of them bad. The two most likely outcomes are that
the output is driven into saturation, locked into producing the maximum (or
minimum) output possible, or the output can oscillate often between the output
extremes. When the word stability is used in context with an op amp circuit, it means
the absence of oscillation or other deleterious effects associated with positive feed-
back. The oscillation that may be produced by positive feedback is a sustained repet-
itive waveform, which could be a sinusoid, but it may also be more complicated.

Positive feedback oscillation occurs in a feedback circuit where the overall gain
or loop gain (i.e., the gain of the feedback and feedforward circuits) is greater than
or equal to one and has a phase shift of 360 degrees:

[Eq. 10.13]

When this condition occurs, any small signal will feedback positively and grow
to produce a sustained oscillation. Sometimes this oscillation will ride on top of the
signal, sometimes it will overwhelm the signal, but in either case, it is unacceptable.

Since the feedback signal is sent to the inverting input of the op amp, positive
feedback should not occur. The noninverting input induces a phase shift of 180
degrees, so the feedback signal is negative (v – 180 ∫ -v). However, if the op amp
induces an additional phase shift of 180 degrees, the negative feedback becomes
positive feedback because the total phase shift is 360 degrees (v – 360 = +v). If the
loop gain happens to be ≥1 when this occurs, the circuit will oscillate: A repetitive
waveform will be generated or saturation will occur. The base frequency of that
oscillation will be equal to the frequency where the overall phase shift becomes 360
degrees; that is, the frequency where the op amp contributes a phase shift of an

Loop gain for oscillation Feedforward gain Feedback gain degrees( ) ∫ ¥ ≥ –1 0 360.
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additional 180 degrees. Hence, oscillation is a result of phase shifts that occur at
higher frequencies in real op amps.

A rigorous analysis of stability is beyond the scope of this text. However, because
stability is so often a problem in op amp circuits, some discussion is warranted.
Since the inverting input contributes 180-phase shift (to make the feedback nega-
tive), to ensure stability we must make sure that everything else in the feedback loop
contributes a phase shift that is less than 180 degrees. If b is a constant, any addi-
tional phase shift must come from the op amp, so all we need are op amps that
never approach a phase shift of 180 degrees. Unfortunately, all op amps will reach
an internal phase shift of 180 degrees if we go high enough in frequency. The alter-
native strategy then is to ensure that when the op amp reaches a phase shift of 180
degrees, the overall loop gain is less than 1.0.

The overall loop gain is just AV(w)b(w). Putting the condition for stability in terms
of the gain symbols we have used thus far, the condition for stability is:

[Eq. 10.14]

where AV is the gain of the op amp at a specific frequency and b is the feedback
gain. Alternatively, if we want to build an oscillator, the condition for oscillation
would be:

[Eq. 10.15]

With respect to b, the worst case for stability occurs when b is the largest. In most
op amp circuits b is less than 1, but can sometimes be as large as 1. A feedback
gain of b = 1 corresponds to the lowest op amp gain: a gain of 1 (Vout = Vin). 
While it is somewhat counterintuitive, this means that stability is more likely to be
a problem in low gain amplifier circuits where b is large, and most likely to be a
problem when the gain is 1.0 since b = 1 in this case.

If the op amp gain, AV, is less than 1.0 when its phase shift hits 180 degrees, and
b is at most 1.0, AV b will be less than 1, and the conditions for stability are met
(Eq. 10.14). Stated in terms of phase, the op amp’s phase shift should be less than
180 degrees for all frequencies where its gain is 1 or more. In fact, most op amps
have a maximum phase shift that is less than 120 degrees to be on the safe side for
gains greater than, or equal to, 1.0. Such op amps are said to be unity gain stable
because they will not oscillate even when b = 1, and the noninverting gain is 1.
However, to achieve this criterion requires some compromise on the part of the op
amp manufacture, usually some form of phase compensation that reduces the GBP.
In many op amp applications where gain is high so that b is low, unity gain stabil-
ity is overkill and results in a needless reduction of bandwidth. Op amp manu-
factures have come up with two strategies to overcome the problem: Produce
different versions of the same basic op amp, one that has higher bandwidth but
requires a minimum gain while another is unity gain stable with a lower bandwidth;
or produce a single version but have the user supply the compensation (usually as
an external capacitor) to suit the needs of the application. The former has become
more popular because it does not require additional circuit components. The LF

Loop-gain oscillation degrees= ( ) ( ) ≥ –AV w b w 1 0 360.

Loop-gain stability degrees= ( ) ( ) < –AV w b w 1 0 360.
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356 is an example of this strategy. The LF 356 with a GBP of 5 MHz is unity gain
stable while its “sister” chip, the LF 357, requires a 1/b gain of 5 or more, but has
a GBP of 20 MHz.

Even if using an op amp that is unity gain stable (such as the LF 356), stability
problems can still occur if the feedback network introduces a phase shift. A feed-
back network containing only resistors might be considered safe, but parasitic ele-
ments, small inductances, and capacitances can create an undesirable phase shift.
Consider the feedback circuit in Figure 10.11 in which a capacitor is placed in par-
allel with one of the resistors. Will this additional capacitance present a problem
with regard to stability?

To answer this question, we need to find the phase shift of the network at the
frequency when the loop gain is one. The loop gain will be 1 when:

[Eq. 10.16]

Hence the loop gain is 1 when 1/b equals the op amp gain AV. On the plot of AV

and 1/b, this occurs when the two curves intersect. In the circuit presented in Figure
10.11, the 1/b curve will not be a straight line, but can be easily found using the
phasor techniques presented in Chapter 4.
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Figure 10.11 A feedback network that
includes some capacitance either due to the
intentional addition of a capacitor or due to
parasitic elements.



Substituting in Z1 and Zf into the inverse of Eq. 10.9 and solving for b:

This is just a low-pass filter with a cutoff frequency of 1.1 ¥ 105 rad/sec or 
17.5 kHz. Figure 10.12A shows the magnitude frequency plot of b while Figure
10.12B shows the 1/b curve plotted superimposed on the open-loop curve of the LF
356 op amp. From Figure 10.12B, the two curves intersect at around 85 kHz.

The phase shift contributed by the feedback network at 85 kHz can be readily
determined from the equation for b. At 85 kHz, w1 = 2p(85 ¥ 103) = 5.34 ¥ 105.

Thus, the feedback network contributes 78 degrees phase shift to the overall loop
gain. While the phase shift of the op amp at 85 kHz is not known (detailed phase
information is not often provided in op amp specifications), we can only be confi-
dent that the phase shift is no more than 120 degrees. Adding the worst-case op
amp phase shift to the feedback network phase shift (120 + 78) results in a total
phase shift that is more than 180 degrees, and this circuit is likely to oscillate. A
good rule of thumb is that the circuit will be unstable if the 1/b curve breaks upward
before intersecting the AV line of the op amp. The reverse is also true: the circuit
will be stable if the 1/b line intersects the AV line at a point where it is flat or going
downward.

If the feedback network can make the circuit unstable, it stands to reason that it
can also make the amplifier less unstable. This occurs when capacitance is added to
the feedback circuit. In fact, the “quick fix” approach to oscillations is to add a
capacitor to the feedback network in parallel with the feedback resistor. This usually
works although the capacitor might have to be large. As shown in the section on
filters, adding feedback capacitance reduces bandwidth and the larger the capaci-
tance the greater the reduction in bandwidth. Sometimes a reduction in bandwidth
is desired to reduce noise, but often it is disadvantageous. The influence of feedback
capacitance on bandwidth is explored in the section on filters, whereas its influence
on stability is demonstrated in Problem 10.6.

10.5.2 Input Characteristics

The input characteristics of a real op amp can best be described as involved, but
not complicated. In addition to a large, but finite, input resistance, rin, several voltage
and current sources are found (Figure 10.13). The values of these elements are given
for the LF 356 in parenthesis. (The curious units for the voltage and current noise
sources, nV/ and pA/ , are explained later.) These sources have very smallHzHz
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Figure 10.12 A: The magnitude frequency plot of the feedback gain, b, of
the network shown in Figure 10.11. B: The inverse of the feedback gain (i.e.,
1/b) plotted superimposed in the AV curve of the LF 356 op amp.



values and can often be ignored, but again, it is important for the bioengineer to
understand the importance of these elements to make intelligent decisions.

10.5.2.1 Input Voltages Sources

The voltage source, vo, is a constant voltage source termed the input offset voltage.
It indicates that the op amp will have a nonzero output even if the input is zero 
(V + -V = 0). The output voltage produced by this small voltage source depends on
the gain of the circuit. To find the output voltage under zero-input conditions (the
output offset voltage), simply multiply the input offset voltage by the 1/b gain, also
known as the noise gain for reasons given later. This is demonstrated in the 
following example.

Example 10.6: Find the offset voltage at the output of the amplifier circuit shown
below. This is the same as asking for Vout when Vin = 0.
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Figure 10.13 A schematic representation of the input elements of
a practical operational amplifier. The input can be thought of as con-
taining several voltage and current sources as well as a large input
impedance.



Solution: First find the noise gain, 1/b, then multiply this by the input offset
voltage, vo (1.0 mV). The value of 1/b is:

Given the typical value of vo as 1.0 mV, Vout for zero input becomes:

The input offset voltage given in the LF 356 specifications (see Appendix F) is a
typical value, not necessarily the value of any individual operational amplifier chip.
This means that the input offset voltage will be around the value shown, but for
any given chip, it could be larger or smaller. It could also be either positive or neg-
ative leading to a positive or negative output offset voltage. Often a maximum or
worst case value is also specified.

The noise voltage source, vn, specifies the noise normalized for bandwidth—more
precisely, normalized to the square root of the bandwidth—which accounts for the
strange units nV/ . Like Johnson noise and shot noise described in Chapter 1
(Section 1.4), noise in an op amp is distributed over the entire bandwidth of the op
amp. To determine the actual noise in an amplifier it is necessary to multiply vn by
the square root of the circuit bandwidth as determined using the methods described
above. This value should then be multiplied by the noise gain (i.e., 1/b) to find the
noise at the output. (We finally see why 1/b is also referred to as the noise gain.)
This procedure is demonstrated in Example 10.7.

