

Team LRN

Robots,
Androids, and
Animatrons

Team LRN

This page intentionally left blank.

Team LRN

Robots,
Androids, and
Animatrons

12 Incredible Projects
You Can Build

John Iovine

Second Edition

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

Team LRN

Copyright © 2002, 1998 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-139454-0

The material in this eBook also appears in the print version of this title: 0-07-137683-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071394540

Team LRN

Dedication:
To Ellen, my wife;

James, my son; and
AnnaRose, my daughter—

with love

Team LRN

This page intentionally left blank.

Team LRN

Contents

Introduction xvii

Acknowledgments xix

1 In the beginning 1
Why build robots? 2
Purpose of robots 2

Exploration 3
Industrial robots—going to work 7
Design and prototyping 7
Hazardous duty 8
Maintenance 8
Fire-fighting robots 9
Medical robots 9
Nanotechnology 10
War robots 11
Robot wars 11
Civilian uses for robotic drones 12
Domestic 12
What we haven’t thought of yet—the killer application 12
More uses 13

2 Artificial life and artificial intelligence 15
Artificial intelligence 15

Evolution of consciousness in artificial intelligence 16
Is consciousness life? 17

Artificial life 17
Nanorobotics—are we alive yet? 18

For more information about this book, click here.

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

A little history 18
Greater than I 19
The locked cage 19
Biotechnology 20
Neural networks—hype versus reality 20
What are neural networks? 20
What is artificial intelligence? 21
Using neural networks in robots 22
Tiny nets 22
Neural-behavior-based architecture 22

3 Power 23
Photovoltaic cells 23

Building a solar engine 24
Batteries 28

Battery power 28
Battery voltage 29
Primary batteries 29
Secondary batteries 30
In general 33
Building a NiCd battery charger 33
Building a solar-powered battery charger 38

Fuel cells—batteries with a fuel tank 38
If not now, when? 39

4 Movement and drive systems 41
Air muscles 41

Applications 41
How air muscles work 42

Nitinol wire 43
Solenoids 45
Rotary solenoids 46
Stepper motors 47

Stepper motor circuit 48
Servo motors 48
DC motors 54

DC motor H-bridge 55
Pulse-width modulation 57

Team LRN

5 Sensors 59
Signal conditioning 60

Comparator example 60
Voltage divider 61

Light sensors (sight) 64
Photoresistive 64
Photoresistive light switch 64
Photoresistive neuron 66
Photovoltaic 67
Infrared 67
DTMF IR communication/remote control system 70
DTMF 70

Machine vision 80
Body sense 81
Direction—magnetic fields 82

Testing and calibration 83
Computer interface 83
1525 electronic analog compass 84
GPS 85

Speech recognition 85
Sound and ultrasonics 86

Ultrasonic receiver section 87
Ultrasonic transmitter section 88
Arranging the ultrasonic sensors 90

Touch and pressure 90
Piezoelectric material 91
Switches 92
Bend sensors 92

Heat 93
Pressure sensor 94
Smell 94
Humidity 97
Testing sensors 97
Building a tester robot 97

Improving the tester robot 99

6 Intelligence 101
Microchip’s PIC microcontroller 101
Why use a microcontroller? 102

Team LRN

PIC programming overview 102
Software installation 105
Step 1: Writing the BASIC language program 105
Step 2: Using the compiler 105
Step 3: Programming the PIC chip 106
First BASIC program 106
Programming the PIC chip 110
The EPIC programming board software 110
Testing the PIC microcontroller 113
Wink 114
Troubleshooting the circuit 114
PICBASIC Pro Compiler 115

New IDE features 115
Software installation 117

First PICBASIC Pro program 117
The EPIC programmer and CodeDesigner 118
Wink 119

Moving forward—applications 120
Reading switches—logic low 120
Reading switches—logic high 121
Reading comparators 123
Reading resistive sensors 123

Servo motors 126
Servo sweep program 127

Fuzzy logic and neural sensors 127
Fuzzy logic 128
Building a fuzzy logic light tracker 130

Parts list for programming the microcontroller 139
Parts list for fuzzy light tracker and neural demonstration 140

7 Speech-controlled mobile robot 143
Project 1: Programmable speech-recognition circuit 144
Learning to listen 144

Speaker-dependent and speaker-independent speech recognition 145
Recognition style 145
Building the speech-recognition circuit 146

Project 2: Interface circuit 152
Walkie-talkies 153
Acoustic coupling 153
Training and controlling the mobile robot 154

Team LRN

New board features 155
Project 3: General speech-recognition interfacing circuit 155

Connection to speech kit 157
How it works 157
Creating a more useful output 159
Operation 159
Improving recognition 160
Match environment and equipment 160
Speech-controlled robotic arm 162

Parts list for speech-recognition circuit 162
Parts list for interface circuit 162

8 Behavioral-based robotics, neural networks, nervous nets,
and subsumption architecture 165
Robotics pioneer 166

Fours modes of operation 168
Observed behavior 168
Building a Walter tortoise 168

Program 183
Program 1 184
Program 2 185

Behavior 186
Parts list for the Walter tortoise robot 188
Suppliers 189
Building an intelligent photovore robot 189

Behavior 191
Adding behavior (feeding) 192
Still more behavior (resting) 192
Emergent behavior 193

BEAM robotics 194
BEAM competition 194
Electronic flotsam 196
Competitions 196
Getting the BEAM guide 198
Join in 199

9 Telepresence robot 201
What’s in a name? 201
What is telepresence? 201

Team LRN

System substructure 202
A little on R/C models 203
Eyes 204

Construction 205
2.4-GHz video system 206
Driving via telepresence 207
Talk 208
Adding realistic car controls 208

Improving the telepresence system 208
Stereo-vision 208
Digital compass 210
Rumble interface 210
Tilt interface 210
Greater video range 211

More models 212
Parts list for the telepresence robot 212

10 Mobile platforms 213
Stepper motors 214

Stepper motor construction and operation 215
Resolution 215
Half stepping 215
Other types of stepper motors 217
Real world 217

UCN-5804 219
Using the UCN-5804 220

Connecting a wheel to a stepper motor shaft 222
Building a stepper microcontroller 222

First stepper circuit 222
Stepper motors 223
First test circuit and program 224
Second PICBASIC program 225

Troubleshooting 228
Using a PIC microcontroller and a UCN-5804 stepper motor IC 229
Parts list for the stepper motor controller 232

11 Walker robots 233
Why build walkers? 233
Imitation of life 233

Team LRN

Six legs—tripod gate 233
Creating a walker robot 234

Three-servo walker 235
Function 236
Construction 238
Mounting the servo motors 240
Linkage 240
Center servo motor 241
Electronics 243

Microcontroller program 244
PICBASIC program 245

Parts list for the walker robot 246

12 Solar-ball robot 247
Gearbox 249
Robot construction 250
Electronics 253

How it works 253
Putting it all together 255
Locomotion 255
Advancing the design 255

Adding higher behavior module 256
Parts list for the solar-ball robot 256

Electronics 257

13 Underwater bots 259
Dolphins and tunas 259
Swimming with foils 261
Paddles and rows 261
What have we learned so far? 261
Jumping in 262

Submarine 262
Swimming by use of a tail 263
The robotic android fish 267

Learn more about it 267
Parts list for robotic fish 267

14 Aerobots 269
Lighter-than-air aircraft background 270

Team LRN

Blimp systems 270
The Robot Group—Austin, Texas 271
WEB Blimp—University of California, Berkeley 271
Designing telepresence blimps as avatars and golems 272

To the moon 272
Blimp parameters 273
The blimp kit 274

Helium 274
Helium versus hydrogen 274
Size 275
Construction 276

CCD camera 276
TV transmitter 276
Radio-control system 277

Parts list for the blimp 280
Internet access 280

15 Robotic arm and IBM PC interface and speech control 281
Robotic arm 283

Basic motor control 284
PC interface construction 286

How the interface works 288
Connecting the interface to the robotic arm 289
Installing the Windows 95 program 289
Using the Windows 95 program 290

Creating script files 291
Animatronics 291
Limitations 291
Finding home 292
Connecting manual control to interface 293
DOS-level keyboard program 294
Speech control for robotic arm 294

Programming the speech-recognition interface 296
Parts list for the PC interface 297
Parts list for the speech-recognition interface 297

16 Android hand 299
Advantages of the air muscle 300

Uses 300

Team LRN

How the air muscle works 300
Components of the air muscle system 301
Attaching the air muscle to mechanical devices 304
Using the air pump adaptor 304
Have a Coke or Pepsi 305

Building the first demo device 307
Building the second mechanical device 310
IBM interface 311
BASIC program 312
More air 313

Safety first 314
Android hand 314

The thumb 319
Going further 321
Parts list for the air muscle 321
Parts list for the IBM interface 322

Suppliers 323

Index 325

Team LRN

This page intentionally left blank.

Team LRN

Introduction

There are many interesting and fun things to do in electronics, and
one of the most enjoyable is building robots. Not only do you em-
ploy electronic circuits and systems, but they must be merged
with other technologies. Building a robot from scratch involves the
following:

� Power supply systems

� Motors and gears for drive and motion control

� Sensors

� Artificial intelligence

Each one of these technologies has numerous books dedicated
to its study. Naturally, a comprehensive look at each technology
isn’t possible in one book, but we will touch upon these areas, and
you will gain hands-on knowledge and a springboard for future
experimentation.

Robotics is an evolving technology. There are many approaches to
building robots, and no one can be sure which method or tech-
nology will be used 100 years from now. Like biological systems,
robotics is evolving following the Darwinian model of survival of
the fittest.

You’re not alone when you become a robotist. I was surprised to
learn that there are many people, government organizations, pri-
vate organizations, competitions, and clubs devoted to the sub-
ject of amateur robotics. NASA has the most advanced robotics
systems program I ever saw. Much of the information is free for
the asking. If you have Internet access, jump to one of the search
engines (Yahoo, Excite, etc.) and search under robotics. You will
find the websites of many companies, individuals, universities,
clubs, and newsgroups dedicated to robotics.

xvii

Introduction

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

This page intentionally left blank.

Team LRN

Acknowledgments

I would like to thank some of the people who helped make this book
possible: Matt Wagner, my agent at Waterside Productions; Scott
Grillo, who tried to keep me on schedule; and Stephen Smith for a
great job of editing.

xix

Acknowledgments

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

This page intentionally left blank.

Team LRN

1

In the beginning

SOME HISTORIANS BELIEVE THE ORIGIN OF ROBOTICS CAN
be traced back to the ancient Greeks. It was around 270 BC when
Ctesibus (a Greek engineer) made organs and water clocks with
movable figures.

Other historians believe robotics began with mechanical dolls. In
the 1770s, Pierre Jacquet-Droz, a Swiss clock maker and inventor
of the wristwatch, created three ingenious mechanical dolls. He
made the dolls so that each one could perform a specific function:
one would write, another would play music on an organ, and the
third could draw a picture. As sophisticated as they were, the dolls,
whose purpose was to amuse royalty, performed all their respective
feats using gears, cogs, pegs, and springs.

More recently, in 1898, Nikola Tesla built a radio-controlled sub-
mersible boat. This was no small feat in 1898. The submersible was
demonstrated in Madison Square Garden. Although Nikola Tesla
had plans to make the boat autonomous, lack of funding prevented
further research.

The word “robot” was first used in a 1921 play titled R.U.R.: Rossum’s

Universal Robots, by Czechoslovakian writer Karel Capek. Robot is a
Czech word meaning “worker.” The play described mechanical ser-
vants, the “robots.” When the robots were endowed with emotion,
they turned on their masters and destroyed them.

Historically, we have sought to endow inanimate objects that re-
semble the human form with human abilities and attributes. From
this is derived the word anthrobots, robots in human form.

In the beginning

1

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

2

Since Karel Capek’s play, robots have become a staple in many
science fiction stories and movies. As robots evolved, so did the
terminology needed to describe the different robotic forms. So, in
addition to the old “tin-man” robot, we also have cyborgs, which
are part human and part machine, and androids, which are spe-
cially built robots designed to be humanlike.

Many people had their first look at a real robot during the 1939
World’s Fair. Westinghouse Electric built a robot they called Elek-
tro the Moto Man. Although Elektro had motors and gears to move
its mouth, arms, and hands, it could not perform any useful work.
It was joined on stage by a mechanical dog named Sparko.

Why build robots?
Robots are indispensable in many manufacturing industries. The
reason is that the cost per hour to operate a robot is a fraction of
the cost of the human labor needed to perform the same function.
More than this, once programmed, robots repeatedly perform func-
tions with a high accuracy that surpasses that of the most experi-
enced human operator. Human operators are, however, far more
versatile. Humans can switch job tasks easily. Robots are built and
programmed to be job specific. You wouldn’t be able to program a
welding robot to start counting parts in a bin.

Today’s most advanced industrial robots will soon become “dinosaurs.”
Robots are in the infancy stage of their evolution. As robots evolve,
they will become more versatile, emulating the human capacity and
ability to switch job tasks easily.

While the personal computer has made an indelible mark on soci-
ety, the personal robot hasn’t made an appearance. Obviously
there’s more to a personal robot than a personal computer. Robots
require a combination of elements to be effective: sophistication of
intelligence, movement, mobility, navigation, and purpose.

Purpose of robots
In the beginning, personal robots will focus on a singular function (job
task) or purpose. For instance, today there are small mobile robots
that can autonomously maintain a lawn by cutting the grass. These
robots are solar powered and don’t require any training. Underground
wires are placed around the lawn perimeter. The robots sense the
wires, remain within the defined perimeter, and don’t wander off.

Building a useful personal robot is very difficult. In fact it’s beyond
the scope of this book, or for that matter, every other contemporary
book on robotics. So you may reasonably ask, “What’s the purpose of

Chapter one Team LRN

3

this book?” Well, in reading this book and building a few robots you
gain entry into and become part of the ongoing robotic evolution.

Creativity and innovation do not belong to only those with college
degrees. Robot building is not restricted to Ph.D.s, professors, uni-
versities, and industrial companies. By playing and experimenting
with robots you can learn many aspects of robotics: artificial intel-
ligence, neural networks, usefulness and purpose, sensors, naviga-
tion, articulated limbs, etc. The potential is to learn first hand
about robotics and possibly make a contribution to the existing
body of knowledge on robotics. And to this end amateur robotists
do contribute, in some cases creating a clever design that sur-
passes mainstream robotic development.

As the saying goes, look before you leap. The first question to ask
yourself when beginning a robot design is, “What is the purpose of
this robot? What will it do and how will it accomplish its task?” My
dream is to build a small robot that will change my cat’s litter box.

This book provides the necessary information about circuits,
sensors, drive systems, neural nets, and microcontrollers for you
to build a robot. But before we begin, let’s first look at a few cur-
rent applications and how robots may be used in the future. The
National Aeronautics and Space Administration (NASA) and the
U.S. military build the most sophisticated robots. NASA’s main
interest in robotics involves (couldn’t you guess) space explo-
ration and telepresence. The military on the other hand utilizes
the technology in warfare.

Exploration

NASA routinely sends unmanned robotic explorers where it is
impossible to send human explorers. Why send robots instead of
humans? In a word, economics. It’s much cheaper to send an expend-
able robot than a human. Humans require an enormous support sys-
tem to travel into space: breathable atmosphere, food, heat, and
living quarters. And, quite frankly, most humans would want to live
through the experience and return to Earth in their lifetime.

Explorer spacecraft travel through the solar system where their
electronic eyes transmit back to Earth fascinating pictures of the
planets and their moons. The Viking probes sent to Mars looked
for life and sent back pictures of the Martian landscape. NASA is
developing planetary rovers, space probes, spider-legged walking
explorers, and underwater rovers. NASA has the most advanced
telerobotic program in the world, operating under the Office of
Space Access and Technology (OSAT).

In the beginningTeam LRN

4

NASA estimates that by the year 2004, 50 percent of extra vehicle
activity (EVA) will be conducted using telerobotics. For a complete
explanation of telerobotics and telepresence, see Chap. 9.

Robotic space probes launched from Earth have provided spec-
tacular views of our neighboring planets in the solar system. And
in this era of tightening budgets, robotic explorers provide the
best value for the taxpayer dollar. Robotic explorer systems can be
built and implemented for a fraction of the cost of manned flights.
Let’s examine one case. The Mars Pathfinder represents a new
generation of small, low-cost spacecraft and explorers.

Mars Pathfinder (Sojourner)

The Mars Pathfinder consists of a lander and rover. It was launched
from Earth in December of 1996 on board a McDonnell Douglas
Delta II rocket and began its journey to Mars. It arrived on Mars on
July 4, 1997.

The Pathfinder did not go into orbit around Mars; instead it flew di-
rectly into Mars’s atmosphere at 17,000 miles per hour (mph)
[27,000 kilometers per hour (km/h) or 7.6 kilometers per second
(km/s)]. To prevent Pathfinder from burning up in the atmosphere,
a combination of a heat shield, parachute, rockets, and airbags was
used. Although the landing was cushioned with airbags, Pathfinder
decelerated at 40 gravities (Gs).

Pathfinder landed in an area known as Ares Vallis. This site is at the
mouth of an ancient outflow channel where potentially a large vari-
ety of rocks are within reach of the rover. The rocks would have
settled there, being washed down from the highlands, at a time
when there were floods on Mars. The Pathfinder craft opened up
after landing on Mars (see Fig. 1.1) and released the robotic rover.

The rover on Pathfinder is called Sojourner (see Fig. 1.2). Sojourner
is a new class of small robotic explorers, sometimes called micro-
rovers. It is small, with a weight of 22 pounds (lb) [10.5 kilograms
(kg)], height of 280 millimeters (mm) (10.9″), length of 630 mm
(24.5″), and width of 480 mm (18.7″). The rover has a unique six-
wheel (Rocker-Bogie) drive system developed by Jet Propulsion
Laboratories (JPL) in the late 1980s. The main power for Sojourner
is provided by a solar panel made up of over 200 solar cells. Power
output from the solar array is about 16 watts (W). Sojourner began
exploring the surface of Mars in July 1997. Previously this robot was
known as Rocky IV. The development of this microrover robot went
through several stages and prototypes including Rocky I through
Rocky IV.

Chapter one Team LRN

5

Both the Pathfinder lander and rover have stereo imaging systems.
The rover carries an alpha proton X-ray spectrometer that is used
to determine the composition of rocks. The lander made atmos-
pherical and meteorological observations and was the radio relay
station to Earth for information and pictures transmitted by the
rover.

Mission objectives The Sojourner rover itself was an experiment.
Performance data from Sojourner determined that microrover
explorers are cost efficient and useful. In addition to the science
that has already been discussed, the following tasks were also per-
formed:

� Long-range and short-range imaging of the surface of Mars

� Analysis of soil mechanics

� Tracking Mars dead-reckoning sensor performance

In the beginning

� 1.1 Mars Pathfinder. Photo courtesy of NASA

Team LRN

6
� Measuring sinkage in Martian soil

� Logging vehicle performance data

� Determining the rover’s thermal characteristics

� Tracking rover imaging sensor performance

� Determining UHF link effectiveness

� Analysis of material abrasion

� Analysis of material adherence

� Evaluating the alpha proton X-ray spectrometer

� Evaluating the APXS deployment mechanism

� Imaging of the lander

� Performing damage assessment

Sojourner was controlled (driven) via telepresence by an Earth-
based operator. The operator navigated (drove) the rover using
images obtained from the rover and lander. Because the time delay
between the Earth operator’s actions and the rover’s response was
between 6 and 41 minutes depending on the relative positions of
Earth and Mars, Sojourner had onboard intelligence to help pre-
vent accidents, like driving off a cliff.

Chapter one

� 1.2 Sojourner Rover. Photo courtesy of NASA

Team LRN

7

NASA is continuing development of microrobotic rovers. Small
robotic land rovers with intelligence added for onboard navigation,
obstacle avoidance, and decision making are planned for future
Mars exploration. These robotic systems provide the best value
per taxpayer dollar.

The latest microrover currently being planned for the next Mars expe-
dition will again check for life. On August 7, 1996, NASA released a
statement that it believed it had found fossilized microscopic life
on Mars. This information has renewed interest in searching for
life on Mars.

Industrial robots—going to work
Robots are indispensable in many manufacturing industries. For
instance, robot welders are commonly used in automobile manu-
facturing. Other robots are equipped with spray painters and paint
components. The semiconductor industry uses robots to solder
(spot weld) microwires to semiconductor chips. Other robots
(called “pick and place”) insert integrated circuits (ICs) onto
printed circuit boards, a process known as “stuffing the board.”

These particular robots perform the same repetitive and precise
movements day in and day out. This type of work is tedious and bor-
ing to a human operator. Following operator boredom comes fatigue,
and with operator fatigue, errors. Production errors reduce produc-
tivity, which in turn leads directly to higher manufacturing costs.
Higher manufacturing costs are passed along to the consumer as
higher retail prices. In a competitive market the company that pro-
vides high-quality products at the best (lower) price succeeds.

Robots are ideally suited for performing repetitive tasks. Robots
are faster and cheaper than human laborers and do not become
bored. This is one reason manufactured goods are available at low
cost. Robots improve the quality and profit margin (competitive-
ness) of manufacturing companies.

Design and prototyping
Some robots are useful for more than repetitive work. Manufacturing
companies commonly use computer-aided design (CAD), computer-
aided manufacturing (CAM), and computer numerical control
(CNC) machines to produce designs, manufacture components, and
assemble machines. These technologies allow an engineer to design
a component using CAD and quickly manufacture the design of the
board using computer-controlled equipment. Computers assist in the
entire process from design to production.

In the beginningTeam LRN

8

Hazardous duty

Without risking human life or limb, robots can replace humans in
some hazardous duty service (see Fig. 1.3). Take for example
bomb disposal. Robots are used in many bomb squads across the
nation. Typically these robots resemble small armored tanks and
are guided remotely by personnel using video cameras (basic
telepresence system) attached to the front of the robot. Robotic
arms can grab a suspected bomb and place it in an explosion-proof
safe box for detonation and/or disposal.

Similar robots can help clean up toxic waste. Robots can work in
all types of polluted environments, chemical as well as nuclear.
They can work in environments so hazardous that an unprotected
human would quickly die. The nuclear industry was the first to
develop and use robotic arms for handling radioactive materials.
Robotic arms allowed scientists to be located in clean, safe rooms
operating controls for the robotic arms located in radioactive
rooms.

Chapter one

� 1.3 Hazbot. Photo courtesy of NASA

Team LRN

9

Maintenance

Maintenance robots specially designed to travel through pipes,
sewers, air conditioning ducts, and other systems can assist in
assessment and repair. A video camera mounted on the robot can
transmit video pictures back to an inspecting technician. Where
there is damage, the technician can use the robot to facilitate
small repairs quickly and efficiently.

Fire-fighting robots

Better than a home fire extinguisher, how about a home fire-fighting
robot? This robot will detect a fire anywhere in the house, travel to
the location, and put out the fire.

Fire-fighting robots are so attractive that there is an annual national
fire-fighting robot competition open to all robotists. The Fire-Fighting
Home Robot Contest is sponsored by Trinity College, the Connecticut
Robotics Society, and a number of corporations. Typically a fire-
fighting robot becomes active in response to the tone from a
home fire alarm. During the competitions, its job is to navigate
through a mock house and locate and extinguish the fire.

Medical robots

Medical robots fall into three general categories. The first category
relates to diagnostic testing. In the spring of 1992, Neuromedical
Systems, Inc., of Suffern, N.Y., released a product called Papnet.
Papnet is a neural network tool that helps cytologists detect cervi-
cal cancer quickly and more accurately.

Laboratory analysis of pap smears is a manual task. A technician
examines each smear under a microscope looking for a few abnor-
mal cells among a larger population of normal cells. The abnormal
cells are an indicator of a cancerous or precancerous condition,
but many abnormal cells are missed due to human fatigue and
habituation.

Scientists have been trying to automate this checking process for 20
years using computers with standard rule-based programming. This
was not a successful approach. The difficulty is that the classic algo-
rithms could not differentiate between the complex visual patterns
of normal cells and those of abnormal cells.

Papnet uses an advanced image recognition system and neural
network. The network selects 128 of the most abnormal cells
found on a pap smear for later review by a cytologist.

In the beginningTeam LRN

10

The Papnet system is highly successful. It recognizes abnormal
cells in 97 percent of the cases. Since the reviewing technician is
only looking at 128 cells instead of 200,000 to 500,000 cells on a
pap smear, the fatigue factor is greatly reduced. In addition, the
time required to review a smear is only one-fifth to one-tenth what
it was before. The accuracy improves to a rate of 3 percent false
negatives as compared to 30 to 50 percent for manual searches.

The second medical category relates to telepresence surgery. Here
a surgeon is able to operate on a patient remotely using a specially
developed medical robot. The robot has unique force-feedback
sensors that relate to the surgeon the feel of the tissue underneath
the robot’s instruments. This technology makes it possible for spe-
cialists to extend their talent to remote provinces of the world.

The third category relates to virtual reality (VR) and enhanced
manipulation. With enhanced manipulation the surgeon operates
on a patient through a robot. The robot translates all the sur-
geon’s movements. For instance, let’s suppose the surgeon moves
his or her hand 1″; the computer would translate that to travel of
1�10″ or 1�100″. The surgeon can now perform delicate and micro-
scopic surgical procedures that were once impossible.

Nanotechnology
Nanotechnology is the control and manipulation of matter at the
atomic and molecular level. It is the ability to create electronic and
mechanical components using individual atoms. These tiny (nano)
components can be assembled to make machines and equipment
the size of bacteria. IBM has already created transistors, wires,
gears, and levers out of atoms.

How does one go about manipulating atoms? Two physicists,
Gerd Binnig and Heinrich Rohrer, invented the scanning tunnel-
ing microscope (STM). The tip of the STM is very sharp and its
positioning exact. In 1990 IBM researchers used an STM to move
35 xenon atoms on a nickel crystal to spell the company’s name,
“IBM.” The picture of “IBM” written in atoms made worldwide
news and was shown in many magazines and newspapers. This
marked the beginning of atomic manipulation. As IBM continues
to improve its nanotechnology, nanotechrobotics will find many
uses in manufacturing, exploration, and medicine.

Nanotech medical bots

Nanotechnology can also be used to create small and micro-
scopic robots. Imagine robots so small they can be injected into a
patient’s bloodstream. The robots travel to the heart and begin

Chapter one Team LRN

11

removing the fatty deposits, restoring circulation. Or the robots
travel to a tumor where they selectively destroy all cancerous
cells. What are now considered inoperable conditions may one
day be cured through nanotechnology.

Another hope of nanotech medical bots (nanobots) is that they
may be able to stop or reverse the aging process in humans. Tiny
virus-sized nanobots could enter each cell, resetting the cell clock
back to 1. Interesting possibilities.

Keep in mind that nanotechnology is an expanding new robotic field
itself. Macroscopic and microscopic robots that will do everything
from cleaning your house to materials processing and building are
being considered. Everyone expects nanotechnology will be creat-
ing new high-quality materials and fabrics at low cost.

War robots

One of the first applications of robots is war. And if forced into a war,
we can use robots to help us win, and win fast. Robots are becoming
increasingly more important in modern warfare. Drone aircraft can
track enemy movements and keep the enemy under surveillance.

The Israeli military used an unmanned drone in an interesting
way. The drone was created to be a large radar target. It was
flown into enemy airspace. The enemy switched on its targeting
radar, allowing the Israelis to get a fix on the radar position. The
radar installation was destroyed, making it safe for fighter jets to fol-
low through.

Smart bombs and cruise missiles are other examples of “smart”
weaponry. As much as I appreciate Asimov’s Three Laws of Robot-
ics, which principally state that a robot should never intentionally
harm a human being, war bots are here to stay.

Robot wars

There are interesting civilian “robot war” competitions. Competi-
tors build radio-controlled robots that are classified by weight and
have them fight in one-on-one battles. Winners advance through
standard elimination.

Robot Wars was the first robot war competition. The arena for the
competition is 30 by 54 ft of smooth asphalt with 8-ft-high walls to
protect spectators. For more information on robot wars, see the
Robot Wars website http://www.robotwars.com.

Robot battles have caught on so well that there are a number of
robot war competitions and websites to visit. Here are a few:

In the beginningTeam LRN

12

� Battlebots http://www.battlebots.com/

� Robotica http://tlc.discovery.com/fansites/robotica/

robotica.html

� MicroBot Wars http://microbw.hypermart.net/

Civilian uses for robotic drones

Robotic drones and lighter-than-air aircraft (blimps) developed by
the military could be put to civilian use monitoring high-crime
neighborhoods and traffic conditions. Because the aircraft do not
have any human occupants, they can be made much smaller. I feel
robotic blimps will be used more often than robotic aircraft because
they will be safer to operate. Aircraft need to be moving in order to
maintain lift. An out-of-control drone aircraft can become lethal if it
flies into anything. Blimps, on the other hand, are safer because
they travel slower and float gracefully through the air. If surveillance
aircraft become reliable enough, they could also be used to monitor
traffic, warehouses, apartment buildings, and street activity in high-
crime areas.

Domestic

Applications for domestic robots are numerous. We all could use
robots that clean windows and floors, report and/or do minor
home repairs, cook, clean the upholstery, wash clothes, and
change the kitty litter. This raises a debatable point. Should we
classify our current labor-saving devices like dishwashers, ovens,
washing machines, and clothes dryers as robots or machines? I
think that at the point that they autonomously gather the mate-
rials needed to perform their functions, like getting food from
the refrigerator for cooking or picking up clothes around the
house for washing, they will have passed from the machine stage
and become robots.

What we haven’t thought of yet—the killer application

It is often said, mostly in regard to software, that to gain popular-
ity you need a “killer application.” In the olden days of computers,
it was word processing and spread sheets. What will be the killer
application for robotics, the one application that will make every-
one buy a robot? I don’t know the answer to this question. I do
know that robots will find many more uses and niches that haven’t

Chapter one Team LRN

13

been thought of today. Many applications will not become appar-
ent until robots are so prevalent in society that the application is
discovered by a mixture of availability, imagination, and need.

More uses

Robotic research and development is moving faster than anyone
can follow. The Internet is an excellent tool for finding information.

In the beginningTeam LRN

This page intentionally left blank.

Team LRN

15

Artificial life and
artificial intelligence

THE EVOLUTION OF ROBOTICS LEADS TO TWO FAR-REACH-
ing topics, the creation of artificial intelligence and artificial life.

Artificial intelligence
People dream of creating a machine with artificial intelligence (AI)
that rivals or surpasses human intelligence. I feel neural networks
are the best technology for developing and generating AI in com-
puter systems. This is in contrast to other computerists who see
expert systems and task-specific rule-based systems (programs) as
potentially more viable.

It is an undeniable fact that rule-based computer operating systems
(DOS, Windows, Linux, etc.) and rule-based software are valuable
and do most (close to all) of the computer labor today. Even so, the
pattern matching and learning capabilities of neural networks are
the most promising approach to realizing the AI dream.

Recently it had been forecasted that large-scale parallel proces-
sors using a combination of neural networks and fuzzy logic
could simulate the human brain within 10 years. While this
forecast may be optimistic, progress is being made toward
achieving that goal. Second-generation neural chips are on the
market. Recently two companies (Intel Corp., Santa Clara, CA,
and Nestor Inc., Providence, RI), through joint effort, created a
new neural chip called the Ni1000. The Ni1000 chip, released in
1993, contains 1024 artificial neurons. This integrated circuit

Artificial life and artificial intelligence

2

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

16

has 3 million transistors and performs 20 billion integer opera-
tions per second.

Evolution of consciousness in artificial intelligence

Consciousness is a manifestation of the brain’s internal processes.
The generation of consciousness in Homo sapiens coincides
with the evolution and development of neural structures (the
brain) in the biological system. A billion years ago the highest
form of life on Earth was a worm. Let’s consider the ancestral worm
for a moment. Does its rudimentary (neural structure) intelligence
create a form of rudimentary consciousness? If so, then it’s akin to
an intelligence and consciousness that can be created by artificial
neural networks running in today’s supercomputers (see Fig. 2.1).

In reality, while the processing power of supercomputers approaches
that of a worm, this has not yet been accomplished. The reason is that
it is too difficult to program a neural network in a supercomputer
that would use all the computer’s processing power.

The worm is unquestionably alive, but is it self-aware? Is it simply a
cohesive jumble of neurons replaying an ancestral record imprinted
within its primordial neural structure, making it no more than a
functional biological automaton?

Chapter two

� 2.1 Graph showing supercomputer capabilities

Team LRN

17

Is consciousness life?

This raises a few questions: “Is intelligence conscious?” “Is con-
sciousness life?” It seems safe to say that intelligence has to reach
a certain level or critical mass before consciousness is achieved. In
any case, artificial neural networks can and will develop con-
sciousness. Whether the time span is 10 years or a 1000 years from
now makes no difference; 1000 years is less than a blink of the eye
in the evolutionary time line. (Of course, I am hoping for a 10-year
cycle so I can see a competent AI machine in my lifetime.) At the
point where an artificial neural network becomes conscious and
self-aware, should we then consider it to be alive?

Artificial life
Artificial life (AL) splinters into three ongoing research themes:
self-powered neural robots, nanorobotics (may be self-replicating),
and programs (software). The most evolved types of artificial life
on Earth today are programs. No one has created a self-replicating
robot, and nanobots are still years away from implementation.
Therefore let’s discuss AL programs for the time being.

In AL programs, life exists only as electric impulses that make
up the running program inside the computer’s memory. Com-
puter scientists have created diverse groups of AL programs that
mimic many biological functions (survival, birth, death, growth,
movement, feeding, sex) of life. Some programs are called cellular

automations; others are called genetic algorithms.

Cellular automation (CA) programs have been used to accurately
model biological organisms and study the spread of communicable
diseases like AIDs in the human population. These programs have
also been used to study evolution, ant colonies, bee colonies, and
a host of other chaos-driven statistics. Chaos algorithms are added
into the programs to generate randomness. One interesting appli-
cation of CA programs is to optimize neural networks running in
host computers. It is hoped that these CA programs will one day
create and wire large neural network systems in supercomputers.

Genetic algorithms (GAs) evolve in a Darwinian fashion—survival
of the fittest. Two compatible GA programs can meet in the com-
puter’s running memory, mate, and mix their binary code to pro-
duce offspring. If the offspring GA program is as healthy or has
greater health than its parents, it will likely survive.

Artificial life and artificial intelligenceTeam LRN

18

Are these programs alive? It depends upon the definition used for
life. What if the programs evolve and develop higher levels of pro-
gramming? What happens when these programs are encased in
and control mobile robots? How about if the robots learn to build
copies of themselves (self-replicate)?

Nanorobotics—are we alive yet?

A nanobot is a robot the size of a microbe. IBM is making progress
in manipulating atoms and molecules to create simple machines
and electronics (transistors and wire). So far, there appears to be
no restriction on how small one can make an object. Bacteria-sized
robots are theoretically possible.

Some scientists predict silicon life will be the next evolutionary
step, replacing carbon life forms on this planet. What we call elec-
tronics and robotics will evolve into self-creating, self-replicating
silicon life.

Whether or not silicon life becomes the next major evolutionary
step on Earth will not be debated here. This chapter will remain
focused on the development of artificial intelligence (conscious-
ness) and artificial life.

A little history
The progression of computer technology over the last five and
a half decades is staggering. In 1946 the ENIAC computer filled a
large area with electronic equipment. The computer was almost
100 feet (ft) long, 8 ft high, 3 ft deep, and weighed 30 tons. ENIAC
contained 18,000 tubes, 70,000 resistors, 10,000 capacitors, 6000
switches, and 1500 electromagnetic relays. ENIAC could perform
5000 additions per second, 357 multiplications per second, and up
to 38 divisions per second. Today that same 1946 computer could
be condensed on a tiny sliver of silicon less than 1�4″ square.

Physicist Robert Jastrow stated in The Enchanted Loom (New
York, Simon & Schuster, 1981) that, “The first generation of comput-
ers was a billion times clumsier and less efficient than the human
brain. Today, the gap has narrowed a thousand fold.”

Science is progressing unrelentingly toward creating AI. Artificial
intelligence is something we may see in our lifetime. From the
standpoint of creating competent AI, it’s a small step to generating
superior intelligence in machines. That’s a dream, many scientists
will tell you, trying to retain the waxing illusion that human intelli-

Chapter two Team LRN

19

gence is and forever will be unsurpassed. I don’t take any comfort in
that illusion. AI is an evolving, uncompromising, unrelenting reality.

Greater than I
Would we as the human race want to produce an intelligence supe-
rior to our own? If you think about it, in the long run we may need
to just to survive. Think of the advantages for the first nation that
produced an AI machine with an IQ of 300. The AI machine could
be given tasks such as improving the national economy, cleaning
up the environment, ending pollution, developing military strat-
egy in the event of war, performing medical and scientific research,
and, of course, designing still smarter machines than itself. It’s pos-
sible that the next theory of the universe will not be put forth by a
human (as previously done by Albert Einstein) but by a competent
AI machine.

The locked cage
Why is creating a superior intelligence so important? Wouldn’t hu-
mankind find the answers to all these vexing problems eventually?
Perhaps. The necessity of generating a superior AI is best illustrated
with a story. I once heard or read this story. I’m afraid I don’t remem-
ber the author and to him or her I apologize. And if I have changed
the story a bit in the retelling, I apologize for that also.

Ten chimpanzees are in a cage. The cage door is locked. To reason
how to unlock the lock and open the cage door requires an intelli-
gence quotient (IQ) of approximately 90. Each chimp in the cage
has been tested, and each has an IQ of about 60. Could the 10
chimps working together find a way to unlock the cage door? The
answer is NO! Intelligence is not accumulative. If it were, the 10
chimps working together would have a combined IQ of 600, more
than enough to reason out how to open the cage door. In real life
the chimps remain caged.

In the real world we have problems involving global pollution, eco-
nomics, diseases like cancer and AIDs, the general quest for
longevity, and any and all facets of science research that can be sub-
stituted for the lock on the cage door. The importance of generating
superior AI becomes clearly apparent. The AI may be able to uncover
keys to unlock these problems that until then will remain effectively
hidden from us.

Artificial life and artificial intelligenceTeam LRN

20

I don’t believe this potential of superior AI is being overlooked by
the nations of the world. It’s quite possible that the next Manhat-
tan Project undertaken by (hopefully) this country will be for cre-
ating superior AI.

We as a race will take no comfort in appearing as intelligent as a
chimpanzee to a machine. Science fiction writers have long writ-
ten on competent AI machines running amok: for instance, the
computer HAL in Arthur C. Clarke’s 2001, Colossus the Corbin

Project, and the main computer in Terminator I and Terminator

II. So to all the future AI programmers out there reading this book,
I have an important message: “Don’t forget that off switch!”

Biotechnology
Advances in biotechnology will soon allow us to alter our own genet-
ics. With this power it becomes possible to enhance our brain to
increase our own intelligence. While possible, it opens up the
human race to unforeseeable repercussions of gene altering in
subsequent generations that may be catastrophic. This makes
generating superior intelligence in machines much safer, at least
for the time being.

Neural networks—hype versus reality
Neural networks have been overhyped since their inception. So it’s
easy to dismiss my remarks concerning AI, AL, and neural net-
works as just more of the same, as people have been doing for
years. And it is true that people have predicted the emergence of
humanlike intelligence in machines.

If progress continues as rapidly as it has in the past 50 years, I
believe human levels of intelligence in machines will be achieved
within 50 years.

What are neural networks?
I have discussed neural networks without defining them. Here is
their definition. Neural networks are artificial systems (hardware
and software) that function and learn based upon models derived
from studying the biological systems of the human brain. Net-
works may be implemented in either software/operating systems
or hardware. In mimicking the biological systems of the brain,
neural networks have taken strides in building the sensory foun-
dations needed for AI, such as machine vision, voice recognition,
and speech.

Chapter two Team LRN

21

Neural networks can be trained to perform visual recognition.
They can learn to read or perform quality control by visual analy-
sis of parts. One such example is Papnet, discussed in Chap. 1.
Other networks can be taught to respond to verbal commands
(speech recognition) and generate speech. Statistical nets can
predict the future behavior or probability of complex nonlinear
systems based on historical examples. These networks have been
used to predict oil prices, monitor aircraft electronics, and forecast
the weather. Networks have also successfully been employed to eval-
uate the stock market, mortgage loan applicants, and life insurance
contracts better than standard rule-based expert-system programs.

What is artificial intelligence?
This is a legitimate question. We most certainly will develop neural
networks that are intelligent before we develop nets that become
conscious. So in attempting to create neural networks that are intel-
ligent or demonstrate intelligence, what criteria should one use to
determine if this goal has been achieved?

Alan Turing, a British mathematician, devised an interesting proce-
dural test that is generally accepted as a valid way to determine if a
machine has intelligence. The test is conducted as follows: A per-
son and the machine hold a conversation by typing messages to one
another via a teletype. If the machine can carry on a conversation
without the person being able to determine whether a machine or
person exists at the other teletype, the machine can be classified as
intelligent. This is called the Turing test and is one criteria used to
determine AI.

Although the Turing test is well accepted, it isn’t a definitive test
for AI. There are a number of “completely dumb” language pro-
cessing programs that come close to passing the Turing test. The
most famous program is named ELIZA, developed by Joseph
Weizenbaum at the Massachusetts Institute of Technology (MIT).
ELIZA simulates a psychologist, and you are able to conduct a
conversation with ELIZA. For instance, if you typed to ELIZA that
you missed your father, ELIZA might respond with “Why do you miss
your father?” or “Tell me more about your father.” These responses
may lead you to believe that ELIZA understands what you have said.
It doesn’t. The responses are clever programming tricks constructed
from your statements.

Therefore, if we like, we could do away with the Turing test and
consider a different criterion. Perhaps consciousness or self-
awareness would be a better signpost of intelligence. A self-aware

Artificial life and artificial intelligenceTeam LRN

22

machine would certainly know that it is intelligent. Another crite-
rion, more simple and direct, and the one that is used in this book,
is the ability to learn from experience.

Of course, we could abandon logical approximations entirely and
state that intelligence is achieved in systems that develop a sense
of humor. As far as I know humans are the only animals that laugh.
Perhaps humor and emotion will end up being the truest test of all.

Using neural networks in robots
So how do neural networks help our robotics work today? Well,
we’re a way off from creating competent AI, let alone putting it
into one of our robots. But neural technology can control robotic
function, and, in many cases, can perform superiorly to standard
central processing unit (CPU) control and programming. By using
neural networks in our robots, we can have our robots perform
small operational miracles without the use of a standard computer,
CPU, or programming. In Chap. 6 we will design a two-neuron
fuzzy logic system that can track a light source. Place this system
on a mobile robot, and the robot will follow a light source any-
where. Also in Chap. 6 we discuss BEAM robotics and Mark Tilden,
who designs transistor networks (nervous networks) that allow
legged robots to walk and perform other functions. Another neural
process that is making great strides is called subsumption archi-

tecture, which uses layered stimulus response.

Tiny nets
Small neural network programs can also be written in microcon-
trollers. For more information on these microcontrollers see Chap. 6.

Neural-behavior-based architecture
Behavior-based architecture, developed by Walter Grey, illustrates
that relatively simple stimulus-response neural systems when
placed in robotics can develop high-level, complex behaviors. Sub-
sumption architecture, an offshoot of behavior-based architecture
developed by Dr. Rodney Brooks at MIT, is also covered more fully
in Chaps. 6 and 8.

Chapter two Team LRN

23

Power

ROBOTS NEED POWER TO FUNCTION. MOST ROBOTS USE
electric power. The two main sources of untethered electric power
for mobile robotics are batteries and photovoltaic cells. In a few years
fuel cells will become a third electric power source for robotics.

Photovoltaic cells
Photovoltaic cells, commonly called solar cells, produce electric
power from sunlight. A typical solar cell produces only a small
amount of power, a few milliamperes at a potential difference of
about 0.7 volts (V). Solar panels (modules) use many solar cells
strung together to produce an appreciable power. The same is true
with robotics. If enough solar cells are strung together, in series
and parallel, sufficient power can be generated to operate a robot
directly.

Solar-powered robots need to be designed as small as possible
while still being able to perform their designated functions. They
should be constructed using high-strength, lightweight materials
and low-power electronics.

The greater the weight reduction and the smaller the electric
power consumption needed for operation and locomotion, the
more viable the use of solar energy becomes. However, reduced
weight and power consumption are important in the design of
every robot. Lightweight, low-power robots are able to operate
longer on a given power supply than their heavier, power-hungry
counterparts.

Power

3

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

24

Solar cells can also indirectly power a robot by being used as a
power source for recharging the robot’s batteries. This hybrid power
supply reduces the required capacity of the solar cells needed to
operate the robot directly. However, the robot can only function
for a percentage of the time that it spends recharging its power
supply.

We can also utilize solar cells by combining the technologies of direct
and indirect power. Here we build what is commonly called a solar

engine. The circuit is simple in function. The main components are
a solar cell, main capacitor, and a triggering circuit. The solar cell
when exposed to light begins charging a large capacitor. The solar
cell/capacitor provides electric power to the rest of the circuit. As the
charge on the capacitor increases, the voltage to the circuit also rises
until it reaches a preset level that triggers the circuit. Once the cir-
cuit is triggered, the power stored in the capacitor is dumped
through the main load. The cycle then repeats. The solar engine may
be used in a variety of innovative robotic designs.

Building a solar engine
The solar engine is commonly used as an onboard power plant for
BEAM-type robots, sometimes called living robots (see the dis-
cussion about BEAM robots in Chap. 8). The inspiration for this
solar engine originated from Mark Tilden, who originally designed
a solar engine. Another innovator was Dave Hrynkiw from
Canada, who modified the solar engine design to power a solar
ball robot. I liked the electrical function so much that I decided to
design my own solar engine. In doing so I was able to create a new
circuit that improved the efficiency of the original design.

Figure 3.1 is the schematic for the solar engine. Here is how it works.
The solar cell charges the main 4700-microfarad (�F) capacitor. As
the capacitor charges, the voltage level of the circuit increases. The
unijunction transistor (UJT) begins oscillating and sending a trigger
pulse to the silicon controlled rectifier (SCR). When the circuit volt-
age has risen to about 3 V from the main capacitor, the trigger pulse
is sufficient to turn on the SCR. When the SCR turns on, all the stored
power in the main capacitor is dumped through the high-efficiency
(HE) motor. The motor spins momentarily as the capacitor discharges
and then stops. The cycle repeats.

The solar engine circuit is simple and noncritical. It may be con-
structed using point-to-point wiring on a prototyping breadboard.
A printed circuit board (PCB) pattern is shown in Fig. 3.2 for
those who want to make the PCB. The solar engine kit (see parts

Chapter three Team LRN

25

Power

list) has a PCB included. Figure 3.3 shows the PCB parts place-
ment. The complete solar engine is shown in Fig. 3.4.

Parts list for solar engine

� (1) 2N2646 UJT transistor

� (1) 2N5060 SCR

� (1) 22-�F cap

� (1) 0.33-F cap

� (1) DC motor

� (2) Solar cells

� (1) PCB

� (1) R1 200K ohm, 1�4 watt (W)

� (1) R2 15K ohm, 1�4 W

� (1) R3 2.2K ohm, 1�4 W

High-efficiency motor

Not all electric motors are HE. For instance, the small electric
motors sold at your local Radio Shack are of the low-efficiency
type. There is a simple way to determine if a motor is an HE type.
Spin the rotor of the motor. If it spins smoothly and continues to
spin momentarily when it is released, it is probably an HE type.

+

+

Motor Solar
Cell

+Vcc +Vcc +Vcc +Vcc +Vcc

R1
100KΩ

R2
4.7KΩ

R3
2.2KΩ

C1
22�F
5V

C2
4700 �F
5V

y

UJT Q1
SCR

� 3.1 Schematic for solar engine

Team LRN

26

Chapter three

� 3.2 PCB foil pattern

HE
Motor

R1
C1

Q1 C2

R2

R3 +

+

+

+ +

y
_

��
��

Solar Cell
UJT SCR

U
JT

� 3.3 Parts placement on PCB

If when you spin the rotor it feels clunky or there is resistance, it
probably is a low-efficiency type.

Caveats regarding the solar engine

The solar cell used in this circuit is high voltage, high efficiency.
Typically solar cells supply approximately 0.5 to 0.7 V at various
currents depending upon the size of the cell. The solar cell used in

Team LRN

27

Power

this circuit is rated at 2.5V, but I’ve seen it charge a capacitor up to
4.3V under no-load conditions.

I’m sure some people planning to build this circuit are already
thinking about adding a few more solar cells to speed charging.
You should not do this. Adding solar cells will increase the cur-
rent and will speed charging for the first cycle only. In order for
the circuit to recycle, the current through the SCR must stop
(or at least be very minimal) for the SCR to close. If there is too
much current being supplied by the solar cell(s), the SCR will
stay in the on condition. If this happens, the electric energy
from the solar cell will continually flow through the SCR and be
dissipated. Electric energy will not build on the capacitor, and
the solar engine circuit will stop cycling.

The components used in the circuit are balanced for proper oper-
ation. One component you may change is the main capacitor. You
may use smaller values for quicker charge-and-discharge cycles. A
larger capacitor (or capacitor bank) will store more electric
power and perform more work, but be aware that when using
larger-value capacitors it will take that much longer to go through
the charge-discharge cycle.

Uses

A solar engine circuit may be used in many novel and innovative
ways: as an onboard power plant for a solar racer, to supply power
to a relay station, as a flashing light-emitting diode (LED) buoy, as

� 3.4 Complete solar engine

Team LRN

28

Chapter three

a motor for robotic locomotion, or as the demo circuit pictured
here does (see Fig. 3.5) to spin an American flag.

The attractiveness of the solar engine circuit is that it operates
perpetually, or at least until one of the components breaks, which
means it should operate for years.

Batteries
Batteries are by far the most commonly used electric power sup-
ply for robotics. Batteries are so commonplace that it’s easy to
take them for granted. An understanding of batteries will help you
choose batteries that will optimize your robot’s design. The rest of
this chapter will examine batteries.

There are hundreds of different kinds of batteries. We will look at
the most common batteries employed for hobbyist use: carbon-
zinc, alkaline, nickel-cadmium, lead-acid, and lithium.

Battery power

Regardless of battery type, battery power is measured in amp-hours,
that is, the current (measured in amps or milliamps) multiplied by
the time (hours) that current is flowing from the battery. What does
that mean to us? Well, it’s pretty straightforward. Suppose a battery
is rated at 2 amp-hours (Ah). This means the battery can supply
2 A of current for 1 h. If we reduce the current draw from the
battery to only 1 A, the battery will then last 2 h. If the current is
further reduced to 500 milliamps (mA), the battery will last 4 h.
If you do the math for the three different scenarios, you will see
battery life (time) is in direct proportion to the current draw:

Current � time � battery rating

2 A 1 h 2 Ah

1 A 2 h 2 Ah

0.5 A 4 h 2 Ah

It becomes an easy matter to rearrange the equation to tell you how
long a battery will last given a particular current draw. For instance,
suppose your robot draws 0.35 A (350 mA). If you are using the
same battery (2 Ah) as just discussed, then divide the battery rating
(2 Ah) by the current draw (0.35 A) to find the time the battery will
last (5.7 h). Mileage will vary. Batteries provide more access to their
electric power rating when used intermittently, which allows time
for the battery to recuperate. Continuous duty is efficient if the load

Team LRN

29

Power

is light. For robotics, especially when powering drive motors and
components, we often don’t have this option. In this case one tries
to provide greater battery capacity.

Battery voltage

Battery voltage varies throughout the life of a battery. If you mea-
sure the voltage on a fresh D-sized 1.5V alkaline battery, it will
read approximately 1.65 V. As the battery discharges, its voltage
drops. The battery is considered “dead” when the voltage drops to
1.0 V. Typical discharge curves for carbon-zinc, alkaline, and nickel-
cadmium (NiCd) batteries are illustrated in Fig. 3.6.

Notice that a fresh NiCd 1.5V battery actually delivers about
1.35 V. While its initial voltage is lower, its discharge curve is fairly
flat compared to that of carbon-zinc and alkaline batteries deliver-
ing a constant 1.2 V.

