

PICmicro®

Microcontroller
Pocket

Reference

5194 Pocket Predko FM 9/25/01 4:20 PM Page i

This page intentionally left blank.

PICmicro®

Microcontroller
Pocket

Reference

Myke Predko

McGraw-Hill
New York San Francisco Washington, D.C. Auckland Bogotá

Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

5194 Pocket Predko FM 9/25/01 4:20 PM Page iii

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher.

The material in this eBook also appears in the print version of this title: 0-07-136175-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol
after every occurrence of a trademarked name, we use names in an editorial fashion only, and to
the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licen-
sors reserve all rights in and to the work. Use of this work is subject to these terms. Except as per-
mitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommer-
cial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COM-
PLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply
to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

 abc
McGraw-Hill

0-07-139563-6

DOI: 10.1036/0071395636

This page intentionally left blank.

Contents

Chapter 1. Conventions Used in This Book 1

Chapter 2. PICmicro® MCU Part Number
Feature Comparison 3

Feature to Part Number Table 3

Chapter 3. Device Pinouts 7

Low-End 8

Mid-Range 10

PIC17Cxx 14

PIC18Cxx 17

Chapter 4. PICmicro® MCU Instruction Sets 21

Parameters 21

Low-End Instruction Set 22

Mid-Range Instruction Set 31

PIC17Cxx Instruction Set 40

PIC18Cxx Instruction Set 63

Microchip Special Instruction Mnemonics 104

Parallax PICmicro® MCU Instruction Set 111

v

5194 Pocket Predko FM 9/25/01 4:20 PM Page v

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Chapter 5. PICmicro® MCU Processor
Architectures 123

The PICmicro® MCU’s Arithmetic Logic Unit 123

Low-End PICmicro® MCUs 125
Register access 126
STATUS register 128
Program counter 128

Mid-Range PICmicro® MCUs 130
Register access 130
STATUS register 132
Program counter 133
Interrupt operation 134
Interrupt handler skeleton 135

PIC17Cxx 136
Register access 137
STATUS register 138
Program counter 139
Interrupt operation 140
Interrupt handler skeleton 142

PIC18Cxx 142
Register access 144
STATUS register 146
Program counter 147
Interrupt operation 150
Interrupt handler skeleton 150

Chapter 6. PICmicro® MCU Register Mappings 151

Low-End PICmicro® MCUs 151

Mid-Range PICmicro® MCUs 154

PIC17Cxx 169

PIC18Cxx 186

vi Contents

5194 Pocket Predko FM 9/25/01 4:20 PM Page vi

Chapter 7. Built-In Hardware Features 207

Configuration Registers 207

Oscillators 208

Sleep 213

Option Register 216

Input/Output Ports and TRIS Registers 217

Watchdog Timer 221

TMR0 222

Prescaler 223

TMR1 224

TMR2 227

Compare/Capture/PWM(CCP) Module 228

USART Module 232

SSP Module 239
SPI operation 239
I2C operation 244

Built-In ADC 252

Built-In Comparators 257

Parallel Slave Port 261

Built-In EEPROM Data Memory Access 263

EPROM Program Memory Access 269

Flash Program Memory Access 271

External Parallel Memory 273

Chapter 8. PICmicro® MCU
Hardware Interfacing 277

Power 277

Reset 281

Digital Logic Interfacing 282

Contents vii

5194 Pocket Predko FM 9/25/01 4:20 PM Page vii

Parallel Bus Device Interfacing 282

Button Interfacing 284

Switch Matrix Keypad/Keyboard Interfacing 287

Combining Input and Output 291

Simulated “Open Collector’’/“Open Drain’’ I/O 292

LEDs 293
Multisegment LED displays 293

LCD Interfaces 296

I2C Bit Banging “Master’’ Interface 334

RS-232 Interfaces 338

RS-485/RS-422 345

Asynchronous Serial I/O Software Routines 347

Dallas Semiconductor One-Wire Interface 357

Reading Potentiometer Using Parallel I/O Pins 363

Motor Drivers 365

R/C Servo Control 370

Audio Output 371

AC Power Control 373

Hall-Effect Sensors 374

Sony Infrared TV Remote Control 374

Chapter 9. PICmicro® MCU Programming 379

“Hex’’ File Format 379

Low-End PICmicro® MCU Programming 381

Mid-Range Serial Programming 385

PIC17Cxx Programming 394

PIC17Cxx ICSP Programming 398

PIC18Cxx Programming 402

Microchip ICSP Programming Connector 405

Third Party/Downloadable Programmers 406

viii Contents

5194 Pocket Predko FM 9/25/01 4:20 PM Page viii

Chapter 10. PC Interfaces 407

Memory Map 407

I/O Space Map 407

Interrupt Function by Number 422

ISA Bus 425
ISA pinouts 425
Interrupts 429

Keyboard and Mouse Ports 430
Connector specification 430
Keyboard operation with timing diagrams 431
Keyboard scan codes 432
Keyboard controller commands 436
BIOS interfaces 436
Keyboard commands 441

Serial Port 441
Connector pinouts 442
8250 block diagram 443
Serial port base addresses 443
8250 registers 444
Interrupts 449
Interrupt 14h–RS-232 communications APIs 451

Parallel Port 455
Block diagram/connector 455
Base registers 457
Registers 457
Data output waveform 458
BIOS interfaces 459

Chapter 11. Useful Code “Snippets’’ 461

Jumping Outside the Current Page 461

Tables 462

Conditional Branching 465

Contents ix

5194 Pocket Predko FM 9/25/01 4:20 PM Page ix

Time Delays 466

Negating the Contents of a Register 467

Incrementing/Decrementing “w’’ 468

Rotating a Byte in Place 469

Copy Bits from One Register to Another 470

Converting a Nybble to ASCII 470

Converting an ASCII Byte to a Hex Nybble 471

Using T0CKI as an Interrupt Source Pin 471

Dividing by Three 472

Sixteen-Bit Pulse Measurement with
5-Cycle Delay 473

Detect a Change in a Register 474

Test a Byte within a Range 474

Convert ASCII to Upper Case 475

Swap the Contents of “w’’ with a Register 475

Swap the Contents of Two Registers 475

Compare and Swap if Y � X 476

Counting the Number of “1’’s in a Byte 476

Generating Parity for a Byte 477

Keeping a Variable within a Range 477

Swapping Bit Pairs 478

Bitwise Operations 478

Constant Multiplication 479

Constant Division 480

Chapter 12. 16-Bit Numbers 483

Defining 16 Bit Numbers 483

Increments and Decrements 484

Addition/Subtraction 485

Bitwise Operations on Constants and Variables 488

x Contents

5194 Pocket Predko FM 9/25/01 4:20 PM Page x

Comparisons with 16-Bit Variables 489

Multiplication 492

Division 495

Chapter 13. PICmicro® MCU
Operations Tables 499

I/O Pin Current Capabilities 500

RC Oscillator Component Values 500

LP Oscillator Operating Characteristics 501

XT Oscillator Operating Characteristics 502

HS Oscillator Operating Characteristics 504

Chapter 14. PICmicro® MCU Application
Debugging Checklist 507

Chapter 15. PICmicro® MCU Application
Software Development Tools 517

Microsoft Compatible Editor “Ctrl’’ Key
Combinations 517

MPSIM.INI 518

MPLAB 519
Stimulus (.STI) files 525
MPLAB assembler directives 526

Standard Declaration and Include (“.inc’’) Files 536

Linking–Linked Applications 536

Application Code Template 539

The BASIC Language 540

Microsoft BASIC Enhancements 542

PicBasic 549

Contents xi

5194 Pocket Predko FM 9/25/01 4:20 PM Page xi

Visual Basic 578
MSComm control 581

The “C’’ Language 588
Declarations 588
Statements 590
Operators 593
Directives 595
“Backslash’’ characters 598
Common C functions 598
PICmicro® MCU enhancement functions 603

Chapter 16. Constants and Data Tables 605

Mathematical and Physical Constants 605

ASCII 606
ASCII control characters 607
ANSI display control sequences 609
IBM PC extended ASCII characters 612
Windows ASCII characters 612

EBCDIC 612

Audio Notes 615

“Touch-Tone’’ Telephone Frequencies 616

Modem “AT’’ Commands 616
Modem registers 622

Morse Code 625

Phonetic Alphabets 626

“Ten’’ Radio Codes 626

Chapter 17. Miscellaneous Electronics 629

Resistor Color Coding 629

Electromagnetic Spectrum 630
Radar bands 632

xii Contents

5194 Pocket Predko FM 9/25/01 4:20 PM Page xii

Digital Logic 632
Gates 632
Flip flops 633

Chapter 18. Formulas 635

DC Electronics Formulas 635

AC Electronics Formulas 636

Mathematical Formulas 638

Boolean Arithmetic 638

Conversions 640

Chapter 19. Resources 641

Microchip 641

PICmicro® MCU Books 642

Useful Books 643

PICList Internet List Server 648

Recommended PICmicro® MCU Web Sites 656

Periodicals 658

Useful Web Sites 659

Hardware FAQs 660

Part Suppliers 661
Digi-Key 661
AP Circuits 661
Wirz Electronics 662
Tower Hobbies 663
Jameco 663
JDR 663
Newark 664
Marshall Industries 664
Mouser Electronics 665
Mondo-tronics Robotics Store 665

Index 667

Contents xiii

5194 Pocket Predko FM 9/25/01 4:20 PM Page xiii

This page intentionally left blank.

Chapter

Conventions Used in
This Book

Hz Hertz (Cycles per Second)
kHz Kilohertz (Thousands of Cycles per Second)
MHz Megahertz (Millions of Cycles per Second)
GHz Gigahertz (Billions of Cycles per Second)

bps Bits per Second
kbps Thousands of Bits per Second
mbps Millions of Bits per Second

KBytes 1,024 Bytes
MBytes 1,048,576 Bytes
GBytes 1,073,741,824 Bytes

1

1

5194 Predko Pocket Chapter 1 9/25/01 4:21 PM Page 1

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

K 1,000 ohms

uF microfarads
ms/msecs milliseconds
us/usecs microseconds

0x0nn, $nn, Hex Numbers
0nnh, and
H‘nn’
0b0nnn, Binary Number
%nnn,
0nnnb, and
B‘nnn’
nnn, 0nnnd, Decimal Number
and .nnn

AND and & Bitwise “AND”
OR and | Bitwise “OR”
XOR and ^ Bitwise “XOR”

_Label Negative Active Pin. In some manufacturer’s
data sheets this is represented with a leading
“!” character or with a bar over the entire
label.

[parameter] The parameter is optional.

parameter |
parameter One or another parameter can be used.

2 Chapter 1

5194 Predko Pocket Chapter 1 9/25/01 4:21 PM Page 2

Chapter

PICmicro® MCU
Part Number

Feature Comparison

Feature to Part Number Table

The following table lists the different PICmicro® MCU
families with the features that are specific to them.

2

3

5194 Predko Pocket Chapter 2 9/25/01 4:22 PM Page 3

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

4

Part Number Features

PIC12C5xx 8-Pin PICmicro® MCU. 12-Bit (Low-End) Processor. Internal Reset & Oscillator.

PIC12C6xx 8-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. 8-Bit ADC/Internal
Reset & Oscillator/Optional EEPROM Data Memory.

PIC14C000 28-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Advanced
ADC/Internal Voltage Reference/On Chip Temperature Sensor.

PIC16C5x 18- to 28-Pin PICmicro® MCU. 12-Bit (Low-End) Processor.

PIC16C505 14-Pin PICmicro® MCU. 12-Bit (Low-End) Processor. Internal Reset & Oscillator.

PIC16HV540 18-Pin PICmicro® MCU. 12-Bit (Low-End) Processor. Extended Vdd
Capabilities with Built-In Regulator.

PIC16C55x 18-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor.

PIC16C6x 18- to 40-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Optional TMR1
& TMR2/Optional SPI/Optional USART/Optional PSP.

PIC16C62x 18-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Voltage Comparators
Built-In with Voltage Reference/Optional EEPROM Data Memory.

PIC16F62x 18-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Flash Program
Memory/Voltage Comparators Built-In with Voltage Reference/Internal Reset
& Oscillator.

PIC16C642 28-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Voltage Comparators
Built-In with Voltage Reference.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

2

9
/
2
5
/
0
1

4
:
2
2

P
M

P
a
g
e

4

5

PIC16C662 40-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Voltage Comparators
Built-In with Voltage Reference.

PIC16C71x 18-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. 8-Bit ADC.

PIC16C7x 18- to 40-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. 8-Bit
ADC/Optional TMR1 & TMR2/Optional SPI/Optional USART/Optional PSP.

PIC16C77x 28- to 40-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. 12-Bit
ADC/TMR1 & TMR2/USART/I2C/SPI/Optional PSP.

PIC16F8x 18-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Flash Data and Program
Memory.

PIC16F87x 28- to 40-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. 10-Bit
ADC/TMR1 & TMR2/USART/I2C/SPI/Optional PSP.

PIC16C92x 64-Pin PICmicro® MCU. 14-Bit (Mid-Range) Processor. Optional 8-Bit
ADC/TMR1 & TMR2/LCD Controller.

PIC17C4x 40-Pin PICmicro® MCU. 16-Bit (High-End) Processor. USART/Multiply.

PIC17C5x 68-Pin PICmicro® MCU. 16-Bit (High-End) Processor. USART/I2C/Multiply/10-
Bit ADC.

PIC17C6x 84-Pin PICmicro® MCU. 16-Bit (High-End) Processor.
USART/I2C/SPI/Multiply/12-Bit ADC.

PIC18Cxxx 28- to 40-Pin PICmicro® MCU. 16-Bit Advanced (18Cxx) Processor.
USART/I2C/SPI/10-Bit ADC.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

2

9
/
2
5
/
0
1

4
:
2
2

P
M

P
a
g
e

5

6

Mid-range PICmicro® MCU Part Number to Feature Breakout

Part Number Comments

16Cx1 18-Pin PICmicro® MCU. 1K Program Memory. No USART/SPI/I2C.
PIC16C61 and PIC16C71 are currently “obsoleted.”

16Cx2 28-Pin PICmicro® MCU. 2K Program Memory. SPI/TMR1 & TMR2.

16Cx3 28-Pin PICmicro® MCU. 4K Program Memory. USART/SPI/TMR1 & TMR2.

16Cx4 40-Pin PICmicro® MCU. 4K Program Memory. USART/SPI/PSP/TMR1 &
TMR2.

16Cx5 40-Pin PICmicro® MCU. 4K Program Memory. USART/SPI/PSP/TMR1 &
TMR2.

16Cx6 28-Pin PICmicro® MCU. 8K Program Memory. USART/SPI/I2C/TMR1 &
TMR2.

16Cx7 40-Pin PICmicro® MCU. 8K Program Memory. USART/SPI/I2C/PSP/TMR1
& TMR2.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

2

9
/
2
5
/
0
1

4
:
2
2

P
M

P
a
g
e

6

Chapter

Device Pinouts

As a rule of thumb, Pin-Through-Hole (“PTH”) parts (“P”
and “JW”) are standard 0.300� and 0.600� widths with
pins 0.100" apart in dual in-line packages. The height of
the device is dependent on the package used. Surface
Mount Technology (“SMT”) parts are either in dual in-
line packages (“SO”) or in quad plastic chip carriers
(“PT”, “PQ”, and “L”).

For actual device dimensions, check the datasheets
(on the CD-ROM or from the Microchip Web site) for the
PICmicro® MCU that you are planning on using. Dif-
ferent packages for different PICmicro® MCUs have
different via pad and clearance specifications.

3

7

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 7

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Low-End

There are no PLCC or QFP packages used for the low-
end devices and the pinouts remain the same whether
or not the PICmicro® MCU is in a surface mount tech-
nology or pin-through-hole package (Figs. 3.1–3.4).

8 Chapter 3

Figure 3.1 “PIC12C508”/“PIC12C509” Pinout

Figure 3.2 “PIC16C505” Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 8

Device Pinouts 9

Figure 3.3 “PIC16C54”/“PIC16C56” Pinout

Figure 3.4 “PIC16C55”/“PIC16C57” Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 9

10 Chapter 3

Figure 3.5 “PIC12C67x” Pinout

Mid-Range

The mid-range devices have the widest range of pinouts
of any of the PICmicro® MCU families (Figs. 3.5–3.10).
For many of the devices, the pinout is similar, but the pin
functions may be different. In these cases, the pins
marked with “*” show that these pins have other, op-
tional purposes. Actual part number functions can be
confirmed with Microchip Datasheets.

The PIC14000, which is designed for “Mixed Signals”
uses the 28-pin packaging of the standard devices, but
the pinouts are different as shown in Fig. 3.11.

The PIC16C92x LCD Driver microcontrollers are fairly
high pin count devices. Figure 3.12 shows the 64-pin
“DIP” (“Dual In-line Package”) part. There is also a
“PLCC” and “TQFP” package for the parts as well.

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 10

Device Pinouts 11

Figure 3.7 Mid-Range PICmicro® MCU 28-Pin Device Pinout

Figure 3.6 Mid-Range 18-Pin PICmicro® MCU Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 11

12 Chapter 3

Figure 3.9 Mid-Range PICmicro® MCU 44-Pin “PLCC” Pinout

Figure 3.8 Mid-Range PICmicro® MCU 40-Pin Device Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 12

Device Pinouts 13

Figure 3.10 Mid-Range PICmicro® MCU 44-Pin “QFP” Pinout

Figure 3.11 PIC14000 28-Pin Device Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 13

PIC17Cxx

The PIC17Cxx PICmicro® MCUs are available in 40- or
64-pin DIP packages as shown in Figs. 3.13 and 3.14.
“PLCC” and “TQFP” surface mount packages as well for
the 40-pin parts are displayed in the following graphics
(Figs. 3.13–3.16).

14 Chapter 3

Figure 3.12 PIC16C92x 64-Pin Device Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 14

15

Figure 3.13 PIC17C4x 40-Pin Device Pinout

Figure 3.14 PIC17C75x 64-Pin Device Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 15

16

Figure 3.15 PIC17C4x 44-Pin “PLCC” Pinout

Figure 3.16 PIC17C4x 44-Pin “QFP” Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 16

Device Pinouts 17

Figure 3.17 PIC18C2X2 28-Pin Device Pinout

PIC18Cxx

There is a lot of similarity between the mid-range
PICmicro® MCU’s pinouts and the PIC18Cxx parts,
as will be seen in the following pinouts (Figs. 3.17–
3.20). Note that several pins that are optional in one
PICmicro® MCU family are not optional in others.

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 17

Figure 3.19 PIC18C4X2 44-Pin “PLCC’’ Pinout

Figure 3.18 PIC18C4X2 40-Pin Device Pinout

18 Chapter 3

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 18

Device Pinouts 19

Figure 3.20 PIC18C4X2 44-Pin “QFP’’ Pinout

5194 Predko Pocket Chapter 3 9/25/01 4:22 PM Page 19

This page intentionally left blank.

Chapter

PICmicro® MCU
Instruction Sets

Unless otherwise noted, all instructions execute in one
instruction cycle.

Parameters

There are a number of parameters that are used with
the instructions. The parameters are defined as:

21

4

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 21

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Low-End Instruction Set

Register Banks are 32 bytes in size in the low-end de-
vices. This makes “Reg” in the range of 0x00 to 0x01F.

22 Chapter 4

Op code
Parameter Symbol letter Value range

Don’t Care N/A x
Byte Constant k k 0 to 0x0FF
Register Address Reg f PICmicro® MCU

Architecture
Specific

Destination d d 0 or 1
Selection Bit Bit b 0 to 7
Destination Address a 0 to 0x07FF
Address
Destination Port Port p PORTA (5) to

PORTC(7)

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 22

Description Instruction Operation Op code

Add Register Contents to “w” addwf Reg, d if (d �� 1) 0001 11df ffff
and optionally store result in “w” Reg � Reg � w

else
w � Reg � w

endif
C � (Reg � w)
� 0x0FF
Z � ((Reg � w) &

0x0FF) �� 0
DC � ((Reg & 0x0F)

� (w & 0x0F))
� 0x0F

AND Immediate with “w” andlw k w � w & k 1110 kkkk kkkk
Z � (w & k) �� 0

AND Register Contents with “w” and andwf Reg, d if (d �� 1) 0001 01df ffff
Optionally store result in “w” Reg � Reg & w

else
w � Reg & w

endif
Z � (Reg & w) �� 0

Clear the Specified Bit bcf Reg, bit Reg � Reg & 0100 bbbf ffff
in the Register (0x0FF ^

(1 �� Bit))

23

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
3

Description Instruction Operation Op code

Set the Specified Bit bcf Reg, bit Reg � Reg | 0101 bbbf ffff
in the Register (1 �� Bit)

Skip if the Specified Bit In the Register is btfsc Reg, bit if ((Reg & 0110 bbbf ffff
Clear. One Instruction Cycle if Skip not (1 �� Bit))) �� 0)
Executed, two if it is PC � PC � 1

endif

Skip if the Specified Bit In the Register is btfsc Reg, bit if ((Reg & 0111 bbbf ffff
Set. One Instruction Cycle if Skip not (1 �� Bit))
Executed, two if it is !� 0)

PC � PC � 1
endif

Save the Stack Pointer and jump to the call Address [SP] � PC 1001 aaaa aaaa
Specified Address (two Instruction SP � SP � 1
cycles) PC � ((STATUS

& 0x0E0) �� 4)
� Address

Clear the Specified Register clrf Reg Reg � 0 0000 011f ffff
Z � 1

Clear the “w” Register clrw w � 0 0000 0100 0000
Z � 1

Clear the Watchdog Timer’s Counter clrwdt WDT � 0 0000 0000 0100
_TO � 1
_PD � 1

24

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
4

Complement the Contents of the comf Reg, d if (d �� 1) 0010 01df ffff
Specified Register and optionally store Reg � Reg ^ 0x0FF
the results in “w” else

w � Reg ^ 0x0FF
endif
Z � (Reg ^ 0x0FF)

�� 0

Decrement the Contents of the Register decf Reg, d if (d �� 1) 0011 11df ffff
and Optionally store the results in “w” Reg � Reg � 1

else
w � Reg � 1

endif
Z � (Reg � 1) �� 0

Decrement the Contents of the Register decfsz Reg, d if (d �� 1) 0010 11df ffff
and Optionally store the results in “w” Reg � Reg � 1
and Skip the next instruction else
if the results are equal to Zero. w � Reg � 1
Two Instruction Cycles taken endif
if Skip Executed PC � PC � 1

if ((Reg � 1) �� 0)
PC � PC � 1

endif

Jump to the Specified Address (two goto Address PC � 101a aaaa aaaa
Instruction cycles) ((STATUS & 0x0E0)

�� 4) � Address

25

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
5

Description Instruction Operation Op code

Increment the Contents of the Register incf Reg, d if (d �� 1) 0010 10df ffff
and Optionally store the results in “w” Reg � Reg � 1

else
w � Reg � 1

endif
Z � (Reg � 1) �� 0

Increment the Contents of the incfsz Reg, d if (d �� 1) 0011 11df ffff
Register and Optionally store the Reg � Reg � 1
results in “w” and Skip the next else
instruction if the results are equal to w � Reg � 1
Zero. Two Instruction Cycles endif
taken if Skip Executed PC � PC � 1

if ((Reg � 1) �� 0)
PC � PC � 1

endif

OR Immediate with “w” iorlw k w � w | k 1101 kkkk kkkk
Z � (w | k) �� 0

OR Register Contents with “w” and iorwf Reg, d if (d �� 1) 0001 00df ffff
Optionally store result in “w” Reg � Reg | w

else
w � Reg | w

endif
Z � (Reg | w) �� 0

26

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
6

Check Register Contents equal movf Reg, d if (d �� 0) 0010 00df ffff
to zero and Optionally store w � Reg
result in “w” endif

Z � Reg �� 0

Load “w” with an Immediate value movlw k w � k 1100 kkkk kkkk

Store the value in “w” movwf Reg Reg � w 0000 001f ffff

Waste one Instruction nop 0000 0000 0000

Move the contents of “w” into the option TRIS(Port) � w 0000 0000 0010
OPTION Register

Resume Execution after Subroutine retlw k w � k 1000 kkkk kkkk
and Place a constant value in SP � SP � 1
“w” (Two Cycles used) PC � [SP]

Resume Execution after Subroutine return w � 0 1000 0000 0000
and Place Zero in “w” (Two Cycles SP � SP � 1
used). This is actually a “retlw 0” PC � [SP]
instruction that MPLAB provides

27

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
7

Description Instruction Operation Op code

Rotate the Register left through carry rlf Reg, d Temp � C 0011 01df ffff
and optionally Save the Result in “w” C � (Reg �� 7) & 1

if (d �� 1)
Reg � (Reg �� 1)
� Temp

else
w � (Reg �� 1)

� Temp
endif

Rotate the Register right through carry rrf Reg, d Temp � C 0011 00df ffff
and optionally Save the Result in “w” C � Reg & 1

if (d �� 1)
Reg � (Reg �� 1)
� (Temp �� 7)

else
w � (Reg �� 1)

� (Temp �� 7)
endif

Go into “Standby” Mode (Indeterminate sleep _TO � 1 0000 0000 0011
number of cycles used) _PD � 0

28

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
8

Subtract “w” Register Contents from subwf Reg, d if (d �� 1) 0000 10df ffff
Register and Optionally store Reg � Reg �
Result in “w” (w ^ 0x0FF) � 1

else
w � Reg �
(w ^ 0x0FF) � 1

endif
C � (Reg �

(w ^ 0x0FF) � 1)
� 0x0FF

Z � ((Reg �
(w ^ 0x0FF) � 1)
& 0x0FF) �� 0

DC � ((Reg & 0x0F)
� ((w ^ 0x0FF)
& 0x0F) � 1)
� 0x0F

Swap the Upper and lower nybbles swapf Reg, d if (d �� 1) 0011 10df ffff
of a Register and Optionally store Reg �
result in “w” ((Reg & 0x0F0)

�� 4) �
((Reg & 0x00F)
�� 4)

else
w � ((Reg & 0x0F0)
�� 4) �
((Reg & 0x00F)
�� 4)

endif

29

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

2
9

Description Instruction Operation Op code

Move the contents of “w” into the tris Port TRIS(Port) � w 0000 0000 0ppp
Tri-state control Register of the Port

XOR Immediate with “w” xorlw k w � w ^ k 1111 kkkk kkkk
Z � (w ^ k) �� 0

XOR Register Contents with xorwf Reg, d if (d �� 1) 0001 10df ffff
“w” and Optionally store result in “w” Reg � Reg ^ w

else
w � Reg ^ w

endif
Z � (Reg ^ w) �� 0

30

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
0

Description Instruction Operation Op code

Add Immediate to “w” addlw k w � w � k 11 111x kkkk kkkk
C � (w � k) � 0x0FF
Z � ((w � k) & 0x0FF)

�� 0
DC � ((w & 0x0F) �
(k & 0x0F)) � 0x0F

Add Register addwf Reg, d if (d �� 1) 00 0111 dfff ffff
Contents to “w” Reg � Reg � w
and optionally else
store result in “w” w � Reg � w

endif
C � (Reg � w)
� 0x0FF
Z � ((Reg � w) &
0x0FF) �� 0

DC � ((Reg & 0x0F)
� (w & 0x0F))
� 0x0F

AND Immediate andlw k w � w & k 11 1001 kkkk kkkk
with “w” Z � (w & k) �� 0

31

Mid-Range Instruction Set

Register Banks are 128-bytes in size in the low-end devices. This makes “Reg” in the range
of 0 to 0x07F.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
1

Description Instruction Operation Op code

AND Register andwf Reg, d if (d �� 1) 00 0101 dfff ffff
Contents with Reg � Reg & w
“w” and Optionally else
store result in “w” w � Reg & w

endif
Z � (Reg & w) �� 0

Clear the Specified bcf Reg, bit Reg � Reg & 01 00bb bfff ffff
Bit in the Register (0x0FF ^

(1 �� Bit))

Set the Specified bcf Reg, bit Reg � Reg | 01 01bb bfff ffff
Bit in the Register (1 �� Bit)

Skip if the Specified btfsc Reg, bit if ((Reg & 01 10bb bfff ffff
Bit in the (1 �� Bit))) �� 0)
Register is Clear. PC � PC � 1
One Instruction Cycle endif
if Skip not Executed,
two if Skip Executed

32

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
2

Skip if the Specified btfsc Reg, bit if ((Reg & 01 11bb bfff ffff
Bit in the Register (1 �� Bit))
is Set. One Instruction !� 0)
Cycle if Skip not PC � PC � 1
Executed, two if it is endif

Save the Stack Pointer call Address [SP] � PC 10 0aaa aaaa aaaa
and jump to the Specified SP � SP � 1
Address (two PC � ((PCLATH �� 8)
Instruction cycles) & 0x01800) �

Address

Clear the Specified Register clrf Reg Reg � 0 00 0001 1fff ffff
Z � 1

Clear the “w” Register clrw w � 0 00 0001 0xxx xxxx
Z � 1

Clear the Watchdog clrwdt WDT � 0 00 0000 0110 0100
Timer’s Counter _TO � 1

_PD � 1

Complement the Contents comf Reg, d if (d �� 1) 00 1001 dfff ffff
of the Specified Register Reg � Reg ^ 0x0FF
and Optionally store else
the results in “w” w � Reg ^ 0x0FF

endif
Z � (Reg ^ 0x0FF)
�� 0

33

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
3

Description Instruction Operation Op code

Decrement the Contents decf Reg, d if (d �� 1) 00 0011 dfff ffff
of the Register and Reg � Reg � 1
Optionally store the else
results in “w’ w � Reg � 1

endif
Z � (Reg � 1) �� 0

Decrement the Contents decfsz Reg, d if (d �� 1) 00 1011 dfff ffff
of the Register and Reg � Reg � 1
Optionally store the else
results in “w” and Skip w � Reg � 1
the next instruction if the endif
results are equal to Zero.
Two Instruction Cycles if ((Reg � 1) �� 0)
taken if skip executed PC � PC � 1

endif

Jump to the Specified goto Address PC � 10 1aaa aaaa aaaa
Address (two Instruction ((PCLATH �� 8)
cycles) & 0x01800) �

Address

Increment the Contents incf Reg, d if (d �� 1) 00 1010 dfff ffff
of the Register and Reg � Reg � 1
Optionally store the else
results in “w” w � Reg � 1

endif
Z � (Reg � 1) �� 0

34

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
4

Increment the Contents incfsz Reg, d if (d �� 1) 00 1111 dfff ffff
of the Register and Reg � Reg � 1
Optionally store the else
results in “w” and Skip w � Reg � 1
the next instruction if endif
the results are equal to
Zero. Two Instruction Cycles if ((Reg � 1) �� 0)
taken if Skip Executed PC � PC � 1

endif

OR Immediate with “w” iorlw k w � w | k 11 1000 kkkk kkkk
Z � (w | k) �� 0

OR Register Contents iorwf Reg, d if (d �� 1) 00 0100 dfff ffff
with “w” and Optionally Reg � Reg | w
store result in “w” else

w � Reg | w
endif
Z � (Reg | w) �� 0

Check Register Contents movf Reg, d if (d �� 0) 00 1000 dfff ffff
equal to zero and w � Reg
Optionally store Register endif
contents in “w” Z � Reg �� 0

35

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
5

Description Instruction Operation Op code

Load “w” with an immediate movlw k w � k 11 00xx kkkk kkkk
value

Store the value In “w” movwf Reg Reg � w 00 0000 1fff ffff

Waste one Instruction nop 00 0000 0xx0 0000

Move the contents of option TRIS(Port) � w 00 0000 0110 0010
“w” into the OPTION
Register. Use of this instruction
is not recommended

Resume Execution after retfie GIE � 1 00 0000 0000 1001
Interrupt (Two Cycles used) SP � SP � 1

PC � [SP]

Resume Execution after retlw k w � k 11 01xx kkkk kkkk
Subroutine and Place a SP � SP � 1
constant Value in “w” PC � [SP]
(Two Cycles used)

36

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
6

Resume Execute after return SP � SP � 1 00 0000 0000 1000
Subroutine (Two Cycles PC � [SP]
used)

Rotate the Register left rlf Reg, d Temp � C 00 1101 dfff ffff
through carry and C � (Reg �� 7) & 1
Optionally Save the if (d �� 1)
Result in “w” Reg � (Reg �� 1)

� Temp
else

w � (Reg �� 1)
� Temp

endif

Rotate the Register right rrf Reg, d Temp � C 00 1100 dfff ffff
through carry and C � Reg & 1
Optionally Save the if (d �� 1)
Result in “w” Reg � (Reg �� 1)

� (Temp �� 7)
else

w � (Reg �� 1)
� (Temp �� 7)

endif

Go into “Standby” Mode sleep _TO � 1 00 0000 0110 0011
(Indeterminate number of _PD � 0
cycles used)37

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
7

Description Instruction Operation Op code

Subtract “w” Contents from sublw k w � k � 11 110x kkkk kkkk
Immediate and Store the (w ^ 0x0FF) � 1
Result In “w” C � (k � (w ^ 0x0FF)

� 1) � 0x0FF
Z � ((k � (w ^ 0x0FF)

� 1) & 0x0FF) �� 0
DC � ((k & 0x0F) �
((w ^ 0x0FF) & 0x0F)
� 1) � 0x0F

Subtract “w” Register Contents subwf Reg, d if (d �� 1) 00 0010 dfff ffff
from Register and Optionally Reg � Reg �
store Result in “w” (w ^ 0x0FF) � 1

else
w � Reg �
(w ^ 0x0FF) � 1

endif
C � (Reg �
(w ^ 0x0FF) � 1)
� 0x0FF

Z � ((Reg �
(w ^ 0x0FF) � 1)
& 0x0FF) �� 0

DC � ((Reg & 0x0F)
� ((w ^ 0x0FF)
& 0x0F) � 1)
� 0x0F

38

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
8

Swap the Upper and lower swapf Reg, d if (d �� 1) 00 1110 dfff ffff
Nybbles of a Register Reg �
and Optionally store ((Reg & 0x0F0)
result in “w” �� 4) �

((Reg & 0x00F)
�� 4)

else
w � ((Reg & 0x0F0)
�� 4) �
((Reg & 0x00F)
�� 4)

endif

Move the contents of “w” tris Port TRIS(Port) � w 00 0000 0110 0ppp
into the Tri-state control
Register of the Port. Use
of this Instruction is not
recommended

XOR Immediate with “w” xorlw k w � w ^ k 11 1010 kkkk kkkk
Z � (w ^ k) �� 0

XOR Register Contents with xorwf Reg, d if (d �� 1) 00 0110 dfff ffff
“w” and Optionally store Reg � Reg ^ w
result in “w” else

w � Reg ^ w
endif

Z � (Reg ^ w) �� 039

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

3
9

PIC17Cxx Instruction Set

The PIC17Cxx’s instruction set is very similar to both
the low-end and the mid-range instruction sets except
for the basic “move” instructions. These instructions are
quite a bit different because of the operation of the
PIC17Cxx’s “primary” register subset of the total 256
possible addresses.

40 Chapter 4

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 40

41

Instruction Format Operation Bit pattern

Add a Constant to the addlw Constant wreg � wreg 1011 0001 kkkk kkkk
“wreg” and store the � Constant
Result in “wreg” if (((wreg � 0)

& (Constant � 0))
& ((wreg
� Constant
� 0x07F))
OV � 1

else
OV � 0

if ((wreg �
Constant) � 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Constant & 0x0F))
� 0x0F)
DC � 1

else
DC � 0

if (((wreg �
Constant) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
1

Instruction Format Operation Bit pattern

Add “wreg” to the Contents addwf Reg, d if (“d” �� 1) 0000 111d ffff ffff
of “Reg” and store the wreg � wreg
Result According to “d” � Reg
Result in “wreg” else

Reg � wreg
� Reg

if (((wreg � 0)
& (Reg � 0))
& ((wreg
� Reg)
� 0x07F))
OV � 1

else
OV � 0

if ((wreg �
Reg) � 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Reg & 0x0F))
� 0x0F)
DC � 1

else
DC � 0

42

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
2

if (((wreg �
Reg) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Add “wreg” to the Contents addwfc Reg, d if (“d” �� 1) 0001 000d ffff ffff
of “Reg” and “C", store the wreg � wreg
Result According to “d” � Reg � C
Result in “wreg” else

Reg � wreg
� Reg � C

if (((wreg � 0)
& (Reg � 0))
& ((wreg
� Reg � C)
� 0x07F))
OV � 1

else
OV � 0

if ((wreg �
Reg � C) � 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Reg & 0x0F) � C)
� 0x0F)

DC � 1

43

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
3

Instruction Format Operation Bit pattern

else
DC � 0

if (((wreg �
Reg � C) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

AND a Constant to the andlw Constant wreg � wreg 1011 0101 kkkk kkkk
“wreg” and store the & Constant
Result in “wreg” if ((wreg &

Constant)
�� 0x000)
Z � 1

else
Z � 0

AND “wreg” to the Contents andwf Reg, d if (“d” �� 1) 0000 101d ffff ffff
of “Reg” and store the wreg � wreg
Result According to “d” & Reg
Result in “wreg” else

Reg � wreg
& Reg

if ((wreg & Reg)
�� 0x000)
Z � 1

else
Z � 0

44

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
4

Clear the Specified Bit bcf Reg, Bit Reg � Reg 1000 1bbb ffff ffff
in “Reg” & (0x0FF ^

(1 �� Bit))

Set the Specified Bit bsf Reg, Bit Reg � Reg 1000 0bbb ffff ffff
in “Reg” | (1 �� Bit)

Test the Specified Bit in btfsc Reg, Bit if ((Reg 1001 1bbb ffff ffff
“Reg” and skip if Clear. & (1 �� Bit))
One Instruction Cycle �� 0)
if Skip not Executed, PC � PC � 1
two if Skip Executed

Test the Specified Bit in btfss Reg, Bit if ((Reg 1001 0bbb ffff ffff
“Reg” and skip if Set. One & (1 �� Bit))
Instruction Cycle if Skip !� 0)
not Executed, two if Skip PC � PC � 1
Executed

Toggle the Specified Bit btg Reg, Bit Reg � Reg 0011 1bbb ffff ffff
in “Reg” ^ (1 �� Bit)

Call the “Label” Address. call Label PUSH (PC) 111k kkkk kkkk kkkk
Two Instruction Cycles are PCLATH � PC (15:13)
Required � Label (12:8)

PCL � Label (7:0)

Clear the Specified clrf Reg, s Reg � 0 0010 100s ffff ffff
Register and Optionally if (s �� 0)
“wreg” wreg � 0

45

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
5

Instruction Format Operation Bit pattern

Clear the Watchdog clrwdt WDT � 0 0000 0000 0000 0100
Register and STATUS flags WDT Postscaler � 0

_TO � 1
_PD � 1

Complement the Contents comf Reg, d if (“d” �� 0) 0001 001d ffff ffff
of the Specified Register wreg � Reg ^

0x0FF
else

Reg � Reg ^
if ((Reg ^ 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Compare the Specified cpfseq Reg if ((Reg � 0011 0001 ffff ffff
Register with wreg and wreg) �� 0)
skip if the Register �� PC � PC � 1
Wreg. If Skip Executed,

46

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
6

two Instruction Cycles
Executed Else one Cycle

Compare the Specified cpfsgt Reg if ((Reg � 0011 0010 ffff ffff
Register with wreg and wreg) � 0)
skip if the Register � PC � PC � 1
wreg. If Skip Executed,
two Instruction Cycles
Executed Else one Cycle

Compare the Specified cpfslt Reg if ((Reg � 0011 0000 ffff ffff
Register with wreg and wreg) � 0)
skip if the Register � PC � PC � 1
wreg. If Skip Executed,
two Instruction Cycles
Executed Else one Cycle

Do a Decimal Adjust after daw Reg, s if ((wreg & 0x0F) 0010 111s ffff ffff
Addition of Two BCD Values � 9)

if (s �� 0)
wreg � (wreg &
0x0F) � 0x010

else
Reg � (wreg &
0x0F) � 0x010

47

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
7

Instruction Format Operation Bit pattern

Decrement the Contents decf Reg, d if (“d” �� 0) 0000 011d ffff ffff
of the Specified Register wreg � Reg � 1

else
Reg � Reg � 1

if ((Reg � 1)
�� 0x000)
Z � 1

else
Z � 0

if (((Reg � 0)
& ((Reg � 1)
� 0x080))
OV � 1

else
OV � 0

if (((Reg & 0x00F) � 1)
& 0x080) !� 0)
DC � 0

else
DC � 1

if ((Reg – 1)
� 0)
C � 0

else
C � 1

48

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
8

Decrement the Contents of decfsz Reg, d if (“d” �� 0) 0001 011d ffff ffff
the Specified Register and wreg � Reg – 1
skip the Next Instruction else
if Result �� 0. If Skip Reg � Reg – 1
Executed, two Instruction if ((Reg – 1)
Cycles Executed Else one �� 0x000)
Cycle PC � PC � 1

Decrement the Contents dcfsnz Reg, d if (“d” �� 0) 0010 011d ffff ffff
of the Specified Register and wreg � Reg – 1
skip the Next Instruction else
if Result !� 0. If Skip Reg � Reg – 1
Executed, two Instruction if ((Reg – 1)
Cycles Executed Else one !� 0x000)
Cycle PC � PC � 1

Goto the “Label” Address. goto Label PCLATH � PC (15:13) 1101 kkkk kkkk kkkk
Two Instruction Cycles � Label (12:8)

PCL � Label (7:0)

49

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

4
9

Instruction Format Operation Bit pattern

Increment the Contents incf Reg, d if (“d” �� 0) 0001 010d ffff ffff
of the Specified Register wreg � Reg � 1

else
Reg � Reg � 1

if ((Reg � 1)
�� 0x000)
Z � 1

else
Z � 0

if (((Reg � 0)
& ((Reg � 1)
� 0x07F))
OV � 1

else
OV � 0

if (((Reg & 0x00F) � 1)
& 0x010) !� 0)
DC � 1

else
DC � 0

if ((Reg � 1)
�� 0x0100)
C � 1

else
C � 0

50

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
0

Increment the Contents of incfsz Reg, d if (“d” �� 0) 0001 111d ffff ffff
the Specified Register and wreg � Reg � 1
skip the Next Instruction else
if Result �� 0. If Skip Reg � Reg � 1
Executed, two Instruction if ((Reg � 1)
Cycles Executed Else one �� 0x000)
Cycle PC � PC � 1

Increment the Contents of the infsnz Reg, d if (“d” �� 0) 0010 010d ffff ffff
Specified Register and wreg � Reg � 1
skip the Next Instruction else
if Result !� 0. If Skip Reg � Reg � 1
Executed, two Instruction if ((Reg � 1)
Cycles Executed Else one !� 0x000)
Cycle PC � PC � 1

OR a Constant to the “wreg” iorlw Constant wreg � wreg 1011 0011 kkkk kkkk
and store the Result | Constant
in “wreg” if ((wreg |

Constant)
�� 0x000)

Z � 1
else

Z � 0

51

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
1

Instruction Format Operation Bit pattern

OR “wreg” to the Contents iorwf Reg, d if (“d” �� 1) 0000 100d ffff ffff
of “Reg” and store the wreg � wreg
Result According to “d” | Reg
Result in “wreg” else

Reg � wreg
| Reg

if ((wreg | Reg)
�� 0x000)
Z � 1

else
Z � 0

Call the “Label” Address lcall Label PUSH (PC) 1011 0111 kkkk kkkk
Using PCLATH and the PCL � Label (7:0)
Least Significant Eight
bits of “Label”. Two
Instruction Cycles

Move data from 256 Address movfp Reg, p p � Reg 011p pppp ffff ffff
Register Data to Primary
Register Set

Move Constant into low movlb Constant BSR (3:0) � 1011 1000 0000 kkkk
Nybble of BSR Constant

Move Constant into high movlr Constant BSR (7:4) � 1011 1010 kkkk 0000
Nybble of BSR Constant

52

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
2

Move Constant into wreg movlw Constant wreg � Constant 1011 0000 kkkk kkkk

Move data from Primary movpf p, Reg Reg � p 010p pppp ffff ffff
Register Data to 256 if (p �� 0)
Address Register Set Z � 1

else
Z � 0

Move contents of “wreg” movwf Reg Reg � wreg 0000 0001 ffff ffff
into “Reg"

Multiply Constant by “wreg” mullw Constant PRODH:PROGL � 1011 1100 kkkk kkkk
Constant *
wreg

Multiply Register by “wreg” mullwf Reg PRODH : PROGL � 0011 0100 ffff ffff
Reg * wreg

53

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
3

Instruction Format Operation Bit pattern

Negate the Contents of negw Reg, s if (s �� 0) 0010 110s ffff ffff
“wreg” and Optionally Reg � �wreg
store the Result wreg � �wreg
in a Register if ((wreg � 0)

& (�wreg � 0x080))
OV � 1

else
OV � 0

if (�wreg � 0x0FF)
C � 1

else
C � 0

if ((�wreg & 0x0F)
� 0x0F)
DC � 1

else
DC � 0

if (�wreg �� 0x000)
Z � 1

else
Z � 0

Do Nothing for one nop 0000 0000 0000 0000
Instruction Cycle

Return from Interrupt retfie PC � POP () 0000 0000 0000 0101
Handler. Two Instruction Cycles GLTIND � 0

54

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
4

Return from Subroutine retlw Constant wreg � Constant 1011 0110 kkkk kkkk
with new value in wreg. PC � POP ()
Two Instruction Cycles

Return from Subroutine. return PC � POP () 0000 0000 0000 0010
Two Instruction Cycles

Rotate Left Through the rlcf Reg, d if (d �� 0) 0001 101d ffff ffff
Carry Flag wreg (7:1) �

Reg (6:0)
wreg (0) � C
C � Reg (7)

else
Reg (7:1) �

Reg (6:0)
Reg (0) � C
C � Reg (7)

Rotate Left rlcnf Reg, d if (d �� 0) 0010 001d ffff ffff
wreg (7:1) �
Reg (6:0)

wreg (0) �
Reg (7)

else
Reg (7:1) �
Reg (6:0)

Reg (0) �
Reg (7)

55

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
5

Instruction Format Operation Bit pattern

Rotate Right Through the rrcf Reg, d if (d �� 0) 0001 100d ffff ffff
Carry Flag wreg (6:0) �

Reg (7:1)
wreg (7) � C
C � Reg (0)

else
Reg (6:0) �
Reg (7:1)

Reg (7) � C
C � Reg (0)

Rotate Right rrcnf Reg, d if (d �� 0) 0010 000d ffff ffff
wreg (6:0) �
Reg (7:1)

wreg (7) �
Reg (0)

else
Reg (6:0) �
Reg (7:1)

Reg (7) �
Reg (0)

Set the Specified Register setf Reg, s Reg � 0x0FF 0010 101s ffff ffff
and Optionally “wreg” if (s �� 0)

wreg � 0x0FF

56

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
6

Put the PICmicro® MCU in sleep WDT � 0 0000 0000 0000 0011
a “Power Down” State WDT Postscaler � 0

_TO � 1
_PD � 0
PICmicro MCU
Power Down

Subtract “wreg” from a sublw wreg � Constant 1011 0010 kkkk kkkk
Constant and store the Constant – wreg
Result in “wreg” if (((wreg � 0)

& (Constant � 0))
& ((Constant
– wreg)
� 0x080))
OV � 1

else
OV � 0

if ((Constant �
wreg) � 0x0FF)
C � 1

else
C � 0

if (((Constant & 0x0F) �
wreg & 0x0F))
� 0x0F)
DC � 1

else
DC � 0

if (((Constant �
wreg) & 0x0FF)
�� 0x000)

57

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
7

Instruction Format Operation Bit pattern

Z � 1
else

Z � 0

Subtract “wreg” from the subwf Reg, d if (“d” �� 1) 0000 010d ffff ffff
Contents of “Reg” and wreg � Reg �
store the Result According wreg
to "d” Result in “wreg” else

Reg � Reg
� wreg

if (((wreg � 0)
& (Reg � 0))
& ((Reg
� wreg)
� 0x080))
OV � 1

else
OV � 0

if ((Reg �
wreg) � 0x0FF)
C � 1

else
C � 0

if (((Reg & 0x0F) �
(wreg & 0x0F))
� 0x0F)
DC � 1

58

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
8

else
DC � 0

if (((Reg �
wreg) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Subtract “wreg” from the subwfb Reg, d if (“d” �� 1) 0000 001d ffff ffff
Contents of “Reg” and “C", wreg � Reg
store the Result According � wreg � !C
to “d” Result in “wreg” else

Reg � Reg
� wreg � !C

if (((Reg � 0)
& (wreg � 0))
& ((Reg
� wreg � !C)
� 0x080))
OV � 1

else
OV � 0

if ((Reg �
wreg � !C) � 0x0FF)
C � 1

else
C � 0

if (((Reg & 0x0F) �

59

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

5
9

Instruction Format Operation Bit pattern

(wreg & 0x0F) � !C)
� 0x0F)
DC � 1

else
DC � 0

if (((Reg �
wreg – !C) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Swap the Contents swapf Reg, d if (“d” �� 1) 0001 110d ffff ffff
of “Reg” and store the wreg �
Result According to “d” ((Reg & 0x00F)
Result in “wreg” �� 4) �

((Reg & 0x0F0)
�� 4)

else
Reg �
((Reg & 0x00F)
�� 4) �
((Reg & 0x0F0)
�� 4)

60

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
0

Read the Contents of tablrd t, i, f if (t �� 1) 1010 10ti ffff ffff
the Table Pointer or f � TBLATH
Read Program Memory into else
the Table Pointer. Two or f � TBLATH
three Instruction Cycles TBLAT �

ProgMem(TBLPTR)
if (i �� 1)
TBLPTR �
TBLPTR � 1

Write new Contents of the tablwt t, i, f if (t �� 0) 1010 11ti ffff ffff
Table Pointer or Write TBLATL � f
Program Memory from the else
Table Pointer. If the TBLATH � f
Destination is Internal ProgMem(TBLPTR)
EPROM, the Instruction TBLAT �
Does not End until an Interrupt. if (i �� 1)
Two Instruction Cycles or TBLPTR �
Until Timer Interrupt TBLPTR � 1

Read the Contents of tlrd t, f if (t �� 1) 1010 00t0 ffff ffff
the Table Pointer f � TBLATH

else
f � TBLATL

Write the Contents of tlwt t, f if (t �� 1) 1010 01t0 ffff ffff
the Register into the TBLATH � f
Table Pointer else

TBLATL � f

61

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
1

Instruction Format Operation Bit pattern

Compare the Specified tstfsz Reg if (Reg �� 0) 0011 0011 ffff ffff
Register zero and skip if PC � PC � 1
the Register �� 0.
One Instruction Cycle if Skip
not Executed, Two if it is

XOR a Constant to the “wreg” xorlw Constant wreg � wreg 1011 0100 kkkk kkkk
and store the Result in “wreg” ^ Constant

if ((wreg ^
Constant)

�� 0x000)
Z � 1

else
Z � 0

XOR “wreg” to the Contents xorwf Reg, d if (“d” �� 1) 0000 110d ffff ffff
of “Reg” and store the wreg � wreg
Result According to “d” ^ Reg
Result in “wreg” else

Reg � wreg
^ Reg

if ((wreg ^ Reg)
�� 0x000)
Z � 1

else
Z � 0

62

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
2

Instruction Format Operation Bit pattern

Add a Constant addlw Constant wreg � wreg 0000 1111 kkkk kkkk
to the “wreg” � Constant
and store the if (((wreg � 0)
Result in & (Constant � 0))
“wreg” & ((wreg

� Constant)
> 0x07F))
OV � 1

else
OV � 0

if ((wreg �
Constant) � 0x0FF)
C � 1

else
C � 0

if ((wreg � Constant)
& 0x080) ! � 0)
N � 1

else
N � 0

if (((wreg & 0x0F) +
(Constant & 0x0F))
� 0x0F)
DC � 1

else

63

PIC18Cxx Instruction Set

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
3

Instruction Format Operation Bit pattern

DC � 0
if (((wreg +
Constant) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Add “wreg” to addwf Reg, d, a if (“d” �� 1) 0010 01da ffff ffff
the Contents wreg � wreg
of “Reg” and � Reg
store the else
Result Reg � wreg
According to � Reg
“d” Result in if (((wreg � 0)
“wreg”. & (Reg � 0))
If “a” & ((wreg
is set” � Reg)
then BSR � 0x07F))
used for OV � 1
Reg, else else
Access OV � 0
Bank is if ((wreg � Reg)
used. & 0x080) ! � 0)

N � 1
else

N � 0

64

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
4

if ((wreg �
Reg) > 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Reg & 0x0F))
� 0x0F)
DC � 1

else
DC � 0

if (((wreg �
Reg) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Add “wreg” to addwfc Reg, d, a if (“d” �� 1) 0010 00da ffff ffff
the Contents wreg � wreg
of “Reg” and � Reg � C
“C”, store the else
Result Reg � wreg
According to � Reg � C
“d” Result in if (((wreg � 0)
“wreg”. & (Reg � 0))
If “a” is set & ((wreg
then Reg is � Reg � C)

� 0x07F))

65

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
5

Instruction Format Operation Bit pattern

in the BSR Bank OV � 1
else, Reg else
is in the OV � 0
Access Bank if ((wreg + Reg + C)

& 0x080) !� 0)
N � 1

else
N � 0

if ((wreg �
Reg � C) � 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Reg & 0x0F) � C)
� 0x0F)
DC � 1

else
DC � 0

if (((wreg �
Reg � C) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

66

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
6

AND a Constant andlw Constant wreg � wreg 0000 1011 kkkk kkkk
to the “wreg” & Constant
and store the if ((wreg &
Result in Constant)
“wreg” �� 0x000)

Z � 1
else

Z � 0
if (((wreg & Constant)
& 0x080) ! � 0)
N � 1

else
N � 0

AND “wreg” to andwf Reg, d, a if (“d” �� 1) 0001 01da ffff ffff
the Contents wreg � wreg
of “Reg” and & Reg
store the else
Result Reg � wreg
According to & Reg
“d” Result in if ((wreg & Reg)
“wreg”. If �� 0x000)
“a” is set, Z � 1
then Reg is else
in the BSR Z � 0
Bank, else it if ((wreg & Reg)
is in the & 0x080) ! � 0)
Access Bank N � 1

else
N � 0

67

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
7

Instruction Format Operation Bit pattern

Branch if bc Label if (C �� 1) 1110 0010 kkkk kkkk
the Carry PC � PC � 2 �
Flag is Set. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

Clear the bcf Reg, Bit, a Reg � Reg 1001 bbba ffff ffff
Specified Bit & (0x0FF ^
in “Reg”. (1�� Bit))
If “a” is set
then Reg is
in the BSR Bank
else, Reg is in
the Access Bank

68

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
8

Branch if bn Label if (N �� 1) 1110 0110 kkkk kkkk
Negative PC � PC � 2 �
Flag is Set. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

Branch if bnc Label if (C �� 0) 1110 0011 kkkk kkkk
the Carry PC � PC + 2 +
Flag is Reset. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

69

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

6
9

Instruction Format Operation Bit pattern

Branch if bnn Label if (N �� 0) 1110 0111 kkkk kkkk
Negative PC � PC � 2 �
Flag is Reset. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

Branch if bnov Label if (OV �� 0) 1110 0101 kkkk kkkk
Overflow PC � PC � 2 �
Flag is Reset. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

70

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
0

Branch if bnz Label if (Z �� 0) 1110 0001 kkkk kkkk
the Zero PC � PC � 2 �
Flag is Reset. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

Branch if bov Label if (OV �� 1) 1110 0100 kkkk kkkk
Overflow PC � PC � 2 �
Flag is Set. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

71

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
1

Instruction Format Operation Bit pattern

Branch bra Label PC � PC � 2 � 1110 0kkk kkkk kkkk
Always. Label
Label is a
Two’s
Complement
Offset. Two
Instruction Cycles

Set the bsf Reg, Bit, a Reg � Reg 1000 bbba ffff ffff
Specified Bit | (1 �� Bit)
in “Reg”.
If “a” is set
then Reg is
in the BSR Bank,
else Reg is in
the Access Bank

Test the Specified btfsc Reg,Bit,a if ((Reg 1011 bbba ffff ffff
Bit in “Reg” & (1 �� Bit))
and skip if Clear. �� 0)
If “a” is set then PC � NextIns
the BSR is used
for Reg, else the
Access Bank is Used.
One Instruction
Cycle if Skip
Not Executed,
Two if Skip Executed.

72

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
2

Test the btfss Reg,Bit,a if ((Reg 1010 bbba ffff ffff
Specified Bit & (1 �� Bit))
in “Reg” and ! � 0)
skip if Set. PC � NextIns
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed.

Toggle the btg Reg, Bit, a Reg � Reg 0111 bbba ffff ffff
Specified Bit ^ (1 �� Bit)
in “Reg”.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used

73

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
3

Instruction Format Operation Bit pattern

Branch if bz Label if (Z �� 1) 1110 0000 kkkk kkkk
the Zero PC � PC � 2 �
Flag is Set. Label
Label is a
Two’s
Complement
Offset. One
Instruction
Cycle if Branch
Not Executed,
Two if Branch
Executed.