Example 10.7: Find the noise at the output of the amplifier used in Example 10.6
that is due only to the op amp’s noise voltage. (The resistors in the feedback network
will also contribute Johnson noise as will the input current noise source, in.)

Solution: Find the noise gain, then determine the bandwidth from 1/b using the
open-loop gain curve in Figure 10.9. Multiply the input noise voltage vn, by the
square root of the bandwidth to find the noise at the input. Then multiply the result
by the noise gain to find the value of noise at the output.
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From Example 10.6, the noise gain is 26, or 28 dB. Referring to Figure 10.9, a
1/b line at 28 dB will intersect AV at approximately 200 kHz. Hence, the bandwidth
can be taken as 200 kHz and the input noise voltage becomes:

The noise at the output is:

The value of input voltage noise used in Example 10.7 was again a typical value
for frequencies above 100 Hz. Op amp noise generally increases at the lower fre-
quencies and many op amp specifications include this information, including those
of the LF 356. For the LF 356 the input voltage noise increases from 12 nV/
at 200 Hz and up, to 60 nV/ at 10 Hz (see Appendix F). Presumably, the voltage
noise becomes even higher at lower frequencies, but values below 10 Hz are not
given for this chip.

10.5.2.2 Input Current Sources

To evaluate the influence of input current sources, it is easiest to convert them to
input voltages by multiplying by the equivalent resistance at the terminals. Figure
10.13 represents the equivalent input resistances at the plus (+) and minus (-) ter-
minals as Req+ and Req-. These would have been determined by using the network
reduction methods described in Chapter 7 and will be illustrated in a subsequent
example. The two current sources shown at the two inputs, ib+ and ib-, are known
as the bias currents and will contribute to the overall offset voltage. If may seem
curious to show two current sources rather than one for both inputs, but this has
to do with the fact that the offset currents at the two terminals are not exactly equal,
although they do tend to be similar. In addition, as with the bias voltage, the bias
currents could be in either direction, in or out of their respective terminals.

To determine this contribution, convert the bias current to voltages by multiply-
ing by the appropriate Req’s, then multiplying by the noise gain. In most operational
amplifiers, the two bias currents are approximately the same, so the influence on
output offset voltage tends to cancel if the equivalent resistances at the two termi-
nals are the same. Sometimes the op amp circuit designer will try to make the equiv-
alent resistances at the two terminals the same just to achieve this cancellation. The
amount that the two bias currents are different, the imbalance between the two cur-
rents, is called the offset current and is usually much less than the bias current. For
example, in the LF 356 typical bias currents are 30 pA while the offset current is
only 3.0 pA, an order of magnitude less.

Figure 10.14 shows an inverting op amp circuit where a resistor has been added
between the positive terminal and ground. The current flowing through this resis-
tor is essentially zero (if you ignore the small bias currents) because the op amp’s
input impedance is quite large. So there is negligible voltage drop across the resis-
tor, and the positive terminal is still at ground potential. This resistor performs no

Hz
Hz

V vn noutput input V= ( ) = ( ) =1 5 37 26 139 6b m. .

vn input V= ¥ ¥ =-12 10 200 10 5 379 3 . m
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function in the circuit except to balance the bias currents. To achieve this balance,
the resistor should be equal to the equivalent resistance at the op amp’s negative
terminal.

To determine the equivalent resistance at the negative terminal, we use the
approaches described in Chapter 7 and make the usual assumption that the input
to the op amp is an ideal source (Figure 10.15A). We also assume that the output
of the op amp is essentially an ideal source. (Op amp output characteristics are
covered in the next section.)

Since the equivalent resistance of an ideal source is 0.0 W, the two resistors go
from the negative terminal to ground and are in parallel. Hence, the equivalent resis-
tance at the negative terminal of an op amp is:

[Eq. 10.17]R
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Figure 10.14 An inverting operational
amplifier with a resistor added to the 
noninverting terminal to balance the bias
currents. Req should be set to equal 
the equivalent resistance on the inverting
terminal.

Figure 10.15 The left circuit is a typical inverting operational amplifier. If the
op amp output, Vout and the input, Vin, can be considered ideal sources, then
the equivalent resistance at the inverting terminal is the parallel combination
of Rf and R1 as shown on the right side.



So to balance the resistances (or impedances) at the input terminals, the resistance
at the positive terminal should be set to the parallel combination of the feedback
and input resistors (Eq. 10.17). Sometimes, as an approximation, the resistance at
the positive terminal is set to equal the lower of the two feedback network resistors
(usually R1). Another strategy is to make this resistor variable, then adjust the resis-
tance to cancel the output offset voltage from a given op amp. This has the advan-
tage of removing any output offset voltage due to the input offset voltage, vo. The
primary downside to this approach is that the resistor must be carefully adjusted
after the circuit is built.

The current noise source is treated the same way as the bias currents: It is 
multiplied by the two equivalent resistances to find the input current noise, then
multiplied by the noise gain to find the output noise. To find the total noise at the
output, it is necessary to add in the voltage noise. Because the noise sources are
independent, they add as the square root of the sum of the squares (see Eq. 1.11).
In addition to the voltage and current noise of the op amp, the resistors will produce
voltage noise as well. To repeat the equation for Johnson noise for a resistor from
Chapter 1 (Eq. 1.8):

[Eq. 10.18]

The three different noise sources associated with an operational amplifier circuit are
all dependent on bandwidth. The easiest way to deal with these three different
sources is to combine them in one equation that includes the bandwidth:

[Eq. 10.19]

This equation gives the summed input noise. To find the output noise, multiply by
the noise gain.

[Eq. 10.20]

Use of this approach to calculate the noise out of a typical op amp amplifier circuit
is shown in Example 10.8.

Example 10.8: Find the noise at the output of the operational amplifier circuit
shown in Figure 10.14 where: Rf = 500 kW, R1 = 10 kW, and Req = 9.8 kW.

Solution: First find the noise gain, 1/b. From 1/b determine the bandwidth of the
amplifier using the open-loop gain curves in Figure 10.9. Apply Eq. 10.19 to find
the total input voltage noise including both current and voltage noise. Then multi-
ply this voltage by the noise gain to find output voltage noise.

The noise gain is:

From the specifications of the LF 356, vn = 12 nV/ and in = 0.01 pA/ . The
equivalent resistance at the negative terminal is found from Eq. 10.17 to be 9.8 kW
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(the parallel combination of 500 kW and 10 kW). For a 1/b of 51, the bandwidth is
approximately 100 kHz (Figure 10.9). Using T = 310°K, 4 kT is 1.7 ¥ 1020 J, Eq.
10.17 becomes:

The noise at the output is found by multiplying by the noise gain:

One advantage to including all the sources in a single equation is that the relative
contributions of each source can be compared. After converting to a voltage, the
current noise source is approximately four orders of magnitude less than the other
two voltage noise sources, so its contribution is negligible. The op amp’s voltage
noise does contribute to the overall noise, but most of the noise is coming from the
resistors. Finding an op amp with a lower noise voltage would lower the noise, but
of the 0.35 mV noise at the output, 0.29 mV is from the resistors. Of course, this
is using the value of noise voltage for frequencies above 200 Hz. The noise voltage
of the op amp at 10 Hz is 60 nV/ , four times the value used in this example.
If noise at the lower frequencies is a concern, another op amp may be of value. (For
example, the Op-27 op amp features a noise voltage of only 5.5 nV/ at 10 Hz.)

10.5.2.3 Input Impedance

Although the input impedance of most op amps is quite large, the actual input
impedance of the circuit depends on the configuration. The noninverting op amp
has the highest input impedance, that of the op amp itself. In practice, it may be
difficult to attain the high impedance of many op amps due to leakage currents in
the circuit board or wiring. In addition, the bias currents of an op amp will decrease
its effective input impedance.

For an inverting amplifier, the input impedance is approximately equal to the
input resistance, R1 (Figure 10.8). This is because the input resistor is connected to
virtual ground in the inverting configuration. While this will be much lower than
the input impedance of the noninverting configuration, it is usually large enough
for most applications. Where very high input impedance is required, the nonin-
verting configuration should be used. If even higher input impedances are required,
op amps with particularly high input impedances are available, but the limitations
on impedance are usually set by other components of the circuit such as the lead-
in wires and circuit board.

10.5.3 Output Characteristics

Compared to the input characteristics, the output characteristics of an op amp are
quite simple: A Thévenin source where the ideal source is AV (Vin+ - Vin-) and the
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resistance is rout (Figure 10.16). For the LF 356, AV is given as a function of fre-
quency in Figure 10.9. The Thévenin output resistance rout is quite low, approxi-
mately 0.05 W at low frequencies and for low values of the loop gain when b = 1.
The output resistance increases to as large as 50 W at higher frequencies when b is
small and amplifier gain is large.

In some circumstances, the output characteristics can become more complicated.
Maximum voltage swing at the output must always be a few volts less than the
voltage that powers the op amp (see next section), but the output signal range is
also limited at higher frequencies. In addition, many op amps have stability prob-
lems when driving a capacitive load. Figure 10.17 shows a circuit taken from the
LF 356 specification sheet that can be used to drive a large capacitive load. (A 
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Figure 10.16 The output characteristics of an op amp are
those of a Thévenin source including an ideal voltage source,
AV(Vin+ - Vin-), and an output resistor, rout.

Figure 10.17 An operational amplifier circuit that
can be used to drive a large capacitive load. Note that
this is a noninverting amplifier with a gain of 2. The
main purpose of this circuit is to provide a drive to
the capacitive load, not to amplify the signal.



0.5-mf capacitor is considered fairly large in electronic circuits.) One strategy illus-
trated in this figure is to place a resistor in parallel with the capacitor load. Another
strategy that is shown is to place a small resistor at the output of the op amp before
the feedback resistor. A final strategy is to add a small feedback capacitor, which,
as mentioned above, improves stability. These strategies are often implemented on
an ad hoc basis, but the design engineer should anticipate possible problems when
capacitive (or inductive) loads are involved.