Primary batteries
Primary batteries are one-time-use batteries. The batteries we will
look at in this class deliver 1.5 V per cell. They are designed to deliver
their rated electrical capacity and then be discarded. When building
robotic systems, discarding depleted primary batteries can become
expensive. However, one advantage to using primary batteries is that

� 3.5 Solar engine flag spinner

Team LRN

30

Chapter three

� 3.6 Discharge curves for common batteries

they typically have a greater electrical capacity than rechargeables.
If one is engaged in a function (i.e., a robotic war) that requires the
highest power density available for one-shot use, primary batteries
may be the way to go.

Rating primary batteries
As you may have guessed, there are a number of primary batteries
available. The differences in batteries relate to the chemistry used
in the battery to produce electricity. The choice of a primary battery
is a tradeoff of price versus energy density, shelf life, temperature
range, discharge slope, and peak current capacity.

Carbon-zinc At the low end of primary batteries is the carbon-zinc
battery. This battery hasn’t changed much since 1868 when it was
developed by George Leclanche. The carbon battery has a low
energy density [1 to 2 watthours per cubic inch (Wh/in3)], poor
high-current performance, sloping discharge curve, and bad
low-temperature performance. It is inexpensive but obsolete.

Alkaline-manganese This is simply an alkaline battery. It has an en-
ergy density of 2 to 3 Wh/in3, improved low-temperature perfor-
mance, and a sloping discharge curve, not as severe as carbon-zinc
batteries. Its cost is moderate.

Lithium This is a premium battery with a high energy density (8
Wh/in3), excellent low-temperature and high-temperature perfor-
mance, and a long shelf life (15 years). It is also lightweight, but
expensive.

Secondary batteries
Secondary batteries are rechargeable. The most common
rechargeable batteries are NiCds and lead-acid. We will start
with NiCd batteries.

Team LRN

31

Power

One disadvantage to NiCd batteries is that they have a lower voltage,
1.2 V per cell. So a C cell battery will deliver about 1.2 V instead of 1.5 V.
The effect becomes more pronounced when using multiple cells. For
instance, a “9V” NiCd battery made from six NiCd batteries will deliver
approximately 7.2 V.

Automotive lead-acid batteries are rechargeable but are not suitable for
robotics. The reason is that automotive batteries are not designed to be
completely discharged (run down) before being recharged. These bat-
teries can supply high currents for short periods of time (car starting)
and need to be recharged almost immediately.

Completely discharging the electric power a rechargeable battery
contains before recharging the battery is called deep cycle. There
are deep-cycle lead-acid batteries available, mostly because of the
solar power industry, but you will find these batteries carry a higher
price tag. When building robotic systems, you should use deep-cycle
rechargeable batteries.

Secondary batteries, while initially more expensive, are cheaper in
the long run. Typically secondary batteries can be recharged 200 to
1000 times. In many cases a simple recharging circuit can be built
into the robot so that it becomes unnecessary to remove batteries
for charging.

Rating secondary batteries

NiCd NiCd batteries and sealed lead-acid batteries are the most
common rechargeables, with NiCd batteries being more popular.
Both types of batteries have lower energy densities than primary
batteries.

NiCd batteries only provide 1.2V per cell, in comparison to pri-
mary batteries which provide 1.5V per cell. Manufacturers claim
that NiCd batteries are good for 200 to 1000 charge-recharge
cycles. However, NiCd batteries will die fast if they aren’t
recharged properly. The life expectancy of NiCd batteries is 2 to
4 years. Without use, a fully charged NiCd battery will lose its
charge in 30 to 60 days.

NiCd batteries are designed to be recharged at 10 percent of
their rated capacity. This means that if a particular NiCd battery
is rated at 1 Ah, it is safe to recharge the battery at 100 mA
(1 A/10 � 100 mA). The terminology used to describe the above
recommended recharge rate is “C/10.”

NiCd batteries are designed to be charged using a constant current
at the C/10 rates. Because of inefficiencies, it is necessary to charge

Team LRN

32

Chapter three

the battery for 14 h to get a full charge. While manufacturers claim
that it is OK to overcharge NiCd batteries at the C/10 rate, most
engineers recommend switching over to a trickle charge after
the initial 14 h at C/10. A trickle charge is usually rated at C/30,
or 1/30 of the battery’s capacity. A trickle charge for our 1-Ah
battery would be around 33 mA (1 A/30 � 33.3 mA).

Memory effect A disadvantage to NiCd batteries is the memory
effect. If one repeatedly recharges a NiCd battery before it has
completely discharged, the battery forms a memory at that
recharge level. It then becomes difficult to discharge the battery
past that remembered level. Obviously this can severely limit the
battery’s capacity. To correct that problem the battery must be
completely discharged, by leaving a load connected to the battery
for several hours. Once the battery is complete discharged, it can
be charged normally and will function properly.

Lead-acid Gelled-electrolyte battery cells (gel-cells) are similar to
automotive batteries. They are sealed, maintenance-free, lead-
acid batteries. They don’t make gel-cells in the familiar D, C, AA,
AAA, or 9V battery cases. Gel-cells are typically larger and may be
used in larger robots.

Gel-cells are available in numerous voltage ratings, from 2V to
24V, and current capacities. These batteries may be charged
with a current-limited constant voltage or a constant current
like NiCd batteries. Typically to charge a gel-cell, one applies a
fixed 2.3V to 2.6V per cell. Initially the battery will draw a high
current that tapers down as it charges. When fully charged, the
battery need only draw a trickle charge (approximately C/500)
to maintain itself in a fully charged state.

Gel-cell batteries vary from manufacturer to manufacturer. To
safely recharge a gel-cell, you should check the manufacturer’s
recommendation. In general, a simple charging device can be
made using an LM317 voltage regulator. A fixed voltage (2.3V per
cell), constant current C/10 is applied to the battery. When the bat-
tery reaches a full charge, the constant current source is removed
and a regulated voltage is applied.

Many gel-cell batteries do not like to be deep cycled. Therefore it
becomes necessary to monitor battery voltage under load. When
the battery voltage drops by a specified amount (check the manu-
facturer’s data sheet), it needs to be charged.

Team LRN

33

In general

Most robotists use alkaline batteries when primary batteries are
called for and NiCd batteries when secondary batteries are needed.

Building a NiCd battery charger

NiCd battery chargers are inexpensive. Typically it is not worth
the time and effort to build a stand-alone charger for common-size
batteries such as AAA, AA, C, D, and 9V. However, if one wishes to
incorporate a built-in charger for a robot, then knowing how to build
a custom battery charger is important. While most inexpensive
chargers will charge batteries only at the C/10 rate, even after the
batteries have received a full charge (14 h), the charger we will
build will drop the current down to a C/30 rate after the batteries
are fully charged. This is the recommended procedure for charg-
ing NiCd batteries. This will help ensure a long service life to your
rechargeable battery.

The following information will allow you to design a system for
charging a custom NiCd battery pack.

The prototype charger shown in Fig. 3.7 is a stand-alone unit for
illustration purposes. The design can easily be placed inside a
robot. The robot will need to have a power socket that connects
to the power supply. In between the socket and power supply,
you should add a double-pole double-throw (DPDT) switch. The
DPDT switch connects the power supply to either the robot’s
circuitry or the charger. This prevents powering the robot,
which would reduce the current flow to the batteries, while the
batteries are being charged (see Fig. 3.7).

Power

� 3.7 DPDT switch controlling charging to battery pack

Team LRN

34

Chapter three

� 3.8 Basic power supply for charger circuit

The power for the charger may be supplied by either a standard
transformer or a VDC plug-in wall transformer. I would choose a
wall transformer because it supplies a DC voltage. If you are using
a standard transformer, you must build the power supply, using a
line cord, switch, fuse, bridge rectifier, and smoothing capacitor.

In either case you should match the transformer (or wall trans-
former) power output to the battery pack you are charging.
Matching the voltage and current to the battery pack reduces the
power the LM317 must dissipate; for example, you wouldn’t want
to use a 12V transformer to charge a 6V battery pack.

Figure 3.8 is a basic VDC power supply for the charger. The
power supply can be made to provide either 6V, 12V, 18V, 24V,
or 36V depending upon the transformer, bridge rectifier, and
capacitor chosen.

The charger circuit is illustrated in Fig. 3.9. It uses an LM317 volt-
age regulator and a current-limiting resistor. The resistance
needed to be provided by the current-limiting resistor depends
upon the current needed to charge the battery.

Current-limiting resistor

Most NiCd battery manufacturers recommend charging the battery
at 1/10 of its rated capacity, referred to as C/10. So if an AA battery is
rated at 0.850 Ah, it should be charged at 1/10 that capacity, or 85
mA, for 14 h. After the batteries are fully charged, manufacturers
recommend dropping the current to around C/30 (1/30 of battery
capacity) to keep them fully charged without overcharging or
damaging the batteries in any way.

For our example, we will configure the charger to recharge four C
cells in series. Each C cell is rated at 2000 mA. So our C/10 rate is
200 mA. The typical voltage rating from this battery is approxi-

Team LRN

35

Power

mately 1.3V (4 � 1.3V � 5.2V). We can use a 6V transformer with
at least a 200-mA output.

To calculate the resistance to be provided by the current-limiting
resistor, use the formula

R � 1.25/Icc
where Icc is the desired current. Plugging in our 200 mA (0.2 A)
yields

1.25/0.2 � 6.25 ohms

The resistance of the current-limiting resistor for this charger
should be around 6.25 ohms. In the schematic (Fig. 3.9), this resis-
tor is labeled R2. Notice the R2 value listed in the schematic is 5
ohms. You should choose a common resistor value as close as pos-
sible to the calculated value.

C/30 resistor

To drop the current to a C/30 range, we add another resistor
whose value is 2R, or about 12.5 ohms. In the schematic this re-
sistor is labeled R3. Again a resistor with the closest value to the
calculated value is used. In this case the value is 10 ohms.

How the charger works

The charger uses an LM317 voltage regulator as a constant current
source. The C/10 current-limiting resistor is identified as R2 in the
schematic (see Fig. 3.9). R2 you will notice is only 5 ohms as compared

� 3.9 Schematic of charger circuit

Team LRN

36

Chapter three

to the calculated 6.25 ohms. This standard value is close enough to the
calculated value for proper operation. The C/30 resistor is R3 on the
schematic. Again the standard value of 10 ohms is close enough to the
calculated value for proper operation. Later on we will see that it’s
possible to fast-charge the batteries because of the voltage-sensing
capacity of the circuit.

V1 is a 5K-ohm potentiometer. It is set to trigger the SCR when the
NiCd batteries are fully charged. The SCR, once triggered, allows
current to flow through a DPDT relay.

When power is applied to the circuit, current flows through the
LM317 charging the batteries at a C/10 rate. Resistor R3 is shorted
by one-half of the DPDT relay. Current also flows through resistor
R1, which is a current-limiting resistor for light-emitting diodes
(LEDs) D1 and D2. Upon power-up, the red LED D1 will be lit. The
red LED indicates that the circuit is charging.

As the batteries charge, the voltage drop across V1 becomes
greater. After about 14 h, the voltage drop across V1 is great enough
to trigger the SCR. When the SCR is triggered, current flows
through the coil of the DPDT relay. The relay switches, causing
the red LED to go out and the green LED to turn on. The green
LED signals that the batteries are fully charged. The other half of
the relay switches, opening up the short on resistor R3. With R3
now in the current path, the current flowing to the NiCd batteries
is cut to a C/30 level. Diode D3 prevents any current from the bat-
teries flowing back into the circuit.

Determining the trigger voltage from V1

For the circuit to function properly, the SCR must turn on when the
NiCd batteries are fully charged. The easiest (best) way to do this
is to place depleted batteries in the charger, charge the batteries
for 14 h, and then adjust V1. When the batteries are fully charged,
slowly turn V1 until the relay clicks and the green LED turns on.
Design notes

When building a charger for your application, keep these points in
mind. The main considerations are choosing the C/10 and C/30
current-limiting resistors. Use the given formulas for selecting
these values. Current-limiting resistors should be rated around 2 W.

If the charging current is high (greater than 250 mA), heat-sink
the LM317. If the charger is switched on without the NiCd batter-
ies being connected, the relay will switch immediately, turning on
the green LED and providing a C/30 current.

Team LRN

37

Power

When building a charger for higher voltages, increase the value of
R1 proportionally to limit the current flowing through the LEDs.
For instance, for a 12V unit make R1 680 ohms; for a 24V unit
make R1 1.2K ohms.

At high voltages you may need a low-ohm-value, current-limiting
resistor connected to the DPDT relay. Measure the C/10 and C/30
current flowing to the batteries. These measurements will ensure
that the proper current is being supplied to the batteries.

Series and parallel charging

How the batteries are configured determines the voltage and cur-
rent of the transformer one should use. If you have eight C battery
cells in parallel, you need to multiply the current requirements of
each individual cell by 8. If the cell is rated at 1200 mAh, the C/10
requirement per battery is 120 mA. For eight cells in parallel, you
need close to 1 A (8 � 120 mA � 960 mA � 0.96 A) of current.
The voltage required is just 1.5 V. The ideal transformer’s output
would be 1.5V at 1 A. If the eight cells were held in series, the cur-
rent requirements would be 120 mA at 12V.

Fast charger

Many of today’s NiCd batteries are capable of accepting a fast
charge provided that the circuit can sense when the batteries are
fully charged and drop the current to C/30. Typically to fast-charge
a battery, you double the current for half the time. So you charge a
battery at C/5 for 7 h.

Although I haven’t tried the above circuit for fast charging, there is
no reason why it shouldn’t work. You may want to start with a C/10
charging current and adjust V1, and then switch resistor R2 for a
resistor with half the value.

Parts list
� U1 LM317 voltage regulator

� L1 DPDT relay (5V or 12V)

� D1 Red LED

� D2 Green LED

� D3 1N4004

� Q1 SCR

� V1 5K-ohm PC-mounted potentiometer

� R1 330 ohms, 1�4 W

� R2 5 ohms, 2 W

Team LRN

38

Chapter three

� R3 10 ohms, 2 W

� R4 220 ohms, 1�4 W

� Wall transformer (see earlier in this chapter)

Building a solar-powered battery charger

Once you have designed a battery charger for a rechargeable bat-
tery pack, you can convert it to a solar-powered battery charger.
You need to replace the step-down transformer (or wall trans-
former) with a combination of solar cells that will equal the power
delivered by the transformer. Points to keep in mind when plan-
ning a solar power system are

1. The average illumination received by the solar panel

2. Hours of illumination needed to recharge power supply versus
work period

Fuel cells—batteries with a fuel tank
Fuel cells and batteries are both electrochemical devices that
convert chemical energy into electric energy. In the battery, the
chemical reactants are stored internally. When the reactants are
exhausted, the battery is replaced (or in some cases recharged).
Fuel cells use reactants (fuel) that are stored externally. As long
as fuel is supplied to a fuel cell, it will (in theory at least) continue
to generate electricity.

When a fuel cell starts running low, it can be simply refilled with
fuel, much like today’s automobile. A fuel cell–powered robot will
be able to get back to work quickly as compared to another robot
that will be out of service while its batteries recharge.

Figure 3.10 is a schematic of an alkali fuel cell. This is the type of
fuel cell used in U.S. spacecraft. The first thing you may notice is
that the anode is labeled (�) and the cathode is labeled (�).
When I first started looking at fuel cell schematics, I found this
confusing. Actually I though it was a mistake, but after looking at
a few dozen schematics with the same error, I realized it couldn’t
be a mistake. Accordingly, I checked the definition of cathode in
the Oxford Dictionary of Current English. It reads: “Cathode: 1.
Negative electrode in an electrolytic cell. 2. Positive terminal of a
battery.” I only bring this up so that you don’t become confused
when studying other schematics of fuel cells, since all the
schematics I’ve seen so far follow this convention.

Team LRN

39

Power

Fuels cells have many applications. Just about anything that uses
batteries will benefit from fuel cell technology. A few applications
already in the works are an aluminum/air fuel cell to be used for
cellular phones and a fuel cell for laptop computers. Fuel cells offer
extended run times and improved performance.

If not now, when?

With all the wonderful attributes of fuel cells, where are they? Why
don’t we find fuel cells in our laptop computers, video cameras, and
cell phones? While fuel cell technology has improved over the last
decade, fuel cells still are not competitive (read cost-effective)
with existing technologies.

One of the more advanced fuel cell designs uses a proton exchange
membrane (PEM) electrode material from DuPont called Nafion. The
PEM raw material costs approximately $100 per square foot. Reducing

Hydrogen Air or
oxygen

Deplete
oxident

Deplete fuel &
product gases

(water)

Load

- +

H2

H2O

H2O

H2O

H2O

K+

K+

K+

K+

OH-

OH-

OH-

H

H

H

H

H

H

O

O

O

O

O

O

A
n

o
d

e

E
le

ct
ro

ly
te

C
at

h
o

d
e

At the anode
2H2 + 4 OH- 4H2O + 4e-

At the cathode
O2 + 2H2O + 4e- 4 OH-

� 3.10 Alkali electrolyte [potassium hydroxide (KOH)] fuel cell

Team LRN

40

Chapter three

existing membrane cost and developing other PEM materials are on a
high-priority list for creating competitive fuel cells.

Platinum is an expensive metal. Fuel cell electrodes are typically
coated or plated with platinum. The platinum coating is a catalyst
that facilitates the electrochemical processes in the fuel cell.

Where we will start seeing fuel cell technology is in the automotive
industry. All major automobile companies have ongoing research
and development for implementing fuel cell technology. The list of
industrial companies working on fuel cell technology reads like a
who’s who of science research.

Expect to see fuel cell automobiles hitting the market in 2003.
Ballard Power Systems of Canada, a major player in PEM fuel
cell technology, has been running a fleet of fuel cell buses. In
2003, 55 fuel cell buses are contracted to arrive in California.
Ballard has partnered its technology with other companies like
DaimlerChrysler and Ford Motor company to produce fuel cells
for automotive use. Ballard recently opened a plant that is
scheduled to produce 160,000 commercial fuel cells annually.

Honda has scheduled a production fuel cell car for 2003. It will use
an existing electric drive system developed for battery-powered
cars and retrofit it with fuel cell technology.

There is much enthusiasm and support for continued research and
development of fuel cells. Before leaving office President Clinton,
along with Congress, allocated $100 million for fiscal year 2001 for
the continued development of fuel cell technology.

As fuel cell technology filters down into work-a-day applications,
like cell phones, video cameras, and laptop computers, we can
then start putting them to work in our robots.

Team LRN

41

Movement and drive
systems

IN THIS CHAPTER WE WILL LOOK AT A FEW MOVEMENT AND
drive components that may be used in robots. All the components
discussed in this chapter either have sample circuits contained in
this chapter or are used in robots elsewhere in this book. Here is a
list of the components we will work with: air muscles, nitinol wire,
stepper motors, geared direct current (DC) motors, servo motors,
and solenoids.

Air muscles
An air muscle is a simple pneumatic device developed in the
1950s by J. L. McKibben. Like biological muscles, air muscles con-
tract when activated. An interesting fact about air muscles is that
they provide a reasonable working copy of biological muscles, so
much so that researchers can use air muscles attached to a skele-
ton at primary biological muscle locations to study biomechanics
and low-level neural properties of biological muscles. In published
papers, air muscles are also referred to as McKibben air muscles,
McKibben pneumatic artificial muscles, and Rubbertuator. I will
refer to them simply as air muscles.

Applications

Air muscles have applications in robotics, biomechanics, artificial
limb replacement, and industry. The principal reasons why exper-
imenters and hobbyists will like air muscles are their ease of use
(as compared to standard pneumatic cylinders) and their simple

Movement and drive systems

4

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

42

construction. Air muscles are soft, lightweight, and compliant;
they have a high power-to-weight ratio (400:1); and they can be
twisted axially and used on unaligned mountings and provide con-
tractive force around bends.

How air muscles work

The two primary components to the air muscle are a soft, stretch-
able inner rubber tube and a braided polyester mesh sleeve (see
Fig. 4.1). The rubber tube is called an “internal bladder” and is po-
sitioned inside the braided mesh sleeve.

Additional components of the air muscle are an air fitting located
on one end and two mechanical fittings (loops), each located on
one end of the air muscle, that allow one to attach the air muscle
to devices.

Chapter four

4"

7"

Internal rubber tube

Loop
Loop

Mesh sleeve
Air
fitting

Relaxed & stretched

25% contraction

Active &
pressurized

Braided mesh sleeve
Material: Polyester,
size 3/8" nom

Soft rubber tube

� 4.1 Air muscle construction and function

Team LRN

43

When the internal bladder is pressurized, it expands and pushes
against the inside of the braided mesh sleeve, forcing the diameter
of the braided mesh to expand. The physical characteristic of the
mesh sleeve is that it contracts in proportion to the degree its diam-
eter is forced to increase. This produces the contractive force of the
air muscle.

It is important to note that to operate properly, the air muscle must
be in a stretched or loaded position when it is in a resting state. If
not, when the air muscle is activated, there will be little if any con-
traction. Typically the air muscle can contract to approximately 25
percent of its length.

Nitinol wire
Nitinol is a metal that belongs to a class of materials called shaped
memory alloys (SMAs). Nitinol is commonly sold in wire form.
When heated, the material can contract up to 10 percent of its
length. The contraction of the material produces linear motion. In
addition to the contraction property, the material also exhibits a
shaped memory effect (SME).

The SME is a unique property of this alloy. When heated to its crit-
ical transition temperature, the material automatically returns to a
predefined shape. The predefined shape is one that the material is
trained (heat annealed) to remember. The material is formed into
the training shape. The material is then forcibly confined to the
training shape as the material is annealed (heated) above its tran-
sitional temperature. This realigns the crystalline structure to the
shape. Now the object will return to this shape whenever it is heated
to its transition temperature. So a trained object could be twisted
and folded out of shape and then heated to return the object back
to its original shape.

These unique properties of SMAs rely upon the crystalline structure
of the material. The shape-resuming force approaches 22,000
pounds per square inch (lb/in2). It’s very unlikely that anyone will
be working with such large cross sections of material. Even thin
wires of the material produce an impressive force. For instance, a
6-mil wire generates a contractive force of 11 ounces.

When nitinol wire contracts up to 10 percent of its overall length, its
volume remains constant. As the wire contracts, its diameter in-
creases proportionally, keeping the net volume of the wire constant.

The easiest way to heat nitinol wire is by passing an electric DC cur-
rent through it (see Fig. 4.2). However, using a steady DC current

Movement and drive systemsTeam LRN

44

for an extended period of time can damage the wire due to uneven
ohmic heating. Proportional control and steady-state contraction of
the material (without damage) can be achieved using a pulse-width
modulation (PWM) circuit to supply the electric current.

Some robotists have used nitinol wire to create a motorless hexapod
walking robot. While the robot can walk, it does so exceedingly
slowly due to the time required for cycling (heating and cooling) of
the nitinol material. The hexapod walker robot is truly a flyweight
(a few ounces at most) robot, neither structurally strong nor power-
ful enough to carry its own power supply.

While nitinol may be impractical for use in a hexapod walker, it is
appropriate for many other robotic applications. To learn more
about the capabilities of this remarkable material, let’s look at a
few commercial products that utilize the contractile ability of the
material. Figure 4.3 shows a mechanical butterfly. Nitinol wire
adds movement to the wings. The butterfly may be connected to a
solar engine (see Chap. 3) for power to create an interesting robotic
application.

Figure 4.4 shows a rocker ball demonstration device. The nitinol ac-
tuator operates about 20,000 cycles per day and will last for years.

Nitinol wire loops can be used to produce rotary motion. Figure
4.5 illustrates a simple heat engine. The nitinol loop is guided by a
groove in each wheel. The smaller wheel is made of brass for good
heat conduction. When the smaller wheel is placed in hot water,
the wheels begin to spin. The heat engine can also function using
solar energy. Focusing sunlight from a 3″ magnifying glass onto
the brass wheel will also activate the engine.

Nitinol can also be used to physically close mechanical push-but-
ton switches, as an actuator in production of lightweight air
valves, and in many other linear-motion applications.

Chapter four

+

–

Switch

Battery

AC Ohmic Heating

Nitinol Wire
Actuator

� 4.2 DC power to nitinol wire

Team LRN

45

Solenoids
Solenoids are electromechanical devices. A typical solenoid con-
sists of a coil of wire that has a metal plunger through its center.
When energized, the coil creates a magnetic field that either pulls
or pushes the metal plunger (see Fig. 4.6). The metal plunger is
mechanically connected to the robotic device that needs movement.

Movement and drive systems

� 4.3 Nitinol butterfly

� 4.4 Rocker ball demo

Team LRN

46

Rotary solenoids
A rotary solenoid is a derivative of the standard solenoid (see
Fig. 4.7). Instead of producing a linear motion, it produces a rotary
motion. A rotary solenoid can be used to create a robotic fish (see
Chap. 13).

Chapter four

� 4.5 Heat engine

� 4.6 Solenoid

Team LRN

47

Stepper motors
Stepper motors may be used for locomotion, movement, steering,
and positioning control. These motors are used as integrated com-
ponents in many commercial and industrial computer-controlled
applications. For home personal computer (PC) users, stepper mo-
tors can be found in disk drives and printers.

Stepper motors are unique because they can be controlled using
digital circuits. They are capable of precise incremental shaft rota-
tion. This makes stepper motors ideal for rotary or linear positioning.
Because stepper motors are widely used in industry, they come in a
variety of shapes, sizes, and specifications (see Fig. 4.8A).

Movement and drive systems

� 4.7 Rotary solenoid

� 4.8A Stepper motor

Team LRN

48

When power is applied to a standard electric motor, the rotor begins
turning smoothly. The speed and position of the motor’s rotor are a
function of voltage, load on the motor, and time. Precise positioning
of the rotor is not possible.

A stepper motor, however, runs on a sequence of electric pulses to
the windings of the motor. Each pulse to a winding turns the rotor
by a precise predetermined amount. The incremental movements of
the rotor are often called steps. Hence the name, stepper motors.

Not all stepper motors rotate the shaft (rotor) by the same
amount per step. They are manufactured with different degrees
of rotation per step (or pulse). The optimum degrees per step will
depend upon the particular application. Stepper motor specifica-
tions clearly state the degree of rotation per step. You can find a
variety of stepper motors, with the range of rotation per step varying
from a fraction of a degree (i.e., 0.72 degree) to many degrees (i.e.,
22.5 degrees).

Stepper motor circuit

Figure 4.8B is a schematic of a stepper motor driver circuit. The
stepper motor in the circuit is a unipolar (six-wire) type. IC U1 is
a 555 timer that is set up in astable mode to output square-wave
clocking pulses on pin 3. U2 is a stepper motor controlling chip
UCN 5804. The clocking pulses received on pin 11 of the UCN 5804
turn the stepper motor. Each pulse received on pin 11 turns the
stepper motor one step. The faster the clocking pulses, the
quicker the stepper motor turns.

In this sample circuit the clocking pulses are produced by a 555
timer. Clocking pulses can be generated by any number of sources
like a microcontroller (discussed in Chap. 6) or a photoresistive
neuron (discussed in Chap. 5). Switch SW1 is a fast/slow control.
SW2 controls the stepper motor direction.

Stepper motors may be used in making a robotic platform (see
Chap. 10).

Servo motors
Servo motors are geared DC motors with positional control feed-
back. Hobbyist servo motors are commonly used for position control
for radio-controlled (R/C) models. The shaft of the motor can be
positioned or rotated through a minimum of 90 degrees.

Because of their widespread use in the hobby market, servo motors
are available in a number of stock sizes (see Fig. 4.9). While larger

Chapter four Team LRN

49

V
cc

V
cc

47
K

47
K

10
0

K

.4
7

�
F

.0
2

�
F

S
W

1
S

pe
ed

F
as

t/S
lo

w

S
W

2
D

ire
ct

io
n

V
cc

V
cc

U
1

U
2

1

2674
8

3

4
5

9
1 21315

8631
2

7

11 14

V
cc

=
 1

2
V

D
C

U
1

 5
55

 T
im

er
U

2
 U

C
N

 5
80

4

�
4.

8B
S

te
p

p
er

 m
ot

or

Team LRN

50

industrial servo motors are also available, they are too expensive
for most hobby applications. In this book we work with inexpen-
sive and readily available hobby servo motors.

There are three wire leads to a servo motor. Two are for power, �4
to 6 V and ground. The third lead feeds a position-control signal to
the motor. The control signal is a variable-width pulse between 1.0
and 2.0 milliseconds (ms). A neutral, midrange positional pulse is
a 1.5-ms pulse. The pulse is sent 50 times a second (1 pulse every
20 ms or so) to the motor. This pulse signal will cause the shaft to lo-
cate itself at the midway position at ±45 degrees.

Chapter four

� 4.9 Servo motor

Team LRN

51

The shaft rotation on a servo motor is limited to approximately 90
degrees (±45 degrees from the center position). A 1-ms pulse will
rotate the shaft all the way to the left (see Fig. 4.10), while a 2-ms
pulse will turn the shaft all the way to the right. By varying the pulse
width between 1 and 2 ms, the servo motor shaft can be rotated to
any rotational degree position within its range.

You may feel that providing the pulse signal is a complex job; it isn’t.
The 16F84 PIC microcontroller, covered in Chap. 7, uses only a few
lines of code to control a servo motor. And the PIC can control up to
eight servo motors at a time. Another viable method is to utilize the
servo motor control system used in R/C systems. Another alternative
is to make your own circuit.

Making a servo motor circuit isn’t as difficult as it may first appear.
Figure 4.11 uses a 556 dual timer to control a servo motor. The 556
has two independent timers. To see the function more clearly, look
at Fig. 4.12. Here two separate 555 timers are used. One timer is
set in astable mode. The astable timer outputs a 55-hertz (Hz)
square wave with a 1-ms negative component. The output from
this timer is connected to the second 555 timer that is set up in
monostable mode.

Movement and drive systems

� 4.10 Servo motor pulse signal

1 ms Pulse

Pulse Width 1–2 ms

Period 18 ms

1.5 ms Pulse

2 ms Pulse

1 ms Pulse Train
Servo Motor Position
Left

1.5 ms Pulse Train
Servo Motor Position
Midrange

2 ms Pulse Train
Servo Motor Position
Right

Team LRN

52

Chapter four

Vcc

Vcc

Vcc
+

M

Servo
Motor

10 �F
C2

R4
150�

R3
2.2K

.01
�F

.1�F C1

R1

R2

10K

10K

1

2

6

9
7 5 12

13

10
4

143

U1 = 556 Dual Timer

� 4.11 Servo motor circuit 556

The monostable timer outputs a positive pulse from pin 5, each time
it receives a negative pulse from timer 1. The positive pulse from
timer 2 can be varied from 1 to 2 ms using the 10K-ohm poten-
tiometer. You may need to fiddle with the resistance values of R1
and R2 in Fig. 4.11, depending upon the servo motor being used.
As always, take caution that the servo motor isn’t stalled (pushing
against its own internal rotational stops).

When working with servo motors, I have found that to achieve full
rotational movement from the shaft I needed to use pulses shorter
than 1 ms and greater than 2 ms.

As you work with and gain experience using servo motors, you can
also run outside the standard pulse widths (shorter and longer
pulses) to achieve greater (180 degree) shaft rotation. The standard
pulse widths sometimes do not rotate the shaft to each end stop.

However, before you do so you need to understand that if a pulse
signal falls outside of the range where the servo motor shaft can
rotate, the servo motor will fight against its own internal rotational
stop in an effort to rotate the shaft to the position called for by the
pulse.

Team LRN

53

For example, suppose you have a servo motor and you are providing
a 2.8-ms pulse to rotate the shaft all the way to the right. As long
as the shaft can rotate to that position, you’re fine. But suppose a
different servo motor reaches its maximum right rotation with a
2.5-ms pulse. If you start sending a 2.8-ms pulse width, you are
ordering the servo motor to turn further than it physically can.
Because the servo motor is fighting against the internal stop, cur-
rent drain goes up, you increase wear on the gearing, and you may
burn out the servo motor.

This problem usually occurs when the original servo motor tested
is changed and the replacement motor doesn’t need the modified
pulse widths. As a rule of thumb, if using a pulse outside of the rec-
ommended 1- to 2-ms pulse, always check to make sure the servo
motor isn’t stalled in position.

Servo motors are used to make the walker robot in Chap. 11. The
walker robot uses a PIC microcontroller to control the servo motors.
The PIC microcontrollers and servo motor application are covered
in Chap. 6.

Movement and drive systems

Approx 55 HZ
18 ms

1 ms

1-2 ms

18 ms

Vcc

2.2K

150
�

10
�F

55
5

8 4

7

2

6

1

3
Output

To
Trigger

W
av

ef
or

m

W
av

ef
or

m

Trigger

Astable Monostable

10K

10K

8 4

7

6

15

3

2

To Servo Motor

Servo
Motor

Vcc

.1�F

.01
�F

55
5

� 4.12 Servo motor circuit 555

Team LRN

54

DC motors
DC hobby motors can be applied to movement and locomotion
(see Fig. 4.13). Specifications of most DC motors show high revo-
lutions per minute (rpm) and low torque. Robotics need low rpm
and high torque. Gearboxes can be attached to motors to increase
their torque while reducing the rpm (see Fig. 4.14). The gearbox
usually specifies a ratio that describes the rpm in to the rpm out. For
instance, a DC motor with an rpm of 8000 is connected to a 1000:1
gearbox. What is the output rpm? 8000 rpm/1000 � 8 rpm. The

Chapter four

� 4.13 DC motor

� 4.14 DC motor with gearbox

Team LRN

55

torque of the motor is substantially increased. You could estimate
that the torque will increase by the same value the rpm decreased.
In reality, no conversion is 100 percent efficient; there always will be
efficiency losses.

Some DC motors, called gearhead motors, are built with a gearbox
attached (see Fig. 4.15).

DC motor H-bridge

When building a robot, one wants to control (turn on or off) the DC
motor via a simple circuit or digital signal. In addition, one would
also like to be able to reverse the motor’s direction. An H-bridge
fulfills these requirements.

It should be understood that the term “DC motor” refers to stand-
alone DC motors as well as motors connected to gearbox motors
as well as gearhead motors.

The H-bridge is made up of four transistors. [Some robotists use
metal-oxide-semiconductor field-effect transistors (MOSFETs). I
use NPN Darlington transistors.] Some H-bridge designers use a
combination of PNP and NPN transistors. In each case, the tran-
sistor acts like a simple switch (see Fig. 4.16A). When switches SW1
and SW4 are closed (Fig. 4.16B), the motor rotates in one direction.
When switches SW2 and SW3 are closed, the motor rotates in the
opposite direction.

By using the switches properly, we can reverse the current direction
to the motor, which in turn reverses the motor’s shaft rotation.
Figure 4.17 is an H-bridge circuit that uses transistors. An H-bridge
circuit is used in Chap. 5 in the sensor tester robot.

Movement and drive systems

� 4.15 DC motor with gearbox head

Team LRN

56

Chapter four

+ +
+

m m

m

+ –

+–
–

–

(a) (b)

(c)

SW1 SW2

SW4SW3

SW1 SW2

SW4SW3

SW1 SW2

SW4SW3
H-Bridge Function

� 4.16 H-bridge using switches

� 4.17 H-bridge using transistors

Vcc Vcc

T1 T2

T3 T4

m

Team LRN

57

Movement and drive systems

� 4.18 Pulse-width modulation for H-bridge

Vcc
VAverage

GND

Vcc
VAverage

GND

ON

OFF

ON

OFF

Period

T-on

Pulse-width modulation

The H-bridge controls the on and off function as well as the direc-
tion of DC motors. The function of the H-bridge can be enhanced by
using PWM to control the speed of the motor. The PWM signal is
illustrated in Fig. 4.18. When the PWM signal is high, the motor is
on; when low, the motor is off. Since the signal turns the motor on
and off very quickly, the voltage delivered to the motor becomes an
average of the time on versus the time period of the cycle (T-on/T-
period). The greater the on time, the higher the average voltage.
The average voltage (VDC steady-state) is always less than the
voltage delivered (Vcc). PWM essentially controls the motor
speed.

Motors are inductive loads. When current is switched on and off, a
transient voltage is generated in the (motor) windings that can
damage the solid-state components used in the H-bridge. This
transient voltage can be controlled by using a snubber diode
bridged across each transistor, as illustrated in Fig. 4.19.

The snubber diode dissipates the transient voltage by creating a
voltage path directly to ground for the transient voltage. This effec-
tively protects the semiconductor the diode is bridged over. The
snubber diodes should be rated to handle the normal current the
motor typically draws.

Team LRN

58

Chapter four

� 4.19 Transistor H-bridge with diode protection

Vcc Vcc

T1 T2

T3 T4

m

D1

D3

D2

D4

Team LRN

59

Sensors

TYPICALLY ROBOTIC SENSORS MIMIC BIOLOGICAL SENSES
like hearing, sight, touch, smell, and taste. Balance and body posi-
tion derived from the inner ear are sometimes considered a sixth
sense. Biological senses are neurally based, while robotic senses
are electrically based. One could argue the point that they are
both electrically based by pointing out that both the neural path-
ways and signals pass an electrochemical signal. However, neural
sensors function differently than electrically based sensors. So,
not to confuse technologies, it’s important to define them as elec-
trically based.

If one wants to truly imitate biological senses, neural sensors are
needed. The human ear is an example of a neural sensor. Let’s ex-
amine it. The human ear is not a linear instrument. Its response to
sound is logarithmic. Because of this, a tenfold increase in sound
intensity is only perceived by the human ear as a doubling of
sound volume. In contrast, a common sound sensor, for instance,
a microphone, has a linear response to sound intensity. There-
fore, a tenfold increase in sound intensity is read by a computer
(microcontroller or electronic circuit) as a tenfold increase in
sound intensity.

Sensors detect and/or measure an aspect of the environment and
can produce a proportional electrical signal. The signal information
must then be read or interpreted by the intelligence [central pro-
cessing unit (CPU)] or neural network on the robot. Although we
may categorize the sensors as they relate to human senses, sensors
are typically divided by the type of energy that the sensor responds

Sensors

5

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

60

to, such as light, sound, or heat. The sensors one incorporates into
a robot will depend upon its intended operating environment and
application.

Signal conditioning
When determining which sensor to use for a robot, one must de-
cide how the robot will read the sensor signal. Many sensors are
resistance-type, meaning that the sensor varies its resistance in
proportion to the energy being detected. When the sensor is
placed in a simple voltage divider network, it outputs an electrical
signal whose amplitude varies in proportion to the energy it senses.

If the robot is required to read the actual energy intensity (analog),
an analog-to-digital (A/D) converter is needed. A/D converters can
measure the electrical signal and output an equivalent binary
number.

A/D converters will require a microcontroller or digital circuit to
function properly and extrapolate the data. In many cases an A/D
converter isn’t required to read sensor signals. Instead of an A/D con-
vertor one uses a comparator.

As its name implies, a comparator compares two voltages. One is
a reference voltage that we, the designers, set. The other voltage
is derived from the sensor (via the voltage divider). The compara-
tor can output one of two signals: high or low. The high signal is �5
V and the low signal is 0 V.

The output signal from the comparator depends upon the magni-
tude of the two voltages on its two input lines. There are three
possible choices. The sensor signal is less than the reference volt-
age, equal to the reference voltage, or greater than the reference
voltage.

Comparator example

The best way to learn about comparators is to use one in a circuit.
The first thing you notice in Fig. 5.1 is that the comparator looks
much like an operational amplifier (op-amp). This is true; com-
parators are specialized op-amps. The comparator used in our first
example is the LM339 quad comparator. This integrated circuit
contains four comparators in a 14-pin dip package. Like op-amps
the comparator has an inverting and noninverting input. In this
particular circuit the reference voltage is placed on the inverting
input (�).

Chapter five Team LRN

61

Voltage divider

The voltage divider is a simple but important concept. When using it,
you will be able to connect most resistance-type sensors to a com-
parator. The reference voltage is derived from a voltage divider made
up of two 10K-ohm resistors (see Fig. 5.2A). The Vref in this case will
be half of the supply voltage (Vcc) of 5 V, or 2.5 V (see Table 5.1). We
can make Vref any voltage we require between ground and Vcc by
adjusting the two resistance values of the voltage divider.

Sensors

14

13

12

11

10

9

87

2

3

4

5

6

1

A

B C

D

Out B

Out A

Vcc

+
+ +

+ +– –

– –
–

Vcc

URef
UIN

4 3
2

125

LM 339
Quad Comparator
Vcc 2–36 Vdc or ± 18 Vdc

GND

Vcc Vcc

R1

R2

Vref Vref

Vref

A B C

� 5.1 Comparator and LM 339 quad comparator IC

� 5.2 Voltage dividers A, B, and C

Team LRN

62

Vref � Vcc

where Vcc � 5 V.

To make an adjustable voltage divider, use a potentiometer as
shown in Fig. 5.2B and C. I chose to use the Vref style of Fig. 5.2A
because it is simple.

The schematic for our test circuit is shown in Fig. 5.3. In place of
a sensor we will use two 1K-ohm resistors and one 5K-ohm po-
tentiometer. By varying the potentiometer we can adjust the volt-
age going to the noninverting input (Vin). The output of each
comparator is an uncommitted open collector of an NPN transis-
tor. The transistor can sink more than enough current to light a

R2
	
R1 � R2

Chapter five

� Table 5.1 Two-Resistor
Voltage Divider

R1 R2 Vref, V

1K 10K 4.5
2.2K '' 4.1
3.3K '' 3.7
4.7K '' 3.4
5.6K '' 3.2
6.8K '' 2.9

10K '' 2.5

10K

10K

R1

R2

R5

R4

R3 1K
Vcc

Vcc
Vcc

R6
220V

1K

A

B

4

5

3

12+

–

VRef = 1⁄2 Vcc

� 5.3 Comparator test circuit schematic

Team LRN

63

light-emitting diode (LED), which we can use as an indicator. In ad-
dition, the output may be used as a simple single-pole, single-
throw (SPST) switch to ground. This feature will be useful when
we later need to trigger a 555 timer.

With the circuit wired, let’s see what happens. When the input
voltage (Vin) is less than the reference voltage (Vref), the output is
0 V (ground) and the LED is forward-biased and lit. If we adjust the
potentiometer so that the voltage is greater than Vref, the output
of the comparator goes high, turning off the LED. You can verify
the operation of the comparator by using a voltmeter to measure
the voltages at points A (Vref) and B (Vin).

Many people (myself included) feel this circuit is counterintu-
itive. I would like the LED to be lit when the sensor voltage is
higher than the reference voltage. This can be accomplished by
reversing the input leads and connecting the inverting input (�)
Vin and the noninverting input to Vref. The output function re-
verses also.

When one doesn’t need too many comparators, you may consider
using a complementary metal oxide semiconductor (CMOS) op-amp
configured as a comparator. The reason I like to use an op-amp is
that it can source (supply) sufficient current to drive an LED or cir-
cuit directly (see Fig. 5.4).

Sensors

� 5.4 Comparator op-amp test circuit schematic

15K

15K

1K

VccVcc Vcc

1K

2

3

7

4+

–

5K 6

*

* Sub miniature LED

CMOS Op-amp
Comparator

Team LRN

64

Light sensors (sight)
There are a large variety of light sensors: photoresistive, photo-
voltaic, photodiodes, and phototransistors. Light sensors can be
used for navigation and tracking. Some robots use an infrared light
source and detector to navigate around obstacles and avoid crashing
into walls. The infrared source and detector are placed in front of the
robot facing in the same direction. When the robot encounters an ob-
stacle or wall, the infrared light is reflected off the surface causing an
increase in the infrared light detected. The robot’s CPU interprets
this increased radiation as an obstacle and steers the robot around it.

Filters can be placed in front of light sensors to inhibit their response
to some wavelengths while enhancing their response to others. One
example of the use of filters is as flame detectors used in fire-fighting
robots. One would try to enhance the response to light from a fire
while inhibiting the response to light from other sources.

Another example is the use of colored gels as filters to promote
color response. One could imagine a robot that separates or picks
ripened fruit based on the fruit’s skin color.

Photoresistive

Cadmium sulfide (CdS) sensors (see Fig. 5.5) are photoresistors that
can read ambient light. The CdS cells response to the light spectrum
is in close approximation to that of the human eye (see Fig. 5.6).
These are semiconductor sensors without the typical PN junction.
The CdS cell displays its greatest resistance in complete darkness.
As the light intensity increases, its resistance decreases. Measuring
its resistance provides us with an approximation of ambient light.

Photoresistive light switch
Figure 5.7 shows a basic light switch. Because the CdS cell is a
resistive-type transducer, it can be placed as a resistor in a voltage
divider. When the light intensity increases, the resistance of the

Chapter five

Photo-Resistor(CdS Cell) � 5.5 Cadmium sulfide cell

Team LRN

65

�
5.

6
S

p
ec

tr
um

 c
ha

rt
 s

ho
w

in
g

 re
sp

on
se

 o
f e

ye
, C

d
S

 c
el

l,
et

c.

30
0

40
0

50
0

60
0

60
0

70
0

80
0

90
0

10
00

11
00

.2.4.6.81.
0

Sensitivity

R
es

po
ns

e
of

 H
um

an
 E

ye

C
dS

 C
el

l

S
ili

co
n

P
ho

to
tr

an
si

st
or

W
av

el
en

gt
h

(N
an

om
et

er
s)

Team LRN

66

CdS cell decreases. This increases the voltage drop on R1 and is
seen on pin 2. When the voltage on pin 2 is greater than the voltage
on pin 3, the motor turns on. The threshold is adjusted using R1, a
4.7K-ohm personal computer (PC)–mounted potentiometer. This
is the basic circuit that controls the solar ball project in Chap. 12.

Photoresistive neuron
Figure 5.8 shows a light neuron. As the intensity of light increases,
the pulse rate becomes faster. The light neuron can provide the

Chapter five

M

Vcc

R2
33K

R1
4.7K

R3 10K
15K

Tip
1202

3

7
4

Vcc Vcc

UJT 2646

� 5.7 Photoresistive light switch

� 5.8 Photoresistive neuron

Team LRN

67

clock pulses to a stepper motor controller chip like the UCN5804.
As the light increases, the stepper motor turns faster.

Photovoltaic

Solar cells, photodiodes, and phototransistors are similar in con-
struction. They all have a light-sensitive PN junction. Solar cells use
a wide-area PN junction to produce electric power in proportion to
light intensity.

Photodiodes are usually reverse-biased in a circuit. When light
strikes the diode’s PN junction, the current flows. The photodiode
has a quicker response than the CdS cells and can relay information
encoded in the light.

Phototransistors are light-sensitive transistors. The advantage of
a phototransistor over the photodiode is that it can provide ampli-
fication of the light signal.

Infrared

Infrared (IR) sensors detect low-frequency [900-nanometer (nm)
and longer] light. They deserve special consideration because they
are widely used in robotics for tracking, collision avoidance, and
communication.

Using infrared sensors has never been easier. Infrared receiver
modules that incorporate modulation detection, shown in Fig. 5.9,
are available through a number of electronic distributors. The

Sensors

� 5.9 Infrared receiver module

Team LRN

68

advantage to these modules is that they only detect IR light oscil-
lating at a specific frequency [usually around 40 kilohertz (kHz)].

The 40-kHz waveform can be modulated by another (lower-
frequency) signal. The receiver module has also been designed
to receive an impressed signal on the 40-kHz carrier wave. This
produces a robust communication link. Primarily the receiver
module responds only to the 40-kHz IR signal, permitting the re-
ceiver to “see” the IR light being transmitted from the transmitter,
reject other light sources, and detect the modulation on the 40-
kHz wave.

Infrared collision detector

Figure 5.10 is a drawing of a simple collision detector. As the sensor
approaches a solid object, the IR light reflected back into the re-
ceiver increases. The increased IR light reaches a specific amplitude
where it trips a comparator circuit informing the robot there’s an
obstacle ahead.

Infrared transmitter

Figure 5.11 is a schematic of the IR transmitter. The transmitter
uses a 555 timer set up in astable mode. Potentiometer R1 is used to
adjust the frequency output. The output of the timer (pin 3) is con-
nected to a 2N2222 NPN transistor. An infrared LED is connected
to the emitter of the transistor. When you turn on the circuit, don’t
expect to see any light being emitted from the LED. The infrared
light is not detectable by the human eye. Because we are using

Chapter five

Solid
Object

IR Radiation
IR LED

IR Receiver Module Reflected
IR Radiation

� 5.10 Drawing of infrared collision detector

Team LRN

69

this in a simple collision detector, there is no need to modulate
the 40-kHz signal.

Infrared receiver

Figure 5.12 is a schematic of the infrared receiver. The receiver
module is an Everlite IRM-8420. The center frequency is 37.9 kHz
with a bandwidth of 3 kHz (±1.5 kHz). The output is active low. This
means that when the receiver module detects the signal, the output
drops to ground. The output is equivalent to an open collector of an
NPN transistor (see the insert of Fig. 5.12). The output can sink
sufficient current to light an LED. In the test circuit the LED will
light when the module is receiving the signal.

Sensors

� 5.12 Schematic of infrared receiver

� 5.11 Schematic of infrared transmitter

.0047
�F

R1

4.7K
R2

1K

Vcc

R3
220
�

210222

1K

D1

55
5

1
2

6

7
8 4

3

+

–

Receiver Module
1 GND
2 Vcc
3 Output

1 2 3 220 �

R1

.1�F
5V

NPN Output

Team LRN

70

Tuning the transmitter Set up the infrared diode and receiver module
next to one another facing in the same direction. The LED must be
completely encased in a tube of some sort that only permits the in-
frared light to leave from the front of the LED. Failure to do this will
make using this setup impossible. Note that some plastic materials
while opaque to visible light are completely transparent to infrared
light.

Place a white card about 3″ in front of the transmitter and receiver.
Turn on the circuit. Adjust R1 until the receiver’s LED turns on.
Then remove the white card. The receiver’s LED should go off. If it
doesn’t, the infrared LED on the transmitter may be leaking light
from the side and activating the receiver.

Once the unit is working properly, the circuit can be fine-tuned to
detect objects at a greater distance. Move the white card back in
front of the transmitter and receiver until it just triggers the LED
to turn on. Adjust the potentiometer (slightly) on the transmitter
so that the LED turns on completely. Keep in mind that it may not
be advantageous for the robot to detect objects and/or collisions
that are too far away.

DTMF IR communication/remote control system

Other authors have detailed the use of IR transmitters for communi-
cation and remote control. Typically the IR transmitter is modulated
at a particular frequency and the receiver unit utilizes a 567 phase-
locked loop (PLL) integrated circuit (IC). While this works, one
must match and tune each transmitter-receiver pair. There is an
acceptable way to work around this.

Integrated circuit chips designed and manufactured for the telecom-
munications industry are readily available. These inexpensive chips
are capable of transmitting and receiving 16 distinct signals, no
tuning required. By coupling these chips to standard IR components,
an IR remote communication/control system can be implemented.

DTMF

The dual-tone multifrequency (DTMF) signal was originally devel-
oped just over 25 years ago. This was before the U.S. government
forced Bell Telephone to break up, allowing the company to expand
into other markets. DTMF is commonly known as touch-tone dialing.

The standard DTMF signal is composed of two audio tones gener-
ated from a group of eight possible tone frequencies. The eight
frequencies are divided into two equal groups, a low-frequency

Chapter five Team LRN

71

group and a high-frequency group (see Table 5.2). The DTMF signal
is an algebraic sum of two tone frequencies, one tone from each
frequency group (see Figs. 5.13 through 5.15). If we do the math,
we see that there are 4 � 4 � 16 possible combinations.

Sensors

� Table 5.2

Pin# Row# or column# Frequency, Hz

Low-frequency group

R1 Row 0 697
R2 Row 1 770
R3 Row 2 852
R4 Row 3 941

High-frequency group

C1 Column 0 1209
C2 Column 1 1336
C3 Column 2 1477
C4 Column 3 1633

� 5.13 Low-frequency tone waveform

� 5.14 High-frequency tone waveform

� 5.15 Algebraic sum of low and
high frequencies (DTMF)

Team LRN

72
The low frequencies (R1 to R4) are referred to as the row group.

The high frequencies (C1 to C4) are referred to as the column

group.