Call the call Label,s PUSH(PC) 1110 110s kkkk kkkk
20-Bit “Label” if (s ��1) 1111 kkkk kkkk kkkk
Address. If PUSH (W, STATUS
“s” is set, BSR)
Save the PC � Label
Context
Registers.
Two Instruction
Cycles

74

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
4

Clear the clrf Reg, a Reg � 0 0110 101a ffff ffff
Specified Z � 1
Register.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used

Clear the clrwdt WDT � 0 0000 0000 0000 0100
Watchdog WDT Postscaler � 0
Register and _TO � 1
STATUS flags _PD � 1

Complement comf Reg, d, a if (“d” �� 0) 0001 11da ffff ffff
the Contents wreg � Reg ^
of the 0x0FF
Specified else
Register. Reg � Reg ^
If “a” is set if ((Reg ^ 0x0FF)
then the BSR �� 0x000)
is used for Z � 1
Reg, else the else
Access Bank Z � 0
is used if ((Reg ^ 0x0FF)

& 0x080) !� 0)
N � 1

else
N � 0

75

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
5

Instruction Format Operation Bit pattern

Compare the cpfseq Reg, a if ((Reg � 0110 001a ffff ffff
Specified wreg) �� 0)
Register with PC � NextIns
wreg and skip
if the
Register ��
Wreg.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip

76

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
6

Executed.

Compare the cpfsgt Reg, a if ((Reg � 0110 010a ffff ffff
Specified wreg) � 0)
Register with PC � NextIns
wreg and skip
if the
Register �
wreg.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

77

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
7

Instruction Format Operation Bit pattern

Compare the cpfslt Reg, a if ((Reg � 0110 000a ffff ffff
Specified wreg) � 0)
Register with PC � NextIns
wreg and skip
if the
Register �
wreg.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

Do a Decimal daw if ((wreg & 0x0F) 0000 0000 0000 0111
Adjust after � 9)
Addition of wreg � (wreg &
Two BCD Values 0x0F) � 0x010

78

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
8

Decrement decf Reg,d,a if (“d” �� 0) 0000 01da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register. if ((Reg � 1)
If “a” is set �� 0x000)
then Reg is Z � 1
in BSR Bank else
else Access Z � 0
Bank is used if (((Reg � 0)

& ((Reg � 1)
� 0x080))
OV � 1

else
OV � 0

if ((Reg �1)
& 0x080) !� 0)
N � 1

else
N � 0

if (((Reg & 0x00F) � 1)
& 0x080) !� 0)
DC � 0

else
DC � 1

if ((Reg � 1)
� 0)
C � 0

else
C � 1

79

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

7
9

Instruction Format Operation Bit pattern

Decrement decfsz Reg,d,a if (“d” �� 0) 0010 11da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register if ((Reg � 1)
and skip the �� 0x000)
Next PC � NextIns
Instruction if
Result �� 0.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

80

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
0

Decrement dcfsnz Reg,d,a if (“d” �� 0) 0100 11da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register if ((Reg � 1)
and skip the !� 0x000)
Next PC � NextIns
Instruction if
Result !� 0.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

Goto the goto Label PC � Label 1110 1111 kkkk kkkk
20-Bit “Label” 1111 kkkk kkkk kkkk
Address. Two
Instruction
Cycles

81

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
1

Instruction Format Operation Bit pattern

Increment incf Reg, d, a if (“d” �� 0) 0010 10da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register. if ((Reg � 1)
If “a” is set �� 0x000)
then Reg is Z � 1
in the BSR else
Bank else Z � 0
Access Bank if (((Reg � 0)
is used. & ((Reg � 1)

� 0x07F))
OV � 1

else
OV � 0

if ((Reg � 1)
& 0x080) !� 0)
N � 1

else
N � 0

if (((Reg & 0x00F) � 1)
& 0x010) !� 0)
DC � 1

else
DC � 0

if ((Reg � 1)
�� 0x0100)

82

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
2

C � 1
else

C � 0

Increment incfsz Reg,d,a if (“d” �� 0) 0011 11da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register if ((Reg � 1)
and skip the �� 0x000)
Next PC � NextIns
Instruction if
Result �� 0.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

83

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
3

Instruction Format Operation Bit pattern

Increment infsnz Reg,d,a if (“d” �� 0) 0100 10da ffff ffff
the Contents wreg � Reg � 1
of the else
Specified Reg � Reg � 1
Register if ((Reg � 1)
and skip the !� 0x000)
Next PC� NextIns
Instruction if
Result !� 0.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

84

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
4

OR a Constant iorlw Constant wreg � wreg 0000 1001 kkkk kkkk
to the “wreg” | Constant
and store the if ((wreg |
Result in Constant)
“wreg” �� 0x000)

Z � 1
else

Z � 0
if ((wreg | Constant)
& 0x080) !� 0)
N � 1

else
N � 0

OR “wreg” to iorwf Reg,d,a if (“d” �� 1) 0001 00da ffff ffff
the Contents wreg � wreg
of “Reg” and | Reg
store the else
Result Reg � wreg
According to | Reg
“d” Result in if ((wreg | Reg)
“wreg”. If �� 0x000)
“a” is set then Z � 1
Reg is in the else
BSR Bank, else Z � 0
it is in the if ((wreg | Reg)
Access Bank & 0x080) !� 0)

N � 1
else

N � 0

85

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
5

Instruction Format Operation Bit pattern

Load the lfsr f, Const FSR(f) � Const 1110 1110 00ff kkkk
Specified 1111 0000 kkkk kkkk
FSR Register
with the Constant.
Two Instruction
Cycles

Move data from movf Reg, d, a if (d �� 0) 0101 00da ffff ffff
256 Address wreg � Reg
Register Data if (Reg �� 0)
to Primary Z � 1
Register Set. else
If “a” is set Z � 0
then the BSR if ((Reg & 0x080)
is used for !� 0)
Reg, else the N � 1
Access Bank else
is used N � 0

Move Contents movff Regs,Regd Regd � Regs 1100 fffs fffs fffs
of the Source 1111 fffd fffd fffd
Register into
the Destination
Register. The
Full 12-Bit
Addresses are
Specified. Two
Instruction Cycles

86

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
6

Move Constant movlb Constant BSR(3:0) � 0000 0001 kkkk kkkk
into low Constant
Nybble of BSR

Move Constant movlw Constant wreg � Constant 0000 1110 kkkk kkkk
into wreg

Move contents movwf Reg, a Reg � wreg 0110 111a ffff ffff
of “wreg” into
“Reg”.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used

Multiply mullw Constant PRODH:PROGL � 0000 1101 kkkk kkkk
Constant by Constant *
“wreg” wreg

Multiply mullwf Reg PRODH:PROGL � 0000 0010a ffff ffff
Register by “wreg”. Reg * wreg
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used

87

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
7

Instruction Format Operation Bit pattern

Negate the negw Reg, a Reg � �Reg 0110 110a ffff ffff
Contents of if (�Reg � 0x080)
“Reg” and store OV � 1
the result back else
in “Reg”. If OV � 0
“a” is set, then if ((�Reg & 0x080)
Reg is in the BSR !� 0)
Bank, else Reg N � 1
is in the Access else
Bank N � 0

if (�Reg � 0x0FF)
C � 1

else
C � 0

if ((�Reg & 0x0F)
� 0x0F)

DC � 1
else

DC � 0
if (�Reg �� 0x000)

Z � 1
else

Z � 0

88

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
8

Do Nothing nop 0000 0000 0000 0000
for one
Instruction 1111 1111 1111 1111
Cycle. Note
Two Different
Op Codes.

Pop the top pop POP () 0000 0000 0000 0110
of the
Instruction
Pointer Stack
and Discard
the Result.

Push the top push PUSH (PC � 2) 0000 0000 0000 0101
of the
Instruction
Pointer Stack.

Call the rcall Label PUSH (PC) 1101 1kkk kkkk kkkk
11-Bit 2’s PC � PC � 2 �
Complement Label
“Offset”. Two
Instruction
Cycles

89

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

8
9

Instruction Format Operation Bit pattern

Reset the Reset _MCLR � 0 0000 0000 1111 1111
PICmicro® MCU _MCLR � 1
Processor
and all the
Registers
Affected by
_MCLR Reset

Return from retfie, s PC � POP () 0000 0000 0001 000s
Interrupt GIE � 0
Handler. If if (s �� 1)
“s” is set, wreg � POP ()
Restore the STATUS � POP ()
wreg, STATUS BSR � POP ()
and BSR
Registers. Two
Instruction
Cycles

Return from retlw Constant wreg � Constant 0000 1100 kkkk kkkk
Subroutine PC � POP ()
with new
value in
wreg. Two
Instruction
Cycles

90

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
0

Return from return, s PC � POP () 0000 0000 0001 001s
Subroutine. if (s �� 1)
If “s” is set, wreg � POP ()
Restore the STATUS � POP ()
Wreg, STATUS BSR � POP ()
and BSR
Registers. Two
Instruction
Cycles

Rotate Left rlcf Reg, d, a if (d �� 0) 0011 01da ffff ffff
Through the wreg(7:1) �
Carry Flag. Reg(6:0)
If “a” is set wreg(0) � C
then Reg is in C � Reg (7)
BSR Bank else else
Reg is in the Reg (7:1) �
Access Bank Reg (6:0)

Reg (0) � C
C � Reg (7)

if (Reg (6) !� 0)
N � 1

else
N � 0

91

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
1

Instruction Format Operation Bit pattern

Rotate Left. rlcnf Reg, d, a if (d �� 0) 0100 01da ffff ffff
If “a” is set wreg (7:1) �
then Reg is in Reg (6:0)
the BSR Bank wreg (0) �
else Reg is in Reg (7)
the Access Bank else

Reg (7:1) �
Reg (6:0)

Reg(0) �
Reg(7)

if (Reg(6) !� 0)
N � 1

else
N � 0

Rotate Right rrcf Reg, d, a if (d �� 0) 0011 00da ffff ffff
Through the wreg (6:0) �
Carry Flag. Reg (7:1)
If “a” is set wreg (7) � C
then Reg is in C � Reg (0)
the BSR Bank else
else Reg is in Reg (6:0) �
the Access Bank Reg (7:1)

Reg (7) � C
C � Reg (0)

if (Reg (0) !� 0)
N � 1

else
N � 0

92

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
2

Rotate Right. rrcnf Reg, d, a if (d �� 0) 0100 00da ffff ffff
If “a” is set wreg (6:0) �
then Reg is in Reg (7:1)
the BSR Bank wreg (7) �
else Reg is in Reg (0)
the Access Bank else

Reg (6:0) �
Reg (7:1)

Reg (7) �
Reg (0)

if (Reg (0) !� 0)
N � 1

else
N � 0

Set the setf Reg, s, a Reg � 0x0FF 0110 100a ffff ffff
Specified if (s �� 0)
Register and wreg � 0x0FF
Optionally
“wreg”.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used

93

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
3

Instruction Format Operation Bit pattern

Put the sleep WDT � 0 0000 0000 0000 0011
PICmicro® MCU in WDT Postscaler � 0
a “Power Down” _TO � 1
State _PD � 0

PICmicro MCU
Power Down

Subtract the subwfb Reg,d,a if (“d” �� 1) 0101 01da ffff ffff
Contents of wreg � wreg
“Reg” and C from � Reg � !C
wreg and store else
the Result Reg � wreg
According to � Reg � !C
“d” Result in if (((Reg > 0)
“wreg”. If & (wreg > 0))
“a” is set then & ((wreg
Reg is in the BSR � Reg � !C)
Bank else it is < 0x080))
in the Access OV � 1
Bank else

OV � 0
if (((wreg �
Reg �C) & 0x080)
!� 0)
N � 1

else
N � 0

94

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
4

if ((wreg �
Reg � !C) � 0x0FF)
C � 1

else
C � 0

if (((wreg & 0x0F) �
(Reg & 0x0F) � !C)
� 0x0F)
DC � 1

else
DC � 0

if (((wreg �
Reg � !C) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Subtract sublw Constant wreg � Constant 0000 1000 kkkk kkkk
“wreg” from a � wreg
Constant and if (((wreg � 0)
store the Result & (Constant � 0))
in “wreg” & ((Constant

� wreg)
� 0x080))
OV � 1

else
OV � 0

if (((Constant �

95

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
5

Instruction Format Operation Bit pattern

wreg) & 0x080)
!� 0)
N � 1

else
N � 0

if ((Constant �
wreg) � 0x0FF)
C � 1

else
C � 0

if (((Constant & 0x0F) �
(wreg & 0x0F))
� 0x0F)
DC � 1

else
DC � 0

if (((Constant �
wreg) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

96

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
6

Subtract “wreg” subwf Reg,d,a if (“d” �� 1) 0101 11da ffff ffff
from the Contents wreg � Reg �
of “Reg” and wreg
store the else
Result Reg � Reg
According to � wreg
“d” Result in if (((wreg � 0)
“wreg”. If & (Reg � 0))
“a” is set then & ((Reg
Reg is in the � wreg)
BSR Bank else � 0x080))
Reg is in the OV � 1
Access Bank else

OV � 0
if (((Reg �
wreg) & 0x080)
!� 0)
N � 1

else
N � 0

if ((Reg �
wreg) � 0x0FF)
C � 1

else
C � 0

if (((Reg & 0x0F) �
(wreg & 0x0F))
� 0x0F)
DC � 1

97

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
7

Instruction Format Operation Bit pattern

else
DC � 0

if (((Reg �
wreg) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

Subtract “wreg” subwfb Reg,d,a if (“d” �� 1) 0101 10da ffff ffff
from the Contents wreg � Reg
of “Reg” and � wreg �!C
“C”, store the else
Result Reg � Reg
According to � wreg � !C
“d” Result in if (((Reg � 0)
“wreg”. If & (wreg � 0))
“a” is set, then & ((Reg
Reg is in the � wreg � !C)
BSR Bank else < 0x080))
Reg is in the OV � 1
Access Bank else

OV � 0
if (((Reg �
wreg �C) & 0x080)
!� 0)
N � 1

98

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
8

else
N � 0

if ((Reg �
wreg � !C) > 0x0FF)
C � 1

else
C � 0

if (((Reg & 0x0F) �
(wreg & 0x0F) � !C)
> 0x0F)
DC � 1

else
DC � 0

if (((Reg �
wreg � !C) & 0x0FF)
�� 0x000)
Z � 1

else
Z � 0

99

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

9
9

Instruction Format Operation Bit pattern

Swap swapf Reg,d,a if (“d” �� 1) 0011 10da ffff ffff
the Contents wreg �
of “Reg” and ((Reg & 0x00F)
store the �� 4) �
Result ((Reg & 0x0F0)
According to �� 4)
“d” Result in else
“wreg”. If Reg �
“a” is set, ((Reg & 0x00F)
then Reg is, �� 4) �
in the BSR ((Reg & 0x0F0)
Bank else Reg �� 4)
is in the
Access Bank

Read the tablrd Option switch(Option) 0000 0000 0000 10nn
Program case * nn Option
Memory TABLAT � 00 *
Contents at ProgMem (TBLPTR) 01 *+
the Table case *� 10 *�
Pointer and TABLAT � 11 +*
Execute as ProgMem (TBLPTR)
“Option” TBLPTR �
Specifies. TBLPTR � 1
Two case *�
Instruction TABLAT �
Cycles ProgMem (TBLPTR)

100

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
0

TBLPTR �
TBLPTR � 1

case �*
TBLPTR �
TBLPTR � 1

TABLAT �
ProgMem (TBLPTR)

Write the tablwt Option switch(Option) 0000 0000 0000 11nn
Contents of case * nn Option
the Table ProgMem (TBLPTR) 00 *
Latch into � TABLAT 01 *+
Program case *� 10 *�
Memory based ProgMem(TBLPTR) 11 +*
on the � TABLAT
“Option” TBLPTR �
Specification. TBLPTR � 1
Pointer. case *�
If the ProgMem(TBLPTR)
Destination � TABLAT
is Internal TBLPTR �
EPROM, the TBLPTR � 1
Instruction case �*
does not TBLPTR �
End until an TBLPTR � 1
Interrupt. ProgMem (TBLPTR)
Two � TABLAT
Instruction Cycles or
Many if EPROM Write

101

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
1

Instruction Format Operation Bit pattern

Compare the tstfsz Reg, a if (Reg �� 0) 0110 011a ffff ffff
Specified PC � NextIns
Register zero
and skip
if the
Register �� 0.
If “a” is set
then the BSR
is used for
Reg, else the
Access Bank
is used. One
Instruction
Cycle if Skip
Not Executed,
Two if Skip
Executed

102

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
2

XOR a Constant xorlw Constant wreg � wreg 0000 1010 kkkk kkkk
to the “wreg” ^ Constant
and store the if ((wreg ^
Result in Constant)
“wreg” �� 0x000)

Z � 1
else

Z � 0
if ((wreg ^ Constant)
& 0x080) !� 0)
N � 1

else
N � 0

XOR “wreg” to xorwf Reg,d,a if (“d” �� 1) 0001 10da ffff ffff
the Contents wreg � wreg
of “Reg” and ^ Reg
store the else
Result Reg � wreg
According to ^ Reg
“d” Result in if ((wreg ^ Reg)
“wreg”. == 0x000)
If “a” is Set Z = 1
then Reg is else
in the BSR Bank Z = 0
else Reg is in if ((wreg ^ Reg)
the Access Bank & 0x080) != 0)

N = 1
else

N = 0

103

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
3

Microchip Special Instruction Mnemonics

The following “special instructions” are macros built
into MPASM by Microchip to help make some low-end
and mid-range PICmicro® MCU instructions more intu-
itive. These instructions are built into MPASM and their
labels should never be used for macros, addresses
(code or variable), or defines.

Most of these special instructions are made up of one
or more standard low-end or mid-range PICmicro® MCU
instructions. Note that some of these special instruc-
tions may change the value of the zero flag.

“LCALL” should never be used because the PCLATH
bits are not returned to the appropriate value for the
code following “LCALL”. When a “goto” or “call” is exe-
cuted after an “LCALL” statement and the PCLATH bits
are not set appropriately for the current page, execution
will jump into the “LCALL” page.

For the low-end PICmicro® MCUs, “LCALL” should be

bcf/bsf STATUS, PA0
bcf/bsf STATUS, PA1
bcf/bsf STATUS, PA2
call Label
bsf/bcf STATUS, PA0
bsf/bcf STATUS, PA1
bsf/bcf STATUS, PA2

and for the mid-range, “LCALL” should be

bcf/bsf PCLATH, 3
bcf/bsf PCLATH, 4
call Label
bsf/bcf PCLATH, 3
bsf/bcf PCLATH, 4

“negf” should never be used unless the destination is
back into the file register source. If the destination is

104 Chapter 4

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 104

“w”, note that the contents of the file register source will
be changed with the complement of the value. Because
of this added complexity, use of this special instruction
is not recommended.

PICmicro® MCU Instruction Sets 105

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 105

Description Instruction Actual Instructions Operation

Add Carry to addcf Reg, d btfsc STATUS, C if (C �� 1)
File Register incf Reg, d if (d �� 1)

Reg � Reg � 1;
else

w � Reg � 1

Add Digit Carry to adddcf Reg, d btfsc STATUS, DC if (DC �� 1)
File Register incf Reg, d if (d �� 1)

Reg � Reg � 1;
else

w � Reg � 1;

Branch to Label B Label goto Label PC � ((PCLATH �� 8)
& 0x01800) � Label;

Branch on Carry Set BC Label btfsc STATUS, C if (C �� 1)
goto Label PC � ((PCLATH �� 8)

& 0x01800) � Label;

Branch on Digit Carry BDC Label btfsc STATUS, DC if (DC �� 1)
Set goto Label PC � ((PCLATH �� 8)

& 0x01800) � Label;

Branch on Carry Reset BNC Label btfss STATUS, C if (C �� 0)
goto Label PC � ((PCLATH �� 8)

& 0x01800) � Label;

106

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
6

Branch on Digit Carry BNDC Label btfss STATUS, DC if (DC �� 0)
Reset goto Label PC � ((PCLATH �� 8)

& 0x01800) � Label;

Branch on Zero Reset BNZ Label btfss STATUS, Z if (Z �� 0)
goto Label PC � ((PCLATH �� 8)

& 0x01800)�Label;

Branch on Zero Set BZ Label btfsc STATUS, Z if (Z �� 1)
goto Label PC � ((PCLATH �� 8)

& 0x01800)�Label;

Clear Carry clrc bcf STATUS, C C � 0;

Clear Digit Carry clrdc bcf STATUS, DC DC � 0;

Clear Zero clrz bcf STATUS, Z Z � 0;

Long Call — Do NOT lcall Label Low-End:
use as Described bcf/bsf STATUS, PA0
Above bcf/bsf STATUS, PA1

bcf/bsf STATUS, PA2
call Label
Mid-Range:
bcf/bsf PCLATH, 3
bcf/bsf PCLATH, 3
call Label

107

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
7

Description Instruction Actual Instructions Operation

Long Goto lgoto Label Low-End:
bcf/bsf STATUS, PA0
bcf/bsf STATUS, PA1
bcf/bsf STATUS, PA2
goto Label
Mid-Range:
bcf/bsf PCLATH, 3
bcf/bsf PCLATH, 3
goto Label

Load “w” with Contents movfw Reg movf Reg, w w � Reg
of “Reg” if (Reg �� 0)

Z � 1;
else
Z � 0;

Negate a File Register. negf Reg, d comf Reg, f Reg � Reg ^ 0x0FF
— Do NOT use as incf Reg, d if (d �� 0)
Described Above w � Reg � 1;

else
Reg � Reg � 1;

Set Carry setc bsf STATUS, C C � 0;

Set Digit Carry setdc bsf STATUS, DC DC � 0;

Set Zero setz bsf STATUS, Z Z � 0;

108

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
8

Skip the next Instruction skpc btfss STATUS, C if (C �� 1)
if the Carry Flag is Set PC � PC � 1;

Skip the next Instruction skpdc btfss STATUS, DC if (DC �� 1)
if the Digit Carry Flag is PC � PC � 1;
Set

Skip the next Instruction skpnc btfsc STATUS, C if (C �� 0)
if the Carry Flag is Reset PC � PC � 1;

Skip the next Instruction skpndc btfsc STATUS, DC if (DC �� 0)
if the Digit Carry PC � PC � 1;
Flag is Reset

Skip the next Instruction skpnz btfsc STATUS, Z if (Z �� 0)
if the Zero Flag PC � PC � 1;
is Reset

Skip the next Instruction skpz btfss STATUS, Z if (Z �� 1)
if the Zero Flag is Set PC � PC � 1;

Subtract Carry from subcf Reg, d btfsc STATUS, C if (C �� 1)
File Register decf Reg, d if (d �� 1)

Reg � Reg � 1;
else
w � Reg � 1

109

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
0
9

Description Instruction Actual Instructions Operation

Subtract Digit Carry adddcf Reg, d btfsc STATUS, DC if (DC �� 1)
To File Register incf Reg, d if (d �� 1)

Reg � Reg � 1;
else
w � Reg � 1;

Load “Z” with 1 if movfw Reg movf Reg, w if (Reg �� 0)
Contents of “Reg” Z � 1;
equal 0 else

Z � 0;

110

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
0

Parallax PICmicro® MCU Instruction Set

Parallax Inc. (manufacturers of the “Basic Stamp”) have
written a very popular assembler for the Microchip
PICmicro® MCUs. "PASM" (as it is known) implements
an assembler language that is similar to the Intel 8051
instruction set. The assembler also supports MPASM
(standard Microchip) instruction formats as well.

Some of these instructions are designed specifically
for the low-end PICmicro® MCUs (they have been
noted). If you're working with a mid-range PICmicro®

MCU, these instructions MUST NOT be used.
Note that many of these mnemonics result in multiple

PICmicro® MCU instructions with unexpected changes
to the STATUS and "w" register.

PASM is available from the Parallax web site.

� Literal Instructions

fr � File Register

PICmicro® MCU Instruction Set 111

5194 Predko Pocket Chapter 4 9/26/01 11:40 AM Page 111

PASM Data Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

CLR Parm Clear Parameter
"W" w = 0 1 Zero clrw
fr fr = 0 1 Zero clr fr
WDT WDT = 0 1 _TO, _PD clrwdt

MOV Parm Move Data
"W, #" w = # 1 None movlw #
"W, fr" w = fr 1 Zero movf fr, w
"W, /fr" w = fr ^ 0x0FF 1 Zero comf fr, w
"W, fr-W" w = fr+(w^0x0FF)+1 1 Z, C, DC subwf fr, w
"W, ++fr" w = fr + 1 1 Z incf fr, w
"W, --fr" w = fr - 1 1 Z decf fr, w
"W, >>fr" w = fr >> 1 1 Carry rrf fr, w
"W, <<fr" w = fr << 1 1 Carry rlf fr, w
"W, <>fr" w = NibSwap fr 1 None swapf fr, w
"fr, W" fr = w 1 None movwf fr
"!Port, W" TRIS = w 1 None TRIS Port
"!Port, #" TRIS = # 2 w movlw #

TRIS Port
"!Port, fr" TRIS = fr 2 w, Zero movf fr, w

TRIS Port
"OPTION, W" OPTION = w 1 None OPTION
"OPTION, #" OPTION = # 2 w movlw #

OPTION

112

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
2

"OPTION, fr" OPTION = fr 2 w, Zero movf fr, w
OPTION

"fr, #" fr = # 2 None movlw #
movwf fr

"fr, fr2" fr = fr2 2 Zero movf fr2, w
movwf fr

ADD Parm ADD two Values
"W, fr" w = w + fr 1 Z, C, DC addwf fr, w
"fr, W" fr = w + fr 1 Z, C, DC addwf fr, f
"fr, #" fr = fr + # 2 w, Z, C, DC movlw #

addwf fr, f
"fr, fr2" fr = fr + fr2 2 w, Z, C, DC movf fr2, w

addwf fr, f
SUB Parm Subtraction
"fr, W" fr = fr+(w^0x0FF)+1 1 Z, C, DC subwf fr, f
"fr, #" fr = fr+(#^0x0FF)+1 2 w, Z, C, DC movlw #

subwf fr, f
"fr, fr2" fr=fr+(fr2^0x0FF)+1 2 w, Z, C, DC movf fr2, w

subwf fr, f
AND Parm Bitwise AND
"W, #" w = w & # 1 Zero andlw #
"W, fr" w = w & fr 1 Zero andwf fr, w
"fr, W" fr = w & fr 1 Zero andwf fr, f
"fr, #" fr = fr & # 2 w, Zero movlw #

andwf fr, f
"fr, fr2" fr = fr & fr2 2 w, Zero movf fr2, w

andwf fr, f113

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
3

PASM Data Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

OR Parm Bitwise Inclusive OR
"W, #" w = w | # 1 Zero iorlw #
"W, fr" w = w | fr 1 Zero iorwf fr, w
"fr, W" fr = fr | w 1 Zero iorwf fr, f
"fr, #" fr = fr | # 2 w, Zero movlw #

iorwf fr, f
"fr, fr2" fr = fr | fr2 2 w, Zero movf fr2, w

iorwf fr, f

XOR Parm Bitwise Exclusive OR
"W, #" w = w ^ # 1 Zero xorlw #
"W, fr" w = w ^ fr 1 Zero xorwf fr, w
"fr, W" fr = fr ^ w 1 Zero xorwf fr, f
"fr, #" fr = fr ^ # 2 w, Zero movlw #

xorwf fr, f
"fr, fr2" fr = fr ^ fr2 2 w, Zero movf fr2, w

xorwf fr, f
DEC Parm Decrement Register
"fr" fr = fr - 1 1 Zero decf fr, f

INC Parm Increment Register
"fr" fr = fr + 1 1 Zero incf fr, f

NEG Parm Two’s Complement Negation
"fr" fr = 0 - fr 2 Zero comf fr, f

incf fr, f

114

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
4

NOT Parm Bitwise Complement
"W" w = w ^ 0x0FF 1 Zero xorlw 0x0FF
"fr" fr = fr ^ 0x0FF 1 Zero comf fr

TEST Parm Test Parm Equal to Zero
"W" Z = (w == 0) 1 Zero iorlw 0
"fr" Z = (fr == 0) 1 Zero movf fr, f

RR Parm Rotate Register to Right
"fr" fr = fr >> 1 1 Carry rrf fr, f

RL Parm Rotate Register to Left
"fr" fr = fr << 1 1 Carry rlf fr, f

SWAP Parm Swap Nybbles of Register
"fr" fr = <>fr 1 None swapf fr, f

PASM Bit Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

CLRB fr, bit fr.bit = 0 1 None bcf fr, bit
SETB fr, bit fr.bit = 1 1 None bsf fr, bit
CLC Carry = 0 1 None bcf STATUS, C
STC Carry = 1 1 None bsf STATUS, C
CLZ Zero = 0 1 None bcf STATUS, Z
STZ Zero = 0 1 None bsf STATUS, Z
ADDB fr, bit fr = fr + Bit 2 Zero btfsc fr, bit

incf fr, f
SUBB fr, bit fr = fr - bit 2 Zero btfss fr, bit

decf fr, f

115

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
5

PASM Bit Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

MOVB fr.b, fr2.b2 Move Bit 4 None btfss fr2, b2
bcf fr, b

btfsc fr2, b2
bsf fr, b

MOVB fr.b, /fr2.b2 Move Invert 4 None btfsc fr2, b2
bcf fr, b

btfss fr2, b2
bsf fr, b

PASM PICmicro® MCU Microcontroller Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

NOP Do Nothing 1 Nothing nop
SLEEP Put PICmicro® MCU to N/A _TO, _PD sleep

Sleep
LSET Addr Jump Setup 0-2 PA0, PA1 bcf/bsf STATUS, PA0

* � Low End Instruction, bcf/bsf of STATUS PAx Bits Address Dependant

116

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
6

PASM PICmicro® MCU Conditional Skip Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

MOVSZ Parm Skip if Result = 0
"W, ++fr" w = fr + 1 1/2 w incfsz fr, w
"W, --fr" w = fr - 1 1/2 w decfsz fr, w

INCSZ fr w=fr+1, if Z Skip 1/2 w incfsz fr, f
DECSZ fr w=fr-1, if Z Skip 1/2 w decfsz fr, f
SB fr, bit Skip if Bit Set 1/2 None btfss fr, bit
SNB fr, bit Skip if Bit Reset 1/2 None btfsc fr, bit
SC Skip if Carry Set 1/2 None btfss STATUS, C
SNC Skip if C Reset 1/2 None btfsc STATUS, C
SZ Skip if Zero Set 1/2 None btfss STATUS, Z
SNZ Skip if Zero Reset 1/2 None btfsc STATUS, Z
CJA fr, # if fr > # 3/4 w, C, DC, Z movlw #

Skip_Next addwf fr, w
btfss STATUS, C

CJA fr, fr2 if fr > fr2 3/4 w, C, DC, Z movf fr, w
Skip_Next subwf fr2, w

btfss STATUS, C
CJAE fr, # if fr > # 3/4 w, C, DC, Z movlw #

Skip_Next subwf fr, w
btfss STATUS, C

CJAE fr, fr2 if fr > fr2 3/4 w, C, DC, Z movf fr2, w
Skip_Next subwf fr, w

btfss STATUS, C

117

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
7

PASM PICmicro® MCU Conditional Skip Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

CSB fr, # if fr < # 3/4 w, C, DC, Z movlw #
Skip_Next subwf fr, w

btfsc STATUS, C
CSB fr, fr2 if fr < fr2 3/4 w, C, DC, Z movf fr2, w

Skip_Next subwf fr, w
btfsc STATUS, C

CSBE fr, # if fr <= # 3/4 w, C, DC, Z movlw #
Skip_Next addwf fr, w

btfsc STATUS, C
CSBE fr, fr2 if fr <= fr2 3/4 w, C, DC, Z movf fr, w

Skip_Next subwf fr2, w
btfss STATUS, C

CSE fr, # if fr == # 3/4 w, C, DC, Z movlw #
Skip_Next subwf fr, w

btfss STATUS, Z
CSE fr, fr2 if fr == fr2 3/4 w, C, DC, Z movf fr2 w

Skip_Next subwf fr, w
btfss STATUS, Z

CSNE fr, # if fr == # 3/4 w, C, DC, Z movlw #
Skip_Next subwf fr, w

btfsc STATUS, Z
CSNE fr, fr2 if fr == fr2 3/4 w, C, DC, Z movf fr2 w

Skip_Next subwf fr, w
btfsc STATUS, Z

118

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
8

PASM PICmicro® MCU Unconditional Branch Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

JMP Parm Jump to Address
"addr9" PC = 9 Bit Address 2 None goto addr9
* � Low End Instruction
"PC+W" PC = PC + Offset w 2 Z, C, DC addwf PCL, f
"W" PC = w 2 None movwf PCL

CALL addr8 Call Subroutine 2 None call addr8
* � Low End Instruction

RET Return & w = 0 2 w retlw 0
SKIP Skip Over Next Ins 2 None btfss FSR, 7
* � Low End Instruction, Bit 7 of FSR is always Set

LJMP Addr LSET before JMP 2–5 PA0-PA2 bcf/bsf STATUS, PAx
:
goto Addr

* � Low End Instruction
LCALL Addr LSET before CALL 2–5 PA0-PA2 bcf/bsf STATUS, PAx

:
call Addr

* � Low End Instruction
RETW 'String' Table Return 2 w retlw 'S'

retlw 't'
retlw 'r'
retlw 'i'
retlw 'n'
retlw 'g'

119

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
1
9

PASM PICmicro® MCU Conditional Branch Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

IJNZ fr, addr9 Increment/Jump 2/3 None incfsz fr, f
goto addr9

DJNZ fr, addr9 Decrement/Jump 2/3 None decfsz fr, f
goto addr9

JB fr, bit, addr9 Jump on Bit 2/3 None btfsc fr, bit
goto addr9

JNB fr, bit, addr9 2/3 None btfss fr, bit
goto addr9

JC addr9 Jump on Carry 2/3 None btfsc STATUS, C
goto addr9

JNC addr9 Jump on !Carry 2/3 None btfss STATUS, C
goto addr9

JZ addr9 Jump on Zero 2/3 None btfsc STATUS, Z
goto addr9

JNZ addr9 Jump on !Zero 2/3 None btfss STATUS, Z
goto addr9

CJA fr, #, addr9 4/5 w, C, DC, Z movlw #
if fr > # subwf fr, w

goto addr9 btfss STATUS, C
goto addr9

CJA fr, fr2, addr9 4/5 w, C, DC, Z movf fr, w
if fr > fr2 subwf fr2, w

goto addr9 btfss STATUS, C
goto addr9

120

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
2
0

CJAE fr, #, addr9 4/5 w, C, DC, Z movlw #
if fr >= # subwf fr, w

goto addr9 btfss STATUS, C
goto addr9

CJAE fr, fr2, addr9 4/5 w, C, DC, Z movf fr2, w
if fr >= fr2 subwf fr, w

goto addr9 btfsc STATUS, C
goto addr9

CJB fr, #, addr9 4/5 w, C, DC, Z movlw #
if fr < # subwf fr, w

goto addr9 btfss STATUS, C
goto addr9

CJB fr, fr2, addr9 4/5 w, C, DC, Z movf fr2, w
if fr < fr2 subwf fr, w

goto addr9 btfss STATUS, C
goto addr9

CJBE fr, #, addr9 4/5 w, C, DC, Z movlw #
if fr <= # addwf fr, w
goto addr9 btfss STATUS, C

goto addr9
CJBE fr, fr2, addr9 4/5 w, C, DC, Z movf fr, w

if fr <= fr2 subwf fr2, w
goto addr9 btfsc STATUS, C

goto addr9
CJE fr, #, addr9 4/5 w, C, DC, Z movlw #

if fr == # subwf fr, w
goto addr9 btfsc STATUS, Z

goto addr9

121

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
2
1

PASM PICmicro® MCU Unconditional Branch Instructions
Instruction Description Cycles Context Actual PICmicro® MCU

Resources Instructions
Affected

CJE fr, fr2, addr9 4/5 w, C, DC, Z movf fr2, w
if fr == fr2 subwf fr, w

goto addr9 btfsc STATUS, Z
goto addr9

CJNE fr, #, addr9 4/5 w, C, DC, Z movlw #
if fr == # subwf fr, w

goto addr9 btfss STATUS, Z
goto addr9

CJNE fr, fr2, addr9 4/5 w, C, DC, Z movf fr2, w
if fr == fr2 subwf fr, w

goto addr9 btfss STATUS, Z
goto addr9

{#### � End Table}

122

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

4

9
/
2
6
/
0
1

1
1
:
4
0

A
M

P
a
g
e

1
2
2

Chapter

PICmicro® MCU
Processor

Architectures

The PICmicro® MCU’s Arithmetic Logic Unit

5

123

Standard PICmicro® MCU Processor ALU Operations

Operation Equivalent Operation
Move AND with 0x0FF
Addition None
Subtraction Addition to a Negative
Negation XOR with 0x0FF (Bitwise “Invert”) and

Increment
Increment Addition to One
Decrement Subtract by One/Addition by 0x0FF

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 123

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Along with these functions, the PIC17Cxx and PIC18Cxx
also have an 8-bit � 8-bit multiplier.

The PICmicro® MCU’s “ALU” (“Arithmetic Logic
Unit”) could be blocked out as shown in Fig. 5.1.

124 Chapter 5

Figure 5.1 ALU Implementation Using Multiplexed Inputs

Standard PICmicro® MCU Processor ALU Operations (Continued)

AND None
OR None
XOR None
Complement XOR with 0x0FF
Shift Left None
Shift Right None

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 124

Low-End PICmicro® MCUs

The “Low-End” PICmicro® MCUs have the part num-
bers:

PIC12C5xx

PIC16C5x

PIC16C50x

where “x” can be any digit.
A sample low-end PICmicro® MCU processor archi-

tecture is shown in Fig. 5.2.

PICmicro® MCU Processor Architectures 125

Figure 5.2 Low-end PICmicro ® MCU Architecture

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 125

Reset addresses are at the last location in program
memory. The following table lists the different reset vec-
tors for different device program memory sizes.

It is recommended that the reset address is ignored
in the Low-End PICmicro® MCUs (or used to load the
oscillator calibration register [“OSCCAL”] value into
“w”) before rolling over the Program Counter and start-
ing at address 0x0000, like the other PICmicro® MCU
devices.

Register access

The low-end register space is shown in Fig. 5.3.
The first 16 addresses of each bank are common. The

16 bank unique file registers are located in the last 16
addresses of the bank. This limitation of only being able
to address data 16 bytes at a time prevents the con-
struction of arrays or other data structures longer than
16 bytes.

Bank 0 can be accessed directly within instructions.
Other banks can only be accessed using the FSR (and
INDF) index registers. The following table lists bank
offsets.

126 Chapter 5

Low-end PICmicro® MCU Program Memory Size to Reset Vector

Program Memory Size Reset Vector
512 0x01FF
1024 0x03FF
2048 0x07FF

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 126

Note that the PICmicro® MCU’s FSR (“index”) register
can never equal zero. The table below lists which bits
will be set in the low-end’s FSR depending on how many
bank registers the PICmicro® MCU has.

PICmicro® MCU Processor Architectures 127

Figure 5.3 Low-End PICmicro® MCU Register Map

Low-end PICmicro® MCU Unique Bank Address Table

Bank FSR Start of 16 Unique Registers
0 0x000 0x010
1 0x020 0x030
2 0x040 0x050
3 0x060 0x070

Low-end PICmicro® MCU Minimum FSR Value to Number of Banks

Number of Banks Set FSR bits Minimum FSR value
1 7, 6, 5 0x0E0
2 7,6 0x0C0
4 7 0x080

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 127

Program counter

The low-end PICmicro® MCU’s program counter block
diagram is given in Fig. 5.4.

The “PA0” and “PA1” bits of the STATUS register (bits
five and six) perform the same function as the “PCLATH”
register of the other PICmicro® MCUs. Bit PA0 is used to
provide bit nine of the destination address to jump to
during a “goto” or “call” instruction or when “PCL” is

128 Chapter 5

Low-endPICmicro® MCURegisterDefinitions

Address Bits Bit Function
0x003 7 GPWUF - in PIC12C5xx and PIC16C505:

when Set, Reset from Sleep on Pin
Change. When Set, power up or
_MCLR reset.
In other Devices the Bit 7 is
Unused.

6-5 PA1-PA0 - Select the Page to
execute out of:
00 - Page 0 (0x0000 to 0x01FF)
01 - Page 1 (0x0200 to 0x03FF)
10 - Page 2 (0x0400 to 0x05FF)
11 - Page 3 (0x0600 to 0x07FF)

4 _TO - Set after Power Up, clrwdt
and sleep instructions

3 _PD - Set after Power Up, clrwdt
instruction. Reset after sleep
instruction

2 Z - Set if the eight bit result is
equal to zero

1 DC - Set for low order Nybble
carry after addition or
subtraction instruction

0 C - Set for Carry after addition
or subtraction instruction

STATUS register

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 128

written to. Bit PA1 is address bit ten. In some low-end
PICmicro® MCUs, bit seven of the STATUS register is re-
ferred to as “PA2”. This bit is not used by any of the cur-
rent PICmicro® MCUs.

To jump to a new “page” address, the following in-
struction sequence is used:

PICmicro® MCU Processor Architectures 129

Figure 5.4 Low-End Program Counter Block Diagram

Low-end PICmicro® MCU Program Counter Update Operation

STATUS = (STATUS & 0x01F) + ((HIGH new_address &
0x0FE) << 4);

PCL = LOW new_address;

Note that subroutines and tables at addresses 0x0100 to
0x01FF, 0x0300 to 0x03FF, 0x0500 to 0x05FF, and

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 129

00x700 to 0x07FF cannot be accessed directly. Instead,
redirection using a “goto” instruction is required.

The “call stack” is two elements deep.

Mid-Range PICmicro® MCUs

The mid-range PICmicro® MCUs have the part num-
bers:

PIC12C6xx

PIC14000

PIC16C55x

PIC16C6x (x)

PIC16C7x (x)

PIC16C8x

PIC16F8x (x)

PIC16C9xx

The mid-range PICmicro® MCU’s have the block dia-
gram shown in Fig. 5.5.

Upon Reset, execution starts at address 0x00000. In-
terrupts are handled at address 0x00004. The configura-
tion registers are located at address 0x02007.

Register access

The Mid-Range PICmicro® MCUs can have up to four reg-
ister “banks” of 0x080 (128) registers. Each register
is accessed using the “RPx” bits of the STATUS reg-
ister. For the different Register Banks and Register Ad-
dresses, the following table is used to set the RPx bits.

130 Chapter 5

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 130

The “XOR Value” is the value that is XORed with the
Register Address to ensure it is within the bank address
range of 0 to 0x07F.

When the FSR (Index) register is used to access data
in Banks 1 through 3, the “IRP” bit of the STATUS regis-
ter will be set appropriately and the least significant 8
bits of the address are loaded into the FSR register.

PICmicro® MCU Processor Architectures 131

Figure 5.5 Mid-Range PICmicro® MCU Architecture

PICmicro® MCU PORT and TRIS Bit Access

Register Address Range RP1 RP0 XOR Value
0x000-0x07F 0 0 0
0x080-0x0FF 0 1 0x080
0x0100-0x017F 1 0 0x0100
0x0180-0x01FF 1 1 0x0180

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 131

The Register Address Map looks like the following:

132 Chapter 5

Mid-Range Bank0/Bank1 Register Definitions

Offset Bank 0 Bank 1 Comments
0x000 INDF INDF
0x001 TMR0 OPTION
0x002 PCL PCL
0x003 STATUS STATUS
0x004 FSR FSR
0x005 PORTA TRISA
0x006 PORTB TRISB
0x007 PORTC TRISC Available in 28/40 Pin Parts
0x008 PORTD TRISD Available in 40 Pin Parts
0x009 PORTE TRISE Available in 40 Pin Parts
0x00A PCLATH PCLATH
0x00B INTCON INTCON

The File Registers (Variable registers) start at either
0x00C or 0x020 of the bank depending on the “Hard-
ware I/O” or “Special Function Registers” (“SFRs”) built
into the device. It is recommended to start all variable
declarations at 0x020 to avoid issues porting between a
PICmicro® MCU that has file registers starting at 0x00C
and one that has file registers starting at 0x020.

STATUS register

Mid-Range STATUS Register Definition

Bit Function
7 IRP - FSR Select Between the High and Low

Register Banks
6-5 RP1:RP0 - Direct Addressing Select Banks (0

through 3)
4 _TO - Time Out Bit. Reset after a Watchdog

Timer Reset

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 132

Program counter

The mid-range PICmicro® MCU’s program counter can
be represented by the block diagram shown in Fig. 5.6.

PICmicro® MCU Processor Architectures 133

Figure 5.6 Mid-Range PICmicro® MCU Program Counter Block Diagram

Mid-Range STATUS Register Definition (Continued)

3 _PD - Power-down Active Bit. Reset after sleep
instruction

2 Z - Set when the eight bit result is equal to
zero

1 DC - Set when the low Nybble of
addition/subtraction result carries to the
high Nybble

0 C - Set when the addition/subtraction result
carries to the next byte. Also used with the
Rotate Instructions

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 133

To jump to another bank, the following instruction se-
quence is used:

134 Chapter 5

Mid-range PICmicro® MCU Program Counter Update Operation

PCLATH = (HIGH new_address;
PCL = LOW new_address;

All addresses within the mid-range PICmicro® MCU can
be accessed with the PCLATH and PCL registers.

The “call stack” is eight elements deep.

Interrupt operation

Interrupts are controlled by the state of the INTCON
Register and optionally the “PIE” and “PIR” registers.
Interrupt handlers always start executing at address
0x004.

Mid-Range INTCON Register Definition

Bit Function
7 GIE - Global Interrupt Enable. For any

Interrupt Requests to be acknowledged, this
bit must be set

6 Device Specific Interrupt Enable
5 T0IE - TMR0 Interrupt Overflow Request Enable
4 INTE - RB0/INT Pin Interrupt Request Enable
3 RBIE - PORTB Change Interrupt Request Enable
2 T0IF - TMR0 Interrupt Overflow Request
1 INTF - RB0/INT Pin Interrupt Request
0 RBIF - PORTB Change Interrupt Request

For an Interrupt Request (which sets the bit ending in
“F”), the corresponding “Enable” bit (which is the bit
ending in “E”) has to be set along with the “GIE” bit.

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 134

Some Enable and Interrupt Request bits may be in aux-
iliary registers or “PIR” or “PIE”.

Interrupt handler skeleton

The mid-range PICmicro® MCU has an interrupt skeleton
of:

org 4
movwf _w ; Save Context Registers
movf STATUS, w
bcf STATUS, RP1 ; Make Bank 0 Active
bcf STATUS, RP0
movwf _status
movf FSR, w
movwf _fsr
movf PCLATH, w
movwf _pclath
clrf PCLATH ; Make sure Execution in Page 0

: ; Execute Interrupt Handler

movf _pclath, w ; Restore the Context
Registers

movwf PCLATH
movf _fsr, w
movwf FSR
movf _status, w
movwf STATUS
swapf _w, f
swapf _w, w
retfie

To enable the TMR0 Interrupt Request, the following
code is used:

PICmicro® MCU Processor Architectures 135

Mid-Range Timer Interrupt Enable Code

clrf TMR0 ; Reset TMR0
bcf INTCON, T0IF ; Reset TMR0 Interrupt Request
bsf INTCON, T0IE ; Enable TMR0 Interrupt Request
bsf INTCON, GIE ; Enable PICmicro® MCU Interrupts

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 135

PIC17Cxx

The PIC17Cxx architecture encompasses parts with the
part numbers:

PIC17Cxx(x)

The unique features of the PIC17Cxx, as compared to
the other PICmicro® MCU’s, include:

1. The ability to access external, parallel memory.

2. Up to seven I/O ports.

3. A built-in 8�8 multiplier.

4. Up to 902 file registers in up to 16 banks.

5. Up to 64K address space.

6. The ability to read and write program memory.

7. Multiple interrupt vectors.

The PIC17Cxx processor has a block diagram as shown
in Fig. 5.7.

The important differences between the PIC17Cxx ar-
chitecture and the low-end and mid-range PICmicro®

MCU architectures are as follows:

1. The accumulator, “WREG,” can be addressed in the
register space.

2. The STATUS and OPTION register functions are
spread across different registers.

3. The program counter works slightly differently from
the other architectures.

136 Chapter 5

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 136

4. The “registers” are accessed differently and accesses
can bypass the “WREG”.

The reset address of the PIC17Cxx is 0x00000.

Register access

The PIC17Cxx has a single 256 Register address space.
Addresses 0x010 to 0x017 are banked and addressed
using the lower nybble of the “BSR” register and contain
the register selection information of the “Special Func-
tion Registers” (“SFRs”) or Hardware I/O Registers. The
high nybble of BSR is used to select the File Register
Bank at addresses 0x020 to 0x0FF.

PICmicro® MCU Processor Architectures 137

Figure 5.7 PIC17Cxx Processor Architecture

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 137

STATUS register

The PIC17Cxx has two registers that provide the same
functions as the single “STATUS” register of the other
three PICmicro® MCU architectures. The PIC17Cxx
Bank Selection is made by the “BSR” Register.

138 Chapter 5

PIC17Cxx Register Configuration

Addr Register Function/Bit Definition
0x000 INDF0 Register Pointed to by

FSR0
0x001 FSR0 Index Register 0
0x002 PCL Low Byte of the Program

Counter
0x003 PCLATH Latched High Byte of the

Program Counter
0x004 ALUSTA Processor Status and

Control Register
0x005 T0STA TMR0 Status and Control

Register
0x006 CPUSTA Processor Operating

Status Register
0x007 INTSTA Interrupt Status and

Control Register
0x008 INDF1 Register Pointed to by

FSR1
0x009 FSR1 Index Register 1
0x00A WREG Processor Accumulator
0x00B TMR0L Low Byte of TMR0
0x00C TMR0H High Byte of TMR0
0x00D TBLPTRL Low Byte of the Table

Pointer
0x00E TBLPTRH High Byte of the Table

Pointer
0x00F BSR Bank Select Register
0x010-0x017 Special Function Registers
0x018 PRODL Low Byte of

Multiplication Product
0x019 PRODH High Byte of

Multiplication Product
0x01A-0x01F Unbanked File Registers
0x020-0x0FF Banked File Registers

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 138

PICmicro® MCU Processor Architectures 139

PIC17Cxx ALUSTA Register Definition

Bit Function
7-6 FSR1 Mode Select

1x - FSR1 Does not Change after Access
01 - Post Increment FSR1
00 - Post Decrement FSR1

5-4 FSR0 Mode Select
1x - FSR0 Does not Change after Access
01 - Post Increment FSR0
00 - Post Decrement FSR0

3 OV - Set when there is a two’s complement
overflow after addition/subtraction

2 Z - Set when the eight bit result is equal to
Zero

1 DC - Set for low order Nybble carry after
addition or subtraction instruction

0 C - Set for Carry after addition or
subtraction instruction

PIC17Cxx CPUSTA Register Definition

Bit Function
7-6 Unused
5 STKAV - When Set, there is Program Counter

Stack Space Available
4 GLINTD - When Set, all Interrupts Are

Disabled
3 _TO - Set after Power Up or clrwdt

Instruction. When Reset a Watchdog Timeout
has occurred

2 _PD - Set after Power Up or clrwdt
Instruction. Reset by a “sleep” instruction

1 _POR - Reset After Power Up in PIC17C5x. Not
Available in All PIC17Cxx devices

0 _BOR - Reset After Brown Out Reset. Not
Available in All PIC17Cxx devices

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 139

Program counter

The PIC17Cxx’s processor can access 64k 16-bit words of
program memory, either internally or externally to the
chip. Each instruction word is given a single address; so
to address the 64k words (or 128k bytes), 16 bits are re-
quired. From the application developer’s perspective,
these 16 bits can be accessed via the “PCL” and
“PCLATH” registers in exactly the same way as the low-
end and mid-range PICmicro® MCUs. The PIC17Cxx’s
program counter block diagram is shown in Fig. 5.8.

The block diagram in Fig. 5.8 differs from the mid-
range PICmicro® MCU’s program counter block diagram
in one important respect; when the “goto” and “call”
instructions are executed, the upper 5 bits of the
specified instruction overwrite the lower 5 bits of the
PCLATH register. After execution of a “goto” or “call”
instruction PCLATH has been changed to the current
address.

140 Chapter 5

Figure 5.8 PIC17Cxx Program Counter

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 140

Interrupt operation

The PIC17Cxx can have four different interrupt vector
addresses, depending on their source and priority. The
Interrupts and their vectors are listed below:

PICmicro® MCU Processor Architectures 141

PIC17Cxx Interrupt Vector Address and Priorities for
Different Sources

Priority Vector Address Source
High 0x0008 RAO/INT Pin Interrupt

0x00010 TMRO Overflow Interrupt
0x00018 TOCKI Pin Interrupt

Low 0x00020 Peripheral Device Interrupt

PIC17Cxx CPUSTA Register Definition

Any 0x007 INTSTA Interrupt Status and Control
Register
Bit Function
7 PEIE - Set when Peripheral

Interrupt is Pending
6 T0CKIF - Set when

RA1/T0CKI Pin has
Interrupt Source.
Cleared by Hardware when
Interrupt Vector 0x0018
is executed

5 T0IF - Set when TMR0
Overflows. Cleared by
Hardware when Interrupt
Vector 0x0010 is
executed

4 INTF - Set when RA0/INT
Pin Interrupt Request
Active. Cleared by
Hardware when Interrupt
Vector 0x0008 is
executed

3 PEIE - Set to Enable
Peripheral Interrupt
Requests

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 141

Interrupt handler skeleton

org ?? ; Vector According to Source
movpf ALUSTA, _alusta ; Save Context Registers
movpf WREG, _w
movpf BSR, _bsr
movpf PCLATH, _pclath
clrf PCLATH ; Make sure Execution in

Page 0
: ; Execute Interrupt Handler
movfp _pclath, PCLATH ; Restore the Context

Registers
movfp _bsr, BSR
movfp _w, WREG
movfp _alusta, ALUSTA
retfie

PIC18Cxx
The PIC18Cxx architecture encompasses parts with the
part numbers:

PIC18Cxx2

The unique features of the PIC18Cxx, as compared to
the other PICmicro® MCU’s, include:

1. A built-in 8�8 multiplier.

2. Up to 3,840 file registers in up to 16 banks.

142 Chapter 5

PIC17Cxx CPUSTA Register Definition (Continued)

2 T0CKIE - Set to Enable
RA1/T0CKI Interrupt
Request

1 T0IE - Set to Enable TMR0
Overflow Interrupt Request

0 INTE - Set to Enable
RA0/INT Pin Interrupt
Request

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 142

3. Up to 1,048,576 words of program memory address
space.

4. The ability to read and write program memory.

5. Prioritized Interrupt Requests.

The PIC18Cxx processor has a block diagram as shown
in Fig. 5.9. The important differences between the
PIC18Cxx architecture and the low-end and mid-range
PICmicro® MCU architectures are as follows:

1. The accumulator, “WREG”, can be addressed in the
register space.

2. The “Access Bank”, which is used to allow access to
the first 128 file registers and the Hardware I/O regis-
ters without involving the BSR.

PICmicro® MCU Processor Architectures 143

Figure 5.9 PIC18Cxx Architecture Block Diagram

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 143

3. The program counter works slightly differently from
the other architectures.

4. The “registers” are accessed differently and accesses
can bypass the “WREG”.

The reset address of the PIC18Cxx is 0x00000.

Register access

The PIC18Cxx can access up to 4,096 8-bit registers that
are available in a contiguous memory space. Twelve ad-
dress bits are used to access each address within the
“Register Map” space shown in Fig. 5.10.

To access a register directly, the PIC18Cxx’s “BSR”
(“Bank Select Register”) register must be set to the
bank the register is located in. The BSR register con-
tains the upper 4 bits of the register’s address, with the

144 Chapter 5

Figure 5.10 PIC18Cxx Register Format

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 144

lower 8 bits explicitly specified within the instruction.
The direct address is calculated using the formula:

Address = (BSR << 8) + Direct Address

The index register operation of the PIC18Cxx is very
well organized and will make it much easier for compiler
writers to create PIC18Cxx compilers than for other
PICmicro® MCUs. Along with the three 12-bit-long FSR
registers, when data is accessed it can result in the FSR
being incremented before or after the data access,
decremented after or access to the address of the FSR
contents added to the contents of the “w” register. A
specific access option is selected by accessing different
“INDF” register addresses. The table below lists the dif-
ferent INDF registers and their options concerning their
respective FSR registers:

PICmicro® MCU Processor Architectures 145

PIC18Cxx FSR Change Access Registers

INDF Register Operation
INDF# Access the Register Pointed to by FSR#
POSTINC# Access the Register Pointed to by FSR#

and then Increment FSR#
POSTDEC# Access the Register Pointed to by FSR#

and then Decrement FSR#
PREINC# Increment FSR# and then Access the

Register Pointed to by FSR#
PLUSW# Access the Register Pointed to by the

Contents of the WREG added to FSR#

To simulate a “push” of the contents of the “WREG” us-
ing FSR0 as a Stack Pointer, use the operation:

POSTDEC0 � WREG;

A “pop WREG” could be implemented as:

WREG � PREINC0;

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 145

Specific elements relative to the start of the stack
could be accessed using the code:

WREG � 3;
WREG � PLUSW0;

STATUS register

Two registers contain the status information for the
PIC18Cxx and control the operation of the PICmicro®

MCU.

146 Chapter 5

PIC18Cxx RCON Register Definition

Bit Function
7 IPEN - When Set Interrupt Priority Levels are

enabled
6 LWRT - When Set, Enable writes to internal

program memory
5 Unused
4 _RI - When Reset, the “Reset” Instruction was

executed. This bit must be set in Software

PIC18Cxx STATUS Register Definition

Bit Function
7-5 Unused
4 N - Set when the two’s complement result after

addition/subtraction is negative
3 OV - Set when there is a two’s complement

overflow after addition/subtraction
2 Z - Set when the eight bit result is equal to

zero
1 DC - Set when the low Nybble of

addition/subtraction result carries to the
high nybble

0 C - Set when the addition/subtraction result
carries to the next byte. Also used with the
Rotate Instructions

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 146

Program counter

The PIC18Cxx program counter and stack is similar to the
hardware used in the other devices except for three im-
portant differences. The first difference is the need for ac-
cessing more than 16 address bits for the maximum one
million possible instructions of program memory. The sec-
ond difference is the availability of the “fast stack”, which
allows interrupt context register saves and restores to
take place without requiring any special code. The last
difference is the ability to read and write from the stack.
These differences add a lot of capabilities to the 18Cxx
that allow applications that are not possible in the other
PICmicro® MCU architectures to be implemented.