10.6 POWER SUPPLY

Op amps are active devices and require external power to operate. This external
power is delivered as a constant voltage or voltages from a device known, logically,
as a power supply. Power supplies are commercially available in a wide range of
voltages and current capabilities. Many operational amplifiers are bipolar, that is,
they can handle both positive and negative voltages. (Unlike its use in psychology,
in electronics the term bipolar has nothing to do with stability.) Bipolar applica-
tions require both positive and negative power supply voltages, and values of 
±12 V or ±15 V are common. The higher the power supply voltage, the larger the
output voltages the op amp can produce, but all op amps have a maximum voltage
limit. The maximum voltage for the LF 356 is ±18 V with a special version, the LF
356B, that can handle ±22 V. Higher voltage op amps are available as are low
voltage op amps for battery use. The latter also feature lower current consumption.
(The LF 356 uses a nominal 5 to 10 mA and a number of them in a circuit will eat
through 9-V batteries fairly quickly.)

The power supply connections are indicated on the op amp schematic by verti-
cal lines coming from the side of the amplifier icon as shown in Figure 10.18. Some-
times the actual chip pins are indicated on the schematic as in this figure. [Pin
numbers are for the 8 pin DIP (dual inline package) configuration of the LF 356.]
Figure 10.18 also shows a curious collection of capacitors attached to the two
supply voltages. Power supply lines often go to a number of different op amps or
other analog circuitry and make great pathways for spreading signal artifacts, noise,
and other undesirable fluctuations among the op amps in a circuit. One op amp
circuit might induce fluctuations on the power line, and these fluctuations could
then pass to all the other circuits. Practical op amps do have some immunity to
power supply fluctuations, but this immunity falls off significantly with the fre-
quency of the fluctuations. For example, the LF 356 will attenuate power supply
variations at 100 Hz by 90 dB (a factor of 31,623), but this attenuation falls to 
10 dB (a factor of 3) at 1 MHz. A capacitor placed right at the power supply pin
will reduce these fluctuations. In a sense, such a capacitor isolates or disconnects
the op amp from power line noise, so this capacitor is often called a decoupling
capacitor. Figure 10.18 shows two capacitors on each supply line: a large 10-mf
capacitor and a small 0.01-mf capacitor. Since the two capacitors are in parallel,
they are in theory equivalent to a single 10.01 mf capacitor. The small capacitor
would appear to be contributing very little. In fact, the small capacitor is there
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because large capacitors have very poor high-frequency performance: They look
more like inductors than capacitors at higher frequencies. The small capacitor serves
to reduce high-frequency fluctuations while the large capacitor does the same at low
frequencies. While a given op amp circuit may not need both these decoupling capac-
itors, the 0.01 mf capacitor is routinely included in the op amp circuits by most
design engineers. The larger capacitor is added if strong low-frequency signals are
present in the network.

10.7 OPERATIONAL AMPLIFIER CIRCUITS, OR 101 THINGS TO DO WITH
AN OPERATIONAL AMPLIFIER

Although there are more than 101 different signal-processing operations that can
be performed by op amp circuits, this is an introductory course, so only a handful
will be presented. For a look at the other 90+, see the Art of Electronics by Horowitz
and Hill (1989).
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Figure 10.18 An operational amplifier (op amp)
with the power supply connections shown. The capac-
itors attached to the positive and negative leads
smooth the supply voltage to the op amp. They are
an attempt to decouple this circuit from the other cir-
cuits attached to the same power lines. This schematic
also shows the pin connections for the LF 356 op amp
chip (8-pin DIP package).



10.7.1 The Differential Amplifier

We have already shown how to construct inverting and noninverting amplifiers.
Why not throw the two together to produce an amplifier that does both—a differ-
ential amplifier? As shown in Figure 10.19, a differential amplifier is a combination
of the inverting and noninverting amplifier. To derive the transfer function of the
circuit in Figure 10.19, we will once again use the principle of superposition. Setting
Vin2 to zero effectively grounds the lower input resistor, R1, and the circuit becomes
a standard inverting op amp with a resistance between the positive terminal and
ground (Figure 10.20, left side). As stated previously, this resistance does not alter
the voltage at Vt. For this partial circuit, the transfer function is:

Setting Vin1 to zero grounds the upper R1 resistor, and the circuit becomes a non-
inverting amplifier with a voltage divider on the input. With respect to the voltage
V¢ (Figure 10.20, right side), the circuit is a standard noninverting op amp:

The relationship between Vin2 and V¢ is given by the voltage divider equation:
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Figure 10.19 A differential amplifier
circuit. This amplifier combines both invert-
ing and noninverting amplifier into a single
circuit. As described in the text, this circuit
amplifies the difference between the two
input voltages: Vout = Rf/Rin(Vin2 - Vin1).



Substituting and solving for Vin2:

By superposition, the two partial solutions can be combined to find the transfer
function when both voltages are present.

[Eq. 10.21]

Thus, the circuit shown in Figure 10.19 amplifies the difference between the two
input voltages.

10.7.2 The Adder

If the sum of two or more voltages is desired, the circuit shown in Figure 10.21 can
be used.

It is easy to show, using an extension of the approach used in Example 10.2, that
the transfer function of this circuit is:

[Eq. 10.20]

The derivation of this equation is left as an exercise at the end of the chapter.
This circuit can be extended to any number of inputs by adding more input resis-
tors. If R1 = R2 = R3, then the output is the straight sum of the three input signals
amplified by Rf /R1. Otherwise the summation is weighted by the various resistor
combinations as given in Eq. 10.20.

V
R
R

V
R
R

V
R
R

Vout
f

in
f

in
f

in= Ê
Ë

ˆ
¯ + Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯1

1
2

2
3

3

V
R
R

V
R
R

V
R
R

V Vout
f

in
f

in
f

in in= + = -( )
1

1
1

2
1

2 1

V
R R

R
V

R R
R

R
R R

V
R
R

Vout
f f f

f
in

f
in=

+
¢ =

+
+

=1

1

1

1 1
2

1
2

10.7 OPERATIONAL AMPLIFIER CIRCUITS 401

Figure 10.20 Superposition applied to the differential amplifier. Left circuit:
The Vin2 input is set to zero (i.e., grounded) leaving a standard inverting ampli-
fier circuit. Right circuit: The Vin1 input is grounded leaving a noninverting
operational amplifier with a voltage divider circuit on the input.



10.7.3 The Buffer Amplifier

At first glance, the circuit in Figure 10.22 appears to be of little value. In this circuit
all of the output is feedback to the inverting input terminal, so the feedback gain,
b, equals 1. Because the gain of a noninverting amplifier is 1/b, the gain of this
amplifier is 1 and Vout = Vin. (This can also be shown using circuit analysis, and this
is an exercise in the problem section.) Although this amplifier does nothing to
enhance the amplitude of the signal, it does a great deal when it comes to imped-
ance. Specifically, the incoming signal sees a large impedance, the input impedance
of the operational amplifier (>1012 W for the LF 356) making it a near ideal load,
whereas the output impedance is very low (0.02 W at 10 kHz for the LF 356),
approaching that of an ideal source. This circuit can take a signal from a high-
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Figure 10.21 An operational amplifier
circuit that takes a weighted sum of three
input voltages.

Figure 10.22 A buffer amplifier
circuit. This amplifier provides no gain
(G = 1/b = 1), but presents a very high
impedance to the signal source (nearly
an ideal load) and generates a low-
impedance signal that looks like it
comes from a near ideal source.



impedance Thévenin source and provide a low-impedance, nearly ideal, source that
can be used to drive several other devices. While all noninverting op amp circuits
will have this impedance transformation function, the unity gain circuits is partic-
ularly effective and will have the highest bandwidth since 1/b = 1. Because this circuit
provides a buffer between the high-impedance source and the other devices it drives,
it is sometimes referred to as a buffer amplifier. The low-output impedance also
reduces noise pick up, and this circuit is invaluable whenever a signal is sent over
long wires or off the circuit board.

10.7.4 The Transconductance Amplifier

Figure 10.23 shows another simple circuit that looks like an inverting op amp circuit
except the input resistor is missing.

The input to this circuit is a current, not a voltage, and the circuit is used to
convert this current into a voltage. Applying KCL to the negative input terminal,
the transfer function for this circuit is easily determined.

Solving for Vout:

[Eq. 10.23]

Some transducers produce a current and this circuit can be used as the first stage
to convert that current signal to a voltage. An example transducer common to many
medical instruments is the photodiode, which produces a current proportional to
the light falling on it. Usually these currents are very small (in the nanoamps or
picoamps) and Rf is chosen to be very large (ª100 MW) so that a reasonable output
voltage is produced.

Since the input to the op amp is current, noise depends only on current noise.
This would include the noise generated by the op amp and the feedback resistor.
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Figure 10.23 An operational amplifier
circuit used to convert a current to a voltage.
Because of this current-to-voltage transfor-
mation, this circuit is also referred to as a
transconductance amplifier.



The net input current noise is then multiplied by Rf to find the output voltage noise.
This approach is illustrated in the very practical problem posed in Example 10.9

Example 10.9: A transconductance amplifier shown in Figure 10.24 is used to
convert the output of a photodetector into a voltage. The photodetector has a sen-
sitivity of: R = 0.01 mA/mW. (The R stands for responsivity, which is essentially the
same as sensitivity, the output for a given input.) The photodiode also has a noise
current, which is called dark current, of id = 0.05 pA/ . What is the minimum
light flux, j in mW, that can be detected with an SNR (signal-to-noise ratio) of 
20 dB with a bandwidth of 1 kHz?

Solution: This problem requires a number of steps, but the heart of the problem
is how much current noise is generated at the input of the op amp. Once this is
determined, the minimum signal current can be determined as 20 dB, or a factor of
10, times this current noise. Once the minimum signal current is found, the
minimum light flux, jmin can be calculated as imin/R . To find the noise current, use
a version of Eq. 10.19 for current rather than voltage:

[Eq. 10.24]

Note that the value of current noise decreases for increased values of Rf so a good
design would use as large a value of Rf as possibly needed.