DTMF encoding

Any combination of frequencies can be obtained using a 4 � 4 matrix
of switches or keypad (see Fig. 5.16). Remember we are borrowing
this technology from the telephone industry; it has been designed for
optimum efficiency for less-than-perfect telephone lines.

Standard touch-tone telephones use a 3 � 4 keypad matrix. This
switch matrix provides coding for all the row frequencies and only
three column frequencies (see Fig. 5.17). A 3 � 4 keypad matrix
is more readily available and has been used with all the circuits
described here.

Not all telephone keypads are made the same; therefore, some key-
pads on the market will not be suitable in these circuits. For in-
stance, some keypads have different internal switch wiring or
include proprietary ICs. So if you try another keypad, keep that in
mind if the circuit fails to operate properly.

Building a DTMF encoder is simple (see Fig. 5.18). The circuit
only requires a keypad, crystal, and 5089 IC. The pin out of the

Chapter five

� 5.16 4 � 4 keypad matrix showing individual DTMF frequencies

Team LRN

73

Sensors

� 5.17 Wiring 3 � 4 telephone keypad

� 5.18 DTMF encoder circuit using 4 � 4 keypad matrix

Team LRN

74

5089 is shown in Fig. 5.19. If you use a standard 3 � 4 (telephone)
keypad, you will lose the four functional DTMF codes associated
with the missing keys, therefore reducing the maximum number
of usable channels to 12.

Figure 5.20 is an encoder test circuit that uses an eight-position
dip switch. The dip switch takes the place of the matrix keypad;
with it you can test the operation of this encoder circuit and the
receiver (decoder) circuit. Notice when you turn a switch on, you
are grounding the pin it is connected to. Pins R1 through R4 and C1
through C4 are active low. Dip switches 1 through 4 are connected
to pins R1 through R4, and dip switches 5 through 8 to pins C1
through C4.

Chapter five

XTAL

VDD

XTAL = 3.57 MHz

50
89

TONE
OUT
4.7K

1
15

7

8
6

9
5
4

3

14
13
12
11
16

� 5.19 Pin out of 5089 DTMF encoder IC

� 5.20 Schematic of encoder circuit using eight-position dip switch

Team LRN

75

The IC can also produce single tones. These are usually generated
for testing purposes. For instance, to generate a 1336-hertz (Hz)
tone equivalent to that of the C2 pin, ground any two row pins
and the C2 pin. This action will generate a single 1336-Hz signal.
The same may be done with the row frequencies. Ground any two
column pins with the particular row frequency pin you want to
generate.

DTMF decoding

DTMF decoding is just a little more complex than encoding. Again
the simplicity results from the use of a single IC chip, in this case
the G8870 (see Fig. 5.21).

The decoding chip has a 4-bit latched output labeled Q1 through
Q4. Q4 is the most significant bit (MSB). The current available from
the outputs of Q1 through Q4 is sufficient to light a low-current
LED. Figure 5.22 is a basic receiving circuit. The output from Q1
through Q4 lights the LED and is a binary number. By looking at
Table 5.3, you can determine the binary output that will be displayed
on the Q1 through Q4 for all DTMF signals. The way the circuit is
wired, the binary “1” will be represented by a lit LED.

Microcontroller

The 4-bit number from the G8870 can be connected directly to input
lines of a microcontroller like the PIC 16F84. The microcontroller
can easily read this binary number. We will get to the PIC micro-
controllers in Chap. 7.

Sensors

� 5.21 Pin out of G8870 DTMF decoder IC

Team LRN

76

Chapter five

� 5.22 Schematic of receiver circuit with 4-bit binary output

� Table 5.3 DTMF Output

Signal frequency, Hz

Decimal Binary Low High

1 0001 697 1209
2 0010 697 1336
3 0011 697 1477
4 0100 770 1209
5 0101 770 1336
6 0110 770 1477
7 0111 852 1209
8 1000 852 1336
9 1001 852 1477
0 1010 941 1336
* 1011 941 1209
1100 941 1477
A 1101 697 1633
B 1110 770 1633
C 1111 852 1633
D 0000 941 1633

Team LRN

77
The IR link discussed in the next few paragraphs combined with the
PIC microcontroller outlined in Chap. 7 will allow users to program
communications between mobile robots for games like tag and
follow the leader.

Adding a digital display

If reading binary numbers is too cumbersome, we can add a digital
numerical display. The output from the chip may also be fed to a
binary-coded-decimal (BCD) to 7-segment decoder chip, such as
the 7448. The 7448 IC is connected to a 7-segment display like the
MAN 74 (common cathode). These two chips will provide a digital
readout (see Fig. 5.23).

Testing For testing purposes connect the output from the 5089
chip (pin 16) to the input of the G8870 chip, using either a keypad
or dip switches to generate the DTMF signals. The receiver will
display the output via the LEDs or segmented display.

Adding IR transmission

Once the DTMF chips are operating properly, it becomes a simple
matter to connect the chips via an IR link. The output of the 5089
chip is connected to the base of a common NPN transistor (see
Fig. 5.24). A high-power IR LED diode is connected to the emitter

Sensors

� 5.23 Schematic of receiver circuit with digital display

Team LRN

78

Chapter five

of the transistor. Although the IR LED may be connected
directly to the output of the 5089, the power output
would be small. The NPN transistor allows additional cur-
rent to power the LED.

Figure 5.25 shows the front end of the IR receiver. An IR
phototransistor is coupled to a CMOS op-amp. This com-
bination of components allows the receiver chip (8870) to
lock in on the IR radiation from a distance of several feet.

Remote control

Using the IR link, you should be able to press a number on
the keypad and see the corresponding number displayed
on the digital display. Test the IR link at this point for
maximum distance and direction. You should be able to
increase the distance by placing the IR LED and photo-
transistor in their own reflectors. The light reflector from
an old flashlight will work well.

The remote control begins by adding a 4028 IC. The 4028
is a BCD-to-decimal decoder, meaning it reads the binary
number (remember the four LEDs from Fig. 5.22) and
outputs a single line equal to the decimal equivalent. The
4028 has 10 (0 to 9) output lines. Whatever 4-bit binary
number is placed on its input lines, the 4028 outputs a
high signal on that output line (see Fig. 5.26).

� 5.24 Schematic of IR DTMF transmitter circuit

Team LRN

79

It is not necessary to remove the 7448 and 7-segment display. The
8870 chip has sufficient output to drive both the 7448 and 4028.
The digital display is pretty handy when checking the output from
the 4028. For the sake of simplicity, Fig. 5.26 just shows the 4028
connected to the 8870.

Sensors

� 5.26 Schematic of DTMF receiver with BCD-to-decimal converter

� 5.25 Schematic of front end of IR DTMF receiver

Team LRN

80

The output from the 4028 can be used directly to turn a switch or
circuit on or off. However, this isn’t an optimum situation, because
as soon as you key another number (channel), the previous channel
turns off (brings the line low).

The solution to this problem is a 4013 D-type flip-flop (see Fig. 5.27).
The flip-flop is a basic computer memory datum. In this circuit it is
configured as a divide-by-two counter. Upon receiving the first “on”
signal from the 4028, it turns its output line high. When the 4028
brings the line low, which happens when hitting another channel, the
4013 will keep its output line high (latched).

To bring the 4013 output line low, simply key the channel for a
second time. The second high signal to the 4013 brings the out-
put line low (unlatched). One can continue to bring the 4013 output
line high and low by alternately switching the input line high.

Machine vision
To reproduce human vision in a machine is a difficult task. One
cannot simply connect a video camera to a computer and expect it

Chapter five

� 5.27 Schematic of 4013 flip-flop

Team LRN

81

to see. Programs (both neural and expert) must capture the video
image and process it (extrapolate data). Machine vision has been
achieved in limited and targeted areas.

Chapter 1 looked at the Papnet computer, which uses neural soft-
ware to analyze pap smear slides with a higher accuracy than can
be achieved by humans. Other researchers have developed vision
systems that can steer a vehicle based on the contours of the road
being driven.

Before we can attempt to simulate human vision, we need (in addi-
tion to developing improved image processing, which is no easy task
in itself) to develop stereoscopic mounted video cameras. Some re-
search in this area is taking place at the Massachusetts Institute of
Technology (MIT) on their humanoid robot, COG. With stereo-
scopic cameras, two video pictures must be processed and then
merged to create a three-dimensional (3D) representation. This is
the same process used in human 3D vision. To estimate depth, each
camera must be mounted on gimbals that allow the cameras to veer
in (converge) and focus on an object. The amount of convergence
is taken into consideration for judging the distance of objects.

Machine vision is a fertile field of development. Currently most
vision systems require a high-powered computer dedicated just
to vision processing.

Body sense
Body sense provides some information on where one is and what
position one is in. Limited body sense can be accomplished in robots
by using a variety of tilt switches (see Fig. 5.28). This will at least

Sensors

� 5.28 Tilt switches

Team LRN

82

inform a robot if it is on an incline or decline, flat on its back or on
its stomach, or upside down or right side up. The robot can then
take appropriate action based on its body sense to accurately
change position.

Direction—magnetic fields
Using the Earth’s magnetic field, an electronic compass can provide
directional information. This will allow a robot to travel in a cer-
tain direction or to know which direction it’s traveling in.

The simplest sensor in this category is the 1490 digital compass
(see Fig. 5.29). The compass is a solid-state Hall device. The digital
compass provides four outputs that represent the four cardinal
directions: north, east, south, and west. Using a little logic a total of
eight directions can be determined.

The compass is dampened to approximate the speed of a liquid-filled
compass. It takes 2.5 seconds (s) for it to respond to a 90-degree dis-
placement. The damping prevents overswinging the direction and
prevents switch fluttering when near a switching direction. The
device is sensitive to tilting. Any tilt greater than 12 degrees will
cause directional errors.

The bottom of the device has 12 leads arranged in four groups of
three. Looking at the device from the top, the leads in each group are
labeled 1, 2, and 3. The leads labeled 1 are connected to Vcc (�5V).
The leads labeled 2 are connected to ground. The leads labeled 3
are the four outputs. The outputs of the digital compass are equiv-
alent to open collectors of an NPN transistor. Being open collects,
the outputs are unable to source any current but are capable of
sinking enough current [20 milliamps (mA)] to light LEDs.

Chapter five

.5"

TOP

SIDE

1"

NPN

Out (pin 3)

Gnd (pin 2)

Dinsmore 1490 Sensor

� 5.29 1490 digital compass

Team LRN

83

The test circuit is shown in Fig. 5.30. The sensor will operate with
supply voltages ranging from �5 to 18VDC. A 9V battery is used
as a power source and is regulated to �5V using a 7805 voltage
regulator.

As a rule, try to keep all voltages at 5 V maximum. This will make it
computer-safe. For instance, when the digital compass is inter-
faced to the PIC microcontrollers, if we forgot and used a 9V power
source on the compass, the outputs may damage the input/output
(I/O) inputs.

The test circuit uses four LEDs for display. As the sensor is rotated,
each cardinal position on the compass will light one LED. The inter-
mediate directions light two LEDs.

Testing and calibration

Find north using a standard compass. Rotate the circuit so that
one LED is lit. I used the LED furthest away from the sensor for
north. If you do the same, the other LEDs will automatically follow
the same sequence outlined (see Fig. 5.31). The sequence for my
display is as follows: 1 � on, 0 � off.

Computer interface

The four output lines from the compass form a 4-bit binary number
(nibble) that is easily read by a microcontroller, computer, or elec-
tronic circuit (see Table 5.4). We will hold off on the PIC micro-
controller circuit until we have introduced the 16F84 PIC
microcontroller in Chap. 7.

Sensors

� 5.30 Digital compass test circuit using four LEDs

+

+

–

1

2

3

1

1

1

2

2

2

3

3

3

7805 +5v
Vcc

Vcc

Vcc

9V

10 mF 1K 1K 1K 1K

Top view, looking down
through sensor to leads

Team LRN

84

1525 electronic analog compass

In most cases the 1490 directional information is more than suffi-
cient for a robot. However, there will be cases when high-resolu-
tion directional information may be important. In this case one
may use the 1525 electronic compass (see Fig. 5.32).

The signal output from the 1525 is much harder to read than that
of the 1490, but the tradeoff is that the 1525 electronic compass
provides a directional resolution of approximately 1 degree.

Chapter five

North

NortheastNorthwest

EastWest

SoutheastSouthwest

South
= On

= Off

� 5.31 LED lighting sequence

� Table 5.4 LED Sequences

Direction LEDs Decimal equivalent Inverted

North 0001 1 14

Northeast 0011 3 12

East 0010 2 13

Southeast 0110 6 9

South 0100 4 11

Southwest 1100 12 3

West 1000 8 7

Northwest 1001 9 6

Team LRN

85

The output of this compass is comprised of two sine waves, one of
which is 90 degrees out of phase with the other (see the sine-cosine
configuration in Fig. 5.32). The amplitude of each wave correlates
to direction. If a 90-degree portion of a sine wave is measured with
an 8-bit A/D converter, a compass directional resolution of 1 degree
is obtained.

GPS

Using a global positioning system (GPS), a robot can know pre-
cisely where on Earth it’s located. While the need for a GPS is not
obvious for amateur robotists, the cost of GPS systems are coming
down if the need arises.

Speech recognition
The human ear has an auditory range from 10 to 15,000 Hz.
Sound can be picked up easily using a microphone and amplifier.
Microphones typically have an auditory range that surpasses that
of human hearing. Sound is a useful tool for robotists.

We use hearing primarily for communication (language). Speech-
recognition systems are a hot topic in robotics. Because of this,
we devote an entire chapter (see Chap. 7) to building a speech-
recognition circuit and interfacing. But don’t skip over the following
information. Robotic sound systems are pretty useful.

Sensors

� 5.32 1525 electronic analog compass

Team LRN

86

Sound and ultrasonics
Sound may be used for games, range finding, and collision and
obstacle avoidance. To play a game of robot tag, robots are fitted
with a two-tone oscillator and receiver. Each robot can generate
and recognize two tones. Let’s say the A tone is 3000 Hz and the B
tone is 6000 Hz. Tones are generated for 1 s whenever a robot’s
bumper switch is activated.

The robot that’s “it” generates the B tone whenever its bumper
collides with another robot. A “not it” robot generates the A tone.
Upon collision, the “it” robot generates the “B” tone. The “not it”
robot hearing the B tone changes states and becomes “it.” And the
“it” robot hearing the A tone from the “not it” robot changes states
and becomes “not it.” Two “not it” robots will both generate the A
tone and leave the collision with their states unchanged. Although
we are using sound as an example here, be aware that this tech-
nique can be applied using infrared light.

Ultrasonics are often used for range finding and collision detection.
Many robotists have written on the Polaroid Company’s ultrasonic
modules (see Fig. 5.33). These modules are used in Polaroid cam-
eras to quickly measure the subject’s distance from the camera
and focus the lens to produce sharp pictures. When interfaced to
a microcontroller, the units can accurately measure distance.

If one needs or wants distance measurements for the robot, the
Polaroid sensor is the way to go. The ping can measure distances up
to 30 ft. The sensor may also be rotated (using a servo or stepper
motor) like a radar to build a navigation map and find an obstacle-
free path.

Chapter five

� 5.33 Polaroid ultrasonic ranging module

Team LRN

87

Every time the Polaroid transducer is energized, there is an audible
click from the Transducer. I find the constant clicking from the
sensor annoying. Although the module is ultrasonic, when the elec-
tronics pump the ultrasonic signal to the transducer, some audible
sound is also generated.

It is relatively easy to build a basic ultrasonic collision avoidance
system that, being completely ultrasonic, is silent. The basic opera-
tion follows the same scheme used for infrared collision avoidance,
except we are using sound instead of light. Figure 5.34 shows the
overview schematic. The transmitter sends a 40-kHz signal to an ul-
trasonic transducer. Another transducer (receiver) is positioned
alongside the transmitter transducer. When the robot approaches a
wall or obstacle, the 40-kHz sound is reflected back to the receiver,
whose output increases in amplitude. When the output increases
beyond the preset point, the comparator trips, relaying that there is
an obstacle detected.

Ultrasonic receiver section

The ultrasonic receiver section (see Fig. 5.35) is used to fine-tune
the transmitter. The ultrasonic transducers resonate at 40 kHz. If the
resonant frequency varies too much (±750 Hz), the performance of
the transducers degrades rapidly. Fine-tuning the transmitter for
optimum resonance frequency is not difficult provided you follow
the procedure outlined. The only piece of equipment needed is a
volt-ohm milliammeter (VOM) capable of reading 2 VDC.

Sensors

� 5.34 Outline of ultrasonic collision detector

Solid
Object

Reflected Sound

Trans

Recv

40 kHz Sound

4"–5"

Team LRN

88

Because the transducers have a limited bandwidth (resonant at
or around 40 kHz), it is unnecessary to add a PLL (LM567) to the
circuit. The transducers naturally reject off-frequency sound.

The receiver section uses a CMOS op-amp. The op-amp is an 8-pin
dip that follows the same pin out as the universal 741 op-amp.
(Do not substitute a 741 op-amp.) The op-amp is configured as an
inverting amplifier with a gain of approximately 22.

Ultrasonic transmitter section

The ultrasonic transmitter (see Fig. 5.36) is built around a CMOS
555 timer set up in astable mode. R2 is a PC-mounted 4.7K-ohm
potentiometer and is used to adjust the frequency output.

Chapter five

� 5.35 Ultrasonic receiver circuit

Vcc

220
�

4.7
K�

R4

R5

Input

R6 220
�

220

CMOS Comparator

220
�

Signal
out

+

–

Vcc

Output

R3
22K�

R1
1K

Ultra Sonic
Transducer R2 1K

R4
1Meg

.1�F
16V

U1
+

–
2

3 4

7
6

2

3
4

7 6

Output

V

VOM
Volts

Tuning
Test Circuits

* Submini
LED

U1 = CMOS Op-amp
Vcc = 5 Vac

Team LRN

89

Tuning the transmitter

Set up the ultrasonic transducers so that they are directly facing one
another about 4″ to 5″ apart (see Fig. 5.37). Connect the VOM to the
circuit as shown in the insert in Fig. 5.35. (Leave the comparator sec-
tion off.) Set the VOM to read volts DC. You will need to read about
2 V; set the range on the VOM accordingly. Turn on both circuits. Ad-
just R2 of the transmitter so that you obtain the peak voltage output
shown on the voltmeter. This should read about 2 VDC.

Adjusting the CMOS comparator

After tuning the transmitter, we need to set the receiver’s com-
parator circuit. Disconnect the VOM from the receiver section
and connect the CMOS comparator. Rearrange the transducers so
that they are lying side by side about half an inch apart facing in
the same direction. Place a flat-sided solid object about 3″ in front

Sensors

� 5.36 Ultrasonic transmitter circuit

� 5.37 Ultrasonic test setup

55
5

R11K

4.7K
R2

.0047
�F

1K

210222

Vcc

R3
220
�

Ultrasonic
Transducer

Vcc = 5Volts

* Use CMOS 555 Timer

8 4

7

6

2 1

3

VoltmeterTransmitter
Circuit Receiver

Circuit

4–5"

Team LRN

90

of the transducers. Turn on the receiver and transmitter circuits
and adjust R5 on the receiver circuit so that the subminiature LED
just lights.

To test the circuit, remove the solid object from the front of the
transducers; the LED should turn off. Fine-tune the circuit by
placing the solid object 5″ to 6″ in front of the transducers and
readjust R5 until the LED just lights. Note that the receiver is angle
sensitive. If the object is held at an acute angle, the ultrasonic
sound is reflected away from the receiver. The angles become less
critical as the object gets closer to the transducers.

The circuit easily detects solid objects up to 8″ away from the
transducers. Greater distances can be detected, but as mentioned
earlier they become angle sensitive. I have the transducers set
perpendicularly. You may angle the transducers slightly to obtain
different ranging effects.

The circuit provides a transistor-transistor logic (TTL) high signal
that is indicated by the lit LED whenever the circuit detects an
obstacle 6″ away. The TTL signal may be read directly by a neural
net or microcontroller.

Arranging the ultrasonic sensors

The obvious uses for the ultrasonic system are side (left and right),
front, and back obstacle detection. Another use that may not be as
obvious is ground detection. If the ultrasonic sensor faces forward
and is pointed downward, the sensor will read the ground in front
of the robot. If the robot approaches a cliff or stair, the normally
high signal (LED lit) goes low informing the CPU to stop.

Touch and pressure
The fidelity of the human sense of touch has not been remotely
approached in robotics. However, there are a few simple sensors
that can be used to detect touch and pressure. Touch sensors are
commonly to detect bumps in the robot’s path and to allow the robot
to avoid collisions.

More sophisticated touch and pressure sensors are used on robotic
hands and arms. The sensors allow the robotic hand to grip with
enough force to lift an object without crushing it.

A simple touch or pressure sensor can be made from electrostatic
(also called conductive) foam. This is the same foam ICs are

Chapter five Team LRN

91
packed in to prevent static damage. The foam has a nominal con-
ductivity that changes as the material is compressed.

It is important to use low-density (soft) conductive foam, because
it is soft and spongy. As pressure is applied, the foam compresses,
which changes the nominal resistance between the conductors.

Figure 5.38 illustrates a simple touch sensor. The conductive plates
may be made from printed circuit flexible board (PCB), aluminum
foil, or something similar. Higher-fidelity touch and pressure sensors
are reviewed a little later in this chapter.

Piezoelectric material
There are a great many piezoelectric sensors. Piezoelectric sensors
can detect vibration, impact, and thermal radiation. Pennwall
Company makes a unique product called piezoelectric film. This is
an aluminized plastic that’s been manufactured in such a way as to
render the plastic piezoelectric.

The material is sensitive enough to detect the thermal radiation of a
person passing in front of it. Many commercial light sentries sold in
hardware stores use piezoelectric film behind a Fresnel lens to detect
the thermal radiation of a person. This type of light sentry auto-
matically turns on a light when someone walks into its field of view.

Sensors

Steel, Copper, or Aluminum Foil

Conductive
Foam

Aluminum
Foil

Hook-up
wire

Pressure
Changes
Resistance

Side View

VOM

� 5.38 Conductive foam touch sensor

Team LRN

92

Switches
Momentary contact switches form the foundation of bump sen-
sors, navigation feelers, and limit sensors. There are many types of
switch configurations to choose from. Some of the more common
switches used in robotics are momentary contact lever and push-
button switches (see Fig. 5.39).

Bend sensors
Bend sensors are passive resistive devices that increase in resis-
tance as they are bent or flexed (see Figs. 5.40 and 5.41). More
commonly used for making virtual-reality data gloves to measure

Chapter five

Flex 90 degrees 20K
>degree of flex 30–40K

Nominal Resistance
Flex 0 degrees 10 K

41⁄2"
1⁄4"

Top View

Side View

� 5.41 Bend sensor resistance graph

� 5.40 Bend sensor

� 5.39 Momentary contact switches

Team LRN

93

the flexing of fingers, these versatile sensors can easily be adapted
to robotics. The bend sensor makes an interesting feeler that can
inform the robot of an obstacle.

I am reminded of a cat’s whiskers. Cats use their whiskers to deter-
mine if a particular passageway is wide enough to pass through.
If the whiskers on both sides of a cat’s face touch each side of a
passageway, the cat will most probably not try to pass through it.
The bend sensors can be used in a similar manner.

Heat

The most common heat sensor is the thermistor (see Fig. 5.42).
This passive device changes resistance in proportion to its tem-
perature. There are positive temperature coefficient and negative
temperature coefficient thermistors (see Fig. 5.43). Thermal radia-
tion can also be detected by piezoelectric materials as discussed
earlier.

Sensors

� 5.42 Thermistor

� 5.43 Positive (left) and negative (right) temperature co-
efficient thermistor graphs

Team LRN

94

Pressure sensor
Pressure sensors, shown in Fig. 5.44, are perfect for measuring
forces. The “sensor” portion on the sensor is contained in the 14
mm � 14 mm pad at the end of the sensor. The resistance of the
sensor decreases as force is applied. There are a variety of pres-
sure ranges available from 0 to 1 pound (lb) up to 0 to 1000 lb.

Smell
Currently no sensor exists that can approach the olfactory sense
of the human nose. What is available are simple gas sensors that
can detect toxic gases (see Fig. 5.45). The gas sensors can be used
to create automatic (robotic) ventilation systems.

Chapter five

� 5.44 Flexiforce pressure sensor

Team LRN

95

A simple sensor setup is shown in Fig. 5.46. The resistive element
must be heated to become sensitive. The sensor incorporates its
own heating unit, which is separately powered. The heater requires
a regulated �5 V for proper operation and draws about 130 mA.
The resistive element can be read like any other resistive sensor
used thus far.

The potential for these gas sensors is greater than what is implied in
the simple schematic. The gas sensors are not precise instruments.
In other words, their response varies slightly from device to device.
This “analog” property can be used to create a more sensitive smell
detector.

Let’s arrange eight sensors. The resistive element from each sensor
is connected to an A/D convertor. A comparator circuit wouldn’t do
in this situation because precise and subtle variations in response
are what we are looking for. To calibrate the device, a small
amount of a known gas (smell) is released by the eight sensors.
The response of each detector is measured by the A/D convertor
and recorded by the main computer. Since the responses of the
detectors will vary, an eight-number pattern is created for each
smell.

Pattern matching is well established in neural networks. A neural
network can be built using the information gathered that can not
only measure but recognize different smells.

Sensors

� 5.45 Toxic gas sensor

Team LRN

96

Chapter five

1

2

34

5

6

Pins

Bottom View Sensor

1 3

2

5

4 6

Electrical Schematic Sensor

Wire Cloth

Sensor Material

Pins

Cutaway View — Gas Sensor
9V

7805

+5V
1

3

2

5
4

6

4.7K

V

Gas Sensor

� 5.46 Toxic gas sensor test circuit

Team LRN

97

Humidity
Passive resistive humidity sensors are a relatively new product
that can be purchased.

Testing sensors
When designing and building sensor systems, it’s a good idea to test
them before committing to use the system on a robot. One method
that I used was to build a small mobile robot whose only function is
to test sensors. That way reliability and response time can be deter-
mined before committing the sensors on a more elaborate robot.

The robot can test bump switches, light switches, bend sensors,
and infrared and ultrasonic obstacle avoidance sensors. Other
types of sensors may require a different test bed.

Building a tester robot
Tester is the name I’ve given this small robot. The foundation of
the robot is a small electric car that can be purchased for less than
$10.00 (see Fig. 5.47).

The schematic for Tester is shown in Fig. 5.48. The sensor con-
nects to the trigger input of a 555 timer set up as a monostable

Sensors

� 5.47 Tester

Team LRN

98

�
5.

48
Te

st
er

 c
irc

ui
t s

ch
em

at
ic

Team LRN

99

pulse generator. The output (pin 3) of the 555 remains low until a
negative pulse on the number 2 pin triggers its operation. Once
triggered, the output (pin 3) of the 555 goes high for approxi-
mately 1 s.

The output of the 555 connects to a 2N2222 NPN transistor. An
output is taken off the emitter of the transistor and connected to a
buffer on the 4049 hex inverting buffer IC. The buffers on the 4049
chip are connected to a four-MOSFET (metal oxide semiconduc-
tor field-effect transistor) H-bridge that controls the drive motor.

When the output of the 555 timer is low, the H-bridge powers the
robot’s drive motor forward. The sensor to be tested is connected
to the trigger input, pin 2 on the 555 timer. The sensor is wired in
such a way as to cause a negative pulse (goes to ground) when it is
activated or tripped. The negative pulse on pin 2 causes the output
of the timer to go high for 1 s, which reverses the motor direction
for 1 s.

Tester can be used to check a variety of sensors and transducers.

Improving the tester robot

When I designed Tester, I had imagined most of the sensors I
would test and use to be tiny miniature modules. This was not the
case. In the process of prototyping different circuits I rarely had
the time to produce a PCB, let alone miniaturize the circuit.

If I were to build another tester robot, I would use a much larger elec-
tric car as a foundation. Having a lot of room to work on the robot
makes it easier to secure different types of sensors and circuits.

Parts for the projects outlined in this chapter are available from:

Images Company
P.O. Box 140742
Staten Island, NY 10314
(718) 698-8305

http://www.imagesco.com

SensorsTeam LRN

This page intentionally left blank.

Team LRN

101

Intelligence

INTELLIGENCE PACKAGED IN A ROBOT TAKES ONE OF TWO
forms: rule-based (expert) or neural. It’s possible for both forms of
intelligence to work in tandem. This synthesis of intelligence will be
commonly used in robotics to create a robust intelligence system.

Expert (rule-based) intelligence programs are familiar to most
people; these are programs written in high-level or low-level lan-
guages like C��, BASIC, and assembly. Neural systems on the other
hand use electronic neurons and feedback to control (generate
behavior of) the robot. This neural behavior-based robotic archi-
tecture was pioneered in the late 1940s and early 1950s by William
Grey Walter. More recently, Rodney Brooks at the Massachusetts
Institute of Technology (MIT) has been developing behavior-based
robotic architecture under the name of “subsumption architec-
ture.” We will look at behavior-based robotics in Chap. 8.

In this chapter we will focus on rule-based systems and microcon-
trollers. Keep in mind that it is possible to mimic neural systems
using rule-based systems programming. It is also noteworthy to
know that almost all neural network software on the market today
runs on existing rule-based computers, using rule-based program-
ming that simulates neural networks.

Microchip’s PIC microcontroller
Adding intelligence in the form of a computer to a small robot or
robotic system has never been easier. There are numerous single-
chip computers (commonly know as microcontrollers) available
that can do the job.

Intelligence

6

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

102

As the name implies, a single-chip computer is an entire computer
system that lies within the confines of an integrated circuit (IC) chip.
The microcontroller existing on the encapsulated sliver of silicon has
features and similarities to our standard personal computer (PC).
Primarily the microcontroller is capable of storing and running a pro-
gram (most important feature). The microcontroller contains a
central processing unit (CPU), random access memory (RAM),
read only memory (ROM), input/output (I/O) lines, serial and
parallel ports, timers, and sometimes other built-in peripherals
like analog-to-digital (A/D) and digital-to-analog (D/A) converters.

Why use a microcontroller?
The microcontroller’s ability to store and run unique programs
makes it extremely versatile. For instance, one can program a micro-
controller to make decisions (perform functions) based on prede-
termined situations (I/O line logic) and sensor readings. Its ability to
perform math and logic functions allows it to mimic sophisticated
logic and electronic circuits. Still other programs can make the
microcontroller behave like a neural or fuzzy logic controller.

The output of the microcontroller can control direct current (DC)
motor drives [using DC or pulse-width modulation (PWM)], servo
motor positioning, stepper motors, etc. Programming a robot’s
microcontroller to respond to sensor readings or a communication
link creates an intelligent, responsive robot. Microcontrollers are
responsible for the “intelligence” in most smart devices on the
consumer market and will be the intelligence in our robots.

PIC programming overview
Programming PIC microcontrollers is a three-step process. Before
you can program, however, you need to purchase two items, the
PICBASIC compiler program and the EPIC programmer (a program-
ming carrier board). These two items do not include the PIC micro-
controller chip or its support components. I recommend beginning
with the 16F84 PIC microcontroller because it is a versatile 18-pin
chip with 13 I/O lines and rewritable flash memory. This flash mem-
ory allows you to reprogram the PIC microcontroller chip 1000
times. This is really useful when testing and debugging your pro-
grams and circuits.

The PICBASIC compiler (see Fig. 6.1) runs on a standard PC. The
program may be run in DOS or in an “MS-DOS Prompt” window in
the Windows environment. Hereafter the MS-DOS Prompt window
will be referred to simply as a DOS window. The DOS program will

Chapter six Team LRN

103

run on everything from an XT class PC running DOS 3.3 and
higher. The compiler supports a large variety of PIC microcon-
trollers. The compiler generates machine language (ML) hex code
that may be used with other programming carrier boards. The cost
for PICBASIC compiler software is $99.95.

The EPIC programming carrier board (see Fig. 6.2) has a socket
for inserting the PIC chip and connecting it to the computer, via
the printer port, for programming. The programming board con-
nects to the computer’s printer port (also called the parallel port)
using a DB25 cable. If the computer only has one printer port with
a printer connected to it, the printer must be temporarily discon-
nected when programming PIC chips. As with the PICBASIC
Compiler, the EPIC programming carrier board supports a large
variety of PIC microcontrollers. The cost for the EPIC programming
board with the EPIC programming diskette is $59.00.

The PIC 16F84 is shown in Fig. 6.3. It is a versatile microcontroller
with flash memory. Flash memory as stated before is rewritable

Intelligence

� 6.1 PICBASIC compiler

Team LRN

104

memory. The onboard flash memory can endure a minimum of 1000
erase-write cycles. So you can reprogram and reuse the PIC chip at
least 1000 times. The program retention time, if you decide not to
rewrite the program, is approximately 40 years. The 18-pin 16F84
chip devotes 13 of its pins to I/O. Each pin may be independently
programmed as an input or output. The pin’s status (I/O direction
control) may also be changed on the fly via programming. Other
features include power on reset, power-saving sleep mode, power-
up timer, and code protection. Additional features and architecture
details of the PIC 16F84 will be given as we continue.

Chapter six

� 6.2 EPIC programming board

� 6.3 16F84 microcontroller

Team LRN

105

Software installation

Install the compiler (PICBASIC) and programming (EPIC) software
according to the directions provided in their manuals. I created a
directory on my computer’s hard drive called APPLICS. I used the
DOS path command so that I could run both the compiler and pro-
gramming software from this directory. I wrote and saved all my
programming text files in the APPLICS directory also. For complete
software installation directions with a basic DOS commands tutor-
ial, along with numerous PIC microcontroller applications, read my
PIC Microcontroller Project Book (McGraw-Hill, New York, 2000).

Step 1: Writing the BASIC language program
PICBASIC programs are written using any word processor that is
able to save its text file as ASCII or DOS text. Every word processor
I have worked with has this option. Use the Save As command and
choose MS-DOS text, DOS text, or ASCII text. The finished text
file is compiled into a program by the PICBASIC compiler. If you
don’t own a word processor, you can use Windows Notepad, which is
included with Windows 3.X, 95, and 98, to write the BASIC language
source file. (In Windows, look under Accessories.) At the DOS level
you can use the Edit program to write text files.

When you save the file, save it with a .bas suffix. So if you were
saving a program named Wink, you would save it as wink.bas.

Step 2: Using the compiler
The PICBASIC compiler program is started by entering the com-
mand pbc followed by the name of the text file. For example, if the
text file we created is named wink.bas, then at the DOS command
prompt enter

pbc wink.bas

The BASIC compiler compiles the text file and creates two additional
files, an .asm (assembly language) file and a .hex (hexadecimal) file.

The wink.asm file is the assembly language equivalent to the BASIC
program. The wink.hex file is the machine code of the program
written in hexadecimal numbers. It is the .hex file that is loaded
into the PIC chip.

If the compiler encounters errors when compiling the BASIC
source code, it will list each error it has found along with the line
number where the error is located and terminate. The errors listed
need to be corrected in the BASIC source code before it will suc-
cessfully compile.

IntelligenceTeam LRN

106

Step 3: Programming the PIC chip

Connect the EPIC programming board to the computer’s printer
port using a DB25 cable. Start the DOS programming software. At
a DOS command prompt, enter

EPIC

Figure 6.4 is a picture of the programming screen. Use the Open File
option and select wink.hex from the files displayed in the dialog
box. The file will load, and numbers will be displayed in the window
on the left. Insert the 16F84 into the socket, and then press the pro-
gram button. The PIC microcontroller is programmed and ready to
go to work.

First BASIC program
We are ready to write our first program. Enter this program in your
word processor exactly as it is written:

‘First BASIC program to wink two LEDs connected to port B.

Loop: High 0 ‘ Turn on LED connected to pin RB0

Low 1 ‘ Turn off LED connected to pin RB1

Pause 500 ‘ Delay for 0.5 seconds

Low 0 ‘ Turn off LED connected to pin RB0

High 1 ‘ Turn on LED connected to pin RB1

Pause 500 ‘ Delay for 0.5 seconds

Goto loop ‘ Go back to loop and blink and wink LEDs

End

Chapter six

� 6.4 EPIC programming screen

Team LRN

107

See Fig. 6.5. Save the above as a text file using the Save function
under the File menu. Name the file wink.bas (see Fig. 6.6). If by
accident you saved the file as wink.txt, don’t get discouraged. You
can do a Save As from the Edit program (under the File menu)
and rename the file wink.bas.

Intelligence

� 6.5 PICBASIC program text file

� 6.6 Saving text file

Team LRN

108

Compile

The PICBASIC compiler must be run from DOS or from a DOS
prompt window within Windows. I ran the PICBASIC compiler from
the APPLICS directory. Make sure the wink.bas file is also in the
PICBASIC directory. The PICBASIC compiler is compatible with
dozens of different PIC microcontrollers. In order to compile a pro-
gram for a specific microcontroller, the PICBASIC compiler needs to
know which microcontroller we are using. To compile a program for
the 16F84, we add -p16F84 to our pbc command.

So the complete command is pbc -p16f84 wink.bas. At the DOS
prompt, type in the command and hit the Enter key (see Fig. 6.7).

C:/APPLICS>pbc -p16F84 wink.bas

The compiler displays an initialization copyright message and begins
processing the BASIC source code (see Fig. 6.8). If the BASIC
source code is without errors, it will create two additional files. If the
compiler finds any errors, it displays a list of errors with their line
numbers. Match the line numbers in the error message to the
line numbers in the .bas text file to locate where the errors occurred.
The errors need to be corrected before the compiler can compile the
source code correctly.

You can look at the files by using the dir directory command.
Type dir at the command prompt and hit Enter (see Fig. 6.9).

C:\APPLICS> dir

Chapter six

� 6.7 Entering compile command

Team LRN

109

The dir command displays all the files and subdirectories within the
subdirectory where it is issued. In Fig. 6.9, we can see the two addi-
tional files the compiler created. One file is the wink.asm file and is
the assembler source code file that automatically initiated the
macroassembler to compile the assembly code to machine language
hex code. The hex code file is the second file created called wink.hex.

Intelligence

� 6.8 Compiler compiling program

� 6.9 Directory command

Team LRN

110

Programming the PIC chip

To program the PIC chip, we connect the EPIC programming carrier
board (see Fig. 6.10) to the computer. The EPIC board connects
to the printer port. If your computer has only one printer port,
disconnect the printer, if one is connected, and attach the EPIC
programming board using a 6-foot (ft) DB25 cable.

When connecting the programming board to the computer, make
sure there isn’t a PIC microcontroller installed in the board. If you
have an alternating current (AC) adapter for the EPIC program-
ming board, plug it into the board. If you do not have the AC
adapter, attach two fresh 9-volt (9V) batteries and connect the
“Batt ON” jumper to apply power. The programming board must
be connected to the printer port with power applied to the board
before running the software. If not, the software will not see the
programming board connected to the printer port and will give the
error message “EPIC programmer not connected.”

When power is applied and it is connected to the printer port, the
light-emitting diode (LED) on the EPIC programmer board may be
on or off at this point. Do not insert a PIC microcontroller into the
programming board socket until the EPIC programming software is
running.

The EPIC programming board software

There are two versions of the EPIC software: EPIC.exe for DOS and
EPICWIN.exe for Windows. The Windows software is 32-bit. It may
be used with Windows 95, 98, and NT, but not 3.X.

Chapter six

� 6.10 EPIC programming board

Team LRN

111

Using the EPIC DOS version

If using Windows 95 or higher, you could either open an MS-DOS
prompt window or restart the computer in the DOS mode. Win-
dows 3.XX users should end the Windows session.

Assume we are still in the same DOS session and we have just run
the pbc compiler on the wink.bas program. Copy the wink.hex file
into the EPIC subdirectory. At the DOS prompt, type “EPIC” and hit
Enter to run the DOS version of the EPIC software (see Fig. 6.11).

EPIC’s opening screen is shown in Fig. 6.12. Use the mouse to click
on the Open button or press Alt-O on your keyboard. Select the
wink.hex file (see Fig. 6.13). When the hex file loads, you will see
a list of numbers in the window on the left (see Fig. 6.14). This is
the machine code of your program. On the right-hand side of the
screen are configuration switches that we need to check before we
program the PIC chip.

Let’s go through the configuration switches one by one.

� Device: Sets the device type. Set it for 8X.

� ROM size (K): Sets memory size. Choose 1.

� OSC: Sets oscillator type. Choose XT for crystal.

� Watchdog timer: Choose On.

� Code protect: Choose Off.

� Power-up timer enable: Choose High.

Intelligence

� 6.11 EPIC command

Team LRN

112

After the configuration switches are set, insert the PIC 16F84 micro-
controller into the socket. Click on Program or press Alt-P on the
keyboard to begin programming. The EPIC program first looks at
the microcontroller chip to see if it is blank. If the chip is blank, the
EPIC program installs your program into the microcontroller. If

Chapter six

� 6.12 EPIC programming screen

� 6.13 Selecting hex file

Team LRN

113

the microcontroller is not blank, you are given the options to cancel
the operation or overwrite the existing program with the new pro-
gram. If there is an existing program in the PIC chip’s memory, write
over it. The machine language code lines are highlighted as the PIC
is programmed. When it is finished, the microcontroller is pro-
grammed and ready to run.

Testing the PIC microcontroller

The schematic shows how minimal is the number of components
needed to get your microcontroller up and running. Primarily
you need a pull-up resistor on pin 4 (MCLR), a 4-megahertz
(MHz) crystal with two [22-picofarad (pF)] capacitors, and a 5V
power supply.

The two LEDs and the two current-limiting resistors connected in
series with the LEDs are the output. It allows us to see that the
microcontroller and program are functioning. Assemble the com-
ponents as shown in the schematic of Fig. 6.15 on the solderless
breadboard. When you are finished, your work should appear as in
Fig. 6.16.

While the specifications sheet on the 16F84 states the microcon-
troller will operate on voltages from 2V to 6V, I provided a regulated
5V power supply for the circuit. The regulated power supply consists
of a 7805 voltage regulator and two filter capacitors.

Intelligence

� 6.14 Hex file loaded into EPIC program

Team LRN

114

Wink

Apply power to the circuit. The LEDs connected to the chip will
alternately turn on and off. Wink…wink…. Now you know how easy
it is to program these microcontrollers and get them up and running.

As you gain experience, using the compiler and programmer will
become second nature. You won’t even consider them as steps
anymore. The real challenge will be in writing the best PICBASIC
programs possible. And that is as it should be.

Troubleshooting the circuit

There is not too much that can go wrong here. If the LEDs don’t
light up, the first thing I would check is the orientation of the
LEDs. If they are put in backwards, they will not light.

Chapter six

� 6.15 Schematic

� 6.16 Circuit built on solderless breadboard

Team LRN

115

PICBASIC Pro compiler

There is also a high-end version of the PICBASIC compiler named the
PICBASIC Professional Compiler. The Pro version compiler is consid-
erably more expensive, retailing for $249.95. The Pro version has a
greater number of and much richer BASIC commands than are in the
standard compiler package. A few of the additional commands to be
found in the Pro version allow the use of Interrupts, direct control of
light-crystal display (LCD) modules, dual-tone multifrequency
(DTMF) out, and X-10 commands, to name a few.

While a more sophisticated package, the compiler does not handle
two of my favorite (and very powerful) BASIC commands: Peek
and Poke. While the commands are listed “as functional” in the Pro
manual, it is emphasized that “Peek and Poke should never be used
in a PICBASIC Pro program.” This is unfortunate, personal feelings
aside, because it destroys upward compatibility of any PICBASIC
programs that use the Peek and Poke commands.

New IDE features
Recently, both the PICBASIC and PICBASIC Pro compilers are being
packaged with an additional diskette that contains a Windows
integrated development environment (IDE) interface called
CodeDesigner Lite (see Fig. 6.17). CodeDesigner Lite allows one

Intelligence

� 6.17 CodeDesigner Lite

Team LRN

116

to write and compile PICBASIC code in a Windows environment.
Each statement is color-coded, making it much easier to spot errors
and read through your code. The freebie version allows you to write
programs up to 150 lines and open up three source files at once for
easy copy and paste.

The most important feature of the CodeDesigner IDE interface is
that it allows you to first write the program, then compile the pro-
gram into a hex file, and finally (in theory) program the micro-
controller while in the same window. This reduces program
development time. Typically, I write while in DOS or an MS-DOS
prompt window. I write the program text file using the DOS Edit
program. When finished, I then exit Edit and manually compile
the program. If there is a problem (more times than not), I then
restart Edit and debug the code. When the program is completely
debugged, I load the program into the PIC microcontroller using the
EPIC software and programming board. At this point the micro-
controller/circuit is tested. If it functions properly, I’m finished; if
not, I begin rewriting the program.

In using CodeDesigner, the ease with which you can write and de-
bug PICBASIC programs and load them into the microcontroller
increases productivity. My experience is that I can code and debug
my programs while in Windows, but to program a microcontroller,
I still must drop down into DOS.

While the freebie version (CodeDesigner Lite) is functional, if you
like it, you can then upgrade to the full-featured CodeDesigner.
CodeDesigner is available in a hobbyist version for $45.00 and a
standard version for $75.00.

The hobbyist version of CodeDesigner only works with the PICBA-
SIC compiler. The standard version will work with both the
PICBASIC and PICBASIC Pro compilers. Some of the advanced
features of CodeDesigner include

� AutoCodeCompletion: CodeDesigner makes writing code
much easier with smart pop-up list boxes that can
automatically fill in statements and parameters for you.

� Multiple document support.

� Line error highlighting: CodeDesigner will read error data and
highlight error lines when you compile your PICBASIC project.

� QuickSyntaxHelp: The QuickSyntaxHelp feature displays
statement syntax when you type in a valid PICBASIC statement.

� Statement description: Statement descriptions are displayed in
the status bar when you type in a valid PICBASIC statement.

Chapter six Team LRN

117

� Statement help: Simply position your cursor over a PICBASIC
statement and get statement-specific help.

� Label listbox: The label listbox displays the current label and
allows you to select a label from the list to jump to the
selected label.

� Colored PICBASIC Syntax: Set colors for reserved words,
strings, numbers, comments, defines, etc. Colored PICBASIC
syntax makes for easy code reading.

� Bookmarks: Never lose your place again. CodeDesigner allows
you to set bookmarks.

� Multiple undo/redo: Didn’t want to delete that last line? No
problem. Simply click on the Undo button.

� Multiple views: Multiple views of your source code allow you
to easily edit your code.

� Print source code.

� Drag and drop text.

� Row/column-based insert, delete, and copy.

� Search and replace.

� Compile and launch device programmer.

Software installation

When it is being installed, CodeDesigner creates a subdirectory
in the Program Files directory and installs itself there. It puts a
CodeDesigner shortcut on the Start, Program menu in Windows.

First PICBASIC Pro program
This program is identical in function (not code) to the wink.bas
PICBASIC program. Start CodeDesigner (Lite) (see Fig. 6.18) and
enter the following code:

‘Wink program

‘Blinks and winks two LEDs connected to port B

Loop:

High PORTB.0 ‘ Turn on LED connected to RB0

Low PORTB.1 ‘ Turn off LED connected to RB1

Pause 500 ‘ Wait 1�2 second

Low PORTB.0 ‘ Turn off LED connected to RB0

High PORTB.1 ‘ Turn on LED connected to RB1

Pause 500 ‘ Wait 1�2 second

GoTo Loop ‘ Loop back—repeat cycle blink and wink forever

IntelligenceTeam LRN

118 CodeDesigner defaults to writing code for the PIC 16F84 micro-
controller. This is the microcontroller I recommend you start with.
To change the device, simply pull down the device menu and select
the appropriate microcontroller.

To compile the program, either select compile under the Compile
menu or hit F5. CodeDesigner automatically starts the PICBASIC
Pro compiler to compile the program. Before you attempt to com-
pile a program, set up the “compiler options” under the Compile
menu. CodeDesigner needs you to tell it where (which directory)
to find the PICBASIC Pro program, and where to save the com-
piled and source files.

Once the program is compiled, we can go to the next step of loading
the program into a PIC microcontroller chip using the EPIC pro-
grammer. Follow the instructions for the EPIC program described
previously for the PICBASIC compiler.

The EPIC programmer and CodeDesigner

If you prefer, you could also program the chip from CodeDesigner.
Select “launch programmer” from the Programmer menu, or hit F6.
CodeDesigner automatically starts the EPICWIN.exe Windows
software.

Chapter six

� 6.18 PICBASIC Pro program written in CodeDesigner

Team LRN

119

With the EPIC Windows software started, set the configuration
switches one by one under the Options menu.

� Device: Sets the device type. Set it for 16F84 (default).

� Memory size (K): Sets memory size. Choose 1.

� OSC: Sets oscillator type. Choose XT for crystal.

� Watchdog timer: Choose On.

� Code protect: Choose Off.

� Power-up timer enable: Choose High.

After the configuration switches are set, insert the PIC 16F84 micro-
controller into the open socket on the EPIC programming board. If
you receive an error message “EPIC programmer not found” when
CodeDesigner starts the EPIC Windows program (see Fig. 6.19), you
have the option of either troubleshooting the problem or using the
EPIC DOS program. For instructions on using EPIC software
(DOS version), see the PICBASIC compiler section. The schematic
for the circuit is the same schematic used for the PICBASIC
compiler.

Wink

Apply power to the circuit. The LEDs connected to the PIC micro-
controller will alternately turn on and off.

Intelligence

� 6.19 Starting EPIC software from CodeDesigner

Team LRN

120

Moving forward—applications
It’s now time to show you how to put these microcontrollers to
work. You have the basic knowledge needed to program the 16F84
microcontroller. The remainder of this chapter illustrates how to
perform basic electrical functions using the microcontroller.
These functions are ubiquitous in microcontroller use in elec-
tronic circuits and designs.

To begin, let’s examine how a microcontroller can detect simple
switch closure. The microcontroller can detect transistor-transistor
logic (TTL) levels on any of its 13 I/O pins. We use these logic levels
in conjunction with switches (see Fig. 6.20) for closure detection.

Reading switches—logic low

In Fig. 6.20 the switch labeled A keeps the I/O pin at a logic high
until the switch is closed. Once closed, the I/O pin is brought to
ground, or a logic low. When the microcontroller senses switch
closure, it can perform any number of operations or control func-
tions. In our example it will blink an LED. Keep in mind that the
LED may represent a transistor, transducer, electronic circuit, or
another microcontroller/computer.

The program for the PICBASIC compiler is as follows:

‘PICBASIC Compiler

‘REM test switch low

‘Initialize variables

input 4 ‘Set pin RB4 to read switch

start:

if pin4 � 0 then blink ‘If switch is low, then blink LED

goto start ‘If not, check switch again

blink: ‘Blink routine

Chapter six

� 6.20 Logic level switches

Team LRN

121

high 0 ‘Bring RB0 high to light LED

pause 250 ‘Wait 1�4 second

low 0 ‘Bring RB0 low to turn off LED

pause 250 ‘Wait 1�4 second

goto start ‘Check switch again

The program for the PICBASIC Pro compiler is as follows:

‘REM PICBASIC Compiler Pro

‘Rem test switch low

input portb.4 ‘Set pin RB4 to read switch

start:

if portb.4 � 0 then blink ‘If switch is low, then blink LED

goto start ‘If not, check again

blink: ‘Blink LED routine

high 0 ‘Bring RB0 high to light LED

pause 250 ‘Wait 1�4 second

low 0 ‘Bring RB0 low to turn off LED

pause 250 ‘Wait 1�4 second

goto start ‘Check switch again

The schematic for the read-switch-low circuit is shown in Fig. 6.21.
The switch is connected to an I/O pin labeled RB4. The LED is
connected to RB0 through a 470-ohm current-limiting resistor.