In the PIC18Cxx, when handling addresses outside
the current program counter, not only does a “PCLATH”
register (or “PA” bits as in the low-end devices) update
as required, but it is also a high-order register for ad-
dresses above the first 64 instruction words. This regis-
ter is known as “PCLATU”. “PCLATU” works identically
to the “PCLATH” register and its contents are loaded
into the PIC18Cxx PICmicro® MCUs program counter
when “PCL” is updated.

Each instruction in the PIC18Cxx starts on an “even”
address. This means that the first instruction starts at ad-

PICmicro® MCU Processor Architectures 147

PIC18Cxx RCON Register Definition (Continued)

3 _TO - Time Out Bit. Reset after a Watchdog
Timer Reset

2 _PD - Power-down Active Bit. Reset after sleep
instruction

1 _POR - Reset after a “Power On” Reset has
occurred. This bit must be Set in Software

0 _BOR - Reset after a “Brown Out” Reset has
occurred. This bit must be Set in Software

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 147

dress zero, the second at address two, the third at address
four and so on. Setting the program counter to an odd ad-
dress will result in the MPLAB simulator halting and the
PIC18Cxx working unpredictably. Changing the conven-
tion used in the previous PICmicro® MCUs to one, where
each byte is addressed, means that some rules about ad-
dressing will have to be relearned for the PIC18Cxx.

The stack itself, at 31 entries, is deeper than the other
PICmicro® MCU stacks and the hardware monitoring
the stack is available as the “STKPTR” register. A block
diagram of the stack is shown in Fig. 5.11.

The STKPTR register is defined as:

148 Chapter 5

Figure 5.11 PIC18Cxx Program Counter Stack

PIC18Cxx STKPTR Register Bit Definitions

Bit Description
7 STKFUL - Stack Full Flag which is set when

the Stack is Full or Overflowed

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 148

The “STKUNF” and “STKFUL” bits will be set if their
respective conditions are met. If the “STVREN” bit of
the configuration fuses is set, then when the STKUNF
and STKFUL conditions are true the PICmicro® MCU
will be reset.

The “fast stack” is used to simplify subroutine calls in
applications that don’t have interrupts enabled as well
as working with interrupt handlers. To use the fast stack
in the “call” and “return” instructions a “1” parameter is
put at the end of the instructions. To prevent the fast
stack from being used, a “0” parameter is put at the end
of the “call” and “return” instructions. The “fast stack” is
a 3-byte memory location where the “w”, “STATUS” and
“BSR” registers are stored automatically when an inter-
rupt request is acknowledged and execution jumps to
the interrupt vector. If interrupts are not used in an ap-
plication, then these registers can be saved or restored
with a “call” and “return”, for instance:

Call sub, 1 ; Call “sub” after saving “w”, “STATUS”
: ; and “BSR”
:

sub ; Execute “Sub”, Ignore “w”, “STATUS”
: ; and “BSR”

return 1 ; Restore “w”, “STATUS” and “BSR” before
; Return to Caller

PICmicro® MCU Processor Architectures 149

PIC18Cxx STKPTR Register Bit Definitions (Continued)

6 STKUNF - Stack Underflow Flag which is set when
more Stack Elements have been Popped than
Pushed.

5 Unused
4-0 SP4:SP0 - Stack Pointer

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 149

The reason the “fast” option is not recommended in
applications in which interrupts are enabled is due to
the interrupt overwriting the saved data when it exe-
cutes. For this reason, the “fast” option cannot be used
with nested subroutines or interrupts.

Interrupt operation

Interrupt Operation works similarly to the mid-range
PICmicro® MCU’s except for the addition of priority lev-
els to the interrupt sources. If the “P” bit for the inter-
rupt source is specified along with the “IPEN” bit of the
RCON register, then the interrupt handler at address
0x00008 will execute. If the “IPEN” bit of the RCON reg-
ister is set and the “P” bit for the interrupt source is re-
set, the interrupt handler at address 0x00018 will
execute.

If “IPEN” is reset, then all interrupts will execute at
address 0x00008.

Interrupt handler skeleton

If the “Fast Stack” is not used with PIC18Cxx interrupts,
the code shown below can be used for the handler entry
and exit code.

Int
movwf _w ; Save Context Registers
movff STATUS, _status
movff BSR, _bsr

: ; Interrupt Handler Code

movff _bsr, BSR ; Restore Context
Registers

movf _w, w
movff _status, STATUS
retfie

150 Chapter 5

5194 Predko Pocket Chapter 5 9/25/01 4:23 PM Page 150

Chapter

PICmicro® MCU
Register Mappings

While the register addresses are very similar between
PICmicro® MCUs of the same architecture family, re-
member that the bits in the different registers may
change function with different PICmicro® MCU part num-
bers. To be absolutely sure of the bits and their function
inside a register, consult the Microchip part datasheet.

Low-End PICmicro® MCUs

The low-end PICmicro® MCU devices have five register
bank address bits for up to 32 unique file register ad-

6

151

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 151

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

dresses in each bank. Up to four register banks can be
available in a low-end PICmicro® MCU with the first 16
addresses of each bank being common throughout the
banks and the second 16 addresses being unique to the
bank. This is shown in Fig. 6.1.

Using this scheme, low-end PICmicro® MCUs have
anything from 25 to 73 unique file registers available for
an application.

There are a few things to note with the low-end regis-
ter addressing:

1. The “OPTION” and “TRIS” registers can only be writ-
ten to by the “option” and “tris” instructions, respec-
tively.

2. If the device has a built-in oscillator, the “OSCCAL”
register is located in address five, which is normally
the “PORTA” address.

152 Chapter 6

Figure 6.1 Low-end PICmicro® MCU Register Map

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 152

3. The “STATUS” and “OPTION” registers are always
the same for Low-End Devices.

Address Register Bits Bit Function
0x003 STATUS 7 GPWUF - in PIC12C5xx and

PIC16C505: when Set, Reset
from Sleep on Pin Change.
When Set, power up or
_MCLR reset. In other
Devices the Bit 7 is
Unused.

6-5 PA1-PA0 - Select the Page
to execute out of:

00 - Page 0 (0x0000 to 0x01FF)
01 - Page 1 (0x0200 to 0x03FF)
10 - Page 2 (0x0400 to 0x05FF)
11 - Page 3 (0x0600 to 0x07FF)

4 _TO - Set after Power Up,
clrwdt and sleep
instructions

3 _PD - Set after Power Up,
clrwdt instruction. Reset
after sleep instruction

2 Z - Set if the eight bit
result is equal to zero

1 DC - Set for low order
Nybble carry after
addition or subtraction
instruction

0 C - Set for Carry after
addition or subtraction
instruction

N/A OPTION 7 _GPWU - In PIC12C5xx or
PIC16C505: Reset to Enable
Wake Up on Pin Change. In
other devices, Bit 7 is
Unused

6 _GPPU - In PIC12C5xx or
PIC16C505: Enable Pin
Pull-Ups. In other
devices, Bit 6 is Unused

5 T0CS - TMR0 Clock Source
Select. When Set, T0CKI
pin is Source. When Reset,
Instruction Clock

PICmicro MCU® Register Mappings 153

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 153

4 T0SE - TMR0 Edge Select.
When Reset, increment TMR0
on Rising Edge. When Set,
increment TMR0 on Falling
Edge

3 PSA - Prescaler Assignment
Bit. When Set, the
Prescaler is assigned to
the Watchdog Timer else
TMR0

2-0 PS2:PS0 - Prescaler Rate
Select Bits
Bits TMR0 Rate WDT Rate
111 256:1 128:1
110 128:1 64:1
101 64:1 32:1
100 32:1 16:1
011 16:1 8:1
010 8:1 4:1
001 4:1 2:1
000 2:1 1:1

4. The Low-End PICmicro® MCU FSR register can
never equal zero.

Mid-Range PICmicro® MCUs

The standard mid-range PICmicro® MCU device ad-
dresses are as follows:

Offset Bank 0 Bank 1 Comments
0x000 INDF INDF
0x001 TMR0 OPTION
0x002 PCL PCL
0x003 STATUS STATUS
0x004 FSR FSR
0x005 PORTA TRISA
0x006 PORTB TRISB
0x007 PORTC TRISC Available in 28/40 Pin Parts
0x008 PORTD TRISD Available in 40 Pin Parts
0x009 PORTE TRISE Available in 40 Pin Parts
0x00A PCLATH PCLATH
0x00B INTCON INTCON

154 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 154

From these basic addresses, peripheral I/O registers
(discussed below) are added to the register banks with
file registers starting at either offset 0x00C or 0x020.
For most modern mid-range PICmicro® MCUs, the file
registers start at address 0x020 of the bank.

The specific part number datasheets will have to be
checked to find where the file registers that are shared
across the banks are located.

The STATUS Register, in the mid-range PICmicro®

MCU is defined as:

Bit Function
7 IRP - FSR Select Between the High and Low

Register Banks
6-5 RP1:RP0 - Direct Addressing Select Banks (0

through 3)
4 _TO - Time Out Bit. Reset after a Watchdog

Timer Reset
3 _PD - Power-down Active Bit. Reset after sleep

instruction
2 Z - Set when the eight bit result is equal to

zero
1 DC - Set when the low Nybble of addition/

subtraction result carries to the high Nybble
0 C - Set when the addition/subtraction result

carries to the next byte. Also used with the
Rotate Instructions

The OPTION Register (which has the label “OP-
TION_REG” in the Microchip include files) is defined as:

Bit Function
7 _RBPU - when reset, the PORTB Pin Pull Up is

Enabled
6 INTEDG - When Set, Interrupt Request on Rising

Edge of RB0/INT Pin
5 T0CS - When Set, TMR0 is incremented from the

T0CKI Pin, else by the internal instruction
clock

4 T0SE - When Set, TMR0 is Incremented on the
High to Low (“Falling Edge”) of T0CKI

PICmicro MCU® Register Mappings 155

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 155

3 PSA - Prescaler Assignment Bit. When Set, the
Prescaler is assigned to the Watchdog Timer
else to TMR0

2-0 PS2:PS0 - Prescaler Rate Select.
Bits TMR0 Rate WDT Rate
111 256:1 128:1
110 128:1 64:1
101 64:1 32:1
000 32:1 16:1
011 16:1 8:1
010 8:1 4:1
001 4:1 2:1
000 2:1 1:1

Many devices have the “PCON” register that enhances
the returned information contained in the “_TO” and
“_PD” bits of the STATUS Register

Bit Function
7 MPEEN - Set if there is a Memory Parity Error.

This capability is built into a small number
of PICmicro® MCUs

6-3 Unused
2 _PER - Reset when there was a Program Memory

Parity Error. This capability is built into a
small number of PICmicro® MCUs

1 _POR - Reset when execution is from a Power On
Reset takes place

0 _BOR - Reset when execution is from a Brown
Out Reset

The PCLATH Register’s contents are written to the
Program Counter each time a “goto” or “call” instruction
is executed or if the contents of PCL are changed.

Bit Function
7-5 Unused
4 Select High and Low Pages
3 Select Odd or Even Pages

2-0 Select the 256 Instruction Address Block
within Current Page. This data is used when
PCL is written to

156 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 156

Some mid-range devices are now available with built-
in RC oscillators. To make the operation of the oscilla-
tors more accurate, the “OSCCAL” register is written to
with a factory specified “Calibration Value”.

Bit Function
7-4 CAL3:CAL0 - Sixteen Bit Calibration Value
3 CALFST - Increase the speed of the RC

Oscillator
2 CALSLW - Decrease the speed of the RC

Oscillator
1-0 Unused

Interrupts are controlled from the “INTCON” register,
which controls the basic mid-range PICmicro® MCU inter-
rupts as well as access to enhanced interrupt features.

Bit Function
7 GIE - Global Interrupt Enable. For any

Interrupt Requests to be acknowledged, this
bit must be set

6 Device Specific Interrupt Enable. See Below
5 T0IE - TMR0 Interrupt Overflow Request Enable
4 INTE - RB0/INT Pin Interrupt Request Enable
3 RBIE - PORTB Change Interrupt Request Enable
2 T0IF - TMR0 Interrupt Overflow Request
1 INTF - RB0/INT Pin Interrupt Request
0 RBIF - PORTB Change Interrupt Request

Bit 6 of INTCON may be a peripheral device interrupt
enable/request bit or it can be “PEIE”, which when set
will enable Peripheral Interrupts set in “PIR” and “PIE”
registers. The “PIR” register(s) contains the “F” bits
(Interrupt Request Active), while “PIE” contains the “E”
bits (Interrupt Request Enable). As I work through the
different peripherals, the “E” and “F” bits will be listed,
but their actual location is part number specific and the
datasheet will have to be consulted.

Data EEPROM is accessed via the EEADR and

PICmicro MCU® Register Mappings 157

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 157

EEDATA registers with EECON1 and EECON2 provid-
ing the access control. EECON2 is a “pseudo-register”
and the act of writing to it is used to “verify” that the op-
eration request is valid. EECON1 is defined as:

Bit Function
7-5 Unused
4 EEIF - EEPROM Write Complete Interrupt Request
3 WRERR - Bit Set when EEPROM Write was invalid
2 WREN - Set to Enabling Writing to EEPROM
1 WR - Write control Bit
0 RD - Set to Allow an EEPROM Data Read

The Data EEPROM Write Interrupt Request Bit
(“EEIE”) is either in a PIE register or INTCON.

The Parallel Slave Port (“PSP”, available only in
40-Pin mid-range PICmicro® MCUs) is enabled by set-
ting the PSPMODE bit. Interrupt requests are enabled
by the PSPIE flag and requested by the PSPIF flag of the
PIE and PIR registers, respectively. The Parallel Slave
Port is controlled from “TRISE”. Note that when the
Parallel Slave Port is enabled, PORTD and PORTE can-
not be used for I/O.

Bit Function
7 IBF - Bit Set when a Word has been Written

into the PICmicro® MCU and has not been read
6 OBF - Bit Set when a Byte has been written to

the PORTD Output Register and has not been
read

5 IBOV - Bit Set when a Word has been Written
into the PICmicro® MCU before the previous one
has been read

4 PSPMODE - Bit set to enable Parallel Slave
Port

3 Unused
2 TRISE2 - TRIS Bit for E2
1 TRISE1 - TRIS Bit for E1
0 TRISE0 - TRIS Bit for E0

158 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 158

Along with TMR0, some mid-range PICmicro® MCU’s
have TMR1 and TMR2, which are used for basic timing
operations as well as “CCP” (“Compare, Capture, and
PWM”) I/O. TMR1 is a 16-bit-wide register (accessed via
“TMR1L” and “TMR1H”) that will request an interrupt
on overflow (“TMR1IF”) if the “TMR1IE” bit is set. The
T1CON register that is defined below controls the oper-
ation of TMR1:

Bit Function
7-6 Unused
5-4 T1CKPS1:T1CKPS2: TMR1 Input Prescaler Select
3 T1OSCEN - Set to Enable External TMR1

Oscillator
2 _T1SYNC - If External Clock used for TMR1,

then Synchronize to it when this bit is Reset
1 TMR1CS - When Set, TMR1 is driven by External

Clock/TMR1 Oscillator
0 TMR1ON - Set to Enable TMR1

TMR2 is an 8-bit register that is continually compared
against a value in the PR2 register. To have TMR2 oper-
ate like TMR0 as an 8-bit Timer with a range of 0x000 to
0x0FF, then the “PR2” (the register TMR2 is compared
against) is set to 0x000. The TMR2 output can be used
to drive a PWM signal out. Interrupts (“TMR2IF”) can be
requested after the TMR2 overflow has passed through
a Postscaler and “TMR2IE” is set. The T2CON register
controls the operation of TMR2:

Bit Function
7 Unused

6-3 TOUTPS3:TOUTPS0 - TMR2 Output Postscaler
Select
Bits Postscaler
1111 16:1
1110 15:1
1101 14:1
1100 13:1

PICmicro MCU® Register Mappings 159

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 159

1011 12:1
1010 11:1
1001 10:1
1000 9:1
0111 8:1
0110 7:1
0101 6:1
0100 5:1
0011 4:1
0010 3:1
0001 2:1
0000 1:1

2 TMR2ON - Set to Enable TMR2
1-0 T2CKPS1:T2CKPS0 - TMR2 Input Prescaler Select

Bits Prescaler
1x 16:1
01 4:1
00 1:1

TMR1 and TMR2 are used with one of the two “CCP”
Modules for advanced I/O. TMR1 is used for Capture and
Compare and TMR2 is used for PWM Output. The
CCPR2x Registers are used for Storing Compare/
Capture Values and the CCPx register specifies the Pin
used for CCP. The CCPxCON register is used for con-
trolling the CCP operation:

Bit Function
7-6 Unused
5-4 DCxB1:DCxB0 - PWM Duty Cycle Bit 1 and Bit 0.

These bits are only accessed by the PWM for
its low output values

3-0 CCPxM3:CCPxM0 - CCPx Mode Select
Bits Function
11xx PWM Mode
1011 Compare Mode, Trigger Special Event
1010 Compare Mode, Trigger on Compare Match
1001 Compare Mode, Initialize CCP Pin High,

On Compare Match force CCP Low
1000 Compare Mode, Initialize CCP Pin Low,

On Compare Match force CCP High
0111 Capture on Every 16th Rising Edge

160 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 160

0110 Capture on Every 4th Rising Edge
0101 Capture on Every Rising Edge
0100 Capture on Every Falling Edge
001x Unused
0001 Unused
0000 Capture/Compare/PWM Off

CCP Interrupts are requested via the “CCPxIF” flag and
enabled by the “CCPXIE” flag where “x” is “1” or “2” de-
pending on the active CCP Module.

There are three different “SSP” Modules built into the
PICmicro® MCU. Each one provides somewhat different
Options and understanding how they work will be criti-
cal to your applications and if I2C is going to be used
with them. The basic SSP modules (“SSP” and “BSSP”)
provide a full SPI Interface and I2C “Slave Mode”
Interface. The SSPBUF Register provides simple buffer-
ing while the SSPADD buffers the received address for
comparing against I/O operations. To control the
Operation of the SSP, the “SSPCON” register is used:

Bit Function
7 WCOL - Set if SSPBUF was written to while

transmitting data or not in correct mode for
transmit

6 SSPOV - Set when SSP Receive overflow occurs
5 SSPEN - Enables Pins for SSP Mode
4 CKP - In SPI, Set for Idle Clock High. In I2C

Mode, set to Enable Clock
3-0 SSPM3:SSPM0 - SSP Mode Select

1111 - I2C Slave Mode, 10 Bit Address
1110 - I2C Slave Mode, 7 Bit Address
110x - Reserved
1011 - I2C firmware controlled Master
1010 - Reserved
1001 - Reserved
1000 - Reserved
0111 - I2C Slave Mode, 10 Bit Address
0110 - I2C Slave Mode, 7 Bit Address
0101 - SSP Slave, _SS Disabled
0100 - SSP Slave, _SS Enabled

PICmicro MCU® Register Mappings 161

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 161

0011 - SPI Master, Clock � TMR2
0010 - SPI Master, Fosc/64
0001 - SPI Master, Fosc/16
0000 - SPI Master, Fosc/4

The SSPSTAT Register is also used to Control the SSP:

Bit Function
7 SMP - Data Sampled at end of data output time

if Set, else middle
6 CKE - Data transmitted on rising edge of SCK

when Set
5 D/_A - Used by I2C. When Set indicates last

byte transferred was data. When Reset
indicates last byte transferred was address

4 P - Set when Stop Bit Detected
3 S - Set when Start Bit Indicated
2 R/_W - Set when command received was a Read
1 UA - Set when application must update SSPADD

Register
0 BF - Set when Buffer is full in RX and when

TX is in process

The “Master” SSP (“MSSP”) accesses similar registers for
the same functions, with a Second SSPCON Register. The
important difference between the MSSP and the other
SSP modules is the enabled I2C Master hardware in the
MSSP. The MSSP’s “SSPCON1” register is defined as:

Bit Function
7 WCOL - Set if SSPBUF was written to while

transmitting data or not in correct mode for
transmit

6 SSPOV - Set when SSP Receive overflow occurs
5 SSPEN - Enables Pins for SSP Mode
4 CKP - In SPI, Set for Idle Clock High. In I2C

Mode, set to Enable Clock
3-0 SSPM3:SSPM0 - SSP Mode Select

1xx1 - Reserved
1x1x - Reserved
1000 - I2C Master Mode, Clock � Fosc/(4 *

(SSPADD � 1))

162 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 162

0111 - I2C Slave Mode, 10 Bit Address
0110 - I2C Slave Mode, 7 Bit Address
0101 - SSP Slave, _SS Disabled
0100 - SSP Slave, _SS Enabled
0011 - SPI Master, Clock � TMR2
0010 - SPI Master, Fosc/64
0001 - SPI Master, Fosc/16
0000 - SPI Master, Fosc/4

SSPCON2 is used for I2C Master mode and is defined as:

Bit Function
7 GCEN - Set to Enable Interrupt when General

Call Address is Received
6 ACKSTAT - Set when Acknowledge Received from

I2C Slave Device
5 ACKDT - Reset to send Acknowledge at the end

of a Byte Receive
4 ACKEN - Acknowledge I2C Sequence when Set
3 RCEN - Set to Enable I2C Receive Mode
2 PEN - Reset to Initiate Stop Condition on I2C

Clock and Data
1 RSEN - Set to Initiate Repeated Start

Condition on I2C Clock and Data
0 SEN - Set to Initiate Start Condition on I2C

Clock and Data

The SSPSTAT Register for MSSP is

Bit Function
7 SMP - Data Sampled at end of data output time

if Set, else middle
6 CKE - Data transmitted on rising edge of SCK

when Set
5 D/_A - Used by I2C. When Set indicates last

byte transferred was data. When Reset
indicates last byte transferred was address

4 P - Set when Stop Bit Detected
3 S - Set when Start Bit Indicated
2 R/_W - Set when command received was a Read
1 UA - Set when application must update SSPADD

Register
0 BF - Set when Buffer is full in RX and when TX

PICmicro MCU® Register Mappings 163

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 163

is in process

Interrupts are Requested from the SSP via the “SSPIF”
bit and enabled by the “SSPIE” bit.

“Non-Return to Zero” (“NRZ”) Asynchronous Serial
Communications are accomplished by the built-in
“USART”. This circuit can also be used for Synchronous
Serial Communications. The clock Speed is determined
by the SPBRG. The TXREG and RCREG registers are
used to transfer data. The “RCSTA” is the primary
USART control Register

Bit Function
7 SPEN - Set to Enable the USART
6 RX9 - Set to Enable 9-Bit Serial Reception
5 SREN - Set to enable single receive for

Synchronous Mode
4 CREN - Set to Enable Continuous Receive Mode
3 ADDEN - Enables Address Detection in

Asynchronous Mode
2 FERR - Framing Error Bit
1 OERR - Set after Overrun Error
0 RX9D - Ninth bit of Data Received

and the “TXSTA” is used to control the Serial Output.

Bit Function
7 CSRC - Set for Synchronous Clock Generated

Internally
6 TX9 - Set to Enable Nine Bit Data Transmission
5 TXEN - Set to Enable Transmit
4 SYNC - Set to Select Synchronous Mode
3 Unused
2 BRGH - Set to Select the High Baud Rate
1 TRMT - Set when Transmit Shift Register is

Empty
0 TX9D - Ninth bit of Transmit Data

The RCIF interrupt request bit, when set, means there is
a character received in the USART. RCIF is enabled by

164 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 164

RCIE. TXIF is set when the TX Holding Register is
empty and is enabled by TXIE.

Comparator Equipped PICmicro® MCUs have a built-
in Reference Voltage Source that is controlled by the
VRCON Register:

Bit Function
7 VREN - Set to Turn on Voltage Reference

Circuit
6 VROE - Set to Output Voltage Reference

Externally
5 VRR - Set for Low Voltage Reference Range,

Reset for High Voltage Reference Range
4 Unused

3-0 VR3:VR0 - Select the Reference Voltage Output

The Voltage Reference Output is defined by the formula:

Vref = (1/4*Vdd*(1-VRR)) + Vdd*(VR3:VR0/(24+(8*(1
- VRR))))

For Vdd equal to 5.0 Volts, the following table lists dif-
ferent Vref values:

VR3:VR0 VRR = 1 VRR = 0
1111 3.13 Volts 3.59 Volts
1110 2.92 Volts 3.44 Volts
1101 2.71 Volts 3.28 Volts
1100 2.50 Volts 3.13 Volts
1011 2.29 Volts 2.97 Volts
1010 2.08 Volts 2.81 Volts
1001 1.88 Volts 2.66 Volts
1000 1.67 Volts 2.50 Volts
0111 1.46 Volts 2.34 Volts
0110 1.25 Volts 3.19 Volts
0101 1.04 Volts 2.03 Volts
0100 0.83 Volts 1.88 Volts
0011 0.63 Volts 1.72 Volts
0010 0.42 Volts 1.56 Volts
0001 0.21 Volts 1.41 Volts
0000 0.00 Volts 1.25 Volts

PICmicro MCU® Register Mappings 165

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 165

The Voltage Reference is normally used with the Voltage
Comparator, which is controlled by the “CMCON” Register.

Bit Function
7 C2OUT - Set when C2Vin� is Greater than C2Vin-
6 C1OUT - Set when C1Vin� is Greater than C1Vin-

5-4 Unused
3 CIS - Comparator Input Switch, See CM2:CM0

2-0 CM2:CM0 - Comparator Mode Select
Bits CIS C1Vin+ C1Vin- C2Vin+ C2Vin- Comments
111 x Gnd Gnd Gnd Gnd Comparators

Off
110 x AN2 AN0 AN2 AN1 AN3 = C1OUT

RA4 = C2OUT
101 x Gnd Gnd AN2 AN1
100 x AN3 AN0 AN2 AN1
011 x AN2 AN0 AN2 AN1
010 1 Vref AN3 Vref AN2
010 0 Vref AN0 Vref AN1
001 1 AN2 AN3 AN2 AN1
001 0 AN2 AN0 AN2 AN1
000 x AN3 AN0 AN2 AN1 Comparators

Off

Interrupts Requested by Change on Comparator
Outputs are specified CMIF and enabled by CMIE.

There are also some Analog to Digital Converter
(“ADC”) Options that can be used with the PICmicro®

MCU. The operation of the ADC is controlled by AD-
CON0 Register:

Bit Function
7-6 ADCS1:ADCS0 - ADC Conversion Clock Select.

11 - Internal RC Oscillator
10 - Divide PICmicro® MCU clock by 32
01 - Divide PICmicro® MCU clock by 8
00 - Divide PICmicro® MCU clock by 2

5-3 CHS2:CHS0 - ADC Conversion Channel Select Bits
111 - AN7
110 - AN6
101 - AN5
100 - AN4

166 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 166

011 - AN3
010 - AN2
001 - AN1
000 - AN0

2 GO/_DONE - Set to Start A/D Conversion, Reset
by Hardware when Conversion Before

1 Unused
0 ADON - Set to Turn on the ADC Function

Selecting the PORTA, Analog/Digital Functions, there
are a number of different formats of ADCON1 that you
should be aware of. For basic 18-pin PICmicro® MCU’s
ADCs, ADCON1 is defined as:

Bit Function
7-2 Unused
1-0 PCFG1:PCFG0 - A/D Select

Bits AN3 AN2 AN1 AN0
11 D D D D
10 D D A A
01 Vref+ A A A
00 A A A A

For more advanced 18-pin PICmicro® MCUs, ADCON1
is defined as:

Bit Function
7-3 Unused
2-0 PCFG2:PCFG0 - A/D Select

Bits AN3 AN2 AN1 AN0
111 D D D D
110 D D D A
101 D D Vref+ A
100 D D A A
011 D A Vref+ A
010 D A A A
001 A A Vref+ A
000 A A A A

28- and 40-pin PICmicro® MCUs have the ADCON1
Register:

Bit Function
7-3 Unused

PICmicro MCU® Register Mappings 167

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 167

2-0 PCFG2:PCFG0 - A/D Select
Bits AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0
11x D D D D D D D D
101 D D D D Vref+ D A A
100 D D D D A D A A
011 D D A A Vref+ A A A
010 D D D A A A A A
001 A A A A Vref+ A A A
000 A A A A A A A A

The result of the ADC Operation is stored in ADRES and
ADIF is set upon completion of the ADC operation to re-
quest an interrupt if ADIE is set.

Ten-bit ADCs are also available in the PICmicro®

MCU, with a different ADCON1 Register:

Bit Function
7-6 Unused
5 ADFM - When Set, the Result is “Right

Justified” else “Left Justified”
4 Unused

3-0 PCFG3:PCFG0 - A/D Select
Bits AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 VR+ VR-
1111 D D D D VR+ VR- D A AN3 AN2
1110 D D D D D D D A Vdd Vss
1101 D D D D VR+ VR- A A AN3 AN2
1100 D D D A VR+ VR- A A AN3 AN2
1011 D D A A VR+ VR- A A AN3 AN2
1010 D D A A VR+ A A A AN3 Vss
1001 D D A A A A A A Vdd Vss
1000 A A A A VR+ VR- A A AN3 AN2
011x D D D D D D D D N/A N/A
0101 D D D D VR+ D A A AN3 Vss
0100 D D D D A D A A Vdd Vss
0011 D D D D VR+ A A A AN3 Vss
0010 D D D A A A A A Vdd Vss
0001 A A A A VR+ A A A AN3 Vss
0000 A A A A A A A A Vdd Vss

In the case of 10-bit ADCs, the result is stored in
ADRESL and ADRESH.

This mid-range register list does not include the
PIC16C92x’s LED Control Registers. This, as well as any

168 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 168

other I/O Hardware registers that were not available
when this was written, can be found in the Microchip
Datasheets.

PIC17Cxx

The PIC17Cxx banking scheme has register addresses
0x010 to 0x017 and 0x020 to 0x0FF being banked and
accessed by the BSR register separately. All other regis-
ter addresses are common regardless of the banks se-
lected within the BSR. The register space of 0x010 to
0x017 consists of the I/O Hardware registers listed ac-
cording to bank.

Address Range 0x000 to 0x01F is considered to be the
“Primary” Register set (“p”) in the PIC17Cxx “move” in-
structions. For PIC17C4x devices there are four “Primary
Banks” (address 0x010 to 0x017); in the PIC17C5x, there
are eight “Primary Banks”.

PICmicro MCU® Register Mappings 169

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 169

BSR Addr Register Function/Bit Definition
Any 0x000 INDF0 Register Pointed to by FSR0
Any 0x001 FSR0 Index Register 0
Any 0x002 PCL Low Byte of the Program Counter
Any 0x003 PCLATH Latched High Byte of the Program Counter
Any 0x004 ALUSTA Processor Status and Control Register

Bit Function
7-6 FSR1 Mode Select

1x - FSR1 Does not Change after Access
01 - Post Increment FSR1
00 - Post Decrement FSR1

5-4 FSR0 Mode Select
1x - FSR0 Does not Change after Access
01 - Post Increment FSR0
00 - Post Decrement FSR0

3 OV - Set when there is a two’s complement overflow
after addition/subtraction

2 Z - Set when the eight bit result is equal to Zero
1 DC - Set for low order Nybble carry after addition

or subtraction instruction
0 C - Set for Carry after addition or subtraction

instruction
Any 0x005 T0STA TMR0 Status and Control Register

Bit Function
7 INTEDG - Select the RA0/INT Pin

Interrupt request Edge. When Reset, Rising Edge
Increments TMR0 else, Falling Edge Increments TMR0

6 T0SE - TMR0 Clock Input Edge Select - When Set, the
Rising edge of the incoming clock increments TMR0
else Falling Edge increments TMR0

170

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
0

5 T0CS - TMR0 Clock Source Select - When Set the
Instruction Clock is used, else the T0CKI pin is
used

4-1 PS3-PS0 - TMR0 Prescaler Selection.
Bits Prescaler
1xxx 256:1
0111 128:1
0110 64:1
0101 32:1
0100 16:1
0011 8:1
0010 4:1
0001 2:1
0000 1:1

0 Unused
Any 0x006 CPUSTA Processor Operating Status Register

Bit Function
7-6 Unused
5 STKAV - When Set, there is Program Counter Stack

Space Available
4 GLINTD - When Set, all Interrupts Are Disabled
3 _TO - Set after Power Up or clrwdt Instruction. When

Reset a Watchdog Timeout has occurred
2 _PD - Set after Power Up or clrwdt Instruction.

Reset by a “sleep” instruction
1 _POR - Reset After Power Up in PIC17C5x. Not

Available in All PIC17Cxx devices
0 _BOR - Reset After Brown Out Reset. Not Available in

All PIC17Cxx devices

171

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
1

BSR Addr Register Function/Bit Definition
Any 0x007 INTSTA Interrupt Status and Control Register

Bit Function
7 PEIE - Set when Peripheral Interrupt is Pending
6 T0CKIF - Set when RA1/T0CKI Pin has Interrupt

Source. Cleared by Hardware when Interrupt Vector
0x0018 is executed

5 T0IF - Set when TMR0 Overflows. Cleared by Hardware
when Interrupt Vector 0x0010 is executed

4 INTF - Set when RA0/INT Pin Interrupt Request
Active. Cleared by Hardware when Interrupt Vector
0x0008 is executed

3 PEIE - Set to Enable Peripheral Interrupt Requests
2 T0CKIE - Set to Enable RA1/T0CKI Interrupt Request
1 T0IE - Set to Enable TMR0 Overflow Interrupt Request
0 INTE - Set to Enable RA0/INT Pin Interrupt Request

Any 0x008 INDF1 Register Pointed to by FSR1
Any 0x009 FSR1 Index Register 1
Any 0x00A WREG Processor Accumulator
Any 0x00B TMR0L Low Byte of TMR0
Any 0x00C TMR0H High Byte of TMR0
Any 0x00D TBLPTRL Low Byte of the Table Pointer
Any 0x00E TBLPTRH High Byte of the Table Pointer
Any 0x00F BSR Bank Select Register

Bit Function
7-4 Select General Purpose RAM Bank at Addresses 0x020

to 0x0FF
3-0 Select the I/O Hardware Register Bank at Addresses

0x010 to 0x017

172

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
2

0 0x010 PORTA PORTA I/O Bits
Bit Function
7 _RBPU - When Reset, Pull Up on PORTB is Enabled
6 Unused
5 RA5/TX - Input or USART TX Pin. Schmidt Trigger Input
4 RA4/RX - Input or USART RX Pin. Schmidt Trigger Input
3 RA3 - Schmidt Trigger Input/Open Drain Output
2 RA2 - Schmidt Trigger Input/Open Drain Output
1 RA1/T0CKI - Bit Input or TMR0 Input. Schmidt Trigger

Input
0 RA0/INT - Bit Input or External Interrupt

0 0x011 DDRB PORTB Data Direction Port. When Bit Reset, Pin is in
“Output” Mode

0 0x012 PORTB PORTB I/O Bits
Bit Function
7-6 RB7:RB6 - I/O Pin with Interrupt in Input Change.

Schmidt Trigger Input
5 RB5 - I/O Pin with TMR3 Clock Input. Interrupt on

Input Change. Schmidt Trigger Input
4 RB4 - I/O Pin with TMR1/TMR2 Clock Input. Interrupt

on Input Change. Schmidt Trigger Input
3 RB3 - I/O Pin with CCP2 PWM Output. Schmidt Trigger

Input
2 RB2 - I/O Pin with CCP1 PWM Output. Schmidt Trigger

Input
1 RB1 - I/O Pin with CCP2 Capture Input. Schmidt

Trigger Input
0 RB0 - I/O Pin with CCP1 Capture Input. Schmidt

Trigger Input

173

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
3

BSR Addr Register Function/Bit Definition
0 0x013 RCSTA USART Receive Status and Control Register

Bit Function
7 SPEN - Set to Enable the USART
6 RX9 - Set to Enable 9-Bit Serial Reception
5 SREN - Set to enable single receive for Synchronous

Mode
4 CREN - Set to Enable Continuous Receive Mode
3 Unused
2 FERR - Framing Error Bit
1 OERR - Set after Overrun Error
0 RX9D - Ninth bit of Data Received

0 0x014 RCREG USART Receiver Holding Register
0 0x015 TXSTA USART Transmit Status and Control Register

Bit Function
7 CSRC - Set for Synchronous Clock Generated

Internally
6 TX9 - Set to Enable Nine Bit Data Transmission
5 TXEN - Set to Enable Transmit
4 SYNC - Set to Select Synchronous Mode
3 Unused
2 BRGH - Set to Select the High Baud Rate
1 TRMT - Set when Transmit Shift Register is Empty
0 TX9D - Ninth bit of Transmit Data

0 0x016 TXREG USART Transmit Holding Register
0 0x017 SPBRG USART Clock Divisor Register
1 0x010 DDRC PORTC Data Direction Port. When bit is reset, PORTC bit is

in “Output” mode
1 0x011 PORTC PORTC I/O Pins or External Memory Data/Address Pins
1 0x012 DDRD PORTD Data Direction Port. When bit is reset, PORTD bit is

in “Output” mode

174

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
4

1 0x013 PORTD PORTD I/O Pins or External Memory Data/Address Pins
1 0x014 DDRE PORTE Data Direction Port. When bit is reset, PORTE bit is

in “Output” mode
1 0x015 PORTE PORTE I/O Pins or External Memory Data/Address Pins Control

Pins
Bit Function
2 RE2/_WR - I/O Pin or System Bus Write
1 RE1/_OE - I/O Pin or System Bus Read
0 RE0/ALE - I/O Pin or System Bus Address Latch Enable

1 0x016 PIR1 Interrupt Status Register 1. This may be the only Interrupt
Status Register in Some Devices (in which case it is labeled
“PIR”)

Bit Function
7 RBIF - Set if PORTB Interrupt on Change Active
6 TMR3IF - Set if TMR3 has Overflowed or Capture Timer

has rolled over
5 TMR2IF - Set if TMR2 has Overflowed
4 TMR1IF - Set if TMR1 has Overflowed
3 CA2IF - Set if Capture2 Event Occurred
2 CA1IF - Set if Capture1 Event Occurred
1 TXIF - USART Transmit Interrupt Request
0 RCIF - USART Receive Interrupt Request

1 0x017 PIE1 Interrupt Control Register 1. This may be the only Interrupt
Control Register is some Devices (in which case it is
labeled “PIE”)

Bit Function
7 RBIE - Set to Enable PORTB Interrupt on Change
6 TMR3IE - Set to Enable TMR3 Interrupt
5 TMR2IE - Set to Enable TMR2 Interrupt

175

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
5

BSR Addr Register Function/Bit Definition
4 TMR1IE - Set to Enable TMR1 Interrupt
3 CA2IE - Set to Enable Capture2 Event Interrupt
2 CA1IE - Set to Enable Capture1 Even Interrupt
1 TXIE - Set to Enable USART Transmit Interrupt Request
0 RCIE - Set to Enable USART Receive Interrupt Request

2 0x010 TMR1 TMR1 Data Register
2 0x011 TMR2 TMR2 Data Register
2 0x012 TMR3L Low Byte of the TMR3 Data Register
2 0x013 TMR3H High Byte of the TMR3 Data Register
2 0x014 PR1 TMR1 Period Register
2 0x015 PR2 TMR2 Period Register
2 0x016 PR3L Low Byte of the TMR3 Period Register
2 0x017 PR3H High Byte of the TMR3 Period Register
3 0x010 PW1DCL PWM1 Least Significant two Compare Bits

Bit Function
7 DC1 - Bit 1 of the PWM Compare
6 DC0 - Bit 0 of the PWM Compare

5-0 Unused
3 0x011 PW2DCL PWM2 Least Significant two Compare Bits

Bit Function
7 DC1 - Bit 1 of the PWM Compare
6 DC0 - Bit 0 of the PWM Compare
5 TM2PW2 - Set to Select PWM2 Clock Source as TMR2 and

PR2 else PWM2 Clock Source is TMR1 and PR1
4-0 Unused

3 0x012 PW1DCH High Eight Bits of PWM1 Compare
3 0x013 PW2DCH High Eight Bits of PWM2 Compare
3 0x014 CA2L Low Byte of Capture 2 Data

176

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
6

3 0x015 CA2H High Byte of Capture 2 Data
3 0x016 T1CON TMR1 and TMR2 Control Register

Bit Function
7-6 CA2ED1:CA2ED0 - Capture 2 Mode Select

11 - Capture on 16th Rising Edge
10 - Capture on 4th Rising Edge
01 - Capture on Every Rising Edge
00 - Capture on Every Falling Edge

5-4 CA1ED1:CA1ED0 - Capture 1 Mode Select
11 - Capture on 16th Rising Edge
10 - Capture on 4th Rising Edge
01 - Capture on Every Rising Edge
00 - Capture on Every Falling Edge

3 TMR2:TMR1 Mode Select. When Set, TMR2:TMR1 are a 16
bit Timer else two separate eight bit Timers

2 TMR3CS - When Set TMR3 Increments from Falling Edge
of RB3/TCLK3 Pin else Increments from Instruction
Clock

1 TMR2CS - When Set TMR2 Increments from Falling Edge
of the RB4/TCKL12 Pin else Increments from
Instruction Clock

0 TMR1CS - When Set TMR1 Increments from Falling Edge
of the RB4/TCKL12 Pin else Increments from
Instruction Clock

3 0x017 TCON2 TMR1 and TMR2 Control Register 2
Bit Function
7 CA2OVF - Set if Overflow Occurred in Capture2

Register
6 CA1OVF - Set if Overflow Occurred in Capture1

Register

177

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
7

BSR Addr Register Function/Bit Definition
5 PWM2ON - Set if PWM2 is Enabled
4 PWM1ON - Set if PWM1 is Enabled
3 CA1/_PR3 - Set to Enable Capture1 else Enables the

Period Register
2 TMR3ON - Set to Enable TMR3
1 TMR2ON - Set to Enable TMR2. Must be Set if

TMR2/TMR1 are combined
0 TMR1ON - Set to Enable TMR1. When TMR2/TMR1 are

combined, controls operation of 16 bit Timer
4 0x010 PIR2 Interrupt Status Register 2

Bit Function
7 SSPIF - Set if SSP Interrupt has been Requested
6 BCLIF - Set if there is a Bus Collision Interrupt

Request
5 ADIF - Set if there is an ADC Interrupt Request
4 Unused
3 CA4IF - Set if Capture4 Event has Requested an

Interrupt
2 CA3IF - Set if Capture4 Event has Requested an

Interrupt
1 TX2IF - Set if USART2 Transmit Interrupt Requested
0 RC2IF - Set if USART2 Receive Interrupt Requested

4 0x011 PIE2 Interrupt Control Register 2
Bit Function
7 SSPIE - Set to Enable SSP Interrupt
6 BCLIE - Set to Enable Bus Collision Interrupt
5 ADIE - Set to Enable ADC Interrupts
4 Unused

178

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
8

3 CA4IE - Set to Enable Capture4 Interrupt
2 CA3IE - Set to Enable Capture3 Interrupt
1 TX2IE - Set to Enable USART2 Transmit Interrupt
1 RC2IE - Set to Enable USART2 Receive Interrupt

4 0x012 RCSTA2 USART2 Receive Status and Control Register
Bit Function
7 SPEN - Set to Enable the USART
6 RX9 - Set to Enable 9-Bit Serial Reception
5 SREN - Set to enable single receive for Synchronous

Mode
4 CREN - Set to Enable Continuous Receive Mode
3 Unused
2 FERR - Framing Error Bit
1 OERR - Set after Overrun Error
0 RX9D - Ninth bit of Data Received

4 0x014 RCREG2 USART2 Receiver Holding Register
4 0x015 TXSTA2 USART2 Transmit Status and Control Register

Bit Function
7 CSRC - Set for Synchronous Clock Generated

Internally
6 TX9 - Set to Enable Nine Bit Data Transmission
5 TXEN - Set to Enable Transmit
4 SYNC - Set to Select Synchronous Mode
3 Unused
2 BRGH - Set to Select the High Baud Rate
1 TRMT - Set when Transmit Shift Register is Empty
0 TX9D - Ninth bit of Transmit Data

4 0x016 TXREG2 USART2 Transmit Holding Register
4 0x017 SPBRG2 USART2 Clock Divisor Register
5 0x010 DDRF PORTF Data Direction Port. When bit is reset, PORTF bit is

in “Output” mode

179

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
7
9

BSR Addr Register Function/Bit Definition
5 0x011 PORTF PORTF I/O Pins or Analog Inputs 4 through 11
5 0x012 DDRG PORTG Data Direction Port. When bit is reset, PORTG bit is

in “Output” mode
5 0x013 PORTG PORTG I/O Pins

Bit Function
7 RG7/TX2 - Schmidt Trigger I/O or USART2

TX Pin
6 RG6/RX2 - Schmidt Trigger I/O or USART2

RX Pin
5 RG5/PWM3 - Schmidt Trigger I/O or PMW3

Output
4 RG4/CAP3 - Schmidt Trigger I/O or

Capture3 Pin
3 RG3/AN0 - Schmidt Trigger I/O or Analog

Input
2 RG2/AN1 - Schmidt Trigger I/O or Analog

Input
1 RG1/AN2 - Schmidt Trigger I/O or Analog

Input
0 RG0/AN3 - Schmidt Trigger I/O or Analog

Input
5 0x014 ADCON0 ADC Control Register 1

Bit Function
7-4 CHS2:CHS0 - Analog Channel Select

11xx Reserved
1011 AN11
1010 AN10
1001 AN9

180

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
0

1000 AN8
0111 AN7
0110 AN6
0101 AN5
0100 AN4
0011 AN3
0010 AN2
0001 AN1
0000 AN0

3 Unused
2 GO/_DONE - Set to Start A/D Conversion,

Reset by Hardware when Finished
1 Unused
0 ADON - Set to Turn on the ADC

5 0x015 ADCON1 ADC Control Register 2
Bit Function
7-6 ADCS1:ADCS0 - ADC Clock Select

11 - Internal RC Clock
10 - Fosc / 64
01 - Fosc / 32
00 - Fosc / 8

5 ADFM - Set for Right Justified Result
Format, else Left Justified Result
Format

4 Unused
3-1 PCFG3:PFG1 - Specify A/D Pins

Bits AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0
111 D D D D D D D D D D D D
110 D D A A D D D D D D A A

181

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
1

BSR Addr Register Function/Bit Definition
101 D A A A D D D D D A A A
100 A A A A D D D D A A A A
011 A A A A D D D A A A A A
010 A A A A D D A A A A A A
001 A A A A D A A A A A A A
000 A A A A A A A A A A A A

0 PCFG0 - When Set VR� and VR- Pins are
used for Vref� and Vref- else Vdd and
Vss

5 0x016 ADRESL Low Byte of ADC Result
5 0x017 ADRESH High Byte of ADC Result
6 0x010 SSPADD MSSP Address Compare Register
6 0x011 SSPCON1 MSSP Control Register1

Bit Function
7 WCOL - Set if SSPBUF was written to while

transmitting data or not in correct mode for
transmit

6 SSPOV - Set when SSP Receive overflow occurs
5 SSPEN - Enables Pins for SSP Mode
4 CKP - In SPI, Set for Idle Clock High.

In I2C Mode, set to Enable Clock
3-0 SSPM3:SSPM0 - SSP Mode Select

1111 - I2C Slave Mode, 10 Bit Address
1110 - I2C Slave Mode, 7 Bit Address
110x - Reserved
1011 - I2C firmware controlled Master
1010 - Reserved
1001 - Reserved

182

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
2

1000 - I2C Master, Fosc/(4*(SSPAD�1))
0111 - I2C Slave Mode, 10 Bit Address
0110 - I2C Slave Mode, 7 Bit Address
0101 - SSP Slave, _SS Disabled
0100 - SSP Slave, _SS Enabled
0011 - SPI Master, Clock � TMR2
0010 - SPI Master, Fosc/64
0001 - SPI Master, Fosc/16
0000 - SPI Master, Fosc/4

6 0x012 SSPCON2 MSSP Control Register2
Bit Function
7 GCEN - Set to Enable Interrupt when

General Call Address is Received
6 ACKSTAT - Set when Acknowledge Received

from I2C Slave Device
5 ACKDT - Reset to send Acknowledge at the

end of a Byte Receive
4 ACKEN - Acknowledge I2C Sequence when

Set
3 RCEN - Set to Enable I2C Receive Mode
2 PEN - Reset to Initiate Stop Condition

on I2C Clock and Data
1 RSEN - Set to Initiate Repeated Start

Condition on I2C Clock and Data
0 SEN - Set to Initiate Start Condition on

I2C Clock and Data
6 0x013 SSPSTAT MSSP Status Register

Bit Function
7 SMP - Data Sampled at end of data output time if Set,

else middle

183

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
3

BSR Addr Register Function/Bit Definition
6 CKE - Data transmitted on rising edge of

SCK when Set
5 D/_A - When Set indicates last byte

transferred was data. When Reset
indicates last byte transferred was
address

4 P - Set when Stop Bit Detected
3 S - Set when Start Bit Indicated
2 R/_W - Set when command received was a

Read
1 UA - Set when application must update

SSPADD Register
0 BF - Set when Buffer is full in RX and

when TX is in process
6 0x014 SSPBUF MSSP Data Buffer
7 0x010 PW3DCL PWM3 Least Significant two Compare Bits

Bit Function
7 DC1 - Bit 1 of the PWM Compare
6 DC0 - Bit 0 of the PWM Compare
5 TM2PW3 - Set to Select PWM3 Clock Source

as TMR2 and PR2 else PWM3 Clock Source
is TMR1 and PR1

4-0 Unused
7 0x011 PW3DCH High Eight Bits of PWM3 Compare
7 0x012 CA3L Low Byte of Capture 3 Data
7 0x013 CA3H High Byte of Capture 3 Data
7 0x014 CA4L Low Byte of Capture 4 Data
7 0x015 CA4H High Byte of Capture 4 Data

184

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
4

7 0x016 TCON3 CCP3/CCP4 Control Register
Bit Function
7 Unused
6 CA4OVF - Set if Overflow on Capture4
5 CA3OVF - Set if Overflow on Capture3

4-3 CA4ED1:CA4ED0 - Capture4 Select
11 - Capture on 16th Rising Edge
10 - Capture on 4th Rising Edge
01 - Capture on Every Rising Edge
00 - Capture on Every Falling Edge

2-1 CA3ED1:CA3ED0 - Capture3 Select
11 - Capture on 16th Rising Edge
10 - Capture on 4th Rising Edge
01 - Capture on Every Rising Edge
00 - Capture on Every Falling Edge

0 PWM3ON - Set to Enable PWM3
Any 0x018 PRODL Low Byte of Multiplication Product
Any 0x019 PRODH High Byte of Multiplication Product

185

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
5

PIC18Cxx

The hardware registers built into the PIC18Cxx are de-
fined in the following table. Note that these registers are
either accessed via the “Access Bank” or using the BSR
set to 0x0F.

186 Chapter 6

5194 Predko Pocket Chapter 6 9/26/01 12:01 PM Page 186

Address Register Function/Bit Definition
0x0#80 PORTA PORTA Read/Write Register. Pin options are defined below:

Bit Function
7 Unused
6 OSC2
5 Slave Select/Optional AN4
4 Open Drain Output/Schmidt Trigger Input

3-0 Optional AN3-AN0
0x0#81 PORTB PORTB Read/Write Register. I/O Pins can be pulled by

software. Pin options are defined below:
Bit Function
7-6 ICSP Programming Pins/Interrupt on Pin

Change
5 Interrupt on Pin Change
4 Interrupt on Pin Change
3 CCP2 I/O and PWM Output
2 Interrupt Source 3
1 Interrupt Source 2
0 Interrupt Source 1

0x0#82 PORTC PORTC Read/Write Registers. I/O Pins have Schmidt Trigger
Inputs. Pin options are defined below:

Bit Function
7 UART Receive Pin
6 UART Transmit Pin
5 Synchronous Serial Port Data
4 SPI Data or I2C Data
3 SPI Clock or I2C Clock

187

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
7

Address Register Function/Bit Definition
2 CCP1 I/O and PWM Output/TMR1 Clock

Output
0 TMR1 Clock Input

0x0#83 PORTD PORTD Only Available on 40 Pin PIC18Cxx Devices. Schmidt
Trigger Inputs. Used for Data Slave Port.