Solving Eq. 10.24 for a bandwidth of 1 kHz, a value of in from the LF 356, the
value of id for the photodetector, and a value of Rf of 10 MW:
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Figure 10.24 The output of a photodetector is
fed to a transconductance amplifier. This circuit is
used in Example 10.9 to determine the minimum
light flux that can be detected with a signal-to-
noise ratio of 20 dB.



Thus the minimum signal required for a SNR of 20 dB is: 10 ¥ 2.07 pA = 20.7 pA.
From the sensitivity of the photodetector, the minimum light flux that can be
detected is:

Note that since R is in mA/mW this is the same dimensions as A/W so it is not nec-
essary to scale this number. To determine the output voltage produced by this
minimum signal, or any other signal for that matter, simply multiply this input
current by Rf :

This is a small signal, so it would be a good idea to increase the value of Rf. Because
Rf is the second largest contributor of noise, increasing its value by a factor of 10
would both increase the output signal by that amount and decrease the noise (since
noise current is inversely related to the resistance). Further improvement could be
obtained by using an op amp with a lower current noise voltage.

10.7.5 Analog Filters

As first shown in Chapter 6, a simple single-pole low pass filter can be constructed
using an RC circuit. An op amp can also be used to construct a low pass filter with
improved input and output characteristics and provide increased signal amplitude.
The easiest way to construct an op amp lowpass filter is to add a capacitor in par-
allel to the feedback resistor as shown in Figure 10.25.
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Figure 10.25 An inverting amplifier that also
functions as a lowpass filter. As described in the
text, the low-frequency gain of this amplifier is
Rf/R1 and the cutoff frequency is w = 1/RfCf.



The equation for the transfer function of an inverting op amp with impedances
in the feedback circuit was give in Eq.10.12 and repeated here:

[Eq. 10.25]

Applying Eq. 10.25 to the circuit in Figure 10.25:

[Eq. 10.26]

At frequencies well below the cutoff frequency, the second term goes to 1/1, and
the gain is Rf /R1. The second term is a lowpass filter with a cutoff frequency of 
w = 1/RfCf rad/sec or f = 1/2pRfCf Hz. Design of an active lowpass filter is given in
Problem 10.12.

It is also possible to construct a second-order filter using a single op amp. A
popular second-order op amp circuit is shown in Figure 10.26.

Derivation of the transfer function requires applying KCL to two nodes and is
provided in Appendix A.3. The transfer function will simply be given here as:

[Eq. 10.27]

where G is the gain of the noninverting amplifier and equals 1/b. Equating coeffi-
cients of Eq. 10.27 with the standard Laplace transfer function of a second-order
system (Eq. 8.46):
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Figure 10.26 A two-pole active lowpass filter con-
structed using a single operational amplifier.



Example 10.10: Design a second-order filter with a cutoff frequency of 5 kHz and
a damping of 1.0.

Solution: Because there are more unknowns than equations, several component
values may be set arbitrarily with the rest determined by Eq. 10.28. To find R
and C, it is common to pick a value for C that is easy to obtain, then calculate the
value for R (capacitor values are more limited than resistor values). Assume 
C = 0.001 mf, a common value. Then the value of R is:

The value for G, the gain of the noninverting amplifier would be:

Hence, in this particular damping, G = 1/b = 1 and b = 1.0. So all of the output is
feedback to the noninverting input and a resistor divider network is not required
as in a buffer amplifier. Other values of damping would require the standard resis-
tor divider network to achieve the desired gain. A second-order active filter having
the desired cutoff frequency and damping is shown in Figure 10.27.
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Figure 10.27 A two-pole lowpass filter with a cutoff fre-
quency of 5 kHz and a damping factor of 1.0.

10.7.6 Instrumentation Amplifier

The differential amplifier shown in Figure 10.19 can be very useful in certain bio-
medical engineering applications, particularly as amplifiers for biotransducers that



produce a differential output. Such transducers actually produce two voltages that
move in opposite directions to a given input. An example of such a transducer is
the strain gage bridge shown in Figure 10.28.

Here the strain gages are arranged in such a way that when a force is applied to
the gages, two of them (A-B and C-D) undergo tension while the other two (B-C
and D-A) undergo compression. The two gages under tension decrease their resis-
tance while the two under compression increase their resistance. The net effect is
that the voltage at B increases whereas the voltage at D decreases in response to the
applied force. If the difference between these voltages is amplified using a differen-
tial amplifier such as shown in Figure 10.19, the output voltage will be the differ-
ence between the two voltages and reflect the force applied. If the force reverses,
the output voltage will change sign. One of the significant advantages of this
arrangement is that much of the noise, particularly that picked up by the wires
leading to the differential amplifier, will be common to both of the inputs and will
tend to cancel. To optimize this kind of noise cancellation, the gain of each of the
two inputs should be exactly equal in magnitude (but opposite in sign, of course).
Not only must the two inputs be balanced, but the input impedance should also be
balanced and often it is desirable that the input impedance be quite high. An instru-
mentation amplifier is a differential amplifier circuit that meets these criteria: bal-
anced gain along with balanced and high input impedance. In addition, low noise
characteristics are generally a desirable feature.

A circuit that fulfills this role is shown in Figure 10.29. The output op amp per-
forms the differential operation, and the two leading op amps configured as unity
gain buffer amplifier provide similar high-impedance inputs. If the requirements for
balanced gain were high, one of the resistors would be adjusted until the two chan-
nels had equal but opposite gains. It is common to adjust the lower R2 resistor. Since
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Figure 10.28 A bridge circuit that produces a differ-
ential output. The voltage at node D moves in opposition
to the voltage at node B. The output voltage is best ampli-
fied by a differential amplifier.



the two input op amps provide no gain, the transfer function of this circuit is just
the transfer function of the second stage, which is shown in Eq. 10.21 to be:

[Eq. 10.27]

There is one serious drawback to the circuit in Figure 10.29. To increase or
decrease the gain it is necessary to change two resistors simultaneously: either both
R1’s or both R2’s. Moreover, to maintain balance, they would both have to be changed
exactly the same amount. This can present practical difficulties. A differential ampli-
fier circuit that requires only one resistor change for gain adjustment is shown in
Figure 10.30. The derivation for the input–output relationship of this circuit is 
more complicated than for the previous circuit, and is given in Appendix A.4.

[Eq. 10.28]

Since R1 is a now single resistor, the gain can be adjusted by modifying this resis-
tor. As this resistor is common to both channels, changing its value affects the gain
of each channel equally and does not alter the balance between the gains of the two
channels. The instrumentation amplifier is a popular first stage whenever a differ-
ential input signal is available. It is possible to obtain integrated circuit instrumen-
tation amplifiers that place all the components of Figure 10.30 on a single chip.
Such packages generally have excellent balance between the two channels, very high
input impedance, and low noise. For example, an instrumentation amplifier made
by Analog Devices, Inc. (Noorwood, MA), the ADC624 has an input impedance of
109 W and a noise voltage of 4.0 nV/ at 1.0 kHz.Hz
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Figure 10.29 A deferential amplifier circuit with high input impedance.
One R2 resistor could be adjusted to balance the differential gain so that
the two channels have equal but opposite gains. In the interest of sym-
metry, it is common to reverse the position of the positive and negative
operational amplifier inputs in the upper input operational amplifier.



The balance between the channels is measured in terms of Vout when the two
inputs are at the same voltage. Voltage that is common (i.e., the same) to both input
terminals is termed the common mode voltage. In theory, the output should be zero
no matter what the input voltage so long as it is the same at both inputs. However,
any imbalance between the gains of the two channels will produce some output
voltage, and this voltage will be proportional to the common mode voltage. Because
the idea is to have the most cancellation and the smallest output voltage to a
common mode signal, the common mode voltage is specified as an inverse gain.
This inverse gain is called the common mode rejection ratio (CMRR), and usually
given in decibels.

[Eq. 10.30]

Hence the higher the CMRR, the less voltage at the output from a common mode
signal. The ADC624 has a CMRR of 120 dB. This means that the common mode
gain is -120 dB. For example, if 10 V were applied to each of the input terminals
(i.e., Vin1 = Vin2 = 10 v), Vout would be:

While not zero, this value is quite small and would be close to the noise level for
most applications.
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Figure 10.30 An instrumentation amplifier circuit. This circuit has all
the advantages of the one shown in Figure 10.29 (i.e., balanced channel
gains and high input impedance), but with the added advantage that the
gain can be adjusted by modifying a single resistor, R1.



10.8 SUMMARY

There is more to analog electronics than just op amp circuits, but they do encom-
pass most analog applications. The ideal op amp is an extension of the concept of
an ideal amplifier. An ideal amplifier has infinite input impedance, zero output
impedance, and a fixed gain at all frequencies. An ideal op amp also has infinite
input and output impedance, but has infinite gain. The actual gain of an op amp
circuit to is determined by the feedback network, which is usually constructed from
passive devices. This provides great flexibility with a wide variety of design options
and the inherent robustness and long-term stability of passive elements.

Real op amps come reasonably close to the idealization. They have very high
input impedances and quite low output impedances. Deviations from the ideal can
be fall three categories: deviations in transfer characteristics, deviations in input
characteristics, and deviations in output characteristics. The two most important
transfer characteristics are bandwidth and stability. Stability in this context refers
to the ability to avoid oscillation. The bandwidth of an op amp circuit can be deter-
mined by combining the frequency characteristics of the feedback network with the
frequency characteristics of the op amp itself. The immunity of an op amp circuit
from oscillation can also be estimated from the frequency characteristics of the oper-
ational amplifier and feedback network. Input errors include bias voltages and cur-
rents, and noise voltages and currents. The bias and noise currents are usually
converted to voltages by multiplying them by the equivalent resistance at each of
the input terminals. The effect of these input errors on the output can be determined
by multiplying all the input voltage errors by the noise gain, 1/b.