Reading switches—logic high

These programs and schematic are the complement to the previous
examples. Look back to Fig. 6.20, example B. The switch labeled B
keeps the I/O pin at a logic low level. When the switch is closed, the
I/O pin is brought to a logic high level.

Intelligence

� 6.21 Schematic for read-switch-low circuit

Team LRN

122

The program for the PICBASIC compiler is as follows:

‘PICBASIC Compiler

‘REM test switch high

input 4 ‘Set pin RB4 to read switch

start:

if pin4 � 1 then blink ‘If switch is high, then blink LED

goto start ‘If not, check switch again

blink: ‘Blink routine

high 0 ‘Bring RB0 high to light LED

pause 250 ‘Wait 1�4 second

low 0 ‘Bring RB0 low to turn off LED

pause 250 ‘Wait 1�4 second

goto start ‘Check switch again

The program for the PICBASIC Pro compiler is as follows:

‘PICBASIC Compiler Pro

‘REM test switch high

input portb.4 ‘Set pin RB4 to read switch

start:

if portb.4 � 1 then blink ‘If switch is high, then blink LED

goto start ‘If not, check again

blink: ‘Blink LED routine

high 0 ‘Bring RB0 high to light LED

pause 250 ‘Wait 1�4 second

low 0 ‘Bring RB0 low to turn off LED

pause 250 ‘Wait 1�4 second

goto start ‘Check switch again

The schematic for the read-switch-high circuit is shown in Fig. 6.22.
The switch is connected to the I/O pin labeled RB4. The LED is
connected to RB0 through a 470-ohm current-limiting resistor.

Chapter six

� 6.22 Schematic for read-switch-high circuit

Team LRN

123

Reading comparators

The microcontroller can also read logic levels from other micro-
controllers, circuits, or ICs. As an example, look at Fig. 6.23. In this
schematic the microcontroller is set to read the output of an com-
parator. Since the output of an LM339 comparator is equivalent to
an open collector of an NPN transistor, it is usually brought high by
using an external pull-up resistor. The comparator is read by the
microcontroller using the same programs that detect a logic low.

Reading resistive sensors

The PIC microcontroller is able to read resistive sensors that vary
in resistance from 5K to 50K ohms directly. The types of resistive
sensors one can connect to the microcontroller are numerous, for
instance, photoresistors [cadmium sulfide (CdS) cells], thermistors
(PTC and NTC types), toxic gas sensors, bend sensors, and humidity
sensors. The microcontroller reads the resistance by timing the
discharge of a capacitor through the resistive device (see Fig. 6.24).

The command to read a resistive sensor is

Pot pin, scale, var

where Pot is the command, and pin is the pin number the resis-
tive sensor is connected to. Variable scale is used to adjust the
RC constant. For a large RC constant, scale should be set low,
and for a small RC constant, scale should be set to its maximum
value of 255. When the value of scale is set correctly, the value
contained in the var variable will be near zero at minimum resis-
tance value and to 255 near maximum resistance value.

Intelligence

� 6.23 Schematic for read comparator

Team LRN

124

The value of scale needs to be determined experimentally. To
find a good scale value, set the resistive device under measure-
ment to its maximum resistance and read the var variable with
scale set to 255. Under these conditions, the value held in the
var variable will contain a reasonable value for scale.

A schematic of a basic circuit is shown in Fig. 6.25. For the resis-
tive sensor you can connect a 50K-ohm potentiometer. As the po-
tentiometer is varied, one of the LEDs will be lit depending upon
the value held in the variable B0. If the resistance value read is
above 125, LED 1 will light; if not, LED 2 will light.

The program for the PICBASIC compiler is as follows:

‘ PICBASIC Compiler ** reading resistance type sensors **

‘Photoresistor test program

Chapter six

� 6.25 Schematic for Pot command

� 6.24 Resistive sensor
for Pot command

Team LRN

125

‘ Set Up

start:

pot 2,255, b0 ‘Read sensor on RB2

if b0 > 125 then l1 ‘If more than 100, light LED 1

if b0 <= 125 then l2 ‘If less than 100, light LED 2

l1: ‘Light LED 1 routine

high 0 ‘Light LED 1

low 1 ‘Turn off LED 2

goto start ‘Repeat

l2: ‘Light LED 2 routine

high 1 ‘Light LED 2

low 0 ‘Turn off LED 1

goto start ‘Repeat

The program for the PICBASIC Pro compiler is as follows:

‘ PICBASIC Pro Compiler ** reading resistance type sensors **

‘Photoresistor test program

‘ Set Up

output portb.0 ‘Set RB0 as output

output portb.1 ‘Set RB1 as output

b0 var byte

start:

pot portb.2,255, b0 ‘Read sensor on RB2

if b0 > 125 then l1 ‘If more than 100, light LED 1

if b0 <= 125 then l2 ‘If less than 100, light LED 2

l1: ‘Light LED 1 routine

high portb.0 ‘Light LED 1

low portb.1 ‘Turn off LED 2

goto start ‘Repeat

l2: ‘Light LED 2 Routine

high portb.1 ‘Light LED 2

low portb.0 ‘Turn off LED 1

goto start ‘Repeat

One can make the demonstration a little more interesting by sub-
stituting a CdS photoresistive cell in place of the potentiometer in
the circuit. If the proper CdS cell is chosen, for instance, one with
a dark resistance around 50K to 100K ohms and with a light satu-
ration resistance of 10K ohms or less, LED 1 will be lit when the
photoresistor is covered or in darkness. In bright light, LED 2 will
be lit.

It’s possible to read the numerical value of the pot variable by seri-
ally sending the variable to a serially interfaced LCD display or

IntelligenceTeam LRN

126

RS232 computer connection. The command to send the information
out serially is

Serout Pin, Mode, Var

While we are not doing serial communication right now, it’s important
that you know you can.

Servo motors
Servo motors are geared direct current (DC) motors with a posi-
tional feedback control that allows the rotor of the motor to be accu-
rately positioned. The shaft of most hobbyist servo motors can be
positioned through a minimum of 90 degrees of rotation (±45
degrees). There are three wires to the servo motor. Two leads are
for power, typically 4.5V to 6V, and ground. The third wire feeds
the position control signal to the servo motor. The position con-
trol signal is a variable-width pulse. The pulse is varied between 1
and 2 milliseconds (ms). The width of the pulse controls the posi-
tion of the servo motor’s shaft.

Controlling servo motors with a PIC microcontroller is easy. The 1- to
2-ms control pulse signal must be sent to the motor 50 to 60 times
a second.

The pulsout command generates a pulse on the pin specified, for
the period specified [in 10-microsecond (�s) increments]. So the
command pulsout 1, 150 will place a 1.5 ms (10 �s � 150 �
1500 or 1.5 ms) pulse on pin 1. The 1.5-ms pulse will position the
servo motor’s shaft at midposition.

Chapter six

� 6.26 Schematic for servo motor

Team LRN

127

Servo sweep program
The demonstration program will sweep the servo rotator left to
right and back again like a radar dish antenna. The schematic is
shown in Fig. 6.26. Here is the PICBASIC compiler program:

‘Servo motor sweep program

‘PICBASIC Compiler

‘Programs sweeps left to right and back again

b0 = 100 ‘Initialize at left position

sweep: ‘Sweep routine

pulsout 0,b0 ‘Send pulse to servo motor

pause 18 ‘Wait 18 ms (50 to 60 Hz)

b0 = b0 + 1 ‘Increment pulse width

if b0 > 200 then sweepback ‘End of sweep?

goto sweep ‘No, continue sweeping

sweepback: ‘Sweepback routine

b0 = b0 — 1 ‘Decrement pulse width

pulsout 0, b0 ‘Send pulse to servo motor

pause 18 ‘Delay to send 50 to 60 Hz

if b0 < 100 then sweep ‘End of sweepback

goto sweepback ‘No

The PICBASIC Pro compiler program is as follows:

‘Servo motor sweep program

‘PICBASIC Pro Compiler

‘Programs sweeps left to right and back again

b0 var byte

b0 = 100 ‘Initialize at left position

sweep: ‘Sweep routine

pulsout portb.0,b0 ‘Send pulse to servo motor

pause 18 ‘Wait 18 ms (50 to 60 Hz)

b0 = b0 + 1 ‘Increment pulse width

if b0 > 200 then sweepback ‘End of sweep?

goto sweep ‘No, continue sweeping

sweepback: ‘Sweepback routine

b0 = b0 — 1 ‘Decrement pulse width

pulsout portb.0, b0 ‘Send pulse to servo motor

pause 18 ‘Delay to send 50 to 60 Hz

if b0 < 100 then sweep ‘End of sweepback

goto sweepback ‘No

Fuzzy logic and neural sensors
We are presented with a few interesting possibilities regarding the
interpretation of sensor readings. We can have the microcontroller
mimic the function of neural and/or fuzzy logic devices.

IntelligenceTeam LRN

128

Fuzzy logic

In 1965, Lotfi Zadah, a Professor at the University of California at
Berkeley, first published a paper on fuzzy logic. Since its inception,
fuzzy logic has been both hyped and criticized.

In essence, fuzzy logic attempts to mimic in computers the way
people apply logic in grouping and feature determination. A few
examples should clear this “fuzzy” definition. For instance, how is a
warm, sunny day determined not to be warm but to be hot instead,
and by whom? The threshold of when someone considers a warm
day hot depends on a person’s personal heat threshold and the
influence of his or her environment (see Fig. 6.27).

There is no universal thermometer that states at 81.9 degrees
Fahrenheit (°F) it is warm and at 82°F it is hot. Extending this
example further, a group of people living in Alaska has a different
set of temperature values for hot days when compared to a group
of people living in New York, and both these values will be different
from that of a group of people living in Florida. And let’s not forget
seasonal variations. A hot day is a different temperature in winter
than summer. So what this boils down to is that classifications (for
example, “What is a hot day?”) may be a range of temperatures
determined by the opinions of a group of people. Further classifi-
cations can be differentiated by different groups of people.

Any particular temperature will find membership in the group where
it fits into the range of values. Sometimes a temperature will fit into
two overlapping groups. True membership will then be determined
by how a particular temperature varies from the median values.

The idea of group and range classifications can be applied to many
other things, like navigation, speed, and height. Let’s use height for

Chapter six

� 6.27 Grading temperature from warm to hot, gradually or by step

Team LRN

129

one more example. If we graph the height of 1000 people, our
graph will resemble the first graph shown in Fig. 6.28. We can use
this graph of heights to classify the heights into groups: short,
medium, and tall. If we applied a hard rule that stated everyone un-
der 5′ 7″ is short and everyone taller then 6′ 0″ is tall, our graph will
resemble the second graph. This classifies a person who is 5′ 11.5″
tall as “medium,” when in actuality the person’s height is closer to
the tall (6′ 0″ and over) group.

Instead of hard-and-fast rules typically employed by computers,
people typically use soft and imprecise logic, or fuzzy logic. To
implement fuzzy logic in computers we define groups and quantify
the membership in that group. Groups overlap, as seen in the
fourth graph of Fig. 6.28. So the person who is 5′ 11.5″ tall is almost
out of the medium group (small membership) and well into the tall
group (large membership).

Fuzzy logic provides an alternative to the digitized graph shown as
the third graph of Fig. 6.28. A high-resolution digitized graph is

Intelligence

� 6.28 Grouping people by height using different schemes

Medium

Medium

Medium

Medium

Short

Short

ShortShort

Tall
Tall

TallTall

Gaussian

Digitized

Binary

Fuzzy

Team LRN

130

also accurate in classifying height. Why would one choose a fuzzy
logic method over a digitized model function? The fuzzy logic
method has simplified mathematics and learning functions.

To implement fuzzy logic in a PIC microcontroller, one assigns a
numeric range to a group. This is what we will do in our next project.

Building a fuzzy logic light tracker

The project we will build now is a fuzzy logic light tracker. The
tracker follows a light source using fuzzy logic.

The sensors needed for the tracker are two CdS photocells. These
photocells are light-sensitive resistors (see Fig. 6.29). The resis-
tance varies in proportion to the light intensity falling on the surface
of the photocell. In complete darkness the cell produces its greatest
resistance.

There are many types of CdS cells on the market. One chooses a
particular cell based on its dark resistance and light saturation
resistance. The term light saturation refers to the state where
increasing the light intensity to the CdS will not decrease its resis-
tance any further. It is saturated. The CdS cell I used has approxi-
mately 100K-ohms resistance in complete darkness and 500 ohms
of resistance when totally saturated with light. Under ambient
light, resistance varies between 2.5K and 10K ohms.

This project requires two CdS cells. Test each cell separately. There
may be an in-group variance that may change the scale factor used
in each cell. In this project, I used a 0.022-�F capacitor, with the
scale parameter set at 255 for both cells in the Pot command.

The schematic is shown in Fig. 6.30. The CdS cells are connected to
port B, pins 2 and 3 (physical pin numbers 8 and 9). The photocells

Chapter six

� 6.29 Electrical function of a CdS photoresistive cell

Team LRN

131

�
6.

30
S

ch
em

at
ic

 o
f l

ig
ht

 tr
ac

ke
r

ci
rc

ui
t

Team LRN

132

are mounted on a small piece of wood or plastic (see Fig. 6.31). Two
small holes are drilled for each CdS cell for the wire leads to pass
through. Longer wires are soldered onto these wires and connected
to the PIC microcontroller.

One 3�32″ to 1�8″ hole is drilled for the gearbox motor’s shaft. The
sensor array is glued to the gearbox motor shaft (see Fig. 6.32).

Chapter six

� 6.32 Photograph of sensor array on gearbox motor

� 6.31 Construction on sensor array

Team LRN

133

The operation of the tracker is shown in Fig. 6.33. When both
sensors are equally illuminated, their respective resistances are
approximately the same. As long as each sensor is within ±10 points
of the other, the PIC program sees them as equal and doesn’t initi-
ate movement. This provides a group range of 20 points. This group
range is the fuzzy part in fuzzy logic.

When either sensor falls in shadow, its resistance increases beyond
our range and the PIC microcontroller activates the motor to bring
both sensors under even illumination.

DC motor control

The sun tracker uses a gearbox motor to rotate the sensor array
toward the light source (see Fig. 6.34). The gearbox motor shown
has a 4000:1 ratio. The shaft spins approximately 1 revolution per
minute (rpm). You need a suitable slow motor (gearbox) to turn
the sensor array.

The sensor array is attached (glued) to the shaft of the gearbox
motor. The gearbox motor can rotate the sensor array clockwise

Intelligence

� 6.33 Function of sensor array and pinpoint light source

Team LRN

134

(CW) and counterclockwise (CCW), depending upon the direction
of current flowing through the motor.

To rotate the shaft (and sensor array) CW and CCW, we need a way
to reverse current going to the motor. We will use what is known as
an H-bridge. An H-bridge uses four transistors (see Fig. 6.35).
Consider each transistor as a simple on/off switch as shown in the
top portion of the drawing. It’s called an H-bridge because the tran-
sistors (switches) are arranged in an H-type pattern.

When switches SW1 and SW4 are closed, the motor rotates in one
direction. When switches SW2 and SW3 are closed, the motor
rotates in the opposite direction. When the switches are opened,
the motor is stopped.

The PIC microcontroller controls the H-bridge made of four TIP
120 Darlington NPN transistors; four 1N514 diodes; and two 10K-
ohm, 1�4-watt (W) resistors. Pin 0 is connected to transistors Q1
and Q4. Pin 1 is connected to transistors Q3 and Q4. Using either
pin 0 or 1, the proper transistors are turned on and off to achieve
CW or CCW rotation. The microcontroller can stop, rotate CW, or
rotate CCW, depending upon the reading from the sensor array.
Make sure the 10K-ohm resistors are placed properly or the H-
bridge will not function.

The TIP 120 Darlington transistors are drawn in the schematic as
standard NPN transistors. Many H-bridge circuit designs use PNP
transistors on the high side of the H-bridge. The on resistance of
PNP transistors is higher than that of NPN transistors. So in using
NPN transistors exclusively in our H-bridge, we achieve a little
higher efficiency.

Chapter six

� 6.34 Photograph of finished light tracker projects

Team LRN

135

Diodes

Because the PIC is sensitive to electrical spikes (may cause a reset
or lock-up), we place diodes across the collector-emitter junction
of each transistor (Q1 to Q4). These diodes snub any electrical
spikes caused by switching the motor windings on and off.

The PICBASIC compiler program is as follows:

‘Fuzzy Logic Light Tracker Program

start:

low 0 ‘Pin 0 low

low 1 ‘Pin 1 low

pot 2,255,b0 ‘Read first CdS sensor

pot 3,255,b1 ‘Read second CdS sensor

if b0 � b1 then start ‘If equal, do nothing

if b0 > b1 then greater ‘If greater, check how much greater

if b0 < b1 then lesser ‘If lesser, check how much lesser

greater: ‘Greater routine

b2 = b0 — b1 ‘Find the difference

if b2 > 10 then cw ‘Is it within range? If not, go to CW

goto start ‘In range, do again

lesser: ‘Lesser routine

b2 = b1 — b0 ‘Find the difference

if b2 > 10 then ccw ‘Is it within range? If not, go to CCW

goto start ‘Do again

cw: ‘Turn the sensor array CW

high 0 ‘Turn on H-bridge

pause 100 ‘Let it turn for a moment

goto start ‘Check again

ccw: ‘Turn the sensor array CCW

high 1 ‘Turn on H-bridge

pause 100 ‘Let it turn a moment

goto start ‘Check again

Operation

When running, the light tracker will follow a light source. If both
CdS cells are approximately evenly illuminated, the tracker does
nothing. To test the light tracker, cover one CdS sensor with your
finger. This should activate the gearbox motor and the shaft
should begin to rotate.

If the shaft rotates in the opposite direction of the light source,
reverse either the sensor input pins or the output pins to the H-
bridge, but not both.

IntelligenceTeam LRN

136

Not fuzzy output

The output of our fuzzy light tracker is binary. The motor is
either on or off, rotating CW or CCW. In many cases you would
want the output to be fuzzy also. For instance, let us say you are
making a fuzzy controller for an elevator. You would want the el-
evator to start and stop gradually (fuzzy) not abruptly as in bi-
nary (on/off).

Could we change the output of our light tracker and make it fuzzy?
Yes. Instead of simply switching the motor on, we could feed a
pulse-width modulation (PWM) signal that can vary the motor’s
speed.

Ideally the motor’s speed would be in proportion to the difference
(in resistance) of the two CdS cells. A large difference would pro-
duce a faster speed than would a small difference. The motor
speed would change dynamically (in real time) as the tracker
brings both CdS cells to equal illumination.

This output program may be illustrated using fuzzy logic graphics,
groups, and membership sets. In this particular application creating
a fuzzy output for this demonstration light tracker unit is overkill.

Chapter six

� 6.35 H-bridge function and circuit schematic

Team LRN

137

If you want to experiment, begin by using the pulsout and pwm
commands to vary the DC motor speed.

Neural sensors (logic)

With a small amount of programming, we can change our fuzzy logic
sensors (CdS photocells) to neural sensors. Neural networks are an
expansive topic. We will limit ourselves to one small example. For
those who want to further pursue study into neural networks, I
recommend a book I’ve written titled Understanding Neural

Networks (Prompt, Indianapolis, 1998, ISBN 0-7906-1115-5).

To create neural sensors, we will take the numeric resistive reading
from each sensor, multiply it by a weight factor, and then sum the
results. The results are then compared to a tri-level threshold value
(see Fig. 6.36).

Thus our small program and sensors are performing all the func-
tions expected in a neural network. We may even be pioneering a
neural first, by applying a multivalue threshold scheme. Do multi-
value thresholds exist in nature (biological systems)? The answer
is yes. For instance, an itch is an extremely low level of pain, and
the sensation of burning can be felt when sensing something ice
cold or hot.

Intelligence

� 6.36 Schematic of simple tri-level neuron

Team LRN

138

Multivalue threshold Typically, in neural networks individual neu-
rons have a singular threshold (positive or negative). Once the
threshold is exceeded, the output of the neuron is activated. In
our example the output is compared to multivalues, with the out-
put going to the best fit.

Instead of thinking of the output as numeric values, think of each
numeric range as a shape instead; a circle, square, and triangle will
suffice. When the neuron is summed, it outputs a shape block
(instead of a number). The receptor neurons (LEDs) have a
shaped receiver unit that can fit in a shape block. When a shape
block matches the receiver unit, the neuron becomes active
(LED turns on).

In our case each output neuron relates to a particular behavior,
sleeping, hunting, and feeding, all essential behaviors for survival
in a photovore-style robot. Each output shape represents the cur-
rent light level. At low light levels, the photovore stops hunting
and searching for food (light). It enters a sleep or hibernation
mode. At medium light level, the photovore hunts and searches for
the brightest light areas. At high light levels, the photovore stops
and feeds via solar cells to recharge its batteries.

Instead of building a photovore robot in this chapter, we will use
an LED to distinguish between each behavior state (see Fig. 6.37).
You can label the three LEDs sleeping, hunting, and feeding. Each
LED will become active depending upon the light level received by
the CdS cells.

Chapter six

� 6.37 Schematic of basic neural circuit

Team LRN

139

The program for PICBASIC compiler is as follows:

‘Neural Demo

‘Set up

low 0 ‘LED 0 off “Sleep”

low 1 ‘LED 1 off “Hunt”

low 2 ‘LED 2 off “Feed”

Start:

pot 3,255,b0 ‘Read first sensor

pot 4,255,b1 ‘Read second sensor

w2 = b0 * 3 ‘Apply weight

w3 = b1 * 2 ‘Apply weight

w4 = w2 + w3 ‘Sum results

‘Apply thresholds

if w4 < 40 then feed ‘Lots of light, feed

if w4 <= 300 then hunt ‘Medium light, hunt

if w4 > 300 then snooze ‘Little light, sleep

‘Actions

feed: ‘Feeding

low 0

low 1

high 2

goto start

hunt: ‘Hunting

low 0

high 1

low 2

goto start

snooze: ‘Sleeping * DON’T USE KEYWORD SLEEP *

high 0

low 1

low 2

goto start

Parts list for programming the microcontroller
� PICBASIC compiler—$99.95

� PICBASIC Pro compiler (includes CodeDesigner Lite)—$249.95

� EPIC programmer—$59.95

� PICBASIC Pro compiler and EPIC programmer—$299.95

� PICBASIC compiler and EPIC programmer—$149.95

� CodeDesigner—hobbyist version—$45.00

IntelligenceTeam LRN

140

� CodeDesigner—standard—$75.00

� (1) 16F84-4—$7.95*

� (1) 4.0-MHz crystal—$1.50*

� (2) 22-pF caps—$0.10 each*

� (1) 0.1-�F cap—$0.35*

� (1) 100-�F, 12V cap—$0.50*

� (1) 4.7K-ohm, 1�4-W resistor—$0.05*

� (2) 470-ohm, 1�4-W resistors—$0.05 each*

� (1) 7805 voltage regulator—$0.90*

� (2) Miniature LEDs—$0.25 each*

� (1) Solderless breadboard—$8.95*

� PIC-LED-02 PIC EXPERIMENTORS KIT [Consists of: (1)
PIC16F84, (1) 4-MHz crystal, (2) 22-pF caps, (1) 10K-ohm,
1�4-W resistor, (1) 7805 voltage regulator, (1) solderless
breadboard (2.1″ � 3.6″ 270 tie points), (8) 470-ohm
resistors, (8) subminiature LEDs, (1) push-button switch,
booklet with tutorial on binary number system, logic, and I/O
of ports A and B]—$25.50

� 42-oz servo motor—$16.75

Parts list for fuzzy light tracker and neural demonstration
� (2) CdS photocells

� (1) Flex sensor (nominal resistance 10K ohms)

� (2) 0.022-�F capacitors

� (1) 0.01-�F capacitor

� (4) TIP 120 NPN Darlington transistors

� (2) 10K-ohm resistors

� (6) 1N514 diodes

� (2) 1K-ohm resistor

� (1) 4000:1 gearbox motor

Parts available from:

Images Company

James Electronics

JDR MicroDevices

Chapter six

*These components plus additional components may be ordered as a single kit; see
PIC-LED-02.

Team LRN

141

Radio Shack

Images SI, Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305
(718) 982-6145 (fax)

� (1) Solderless breadboard Radio Shack PN# 276-175

� (1) 0.1-�F capacitor Radio Shack PN# 272-1069

� (8) Red LEDs Radio Shack PN# 276-208

� (8) 470-ohm resistors* Radio Shack PN# 270-1115

� (1) 4.7K-ohm resistor Radio Shack PN# 271-1124

� (8) 10K-ohm resistors Radio Shack PN# 271-1126

� (1) 7805 voltage regulator Radio Shack PN# 276-1770

� (2) 4-position PC-mounted switches Radio Shack PN# 275-1301

� (1) 9V battery clip Radio Shack PN# 270 325

Parts available from:

Radio Shack

James Electronics

JDR MicroDevices

*470-ohm resistors are also available in 16-pin dip package.

IntelligenceTeam LRN

This page intentionally left blank.

Team LRN

143

Speech-controlled
mobile robot

SPEECH IS AN IDEAL METHOD FOR ROBOTIC CONTROL AND
communication. The speech-recognition circuit we will outline in
this chapter functions independently from the robot’s main intelli-
gence [central processing unit (CPU)]. This is a good thing because
it doesn’t take any of the robot’s main CPU processing power for
word recognition. The CPU must merely poll the speech circuit’s
recognition lines occasionally to check if a command has been is-
sued to the robot. We can even improve upon this by connecting the
recognition line to one of the robot’s CPU interrupt lines. By doing
this, a recognized word would cause an interrupt, letting the CPU
know a recognized word had been spoken. The advantage of using
an interrupt is that polling the circuit’s recognition line occasionally
would no longer be necessary, further reducing any CPU overhead.

Another advantage to this stand-alone speech-recognition circuit
(SRC) is its programmability. You can program and train the SRC
to recognize the unique words you want recognized. The SRC can
be easily interfaced to the robot’s CPU.

Most voice recognition systems on the market today are software
programs that require a host computer [usually an IBM personal
computer (PC) or compatible] and a sound card. The speech-
recognition system is still software-based even though it requires
hardware (a sound card). These programs typically run in the back-
ground of a DOS or Windows environment, stealing themselves a
portion of memory and CPU processing power while allowing other
programs like Lotus or Word to run concurrently. The concurrent

Speech-controlled mobile robot

7

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

144

operation of the speech-recognition program slows the operation
of any other program that runs using voice recognition.

There are many applications to voice recognition aside from robot-
ics. Speech recognition will become the method of choice for con-
trolling robots, virtual reality (VR), appliances, toys, tools, and
computers. Because of the far-reaching potential of this technology,
companies are developing speech recognition. The ability to control
and command a computer (or appliance) by speaking directly to it
will make working with that device easier, and more efficient and
effective. At its most basic level, a speech-controlled device allows
the user to perform parallel tasks, (i.e., hands and eyes can be
busy elsewhere, while continuing to work with the computer or
appliance).

There are three construction projects outlined in this chapter.
The first project is a speech-recognition circuit. The second pro-
ject interfaces the speech-recognition circuit to a mobile platform
[radio-controlled (R/C) car]. The third project is a general interfacing
board for the speech-recognition kit.

Project 1: Programmable speech-recognition circuit
The first project is a programmable speech-recognition circuit. It
is “programmable” in the sense that you can program the circuit
to recognize up to 40 unique words of your own choosing. The
heart of the circuit is a single integrated circuit (IC), the HM2007
speech-recognition chip. The chip provides the options of recog-
nizing either 0.96-second (s) or 1.92-s word lengths.

Using 0.96-s word lengths enables the chip to recognize 40 indepen-
dent words using an 8K � 8 static random access memory (RAM).
You have the option to switch to the longer 1.92-s word length. While
this reduces the word recognition count to 20 words, the longer
word length can be used for phrases instead of isolated words. The
circuit we will build here will use the 0.96-s word length, 40-word
recognition library.

Learning to listen

We take our speech-recognition abilities for granted. Listening to
one person speak among several at a party is beyond the capabilities
of today’s speech-recognition systems. Speech-recognition systems
like ours have a hard time separating and filtering out extraneous
noise.

Chapter seven Team LRN

145

The operating distance one can speak from the microphone on the
SRC without shouting is about 1 foot (ft). Because of this, when
using the SRC on a mobile robot platform, we incorporate two
small walkie-talkies. The output of one walkie-talkie is connected
to the speech input of the SRC. The other walkie-talkie is used to
speak to the robot via the SRC. This setup eliminates distance
problems and extraneous noise.

Speech recognition is not speech understanding. Just because a
computer can respond to a vocal command does not mean it under-
stands the command spoken. Future voice-recognition systems will
have the ability to distinguish nuances and meaning of words, to
“Do what I mean, not what I say!” However, those systems are still
years away.

Speaker-dependent and speaker-independent speech recognition

Speech recognition is classified into two categories, speaker de-
pendent and speaker independent. Speaker-dependent systems
are trained by the individual who will be using the system. These
systems are capable of achieving a high command count and bet-
ter than 95 percent accuracy for word recognition. The drawback
to this approach is that the system responds accurately only to the
individual who trained the system. This is the most common ap-
proach employed in software for personal computers.

A speaker-independent system is trained to respond to a word
regardless of who speaks. Therefore the system must be able to
respond to a large variety of speech patterns, inflections, and
enunciations of the target word. The number of command words is
usually less than for the speaker-dependent system; however, high
accuracy can still be maintained within processing limits. Indus-
trial requirements more often need speaker-independent voice
systems.

Our SRC will be speaker dependent. We can build in a little
speaker independency by allocating more than one word space to
a target word and then programming different word enunciations
in the allocated spaces. Each of these word spaces would trigger
the same command.

Recognition style

Speech-recognition systems have another constraint concerning
the style of speech they can recognize. There are assumed to be
three styles of speech: isolated, connected, and continuous.

Speech-controlled mobile robotTeam LRN

146

Isolated

These speech-recognition systems can just handle words that are
spoken separately. This is the most common speech-recognition
system available today. The user must pause between each word or
command spoken. Our speech-recognition circuit will use isolated
words.

Connected

This is a halfway point between isolated word and continuous
speech recognition. It allows users to speak multiple words. The
HM2007 can be set up to identify words or phrases 1.92 s in length.
This reduces the word recognition dictionary number to 20.

Continuous

This is the natural conversational speech we use in everyday life.
It is extremely difficult for a recognizer to shift through the text
since the words tend to merge together. For instance, “Hi, how are
you doing?” sounds like “Hi, howyadoin.” Continuous speech-
recognition systems are on the market and are under continual
development.

Building the speech-recognition circuit

The demonstration circuit operates in the HM2007’s manual mode.
This mode uses a simple keypad and microphone to program the
HM2007 chip.

Keyboard

The keyboard is a telephone keypad made up of 12 normally open
switches.

1 2 3
4 5 6
7 8 9
Clear 0 Train

When the circuit is turned on, the HM2007 checks the onboard
static RAM. If the RAM checks out, the board displays “00” on the
seven-segment display chips, lights the red light-emitting diode
(LED) (Ready), and waits for a command.

To train

Press “1” (display will show “01”) and the LED will turn off. Then
press “T” (Training), and the LED will turn back on.

Hold the microphone close to your mouth and say the training word.
For instance, let’s use the word “computer” as the training word. Say

Chapter seven Team LRN

147

the word computer into the microphone. If the circuit accepts the
word spoken, the LED will blink. The word computer is now pro-
grammed as the “01” word. Whenever the circuit hears the word
computer, it will display “01” on its digital output.

If the LED did not blink when you said the word computer, either
repeat the word again louder or start over completely by pressing
“01” then “T.”

Continue training new words in the circuit. Press “02” then “T” to
train the second word. The circuit will accept up to 40 words. You
do not need to train all 40 words to use the circuit. Train the circuit
with just the words you need and start using the circuit.

Testing recognition

Repeat a trained word into the microphone. The number of the
word should be displayed on the segmented display. For instance,
if the word “directory” was trained as word number 25, saying the
word “directory” into the microphone will cause the number 25 to
be displayed.

Error codes

The chip provides the following error codes:

� 55 � word too long

� 66 � word too short

� 77 � no word match found

Clearing memory

You can erase individual words in memory by entering the word
number you want to erase and hitting the CLR button. To erase all
the words in memory, press “99” and then CLR.

More about the HM2007 chip

The HM2007 is a single-chip complementary metal-oxide semi-
conductor (CMOS) voice-recognition large-scale integration (LSI)
circuit. The chip contains an analog front end, voice analysis,
recognition, and system control functions. The chip may be used
in a stand-alone or connected CPU.

Features
� Single-chip voice-recognition CMOS LSI

� Speaker-dependent

� External RAM support

� Maximum of 40-word recognition

� Maximum word length of 1.92 s

Speech-controlled mobile robotTeam LRN

148

� Microphone support

� Manual and CPU modes available

� Response time less than 300 milliseconds (ms)

� 5 volt (5V) power supply

Circuit construction

The speech-recognition circuit is available in kit form from Images
Company (see the parts list at the end of the chapter). The
schematic is shown in Fig. 7.1. The components can be mounted
and wired on a standard printed circuit board (PCB).

Solder the keypad to the board according to Fig. 7.2. You will have
just seven wires from the keypad to the HM2007 on the PCB. The
number next to each wire coming out of the keypad refers to the
pin number it’s connected to on the HM2007 IC.

Figure 7.3 shows the top view of the parts placement on the PCB.
Figure 7.4 is the complete speech-recognition circuit.

Independent recognition system

This demonstration circuit allows you to experiment with depen-
dent as well as independent systems. The system is typically
trained as speaker dependent, meaning the voice that trained the
circuit also uses it.

We will take the other track and train the system for speaker inde-
pendent recognition. To accomplish this we will use four word
spaces for each target word.

To simplify the digital logic, the allocation of word spaces is as fol-
lows. Our circuit will only look at the first [least significant digit
(LSD) on the display] digit space for recognition. This means that
the word spaces 01, 11, 21, and 31 will all be recognized as the
same word. Since we are only decoding the first digit, they all look
like word space 1. Likewise word spaces 04, 14, 24, and 34 all look
like word space 4.

This system works most of the time, but a problem is encountered
when an error code pops up.

� 55 � word too long

� 66 � word too short

� 77 � no word match found

Obviously the base circuit would identify these error codes as
word 5, 6, and 7, respectively. There are two ways to work around
this problem. The first way is to use a dedicated logic circuit

Chapter seven Team LRN

149

�
7.

1
S

ch
em

at
ic

 o
f s

p
ee

ch
-r

ec
og

ni
tio

n
ci

rc
ui

t

Team LRN

150

(see Fig. 7.5) that brings a line high when the digits 5, 6, or 7 appear
in the most significant byte (MSB). This line becomes an enable-
disable line. This circuit brings the line high when the digits 5, 6, or
7 are displayed, so an interface should interpret this line going high
as a disable.

Chapter seven

� 7.2 Keypad wiring to speech-recognition circuit

� 7.3 Top view of parts placement on PCB

Team LRN

151

The second way to work around the problem is to simply use a PIC
microcontroller to read the entire 8-bit output from the SRC. Any
word number above 40 is an error and should be ignored. While we
are not interfacing this circuit to a microcontroller here, it should
be evident to anyone who has worked with the PICBASIC compiler
and PIC chips (see Chap. 6) in other applications that this inter-
face would not present a problem. In Chap. 15 we use a PIC inside
the speech-controlled circuit for controlling a robotic arm.

The 8-bit output is taken from the output of the 74LS373 data octal
latch. The output is not a standard 8-bit byte, but it is broken into
two 4-bit binary coded decimal (BCD) nibbles. BCD code is related
to standard binary numbers as Table 7.1 illustrates.

Speech-controlled mobile robot

� 7.4 Finished speech-recognition circuit

Disable High

Enable LowAND

OR
19

16

2

From
74LS373

Error Code Detection from MSB of 74LS373

� 7.5 Error detection circuit taken from upper BCD number

Team LRN

152

As you can see, the binary and BCD numbers remain the same until
reaching decimal 10. At decimal 10, BCD jumps to the upper nibble
and the lower nibble resets to zero. The binary numbers continue to
decimal 15, and then jump to the upper nibble at 16 where the lower
nibble resets. If a computer is expecting to read an 8-bit binary
number and BCD is provided, this will be the cause of errors.

Project 2: Interface circuit
The interface circuit revolves around the 4028 BCD integrated
circuit. The 4028 takes the lower BCD output from the 74LS373 on
the speech-recognition board and outputs a high signal; see the
truth table on 4028, Table 7.2.

The schematic for the interface circuit is shown in Fig. 7.6. The
inputs A, B, C, and D to the 4028 are the lower BCD numbers from
the 74LS373. When I stripped the car of its radio-control (R/C)
equipment, I was left with a group of wires that, when powered,
performed the basic driving functions. The robot car has just four
functions: forward straight, forward right, forward left, and reverse.

Chapter seven

� Table 7.1

Decimal Binary BCD

0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001

10 1010 0001 0000
11 1011 0001 0001
12 1100 0001 0010
13 1101 0001 0011
14 1110 0001 0100
15 1111 0001 0101
16 0001 0000 0001 0110
17 0001 0001 0001 0111
18 0001 0010 0001 1000
19 0001 0011 0001 1001
20 0001 0100 0010 0000

Team LRN

153

Each function is controlled by an electric motor or motor/solenoid
combination that can be powered by an NPN transistor. So each
function requires one NPN transistor. Four transistors connected to
the outputs of the 4028, labeled Q1 to Q4, control this electric car.

For purposes of a clear illustration, Fig. 7.6 shows only one NPN
transistor connected to output Q1 powering an electric motor. The
exact model R/C car I used when writing this chapter is no longer
available. Even so, most inexpensive R/C cars will function in a
similar manner. Remove the R/C equipment from the car. You will
be left with wires leading to the drive motor that will either have to
be grounded or connected to Vcc to power the motor. Turning left
and right is usually accomplished with an inexpensive solenoid.
Again check the wires from the steering solenoids to see if they
need to be connected to ground or connected to Vcc.

Walkie-talkies

Radio Shack sells a number of inexpensive walkie-talkies. Since
the operating distance of the microphone on the SRC is about 1 ft,
using a pair of walkie-talkies increases the distance with which
one can operate the mobile robotic platform via the SRC. The
speaker output of the walkie-talkie is connected to pin 46 on the
HM2007 through capacitor C1. Capacitor C1 will block any DC
component output from the walkie-talkie.

Acoustic coupling

If you don’t want to take apart and solder wires between the
walkie-talkie and SRC directly, you can try an acoustic coupling.

Speech-controlled mobile robot

� Table 7.2 4028 Truth Table

Input Output

D C B A Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0

Team LRN

154

Essentially you tape the microphone of the speech-recognition kit
to the speaker of the walkie-talkie. The microphone and speaker
assembly may be enclosed in a box by itself to reduce background
noise.

Training and controlling the mobile robot

The SRC on the mobile robotic platform should be trained using
the walkie-talkie, if that’s the way it will be operated and used. The
digital display on the board is active when the interface board is
connected, so it can be used to check word recognition accuracy.
Find out the range of the walkie-talkie system. Don’t let the mobile
robot travel outside of this range or you will end up running after
it yelling “stop, stop, stop” into the walkie-talkie. Controlling the
robot is as simple as talking to it, and it’s pretty impressive to boot.

Chapter seven

QØ

Q1

Q2

Q3

Q4

m

3

14
D11

C12

B13

A10

2

8

15

16

1

6

7

4

9

5

PIN #6

PIN #9

PIN #12

PIN #15

40
28

 B
C

D

Vcc

Vcc

1K

From
74LS373

+5V

� 7.6 Interface circuit to modified R/C car

Team LRN

155

New board features

The voice-controlled mobile robotic platform is shown in Fig. 7.7.
The circuit board on the robot looks a little different than that in
Fig. 7.4. The reason for this is that I happened to get a prototype
of the latest revision of the speech kit.

The latest revision makes interfacing to the SRC easy. There are
nine PC holes [for a pin header (two 4-bit nibbles plus ground)]
that connect to the output of the onboard 74LS373. The output of
the onboard 74LS373 is the upper BCD used for word-error detec-
tion and the lower BCD used to activate the 4028. A trigger signal
is available by the red LED.

In addition to the interface hookups, the board has a 3V input for
memory backup. This makes the static RAM on the speech board
nonvolatile. So you can turn the board on and off without losing
the words programmed in the static RAM. In the original version,
when you turned off the power, you lost the words programmed in
the RAM.

Project 3: General speech-recognition interfacing circuit
The speech interface to the mobile R/C car is a specialized appli-
cation. The next interface circuit (see Fig. 7.8) is a more general
circuit and lends itself to controlling a variety of devices that in-
clude robots, electric circuits, and appliances.

Speech-controlled mobile robot

� 7.7 Speech-controlled R/C car

Team LRN

156

To keep the interface circuit from becoming too large and at the
same time to enhance the robustness and accuracy of the SRC, we
will again limit the interface to control 10 on/off switches. If you
need the full 40-word vocabulary, you can design the interface cir-
cuit by expanding the circuit ideas illustrated in this chapter. Using
just 10 on/off switches allows us to use four word spaces for each
target (command) word, as before. Each of the four word spaces
assigned to a target word will hold a slightly different enunciation of
the target word. With four different enunciations of each target
word, the SRC becomes more robust and word recognition accuracy
increases.

We choose the word spaces as before, so that the LSD of any four
target (command) word spaces is the same. An example will make
this programming scheme clear.

Suppose we are making a voice control for an electric wheelchair.
We decide to use the following list of command (target) words:

Chapter seven

� 7.8 General interface circuit for speech-recognition circuit

Team LRN

157

� Forward

� Backward

� Left

� Right

� Stop

� Sleep

� On

� Lock

� Unlock

� Stop (The command stop is so important in this application
that it may take up more that one command position.)

The first command we want to train the circuit to recognize is for-
ward. We will use the following four word spaces: 10, 20, 30, and
40. By dropping the most significant digit (MSD) of each number,
we are left with the LSD that is the same for all four word spaces,
word number 0. Similarly the next command word, backward, will
use word spaces 01, 11, 21, and 31. Dropping the MSD again, we
are left with word number 1.

The interface must recognize the word error codes and not mistake
them for word numbers 5, 6, and 7. The circuit uses two 4011
NAND ICs configured to operate as OR and AND gates (as shown
in Fig. 7.8) to detect the 55, 66, and 77 word errors.

Connection to speech kit

The speech-recognition kit has nine solder holes between the
74LS373 and 7448 chips for connecting an interface circuit (see
Fig. 7.8). Eight lines represent the two BCD numbers, and the
ninth pad is a ground. There is also one open pad by the red LED.
A wire soldered here is used as an input signal to a word trigger for
the interface circuit.

How it works

To begin, the interface circuit must be able to react whenever the
SRC hears a word. When the SRC hears a word, it attempts recog-
nition and the red LED blinks off momentarily.

The current to the LED is used as a word trigger. To use this as a
trigger, we set up a comparator connected to the cathode side of the
LED. The reference voltage for the comparator is set at 3.64 V using
a voltage divider consisting of two resistors, 5.6K- and 15K-ohms.

Speech-controlled mobile robotTeam LRN

158

The output of the comparator is normally high. When triggered by
the 4.5V pulse from the LED line, it outputs a negative pulse trigger.
For a comparator we are using a standard 741 operational amplifier
(op-amp).

Speech recognition can take up to 300 ms. During this time delay,
the BCD outputs remain stable and do not change. If our interface
operates too quickly, it will already be finished updating the out-
put before the SRC has a chance to update the BCD output.

To prevent this from occurring, we delay the negative pulse trig-
ger by sending it through two 555 timers (or one 556 timer) set
up in mono-stable mode. The negative pulse from the comparator
initiates a 470-ms output pulse from the first timer, which is con-
nected to the second timer. The second timer outputs a 220-ms
pulse.

The 470-ms pulse allows more than enough time for the new BCD
numbers to be outputted. When the 470-ms pulse from the first
timer goes low, it initiates an output pulse from the second timer.
This output is a positive pulse lasting approximately 220 ms. During
this time, the interface output is updated provided the error code
detector (ECD) is outputting a logic high.

The second timer (220-ms pulse) output is connected to one input
of an AND gate. The other leg of the AND gate is connected to two
other gates (NAND and OR) that make up our ECD. The ECD is
connected to the most-significant-digit BCD number. Whenever
the BCD number is equal to 5, 6, or 7, the ECD outputs a logic low.
For all other numbers it outputs a logic high. When the output of
the ECD is positive, the positive pulse from the second timer allows
the least-significant-digit BCD number to propagate through to the
output of the interface circuit.

The output high from the ECD combined with the positive pulse
from the timer triggers a logic high from the AND gate that enables
the 74LS373 (data octal latch). With the 74LS373 enabled, any
number outputted on the lower BCD number propagates through
the 74LS373 and is latched. The four outputs of the 74LS373 are
connected to the inputs of a 4028 BCD-to-decimal decoder.

On the other hand, when the output of the ECD is low, which hap-
pens when the numbers 5, 6, and 7 are outputted, the corresponding
input to the AND gate is low. With this AND input kept low, when the
positive pulse from the second timer arrives, the output of the AND
gate will remain low, thereby keeping the 74LS373 disabled and not
allowing the lower BCD number to propagate through to the 4028.

Chapter seven Team LRN

159

This is how the error detector prevents numbers 55, 66, and 77
from being mistaken for words 5, 6, and 7.

When the BCD propagates through the 74LS373, it connects to the
input of a 4028 BCD-to-decimal decoder. The 4028 reads the BCD
number and outputs a logic high (�5V) on the appropriate decimal
output line (0 to 9).

Creating a more useful output

The logic high output from the 4028 can be used to control alter-
nating current (AC) and direct current (DC) loads. However, it is
much better to run the output from the 4028 through a flip-flop
first. The reason is that the 4028 by itself will only keep one of its
outputs high at any given moment. So whenever the circuit turns
something on, whatever may have been turned on will be turned
off. Not very convenient. The flip-flop solves this problem. Once
triggered by a logic high, the flip-flop output will remain high until
a second signal (low-high) brings its output low. The result of us-
ing a flip-flop on an output line is twofold.

Primarily one can turn on and off any number of outputs without
affecting the status of any other line. Secondly, the same command
may be used to turn on (first time spoken) and then turn off (sec-
ond time spoken) a circuit. So instead of having two separate
on/off commands for each device (like light-on and light-off), the
same command can be used a second time to turn off the device
(light-light). In some cases this is like doubling your command
vocabulary.

Figure 7.9 shows a 4013 flip-flop circuit that may be used. Each
4013 IC has two usable flip-flops. The inputs of the flip-flops are
connected directly to the line output of the 4028.

Figure 7.10 shows one circuit and two fragments that may be con-
nected to the flip-flop for controlling different types of loads. The
circuit in A is an NPN Darlington transistor, with a DC source and
resistive load. One may also use this type of circuit to open and
close a relay, as shown in B. The relay can control AC and DC loads
(resistive or inductive). In C the output of the 4013 is connected
to an optocoupler with a Triac output.

Operation

The speech-recognition circuit is trained as described previously.
With the interface circuit connected, each word command will
light an LED or circuit, depending upon what’s connected to the
output of the 4028 BCD-to-decimal decoder chip.

Speech-controlled mobile robotTeam LRN

160

Improving recognition

There are a number of techniques one can employ to improve or
optimize recognition. Word selection is the primary one. Avoid
homonyms, words that sound alike, for instance, red, bed, said,
and dead. To optimize recognition use dissimilar sounding words.
In many cases a synonym or approximate synonym can be used in
place of a word. For instance use “crimson” or “scarlet” in place of
“red.” For “bed” try using “bunk,” “mattress,” “berth,” or “cot.” For
“said” one may use “spoke,” “voiced,” or “uttered.” For “dead” one
could use “deceased,” “expired,” or “late.” A little thought will solve
any homonym dilemma.

Match environment and equipment

1. Distance. The distance the microphone is away from the
speaker’s mouth should be approximately the same for
training and recognition.

2. Stress. The voice changes under stress or excitement. For
instance, if you are creating a voice-controlled joystick to fly
your favorite military flight simulator, your voice when
engaged in a dogfight yelling “Fire! Fire! Bank Left” will be
quite different than when sitting at your desk calmly
programming your voice into the chip. Therefore, you must try
to emulate the stress and excitement you will feel when
playing the game when programming the voice commands.

Chapter seven

IN

OUT

3

2

5

1

Vcc Vcc

14

4IC1-a
1/2 4013

R16
47K

C5
.2

6 7

� 7.9 One-half of 4013 flip-flop used for signal latching.
Connected directly to an output on the 4028 in Fig. 7.8, and
used to prevent an active circuit from turning off when an-
other is turned on

Team LRN

161

Speech-controlled mobile robot

FROM
4028

3

2

5

1

Vcc
Vcc

Vcc

Vcc

IN

OUT

IC1-a
1/2 4013 4

C5
.2

R16
47K

76

R18
1K

RL

RL

RL

Q1
TIP120

A

AC
OR
DC

SOURCE R19
1K

RY1

D11
1N914

Q2
TIP120

B

R20
180Ω

60Hz
120VTR1

IC1
MOC3010

C

14

� 7.10 These circuits can be connected to the interface circuit to al-
low the voice-recognition system to control different types of loads. The
circuit in A uses a flip-flop to latch a Darlington transistor in the on or off
condition. By replacing the Darlington in A with the relay configuration
in B, the circuit can be used to control high-current resistive or induc-
tive AC or DC loads. The circuit in C, when combined with the flip-flop
in A, provides isolation between the load and controlling circuit, while
allowing you to latch the AC load on or off

Team LRN

162

Chapter seven

3. Exertion. Physical stress is another factor. If you are
programming exercise equipment (a Stairmaster or stationary
bike) to respond to voice, you might want to record people
who are a little out of breath.

4. Background noise. Background noise is always a problem.
As stated previously, a steady background noise (air
conditioner) has less impact on speech recognition accuracy
than a nonsteady background noise (TV).

Speech-controlled robotic arm

In Chap. 15, another derivative of the speech-recognition interface
is used to control a robotic arm.

Parts list for speech-recognition circuit
� (1) IC1 HM2007 IC

� (1) IC2 SRAM 8K X 8

� (1) IC3 74LS373

� (2) IC4 and IC5 7448

� (1) XTAL 3.57 MHz

� (1) Speech-recognition PCB

� (1) 12-contact keypad

� (2) 7-segment displays

� (2) 16-pin, 220-ohm, 1�4-W resistor packs

� (1) 22K-ohm, 1�4-W resistor

� (1) 5.6K-ohm, 1�4-W resistor

� (1) 0.0047-�F cap

� (1) C2 100-�F, 16V cap

� (1) C5 0.1-�F cap

� (1) 7805 voltage regulator

� (1) Microphone

� (1) 9V battery clip

� Complete speech-recognition kit—$100.00

Parts list for interface circuit
� (2) 4011 Quad 2 input NAND

� (1) 74LS373 Octal D flip-flop tri-state

� (1) 4028 BCD-to-decimal decoder

Team LRN

163

Speech-controlled mobile robot

� (2) 555 timers

� (1) LM741 op-amp

� (1) 5.6K-ohm resistor

� (1) 15K-ohm resistor

� (1) 330-ohm resistor

� (2) 10K-ohm resistors

� (10) 470-ohm resistors

� (1) 47-�F cap

� (1) 22-�F cap

� (2) 0.01-�F caps

� (10) Miniature LEDs

� Optional: 4013 dual-type D flip-flops, TIP 120 NPN Darlington
transistors

Parts available from:

Images Company
39 Seneca Loop
Staten Island, NY 10314

http://www.imagesco.com

Team LRN

This page intentionally left blank.

Team LRN

165

Behavioral-based robotics,
neural networks, nervous
nets, and subsumption

architecture

ROBOTS OF THE CLASS DISCUSSED IN THIS CHAPTER DO NOT
have a central processing unit (CPU). Rather they function on a
neural stimulus-response mechanism.