0x0#84 PORTE PORTE Only Available on 40 Pin PIC18Cxx.
Schmidt Trigger Inputs for I/O Mode. Used for Data Slave
Port as Defined below:
Bit Function
7-3 Unused
2 Negative Active Chip Select
1 Negative Active Write Enable to PIC18Cxx
0 Negative Active Output Enable (“_RD”)

from PIC18Cxx
0x0#89 LATA Data Output Latch/Bypassing PORTA
0x0#8A LATB Data Output Latch/Bypassing PORTB
0x0#8B LATC Data Output Latch/Bypassing PORTC
0x0#8C LATD Data Output Latch/Bypassing PORTD. Only available on 40 Pin

PIC18Cxx
0x0#8D LATE Data Output Latch/Bypassing PORTE. Only available on 40 Pin

PIC18Cxx
0x0#92 TRISA I/O Pin Tristate Control Register. Set bit to

“0” for output mode
0x0#93 TRISB I/O Pin Tristate Control Register. Set bit to

“0” for output mode
0x0#94 TRISC I/O Pin Tristate Control Register. Set bit to

“0” for output mode
0x0#95 TRISD I/O Pin Tristate Control Register. Only available on 40 Pin

PIC18Cxx. Set bit to “0” for output mode

188

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
8

0x0#96 TRISE I/O Pin Tristate Control Register. Only available on 40 Pin
PIC18Cxx. Set bit to “0” for output mode. Special function
bits Specified below:
Bit Function
7 IBF - Set when PSP is enabled and a byte

has been written to the PICmicro® MCU
6 OBF - Set when PSP is enabled and a byte

output has not been read from the PICmicro® MCU
5 IBOV - Set when PSP is enabled and the

byte written to the PICmicro® MCU has been
overwritten by a subsequent Byte

4 PSPMODE - Set to Enable PICmicro® MCU’s PSP I/O Port
3 Unused
2 TRISE2 - TRIS Bit for RE2
1 TRISE1 - TRIS Bit for RE1
0 TRISE0 - TRIS Bit for RE0

0x0#9D PIE1 Peripheral Interrupt Enable Register
Bit Function
7 PSPIE - Set to Enable PSP Interrupt

Request on Read/Write
6 ADIE - Set to Enable Interrupt Request

on Completion of A/D Operation
5 RCIE - Set to Enable Interrupt Request

on USART Data Receive
4 TXIE - Set to Enable Interrupt Request

on USART Transmit Holding Register Empty
3 SSPIE - Master Synchronous Serial Port

Interrupt Enable Bit189

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
8
9

Address Register Function/Bit Definition
2 CCP1IE - Set to Enable CCP1 Interrupt Request Enable
1 TMR2IE - Timer2 to PR2 Match Interrupt Request Enable
0 TMR1IE - TMR1 Overflow Interrupt Request Enable

0x0#9E PIR1 Peripheral Interrupt Request Register
Bit Function
7 PSPIF - Set on PSP Read/Write
6 ADIF - Set when A/D Complete
5 RCIF - Set on USART Data Receive
4 TXIF - Set on USART Transmit Holding

Register Empty
3 SSPIF - Set on Synchronous Serial Port

Data Transmission/Reception Complete
2 CCP1IF - Set on TMR1 Capture or Compare Match
1 TMR2IF - Set on Timer2 to PR2 Match
0 TMR1IF - Set on TMR1 Overflow

0x0#9F IPR1 Peripheral Interrupt Priority Register
Bit Function
7 PSPIP - Set to Give PSP Interrupt

Request on Read/Write Priority
7 ADIP - Set to Give Interrupt Request

on Completion of A/D Operation Priority
5 RCIP - Set to Give Interrupt Request

on USART Data Receive Priority
4 TXIP - Set to Enable Interrupt Request

on USART Transmit Holding Register Empty Priority
3 SSPIP - Master Synchronous Serial Port

Interrupt Priority when Set
2 CCP1IP - Set to Give CCP1 Interrupt Request Priority

190

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
0

1 TMR2IP - Timer2 to PR2 Match Interrupt
Request Priority when Set

0 TMR1IF - TMR1 Overflow Interrupt Request
Priority when Set

0x0#9A PIE2 Peripheral Interrupt Enable Register
Bit Function
7-4 Unused
3 BCLIE - Bus Collision Interrupt Request

Enabled when Set
2 LVDIE - Low Voltage Detect Interrupt

Request Enabled when Set
1 TMR3IE - TMR3 Overflow Interrupt Request

Enabled when Set
0 CCP2IE - CCP2 Interrupt Request Enabled when Set

0x0#9B PIR2 Peripheral Interrupt Request Register
Bit Function
7-4 Unused
3 BCLIF - Set for Bus Collision Interrupt Request
2 LVDIF - Set for Low Voltage Detect Interrupt Request
1 TMR3IF - Set for TMR3 Overflow Interrupt Request
0 CCP2IF - Set for CCP2 Interrupt Request

0x0#9C IPR2 Peripheral Interrupt Priority Register
Bit Function
7-4 Unused
3 BCLIF - Set for Bus Collision Interrupt given

Priority
2 LVDIF - Set for Low Voltage Detect Interrupt given

Priority191

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
1

Address Register Function/Bit Definition
1 TMR3IF - Set for TMR3 Overflow Interrupt Request

given Priority
0 CCP2IF - Set for CCP2 Interrupt Request given

Priority
0x0#AB RCSTA USART Receive Status and Control Register

Bit Function
7 SPEN - Set to Enable the USART
6 RX9 - Set to Enable 9-Bit Serial Reception
5 SREN - Set to enable single receive for Synchronous

Mode
4 CREN - Set to Enable Continuous Receive

Mode
3 ADDEN - Enables Address Detection in Asynchronous

Mode
2 FERR - Framing Error Bit
1 OERR - Set after Overrun Error
0 RX9D - Ninth bit of Data Received

0x0#AC TXSTA USART Transmit Status and Control Register
Bit Function
7 CSRC - Set for Synchronous Clock Generated

Internally
6 TX9 - Set to Enable Nine Bit Data Transmission
5 TXEN - Set to Enable Transmit
4 SYNC - Set to Select Synchronous Mode
3 Unused
2 BRGH - Set to Select the High Baud Rate
1 TRMT - Set when Transmit Shift Register is Empty
0 TX9D - Ninth bit of Transmit Data

0x0#AD TXREG USART Transmit Buffer Register

192

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
2

0x0#AE RCREG USART Receive Holding Register
0x0#AF SPBRG USART Clock Divisor Register
0x0#B1 T3CON TMR3 Control Register

Bit Function
7 RD16 - Enable Read/Write of TMR3 as a 16 Bit

Operation
6,3 T3CCP2:T3CCP2 - TMR3 and TMR1 to CCPx Enable Bits

1x - TMR3 is CCP Clock Source
01 - TMR3 is CCP2 Clock Source/TMR1 is CCP1 Clock

Source
00 - TMR1 is CCP Clock Source

5-4 T3CKPS1:T3CKPS0 - TMR3 Input Clock
Prescaler Control
11 - 1:8 Prescaler
10 - 1:4 Prescaler
01 - 1:2 Prescaler
00 - 1:1 Prescaler

2 _T3SYNC - When Reset, TMR3 External Clock is
Synchronized

1 TMR3CS - Set to Select External Clock for TMR3.
Reset to Select Instruction Clock

0 TMR3ON - Set to Enable TMR3
0x0#B2 TMR3L Low Byte of TMR3
0x0#B3 TMR3H High Byte of TMR3
0x0#BA CCP2CON CCP2 Control Register

Bit Function
7-6 Unused
5-4 DC2BX1:DC2BX0 - Two Least Significant Bits for the 10

Bit PWM

193

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
3

Address Register Function/Bit Definition
3-0 CCP2M3:CCP2M0 - CCP2 Mode Select Bits

11xx - PWM Mode
1011 - Trigger Special Event Compare Mode
1010 - Generate Interrupt on Compare Match
1001 - Initialize CCP2 High and Force

Low on Compare Match
1000 - Initialize CCP1 High and Force

High on Compare Match
0111 - Capture on Every 16th Rising Edge
0110 - Capture on Every 4th Rising Edge
0101 - Capture on Every Rising Edge
0100 - Capture on Every Falling Edge
0011 - Reserved
0010 - Toggle output on Compare Match
0001 - Reserved
0000 - Capture/Compare/PWM off

0x0#BB CCPR2L Least Significant Capture/Compare/PWM2 Register
0x0#BC CCPR2H Most Significant Capture/Compare/PWM2 Register
0x0#BD CCP1CON CCP1 Control Register

Bit Function
7-6 Unused
5-4 DC1BX1:DC1BX0 - Two Least Significant Bits for the 10

Bit PWM
3-0 CCP1M3:CCP1M0 - CCP1 Mode Select Bits

11xx - PWM Mode
1011 - Trigger Special Event Compare Mode
1010 - Generate Interrupt on Compare Match
1001 - Initialize CCP2 High and Force Low on Compare

Match

194

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
4

1000 - Initialize CCP1 High and Force High on
Compare Match

0111 - Capture on Every 16th Rising Edge
0110 - Capture on Every 4th Rising Edge
0101 - Capture on Every Rising Edge
0100 - Capture on Every Falling Edge
0011 - Reserved
0010 - Toggle output on Compare Match
0001 - Reserved
0000 - Capture/Compare/PWM off

0x0#BE CCPR1L Least Significant Capture/Compare/PWM1 Register
0x0#BF CCPR1H Most Significant Capture/Compare/PWM1 Register
0x0#C1 ADCON1 A/D Control Register1

Bit Function
7 ADFM - Set to Return Result in Right Justified

Format, Reset to Return
Result in Left Justified Format

6 ADCS2 - Upper Bit of A/D Conversion
Clock Select. See “ADCON0” for Bit Definition

5-4 Unused
3-0 PCFG3:PCFG0 - A/D Pin Configuration

Select Bits
Bits AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 VR+ VR-
1111 D D D D VR+ VR- D A AN3 AN2
1110 D D D D D D D A Vdd Vss
1101 D D D D VR+ VR- A A AN3 AN2
1100 D D D A VR+ VR- A A AN3 AN2
1011 D D A A VR+ VR- A A AN3 AN2
1010 D D A A VR+ A A A AN3 Vss

195

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
5

Address Register Function/Bit Definition
1001 D D A A A A A A Vdd Vss
1000 A A A A VR+ VR- A A AN3 AN2
011x D D D D D D D D N/A N/A
0101 D D D D VR+ D A A AN3 Vss
0100 D D D D A D A A Vdd Vss
0011 D D D D VR+ A A A AN3 Vss
0010 D D D A A A A A Vdd Vss
0001 A A A A VR+ A A A AN3 Vss
0000 A A A A A A A A Vdd Vss

0x0#C2 ADCON0 A/D Control Register2
Bit Function
7-6 ADCS1:ADCS0 - ADC Conversion Clock

Select, with ADCS2 from “ADCON1”
111 - Internal RC Oscillator
110 - Divide PICmicro® MCU clock by 64
101 - Divide PICmicro® MCU clock by 16
100 - Divide PICmicro® MCU clock by 4
011 - Internal RC Oscillator
010 - Divide PICmicro® MCU clock by 32
001 - Divide PICmicro® MCU clock by 8
000 - Divide PICmicro® MCU clock by 2

5-3 CHS2:CHS0 - ADC Conversion Channel
Select Bits
111 - AN7
110 - AN6
101 - AN5
100 - AN4
011 - AN3

196

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
6

010 - AN2
001 - AN1
000 - AN0

2 GO/_DONE - Set to Start A/D Conversion,
Reset by Hardware when Conversion Before

1 Unused
0 ADON - Set to Turn on the ADC Function

0x0#C3 ADRESL Low Byte of the ADC Result
0x0#C4 ADRESH High Byte of the ADC Result
0x0#C5 SSPCON2 MSSP Control Register2

Bit Function
7 GCEN - Set to Enable Interrupt when

General Call Address is Received
6 ACKSTAT - Set when Acknowledge Received

from I2C Slave Device
5 ACKDT - Reset to send Acknowledge at the

end of a Byte Receive
4 ACKEN - Acknowledge I2C Sequence when Set
3 RCEN - Set to Enable I2C Receive Mode
2 PEN - Reset to Initiate Stop Condition

on I2C Clock and Data
1 RSEN - Set to Initiate Repeated Start

Condition on I2C Clock and Data
0 SEN - Set to Initiate Start Condition on I2C Clock

and Data
0x0#C6 SSPCON1 MSSP Control Register1

Bit Function
7 WCOL - Set if SSPBUF was written to while

transmitting data or not in correct mode for
transmit

197

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
7

Address Register Function/Bit Definition
6 SSPOV - Set when SSP Receive overflow occurs
5 SSPEN - Enables Pins for SSP Mode
4 CKP - In SPI, Set for Idle Clock High.

In I2C Mode, set to Enable Clock
3-0 SSPM3:SSPM0 - SSP Mode Select

1111 - I2C Slave Mode, 10 Bit Address
1110 - I2C Slave Mode, 7 Bit Address
110x - Reserved
1011 - I2C firmware controlled Master
1010 - Reserved
1001 - Reserved
1000 - I2C Master, Fosc/(4*(SSPAD�1))
0111 - I2C Slave Mode, 10 Bit Address
0110 - I2C Slave Mode, 7 Bit Address
0101 - SSP Slave, _SS Disabled
0100 - SSP Slave, _SS Enabled
0011 - SPI Master, Clock � TMR2
0010 - SPI Master, Fosc/64
0001 - SPI Master, Fosc/16
0000 - SPI Master, Fosc/4

0x0#C7 SSPSTAT MSSP Status Register
Bit Function
7 SMP - Data Sampled at end of data output

time if Set, else middle
6 CKE - Data transmitted on rising edge of

SCK when Set
5 D/_A - When Set indicates last byte transferred was

data. When Reset indicates last byte transferred

198

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
8

was address
4 P - Set when Stop Bit Detected
3 S - Set when Start Bit Indicated
2 R/_W - Set when command received was a Read
1 UA - Set when application must update SSPADD

Register
0 BF - Set when Buffer is full in RX and when TX is in

process
0x0#C8 SSPADD MSSP Address Compare Register
0x0#C9 SSPBUF MSSP Data Buffer
0x0#CA T2CON TMR2 Control Register

Bit Function
7 Unused

6:3 TOUTPS3:TOUTPS0 - TMR2 Output Postscaler
1111 - 16x
1110 - 15x
1101 - 14x
1100 - 13x
1011 - 12x
1010 - 11x
1001 - 10x
1000 - 9x
0111 - 8x
0110 - 7x
0101 - 6x
0100 - 5x
0011 - 4x
0010 - 3x
0001 - 2x
0000 - 1x

2 TMR2ON - Set to Enable TMR2

199

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

1
9
9

Address Register Function/Bit Definition
1-0 T2CKPS1:T2CKPS0 - TMR2 Prescaler Select Bits

1x - Prescaler is 16
01 - Prescaler is 4
00 - Prescaler is 1

0x0#CB PR2 TMR2 Period Compare Register
0x0#CC TMR2 TMR2 Register
0x0#CD T1CON TMR1 Control Register

Bit Function
7 RD16 - When Set, Enables 16 Bit TMR1 Operations
6 Unused

5:4 T1CKPS1:T1CKPS0 - TMR1 Input Clock Prescaler Select
11 - 1:8 Prescaler
10 - 1:4 Prescaler
01 - 1:2 Prescaler
00 - 1:1 Prescaler

3 T1OSCEN - Set to Enable TMR1 Oscillator
2 _T1SYNC - Set to Synchronize External Clock Input
1 TMR1CS - TMR1 Clock Source Select. Set to Select

External Clock
0 TMR1ON - Set to Enable TMR1

0x0#CE TMR1L Low Byte of TMR1
0x0#CF TMR1H High Byte of TMR1
0x0#D0 RCON Power Up Status Register

Bit Function
7 IPEN - Set to Enable Priority Levels on Interrupts
6 LWRT - Set to Enable “TBLWT” Instruction to Internal

Memory
5 Unused

200

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
0

4 _RI - Reset when the “Reset” Instruction in Software
3 _TO - Set after Power Up, clrwdt or sleep

instructions
2 _PD - Set by Power Up or clrwdt Instruction. Reset by

sleep instruction
1 _POR - Reset if a Power On Reset has Occurred
0 _BOR - Reset if a Brown Out Reset has Occurred

0x0#D1 WDTCON Watchdog Timer Control Register
Bit Function
7-1 Unused
0 SWDTEN - Set to Enable the Watchdog Timer if

“_WDT_ON” is specified in “__CONFIG”
0x0#D2 LVDCON Low Voltage Detect Control Register

Bit Function
7-6 Unused
5 IRVST - Set to indicate Low Voltage Detect Logic

will Generate Interrupt
4 LVDEN - Set to Enable Low Voltage Detect

3-0 LVDL3:LVDL0 - Specify the Low Voltage Detect Limits
1111 - External Voltage Used (LVDIN)
1110 - 4.5V Min - 4.77V Max
1101 - 4.2V Min - 4.45V Max
1100 - 4.0V Min - 4.24V Max
1011 - 3.8V Min - 4.03V Max
1010 - 3.6V Min - 3.82V Max
1001 - 3.5V Min - 3.71V Max
1000 - 3.3V Min - 3.50V Max
0111 - 3.0V Min - 3.18V Max
0110 - 2.8V Min - 2.97V Max

201

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
1

Address Register Function/Bit Definition
0101 - 2.7V Min - 2.86V Max
0100 - 2.5V Min - 2.65V Max
0011 - 2.4V Min - 2.54V Max
0010 - 2.2V Min - 2.33V Max
0001 - 2.0V Min - 2.12V Max
0000 - 1.8V Min - 1.91V Max

0x0#D3 OSCCON Select PICmicro® MCU Clock Source
Bit Function
7-1 Unused
0 SCS - Reset to use Primary Oscillator. Set to use

TMR1’s Oscillator
0x0#D5 T0CON TMR0 Control Register

Bit Function
7 TMR0ON - Set to Enable TMR0
6 T08Bit - Set to Enable TMR0 as an 8 Bit Timer. Reset

to Enable TMR0 as a 16 Bit Timer
5 T0CS - Set to make TMR0 Clock Source T0CKI pin. Reset

to use Instruction Clock
4 T0SE - Set to Make TMR0 Increment on Falling Edge of

Clock
3 PSA - Reset to Assign TMR0 Prescaler

2-0 T0PS2:T0PS0 - TMR0 Prescaler Value
111 - 1:256 Prescaler
110 - 1:128 Prescaler
101 - 1:64 Prescaler
100 - 1:32 Prescaler
011 - 1:16 Prescaler
010 - 1:8 Prescaler

202

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
2

001 - 1:4 Prescaler
000 - 1:2 Prescaler

0x0#D6 TMR0L Low Byte of TMR0
0x0#D7 TMR0H High Byte of TMR0
0x0#D8 STATUS PICmicro® MCU Processor Status Register

Bit Function
7-6 Unused
4 N - Set when the Result has bit seven set
3 OV - Set when the Result overflows a two’s complement

number (bit seven changes polarity inadvertently)
2 Z - Set when the Least Significant eight bits of the

Result are all Zero
1 DC - Set when the Lower Nybble of the

addition/subtraction overflows
0 C - Set in Addition when the result is greater than

0x0FF. Reset in Subtraction when the result is
negative

0x0#D9 FSR2L Low Byte of FSR Register 2
0x0#DA FSR2H High Byte of FSR Register 2
0x0#DB PLUSW2 INDF2 Consisting of FSR2 � WREG for Address
0x0#DC PREINC2 INDF2 With FSR2 Incremented Before Access
0x0#DD POSTDEC2 INDF2 With FSR2 Decremented After Access
0x0#DE POSTINC2 INDF2 With FSR2 Incremented After Access
0x0#DF INDF2 Register Pointed to by FSR2
0x0#E0 BSR Bank Select Register - Select Register Bank

Bit Function
7-4 Unused
3-0 BSR3:BSR0, Bank Select Register Bits

0x0#E1 FSR1L Low Byte of FSR Register 1

203

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
3

Address Register Function/Bit Definition
0x0#E2 FSR1H High Byte of FSR Register 1
0x0#E3 PLUSW1 INDF1 Consisting of FSR1 � WREG for Address
0x0#E4 PREINC1 INDF1 With FSR1 Incremented Before Access
0x0#E5 POSTDEC1 INDF1 With FSR1 Decremented After Access
0x0#E6 POSTINC1 INDF1 With FSR1 Incremented After Access
0x0#E7 INDF1 Register Pointed to by FSR1
0x0#E8 WREG PICmicro® MCU Accumulator
0x0#E9 FSR0L Low Byte of FSR Register 0
0x0#EA FSR0H High Byte of FSR Register 0
0x0#EB PLUSW0 INDF0 Consisting of FSR0 � WREG for Address
0x0#EC PREINC0 INDF0 With FSR0 Incremented Before Access
0x0#ED POSTDEC0 INDF0 With FSR0 Decremented After Access
0x0#EE POSTINC0 INDF0 With FSR0 Incremented After Access
0x0#EF INDF0 Register Pointed to by FSR0
0x0#F0 INTCON3 Interrupt Control Register 3

Bit Function
7 INT2IP - INT2 External Interrupt Priority. Set for

“High”
6 INT1IP - INT1 External Interrupt Priority. Set for

“High”
5 Unused
4 INT2IE - Set to Enable External Int2
3 INT1IE - Set to Enable External Int1
2 Unused
1 INT2IF - Set when External Int2 Requested
0 INT1IF - Set when External Int1 Requested

0x0#F1 INTCON2 Interrupt Control Register 2
Bit Function

204

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
4

7 _RBPU - Reset to Enable PORTB Pull Ups
6 INTEDG0 - Set for External Int0 on Rising Edge
5 INTEDG1 - Set for External Int1 on Rising Edge
4 INTEDG2 - Set for External Int2 on Rising Edge
3 Unused
2 TMR0IP - High TMR0 Interrupt Request Priority when

Set
1 Unused
0 RBIP - High PORTB Change Interrupt Request Priority

when Set
0x0#F2 INTCON Interrupt Control Register

Bit Function
7 GIE/GIEH - When Set, Enables all Interrupt Request

Sources (unmasked sources when “IPEN” is reset)
6 PEIE/GEIL - Enables all Low Priority Interrupt

Request Sources when Set
5 TMR0IE - When Set Enable TMR0 Interrupt Requests
4 INT0IE - When Set Enable INT0 Interrupt Requests
3 RBIE - When Set Enable PORTB Change
2 TMR0IF - When Set TMR0 Interrupt Request Active
1 INT0IF - When Set INT0 External Interrupt Request

Active
0 RBIF - When Set PORTB Change on Interrupt Request

Active
0x0#F3 PRODL Low Byte of “Multiply” Instruction Product
0x0#F4 PRODH High Byte of “Multiply” Instruction Product
0x0#F5 TABLAT Table Read and Write Buffer
0x0#F6 TBLPTRL Low Byte of Program Memory Table Pointer
0x0#F7 TBLPTRH Middle Byte of Program Memory Table Pointer

205

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
5

Address Register Function/Bit Definition
0x0#F8 TBLPTRU High Byte of Program Memory Table Pointer
0x0#F9 PCL Low Byte of PICmicro® MCU Program Counter
0x0#FA PCLATH Latched Middle Byte of PICmicro® MCU Program Counter
0x0#FB PCKATHU Latched High Byte of PICmicro® MCU Program Counter
0x0#FC STKPTR Stack Pointer/Index

Bit Function
7 STKFUL - Bit Set when Stack is Full or Overflowed
6 STKUNF - Bit Set when Stack Underflows
5 Unused

4-0 SP4:SP0 - Stack Pointer Location Bits
0x0#FD TOSL Low Byte Access to Top of Program Counter Stack
0x0#FE TOSL Middle Byte Access to Top of Program Counter Stack
0x0#FF TOSU High Byte Access to Top of Program Counter Stack

206

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

6

9
/
2
6
/
0
1

1
2
:
0
1

P
M

P
a
g
e

2
0
6

Chapter

Built-In
Hardware Features

Configuration Registers

The Configuration Register Fuses are responsible for
specifying:

• Oscillators Mode Used

• Program Memory Protection

• reset parameters

• Watchdog Timer

• 16F87x debug mode

207

7

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 207

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

The configuration register fuses are unique to each
PICmicro® MCU part number. The addresses for the dif-
ferent registers are shown in the table below:

Device Family Configuration Register Address(es)
Low-End 0x0FFF
Mid-Range 0x02007
PIC17Cxx 0x0FE00-0x0FE07 Low Byte

0x0FE0F-0x0FE08 High Byte
PIC18Cxx 0x0300000-0x0300007

In each PICmicro® MCU’s MPLAB device “.inc” files,
there is a list of parameters for the different options.
These parameters are used with the “__CONFIG” state-
ment of an assembler file. I have a few recommendations
about this that I will repeat throughout the book. For
the PIC18Cxx, there are multiple “__CONFIG#” state-
ments (where “#” is “0” through “7”) and each state-
ment is given a set of bits that can specify different
functions.

The “__CONFIG” options are ANDed together to
form a word that is programmed into the configuration
addresses.

Oscillators

The basic oscillator options are as follows:

1. Internal Clocking

2. R/C Networks

3. Crystals

4. Ceramic Resonators

5. External Oscillators

208 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 208

Built-in Hardware Features 209

The “Internal Clocking” option is available in many new
PICmicro® MCUs and consists of a capacitor and vari-
able resistor for the oscillator. The “OSCCAL” register
shown in Fig. 7.1 is a register that is loaded with a “cali-
bration value”, which is provided by Microchip. This
type of oscillator will have an accuracy of 1.5% or better
while running at 4 MHz.

The second type of oscillator is the external “RC” os-
cillator in which a resistor/capacitor network provides
the clocking for the PICmicro® MCU as is shown in
Fig. 7.2.

The resistor capacitor charging/discharging voltage is
buffered through a Schmidt Trigger noninverting
buffer, which is used to enable or disable an N-Channel
MOSFET transistor pull-down switch. The values for
the resistor and capacitor can be found in the Microchip
documentation.

Crystals and ceramic resonators use a similar connec-
tion scheme for operation. The crystal or ceramic res-
onator is wired into the circuit as shown in Fig. 7.3. The
two capacitors are used to add impedance to the

Figure 7.1 PICmicro® MCU Built-In Oscillator

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 209

210 Chapter 7

Figure 7.3 PICmicro® MCU Crystal Oscillator

Figure 7.2 PICmicro® MCU RC Oscillator

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 210

crystal/resonator circuit and their values for reliable op-
eration are specified by Microchip and their ranges are
presented elsewhere in this book. As well, for best re-
sults, a “parallel circuit” crystal should be used.

There are three speed ranges defined for each device,
with the speed specification defining the current output
in the PICmicro® MCUs crystal/resonator oscillator cir-
cuit.

The speed ranges are

Built-in Hardware Features 211

PICmicro® MCU Oscillator Frequency Ranges

Range Frequency
LP 0 – 200 kHz
XT 200 kHz – 4 MHz
HS 4 MHz – 20 MHz (or the Device Maximum)

These speed ranges are selected in the “configuration
register”.

Using the crystal or ceramic resonator, the OSC2 pin
can be used to drive one CMOS input as is shown in
Fig. 7.4.

The last type of oscillator is the external oscillator
and is driven directly into the OSC1 pin as shown in
Fig. 7.5.

The PIC18Cxx has seven different oscillator modes
that are available to the application designer. Along with
the standard modes described above, there is a PLL
clock four time multiplier circuit available, which allows
the PICmicro® MCU to run with one instruction cycle
per clock cycle. There is also the ability to run from the
TMR1 Clock, which can be a slow-speed, power saving
clock option for the application.

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 211

212 Chapter 7

Figure 7.5 External PICmicro® MCU Oscillator

Figure 7.4 Buffered PICmicro® MCU Crystal Oscillator

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 212

1. RC oscillator

2. LP oscillator

3. XT oscillator

4. HS oscillator

5. 4x HS oscillator

6. External oscillator

7. TMR1 clock

The “external oscillator” option will take in an exter-
nal clock signal and output a one-quarter speed clock on
OSC2 unless the OSC2 pin is to be used as “RA6” (like
the RC oscillator mode and known as “ECIO”). The ex-
ternal oscillator will work for all data speeds from DC to
40MHz that the 18Cxx can run at.

When the TMR1 oscillator is enabled (by setting the
“SCS” bit), execution moves over immediately to the
TMR1 clock and the standard oscillator is shut down.
This transition is very fast, with only eight TMR1 clock
cycles lost before execution resumes with TMR1 as the
clock source.

When transitioning from TMR1 to the standard oscil-
lator, the oscillator is restarted with a 1,024 cycle delay
for the clock to stabilize before resuming execution. The
oscillator circuit in the PIC18Cxx appears in block dia-
gram form as shown in Fig. 7.6.

Sleep

The PICmicro® MCU’s “sleep” function and instruction
provides the capability of “shutting down” the
PICmicro® MCU by turning off the oscillator and making
the PICmicro® MCU wait for reset (“_MCLR” or “WDT”),

Built-in Hardware Features 213

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 213

an external interrupt, or an externally clocked timer in-
terrupt. Most internal timer interrupt requests are not
able to become active because the PICmicro® MCU in-
struction clock driving the internal hardware clocks is
shut off.

Entering “sleep” is accomplished by simply executing
the “sleep” instruction. “Sleep” will be terminated by the
following events:

214 Chapter 7

Figure 7.6 PIC18Cxx Oscillator Block Diagram

Sleep Termination Events and Execution Resume Addresses

Event Execution Resume
_MCLR Reset Reset Vector
WDT Reset Reset Vector
External Interrupt Next/Instructions or

Interrupt Vector
TMR1 Interrupt Next Instructions or

Interrupt Vector

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 214

The interrupt requests can only wake the device if the
appropriate “IE” bits are set. After the “sleep” instruc-
tion, the next instruction is always executed, even if the
“GIE” bit is set. For this reason it is recommended that a
“nop” be always placed after the sleep instruction to en-
sure no invalid instruction is executed before the inter-
rupt handler:

Built-in Hardware Features 215

Figure 7.7 Sleep Wave Form

Two Instruction Sequence used to Initiate “Sleep”

sleep
nop

The clock restart from “sleep” will be similar to that of
a power-on reset, with the clock executing for 1,024
cycles before the “nop” instruction is executed
(“Inst(PC � 1)” in the diagram below). This is shown
in Fig. 7.7.

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 215

Option Register

In the low-end devices, the option register is de-
fined as:

216 Chapter 7

Low-End PICmicro® MCU “OPTION” Register Definition

Bit Label/Function
7 _GPWU - Enable pull-up wakeup on pin change]
6 _GPPU - Enable I/O PORTB Weak Pull-ups]

Device Specific
5 TOCS - TMRO clock source select

1 - Tock1 pin
0 - Instruction clock

4 TOSE - TMRO Increment Source Edge Select
1 - High to Low on Tock1 Pin
0 - Low to High on Tock1 Pin

3 PSA - Prescaler Assignment Bit
1 - Prescaler Assigned to Watchdog Timer
0 - Prescaler Assigned to TMRO

2-0 PS2-PS0 - Prescaler Rate Select
000 – 1:1
001 – 1:2
010 – 1:4
011 – 1:8
100 – 1:16
101 – 1:32
110 – 1:64
111 – 1:128

Updating the OPTION register in the low-end is accom-
plished by the “option” instruction, which moves the
contents of “w” into the OPTION_REG (which is the
MPLAB label for the option register).

The mid-range devices option register is quite similar,
but does not have any device specific bits:

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 216

The 17Cxx PICmicro® MCU’s do not have an option reg-
ister as many of the functions continued by option are ei-
ther not present (such as the prescaler and PORTB weak
pull-ups) or are provided in other registers. The 18Cxx
provides a mid-range “compatible” option register, but it
is not at the same address as the mid-range devices and
cannot be written to using an “option” instruction.

Input/Output Ports and TRIS Registers

The block diagram of a “typical” PICmicro® MCU I/O pin
is shown in Fig. 7.8. Each register “port” is made up of a

Built-in Hardware Features 217

Mid-Range PICmicro® MCU “OPTION” Register Definition

Bit Label/Function
7 _RBPU - Enable PORTB Weak Pull-ups

1 - Pull-ups Disabled
0 - Pull-ups Enabled

6 INTEDG - Interrupt Request On:
1 - low to high on RBO/INT
0 - high to low on RBO/INT

5 TOCS - TMRO clock source select
1 - Tock1 Pin
0 - Instruction Clock

4 TOSE - TMRO Update Edge Select
1 - Increment on High to Low
0 - Increment on Low to High

3 PSA - Prescaler Assignment Bit
1 - Prescaler Assigned to Watchdog Timer
0 - Prescaler Assigned to TMRO

2-0 PS2-PS0 - prescaler rate select
000 – 1:1
001 – 1:2
010 – 1:4
011 – 1:8
100 – 1:16
101 – 1:32
110 – 1:64
111 – 1:128

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 217

number of these circuits, one for each I/O bit. The con-
vention used for accessing I/O pins is

R%#

where “%” is the port letter (port A, port B, etc.) and “#”
is the bit number of the port.

The TRIS (“TRI–state buffer enable”) register is used
to control the output capabilities of the I/O pin. When
the register is loaded with a “1” (which is the power-up
default), the pin is input only (or in “input mode”), with
the tristate buffer disabled and not driving the pin.
When a “0” is loaded into a pin’s TRIS bit, the tristate
buffer is enabled (“output mode”) and the value that is
in the “data out” register is driven onto the pin.

The use of the “tris” instruction is not recommended
in the mid-range PICmicro® MCU as the instruction can
only access PORTA, PORTB, and PORTC. PORTD and
PORTE cannot be controlled by the “tris” instruction.

218 Chapter 7

Figure 7.8 Standard PICmicro® MCU I/O Pin Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 218

The recommended way of accessing the mid-range
PICmicro® MCU’s TRIS registers is to change the “RPO”
bit of the STATUS register and read or write the register
directly as is shown below:

Built-in Hardware Features 219

Figure 7.9 PORTA Bit 4 I/O Pin Block Diagram

bsf STATUS, RPO
movlw NewTRISA
movwf TRISA ^ 0x080
bcf STATUS, RPO

Note, Pin 4 of PORTA (“RA4”) in the mid-range
PICmicro® MCUs is an “open drain” only output and its
design is shown in Fig. 7.9. This pin cannot source a pos-
itive voltage out unless it is pulled up.

The weak pull-up on the PORTB pins is enabled by
the “_RPBU” bit of the OPTION register and is enabled
when this bit is reset and the bit itself is set for out-

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 219

put. The “weak” pull-up is approximately 50 k and
can simplify button inputs, eliminating the need for
an external pull-up resistor. The port B pin block dia-
gram is shown in Fig. 7.10. When the built-in oscillator
is selected by the “_IntRC_OSC” parameter of the
“__CONFIG” statement in your source file the pins used
for the oscillator are available for IO. When the PICmicro®

MCU is programmed, a value for the “calibration register”
(“OSCCAL”) has to be inserted. By convention, a

movlw OSCCAL-value

instruction is put in at the reset address and then at ad-
dress zero (when the program counter overflows), this
value is saved into the OSCCAL register using a

movwf OSCCAL

instruction.

220 Chapter 7

Figure 7.10 PICmicro® MCU PORTB I/O Pin Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 220

Watchdog Timer

The Watchdog Timer is an 18 msec (approximately) RC
delay, which will reset the PICmicro® MCU if it times
out. Normally in an application, it is reset before timing
out by executing a “clrwdt” instruction. The block dia-
gram of the WDT is shown in Fig. 7.11.

TMR0

TMR0 is an 8-bit incrementing counter that can be
“preset” (loaded) by application code with a specific

Built-in Hardware Features 221

Figure 7.11 PICmicro® MCU Watchdog Timer Block Diagram

__CONFIG _MCLRE_OFF & _IntRC_OSC ; Add Application
Specific

; “CP” and “WDT”
parameters

org 0
movf OSCCAL
movlw 0x0FF ^ (1 << T0CS)
option

; All I/O pins are NOW Available and Internal 4 MHz
Clock is Running

; - Start Application

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 221

value. The counter can either be clocked by an exter-
nal source or by the instruction clock. Each TMR0
input is matched to two instruction clocks for
“synchronization.” This feature limits the maximum
speed of the timer to one half the instruction clock
speed. The TMR0 block diagram is shown in Fig. 7.12.
The “TOCS” and “TOCE” bits are used to select the
clock source and the clock edge, which increments
TMR0 (rising or falling edge). These bits are located in
the “OPTION” register.

TMR0 can be driven by external devices through
the “T0CKI” pin. The “T0CKI” pin is dedicated to this
function in the low-end devices (although in the
12C5xx and 16C505 PICmicro® MCUs the pin can
be used for digital I/O). In the other PICmicro® MCU
architectures, the pin can also be used to provide
digital I/O. When a clock is driven into the TMR0 in-
put, the input is buffered by an internal “Schmidt
Trigger” to help minimize noise-related problems with
the input.

222 Chapter 7

Figure 7.12 TMR0 Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 222

TMR0 in the mid-range PIC17Cxx and PIC18Cxx can
be used to request interrupts when it “overflows” to
0x000 from 0x0FF.

Input to TMR0 can be made with and without the
“prescaler”, which provides a “divide by” feature to the
TMR0 input. For the low-end and mid-range PICmicro®

MCU’s, TMR0 is located at register address 0x001. The
contents of TMR0 can be read from and written to di-
rectly.

Delays (time from which TMR0 is initialized until it
overflows) are calculated by using the formula:

TMR0 Initial = 256 - (Delay Time * Clock Frequency / 8)

Prescaler

The “prescaler” is a power-of-two counter that can be
selected for use with either the Watchdog Timer or
TMR0. Its purpose is to divide the incoming clock sig-
nals by a software selectable power-of-two value to al-
low the 8-bit TMR0 to time longer events or increase
the watchdog delay from 18 msecs to 2.3 seconds (Fig.
7.13).

The prescaler’s operation is controlled by the four
“PSA” bits in the OPTION register. “PSA” selects
whether the watchdog timer uses the prescaler (when
PSA is “set”) or TMR uses the prescaler (when PSA is
“reset”). Note that the prescaler has to be assigned to ei-
ther the watchdog timer or TMR0. Both functions are
able to execute with no prescaler or with the prescaler’s
delay count set to one.

Built-in Hardware Features 223

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 223

TMR1

TMR1 is 16 bits and can have four different inputs as is
shown in Fig. 7.14.

To access TMR1 data, the “TMR1L” and “TMR1H” reg-
isters are read and written. If the TMR1 value registers
are written, the TMR1 prescaler is reset. A TMR1 inter-

224 Chapter 7

Figure 7.13 PICmicro® MCU Prescaler Circuit

Prescaler Values to Delays

PS2 – PS0 prescaler delay
000 1 cycle
001 2 cycles
010 4 cycles
011 8 cycles
100 16 cycles
101 32 cycles
110 64 cycles
111 128 cycles

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 224

rupt request (“TMR1IF”) is made when TMR1 overflows
and the TMR1IE bit is set.

TMR1IF and TMR1IE are normally located in the
“PIR” and “PIE” registers. To request an interrupt, along
with TMR1IE and “GIE” being set, the INTCON “PIE” bit
must also be set.

To control the operation of TMR1, the T1CON register
is accessed with its bits defined as:

Built-in Hardware Features 225

Figure 7.14 Timer1 (“TMR1”) Block Diagram

T1CON Bit Definition

Bit Description
7–6 Unused
5–4 T1CPS1:T1CPS0 – Select TMR1 Prescaler Value

11 – 1:8 prescaler
10 – 1:4 prescaler
01 – 1:2 prescaler
00 – 1:1 prescaler

3 T10SLEN - Set to Enable TMR1’s built in
Oscillator

2 T1SYNCH - when TMR1CS reset the TMR1 clock is
synchronized to the Instruction Clock

1 TMR1CS - When Set, External Clock is Used
0 TMR1ON - When Set, TMR1 is Enabled

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 225

The external oscillator is designed for fairly low-speed
real-time clock applications. Normally a 32.768 kHz
watch crystal is used along with two 33 pF capacitors.
100 kHz or 200 kHz crystals can be used with TMR1, but
the capacitance required for the circuit changes to 15 pF.
The TMR1 oscillator circuit is shown in Fig. 7.15.

In the PIC18Cxx devices, TMR1 can be specified as
the processor clock to allow low-speed, low-power ap-
plication execution without putting the PICmicro® MCU
to “sleep”.

The TMR1 prescaler allows 24-bit instruction cycle
delay values to be used with TMR1. These delays can ei-
ther be a constant value or an “overflow”, similar to
TMR0. To calculate a delay, use the formula:

Delay = (65,536 – TMR1Init)
� prescaler / T1frequency

where the “T1frequency” can be the instruction
clock, TMR1 oscillator or an external clock driving TMR1.

TMR1Init = 65,536 –
(Delay � T1Frequency / prescaler)

226 Chapter 7

Figure 7.15 Timer1 (“TMR1”) Oscillator Circuit

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 226

TMR2

TMR2 (Fig. 7.16) is used as a recurring event timer.
When it is used with the CCP module, it is used to pro-
vide a Pulse Width Modulated timebase frequency. In
normal operations, it can be used to create a 16-bit
instruction cycle delay.

TMR2 is continually compared against the value in
“PR2”. When the contents of TMR2 and PR2 match,
TMR2 is reset, the event is passed to the CCP as “TMR2
Reset”. If the TMR2 is to be used to produce a delay
within the application, a postscaler is incremented when
TMR2 overflows and eventually passes an interrupt re-
quest to the processor.

TMR2 is controlled by the T2CON register, which is
defined as:

Built-in Hardware Features 227

Figure 7.16 Timer2 (“TMR2”) Block Diagram

T2CON Bit Definition

Bit Description
7 Unused

6–5 TOUTPS3:TOUTPS0 – TMR2 Postscaler Select
1111 – 16:1 Postscaler
1110 – 15:1 Postscaler

:
0000 – 1:1 Postscaler

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 227

The “TMR2” register can be read or written at any
time with the caution that writes may cause the
prescaler to be zeroed. Updates to TMR2 do not reset
the TMR2 prescaler. The timer itself is not synchronized
with the instruction clock because it can only be used
with the instruction clock.

PR2 contains the reset, or count up to, value. The de-
lay before reset is defined as:

Delay = prescaler � (PR2 + 1) / (Fosc / 4)

If “PR2” is equal to zero, the delay is:

Delay = (prescaler � 256) / (Fosc / 4)

Interrupts use the “TMR2IE” and “TMR2IF” bits that are
similar to the corresponding bits in TMR1. These bits
are located in the “PIR” and “PIE” registers. Because of
the exact interrupt frequency, TMR2 is well suited for
applications that provide “bit banging” functions like
asynchronous serial communications or Pulse Width
Modulated signal outputs.

Compare/Capture/PWM (CCP) Module

Included with TMR1 and TMR2 is a control register and
a set of logic functions (known as the “CCP”), which en-
hances the operation of the timers and can simplify ap-
plications. This hardware may be provided singly or in

228 Chapter 7

T2CON Bit Definition (Continued)

2 TMR2ON - When Set, TMR2 Prescaler is Enabled
1-0 T2CKPS1:T2CKPS0 - TMR2 Prescaler Select

1x - 16:1 prescaler
01 - 4:1 prescaler
00 - 1:1 prescaler

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 228

pairs, which allows multiple functions to execute at the
same time. If there are two CCP modules built into the
PICmicro® MCU, then one is known as “CCP1” and the
other as “CCP2”. In the case where there are two CCP
modules built-in, then all the registers are identified
with the “CCP1” or “CCP2” prefix.

The CCP hardware is controlled by the “CCP1CON”
(or “CCP2CON”) register, which is defined as:

Built-in Hardware Features 229

CCPxCON Bit Definition

Bit Function
7-6 Unused
5-4 DC1B1 :DC1B0 - CEPST significant 2 bits of

the PWM compare value.
3-0 CCP1M3 :CCP1M0 – CCP module operating mode.

11xx – PWM Mode
1011 – Compare Mode – Trigger Special Event
1010 – Compare Mode - Generate Software

Interrupt
1001 – Compare Mode - on Match CCP pin low
1000 – Compare Mode - on Match CCP pin high
0111 – Capture on every 16th rising edge
0110 – Capture on every 4th rising edge
0101 – Capture on every rising edge
0100 – Capture on every falling edge
00xx – CCP off

“Capture mode” loads the CCPR registers (“CCPR14”,
“CCPR1C”, “CCPR2H”, and “CCPR2L”) according to the
mode the CCP register is set in. This function is shown
in Fig. 7.17 and shows that the current TMR1 value is
saved when the specified compare condition is met.

Before enabling the capture mode, TMR1 must be en-
abled (usually running with the PICmicro® MCU clock).
The “edge detect” circuit in Fig. 7.17 is a four-to-one
multiplexor, which chooses between the prescaled ris-

5194 Predko Pocket Chapter 7 9/25/01 4:24 PM Page 229

ing edge input or a falling edge input and passes the se-
lected edge to latch the current TMR1 value and option-
ally request an interrupt.

In capture mode, TMR1 is running continuously and is
loaded when the condition on the CCPx pin matches the
condition specified by the CCPxMS:CCPxM0 bits. When
a capture occurs, then an interrupt request is made.
This interrupt request should be acknowledged and the
contents of CCPRxH and CCPRxL saved to avoid having
them written over and the value in them lost.

“Compare” mode changes the state of the CCPx pin of
the PICmicro® MCU when the contents of TMR1 match
the value in the CCPRxH and CCPRxL registers as
shown in Fig. 7.18. This mode is used to trigger or con-
trol external hardware after a specific delay.

“PWM” CCP mode outputs a PWM signal using the
TMR2 reset at a specific value capability. The block dia-
gram of PWM mode is shown in Fig. 7.19. The mode is a
combination of the normal execution of TMR2 and cap-
ture mode; the standard TMR2 provides the PWM pe-
riod while the compare control provides the “on” time
specification.

230 Chapter 7

Figure 7.17 CCP “Capture” Module

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 230

When the PWM circuit executes, TMR2 counts until
its most significant 8 bits are equal to the contents of
PR2. When TMR2 equals PR2, TMR2 is reset to zero and
the CCPx pin is set “high”. TMR2 is run in a 10-bit mode

Built-in Hardware Features 231

Figure 7.18 CCP “Compare” Module

Figure 7.19 CCP “PWM” Module

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 231

(the 4:1 prescaler is enabled before PWM operation).
This 10-bit value is then compared to a program value in
CCPRxM (along with the two DCxBx bits in CCPxCON)
and when they match, the CCPx output pin is reset low.

232 Chapter 7

Code to Setup up a 65% Duty Cycle PWM

movlw 199
movwf PR2 ; Set up TMR2

Operation
movlw (1 << TMR2 on) +1
movwf T2CON ; Start it Running

with a 50 msec
; Period

movlw 130 ; 65% of the Period
movwf CCPRxH
movlw (1 << DC xB1) +0x00F
movwf CCPxCON ; Start PWM

; PWM is operating

The table below gives the fractional DCxBX bit values:

CCP DCxBX Bit Definition

Fraction DCxB1:DCxB0
0.00 00
0.25 01
0.50 10
0.75 11

USART Module

There are three modules to the USART, the clock gener-
ator, the serial data transmission unit and the serial data
reception unit. The two serial I/O units require the clock
generator for shifting data out at the write interval. The
clock generator’s block diagram is Fig. 7.20.

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 232

In the clock generator circuit, the “SPBRG” register is
used as a comparison value for the counter. When the
counter is equal to the “SPBRG” register’s value, a clock
“tick” output is made and the counter is reset. The
counter operation is gated and controlled by the “SPEN”
(“serial port enable”) bit along with the “synch” (which
selects whether the port is in synchronous or asynchro-
nous mode) and “BRGH” which selects the data rate.

For asynchronous operation, the data speed is speci-
fied by the formula:

Data Rate = Fosc / (16 � (4 ** (1 – BRGH))
� (SPBRG + 1))

This formula can be rearranged so that the SPBRG value
can be derived from the desired data rate:

SPBRG = Fosc / (Data Rate � 16 � (4**(1 – BRGH)) – 1

The transmission unit of the USART can send 8 or 9
bits in a clocked (synchronous) or unclocked (asynchro-
nous) manner. Data transmission is initiated by sending

Built-in Hardware Features 233

Figure 7.20 USART Clock Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 233

a byte to the “TXREG” register. The block diagram of the
hardware is shown in Fig. 7.21.

The transmit hold register can be loaded with a new
value to be sent immediately following the passing of
the byte in the “Transmit shift register”. This single
buffering of the data allows data to be sent continuously
without the software polling the TXREG to find out
when is the correct time to send out another byte.
USART transmit interrupt requests are made when the
TX holding register is empty. This feature is available for
both synchronous and asynchronous transmission
modes.

The USART receive unit is the most complex of the
USART’s three parts. This complexity comes from the
need for it to determine whether or not the incoming
asynchronous data is valid or not using the “Pin Buffer
and Control” unit built into the USART receive pin.
The block diagram for the USART’s receiver is shown
in Fig. 7.22.

If the port is in synchronous mode, data is shifted in

234 Chapter 7

Figure 7.21 USART Transmit Hardware Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 234

either according to the USART’s clock or using an exter-
nal device’s clock.

Like the TX unit, the RX unit has a “holding register”,
so if data is not immediately processed, and an incoming
byte is received, the data will not be lost. But, if the data
is not picked up by the time the next byte has been re-
ceived, then an “overrun” error will occur. Another type
of error is the “framing error”, which is set if the “stop”
bit of the incoming NRZ packet is not zero. These errors
are recorded in the “RCSTA” (receiver status) register
and have to be reset by software.

For asynchronous data, the “Receiver Sensor Clock”
is used to provide a polling clock for the incoming data.
This sixteen time data rate clock’s input into the “Pin
Buffer and Control” unit provides a polling clock for the
hardware. When the input data line is low for three
Receive Sensor Clock periods, data is then read in from
the “middle” of the next bit as is shown in Fig. 7.23.
When data is being received, the line is polled three

Built-in Hardware Features 235

Figure 7.22 USART Receive Hardware Block Diagram

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 235

times and the majority of states read is determined to be
the correct data value. This repeats for the 8 or 9 bits of
data with the stop bit being the final check.

In some PICmicro® MCUs, the USART receive unit
can also be used to receive two asynchronous bytes in
the format “Data:Address”, where “Address” is a byte
destined for a specific device on a bus. When the “AD-
DEN” bit of the “RCSTA” register is set, no interrupts
will be requested until both the address and data bytes
have been received. To distinguish between the bytes,
the ninth address bit is set (while the ninth bit of data
packets are reset). When this interrupt request is re-
ceived, the interrupt handler checks the device address
for its value before responding to the data byte.

To control the USART, two registers are used explic-
itly. The “TXSTA” (“transmitter status”) register is lo-
cated at address 0x098 in the mid-range PICmicro®

MCUs and has the bit definitions:

236 Chapter 7

Figure 7.23 Reading an Asynch Data Packet

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 236

The “SPBRG” register is usually at address 0x099 for
the mid-range PICmicro® MCUs.

The “RCSTA” (receiver status) register is at ad-
dress 0x018 in the mid-range PICmicro® MCUs and is
defined as:

Built-in Hardware Features 237

USART RCSTA Bit Definition

Bit Definition
7 SPEN - Set to Enable the USART
6 RX9 - Set to Enable nine bit USART Receive
5 SREN - Set to Enable Single Byte Synchronous

Data Receive. Reset when data has been
received

4 CREN - Set to Enable Continuous Receive
3 ADDEN - Set to Receive Data:Address

Information. May be unused in many PICmicro®

MCU Part Numbers
2 FERR - “Framing Error” bit
1 OERR - “Overrun Error” bit
0 RX9D - Received ninth bit

USART TXSTA Bit Definition

Bit Definition
7 CSRC - Clock Source Select used in

Synchronous Mode. When Set, the USART Clock
Generator is Used

6 TX9 - Set to Enable nine bit Serial I/O
5 TXEN - Set to Enable Data Transmission
4 SYNC - Set to Enable Synchronous Transmission
3 Unused
2 BRGH - Used in Asynchronous Mode to Enable

Fast Data Transmission. It is Recommended to
keep this bit Reset

1 TRMT - Set if the Transmission Shift Register
is Empty

0 TXD - Nine bit of Transmitted Data

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 237

The TXREG is normally at address 0x019 and RCREG is
normally at address 0x01A for the mid-range PICmicro®

MCUs. The TXIF, TXIE, RCIE, and RCIF bits are in differ-
ent interrupt enable request registers and bit numbers are
specific to the part being used.

To set up asynchronous serial communication trans-
mit, the following code is used:

238 Chapter 7

USART Asynchronous Serial Transmission Byte Send
Code

btfss TXSTA, TRMT
goto $ - 1 ; Wait for Holding Register

; to become Free/Empty
movwf TXREG ; Load Holding Register

; If Transmit Shift Register
; is Empty, byte will be sent

Code to set up USART Asynchronous Serial
Transmission

bsf STATUS, RPO
bcf TXSTA, SYNCH ; Not in Synchronous mode
bcf TXSTA, BRGH ; BRGH =0

movlw DataRate ; Set USART Data Rate
movwf SPBRG

bcf STATUS, RPO ; Enable serial port
bsf RCSTA ^ 0x080, SPEN
bsf STATUS, RPO
bcf TXSTA, TX9 ; Only 8 bits to send
bsf TXSTA, TXEN ; Enable Data Transmit
bcf STATUS, RPO

To send a byte in “w”, use the code:

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 238

To receive data, use the code:

btfss PIR1, RXIF ; Wait for a Character to be
goto $ - 1 ; Received

movf RCREG, w ; Get the byte Received
bcf RXIF ; Reset the RX byte Interrupt

; Request Flag

SSP Module

The Synchronous Serial Protocol Module is used to send
and receive data serially using a synchronous (with a
clock) protocol like the data stream shown in Fig. 7.24.

SPI operation

SPI is an 8-bit synchronous serial protocol that uses
three data bits to interface to external devices. Data is
clocked out, with the most significant bit first, on rising
or falling edges of the clock. The clock itself is generated

Built-in Hardware Features 239

bsf STATUS, RPO
bcf TXSTA, SYNCH ; Want Asynch

Communications
bcf TXSTA, BRGH ; Low Speed Clock
movlw DataRate ; Set Data Rate
movwf SPBRG
bsf RCSTA ^ 0x080, SPEN ; Enable Serial Port
bcf TCSTA ^ 0x080, RX9 ; Eight Bits to

Receive

To set up an asynchronous read, the following code is
used:

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 239

within the PICmicro® MCU (“master mode”), or it is pro-
vided by an external device and used by the PICmicro®

MCU (“slave mode”) to clock out the data. The SPI data
stream looks like Fig. 7.24.

The clock can be “positive” as shown in Fig. 7.24 with a
“0” “idle” or negative (high “line idle”) with a “1” idle and
the clock pulsing to “0” and back again. The Data receive
latch is generally on the return to idle state transition.

The “BSSP” module is the “Basic SSP” module and
provides data pulling on the return to idle clock edge.
The original SSP module provides the ability to vary
when data is output and read. Controlling the operation
of the different SSP modules is the “SSPCON” register.

240 Chapter 7

Figure 7.24 SPI Synchronous Serial Data Waveform

SSP/BSSP SSPCON Bit Definition

Bit Function
7 WCOL - Write collision, set when new byte

written to SSPBUF while transfer is taking
place

6 SSPOV - Receive Overflow, indicates that the
unread byte is SSPBUF Over written while in
SPI slave mode

5 SSPEN - Set to enable the SSP module
4 CKP - Clock polarity select, set to have a

high idle

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 240

The block diagram for the SSP module is shown in
Fig. 7.25.

In master mode, when a byte is written to SSPBUF, an
8-bit, most-significant-bit first data transfer process is
initiated. The status of the transfer can be checked by
the SSPSTAT register “BF” flag; the SSPSTAT register is
defined as:

Built-in Hardware Features 241

Figure 7.25 SSP SPI Module

SSP/BSSP SSPCON Bit Definition (Continued)

3-0 SSPM3:SSPMO SPI mode select
1xxx - I2C and reserved modes
011x - I2C slave modes
0101 - SPI slave mode, clock � SCK pin,

_SS not used
0100 - SPI slave mode, clock � SCK pin,

_SS enabled
0011 - SPI master mode, TMR2 clock used
0010 - SPI master mode, INSCK/16
0001 - SPI master mode, INSCK/4
0000 - SPI master mode, INSCK

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 241

The SSP SPI transfers can be used for single byte syn-
chronous serial transmits of receivers with serial de-
vices. Figure 7.26 shows the circuit to transmit a byte to

242 Chapter 7

Figure 7.26 SSP SPI Module Used to Shift Data Out

SSP/BSSP SSPSTAT Bit Definition

Bit Function
7 SMP - Set to have data sampled after active to

idle transition, reset to sample at active to
idle transition, not available in BSSP

6 CKE - Set to TX data on idle to active
transition, else TX data on active to idle
transition, not available in BSSP

5 D/_A - Used by I2C
4 P - Used by I2C
3 S - Used by I2C
2 R/_W - Used by I2C
1 UA - Used by I2C
0 BF - Busy flag, reset while SPI operation

active

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 242

a 74LS374 wired as a serial in/parallel out shift register.
Figure 7.27 shows a 74LS374 being used with a 74LS244
as a synchronous parallel in/serial out register. Both of
these operations are initiated by a write to SSPBUF.

bsf IOPin ; Want to Latch Data
into the ‘374

bcf SCK
bsf STATUS, RPO
bcf IOpin
bcf SCK
bcf STATUS, RP0
bsf SCK ; Latch the Data into

the ‘374
bcf SCK
bcf IOpin ; Disable ‘244

output, Enable ‘374
movlw (I << SMP) + (I << CKE)
movwf SSPSTAT ; Set up the SSP

Shift In
movlw (I << SSPEN) + (I << CKP) +0x000

Built-in Hardware Features 243

Figure 7.27 SSP SPI Module Used to Shift Data In

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 243

movwf SSPCON
movf TXData, f ; Load the Byte to

Send
movwf SSPBUF ; Start Data Transfer
btfss SSPTAT, BF
goto $ - 1 ; Wait for Data

Receive to
Complete

; Data Ready in
SSPBUF when
Execution

; Here
bcf SSPCON,$SPEN ; Turn off SSP

When using the SSP, the data rate can either be se-
lected as a multiple of the executing clock or use the
TMR2 overflow output. The actual timing is dependent
on the hardware the PICmicro® MCU SSP master is
communicating with.

When in slave mode, along with an external clock
being provided, there is a transmit reset pin known
as “_SS”. When this pin is asserted high, the SSP output
is stopped (the SDO TRIS bit is changed to input mode)
and the SSP is reset with a count of zero. When the bit
is reset, the clock will start up again, the original
most significant bit is reset, followed by the remaining 7
bits.

I2C operation

The enhanced MSSP will be designed into all new de-
vices that have the SSP module. In this section, the sin-
gle master I2C interface is focused on.

There are five registers that are accessed for MSSP I2C
operation, they are the SSP control registers (“SSPCON”
and “SSPCON2”), the SSP status register (“SSPSTAT”),

244 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 244

the SSP receive/transmit register (“SSPBUF”) and the
SSP address register (“SSPADD”). These registers are
available in the SSP and BSSP, but are slightly different
for the MSSP.

The MSSP control registers are defined as:

Built-in Hardware Features 245

MSSP SSPCON Bit Definition

Bit Function
7 WCOL - Write collision, set when new byte

written to SSPBUF while transfer is taking
place

6 SSPOV - Receive Overflow, indicates that the
unread byte is SSPBUF over written

5 SSPEN - Set to enable the SSP module
4 CKP - In I2C Modes, if bit is reset, the I2C

“SCL” Clock Line is Low. Keep this bit set.
3-0 SSPM3:SSPMO SPI mode select

1111 - I2C 10 Bit Master Mode/Start and
Stop Bit Interrupts

1110 - I2C 7 Bit Master Mode/Start and
Stop Bit Interrupts

1101 - Reserved
1100 - Reserved
1011 - I2C Master Mode with Slave Idle
1010 - Reserved
1001 - Reserved
1000 - I2C Master Mode with SSPADD Clock
Definition

0111 - I2C Slave Mode, 10 Bit Address
0110 - I2C Slave Mode, 7 Bit Address
0101 - SPI slave mode, clock = SCK pin,
_SS not used

0100 - SPI slave mode, clock = SCK pin,
_SS enabled

0011 - SPI master mode, TMR2 clock used
0010 - SPI master mode, INSCK/16
0001 - SPI master mode, INSCK/4
0000 - SPI master mode, INSCK

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 245

The status of the transfer can be checked by the SSPSTAT
register “BF” flag; the SSPSTAT register is defined as:

246 Chapter 7

MSSP SSPCON2 Bit Definition

Bit Function
7 GCEN - Enable Interrupt when “General Call

Address” (0x0000) is Received
6 ACKSTAT - Received Acknowledge Status. Set

when Acknowledge was Received
5 ACKDT - Acknowledge Value Driven out on Data

Write
4 ACKEN - Acknowledge Sequence Enable Bit which

when Set will Initiate an Acknowledge
sequence on SDA/SCL. Cleared by Hardware

3 RCEN - I2C Receive Enable Bit
2 PEN - Stop Condition Initiate Bit. When Set,

Stop Condition on SDA/SCL. Cleared by
Hardware

1 RSEN - Set to Initiate the Repeated Start
Condition on SDA/SCL. Cleared by Hardware

0 SEN - When Set, a Start Condition is
Initiated on the SDA/SCL. Cleared by
hardware.

MSSP SSPSTAT Bit Definition

Bit Function
7 SMP - Set to have data sampled after active

to idle transition, reset to sample at
active to idle transition, not available
in BSSP

6 CKE - Set to TX data on idle to active
transition, else TX data on active to idle
transition, not available in BSSP

5 D/_A - Used by I2C
4 P - Used by I2C
3 S - Used by I2C
2 R/_W - Used by I2C
1 UA - Used by I2C
0 BF - Busy flag, reset while SPI operation

active

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 246

I2C connections between the PICmicro® MCU’s I2C
“SDA” (data) and “SCL” (clock) pins is very simple with
just a Pull Up on each line as shown in Fig. 7.28. 1K re-
sistors are recommended for 400 kHz data transfers and
a 10K for 100 kHz data rates. Note that before any of the
I2C modes are to be used, the “TRIS” bits of the respec-
tive “SDA” and “SCL” pins must be in input mode.
Unlike many of the other built-in advanced I/O func-
tions, MSSP does not control the TRIS bits. Not having
the TRIS bits in input mode will not allow the I2C func-
tions to operate.