A wide variety of very useful analog circuits are based on the op amp. These
include inverting and noninverting amplifiers, filters, buffers, adders, subtractors
(including differential amplifiers), transconductance amplifiers, and many more cir-
cuits not covered. The design and construction of real circuits that use op amps is
straightforward, although some care may be necessary to prevent noise and artifact
from spreading through the power supply lines. Decoupling capacitors, capacitors
running from the power supply lines to ground, are often placed at the op amp’s
power supply feed to reduce the spread to of noise through the power lines.

PROBLEMS

1. Design an noninverting amplifier circuit with a gain of 500.
2. Design an inverting amplifier with a variable gain from 50 to 250.
3. What is the bandwidth of the noninverting amplifier below? If the same feed-

back network were used to design an inverting amplifier, what would be the
bandwidth of this circuit?
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4. An amplifier has a GBP of 10 MHz. It is used in a noninverting amplifier where
b = 0.01. What is the gain of the amplifier? What is the bandwidth?

5. An LF 356 is used to implement the variable gain amplifier in Example 10.3.
What are the bandwidths of this circuit at the two extremes of gain?

6. A 0.001-mf capacitor is added to the feedback circuit of the inverting op amp
circuit shown below. You can assume that before the capacitor was added, the
phase shift due to the amplifier when Avb = 1 was 120 degrees. (The criterion
for stability is that the phase shift induced by the op amp and the feedback
network must be less than 180 degrees when Avb = 1.) After the capacitor 
is added, what is the phase shift of the op amp plus feedback network at 
the frequency where Avb = 1. Follow the example given in the section on 
stability.
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7. For the circuit below, what is the total offset voltage at the output (due to both
offset voltage and current)? (Rf = 500Kr; R1 = 20Kr; Req = 19Kr.) How much
is this offset voltage increased if the 19-kW ground resistor on the positive 
terminal is replaced with a short circuit?



8. Derive the transfer function of the adder circuit below. Use KVL applied to node
A.
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9. Find the total noise at the output of the circuit below. Identify the major
source(s) of noise. What would the output noise be if the 50-kW ground resis-
tor at the positive terminal was replaced with a short circuit? (Note: this resis-
tor adds to both the Johnson noise from the resistors and to the voltage noise
generated by the op amp’s noise current.)

10. For the circuit in Problem 10.9, what is the minimum signal that can be detected
with an SNR ratio of 10 dB? What will be the voltage produced by such a signal
at Vout?

11. An op amp has a noise current of 0.1 pA . This op amp is used as a
transconductance amplifier (Figure 10.23). What should the minimum value of
feedback resistance be so that the noise contribution from the feedback resis-
tor is less than the noise contribution from the op amp?

12. Design a one-pole lowpass filter with a bandwidth of 1 kHz. Assume you have
capacitor values of 0.001 mf, 0.01 mf, 0.05 mf, and 0.1 mf, and a wide range of
resistors.

13. Design a two-pole lowpass filter with a cutoff frequency of 500 Hz and a
damping factor of 0.8. Assume the same component availability as in Problem
10.12.

Hz



15. Design an instrumentation amplifier with a switchable gain of 10, 100, and
1,000. (Hint: Switch the necessary resistors in our out of the circuit as needed.)

14. Design a two-pole highpass filter with a cutoff frequency of 10 kHz and a
damping factor of 0.707. (The circuit for a highpass filter is the same as for a
lowpass filter except that the capacitors and resistors are reversed as shown in
the figure.)
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APPENDIX A

A.1 DERIVATION OF EULER’S FORMULA

Assume a sinusoidal function: 

x(q) = cos q + j sin q [Eq. A.1]

(where as usual)
Differentiating with respect to q produces:

[Eq. A.2]

Separating the variables gives:

[Eq. A.3]

where K is the constant of integration. To solve for this constant, note that in Eq.
A.1: x = 1 when q = 0. Applying this condition to Eq. A.3: ln1 = 0 = 0 + K; hence,
K = 0; and Eq. A.3 becomes lnx = jq

or [Eq. A.4]

but since x is defined in Eq. A.1 as cos q + j sin q

[Eq. A.5]

Alternatively,

[Eq. A.6]e jj- = -q q qcos sin

e jjq q q= +cos sin

x e j= q

dx
x

jd x j K= = +q qand integrating both sides gives: ln

dx
d

j j j jx
q

q q q q= - + = +( ) =sin cos cos sin

j = -1



A.2 CONFIRMATION OF THE FOURIER SERIES

Fourier showed that a periodic function of period T can be represented by a series,
possibly infinite, of sinusoids, or sine and cosines:

[Eq. A.7]

where wo = 2p /T and an and bn are the Fourier coefficients.
To derive the Fourier coefficients, let us begin with the a0 or the direct current

(DC) term. Integrating both sides of Eq. A.7 over a full period:

[Eq A.8]

For all n > 0, the second term on the right hand side is zero because we will be
integrating the sine and cosine over a full period (n = 1) or multiple periods (n > 1).
For (n = 0), the summation is still zero since it begins at one and Eq. A.8 becomes.

[Eq. A.9]

To find the other coefficients, multiply both sides of Eq. A.7 by cos(mwot), where
m is an integer and again integrate both sides.

[Eq. A.10]

and rearranging:

[Eq. A.11]

Because m is an integer, the first term and third terms on the right-hand side inte-
grate to zero for all m. The middle term integrates to zero for all m and n except
m = n. At m = n, this term becomes:

[Eq. A.12]a
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The bn coefficients are found in a similar fashion except Eq. A.7 is multiplied by
sin(mwot ), then integrated. In this case, all but the third term integrates to zero and
the third term is nonzero only for m = n.

[Eq. A.13]

A.3 DERIVATION OF THE TRANSFER FUNCTION OF A SECOND-ORDER
OP AMP FILTER

The operational amplifier (op amp) circuit for a second-order lowpass filter is shown
in Figure A.1.

This derivation is developed for the lowpass version shown in Figure A.1, but
also applies to the highpass version where the positions of R and C are reversed.

Note that at node V¢ by KCL: i1 - i2 - i3 = 0. This allows us to write a nodal
equation around that node:

[Eq. A.13]where i
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Figure A.1 Circuit diagram of a second-order lowpass
filter circuit using a single operational amplifier. The equa-
tions developed here refer to this figure.



But, because the two terminals of an op amp must be at the same voltage, the voltage
V + must be equal to V -. Applying the voltage divider equation to the two feedback
resistors, both V - and V + can be found in terms of Vout:

So i2 becomes Vout(Cs)/G. Substituting i2 into the nodal equation Eq. A.13:

[Eq. A.14]

Note that V¢ can also be written in terms of just i2:

Substituting this in for V¢ in Eq. A.14:

Solving for Vout /Vin:

[Eq. A.15]

A.4 DERIVATION OF THE TRANSFER FUNCTION OF AN
INSTRUMENTATION AMPLIFIER

The classic circuit for a 3–op amp instrumentation amplifier is shown in Figure 
A.2.

To determine the transfer function, note that the voltage Vin1 appears on both
terminals of op amp 1, whereas Vin2 appears on both terminals of op amp 2. (Recall
that the voltage difference between op amp input terminals must be zero.) The
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voltage out of op amp 1 will be equal to Vin2 after accounting for the voltage drop
across the two resistors, R2 and R1:

[Eq. A.16]

Applying the same logic to op amp 2, its output, Vout2 can be written as:

[Eq. A.17]

The overall output, Vout, will be equal to the difference of Vout2 - Vout1 times the
gain of the differential amplifier: R4/R3. The difference voltage can be found by sub-
tracting the two equations above and rearranging:

[Eq. A.18]V
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Figure A.2 A circuit diagram of an instrumentation amplifier.





APPENDIX B
LAPLACE TRANSFORMS
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APPENDIX C
TRIGONOMETRIC AND 
OTHER FORMULAS

sin(-x) = -sin x
cos(-x) = cos x

sin(wt) = cos(wt - 90)
cos(wt) = sin(wt + 90)
sin(x ± y) = sin x cos x ± cos x sin y
cos(x ± y) = cos x cos y � sin x sin y
sin 2x = 2 sin x cos x
cos 2x = cos2 x - sin2 x = 2 cos2 x - 1 = 1 - 2 sin2 x

sin2 x + cos2 x = 1

e±jx = cos x ± j sin x
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APPENDIX D
UNITS

METRIC CONVERSIONS

1 cc (1,000 mm3) 1 ¥ 10-6 m3

1 kg wt 9.80665 N
1 kg wt 9.80665 ¥ 105 dyne
1 gm wt 980.665 dyne
1 kg-m 9.80665 joule
1 kg-m 2.3427 gm-cal
1 gm 0.001 kg
1 J 1 watt-sec
1 J 107 ergs
1 J 2.778 ¥ 10-7 kW hr
1 Pa 10 dyne/cm2

1 PA 1 N/m2

1 rad 57.296 deg
1 rad/sec 57.296 deg/sec
1 N 105 dyne
1 dyne 0.0010197 gm wt
1 erg (1 dyne-cm) 1 ¥ 10-7 J
1 km 105 cm
1 m 10-9 nanometers
1 m 10-6 microns
1 L 1,000.027 cm3 (cc)
1 W 1 J/sec
1 W 107 erg/sec
1 W 107 dyne-cm/sec
1 A 1 coulomb/sec
1 coulomb (A/sec) 6.281 - 1018 electronic charges
1 coulomb 3 ¥ 109 electrostatic units
1 ohm 1 V/A
1 V 1 J/coulomb
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1 h 1 V-sec/A
1 f 1 col/V

METRIC TO ENGLISH CONVERSIONS

1 cm 0.3937 in
1 m 3.281 ft
1 km 0.6214 mile
1 km 3,280.8 ft
1 km 1.0567 ¥ 10-13 light year
1 gm 0.035 oz (adps)
1 kg 2.2046 lb (adps)
1 deg/sec 0.1667 rpm
1 cm/sec 0.02237 mi/hr