The robotic stimulus-response mechanism goes by a number of
names, including neural network, behavioral-based robotics, sub-
sumption architecture, and nervous network. William Grey Walter
pioneered behavioral-based robotics in the late 1940s. Indepen-
dent of Walter’s work, neural-based robotic response was academi-
cally explored and developed in the 1980s by Valentino Braitenberg
in his book Vehicles: Experiments in Synthetic Psychology.

Rodney Brooks at the Massachusetts Institute of Technology
(MIT), inspired by work accomplished by Walter, developed his
own derivative of stimulus responses he calls “subsumption archi-
tecture.” Mark Tilden, inspired by work done by Rodney Brooks,
founded BEAM robotics, which uses “nervous nets.”

Behavioral-based robotics is a hot topic and one that will continue
to get hotter in the future. In these architectural schemes the
stimulus-response mechanisms can be layered on top of one another.
A multilayer stimulus-response mechanism can exhibit what appears

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

8

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

166

as strikingly intelligent behavior as in the intelligent photovore
robot discussed later.

For the time being, I will use the name “behavioral-based” to de-
scribe this stimulus-response mechanism. The behavioral-based
approach is one of the two main approaches to implementing intelli-
gence in robots as discussed in Chap. 6. One approach is called “top-
down intelligence” and the other is called “bottom-up intelligence.”

To implement intelligent control functions in a mobile robot [by
using the term “functions” I am limiting the field of discussion to the
movement (mobility) and exploration of an environment for sim-
plicity, but this is by no means a real restriction on either approach
discussed], one must decide on which approach is better to accom-
plish the task. The top-down approach attempts to create an expert
system or program to perform a controlled search and discover. The
bottom-up approach creates “artificial” behavior in the robot and
then causes it to explore and discover.

At first glance you may not see much of a difference in either ap-
proach, but there is one and it’s quite significant. If the expert sys-
tem approaches a situation (or terrain) it hasn’t been
programmed to handle, it will falter. The behavior system on the
other hand isn’t looking for any template “programmed” situation to
calculate procedures and couldn’t care less about the situation; it
just goes on exploring.

Robotists have found over the last 30 years of experimentation
that bottom-up programming (behavioral-based) is successful
many times where top-down programming fails.

Robotics pioneer
As previously stated, one of the first pioneers in the bottom-up
approach to robotics was William Grey Walter. He was born in
Kansas City, Missouri, in 1910. When he was 5 years old, his family
moved to England. He attended school there, graduating from King’s
College, Cambridge, in 1931. After graduation, he began doing basic
neurophysiological research in hospitals.

Early in his career, Walter found interest in the work of the Russian
psychologist Ivan Pavlov, famous for his stimulus-response experi-
ment with dogs. In the experiment, Pavlov rang a bell just before
providing food for his dog subjects. After a while, the dogs became
conditioned to salivate just by hearing the bell.

Chapter eight Team LRN

167

Another contemporary of Walter, Hans Berger, invented the elec-
troencephalograph (EEG) machine. When Walter visited Berger’s
laboratory, he saw refinements he could make to Berger’s EEG
machine. When he did so, the sensitivity of the EEG machine was
improved, and new EEG rhythms below 10 hertz (Hz) could now
be observed in the human brain.

Walter’s studies of the human brain led him to study the neural
network structures in the brain. The vast complexities of the bio-
logical networks were too overwhelming to map accurately or
replicate. Soon he began working with individual neurons and the
electrical equivalent of a biological neuron. He wondered what
type of behavior could be created using just a few neurons.

To answer this question, in 1948 Walter built a three-wheeled turtle-
like mobile robot. The mobile robot measured 12″ high and about
18″ long. What is fascinating about this robot is that it used just two
electronic neurons but exhibited interesting and complex behaviors.
The first two robots were affectionately named Elmer and Elsie
(ELectroMEchanical Robot, Light Sensitive). Walter later renamed
the style of robots Machina Speculatrix after observing the complex
behavior they exhibited.

Remember, in the 1940s the transistor had not yet been invented,
so the electronic neurons for the robot were made using vacuum
tubes. Vacuum tubes consume considerably more power than
semiconductors, and so the original robot was fitted with a rather
large rechargeable battery.

The robot’s reflex or nervous system consisted of two sensors con-
nected to two neurons. One sensor was a light-sensitive resistor
and the other sensor was a bump switch connected to the robot’s
outer housing.

The three wheels of the robot were in a triangular configuration.
The front wheel had a motorized steering assembly that could
rotate a full 360 degrees in one direction. In addition, the front
wheel also contained a drive motor for propulsion. Since the
steering could continually rotate a full 360 degrees, the drive
motor’s electric power came through slip rings mounted on the
wheel’s shaft.

The photosensitive resistor was mounted onto the shaft of the
front wheel steering-drive assembly. This ensured that the photo-
sensitive resistor was always facing in the direction that the robot
was moving.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

168

Four modes of operation

While primarily of a photovore (light-seeking) type, the robot ex-
hibited four modes of operation. It should be mentioned that the
robot’s steering motor and drive motor were usually active.

� Search. Ambient environment is at a low light level or
darkness. Robot’s response: steering motor on full speed,
drive motor on one-half speed.

� Move. Found light. Robot’s response: steering motor off,
drive motor full speed.

� Dazzle. Bright light. Robot’s response: steering one-half
speed, drive motor reversed.

� Touch. Hit obstacle. Robot’s response: steering full speed,
reverse drive motor.

Observed behavior

In the 1950s, Walter wrote two Scientific American articles (“An
Imitation of Life,” May 1950; “A Machine That Learns,” August
1951) and later a book titled The Living Brain (Norton, New
York, 1963). The interaction between the neural system and the
environment generated unexpected and complex behaviors.

In one experiment Walter built a hutch, where Elsie could enter
and recharge its battery. The hutch was equipped with a small light
that would draw the robot to it as the robot’s batteries ran down.
The robot would enter the hutch and its battery would automati-
cally be recharged. Once the battery recharged, the robot would
leave the hutch to search for new light sources.

In another experiment Walter fixed small lamps on each tortoise
shell. The robots developed an interaction that to an observer
appeared like a kind of social behavior. The robots danced around
each other, at times attracted and then repelled, reminding one of
a robotic mating ritual or territorial-marking behavior.

Building a Walter tortoise

We can imitate most functions in Walter’s famous tortoise. The pro-
gram we will use simulates the neurons used in the original robot.
To fabricate the chassis, we need to do a little metalwork. Working
metal is made a lot easier with the following tools:

� Center punch. Used to make a dimple in sheet metal to
facilitate drilling. Without the dimple, the drill is more likely to
“walk off” the drill mark. To use, hold the center punch in the

Chapter eight Team LRN

169

center of the hole needing to be drilled. Hit the center punch
with the hammer to make a dimple.

� Hand shears. Used to cut sheet metal. I would advise the
purchase of 14″ metal shears. Use like scissors to cut metal.
Note: Metal is a lot harder to cut than paper.

� Nibbler. Used to remove (nibble) small bits of metal from a
sheet. Used to nibble cutouts and square holes in light-gauge
sheet metal. Note: Radio Shack sells an inexpensive nibbler.

� Vise. Used to hold metal for drilling and bending.

� Drill

� Hammer

Most hardware stores will carry these simple metalworking tools.
They will also carry the light-gauge sheet metal and aluminum bar
needed to make the chassis.

I built my chassis out of 1�8″ � 1�2″ aluminum rectangle bar and 22-
to 24-gauge stainless-steel sheet metal. Stainless steel is harder to
work with than cold-rolled steel (CRS), and if I had to do it over
again, I would use aluminum or CRS.

Drive and steering motors

The drive motor is a 100:1 gearbox motor (see Fig. 8.1). I like this
gearbox motor because it has a motor mounting bracket. For the
steering motor I used a standard 42-ounce (oz) torque servo motor.
There are three pieces of sheet metal one needs to fabricate.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

� 8.1 100:1, 1.5- to-3.0 VDC gearbox motor

Team LRN

170

The U channel (see Fig. 8.2) holds the front wheel and drive motor.
The U bracket is fabricated from 22-gauge, 1″ � 5″ sheet metal.
Three holes in the center area are drilled to mount the servo horn
from the servo motor. The center drill hole (1�8″) is larger than the
two outer holes (1�16″). Remove the servo horn from the servo motor
by unscrewing the center screw and pulling straight up on the horn.
Line up the servo horn on the bracket and mark the center and two
outer holes. Drill the three holes. Mount the servo horn, using the
center servo motor screw. For the outer holes use two 0-80 machine
screws and nuts. Drill three 1�8″ holes for mounting the L bracket to
the side. Drill the two axle holes for the front wheel. Use 1�8″ holes.

Chapter eight

2"

1"

U channel

L channel

NOT TO SCALE

Wheel
2" Ø

Gearbox
motor

2"

1"

1/8"
hole

1/8"

1/8"

5/8"1/4"

Bend
90°

Bend
90°

Holes
for
servo
horn

Holes to
match holes
in L bracket

U channel wheel mount

1:1 SCALE

� 8.2 U channel wheel mount detail

Team LRN

171

Mount the metal in a vise and make the two 90 degree bends at the
marked lines to form the metal into a U bracket.

Use the L bracket to mount the drive motor to the U channel (see
Fig. 8.3). The L bracket is 1.5″ � 3″. Use the gearbox motor to
mark the mounting holes for the gearbox. Make sure the three
holes in the L bracket for mounting to the U bracket match the
mating holes in the U bracket.

Figure 8.4 is a diagram of the base with a diagram for the 42-oz
servo motor. The base measures 3″ � 5.5″. The base will hold the
power supply and the electronics. Use the servo motor diagram to
remove metal from the base.

First drill the four (1�8″) holes. Next use the drill to cut holes all along
the rectangle inside the perimeter of the servo motor hole. Removing
metal this way is much easier than trying to saw or nibble it away.
When you have removed as much material as possible this way, use
the metal nibbler to finish the job. Before mounting the servo, file the
edges of the hole. Drill the two back holes for the rear axle bracket.

The rear axle bracket is shown in Fig. 8.5. It is made from 1�8″ �
1�2″ � 10″ aluminum bar. Drill the four 1�8″ holes in the aluminum be-

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

L motor mount bracket

90°
bend

Holes
for mounting
gearbox motor

Holes to watch
U bracket

3/4"

NOT TO SCALE 1:1 SCALE
� 8.3 L bracket for mounting gearbox to U channel

Team LRN

172

fore bending it into shape. For the rear axle, I used the wire from a
metal coat hanger.

To continue we need to mount the front drive wheel to the gear-
box motor. The rubber wheel used in this prototype is made to
friction fit a 3-millimeter (mm) (0.118″) shaft. The shaft diameter
of the 100:1 gearbox motor is about 2 mm (0.078″).

To solve this size problem, I placed a 3″ long length of 3-mm hollow
metal tubing onto the shaft of the gearbox motor. I used a flat-head
screwdriver and hammer to secure the 3-mm tubing to the 2-mm
shaft. First place the motor’s shaft and tubing onto a hard (metal)
surface that allows you to place force directly onto the shaft with-
out causing any strain on the gears or motor. Next place the screw-
driver head on the shaft-tubing assembly and hit it sharply with the

Chapter eight

42-oz
servo

Holes to match rear axle bracket

Sheet metal 3" x 5.5"

� 8.4 Robot base showing cutout for 42-oz
servo motor and holes for rear axle bracket

Team LRN

173

�
8.

5
R

ea
r

ax
le

 b
ra

ck
et

 d
et

ai
l

W
he

el
si

ze

2"

W
he

el

1 / 8
"

ho
le

fo
r

ax
le

1 / 8
"

ho
le

s

1 / 8
"

ho
le

fo
r

ax
le

A
xl

e

he
ig

ht

35
/ 8"

23
/ 4"

23
/ 4"

3 / 4
"

12
5°

R
ea

r A
xl

e
B

ra
ck

et
S

C
A

LE
 1

:1

3 / 4
"

Team LRN

174

hammer. This force will cause the tubing to collapse onto the shaft
making a strong friction fit. Strike the 3-mm tubing in one or two
locations for insurance.

If one looks closely at the gearbox motor shaft, there is a keyway
(flattened cutaway on the shaft) cut into the shaft. If you properly
strike the tubing at that location to collapse the tubing into the
keyway, you will create a very secure fitting between the motor
shaft and tubing.

The drive wheel is mounted by pushing it onto the 3-mm tubing.
The friction fit of the wheel is strong enough to drive the robot
without any slippage. If you wish to mount the wheel permanently
(something I have not done) to the shaft, try mixing slow-setting
epoxy glue and coating the 3-mm shaft with it before mounting the
wheel onto it.

Counterbalance

When the gearbox motor is mounted on the U channel, the weight
of the gearbox motor on one side makes the assembly unbalanced.
To balance the U channel, I placed 3 to 4 oz of lead on the opposite
side. I have 1�8″ thick lead sheets lying around that I use to store
radioactive isotopes. Cutting and drilling the lead is easy. You can
mount any heavy object onto the shaft as a counterweight (like
fender washers).

Shell

The original tortoise robot had a transparent plastic shell. The
shell was connected to a bump switch that caused the robot to go
into “avoid” mode when activated. I looked at, tried, and rejected
a number of different shells. Finally I was left with no choice other
than to fabricate my own shell.

Rather than fabricate an entire shell, I made a bumper that encom-
passes the robot. The bumper is fabricated from 1�8″ � 1�2″ � 32″ alu-
minum bar (see Fig. 8.6). The aluminum bar is marked at the center.
Each bend required in the bumper is also marked in pencil. The ma-
terial is placed in a vise at each pencil mark and bent to the angle re-
quired. The two ends of the aluminum bar end up at the center back of
the bumper. These two ends are joined together using a 1�8″ � 1�2″ � 1″
long piece of aluminum bar. A 1�8″ hole is drilled on each end of the
aluminum bar. Matching holes are drilled in the ends of the
bumper. The bar is secured to the bumper using two 5-40 machine
screws and nuts (see Fig. 8.7).

Chapter eight Team LRN

175

The upper bracket used to connect the bumper to the robot is
identical to the front end of the bumper (see Fig. 8.8). The upper
bracket is made from 1�8″ � 1�2″ � 14.5″ aluminum bar. As with the
bumper, the center of the bar is marked and each bend required is
also marked in pencil. The material is bent in the vise the same
way as the bumper.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

91/2"

43/4" 43/4"

41/2" 41/2"

31/2"

32" long

Aluminum bumper

5-40 nuts

5-40 machine
screws

1"- long
aluminum bar

� 8.6 Top dimensional view of bumper fabricated from 1/8″ � 1/2″ �

32″ aluminum bar

� 8.7 Cutaway close-up of aluminum bracket used to secure the
open ends of the bumpers

Team LRN

176

Finding the center of gravity
It is important to find the center-of-gravity line of the bumper,
because this will mark the optimum location where the upper
bracket should be attached. Rest the bumper on a length of alu-
minum bar. Move the bumper back and forth until it balances
evenly on the aluminum bar. Mark the centerline positions on each
side of the bumper. Drill a 1�8″ hole on each side. Drill matching
holes on the ends of the upper bracket. Then secure the upper
bracket to the bumper using 5-40 machine screws and nuts.

Attaching bumper to robot base
The bumper is attached to the robot body by the upper bracket.
Drill three 1�8″ holes in the top of the upper bracket. One 1�8″ hole
is in the center and the two other holes are 11�8″ away from the
center hole (see Fig. 8.9). Three matching holes are drilled in the
robot base behind the servo motor. The holes should be placed so
that the bumper (once secured to the base) has adequate clear-
ance (1�8″ to 1�4″) from the back wheels. The matching center hole
on the base must be offset by moving the drilled hole forward on
the base by about 1�4″.

Chapter eight

� 8.8 Side dimensional view of upper bracket fabricated from 1/8″ �
1/2″ � 141/2″ aluminum bar

� 8.9 Side dimensional view for hole placement in top of the upper
bracket

1" 1"

41/2"

141/2" long

41/2"

31/2"

Upper bracket

11/8"

1/8" hole

11/8"

Top upper
bracket

Team LRN

177

The bracket is secured to the base using two 1″ long 6-32 machine
screws; four 6-32 nuts; and two 1″ long, 2-pound (lb) compression
springs, with a 1�8″ center diameter (see Fig. 8.10). The tension
and resiliency of the bumper can be adjusted by tightening or re-
leasing the upper 6-32 machine screw nuts. Once assembled, the
bumper will tilt back and close the bumper switch when the robot
(bumper) encounters (pushes against) an obstacle.

Bumper switch

The bumper switch makes use of the center holes. Looking back at
Fig. 8.10, the center hole is fitted with a 6-32 machine screw held on
by a standard (zinc-plated) nut, followed by a brass nut. The brass
nut has a wire soldered to it. The purpose of this little assembly is
just to attach a wire to the bracket-bumper assembly. Brass nuts are
used because it is possible to solder wires to brass to make elec-
trical connections. This is in contrast to the standard zinc-plated
steel nuts that are very difficult (impossible) to solder.

The second half of the tile switch is comprised of a 1″ 6-32 plastic
machine screw and three 6-32 machine screw nuts, one of which
must be brass with a wire soldered to it (see Fig. 8.11). Figure 8.12
is a close-up of the finished tilt switch. The assembly is adjusted so
that the brass nut on the top of the 6-32 machine screw lies just
underneath the upper aluminum bracket without touching. When
the upper bracket tilts forward, contact is made between the alu-
minum bracket and brass nut, which is read as a switch closure.

Photoresistor

The cadmium sulfide (CdS) photoresistors used in my prototype
have a dark resistance of about 100K ohms and a light resistance of
10K ohms. The top of the 100:1 gearbox motor bracket is a perfect

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

6-32
nut

6-32
machine

screw

6-32
nut

6-32
brass nut

Soldered
wire

6-32
nut

1" long
compression
spring

1" long
compression
spring

6-32
1/2 machine
screw

� 8.10 Side view of upper bracket detailing the mounting of the upper
bracket to the robot base using machine screws and compression
springs. Also details bracket half of the tilt switch

Team LRN

178

shelf for mounting the photoresistor (see Fig. 8.13). I used a small
piece of plastic to mount the photoresistors at a 45 degree angle up
with an opaque vane mounted in between the photoresistors (see
Fig. 8.14). Mounting the photoresistors on the drive wheel assembly
keeps the sensors pointing in the same direction as the drive wheel.
This replicates the function of the original tortoise robots.

Using two CdS photosensors in this configuration alleviates much
of the computation needed to track a light source. This is the same

Chapter eight

� 8.12 Close-up photograph, detailing tilt switch and spring mounting
of upper bracket

Brass
6-32 nut

Base

Plastic 6-32
machine
screw

6-32 nuts

Wire

Robot
base

Upper
brackets

� 8.11 Side dimensional detail (robot base side of the tilt switch) of
plastic screw with top brass nut

Team LRN

179

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

� 8.13 Close-up photograph detailing front drive wheel, showing coun-
terweight, drive wheel, gearbox motor, and light sensor with shroud

operation as described in Chap. 6 for the light tracker circuit.
The operation of the sensor array is shown in Fig. 8.15. When both
sensors are equally illuminated, their respective resistances are
approximately the same. As long as each sensor is within ±10
points of the other, the PIC program will see them as equal and
doesn’t move the servo motor (steering). When either sensor falls
in the shadow of the main light source, the resistance variance
between the sensors increases beyond the ±10-point range. The
PIC microcontroller activates the servo motor to bring both sensors
back under even illumination. In doing so, this steers the robot
straight to the light source. If the sensors detect too great of a light
intensity, the robot will go into avoid mode.

Schematic

The schematic for the robot is shown in Fig. 8.16. Intelligence for
the robot is provided by two PIC16F84 microcontrollers. The
steering servo motor control signal is provided by RB3 off the PIC
microcontroller number 2. The 100:1 gearbox motor is attached to
an H-bridge consisting of components Q1 to Q4, D1 to D4, and R1
to R4. The H-bridge is controlled by the PIC microcontrollers RB1
and RB2 input/output (I/O) lines. Sensor readings of the CdS cell
are read off pin RB4. RB5 reads the tilt switch to check if the robot
has encountered an obstacle. I assembled the entire circuit on two

Team LRN

180

Chapter eight

Turn left

� 8.14 Isometric view of sensory array

� 8.15 Functional behavior of sensor array

CdS
photocell

CdS
cell

Vane

Plastic

Side View

CdS photocell

Front View

Team LRN

181

small solderless breadboards. The breadboards were mounted on
the robot base, on top of the battery power pack.

To meet the original design expectations (accurately modeling the
original Walter’s tortoise robot for one), two microcontrollers are
required. Distributing the computational workload between two
processors produces much smoother operation from the robot.

The main reason a second microcontroller is needed is for the
steering servo motor. A single microcontroller cannot read the two
CdS photoresistors and accurately control (steer) the servo motor.
Had I chosen a gearbox motor for steering the robot instead, using
a single microcontroller would not have been a problem. On the
bright side, the advantage to circumventing this problem is building

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

� 8.16 Electrical schematic of tortoise robot

Team LRN

182

a robot with two processors that operate in tandem (distributed
processing).

I will assign the targeting of the light source and bumper switch
detection to one microcontroller, called microcontroller 1. Con-
trolling the steering and drive motor will be assigned to the second
microcontroller, called microcontroller 2. To make this scheme
work, it is necessary to have the microcontrollers communicate with
one another. However, bidirectional communication isn’t required;
we will have one microcontroller talk and the other one listen.

Microcontroller 1 Microcontroller 1 will handle reading the CdS
cells and bumper switch detection. It will communicate to micro-
controller 2 using three I/O lines.

� I/O line 1 will communicate the status of CdS 1. If light falling
on CdS 1 is brighter than light falling on CdS 2, then bring the
line low. If equal, bring the line high.

� I/O line 2 will communicate the status of CdS 2. If light falling
on CdS 2 is brighter than light falling on CdS 1, then bring the
I/O line low. If equal, bring the line high.

� I/O line 3 will communicate either the status of the bumper
switch or that the CdS cells are receiving too much light. In
either case this will bring line 3 high.

Microcontroller 2 Microcontroller 2 will check the status of the
three I/O lines and, based on the status, it will steer and move the
robot as follows:

CdS 1 CdS 2 Tilt switch

Line 1 Line 2 Line 3 Results

0 0 0 Sleep mode, not moving
1 1 0 Move forward
1 0 0 Steer right, move forward
0 1 0 Steer left, move forward
X X 1 Avoid mode

X � don’t care.

Accordingly, lines 1 and 2 represent the two CdS cells and line 3,
the status of the bump switch.

Adding sleep mode

I added a sleep mode for when the ambient light is very low. The
robot moves forward when both CdS sensors receive approximately
the same light intensity. The robot steers right or left when one CdS

Chapter eight Team LRN

183

cell receives more light than the other. If each CdS cell receives too
much light or the bump switch is activated, the robot goes into
avoid mode.

Power

Six-volt electrical power for the robot is supplied by a battery pack of
four AA batteries. While I used this power supply for testing robot
function, I suspect the batteries may wear out quickly.

Program
The program flowchart is shown in Fig. 8.17. Upon power-up, the
drive motor is off and the microcontroller begins scanning for the
brightest light source using the servo motor. If a light source is
too bright, the robot jumps into avoid mode. In avoid mode the
robot backs away from the light source by reversing the drive
motor while steering the drive wheel left or right. If the light isn’t
bright enough to activate the avoid mode, the robot steers in the di-
rection of the light and activates the drive wheel forward. If the
bumper switch is activated, the robot assumes it has hit an obstacle
and the robot goes into avoid mode. But if the tilt switch is not acti-
vated (no collision), the program jumps to the beginning and the
process continues scanning and moving to the brightest light source.

The program is written for the PICBASIC compiler that is directly
programmed into a PIC16F84. The program should be able to be
compiled and run with little or no modification on the PICBASIC Pro

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

Avoid:

Reverse
motor

Adjust
steering

1 second

Scan

Find light
source & move
toward light

Is light too right?

Hit obstacle?Yes

Yes

No

No

� 8.17 Program flowchart

Team LRN

184

version. In-group variances in CdS sensors, drive motors, robot
structure, and the like can be adjusted for or modified in the pro-
gram.

Program 1
‘Microcontroller 1

start:

high 4:low 4 ‘Blink LED

b7 = 0

button 5,0,255,0,b7,1,avoid ‘Check for obstacle

pot 7, 255, b0 ‘Read CdS cell 1

pot 6, 255, b1 ‘Read CdS cell 2

If b0 <= 250 then skip ‘Is it dark enough to sleep?

If b1 >= 250 then slp ‘Yes

skip: ‘No

if b0 > 25 then skip2 ‘Is it too bright to live?

if b1 < 25 then avoid ‘Yes

skip2: ‘No

if b0 = b1 then straight ‘Light is equal; go straight

if b0 > b1 then greater ‘Check light intensity

if b0 < b1 then lesser ‘Check light intensity

straight:

high 0: high 1: low 2 ‘Communicate to microcontroller 2

goto start ‘To go straight

greater:

b2 = b0 � b1 ‘Check numerical difference

if b2 > 10 then rt ‘If more than 10, turn right

goto straight ‘If not, go straight

lesser:

b2 = b1 � b0 ‘Check numerical difference

if b2 > 10 then lt ‘If more than 10, turn left

goto straight ‘If not, go straight

rt: ‘Turn right, send

high 0: low 1: low 2 ‘Communication to microcontroller 2

goto start

lt: ‘Turn left, send

low 0:high 1: low 2 ‘Communication to microcontroller 2

goto start

Slp: ‘Go asleep, send

low 0: low 1: low 2 ‘Communication to microcontroller 2

goto start

avoid: ‘Avoid mode, send

low 0:low 1: high 2 ‘Communication to microcontroller 2

goto start

Chapter eight Team LRN

185

Program 2

‘Microcontroller 2

b4 � 150 ‘Initialize servo to midposition

start:

peek 6, b1 ‘Read communication from microcontroller 1

let b0 � b1 & 7 ‘Mask out except first 3 bits

if b0 � 0 then slp ‘Time to sleep

if b0 � 1 then rt ‘Turn right

if b0 � 2 then lt ‘Turn left

if b0 � 3 then fw ‘Move forward

if b0 � 4 then avoid ‘Avoid mode

goto start

slp:

low 4: low 5 ‘Turn off motor

pulsout 3, b4 ‘Maintain servo motor

pause 18 ‘Timing for servo motor

goto start ‘Read microcontroller 1

rt: ‘Turn right

high 4: low 5 ‘Move forward

if b4 > 200 then rt1: ‘Is servo at maximum right?

b4 = b4 + 1 ‘No

rt1: ‘Yes

pulsout 3, b4 ‘Turn servo

pause 18 ‘Adjust timing (55 Hz)

goto start ‘Read microcontroller 1

lt: ‘Turn left

high 4: low 5 ‘Move forward

if b4 < 100 then lt1: ‘Is servo at maximum left?

b4 = b4 �1 ‘No

lt1: ‘Yes

pulsout 3, b4 ‘Turn servo

pause 18 ‘Adjust timing (55 Hz)

goto start ‘Read microcontroller 1

fw: ‘Forward

high 4: low 5 ‘Move forward

pulsout 3, b4 ‘Turn servo

pause 18 ‘Adjust timing (55 Hz)

goto start ‘Read microcontroller 1

avoid:

low 4: high 5 ‘Move backward

if b4 > 150 then vr ‘Check steering, veer right?

if b4 <= 150 then vl ‘Check steering, veer left?

vr: ‘Veer right

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

186

b5 = b4 � 30 ‘Create servo direction

for b6 = 1 to 120 ‘Make 2-s timing loop

pulsout 3, b5 ‘Turn servo

pause 18 ‘Adjust timing (55 Hz)

next b6 ‘Loop

goto start ‘Read microcontroller 1

vl: ‘Veer left

b5 = b4 + 30 ‘Create servo direction

for b6 = 1 to 120 ‘Make 2-s timing loop

pulsout 3, b5 ‘Turn servo

pause 18 ‘Adjust timing (55 Hz)

next b6 ‘Loop

goto start

The finished robot is shown in Fig. 8.18.

Behavior
The robot needs to function in a low-light environment, where it
can clearly see a bright light source. The light level required of my
robot was so low I needed to fabricate tiny sunglasses out of colored
plastic to reduce the light intensity hitting the CdS photocells.

The prototype robot exhibits the following behavior. In ambient
light (no bright light source) the robot travels in a straight line (or
circle depending upon the last light source target). If the ambient

Chapter eight

� 8.18 Front view of finished robot

Team LRN

187

light is too bright, it jerks backward. With a mediocre light source,
it will aim and travel toward the light.

The program can be developed further to explore more interesting
and exotic behaviors. Before doing so, let’s first look at how the
standard program functions. Program 1 for microcontroller 1 pri-
marily checks the sensors and transmits the results to microcon-
troller 2. In this program you can modify the sensor sensitivity to
compensate for different sensors, for instance, by using the lines

if b0 <= 250 then skip ‘Is it dark enough to sleep?

if b1 >= 250 then slp ‘Yes

skip: ‘No

The maximum reading from the sensor can be 255 (total darkness).
This may be raised to increase the ambient light intensity for sleep.

The brightness that triggers the avoid mode may be modified by
using the following lines:

If b0 > 25 then skip2 ‘Is it too bright to live?

If b1 < 25 then avoid ‘Yes

skip2: ‘No

Increasing the numerical value, in this case 25, decreases the light
intensity that puts the robot into avoid mode. Decreasing the nu-
merical value increases the light intensity needed to throw the robot
into avoid mode. In most cases you will want to decrease this num-
ber. However, I would advise not going below a numerical value of 9,
because even at full light saturation of the CdS cell, its resistance
never drops to zero. And in my light saturation tests the sensor
never yielded a value less than 5.

Tolerance between the two CdS photoresistors may be increased
or decreased by modifying the numerical allowable difference in
subroutines greater and lesser.
greater:

b2 = b0 � b1

if b2 > 10 then rt

goto straight

lesser:

b2 = b1 � b0

if b2 > 10 then lt

goto straight

In addition, one could create handedness in the robot (right- or
left-handed) by modifying either the greater or lesser subroutine,
but not both. This will create a robot that is more likely to turn in
one direction than the other. For instance, if we modified the line

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

188

if b2 > 10 then lt in the lesser subroutine to read if b2 > 15 then
lt, we would create a robot that is more likely to turn to the right.

This robot offers many opportunities to robotists and experi-
menters for continued experimentation and development both in
hardware and software.

Parts list for the Walter tortoise robot
� (1) 12″ � 12″ sheet metal, 22 or 24 gauge

� (1) 1�8″ � 1�2″ � 12″ long aluminum bar

� (1) 42-oz torque hobby servo motor

� (1) 100:1 gearbox motor (or similar)

� 3-48 machine screws and nuts

� 0-80 machine screws and nuts

� (1) 1�8″ � 1�2″ � 32″ long aluminum bar

� (1) 1�8″ � 1�2″ � 141�2″ long aluminum bar

� (1) 1�8″ � 1�2″ � 2″ long aluminum bar

� (1) 42-oz torque standard servo motor

� (1) 100:1 gearbox DC motor

� (1) 2″ diameter drive wheel—friction fit to 3-mm shaft

� (1) 2-mm ID, 3-mm OD steel or brass tubing

� (2) CdS photocells, 100K-ohm dark, 10K-ohm light

� [4 (Q1-Q4)] 2N2222 NPN transistors

� [4 (D1-D4)] 1N914 diodes

� (1 D5) Red LED

� [4 (R1-R4)] 1K-ohm, 1�4-W resistors

� [6 (R5-R7, R9-R11)] 10K-ohm, 1�4-W resistors

� [1 (R8)] 470-ohm, 1�4-W resistor

� (4) 22-pF caps

� [2 (C1,C2)] 0.1-�F capacitors

� [2 (X1, X2)] 4-MHz crystal

� [1 (Q5)] 7805 voltage regulator

� [2 (IC1, IC2)] 16F84-04 PIC microcontroller

� Miscellaneous: 5-40 machine screw and nuts, plastic 6-32 � 1″
machine screws, 6-32 brass nuts, 1″ long compression springs
(2 lb)

Chapter eight Team LRN

189

Suppliers
� Aluminum bars, machine screws, tubing, and compression

springs are available in most well-stocked hardware stores.

� Servo motors may be purchased at hobby shops or electronic
distributors.

� Electronic components may be purchased from Radio Shack,
Images Company, Jameco Electronics, or JDR Electronics.

� PIC microcontroller and front drive wheel may be purchased
at Images Company.

Images Company
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

Jameco
1355 Shoreway Rd.
Belmont, CA 94002
(650) 592-8097

JDR
1850 South 10 St.
San Jose, CA 95112
(800) 538-5005

Building an intelligent photovore robot
Let’s see if we can create what may appear as intelligent behavior
in a photovore robot. In Chap. 6 we programmed a photoresistive
light tracking system. The tracking system locked onto a light
source and tracked it. When we placed the same tracking system
on a copy of Walter’s tortoise robot, it directed the robot toward a
light source. This steering behavior can be considered the first
stimulus-response layer.

The program illustrates how the rule-based microcontrollers can
simulate neural functions. For the sake of an example, let’s now
design a neural circuit that performs the same function without
any rule-based intelligence.

Figure 8.19 uses an 8-pin dip single-voltage-supply dual operational
amplifier (op-amp). The op-amps are configured as comparators.
Comparators were covered more fully in Chap. 5. If you have any
questions about Fig. 8.19, review Chap. 5. Two CdS photoresistors
are wired in series forming a voltage divider. The output of the

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

190

photoresistor voltage divider is fed into the inverting input of one
op-amp and the noninverting input of the other op-amp.

Two other voltage dividers are needed. They are symmetric but
opposite. One voltage divider has a 3.9K-ohm resistor connected
to Vcc and a 4.7K-ohm resistor connected to ground. The second
voltage divider uses the same value resistors, in opposite positions.

When both photoresistors are evenly illuminated, neither LED is
lit. Cover one or the other photoresistor and the corresponding
LED will light.

Each op-amp acts like a simple electronic neuron. When the elec-
trical stimulus falls above or below (depending upon which op-amp
we’re talking about) a threshold (determined by the 3.9K-ohm and
4.7K-ohm voltage dividers), the neuron fires. The firing of the neu-
ron (or outputs of the op-amp) can be used to turn on a DC motor
using an NPN transistor (see Fig. 8.20). The DC motors in turn pro-
vide movement and direction for the photovore robot.

To create a simple photovore robot, a chassis is designed that has
two gearbox DC motors (see Fig. 8.21). When both motors are
powered, the robot moves forward in a straight line. When one
motor is turned off, the motor that still receives power will turn the
robot left or right.

For our photovore robot, we need both motors to be powered
when the two photoresistors are evenly illuminated. Running the

Chapter eight

+

+

–

–

Vcc

3.9
K

4.7K

4.7
K

3.9
K

7
86

5

12

3 4

� 8.19 Dual op-amp neural comparator circuit

Team LRN

191

outputs of each op-amp into an inverting buffer located just before
the NPN transistor accomplishes this task (see Fig. 8.22).

Behavior

When one photoresistor receives less light than the other, the corre-
sponding motor will turn off, allowing the motor that’s still powered
to turn the robot toward the light source. When the robot turns so
that both photoresistors are again evenly illuminated, both motors
turn on, allowing the robot to travel toward the light source.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

+

+

–

–

Vcc

3.9
K

4.7K

4.7
K

3.9
K

7
86

5

12

3 4

M

M

Vcc

Vcc

1K

1K

NPN
TIP120

NPN
TIP120

� 8.20 Neural comparator DC motor control circuit

� 8.21 Outline diagram of photovore robot

M M

Wheel

Photo Sensors

Gearbox MotorsElectronics

Team LRN

192
Light avoidance

If we crisscross the outputs of the op-amps to the motors, the be-
havior reverses. Instead of moving toward a light source the robot
now avoids light and seeks shelter.

Adding behavior (feeding)

We can add behavior to the photovore by adding another stimulus-
response layer (see Fig. 8.23). This will be another light-activated
comparator circuit that facilitates feeding. Comparators were cov-
ered more fully in Chap. 5. If you have any questions about Fig. 8.23,
go back to that chapter. The second layer is placed on top of the
first layer. When the light intensity is great enough, this threshold
detector cuts power to the first layer and the motor drive system.
If we place a number of photovoltaic cells and a diode, the electric
power generated from the photovoltaics can trickle charge a nickel-
cadmium (NiCd) power pack (Vcc). Let’s call this function “feeding.”

Still more behavior (resting)

We don’t want our photovore traveling around in the dark wasting
precious energy. So let’s add another layer. The third layer is another
light threshold detector (see Fig. 8.24). This detector cuts power
to the first layer, motor drive system, and second layer in darkness

Chapter eight

+

+

–

–

Vcc

3.9
K

4.7K

4.7
K

3.9
K

7
86

5

12

3 4

M

M

Vcc

Vcc

1K

1K

NPN
TIP120

NPN
TIP120

Inverter
4049 or Equiv.

� 8.22 Neural comparator DC motor control circuit with inverters

Team LRN

193
or near darkness. When a sufficient amount of ambient light is rein-
troduced, power to the first layer, drive system, and second layer is
restored.

Emergent behavior

Let’s look at the behavior of our three-layer stimulus-response
photovore robot and see if we can classify its behavior as intelli-
gent. In complete darkness the robot remains still, conserving all
its power via layer 3. As ambient light is introduced and increased,
layer 3 restores power to the drive system and first two layers. At
this point, layer 1 takes over and controls the direction of the robot.
The robot searches and moves toward the source of light. As the
robot moves toward the light source, the light intensity increases.
When the light reaches a sufficient intensity, layer 2 cuts power to
the drive system allowing the robot to feed (charge its batteries)
through the photovoltaics.

Whether you decide to classify this robotic behavior as intelligent or
not is an individual preference and one that can clearly be debated
on both sides of the fence. In the least, it illustrates how complex be-
havior patterns can be generated using a layered stimulus response.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

To Vcc

Photovoltaics
Trickle
Charger

First
Layer

2nd Layer

Vcc

R2

R3R1

+

–

� 8.23 Feeding behavior comparator circuit

Team LRN

194 BEAM robotics
Mark Tilden founded BEAM robotics while at the University of
Waterloo in Canada. The inspiration for BEAM-style robots came
from a talk given by Rodney Brooks of MIT that Mark had attended
in 1989. Dr. Rodney Brooks’s approach to robotics is a stimulus-
response system he refers to as “subsumption architecture.”

BEAM is a multidimensional acronym that loosely stands for biology,
electronics, aesthetics, and mechanics. I say “loosely” because
there are numerous groups of words that can be and are at times
substituted in the acronym, for instance biotechnology, evolution,
analog, and modularity.

BEAM competition

There is an annual Olympic competition for BEAM robotics with 14
events. The first BEAM competition was held in 1991. The inspira-
tion for the BEAM games came from the first international Robot
Olympics held in Glasgow, Scotland, in 1990. A central idea to the
BEAM philosophy is robotic evolution. Start simple and evolve
toward complex systems. As illustrated, the idea is to break away
from standard robotic design, using top-heavy CPUs for control, and

Chapter eight

1st
Layer
2nd

Layer

Vcc

R2

R3R1

+

–

3rd Layer (Resting)

� 8.24 Resting behavior comparator circuit

Team LRN

195

embrace a bottom-up approach using a layered stimulus response
(neural network, nervous network systems). Mark Tilden calls his
stimulus-response mechanisms “nervous nets.”

Tilden has designed a number of interesting robots (see Fig. 8.25).
They employ nervous net systems that are made using transistors.
Since the nervous net system is patented (by Mark Tilden) and
unpublished schematics for his nervous net system are not readily
available, I do not have any nervous net system schematics to
present. However, Tilden has a book in the works titled Living

Machines.

Figure 8.26 is titled Gumby Trks. This is a type of biomechanical
walker that is being designed for a variety of terrains. Here
Gumby 1.0, an eight-transistor imbedded-bicore walker about 1 ft
long, makes tracks across a sand desert.

Figure 8.27 is titled Walkman 1.0. The first of the 12-transistor
“Microcore” walkers, this device was put together from the re-
mains of five similar Walkman cassette players. It has seven sen-
sors including two eyes and can handle very complex terrains with
its five-motor design.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architecture

� 8.25 Beam robots

Team LRN

196

Electronic flotsam

BEAM robotists pride themselves on using discarded electronics in
the construction of their robots: for instance, solar cells from calcu-
lators, high-efficiency electric motors from Walkmans and cassette
players, along with pulleys, switches, capacitors, components, gears,
and solenoids. Gathering this electronic flotsam and converting it
into useful robots is a project in recycling engineering.

The BEAM robotic competition is open to everyone. All competitors
start on equal footing. Seven-year-old robotists have as much
chance of winning as a professor from a prestigious college. In some
cases the 7-year-old won!

Competitions

The following is a brief synopsis of the competitions held at the
BEAM games. Complete descriptions of the events and rules can be
found in the BEAM guide available from the University of California.
The address is listed at the end of this chapter.

Chapter eight

� 8.27 Walkman 1.0

� 8.26 Gumby Trks

Team LRN

197

Solaroller

Create a solar-powered robot racer that fits into a 6″ cube. Maxi-
mum solar cell size is 1�2″ � 21�2″ [1.25 square inches (in2)]. Track
length is 1 meter (m); width is 6″. Competitors race in full sunlight
(or 500-W halogen lamp equivalent).

� Class A. Race on level sheet of glass.

� Class B. Race on rough terrain.

Photovore

Create a solar-powered, goal-seeking robot that can fit into a 7″
cube. The robot will be placed with other competitors in a closed
“Jurassic Park” for 30 hours. Those robots that show the best sur-
vival, exploration, confrontation, speed, and power efficiency, deter-
mined by review of photos and video, will be the winners.

Aquavore

Create a solar-powered robot that can fit inside a 7″ cube and be
able to swim the length of a 55-gallon fish tank (distance is approx-
imately 1 m). A 6″ high wall will be placed halfway in the tank that
the competitor must pass to reach the finish line.

Robot limbo

Create a robot that can fit inside a 7″ cube that will run through a
simple maze. Solar power is not required for this competition, but
is recommended.

Robot rope climbing

Create a robot that can climb up a meter of rope and then back
down. The fastest robot wins. The rope is 40-lb test nylon fishing
line. The robot must fit in a 20″ cube.

Robot high jump and long jump

A class Create a robot that can jump with its entire mass into the
air three times using the power from one optional battery. Robot
must fit in a 1-square-foot (ft2) space.

B class Create a robot that can jump with its entire mass forward
three times using the power from one optional battery. Robot must
fit within a 1-ft2 space.

Legged robots

Legged robots compete with each other. Robots are given points
based upon their capabilities to walk over various terrains and nego-
tiate obstacles. No size restriction.

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

198

Innovation machines

Create a new device, the purpose of which need not be obvious.
Competitors are judged on quality of the design and assembly,
broadness of scope, and weirdness of application.

Robot art/best modified appliance competition

Create a robot that can draw or generate art. The generation of art
may be the movement of the robot itself. An example given is a solar
flower that opens slowly and snaps closed when light shines upon it.

Class A Robots built completely from scratch.

Class B Modified devices, toys, appliances, etc.

Robot sumo wrestling

Class A Robots are paired together in competition. Each robot at-
tempts to push the other off the edge of a 5-ft-round platform. Ro-
bots can be self-contained, tethered, or radio controlled.

Class B Robots try to push each other off a 6-ft-round platform.

Nanomouse competition

Create a self-contained robotic mouse that can run through a
maze. The robot’s footprint must be no larger than 10 cm � 10 cm.
No restriction on height.

Micromouse competition

Create a self-contained robotic mouse that can run through a
maze. The robot’s footprint must be no larger than 25 cm � 25 cm.
No restriction on height.

Aerobot competition

Create a flying robot that will launch itself, fly into a 25-ft � 25-ft
drop zone, find a randomly placed target in the drop zone, drop a
marker on it, and then return to its launch pad.

Miscellaneous competitions

If you have built a robot that doesn’t fit in the outlined categories,
it may be entered in the miscellaneous category.

Getting the BEAM guide

Complete 120-page BEAM guides may be purchased for $20.00.
Make checks payable to the University of California: BEAM
Games. For current information call or write to:

Chapter eight Team LRN

199

BEAM Robot Olympics c/o Mark W. Tilden
Mail Stop D449
Los Alamos National Labs
Los Alamos, NM 87545
(505) 667-2902

The internet address for the BEAM games is

http://www.nis.lanl.gov/projects/robot/

Join in

The BEAM competitions are open to all robotists. You can enter a
robot in the competition or just attend the event for fun. Contact
the BEAM Robotic Olympics, address given above for up-to-date
information. The following internet site provides plans for building
a simple solar roller robot:

http://www.imagesco.com

Behavioral-based robotics, neural networks, nervous nets, and subsumption architectureTeam LRN

This page intentionally left blank.

Team LRN

201

Telepresence robot

IN THIS CHAPTER WE WILL BUILD A TELEPRESENCE ROBOT
(T-bot). Telepresence robots are expanding into a variety of sci-
ence, entertainment, business, military, exploratory, and industrial
applications as was illustrated in Chap. 2.

What’s in a name?
The late science fiction writer Robert Heinlein is credited as the first
person to predict the use of telepresence robots in his 1940 science
fiction novel titled Waldo. In the story, a human operates mechanical
puppets, called “waldos,” to do his bidding from a remote location.

Rather than use the term “waldo,” I found the word “golem” from
Yiddish mythology more suitable. The story of the golem describes
a human spirit who intentionally places itself in a clay figurine. The
spirit controls the clay figurine, bidding it to do that which the spirit
would not or could not do in its human form. Once the golem’s work
is finished, the spirit returns to its human form. This definition
adequately describes the new science of telepresence. I therefore
have named my telepresence robot Golem I.

What is telepresence?
Telepresence is a high-fidelity form of remote control that attempts
to project the senses of the human operator into a robot at a distant
site. The feedback interfaces used to create a telepresence system
are the same as used in virtual reality (VR). Figure 9.1 illustrates a
basic telepresence system.

In virtual reality we achieve immersion into a synthetic computer-
generated environment by fooling our senses, as best we can, to

Telepresence robot

9

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

202

believe in and interact with the computer’s synthesized environ-
ment. In telepresence the environment is real but remote. So, in-
stead of a computer generating a synthetic environment, the
sensors placed on the remote robot feed all spatial and environ-
mental information to the user, in such a way that the user actually
feels that he or she is there.

On this human side, as stated before, the same VR equipment is
used to provide sufficient information from the remote sensors to
fool our senses into believing that the environment is real and pre-
sent. Different levels of presence are achieved depending upon
the fidelity of the interfacing devices. A humanoid robot that could
accurately follow human movement, gestures, locomotion, and
balance while providing visual, thermal, tactile, and force reflec-
tion over its entire exoskeleton to the human operator would be a
perfect golem. The illusion created is that the operator has
merged or is contained within the robot structure.

Current telepresence systems fall quite short of this goal. In many
cases the remote robot is a vehicle, like the one we shall build.
The best telepresence existence available using these rudimen-
tary T-bots allows one to believe he or she is actually driving the
vehicle from inside.

T-bots can be built to explore and operate in harsh or hazardous
environments. A partial list of remote environments include arctic
waters, ocean floors, forest fires, active volcanoes, nuclear reac-
tors, the Moon, Mars, or anything in between.

System substructure
The framework upon which we will build our T-bot is a radio-
controlled (R/C) electric car. Ideally the model car should have

Chapter nine

Eyes

Human

Movement

Display

Master

Radio
Link

Robot

Slave

Camera

� 9.1 Outline of a basic telepresence system

Team LRN

203

proportional steering and speed control. This is the type of model
used in building the prototype. A less-expensive R/C model may
be used, but you won’t have as much control when driving.

Figure 9.2 is a photograph of the R/C model car. It has a spring sus-
pension system. The suspension system can be incorporated with
a rumble-and-tilt sensor system to provide a feel of the terrain.
But we are getting ahead of ourselves.

Purchase an R/C car that is bundled with a battery charger and
rechargeable batteries. With some R/C models these items must be
purchased separately.

A little on R/C models

Radio-controlled models have evolved into a popular hobby. There
are R/C airplanes, helicopters, gliders, powerboats, submarines,
cars, motorcycles, etc. Most models are suitable shells and spring-
boards for golem-type robots.

Not long ago, R/C models were exclusively gas powered. In the late
1970s, improvements in battery technology and electric motors
made electric-powered vehicles a viable option.

Model R/C cars are typically controlled using a two-channel
transmitter/receiver. One channel controls steering and the other
channel controls the throttle. Each transmitter signal is controlled
by a potentiometer inside the transmitter. The steering poten-
tiometer is often connected to a small steering wheel on the trans-
mitter control. The throttle is usually connected to a trigger or stick.

Telepresence robot

� 9.2 R/C model car used in telepresence system

Team LRN

204

An encoder chip in the transmitter modulates the pulse width on the
transmitter’s carrier signal. The pulse width is based on the position
(resistance) of the potentiometer’s shaft. The pulse widths are
varied between 1 and 2 milliseconds (ms) (see Fig. 9.3). When the
potentiometer is in its center position, the pulse width corre-
sponding to that channel is 1.5 ms. When the control is pushed to
one extreme, the pulse width increases to 2 ms. When pushed to the
opposite extreme, the pulse width shrinks to 1 ms.

The receiver decodes the pulses on the carrier signal and sends
them to their respective servo motors. The servo motor is an inte-
gral unit, containing a motor, gearbox, output shaft, and a printed
circuit board (PCB). The PCB on the inside of the servo motor gen-
erates a reference pulse that is based on the position of an internal
potentiometer connected to the output shaft. A decoder chip on
the internal PCB compares the incoming pulses from the receiver
to the reference pulses. The servo motor attempts to match the
pulse widths of the two signals by adjusting the position of the
servo motor’s output shaft. This is how the servo motor tracks and
holds its position based on the signal from the transmitter.

Eyes

The eye(s) for our T-bot is a miniature color video camera system
with audio (see Fig. 9.4). The color camera system includes both a
2.4-gigahertz (GHz) transmitter and receiver. The camera system
cost is approximately $99.95.

The overall size of the camera is small. It is mounted to the body of
the transmitter by a small angled bracket. The video camera is
small enough so that two video cameras are capable of being
mounted side by side and have the approximate interpupilary dis-
tance (IPD) of 63 millimeters (mm) between lenses. Mounting a
pair of cameras like this will enable the T-bot to transmit realistic
stereo pictures to the operator. For the prototype we will use just
one camera; later we will discuss improvements to the system that

Chapter nine

20ms
.75 to 2ms

Pulse Signal to Servo Motor
� 9.3 Pulse width used to control a servo motor

Team LRN

205will add stereo-vision to provide depth perception to improve
telepresence and operation.

The prototype T-bot contains a single miniature video camera with
audio. The T-bot subsystems are built in modular form. Therefore,
if the reader wishes to create a stereo system in the future for the
T-bot, the video components are reusable.

Construction
Construction of the T-bot begins by analyzing the chassis of the
model car. Most R/C model cars have an outer cosmetic shell that
makes the model look like a standard vehicle: car, truck, landrover,
etc. Remove the outer cosmetic shell of the R/C model. Secure the
equipment directly onto the chassis.

The Golem I requires a separate power supply for the miniature
color camera (see Fig. 9.5). This 6-volt (6V) battery pack is made
for use with the camera-transmitter pair. The battery pack should
last approximately 4 to 6 hours (h) with four fresh AA batteries.

To keep the component mounting simple and modular, we will
make liberal use of Velcro material. Velcro material is typically
sold in strips, by foot increments. The Velcro strip is made of two
mating strips of material that adhere to one another. Each strip

Telepresence robot

� 9.4 Color camera with audio and 2.4-GHz transmitter

Team LRN

206

has self-adhesive on the back. The Velcro material is mounted to
the chassis with the mating strip placed on the component to be
mounted.

2.4-GHz video system

The 2.4-GHz transmitter is an integral part of the color camera (see
Fig. 9.6). The 2.4-GHz receiver is a separate unit. The receiver has
two RCA jacks, one for video out and the other for audio out. These
are connected via RCA cables to the video in and audio in of a TV
set, monitor, or video cassette recorder (VCR).