In “Master Mode”, the PICmicro® MCU is responsible
for driving the clock (“SCL”) line for the I2C network.
This is done by selecting one of the SPI Master Modes
and loading the SSPADD register with a value to provide
a data rate that is defined by the formula:

I2C Data Rate � Fosc 	 (4 * (SSPADD � 1))

This can be rearranged to:

SSPADD � (Fosc 	 (4 * I2C Data Rate)) � 1

Built-in Hardware Features 247

Figure 7.28 I2C Connection to PICmicro® MCU

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 247

To send data from the PICmicro® MCU to an I2C de-
vice using the MSSP, the following steps must be taken:

1. The SDA/SCL lines MUST be put into “Input Mode”
(i.e., their respective “TRIS” bits must be set).

2. I2C Master Mode is enabled. This is accomplished by
setting the “SSPEN” bit of SSPCON and writing
0b01000 to the SSPM3:SSPM0 bits of the SSPCON
register.

3. A “Start Condition” is initiated by setting the “SEN”
bit of SSPCON2. This bit is then polled until it is
reset.

4. SSPBUF is loaded with the address of the device to
access. Note that for many I2C devices, the least sig-
nificant bit transmitted is the “Read/Write” bit. The
“R/_W” bit of SSPSTAT is polled until it is reset
(which indicates the transmit has been completed).

5. The ACK bit from the receiving device is checked by
reading the “ACKDT” bit of the SSPCON2 register.

6. SSPBUF is loaded with the first 8 bits of data or a sec-
ondary address that is within the device being ac-
cessed. The “R/_W” bit of SSPSTAT is polled until it is
reset.

7. The ACK bit from the receiving device is checked by
reading the “ACKDT” bit of the SSPCON2 register.

8. A new “Start Condition” may have to be initiated be-
tween the first and subsequent data bytes. This is ini-
tiated by setting the “SEN” bit of SSPCON2. This bit
is then polled until it is reset.

9. Operations six through eight are repeated until all
data is sent or a “NACK” (negative Acknowledge) is
received from the receiving device.

248 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 248

10. A “Stop Condition” is initiated by setting the “PEN”
bit of SSPCON2. This bit is then polled until it is
reset.

This sequence of operations is shown in Fig. 7.29. Note
that in Fig. 7.29, the “SSPIF” interrupt request flag op-
eration is shown. In the sequence above, I avoid inter-
rupts, but the “SSPIF” bit can be used to either request
an interrupt or to avoid the need to poll different bits to
wait for the various operations to complete.

To receive data from a device requires a similar set of
operations with the only difference being that after the
address byte(s) have been sent, the MSSP is configured
to receive data when the transfer is initiated:

1. The SDA/SCL lines MUST be put into “Input Mode”
(i.e., their respective “TRIS” bits must be set).

Built-in Hardware Features 249

Figure 7.29 MSSP 12C data address/transmission

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 249

2. I2C Master Mode is enabled. This is accomplished by
setting the “SSPEN” bit of SSPCON and writing
0b01000 to the SSPM3:SSPM0 bits of the SSPCON
register.

3. A “Start Condition” is initiated by setting the “SEN”
bit of SSPCON2. This bit is then polled until it is
reset.

4. SSPBUF is loaded with the address of the device to
access. Note that for many I2C devices, the least sig-
nificant bit transmitted is the “Read/Write” bit. The
“R/_W” bit of SSPSTAT is polled until it is reset
(which indicates the transmit has been completed).

5. The ACK bit from the receiving device is checked by
reading the “ACKDT” bit of the SSPCON2 register.

6. SSPBUF is optionally loaded with the secondary ad-
dress within the device being read from. The “R/_W”
bit of SSPSTAT is polled until it is reset.

7. If a secondary address was written to the device being
read from, reading the “ACKDT” bit of the SSPCON2
register checks the ACK bit from the receiving device.

8. A new “Start Condition” may have to be initiated be-
tween the first and subsequent data bytes. This is ini-
tiated by setting the “SEN” bit of SSPCON2. This bit
is then polled until it is reset.

9. If the secondary address byte was sent, then a second
device address byte (with the “Read” indicated) may
have to be sent to the device being read. The “R/_W”
bit of SSPSTAT is polled until it is reset.

10. The “ACKDT” will be set (“NACK”) or reset (“ACK”)
to indicate whether or not the data byte transfer is to
be acknowledged in the device being read.

250 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 250

11. The “RCEN” bit in the SSPCON2 register is set
to start a data byte receive. The “BF” bit of the
SSPSTAT register is polled until the data byte has
been received.

12. Operations ten through eleven are repeated until
all data is received and a “NACK” (negative
Acknowledge) is sent to the device being read.

13. A “Stop Condition” is initiated by setting the “PEN”
bit of SSPCON2. This bit is then polled until it is
reset.

Fig. 7.30 shows the data receive operation wave-
form.

Along with the single “Master” mode, the MSSP is also
capable of driving data in “Multi-Master” mode. In this
mode, if a data write “collision” is detected, it stops
transmitting data and requests an interrupt to indicate
there is a problem. An I2C “collision” is the case where

Built-in Hardware Features 251

Figure 7.30 MSSP 12C data address/read

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 251

the current device is transmitting a “High” data value
but there is a “Low” data value on the SDA line. This
condition is shown in Fig. 7.31. The “WCOL” bit of the
SSPCON register indicates that the collision has taken
place.

When the collision occurs, the I2C software must wait
some period of time before polling the SDA and SCL
lines to ensure that they are high and then initiating a
“Repeated Start Condition” operation. A “Repeated
Start Condition” is the process of restarting the I2C data
transfer right from the beginning (even if it was halfway
through when the collision occurred).

Built-In ADC

All PICmicro® MCU devices that have a “seven” as the
second to last character in the part number have a built-
in analog to digital converter, which will indicate an ana-
log voltage level from zero to Vdd, with 8- or 10-bit
accuracy. The PORTA pins can be used as either digital
I/O or analog inputs. The actual bit accuracy, utilization
of pins and operating speed is a function of the

252 Chapter 7

Figure 7.31 I2C MPPS “Collision” Response

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 252

PICmicro® MCU part number and the clock speed the
PICmicro® MCU runs at.

When a pin is configured for analog input, it follows
the models shown in Fig. 7.32.

“Rs” in the “Vsource” circuit is the in-line resistance
of the power supply. In order to get reasonable times for
charging the ADC’s “holding capacitor”, this value
should be less than 10K.

The time required for the holding capacitor to load
the analog voltage and to stabilize is

Tack � 5ms � [(temp � 25C) � 0.05 ms	C]
� (3.19C � 10**7) � (8k � Rs)

which works out to anywhere from 7.6 usecs to 10.7
usecs at room temperature. For most applications, this
calculation can be ignored and a “stabilization” time of
15 usecs can be used as a rule of thumb.

Once the voltage is stabilized at the capacitor, a test
for each bit is made. 9.5 cycles are required to do an 8-
bit conversion. The bit conversion cycle time (known as
“TAD”) can be anywhere from 1.6 to 6.4 usecs and can

Built-in Hardware Features 253

Figure 7.32 PICmicro® MCU Internal ADC Equivalent Input

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 253

either use the PICmicro® MCU’s instruction clock or a
built-in 250 kHz RC oscillator. To get a valid TAD time
using the PICmicro® MCU’s instruction clock, a two,
eight, or thirty-two prescaler is built into the ADC.

A built-in 250 kHz oscillator is used to carry out the ADC
conversion when the PICmicro® MCU is asleep or to avoid
using the prescaler. For maximum ADC accuracy,
Microchip recommends that the PICmicro® MCU be put to
sleep during the ADC conversion for maximum accuracy
(and minimum internal voltage or current upsets). If the
PICmicro® MCU is put to sleep, then the minimum conver-
sion time is much longer than what is possible using the
built-in clock because the PICmicro® MCU has to restart
when the ADC completion interrupt has been received.

The minimum conversion time is defined as the total
time required for the holding capacitor to stabilize at the
input voltage and for the ADC operation to complete.

To measure analog voltages, the analog input pins or
the PICmicro® MCU, which are in “PORTA”, have to be
set to analog input on power up, the analog input pins
are normally set to analog input and not digital I/O. To
specify the modes, the “ADCON1” register is written to.
In the following table, the two least significant bits
(known as PCFG1:PCFG0) of the “ADCON1” register is
shown with the types of I/O pin operation selected in a
PIC16C71:

254 Chapter 7

Sample ADCON1 Bit Definitions for the PIC16C71

ADCON1 bits AN3 AN2 AN1 AN0
11 D D D D
10 D D A A
01 Vref A A A
00 A A A A

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 254

The “ADCON 0” register is used to control the opera-
tion of the ADC. The bits of the register are typically de-
fined as:

Built-in Hardware Features 255

ADCON0 Bit Definitions

Bit Function
7–6 ADCS1: ADCS0 bits used to select the TAD

clock.
11 - Internal 250 kHz Oscillator
10 - FOSC/32
01 - FOSC/8
00 -FOSC/2

5–3 CHS2:CHS0 – Bits used to Select which Analog
Input is to be Measured. These bits and
their operation is Part Number Specific

2 GO/_DONE – Set Bit to Start ADC Conversion,
Reset by Hardware when ADC Conversion is
Complete.

1 ADIF – Set upon Completion of ADC Conversion
and Requests an Interrupt.

0 ADON – Set to Enable the ADC

The ADC consumes power even when it is not being
used and for this reason, if the ADC is not being used
“ADON” should be reset.

If the PICmicro® MCU’s ADC is capable of returning a
10-bit result, the data is stored in the two “ADRESH”
and “ADRES” registers. When 10-bit ADC results are
available, the data can be stored in ADRESH/ADRESL in
two different formats. The first is to store the data “right
justified” with the most significant six bits of ADRESH
loaded with “zero” and the least two significant bits
loaded with the two most significant bits of the result.
This format is useful if the result is going to be used as
a 16-bit number, with all the bits used to calculate an
average.

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 255

The second 10-bit ADC result format is “left justified”
in which the eight most significant bits are stored in
“ADRESH”. This format is used when only an 8-bit value
is required in the application and the two least signifi-
cant bits can be “lopped” off or ignored.

To do an analog to digital conversion, the following
steps are taken:

1. Write to ADCON1 indicating what are the digital I/O
pins and which are the analog I/O pins. At this time, if
a 10-bit conversion is going to be done, set the format
flag in ADCON 1 appropriately.

2. Write to ADCON0, setting ADON, resetting ADIF and
GO/_DONE and specifying the ADC TAD clock and
the pin to be used.

3. Wait for the input signal to stabilize.

4. Set the GO/_DONE bit. If this is a high-accuracy mea-
surement, ADIE should be enabled for interrupts and
then the PICmicro® MCU put to “sleep”.

5. Poll “GO/_DONE” until it is reset (conversion done).

6. Read the result form “ADRES” and optionally
“ADRESH”.

To read an analog voltage from the RAO pin of a
PIC167C1 running a 4-MHz PICmicro® MCU, the code
would be

bsf STATUS, RPO
movlw 0x002
movwf ADCON1 ^ 0x080 ; AN1/AN0 are Analog Inputs
bcf STATUS, RPO
movlw 0x041 ; Start up the ADC
movwf ADCON0

movlw 5
addlw 0x0FF ; Delay 20 usec for Holding

256 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 256

btfss STATUS, Z ; Capacitor to Stabilize
goto $ – 2

bsf ADCON0, GO ; start the ADC conversion

btfsc ADCON0, GO ; Wait for the ADC
Conversion

goto $ – 1 ; to End

movf ADRES, w ; Read the ADC result

Built-In Comparators

In the PIC16C2x, analog voltages can be processed by
the use of comparators that indicate when a voltage is
greater than another voltage. The inputs “compared”
can be switched between different I/O pins as well as
ground or a reference voltage that can be generated in-
side the PICmicro® MCU chip.

Enabling comparators is a very straightforward oper-
ation with the only prerequisite being that the pins used
for the analog compare must be in “input” mode.
Comparator response is virtually instantaneous, which
allows “alarm” or other fast responses from changes in
the comparator inputs (Fig. 7.33).

There are two comparators in the PIC16C62X con-
trolled by the “CMCON” register, which is defined as:

Built-in Hardware Features 257

CMCON Bit Definitions

Bit description
7 C2OUT – Comparator 2 Output (High if + > -)
6 C1OUT – Comparator 1 Output (High if + > -)

5–4 Unused
3 CIS – Comparator Input switch

2–0 CM2:CM0 – Comparator Mode

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 257

The CIS and CM2:CM0 bits work together to select
the operation of the comparators.

258 Chapter 7

Figure 7.33 Comparator Response

Comparator Module I/O Specification

CM CIS Comp 1 Comp 2
+ input - input + input - input

000 X RA0 RA3 (1) RA2 RA1 (4)
001 0 RA2 RA0 RA2 RA1
001 1 RA2 RA3 RA2 RA1
010 0 Vref RA3 Vref RA1
010 1 Vref RA3 Vref RA2
011 X RA2 RA0 (3) RA2 RA1
100 X RA3 RA0 (4) RA2 RA1
101 X DON’T CARE RA2 RA1
110 X RA2 RA0 (5) RA2 RA1 (6)
111 X RA3 RA0 (7) RA2 RA1 (8)

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 258

From these selections, there are some notes.

1. For CM2:CM0 equal to 000, RA3 through RA0 cannot
be used for digital I/O.

2. For CM2:CM0 equal to 000, RA2 and RA1 cannot be
used for digital I/O.

3. RA3 can be used for digital I/O.

4. RAO and RA3 can be used for digital I/O.

5. RA3 is a digital output, same as comparator 1 output.

6. RA4 is the open drain output of comparator 2.

7. RA0 and RA3 can be used for digital I/O.

8. RA1 and RA2 can be used for digital I/O.

Upon power up, the comparator CM bits are all reset,
which means RA0 to RA3 are in analog input mode. If
you want to disable analog input, the CM bits must be
set (write 0x007 to CMCOM).

Interrupts can be enabled that will interrupt the
processor when one of the comparator’s output
changes. This is enabled differently for each PICmicro®

MCU with built-in comparators. Like the PORTB change
on interrupt, after a comparator change interrupt re-
quest has been received, the CMCOM register must be
read to reset the interrupt handler.

Along with comparing to external values, the
PIC16C62x can also generate a reference voltage (“Vref”
in the table above) using its own built-in 4-bit digital-to-
analog converter. The digital-to-analog converter circuit
is shown in Fig. 7.34.
The Vref control bits are found in the VRCON register
and are defined as:

Built-in Hardware Features 259

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 259

The Vref output is dependent on the state of the “VRR”
bit. The Vref voltage output can be expressed mathe-
matically if VRR is set as:

Vref � Vdd*(VRCON & 0x00F)	24

260 Chapter 7

Figure 7.34 16C62x VRef circuit.

Comparator VRCON Bit Definitions

Bit description
7 VREN – Vref Enable when Set
6 VROE – Vref output enable when set

RA2 – Vref
5 VRR – Vref Range Select

1 = Low Range
0 = High Range

4 Unused
3–0 VR3:VR0 – Voltage Selection Bits

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 260

Or, if it is reset as:

Vref � Vdd*(8 � (VRCON & 0x00F))	32

Note that when VRR is set, the maximum voltage of Vref
is 15	24 of Vdd, or just less than two-thirds Vdd. When
VRR is reset, Vref can be almost three-quarters of Vdd.

Parallel Slave Port

The PSP is very easy to wire up with separate chip select
and read/write pins for enabling the data transfer. The
block diagram of the PSP is shown in Fig. 7.35.

A read and write operation waveform is shown in
Fig. 7.36.

The minimum access time is one clock (not “instruc-

Built-in Hardware Features 261

Figure 7.35 Parallel Slave Port (“PSP”) Hardware

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 261

tion clock”) cycle. For a PICmicro® MCU running at 20
MHz, the minimum access time is 50 nsecs.

To enable the parallel slave port, the “PSP mode” bit
of the TRISE register must be set. When this bit is set,
port D becomes driven from the “_CS”, “_RD”, and
“_WR” bits, which are RE2, RE1, and RE0, respectively.
When the PSP mode bit is set, the values in PORTD,
PORTE, TRISD, and TRISE are ignored.

When PSP mode is enabled and _CS and _RD are ac-
tive, PORTD drives out the contents of “OUTREG”.
When “OUTREG” (which is at PORTD’s address) is writ-
ten to, the “OBF” (“Output Buffer Full”) bit of TRISE is
set. This feature, along with the input data flags in
TRISE is not available in all devices. The PBF bit will be-
come reset automatically, when the byte in the OUTREG
is read by the device driving the external parallel bus.

When a byte is written into the parallel slave port
(_CS and _WR are active), the value is saved in “INREG”
until it is overwritten by a new value. If the optional sta-
tus registers are available, the “IBF” bit is set when the

262 Chapter 7

Figure 7.36 Parallel Slave Port Operation

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 262

INREG is written to and cleared when the byte in INREG
is read. If the byte is not read before the next byte is
written into “INREG”, the “IBOV” bit, which indicates
the overwrite condition is set.

In older PICmicro® MCUs that have PSP port, the
“IBF”, “OBF”, and “IBOV” bits are not available in
TRISE.

Built-In EEPROM Data Memory Access

The “EECON1”, “EECON2”, “EEADR”, and “EEDATA”
are used to control access to the EEPROM. “EEADR”
and “EEDATA” are used to provide the address and data
interface into the up to 256 byte data EEPROM memory.
“EECON” and “EECON2” are used to initiate the type of
access as well as indicate that the operation has com-
pleted. “EECON2” is a “pseudo-register” that cannot be
read from, but is written to with the data, 0x055/0x0AA
to indicate the write is valid.

EECON1, contains the following bits for controlling
the access:

Built-in Hardware Features 263

Critical EECON1 Bits

Bit Function
EEPCD Set to Access Program Memory. Reset to

Access Data EEPROM only in 16F62x and
16F87x.

WRERR Set if a write Error is Terminated early
to indicate Data Write may not have
been Successful.

WREN When set, a write to EEPROM begins.
WR Set to indicate an upcoming Write

Operation. Cleared when the Write
Operation is complete.

RD Set to indicate Read Operation. Cleared
by next Instruction Automatically.

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 263

Using these bits, a Read can be initiated as:

movf / movlw address/ADDR, w
bcf STATUS, RPO
movwf EEADR
bsf STATUS, RPO
bsf EECON1, ^ 0x08, RD
bcf STATUS, RPO
movf EEDATA, w ; w � EEPROM

[address/ADDR]

Write operations are similar, but have two important dif-
ferences. The first is that the operation can take up to
ten milliseconds to complete, which means the “WR” bit
of EECON1 has to be polled for completion, or in the
EEPROM, interrupt request hardware enabled. The sec-
ond difference as mentioned above, is that a “timed
write” has to be implemented to carry out the operation.

movlw /movf constant/DATA, w
bcf STATUS, RPO
movwf EEDATA
movlw /movf address/ADDR, w
movwf EEADR
bsf STATUS,RPO
bsf EECON1 ^ 0x080, WREN
bcf INTCON,GIE
movlw 0x055] CRITICAL SECTION
movwf EECON2 ^ 0x080]
movlw 0x0AA]
movwf EECON2 ^ 0x080]
bsf EECON1 ^ 0x080, WR]
bsf INTCON, GIE
btfsc EECON1 ^ 0x080, WR] Poll for

Operation Ended
goto $ – 1]

bcf EECON1 ^ 0x080, WREN
bcf STATUS, RPO
bsf INTCON, GIE

264 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 264

The EEPROM included PIC12CE5xx parts use the most
significant bits of the “GPIO” (“general purpose I/O”)
register and its corresponding “TRIS” register. The
PIC12CE5xx’s EEPROM interface can be described as
shown in the block diagram Fig. 7.37.

In Fig. 7.37, the GPIO bits six and seven do not have
“TRIS” control bits. As well, bit six (the 12CEEPROM
bit), “SDA”) has an open-drain driver. This driver circuit
is designed to let both the PICmicro® MCU and the
EEPROM drive the data line at different intervals with-
out having to disable the PICmicro® MCUs write of the
EEPROM. Information is written to the EEPROM device
using the waveform shown in Fig. 7.38.

The “start” and “stop” bits are used to indicate the be-
ginning and end of an operation and can be used halfway
through to halt an operation. The start and stop bits are
actually invalid cases (data cannot change while one
clock is active or “high”).

Built-in Hardware Features 265

Figure 7.37 PIC12CE5xx EEPROM Interface

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 265

This operation means that the GPIO port must be ac-
cessed carefully; always make sure the SDA and SCL
GPIO bits have a “one” in them or else the built-in
EEPROM may be accessed incorrectly, causing prob-
lems with subsequent reads.

The instruction

clrf GPIO

should never be used in applications that access low-
end data EEPROM.

Data is written most significant bit first, which is prob-
ably backwards to most applications. Before any trans-
fer, a “control byte” has to be written. The “control
byte’s” data is in the format:

0b01010000R

where “R” is the “Read/_Write” byte (indicating what is
coming next). If the “read/write” bit is set, then a read of

266 Chapter 7

Figure 7.38 PIC12CE5xx EEPROM Interface Waveform

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 266

the EEPROM at the current address pointer will take
place. If a write is to take place, the “read/write” bit is
reset.

After a byte is sent, the SDA line is pulled low to
indicate an “acknowledgment” (“ACK” or just “A” in
the bit stream representations below). This bit is set
low (as an acknowledgment) when the operation
has completed successfully. If the acknowledgment bit
is high (“NACK”), it does not necessarily mean there
was a failure; if it is issued by the EEPROM then it indi-
cates a previous write has not completed. The
PICmicro® MCU will issue it to stop the EEPROM from
preparing to send additional bytes out of its memory in
a multi-byte read.

There are five operations that can be carried out with
the EEPROM that is built into the PIC12CE5xx. They
are

1. Current Address Set.

2. Current Address Set/Data Byte Write.

3. Data Byte Read at Current Address.

4. Sequential (“multi-byte”) Read at Current Address.

5. Write completion poll.

The EEPROM in the PIC12CE5xx is only 16 bytes
in size. Each byte is accessed using a 4-bit address.
This address is set using a control byte with the “R” bit
reset followed by the address. The bit stream looks
like:

idle - Start - 1010000A - 0000addrA - DataByteA -
Stop - idle

Built-in Hardware Features 267

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 267

In the second byte sent, the 0b00000addr pattern in-
dicates that the four “addr” address bits become the ad-
dress to set the EEPROM’s internal address pointer to
for subsequent operations. After the two bytes have
been sent, the SCL and SDA lines are returned to
“IDLE” for three cycles, using the instruction:

movlw 0x0C0

iorwf GPIO, f ; set SDA /SCL

before another operation can complete.
The address data write is similar to the address write,

but does not force the two lines into IDLE mode and it
passes along a data byte before stopping the transfer:

Idle – Start – 10100000A – 0000addrA – DataByteA
– Stop – idle

Data bytes can be read singly or sequentially depending
on the state of “ACK” from the PICmicro® MCU to the
EEPROM after reading a byte. To halt a read, when the
last byte to be read has been received, the PICmicro®

MCU issues a “NACK” (or “N” in the bitstream listing) to
indicate that the operation has completed.

A single byte read looks like:

idle – Start – 10100001A – DataByteN – Stop – idle

while a 2-byte read looks like:

idle – Start – 10100001A – DataByteA – DataByteN
– Stop – idle

The last operation is sending dummy “write” control
bytes to poll the EEPROM to see whether or not a byte

268 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 268

write has completed (10 msecs are required). If the
write has completed, then an “ACK” will be returned
else a “NACK” will be returned.

EPROM Program Memory Access

To read from the EPROM (or external memory), the fol-
lowing code can be used:

movfp SaveAddress + 1, TBLPTRH ; Setup TBLPTR
to the Data

movfp SaveAddress, TBLPTRL ; being Read

tablrd 0, 0, SaveData ; Load TBLAT
with Memory

tlrd 1, SaveData + 1 ; Contents
tlrd 0, SaveData

movfp SaveData + 1, WREG ; High
Instruction
Byte

:
movfp SaveData, WREG ; Low

Instruction
Byte

:

To write to the built-in EPROM of the PIC17Cxx, the
“_MCLR” line will have to be driven to Vpp (13 to 14
volts). When the program memory is being written, all
instruction execution in the PIC17Cxx stops. To resume
operation after a program memory write, an interrupt,
like returning from a TMR0 interrupt request, is exe-
cuted. Sample code for writing to the PIC17Cxx’s pro-
gram memory is as follows:

org 0x00010
TMR0Int ; Timer

Interrupt
Request

Built-in Hardware Features 269

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 269

; Acknowledge

retfie

:

movfp SaveAddress, TBLPTRL ; Point to the
Memory being

movfp SaveAddress + 1, TBLPTRH ; written to

bcf PORTA, 3 ; Turn on
Programming
Voltage

movlw HIGH ((100000 / 5) + 256) ; Delay 100
msecs for

movwf Dlay ; Programming
Voltage to
Stabilize

movlw LOW ((100000 / 5) + 256)
addlw 0x0FF
btfsc ALUSTA, Z
decfsz Dlay, f
goto $ – 3

movlw HIGH (65536 – 10000) ; Delay 10
msecs for
EPROM
Write

movwf TMR0H
movlw LOW (65536 – 10000)
movwf TMR0L

bsf T0STA, T0CS ; Start up the
Timer

movlw 1 << T0IE ; Enable
Interrupts

movwf INTSTA
bcf CPUSTA, GLINTD

tlwt 0, SaveData ; Load Table
Pointer with
Data

tlwt 1, SaveData + 1
tablwt 1, 0, SaveData + 1 ; Write the

Data In

270 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 270

nop
nop

clrf INTSTA, f ; Turn Off
Interrupts

bsf CPUSTA, GLINTD

movlw 2
call SendMSG

bsf PORTA, 3

Flash Program Memory Access

To read to program memory, the following code is used
for the 16F87x. Note the two “nops” to allow the opera-
tion to complete before the instruction is available for
reading:

bsf STATUS, RP1
movlw /movwf LOW address/ADDR, w
movwf EEADR ^ 0x0100
movlw /movwf HIGH address/ADDR, w
movwf EEADRH ^ 0x0100
bsf STATUS, RPO
bsf EECON1 ^ 0x0180, EEPGD
bsf EECON1 ^ 0x0180, RD
nop
nop
bcf STATUS, RPO
movf EEDATA, w
movwf ----- ; Store Lo

; Byte of
; Program
; Memory

movwf EEDATAH, w
movwf ----- ; Store Hi

; Byte of
; Program
; Memory

bcf STATUS, RP1

Built-in Hardware Features 271

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 271

Writing to program memory is similar to writing to
data, but also has the two nops in which the operation
takes place. There are no polling or interrupts available
for this operation, instead, the processor halts during
this operation. Even though the processor has stopped
for a program memory write, peripheral function
(ADC’s, serial I/O, etc.) are still active.

bsf STATUS, RP1
movlw /movf LOW address/ADDR, w
movwf EEADR
movlw /movwf HIGH address/ADDR, w
movwf EEADRH
movlw /movwf LOW Constant/DATA, w
movwf EEDATA
movlw /movwf HIGH Constant/DATA, w ; Maximum 0x03F
movwf EEDATAH
bsf STATUS, RPO
bsf EECON1 ^ 0x0180, EEPGO
bsf EECON1 ^ 0x0180, WREN
bcf INTCON, GIE] Critically
movlw 0x055] timed
movwf EECON2 ^ 0x0180] code.
movlw 0x0AA]
movwf EECON2 ^ 0x0180, OR]
nop] operation
nop] executes
bcf EECON1 ^ 0x0180, WREN
bsf INTCON, GIE

External Parallel Memory

Parallel memory devices can be connected to the 17Cxx
PICmicro® MCU devices to enhance the PICmicro®

MCUs program memory space. The interface provided is
up to 64k of 16 data bit “words” via a multiplexed ad-
dress/data bus. The multiplexed bus may seem some-
what difficult to use, but it actually is not; memory
devices can be added quite easily and quickly.

There are four memory modes available to the 17Cxx
PICmicro® MCUs:

272 Chapter 7

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 272

Built-in Hardware Features 273

PIC17Cxx Memory Modes

Mode Program memory characteristics
Microcontroller Internal to the PICmicro® MCU, able

to read Configuration Fuses and
Read and Write Program Memory

Protected Internal to the PICmicro® MCU, able
Microcontroller to read Configuration fuses Program

Memory can be read but not Written
Extended Program Memory Internal to PICmicro®

Microcontroller MCU Accessible.
External Memory in Address Space
Above Read and Writeable as well.
Unable to read Configuration
Fuses.

Microprocessor No internal Program Memory or
Configuration Fuses Accessible.
Whole 64k program memory space
Accessible outside PICmicro® MCU

These modes can be seen in Fig. 7.39.
An unprogrammed PC17Cxx’s configuration fuses

sets the PICmicro® MCU into “microprocessor” mode
that cannot access any internal program memory. This
allows output devices to be placed into applications,
with external program memory providing the applica-
tion code. This feature allows a way of debugging an ap-
plication before it is burned into the PICmicro® MCU.

External memory can be read from or written to, us-
ing the “TABLRD” and “TABLWT” instructions. In ex-
tended microcontrollers and microprocessor modes,
the internal program memory can be read using the
“TABLRD” instruction in the microcontroller modes.
These “Table” instructions use the “Table Pointer” reg-
ister (“TBLPTRH” for the high 8 bits and “TBLPTRL”
for the low 8 bits) to address the operation. During table
reads and writes, the “table latch” register (“TABLATH”
for the high byte and “TABLATL” for the low byte) is

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 273

used to buffer the 16 bits during the transfer because
the 17Cxx PICmicro® MCUs processor can only access
data 8 bits at a time.

The block diagram for accessing program memory in
the 17Cxx family of PICmicro® MCUs is shown in Fig. 7.40.

To execute a read or write to program memory, the
address in the table pointer has to be first set up. Writing
to each of the two 8-bit registers does this. Next, if the
operation is a read, the “TABLRD” instruction is exe-
cuted with a dummy destination to update the table

274 Chapter 7

Figure 7.39

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 274

The external program memory read is identical to the
internal EPROM program memory read.

Built-in Hardware Features 275

Figure 7.40 PIC17Cxx External Memory Access

PIC17Cxx Program Memory Table Read Code

movlw HIGH PM_address ; Set up Table Pointer
movwf TBLPTRH
movlw LOW PM_address
movwf TABLPTRL
tablrd 0, 0, WREG ; Update Latch Register
tlrd 1, WREG ; Read High Byte
movwf HIGH Destination
tablrd 0, 0, WREG ; Read Low Byte
movwf LOW Destination

latch register. Once this is done, two read instructions
are carried out to read the 16 bits at the specified ad-
dress. This instruction sequence is

5194 Predko Pocket Chapter 7 9/25/01 4:25 PM Page 275

This page intentionally left blank.

Chapter

PICmicro® MCU
Hardware Interfacing

Power

Connecting a PICmicro® MCU only requires a 0.01 to 0.1
uF “decoupling” cap across the “Vdd” and “Vss” pins. A
typical Power connection is shown in Fig. 8.1. This ca-
pacitor should be of low “ESR” type (typically of “tanta-
lum” type).

“Standard” PICmicro® MCUs are designed for any-
where from 4.0 to 6.0 volts of power. Some PICmicro®

MCUs have been “qualified” to run from 2.0 to 6.0 volts
and are identified for having this capability as being

8

277

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 277

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

“low-voltage” devices. These low-voltage parts are iden-
tical to the high-voltage supply parts except that they
have been tested at the factory to run with input volt-
ages down to 2.0 volts. Low voltage PICmicro® MCU
parts are identified by the addition of the letter “L” be-
fore the “C” or “F” in the part number.

Note that the “brown out reset” built into many
PICmicro® MCUs is designed to become active at 4.5
volts. This makes the brown out reset incompatible with
most low-voltage applications, although there are some

278 Chapter 8

Figure 8.1 PICmicro® MCU Power Connections

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 278

PICmicro® MCUs that have a programmable brown out
reset voltage level.

In Fig. 8.2, if Vdd goes below the brown out voltage of
the Zener diode, then _MCLR will be pulled low and the
PICmicro® MCU will become reset.

The PIC16HV540 has a built-in voltage regulator that
allows the PICmicro® MCU to be driven without any ex-
ternal regulators for battery application or poorly regu-
lated power input. The PICmicro® MCU itself is pin and
program compatible with the PIC16F54, with PORTA
and PORTB having different voltage outputs.

To connect a PIC16HV540 to a battery, the circuit can
be as simple as is shown in Fig. 8.3, with “sleep” used for
turning the device “off” and putting it in a low-power
state.

The device’s block diagram looks like Fig. 8.4.
The voltage regulator can work as either a 5- or 3-volt

regulator by setting or resetting, respectively, the “RL”

PICmicro® MCU Hardware Interfacing 279

Figure 8.2 “Brown Out” Reset Circuit

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 279

280 Chapter 8

Figure 8.3 High-Voltage PICmicro® MCU Connections

Figure 8.4 Actual High-Voltage PICmicro® MCU Circuit

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 280

bit of the “option 2” register, which is in the “OPTION/
TRIS” address space of the low-end PICmicro® MCU
processor. This register is an auxiliary configuration
fuses register, which can be modified within an applica-
tion. The bits of the OPTION2 register are defined as:

PICmicro® MCU Hardware Interfacing 281

PIC16HV540 “OPTION2” Register Definition

Bit Description
7–6 Unused
5 WPC - When set, device will Wake Up On RBO -

RB3 changing
4 SWE - Software Watchdog Timer. If the WDT is

not Enabled in the Configuration Fuses,
setting this bit will enable it in software

3 RL - Regulated voltage select bit (Set for 5
Volts, Reset for 3 Volts)

2 SL - Sleep Voltage Level Setting (if Set, use
“RL” Voltage, when Reset, use 3 Volts)

1 BL - Brown Out Voltage Select. When Set -
3.1 volts for 5 Volt Operation and when
Reset - 2.2 Volts for 3 Volt Operation

0 BE - Brown Out Checking Enabled when Set.

OPTION2 is written using the TRIS instruction as:

TRIS 7

or

TRIS OPTION2

Reset

If the simple reset shown in Fig. 8.5 is used for reset,
then the “PWRTE” option should be enabled to allow
the PICmicro® MCU’s power input to stabilize before the
device starts executing.

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 281

Digital Logic Interfacing

Typical PICmicro® MCU output voltages are

Vol (“output low voltage”) = 0.6 V (max)
Voh (“output high voltage”) = VDD

- 0.7 V (min)

The input “threshold” voltage, the point at which the in-
put changes from an “ I ” to an “O” and vice versa, is also
dependent on the input power “Vdd” voltage level. The
threshold is different for different devices. For a number
of different PICmicro® MCU part numbers, this value is
specified as being in the range:

0.25 Vdd + 0.8V >= Vthreshold
>= 0.48 Vdd

Parallel Bus Device Interfacing
Parallel busses can be created using PORTB for eight
data bits and using other PORT pins for the “_RD” and
“_WR” lines as shown in Fig. 8.6. Code to access the
Parallel Bus Devices follows.

282 Chapter 8

Figure 8.5 Simple External PICmicro® MCU Reset Circuit

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 282

PICmicro® MCU Hardware Interfacing 283

Figure 8.6 PICmicro® MCU Simulated Parallel IO Port

bsf STATUS, RPO ; Put PORTB into Input Mode
movlw 0x0FF
movwf TRISB ^ 0X080
bcf STATUS, RPO
bcf PORTA, 0 ; Drop the “_RD” line
call Dlay ; Delay until Data Output

Valid
movf PORT B, w ; Read Data from the Port
bsf PORT A, 0 ; “_RD” = 1 (disable “_RD”

Line)

Writing parallel bus devices is accomplished by the code:

bsf STATUS, RPO
clrf TRIS B ^ 0X080 ; PORTB Output
bcf STATUS, RPO

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 283

bcf PORTA, 1 ; Enable the “_WR1” Line
movwf PORTB ; output the Data
call Dlay ; Wait Data Receive Valid
bsf PORTA ; “_WR1” � 1.

Button Interfacing

The typical button interface circuit is seen in Fig. 8.7.

The first button debouncing macro is inserted in the
source code and waits for a Port Pin to reach a set state
for a specific amount of time before continuing.

Debounce macro HiLo, Port, Bit
if HiLo == Lo
btfss Port,Bit ; Is the Button Pressed?

else
btfsc Port,Bit

endif
goto $ - 1 ; Yes - Wait for it to be Released

movlw InitDlay ; Wait for Release to be Debounced
movwf Dlay ; Have to Delay 20 msecs
movlw 0

if HiLo == Lo
btfss Port,Bit ; If Button Pressed, Wait Again for

; it

284 Chapter 8

Figure 8.7 Simple Button Interface

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 284

else
btfsc Port,Bit

endif
goto $ - 6 ; to be Released

ifndef Debug ; Skip Small Loop if “Debug”
; Defined

addlw 1 ; Increment the Delay Count
btfsc STATUS, Z ; Loop If Low Byte (w) Not Equal

; to Zero
else
nop ; Match the Number of Instructions
nop

endif
decfsz Dlay
goto $ - 5

endm

The "InitDlay" constant is calculated using the formula:

TimeDelay = (((InitDlay - 1) * 256) * 7) /
(Frequency / 4)

or

InitDlay = ((TimeDelay * (Frequency / 4)) /
(256 * 7)) + 1

The second button debounce macro works similarly to
the Parallax Basic Stamp’s PBASIC "Button" Function.

Button macro Port, Pin, Down, Delay, Rate, Variable,
Target, Address
local ButtonEnd
incf Variable, w ; Increment the Counter

Variable
if ((Down == 0) && (Target == 0)) || ((Down == 1)

&& (Target == 1))
btfsc Port, Pin ; If Low, then Valid Pin

else

PICmicro® MCU Hardware Interfacing 285

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 285

btfss Port, Pin ; If High, then Valid
Pin

endif
clrw ; Not Pressed, Clear the

Counter
movwf Variable ; Save the Counter Value
movlw Delay & 0x07F
subwf Variable, w ; Button Debounced?
btfsc STATUS, Z
goto Address ; If Equal, then “Yes”

if ((Delay & 0x080) != 0) ; Is Autorepeat used?
btfsc STATUS, C
decf Variable ; No - Decrement if >

“Delay”
else
btfss STATUS, C
goto ButtonEnd ; Less than Expected -

End
xorlw Rate ; At the Autorepeat

Point yet?
btfsc STATUS, Z
goto ButtonEnd ; No - Keep Incrementing

movlw Delay ; Yes, Reset back to the
Original

movwf Variable ; Count and Repeat
goto Address

endif
ButtonEnd ; Macro Finished
endm

The macro’s parameters are defined as:

286 Chapter 8

PicBasic “Button” Debounce Macro Code Parameters

Parameter Function
Port, Pin The Button Pin (ie "PORTA, 0")
Down The State When the Button is Pressed

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 286

Switch Matrix Keypad/Keyboard Interfacing

A switch matrix is simply a two-dimensional matrix of
wires, with switches at each vertex. The switch is used
to interconnect rows and columns (which are optionally
pulled to ground) in the matrix, as can be seen in Fig. 8.8.

PICmicro® MCU Hardware Interfacing 287

Figure 8.8 Switch Matrix with Pull Down Transistors

PicBasic “Button” Debounce Macro Code Parameters
(Continued)

Delay The number of iterations of the Macro
code before the "Address" is jumped to
(to 127). If Set to 0, then Jump if
"Target" met without any debouncing.
If Bit 7 of "Delay" is set, then no
auto-repeats.

Rate After the Initial jump to "address",
the number of cycles (to 127) before
autorepeating.

Target The state ("1" or "0") to respond to.
Address The Address to Jump to when the Button

is pressed or Auto-repeats

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 287

In this case, by connecting one of the columns to
ground, if a switch is closed, the pull down on the row
will connect the line to ground. When the row is polled
by an I/O pin, a “0” or low voltage will be returned instead
of a “1” (which is what will be returned if the switch in
the row that is connected to the ground is open).

The PICmicro® MCU is well suited to implementing
switch matrix keyboards with PORTB’s internal pull-ups
and the ability of the I/O ports to simulate the open-
drain pull-downs of the columns as is shown in Fig. 8.9.

288 Chapter 8

Figure 8.9 4 � 4 Switch Matrix Connected to PORTB

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 288

Normally, the pins connected to the columns are left in
tristate (input) mode. When a column is being scanned,
the column pin is output enabled driving a “0” and the
four input bits are scanned to see if any are pulled low.
In this case, the keyboard can be scanned for any closed
switches (buttons pressed) using the code:

int KeyScan() // Scan the Keyboard and
{ Return when a key is

// pressed
int i = 0;
int key = -1;

while (key == -1) {

for (i = 0; (i < 4) & ((PORTB & 0x00F)
== 0x0F0); i++);

switch (PORTB & 0x00F) { // Find Key that is
Pressed

case 0x00E: // Row 0
key = i;
break;

case 0x00D: // Row1
case 0x00C:

key = 0x04 + i;
break;

case 0x00B: // Row2
case 0x00A:
case 0x009:
case 0x008:

key = 0x08 + i;
break;

else // Row3
key = 0x0C + i;
break;

}//end switch
}// end while

return key;

} // End KeyScan

PICmicro® MCU Hardware Interfacing 289

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 289

The “KeyScan” function will only return when a key has
been pressed. This routine will not allow keys to be de-
bounced or for other code to execute while it is executing.

These issues can be resolved by putting the key scan
into an interrupt handler, which executes every 5 msecs:

Interrupt KeyScan() // 5 msec Interval Keyboard
Scan

{

int i = 0;
int key = -1

for (i = 0; (i <4) & ((PORTB & 0x00F) == 0x00F));
i++);

if (PORTB & 0x00F) != 0x00F) { // Key Pressed
switch (PORTB & 0x00F) { // Find Key that is

Pressed
case 0x00E: // Row 0

key = i;
break;

case 0x00D: // Row1
case 0x00C:

key = 0x04 + i;
break;

case 0x00B: // Row2
case 0x00A:
case 0x009:
case 0x008:

key = 0x08 + i;
break;

else // Row3
key = 0x0C+i;
break;

}//end switch
if (key == KeySave) {

keycount = keycount + 1; // Increment Count
if (keycount == 4)

keyvalid = key; // Debounced Key
} else

keycount = 0; // No match - Start
// Again

290 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 290

KeySave = key; // Save Current key for
next 5 msec

} // Interval

} // End KeySave

This interrupt handler will set “keyvalid” variable to the
row/column combination of the key button (which is
known as a “scan code”) when the same value comes up
four times in a row. For time scan this is the debounce
routine for the keypad. If the value doesn’t change for
four intervals (20 msecs in total), the key is determined
to be debounced.

Combining Input and Output

When interfacing the PICmicro® MCU to a driver and re-
ceiver (such as a memory with a separate output and in-
put), a resistor can be used to avoid bus contention at
any of the pins as is shown in Fig. 8.10.

Buttons can also be put on PICmicro® MCU I/O lines
as is shown in Fig. 8.11.

PICmicro® MCU Hardware Interfacing 291

Figure 8.10 Combining “I/O” on One PICmicro® MCU Pin

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 291

Simulated “Open Collector”/“Open Drain” I/O
“Open Collector” (“Open Drain”) I/O pins in the
PICmicro® MCU are wired as in Fig. 8.12. These pins are
available in different devices for different functions.
This action can be simulated by using the code listed be-
low that enables the I/O pin output as low if the Carry
flag is reset. If the Carry flag is set, then the pin is put
into input mode.

bcf PORT#, pin ; Make Sure PORTB Pin Bit is
“0”

bsf STATUS, RPO
btfss STATUS, C ; If Carry Set, Disable Open

Collector
goto $ + 4 ; Carry Reset, Enable Open

Collector
nop
bsf TRIS ^ 0x080, pin
goto $ + 3

292 Chapter 8

Figure 8.11 Combining Button Input with Digital I/O

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 292

bcf TRIS ^ 0x080, pin
goto $ + 1
bcf STATUS, RPO

LEDs

The typical circuit that used to control an LED from a
PICmicro® MCU I/O pin is shown in Fig. 8.13. With this
circuit, the LED will light when the microcontroller’s
output pin is set to "0" (ground potential). When the pin
is set to input or outputs a "1", the LED will be turned
off.

Multisegment LED displays

Seven Segment LED Displays (Fig. 8.14) can be added
to a circuit without a lot of software effort. By turning on
specific LEDs (each of which lights up a "segment" in

PICmicro® MCU Hardware Interfacing 293

Figure 8.12 “Open Drain” I/O Pin Configuration

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 293

294 Chapter 8

Figure 8.13 LED Circuit Operation

Figure 8.14 Organization of a 7-Segment LED Display

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 294

the display), the display can be used to output decimal
numbers.

Each one of the LEDs in the display is given an iden-
tifier and a single pin of the LED is brought out of
the package. The other LED pins are connected to-
gether and wired to a common pin. This common LED
pin is used to identify the type of Seven Segment
Display (as either "Common Cathode" or "Common
Anode").

The typical method of wiring multiple Seven Segment
LED Displays together is to wire them all in parallel and
then control the current flow through the common Pin.
Because the current is generally too high for a single mi-
crocontroller pin, a transistor is used to pass the current
to the common power signal. This transistor selects
which display is active as shown in Fig. 8.15. In this cir-

PICmicro® MCU Hardware Interfacing 295

Figure 8.15 Wiring Four 7-Segment LED Displays

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 295

cuit, the PICmicro® MCU will shift between the displays
showing each digit in a very short "time slice". This is
usually done in a Timer Interrupt Handler. The basis for
the interrupt handler’s code is listed below:

Int
- Save Context Registers
- Reset Timer and Interrupt
- LED_Display = 0 ; Turn Off all the

LEDs
- LED_Output = Display[Cur]
- Cur = (Cur + 1) mod #Displays ; Point to Next

Sequence
Display

- LED_Display = 1 << Cur ; Display LED for
Current Display

- Restore Context Registers
- Return from Interrupt

This code will cycle through each of the digits (and dis-
plays), with current going through the transistors for
each one. To avoid flicker, generally the code should run
so that each digit is turned on/off at least 50 times per
second. The more digits present, the faster you, the in-
terrupt handler, will have to cycle the interrupt handler
(i.e., eight Seven Segment Displays must cycle at least
2,000 digits per second, which is twice as fast as four
displays).

LCD Interfaces

The most common connector used for the 44780-based
LCDs is 14 pins in a row, with pin centers 0.100" apart.
The pins are wired as:

296 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 296

The contrast voltage to the display is typically con-
trolled using a potentiometer wired as a voltage divider.
This will provide an easily variable voltage between
Ground and Vcc, which will be used to specify the con-
trast (or “darkness”) of the characters on the LCD
screen. This circuit is shown in Fig. 8.16.

The interface is a parallel bus, allowing simple and
fast reading/writing of data to and from the LCD as
shown in Fig. 8.17.

This waveform will write an ASCII byte out to the
LCD’s screen. The ASCII code to be displayed is 8-bits
long and is sent to the LCD either 4- or 8-bits at a time.
If 4-bit mode is used, two "nybbles" of data (sent high
4-bits and then low 4-bits with an "E" Clock pulse with
each nybble) are sent to make up a full 8-bit transfer.

PICmicro® MCU Hardware Interfacing 297

Figure 8.16 LCD Contrast Voltage Circuit

Hitachi 44780 Based LCD Pinout

Pin Description
1 Ground
2 Vcc
3 Contrast Voltage
4 ”R/S” - Instruction/Register Select
5 “R/W” - Read/Write LCD Registers
6 “E” - Clock

7–14 D0-D7 Data Pins

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 297

The "E" Clock is used to initiate the data transfer within
the LCD.

Sending parallel data as either 4- or 8-bits are the two
primary modes of operation. While there are secondary
considerations and modes, deciding how to send the
data to the LCD is the most critical decision to be made
for an LCD interface application.

Eight bit mode is best used when speed is required in
an application and at least ten I/O pins are available.
Four bit mode requires a minimum of 6 bits. To wire a
microcontroller to an LCD in 4-bit mode, just the top
4-bits (DB4-7) are written to.

The "R/S" bit is used to select whether data or an
instruction is being transferred between the micro-
controller and the LCD. If the bit is set, then the byte at
the current LCD "Cursor" position can be read or writ-
ten. When the bit is reset, either an instruction is being
sent to the LCD or the execution status of the last in-
struction is read back (whether or not it has com-
pleted).

The different instructions available for use with the
44780 are shown in the following table:

298 Chapter 8

Figure 8.17 LCD Data Write Waveform

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 298

Hitachi 44780 Based LCD Commands

R/S R/W D7 D6 D5 D4 D3 D2 D1 D0 Instruction/
Description

4 5 14 13 12 11 10 9 8 7 Pins
0 0 0 0 0 0 0 0 0 1 Clear Display
0 0 0 0 0 0 0 0 1 * Return Cursor and

LCD to Home
Position

0 0 0 0 0 0 0 1 ID S Set Cursor Move
Direction

0 0 0 0 0 0 1 D C B Enable Display/
Cursor

0 0 0 0 0 1 SC RL * * Move Cursor/Shift
Display

0 0 0 0 1 DL N F * * Reset/Set Interface
Length

0 0 0 1 A A A A A A Move Cursor to
CGRAM

0 0 1 A A A A A A A Move Cursor to
Display

0 1 BF * * * * * * * Poll the “Busy
Flag”

1 0 H H H H H H H H Write Hex Character
to the Display at
the Current Cursor
Position

1 1 H H H H H H H H Read Hex Character
at the Current
Cursor Position on
the Display

The bit descriptions for the different commands are

"*" - Not Used/Ignored. This bit can be either "1"
or "0"

Set Cursor Move Direction:
ID - Increment the Cursor after Each Byte Written

to Display if Set
S - Shift Display when Byte Written to Display

PICmicro® MCU Hardware Interfacing 299

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 299

Enable Display/Cursor
D - Turn Display On(1)/Off(0)
C - Turn Cursor On(1)/Off(0)
B - Cursor Blink On(1)/Off(0)

Move Cursor/Shift Display
SC - Display Shift On(1)/Off(0)
RL - Direction of Shift Right(1)/Left(0)

Set Interface Length
DL - Set Data Interface Length 8(1)/4(0)
N - Number of Display Lines 1(0)/2(1)
F - Character Font 5x10(1)/5x7(0)

Poll the "Busy Flag"
BF - This bit is set while the LCD is processing

Move Cursor to CGRAM/Display
A - Address

Read/Write ASCII to the Display
H - Data

Reading Data back is best used in applications that re-
quire data to be moved back and forth on the LCD (such
as in applications which scroll data between lines). The
"Busy Flag" can be polled to determine when the last in-
struction that has been sent has completed processing.

For most applications, there really is no reason to
read from the LCD. "R/W" is tied to ground and the soft-
ware simply waits the maximum amount of time for each
instruction to complete. This is 4.1 msecs for clearing
the display or moving the cursor/display to the "home
position" and 160 usecs for all other commands. As well
as making application software simpler, it also frees up a
microcontroller pin for other uses.

One area of confusion is how to move to different lo-
cations on the display and, as a follow on, how to move
to different lines on an LCD display. The following table
shows how different LCD displays that use a single

300 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 300

44780 can be set up with the addresses for specific char-
acter locations. The LCDs listed are the most popular
arrangements available and the "Layout" is given as
number of columns by number of lines:

PICmicro® MCU Hardware Interfacing 301

Hitachi 44780 Based LCD Types and Character Locations

LCD Top Ninth Second Third Fourth Comments
Left Line Line Line

8x1 0 N/A N/A N/A N/A Note 1.
16x1 0 0x040 N/A N/A N/A Note 1.
16x1 0 8 N/A N/A N/A Note 3.
8x2 0 N/A 0x040 N/A N/A Note 1.
10x2 0 0x008 0x040 N/A N/A Note 2.
16x2 0 0x008 0x040 N/A N/A Note 2.
20x2 0 0x008 0x040 N/A N/A Note 2.
24x2 0 0x008 0x040 N/A N/A Note 2.
30x2 0 0x008 0x040 N/A N/A Note 2.
32x2 0 0x008 0x040 N/A N/A Note 2.
40x2 0 0x008 0x040 N/A N/A Note 2.
16x4 0 0x008 0x040 0x020 0x040 Note 2.
20x4 0 0x008 0x040 0x020 0x040 Note 2.
40x4 0 N/A N/A N/A N/A Note 4.

Note 1: Single 44780/No Support Chip.
Note 2: 44780 with Support Chip.
Note 3: 44780 with Support Chip. This is quite

rare.
Note 4: Two 44780s with Support Chips. Addressing

is device specific.

Cursors for the 44780 can be turned on as a simple
underscore at any time using the "Enable Display/Cursor"
LCD instruction and setting the "C" bit. The "B" ("Block
Mode") bit is not recommended as this causes a flashing
full character square to be displayed and it really isn’t
that attractive.

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 301

The LCD can be thought of as a "Teletype" display be-
cause in normal operation, after a character has been
sent to the LCD, the internal "Cursor" is moved one
character to the right. The "Clear Display" and "Return
Cursor and LCD to Home Position" instructions are used
to reset the Cursor’s position to the top right character
on the display. An example of moving the cursor is
shown in Fig. 8.18.

To move the Cursor, the "Move Cursor to Display" in-
struction is used. For this instruction, bit 7 of the in-
struction byte is set with the remaining 7 bits used as
the address of the character on the LCD the cursor is to
move to. These 7 bits provide 128 addresses, which
matches the maximum number of LCD character ad-
dresses available. The table above should be used to de-
termine the address of a character offset on a particular
line of an LCD display. The LCD Character Set is shown
in Fig. 8.19.

302 Chapter 8

Figure 8.18 Moving an LCD Cursor

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 302

PICmicro® MCU Hardware Interfacing 303

Figure 8.19 LCD Character Set

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 303

Eight programmable characters are available and use
codes 0x000 to 0x007. They are programmed by point-
ing the LCD’s "Cursor" to the Character Generator RAM
(“CGRAM”) Area at eight times the character address.
The next 8 bytes written to the RAM are the line infor-
mation of the programmable character, starting from the
top. The “Character Box” is shown in Fig. 8.20.

The user defined character line information is saved
in the LCD’s "CGRAM" area. This 64 bytes of memory is
accessed using the "Move Cursor into CGRAM" instruc-
tion in a similar manner to that of moving the cursor to
a specific address in the memory with one important
difference.

304 Chapter 8

Figure 8.20 LCD Character “Box”

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 304

This difference is that each character starts at eight
times its character value. This means that user definable
character 0 has its data starting at address 0 of the
CGRAM, character 1 starts at address 8, character 2
starts at address 0x010 (16) and so on. To get a specific
line within the user definable character, its offset from
the top (the top line has an offset of 0) is added to the
starting address. In most applications, characters are
written to all at one time with character 0 first. In this
case, the instruction 0x040 is written to the LCD
followed by all the user-defined characters.

Before commands or data can be sent to the LCD
module, the module must be initialized. For 8-bit mode,
this is done using the following series of operations:

1. Wait more than 15 msecs after power is applied.
2. Write 0x030 to LCD and wait 5 msecs for the

instruction to complete.
3. Write 0x030 to LCD and wait 160 usecs for

instruction to complete.
4. Write 0x030 AGAIN to LCD and wait 160 usecs or

Poll the Busy Flag.
5. Set the Operating Characteristics of the LCD.

- Write “Set Interface Length”
- Write 0x010 to turn off the Display
- Write 0x001 to Clear the Display
- Write “Set Cursor Move Direction” Setting
Cursor Behavior Bits

- Write “Enable Display/Cursor” & enable Display
and Optional Cursor

The first macro is “LCD8”, which provides a basic inter-
face to the LCD with “worst” case start-up delays. To in-
voke it, the statement

LCD8 DataPort, EPort, EPin, RSPort, RSPin,
RWPort, RWPin, Frequency

PICmicro® MCU Hardware Interfacing 305

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 305

is put in where “DataPort” is the 8-bit I/O port. “EPort”
and “EPin” are the “E” clock Definition. “RSPort” and
“RSPin” are the “RS” LCD Data Type Input. “RWPort”
and “RWPin” are the pins used to poll the LCD for data
reply (and are essentially unused). “Frequency” is the
PICmicro® MCU operating speed and is used to calcu-
late the delay values. The only variable required for the
“LCD8” and “LCD8Poll” macros is the 8-bit variable
“Dlay”.

This macro should work with any low-end or mid-
range PICmicro® MCU. Note that the “LCDPORTInit”
subroutine cannot be used with low-end PICmicro®

MCUs. To initialize the I/O ports the “TRIS” statements
will have to be programmed in manually.