ENGLISH TO METRIC CONVERSIONS

1 in (U.S.) 2.540 cm
1 ft 0.3048 m
1 yd 0.9144 m
1 fathom (6 ft) 1.829 m
1 mile 1.609 km
1 in3 16.387 cm3

1 in2 6.451 cm2

1 pt (0.5 qt) 0.47 L
1 gal (0.013368 ft3) 3.7853 L
1 gal 3,785.4 cm3

1 gal wt (8.337 lb) 3.111 kg
1 carat 6.2 gm
1 oz (troy) 31.1035 gm
1 oz (avdps) 28.35 gm
1 lb (troy) 373.24 gm
1 lb (troy) 0.3732 kg
1 lb (avdps) 453.59 gm
1 lb (avdps) 0.45359 kg
1 lb wt 4.448 ¥ 105 dyne
1 lb wt 4.448 N
1 BTU 1,054.8 J
1 hp 0.7452 kW
1 rpm 6 deg/sec
1 rpm 0.10472 rad/sec
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PRESSURE CONVERSIONS

1 cm Hg (0°C) 1.333 ¥ 104 dyne/cm2

1 cm Hg (0°C) 135.95 kg/m2

1 cm H2O (4°C) 980.638 dyne/cm2

1 Pa 10 dyne/cm2

CONSTANTS

Gravitational constant: g 32.174 ft/sec2

Gravitational constant: g 980.665 cm/sec2

Speed of light: v 2.9986 ¥ 1010 cm/sec
Dielectric constant (vacuum): e0 8.85 ¥ 10-12 coulomb2/mm2

AMERICAN STANDARD WIRE GAUGE (AWG) OR BROWN AND SHARPE
(B&S) GAUGE

No. Diameter (in)

1 0.2893
2 0.2576
3 0.2294
4 0.2043
5 0.1819
6 0.1620
7 0.1443
8 0.1285
9 0.1144

10 0.1019
11 0.0907
12 0.0808
13 0.0720
14 0.0641
15 0.0571
16 0.0508

No. Diameter (in)

17 0.0453
18 0.0403
19 0.0359
20 0.0320
21 0.0285
22 0.0253
23 0.0226
24 0.0201
25 0.0179
26 0.0159
27 0.0142
28 0.0126
29 0.0113
30 0.100
31 0.00893
32 0.00795



SCALING PREFIXES

Scale Prefix Examples

10-15 femto femtoseconds
10-12 pico picoseconds, picoamps
10-9 nano nanoseconds, nanoamps, nanotechnology
10-6 micro microsecond, microvolts, microfarads
10-3 milli milliseconds, millivolts, milliamps, millimeters
103 kilo kilohertz, kilohms, kilometers
106 mega megahertz, megaohms, megabucks
109 giga gigahertz, gigawatt
1012 tera terahertz
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APPENDIX E
COMPLEX ARITHMETIC

Complex numbers and complex variables consist of two numbers rolled into one.
However, they are also related in that most operations affect both numbers in some
manner. The two components of a complex number are the real part and the imagi-
nary part, the latter so-called because it is multiplied by It is given the symbol
i in mathematic circles, but the symbol j is used in engineering because i is reserved
for current. A typical complex number would be written as a + jb where a is the
real part and jb is the imaginary part.

Complex numbers are visualized as lying on a plane consisting of a real hori-
zontal axis and an imaginary vertical axis (Figure E.1).

A complex number is one point on the real–imaginary plane and can be 
represented either in rectangular notation as a real and imaginary coordinate (Figure
E.1, dashed lines), or in polar coordinates as a magnitude, C, and angle, q (Figure
E.1, solid line). In this text, the polar form is written using a shorthand notation:
C–q.

To convert between the two representations, refer to the geometry of Figure E.1.
To go from polar to rectangular, apply triangular trigonometry:

[Eq. E.1]

To go in the reverse direction:

[Eq. E.2]

[Eq. E.3]

These operations are very useful in complex arithmetic because addition and sub-
traction are done using the rectangular representation while multiplication and divi-
sion are easier using the polar form. Care must be taken with regard to signs and
the quadrant of the angle, q.

tan tanq q= = Ê
Ë

ˆ
¯

-b
a

b
a

1

C a b= +2 2

C a b2 2 2= +

a C b C= =cos sinq q

-1.



E.1.1 Addition and Subtraction

To add two or more complex numbers, add real numbers to real, and imaginary
numbers to imaginary:

Subtraction follows the same strategy:

If the numbers are in polar form (or mixed), covert them to rectangular form first.

Example E.1: Add the following complex numbers: 8– -30 + 6–60

Solution: Convert both numbers to rectangular form following the rules above.
Note that the first term is in the fourth quadrant so it will have the general form 
a - jb.
For the first term:

For the second term:

This could then be converted back to polar form if desired.

E.1.2 Multiplication and Division

These arithmetic operations are best done in polar form although they can be carried
out in rectangular notation. For multiplication, multiply magnitudes and add angles:

C D CD– –∆( ) = – + ∆( )q q

Sum = - + + = +6 9 4 3 5 2 9 9 1 2. . . .j j j

c d= =3 5 2; .

c d= ( ) = = ( ) =6 60 3 6 60 5 2cos ; sin .

a b= = -6 9 4. ;

a b= -( ) = -( )8 30 8 30cos ; sin ;

a jb c jd a c j b d+( ) - +( ) = -( ) + -( )

a jb c jd a c j b d+( ) + +( ) = +( ) + +( )
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Figure E.1 A complex
number can visualized as
one point on a plane.



For division, divide the magnitudes and subtract the angles:

Example E.2: Perform the indicated multiplications or divisions:

A. 8– - 30 (6 –120); C.

B. (10 - j6)(1 + j10); D.

Solution: For the numbers already in polar coordinates, simply follow the rules
given above. Otherwise, convert to polar form where necessary.
A. 8– - 30(6–120) = 48–90
B. (10 - j6)(5 + j10) = 11.66– -31(11.2– +63) = 130.6–32

C.

D.

More involved arithmetic operations can call for combinations of these conversions.

Example E.3: Add the two complex fractions:

Solution: Convert all the rectangular representations to polar form, carry out the
division, then convert back to rectangular form for the addition. When converting
from rectangular to polar form, note that each number is in a different quadrant,
so care must be taken with the angles.
Evaluate each fraction in turn:

So the sum becomes:

It is a good idea to visualize where each number falls in the real–imaginary plane,
or at least what quadrant of the plane, to help keep angles and signs straight.

Multiplication or division by the number j has the effect of rotation of 
the complex point by ±90 degrees. This is apparent if the number j, which is in 

- + - - = - - = –0 45 0 93 0 33 1 13 0 78 0 2 0 8 194. . . . . . .j j j

- +
- -

=
–
–

= – - = - -
8 6
3 8

10 143
8 5 249

1 18 106 0 33 1 13
j
j

j
.

. . .

5 6
3 7

7 8 50
7 6 66

1 03 116 0 45 0 93
+
-

=
–

– -
= – = - +

j
j

j
.

.
. . .

5 6
3 7

8 6
3 4

j
j

j
j

( )
-

+
- +
- -

6 50
8 6

6 50
10 36 9

0 6 86 9
–
-

=
–

– -
= –

j .
. .

7 305
6 80

1 166 385 1 166 25
–
– -

= – = –. .

6 50
8 6

–
- j

7 305
6 80

–
– -

;

C
D

C
D

–
–∆

= – - ∆( )q
q
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rectangular form, is converted to polar form: j = 1–90. So multiplying or dividing
by j adds or subtracts 90 degrees from a number:

C
j

C
C

–
=

–
–

= – -( )q q
q

1 90
90

j C C C–( ) = – –( ) = – +( )q q q1 90 90
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APPENDIX F
LF 356 SPECIFICATIONS

Only those specifications useful for analyzing circuits and problems in Chapter 10
are given here. For a detailed set of specifications, see the various manufacturers’
specification sheets. These specifications are for the LF 356 except as noted, and
typical values are given.

Description Specification

Bias current 30 pA (picoamps)
Offset current 3.0 pA
Offset voltage 3.0 mV
Gain bandwidth product 5.0 MHz (LF 356)
Gain bandwidth product 20 MHz (LF 357 - minimum 1/b = 5)
Input impedance 1012 W
Open loop gain (direct current) 106 dB
Common mode rejection ratio (CMRR) 100 dB
Maximum voltage ±18 V (LF 356); ±22 V (LF 356B)
Noise current 0.01 pA/÷Hz
Noise voltage (1,000 Hz) 12 nV/÷Hz
Noise voltage (100 Hz) 15 nV/÷Hz
Noise voltage (10 Hz) 60 nV/÷Hz





APPENDIX G DETERMINANTS
AND CRAMER’S RULE

The solution of simultaneous equations can be greatly facilitated by matrix algebra.
When the solutions must be done by hand, the use of determinants is helpful, at
least when only two or three equations are involved. A determinant is a specific,
single value defined for a square array of numbers. Given a 2 ¥ 2 array, the deter-
minant would be found by the application of the so-called diagonal rule where the
product of the main diagonal (solid arrow) is subtracted by the product of the off
diagonal (dotted arrow):

This gives rise to the equation:

[Eq. G.1]

For a 3 ¥ 3 array, the determinant is found by an extension of the diagonal rule.
One way to visualize this extension is to repeat the first two columns at the right
side of the array. Then the diagonals can be drawn directly:

det = = -
a a

a a
a a a a11 12

21 22
11 22 12 21

This procedure produces the equation:

[Eq. G.2]

det =

= + +( ) - + +( )

a a a

a a a

a a a

a a a a a a a a a a a a a a a a a a

11 12 13

21 22 23

31 32 33

11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12



(In MATLAB the determinant is found using the command: det(A), where A is the
array variable.)