Mounting the video camera

There are two options regarding the mounting of the video cam-
era. The video camera and transmitter attached to the battery
pack are shown in Fig. 9.7. You can start out with a fixed camera

Chapter nine

� 9.5 Six-volt battery pack holds 4 AA batteries

� 9.6 Video camera system, camera transmitter, and receiver

Team LRN

207

position, or the video camera can be mounted on top of a servo
motor for camera movement and tracking. The servo motor
mounting is naturally more complex and requires the building of a
separate R/C control for panning the camera left and right. In a high-
fidelity system, the camera panning would be linked to a head-
tracking unit. So if the operator turned his or her head left or right,
the camera on the mobile robot would also pan left or right in sync
with the operator’s head. To make this work properly, the operator
should be wearing a VR-style head-mounted display (HMD). This is
a lot of work. I advise using a fixed camera position first, to keep the
construction simple.

Fixed mounting

You need a small section of Velcro secured to the bottom of the cam-
era’s battery pack. The mating piece of Velcro is secured to the chas-
sis of the R/C car. The finished Golem robot is illustrated in Fig. 9.8.

Driving via telepresence

You can drive the car remotely using the radio controls while looking
at the TV monitor. The camera is equipped with a microphone, so
you can hear audio from around the R/C car when you are driving.

Telepresence robot

� 9.7 Color camera with battery pack ready for mounting on R/C car

Team LRN

208
Talk

You can purchase a pair of inexpensive children’s walkie-talkies.
Place one walkie-talkie on the T-bot. You can speak from the T-bot
using the second walkie-talkie.

Adding realistic car controls

Golem I uses the standard radio controls that came with the car. The
realism of the telepresence system can be greatly improved by
adding realistic car controls. This isn’t difficult. It involves removing
the circuit and potentiometers from the radio transmitter control
and making a mock-up steering wheel for one potentiometer and a
foot pedal throttle control for the other potentiometer.

Improving the telepresence system
Golem I is a basic telepresence system that can be improved upon
with a little thought. Improvements will add cost to the system.
However, these subsystem improvements can be added over a time.

Stereo-vision

Implementing high-fidelity stereo-vision on the Golem I is a worth-
while endeavor. There are great benefits to be derived from this
experimentation, namely, depth perception. This is still an area

Chapter nine

� 9.8 Color camera mounted on R/C car

Team LRN

209

where significant contributions can be made. Before undertaking
this project it is important to realize that an HMD that supplies
stereo images to the user will be needed to view stereo images
transmitted from the T-bot.

The small size of the miniature video cameras is good for stereo-
graphic imaging. It allows two cameras to be positioned side by
side at the same interocular distance (IOD) as that of human eyes.
To be more specific, the average interocular distance (pupil to
pupil) for adult humans is about 63 mm. The camera’s lenses can be
positioned, from center to center, this same distance apart to mimic
the IOD humans use for depth perception. The transmitters for
each camera must be tuned to transmit on different frequencies.
This allows the HMD video receivers to accurately display the right
eye image to the right eye and the left eye image to the left eye.

Seeing in stereo from the Golem provides the operator with depth
perception when he or she is driving. Stereo-vision becomes increas-
ingly more important when depth perception is needed, for instance
when using a robotic arm. Being able to see the manipulator (robot
arm) move along the Z axis in a three-dimensional (3D) coordinate
system (X, Y, and Z) allows for efficient operation.

It is difficult for an operator to efficiently use robotic arms via
telepresence when the Z dimension (depth) is lost in a monocular
view. Operators are forced to gently bump into objects to approx-
imate the robotic manipulator’s location along the Z axis.

The same is true when driving a telepresence car. One quickly
loses depth perception, and it becomes difficult to determine how
far ahead of the vehicle something is.

When the stereo system is set up, the operator of the vehicle will see
the T-bot’s environment as a 3D picture. However, the stereo image
transmitted will not contain the very important convergence clues.
Much of our distance reckoning incorporates convergence clues we
get from our eyes. Convergence is the angle our eyes rotate inward
when viewing an object. An object very close to us will cause our
eyes to rotate inward. In contrast, when viewing an object that is
far away, our eyes look straight ahead. The brain automatically
brings this convergence information to bear in calculating distance.

The stereo video cameras are in a fixed position looking straight
ahead. To add convergence clues would require eye tracking engi-
neering. A feedback-providing HMD would need to constantly
ascertain the operator’s eye convergence. The eye tracking
(convergence) information would be transmitted to servo motors

Telepresence robotTeam LRN

210

that hold the video cameras and would converge the video cameras
in direct proportion to the operator’s eye convergence.

This type of master-slave system, as far as I know, has not been
built. It needs to be determined how accurate this system would be
in helping an operator gauge distance. While building this system is
beyond the scope of this book, it is not beyond the scope of an avid
experimenter.

Digital compass

Chapter 5 includes plans for a digital compass that is suitable for use
with Golem. The compass can be set up in two different ways. The
first method keeps the light-emitting diodes (LEDs) of the compass
in the visual field of the video camera. A quick look informs the
operator in which direction Golem is traveling. The second option
uses a radio link between the digital output of the compass on the
T-bot and the remote location of the operator.

Rumble interface

When driving the model car via telepresence, you cannot feel the
tilt or roughness of the road as you drive. To incorporate a rumble
feature into the system, you could use the spring suspension of the
model car. Any number of sensors can be used for this purpose, for
instance, piezoelectric transducers, Hall devices, and strain gauges.

The challenge to the experimenter is not in detecting the rumble,
but in providing that information to the seat of the operator. Most
motion platforms use expensive pneumatic and hydraulic systems.
If cost is an issue, this isn’t an option.

A cheaper solution can be found in the ThunderSeat by Thunder-
Seat Technologies. The Thunderseat utilizes any sound source to
generate vibratory sensations. It contains a subwoofer speaker
coupled to an acoustical wave chamber inside the seat. The wave
chamber vibrates the entire seat. The low-frequency (woofer)
speaker can handle up to 100 watts (W) of power. The frequency
response of the system is 50 Hz to 3.7 kHz. Originally designed to
work with flight simulator programs running with a sound card on
a personal computer (PC), the output from the sound card is fed
into an amplifier and then to the Thunderseat.

Tilt interface

As with the rumble interface, there are several transducers one
can use to determine tilt (see Chap. 5). One tilt sensor uses a steel

Chapter nine Team LRN

211

ball in a plastic enclosure. When tilted, the steel ball makes contact
with electrodes placed in the enclosure. Mercury switches may also
be used.

Electrolytic tilt sensors are expensive, but are excellent sensors. A
single electrolytic sensor can provide tilt information from two
axes. The hermetically sealed sensor has one center electrode sur-
rounded by four equidistance electrodes. As the electrolytic fluid
makes contact with the internal electrodes, the alternating current
(AC) resistance between the electrodes varies in proportion to the
degree of tilt.

Unfortunately, the electrolytic sensors cannot be read using a direct
current (DC) voltage source. This would cause the deposits to form
on the electrodes, rendering them useless. Instead an AC voltage of
approximately 3 V with a frequency of 1000 Hz is fed to the sensor.
The AC voltage from the center electrode is in proportion to the tilt
of the sensor.

If one were to use the electrolytic tilt sensor, I can suggest one way
to set up the information flow. Connect the AC output of the tilt
sensor to a bridge rectifier to obtain a DC equivalent voltage. The
DC voltage is fed to a voltage-controlled oscillator (VCO). The VCO
output frequency varies in proportion to the input voltage. The out-
put of the VCO is transmitted over a radio link to a receiver on
the motion platform. The receiver reads the frequency (tilt) and
activates a proportional control to tilt the platform.

Spectron, Inc., offers an integrated circuit, the SA40011, that sim-
plifies interfacing electrolytic tilt sensors. The DC output from the
SA40011 can be fed to a VCO as described before.

Again, implementing tilt to the operator is the difficult part of the
system. Proportional pneumatic or hydraulic systems can be em-
ployed to the seat to provide tilt.

Greater video range

The video range of our small transmitter is approximately 100 to
300 feet (ft). Obviously for longer distances another system needs
to be employed; it is called amateur television.

Amateur television (ATV) has been around for a number of years.
It’s been a method for radio amateurs to communicate via two-way
television. ATV had been the province of the elite radio hobbyist
due to the expensive cost of equipment. However, recent advances
in solid-state technology have changed that.

Telepresence robotTeam LRN

212

The components for a 5-W ATV system can be purchased for $200,
excluding TV monitor and video camera. The video cameras on
Golem I are suitable for ATV use. Less-powerful ATV systems, 3/4

W, can be purchased for under $100.

A Technician Class amateur license is required to operate these
systems legally in the United States. Currently the Technician Class
license no longer requires a knowledge of Morse code. Interested
readers should contact a local amateur radio club for more infor-
mation. Or you may write American Radio Relay League (ARRL),
225 Main Street, Newington, CT 06111, or call (800) 594-0200 or
(203) 666-1541 [fax: (800) 594-0259].

A 5-W ATV system can transmit up to a distance of 30 to 40 miles,
depending upon local radio interference, terrain, weather, etc.

More models
With the experience gained in building this T-bot system, the reader
can build other models. The company that makes the Erector Sets
has revitalized and updated itself and brought a number of inter-
esting kits to the market. The kits are called Meccano-Erector Sets
that include motors, gears, and pulleys along with the standard
Erector Set materials.

There are standard kits for building trucks, cars, motorcycles,
land movers, etc. The kits provide a good springboard for building
exotic T-bot explorers. Kits are available locally through Toys R Us
dealerships.

Parts list for the telepresence robot
� (1) Miniature color camera with 2.4-GHz transmitter and

receiver—$99.95

� (1) Optional battery pack—$19.95

� (1) Radio-control system proportional control [two-channel
receiver, two-channel transmitter, Xtals, 2 servo motors (42-oz
torque)]—$62.95

� (1) 1-ft length of Velcro material—$4.50

Parts are available from:

Images SI Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

www.imagesco.com

Chapter nine Team LRN

213

Mobile platforms

PLATFORMS ARE THE FOUNDATION FOR MOBILE ROBOTS.
There are two options: build or buy. If one has good mechanical
ability or is willing to learn, building a platform from scratch offers
distinct advantages. The platform is designed and built for the spe-
cific task and purpose of a robot. One has an almost unlimited
choice of drive motors, gearboxes, mechanical linkage, power sup-
plies, etc.

Buying a mobile platform relieves one from building a platform.
But one is left with the gear ratio and power and speed designed
for a different purpose. Here is a case in point: Most electric cars
move too fast. If one doesn’t have mechanical ability, this is the
way to go. Typically one buys a radio-controlled (R/C) electric
car. The radio controls are stripped from the unit. The electrical
connections (wires) to the steering control and drive motor are
retained.

Here are some things to keep in mind when purchasing an electric
car for conversion. First, don’t choose a car that’s too small or lies
too close to the ground. A small size will make it difficult to fit sen-
sor systems and microcontrollers onto the chassis. If the car lies too
close to the ground, it will get stuck easily. Choose a car with a high
wheelbase.

Figure 10.1 shows an electric car that is a bad choice for turning
into a mobile robot. It’s too small to carry substantial weight, and
notice how low to the ground it lies. This car will get stuck easily.
Figure 10.2 shows a better choice. The platform is larger (can fit
more components) and has a high wheelbase.

Mobile platforms

10

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

214

Stepper motors
If one wants to build a platform, stepper motors make excellent drive
motors. Some of the advantages of a stepper motor are as follows.
Because a stepper motor turns in precise increments per step, a
microcontroller can calculate the distance traveled by counting the
clock pulses given to the stepper motor and knowing the diameter
of the drive wheel. If two stepper motors are used on a mobile plat-
form, one on each side, for locomotion and steering, precision
turns are also possible. Because stepper motors are so important
in robotics, we will look at the fundamental operation of stepper
motors before we construct any circuits.

Chapter ten

� 10.1 Small electric RC car unsuitable for conversion

� 10.2 Large electric RC car suitable for conversion

Team LRN

215

Stepper motor construction and operation

Stepper motors are constructed using strong permanent magnets
and electromagnets. The permanent magnets are located on the
rotating shaft, called the rotor. The electromagnets or windings
are located on the stationary portion of the motor, called the stator.

Figure 10.3 illustrates a stepper motor stepping through one com-
plete rotation. The stator, or stationary portion of the motor, sur-
rounds the rotor.

In Fig. 10.3, position 1, we start with the rotor facing the upper elec-
tromagnet that is turned on. To move in a clockwise (CW) rotation,
the upper electromagnet is switched off as the electromagnet to the
right is switched on. This causes the rotor to rotate 90 degrees to
align itself to the electromagnet in a CW rotation, shown in position
2. Continuing in the same manner, the rotor is stepped through a
full rotation until we end up in the same position as we started,
shown in position 5.

Resolution

The degree of rotation per pulse is the resolution of the stepper
motor. In the illustrated example of Fig. 10.3, the rotor turned 90
degrees per pulse, not a very practical motor. A practical stepper
motor has a greater resolution (smaller steps), for instance, one that
rotates its shaft 1 degree per pulse (or step). This motor requires
360 pulses (or steps) to complete one revolution. When a stepper
motor is used for locomotion or positioning in a linear motion
table, each step of the motor translates to a precise increment of
linear movement.

Assume that one revolution of the motor is equal to 1" of linear
travel. For a stepper motor that rotates 3.75 degrees per step, the
increment of linear movement is approximately 0.01" per step. A
stepper motor that rotates 1.0 degrees per step would give approx-
imately 0.0027" per step. The increment of movement is inversely
proportional to the degrees per step.

Half stepping

It is possible to double the resolution of some stepper motors by
a process known as half stepping. The process is illustrated in
Fig. 10.4. In position I, the motor starts with the upper electro-
magnet switched on, as before. In position II the electromagnet to
the right is switched on while keeping power to the upper coil on.
Since both coils are on, the rotor is equally attracted to both elec-
tromagnets and positions itself in between both positions (a half

Mobile platformsTeam LRN

216

Chapter ten

� 10.3 Full stepping

� 10.4 Half stepping

Team LRN

217

step). In position III the upper electromagnet is switched off and the
rotor completes one step. Although I am only showing one half step,
the motor can be half stepped through the entire rotation.

Other types of stepper motors

There are four-wire stepper motors. These stepper motors are
called bipolar and have two coils, with a pair of leads to each coil.
Although the circuitry of this stepper motor is simpler than the one
we are using, it requires a more complex driving circuit. The circuit
must be able to reverse the current flow in the coils after it steps.

Real world

The stepper motor illustrated rotated 90 degrees per step. Real-
world stepper motors employ a series of mini-poles on the stator and
rotor. The mini-poles reduce the degrees per step and improve the
resolution of the stepper motor. Although the drawing in Fig. 10.5
appears more complex, its operation is identical to the previous
illustrations shown in Figs. 10.3 and 10.4.

The rotor in Fig. 10.5 is turning in a CW rotation. In the first posi-
tion the north pole of the permanent magnet on the rotor is
aligned with the south pole of the electromagnet on the stator. No-
tice that there are multiple positions that are all lined up. In the
second position the electromagnet is switched off and the coil to
its immediate left is switched on. This causes the rotor to rotate
CW by a precise amount. It continues in this same manner for all
the steps. After eight steps, the sequence of electric pulses would
start to repeat. Half stepping with the multipole position is identi-
cal to the half step described before.

Figure 10.6 is an electric equivalent circuit of a unipolar stepper
motor. The stepper motor has six wires coming out from the casing.

Mobile platforms

� 10.5 Multipole operation

Team LRN

218

We can see from Fig. 10.6 that three leads go to each half of the
coil windings and that the coil windings are connected in pairs. If
you just picked this stepper motor and didn’t know anything about
it, the simplest way to analyze it would be to check the electrical
resistance between the leads. By making a table of the wire colors
and resistances measured between the leads you would quickly
find which wires were connected to which coils. (In some cases a
unipolar stepper motor will only have five wires coming out of it.
In this case the center taps of the coils are wired together.)

The motor we are using has a 110-ohm resistance between the
center tap wire and each end lead and a 220-ohm resistance be-
tween the two end leads. A wire from each of the separate coils
will show an infinitely high resistance (no connection) between
them. Armed with this information you can just about tackle any
six-wire stepper motor you come across. The stepper motor we
are using rotates 1.8 degrees per step.

Chapter ten

Read Resistance Values to
Determine Wire Setup

� 10.6 Schematic of six-wire unipolar stepper motor

Team LRN

219

UCN-5804
Figure 10.7 is a schematic pin-out of the UCN-5804. This inte-
grated circuit (IC) is designed to control and drive a four-phase
unipolar stepper motor, such as the one we are using. Features of
the UCN-5804 are as follows:

� 1.25-ampere (A) maximum output current (continuous)

� 35-volt (35V) output sustaining voltage

� Full-step and half-step outputs

� Output enable and direction control

� Internal clamp diodes

� Power-on reset

� Internal thermal shutdown circuitry

The IC has a continuous output rating of 1.25 A per phase at a
maximum voltage of 35 V. This is more than enough power to run
our 12V stepper motor. The current required per phase (12 V/110
ohms � 0.11 A) is about one-tenth of an ampere.

The UCN-5804 internal logic sequences its output pins in time
with a square wave pulse delivered to pin 11. Each square wave
pulse (high to low transition) delivered to this pin increments the
stepper motor sequence.

When you reach the end of your table, the sequence repeats starting
from the top of the table. To reverse the stepper motor direction,
start the sequence from the bottom and work toward the top.

Pin 15 is the output enable. When this pin is held high, all outputs
on the IC are disabled (off). If this function isn’t required by your
circuit or system, this pin should be tied to ground (low).

Mobile platforms

� 10.7 UCN-5804 stepper motor controller chip

Team LRN

220 Pin 14 is the direction. When this pin is tied low or connected to
ground, it will follow the sequence in either Table 10.1 or 10.2
starting from the top line and working downward. When this pin is
tied high (15 V), it will reverse the sequence direction starting
from the bottom and working its way to the top.

Using the UCN-5804

Figure 10.8 is a schematic using the UCN-5804. The clocking signal
is provided by the 555 timer. The clocking signal may be increased
or decreased using potentiometer V1. Varying the frequency of the
clock signal directly controls the speed of the stepper motor. In this
chapter we show how the PIC microcontroller can drive a stepper
motor with or without specialty components.

In this schematic, three manual on/off switches control additional
functions. These pins that the switches are connected to can also
be controlled by the input/output (I/O) pins off the basic stamp
microcontroller. The switch connected to pin 15 is the enable pin.
When brought high, this pin disables the output of the UCN-5804
chip, stopping the stepper motor.

The switch connected to pin 14 controls the shaft’s direction, CW
or counterclockwise (CCW). A switch connected to pin 10 controls
the step/half-step function of the UCN-5804. When pin 10 is

Chapter ten

� Table 10.1 Full-Step Sequence

a b c d Output pins of UCN-5804
On — — — (see Fig. 10.7)
— On — —
— — On —
— — — On

� Table 10.2 Half-Step Sequence

a b c d Output pins of UCN-5804
On — — —
On On — —
— On — —
— On On —
— — On —
— — On On
— — — On
On — — On

Team LRN

221

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

8 7 6 2 1

4 3

78
05

2
1

3

R
1

O
ut

R
2

R
3

C
1

C
2

S
W

1
Fa

st
/S

lo
w

S
w

itc
h

R
4

10
0K

2-
P

ha
se

 S
te

p
p

er
 M

ot
or

S
W

2
(D

ire
ct

io
n)

16
V

10
0�

f

+
12

V

G
N

D

B
at

.
+

5V

+
12

V

IC
1

IC
2

B
ro

w
n

W
hi

te R
ed

Ye
llo

w

B
la

ck

B
lu

e

5V R
1

=
10

K
R

2
=

10
0K

R
3

=
47

K
R

4
=

10
0

p
ot

.
C

1
=

.2
0�

f
C

2
=

.0
22

�
f

IC
1

=
55

5
Ti

m
er

IC
2

=
U

N
C

-5
80

4B
IC

3
=

78
05

 V
ol

t.
R

eg
.

M
T

=
S

te
p

p
er

 M
ot

or

�
10

.8
S

ch
em

at
ic

 o
f b

as
ic

 s
te

p
p

er
 m

ot
or

 d
riv

er
 c

irc
ui

t

Team LRN

222

brought high, the chip operates in the half-step mode. This mode
doubles the resolution of the stepper motor. For instance, the motor
we are using rotates the shaft 1.8 degrees per step. When operating
in the half-step mode, the shaft rotates 0.9 degrees per step and the
overall rotation speed [revolutions per minute (rpm)] of the shaft
will be one-half of the speed of the full-step mode. If pin 10 is
brought to ground, the UCN-5804 will operate in full-step mode.

Connecting a wheel to a stepper motor shaft
Connecting a drive wheel to a shaft can become a major problem.
A simple solution is provided (see Fig. 10.9). Purchase a large-
diameter plastic gear with a set screw. The mounting hole on the
gear should match the shaft diameter of the stepper motor. Center
the gear on the wheel. Drill three holes, 120 degrees apart,
through the gear and wheel. Mount the wheel to the gear using
three machine screws, washers, and nuts. Next mount the wheel
gear assembly to the stepper motor shaft using the set screw.

Building a stepper microcontroller
Now let’s build a simple stepper motor controller from a PIC16F84
and examine the operating principles of stepper motors.

First stepper circuit

Figure 10.10 is the schematic for our first test circuit. The output
lines from the PIC16F84 are buffered using a 4050 hexadecimal
(hex) buffer chip. Each buffered signal line is connected to an NPN

Chapter ten

Set Screw

Machine ScrewGear

Shaft

Stepper Motor

Wheel

� 10.9 Connecting wheel to motor shaft

Team LRN

223

transistor. The TIP 120 transistor is actually an NPN Darlington; in
the schematic it is shown as a standard NPN. TIP 120 transistors
act like switches, turning on one stepper motor coil at a time.

The diodes placed across each transistor protect the transistor
from the inductive surge created when switching current on and
off in the stepper motor coils. The diode provides a safe return
path for the reverse current. Without the diodes, the transistor will
be more prone to failure and/or a shorter life.

Stepper motors

Figure 10.11 is an electric equivalent circuit of the stepper motor
we are using. The stepper motor has six wires coming out from the
casing.

Let’s assume you just picked this stepper motor and didn’t know
anything about it. As stated before, the simplest way to analyze the
motor is to check the electrical resistance between the leads. By
making a table of the resistances measured between the leads
you’ll quickly find which wires are connected to which coils.

Mobile platforms

� 10.10 Microcontroller stepper motor circuit

Team LRN

224

Figure 10.12 shows how the resistance of the motor we are using
looks. There is a 13-ohm resistance between the center tap wire
and each end lead, and 26 ohms between the two end leads. The
resistance reading from wires originating from separate coils will
show an infinitely high resistance (no connection). For instance,
this would be the case when reading the resistance between the
blue and brown leads. Armed with this information, you can wire
it properly into a circuit.

First test circuit and program

After you are finished constructing the test circuit, program the
PIC with the following BASIC program. The program is kept small

Chapter ten

� 10.11 Wiring of unipolar stepper motor

� 10.12 Resistance reading from leads of unipolar stepper motor

Team LRN

225

and simple to show how easy it is to get a stepper motor moving.
Table 10.3 shows that each step in the sequence turns on one tran-
sistor. Use Table 10.3 to follow the logic in the PICBASIC program.
When you reach the end of the table, the sequence repeats starting
back at the top of the table.

‘Stepper Motor Controller

Symbol TRISB = 134 ‘Initialize TRISB to 134

Symbol PortB = 6 ‘Initialize portb to 6

symbol ti = b6 ‘Initial ti delay

ti = 25 ‘Set delay to 25 ms

Poke TRISB,0 ‘Set PORTB lines output

start: ‘Forward rotation sequence

poke portb,1 ‘Step 1

pause ti ‘Delay

poke portb,2 ‘Step 2

pause ti ‘Delay

poke portb,4 ‘Step 3

pause ti ‘Delay

poke portb,8 ‘Step 4

pause ti ‘Delay

goto start ‘Do again

One rotation

Using whole steps, the stepper motor requires 200 pulses to com-
plete a single rotation (360 degrees/1.8 degrees per step). Having
the PIC microcontroller count pulses allows it to control and position
the stepper motor’s rotor.

Second PICBASIC program

This second PICBASIC program is far more versatile. The user can
modify programmed parameters (time delay) as the program is run-
ning using one of the four switches connected to port A. Pressing
switch 1 (SW1) lengthens the delay pause between steps in the
sequence and subsequently makes the stepper motor rotate
slower. Pressing SW2 has the opposite effect. If you press SW3,

Mobile platforms

� Table 10.3 Full-Step Transistors

Q1 Q2 Q3 Q4 Port B Output (decimal)

On — — — 1
— On — — 2
— — On — 4
— — — On 8

Team LRN

226

the program halts the stepper motor and stays in a holding loop for
as long as SW3 is closed (or pressed). Rotation direction, CW or
CCW, is controlled with SW4. Pressing SW4 reverses the stepper
motor direction. The direction stays in reverse for as long as SW4
is pressed (or closed).

‘Stepper motor controller

Symbol TRISB = 134 ‘Initialize TRISB to 134

Symbol TRISA = 133 ‘Initialize TRISA to 133

Symbol PortB = 6 ‘Initialize portb to 6

Symbol PortA = 5 ‘Initialize porta to 5

symbol ti = b6 ‘Initial ti delay

ti = 100 ‘Set delay to 100 ms

Poke TRISB,0 ‘Set PORTB lines output

start: ‘Forward stepper motor rotation sequence

poke portb,1 ‘Step 1

pause ti ‘Delay

poke portb,2 ‘Step 2

pause ti ‘Delay

poke portb,4 ‘Step 3

pause ti ‘Delay

poke portb,8 ‘Step 4

pause ti ‘Delay

goto check ‘Jump to check switch status

start2: ‘Reverse motor rotation sequence

poke portb,8 ‘Step 1

pause ti ‘Delay

poke portb,4 ‘Step 2

pause ti ‘Delay

poke portb,2 ‘Step 3

pause ti ‘Delay

poke portb,1 ‘Step 4

pause ti ‘Delay

goto check ‘Jump to check switch status

Check: ‘Switch status

Peek PortA, B0 ‘Peek the switches

If bit0 = 0 then loop1 ‘If SW1 is closed, increase ti

if bit1 = 0 then loop2 ‘If SW2 is closed, decrease ti

if bit2 = 0 then hold3 ‘Stop motor

if bit3 = 0 then start ‘Go forward

goto start2 ‘Go reverse

loop1: ‘Increase delay

poke portb,0 ‘Turn off transistors

ti = ti + 5 ‘Increase delay by 5 ms

pause 50 ‘Delay

Chapter ten Team LRN

227

if ti > 250 then hold1 ‘Limit delay to 250 ms

peek porta,b0 ‘Check switch status

if bit0 = 0 then loop1 ‘Still increasing delay?

goto check ‘If not, jump to main switch status

loop2: ‘Decrease delay

poke portb,0 ‘Turn off transistors

ti = ti � 5 ‘Decrease delay by 5 ms

pause 50 ‘Pause a moment

if ti < 20 then hold2 ‘Limit delay to 20 ms

peek porta,b0 ‘Check switch status

if bit1 = 0 then loop2 ‘Still decreasing delay?

goto check ‘If not, jump to main switch status

hold1: ‘Limit upper delay

ti = 245 ‘to 250 ms

goto loop1 ‘Go back

hold2: ‘Limit lower delay

ti = 25 ‘to 25 ms

goto loop2 ‘Go back

hold3: ‘Stop stepper motor

poke portb,0 ‘Turn off transistor

peek porta, b0 ‘Check switches

if bit2 = 0 then hold3 ‘Keep motor off?

goto check ‘If not, go to main switch status

check

The schematic for this program is shown in Fig. 10.13. In the photo-
graph of the circuit (see Fig. 10.14), the four switches are difficult
to make out. There are the four bare wire strips behind the PIC
microcontroller. The top sides of the bare wire strips are con-
nected to �5V through 10K-ohm resistors. A wire from each
switch is connected to the appropriate pin on port A. A single wire
is connected to ground and is used to close any of the switches by
touching the bare wire strip.

Half stepping

Half stepping the motor will effectively double the resolution. In
this instance it requires 400 pulses to complete one rotation. Table
10.4 shows the switching logic needed in a program. When you
reach the end of the table, the sequence repeats starting back at
the top of the table.

The ti delay variable

The ti variable used in each PICBASIC program controls a delay
pause whose purpose is to slow down the output sequence to port
B. Without the pause, the sequence may run too fast for the stepper
motor to respond, causing the stepper motor to malfunction.

Mobile platformsTeam LRN

228

You may want to vary the ti variable in the program depending
upon your PIC crystal speed. You can experiment with the ti vari-
able until you find the best range for your particular PIC.

Troubleshooting
If the motor doesn’t move at all, check the diodes. Make sure you
have them in properly, facing in the direction shown in the
schematic.

If the stepper motor moves slightly and/or quivers back and forth,
there are a number of possible causes.

1. If you are using a battery power supply, the batteries may be
too weak to power the motor properly. Note: Batteries wear
out quickly because the current draw from stepper motors is
usually high.

2. If you substituted the TIP 120 NPN transistor for another
transistor, the substitute transistor may not be switching

Chapter ten

� 10.13 Microcontroller stepper circuit with option switches

Team LRN

229

properly or the current load of the stepper motor may be too
great. Solution: Use TIP 120 transistors.

3. You have the stepper motor improperly wired into the circuit.
Check the coils using an ohmmeter and rewire if necessary.

4. The pulse frequency is too high. If the pulses to the stepper
motor are going faster than the motor can react, the motor
will malfunction. The pulse frequency is controlled by the ti
variable in the program. Increasing the value of this variable
will slow down the pulse frequency to the stepper motor. The
solution to this is to reduce the pulse frequency.

Using a PIC microcontroller and a UCN-5804 stepper
motor IC

We have controlled the stepper motor directly from the PIC chip.
We have also built a stepper motor controller using dedicated
stepper ICs. By incorporating stepper motor controller chips into
the PIC microcontroller design, we can derive benefits from both

Mobile platforms

� 10.14 Microcontroller stepper motor circuit

� Table 10.4 Half-Step Transistor

Q1 Q2 Q3 Q4 Port B Output (decimal)

On — — — 1
On On — — 3
— On — — 2
— On On — 6
— — On — 4
— — On On 12
— — — On 8
On — — On 9

Team LRN

230

components. The UCN-5804 does most of the grunt work of con-
trolling a stepper motor. This simplifies our microcontroller pro-
gram and overall circuit while enhancing the hardware, a good
combination.

The schematic for a stepper motor controller using a dedicated IC
is shown in Fig. 10.15, and a photograph of the circuit is shown in
Fig. 10.16. The UCN-5804 is powered by a 5V direct current (DC)
power supply. While internally powered by 5 V, it can control stepper
motor voltages up to 35 V.

Notice in the schematic that there are two resistors labeled “rx”
and “ry” that do not show any resistance value. Depending upon
the stepper motor, these resistors may or may not be necessary.
Their purpose is to limit current through the stepper motor to 1.25 A
(if necessary).

Let’s look at our 5V stepper motor. It has a coil resistance of 13
ohms. The current draw of this motor will be 5 V/13 ohms � 0.385
A, or 382 milliamperes (mA), well below the 1.25-A maximum rat-
ing of the UCN-5804. So in this case resistors rx and ry are not
needed and may be eliminated from the schematic.

Chapter ten

� 10.15 Schematic of microcontroller and stepper motor IC

Team LRN

231

Before we move on, let’s look at one more case. A 12V stepper motor
has a phase (coil) resistance of 6 ohms. The current drawn by this
motor is 12 V/6 ohms � 2 A. This is above the UCN-5804 maximum
current rating. To use this stepper motor, you must add the rx and ry
resistors. The rx and ry resistor values should be equal to each other,
so each phase will have the same torque. The values chosen for these
resistors should limit the current drawn to 1.25 A or less. In this case
the resistors should be at least 4 ohms [5 to 10 watts (W)]. With the
resistors in place the current drawn is 12 V/10 ohms � 1.20 A.

The inputs to the UCN-5804 are compatible with complementary
metal-oxide semiconductor (CMOS) and transistor-transistor logic
(TTL). This means we can connect the outputs from our PIC mi-
crocontroller directly to the UCN-5804 and expect it to function
properly. The step input (pin 11) to the UCN-5804 is generated by
the PIC microcontroller. The output enable pin when held low en-
ables the stepper motor; when brought high, it disables (stops)
the stepper motor.

Pins 10 and 14 on the UCN-5804 are controlled by switches that
bring the pins to a logic high or low. Pin 10 controls whether the
output to the stepper motor will be full-step or half-step, and pin
14 controls direction. If we want, these options may also be put
under the PIC control. The pins are brought to a logic high or low
to activate the options just like the output enable pin.

Mobile platforms

� 10.16 Microncontroller and stepper motor IC

Team LRN

232

The following is a PICBASIC program that uses a dedicated step-
per motor IC.
‘Stepper motor with UCN-5804

Symbol TRISB = 134 ‘Initialize TRISB to 134

Symbol PortB = 6 ‘Initialize portb to 6

Poke TRISB,0 ‘Set PORTB lines output

low1 ‘Bring output enable low to run

start:

pulsout 0, 10000 ‘Send 10-ms pulse to UCN-5804

goto start ‘Do again

In this case I again wrote a simple core program to show how easy it
is to get the stepper motor running. You can, of course, add options
to the program to change the pulse frequency, connect the direction
and step mode pins, etc.

Parts list for the stepper motor controller
� (1) 16F84 microcontroller

� (2) 22-picofarad (pF) capacitors

� (1) 4.0-MHz crystal

� (1) 4.7K-ohm, 1/4-W resistor

� (1) 555 timer

� (1) UCN-5804B stepper motor controller chip

� (1) Stepper motor [unipolar (six-wire)]

� (1) Step-down wall transformer

� (6) 1N914 diodes

� (4) TIP 120 NPN transistors

� (1) Voltage regulator (7805, 7812)

� (1) Rectifier 50V, 1 A

� (1) 150-�F capacitor

� (1) 4050 hex buffer chip

� Miscellaneous: Solderless breadboard

Parts are available from: Images Company, James Electronics, JDR
MicroDevices, and Radio Shack. See Suppliers at the end of the
book.

Chapter ten Team LRN

233

Walker robots

WALKERS ARE A CLASS OF ROBOTS THAT IMITATE THE
locomotion of animals and insects. Essentially, walker robots
use legs for locomotion. Locomotion by legs is hundreds of mil-
lions of years old. In contrast to this, wheels are relatively a new
science, being only 7000 to 10,000 years old. Wheels are good,
but they require a relatively smooth surface to ride upon. Just
look at an aerial photograph of any city or suburb to see the
highways and streets crisscrossing the landscape.

Why build walkers?
Walker robots have the potential to transverse rough terrain that
is impassable by standard wheeled vehicles. It is with this in mind
that robotists are developing walker robots.

Imitation of life
Sophisticated walkers imitate insects, crabs, and sometimes hu-
mans. Bipedal walkers are rare, requiring a good deal of engineering
science. I plan to have a bipedal walker robot project in my next
book on robotics, tentatively titled Pic-Robotics. In this chapter we
will build a six-legged walker robot.

Six legs—tripod gait
Using a six-legged model we can demonstrate the famous tripod
gait used by the majority of legged creatures. In the following
drawings a dark circle means the foot is firmly planted on the
ground and supporting the weight of the creature. A light circle
means the foot is up and movable.

Walker robots

11

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

234

Figure 11.1 shows our creature at rest. All feet are on the ground.
From the resting position our creature decides to move forward. To
step forward, it lifts three of its legs (see Fig. 11.2, white circles),
leaving its weight on the remaining three legs (dark circles). Notice
that the legs supporting the weight (dark circles) are in the shape of
a tripod. This is a stable weight-supporting position. Our creature is
unlikely to fall over. The three lifted legs (white circles) are free to
move, and they move forward.

Figure 11.3 illustrates where the three lifted legs move. At this point,
the creature’s weight shifts from the stationary legs to the movable
legs (see Fig. 11.4). Notice that the creature’s weight is still sup-
ported by a tripod position of legs. Now the other set of legs move
forward and the cycle repeats. This is called a tripod gait, because
the creature’s weight is always supported by a tripod positioning
of legs.

Creating a walker robot
There are a lot of little wind-up toy walkers around. These toy
walkers move their legs up and down, back and forth, using a ro-
tary cam mechanism. While these walkers work, and some are sur-
prisingly fast, our task is to build a walker that does not use a
rotary cam to imitate walking.

Chapter eleven

� 11.1 Tripod gait, at rest

� 11.2 Tripod gait, first move forward

Team LRN

235

We will build a walker robot that imitates a tripod gait. The walker
outlined in this chapter requires a minimum of three servo motors.
There are numerous hexapod and quadrapod walker designs that
require greater freedom of movement per leg. Greater freedom of
movement per leg means more independent drivers per leg. If one
is using servo motor drivers, this can be achieved using two, three,
or four servo motors per leg.

The need for so many servo motors (drivers) is because each leg
on the walker needs to have a minimum of two axes (degrees) of
freedom. One to move up or down and the second to move (swing)
forward and back.

Three-servo walker

The walker robot we will make is a compromise in design and con-
struction, but requires only three servo motors. Even so, using just
three servo motors, it is a true tripod gait walker. Our walker uses
three lightweight HS300 servo motors [42-ounce (oz) torque] and
a 16F84-04 microcontroller.

Walker robots

� 11.3 Tripod gait, second move,
shifting weight

� 11.4 Tripod gait, third move

Team LRN

236 Function

Before we get into the construction of this robot, let’s first look at the
finished robot shown in Fig. 11.5 and analyze how this robot walks.
The tripod gait I am using for this robot isn’t the only gait available.

At the front of the robot we have two servo motors. Each servo
motor controls the two legs on its side, the front leg and the back leg.
The front leg is attached directly to the rotor of the servo motor. It is
capable of swinging forward and backward. The back leg connects to
the front leg through a linkage. The linkage makes the back leg fol-
low the action of the front leg as it moves forward and back.

The two center legs are controlled by a third servo motor. This
servo motor rotates the center legs 20 to 30 degrees in a clockwise
(CW) or counterclockwise (CCW) rotation that tilts the robot to
the left or right.

With this information under our belt we can now look to see how
our robot will walk. Look at Fig. 11.6. We start in the rest position.
Each circle represents a leg. As before, the dark circles show the
weight-bearing legs. Notice in the rest position, the center legs do
not support any weight. These legs are 1/8" shorter than the front
and back legs.

Chapter eleven

� 11.5 Hexapod walker ready to run

Team LRN

237

In position A the center legs are rotated CW by about 20 degrees
from center position. This causes the robot to tilt to the right. The
weight distribution is now on the front and back right legs and the
center left leg. This is the standard “tripod” position described ear-
lier. Since there is no weight on the front and back left legs, they are
free to move forward as shown in the B position of Fig. 11.6.

In the C position the center legs are rotated CCW by about 20 de-
grees from center position. This causes the robot to tilt to the left.
The weight distribution is now on the front and back left legs and
the center right leg. Since there is no weight on the front and back
right legs, they are free to move forward as shown in the D position.

In the E position the center legs are rotated back to their center
position. The robot is not in a tilted position, so its weight is dis-
tributed on the front and back legs. In the F position, the front and
back legs are moved backward simultaneously, causing the robot
to move forward. The walking cycle then repeats.

This is the first gait pattern I tried, and it worked. There are other
walking patterns you can design, develop, and experiment with. I will
leave it to you to develop walking patterns for reverse (walking back-
ward), turning left, and turning right. In my next book on robotics,
I will continue the development of this robot, providing wall and

Walker robots

� 11.6 Hexapod’s walking gate

Team LRN

238

collision sensors as well as providing the ability to walk backwards
and turn.

Construction

For the main body I used a sheet of aluminum 3" wide, 8" long, and
0.032" thick. The servo motors are mounted to the front of the body
(see Fig. 11.7). The drawings of the servo motor holes shown should
be photocopied and taped to the aluminum sheet. The photocopy
will provide accurate hole locations for mounting the servo motors.

The four 11/64"-diameter holes a little past halfway down the main
body are for mounting the center servo motor. These four holes are

Chapter eleven

L R

11/64

1/2Ø

11/64Ø

3/16"
(5 mm)

1/4Ø

Servomotor &
hole placement

Servomotors:
H5300, 42 oz

8" (203 mm)

Pivot holes
for back

3/4"
(19 mm)

3/4"
(19 mm)

3"
(76 mm)

2"
(51 mm)

(25 mm) 1"

(59 mm)

25/16"

bracket holes
for third center
servomotor

(2
5

m
m

)

� 11.7 Main body

Team LRN

239

offset to the right side. This is necessary to align the servo motor’s
horn in the center of the body. The bottom two holes are for
mounting the pivots for the two back legs.

Use a punch to dimple the metal in the center of each hole you
plan to drill. This will prevent the drill bit from walking when you
drill the hole. If you don’t have a punch available, use the pointed
tip of a nail for a quick substitute.

The legs for the robot are made from 1/2" wide � 1/8" thick aluminum
bar stock (see Fig. 11.8). There are four holes that are drilled into
the two front legs. The back legs only need two holes each, one for
the pivot and the other for the linkage. Also notice that the back
legs are 1⁄4" shorter than the front legs. This compensates for the
height of the servo motor mounting horn on the front servo motors
where the front legs are attached. Shortening the back legs makes
the robot platform level.

After the holes are drilled, we need to bend the aluminum bar into
shape. Secure the aluminum bar in a vise 23/4" from the end with
the drilled holes. Apply pressure to bend the aluminum bar at a 90
degree angle. It’s best to apply pressure at the base of the aluminum
bar close to the vise. This will bend the leg at a 90 degree angle,
while keeping the lower portion of the leg straight without any
bowing of the lower portion.

The center legs are made from one piece of aluminum (see Fig.
11.9). The center legs are about 1/8" shorter than the front and
back legs when mounted to the robot. So when centered, the legs
do not support any weight. These legs are for tilting the robot to

Walker robots

33/4"
(95 mm)

31/4"
(82 mm)

3/4"

3/4"

90°

90°

Linkage
hole

Linkage
hole

Front leg
(quantity: 2)

Back leg
(quantity: 2)

Servo horn
mounting holes

2"
(51 mm)

2"
(51 mm)

23/4"
(70 mm)

23/4"
(70 mm)

13/16"
1/4"
hole

1/4" hole

1/16" hole
(for 0-80 screws)

(Holes to mount to servomotor horn)

Top view

Material: 1/8" x 1/2" aluminum bar stock

� 11.8 Construction of front and back legs

Team LRN

240

the left or right. The legs tilt the robot by rotating the center servo
motor approximately ±20 degrees.

To produce the center legs, first drill the mounting holes in the
center of the 1/8" � 1/2" � 91/4" aluminum bar. Secure the aluminum
bar in a vise. The top of the vise should hold the aluminum bar 3/4"
from the center of the aluminum bar. Grab the aluminum bar with
pliers about 1/2" above the vise. Keeping a secure grip with the pliers,
slowly twist the aluminum bar 90 degrees. Don’t go fast or you could
easily snap the aluminum bar. Repeat the twist on the other side.

After the two 90 degree twists have been made, make the other 90
degree bend for the legs as we have done before for the front and
back legs.

Mounting the servo motors

The front servo motors are attached to the aluminum body using
plastic 6-32 machine screws and nuts. The reason I am using plastic
screws is that they are a little flexible, allowing the drilled holes to
be slightly off center from the mounting holes on the servo motor.

The legs are attached to the servo motor’s plastic horn. For this I
used 0-80 machine screws and nuts. When mounting the servo
motor horn on the servo motor, make sure that each leg can swing
forward and backward an equal amount from a perpendicular
position.

Linkage

The linkage between the front and back legs is made from 4-40
threaded rod (see Fig. 11.10). In the prototype robot the linkage
is 53/4" center to center. The linkage fits inside the holes in the

Chapter eleven

90°

90° twist 90° twist

90° 13/4" (44.5 mm)

53/4" (150 mm)

Material: 1/8" x 1/2" x 91/4"
aluminum bar

� 11.9 Center legs

Team LRN

241

front and back legs. The linkage may be secured using a few 4-40
hex nuts.

The back legs must be attached to the body of the robot before
you make the linkage. The pivot for the back legs is made from a
3/8" binding post and screw. The leg is attached as shown in the
close-up in Fig. 11.10. The plastic washers underneath the body
are necessary. They fill up the space between the aluminum body
and the bottom of the screw. This keeps the leg close to the alu-
minum body without sagging. I chose plastic washers for less friction.
Do not use so many washers that force is created binding the leg to
the body. The joint should pivot freely. Look at Figs. 11.11 and 11.12
for pictures of our hexapod walker robot thus far.

Center servo motor

Attaching the center servo motor to the body requires two L-shaped
brackets (see Fig. 11.13). Drill the holes in the aluminum stock,
and then bend at a 90 degree angle to form the L brackets. Attach
the two L brackets to the center servo motor using the plastic

Walker robots

L

R

53/4"
(146 mm)4-40

threaded rod

4-40
threaded

rod

Pivot

Binding post & screw

Nuts

Close-Up

Plastic
washers

Leg

Body

� 11.10 Close-up of pivot and linkage

Team LRN

242

screws and nuts (see Fig. 11.14). Next mount the center servo mo-
tor assembly under the robot body. Align the four holes in the body
with the top holes in the L brackets. Secure with plastic screws and
nuts. Figures 11.15 and 11.16 show the under side and top side of
the hexapod robot.

Chapter eleven

� 11.11 Underside of hexapod with two front servo motors

� 11.12 Midconstruction of hexapod with two front servo motors

Team LRN

243

Electronics

Figure 11.17 shows the schematic for the servo motors and PIC
microcontroller. Notice the 6V battery pack is powering the micro-
controller as well as the servo motors. The battery pack is 16V

Walker robots

� 11.14 Center servo motor with brackets and center legs attached

� 11.13 Center servo motor bracket

11/64 Ø

3/8"
(9.5 mm)

3/8"
(9.5 mm)

11/4"
(32 mm)

11/4"
(32 mm)

Bend point
90°

Quality: 2

1:1 scale

Material: 1/2" x 1/8"
Aluminum bar

11/4"
(32 mm)

90° Bend at 90°

Servomotor
holes: 11/64 Ø

Team LRN

244

using 4 AA batteries. The microcontroller circuit is built on a small
solderless breadboard. The battery pack and circuit are laid on top
of the aluminum body. Figure 11.5 shows the completed walker
ready to run.

Microcontroller program
The 16F84 microcontroller controls the three servo motors. There
are plenty of input/output (I/O) lines and programming space left
over to improve and add to this basic walker.

Chapter eleven

� 11.15 Underside of hexapod walker with three servo motors

� 11.16 Hexapod walker ready for control electronics

Team LRN

245
PICBASIC program

‘Hexapod walker

‘ The connections

‘ Left servo motor Pin RB1

‘ Right servo motor Pin RB2

‘ Tilt servo motor Pin RB0

‘ Moves in forward direction only

start:
FOR B0 � 1 TO 60

pulsout 0,155 ‘ Start by tilting CW, lift right side

pulsout 1,145 ‘ Keep left legs back

pulsout 2,145 ‘ Bring right legs forward

pause 18

NEXT B0

FOR B0 � 1 TO 60

pulsout 0,190 ‘ Tilt CCW, lift left side

pulsout 1,200 ‘ Bring left legs forward

pulsout 2,145 ‘ Keep right legs forward

pause 18

NEXT B0

for b0 � 1 to 15

pulsout 0,172 ‘ No tilt

pulsout 1,200 ‘ Keep left legs forward

Walker robots

� 11.17 Schematic of hexapod walker

Team LRN

246

pulsout 2,145 ‘ Keep right legs forward

pause 18

next b0

for B0 � 1 to 60

pulsout 0,172 ‘No tilt

pulsout 1,145 ‘ Bring left legs back

pulsout 2,200 ‘ Bring right legs back

pause 18

next b0

goto start

Not all servo motors are exactly alike or respond in an identical
manner to the same pulsout command. The servo motors you
purchase to build this robot will probably vary somewhat from the
servo motors I used. Keeping this in mind, the pulsout com-
mands that control the position of the servo motors may need to
be adjusted. Adjust the numerical value of the pulsout com-
mands to compensate for the particular servo motors used in your
hexapod robot walker.

While this PICBASIC program only provides for forward motion, a
little experimentation on the part of robotists can have this robot
turning to the left or right and walking backward. A few sensor
switches on the front can inform the robot when it has encoun-
tered an obstacle.

Parts list for the walker robot
� Servo motors

� 16F84 microcontrollers

� Aluminum bars

� Aluminum sheets

� 4-40 threaded rods and nuts

� Plastic machine screws, nuts, and washers

Parts are available from:

Images Company
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

http://www.imagesco.com

Chapter eleven Team LRN

247

Solar-ball robot

THE INSPIRATION FOR THIS ROBOT ORIGINALLY BEGAN WITH
Richard Weait of North York, Toronto. Richard created a light-
seeking robot in a transparent globe (ball). More recently, Dave
Hrynkiw from Calgary, Canada, picked up the ball (so to speak)
and developed a series of light-seeking mobile solar-ball robots.

There are two features to this mobile robot that are interesting
(see Fig. 12.1). First is the method of locomotion. Inside the globe
is a gearbox. One end of the gearbox’s shaft is secured and locked
to the inside of the inner surface of the transparent globe. The
shaft being locked cannot rotate, which forces the gearbox itself to
rotate. The gearbox is heavy, which moves the center of gravity of
the sphere forward. In doing so, the sphere moves forward.

When at rest, the weight of the gearbox keeps it at bottom dead
center (the gearbox facing down), and the ball resists rolling.
When the gearbox is activated, the box begins to rotate inside the
globe. This moves the center of gravity of the ball forward, causing
the ball to roll forward.

The second feature relates to the power supply for the gearbox. The
original solar robots had an onboard power supply that provided
intermittent power to the gearbox. (For more information on this
type of power supply, see Chap. 3.) The onboard power supply
consists of a solar cell, a main capacitor, and a slow oscillating or
trigger circuit. When exposed to sunlight, the solar cell begins
charging the circuit’s main capacitor. When the capacitor reaches
a certain voltage, a trigger circuit dumps the stored electricity
through a high-efficiency motor connected to the gearbox, causing
the robot to move forward a little.

Solar-ball robot

12

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

248

This solar-ball robot uses a similar gearbox assembly, but for power
uses two standard AA batteries. The disadvantage to batteries is
that they must be replaced when worn out. The advantage, how-
ever, is that they supply continuous power to the robot, allowing
one to easily study its behavior (mainly phototropism), locomotion,
and mobility.

With the original solar-ball robot, one needs to use time-lapse pho-
tography to study these effects. The charging of the capacitor
takes a few minutes, depending on the intensity of sunlight. When
the electricity is discharged into the motor, the robot lurches for-
ward a short distance. For example, 10 hours (h) of motion with
the original solar ball can be compressed into a few minutes of
study with this robot.

While this particular robot doesn’t incorporate the electronics for
an onboard power supply, it still uses a light trigger. The circuit
shown in Fig 12.2 controls the power from the batteries to the

Chapter twelve

� 12.1 Solar-ball robot

Team LRN

249

gearbox motor. The circuit reads the level of illumination that the
robot sees. If the light level is high enough, it turns on the motor to
the gearbox. The trip level of the circuit is user adjustable using
potentiometer V1.

Gearbox
Before we get into the construction of the robot, let’s first look at
the gearbox (see Fig. 12.3). Physically, this gearbox is smaller than
many gearboxes and is easier to fit inside the sphere. It has a
1000:1 gear ratio. The higher the gear ratio, the slower the robot
will move.

Solar-ball robot

� 12.3 Gearbox 1000:1 ratio

� 12.2 Schematic of solar-ball circuit

Motor

7

1 5
7

6
4

2

3

R3

V1
4.7K R2

15K

R1
33K

C1
.0047

R4
15K

Tip
120
Q1

VccVccVccVcc

Team LRN

250

In the prototype, the gearbox is set to the 1000:1 ratio. You can use
any gearbox that can fit and rotate inside the 51/2" transparent
sphere. Choose one with a high gear ratio that delivers low revolu-
tions per minute (7 rpm).