LCD8 Macro DataPort, EPort, EPin, RSPort, RSPin,
RWPort, RWPin, Freq
variable Dlay5Value, Dlay160Value, Dlay160Bit1 =
-1, Dlay160Bit2 = -1
variable BitCount = 0
variable Value = 128, Bit = 7

Dlay5Value = ((5007 * (Freq / 1000) / 4000) / 7)
� 256

Dlay160Value = (163 * (Freq / 1000) / 4000) / 3

while (Bit >= 0) ; Find the Number of
; Bits and their
; positions in
; “Dlay160Value”

if ((Dlay160Value & Value) != 0)
if (Dlay160Bit1 == -1) ; Set the Upper Bit

Dlay160Bit1 = Bit
else
if (Dlay160Bit2 == -1)

Dlay160Bit2 = Bit
endif
endif

BitCount = BitCount + 1
endif

306 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 306

Value = Value >> 1
Bit = Bit - 1
endw
if (BitCount > 2) ; Just Want max two

; Bits
if ((Dlay160Bit1 - 1) == Dlay160Bit2)

Dlay160Bit1 = Dlay160Bit1 + 1 ; Shift Top up by 1
Dlay160Bit2 = -1 ; Delete Second
else

Dlay160Bit2 = Dlay160Bit2 + 1 ; Shift Bottom up by
; 1

endif
endif

Dlay5 ; Delay 5 msecs
movlw (Dlay5Value & 0x0FF00) >> 8
movwf Dlay
movlw Dlay5Value & 0x0FF
subwf Dlay, w
xorlw 0x0FF
addwf Dlay, w
btfsc STATUS, Z
decfsz Dlay, f
goto $ - 5

return

LCDPORTInit ; Initialize the I/O
; Ports

bsf STATUS, RP0 ; ONLY used by mid-
; range

movlw 0x000
movwf DataPort
bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
bcf STATUS, RP0
bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
return

LCDIns ; Send the
; Instruction to the
; LCD

movwf DataPort
bcf RSPort, RSPin

PICmicro® MCU Hardware Interfacing 307

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 307

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

andlw 0x0FC ; Have to Delay 5
; msecs?

btfsc STATUS, Z
call Dlay5

return

LCDChar ; Send the Character
; to the LCD

movwf DataPort
bsf RSPort, RSPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

308 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 308

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit-2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

return

LCDInit ; Do the 8 Bit
; Initialization

call Dlay5 ; Wait 15 msecs
call Dlay5
call Dlay5
movlw 0x030
call LCDIns ; Send the Reset

; Instruction
call Dlay5
movlw 0x030
call LCDIns
movlw 0x030
call LCDIns
movlw 0x038 ; Set Interface

; Length
call LCDIns
movlw 0x010 ; Turn Off Display
call LCDIns
movlw 0x001 ; Clear Display RAM
call LCDIns
movlw 0x006 ; Set Cursor

; Movement
call LCDIns
movlw 0x00E ; Turn on

; Display/Cursor
call LCDIns
return

endm

PICmicro® MCU Hardware Interfacing 309

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 309

The “LCD8Poll” macro is slightly more sophisticated
than the “LCD8” macro. Instead of providing “hard-
coded” delays in the application, the code “polls” the
LCD to see if the Operation is complete before continu-
ing. This is done by putting the “DataPort” into “Input
Mode” and then strobing the “E” bit (with RS reset and
RW set) and looking at bit 7 of the I/O port. The macro
code is

LCD8Poll Macro DataPort, EPort, EPin, RSPort, RSPin,
RWPort, RWPin, Freq
variable Dlay5Value, Dlay160Value, Dlay160Bit1 �
-1, Dlay160Bit2 � -1
variable BitCount = 0
variable Value = 128, Bit = 7
errorlevel 0,-224

Dlay5Value = ((5007 * (Freq / 1000) / 4000) / 7)
� 256

Dlay160Value = (163 * (Freq / 1000) / 4000) / 3

while (Bit >= 0) ; Find the Number of
; Bits and their
; Positions in
; “Dlay160Value”

if ((Dlay160Value & Value) != 0)
if (Dlay160Bit1 == -1) ; Set the Upper Bit

Dlay160Bit1 = Bit
else
if (Dlay160Bit2 == -1)

Dlay160Bit2 = Bit
endif
endif

BitCount = BitCount � 1
endif

Value = Value >> 1
Bit = Bit - 1
endw
if (BitCount > 2) ; Just Want max two

; Bits
if ((Dlay160Bit1 - 1) == Dlay160Bit2)

Dlay160Bit1 = Dlay160Bit1 + 1 ; Shift Top up by 1
Dlay160Bit2 = -1 ; Delete Second
else

310 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 310

Dlay160Bit2 = Dlay160Bit2 + 1 ; Shift Bottom up by
; 1

endif
endif

Dlay5 ; Delay 5 msecs
movlw (Dlay5Value & 0x0FF00) >> 8
movwf Dlay
movlw Dlay5Value & 0x0FF
subwf Dlay, w
xorlw 0x0FF
addwf Dlay, w
btfsc STATUS, Z
decfsz Dlay, f
goto $ - 5

return

LCDPORTInit ; Initialize the I/O
; Ports

bsf STATUS, RP0 ; ONLY used by mid-
; range

movlw 0x000
movwf DataPort
bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
bcf STATUS, RP0
bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
return

LCDIns ; Send the
; Instruction to
; the LCD

movwf Dlay
movlw 0x0FF ; Read the "BF" Flag
tris DataPort
bcf RSPort, RSPin ; Read the

; Instruction
; Register

bsf RWPort, RWPin
goto $ + 1
bsf EPort, EPin
nop
movf DataPort, w ; Read the Data Port

; Value

PICmicro® MCU Hardware Interfacing 311

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 311

nop
bcf EPort, EPin
andlw 0x080 ; Is the High Bit

; Set?
btfss STATUS, Z
goto $ - 7

bcf RWPort, RWPin
movlw 0 ; Put the DataPort

; Back into Output
; Mode

tris DataPort
movf Dlay, w ; Get the Saved

; Character
movwf DataPort

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
return

LCDChar ; Send the Character
; to the LCD

movwf Dlay
movlw 0x0FF ; Read the “BF” Flag
tris DataPort
bcf RSPort, RSPin ; Read the

; Instruction
; Register

bsf RWPort, RWPin
goto $ + 1
bsf EPort, EPin
nop

312 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 312

movf DataPort, w ; Read the Data Port
; Value

nop
bcf EPort, EPin
andlw 0x080 ; Is the High Bit

; Set?
btfss STATUS, Z
goto $ - 7

bsf RSPort, RSPin
bcf RWPort, RWPin
movlw 0 ; Put the DataPort

; Back into Output
; Mode

tris DataPort
movf Dlay, w ; Get the Saved

; Character
movwf DataPort

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
return

LCDInit ; Do the 8 Bit
; Initialization

call Dlay5 ; Wait 15 msecs
call Dlay5
call Dlay5
movlw 0x030
movwf DataPort

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

PICmicro® MCU Hardware Interfacing 313

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 313

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin ; Send the Reset

; Instruction
call Dlay5

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin ; Send the Reset

; Instruction
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

movlw 0x030
call LCDIns

314 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 314

movlw 0x038 ; Set Interface
; Length

call LCDIns
movlw 0x010 ; Turn Off Display
call LCDIns
movlw 0x001 ; Clear Display RAM
call LCDIns
movlw 0x006 ; Set Cursor

; Movement
call LCDIns
movlw 0x00E ; Turn on

; Display/Cursor
call LCDIns
return

errorlevel 0,+224 ; Enable "TRIS"
; Indicators

endm

The LCD should be initialized in 4-bit mode, data is writ-
ten to the LCD in terms of nybbles. This is done because
initially just single nybbles are sent (and not two, which
make up a byte and a full instruction). When a byte is
sent, the high nybble is sent before the low nybble and
the "E" pin is toggled each time a nybble is sent to the
LCD. To initialize in 4-bit mode:

1. Wait more than 15 msecs after power is applied.
2. Write 0x03 to LCD and wait 5 msecs for the

instruction to complete.
3. Write 0x03 to LCD and wait 160 usecs for

instruction to complete.
4. Write 0x03 AGAIN to LCD and wait 160 usecs (or

poll the Busy Flag).
5. Set the Operating Characteristics of the LCD.

- Write 0x02 to the LCD to Enable Four Bit Mode

All following instruction/Data Writes require two
nybble writes:

- Write "Set Interface Length"
- Write 0x01/0x00 to turn off the Display

PICmicro® MCU Hardware Interfacing 315

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 315

- Write 0x00/0x01 to Clear the Display
- Write "Set Cursor Move Direction" Setting

Cursor Behavior Bits
- Write "Enable Display/Cursor" & enable Display

and Optional Cursor

The 4-bit LCD interfacing (the “LCD4” Macro) is modi-
fied from the “LCD8” macro. To invoke the macro, the
similar statement

LCD4 DataPort, DataBit, EPort, EPin, RSPort, RSPin,
RWPort, RWPin, Freq

is used. The “DataBit” parameter is lowest of the four
data bits. It can only be “0” or “4”. The macro re-
quires the “LCDTemp” Variable along with “Dlay”. The
Macro is

LCD4 Macro DataPort, DataBit, EPort, EPin, RSPort,
RSPin, RWPort, RWPin, Freq

variable Dlay5Value, Dlay160Value, Dlay160Bit1 =
-1, Dlay160Bit2 = -1
variable BitCount = 0
variable Value = 128, Bit = 7

Dlay5Value = ((5007 * (Freq / 1000) / 4000) / 7)
+ 256

Dlay160Value = (163 * (Freq / 1000) / 4000) / 3

if ((DataBit != 0) && (DataBit != 4))
error "Invalid 'DataBit' Specification - Can only
be '0' or '4'"
endif

while (Bit >= 0) ; Find the Number of
; Bits and their
; Positions in
; "Dlay160Value"

if ((Dlay160Value & Value) != 0)
if (Dlay160Bit1 == -1) ; Set the Upper Bit

Dlay160Bit1 = Bit
else

316 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 316

if (Dlay160Bit2 == -1)
Dlay160Bit2 = Bit
endif
endif

BitCount = BitCount + 1
endif

Value = Value >> 1
Bit = Bit - 1
endw
if (BitCount > 2) ; Just Want max two

; Bits
if ((Dlay160Bit1 - 1) == Dlay160Bit2)

Dlay160Bit1 = Dlay160Bit1 + 1 ; Shift Top up by 1
Dlay160Bit2 = -1 ; Delete Second
else

Dlay160Bit2 = Dlay160Bit2 + 1 ; Shift Bottom up
; by 1

endif
endif

Dlay5 ; Delay 5 msecs
movlw (Dlay5Value & 0x0FF00) >> 8
movwf Dlay
movlw Dlay5Value & 0x0FF
subwf Dlay, w
xorlw 0x0FF
addwf Dlay, w
btfsc STATUS, Z
decfsz Dlay, f
goto $ - 5

return

LCDPORTInit ; Initialize the I/O
; Ports

bsf STATUS, RP0 ; ONLY used by mid-
; range

if (DataBit == 0)
movlw 0x0F0

else
movlw 0x00F

endif
movwf DataPort
bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
bcf STATUS, RP0

PICmicro® MCU Hardware Interfacing 317

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 317

bcf EPort, EPin
bcf RSPort, RSPin
bcf RWPort, RWPin
return

LCDIns ; Send the
; Instruction to
; the LCD

movwf LCDTemp ; Save the Value
if (DataBit == 0)
swapf LCDTemp, w ; Most Significant

; Nybble First
andlw 0x00F

else
andlw 0x0F0

endif
movwf DataPort
bcf RSPort, RSPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin

if (DataBit == 0)
movf LCDTemp, w
andlw 0x00F

else
swapf LCDTemp, w ; Least Significant

; Nybble Second
andlw 0x0F0

endif

318 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 318

movwf DataPort
bcf RSPort, RSPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

movf LCDTemp, w
andlw 0x0FC ; Have to Delay 5

; msecs?
btfsc STATUS, Z
call Dlay5

return

LCDChar ; Send the Character
; to the LCD

movwf LCDTemp ; Save the Value
if (DataBit == 0)
swapf LCDTemp, w ; Most Significant

; Nybble First
andlw 0x00F

else
andlw 0x0F0

endif
movwf DataPort
bsf RSPort, RSPin

PICmicro® MCU Hardware Interfacing 319

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 319

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin

if (DataBit == 0)
movf LCDTemp, w
andlw 0x00F

else
swapf LCDTemp, w ; Least Significant

; Nybble Second
andlw 0x0F0

endif
movwf DataPort
bsf RSPort, RSPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif

320 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 320

bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

return

LCDInit ; Do the 8 Bit
; Initialization

call Dlay5 ; Wait 15 msecs
call Dlay5
call Dlay5

if (DataBit == 0) ; Send the Reset
; Instruction

movlw 0x003
else
movlw 0x030

endif
movwf DataPort

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
call Dlay5
bsf EPort, EPin ; Send Another Reset

; Instruction
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)

PICmicro® MCU Hardware Interfacing 321

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 321

nop
else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

bsf EPort, EPin ; Send the Third
; Reset Instruction

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

if (DataBit == 0) ; Send the Data
; Length
; Specification

movlw 0x002
else
movlw 0x020

endif
movwf DataPort

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif

322 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 322

endif
bsf EPort, EPin

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf EPort, EPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

movlw 0x028 ; Set Interface
; Length

call LCDIns
movlw 0x010 ; Turn Off Display
call LCDIns
movlw 0x001 ; Clear Display RAM
call LCDIns
movlw 0x006 ; Set Cursor

; Movement
call LCDIns
movlw 0x00E ; Turn on

; Display/Cursor
call LCDIns
return

endm

It is recommended that the I/O pins and the 4-bit
“DataPort” are on the same 8-bit I/O Port. The reason
for doing this is that when using this code, writes to the
“DataPort” will change the output values of other I/O
register bits.

The interface requirements to the PICmicro® MCU
can be reduced by using the circuit shown in Fig. 8.21

PICmicro® MCU Hardware Interfacing 323

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 323

in which the serial data is combined with the contents
of the shift register to produce the “E” strobe at the
appropriate interval. This circuit “ANDs” (using the
1K resistor and IN914 diode) the output of the sixth
“D-Flip Flop” of the 74LS174 and the “Data” bit from
the device writing to the LCD to form the “E” Strobe.
This method requires one less pin than a three-wire
shift register interface and a few more instructions of
code. The two-wire LCD interface circuit is shown in
Fig. 8.21.

The 74LS174 can be wired as a shift register (as is
shown in the schematic diagram) instead of a serial-
in/parallel-out shift register. This circuit should work
without any problems with a dedicated serial-in/parallel-
out shift register chip, but the timings/clock polarities
may be different. When the 74LS174 is used, note that

324 Chapter 8

Figure 8.21 2-Wire LCD Interface

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 324

the data is latched on the rising (from logic “low” to
“high”) edge of the clock signal. Figure 8.22 is a timing
diagram for the two-wire interface and shows the
74LS174 being cleared, loaded, and then the “E” Strobe
when the data is valid and “6Q” and incoming “Data” is
high.

Before data can be written to it, loading every latch
with zeros clears the shift register. Next, a “1” (to pro-
vide the “E” Gate) is written followed by the “R/S” bit
and the four data bits. Once the latch is loaded in cor-
rectly, the “Data” line is pulsed to Strobe the “E” bit. The
biggest difference between the three-wire and two-wire
interface is that the shift register has to be cleared be-
fore it can be loaded and the two-wire operation re-

PICmicro® MCU Hardware Interfacing 325

Figure 8.22 2-Wire LCD Write Waveform

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 325

quires more than twice the number of clock cycles to
load 4-bits into the LCD.

One note about the LCD’s “E” Strobe is that in some
documentation it is specified as “high" level active while
in others, it is specified as falling edge active. It seems to
be falling edge active, which is why the two-wire LCD in-
terface presented below works even if the line ends up
being high at the end of data being shifted in. If the
falling edge is used (like in the two-wire interface) then
make sure that before the “E” line is output on “0”, there
is at least a 450 nsecs delay with no lines changing state.

The two-wire LCD interface macro uses the same para-
meters as the previous macros. This interface is quite a
bit slower than the other ones that I have presented, but
uses the fewest PICmicro® MCU I/O pins. The “LCD2”
Macro only requires the “Dlay” and “LCDTemp” variables.

LCD2 Macro ClockPort, ClockPin, DataPort, DataPin,
Freq
variable Dlay5Value, Dlay160Value, Dlay160Bit1
= -1, Dlay160Bit2 = -1
variable BitCount = 0, i
variable Value = 128, Bit = 7

Dlay5Value = ((5007 * (Freq / 1000) / 4000) / 7)
+ 256

Dlay160Value = (163 * (Freq / 1000) / 4000) / 3

while (Bit >= 0) ; Find the Number of
; Bits and their
; Positions in
; "Dlay160Value"

if ((Dlay160Value & Value) != 0)
if (Dlay160Bit1 == -1) ; Set the Upper Bit

Dlay160Bit1 = Bit
else
if (Dlay160Bit2 == -1)

Dlay160Bit2 = Bit
endif
endif

326 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 326

BitCount = BitCount + 1
endif

Value = Value >> 1
Bit = Bit - 1
endw
if (BitCount > 2) ; Just Want max two

; Bits
if ((Dlay160Bit1 - 1) == Dlay160Bit2)

Dlay160Bit1 = Dlay160Bit1 + 1 ; Shift Top up by 1
Dlay160Bit2 = -1 ; Delete Second
else

Dlay160Bit2 = Dlay160Bit2 + 1 ; Shift Bottom up
; by 1

endif
endif

Dlay5 ; Delay 5 msecs
movlw (Dlay5Value & 0x0FF00) >> 8
movwf Dlay
movlw Dlay5Value & 0x0FF
subwf Dlay, w
xorlw 0x0FF
addwf Dlay, w
btfsc STATUS, Z
decfsz Dlay, f
goto $ - 5

return

LCDPORTInit ; Initialize the I/O
; Ports

bsf STATUS, RP0 ; ONLY used by mid-
; range

bcf ClockPort, ClockPin
bcf DataPort, DataPin
bcf STATUS, RP0
bcf ClockPort, ClockPin
bcf DataPort, DataPin
return

LCDIns ; Send the
; Instruction to
; the LCD

movwf LCDTemp ; Save the Value
movlw 6 ; Clear the Shift

; Register

PICmicro® MCU Hardware Interfacing 327

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 327

movwf Dlay
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
decfsz Dlay, f
goto $ - 3

movwf Dlay ; w still equals 6
movf LCDTemp, w ; Shift out the

; Upper 4 Bits
swapf LCDTemp, f
bsf LCDTemp, 5 ; Make LCDTemp

; Correct for
; Shifting

bcf LCDTemp, 4 ; This is "RS" Bit
bcf DataPort, DataPin ; Shift Out Each Bit
btfsc LCDTemp, 5 ; 5 is the Current

; MSB
bsf DataPort, DataPin ; Shift Out the Next

; Highest Bit
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, 2 ; Dlay = 6 for Shift

; Out
bsf Dlay, 1
bsf ClockPort, ClockPin ; Clear the Shift

; Register
bcf ClockPort, ClockPin
decfsz Dlay, f
goto $ - 3

movwf LCDTemp ; Shift out the Low
; Nybble

bsf Dlay, 2 ; Dlay = 6 for Shift
; Out

bsf Dlay, 1

328 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 328

bsf LCDTemp, 5 ; Make LCDTemp
; Correct for
; Shifting

bcf LCDTemp, 4 ; This is "RS" Bit
bcf DataPort, DataPin ; Shift Out Each Bit
btfsc LCDTemp, 5 ; 5 is the Current

; MSB
bsf DataPort, DataPin ; Shift Out the Next

; Highest Bit
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

andlw 0x0FC ; Have to Delay 5
; msecs?

btfsc STATUS, Z
call Dlay5

return

LCDChar ; Send the Character
; to the LCD

movwf LCDTemp ; Save the Value
movlw 6 ; Clear the Shift

; Register
movwf Dlay
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
decfsz Dlay, f
goto $ - 3

PICmicro® MCU Hardware Interfacing 329

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 329

movwf Dlay ; w still equals 6
movf LCDTemp, w ; Shift out the

; Upper 4 Bits
swapf LCDTemp, f
bsf LCDTemp, 5 ; Make LCDTemp

; Correct for
; Shifting

bsf LCDTemp, 4 ; This is "RS" Bit
bcf DataPort, DataPin ; Shift Out Each Bit
btfsc LCDTemp, 5 ; 5 is the Current

; MSB
bsf DataPort, DataPin ; Shift Out the Next

; Highest Bit
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, 2 ; Dlay = 6 for Shift

; Out
bsf Dlay, 1
bsf ClockPort, ClockPin ; Clear the Shift

; Register
bcf ClockPort, ClockPin
decfsz Dlay, f
goto $ - 3

movwf LCDTemp ; Shift out the Low
; Nybble

bsf Dlay, 2 ; Dlay = 6 for Shift
; Out

bsf Dlay, 1
bsf LCDTemp, 5 ; Make LCDTemp

; Correct for
; Shifting

bsf LCDTemp, 4 ; This is "RS" Bit
bcf DataPort, DataPin ; Shift Out Each Bit

330 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 330

btfsc LCDTemp, 5 ; 5 is the Current
; MSB

bsf DataPort, DataPin ; Shift Out the Next
; Highest Bit

bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, Dlay160Bitl ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1
return

LCDInit ; Do the 8 Bit
; Initialization

call Dlay5 ; Wait 15 msecs
call Dlay5
call Dlay5
movlw 0x023 ; Initialize the I/O

; Port
movwf LCDTemp ; Save the Value
movlw 6 ; Clear the Shift

; Register
movwf Dlay
bsf Clockport, ClockPin
bcf Clockport, ClockPin
decfsz Dlay, f
goto $ - 3

movwf Dlay
bcf DataPort, DataPin ; Shift Out Each Bit
btfsc LCDTemp, 5 ; 5 is the Current

; MSB

PICmicro® MCU Hardware Interfacing 331

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 331

bsf DataPort, DataPin ; Shift Out the Next
; Highest Bit

bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
call Dlay5
bsf DataPort, DataPin ; Send another 0x03

; to the LCD
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

bsf DataPort, DataPin ; Send another 0x03
; to the LCD

if (Freq > 8000000) ; Make Sure Proper
; Delay is In Place

if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif

332 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 332

bcf DataPort, DataPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

movlw 0x022 ; Initialize the I/O
; Port

movwf LCDTemp ; Save the Value
movlw 6 ; Clear the Shift

; Register
movwf Dlay
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
decfsz Dlay, f
goto $ - 3

movwf Dlay
bcf DataPort, DataPin ; Shift Out Each Bit
btfsc LCDTemp, 5 ; 5 is the Current MSB
bsf DataPort, DataPin ; Shift Out the Next

; Highest Bit
bsf ClockPort, ClockPin
bcf ClockPort, ClockPin
rlf LCDTemp, f
decfsz Dlay, f
goto $ - 7

bsf DataPort, DataPin ; Latch in the Data
if (Freq > 8000000) ; Make Sure Proper

; Delay is In Place
if (Freq < 16000000)
nop

else
goto $ + 1

endif
endif
bcf DataPort, DataPin
bsf Dlay, Dlay160Bit1 ; Delay 160 usecs

if (Dlay160Bit2 != -1)
bsf Dlay, Dlay160Bit2

endif
decfsz Dlay, f
goto $ - 1

movlw 0x028 ; Set Interface
; Length

call LCDIns
movlw 0x010 ; Turn Off Display

PICmicro® MCU Hardware Interfacing 333

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 333

call LCDIns
movlw 0x001 ; Clear Display RAM
call LCDIns
movlw 0x006 ; Set Cursor Movement
call LCDIns
movlw 0x00E ; Turn on

; Display/Cursor
call LCDIns
return

endm

I2C Bit Banging “Master” Interface

For the interface code below, make sure there is a 1K to
10K pull up on the SCL and SDA lines.

I2CSetup Macro ClockPort, ClockPin, DataPort,
DataPin, Rate, Frequency
variable Dlay, Fraction ; Delay in

; Instruction
; Cycles

Dlay = ((Frequency * 110) / (800 * Rate)) / 1000
Fraction = ((Frequency * 110) / (800 * Rate))

- (Dlay * 1000)
if (Fraction > 499)

Dlay = Dlay + 1
endif

I2CBitSetup ; Setup I2C Lines
; for Application

bsf STATUS, RP0
bcf ClockPort, ClockPin ; Driving Output
bcf DataPort, DataPin
bcf STATUS, RP0
bsf ClockPort, ClockPin ; Everything High

; Initially
bsf DataPort, DataPin

DlayMacro Dlay ; Make Sure Lines
; are High for
; adequate
; Period of Time

return

334 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 334

I2CStart ; Send a "Start"
; Pulse to the I2C
; Device

bsf ClockPort, ClockPin
bsf DataPort, DataPin

DlayMacro Dlay - 2
bcf DataPort, DataPin ; Drop the Data Line

DlayMacro Dlay
bcf ClockPort, ClockPin ; Drop the Clock

; Line
DlayMacro Dlay - 2 ; Wait for the

; Specified Period
return ; Exit with Clock

; = Low, Data = Low

I2CStop ; Pass Stop Bit to
; I2C Device

DlayMacro Dlay
bsf ClockPort, ClockPin ; Clock Bit High

DlayMacro Dlay
bsf DataPort, DataPin
return ; Exit with Clock

; = High, Data
; = High

I2CRead ; Read 8 Bits from
; the Line
; Reply with "ACK"
; in Carry Flag

bsf I2CTemp, 0 ; Put in the Carry
; Flag

btfsc STATUS, C
bcf I2CTemp, 0 ; If Carry Set, then

; Send "Ack"
; (-ative)

bsf STATUS, RP0 ; Let the I2C Device
; Drive the Data
; Line

bsf DataPort, DataPin
bcf STATUS, RP0
movlw 0x010 - 8

I2CRLoop
bsf ClockPort, ClockPin ; Bring the Clock

; Line Up
DlayMacro (Dlay / 2) - 1

PICmicro® MCU Hardware Interfacing 335

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 335

bcf STATUS, C
btfsc DataPort, DataPin ; Sample the

; Incoming Data
bsf STATUS, C

DlayMacro (Dlay / 2) - 2
bcf ClockPort, ClockPin
rlf I2CTemp, f ; Shift in the Bit
andlw 0x07F ; Store the Ack of

; Bit 7 of the Data
btfsc STATUS, C
iorlw 0x080 ; If High, Set Bit 7

addlw 0x001 ; Finished, Do the
; Next Bit

DlayMacro Dlay - 9 ; Put in "TLow"
btfss STATUS, DC
goto I2CRLoop

bcf DataPort, DataPin
bsf STATUS, RP0 ; Send Ack Bit
bcf DataPort, DataPin
bcf STATUS, RP0
andlw 0x080 ; High or Low?
btfss STATUS, Z
bsf DataPort, DataPin ; Low, Send Ack

DlayMacro Dlay / 18 ; Any Reason to
; delay?

bsf ClockPort, ClockPin
DlayMacro Dlay
bcf ClockPort, ClockPin
bcf DataPort, DataPin
movf I2Ctemp, w ; Get the Received

; Byte
return ; Return with Clock

; = Data = Low

I2CSend ; Send the 8 Bits in
; "w" and Return
; Ack

movwf I2CTemp
movlw 0x010 - 8

I2CSLoop
rlf I2CTemp, f ; Shift up the Data

; into "C"
btfsc STATUS, C
goto $ + 4

nop
bcf DataPort, DataPin ; Low Bit

336 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 336

goto $ + 3
bsf DataPort, DataPin ; High Bit
goto $ + 1
bsf ClockPort, ClockPin ; Strobe Out the

; Data
DlayMacro Dlay
bcf ClockPort, ClockPin

DlayMacro Dlay - 12
addlw 1
btfss STATUS, DC
goto I2CSLoop

DlayMacro 6
bsf STATUS, RP0 ; Now, Get the Ack

; Bit
bsf DataPort, DataPin
bcf STATUS, RP0
bsf ClockPort, ClockPin

DlayMacro (Dlay / 2) - 1
bcf STATUS, C
btfss DataPort, DataPin
bsf STATUS, C ; Line Low, "Ack"

; Received
DlayMacro (Dlay / 2) - 2
bsf STATUS, RP0
bcf DataPort, DataPin
bcf STATUS, RP0
bcf ClockPort, ClockPin
bcf DataPort, DataPin
return ; Return with Ack in

; Carry,
endm ; Clock = Data = Low

The macro is similar to

I2CSetup I2CClock, I2CData, Rate, Frequency

where

Pin Description
I2CClock Port and Pin used for the “SCL” line -

Pulled up with 1K to 10K Resistor
I2CData Serial Data - Pulled up with 1K to 10K

Resistor

PICmicro® MCU Hardware Interfacing 337

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 337

Rate I2C Data Rate specified in kHz (normally
100 or 400)

Frequency PICmicro® MCU’s Clock Frequency

Data is sent to an I2C Device using the format:

idle - Start - CommandWriteA - AddressByteA - Start
- CommandReadA - DataA - DataN - Stop - idle

Using the subroutines in the “I2CSetup” macro, the
PICmicro® MCU code for carrying out a 16-bit read
would be

call I2CStart ; Start the
call I2CStart ; Transfer

movlw CommandWrite ; Send the Address
movlw CommandWrite ; to Read the
call I2CSend ; Sixteen Bit Word

movlw AddressByte
call I2CSend

call I2CStart ; Reset the I2C
call I2CStart ; EEPROM to Read

call I2CStart ; Back

movlw CommandRead ; Send the Read
movlw CommandRead ; Command
call I2CSend

bsf STATUS, C ; Read the Byte
bsf STATUS, C ; with Ack
call I2CRead
movwf I2CData

bcf STATUS, C ; Read the next
bcf STATUS, C ; byte and stop
bcf STATUS, C ; the
call I2Cread ; transfer with
call I2Cread ; the Nack
movwf I2CData + 1

call I2CStop ; Finished with the
call I2CStop ; I2C Operation

338 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 338

RS-232 Interfaces

RS-232 is an older standard with somewhat unusual
voltage levels. A “Mark” (“1”) is actually �12 volts and a
“Space” (“0”) is �12 volts. Voltages in the “switching re-
gion” (
3 volts) may or may not be read as a “0” or “1”
depending on the device.

The “Handshaking” lines use the same logic levels as
the transmit/receive lines discussed above and are used
to interface between devices and control the flow of in-
formation between computers.

The “Request To Send” (“RTS”) and “Clear To Send”
(“CTS") lines are used to control data flow between the
computer (“DCE”) and the modem (“DTE” device).
When the PC is ready to send data, it asserts (outputs a
“Mark”) on RTS. If the DTE device is capable of receiv-
ing data, it will assert the “CTS” line. If the PC is unable
to receive data (i.e., the buffer is full or it is processing
what it already has), it will de-assert the “RTS" line to
notify the DTE device that it cannot receive any addi-
tional information.

The “Data Transmitter Ready” (“DTR”) and “Data Set
Ready” (“DSR”) lines are used to establish communica-
tions. When the PC is ready to communicate with the
DTE device, it asserts “DTR”. If the DTE device is avail-
able and ready to accept data, it will assert “DSR” to no-
tify the computer that the link is up and ready for data
transmission. If there is a hardware error in the link,
then the DTE device will de-assert the DSR line to notify
the computer of the problem. Modems if the carrier be-
tween the receiver is lost will de-assert the DSR line.

“Data Carrier Detect” (“DCD”) is asserted when the
modem has connected with another device (i.e., the
other device has “picked up the phone”). The “Ring
Indicator” (“RI”) is used to indicate to a PC whether or

PICmicro® MCU Hardware Interfacing 339

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 339

not the phone on the other end of the line is ringing or if
it is busy. These lines (along with the other handshaking
lines) are very rarely used in PICmicro® MCU applica-
tions.

There is a common ground connection between the
DCE and DTE devices. This connection is critical for the
RS-232 level converters to determine the actual incom-
ing voltages. The ground pin should never be connected
to a chassis or shield ground (to avoid large current
flows or being shifted, preventing accurate reading of in-
coming voltage signals).

Most modern RS-232 connections are implemented
using a “Three-Wire RS-232” set up as shown in Fig. 8.23.
DTR/DSR and RTS/CTS lines are normally shorted

340 Chapter 8

Figure 8.23 Typical RS-232 Wiring

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 340

together at the PICmicro® MCU end. The DCD and RI
lines are left unconnected. With the handshaking lines
shorted together, data can be sent and received without
having to develop software to handle the different
handshaking protocols. The 1488�1489 RS-232 Level
Converter Circuits is a common method of implement-
ing RS-232 Serial Port Interfaces if �12 and �12 volts is
available to the circuit. The “#C” input is a flow control
for the gates (normally RS-232 comes in the “#A” pin
and is driven as TTL out of “#Y”) and is normally left
floating (“unconnected”). The pinout and wiring for
these devices in a PC are shown in Fig. 8.24. If only a �5
volt power supply is available, the MAX232 chip can be
used to provide the correct RS-232 signal levels. This
circuit is wired as shown in Fig. 8.25. Another method
for translating RS-232 and TTL/CMOS voltage levels is
to use the transmitter’s negative voltage. The circuit in
Fig. 8.26 shows how this can be done using a single
MOSFET transistor and two resistors.

PICmicro® MCU Hardware Interfacing 341

Figure 8.24 1488/1489 RS-232 Connections

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 341

342 Chapter 8

Figure 8.25 MAXIM MAX232 RS-232 Connections

Figure 8.26 RS-232 to External Device

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 342

This circuit relies on the RS-232 communications only
running in “Half-Duplex” mode (i.e., only one device can
transmit at a given time). When the external device
wants to transmit to the PC, it sends the data either as a
“Mark” (leaving the voltage to be returned to the PC as
a negative value) or as a “Space” by turning on the tran-
sistor and enabling the positive voltage output to move
to the PC’s receivers.

When the PICmicro® MCU transmits a byte to the ex-
ternal device through this circuit, it will receive the
packet it is sent because this circuit connects the
PICmicro® MCU’s receiving pin (more or less) directly
to its transmitting pin. The software running in the
PICmicro® MCU (as well as the “host” device) will have
to handle this.

Another issue to notice is that data out of the external
device will have to be inverted to get the correct trans-
mission voltage levels (i.e., a “0” will output a “1”) to
make sure the transistor turns on at the right time (i.e., a
positive voltage for a space). Unfortunately, this means
that the built-in serial port in the PICmicro® MCU cannot
be used with this circuit because the output is “positive”
and it cannot invert the data as required by the circuit.

There is a chip, the Dallas Semiconductor DS275,
which basically incorporates the above-mentioned circuit
(with built-in inverters) into the single package shown in
Fig. 8.27. The DS1275 is an earlier version of this chip.

With the availability of low current PICmicro® MCUs,
the incoming RS-232 lines can be used to power the ap-
plication. This can be done using the host’s RS-232 Ports
to supply the current needed by the application as
shown in Fig. 8.28.

When the DTR and RTS lines are outputting a “Space”,
a positive voltage (relative to ground) is available. This

PICmicro® MCU Hardware Interfacing 343

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 343

voltage can be regulated and the output used to power
the devices attached to the serial port (up to about 5
mA). For extra current, the TX line can also be added
into the circuit as well with a “break” being sent from the
PC to output a positive voltage.

The 5 mA is enough current to power the Transistor/
Resistor type of RS-232 Transmitter and a PICmicro®

344 Chapter 8

Figure 8.27 Dal Semi (1)275 RS-232 Interface

Figure 8.28 “Stealing” Power from the PC’s Serial Port

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 344

MCU running at 4 MHz along with some additional hard-
ware (such as a single LCD).

RS-485/RS-422

RS-485/RS-422 are “differential pair” serial communica-
tions electrical standards that consist of a balanced dri-
ver with positive and negative outputs that are fed into a
comparator. The output from the comparator is a “1” or
a “0” depending on whether or not the “positive line” is
at a higher voltage than the negative. Figure 8.29 shows
the normal symbols used to describe a differential pair
connection.

To minimize AC transmission line effects, the two
wires should be twisted around each other. “Twisted
pair” wiring can either be bought commercially or made
by simply twisting two wires together, twisted wires
have a characteristic impedance of 75 ohms or greater.

A common standard for differential pair communica-
tions is “RS-422”. This standard, which uses many com-
mercially available chips, provides:

1. Multiple receiver operation.

2. Maximum data rate of 10 mbps.

3. Maximum cable length of 4,000 meters (with a 100 kHz
signal).

PICmicro® MCU Hardware Interfacing 345

Figure 8.29 Differential Pair Serial Data Transmission

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 345

Multiple receiver operation, shown in Fig. 8.30, allows
signals to be “broadcasted” to multiple devices. The best
distance and speed changes with the number of re-
ceivers of the differential pair along with its length. The
4,000 m at 100 kHz or 40 m at 10 MHz are examples of
this balancing between line length and data rate. For
long data lengths a few hundred ohm “terminating resis-
tor” may be required between the positive terminal and
negative terminal at the end of the lines to minimize re-
flections coming from the receiver and affecting other
receivers.

RS-485 is very similar to RS-422, except it allows mul-
tiple drivers on the same network. The common chip is
the “75176”, which has the ability to drive and receive
on the lines as shown in Fig. 8.31.

The only issue to be on the lookout for when creating
RS-485/RS-422 connections is to keep the cable polari-
ties correct (positive to positive and negative to nega-
tive). Reversing the connectors will result in lost signals
and misread transmission values.

346 Chapter 8

Figure 8.30 Multiple Receiver RS-422

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 346

Asynchronous Serial I/O Software Routines

The first method is a traditional “bit banging” interface
that can be used by both the low-end and mid-range
PICmicro® MCUs. To set up the serial interfaces, the
macro

NRZSerialNI Macro TXPort, TXPin, RXPort, RXPin,
Polarity, Rate, Freq

is invoked, where “TXPort” and “TXPin” along with
“RXPort” and “RXPin” are used to define the Transmit
port and the Receive port, respectively. As I will discuss
in the next section, these pairs of pins can be combined
into a single define to make the definition easier. The
“Polarity” of the signals is defined as “Pos” for “Positive”
or positive logic and “Neg” for “Negative” or inverted
logic (useful for interfacing to RS-232 directly through a
current limiting resistor). “Rate” is the data rate (in bits
per second) and “Freq” is the speed at which the
processor is executing in Hz.

When the macro is expanded, the bit delay calculations
are made internally and the bit banging serial receive and

PICmicro® MCU Hardware Interfacing 347

Figure 8.31 RS-485 Connection Using a 75176

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 347

transmit subroutines are inserted into the application.
The macros can be used by either low-end or mid-range
PICmicro® MCUs without modification. The macro code is

NRZSerialNI Macro TXPort, TXPin, RXPort, RXPin,
Polarity, Rate, Frequency
variable BitDlay

BitDlay = Frequency / (4 * Rate)

SerialRX ; Receive 8-N-1
if (Polarity == Pos)
btfsc RXPort, RXPin ; Wait for a Bit to

; Come in
else
btfss RXPort, RXPin

endif
goto $ - 1

DlayMacro BitDlay / 2 ; Wait 1/2 a Bit to
; Confirm

if (Polarity == Pos)
btfsc RXPort, RXPin ; Confirm Data is

; Correct
else
btfss RXPort, RXPin

endif
goto SerialRX ; If Just a "Glitch",

; Restart Start Bit
; Poll

movlw 8 ; Wait for 8 Bits
SRXLoop
if ((BitDlay - 10) > 770) ; Check to See if

; Value is Too Large
DlayMacro 770 ; Put in a "Double"

; Delay
DlayMacro BitDlay - (770 + 10)
else
DlayMacro BitDlay - 10 ; Wait for the Middle

; of the Next Bit
endif

bcf STATUS, C ; Check the Incoming
Data

348 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 348

if (Polarity == Pos)
btfsc RXPort, RXPin

else
btfss RXPort, RXPin

endif
bsf STATUS, C

rrf NRZTemp, f ; Shift in the Bit
subwf NRZTemp, w ; Decrement and End if

; == 0
xorlw 0x0FF
addwf NRZTemp, w
btfss STATUS, Z
goto SRXLoop

if ((BitDlay - 9) > 770) ; Check to See if
; Value is Too Large

DlayMacro 770 ; Put in a "Double"
; Delay

DlayMacro BitDlay - (770 + 9)
else
DlayMacro BitDlay - 9 ; Wait for the Middle

; of the Next Bit
endif
if (Polarity == Pos) ; Is there a Stop Bit?

btfss RXPort, RXPin
else
btfsc RXPort, RXPin

endif
goto SerialRX ; No, Start All Over

; Again

movf NRZTemp, w ; Return the Received
; Byte

return ; Note - Zero Returned
; in Low-End
; Devices

SerialTX
movwf NRZTemp ; Save the Byte to

; Output
movlw 10
bcf STATUS, C ; Start with Sending

; the Start Bit

PICmicro® MCU Hardware Interfacing 349

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 349

STXLoop
if (Polarity == Pos) ; Output the Current

; Bit
btfsc STATUS, C

else
btfss STATUS, C

endif
goto $ + 4 ; 6 Cycles Required

; Each Time
nop
bcf TXPort, TXPin ; Output a "Low"
goto $ + 3
bsf TXPort, TXPin ; Output a "High"
goto $ + 1

if ((BitDlay - 15) > 770) ; Check to See if
; Value is Too Large

DlayMacro 770 ; Put in a "Double"
; Delay

DlayMacro BitDlay - (770 + 15)
else
DlayMacro BitDlay - 15 ; Wait for the Middle

; of the Next Bit
endif
subwf NRZTemp, w ; Decrement the Bit

; Counter
xorlw 0x0FF
addwf NRZTemp, w
btfsc STATUS, Z
return ; Can Return to Caller

bsf STATUS, C ; Shift Down the Next
; Bit

rrf NRZTemp, f
goto STXLoop

endm

Mid-Range “Bit Banging” NRZ Serial Interface
Initialization Code

NRZSerialNISetup Macro TXPort, TXPin, Polarity
SerialSetup ; Setup the Serial I/O

; Bits
bsf STATUS, RP0
bcf TXPort, TXPin ; Make TX Pin an

; Output

350 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 350

bcf STATUS, RP0
if (Polarity == Pos)
bsf TXPort, TXPin ; Transmit “idle”

else
bcf TXPort, TXPin

endif
return

endm

The TMR0 interrupt based asynchronous serial func-
tions shown in the macro below poll the data bit three
times each data period to check for the incoming data.
This method does not prevent the PICmicro® MCU from
carrying out any other tasks.

NRZSerialI Macro TXPort, TXPin, RXPort, RXPin,
Polarity, Rate, Frequency
variable BitDlay, Prescaler, TMR0Reset

BitDlay = (Frequency / (3 * 4 * Rate)) - 10
TMR0Reset = BitDlay / 2 ; Using TMR0,

; Calculate the
; Timer Reset Value

Prescaler = 0 ; And the Prescaler
while (TMR0Reset > 0x0FF) ; Find the Proper

; Reset Value
TMR0Reset = TMR0Reset / 2
Prescaler = Prescaler + 1
endw
if (Prescaler > 7) ; Can't Use TMR0
error "Bit Delay cannot use TMR0 for Polling Clock"
endif

TMR0Reset = 256 - TMR0Reset ; Get the TMR0 Reset
; Value

goto AfterInt ; Jump to After
; Interrupt

org 4
Int ; Interrupt Handler

movwf _w
movf STATUS, w
bcf STATUS, RP0 ; Make Sure in Bank 0
movwf _status

PICmicro® MCU Hardware Interfacing 351

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 351

bcf INTCON, T0IF ; Reset the Timer
; Interrupt

movlw TMR0Reset
movwf TMR0

; First, Check for a Received Character
Int_RX

movlw 0x004 ; Check for Bit?
addwf RXCount, f
btfss STATUS, DC ; DC Not Affected by

; "clrf”
goto _RXNo ; Nothing to Check for

; (Yet)

movf RXCount, w ; Everything Read
; Through?

xorlw 0x091
btfsc STATUS, Z
goto _RXAtEnd ; Yes, Check for Stop

; Bit

bcf STATUS, C ; Read the Current
; State

if (Polarity == Pos)
btfsc RXPort, RXPin ; Sample at 10 Cycles

else
btfss RXPort, RXPin

endif
bsf STATUS, C

rrf RXByte, f

bsf RXCount, 2 ; Start Counting from 4

_RXEnd13
nop
goto _RXEnd ; End 15 Cycles From

; "Int_RX" -
; Finished Receiving
; Bit

_RXEnd8 ; Finished - 8 Cycles
; to Here

goto $ + 1

352 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 352

nop
goto _RXEnd13

_RXNo ; 5 Cycles from
; "Int_RX" - No Bit
; to Receive

btfsc RXCount, 0 ; Something Running?
goto _RXEnd8 ; End 8 Cycles from

; "Int_RX" - Yes,
; Skip

Over
btfsc RXCount, 3 ; Checking Start Bits?
goto _RXStartCheck

if (Polarity == Pos)
btfsc RXPort, RXPin ; If Line Low -

; "Start" Bit
else
btfss RXPort, RXPin

endif
bcf RXCount, 2 ; Don't Have a "Start"

; Bit

goto _RXEnd13 ; End 18 cycles from
; "Int_RX"

_RXStartCheck ; 10 Cycles to Here

if (Polarity == Pos)
btfsc RXPort, RXPin

else
btfss RXPort, RXPin

endif
movlw 0x0FF ; Nothing - Clear

; "RXCount"

addlw 1
movwf RXCount

goto _RXEnd ; 16 Cycles to End

_RXAtEnd ; 9 Cycles from
; "Int_RX" - Check
; Last
; Bit

if (Polarity == Pos)

PICmicro® MCU Hardware Interfacing 353

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 353

btfsc RXPort, RXPin
else
btfss RXPort, RXPin

endif
bsf RXFlag

clrf RXCount ; Finished - Reset
; Check - 12
; Cycles

goto $ + 1
goto _RXEnd

_RXEnd

; Next, Check for Transmitting a Character -
Intrinsic Dlay 22 Cycles
Int_TX

movlw 0x004 ; Interrupt Transmit
; Increment Value

addwf TXCount, f
btfss STATUS, DC ; Send the Next Byte?
goto _TXSendDlayCheck

bsf TXCount, 2 ; Want to Increment 3x
; not Four for each
; Bit

bsf STATUS, C
rrf TXByte, f
movf TXPort, w ; Send Next Bit
andlw 0xOFF ^ (1 << TXPin)

if (Polarity == Pos)
btfsc STATUS, C

else
btfss STATUS, C

endif
iorlw 1 << TXPin

movwf TXPort ; Cycle 12 is the Bit
; Send

goto _TXCompletedGoOn ; TX Takes 14 Cycles

_TXSendDlayCheck ; Don’t Send Bit,
_TXSendDlayCheck ; Check for Start Bit

354 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 354

btfss TXCount, 0 ; Bit Zero Set (Byte
; to Send)?

goto _TXNothingtoCheck

movlw 0x004 ; Setup the Timer to
; Increment 3x

movwf TXCount

movf TXPort, w ; Output Start Bit
if (Polarity == Pos)
andlw 0x0FF ^ (1 << TXPin)

else
iorlw 1 << TXPin

endif
movwf TXPort

goto _TXCompletedGoOn ; TX First Bit Takes
; 14 Cycles

_TXNothingtoCheck ; Nothing Being Sent?

movf TXCount, w
xorlw 0x004 ; Zero (Originally)

; TXCount?
btfss STATUS, Z
xorlw 0x004 ^ 0x09C

btfsc STATUS, Z
clrf TXCount

_TXCompletedGoOn ; Finished with TX, Do
; RX

movf _status, w ; Restore the
; Interrupts

movwf STATUS
swapf _w, f
swapf _w, w
retfie

SerialRX

bcf RXFlag ; Reset the Character
available Flag

btfss RXFlag ; Wait for a Character
; to be Received

goto $ - 1

PICmicro® MCU Hardware Interfacing 355

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 355

movf RXByte, w ; Return the Character
; Read in

return

SerialTX

movf TXCount, f ; Anything Being Sent?
btfss STATUS, Z ; Wait for the

; Previous Send to
; End

goto $ - 2

movwf TXByte ; Send out the
; Character

bsf TXCount, 0 ; Indicate to the
; Interrupt Handler
; that it can Send
; Something

return

AfterInt ; Can Return the Value
bsf STATUS, RP0 ; Setup the

; Interrupts/TX
; Output

bcf TXPort, TXPin
movlw 0x0D0 + Prescaler
movwf OPTION_REG ^ 0x080; User Prescaler with

; TMR0
bcf STATUS, RP0

if (Polarity == Pos)
bsf TXPort, TXPin ; Output "Idle" for

; Data Transmit
else
bcf TXPort, TXPin

endif
movlw TMR0Reset ; Reset the Timer
movwf TMR0
movlw (1 << GIE) + (1 << T0IE)
movwf INTCON ; Start up the

; Interrupts
clrf RXCount ; Make Sure No Counts

; are Starting
clrf TXCount

endm

356 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 356

Along with the macro invocation, the following variables
will have to be declared for the code to work:

_w, _status - Interrupt Handler Context Save
Registers

RXByte, TXByte - Data Transmit and Receive Bytes
RXCount, TXCount - Serial Transfer Data

Count/Status Variables
Flags - Execution Flag Variable

Along with these variables the “RXFlag” bit will also
have to be defined for use by the code to indicate when
a valid byte has been received.

Dallas Semiconductor One-Wire Interface

Dallas Semiconductor has created a line of peripherals
that are very attractive for use with microcontrollers as
they only require one line for transferring data. This sin-
gle-wire protocol is available in a variety of devices, but
the most popular are the DS1820 and DS1821 digital
thermometers. These devices can be networked to-
gether on the same bus (they have a built-in serial num-
ber to allow multiple devices to operate on the same
bus) and are accurate to within one degree Fahrenheit.

The DS1820 is available in a variety of packages, with
the most common being a three-pin “TO-92” package
that looks like a plastic transistor package and can be
wired to a PICmicro® MCU as shown in Fig. 8.32.

The DS1820 has many features that would be useful
in a variety of different applications. These include the
ability of sharing the single-wire bus with other devices.
A unique serial number is burned into the device that al-
lows it to be written to individually and gives it the abil-
ity to be powered by the host device. Data transfers over
the “one-Wire” bus are initiated by the Host system (in
the application cases, this is the PICmicro® MCU) and

PICmicro® MCU Hardware Interfacing 357

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 357

are carried out 8-bits at a time (with the least significant
bit transmitted first). Each bit transfer takes at least 60
usec. The “one-Wire” bus is pulled up externally (as is
shown in Fig. 8.32) and is pulled down by either the host
or the peripheral device to transfer data. If the Bus is
pulled down for a very short interval, a “1” is being
transmitted. If the Bus is pulled down for more than 15
usecs, then a "0” is being transmitted. The differences in
the “1” and "0” bits are shown in Fig. 8.33.

All Data Transfers are initiated by the host system. If
it is transmitting data, then it holds down the line for the
specified period. If it is receiving data from the DS1820,
then the host pulls down the line and releases it and
then polls the line to see how long it takes for it to go
back up. During Data Transfers, make sure that
Interrupts cannot take place (because this would affect
how the data is sent or read if the interrupt takes place
during the data transfer).

Before each command is set to the DS1820, a “Reset”
and “Presence” Pulse is transferred. A “Reset” Pulse con-

358 Chapter 8

Figure 8.32 Example Thermometer Application

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 358

sists of the host pulling down the line for 480 usecs to
960 usecs. The DS1820 replies by pulling down the line
for roughly 100 usecs (60 to 240 usecs is the specified
value). To simplify the software, do not check for the
presence pulse (because I knew in the application that I
had the thermometer connected to the bus). In another
application (where the thermometer can be discon-
nected), putting a check in for the "Presence" Pulse may
be required.

To carry out a temperature “read” of a single DS1820
connected to a microcontroller, the following instruction
sequence is used:

1. Send a "Reset" Pulse and delay while the
"Presence" Pulse is returned.

2. Send 0x0CC, which is the "Skip ROM" command,
which tells the DS1820 to assume that the next
command is directed towards it.

3. Send 0x044, which is the Temperature Conversion
Initiate instruction. The current temperature
will be sampled and stored for later read back.

4. Wait 500+ usecs for the Temperature Conversion to
complete.

5. Send a "Reset" Pulse and delay while the
"Presence" Pulse is returned.

6. Send 0x0CC, "Skip ROM" Command Again.

PICmicro® MCU Hardware Interfacing 359

Figure 8.33 Dallas Semi. “1-Wire” Data Transfer

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 359

7. Send 0x0BE to read the "Scratchpad" RAM that
contains the Current Temperature (in degrees
Celsius times two).

8. Read the nine bytes of "Scratchpad" RAM.
9. Display the Temperature (if bit 0 of the second

byte returned from the "Scratchpad" RAM, the
first byte is negated and a "-" is put on the
LCD Display) by dividing the first byte by 2 and
sending the converted value to the LCD.

The total procedure for doing a temperature measure-
ment takes about 5 msecs. PICmicro® MCU code to ac-
cess the DS1820 is given in the following listings for a
PICmicro® MCU running at 4 MHz:

DSReset ; Reset the DS1820
bcf DS1820 ; Hold the DS1820 Low for

500 usecs to reset
movlw 125
addlw 0x0FF ; Add -1 until Reset is

; Equal to Zero
btfss STATUS, Z
goto $ - 2

bsf DS1820
bcf DSTRIS
movlw 0 ; Wait 1 msec before

; sending a command
addlw 0x0FF
btfss STATUS, Z
goto $ - 2

bsf DSTRIS
bsf DS1820
return

DS1820 Byte Send Code

DSSend ; Send the Byte in "w" to
; the DS1820

movwf Temp
movlw 8

DSSendLoop
bcf INTCON, GIE ; Make Sure Operation

; isn't interrupted

360 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 360

bcf DS1820 ; Drop the DS1820’s
; Control Line

rrf Temp, f ; Load Carry with Contents
; of the Buffer

btfsc STATUS, C
bsf DS1820 ; If "1" Sent, Restore

; After 4 Cycles
bsf Count, 3 ; Loop for 24 Cycles
decfsz Count, f
goto $ - 1

goto $ + 1 ; Add 2 Cycles for a 30
; usec delay

bsf DS1820 ; The Line is High
bsf INTCON, GIE ; Restore the Interrupts
bsf Count, 3 ; Loop Another 24 Cycles

; for Execution Delay
decfsz Count, f
goto $ - 1

addlw 0x0FF ; Subtract 1 from the Bit
; Count

btfss STATUS, Z
goto DSSendLoop

return ; Finished, Return to Caller

DS1820 Byte Read Code

DSRead ; Receive the Byte from
; the DS1820 and put in

movlw 8 ; "w"
DSReadLoop

bcf INTCON, GIE ; Make Sure Operation
; isn't interrupted

bcf DS1820 ; Drop the DS1820’s
; Control Line

bsf DSTRIS ; Turn Port into a
; simulated Open Drain
; Output

nop
bsf STATUS, C ; What is Being Returned?
btfss DS1820
bcf STATUS, C ; If Line is high, a "1"

rrf Temp, f ; Shift in the Data bit
bsf INTCON, GIE ; Can Interrupt from here
clrf Count
decfsz Count, f
goto $ - 1

bsf DS1820

PICmicro® MCU Hardware Interfacing 361

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 361

bcf DSTRIS
bsf DS1820
addlw 0x0FF ; Loop Around for another

; Bit
btfss STATUS, Z
goto DSReadLoop

movf FSR0L, w ; Return the Byte Read in
return ; Finished, Return to

; Caller

The Process to read from the DS1820 is

1. Reset the DS1820
2. Send 0CCh followed by 044h to begin the

Temperature sense and conversion.
3. Wait 480 usecs for the Temperature conversion to

complete.
4. Send another reset to the DS1820
5. Send 0CCh and 0BEh to read the temperature
6. Wait 100 usecs before reading the first byte in

the DS1820
7. Read the first, or "SP0" byte of the DS1820
8. Wait another 100 usecs before reading the second

or "SP1" byte of the DS1820

Reading a Potentiometer Using
Parallel I/O Pins

For measuring resistance values without an ADC, a sim-
ple RC network can be used with the PICmicro® MCU as
is shown in Fig. 8.34. To measure the resistance (assum-
ing the capacitor is of a known value), the PICmicro®

MCU first charges the capacitor to 5 volts (or its nominal
output) using the I/O pin in “output” mode. Once this is
done, the pin changes to “input” mode and waits for the
capacitor to discharge through the potentiometer.
Looking at this operation on an oscilloscope, the wave-
form produced by the circuit looks like Fig. 8.35. In Fig.
8.35, the “Charge” cycle and “Discharge” cycle can

362 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 362

PICmicro® MCU Hardware Interfacing 363

Figure 8.34 Reading a Potentiometer Position without an ADC

Figure 8.35 Oscilloscope Picture for ADCLess Operation

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 363

clearly be seen. From basic electronic theory, we know
that the time required for the capacitor to charge is

time � R � C � ln(Vend / Vstart)

where the Vstart and Vend are the starting and ending
voltages. Since the capacitor value, the voltages and the
time it took for the capacitor to discharge, the formula
above can be rearranged to find R:

R � time / (C � ln(Vend / Vstart))

The code used to test the analog I/O uses the following
logic:

int PotRead() // Read the Resistance at
// the I/O Pin

{

int i;
TRIS.Pin = Output; // Set the Output Mode
Pin = 1; // Output a “1” to Charge

// the Capacitor
for (i = 0; i < 5usec, i++);

TRIS.Pin = Input; // Now, Time How Long it
// Takes for TMR0 = 0;
// the Capacitor to
// Discharge through

while (Pin == 1);

// the Potentiometer

return TMR0; // Return the TMR0 Value
// for the
// Discharge Time

} // end PotRead

Motor Drivers

A network of switches (transistors) can be used to con-
trol turning a motor in either direction. This is known as
an “H-Bridge” and is shown in Fig. 8.36.

364 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 364

In this circuit, if all the switches are open, no current
will flow and the motor won’t turn. If switches “1” and “4”
are closed, the motor will turn in one direction. If switches
“2” and “3” are closed, the motor will turn in the other di-
rection. Both switches on one side of the bridge should
never be closed at the same time as this will cause the mo-
tor power supply to burn out or a fuse to blow because
there is a short circuit directly between the motor power
and ground.

Controlling a motor’s speed is normally done by “puls-
ing” the control signals in the form of a Pulse Wave
Modulated (“PWM") signal as shown in Fig. 8.37. This
will control the average power delivered to the motors.
The higher the ratio of the “Pulse Width” to the “Period”,
the more power delivered to the motor.