Cramer’s rule is used to solve simultaneous equations using determinants. The
equations are first put in matrix format (shown here using electrical variables):

[Eq. G.3]

The current i1 is found using:

[Eq. G.4]

And, in a similar fashion, the current i2 is found by:

[Eq. G.5]

Extending Cramer’s rule to a 3 ¥ 3 matrix equation:

[Eq. G.6]

and, the three currents are obtained as:

[Eq. G.7]

where each determinant would be evaluated using Eq. G.2.
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A
Admittance, 174–178. See

also Nodal analysis
matrix, 175–177

Aliasing, 92. See also
Sampling

American Wire Gauge
(AWG), 128, 425–428

Ammeter, 271
Amplification, 372. See also

gain
Amplifier

buffer, 402–403
differential, 373,

400–401. See also
amplifier,
instrumentation

ideal, 372
instrumentation,

407–410
inverting, 373
noninverting, 374
operational, see

operational 
amplifiers

transconductance,
403–405

transfer function, 372
Amplitude

peak-to-peak, 31, 140
resolution, 93

RMS, 40. See also RMS
slicing, see quantization

Analog-to-digital conversion
(ADC), 9

Analog
analysis, see analysis,

analog
preprocessing, 9
signal, see signal, analog

Analysis
analog, 11–15
circuit, see circuit

analysis
linear signal, 9–15
linear system, 11–15
phasor, see phasors,

analysis
spectral analysis,

69–119. See also
Fourier series

systems, see systems
analysis

Aperiodic function, see
functions, aperiodic

Artifacts
motion, 23

ASCII code, 7
Attenuation

filter, see filter,
attenuation

Attenuator, 44

Autocorrelation, 48–54,
61–65

Autocovariance, 62
Average, see mean

ensemble, 42, 57
spectral, see spectral,

averaging
AWG, see American Wire

Gauge

B
Bandwidth, see Q

filter, see filter,
bandwidth

signal, 101–102
system, see Bode plot

Bel, 42
Biosignals, see signal,

biosignals
Biotransducer, see transducer,

biotransducer
Black box, 15, 335
Bode plot, 198–213

primitives, 201–213
constant, 201
first-order, 202–204
isolated zero or

pole, 201–202
second-order,

204–208
Boltzman’s constant, 25

INDEX
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Bridge circuit, 408
Broadband process, 113–115
Buffer, see amplifier, buffer

C
Capacitance, 131
Capacitive elements, see

elements, capacitative
Capacitors, 131–134

decoupling, 398–399
impedance, see

impedance, Laplace
capacitor

parallel, 242–244
series, 240–241

Caps, see capacitors
CGS units, 179, 425–428
Characteristic equation, 306
Chirp signal, see signal, chirp
Choke, 131. See also

inductors
Circuit analysis, 121–160,

161–191
Circuit diagrams, 128
Circuits, 121–160, 161–191,

193–238, 239–288,
371–414

Closed circuit, 161. See also
mesh analysis

Coefficients, see sinusoidal
cosine, 77–78, 83
sine, 77–78, 83

Common mode rejection
ratio (CMRR), 410

Common mode voltage, 410
Complex

arithmetic, 429–432
frequency, see frequency,

complex
numbers, 36, 429–432
representation, 36–37.

See also phasors
variables, 36, 429–432

Compliance, 150, 178. See
also elasticity

Conductance, 128
Conservation law, see

Kirchhoff’s voltage law,
Kirchhoff’s current law,
Newton’s law

Continuity
of current, 131. See also

inductors
of force, 150. See also

elasticity
of velocity, 149. See also

mass
of voltage, 133. See also

inductors
Continuum mechanics, 

147
Contractile element, 11
Contraction

isometric, 153–154
isotonic, 153–154

Controller, 17
Conversions, 425–428
Convolution, 340–354

equation, 341
MATLAB

implementation,
343–354

Correlation, 45–48, 58–61.
See also autocorrelation,
cross-correlation

matrix, 59–61
Covariance, 45–48, 58–61

matrix, 59–61
Cramer’s rule, 435–436
Cross-correlation, 48–54,

61–65. See also
autocorrelation, functions

Cross-covariance, 54, 62
Current, 124

mesh, 163. See also mesh
analysis

Cutoff frequency, see
frequency, cutoff

Cycle, 31
Cycles-per-second, see Hertz

D
Damping factor (d), 308
Dash-pot, 148
Data

acquisition, see analog-
to-digital conversion

conversions, see ASCII
code

windowing, see
windowing

dB, see decibels
DC, 76, 130
Decibels, 26–27, 42–44
Delay, 34. See also elements,

time delay
Determinants, 435–436
Dielectric constant, 132–133
Digital signal, see signal,

digital
Digital-to-analog converter, 

9
Direct current, see DC
Dirichlet conditions, 78
Discrete Fourier transform

(DFT), see transforms,
discrete Fourier transform

Dissipative elements, see
elements, dissipative

Domain
frequency, see frequency

domain
Laplace, see Laplace

transform, domain
time, see time domain

Dummy time variable, 50

E
ECG, see electrocardiogram
Einthoven, 2
Elastic elements, 150
Elasticity, 151–152

impedance, see
impedance

parallel, 12
series, 12
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Electrocardiogram (ECG), 38,
41

Electrical
elements, 127–139. See

also elements
phasor

representation, see
phasor,
representation,
electrical elements

energy, see energy
variables, see variables,

electrical
Electronics, 371–414
Elements

active, 135–137. See also
voltage, current, force,
sources

capacitative, 14. See also
capacitors, elastic
elements

dissipative, 14, 127. See
also resistor, friction

inductive, see inductors
inertial, 14, 149. See also

mass, inductors
mechanical, 147–157
parallel electrical,

242–244
parasitic, 134
passive, 127, 148. See

also resistor, inductors,
capacitors, friction,
mass, elasticity

resistive, see resistor
series electrical, 240–241
time delay, 299–300

Encoding, see signal,
encoding

Energy, 123–124
kinetic, 124, 149, 151
potential, 124, 150–151
stored, 134. See also Q

Ensemble averaging, see
average, ensemble

Equivalent
circuits, see network,

reduction
impedance, see sources,

real; impedance,
equivalent; network,
reduction

resistance, 265. See also
network, reduction

Error
quantization, see

quantization
Euler’s identity, 82–83, 140,

415
Expectation operation, 40

F
Farads, 131–132
Fast Fourier transform (FFT),

see transforms, fast 
Fourier

Feedback, 337–339
equation, 22, 338
unity gain, 338

Feedforward pathway, 337
FFT, see transforms, fast

Fourier
Filter, 213–221

analog, 213, 405–407
attenuation, 214
bandpass, 214–215
bandstop, 214–215
bandwidth, 215
Butterworth, 218
Chebyshev, 218
Daubechies, 368
design, 219–221
digital, 212
frequency characteristics,

217–219. See also
Bode plot

gain, 214
Haar, 369
highpass, 214–215
ideal, 216

lowpass, 214–215
order, 216–217
passband, 214
poles, 216–217
ripple, 217
rolloff, 216
sharpness, 214, 217
slope, 214
types, 214–215

Final value theorem, see
Laplace transform, final
value theorem

Finite data considerations, see
windowing

Finite element analysis, 147
Fluid analogy, 137–139
Force

generators, see sources
sources, see sources
transducer, see

transducer, force
Force–velocity relationship,

148, 294–296
elasticity, 156
friction, 156
mass, 156

Fourier transform, see
transforms, Fourier

Fourier series, 75–82,
416–417

and transfer function,
230–233

inverse, 84
Frequency, 31

characteristics, see Bode
plot

complex, 291
cutoff, 102, 215
fundamental, 75
Nyquist, 91–92
representation, 73,

80–81. See also
transforms, Fourier

resolution, 96
resonance, 355
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Frequency (continued)
transformations, see

transforms, frequency
Frequency domain, 73, 80

and Laplace domain,
321–330

Friction, 148
impedance, see

impedance
Functions, see signal

aperiodic, 79
autocorrelation, see

autocorrelation
cross-correlation, see

cross-correlation
even, 79–80
impulse, 298, 348–349.

See also impulse
response

Laplace, 421–422
linear, 10
odd, 79–80
periodic, 31–34, 73, 

79
probing, 65
ramp, 297–298
step, 290, 296
symmetry, 79–80

half-wave, 79–80
window, 95

Fundamental frequency, see
frequency, fundamental

G
Gain, 16, 44. See also filter,

gain
Gibbs phenomenon (Gibbs

oscillations), 76
Governing equations, 173
Gravitational constant, 155,

425–528
Gravity, 155

force due to, 155
Ground, 125–126

virtual, 379

H
Half-power point, 102. See

also frequency, cutoff
Harmonics, 75

number, 96
Heart rate variability, see

variability, heart rate
Henrys, 129–130
Hertz (Hz), 31

I
Ideal sources, see sources,

ideal
Imaginary numbers, see

complex, numbers
Impedance, 144

current sources
ideal, 147, 255
real, 258–261. See

also Norton
source

equivalent, 239–288. See
also network,
reduction

Laplace
capacitor, 294–295
elasticity, 295
friction, 294
inductor, 294–295
mass, 294–295
resistor, 294

matching, 274, 
279–280. See also
maximum power
transfer

matrix, 170
phasor

capacitor, 145
elasticity, 151–152
friction, 148
inductor, 144–145
mass, 149
resistor, 144–145

voltage sources
ideal, 146, 254

real, 255–258. See
also Thévenin
source

Impulse function, see
functions, impulse

Impulse response, 304–305,
324–328, 342

Inductance, 129
Inductors, 129–131

impedance, see
impedance, inductor

parallel, 242–244
series, 240–241

Inertial elements, see
elements, inertial

Initial conditions, 293–294
nonzero, 316–320

Initial value theorem, see
Laplace transform, initial
value theorem

Inverse
Fourier series, see

Fourier series, inverse
Fourier transform, see

transforms, inverse
discrete Fourier

Laplace transform, see
Laplace transform,
inverse

Ions, 4

J
j, see complex, numbers

K
Kinetic energy, see energy,

kinetic
Kirchhoff’s voltage law

(KVL), 161, 240
Kirchhoff’s current law

(KCL), 162, 178

L
Lag, 50. See also dummy

time variable
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Laplace transform, 289–334
calculus operations,