Robot construction
The shell is the first component for consideration. It must be trans-
parent and large enough to hold the gearbox and electronics. The
shell used in my prototype has a diameter of 51/2". Snap-together
transparent spheres are available in many hobby and craft stores.
Hobbyists use them to enclose holiday ornaments, If you cannot
find a suitable shell locally, you can purchase one from Images SI
(see the parts list at the end of this chapter). The plastic shell is
fragile. Do not have your robot try to climb or fall down stairs; it
is sure to crack and break.

Separate the two halves of the shell. The first job is to locate the
center of each half sphere.This is where the shafts of the gearbox
will be connected. Locating the center at first appears much easier
than it actually is. To find the center, I was forced to trace the diam-
eter of the shell on white paper, then draw a box around the drawn
circle that touched the circle on four sides (see Fig. 12.4). Drawing

Chapter twelve

� 12.4 Layout for finding circle center

Team LRN

251
the diagonal lines from the corners of the box, I was able to locate
the circle center. The half sphere is then positioned over the drawn
circle. If you hold your head directly over the half sphere, you may
be able to eyeball the center and mark it on the sphere with a magic
marker. I tried this once or twice with less than ideal results. Finally,
I taped the paper on a 1/2" piece of wood and drilled a small hole at
dead center. Then I placed a small dowel, about 2.5" long, in the
hole, making sure it was perpendicular to the wood. Place the half
sphere over the fixture, lining up its diameter with the drawn circle;
the dowel locates the center of the sphere fairly accurately. Mark
the center of one half sphere, and then the other.

The next step is to make a drive-locking fixture in the sphere that
prevents the gearbox shaft from rotating freely inside. With the
shaft locked, it forces the gearbox itself to rotate inside the sphere,
changing the center of gravity and moving the robot along. The
drive fixture must at the same time allow the sphere to be assem-
bled or unassembled at will. The system I devised is illustrated in
Figs. 12.5 and 12.6. Although I built all the drive components out of
transparent plastic on the prototype, you can fabricate the parts
out of other materials like brass and wood.

Solar-ball robot

� 12.5 Transparent sphere drive components

Team LRN

252
The first component is a small length of tubing 5/8" outside diameter
(OD), 1/2" inside diameter (ID), and about 3/8" long. This tubing is
glued to the center of the half sphere, using the marks as a guide.

Inside the tubing, glue a 1/2"-diameter half round about 3/8" long.
This piece may be glued inside the tubing before the tubing itself
is glued into the sphere.

Next, cut a small length of 1/2"-diameter solid rod. On one end of
the rod, remove a 3/8" half section. This is accomplished using a
hacksaw or coping saw. First make a cut directly down the center
of the rod about 3/8" deep. Then make a horizontal cut to remove
the half section. Check to make sure this shaft fits easily into the
3/8" tube and half round assembly inside the half sphere. If not, file
the cut end until it does. At the opposite end of this rod, drill a hole
down the center that will fit the shaft from the gearbox.

Note: On the prototype robot, I made the second shaft a drive con-
nection also. Only when the robot was finished did I realize that
this was unnecessary. A single drive connection works just as well
as a double.

The second half sphere is easier to make. Glue a small length of
5/8"-OD, 1/2"-ID tubing to the center of the half sphere, using the

Chapter twelve

� 12.6 Gearbox placement in sphere

Team LRN

253

mark as a guide. Cut a small length of 1/2"-diameter solid rod. Check
to make sure the shaft fits easily into the 5/8" tubing. If not, obtain a
small piece of 100-grit sandpaper. Wrap the sandpaper around a 1/2"
length on the end of the shaft. Twist the sandpaper around on the
shaft to sand the end. Continue sanding until the end of the shaft
fits easily into and out of the tubing. Next, drill a hole down the
center that will fit the shaft from the gearbox.

We want the gearbox to be positioned in the center of the sphere.
Place the shaft of the gearbox in the plastic rod. Place the rod in
the tubing on half the sphere of the globe.

Position the gearbox so that it will lie in the center. Mark the depth
the gearbox shaft must go into the plastic rod on the gearbox
shaft. Remove the gearbox shaft. Mix a small amount of two-part
epoxy glue. Coat the gearbox shaft with the epoxy glue and insert
it into the plastic rod. Let the glue set before proceeding.

Once the glue has dried on the first shaft, we must glue the other
plastic rod on the opposite side of the shaft. Position the glued rod
into the half sphere. Place the other plastic rod on the opposite
shaft. Place the other half sphere together with the first. Gauge
the depth the gearbox shaft must be inserted in the plastic rod,
and then add another 1/8" of depth for error. Glue and let set. Check
your work while the glue is setting on the second shaft to ensure
that you can close the sphere properly.

Electronics
The electronic circuit is a light-activated on/off switch. When the
ambient light level is low (user adjustable), the circuit shuts off
power to the gearbox. The user adjusts the sensitivity of the cir-
cuit using potentiometer V1.

There is nothing crucial about the circuit. If you do not wish to
purchase or make the printed circuit board (PCB), the circuit may
be wired and assembled on a standard breadboard.

How it works

The circuit configures a complementary metal-oxide semiconduc-
tor (CMOS) operational amplifier (op-amp) as a voltage compara-
tor. A comparator monitors two input voltages. One voltage is set
up as a reference voltage called “Vref.” The other voltage is the in-
put voltage called “Vin,” which is the voltage to be compared.
When the Vin voltage falls above or below the Vref, the output of
the comparator (pin 6) changes states.

Solar-ball robotTeam LRN

254

The two input voltages are applied to pins 2 and 3. Pin 2 (inverting
input) is connected to a reference voltage of approximately 1.5V,
using a simple voltage divider made of resistors R1 and R2.

Photosensitive resistor R3 makes up another voltage divider in
conjunction with potentiometer V1, which is connected to the
noninverting input (pin 3) of the op-amp.

There is no feedback resistor between the output (pin 6) and either
of the inputs (pins 2 and 3). This forces the op-amp to operate at its
open loop gain.

A cadmium-sulfide (CdS) photoresistor is used as the light sensor.
A photoresistor changes resistance in proportion to the intensity
of the light that falls on its surface. The CdS cell produces its
greatest resistance in total darkness. As the light intensity increases,
its resistance decreases. In the circuit, the CdS cell is part of a volt-
age divider. The changing resistance of the CdS cell changes the
voltage drop across the potentiometer V1, which is connected to
pin 3. As the light intensity increases, the resistance of the CdS
cell decreases, which increases the voltage drop across the poten-
tiometer. This increased voltage drop is seen as a rising voltage.
The trigger voltage can be set for different light levels using the
potentiometer.

The electronic circuit is not crucial. You can construct the circuit
using point-to-point soldering on a prototyping breadboard. A
PCB is available from a kit, or you can make it yourself. The PCB
artwork is illustrated in Fig. 12.7. Parts placement on the board is
shown in Fig. 12.8.

Once the circuit is complete, you need to adjust the light level that
will activate the circuit using potentiometer V1. Make temporary
connections to the gearbox motor using alligator clip wires. Power
to the circuit and gearbox is obtained from two AA cells, and the AA
cell pack is glued to the back of the gearbox during final assembly.
Make sure the battery pack has a battery clip for easily discon-
necting and connecting power.

Chapter twelve

� 12.7 PCB layout

Team LRN

255

When making the light-level adjustment, use a low level of light to
activate the robot. When the robot is on the floor, if the light level
is set too high it will stop every time it passes under a shadow.

Putting it all together
Once the circuit is adjusted, you are ready for the final assembly.
Glue the AA battery pack to the back of the gearbox, making sure
that no glue comes into contact with any of the gears. Glue the elec-
tronic circuit board to the front of the gearbox, again making sure
that none of the glue touches any of the gears. Connect the power
supply. At this point the gearbox will probably start turning. To load
the mechanism inside the robot, bring all the parts into a dark room
to deactivate the circuit. Load the assembly inside the sphere.

Take the robot out into the light. The gearbox should become active.
Place the robot on the floor. The robot should travel toward or in
the direction of light. If the robot does the opposite, stop the robot,
remove the gearbox and electronics, and reverse the wires leading
to the motor.

Locomotion
I was pleasantly surprised when I began observing this robot. I
originally thought it would become trapped easily. Not so. When
the robot enters a corner and stops, the gearbox inside begins
swinging all the way up and over, radically shifting its weight over
top dead center and moving the robot out of the corner.

Advancing the design
When I originally designed this robot, I planned to use a steering
mechanism to track a light source. However, the small steering
mechanism didn’t have enough weight to turn the robot in any di-
rection quickly. In the long run, other factors (terrain, obstacles,

Solar-ball robot

� 12.8 PCB parts placement

Team LRN

256

etc.) affect its direction. Hence I removed the steering. But this is
still a good research area for advancing the overall design.

Adding higher behavior module

As the robot stands, when a certain level of light is reached it be-
comes active. We can add a higher behavior mode, feeding, by
adding a few more components (two solar cells and steering diodes)
and another comparator circuit. The second comparator circuit will
deactivate the motor when the light illumination level becomes high
enough, allowing the solar cells to charge the AA batteries, which
will be changed to nickel-cadmium (NiCd) batteries.

Figure 12.9 illustrates the behavior. When the light level is low, the
robot is off, or we can say it is in a resting mode. As illumination in-
creases, it reaches a point where the motor turns on and the robot
enters its searching mode. When the light level increases signifi-
cantly beyond this point (searching mode), the second comparator
turns off power to the gearbox motor, allowing the two solar cells to
charge the AA NiCd batteries, which triggers the feeding mode.

If you plan to add this feeding behavior circuit, keep track of the
current drain to the comparator circuits. It must not exceed the cur-
rent supplied by the solar cells or obviously no charging to the NiCd
batteries will occur.

Parts list for the solar-ball robot
� (1) 51/2" transparent plastic globe (see text earlier in this

chapter)

� (1) Gearbox (see text earlier in this chapter)

� (1) 6" length of 1/2" solid plastic rod

� (1) 3" length of 5/8"-OD, 1/2"-ID plastic tubing

� (1) 1" length of 1/2" half-round plastic rod

Chapter twelve

� 12.9 Layering higher behavior

Team LRN

257

Electronics

� (1) 5V CMOS op-amp ALD 1702 or equivalent

� (1) 33K-ohm, 1/4-W resistor

� (1) CdS photoresistor

� (1) 4.7K-ohm potentiometer (PC mount)

� (2) 15K-ohm resistors

� (1) 0.0047-�F capacitor

� (1) TiP 120 NPN Darlington

� (1) PCB

A kit containing all the above components is $65.00. Shipping and
handling via UPS Ground Service is $9.50. New York state residents
add 8.25% sales tax.

Parts are available from:

Images SI, Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

Solar-ball robotTeam LRN

This page intentionally left blank.

Team LRN

259

Underwater bots

UNDERWATER ROBOTICS IS AN EXPANSIVE FIELD. MOST
underwater robots are designed for salvage operations or explo-
ration. In the future, underwater robots will help farm the ocean
for fish, pharmaceuticals, minerals, and energy.

Underwater robots may also be used as mock-ups to test space-
faring robots. A neutrally buoyant robot is essentially weightless.
Propellers and motors replace rockets on these underwater robots.
The lack of friction encountered in space can only be simulated in
the underwater environment. If you want to design a robot that will
function in space, a good place to start is with an underwater robot.

The National Aeronautics and Space Administration (NASA) has
funded the development of telepresence remotely operated vehi-
cles (TROVs) (see Fig. 13.1) and autonomous underwater vehicles
(AUVs). The TROV tests virtual-reality (VR) based telerobotic
techniques. Telepresence technologies are increasingly more impor-
tant in exploration and hazardous duty. Telepresence technology
will continue to grow in these fields and expand into others like
entertainment.

Dolphins and tunas
Interestingly, studies are being conducted that examine the swim-
ming motion and propulsion of fish. It is common knowledge that
underwater animals move and swim more efficiently than a ship’s
propeller can move a ship. Want to prove this to yourself easily?
Have you ever tapped on the glass of an aquarium filled with fish?
The sudden noise sometimes causes the fish to dart around so
quickly your eyes can’t follow their movement. Imagine if you

Underwater bots

13

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

260

could design a ship that could move that fast, that suddenly. It’s
not surprising then that the U.S. government is funding some of
these studies.

How efficient are fish at swimming compared to our current
method of water propulsion? Let’s glimpse at a partial analysis. In
1936 James Gray, a British zoologist, studied dolphins. His pur-
pose was to calculate the power a dolphin needed to move itself at
20 knots, a speed at which dolphins are commonly reported to be
able to swim. Gray’s model of the dolphin was rigid, assuming that
the water resistance for a moving dolphin is the same for a rigid
model and flexible model. This is not true, but even accounting for
this error, the conclusion Gray calculated is interesting. The dol-
phin is too weak, by a factor of 7, to attain the 20-knot speed. One
may further deduce that the dolphin may be able to reduce its water
resistance by a factor of 7 to compensate. But this probably isn’t the
entire answer either.

Well, for the last 60 years no one has been able to prove or dis-
prove Gray’s calculations conclusively. Any swimming mechanism
that mimics fishlike swimming is grossly inefficient. Recently new
studies are under way to again study fishlike swimming. With new
computer technology behind this endeavor, scientists hope to an-
swer these long-held questions.

Researchers at the Massachusetts Institute of Technology (MIT) in
Cambridge have been studying the bluefin tuna for the last several

Chapter thirteen

� 13.1 NASA TROV craft. Photo courtesy of NASA

Team LRN

261

years. They have created a 4-foot (ft) model “robot fish” that
swims down the Ocean Engineering Test Tank Facility. The robot
fish resembles a real fish. The skin is made of foam and Lycra. The
robot uses six external motors that are connected to pulleys and
tendons within the robot. The fish moves and swims like a real
bluefin tuna.

Swimming with foils
The tail of a fish is considered a hydrofoil. As the tail flaps side to
side, it pushes water backwards and propels the fish forward. As the
tail moves, vortexes are formed in the water behind it. It is believed
that the vortex formation is key to understanding the greater effi-
ciency of fish propulsion.

Dolphins are interesting; their hydrofoil tail lies horizontal. So
instead of moving their tails side to side like fish, they move their
tails up and down. This creates the same efficient thrust in water
propelling the dolphin forward.

Penguins swim by using the thrust generated by their wings. Pic-
tures of penguins swimming in water strongly resemble those of
flying birds. There is a difference though. With birds in flight, the
beating of their wings must supply lift as well as forward thrust.
The lift is necessary to counteract the force of gravity. With penguins
there is no necessity of lift. The density of water equals that of a pen-
guin’s body (neutral buoyancy), so the flapping of a penguin’s wings
simply needs to produce forward thrust.

Paddles and rows
Since we’re looking at methods of locomotion in water, we might
as well include paddles and rows. Ducks use their webbed feet as
paddles when swimming through water. Water beetles use their
legs as oars and row themselves along like tiny boats.

What have we learned so far?
Studies at MIT lead researchers to use a fluid dynamic parameter
known as the Strouhal number. For fish, the number is calculated
by multiplying the frequency of the tail flapping back and forth by
the width of the vortex created in the water divided by the fish’s
speed. A number of species of fish were studied. The results were
that maximum efficiency is found when the Strouhal number lies
between 0.25 and 0.35.

Underwater botsTeam LRN

262

When the foils of the robot fish at MIT were adjusted and recon-
figured to generate a Strouhal number in this range, its efficiency
jumped higher than 86 percent. This is a major improvement com-
pared to propellers that generate efficiencies around 40 percent.

Jumping in
There are two basic underwater robot projects outlined in this
chapter. One involves modifying a toy submarine, the other building
a robotic fish from scratch.

Submarine

There are a number of companies that make and sell hobby model
submarines. Depending upon the degree of sophistication of the
model, it usually is radio controlled (R/C) and is capable of sub-
merging and surfacing (see Fig. 13.2).

In modifying a toy submarine, forget about R/C and jump to wire
control and using an umbilical cord to the submarine. The umbilical
cord can carry power as well as command and control signals.

These hobby submarines can be modified to create small tele-
presence systems. The primary modification is the addition of a
color video camera. Most of these hobby submarines have open
compartments where electronics gear can be stored (see Fig. 13.3).

Many of the systems used in the telerobotic car built in Chap. 9
can be implemented here. The one difference is the use of wire
control instead of R/C.

Because these are “toy” subs, you will probably not let them loose
in open water. The tiny propulsion motors in these submarines

Chapter thirteen

� 13.2 Toy submarine ready for conversion to TROV

Team LRN

263
need calm water to function. Of course, these could be a starting
point for more robust systems.

Are there any applications of these toy submarines beyond the
experience gained from building and using basic underwater
telepresence systems? I could imagine 10 or more toy telepres-
ence submarines released in a swimming pool, each submarine being
remotely controlled by one person. I’m sure a number of underwater
or space scenarios could be created for game play.

Swimming by use of a tail

As stated earlier, most mechanisms that mimic fishlike movement
are grossly inefficient. This model is no exception. However, infor-
mation gleaned from resources like MIT can be incorporated into
the model (not done here) to improve overall efficiency. And if one
plans on building like-animal androids, this is as good a place to
start as any.

Rotary solenoid

The robotic fish pivots on the use of a rotary solenoid (see Fig. 13.4).
When activated, the solenoid rotates its top plate about 30 degrees.
A spring returns the plate to its original position when deactivated.

The solenoid’s top plate has at least two 3/48 threaded holes that
may be used for mounting objects to it. The bottom of the solenoid

Underwater bots

� 13.3 Open compartment for housing electronics

Team LRN

264

has two protruding 3/48 threaded rods that can be used for
mounting the solenoid. The solenoid is not as powerful as I would
like, but it is strong enough to provide underwater propulsion.

Electronics

The electronic circuit uses a unijunction transistor Q1 (UJT 2646)
to generate a slow stream of pulses (see Fig. 13.5). The timing of
the pulses is determined by C1 and R1. The pulses pass through
R4 to the base of Q2. Q2 is an NPN transistor 2N2222. The purpose
of Q2 is to invert the pulse signal for input to IC1 pin 2. IC1 is a 555
timer configured in monostable mode. IC1 shapes the pulse width.
The output of the 555 timers switches Q3 on and off. Q3 controls
the current to the rotary solenoid that is used in the robotic fish.

Chapter thirteen

� 13.4 Rotary solenoid

� 13.5 Schematic of electronics

7 8

6 4

2

3

5 1

555
Timer

Rotary
Solenoid

+V+V

+V+V+V

R1 R2

+9V

R5

R7

C2

C1 C3R3 R6

R4

Q1

Q3

Team LRN

265

The circuit is powered by a single 9-volt (9V) battery. The circuit is
simple enough to hardwire on a prototyping style printed circuit
board (PCB).

Test the circuit by connecting it to the rotary solenoid before con-
tinuing. The time period of the pulse should be approximately 1
second (s).

Mechanics

To keep weight and mass down, most of the components are made
out of aluminum. The first mechanism I used to convert the sole-
noid movement to a flapping fish tail is shown in Fig. 13.6. This
turned out to be more complex than was necessary. Figure 13.7
shows the final tail assembly setup.

A 1/8" thick � 1/2" wide � 51/2" long piece of aluminum bar is secured
to the top plate of the rotary solenoid using two 3/48 � 1⁄4" screws.
First drill two holes in the aluminum bar to match the holes in the
top plate. Next, one hex nut is screwed flush to the underside of
each screw head to prevent the screws being driven too far down.
If the screws are driven too far down, they will prevent the top

Underwater bots

� 13.6 Original tail assembly

� 13.7 Final tail assembly

Team LRN

266

plate from turning easily. Secure the aluminum bar to the top plate
using the screws.

Fins are made by cutting a square of 11/4" aluminum diagonally.
The fins to the tail are secured to the 1/2" aluminum bar using a
generous amount of hot glue. You may want to rough up the alu-
minum surfaces with sandpaper for a better bite before gluing.

The solenoid itself is secured to the end of a piece of aluminum 1/8"
thick � 11/4" wide � 2" long, using the two bottom 3/48 threaded
studs and a few 3/48 hex nuts. The circuit and battery are secured
on the front of the aluminum (See Fig. 13.8).

Getting wet

Obviously we have an exposed circuit and solenoid. To prevent
water from damaging any components, cover the components using
a thin, transparent plastic sandwich bag. The bag is secured to the
tail using wire. The bag should be such that the tail section can still
move back and forth easily.

Before you dump the robot into the water, it should be made neu-
trally buoyant. If you dump it in as is, the front-heavy robot will
nosedive to the bottom of the water tank with the tail swishing back
and forth ineffectively. Secure strips of Styrofoam to the front of the
model on the outside of the transparent bag using rubber bands.
Place the model in water to test it. When the model submerges and
floats underwater in a level or almost level position, you’re ready to
go. Turn on the power to the circuit and let the robot go.

Efficiency

This particular robot doesn’t move with the grace or efficiency of
a real fish, but it does move. I think efficiency can be improved by
cutting the 1/2" � 51/2" aluminum tail bar in half and then securing
the halves back together using 2" of spring. This spring will allow
the tail section to bend and flex and should create better thrust.

Chapter thirteen

� 13.8 Finished robot fish

Team LRN

267

The robotic android fish

What separates a robot from an android is all in appearance. A robot
looks like a robot and an android looks human or like the thing it was
made to simulate. So an android fish should look like a fish.

Well, creating an android fish may not be as difficult as it may first
appear. And the reason for this is that reasonable-quality fish cov-
erings are available (see Fig. 13.9). These coverings are sold at
magic and hobby shops. These rubber fish can be cut open and the
robotic mechanism inserted inside.

Some models are more realistic than others. I found one model made
out of thick, soft rubber. While the appearance and texture of this
model is excellent, the internal robotic structure to move the tail
must be more powerful. Another fish covering that is less realistic
but much thinner, and therefore easier to move, is a better choice.

Learn more about it
To learn more about fish-based propulsion systems, try reading the
following sources: Scientific American, March 1995, “An Efficient
Swimming Machine,” by Micheal S. Triantafyllou and George S.
Triantafyllou, and Exploring Biomechanics, by R. McNeill
Alexander, published by Scientific American Library, 1992, ISBN
0-7167-5035-X.

Parts list for robotic fish
� R1, 33K ohms

� R2 and R6, 100 ohms

� R3, 470 ohms

Underwater bots

� 13.9 Rubber fish covering for robot fish

Team LRN

268

� R5, 10K ohms

� R7, 15K ohms

� Q2, NPN 2N2222 transistor

� Q3, TIP 120 NPN Darlington

� IC1, 555 timer

� C1 and C2, 22-microfarad (�F) capacitors

� C3, 0.01-�F capacitor

� Rotary solenoid—$5.95

� Q1 2N2646 UJT—$5.95

� 1/8" thick � 1/2" wide � 6" long aluminum bar—$1.50

� 1/8" thick � 11/4" wide � 2" long aluminum bar—$1.00

Parts are available from:

Images SI, Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

http://www.imagesco.com

Shipping and handling via UPS Ground—$9.50

Chapter thirteen Team LRN

269

Aerobots

AEROBOTS (AERIAL ROBOTS) ARE A CLASS OF ROBOTS THAT
can fly. They include lighter-than-air aircraft (blimps), helicopters,
and airplanes. Some applications for aerobotics are autonomous
flight, drones, warfare, surveillance, advertising, and telepresence.

Autonomous aircraft have a long history, the first ones being built
in the early 1920s. One unmanned aerial vehicle (UAV) code-
named the “bug” was designed for warfare. The bug was about 12
feet (ft) long with a wingspan of 15 ft. Its sophisticated flight con-
trol system (for its time) included a gyroscope, an altimeter, and
electric and pneumatic controls. The flight control system flew the
craft 30 to 40 miles into enemy territory. When the desired dis-
tance was reached, the craft would jettison its wings, forcing the
nose-heavy fuselage to fall to Earth carrying a payload of 200
pounds (lb) of explosives. But World War I ended before the bug
could see any action.

From this beginning UAVs have been under continual development
and refinement. The latest UAVs saw action in the Persian Gulf war.
Although the UAVs received little to no press, they flew over 300
sorties. They performed reconnaissance and damage assessment
and followed enemy weapons deployment. The most recognized and
most sophisticated autonomous aircraft is epitomized by the self-
guided cruise missile carrying nuclear warheads.

Telepresence flight control systems also have a long history, but
not as long as that of UAVs. In World War II, the United States used
remotely piloted aircraft to fly kamikaze missions. The old-style
remote control systems have nowhere near the technical sophisti-
cation of today’s systems. The old remote control systems were

Aerobots

14

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

270

unreliable, and the pilot needed to keep a visual eye on the remote
aircraft to fly it accurately.

Today remotely piloted aircraft have video cameras transmitting
pictures back to the pilot. The pilot may be situated anywhere in
the world. The systems have developed into telepresence virtual-
reality (VR) systems.

The aerobot we will build is a flying telepresence blimp. The reason
I chose this mode of flight (a lighter-than-air framework) over a
model helicopter or model airplane is safety, silence, low cost, and
ease of use.

Blimps are quiet, slow, graceful, and forgiving in flying errors. Safety
was the major factor in my decision. If a blimp bumps into a person
or object, there will be little or no harm. Airplanes and helicopters
on the other hand are potentially lethal weapons (the propellers on
airplanes and helicopters) when in close proximity to human life.

The blimp we will build is limited to indoor use. Care must be
taken in choosing components that are extremely lightweight. The
payload capacity (lift) of the blimp is approximately 6 ounces (oz).
This means our radio-controlled (R/C) receiver, propulsion, power
supply, charged coupled device (CCD) camera, and video trans-
mitter together must weigh in at or under this 6-oz weight restric-
tion. Tough, but not impossible.

Lighter-than-air aircraft background
Lighter-than-air aircraft fall into three categories: rigid, semirigid,
and nonrigid. Rigid aircraft have internal frames usually made
from lightweight aluminum. The most famous of these are the
Zeppelins.

Semirigid aircraft have a rigid lower keel section. A nonrigid enve-
lope that is filled with helium is secured above it.

Nonrigid aircraft are the ones we are most familiar with today.
These are blimps. One of the more famous blimps is the Goodyear
blimp used for advertising. Nonrigid aircraft are made of huge gas
envelopes. The envelope shape develops when it is filled with he-
lium gas.

Blimp systems
The most widely known use for blimps today is for a bird’s eye view
of major football games. Another popular use people are familiar
with is for advertisements.

Chapter fourteen Team LRN

271

While blimps may seem like old technology, scientists and engineers
are still developing uses for them. For instance, the U.S. Army has
used an unmanned airship called SASS LITE (Small Airship Surveil-
lance System, Low Intensity Target Exploitation). The SASS LITE
is used for border patrols. Recently the manufacturer stated that
this 90-ft airship is available for commercial ventures.

Helium balloons are capable of reaching the upper stratosphere.
One company has proposed building an air station 100,000 ft above
the Earth. The station would provide a telecommunications link
just like a satellite. However, the air station would cost 50 percent
less than a similarly equipped satellite.

Robotic systems and telepresence systems have been put on model
blimps for a number of years. We will review two ventures shortly,
one from the Robot Group and the other from Berkeley’s WEB
Blimp. What we will focus upon accomplishing is placing a simple
telepresence system on a model blimp. In reality the telepresence
system is a wireless, flyweight, portable surveillance system.
Sensor feedback systems that could relay a sense of touch, for a
“real” telepresence, are not developed. Our simple system transmits
video and sound. The user or operator can move (fly) the blimp via
radio controls.

The Robot Group—Austin, Texas
Robotic systems have been placed on model blimps. The Robot
Group, based in Austin, Texas, exhibited a robotic blimp at
Robofest 1 in the fall of 1989. I’m sure robotic systems have been
in place on blimps before this for military and scientific purposes;
however, the Robot Group represents private (nongovernment
funded) exploration in this area. The Robot Group continues to
develop and improve upon the robotic blimp. In 1991 the com-
puter blimp project called the Mark III used ultrasonic sensors and
a neural network navigation system. Although the system fell
short of design expectations, it did function properly.

The Robot Group has a website on the Internet which you can visit
to get the latest information (see Internet Access at the end of this
chapter).

WEB Blimp—University of California, Berkeley
Space browser is the name given to telepresence blimp systems
being designed and built at the University of California, Berkeley,
Department of Electrical Engineering and Computer Science.
The blimps are used as avatars, or as I prefer to call them, golems.

AerobotsTeam LRN

272

The Berkeley group is striving for tele-embodiment systems. A true
tele-embodiment system would require a complex sensor feedback
system from the blimp avatar to the user. Currently the feed-
back system provides video and sound. The user can maneuver
the blimp via radio control.

The most interesting aspect of this blimp is that it may be controlled
over the Internet, hence the name WEB Blimp. The video is fed to
the Internet via a video frame grabber with a CU-SeeMe format
output. The WEB Blimp is made available through the Berkeley
website (see Internet Access at the end of this chapter).

Designing telepresence blimps as avatars and golems
Almost as good as being there! Robotic blimps or a reasonable fac-
simile have a good future in the telepresence industry. Suppose
you wanted to look at some paintings in the Louvre in Paris, visit
the American Museum of Natural History in New York City, then
jump over to the Smithsonian in Washington, D.C., and finally
check out the penguins on the Galapagos Islands. And let’s say you
wanted to do all this in a couple of hours.

One way this may be accomplished in real time is through the use
of telepresence systems. One day in the future there will be sight-
seeing telerobots you may jump into through a phone (or satellite)
link and your home computer VR system. These robots will be
located at many points of interest throughout the world.

The telerobots are not restricted to Earth. There will be telerobots
in space, underwater, and flying through the air. The Jason project
is one underwater science adventure for schools. Through a satellite
link, schools set up a communication link to scientists on a remote
vessel. Students are able to learn what the scientists are doing, ask
questions, and sometimes operate a TROV (telepresence remotely
operated vehicle) via the satellite link.

To the moon

Lunacorp in Fairfax, Virginia, has plans to place a civilian rover on
the moon (see Fig. 14.1). For part of the time the rover will be used
as a telepresence system for earth-bound drivers (see Fig. 14.2). Un-
fortunately, the operation cost is expensive, approximately $7000
per hour. I don’t know about you, but I’ll plunk down $120 to drive a
telepresence rover across the lunar surface for a minute.

Lunacorp plans to get the rover to the moon in 2003: the site, Tran-
quility Base. But we are digressing from our main topic of blimps.

Chapter fourteen Team LRN

273

Blimp parameters
Blimps need to meet certain design criteria to be used effectively for
Earth-bound terrestrial telepresence systems. The blimps must be
completely safe around human beings. The blimps should be able to
move through the same passageways used by people. The CCD
camera transmitting video should be positioned at approximately
eye level. It should be able to navigate through gentle crosswinds
without difficulty.

A ballast system needs to be created that would allow the blimp to
achieve neutral buoyancy on or through a number of floors in a

Aerobots

� 14.1 Lunacorp rover

� 14.2 Artist’s conception of Lunacorp telepresence system

Team LRN

274

building. If a ballast system is too difficult to implement, neutrally
buoyant robot blimps can be positioned on each floor. Operators
would simply switch to an unused telepresence robot held on a
requested floor when wanting to change floors.

Because of the low weight of blimps, they have physical restric-
tions. For instance, a blimp would not be able to push open a door.
Buildings would need to be modified so that doors and elevators
could be operated electronically using remote control signals
emitted from the blimp.

The blimp kit
The blimp we will construct is made of a tough Mylar material. The
material can be heat sealed using a household iron. There are
many different styles of blimps one may build: a flying-saucer
shaped, delta-wing-glider shaped, or a typical “Goodyear” blimp. I
recommend the simplest one of all, a pillow-shaped blimp.

Making a pillow-shaped blimp is easy. Fold the sheet of Mylar mate-
rial in half (shiny side out). Heat seal the three open sides closed,
leaving a little space that isn’t heat sealed for a fill tube at the bottom,
and you’re finished.

Helium

Helium is sold in canisters from many party stores to fill balloons.
The canisters resemble those used to hold propane gas. If you
don’t have a local party goods store, look under helium or gas in
the yellow pages to find a supplier.

Helium versus hydrogen

When I first began this project, I thought about using hydrogen
instead of helium, reasoning that because hydrogen weighs about
half of what helium weighs, I could increase my lift by a factor of 2.
Right? Wrong!

While I was correct in my assumption that hydrogen weighs about
half of what helium weighs (see Table 14.1), I was incorrect in cal-
culating the lift. Here’s why. Lift is generated by the amount of air
displaced by the helium (or hydrogen), just like an air bubble in
water. Let’s use this analogy. The air is less dense than the sur-
rounding water, so the air bubble rises to the surface. Likewise,
helium is less dense than the surrounding air; therefore, it rises
also. Think of the rising helium or hydrogen as floating on top of a
much denser gas we call air (see Table 14.1).

Chapter fourteen Team LRN

275

So what’s the lift of a helium balloon with 5 ft3 of displacement?

Weight of displaced air � 5 (0.0807) � 0.4035 lb

Weight of 5 ft3 of helium � 5 (0.0110) � 0.0550 lb

Lift � 0.4035 lb � 0.0550 lb � 0.3485 lb

That’s quite a bit of lift! The reason is that we didn’t subtract any
weight for the balloon. If the balloon weighs 0.25 lb, the usable lift
(0.3485 lb � 0.25 lb) is reduced to 0.0985 lb, or 1.57 oz.

How does this compare to the lift using hydrogen? Well, the weight
of the air displaced is the same.

Weight of 5 ft3 of hydrogen � 5 (0.0058) � 0.029 lb
Lift � 0.4035 lb � 0.029 lb � 0.3745 lb

The difference in lift for a 5-ft3 balloon is

0.3745 lb � 0.3485 lb � 0.026 lb, about 1/2 oz

Because the difference in lift is small, it is not worth the added risk
of using hydrogen gas! I recommend using helium gas only.

Size

The piece of Mylar used to make a balloon after it’s folded in half,
lying down flat, measures 34" � 56". The weight of the material is
3 oz (0.1875 lb). It’s difficult to estimate how much helium the bal-
loon will hold. To make a rough estimate, I use the volume of a
cylinder. I know a pillow shape is not a cylinder, but, like I said, it’s
a rough estimate. First find the diameter. The material is 34" � 2
equaling 68" for the circumference. The circumference of a circle
is 2 times pi (3.14) times the radius. If you do the math, the radius
works out to 11". The volume of a cylinder equals pi times the ra-
dius squared times the height. The height in this case is 56". If you
do the math, the volume equals about 12 ft3.

The balloon will not be filled to its maximum capacity. In this case
I’d estimate the balloon will hold about 70 percent of the calcu-
lated volume or about 8.4 ft3 of helium gas.

Aerobots

� Table 14.1

English, Metric, kilograms per

lb/ft
3

cubic meter (kg/m
3
)

Weight of hydrogen 0.0058 0.09
Weight of helium 0.0110 0.178
Weight of air 0.0807 1.29

Team LRN

276

Calculated lift

Weight of air � 8.4 (0.0807 lb/ft3) � 0.678 lb

Weight of helium � 8.4 (0.0110 lb/ft3) � 0.0924 lb

Weight of Mylar material � 3 oz, or 0.1875 lb

Lift � � 0.678 � 0.0924 � 0.1875 � 0.398 lb,
or 6.37 oz

Construction

Construction of the blimp is simple and straightforward. Essential
to the construction is being able to make a good heat seal. Cut a
small section of Mylar material from the large sheet to practice on.
Fold the small section of Mylar, shiny sides to the outside, dull sides
together. Set the iron to a medium heat setting. Keep adjusting and
testing the heat setting of the iron on small Mylar practice scraps
until you find the right temperature. Every time you adjust the tem-
perature of the iron, allow at least 5 minutes for the iron to stabilize
to the new temperature. If the temperature setting is too hot, the
Mylar material will melt and create holes. If the temperature setting
is too cold, the heat seal will pull apart too easily. A good heat seal
will not pull apart easily. Allow the Mylar material to cool for a
minute before you test the heat-sealed seam. Once you have found
the right temperature setting, write it down for future reference.

We will make a pillow-shaped blimp. Fold the sheet of Mylar material
in half (shiny side out). Heat seal the three open sides closed,
leaving a little space that isn’t heat sealed for a fill tube at the bottom,
and you’re finished. The heat-sealed seam should be 1/2" to 1" wide.

CCD camera
The CCD camera provides the video from the blimp (see Fig. 14.3).
Naturally, weight is a consideration. This camera weighs a little
over half an ounce. The overall size is 11/4" � 11/4" � 11/8". Light
sensitivity is 0.03 lux. Resolution is 430 TV lines. Output video is
a standard NTSC (1V pp) signal. The camera can be powered
from 9 to 12 volts direct current (VDC) maximum. The current
draw from the camera is approximately 100 milliamps (mA).

A 9V transistor battery can power the camera. The battery weight
(1.5 oz) is three times greater than the weight of the camera itself.

TV transmitter

There are a number of TV transmitter kits available. There are two
basic classes of transmitters. One type transmits the video and audio

Chapter fourteen Team LRN

277

on one of the standard TV channels. The TV’s tuner picks up the
signal and displays it. These transmitters have a limited range of a
few hundred feet.

The second type is more expensive. This type transmits well above
TV frequencies into the 900-megahertz (MHz) range, and the TV
requires a down converter to display the video. The down converter
receives the 900-MHz signal and down converts it to a standard TV
frequency. These units have a much greater range and better fidelity.
The unit used in this prototype transmits directly to a TV set on its
VHF (Channel 14) channels (see Fig. 14.4).

Radio-control system

The radio-control (R/C) system is specially designed for blimps
(see Fig. 14.5). It is extremely lightweight. The propulsion unit is a
twin turbo fan that attaches to the underside of the blimp. Each
turbo fan is bidirectional, and each is controlled by its own channel
on the two-channel transmitter.

This helps the maneuverability of the blimp. While one turbo fan
pushes forward, the other pushes backward, helping turn the
blimp quickly. The pillow blimp ready for the telepresence system
is shown in Fig. 14.6. A close-up of the turbo fan, miniature CCD
camera, and TV transmitter is shown in Fig. 14.7.

Going further

The blimp as it stands is a telepresence system. By placing au-
tonomous navigation in it, we can convert the blimp into a flying robot.

Aerobots

� 14.3 Lightweight CCD camera for telepresence system

Team LRN

278

Chapter fourteen

� 14.4 TV transmitter circuit

� 14.5 Lightweight R/C control system for blimp

Team LRN

279

Aerobots

� 14.6 Pillow blimp

� 14.7 A close-up of the turbo fan, miniature CCD camera, and TV
transmitter

Team LRN

280

Parts list for the blimp
� (1) Blimp with radio controls, #T30824-77—$79.95

Part is available from:

Edmund Scientific
60 Pearce Ave
Tonawanda, NY 14150-6711
1-800-728-6999

� (1) Mini B/W CCD camera—$64.95

� (1) Mini TV transmitter—$90.00

Parts are available from:

Images SI, Inc.
39 Seneca Loop
Staten Island NY 10314
(718) 698-8305

http://www.imagesco.com

Internet access
� Robot Group, Austin, Texas—Neural Net Blimp

http://www.robotgroup.org/projects/mark4.html

� WEB-controlled blimp at Berkeley
http://vive.cs.berkeley.edu/blimp/

� WEB Blimp
http://register.cnet.com/content/features/quick/weblimp

http://utopia.minitel.fr/�mpj/airships/”>Marv’s Airship

Server

� University of Virginia—Solar-powered airship
http://minerva.acc.Virginia.edu:80/�secap/

� U.S. competitor in Australia Solar Challenge
http://www.mane.virginia.edu/airship.htm

� Intelligent surveillance blimp at the University of Virginia
http://watt.seas.virginia.edu/�jap6y/isb/

� Japanese Project—Solar-powered airship
http://www.aist.go.jp/mel/mainlab/joho/joh04e.html

Chapter fourteen Team LRN

281

Robotic arm and IBM PC
interface and speech

control

THIS IS A MULTILEVEL MODULE PROJECT. THE FIRST MODULE
is a robotic arm that is purchased in kit form. The second module is
the IBM personal computer (PC) interface kit. The third module is a
speech-control module.

The robotic arm may be operated manually with a manual control
box that comes with the robotic arm kit. The robotic arm will work
with either the IBM PC interface kit or the speech-control module.
The IBM PC interface kit allows the robot to be controlled and pro-
grammed via a host IBM PC computer. The speech control allows
you to operate the robotic arm via voice.

Together these modules form a functional unit that permits you to
experiment and program automation and animatronics into a fully
“wired” robotic arm.

The PC interface allows you to use your personal computer to pro-
gram automation and animatronics into a robotic arm. You also have
the option to control the arm interactively using either a manual
controller or the Windows 95/98 program. Animatronics is the en-
tertainment side of automation. For instance, if you covered the ro-
botic arm with a child’s sock puppet and programmed a small show,
you would be programming an animatronic or electronic puppet.
Programming automation has widespread applications in industry
and entertainment.

Robotic arm and IBM PC interface and speech control

15

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

282

The most widely used industrial robot is the robotic arm. Robotic
arms are extremely versatile, due to the fact that the end manip-
ulator of a robotic arm can be changed to fit particular tasks or
industries. For instance, welding gear manipulators are used in
spot-welding robots, spray nozzles for spray painting parts and
assemblies, and grippers for pick and place, to name a few.

So you see, robotic arms are useful and make for an ideal learning
tool. However, building a robotic arm from scratch is a difficult
task. It is far easier to assemble a robotic arm from a kit. OWI sells
a suitable robotic arm kit available from a number of electronic
distributors (see the parts listing at the end of the chapter). The
interface connects the finished robotic arm kit to a host computer
printer port. The host computer is any IBM PC or compatible com-
puter capable of running DOS or Windows 95/98.

Once connected to the computer’s printer port, the robotic arm
may be operated interactively and programmed from the com-
puter. Operating the robotic arm interactively is easy. Simply click
on any function button to command the robotic arm to perform that
function. Click on the button a second time to end the function.

Programming automation is just as easy. First click on the Program
button to enter the program mode. In this mode, the interface and

Chapter fifteen

ELBOW
135°

SHOULDER
120°

WRIST
340°

BASE
350°

2"
MAX
OPEN.

� 15.1 Robotic arm movement and rotation schematic

Team LRN

283

robotic arm operate as described before, but in addition, each func-
tion and the time elapsed are recorded into a script file. The script
file can contain up to 99 separate functions, including pauses. The
script file itself can be replayed 99 times. Writing different script
files allows one to experiment with computer-controlled automa-
tion and animatronics. The Windows 95/98 program operation is
described in more detail later on. The Windows program is included
in the robotic arm interface kit or may be downloaded at no cost
from the Internet at http://www.imagesco.com.

In addition to the Windows program, the arm can be operated using
BASIC or QBASIC. A DOS-level program is included on the disks that
come with the interface kit. However, the DOS program only allows
interactive function using the computer keyboard (see BASIC listing
on one of the disks). Script file creation is not available in the DOS-
level program. However, if one knows how to program in BASIC,
the arm may be programmed to perform a sequence of motions
similar to the script files created in the Windows program. The mo-
tion sequence may be repeated, as is done in many animatronics.

Robotic arm
The robotic arm (see Fig. 15.1) can move freely in three axes of
motion. The elbow joint can move vertically (up or down) through an
arc of approximately 135 degrees. The shoulder joint moves the grip-
per forward and back through a 120 degree arc. The arm can turn
clockwise (CW) or counterclockwise (CCW) from the base approxi-
mately 350 degrees. The gripper portion of the robotic arm can grasp
and release small objects up to 2" in diameter and finally can rotate
the gripper section approximately 340 degrees at the wrist.

The OWI Robotic Arm Trainer uses five small direct current (DC)
motors to produce motion. The motors provide a “wire” control to
the robotic arm. “Wire control” means that each robotic function
(and hence DC motor) is controlled by a wire (electric power). Each
of the five DC motors controls a robotic arm function. The wire con-
trol makes it possible to build a controller unit for the arm that will
respond to electrical signals. This simplifies the task of interfacing
the robotic arm to a PC printer port.

The arm is made from lightweight plastic. Most of the stress-bearing
parts are also made of plastic. The DC motors used in the robotic
arm are small, high revolutions per minute (rpm), low-torque
motors. To increase the motor’s torque, each motor is connected
to a gearbox. The motor-gearbox assemblies are used inside the

Robotic arm and IBM PC interface and speech controlTeam LRN

284

construction of the robotic arm. While the gearbox increases the
motor’s torque, the robotic arm is not capable of lifting or moving a
great amount of weight. The maximum recommended lifting capac-
ity is 4.6 ounces (oz) [130 grams (g)].

The robotic arm kit components have been thoughtfully laid out for
kit builders (see Fig. 15.2). If you carefully follow the directions in
the robotic arm construction booklet, construction will proceed
smoothly. To help you, some of the assembly work is already com-
pleted. For instance, the five DC motors come with the gearboxes
already assembled and connected to the DC motors (see Fig. 15.3).
This helps move the construction along. In a few hours, you have an
operational robotic arm.

Basic motor control

To understand the basic function of wire control, let’s see how
digital signals can control a single DC motor. Controlling a DC mo-
tor requires two complementary transistors. One transistor is a
PNP type and the other is an NPN type. Each transistor functions
like a switch, controlling the current to the DC motor. The cur-
rent direction controlled by each transistor is opposite to that of
the other transistor. The direction of the current controls the di-
rection the motor spins, CW or CCW. Figure 15.4 is a test circuit
that you may build before building the robotic arm interface. No-
tice that if both transistors are turned off, the motor is off. Only

Chapter fifteen

� 15.2 Robotic arm kit

Team LRN

285

Robotic arm and IBM PC interface and speech control

� 15.4 Test circuit schematic

� 15.3 Preassembled gearbox

Team LRN

286

Chapter fifteen

� 15.5 PC interface schematic

one transistor (per motor) should be turned on at a time. If two
transistors to the same motor are accidentally turned on at the
same time, it will be the equivalent of creating a short circuit.
Each DC motor in the robotic arm is controlled by two transistors
on the interface in a similar manner.

PC interface construction
The PC interface schematic is shown in Fig. 15.5. If you purchase
the PC interface kit, the printed circuit board (PCB) parts place-
ment is shown in Fig. 15.6.

Begin construction by first identifying the component mounting
side of the PCB. The component side has the white line drawings of
the resistors, transistors, diodes, integrated circuits (IC), and DB25
connector. All components are mounted on the component side.

In general, after soldering a component to the board, clip away any
excess wire from the underside of the PCB. It’s a good idea to follow
the sequence for mounting the components. Begin by mounting the

Team LRN

287
100K-ohm resistors (color bands brown, black, yellow, gold, or sil-
ver) labeled R1 through R10. Next mount the fives diodes D1 to D5,
making sure the black band on the diode faces toward the DB25
connector, as shown on the white line component drawing. Next
mount 15K-ohm resistors (color bands brown, green, orange, gold,
or silver) R11 and R13. Mount the red light-emitting diode (LED) in
the R12 position on the board. The positive lead of the LED is
mounted in the � label R12 hole. Next mount the 14- and 20-pin
sockets in the U1 and U2 positions. Mount and solder the DB25 right
angle connector. Do not force the DB25 pins through the board; it is
a precision fit. If necessary, gently rock the connector in, making
sure not to bend any pins. Mount the slide switch and the 7805 volt-
age regulator. Cut and solder four wires above the switch. Take care
to keep the wire orientation as shown. Mount and solder the TIP 120
and TIP 125 transistors. Finish the project by mounting the eight-
position header and 3" connection cable. The header is mounted so
the longer leads face upward. Insert the two ICs, the 74LS373 and
74LS164, into their respective IC sockets. Be sure to orient the chip
indentation on the top side of the chip with the indentation on the
white line drawing. You may notice that there are places for addi-
tional components. This is for an additional AC adapter. Figure 15.7
shows the top side of the finished interface.

Robotic arm and IBM PC interface and speech control

� 15.6 Parts placement diagram for PC interface

Team LRN

288

How the interface works

The robotic arm contains five DC motors. We need 10 input/output
(I/O) lines to control each motor and direction. The parallel
(printer) port on the IBM PC and compatibles has only eight I/O
lines. To increase the number of I/O lines, the robotic arm interface
incorporates a serial in, parallel out (SIPO) integrated circuit, the
74LS164. By using just two lines off the parallel port, lines D0 and
D1, to send serial information to the chip, we can add eight I/O lines.
Although eight I/O lines are available off the 74LS164, the interface
requires just five of those I/O lines.

When serial information is transmitted into the 74LS164 chip, the
parallel output of the chip shifts in response. If the outputs of the
74LS164 were directly connected to the transistors, the arm func-
tions would switch on and off as the serial information clocked in.
Obviously that would not be a suitable situation. To prevent this
from happening, a second chip is added to the interface, the
74LS373 octal latch.

The 74LS373 octal latch has eight input lines and eight output lines.
Binary information placed on the input lines is transmitted (made
transparent) to the output lines when the chip is enabled. When the
chip is not enabled, the information on the output lines is latched.
When latched, the binary information on the input lines has no effect
on the status of the output lines.

When all serial information has been transmitted into the chip, the
74LS373 octal latch is enabled, via parallel port pin D2. This allows
the parallel information from the 74LS164 to be transmitted to the
output lines of the 74LS373. The output lines from the 74LS373
switch the TIP 120 transistors on and off, thereby controlling the
robotic arm functions. The process is repeated for each new com-

Chapter fifteen

� 15.7 Assembled PC interface (top)

Team LRN

289

mand to the robotic arm. Parallel port lines D3 through D7 control
the TIP 125 transistors directly.

Connecting the interface to the robotic arm
The robotic arm uses a single 6V power supply consisting of four D
cell batteries in the base. The PC interface takes power from the
arm’s 6V power supply. The power supply is used like a bipolar
±3V power supply. Power is tapped from the eight-conductor
Molex connector to the arm base.

Connect the interface to the robotic arm using the 3"-long eight-
conductor Molex cable. The Molex cable connects to the connec-
tor on the base of the robotic arm (see Fig. 15.8). Make sure the
Molex connector is firmly and properly seated. To connect the in-
terface to the computer’s printer port, use the 6-ft DB25 cable
supplied with the kit. One end of the cable connects to the com-
puter’s printer port. The other end connects to the DB25 connec-
tor on the interface board.

In most cases the printer port is also used for the printer. To alle-
viate switching cables back and forth whenever you want to use
the robotic arm, purchase an A/B data switch (DB25) box. Con-
nect the robotic arm interface printer to the A side and the printer
to the B side. Now you can use the switch to connect the computer
to either the interface or printer.

Installing the Windows 95 program
Insert the 3.5" diskette labeled “Disk 1” into the computer’s floppy
drive and run the setup program (setup.exe). The setup program

Robotic arm and IBM PC interface and speech control

� 15.8 Connecting the PC interface to the robotic arm

Team LRN

290

creates a directory named “Images” on the computer’s hard drive
and the needed files are copied into this directory. An Images icon
is created on the Start menu. To run the program, click on this
icon in the Start menu.

Using the Windows 95 program
Connect the computer’s printer port to the interface using the 6-ft
DB25 cable. Connect the interface to the base of the robotic arm.
Keep the interface off for the time being. If you turned the interface
on at this point, the existing information (status) left on the printer
port may cause the robotic arm to begin performing a function.

Start the program by double clicking the Images icon in the Start
menu. The program’s opening screen is shown in Fig. 15.9. With the
program running, the red LED on the interface should be blinking.
Note: The interface does not have to be turned on for the LED to
blink. How fast the LED will blink depends on the processor speed
in your computer. The blinking light from the LED may be very
dim; you may need to block some room light to see it by cupping
your hands around the LED. If the LED is not blinking, the program
is probably set to the wrong printer port address (LPT port). To set
the interface to a different printer port address (LPT port), go to
the Printer Port Options box on the upper right-hand corner of the

Chapter fifteen

� 15.9 Screen shot of Windows PC interface program

Team LRN

291

screen. Click a different option. Whichever port setting option
causes the LED to start blinking is the correct printer port address.