The frequency of the PWM signal should be greater
than 20 kHz to avoid the PWM from producing an audi-
ble signal in the motors as the field is turned on and off.

PICmicro® MCU Hardware Interfacing 365

Figure 8.36 “H” Bridge Motor Driver

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 365

The 293D chip can control two motors (one on each
side of a robot), connected to the buffer outputs (pins 3,
6, 11, and 14). Pins 2, 7, 10, and 15 are used to control
the voltage level (the “switches” in the H-Bridge dia-
gram above) of the buffer outputs. Pin 1 and Pin 9 are
used to control whether or not the buffers are enabled.
These can be PWM inputs, which makes control of the
motor speed very easy to implement. “Vs” is � 5 volts
used to power the logic in the chip and “Vss” is the
Power supplied to the motors and can be anywhere from
4.5 to 36 volts. A maximum of 500 mA can be supplied to
the motors. The 293D contains integral shunt diodes.
This means that to attach a motor to the 293D, no ex-
ternal shunt diodes are required as shown in Fig. 8.38. In
Fig. 8.38, there is an optional “snubber” resistor and ca-
pacitor. These two components, wired across the brush
contacts of the motor will help reduce electromagnetic
emissions and noise “spikes” from the motor. Erratic op-
eration from the microcontroller when the motors are
running can be corrected by adding the 0.1 uF capacitor
and 5 ohm (2 watt) resistor “snubber” across the mo-
tor’s brushes as shown in the circuit above.

366 Chapter 8

Figure 8.37 Pulse Wave Modulated Signal Waveform

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 366

There is an issue with using the 293D and 298 motor
controller chips which is that they are bipolar devices
with a 0.7 volt drop across each driver (for 1.4–1.5 volts
for a dual driver circuit as is shown in Fig. 8.38. This drop,
with the significant amount of current required for a mo-
tor, results in a fairly significant amount of power dissipa-
tion within the driver. The 293D is limited to 1 Amp total
output and the 298 is limited to 3 Amps. For these circuits
to work best, a significant amount of heat sinking is re-
quired.

To minimize the problem of heating and power loss
Power MOSFET transistors can be used to implement
an H-Bridge motor control.

Stepper motors are much simpler to develop control
software for than regular DC motors. This is because the
motor is turned one step at a time or can turn at a spe-

PICmicro® MCU Hardware Interfacing 367

Figure 8.38 Wiring a Motor to the 293D

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 367

cific rate (specified by the speed in which the “Steps”
are executed). In terms of the hardware interface, step-
per motors are a bit more complex to wire and require
more current (meaning that they are less efficient), but
these are offset by the advantages in software control.

A “Bipolar” Stepper motor consists of a permanent
magnet on the motor’s shaft that has its position speci-
fied by a pair of coils (Fig. 8.39). To move the magnet
and the shafts, the coils are energized in different pat-
terns to attract the magnet. For the example above, the
following sequence would be used to turn the magnet
(and the shaft) clockwise.

368 Chapter 8

Figure 8.39 Stepper Motor

Commands to Move a Stepper Motor

Step Angle Coil “A” Coil “B”
1 0 S
2 90 N
3 180 N
4 270 S
5 360/0 S

In this sequence, Coil “A” attracts the North Pole of the
magnet to put the magnet in an initial position. Then
Coil “B” attracts the South Pole, turning the magnet 90

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 368

degrees. This continues on to turn the motor, 90 degrees
for each "Step".

The output shaft of a stepper motor is often geared
down so that each step causes a very small angular de-
flection (a couple of degrees at most rather than the 90
degrees in the example above). This provides more
torque output from the motor and greater positional
control of the output shaft.

R/C Servo Control

Servos designed for use in radio-controlled airplanes,
cars, and boats can be easily interfaced to a PICmicro®

MCU. They are often used for robots and applications
where simple mechanical movement is required. This
may be surprising to you because a positional servo is
considered to be an analog device. The output of an
R/C Servo is usually a wheel that can be rotated from
zero to 90 degrees. (There are also servos available
that can turn from zero to 180 degrees as well as servos
with very high torque outputs for special applications).
Typically, they only require �5 volts, ground, and an
input signal.

An R/C Servo is indeed an analog device, the input is
a PWM signal at digital voltage levels. This pulse is be-
tween 1.0 and 2.0 msecs long and repeats every 20
msecs (Fig. 8.40).

The length of the PWM Pulse determines the position
of the servo's wheel. A 1.0 msec pulse will cause the
wheel to go to zero degrees while a 2.0 msecs pulse will
cause the wheel to go to 90 degrees.

For producing a PWM signal using a PICmicro® MCU,
the TMR0 timer interrupt (set for every 20 msecs),

PICmicro® MCU Hardware Interfacing 369

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 369

which outputs a 1.0 to 2.0 msecs PWM signal can be
used. The pseudo-code for the interrupt handler is

Interrupt() { // Interrupt Handler
Code

int i = 0;

BitOutput(Servo, 1); // Output the Signal

for (i = 0; i < (1 msec + ServoDlay); i++);

BitOutput(Servo, 2);

for (; i < 2 msec; i++); // Delay full 2
msecs

} // End Interrupt Handler

Audio Output

The PICmicro® MCU can output audio signals using a
circuit like the one shown in Fig. 8.41.

Timing the output signal is generally accomplished by
toggling an output pin at a set period within the TMR0 in-

370 Chapter 8

Figure 8.40 Servo PWM Waveform

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 370

terrupt handler. To generate a 1kHz signal shown in a
PICmicro® MCU running a 4MHz, you can use the code
below (which does not use the prescaler) for TMR0 and
the PICmicro® MCU’s interrupt capability.

org 4
int

movwf _w ; Save Context
movwf _w ; Registers
bcf INTCON, TOIF ; Reset the
bcf INTCON, TOIF ; Interrupt
movlw 256 � (250 � 4)
movwf TMRO ; Reset TMR0 for
movwf TMRO ; another 500 usecs
btfsc SPKR ; Toggle the Speaker
goto $ � 2

bsf SPKER ; Speaker Output
bsf SPKER ; High
goto $ � 2
bcf SPKER ; Speaker Output Low
swapf _w, f ; Restore Context
swapf _w, f ; Registers
swapf _w, w
retfie

PICmicro® MCU Hardware Interfacing 371

Figure 8.41 Circuit for Driving PICmicro® MCU Audio

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 371

AC Power Control

“TRIACS” come under the heading of “Thyristors” and
are used to switch AC signals on and off. TRIACS do not
rectify the AC voltage because they consist of two
“Silicon Controlled Rectifiers” (“SCRs”), which allows
the AC Current to pass without any “clipping”. A typical
circuit for Triacs is shown in Fig. 8.42.

TRIACS do not allow AC current to pass unless their
“gates” are biased relative to the two AC contacts. To do
this, a PICmicro® MCU output can pull the control to
ground. The current required to “close” many of the
TRIACS is 25 mA and can be provided by standard
PICmicro® MCU outputs easily.

CAUTION: AC voltages and currents can damage
components, start fires, burn, or even kill through elec-
trocution. It is recommended that AC control circuits
are tested with low-voltage sources before they are used
in “mains” voltage circuits.

372 Chapter 8

Figure 8.42 Typical TRIAC AC Control Circuit

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 372

Hall-Effect Sensors

A “Hall-effect switch” is a device in which if a current
passing through a piece of silicon is deflected by a mag-
netic field, the output changes state as shown in Fig. 8.43.

The Hall-effect switch output can either be “Totem
Pole” or “Open Collector” and can drive a PICmicro®

MCU input directly. If an “Open Collector” output is
used with the Hall-effect switch, then a pull up is re-
quired to ensure positive voltages will be received by the
PICmicro® MCU when there is no magnetic field in
place.

Sony Infrared TV Remote Control

Most (if not all) I/R TV remotes use a “Manchester” en-
coding scheme in which the data bits are embedded in
the packet by varying the lengths of certain data levels.
This can be seen in Fig. 8.44, from a theoretical
Perspective and in Fig. 8.45, which shows the output
from a 40-kHz Infrared Receiver receiving a signal from
a “Sony” brand TV remote control. The normal signal

PICmicro® MCU Hardware Interfacing 373

Figure 8.43 Hall-Effect Switch Operation

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 373

374 Chapter 8

Figure 8.45 Scope View of TV I/R Remote Control Input

Figure 8.44 I/R TV remote data stream.

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 374

PICmicro® MCU Hardware Interfacing 375

coming from an I/R receiver circuit is “High” when noth-
ing is coming (line idle) and then goes “low” with a
“leader” signal to indicate that data is coming in. The
data consists of a bit “Synch,” which when it completes
the bit value is transmitted as the length of time before
the next bit “Synch”.

“Sony” brand TV remotes have 12 data bits and a 40-
kHz carrier. The timings are as follows (and use a “Base
Timing” “T” of 550 usecs).

Sony I/R Remote Control Timing

Feature "T" Timing Actual Length
------- ---------- -------------
Leader 4T 2.20 msec
Synch T 0.55 msec
"0" T 0.55 msec
"1" 2T 1.10 msec

To read the incoming signal, the following code can be
used in a PICmicro® MCU running at 4 MHz and a single
I/R receiver can be used to pass the signal to the
PICmicro® MCU:

Sony I/R Read Code

clrf IntCount ; Reset the
; Counters

clrf ReadCount

GetPack ; Get the Next
; Packet Coming In

movlw 0x088 ; Wait for Port
; Change Interrupt

movwf INTCON

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 375

376 Chapter 8

Sony I/R Read Code (Continued)

Loop ; Loop Here for
; Each Update of
; the Screen

movlw 150 ; Wait for 25 msec
; of Data from I/R

subwf IntCount, w
btfss STATUS, Z
goto Loop ; Has NOT timed out

clrf INTCON ; No more interrupts
; for a while

movf ReadCount, w ; Get the Read in
; CRC

clrf IntCount ; Reset for the
; Next Packet

clrf ReadCount

call DispHex ; Now, Display the
; Character

movlw 0x08E ; Reset the Cursor
call WriteINS

goto GetPack ; Wait for the Next
; I/R Packet

Int ; Interrupt, Check
; I/R Input

movwf _w ; Save the Context
; Registers

swapf STATUS, w
movwf _status

movlw 0x020 ; Just wait for a
; Timer Interrupt

movwf INTCON

movlw 256 � 20 ; Reset the Timer

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 376

This code starts sampling the incoming data after the
Leader was received and the “1”s and “0”s were treated
as the inputs to a Linear Feedback Shift Register. For
the Code above, an 8-bit LFSR was used to produce
“Cyclical Redundancy Check” (“CRC”) codes. In this

PICmicro® MCU Hardware Interfacing 377

Sony I/R Read Code (Continued)

movwf TMR0

incf IntCount ; Increment the
; Count Register

bcf STATUS, C ; Now, Figure out
; what to Add to
; LSB

btfsc PORTB, 6 ; Is the Incoming
; Value Set?

goto Int_Set

btfsc ReadCount, 5 ; Do we Update the
; Value coming in?

bsf STATUS, C

goto Int_End

Int_Set ; Incoming Set
btfss ReadCount, 5 ; Is the Current

; Bit Set?
bsf STATUS, C ; No, Turn on the

; Incoming Bit
Int_End

rlf ReadCount ; Shift Over with
; New Input Data

swapf _status, w ; Restore the
; Context
; Registers

movwf STATUS
swapf _w
swapf _w, w
retfie

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 377

case, the Input wasn’t the high bit of the shift register—
instead it is the input from the I/R Receiver.

Using this code, the following CRC codes were gener-
ated from the “Sony” I/R TV Remote Control Transmitter:

Key Code
Power 0x052
Vol+ 0x05E
Vol- 0x0BB
Ch+ 0x0DC
Ch- 0x062
"0" 0x017
"1" 0x07A
"2" 0x08D
"3" 0x033
"4" 0x01F
"5" 0x04E
"6" 0x072
"7" 0x0CC
"8" 0x0B9
"9" 0x023

378 Chapter 8

5194 Predko Pocket Chapter 8 9/25/01 4:25 PM Page 378

Chapter

PICmicro® MCU
Programming

“Hex” File Format

The purpose of MPLAB and other assemblers and com-
pilers is to convert PICmicro® MCU application source
code into a data format that can be used by a program-
mer to load the application into a PICmicro® MCU. The
most popular format (used by Microchip and most other
programmers, including the two presented in this chap-
ter) is the Intel 8-bit hex file format.

When source code is assembled, a hex file
(“Example.hex”) is generated. This file is in the format:

9

379

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 379

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

:10000000FF308600831686018312A001A101A00B98
:0A0010000728A10B07288603072824
:02400E00F13F80
:00000001FF

Each line consists of a starting address and data to be
placed starting at this address. The different positions of
each line are defined by:

380 Chapter 9

“Hex File” Line Definition

Byte Function
First (1) Always “:” to indicate the Start of the

Line.
2–3 Two Times the Number of Instructions on

the Line.
4–7 Two Times the Starting Address for the

Instructions on the Line. This is in
“Motorola” Format (High Byte followed
by Low Byte).

8–9 The Line Type (00 - Data, 01 - End).
10–13 The First Instruction to be loaded

into the PICmicro® MCU at the Specified
Address. This data is in “Intel”
Format (Low Byte followed by High
Byte).

: Additional Instructions to be loaded at
Subsequent Addresses. These
instructions are also in “Intel”
Format.

End - 4 The Checksum of the Line.
End - 2 ASCII Carriage Return/Line Feed

Characters

The checksum is calculated by summing each byte in a
line and subtracting the least significant bits from
0x0100. For the second line in the example hex file
above, the checksum is calculated as:

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 380

0A
00
10
00
07
28
A1
0B
07
28
86
03
07

+ 28

1DC

The least significant 8-bits (0x0DC) are subtracted from
0x0100 to get the checksum:

0x0100
- 0x00DC

0x0024

This calculated checksum value of 0x024 is the same as
the last two bytes of the original line.

Low-End PICmicro® MCU Programming

The low-end PICmicro® MCUs use 17 pins for program-
ming and are programmed using a “Parallel” protocol.
The pins are defined as:

PICmicro® MCU Programming 381

Low-End PICmicro® MCU Programming Pins

Pins Function
RA0-RA3 D0-D3 of the Instruction Word
RB0-RB7 D4-D11 of the Instruction Word

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 381

A programmer designed for low-end PICmicro® MCU
programming generally looks like Fig. 9.1.

To program a memory location, the following proce-
dure is used:

1. The new word is driven onto RA0-RA3 and RB0-RB7.

2. The “prog” single shot sends a 100 usec programming
pulse to the PICmicro® MCU.

3. The data word driver (“driver enable”) is turned off.

382 Chapter 9

Figure 9.1 Low-End PICmicro® MCU Programmer

Low-End PICmicro® MCU Programming Pins (Continued)

Pins Function
T0CK1 Program/Verify Clock
OSC1 Program Counter Input
_MCLR/Vpp Programming Power
Vdd PICmicro® MCU Power
Vss Ground (“Gnd”)

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 382

4. A programming pulse is driven that reads back the
word address to confirm the programming was cor-
rect. In Fig. 9.1, the read-back latch is loaded on the
falling edge of the “on” gate to get the data driven by
the PICmicro® MCU.

5. Steps two through four are repeated a maximum of
25 times or until the data stored in the latch are
correct.

6. Steps one through four are repeated three times and
each time it is required to get the correct data out of
the PICmicro® MCU. This is used to ensure the data
is programmed in reliably.

7. “OSC1” is pulsed to increment to the next address.
This operation also causes the PICmicro® MCU to
drive out the data at the current address before in-
crementing the PICmicro® MCU’s program counter
(which happens on the falling edge of OSC1).

In Fig. 9.2, the programming steps one to four listed
above are shown along with the latch clock signal. Note

PICmicro® MCU Programming 383

Figure 9.2 Low-End PICmicro® MCU Programming Waveform

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 383

that upon power up, the “configuration fuses” are the
first address to be accessed, followed by the contents of
the program memory.

Just pulsing the ‘‘OSC1” pin can be used to implement
a “fast verify” as shown in Fig. 9.3. As noted above, each
time “OSC1” is pulsed, data at the current address will
be output and then increment the PICmicro® MCU’s
Program Counter. Figure 9.3 shows the fast verify right
from the start with the configuration fuse value output
first before the contents of the program memory are
output.

The low-end PICmicro® MCU configuration fuses,
while Microchip documentation indicates they are at ad-
dress 0x0FFF, are the first words to be programmed.
When programming a low-end PICmicro® MCU, the con-
figuration fuses should be skipped over the first time the
PICmicro® MCU is programmed. After doing this, power
should be shut off and the PICmicro® MCU put back into
programming mode. The reason for programming the
configuration fuses last is to make sure the “code pro-
tect” bit of the configuration register is not reset (en-

384 Chapter 9

Figure 9.3 Low-End PICmicro® MCU “Fast Verify” Waveform

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 384

abled) during program memory programming. If code
protection is enabled then data read back will be scram-
bled during programming, which makes verification of
the code impossible.

Mid-Range Serial Programming

Serial programming (known as “In Circuit Serial Program-
ming” or “ICSP”) for the low-end (which implements)
and mid-range parts consists of pin access:

PICmicro® MCU Programming 385

Mid-Range PICmicro® MCU ICSP Programming Pins

Pin 12C5xx 16C50x 18 Pin 28 Pin 40 Pin
Mid Mid Mid

1 Vpp 4 _MCLR 4 _MCLR 4 _MCLR 1 _MCLR 1 _MCLR
2 Vdd 1 Vdd 1 Vdd 14 Vdd 26 Vdd 11,32
Vdd
3 GND 8 Vss 14 Vss 5 Vss 8,21 Vss 12,31 Vss
4 DATA 7 GPO 13 RB0 13 RB7 28 RB7 40 RB7

5 CLOCK 6 GP1 12 RB1 12 RB6 27 RB6 39 RB6

To program and read data, the PICmicro® MCU must be
put into “programming mode” by raising the “_MCLR”
pin to 13 to 14 volts, and the “data” and “clock” lines
pulled low for several milliseconds. Once, the PICmicro®

MCU is in programming mode, “Data” can then be
shifted in and out using the “Clock” line.

Putting the PICmicro® MCU into programming mode
requires the data waveform shown in Fig. 9.4. When
_MCLR is driven to Vpp, the internal program counter of
the PICmicro® MCU is reset. The PICmicro® MCU’s pro-
gram counter is used to keep track of the current pro-

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 385

gram memory address in the EPROM that is being ac-
cessed.

Mid-Range PICmicro® MCU EPROM ICSP Programming
Commands

Command Bit Pattern Data Comments
Load Data 0b0000010 0,14 Bits Load word for

Data,0 programming
Begin 0b0001000 none Start
Programming Programming

Cycle
End 0b0001110 none End Programming
Programming Cycle after

100 msec
Increment 0b0000110 none Increment the
Address PICmicro® MCU’s

Program
Counter

Read Data 0b0000100 0, 14 Bits Read Program
Data, 0 Memory at

Program
Counter

Load Config 0b0000000 0x07FFE Set the
PICmicro® MCU's

386 Chapter 9

Figure 9.4 Programmer Initialization

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 386

Program Counter
to 0x02000

Data is shifted in and out of the PICmicro® MCU using
a synchronous protocol. Data is shifted out least signifi-
cant bit (LSB) first on the falling edge of the clock line.
The minimum period for the clock is 200 nsecs with the
data bit centered as shown in Fig. 9.5, which is sending
an “increment address” command.

When data is to be transferred, the same protocol is
used, but a 16-bit transfer (LSB first) follows after one
microsecond has passed since the transmission of the
command. The 16 bits consist of the instruction word
shifted to the left by one. This means the first and last
bits of the data transfer are always “zero”.

Before programming can start, the program memory
should be checked to make sure it is blank. This is ac-
complished by simply reading the program memory
(“Read Data” command listed above) and comparing the
data returned to 0x07FFE. After every compare, the
PICmicro® MCU’s program counter is incremented (us-
ing the “increment address” command) to the size of the
devices program memory. Once the program memory is
checked, the PICmicro® MCU’s program counter is
“jumped” to 0x02000 (using the “Load Configuration”

PICmicro® MCU Programming 387

Figure 9.5 Programmer Command—6 Bits

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 387

Command) and then the next eight words are checked
for 0x07FFE.

388 Chapter 9

For different mid-range devices, the following table
of PICmicro® MCU part numbers can be used to deter-
mine the amount of program memory available within
them:

Mid-Range PICmicro® MCU EPROM Sizes by Part Number Mask

Device Sizes
PIC16Cx1 1k
PIC16Cxx0 0.5k
PIC16Cxx1 1k
PIC16Cxx2 2k

PIC16Cx2 2k
PIC16Cx3 4k
PIC16Cx4 2k
PIC16Cx5 4k
PIC16Cx6 8k
PIC16Cx7 8k

The process for programming an instruction word in a
mid-range EPROM-based PICmicro® MCU is

1. A “Load Data” command with the word value is writ-
ten to the PICmicro® MCU.

2. A “Begin Programming” command is written to the
PICmicro® MCU.

3. Wait 100 msecs.

4. An “End Programming” command is written to the
PICmicro® MCU.

5. A “Read Data” command is sent to the PICmicro®

MCU and 14 bits (the LSB and MSB of the 16-bit

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 388

data transferred are ignored) in the program mem-
ory instruction are read back.

6. Steps one through five are repeated up to 25 times
until the data read back is correct. Steps one
through five are known as a “Programming Cycle”.

7. Steps one through four are repeated three times
the number of cycles required to get a valid in-
struction word read. This is known as “Over-
programming”.

8. The PICmicro® MCU’s Program Counter is incre-
mented using the “Increment Address” command.

9. Steps one through eight are repeated for the entire
application to the configuration fuses.

10. A “Load Config” command is sent to the PICmicro®

MCU to set the Program Counter to 0x02000.

11. The PICmicro® MCU’s configuration fuses are pro-
grammed using the “Programming Cycle” detailed
in steps one through seven.

The process for programming program memory could
be blocked out with the pseudo-code:

ICSPProgram() // Program to be burned in is in
// an array of

{ // addresses and data

int PC = 0; // PICmicro® MCU’s program counter
int i, i j k;
int retvalue = 0;

for (i = 0; (i - PGMsize) && (retvalue == 0); I++)
{

if (PC ! = address[i]) {

PICmicro® MCU Programming 389

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 389

if ((address[I] >= 0x02000) && (PC < 0x02000))
{
LoadConfiguration(0x07FFE);
PC = 0x02000;

}

for (; PC < address[i]; PC++)
IncrementAddress();

for (i = 0; (i < 25) && (retvalue != data[I]);
I++) {
LoadData(ins[i] << 1); // Programming Cycle
BeginProgramming();
Dlay(100usec);
EndProgramming();

Retvalue = ReadData();
}

if (i == 25)
retvalue = -1; // Programming Error

else {
retvalue = 0; // Okay, Repeat Programming

// Cycle 3x
for (k = 0; k < (j * 3); k++){

LoadData(ins[i] << 1);
BeginProgramming();
Dlay(100usec);
EndProgramming();

} // endif
} // endif

} // endfor
} // end ICSPProgram

After the program memory has been loaded with the ap-
plication code, Vpp should be cycled off and on and the
PICmicro® MCUs program memory is read out and com-
pared against the expected contents. When this verify is
executed, Vpp should be cycled again with Vdd a mini-
mum voltage (4.5 volts) and then repeated again with
Vdd at a maximum voltage (5.0 volts) value. This second

390 Chapter 9

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 390

verify is used by “Production PICmicro® MCU Program-
mers”. Programmers not having these minimum/maxi-
mum Vdd verify steps are known as “Prototype
PICmicro® MCU Programmers”.

The PIC12C50x and PIC16C50x low-end parts are
programmed using a similar protocol as the EPROM
based mid-range PICmicro® MCUs. The command first
enters programming mode (with the data and clock pins
pulled low followed by _MCLR driven to �13 volts) and
the PICmicro® MCU’s program counter is set to 0x0FFF,
which is the configuration register address.

The PIC12C50x and PIC16C505 use a 12-bit instruc-
tion word. When data is passed to the PICmicro® MCU,
the upper 3 bits (instead of the upper one) are “zero”
and ignored by the device as it is programmed. The first
bit sent is still “0”, with the LED of the instruction word
following.

PICmicro® MCU Programming 391

A simple way of calculating the 16 data bits to be pro-
grammed into the PIC12C50x and PIC16C505 micro-
controllers from the instruction is to save the
instruction in a 16 bit variable and shift it “up” (to the
“left”) by one bit. The commands available for program-

ming the PIC12C50x and PIC16C505 have a 6-bit header
and optional 16-bit instruction or configuration fuse
data word.

PIC12C5xx and PIC16C505 Programming Commands

Command Bits
Load data 000010 +0, data(12), 000
Read data 000100 +0, data(12), 000
Increment PC 001000

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 391

End programming 001110

Microchip uses a modified version of the program-
ming algorithm outlined above for the 16F8x “Flash”-
based parts. Along with the programming algorithm
being much simpler, the actual programming circuit is
much easier to implement in hardware. Figure 9.6
shows a typical Flash programming circuit.

Electrically, the programming voltages are basically
the same as what is required for the mid-range devices.
There is one difference, however, and that is in the volt-
age and current required for Vpp. For the mid-range
parts, up to 50 mA is required for EPROM programming.

392 Chapter 9

Figure 9.6 PIC16F8x ICSP Connection

Because the 16F8x parts have built-in EPROM data and
Flash VPP generator, this circuit will provide the actual
voltages and currents to program and engage the data
and program memory resulting in micro-Amperes of
current required from the programmer in
“Programming Mode”.

The same data packet format is used for the 16F8x as
was used for the mid-range EPROM parts, but the com-

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 392

The data, like in the mid-range EPROM part, is always
16 bits with the first and last bit always equal to zero.
Data is always transferred LSB first using the same tim-
ings as specified earlier in the chapter for the mid-range
parts. When transferring 14 bits of data from the hex file
instruction word, it can be multiplied by two, leaving the
LSB and MSB reset.

The programming cycle for the PIC 16F8x is as
follows:

1. “Load Data for Program Memory” command with
Instruction word.

2. Send “Begin Programming” command.

3. Wait 10 msecs.

4. “Read Data from Program Memory” command and
verify the contents of the Program Memory.

5. Send “Increment PICmicro® MCU’s Program
Counter” command.

6. Steps one through five are the Flash PICmicro® MCU
“Programming Cycle”. These steps are repeated for
every instruction in the hex file.

7. A “Load Configuration” command is sent to set the
Program Counter to point to address 0x02000.

8. Steps one through four are repeated for the
Configuration Information.

PICmicro® MCU Programming 393

mands and how they work are slightly different. The
table below lists the different commands:

Mid-Range Flash PICmicro® MCU Programming Commands

Command Bits Data
Load Configuration 000000 07FFE In
Load Data for Program 000010 Word x 2 Going In

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 393

To erase the Flash Program Memory, use the
Microchip specified erase for code protected devices.
This operation will erase all Flash and EEPROM
memory in the PICmicro® MCU device, even if code pro-
tection is enabled.

1. Hold RB6 and RB7 low and apply Vpp, wait at least
2 msecs.

2. Execute Load Configuration (0b0000000� 0x07FFE).

3. Increment the PC to the Configuration Register Word
(Send 0b0000110 seven times).

4. Send command 0b0000001 to the PICmicro® MCU.

5. Send command 0b0000111 to the PICmicro® MCU.

6. Send “begin programming” (0b0001000) to the
PICmicro® MCU.

7. Wait 10 ms.

8. Send command 0b0000001.

9. Send command 0b0000111.

Note that there are two undocumented commands
(“0b0000001” and “0b0000111”) in this sequence.

PIC17Cxx Programming

The PIC17Cxx is connected to a programmer using the
wiring shown in Fig. 9.7. Note that PORTB and PORTC
are used for transferring data 16 bits at a time and
PORTA is used for the control bits that control the oper-
ation of the programmer. The “_MCLR” pin is pulled
high to 13 volts as would be expected to put the
PICmicro® MCU into “Programming Mode”.

394 Chapter 9

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 394

While the programming of the PIC17Cxx is described
as being in “parallel”, a special “Boot ROM” routine exe-
cutes within the PICmicro® MCU and this accepts data
from the I/O ports and programs the code into the
PICmicro® MCU. To help facilitate this, the “test” line,
which is normally tied low, is pulled high during applica-
tion execution to make sure that the programming func-
tions can be accessed. The clock, which can be any value
from 4 MHz to 10 MHz is used to execute the “Boot
ROM” code for the programming operations to execute.

To put the PICmicro® MCU into programming mode,
the “test” line is made active before _MCLR is pulled to
Vpp and then 0x0E1 is driven on PORTB to command
the boot code to enter the programmer routine. This se-
quence is shown in Fig. 9.8. To end programming mode,
_MCLR must be pulled to ground 10 msecs or more be-
fore power is taken away from the PICmicro® MCU.
“Test” should be de-asserted after _MCLR is pulled low.

When programming, the RA0 pin is pulsed high for at

PICmicro® MCU Programming 395

Figure 9.7 PIC17Cxx Parallel Programming Connections

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 395

least 10 instruction cycles (10 us for the PICmicro®

MCU running at 4 MHz) to load in the instruction ad-
dress followed by the PICmicro® MCU latching out the
data (so that it can be verified). After the data have
been verified, RA0 is pulsed high for 100 usecs to pro-
gram the data. If RA1 is low during the RA0 pulse, then
the PICmicro® MCU program counter will be incre-
mented. If it goes high during the pulse, the internal pro-
gram counter will not be incremented and the
instruction word contents can be read back in the next
RA1 cycles without having to load in a new address.

The latter operation is preferred and looks like the
waveforms shown in Fig. 9.9. This waveform should be
repeated until the data is loaded or up to 25 times. Once
it is programmed in, then three times the number of pro-
gramming cycles must be used to “lock” and “overpro-
gram” the data in. This process is similar to that of the
other EPROM parts.

396 Chapter 9

Figure 9.8 PIC17Cxx Parallel Programming Start-Up

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 396

Writing to the specified addresses between 0x0FE00
and 0x0FE0F programs and verifies the configuration
word. To program (“make 0”) one of the configuration
bits, write to its register. Reading back the configura-
tion word uses the first three RA1 cycles of Fig. 9.9 at ei-
ther 0x0FE00 or 0x0FE08. Reading 0x0FE00 will return
the low byte of the configuration word in PORTC
(0x0FF will be in PORTB) and reading 0x0FE08 will re-
turn the high byte in PORTC.

The configuration bits for the PIC17Cxx are defined as:

PICmicro® MCU Programming 397

Figure 9.9 PIC17Cxx Parallel Programming Waveform

PIC17Cxx Configuration Bits

Address Bit
F0SC0 0x0FE00
F0SC1 0x0FE01
WDTPS0 0x0FE03
WDTPS1 0x0FE04
PM0 0x0FE05
PM1 0x0FE06
PM2 0x0FE0F

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 397

where the bits are defined as:

398 Chapter 9

PIC17Cxx Configuration Bit Definition

PM2:PM0 Processor mode
111 Microprocessor Mode
110 Microcontroller Mode
101 Extended Microcontroller Mode
000 Code Protected Microcontroller
Mode

WDTPS1:WDTPS0 Watchdog Timer and Postscaler Mode
11 WDT Enabled. Postscaler = 1:1
10 WDT Enabled, Postscaler = 256:1
01 WDT Enabled, Postscaler = 64:1
00 WDT Disabled, 16 bit Overflow
Timer

FOSC1:FOSC0 Oscillator Mode
11 External Oscillator
10 XT Oscillator
01 RC Oscillator
00 LF Oscillator

Note, configuration bit addresses must be written to in
ascending order. Programming the bit in nonregister as-
cending order can result in unpredictable programming
of the configuration word as the “Processor” Mode
changes to a “Code Protected” mode before the data is
loaded in completely.

PIC17Cxx ICSP Programming

The capability of a PIC17Cxx application to write to pro-
gram memory is enabled when the _MCLR is driven by
more than 13 volts and a tablwt instruction is executed.
When tablwt is executed, the data loaded into the
TABLATH and TABLATL registers is programmed into

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 398

the memory locations. This instruction keeps executing
(it does not complete after two cycles, as it would if the
TBLPRH and TBLPTRL registers were pointing outside
the internal EPROM) until it is terminated by an inter-
rupt request or _MCLR reset.

To perform a word write, the following mainline
process would be used:

1. Disable TMR0 interrupts.

2. Load TABPTRH and TABPTRL with the address.

3. Load TABLATH or TABLATL with the data to be stored.

4. Enable a 1,000 usec TMR0 delay interrupt (initialize
TMR0 and enable TMR0 interrupt).

5. Execute tablwt instruction with the missing half of
data.

6. Disable TMR0 interrupts.

7. Read back data—Check for match.

8. If no match—Return error.

The interrupt handler for this process can just be exe-
cuting a “retfie” instruction. Sample code for writing to
the PIC17Cxx’s program memory is

org 0x00010
TMR0Int ; Timer Interrupt

; Request
; Acknowledge

retfie

:

movfp SaveAddress, ; Point to the
TBLPTRL ; Memory being

PICmicro® MCU Programming 399

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 399

movfp SaveAddress + 1, ; written to
TBLPTRH

bcf PORTA, 3 ; Turn on Programming
; Voltage

movlw HIGH ((100000 / 5) ; Delay 100 msecs
+ 256) ; for

movwf Dlay ; Programming Voltage
; to Stabilize

movlw LOW ((100000 / 5)
+ 256)

addlw 0x0FF
btfsc ALUSTA, Z
decfsz Dlay, f
goto $ - 3

movlw HIGH (65536 - ; Delay 10 msecs for
10000) ; EPROM Write

movwf TMR0H
movlw LOW (65536 - 10000)
movwf TMR0L

bsf T0STA, T0CS ; Start up the Timer

movlw 1 << T0IE ; Enable Interrupts
movwf INTSTA
bcf CPUSTA, GLINTD

tlwt 0, SaveData ; Load Table Pointer
; with Data

tlwt 1, SaveData + 1
tablwt 1, 0, SaveData + 1 ; Write the Data In
nop
nop

clrf INTSTA, f ; Turn Off Interrupts
bsf CPUSTA, GLINTD

movlw 2
call SendMSG

bsf PORTA, 3

400 Chapter 9

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 400

To enable internal programming, _MCLR has to be
“switched” from 5 volts (VDD) to 13 volts. The Microchip
circuit that is recommended is shown in Fig. 9.10. This
circuit will drive the PIC17Cxx’s _MCLR pin at 5 volts un-
til “RA2” is pulled low. When RA2 is pulled low, the volt-
age driven in to _MCLR will become 13 volts (or “Vpp”).
The programming current at 13 volts is a minimum of
30 mA.

The “boot code” is a host interface application that
reads data and then programs it at the specified ad-
dress. This code must be burned into the PICmicro®

MCU before “ICSP” can execute. The typical “boot
code” for a PIC17Cxx PICmicro® MCU would be as fol-
lows:

1. Establish communication with programming host.

2. If no communication link is established jump to appli-
cation code.

PICmicro® MCU Programming 401

Figure 9.10 PIC17Cxxx in circuit serial programming schematic

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 401

3. Enable Vpp (RA2 � 0).

4. Wait for host to send instruction word address.

5. Program in the word.

6. Confirm word is programmed correctly.

7. Loop back to four.

PIC18Cxx Programming
Like the PIC17Cxx, the PIC18Cxx has the capability to
“self program” using the table “read and write” instruc-
tions. In the PIC18Cxx, this capability is not only avail-
able within applications, but is used to program an
erased device.

To program the PIC18Cxx, instructions are down-
loaded into the PICmicro® MCU after setting the
“_MCLR” pin to Vpp (13 to 14 volts, as in the other
EPROM PICmicro® MCUs) with both RB6 and RB7 low.
Passing instructions (which contain the program data)
to the PICmicro® MCU is accomplished by first sending
a 4-bit “Special Instruction” followed by an optional 16-
bit instruction. The 4-bit Special Instruction is sent most
significant bit first and can either specify that an in-
struction follows or that it is a “mnemonic” for a
“TBLRD” or “TBLWT” instruction as shown in the table
below:

402 Chapter 9

PIC18Cxx Programming “Mnemonics”

Special Mnemonic Instruction Cycles
Instruction Operation
0000 nop Shift in Next 1

Instruction
1000 TBLRD * Read Table 2
1001 TBLRD *+ Read Table, 2

Increment TBLPTR

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 402

The data transmission looks like Fig. 9.11. The four
“nop” bit code is transmitted first followed by the 16-bit
instruction.

If the instruction is a table operation, then the
“Special Instruction” code can be used instead of the
“nop” to simplify the data transfer. At the end of
Fig. 9.11, the bit pattern 0b01101 (“TBLWT *�”) is sent
to the PICmicro® MCU.

PICmicro® MCU Programming 403

Figure 9.11 Serial Instruction Timing for 1 Cycle 16-Bit Instructions

PIC18Cxx Programming “Mnemonics” (Continued)

Special Mnemonic Instruction Cycles
Instruction Operation
1010 TBLRD *- Read Table, 2

Decrement TBLPTR
1011 TBLRD +* Increment TBLPTR, 2

Read Table
1100 TBLWT * Write Table 2
1101 TBLWT *+ Write Table, 2

Increment TBLPTR
1110 TBLWT *- Write Table, 2

Decrement TBLPTR
1111 TBLWT +* Increment TBLPTR, 2

Write Table

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 403

While the table reads and writes only require 4 bits, to
carry out the program operation, there are always 16
bits following the mnemonic (just as if it were a “nop”)
for data transfer and this avoids the need for explicitly
loading and unloading the table latch registers using in-
structions. In Fig. 9.12, the “tblwt *” instruction (write to
table and do not change TBLPTR) is shown.

After the first 20-bit sequence, a second 20-bit se-
quence is executed to allow the programming operation
to complete (this is what is meant by the “2” in the
“Cycles” in the table above). The PICmicro® MCU ignores
the second sequence of 20 bits and the initial sequence
is processed. Reading data from the PICmicro® MCU’s
program memory is accomplished in exactly the same
way.

To set up a table read or write, first the TBLPTR has to
be initialized. This is done using standard “movlw” and
“movwf” instruction. For example, to program address

404 Chapter 9

Figure 9.12 TBLWT Instruction Sequence

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 404

0x012345 with 0x06789, the data sequence is written to
the PIC18Cxx:

Mnemonic Instruction/Data
nop movlw UPPER 0x012345
nop movwf TBLPTRU
nop movlw HIGH 0x012345
nop movwf TBLPTRH
nop movlw LOW 0x012345
nop movwf TBLPTRL
tblwt * 0x06789

Microchip ICSP Programming Connector

The “ICSP” Programming Connector defined by Microchip
uses the pinout shown in the table below:

PICmicro® MCU Programming 405

Microchip “ICSP” Pin Definition}

PIN 12C5xx 16Cxx 16Fxx
1.Vpp -MCLR/Vpp -MCLR/Vpp -MCLR/Vpp
2.Vdd Vdd Vdd Vdd
3.Vss Vss Vss Vss
4.DATA GP0 RB7 RB7
5.CLOCK GP1 RB6 RB6

To connect a PICmicro® MCU, which has been put into
an application circuit, the following interface shown in
Fig. 9.13 should be used.

The PICmicro® MCU must be isolatable from the ap-
plication circuit. The diode on the “_MCLR/Vpp” pin
and the “breakable connections” on Vdd, RB7, and RB6
isolate the PICmicro® MCU. These “breaks” are best
provided by unsoldered “zero ohm” resisters or uncon-

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 405

nected jumpers in the circuit. This has to be done
because the ICSP specification will only provide 50 mA
for Vdd and has 1K ohm resisters in the data and clock
lines to protect the driver circuits.

Third Party/Downloadable Programmers

When considering a PICmicro® MCU programmer, the
following questions should be asked:

1. What are the supported PICmicro® MCU devices?

2. What is the interface and how is the application
timed?

3. How are the Configuration Fuses programmed?

4. What Operating System does it run under?

406 Chapter 9

Figure 9.13 16F84 ICSP Circuit

5194 Predko Pocket Chapter 9 9/25/01 4:26 PM Page 406

Chapter

PC Interfaces

Memory Map

Figure 10.1 shows a graphic of the PC’s memory map.

I/O Space Map

Only the lower 10 bits of the I/O space have been speci-
fied for the basic PC/AT register operation. Some PC/XT
specific registers have been omitted from this list. It is
not obvious in the table below, but I/O port addresses
0x0000 to 0x00FF are on the motherboard while the ad-
dresses above are on adapter cards.

For some motherboards, registers are accessed at ad-

10

407

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 407

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

dresses 0x0400 and above. To avoid problems, make
sure that you only specify addresses below 0x0400.

Address Register Description

0000h DMA channel 0 address (low addressed
first, then high)

0001h DMA channel 0 word count (low addressed
first, then high)

0002h DMA channel 1 address (low addressed
first, then high)

0003h DMA channel 1 word count (low addressed
first, then high)

0004h DMA channel 2 address (low addressed
first, then high)

0005h DMA channel 2 word count (low addressed
first, then high)

0006h DMA channel 3 address (low addressed
first, then high)

0007h DMA channel 3 word count (low addressed
first, then high)

0008h Read - DMA 1 channel 0-3 status
register

408 Chapter 10

Figure 10.1 The PC’s Memory Map

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 408

Bit 7 = Channel 3 Request
Bit 6 = Channel 2 Request
Bit 5 = Channel 1 Request
Bit 4 = Channel 0 Request
Bit 3 = Channel Terminal Count on
Channel 3

Bit 2 = Channel Terminal Count on
Channel 2

Bit 1 = Channel Terminal Count on
Channel 1

Bit 0 = Channel Terminal Count on
Channel 0

Write - DMA 1 channel 0-3 command
register
Bit 7 = DACK Sense Active High
Bit 6 = DREQ Sense Active High
Bit 5 = Extended Write Selection
Bit 4 = Rotating Priority
Bit 3 = Compressed Timing
Bit 2 = Enable Controller

0009h DMA 1 write request register
000Ah DMA 1 channel 0-3 mask register

Bit 7-3 = Reserved
Bit 2 = Mask bit
Bit 1-0 = Channel Select

- 00 channel 0
- 01 channel 1
- 10 channel 2
- 11 channel 3

000Bh DMA 1 channel 0-3 mode register
Bit 7-6 = Operating Mode

- 00 demand mode
- 01 single mode
- 10 block mode
- 11 cascade mode

Bit 5 = address increment select
Bit 3-2 = Operation

- 00 verify operation
- 01 write to memory
- 10 read from memory
- 11 reserved

Bit 1-0 = Channel Select
- 00 channel 0
- 01 channel 1
- 10 channel 2
- 11 channel 3

PC Interfaces 409

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 409

000Ch DMA 1 clear byte pointer flip-flop
000Dh Read - DMA 1 read temporary register

Write - DMA 1 master clear
000Eh DMA 1 clear mask register
000Fh DMA 1 write mask register
0020h Interrupt Controller 1 initialization

command word
Bit 7-5 = 0 - only used in 80/85 mode
Bit 4 = ICW1 Request
Bit 3 = Interrupt Request Mode

- 0 Edge triggered mode
- 1 Level triggered mode

Bit 2 = Interrupt Vector Size
- 0 Eight Byte Interrupt Vectors
- 1 Four Byte Interrupt Vectors

Bit 1 = Operating Mode
- 0 Cascade mode
- 1 Single mode

Bit 0 = IC4 Requirements
- 0 not needed
- 1 needed

0021h Interrupt Controller 1 Interrupt Mask
Register
bit 7 = 0 enable parallel printer

interrupt
bit 6 = 0 enable diskette interrupt
bit 5 = 0 enable fixed disk interrupt
bit 4 = 0 enable serial port 1

interrupt
bit 3 = 0 enable serial port 2

interrupt
bit 2 = 0 enable video interrupt
bit 1 = 0 enable keyboard, mouse, RTC

interrupt
bit 0 = 0 enable timer interrupt

0040h 8254 Timer Counter 0 & Counter Divisor
Register

0041h 8254 Timer Counter 1 & Counter Divisor
Register

0042h 8254 Timer Counter 2 & Counter Divisor
Register

0043h 8254 Timer Mode/Control port
Bit 7-6 = Counter Select

- 00 Counter 0
- 01 Counter 1
- 10 Counter 2

410 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 410

Bit 5-4 = Counter Read/Write Operation
- 01 Read/Write Low Counter Byte
- 10 Read/Write High Counter
Byte
- 11 Read/Write Low, then High
Counter Bytes

Bit 3-1 = Counter Mode Select
- 000 mode 0
- 001 mode 1/Programmable One
Shot
- x10 mode 2/Rate Generator
- x11 mode 3/Square Wave
Generator
- 100 mode 4/Software Triggered
Strobe

- 101 mode 5/Hardware Triggered
Strobe

Bit 0 = Counter Type
- 0 Binary Counter
- 1 BCD Counter

0060h Read - Keyboard Controller
Bit 7 = Keyboard Inhibit (Reset)
Bit 6 = CGA (Reset)
Bit 5 = Manufacturing Jumper Install
Bit 4 = Reset if System RAM 512K
Bit 3-0 = Reserved

Write - Keyboard Controller
Bit 7 = Keyboard Data Output
Bit 6 = Keyboard Clock Output
Bit 5 = Input Buffer Full (Reset)
Bit 4 = Output Buffer Empty (Reset)
Bit 3-2 = Reserved
Bit 1 = Address Line 20 Gate
Bit 0 = System Reset

0061h Read - Keyboard Controller Port B
control register
Bit 7 = Parity Check
Bit 6 = Channel Check
Bit 5 = Current Timer 2 Output
Bit 4 = Toggles with each Refresh

Request
Bit 3 = Channel Check Status
Bit 2 = Parity Check Status
Bit 1 = Speaker Data Status
Bit 0 = Timer 2 Gate to Speaker

Status

PC Interfaces 411

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 411

Write - 8255 Compatible Port
Bit 7 = Clear Keyboard
Bit 6 = Hold Keyboard Clock Low
Bit 5 = I/O Check Enable
Bit 4 = RAM Parity Check Enable
Bit 3 = Read low/high switches
Bit 2 = Reserved
Bit 1 = Speaker Clock Enable
Bit 0 = Timer 2 Gate to Speaker Enable

0064h Read - Keyboard Controller Status
Bit 7 = Parity Error on Keyboard

Transmission
Bit 6 = Receive Timeout
Bit 5 = Transmit Timeout
Bit 4 = Keyboard Inhibit
Bit 3 = Input Register Type

- 1 data in input register is
command

- 0 data in input register is
data

Bit 2 = System Flag Status
Bit 1 = Input Buffer Status
Bit 0 = Output Buffer Status

Write Keyboard Controller Input Buffer
20 = Read Byte Zero of Internal

RAM,this is the last KB
command send to 8042

21-3F = Reads the Byte Specified in
the Lower 5 Bits of the
command in the 8042’s
internal RAM

60-7F = Writes the Data Byte to the
Address Specified in the 5
Lower Bits of the Command

0065h Address Line 20 Gate Control
Bit 2 = A20 gate control

1 - A20 enabled
0 - A20 disabled

0070h CMOS RAM index register port
Bit 7 = NMI Enable
Bit 6-0 = CMOS RAM Index

0071h CMOS RAM data port
00 = Current Second in BCD
01 = Alarm Second in BCD
02 = Current Minute in BCD
03 = Alarm Minute in BCD

412 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 412

04 = Current Hour in BCD
05 = Alarm Hour in BCD
06 = Day of Week in BCD
07 = Day of Month in BCD
08 = Month in BCD
09 = Year in BCD (00-99)
0A = Status Register A
Bit 7 = Update Progress
Bit 6-4 = Divider that Identifies the

time-based Frequency
Bit 3-0 = Rate Selection Output

0B = Status Register B
Bit 7 = Run/Halt Control
Bit 6 = Periodic Interrupt Enable
Bit 5 = Alarm Interrupt Enable
Bit 4 = Update-Ended Interrupt Enable
Bit 3 = Square Wave Interrupt Enable
Bit 2 = Calendar Format
Bit 1 = Hour Mode
Bit 0 = Daylight Savings time Enable

0C = Status Register C
Bit 7 = Interrupt Request Flag
Bit 6 = Periodic Interrupt Flag
Bit 5 = Alarm Interrupt Flag
Bit 4 = Update Interrupt Flag
Bit 3-0 = Reserved

0D = Status Register D
Bit 7 = Real-Time Clock power

0080h “MFG_PORT” Write Address
0080h DMA Page Register page register

(temporary storage)
0081h DMA Channel 2 Page Address
0082h DMA Channel 3 Page Address
0083h DMA Channel 1 Page Address
0084h Extra Page Register
0085h Extra Page Register
0086h Extra Page Register
0087h DMA Channel 0 Page Address
0088h Extra Page Register
0089h DMA Channel 6 Page Address
008Ah DMA Channel 7 Page Address
008Bh DMA Channel 5 Page Address
008Ch Extra Page Register
008Dh Extra Page Register
008Eh Extra Page Register
008Fh DMA Refresh Page Register

PC Interfaces 413

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 413

00A0h Interrupt Controller 2 Initialization
Command Word
Bit 7-5 = 0 - only used in 80/85 mode
Bit 4 = ICW1 Request
Bit 3 = Interrupt Request Mode

- 0 Edge triggered mode
- 1 Level triggered mode

Bit 2 = Interrupt Vector Size
- 0 Eight Byte Interrupt Vectors
- 1 Four Byte Interrupt Vectors

Bit 1 = Operating Mode
- 0 Cascade mode
- 1 Single mode

Bit 0 = IC4 Requirements
- 0 not needed
- 1 needed

00A1h Interrupt Controller 2 Mask Register
Bit 7 = Reserved
Bit 6 = Fixed Disk
Bit 5 = Coprocessor exception
Bit 4 = Mouse Interrupt
Bit 3 = Reserved
Bit 2 = Reserved
Bit 1 = Redirect Cascade
Bit 0 = Real-Time Clock

00D0h Read - DMA Controller 2 Channel 4-7
status register
Bit 7 = Channel 7 Request
Bit 6 = Channel 6 Request
Bit 5 = Channel 5 Request
Bit 4 = Channel 4 Request
Bit 3 = Channel 7 Terminal Count
Bit 2 = Channel 6 Terminal Count
Bit 1 = Channel 5 Terminal Count
Bit 0 = Channel 4 Terminal Count

Write DMA Controller 2 Channel 4-7
command register
Bit 7 = DACK Sense Active High
Bit 6 = DREQ Sense Active High
Bit 5 = Extended Write Selection
Bit 4 = Rotating Priority
Bit 3 = Compressed Timing
Bit 2 = Enable Controller

00D2h DMA Controller 2 Channel 4-7 Write
Request Register

414 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 414

00D4h DMA Controller 2 Channel 4-7 Write
Single Mask Register
Bit 7-3 = Reserved
Bit 2 = Mask bit
Bit 1-0 = Channel Select

- 00 channel 0
- 01 channel 1
- 10 channel 2
- 11 channel 3

00D6h DMA Controller 2 Channel 4-7 Mode
Register
Bit 7-6 = Operating Mode

- 00 demand mode
- 01 single mode
- 10 block mode
- 11 cascade mode

Bit 5 = address increment select
Bit 3-2 = Operation

- 00 verify operation
- 01 write to memory
- 10 read from memory
- 11 reserved

Bit 1-0 = Channel Select
- 00 channel 0
- 01 channel 1
- 10 channel 2
- 11 channel 3

00D8h DMA Controller 2 Channel 4-7 Clear Byte
Pointer

00Dah Read - DMA Controller Channel 4-7 Read
Temporary Register

Write - DMA Controller Channel 4-7
Master Clear

00DCh DMA Controller 2 Channel 4-7 Clear Mask
Register

00DEh DMA Controller 2 Channel 4-7 Write Mask
Register

00F0h Math Coprocessor Clear Busy Latch
00F1h Math Coprocessor Reset
00F8h Opcode Transfer Register
00FAh Opcode Transfer Register
00FCh Opcode Transfer Register
01F0h Hard Disk Controller Data Register
01F1h Hard Disk Controller Error Register

Bit 7 = Failing Drive
Bit 6-3 = Reserved

PC Interfaces 415

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 415

Bit 2-0 = Status
- 001 No Error
- 010 Formatter Device Error
= 011 Sector Buffer Error
= 100 ECC Circuitry Error
= 101 Controlling Microprocessor

Error
01F2h Sector Count
01F3h Sector Number
01F4h Cylinder Low
01F5h Cylinder High
01F6h Drive/Head
01F7h Read - Hard Disk Controller Status

Register
bit 7 = Controller Execution Status
bit 6 = Drive Status
bit 5 = Write Fault
bit 4 = Seek Complete
bit 3 = Sector Buffer Requires

Servicing
bit 2 = Disk Data Read Successfully

Corrected
bit 1 = Index
bit 0 = Previous Command Ended in

Error
Write - Hard Disk Controller Command
Register

0201h Read - Joystick Position and Status
Bit 7 = Status B Joystick Button 2
Bit 6 = Status B Joystick Button 1
Bit 5 = Status A Joystick Button 2
Bit 4 = Status A Joystick Button 1
Bit 3 = B joystick Y coordinate
Bit 2 = B joystick X coordinate
Bit 1 = A joystick Y coordinate
Bit 0 = A joystick X coordinate

Write - Fire Joystick’s four one-shots
0220h SoundBlaster - Left speaker

Status/Address
Address:

01 = Enable waveform control
02 = Timer #1 data
03 = Timer #2 data
04 = Timer control flags
08 = Speech synthesis mode

416 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 416

20-35 = Amplitude Modulation/Vibrato
40-55 = Level key scaling/Total level
60-75 = Attack/Decay rate
80-95 = Sustain/Release rate
A0-B8 = Octave/Frequency Number
C0-C8 = Feedback/Algorithm
E0-F5 = Waveform Selection

0221h SoundBlaster - Left speaker Data
0222h SoundBlaster - Right speaker/Address

Address:
01 = Enable waveform control
02 = Timer #1 data
03 = Timer #2 data
04 = Timer control flags
08 = Speech synthesis mode

20-35 = Amplitude Modulation/Vibrato
40-55 = Level key scaling/Total level
60-75 = Attack/Decay rate
80-95 = Sustain/Release rate
A0-B8 = Octave/Frequency Number
C0-C8 = Feedback/Algorithm
E0-F5 = Waveform Selection

0223h Right speaker -– Data port
0278h LPT2 data port
0279h LPT2 Status Port

Bit 7 = Busy
Bit 6 = Acknowledge
Bit 5 = Out of Paper
Bit 4 = Printer Selected
Bit 3 = Error
Bit 2 = IRQ Occurred
Bit 1-0 = Reserved

027Ah LPT2 Control Port
Bit 7-6 = Reserved
Bit 5 = Data Output Control
Bit 4 = IRQ Enable
Bit 3 = Select Printer
Bit 2 = Initialize
Bit 1 = Line Feed
Bit 0 = Strobe

02E8h 8514/A Display Status
02E8h 8514/A Horizontal Total
02EAh 8514/A DAC Mask
02EBh 8514/A DAC Read Index
02ECh 8514/A DAC Write Index

PC Interfaces 417

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 417

02EDh 8514/A DAC Data
02F8h Serial Port 3 Transmitter/Receiver

registers/Divisor Latch Low
02F9h Serial Port 2 Interrupt Enable

Register/Divisor Latch High
02FAh Serial Port 2 Interrupt Identification

Register
02FBh Serial Port 2 Line Control Register
02FCh Serial Port 2 Modem Control Register
02FDh Serial Port 2 Line Status Register
02FFh Serial Port 2 Scratchpad Register
0300h-031Fh IBM Prototype Card Addresses
0360h-036Fh Network Cards
0370h Secondary Diskette Controller Status A
0371h Secondary Diskette Controller Status B
0372h Secondary Diskette Controller Digital

Output Register
0374h Read - Secondary Diskette Controller

Main Status Register
Secondary Diskette Controller Data Rate
Select Register

0375h Secondary Diskette Controller
Command/Data Register

0377h Read - Secondary Diskette Controller
Digital Input Register

Write - Select Register for Diskette
Data Transfer Rate

0378h LPT1 data port
0379h LPT1 Status Port

Bit 7 = Busy
Bit 6 = Acknowledge
Bit 5 = Out of Paper
Bit 4 = Printer Selected
Bit 3 = Error
Bit 2 = IRQ Occurred
Bit 1-0 = Reserved

037Ah LPT1 Control Port
Bit 7-6 = Reserved
Bit 5 = Data Output Control
Bit 4 = IRQ Enable
Bit 3 = Select Printer
Bit 2 = Initialize
Bit 1 = Line Feed
Bit 0 = Strobe

0380h-038Fh Secondary SDLC Registers

418 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 418

0390h-039Fh IBM Cluster adapter
03A0h-03AFh Primary SDLC Registers
03B4h MDA CRT Index Register
03B5h MDA CRT Data Register

Address Function
00 Horizontal Total
01 Horizontal Displayed
02 Horizontal Sync Position
03 Horizontal Sync Pulse Width
04 Vertical Total
05 Vertical Displayed
06 Vertical Sync Position
07 Vertical Sync Pulse Width
08 Interlace Mode
09 Maximum Scan Lines
0A Cursor Start
0B Cursor End
0C Start Address High
0D Start Address Low
0E Cursor Location High
0F Cursor Location Low
10 Light Pen High
11 Light Pen Low

03B8h MDA Mode Control Register
bit 7-6 = Reserved
bit 5 = Blink Enable
bit 4 = Reserved
bit 3 = Video Enable
bit 2-1 = Reserved
bit 0 = High Resolution Mode

03B9h EGA Color Select
03BAh Read - EGA CRT Status Register

Write - EGA/VGA feature control
register

03BBh Reserved for EGA
03BCh LPT1 Data Port
03BDh LPT1 Status Port

Bit 7 = Busy
Bit 6 = Acknowledge
Bit 5 = Out of Paper
Bit 4 = Printer Selected
Bit 3 = Error
Bit 2 = IRQ Occurred
Bit 1-0 = Reserved

03BEh LPT 1 Control Port
Bit 7-5 = Reserved

PC Interfaces 419

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 419

Bit 4 = IRQ Enable
Bit 3 = Select Printer
Bit 2 = Initialize
Bit 1 = Line Feed
Bit 0 = Strobe

03BFh Hercules Configuration Switch Register
Bit 7-2 = Reserved
Bit 1 = Enable Upper 32K Graphic
Buffer
Bit 0 = Disable Graphics Mode

03C0h EGA/VGA ATC Index/Data Register
03C1h VGA Other Attribute Register
03C2h Read - EGA/VGA Input Status 0 Register

Write - VGA Miscellaneous Output
Register

03C4h VGA Sequencer Index Register
03C5h VGA Other Sequencer Index Register
03C6h VGA PEL Mask Register
03C7h VGA PEL Address Read Mode/VGA DAC state

register
03C8h VGA PEL Address Write Mode
03C9h VGA PEL Data Register
03CAh VGA Feature Control Register
03CCh VGA Miscellaneous Output Register
03CEh VGA Graphics Address Register
03CFh VGA Other Graphics Register
03D4h CGA CRT Index Register
03D5h CGA CRT (6845) data register
03D8h CGA Mode Control Register

Bit 7-6 = Reserved
Bit 5 = Blink Enable
Bit 4 = 640*200 Graphics Mode Select
Bit 3 = Video Enable
Bit 2 = Monochrome Signal Select
Bit 1 = Text Mode Select
Bit 0 = Text Mode Select

03D9h CGA Palette Register
Bit 7-6 = Reserved
Bit 5 = Active Color Set Select
Bit 4 = Intense Color Select
Bit 3 = Intense Border Select
Bit 2 = Red Border/Background/

Foreground Select
Bit 1 = Green Border/Background/

Foreground Select

420 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 420

Bit 0 = Blue Border/Background/
Foreground Select

03DAh CGA Status Register
Bit 7-4 = Reserved
Bit 3 = Vertical Retrace Status
Bit 2 = Light Pen Status
Bit 1 = Light Pen Trigger Set
Bit 0 = Memory Select

03EAh EGA/VGA Feature Control Register
03EBh Clear Light Pen Latch
03ECh Preset Light Pen Latch
03E8h Serial Port 3 Transmitter/Receiver

registers/Divisor Latch Low
03E9h Serial Port 3 Interrupt Enable

Register/Divisor Latch High
03EAh Serial Port 3 Interrupt Identification

Register
03EBh Serial Port 3 Line Control Register
03ECh Serial Port 3 Modem Control Register
03EDh Serial Port 3 Line Status Register
03EFh Serial Port 3 Scratchpad Register
03F0h Primary Diskette Controller Status A
03F1h Primary Diskette Controller Status B
03F2h Primary Diskette Controller Digital

Output Register
03F4h Read - Primary Diskette Controller Main

Status Register
Primary Diskette Controller Data Rate
Select Register

03F5h Primary Diskette Controller
Command/Data Register

03F7h Read - Primary Diskette Controller
Digital Input Register
Write - Select Register for Diskette
Data Transfer Rate

03F8h Serial Port 3 Transmitter/Receiver
registers/Divisor Latch Low

03F9h Serial Port 1 Interrupt Enable
Register/Divisor Latch High

03FAh Serial Port 1 Interrupt Identification
Register

03FBh Serial Port 1 Line Control Register
03FCh Serial Port 1 Modem Control Register
03FDh Serial Port 1 Line Status Register
03FFh Serial Port 1 Scratchpad Register

PC Interfaces 421

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 421

Interrupt Function by Number
Interrupt Name and Comments

00h Divide by Zero Error
01h Single Step
02h Nonmaskable
03h Breakpoint

(Instruction 0x0CC)
04h Overflow
05h Print Screen

06h-07h Reserved
08h Time of Day Services
09h Keyboard Interrupt
0Ah Slaved Second Interrupt

Controller
0Bh COM1/COM3 Interrupt
0Ch COM2/COM3 Interrupt
0Dh Hard Disk Interrupt/

LPT2 Interrupt
0Eh Diskette Interrupt
0Fh LPT1 Interrupt
10h Video BIOS
11h BIOS Equipment Check
12h BIOS Memory Size

Determine
13h Disk I/O BIOS
14h Serial Communications

BIOS
15h BIOS System Services
16h Keyboard I/O BIOS
17h Printer BIOS
18h Resident BASIC Start

Vector
19h BootStrap Loader
1Ah Time of Day BIOS

Interrupt
1Bh Keyboard Break Vector
1Ch Timer Tick Vector
1Dh Table Address of Video

Parameters
1Eh Table Address of Disk

Parameters
1Fh Table Address of

Graphic Characters

422 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 422

20h MS-DOS Program
Terminate

21h MS-DOS Function APIs
22h MS-DOS Terminate

Vector
23h MS-DOS “Ctrl-C” Vector
24h MS-DOS Error Handler

Vector
25h-26h MS-DOS Absolute Disk

I/O
27h MS-DOS Terminate

Stay Resident API
28h-2Eh MS-DOS Reserved

2Fh MS-DOS Multiplex
Interrupt

30h-32h MS-DOS Reserved
33h Mouse BIOS

34h-3Fh MS-DOS Reserved
40h Revectored Disk I/O

BIOS Interrupt 13h
41h Table Address of Hard

Drive 0 Parameters
42h Revectored EGA BIOS

Interrupt 10h
43h Table Address of EGA

Parameters
44h-34h Reserved

46h Table Address of Hard
Drive 1 Parameters

47h-49h Reserved
4Ah ROM BIOS Alarm

Handler
4Bh-4Fh Reserved

50h PC/AT Alarm BIOS
Interrupt

51h-59h Reserved
5Ah NETBIOS Function APIs
5Bh NETBIOS Remap of

Vector 19h
5Ch NETBIOS Entry Point

5Dh-66h Reserved
67h LIM EMS Memory

Function APIs
68h-6Fh Reserved

PC Interfaces 423

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 423

70h RTC Interrupt
71h Slave Interrupt

Controller Redirect
72h IRQ10
73h IRQ11
74h IRQ12
75h IRQ13
76h IRQ14
77h IRQ15

78h-7Fh Not Allocated/
Available for Use

80h-85h Reserved for Cassette
BASIC

86h-F0h Used by BASIC
F1h-FFh Used during PC Boot

as a Temporary Stack
Area. Should NOT be
used for Interrupts
or Variables

ISA Bus

When the PC was designed, IBM designed the mother-
board and specified the ISA slots in such a way that the
complexity of the bus was hidden from the user (Fig.
10.2). The read/write cycle on the ISA bus is shown in
Fig. 10.3. This waveform is identical for the I/O address
space reads and writes.