292–293
conversion to frequency

domain, 298–299
domain, 321, 330
final value theorem, 

321
initial value theorem,

320
inverse, 300
representation of

elements, see
impedance, Laplace
representation

tables, 421–422
transfer function, see

transfer function,
Laplace

first-order processes,
302–306

second-order
processes

complex roots,
314–316

real roots,
306–309

Leakage current, 135
Linear

association, 46
filtering, 213–221
function, see functions,

linear
signal analysis, see

analysis, linear signal
Linearity, 9–10, 19. See also

system, linear
Loading

measurement, 269–273
Loads

ideal, 270–273
real, 270–273
resistor, 257

Loop analysis, see mesh
analysis

Lumped-parameter analysis,
147

M
Magnitude, 140. See also

RMS
frequency characteristics,

see Bode plot
Mass, 149

impedance, see
impedance

MATLAB commands
abs, 103
angle, 103
axcor, 61
conv, 345
corrcoef, 58–59
cov, 58–59
fft, 102
filter, 345
fminsearch, 328
interp1, 107
mean, 55
sig_noise, 105
svd, 55
var, 55
welch, 109–110

Maximum power transfer,
273–275

Mean, 39
Measurements, 3

basic, 38–44
devices, see loading,

measurement
loading, see loading,

measurement
Mechanical systems, see

system, mechanical
Memory, 50
Mesh, 162
Mesh analysis, 162–171, 

186
MATLAB

implementation,
171–173

Minus 3-dB point, 102. See
also frequency, cutoff

MKS units, 425–428
Model

system, 11–15, 335–369
windkessel, 11

Multiple sources, see sources,
multiple

Muscle
contraction, 153–154
extraocular, 12–13
force, 11–12
force-velocity, 154
length-tension, 153
skeletal, 11–13

model, 178–179

N
Narrowband process,

103–105
Network

reduction, 239–270
passive networks,

244–252
series-parallel

method, 244–247
voltage-current

method, 247–252
with sources,

264–269
transformation, 164
two-terminal, 247

Newton’s law, 15, 178, 180
Nodal analysis, 162,

173–178, 186
Node, 162–163
Noise, 23–26

bandwidth, 1, 25–26,
392

electronic, 23, 25–26,
392–393, 395–396

environmental, 23–25
Johnson, 24–26
multiple sources, 26
shot noise, 24–26
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Noise (continued)
thermal, see noise,

Johnson
white, 24–25

Norton equivalent source, see
Norton source

Norton source, 258–261
conversion to Thévenin,

261–263
resistor, 260

Nyquist frequency, see
frequency, Nyquist

O
Ohm’s law, 127, 146, 247
Op amp, see operational

amplifiers
Open circuit, 134, 254

short circuit current
method, 264–269

voltage, 257
Operational amplifiers,

374–381
adder, 401–402
bandwidth, 382–386
buffer amplifier, 402–403
differential amplifier,

400–401. See also
amplifier,
instrumentation

filters, 405–407
first-order, 405–406
second-order,

406–407,
417–418

gain
closed-loop, 383
feedback gain (b),

375
inverting, 380
loop (AVb), 388
noise (1/b), 391–392
noninverting, 376
open-loop (AV), 383

gain bandwidth product
(GBP), 385

impedance
input, 396
output, 397

instrumention amplifier,
407–410, 418–419

inverting, 379–381
LF 356, 382, 433
noise

current, 395–396
voltage, 389,

392–393
noninverting, 376–378
offset

current, 393–394
voltage, 391–392

phase shift, 389
power supply, 398–399
practical, 381–398

input characteristics,
389–396

output
characteristics,
396–398

transfer
characteristics,
382–391

stability, 386–389
criterion, 387

transconductance
amplifier, 403–405

unity gain stable, 387
variable gain, 380–381

Optimization, 324
Order

filter, see filter, order
Orthogonal, 36–37, 46, 74

P
Padding, 96

zero padding, 96–97
Parasitic elements, see

elements, parasitic
Parseval’s theorem, 98
Partial fraction expansion,

312–314
Passband, see filter, passband

Peak-to-peak amplitude, see
amplitude, peak-to-peak

Period, 31
Periodic functions, see

functions, periodic
Periodogram, 98. See also

power spectrum
Phase, 77. See also sinusoidal,

components, phase
angle, 33
frequency characteristics,

see Bode plot
shift, 34

Phasors, 141
analysis, 139–144
representation

electrical elements,
144

mechanical elements,
156

Physiological
process, 2
system, 1
variables, 2–4

Plant, 16
Plot

Bode, see Bode plot
frequency, see Bode 

plot
Poles, see filter, poles
Pot, see potentiometer
Potential energy, see energy,

potential
Potentiometer, 128
Power, 124

transfer, see maximum
power transfer

Power spectral density, see
power spectrum

Power spectrum, 97–101
direct approach, 98
Welch method, 100–101

Power supply, 398–399
Process, see system
Pupil light reflex, 16–19,

227–228
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Q
Q, 355–366

definition
bandwidth, 359
classical (energy),

357
of capacitor, 358
of inductor, 358
relationship to damping

(d), 359
relationship to frequency

characteristic, 362
Quantization, 8, 93–95

R
Real number, see complex,

numbers
Real sources, see sources, real
Reduction, see network,

reduction
Resistivity, 127
Resistor, 127–129

impedance, see
impedance, resistor

parallel, 242–244
phasor representation,

144
series, 240–241

Resolution, frequency, 96
Resonance, 354–365

bandwidth, see Q
frequency, see frequency,

resonance
Ripple, see filter, ripple
RLC circuit, 165–167, 194,

221, 332
RMS, 39, 41, 43. See also

amplitude, RMS
Root-mean-square, see RMS
Roots

complex, 314
real, 309

S
Sample interval, see sampling,

frequency

Sampling, 88–93
frequency, 89
theory, 92–93
time, 8

Schematics, 128. See also
circuit diagrams

Series elements, see elements,
series electrical

Shannon’s sampling theorem,
see sampling, theory

Short circuit, 130, 254
current, 257

Signal, see functions
analog, 7–9
aperiodic, 85. See also

functions, aperiodic
bandwidth, see

bandwidth, signal
biosignals, 3–9
chirp, 363
conversion, see analog-

to-digital conversion
digital, 7
encoding, 6–9
magnitude, 81
periodic, 40
phase, 81
physiological, 3–9
power, 43
sinusoidal, see sinusoidal
time varying, 7
transient, 85, 289–290

Signal-to-noise ratio (SNR),
26–27, 43

Simulation, 13
Simulink, 19, 349
Sinusoid, see sinusoidal
Sinusoidal

arithmetic, 34
complex representation,

82–85
components, see Fourier

series
magnitude, 78, 81
phase, 78, 81

properties, 72–74

RMS value, 40
steady state, 140
waveform, 31–34

SNR, see signal-to-noise 
ratio

Sources
biological, 2
current, see sources,

current
ideal

current, 255
force, 153–154, 

275
velocity, 156
voltage, 254

multiple, 281–282
real

current, 258–261.
See also Norton
source

force, 275
voltage, 255–258.

See also Thévenin
source

velocity, 278–279
voltage, see voltage,

sources
Spectral analysis, see

transforms, Fourier series,
Fourier transforms

averaging, 99–101
classical methods,

69–119
Spectrum, 24, 73, 80. See

also frequency,
representation

Spring, see elastic elements
Standard deviation, 40
Steady-state, 16, 140
Step

function, see functions,
step

response, 304
Stimulus, 2
Superposition, 10, 195–196
Symmetry, 79–80
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System
bandwidth, see Bode plot
identification, 21,

227–230
linear, 11–23, 74, 195
mechanical, 178–185
model, 11–23, 335–369
physiological, 2
simplifications, 239–269
variables, 123–139

Systems analysis, 15–23,
121–160, 161–191

T
Thévenin equivalent source,

see Thévenin source
Thévenin source, 255–258

conversion to Norton,
261–263

resistor, 257
Three-dB point, see minus 

3-dB point
Trigonometric formulae, 423
Time constant, 303
Time domain, 80. See also

convolution
Time sampling, see sampling
Transducer, 4

biotransducer, 4–6
current, see ammeter
force, 276–278
input, 4
noninvasive, 6
piezoelectric, 279
strain gauge, 4
ultrasound, 279
velocity, 278–279
voltage, see voltmeter

Transfer function, 193–238
and Fourier series,

230–233
frequency characteristics,

see Bode plot

Laplace representation,
300–316, 336

MATLAB
implementation,
221–227

phasor representation,
193–238

Transforms, 43, 78
bilateral, 72, 98
continuous Fourier

transform, 85–87
cosine, 98
discrete Fourier

transform (DFT),
87–88

fast Fourier (FFT), 81
Fourier, 85–88. See also

fast Fourier transform
(FFT)

frequency, 69–119
inverse discrete Fourier,

88
Laplace, see Laplace

transform
reversible, see

transforms, bilateral
Truncation, see windowing
Two-terminal network, see

network, two-terminal

U
Ultrasound imaging, 279
Uncorrelated, 45
Undamped natural frequency

(wn), 308
Underdamped, 308
Under sampling, see aliasing
Units, 425–428

V
Variability

heart rate, 62, 108
sources of, 10

Variables, see system,
variables

electrical, 125–126
flow, 124
kinetic energy, 124. See

also current, velocity
potential energy, 124. See

also voltage, force
Variance, 40
Velocity

generator, see sources
source, see sources
transducer, see

transducer, velocity
Virtual ground, 379
Viscosity, see friction
Visual evoked response, 57
Voltage, 125–126

polarity, 125
sources, 136. See also

sources, voltage
floating, 136
grounded, 136

Voltage–current (v–i)
plot, 252–263
relationship, 127–134,

294–296
Voltmeter, 270

W
Waveform, see signal
Welch method, see power

spectrum, Welch method
Windkessel model, see model,

windkessel
Windowing, 95

Y
Young’s modulus, 151–152

Z
Zero padding, see padding,

zero padding
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