With the LED blinking, click on the Pause button and then turn the
interface on. Clicking on a function button causes the robotic arm
to perform the corresponding function. Clicking on the button a
second time stops that function. Using the function buttons to con-
trol the robotic arm in this manner is called the interactive mode.

Creating script files

To program motion and automation into the robotic arm, we use
script files. The script file contains a list of timed instructions that
control the robotic arm function. Creating script files is simple. To
create a script file, click on the program button. This puts you in
the “programming” script writing mode. Clicking on a function
button will start the robotic arm function as before, but in addi-
tion, the function information is entered into the yellow script
table on the lower left of the screen. The step number is placed in
the left column, beginning with step 1, and increments with each
new function. The function name is entered in the middle column.
When the function button is clicked the second time, the function
stops as before, but the elapsed time from starting to stopping the
function is entered into the third column. The time elapsed is
given in increments of a quarter second. Continuing in this man-
ner a user may program up to 99 functions, including timed
pauses, into a script file. Script files may be saved to and loaded
from the local directory. Script files may be set to replay up to 99
times by typing a number in the repeat box and hitting Start. To
stop writing into a script file, click on the interactive button. This
puts the computer back into the interactive mode.

Animatronics
Script files may be used for computer automation or animatronics.
With animatronics the underlying mechanical robotic system is
usually covered and hidden from sight. Remember the sock puppet
at the beginning of this chapter? The coverings vary from humans
(whole or partial), aliens, animals, plants, or minerals to anything
in between.

Limitations
If you were performing automation or animatronics on a profes-
sional level, your robot would be required to be in the exact position
needed, to hit its mark, so to speak, 100 percent of the time.

Robotic arm and IBM PC interface and speech controlTeam LRN

292

You will notice that as a sequence (script file) is continually re-
peated, the position of the robotic arm will drift from its original
position. There are a number of reasons for this. As the battery
power supply to the robotic arm becomes depleted, the reduction
in electric power delivered to the DC motor reduces the torque
and speed of the motor. So during a timed function, the motors will
not move as far or lift as much with old batteries as they would
with fresh batteries. But this isn’t the entire case. Even with a reg-
ulated power supply, how many times the DC motor shaft spins in
a given length of time is neither counted nor controlled. So the
number of turns the motor spins in each timed sequence will vary
by a small percentage. This causes the position of the robotic arm
to drift. If that wasn’t enough, the gears used in all the motor gear-
boxes have a certain amount of slop (or play) that isn’t taken into
account. All these factors taken together go a long way in explaining
why the position of the robotic arm repeatedly performing a script
file will drift over time.

Finding home
To enhance this project, positional feedback from the robotic arm
could be implemented so the computer could determine absolute
position of the arm. With basic positional feedback, the robotic
arm can be located in precisely the same position every time at the
beginning of a script file (sequence) run.

There are many approaches one can take. One basic method doesn’t
employ positional control but instead uses limit switches to find a
“home” or starting position. The limit switches determine when
the arm reaches one absolute, or home, position. To accomplish
this, a series of limit switches (momentary contact lever switches)
will close when the arm reaches its limit of travel in that particular
direction. For instance, one limit switch would be mounted to the
base. This switch would close only when the robotic arm was
turned completely in a CW direction as far as it could go. Other
limit switches would be mounted on the shoulder and elbow. They
would close when the respective joint was fully extended. Another
switch mounted to the wrist would close when the wrist was rotated
to the furthest CW position. The last switch mounted to the gripper
would close when the gripper is fully opened. To reset the arm to its
home position, each function is activated in the direction of travel
needed to close a limit switch until that limit switch actually closed.
After all the functions are in the home position, the computer would
then know the absolute position of the arm.

Chapter fifteen Team LRN

293

Once home, we can start and replay a script, knowing that the drift
occurring during one run of the script is probably so minimal that
the robotic arm will hit all its marks. Once the script is finished,
the arm is reset to its home position and the script file is replayed.

Sometimes a home position does not give enough feedback to per-
form certain operations, for instance, picking up an egg without
crushing the shell. For these applications, more sophisticated
methods of feedback need to be employed. Signals from trans-
ducers are processed using analog-to-digital (A/D) converters. The
processed signals are used to determine factors such as position,
pressure, speed, and torque. A simple example will illustrate.
Imagine mounting a small linear potentiometer on the gripper sec-
tion. The potentiometer is mounted so that when the gripper
opens or closes, the slider on the potentiometer slides back and
forth. So as the gripper opens and closes, the resistance of the
potentiometer varies. Once calibrated, the resistance could accu-
rately tell how far the gripper closed (or opened).

Feedback systems add another layer of complexity and cost to the
system. One can always use the manual control system to override
and reposition the robotic arm as a script is running.

Connecting manual control to interface
After the interface is running properly, connect manual control to
the interface using the eight-pin header. Orient the manual con-
trol’s Molex connector to the eight-pin interface header as shown in
Fig. 15.10. Press the connector firmly onto the header to seat. The

Robotic arm and IBM PC interface and speech control

� 15.10 Connecting the manual control

Team LRN

294

robotic arm can be controlled manually at any time. It doesn’t make
a difference if the interface is connected to the computer or not.

DOS-level keyboard program
The keyboard program is a DOS-level program that allows one to
control the robotic arm in real time (interactively) using the key-
board. The following keys perform the following functions:

Key Function

U Up
L Left
G Grip
S Stop
D Down
R Right
H Release
Q Quit

Speech control for robotic arm
The speech control for the robotic arm uses the speech-recogni-
tion kit from Chap. 7. In this section we will build an interface from
the speech-recognition kit to the robotic arm. This interface is also
offered in a kit form from Images SI, Inc.

The schematic for the speech-recognition interface is shown in
Fig. 15.11. The interface uses a 16F84 microcontroller. The pro-
gram for the microcontroller is as follows:

‘ Speech Recognition Interface program

Symbol PortA = 5

Symbol TRISA = 133

Symbol PortB = 6

Symbol TRISB = 134

Poke TRISA, 255

Poke TRISB, 240

Start:

Peek PortB, B0

If bit4 = 0 then trigger ‘Trigger enabled, read speech-
recognition circuit

goto start ‘Repeat

trigger:

Pause 500 ‘Wait 0.5 seconds

Peek PortB, B0 ‘Read BCD number

Chapter fifteen Team LRN

295

�
15

.1
1

S
p

ee
ch

 c
on

tro
lle

r
ci

rc
ui

t f
or

 ro
b

ot
ic

 a
rm

Team LRN

296

if bit5 = 1 then send ‘Output number

goto start ‘Repeat

send:

peek PortA,b0 ‘Read port A

if bit4 = 1 then eleven ‘Is the number 11?

poke PortB, b0 ‘Output number

goto start ‘Repeat

eleven:

if bit0 = 0 then ten

poke portb,11

goto start ‘Repeat

ten:

poke partb,10

goto start ‘Repeat

end

Updates to the 16F84 program may be downloaded for free at
http://www.imagesco.com.

Programming the speech-recognition interface

Programming the speech-recognition interface is the same proce-
dure used to program the speech-recognition kit in Chap. 7. To
operate the robotic arm properly, you must program certain word
numbers to specific robotic arm functions. You may use whatever
command word you wish for any particular command. I am pro-
viding a command word in Table 15.1 for illustration; you may
change any word you wish.

Chapter fifteen

� Table 15.1

Word Number Typical Command Word Robotic Arm Function

1 GRIP Close gripper
2 E-Down Elbow down
3 R-Base Rotate base CCW
4 S-Up Shoulder up
5 L-Wrist Rotate wrist CW
6 Release Open gripper
7 E-Up Elbow up
8 L-Base Rotate base CW
9 S-Down Shoulder down

10 R-Wrist Rotate wrist CCW
11 Stop Stop

Team LRN

297

Parts list for the PC interface
� (5) Tip 120 NPN transistors

� (5) TIP 125 PNP transistors

� (1) 74164 serial to parallel IC

� (1) 74LS373 octal latch

� (1) Red LED

� (5) 1N914 diodes

� (1) Eight-position Molex header

� (1) Eight-position 3"-long Molex cable

� (1) DPDT PC-mounted switch

� (1) DB25 RT angled PC-mounted connector

� (1) DB25 M-M 6-ft cable

� (1) PCB

� (10) 100K-ohm, 1/4-W resistors

� (3) 15K-ohm, 1/4-W resistors

� (1) 7805 voltage regulator

The robotic arm interface kit contains all the above parts.

Parts list for the speech-recognition interface
� (5) TIP 120 NPN transistors

� (5) TIP 125 PNP transistors

� (1) 74154 4/16 decoder IC

� (1) 4011 NAND gate

� (1) 4049 hex buffer

� (1) 741 op-amp

� (1) 5.6K-ohm, 1/4-W resistor

� (1) 15K-ohm, 1/4-W resistor

� (1) Eight-position Molex header

� (1) Eight-position 3"-long Molex cable

� (1) PCB

� (10) 100K-ohm, 1/4-W resistors

� (1) 4.7K-ohm, 1/4-W resistor

� (1) 7805 voltage regulator

Robotic arm and IBM PC interface and speech controlTeam LRN

298

� (1) PIC16F84 microcontroller

� (1) 4.0-MHz crystal

� Robotic arm interface kit—$44.95

� OWI robotic arm trainer—$84.95

� Speech-recognition interface to robotic arm—$39.95

� Speech-recognition kit—$100.00

Parts are available from:

Images SI, Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

Chapter fifteen Team LRN

299

Android hand

IN THIS CHAPTER WE WILL CONSTRUCT A HUMANLIKE OR
android hand. The actuator we will use to move the fingers in the an-
droid hand is the air muscle introduced in Chap. 3.

The air muscle is a pneumatic device that produces linear motion
with the application of pressurized air. Much like a human muscle, it
contracts when activated. You may think, well, pneumatic cylinders
have been around quite a while and do the same thing. True, but the
air muscle represents a boon to hobbyists and robotists because it is
lower in cost, extremely lightweight, flexible, and easier to use.

The air muscle has a power-to-weight ratio of about 400:1. Since
most of its components are plastic and rubber, the air muscle can
work while wet or underwater. The flexible nature of the air muscle
allows it to be connected to and contract on/off axis pulleys and
levers. The air muscle can contract even when bent around curved
surfaces. These easy-to-use features make the air muscle the exper-
imenter’s choice over standard pneumatic cylinders.

Of course, being a pneumatic device it needs a supply of com-
pressed air. Compressed air is not as readily available as electric
current. When I first learned about the air muscle, I thought that a
small air system would be too much of a hassle to build. I was
wrong. A simple air system can be put together for about $25.00,
and a small electric air system for about $50.00.

Overall efficiency is lost when using electric power to compress air.
However, the air muscle consumes little air volume per activation
and the compressed air can be stored. The air muscle’s response
and cycle times are fast. A small 6" 10-gram (g) air muscle can lift
6.5 pounds (lb).

Android hand

16

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

300

Before we build the android hand, we will first build a few manually
operated air muscle demonstration devices. The demonstration
devices allow you to become familiar with the operation and func-
tion of the air muscle, before attempting a more complex project.

Manual control of an air muscle is fine for projects needing one or
two air muscles. However, when five or six air muscles need to be
operated in sequence or unison, manual control is not practical.
Instead, we employ computer control. One may use an IBM PC or
compatible PIC microcontroller. The interface to either computer
is the same. In this chapter we will use the IBM PC. To control the
air muscle via a computer (IBM or compatible printer port)
through the PC’s parallel port adds approximately $25.00 per air
muscle to the cost.

Advantages of the air muscle
� Light weight. Six-inch air muscle with 18" of 5/32"-diameter air

tubing weighs approximately 10 g.

� Contraction. Six-inch air muscle contracts approximately 1"
(about 25 percent of its length, ends not included).

� Powerful. Generates a force of approximately 6.5 lb at 42
pounds per square inch (psi). The power-to-weight ratio can
reach 400:1.

� Pliable. Soft, pliable construction and can be bent around
curved surfaces and still function properly.

Uses

The air muscle lends itself to robotics and automation. In some
applications it can replace servo motors and direct current (DC)
motors. Its unique properties—lightweight, strong, and pliable—can
be capitalized on in many applications and used to improve existing
pneumatic designs. In a nutshell, the air muscle may be used in many
applications that require linear or contractive motion. In many cases
pneumatic cylinders can be replaced.

How the air muscle works

The air muscle has a long tube constructed out of black plastic
mesh. Inside of it is a soft rubber tube. Metal clips are fastened on
each end. The plastic mesh is formed into loops on each end,
tucked into and secured by the metal clips. The loops are used for
fastening the air muscle to devices.

Chapter sixteen Team LRN

301
When air pressure is applied, the muscle contracts by the following
mechanism. When the air muscle is pressurized, the soft inner tube
expands. The inner tube pushes against the black plastic mesh and
causes it to expand also. When the plastic mesh expands, it shortens
in length in proportion to the expansion of its diameter. This
causes the air muscle to contract. However, it is essential that the
air muscle be in a stretched or elongated position when it’s deacti-
vated or in a resting state in order for it to operate properly. If not,
there will not be any movement or contraction when it is activated
(see Fig. 16.1).

Components of the air muscle system

Figure 16.2 illustrates the components needed to use the air muscle.
Item 1 is the air muscle itself (of course). Item 2 is a three-way air
valve. The three-way air valve allows one to manually operate the
air muscle (see Fig. 16.3).

Item 3 is a bottle top adapter, with a pressure release valve (set
around 60 psi). The bottle top adapter allows one to use a standard
plastic PET soda bottle for air storage. The pressure release valve
automatically releases excess air when preset pressure is exceeded.

Android hand

You need to pull the muscle out straight when empty

So it can shorten when full of air

� 16.1 Drawing of air muscle being stretched

Team LRN

302

Chapter sixteen

1) One standard 6" air muscle

2) Three-way valve
 for controlling the
 air flow

3) Bottle cap adapter
 for attaching an air storage

4) PET soda drink bottle
 to be used as
 the air storage

6) Foot pump

7) Nylon cable ties,
 to attach the air
 muscle to your
 device

5) Foot pump adapter for
 connecting a foot pump
 to the 5/32" air line

� 16.2 Items needed to experiment with the air muscle

Team LRN

303

Item 4, the PET soda bottle, is used for air storage. A plastic soda
bottle can hold 50 psi easily. I have static-tested plastic PET bottles
to 100 psi. Caution: Never use any type of glass bottle for air

storage. A slight fracture in a glass bottle or dropping it accidentally
may cause the bottle to explode, sending tiny glass fragments all
over. Plastic PET bottles elongate when overpressurized.

Item 5 is the foot-pump adapter and item 6 is the foot pump. A sim-
ple foot pump with an air pressure gauge can charge air storage up
to 100 psi. Because of the low volume of the PET bottles, air storage
is brought to 50 psi with three or four strokes of the air pump. The
air muscle uses so little air that a small PET bottle holds enough air
for four to five complete cycles of the air muscle. Item 7 is nylon
cable ties, used to quickly connect the air muscle to a mechanical
device.

Figure 16.4 illustrates a general overview of how the parts are put
together. In some cases you may want to epoxy glue some compo-
nents together to prevent them from popping off. For instance, if
you will just be using the three-way air valve on one bottle adapter
for air muscle experiments, you may want to glue the three-way
valve to the adapter permanently.

Android hand

� 16.3 Three-way air valve for air muscle operation

Empty air
from muscle

HoldFill air
muscle

To muscle

To
foot pump

Team LRN

304

Attaching the air muscle to mechanical devices

The air muscle is made of a soft inner tube encased in a strong
plastic mesh. The assembly is held together by metal clips on each
end. The plastic mesh is looped at each end making a hole. The
plastic mesh hole is very strong mechanically and can be used to
attach the air muscle to any device. Figure 16.5 shows a machine
screw inserted through the mesh hole.

Using the air pump adapter

When you receive your foot pump, it will have a standard air nozzle
as shown in Fig. 16.6. We need to replace the standard nozzle with
the air pump adapter. Lift the locking lever as shown in Fig. 16.7.

Chapter sixteen

This is how they all fit together…

Air Muscle

Three-way air
valve to fill or
empty the air

muscle

Special cap

Bottle as
air reservoir

Tube

Adapter

Foot pump

� 16.4 General overview of how parts fit together

Team LRN

305

Android hand

� 16.5 Screw going through one end loop of air muscle

� 16.6 Foot-pump nozzle

Remove the standard nozzle (see Fig. 16.8), and insert the air
pump adapter (see Fig. 16.9). Close the locking lever by pressing it
back down.

Have a Coke or Pepsi

You need to acquire a plastic PET bottle. The easiest way to do so is
to buy a soda. Make sure the soda bottle is plastic. Don’t purchase a

Team LRN

306

Chapter sixteen

� 16.7 Lift locking lever (foot-pump nozzle)

� 16.8 Remove standard nozzle adapter

Team LRN

307

soda bottle larger than 1 liter (L). A half-liter bottle is ideal. I’ve tried
the bottle cap adapter on all sizes of PET soda bottles up to 2 L, and
it fits all of them.

Empty the PET bottle of soda and clean it out with tap water. The
bottle should be completely dry before using. It’s interesting to
note that if a full bottle of soda is dropped, the resulting pressure
caused by the release of the carbonated soda greatly exceeds the
50-psi limit we impose on the bottle. Soda companies have designed
PET bottles to withstand a rapid increase in bottle pressure, which
would come from dropping the bottle. This is something I never
realized before working with the air muscle, and thought I would
pass it on. Remember, no glass bottles should be used in the air
muscle pneumatic system.

Building the first demo device
The first mechanical device we will build is a simple one that can be
used to measure the contraction of the air muscle (see Fig. 16.10).
The base is 1" � 2" lumber and is 11" long. I used this material
simply because I had it lying around. You can just as easily use
metal or plastic. At each end I drilled a hole to accept a 13/4"-long
8-32 machine screw. The machine screws are inserted and held in
place using two 8-32 nuts, one nut on each side of the wood. The
head of the screw and shaft protrude about 3/4" above the wood.

The top screw is threaded through the top opening of the air
muscle, before inserting the screw into the wood. A rubber band
is looped through the bottom opening of the air muscle and then

Android hand

� 16.9 Insert air foot-pump adapter

Team LRN

308

looped around the bottom screw. The rubber band stretches the
air muscle when it is in its relaxed state.

Connect the balance of components as shown in Fig. 16.4. At
times I’ve had difficulty connecting the 5/32"-diameter tubing to
some of the components. Here are a few tips. First, if the tube re-
fuses to go onto an adapter, place the tubing under running hot
water from the faucet. This softens the plastic, making it easier to
fit onto the components. Another trick is to use some clear plas-
tic tubing. The plastic tubing is snug enough to fit onto the
adapter nozzles properly (see Fig. 16.11). In addition it is pliable
enough to fit the 5/32"-diameter tubing inside the tubing itself (see
Fig. 16.12). The soft tubing acts like an adapter and quick release
for changing air muscle devices.

To operate the device, first pressurize the system using the foot
pump. It only takes about four strokes to reach 50 psi. Your
mileage may vary depending upon the size of the PET bottle you
are using.

Open the three-way air valve to charge the air muscle. The muscle
should immediately contract. You can measure the distance it
moves in proportion to the psi gauge on the pump. You should be
able to operate the muscle through four or five contractions and
expansions before you need to refill the PET bottle. The air muscle
doesn’t use much air.

Notice that the air muscle stays in the contracted position until
the three-way valve is turned to release the air from the muscle. It
doesn’t cost any energy to keep the air muscle contracted. This is
in contrast to servo motors and solenoids that must be supplied
electric energy continuously to maintain their push or pull.

If the muscle doesn’t appear to contract, then it probably wasn’t
stretched far enough. Remember the muscle must be stretched in
order for it to contract (operate).

Chapter sixteen

� 16.10 First mechanical device

Team LRN

309

Android hand

� 16.12 Using clear plastic tubing and 5/32” tubing

� 16.11 Using clear plastic tubing on standard adapters

Team LRN

310

Building the second mechanical device
The second device is a lever (see Figs. 16.13 and 16.14). The
lever I made is constructed out of wood and plastic. Machine
screws secure the air muscle and rubber bands to the lever arm.
A wood screw through the plastic arm is the pivot. A second wood
screw holds both the air muscle and rubber band. Operate this
device using the three-way air valve as before. When activated,
the lever moves up.

Chapter sixteen

Rubber
band

Muscle
attachment

point

Pivot point

When the air muscle fills, it
shortens, pulling the lever up.

When the air is let out,
the muscle lengthens
and the elastic bands
pull the lever down.

� 16.13 Second mechanical device “lever”

Team LRN

311

IBM interface
Computer control is easy. The computer operates an electric
three-way air valve. An inexpensive three-way electrically oper-
ated solenoid air valve is available (see Fig. 16.15). This air valve
operates at 5 volts DC (VDC) and is rated at 90 psi. This air valve
has quick connect and disconnect air ports. The 5/32"-diameter stiff
tubing is simply inserted into the port hole, and it locks in. To dis-
connect, hold and secure the port ring with your fingers into the
air valve and tug the 5/32"-diameter air tubing out.

To operate a single air valve, we only need one pin off the parallel
(printer) port, along with a ground (see Fig. 16.16). The output pin
is buffered with a gate off of a 4050HCT noninverting hex buffer. The
output of the hex buffer turns a TIP 120 NPN Darlington transistor
on or off. The transistor controls the current going to the air valve.

Android hand

� 16.14 Second mechanical device “lever”

Team LRN

312

BASIC program
The BASIC program is short and simple. After finding the printer
port address, the following lines control the valve of pin 2:

5 REM Solenoid Air Valve Controller

10 REM John Iovine

15 REM Find Printer Port Address

20 DEF SEG = 0

25 a = (PEEK(1032) + 256 * PEEK(1033))

30 REM Next line activates the air muscle

35 OUT a,1

40 REM Next line deactivates the air muscle

45 OUT a,0

By bringing the DB25 pin 2 high, the air valve is opened allowing
air pressure to the air muscle. Bringing pin 2 low, closes the air
valve to the muscle and vents the air from the air muscle.

Chapter sixteen

� 16.15 Electrically operated three-way air valve

Team LRN

313
More air

The air muscle, as previously discussed, uses compressed air from a
PET plastic air storage bottle and foot pump. One can use com-
pressed air from just about any source that’s available. For instance,
you can purchase small compressed air canisters used for air
brushing. In fact, airbrushing supplies may provide you with a list
of suitable tubing and fittings to experiment with.

There are a few small electric air compressors available on the
market. The more expensive ones, made for airbrush painting,
have metal storage containers and air pressure regulators. At the
other end of the market are the inexpensive 12-VDC portable air
compressors used for tire inflation. These compressors typically
do not have an air pressure regulator or air storage. These items
may be purchased to make an inexpensive pneumatic system.

Never use plastic PET bottles for air storage with any kind of auto-
matic air compressor. The plastic PET bottles are only suitable
for air storage with hand (or foot) operated air pumps. Always
use an air storage tank with any automatic air compressor. Small
air storage tanks are not expensive.

Android hand

� 16.16 Schematic of air valve controller

Team LRN

314

Safety first

Since this is a new product, not too many people may be familiar
with working with pneumatic systems. Therefore, a few safety
guidelines should be followed.

1. Always wear goggles when prototyping a new design.

2. Never connect a plastic PET soda bottle to an air compressor.

3. Never use a glass bottle for air storage.

4. Limit PET bottle size to 1 L (or quart) or less.

5. Do not unscrew the bottle top or pull off an air fitting or valve
when the system is still pressurized. Bleed the system of air first.

Android hand
The construction of a human-type hand, grasping mechanism begins
with a trip to a toy store. The toy needed is called an Awesome Arm,
made by Zima Company in China (see Fig. 16.17). You will need to
purchase two Awesome Arms to get enough fingers. The thumb on
the toy is fixed and cannot be used.

The toy works by allowing the users to use their own fingers to
actuate fingers on a robotic hand, something like a hand or arm
extension. We will scavenge the main component out of this toy
to make an inexpensive android hand.

When you turn the arm over, there are five small screws that hold the
hand together. Remove the screws and the arm section will come
apart (see Fig. 16.18). Remove the finger section of the toy (see
Fig. 16.19). Discard the rest of the components. The rectangular
boxes on the finger pulls are where people place their fingers to
use the extension hand. We won’t be needing them, so cut them off
using wire cutters, leaving a long plastic stem.

Chapter sixteen

� 16.17 Awesome arm manufactured by Zima Company

Team LRN

315
We need to build a substructure to support all the components. I
began by tracing the outline of my right hand on paper. Then I
shaded in a form that would become the support structure (see
Fig. 16.20). The shaded area was cut from 1/8"-thick aluminum plate.

The fingers must be secured to the end of the plate. To do so, first
mark the position on the support aluminum. Next, place a small
aluminum plate 1/2" wide � 1/8" thick right behind the plastic back
of the fingers (see Fig. 16.21). This forms a back plate for the fin-
ger base to rest against. Drill three holes through the two alu-
minum plates, and fasten the small plate in position using a few
machine screws and nuts.

Secure a top aluminum plate 1/8" � 1/2" to the top of the finger base.
Drill four holes through the top plate and support plate as shown by
the screw positions in Fig. 16.22. Four 1"-long machine screws and
nuts secure the top plate in position. These machine screws serve
a dual purpose. First, they secure the top plate that locks the fin-
gers onto the support plate. Second, they will hold a rubber band to
provide tension for the air muscle.

With the fingers secured to the support plate, we need to attach an
air muscle to each finger. In order for the air muscle to provide a

Android hand

� 16.18 Opposite side of arm, where screws are removed

� 16.19 Finger pulls salvaged from arm

Team LRN

316

useful contraction, it must be stretched. Loop a rubber band
through the air muscle. Then remove the first of the four 1"-long
screws securing the top plate. Place the looped ends of the rubber
band where the screw passes through the top plate. Replace the
screw, threading it through the looped ends and through the top
plate holes, and then secure it with a nut (see Figs. 16.23 and 16.24).

Pull back the air muscle until it’s fully extended. Mark the end of
the air muscle. Drill a hole on the mark, and place the machine
screw and nut there. Place the end loop of the air muscle over the
machine screw to hold the air muscle in an extended position (see
Fig. 16.25).

Now drill a small hole in the plastic section of the finger pull. The
small hole should line up with the front loop of the air muscle.
The hole must just be large enough to allow a double strand of
magnetic wire to pass through it. You can substitute bare 22-gauge
solid copper wire for magnetic wire.

Chapter sixteen

8"

Android Hand Outline

Alum
Plate

� 16.20 Outline of hand and aluminum support

Team LRN

317

Android hand

1/8"-x-1/2" Alum Plate

1/8" Alum Plate

Side View

Finger

Drill small hole here
for magnetic wire

Screw Positions Top Aluminum
Plate

Top Aluminum Plate 1/8"-x-1/2" Alum Plate

1/8" Alum Plate

Side View

Finger

� 16.21 Placement of back plate

� 16.22 Placement of top plate

Team LRN

318

Chapter sixteen

Screw

Top Plate
Screw

Thread 1" screw
through both

loop ends

Loop Rubber Band
Through Air Muscle End

Note – Tension or rubber
band is sufficient to extend
air muscle (approx. 2lbs.)

Air
Muscle

Wire

Screw

Hole drilled
in plasticRubber Band

(stretched)

Machine Screw
Alum Plate

� 16.23 Threading rubber band through one end of air muscle and
attaching opposite end to top plate screw

� 16.24 Overview of attaching stretched air muscles to finger pull

Team LRN

319

Pass a double strand of wire through the plastic hole and front loop
of the air muscle. Twist the ends of the wire together securing the
components together. If there is excessive wire left from twisting,
clip it off using wire cutters.

The top view should look something like Fig. 16.24. We can now
see how the finger will contract. As the air muscle is pressurized,
it contracts. The contraction pulls the plastic stem of the finger
pull, which in turn contracts the finger. When pressure from the
air muscle is released, the rubber band extends the air muscle
back into its original extended position.

At this point it’s a good idea to static test the finger. Connect the
air supply to the muscle to ensure it operates in the manner just
described. The prototype required a pressure of 42 psi to fully
contract the index finger.

When the finger operates properly, connect the air muscles to the
remaining fingers in the same manner described. Figure 16.26 is
a close-up of the air muscles connected to all the finger pulls.

The thumb

The thumb is the most important finger on the hand. It makes
grasping, holding, and using tools much easier. Don’t think so? Try
picking up a coin off a table or floor without using your thumb.
Now try using a few tools, like pliers, wire cutter, hammer, or drill.

To make the thumb, cut off the small finger assembly from the
second hand unit purchased. Assemble this finger section lower
and at a 45 degree angle to the other fingers (see Fig. 16.27).

Android hand

� 16.25 Attaching opposite end of air muscle to
machine screw to extend air muscle

Air Muscle Loop

Team LRN

320

The thumb in this prototype is articulated (moves) but is not
opposable. To improve this design, make the thumb opposable.
This will increase the effectiveness of the hand. To make the thumb
opposable, the thumb-containing portion of the hand must be cut
off and reattached using a spring-loaded hinge (see Fig. 16.28).
The spring-loaded hinge would be located on the rectangular box
shown in Fig. 16.28. An air muscle connects to this section; when
activated, it pulls the thumb into the palm section of the hand.
This makes the thumb opposable as well as articulated.

Chapter sixteen

� 16.26 Close-up of air muscle, rubber band, and finger pull tied
together in finished hand

� 16.27 Finished robotic hand

Team LRN

321Going further
The robotic hand can be interfaced to an IBM-compatible computer
using five electric solenoid valves, similar to the single-valve design
shown earlier. An outer covering like a rubber hand can be fitted
over the robotic hand to make an android hand (see Fig. 16.29).

Some other applications for the air muscle are interesting. Here
are a few:

� Six-legged robotic walker

� Easy-open jar clamp (for people with arthritis)

� Robotic hands

� Robotic arms

Parts list for the air muscle
� (1) Air muscle, 6" long with 5/32"-diameter tubing—$15.95

� (1) PET bottle top adapter with pressure release valve—$4.00

� (1) Three-way air valve—$4.00

� (1) Air pump adapter—$2.00

� (1) Foot air pump with 100-psi air pressure gauge—$12.95

Android hand

� 16.28 Plans to make thumb opposable as well as articulated

Team LRN

322
� (1) 5/32"-diameter air tubing—$0.25 per ft

� (1) 7/32"-diameter clear air tubing (for making quick
releases)—$0.25 per ft

Parts list for the IBM interface
� (1) 5-VDC three-way solenoid air valve, 90 psi

maximum—$30.00

� (1) DB25 pin connector—$3.50

� (1) 4050HCT noninverting hex buffer—$4.00

� (1) TIP 120 NPN Darlington transistor—$1.25

Parts are available from:

Images Company
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

http://www.imagesco.com

Chapter sixteen

� 16.29 Fitting lifelike rubber hand over robotic hand to create an
android hand

Team LRN

323

Suppliers

Jameco Electronics
1355 Shoreway Road
Belmont, CA 94002
(650) 592-8097

JDR Electronics
1850 South 10 Street
San Jose, CA 95112
(800) 538-5000

Images SI, Inc.
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305

Radio Shack
Check local telephone directory for store nearest you

Suppliers

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

This page intentionally left blank.

Team LRN

325

Index

A
aerobots (aerial robots), 269-280

blimps, 270-280
lighter-than-air, 270

AI (see artificial intelligence)
air muscles, 299-307, 301, 313-314

advantages of, 300
air compressors for, 313
air pump adapter for, 304-307
air storage bottle for, 305, 307, 313
in android hand, 299-307, 313-314
applications of, 41-42
attaching, 304, 305
components of, 301-304, 302-307

functioning of, 42, 42-43, 300-301
in movement and drive systems, 41-43
parts list for, 321, 322
(See also hand, android)

aircraft, 12 (See also aerobots [aerial
robots])

AL (see artificial life)
Alexander, R. McNeill, 267
alkali fuel cells, 38, 38

alkaline-manganese batteries, 30
amateur television (ATV), 211-212
American Radio Relay League (ARRL), 212
analog compass, 85

androids, 2, 267 (See also hand, android)
animatronics, 281, 291
anthrobots
arm, robotic, 281-298

for animatronics, 291
DOS-level keyboard program for, 294
finding home position of, 292-293
gearbox of, 283-284, 284

limitations of, 291-292
manual control connection for, 293-294,

293

movement of, 282, 283
parts list for, 297-298

arm, robotic (Cont.):
PC interface connection for, 289, 289, 290

PC interface construction, 286-289, 286-288

PC interface for, 281-283, 297
speech control for, 294-298, 295

Windows 95 program for, 289-291
wire control of, 283-286, 285

ARRL (American Radio Relay League), 212
artificial intelligence (AI), 15-22, 101-141

consciousness vs., 17
evolution of consciousness in, 16
fuzzy logic, 127-137, 128-134, 136

greater then human intelligence, 19-20
history of, 18-19
microcontrollers, 101-126
and neural networks, 20-22
neural sensors (logic), 137, 137-139, 138

programming PIC microcontrollers, 102-
119, 103, 104

for reading comparators, 123, 123

for reading resistive sensors, 123-126, 124

for reading switches, 120-122, 120-122

servo motors, 126, 126-127
tests of, 21-22

artificial life (AL), 17-18, 20
ATV (see amateur television)
automation, 281
autonomous aircraft, 269
Awesome Arm, 314, 314

B
Ballard Power Systems, 40
BASIC program (android hand), 312
batteries, 28-38

alkaline-manganese, 30
building NiCd battery charger, 33-35, 33-38
building solar-powered battery charger, 38
carbon-zinc, 30
gel-cells, 32
lead-acid, 32

Index

Copyright 2002, 1998 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Team LRN

326

Index

batteries (Cont.):
lithium, 30
NiCd, 29-38
power ratings for, 28, 29, 31-32
primary, 29-32
secondary, 30-32
voltage of, 29, 30

battery chargers:
NiCd, 33-35, 33-38
solar-powered, 38

Battlebots, 12
BEAM robotics, 165
behavioral-based robotics, 165-199, 190-194

architecture of, 22
BEAM robotics, 194-199, 195, 196

building Walter tortoise, 168-189
building intelligent photovore robot,

189-194
bend sensors, 92, 92, 93
Berger, Hans, 167
Binning, Gerd, 10
bipedal walker robots, 233
bipolar stepper motors, 217
blimps, 12, 270-280

CCD camera for, 276-277, 277, 279, 279

construction of, 276
designing telepresence, 272
helium/hydrogen, 274-275
Internet sites related to, 280
materials for, 274
parameters for, 273-274
parts list for, 280
R/C system for, 277, 278, 278

size of, 275-276
body sense (in sensors), 81-82
bomb squads, 8
bottom-up intelligence, 166
Braitenberg, Valentino, 165
Brooks, Rodney, 22, 101, 165
buoyancy, 266

C
CA (cellular automations), 17
cameras:

in blimps, 276-277, 277, 279
in telepresence robots, 205-208

Capek, Karel, 1
carbon-zinc batteries, 30
cellular automations (CA), 17
chaos algorithms, 17
Clarke, Arthur C., 20
Clinton, Bill, 40

CodeDesigner Lite, 115, 115-119, 118, 119

COG humanoid robot, 81
Colossus the Corbin Project, 20
comparators, 60, 61-63, 63
compasses:

analog, 85

digital, 82-84, 210
competitions:

fire-fighting, 9
robot wars, 11-12

computer systems, AI in, 15-16
Connecticut Robotics Society, 9
consciousness, 16, 17, 21
cruise missiles, 11
Ctesibus, 1
cyborgs, 2

D
DC motors, 54-58, 54-58

design robots, 7
diagnostic testing robots, 9
digital compass, 82-84, 210
direction—magnetic fields, sensors of, 82-85
dolphins, 260-261
domestic robots, 12
drive wheel/motor shaft connections, 222,

222, 223

drones, 11, 12
DTMF IR system (see dual-tone

multifrequency IR
communication/remote control system)

DTMF signal (see dual-tone multifrequency
signal)

dual tone multifrequency (DTMF) IR
communication/remote control system,
70-80

adding digital display, 77, 77

adding IR transmission, 77-78, 78, 79

decoding, DTMF, 75, 75, 76, 76

encoding, DTMF, 72-75, 73, 74

microcontroller, 75, 77
remote control, 79, 80

signal, DTMF, 70-72, 71

testing, 77
dual-tone multifrequency (DTMF) signal,

70-72

E
EEG (electroencephalograph), 167
electrolytic tilt sensors, 211
Elektro the Moto Man, 2
ELIZA, 21

Team LRN

327

Index

Elmer (robot), 167
Elsie (robot), 167, 168
The Enchanted Loom (Robert Jastrow), 18
engines, solar, 24-29
enhanced manipulation, 10
ENIAC computer, 18
expert (rule-based) intelligence programs,

101
explorer robots, 3-7
Exploring Biomechanics (R. McNeill

Alexander), 267
eyes (T-bots), 204-205, 205

F
Fire-Fighting Home Robot Contest, 9
fire-fighting robots, 9
fish, 259-261
fish, robotic, 261, 263-268, 266, 267

android, 267
efficiency of, 266
electronics for, 264, 264-265
mechanics of, 265, 265, 266
parts list for, 267-268
rotary solenoid, 263, 264, 264

tail, 263-266
water considerations for, 266

foils, swimming, 261
fuel cells, 38-40
fuzzy logic, 15, 127-137, 128-134, 136, 140-141

G
GA (genetic algorithms), 17
gelled-electrolyte battery cells (gel-cells), 32
genetic algorithms (GA), 17
global positioning system (GPS), 85
Golem robot, 201-208, 208

GPS (global positioning system), 85
Gray, James, 260

H
HAL computer, 20
half-stepping, 215-217, 216, 227
hand, android, 299-322, 316, 319-322

air muscles in, 299-307, 301-307, 313-314
BASIC program for, 312
fingers for, 314-318, 314-320
first mechanical device for, 307-309
IBM interface for, 311-312, 313, 322
second mechanical device (lever) for, 310,

310, 311

thumb for, 319-321
hazardous duty robots, 8, 8

H-bridge (CD motor), 55-58, 56-58

HE motors (see high-efficiency motors)
heat sensors, 93, 93

Heinlein, Robert, 201
helium balloons, 271
helium (blimps), 274-275
high-efficiency (HE) motors, 24-26
home position (robotic arm), 292-293
Honda, 40
Hrynkiw, Dave, 24, 247
humidity sensors, 97
hydrofoil, 261
hydrogen (blimps), 274-275

I
IBM, 10, 18
IBM PC interface:

for android hand, 311-312, 313, 322
for robotic arm, 281-283, 286-291, 297

industrial robots, 2, 7
Intel Corp., 15
intelligence:

consciousness of, 17
top-down vs. bottom-up, 166
(See also artificial intelligence)

interocular distance (IOD), 209
IOD (interocular distance), 209
IQ, 19
Israel, 11

J
Jacquet-Droz, Pierre, 1
Jason project, 272
Jastrow, Robert, 18
Jet Propulsion Laboratories (JPL), 4

L
lead-acid batteries, 32
learning from experience, 22
Leclanche, George, 30
leg linkages, 240-242, 241, 242

legs, robots with (see walker robots)
lever (android hand), 310, 310, 311

life:
artificial, 17-18, 20
consciousness vs., 17
silicon, 18

light sensors (sight), 64-80
DTMF IR communication/remote control

system, 70-80, 71-80

infrared, 67-69, 67-70
photoresistive, 64-66, 64-67

Team LRN

328

Index

light sensors (sight) (Cont.):
photovoltaic, 67

lighter-than-air aircraft, 12, 270
light-seeking mobile solar-ball robots (see

solar-ball robots)
lithium batteries, 30
living robots (see BEAM robotics)
locked cage story, 19
Lunacorp, 272, 273

M
Machina Speculatrix robots, 167
machine vision, 80-81
maintenance robots, 9
manufacturing industries, robots in, 2
Mars, 3-7
Mars Pathfinder, 4-5, 5
Massachusetts Institute of Technology

(MIT), 81, 260-261
McKibben, J. L., 41
McKibben air muscles (see air muscles)
McKibben pneumatic artificial muscles (see

air muscles)
mechanical dolls, 1
medical robots, 9-11
memory effect (NiCd batteries), 32
MicroBot Wars, 12
microcontrollers, 22, 101-126

applications of, 120-126, 120-125

for mobile platforms, 222-223
parts list for, 139-140
PIC programming of, 102-119, 104, 106

for stepper motors, 229-232, 230, 231

for walker robots, 244-246
microrovers, 4, 7
MIT (see Massachusetts Institute of

Technology)
mobile platforms, 213-232

drive wheel/motor shaft connection for,
222, 222, 223

microcontroller for, 222-223
stepper motors for, 214-232, 217, 218, 224

troubleshooting, 228-229
UCN-5804 integrated circuit, 219-222

moon rovers, 272, 273

motors:
DC, 54-58, 54-58

high-efficiency, 24-26
movement and drive systems, 41-58

air muscles, 41-43
DC motors, 54-58, 54-58

nitinol wire, 43-45, 44-46

movement and drive systems (Cont.):
rotary solenoids, 46, 47

servo motors, 48, 50-53, 50-53

solenoids, 45-46, 46

stepper motors in, 47, 47-49, 49

N
Nafion, 39
nanobots (nanotech medical bots), 10-11,

17, 18
nanotechnology, 10, 11
National Aeronautics and Space

Administration (NASA), 3-4, 7
“nervous nets,” 165
nervous networks, 165 (See also behavioral-

based robotics)
Nestor Inc., 15
neural chips, 15-16
neural networks, 15, 20-22, 165

capabilities of, 16

definition of, 20
(See also behavioral-based robotics)

neural stimulus-response mechanism, 165
(See also behavioral-based robotics)

neural systems, rule-based systems that
mimic, 101

neural-behavior-based architecture, 22
Neuromedical Systems, Inc., 9
Ni1000 chips, 15-16
NiCd batteries (see nickel-cadmium

batteries)
nickel-cadmium (NiCd) batteries, 31-32

battery chargers for, 33-38
rechargeable, 30-32
voltage of, 29

nitinol wire, 43-45, 44-46

nonrigid aircraft, 270

O
Office of Space Access and Technology

(OSAT), 4

P
Papnet, 9-10
Pathfinder, 4-5, 5
Pavlov, Ivan, 166
PCB (see printed circuit board)
PEM (see proton exchange membrane)
penguins, 261
personal robots, 2-3
photoresistive light switch, 64
photovoltaic cells, 23-28

Team LRN

329

Index

PIC programming, 102-119, 103, 104

EPIC programmer and CodeDesigner,
118-119, 119

EPIC programming board software,
110-113, 110-113

first PICBASIC Pro program, 117-118, 118

new IDE features, 115, 115-117
PICBASIC Pro compiler, 115
programming the PIC chip, 106, 106, 110
steps in, 105-106
testing PIC microcontroller, 113-114, 114

troubleshooting, 114
using the compiler, 105, 108, 108-109, 109

writing BASIC language program, 105-107
“pick and place” robots, 7
piezoelectric sensors, 91
pillow blimp, 277, 279

platforms, mobile (see mobile platforms)
power, 23-40

from batteries, 28-38
from fuel cells, 38-40
from photovoltaic cells, 23-28

pressure sensors, 90-91, 94, 94

primary batteries, 29-32
printed circuit board (PCB), 24, 25, 26

programs, AL, 17-18
proton exchange membrane (PEM), 39, 40
prototyping robots, 7

R
radio-controlled (R/C) systems:

for blimps, 277, 278, 278

model cars, 202-205, 203, 204, 207-214, 214

rechargeable batteries, 30-32
remote control systems, 269-270
rigid aircraft, 270
The Robot Group, 271
robot war competitions, 11-12
Robot Wars, 11
Robotica, 12
robot(s), 1-13

civilian drones, 12
definition of, 1
design/prototyping, 7
domestic, 12
exploration, 3-7
fire-fighting, 9
for hazardous duty service, 8
history of, 1-2
human operators vs., 2
industrial, 7
maintenance, 9

robot(s) (Cont.):
medical, 9-11
nanotech medical, 10-11
neural networks in, 22
personal, 2-3
purposes of, 2-3
and robot wars, 11-12
war, 11
(See also specific headings)

Rocky IV, 5
Rohrer, Heinrich, 10
rotary solenoids:

in movement and drive systems, 46, 47

in robotic fish, 263, 264, 264

Rubbertuator (see air muscles)
rule-based (expert) intelligence programs,

101
rumble interface (T-bot), 210
R.U.R. Rossum’s Universal Robots (Karel

Capek), 1

S
SASS LITE, 271
scanning tunneling microscopes (STMs), 10
Scientific American, 267
secondary batteries, 30-32
self-awareness, 21-22
self-replicating robots, 17
semirigid aircraft, 270
sensors, 59-99

bend, 92, 92, 93
and body sense, 81, 81-82
building tester robot, 97, 97-99, 98

of direction—magnetic fields, 82-85, 82-85

heat, 93, 93

humidity, 97
light, 64-80
machine vision, 80-81
piezoelectric, 91
pressure, 94, 94

signal conditioning with, 60-63
smell, 94-96, 95, 96

sound and ultrasonics, 86-89, 86-90
speech recognition, 85
switches in, 92
testing of, 97
touch and pressure, 90-91, 91

servo motors, 126, 126-127
in movement and drive systems, 48, 50-53,

50-53

in walker robots, 235, 241-244, 243, 244

shaped memory alloys (SMAs), 43

Team LRN

330

Index

sight sensors (see light sensors (sight))
signal conditioning, 60-63
silicon life, 18
smart bombs, 11
“smart” weaponry, 11
SMAs (shaped memory alloys), 43
smell sensors, 94-96, 95, 96

Sojourner, 4-7, 6
solar cells (see photovoltaic cells)
solar engines, 24-29, 25, 27, 29

solar-ball robots, 247-257, 248, 249

assembly of, 255, 257
construction of, 250-252, 250-253
electronics for, 253-255, 254, 255

gearbox for, 247-250, 249, 252

higher behavior module for, 256, 256

improvements to, 255-256
locomotion in, 255
parts list for

solar-powered battery charger, 38
solar-powered robots, 23-24
solenoid air valve, 311, 312

solenoids, 45-46, 46 (See also rotary
solenoids)

sound sensors, 86-90
Sparko, 2
speech control (robotic arm), 294-298, 295

speech recognition sensors, 85
speech-controlled mobile robot, 143-163,

155

acoustic coupling for, 153, 154
general speech-recognition interfacing

circuit for, 155-161, 156, 160, 161

improving word recognition in, 160
interface circuit in, 152-155, 153, 154,

162-163
matching environment and equipment in,

160, 162
speech-recognition circuit in, 143-152,

162
training and controlling, 154
walkie-talkies used in, 153

speech-recognition circuit (SRC), 143-152,
162

building, 146-152, 149-152

listening by, 144-145
parts list for, 162
speaker-dependent/independent, 145
and styles of speech, 145-146

SRC (see speech-recognition circuit)
statistical networks, 21
stepper motors, 214-232, 217, 218, 224

stepper motors (Cont.):
construction/operation of, 215
electrical circuit of, 223-224
first stepper circuit for, 222-223
first test circuit and program, 224-225
half-stepping with, 215-217, 216

microcontrollers for, 229-232, 230, 231

in movement and drive systems, 47,

47-49, 49

parts list for, 232
real-world applications of, 271-218
resolution of, 215
second test circuit and program, 225-228,

228, 229

troubleshooting, 228-229
UCN-5804 integrated circuit, 219, 219-

222, 221, 229-232
stereo-vision, 208-210
stimulus-response mechanism, 165 (See also

behavioral-based robotics)
STMs (scanning tunneling microscopes), 10
Strouhal number, 261
“stuffing the board,” 7
submarines, 262, 262-263, 263

submersibles, 1
subsumption architecture, 22, 101, 165 (See

also behavioral-based robotics)
supercomputer capabilities, 16

suppliers list, 323
surgery, robots used in, 10
switches:

bumper, 177, 177, 178, 178

photoresistive light switch, 64
reading, with artificial intelligence, 120-

122, 120-122

in sensors, 92
tilt, 81, 81-82

T
tails, for swimming, 263-266, 265

T-bot (see telepresence robot)
telepresence flight control systems, 269-270
telepresence remotely operated vehicles

(TROVs), 259, 260

telepresence robot (T-bot), 201-212
cameras in, 205-208

construction of, 205-208, 206-208

controls for, 208
definition of, 201
digital compass in, 210
eyes for, 204-205, 205

improvements to, 208-212

Team LRN

331

Index

telepresence robot (T-bot) (Cont.):
operation of, 207
parts list for, 212
R/C model car used in, 202-205, 203, 204,

207-212
rumble interface in, 210
speaking from, 208
stereo-vision in, 208-210
system for, 202

system substructure for, 202-205, 203

tilt interface in, 210-211
video range of, 211-212
video system for, 206-207, 206-208

telepresence surgery, 10
Terminator I and II, 20
Tesla, Nikola, 1
Thunderseat, 210
ti delay variable, 227, 228
Tilden, Mark, 24, 165
tilt sensors, 210-211
tilt switches, 81, 81-82
top-down intelligence, 166
tortoise robot (see Walter tortoise)
touch sensors, 90-91, 91

transmitters, TV (see TV transmitters
(blimps))

Trianthafyllou, George S., 267
Trianthafyllou, Michael S., 267
Trinity College, 9
tripod gait, 233-238, 234, 235, 237

TROVs (see telepresence remotely operated
vehicles)

tuna, 260-261
Turing, Alan, 21
Turing test, 21
TV transmitter kits (blimps), 276-278, 278,

279

2001 (Arthur C. Clarke), 20

U
UAVs (unmanned aerial vehicles), 269
UCN-5804 integrated circuit, 219, 219-222,

221, 229-232
ultrasonic sensors, 86-89, 86-90
underwater robots, 259-268

fish robot, 263-268
locomotion, 261, 263
submarines, 262, 262-263, 263

TROVs, 259, 260

University of California (Berkeley),
271-272

unmanned aerial vehicles (UAVs), 269

V
Vehicles Experiments in Synthetic

Psychology (Valentino Braitenberg),
165

video system (T-bots), 206-207, 206-208,

211-212
Viking probes, 3
virtual reality (VR), 201, 202, 259, 270
voice recognition systems, 143
voltage dividers, 61-62
VR (see virtual reality)

W
Waldo (Robert Heinlein), 201
walker robots, 233-240, 236

construction of, 238-240, 238-240

electronics for, 243-244
leg linkage in, 240-242, 241, 242

microcontroller program for, 244-246
parts list for, 246
servo motors in, 235, 240-244, 243, 244

tripod gait in, 233-238, 234, 235, 237

Walter, William Grey, 22, 101, 165-168
Walter tortoise, 168-189

attaching bumper to, 176-177
behavior of, 186-188
bumper switch for, 177, 177, 178, 178

center of gravity of, 176
counterbalance for, 174
drive and steering motors for, 169-173,

169-174
microcontrollers for, 182-183
parts list for, 188
photoresistor for, 177-180, 179, 180

power for, 183
program for, 183, 183-186, 186

schematic for, 179, 181, 181-182
shell of, 174-176, 175, 176

war robots, 11
waterproofing, 266
Weait, Richard, 247
WEB Blimp, 271-272
Weizenbaum, Joseph, 21
wire control:

for movement/drive systems, 43-45,
44-46

or robotic arm, 283-286, 285

World’s Fair, 1939, 2
worms, 16

Z
Zadah, Lotfi, 128

Team LRN

About the Author

John Iovine is the author of several popular McGraw-Hill titles that
explore the frontiers of scientific research. He has written Home-

made Holograms: The Complete Guide to Inexpensive, Do-It-

Yourself Holography; Kirlian Photography: A Hands-On Guide;
Fantastic Electronics: Build Your Own Negative-Ion Generator

and Other Projects; and A Step into Virtual Reality. He is also
the “Amazing Science” columnist for Poptronics magazine.

332

Team LRN