424 Chapter 10

Figure 10.2 Processor/ISA Block Diagram

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 424

ISA pinouts

The 8-bit ISA bus consists of a two-sided 31-pin card
edge connector with the pins defined as:

PC Interfaces 425

ISA Bus Pinout

Pin “A” (Connector) “B” (Solder)
1 I/O CH CHK Ground
2 D7 Reset
3 D6 +5 V
4 D5 IRQ2
5 D4 +5 V
6 D3 DRQ2
7 D2 -12 V
8 D1 _CARD SLCTD
9 D0 +12 V
10 IO CH RDY Ground
11 AEN _MEMW
12 A19 _MEMR
13 A18 _IOW
14 A17 _IOR

Figure 10.3 ISA Bus Timing

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 425

The data and address busses are buffered to the proces-
sor. Addresses from 0x00000 to 0x0FFFFF (zero to one
megabyte) can be accessed with the 8-bit connector.
Memory devices can be located 0x0C0000 to 0x0DFFF,
but care must be taken to avoid “contention” with other
devices located within this memory space. The ISA Bus
Pin Functions are given below:

Pin Function

BALE “Buffered ALE” and was the term used
in the original PC because the ALE
line was produced by the 8088’s
instruction sequence clock. This
pin was buffered to avoid having
the ISA bus directly processor
driven. Today, this bit is more
commonly known as “ALE” and
provides essentially the same
operation and timing as “BALE”

_I/O CH CHK Pin was designed for use with parity
checked memory. If a byte was read

426 Chapter 10

ISA Bus Pinout (Continued)

15 A16 _DACK3
16 A15 DRQ3
17 A14 _DACK1
18 A13 DRQ1
19 A12 _DACK0 (_REFRESH)
20 A11 OSC
21 A10 IRQ7
22 A9 IRQ6
23 A8 IRQ5
24 A7 IRQ4
25 A6 IRQ3
26 A5 _DACK2
27 A4 T/C
28 A3 BALE
29 A2 +5 V
30 A1 CLOCK - 14.31818 MHz
31 A0 Gnd

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 426

that did not match the saved parity,
a NMI interrupt request was made
of the processor. In Modern
Systems, this Pin can be pulled Low
(made active) to indicate a system
error

I/O CH RDY Line driven low by an adapter if it
needs more time to complete an
operation

_IOR/_IOW I/O Register Read and Write Enables
_MEMR/_MEMW Indicate the processor is reading and

writing to ISA bus memory
IRQ3-IRQ7 Hardware Interrupt Request Lines.

When these lines are driven high,
the 8259As on the motherboard
(which are known as “Programmable
Interrupt Controllers” or “PICs”)
will process the request in a
descending order of priority. These
lines are driven high to request an
interrupt. A PICmicro® MCU can drive
these lines, but it should only
be active when a “high” is driven
onto the interrupt line to allow
other devices to share the interrupt
pins. If a PICmicro® MCU is used to
drive these lines active, then there
must be some way for the processor
to reset the PICmicro® MCU interrupt
request

CLOCK Runs at four times NTSC “Color Burst”
frequency (14.31818 MHz). The
14.31818 MHz clock was distributed
to the system to provide clocking
for the “MDA” and “CGA” video
display cards. This clock can
be useful for providing a simple
clock for microcontroller and
other clocked devices on adapter
cards.

OSC Pin is driven at up to 8 MHz.
DRQ# Used to Request a DMA transfer to

take place. When the corresponding
“_DACK#” pin is driven high, the
DMA controller is reading or writing
an I/O address of an adapter card.
When the DMA controllers have

PC Interfaces 427

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 427

control of the bus over the
processor, the “AEN” pin is active
to indicate to other adapters that a
DMA operation is in process. When
all the DMA data has been
transferred, the “T/C” bit is pulsed
high to indicate the operation has
completed. When the “T/C” bit
becomes active, the adapter should
request a hardware interrupt to
indicate to software that the
operation is complete.

_DACK# Active when the DMA Channel is
reading/writing the I/O device.
“_DACK0” or “_REFRESH” is used
with DRAM memory to request a “RAS
only refresh” of the system
memory

_MASTER Driven by an adapter when it is
requesting to take over the bus and
drive its own signals.

Interrupts

Interrupts IRQ3, IRQ4, and IRQ7 are recommended for
use in a PC system. Interrupts are driven high and
should use the circuit shown in Fig. 10.4 to allow multi-

428 Chapter 10

Figure 10.4 Multiple Interrupt Request Circuit

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 428

ple requests. The PC Interrupt Handler should be de-
fined as:

1. Save the original vector using MS-DOS interrupt
021h AH � 035h API.

2. Set the new vector using MS-DOS interrupt 021h AH �
025h API.

3. Enable the Interrupt Request Mask bit in the 8259.

To enable the interrupt request mask bit in the 8259, the
appropriate interrupt mask register bit has to be reset.
This register is at the 8259’s “Base Address” plus one.
This can be done with the following statement:

outp(IntBase + 1, inp(IntBase + 1) & ((0x0FF ^
(1 << Bit)));

To “release” the interrupt vector and the interrupt
source at the end of the application, the following steps
must be taken:

1. Disable the Interrupt Request mask bit in the 8259.

2. Restore the original vector using MS-DOS Interrupt
021h AH � 025h API.

Keyboard and Mouse Ports
The PCs keyboard and mouse ports operate with a syn-
chronous serial data protocol that was first introduced
with the original IBM PC. This protocol allows data to be
sent from the keyboard in such a way that multiple
pressed keys can be recognized within the PC without
any key presses being lost. The standard was enhanced
with the PC/AT as a bidirectional communication

PC Interfaces 429

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 429

method. Three years later, when the PS/2 was intro-
duced, the “mouse” interface also used the keyboard’s
protocol, freeing up a serial port or ISA slot which, up to
this point, was needed for the mouse interface. The key-
board protocol used in the PC was so successful that
IBM used it for all its PC, terminal, and workstation
product lines that have been developed from 1981 and it
is also used by many other PC vendors.

Connector specification

The female 6-pin “Mini-DIN” keyboard connector facing
out of the PC is shown in Fig. 10.5. The port can usually
supply up to 100 mA over and above the keyboard re-
quirements. The power (�5 VDC) may or may not be
fused, so any hardware put on the port must not draw ex-
cessive current to prevent damage to the motherboard.

Keyboard operation with timing diagrams

Data from the keyboard looks like the waveform shown
in Fig. 10.6. The parity bit is “odd”, which is to say the
eight data bits plus the parity is an odd number. The
data line should not change for at least 5 usecs from the

430 Chapter 10

Figure 10.5 PC Keyboard Connector Pinout

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 430

change of the clock line. The clock line should be high or
low for at least 30 usecs (with 40 usecs being typical).

Data that is sent from the system unit to the keyboard
is similar, but with the clock inverted. The data changes
while the clock is low and is latched in when the clock
goes high as is shown in Fig. 10.7. When data is sent
from the keyboard, the clock is pulled low and then data
is sent with the keyboard accepting data when the clock
is pulsed high. The bit timings are the same as data from
the keyboard.

These two protocols are used to allow a device wired
in parallel to monitor the communication to and from
the PC.

Additional devices can be added to the keyboard/
mouse connector in parallel as is shown in Fig. 10.8.

Keyboard scan codes

In MS-DOS, the Keyboard Codes are normally a combi-
nation of the keyboard scan code and appropriate ASCII

PC Interfaces 431

Figure 10.6 Keyboard to PC Data Protocol

Figure 10.7 PC to Keyboard Data Protocol

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 431

code. The table below shows the different codes re-
turned for keystrokes by themselves, and with a “Shift”,
“Ctrl”, or “Alt” Modifier.

The table below shows the codes in scan/ASCII con-
figuration for the extended function keyboard charac-
ters. The standard function codes are the same except
that “F11”, “F12”, and the keypad “Center Key” do not
return any codes and for the explicit arrow and explicit
“Insert”, “Home”, “Page Up”, “Delete”, “End”, and “Page
Down” keys, the 0x0E0 ASCII code is actually 0x000.

All values in the table below are in hex and I have put
in the scan codes as they appear on my PC. I have not
made allowances for upper and lower case in this table
as this is processed by the PC itself. “KP” indicates the
Keypad and it, or a single “A” (which indicates Alternate
arrow and other keys), followed by “UA”, “DA”, “LA”, or

432 Chapter 10

Figure 10.8 Sharing a Keyboard with Another Device

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 432

“RA” indicates an Arrow. “I”, “D”, “H”, “PU”, “PD”, or
“E” with “KP” or “A” indicates the “Insert”, “Delete”,
“Home”, “Page Up”, “Page Down”, or “End” on the
Keypad, respectively.

The Keypad numbers, when “Alt” is pressed is used to
enter in specific ASCII codes in Decimal. For example,
“Alt”, “6”, “5” will enter in an ASCII “A” character. These
keys in the table below are marked “#”.

PC Interfaces 433

PC Keyboard Scan Codes

Key Standard “Shift” “Ctrl” “Alt”
Codes Codes Codes Codes

Esc 01/1B 01/1B 01/1B 01/00
1 02/31 02/21 -– 78/00
2 03/32 03/40 03/00 79/00
3 04/33 04/23 –- 7A/00
4 05/34 05/24 –- 7B/00
5 06/35 06/25 –- 7C/00
6 07/36 07/5E 07/1E 7D/00
7 08/37 08/26 –- 7E/00
8 09/38 09/2A –- 7F/00
9 0A/39 0A/28 –- 80/00
0 0B/30 0B/29 –- 81/00
- 0C/2D 0C/5F 0C/1F 82/00
= 0D/3D 9C/2B –- 83/00
BS 0E/08 0E/08 0E/7F 0E/00
Tab 0F/09 0F/00 94/00 A5/00
Q 10/71 10/51 10/11 10/00
W 11/77 11/57 11/17 11/00
E 12/65 12/45 12/05 12/00
R 13/72 13/52 13/12 13/00
T 14/74 14/54 14/14 14/00
Y 15/79 15/59 15/19 15/00
U 16/75 16/55 16/15 16/00
I 17/69 17/49 17/09 17/00
O 18/6F 18/4F 18/0F 18/00
P 19/70 19/50 19/10 19/00
[1A/5B 1A/7B 1A/1B 1A/00
] 1B/5D 1B/7D 1B/1D 1B/00

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 433

434 Chapter 10

PC Keyboard Scan Codes (Continued)

Enter 1C/0D 1C/0D 1C/0A 1C/00
A 1D/61 1E/41 1E/01 1E/00
S 1F/73 1F/53 1F/13 1F/00
D 20/64 20/44 20/04 20/00
F 21/66 21/46 21/06 21/00
G 22/67 22/47 22/07 22/00
H 23/68 23/48 23/08 23/00
J 24/6A 24/4A 24/0A 24/00
K 25/6B 25/4B 25/0B 25/00
L 26/6C 26/4C 26/0C 26/00
; 27/3B 27/3A –- 27/00
‘ 28/27 28/22 –- 28/00
` 29/60 29/7E –- 29/00
\ 2B/5C 2B/7C 2B/1C 2B/00
Z 2C/7A 2C/5A 2C/1A 2C/00
X 2D/78 2D/58 2D/18 2D/00
C 2E/63 2E/43 2E/03 2E/00
V 2F/76 2F/56 2F/18 2F/00
B 30/62 30/42 30/02 30/00
N 31/6E 31/4E 31/0E 31/00
M 32/6D 32/4D 32/0D 32/00
, 33/2C 33/3C –- 33/00
. 34/2E 34/3E –- 34/00
/ 35/2F 35/3F –- 35/00
KP * 37/2A 37/2A 96/00 37/00
SPACE 39/20 39/20 39/20 39/20
F1 3B/00 54/00 5E/00 68/00
F2 3C/00 55/00 5F/00 69/00
F3 3D/00 56/00 60/00 6A/00
F4 3E/00 57/00 61/00 6B/00
F5 3F/00 58/00 62/00 6C/00
F6 40/00 59/00 63/00 6D/00
F7 41/00 5A/00 64/00 6E/00
F8 42/00 5B/00 65/00 6F/00
F9 43/00 5C/00 66/00 70/00
F10 44/00 5D/00 67/00 71/00
F11 85/00 87/00 89/00 8B/00
F12 86/00 88/00 8A/00 8C/00
KP H 47/00 47/37 77/00 #
KP UA 48/00 48/38 8D/00 #
KP PU 49/00 49/39 84/00 #
KP - 4A/2D 4A/2D 8E/00 4A/00

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 434

Keyboard controller commands

The PC itself has a number of commands that it can
send to the keyboard that include:

PC Interfaces 435

PC Keyboard Scan Codes (Continued)

KP LA 4B/00 4B/34 73/00 #
KP C 4C/00 4C/35 8F/00 #
KP RA 4D/00 4D/36 74/00 #
KP + 4E/2B 4E/2B 90/00 4E/00
KP E 4F/00 4F/31 75/00 #
KP DA 50/00 50/32 91/00 #
KP PD 51/00 51/33 76/00 #
KP I 52/00 52/30 92/00 –-
KP D 53/00 53/2E 93/00 –-
KP Enter E0/0D E0/0D E0/0A –-
KP / E0/2F E0/2F 95/00 –-
PAUSE –- -– 72/00 -–
BREAK –- -– 00/00 -–
A H 47/E0 47/E0 77/E0 97/00
A UA 48/E0 48/E0 8D/E0 98/00
A PU 49/E0 49/E0 84/E0 99/00
A LA 4B/E0 4B/E0 73/E0 9B/00
A RA 4D/E0 4D/E0 74/E0 9D/00
A E 4F/E0 4F/E0 75/E0 9F/00
A DA 50/E0 50/E0 91/E0 A0/00
A PD 51/E0 51/E0 76/E0 A1/00
A I 52/E0 52/E0 92/E0 A2/00
A D 53/E0 53/E0 93/E0 A3/00

PC to Keyboard Commands

Code Function
0x0ED Set Indicator LED’s. The next

Character out is the LED status
0x0EE Echo - Keyboard Returns 0x0EE
0x0EF-0x0F2 Ignored by the Keyboard
0x0F3 Set Typematic rate, next character

is the rate

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 435

In all these cases (except for the “ignore” and “echo”
commands), the keyboard sends back the “Acknowl-
edge” character 0x0FA.

BIOS interfaces

When Data is transferred between the PC’s processor
and the keyboard controller, the following information is
passed as well:

436 Chapter 10

Keyboard Flags Byte

Bit Function
7 Set when “Insert” State Active
6 Set when “Caps Lock” Active
5 Set when “Num Lock” Active
4 Set when “Scroll Lock” Active
3 Set when a “Alt” Key Held Down
2 Set when a “Ctrl” Key Held Down
1 Set when the Left “Shift” Key Held Down
0 Set when the Right “Shift” Key Held Down

PC to Keyboard Commands (Continued)

0x0F4 Enable Key Scanning
0x0F5 Set to Default (no LEDs on, default

Typematic rate) and disable Key
Scanning

0x0F6 Set to Default (no LEDs on, default
Typematic rate) and enable Key
Scanning

0x0F7-0x0FD Ignored by the Keyboard
0x0FE Request Keyboard to resend the last

character
0x0FF Reset the Keyboard’s Microcontroller

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 436

or

Extended Keyboard Flags Byte

Bit Function
7 Set when “SysReq” Key Pressed
6 Set when “Caps Lock” Key Pressed
5 Set when “Num Lock” Key Pressed
4 Set when “Scroll Lock” Key Pressed
3 Set when Right “Alt” Key Pressed
2 Set when Right “Ctrl” Key Pressed
1 Set when Left “Alt” Key Pressed
0 Set when Left “Ctrl” Key Pressed

To access the keyboard BIOS functions, an “int 016h” in-
struction is executed with the registers set up as de-
fined in the table below:

PC Interfaces 437

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 437

438

Function Input Output Comments

Read AH = 00h AH = Scan Code This Command
Character AL = ASCII returns the next

Character unread key from
the buffer or
waits for a
Key to return.

Read Status AH = 01h AH = Scan Code Poll the Keyboard
AL = ASCII Buffer and

return
Character the next

Zero = Set if keystroke or set
No Character the Zero Flag.
Available

Read Flags AH = 02h AH = 00 Return the
AL = Keyboard Keyboard Flags
Flags Byte Byte

Set Typematic AH = 03h None Set the keyboard
Rate and AL = 5 delay before
Delay BH = Delay Resending the

0 - 250ms, held down
1 - 500ms, Character and
2 - 750ms, then the rate
3 - 1000ms at which they

BL = Rate are set. This
0 - 30 cps, function should

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
3
8

4 - 20 cps be set by the
8 - 15 cps operating system
12 - 10 cps utilities rather
16 - 7.5 cps than from an
20 - 5 cps application. I
24 - 3.75 cps have not put in
28 - 2.5 cps the intermediate

values.

Read Typematic AH = 03h BH = Delay Read the Current
Rate and AL = 6 BL = Rate Delay and Rate
Delay set into the

Keyboard.

Keyboard AH = 05h AL = 0 if Buffer This command
Write BH = Scan Written writes a new

Code Successfully Character into
BL = ASCII the keyboard
Character buffer (and not

to the keyboard
or other external
Device as the
name would
Imply).

Keyboard AH = 09h AL = Function This API returns
Functionality Code the capabilities
Determination Bit 3 - Set of the keyboard

If can read and hardware to
Delay/Rate change the

439

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
3
9

440

Function Input Output Comments

Bit 2 - Set Typematic Rate
If can Set and Delay.
Delay/Rate

Bit 1 - Set
If cannot
Set Delay/
Rate

Bit 0 - Set
If return
To default
Delay/Rate
Supported

Extended AH = 10h AH = Scan Code Return the full
Keyboard AL = ASCII Code keyboard code if
Read Keyboard Buffer

has an unread key
or wait for a key
to return.

Extended AH = 11h AH = Scan Code Check the
Keyboard AL = ASCII Code Keyboard buffer
Status Zero = Set if and return the

No character next key to
To return process or set

the Zero Flag.
Extended AH = 12h AH = Extended Return the
Shift Keyboard Flags Extended Keyboard
Status AL = Keyboard Shift/Ctrl/Alt

Flags Byte Status.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
4
0

Keyboard commands

To simply process a keystroke in “C”, the following
“switch” code could be used:

switch ((KeySave = KEYREAD()) & 0x0FF) {// Process
the Key

case 0x000: // Special
Function
Keys

case 0x0E0:
KeySave = (KeySave >> 8) & 0x0FF; // Process

the Scan
Code

:
break;
case 0x00D: // Handle

“Enter”
:

break;
: // Handle

Other
Special
Keys

default: // Other,
Unneeded
Keys

:
} // endswitch

Serial Port
The PC’s serial port’s design has not changed since the
PC was introduced in 1981. Since that time, a 9-pin con-
nector has been specified for the port (in the PC/AT)
and the ability to buffer data within the serial port has
been added.

Connector pinouts
DB-9 and D-9 pin RS-232 connectors are shown in Fig.
10.9. These connectors are wired as:

PC Interfaces 441

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 441

442 Chapter 10

8250 block diagram

The “8250” UART is the basis for serial communications
within the PC (Fig.10.10).

Figure 10.9 IBM PC DB-25 and D-9 Pin RS-232 Connectors

PC RS-232 Pinout

Pin Name 25 Pin 9 Pin I/O Direction
TxD 2 3 Output ("O")
RxD 3 2 Input ("I")
Gnd 7 5
RTS 4 7 O
CTS 5 8 I
DTR 20 4 O
DSR 6 6 I
RI 22 9 I
DCD 8 1 I

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 442

Serial port base addresses

The Serial Port “Base Addresses” are as follows:

PC Interfaces 443

Figure 10.10 8250 Block Diagram

PC Serial Port Base Addresses

Port Base Address Interrupt Number
COM1 0x03F8 0x00C
COM2 0x02F8 0x00B
COM3 0x03E8 0x00C
COM4 0x02E8 0x00B

Each “Base Address” is used as an initial offset to eight
registers that are used by the Serial Port Controller
(The “8250”). The “Interrupt Number” is the interrupt
vector requested when an interrupt condition is en-
countered. Note that “COM4” has conflicting addresses
with the 8514/A (“SuperVGA”) Graphics Adapter.

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 443

444 Chapter 10

8250 registers

The 8250 consists of eight registers offset from the
“base address”.

PC Serial Port Register Offsets

Base Address Register Name
Offset

0 Transmitter Holding
Register/Receiver Character
Buffer/LSB Divisor Latch

1 Interrupt Enable Register/MSB
Divisor Latch

2 Interrupt Identification Register
3 Line Control Register
4 Modem Control Register
5 Line Status Register
6 Modem Status Register
7 Scratchpad Register

Data Speed is specified by loading a 16-bit divisor value
into the Rx/Tx Holding Register and Interrupt Enable
Register addresses after bit 7 of the Line Control Register
is set. The value loaded into the register is multiplied by
16 and divided into 1.8432 MHz to get the actual data rate.

Data Rate = 1.8432 MHz / (16 X Divisor)

The divisors for different standard data rates are

PC Serial Port Speed Divisor Table

Data Rate Divisor
110 bps 0x0417
300 bps 0x0180

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 444

After a character is received, it will set a number of con-
ditions (including error conditions) that can only be re-
set by reading the character in the Receive Holding
Register. For this reason it is always a good idea to read
the serial port at the start of an application. By reading
the port, the status and left over characters are
“cleared” out.

Writing to the base address (with no offset added) loads
a character into the “Transmit Holding Register”, which
will be loaded as soon as the shift out register has com-
pleted sending the previous character. Often, when start-
ing transmission, nothing will be in the shift register so the
character is loaded immediately into the shift register,
freeing up the holding register for the next character.

When any interrupts are enabled in the 8250, they will
output an interrupt request (Fig. 10.11). This may not
be desirable, so in the PC, some hardware was added to
globally mask the interrupt.

“_Out2” is controlled within the “Modem Control
Register”.

PC Interfaces 445

PC Serial Port Speed Divisor Table (Continued)

Data Rate Divisor
600 bps 0x00C0

1200 bps 0x0060
2400 bps 0x0030
9600 bps 0x000C

19200 bps 0x0006
115200 bps 0x0001

PC Serial Port Interrupt Enable Register (Base + 1)

Bit Description
4-7 Unused, normally set to zero.

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 445

446 Chapter 10

Figure 10.11 IBM PC Serial Interrupt Enable Hardware

PC Serial Port Interrupt Enable Register (Base + 1)
(Continued)

Bit Description
3 When set an interrupt request on change of

state for modem interface lines.
2 Request interrupt for change in receiver

holding register status
1 Request interrupt if the holding register is

empty
0 Request interrupt for received character

PC Serial Port Interrupt Identification Register (Base + 2)

Bits Description
3-7 Unused, Normally set to zero
1-2 Interrupt ID Bits

B2 B1 Priority Request Type
0 0 Lowest Change in Modem Status

Lines
0 1 Third Transmitter Holding

Register Empty
1 0 Second Data Received
1 1 Highest Receive Line Status Change

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 446

PC Interfaces 447

PC Serial Port Line Control Register (Base + 3)

Bit Description
7 When set, the Transmitter Holding and

Interrupt Enable Registers are used for
loading the data speed divisor

6 When set, the 8250 outputs a "Break
Conditions” (sending a space) until this
bit is reset

3-5 Parity Type Specification
B5 B4 B3
0 0 0 - No Parity
0 0 1 - Odd Parity
0 1 0 - No Parity
0 1 1 - Even Parity
1 0 0 - No Parity
1 0 1 - "Mark" Parity
1 1 0 - No Parity
1 1 1 - "Space" Parity

2 When set, two stop bits are sent in the
Packet, otherwise one

0-1 Number of Data Bits sent in a Packet
B1 B1
0 0 - 5 Bits
0 1 - 6 Bits
1 0 - 7 Bits
1 1 - 8 Bits

PC Serial Port Modem Control Register (Base + 4)

Bit Pin Description
5-7 Unused, normally set to zero
4 Loop When Set, Data from the transmitter

is looped internally to the receiver
3 Out2 When Set, Interrupt Requests from the

8250 are unmasked
2 Out1 This bit/pin is not controlling any

hardware features in the serial port
1 _RTS When this bit is Reset, the RTS line

is at "Mark" State
0 _DTR When this bit is Reset, the DTR line

is at "Mark" State

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 447

448 Chapter 10

PC Serial Modem Status Register (Base + 6)

Bit Pin Description
7 DCD When Set, an asserted DCD signal is

being received
6 RI When Set, the modem is detecting a

ring on the device it is connected
to

5 DSR When Set, a DSR "Mark" is being
received

4 CTS When Set, a CTS "Mark" is being
received

3 DCD When this bit is set, the DCD line
has changed state since the last
check

2 RI When set, this bit indicates that the
Ring Indicator line has changed from
a Mark to a Space

PC Serial Port Line Status Register (Base + 5)

Bit Description

7 Unused, Normally set to zero
6 Set when the transmitter shift register is

empty
5 Set when the transmitter holding register is

empty
4 Set when the receive line is held at a space

value for longer than the current packet
size

3 This bit is Set when the last character had
a framing error (ie stop bit set to
"Space")

2 Set when the last character had a parity
error

1 Set when the latest character has overrun
the receiver holding register

0 Set when a character has been received but
not read

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 448

PC Interfaces 449

Interrupts

To enable Interrupts for COM1/COM3 (at Interrupt
0x00C), the following code is used:

SetInt(0x0C, SerIntHndlr); // Point the
SetInt(0x0C, SerIntHndlr); // Interrupt
SetInt(0x0C, SerIntHndlr); // Handler to

// the Correct
// Handler

Dummy = inp(RxHoldingRegister);// Turn Off any
SetInt(0x0C, SerIntHndlr); // Pending
SetInt(0x0C, SerIntHndlr); // Interrupts
outp(IntMaskRegister, inp(IntMaskRegister) &
0x0FB);

// Enable
SetInt(0x0C, SerIntHndlr); // COM1/COM3

// Interrupts in
SetInt(0x0C, SerIntHndlr); // Controller
outp(InterruptEnableRegister, 0x003);

// Request
SetInt(0x0C, SerIntHndlr); // Interrupts
SetInt(0x0C, SerIntHndlr); // on TxHolding

// Register
SetInt(0x0C, SerIntHndlr); // Empty and Rx
SetInt(0x0C, SerIntHndlr); // Holding

// Register Full
outp(ModemControlRegister, inp
(ModemControlRegister) | Out2);

// Unmask
SetInt(0x0C, SerIntHndlr); // Interrupt
SetInt(0x0C, SerIntHndlr); // Requests
SetInt(0x0C, SerIntHndlr); // from

// 8250

PC Serial Modem Status Register (Base + 6) (Continued)

Bit Pin Description
1 DSR When this bit is set, the DSR line

has changed state since the last
check

0 CTS When this bit is set, the CTS line
has changed state since the last
check

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 449

Once an interrupt request is made by the hardware,
control is passed to the service routine:

SerIntHndlr: // Serial Interrupt
SerIntHndlr: // Handler

Assume that the Interrupting COM port is identified

switch (InterruptIDRegister) { // Handle the
switch (InterruptIDRegister) { // Interrupt

switch (InterruptIDRegister) {{ // Request
case 4: // Received Character

InString[i++] = RxHoldingRegister;
break;

case 2: // TxHolding Register
case 2: // Empty

TxHoldingRegister = OutString[j++]; // Send
the
Next

// Character
break;

default: // Some other kind of
default: // Interrupt
Dummy = RxHoldingRegister; // Clear the

Receiving Data
} // endswitch

InterruptControlRegister = EOI; // Reset the
InterruptControlRegister = EOI; // Interrupt
InterruptControlRegister = EOI; // Controller
returnFromInterrupt; // Return from the
returnFromInterrupt; // Interrupt.

Interrupt 14h–RS-232 communications APIs

The following APIs are available within the PC—to ac-
cess and load registers as specified and execute an “int
014h” instruction.

450 Chapter 10

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 450

451

Function Input Output Comments

Initialize AH = 00h AH = Line Initialize the
Communications AL = Init Status Serial port.
Port Parameter AL = Modem Note, AH = 004h

DX = Port Status Provides Extended
Number Capabilities

Write Character AH = 01h AH = Line Send the
AL = Character Status Character when
DX = Port AL = Modem the Modem

Status Handshake Allows
or Time Out.

Read Character AH = 02h AH = Line Wait for the
DX = Port Status Character to be

AL = Character Received when the
Modem Handshake
allows or Time
Out.

Status Request AH = 03h AH = Line Return the
DX = Port Status Current Serial

AL = Modem Port Status.
Status

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
5
1

452 Extended AH = 04h AH = Line This is a more
Port AL = 0 for Status Complete Serial
Initialize no Break, 1 AL = Modem Port Initialize.

For Sending Status
Break

BH = Parity
0 - No Parity
1 - Odd
Parity

2 - Even
Parity

3 - Odd
Stick
Parity

4 - Even
Stick
Parity

BL = Stop
Bits

0 - One
1 - Two

CH = Word
Length

0 - 5 Bits
1 - 6 Bits
2 - 7 Bits
3 - 8 Bits

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
5
2

Function Input Output Comments

CL = Data Rate
0 - 110 bps
1 - 150 bps
2 - 300 bps
3 - 600 bps
4 - 1200 bps
5 - 2400 bps
6 - 4800 bps
7 - 9600 bps
8 - 19200 bps

DX = Port

Read Modem AH = 05h BL = Modem Return the
Control AL = 0 Control Contents of the
Register DX = Port Register Modem Control

Register

Write to AH = 05h AH = Line Set the Modem
Modem AL = 1 Status Control
Control BL = New AL = Modem Register to a
Register Modem Status New State.

Control
Register
Value

453

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
5
3

454 Chapter 10

Parallel Port

The parallel port is the first device that most people look
to when simple I/O expansion must be implemented in
the PC. The parallel port itself is very simple; the design
used in the PC/AT consists of just seven TTL chips and
provides a simple, byte-wide parallel bidirectional inter-
face into the PC.

Block diagram/connector

PC Parallel Port can be blocked out as shown in Fig.
10.12. The Parallel Port Connector is shown in Fig.
10.13. The Pinout for the Connector is

Figure 10.12 Parallel Port Block Diagram

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 454

PC Interfaces 455

Pin Label Direction Function
1 _STROBE Output Negative Active

Data Strobe
2 D0 Bi-Directional Parallel Data Bit 0
3 D1 Bi-Directional Parallel Data Bit 1
4 D2 Bi-Directional Parallel Data Bit 2
5 D3 Bi-Directional Parallel Data Bit 3
6 D4 Bi-Directional Parallel Data Bit 4
7 D5 Bi-Directional Parallel Data Bit 5
8 D6 Bi-Directional Parallel Data Bit 6
9 D7 Bi-Directional Parallel Data Bit 7
10 _ACK Input Pulsed Low When

Data Accepted
11 BUSY Input High while Printer

cannot accept
another Character

12 NOPAPER Input High Indicates that
Printer has run
out of Paper

13 SELECTED Input High Indicates
Printer is Active
and Selected

Figure 10.13 IBM PC DB-25 Parallel Port Connector

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 455

456 Chapter 10

14 _AUTOFEED OC/Output Forces Printer to
Eject the Current
Page when pulled
low

15 _ERROR Input Low Indicates
Printer cannot
Print any more
Characters

16 _INIT OC/Output Low Resets the
Printer

17 _SELECT OC/Output Low Indicates
Printer is about
to be Written to

18-25 Ground N/A Signal Ground

Base registers

The installed Parallel Ports can be read at address
0x00040:0x00008 and 0x040:0x0000C. The common
Parallel Port addresses are

Port Base Address Interrupt Number
LPT1 0x0378/0x03BC 0x00F/0x00D
LPT2 0x0378 0x00F
LPT3 0x0278 0x00D

Registers

Printer Port Data Register (Base Offset + 0)

Bit Function
7-0 Data Bits. Normally Output, can be set to

Input for Bi-Directional Operation by
setting bit 5 of the “Control Register”

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 456

PC Interfaces 457

Printer Port Control Register (Base Offset + 2)

Bit Function
7-6 Undefined
5 Set to Put data pins in “Input Mode”
4 Set to enable Printer Interrupt Requests

from “_ACK” Pin. Can be Read back
3 _SELECT. Set to make “_SELECT” Pin Active

(Low). Can be Read back
2 _INIT. Reset to make “_INIT” Pin Active

(Low - Initialize Printer). Pin is NOT
Inverted. Can be Read back

1 _AUTOFEED. Set to make “_AUTOFEED” Pin
Active (Low) and current page ejected. Can
be Read back

0 _STROBE. Set to make “_STROBE” Pin Active
(Low). Can be Read back

Printer Port Status Register (Base Offset + 1)

Bit Function
7 BUSY Pin Data Passed to Parallel Port
6 _ACK. When Low, “_ACK” is active
5 NOPAPER. When High, Printer is out of Paper
4 SELECTED. When High, Printer is responding

that it is Selected
3 _ERROR. When Low, “_ERROR” is active

2-0 Undefined

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 457

458 Chapter 10

BIOS interfaces

The Printer Status Byte passes back information from
the printer port (along with program status informa-
tion) via the “AH” register during Parallel Port BIOS
Calls:

Bit Function
7 Not Busy
6 Acknowledge
5 Out of Paper
4 Selected
3 Error
0 Time-Out

To Enable one of the Parallel Port BIOS Requests, an
“int 017h” instruction is executed with the following
Register specifications:

Figure 10.14 Parallel Port Printer Byte Write Waveform

Data output waveform

5194 Predko Pocket Chapter 10 9/26/01 12:19 PM Page 458

459

Function Input Output Comments

Write AH = 00h AH = Status Send the
Character AL = Character Specified

DX = Printer Character. If
Number the Printer

is not present
or not working,
the “Time-Out”
Bit will be set.

Initialize AH = 01h AH = Status Initialize the
Printer Port DX = Printer Printer Port and

Number Printer connected
to it.

Status AH = 02h AH = Status Return the
Request DX = Printer Current Printer

Number Status.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
0

9
/
2
6
/
0
1

1
2
:
1
9

P
M

P
a
g
e

4
5
9

This page intentionally left blank.

Chapter

Useful Code “Snippets”

Jumping outside the Current Page

The general case, low-end PICmicro® MCU interpage
“goto” is

movf STATUS, w ; Going to Modify the High
Three Bits

andlw 0x01F ; of the STATUS Word
iorlw HIGH ((Label << 4) & 0x0E0)
movwf STATUS
goto (Label & 0x01FF) | ($ & 0x0E00)

11

461

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 461

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

The mid-range and PIC17Cxx interpage “goto” is

462 Chapter 11

The PIC18Cxx interpage “goto” (and “call”) can jump
to anywhere within the PICmicro® MCU program mem-
ory space. If a “branch always” (“BRA”) instruction is to
be used, the PIC8Cxx code would be

Mid-Range/PIC17Cxx General Case Table Jump Code

movlw HIGH Label ; Get the Current 256
Instruction Block

movwf PCLATH ; Store it so the Next Jump
is Correct

goto (Label & 0x07FF) | ($ & 0x01800)

PIC18Cxx General Case Table Jump Code

movlw UPPER Label ; Get the Current 256
Instruction Block

movwf PCLATU ; Store it so the Next Jump
is Correct

movlw HIGH Label
movwf PCLATH
bra (Label & 0x07FF) | ($ & 0x01E000)

If a “call” to a subroutine in another page is imple-
mented, make sure that PCLATH (and PCLATU) is re-
stored upon return from the call.

Tables

The general case low-end PICmicro® MCU table
code is

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 462

Table1 ; Return Table Value for
Contents of “w”

; Anywhere in PICmicro®

MCU Memory
movwf Temp ; Save the Table Index
movf STATUS, w ; Going to Modify the

High Three Bits
andlw 0x01F ; of the STATUS Word
iorlw HIGH ((TableEntries << 4) & 0x0E0)
movwf STATUS
movlw LOW TableEntries ; Instruction Block
addwf Temp, w ; Compute the Offset

within the 256
movwf PCL ; Write the correct

address to the
; Program Counter

TableEntries
dt “Table”, 0

Note that in the low-end PICmicro® MCU case, the index
to “TableEntries” should never be in the second 256 in-
structions of a page.

The general case mid-range and PIC17Cxx table
code is

Table2 ; Return Table Value for
Contents of “w”

; Anywhere in PICmicro®

MCU Memory
movwf Temp ; Save the Table Index
movlw HIGH TableEntries; Get the Current 256

Instruction Block
movwf PCLATH ; Store it so the Next

Jump is Correct
movf Temp, w ; (“movfp Temp, WREG” in

PIC17Cxx)

Useful Code “Snippets” 463

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 463

addlw LOW TableEntries ; Instruction Block
btfsc STATUS, C
incf PCLATH, f ; If in next, increment

PCLATH
movwf PCL ; Write the correct

address to the
; Program Counter

TableEntries
dt “Table”, 0

The PIC18Cxx requires that the index be multiplied by
two before PCL is changed and requires both the
“PCLATU” and “PCLATH” registers to be updated:

Table3 ; Return Table Value for
Contents of “w”

; Anywhere in PICmicro® MCU
Memory

movwf Temp ; Save the Table Index
movlw UPPER ; Get the Current 256
TableEntries Instruction Block

movwf PCLATU ; Store it so the Next Jump is
Correct

movlw HIGH TableEntries
movwf PCLATH
bcf STATUS, C
rlcf Temp, w ; Multiply Index by 2
btfss STATUS, C ; If Carry Set, Increment

PCLATH/PCLATU
goto TableSkip1

infsnz PCLATH, f
incf PCLATU, f

TableSkip1
addlw LOW ; Get the Offset into the Table
TableEntries

btfss STATUS, C ; Increment PCLATH/PCLATU if
necessary

goto TableSkip2
infsnz PCLATH, f
incf PCLATU, f

464 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 464

movwf PCL ; Write the correct address to
the

; Program Counter
TableEntries

dt “Table”, 0

Conditional Branching

The following table shows the code used for dif-
ferent comparisons and jumping on Specific Conditions.
Note that both variable and constant values are in-
cluded.

Useful Code “Snippets” 465

11.7 Condition to Subtraction Instruction Cross Reference

Jump “if” Condition Code
to Check

A == B A - B = 0 movf A, w/movlw A
subwf B, w/sublw B
btfsc STATUS, Z
goto Label ; Jump if Z = 1

A != B A - B = 0 movf A, w/movlw A
subwf B, w/sublw B
btfss STATUS, Z
goto Label ; Jump if Z = 0

A > B B - A < 0 movf B, w/movlw A
subwf B, w/sublw B
btfss STATUS, C
goto Label ; Jump if C = 0

A >= B A - B >= 0 movf B, w/movlw B
subwf A, w/sublw B
btfsc STATUS, C
goto Label ; Jump if C = 1

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 465

Time Delays

Here is a simple, generic delay of zero to 777 cycles as a
macro.

DlayMacro Macro Cycles ; Delay Macro for Edges
variable i, TCycles, Value, TFlag

TCycles = Cycles
Value = 1 << 7
i = 7
TFlag = 0
if (TCycles > 5)
while (i >= 0)
if ((TFlag == 0) && ((Value * 3) <= TCycles))
bsf DlayCount, i

TFlag = 1
TCycles = TCycles - (Value * 3)
else
if ((TFlag != 0) && (((Value * 3) + 1) <= TCycles))
bsf DlayCount, i

TCycles = TCycles - ((Value * 3) + 1)
endif
endif

Value = Value >> 1
i = i - 1
endw
if (TCycles > 3)
Error "Delay Cycles too Large for Macro"
endif

466 Chapter 11

Condition to Subtraction Instruction Cross Reference (Continued)

Jump “if” Condition Code
to Check

A < B A - B < 0 movf B, w/movlw B
subwf A, w/sublw A
btfss STATUS, C
goto Label ; Jump if C = 0

A <= B B - A > 0 movf A, w/movlw A
subwf B, w/movlw B
btfsc STATUS, C
goto Label ; Jump if C = 1

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 466

decfsz DlayCount, f
goto $ - 1

endif
while (TCycles > 1)
goto $ + 1

TCycles = TCycles - 2
endw
if (TCycles == 1)
nop ; Delay the Last Cycle

endif
endm

Below is a 16-bit Delay. Each loop Iteration requires five
instruction cycles and the delay can be defined as:

Delay � (InstructionCycleDelay / 5)

Note that in the variable initialization, 256 is added to
the “InstructionCycleDelay” to take into account the
loop when the low byte is initially set.

movlw HIGH ((InstructionCycleDelay / 5) + 256)
movwf HiCount
movlw LOW ((InstructionCycleDelay / 5) + 256)

Dlay:
addlw 0x0FF ; Decrement the Counter by 1
btfsc STATUS, Z
decfsz HiCount, f ; Decrement the High Byte

Counter
goto Dlay

Negating the Contents of a Register

Converting the contents of a File Register to its 2’s com-
plement value without affecting "w" is simply accom-
plished by:

Useful Code “Snippets” 467

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 467

comf Reg, f ; Invert the bits in the
Register

incf Reg, f ; Add One to them to turn
into 2’s

; Complement

This code should not be used on any special hardware
control registers.

The “w” register can be negated in the low-end
PICmicro® MCU using the instructions:

addwf Reg, w ; w = w + Reg
subwf Reg, w ; w = Reg - w

; w = Reg - (w + Reg)
; w = -w

Any file register can be used for this code because its
contents are never changed.

In mid-range PICmicro® MCUs, the single instruction:

sublw 0 ; w � 0 - w

could be used.

Incrementing/Decrementing “w”

The following assembly language code can be used
to increment/decrement “w” in low-end PICmicro®

MCUs that do not have “addlw” and “sublw” instruc-
tions.

468 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 468

"Reg" can be any register that does not change dur-
ing the execution of the three instructions. For the
low-end parts, any file register can be used because
there is no danger of them being updated by an inter-
rupt handler.

To Increment:

xorlw 0x0FF ; Get 1s Complement of Number
addwf Reg, w ; w = Reg + (w^0x0FF)
subwf Reg, w ; w = Reg + ((Reg + (w^0x0FF))^0x0FF)

+ 1
; w = w + 1

To decrement, the instructions are rearranged:

subwf Reg, w ; w = Reg + (2^0x0FF) + 1
xorlw 0x0FF ; Get 1s Complement of Result
addwf Reg, w ; w = w - 1

Rotating a Byte in Place

These two lines will rotate the contents of a file register
without losing data in the “Carry Flag”. Rotates right
and left can be implemented with this snippet. Note that
the carry flag is changed.

rlf Register, w ; Load Carry with the high bit
rlf Register, f ; Shift over with high bit

going low

Useful Code “Snippets” 469

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 469

Copy Bits from One Register to Another

Here is a fast way to save specific bits from one register
into another.

movf Source, w
xorwf Destination, w
andlw B'xxxxxxxx' ; Replace "x" with "1" to

Copy the Bit
xorwf Destination, f

Converting a Nybble to ASCII

The most obvious way of doing this is

NybbletoASCII

addwf PCL, f ; Add the Contents of
the Nybble to PCL/

dt "0123456789ABCDEF" ; return the ASCII as a
Table Offset

Another way is

NybbletoASCII ; Convert a Nybble in "w" to
ASCII

addlw 0x036 ; Add '0' + 6 to Value
btfsc STATUS, DC ; If Digit Carry Set, then

'A' - 'F'
addlw 7 ; Add Difference Between '9'

and 'A'

470 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 470

addlw 0-6

return ; Return the ASCII of Digit in
"w"

Converting an ASCII Byte to a Hex Nybble

Using the aspect that the high nybble of ASCII “A” to “F”
is 16 greater than the high nybble of “0” to “9”, a value is
conditionally added to make the result 0x000 to 0x00F.

ASCIItoNybble
addlw 0x0C0 ; If "A" to "F", Set the Carry

Flag
btfss STATUS, C ; If Carry Set, then 'A' - 'F'
addlw 7 ; Add Difference Between '9'

and 'A'
addlw 9

return ; Return the ASCII of Digit in
"w"

Note that ASCII characters other than “0” to “9” and “A”
to “F” will result in an incorrect result.

Using T0CKI as an Interrupt Source Pin

The following code will reset TMR0 when rising edge is
received.

movlw B'11000000' ; First Setup with Instruction Clock
option ; as TMR0 Source

movlw B'11100000' ; Option Setup for TOCK1 TMR0 Source

Useful Code “Snippets” 471

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 471

clrf TMR0 ; Set TMR0 to 0x0FF
decf TMR0, f

option ; Enable Timer on Outside Interrupt
; Edge
; NOTE - Executing this Instruction
; after "decf" will Load the
; Synchronizer with a "1"

btfsc TMR0, 1 ; Wait for incoming Rising Edge
goto $ � 1

; When Execution Here, the Input has toggled

This code can also be used on a low-end PICmicro® MCU
to monitor when an input changes instead of continu-
ously polling the input pin.

Dividing by Three

Here is an algorithm from Andy Warren for dividing a
positive value by three; by knowing that “divide by
three” can be represented by the series:

x/3 � x/2 � x/4 � x/8 � x/16 � x/32 � x/64. . .

it can be implemented in the PICmicro® MCU as:

Div3: ; Divide Contents of "w" by 3

movwf Dividend
clrf Quotient

Div3_Loop ; Loop Until the Dividend == 0

472 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 472

bcf STATUS, C
rrf Dividend, f ; Dividend /2 (ie "x/2" in Series)
movf Dividend, w ; Is it Equal to Zero?
btfsc STATUS, Z
goto Div3_Done ; If it is, then Stop

addwf Quotient ; Add the Value to the Quotient

rrf Dividend, f ; Dividend /2 (ie "x/4" in Series)
movf Dividend, w
btfsc STATUS, Z
goto Div3_Done

subwf Quotient, f ; Quotient = Quotient-(Dividend 4)

goto Div3_Loop

Div3_Done

movf Quotient, w ; Return the Quotient
return

Sixteen-Bit Pulse Measurement with
5-Cycle Delay

The code that measures the pulse width for a “high”
pulse is

clrf PulseWidth ; Reset the Timer
clrf PulseWidth + 1

btfss PORTn, Bit ; Wait for the Pulse to
go high

goto $ � 1

incfsz PulseWidth, f ; Increment the Counter
decf PulseWidth + 1, f

btfsc PORTn, Bit ; Loop while Still High
goto $ � 3

Useful Code “Snippets” 473

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 473

movf PulseWidth, w ; Make 16 Bit Result
Valid

addwf PulseWidth + 1, f

Detect a Change in a Register

This code can be used to detect changes in the I/O ports,
timers, or other registers that can be updated externally
to the software execution.

movf Reg, w
andlw Mask ; Mask out unused bits
xorwf old, w ; Compare to previous value
btfsc STATUS, Z ; If Zero set, bits are the Same
goto no_change

xorwf old ; Bits are different, Store New
; pattern in "old"

Test a Byte within a Range

Code that Tests “Num” to be within a specific byte range
and jumps to the “in_range” label if true.

movf Num, w
addlw 255 - hi_lim ; "Num" is equal to -hi_lim
addlw hi_lim - lo_lim + 1 ; "Num" is > 255 if it is

above
btfsc STATUS, C ; the lo-lim
goto in_range

474 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 474

Convert ASCII to Upper Case

This is a practical application of the previous snippet.

ToUpper:
addlw 255 - 'z' ; Get the High limit
addlw 'z' - 'a' + 1 ; Add Lower Limit to Set Carry
btfss STATUS, C ; If Carry Set, then Lower Case
addlw h'20' ; Carry NOT Set, Restore

Character
addlw 'A' ; Add 'A' to restore the

Character
return

Swap the Contents of “w” with a Register

Fast method of exchanging “w” with a register without
requiring a third “temporary” file register.

xorwf Reg, f ; w = w, Reg = Reg ^ w
xorwf Reg, w ; w = w ^ (Reg ^ w), Reg = Reg ^ w

; w = Reg, Reg = Reg ^ w
xorwf Reg, f ; w = Reg, Reg = Reg ^ w ^ Reg

; w = Reg, Reg = w

Swap the Contents of Two Registers

Here is a fast snippet to swap the contents of two file
registers:

movf X, w
subwf Y, w ; W = Y - X

Useful Code “Snippets” 475

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 475

addwf X, f ; X = X + (Y - X)
subwf Y, f ; Y = Y - (Y - X)

Compare and Swap if Y � X

This snippet is useful for “Bubble” Sort Routines.

movf X, w
subwf Y, w ; Is Y >= X?
btfsc STATUS, C ; If Carry Set, Yes
goto $ + 2 ; Don’t Swap

addwf X, f ; Else, X = X + (Y - X)
subwf Y, f ; Y = Y - (Y - X)

Counting the Number of "1"s in a Byte

The code below is Dmitry Kirashov’s optimization of the
classic problem of counting the number of “1”s in a byte
in 12 instructions/12 cycles.

; (c) 1998 by Dmitry Kirashov

rrf X, w ; "X" Contains Byte
andlw 0x55 ; -a-c-e-g
subwf X, f ; ABCDEFGH

; where AB=a+b, etc.
; the same trick as in example_1

movwf X
andlw 0x33 ; –-CD-–GH
addwf X, f
rrf X, f ; 0AB00EF0

; 00CD00GH

476 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 476

addwf X, f ; 0AB00EF0
; 0CD00GH0

rrf X, f ; 0ABCD.0EFGH

swapf X, w
addwf X, w
andlw 0x0F ; Bit Count in "w"

Generating Parity for a Byte

At the end of the routine, bit 0 of “X” will have the
“Even” Parity bit of the original number. “Even” Parity
means that if all the “1”s in the byte are summed along
with Parity Bit, an even number will be produced.

swapf X, w
xorwf X, f
rrf X, w
xorwf X, f

btfsc X, 2
incf X, f

Keeping a Variable within a Range

Sometimes when handling data, you will have to keep in-
tegers within a range. The four instructions below will
make sure that the variable “Temp” will always be in the
range of Zero to “Constant”.

movlw Constant ; 0 <= Temp <= Constant
subwf Temp, w

Useful Code “Snippets” 477

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 477

btfsc STATUS, C
subwf Temp, f

Swapping Bit Pairs

; (c) 1998 by Dmitry Kirashov

movwf X ; Save the Incoming Byte in
; a temporary register
; w = X = ABCDEFGH

andlw 0x055 ; w = 0B0D0F0H
addwf X, f ; X = ABCDEFGH + 0B0D0F0H

rrf X, f ; X = (ABCDEFGH + 0B0D0F0h) >> 1
addwf X, w ; w = BADCFEHG

Bitwise Operations

Setting a bit by “ANDing” two others together is accom-
plished by:

bsf Result ; Assume the result is True
btfsc BitA ; If BitA != 1 then result is False
btfss BitB ; If BitB == 0 then result is False
bcf Result ; Result is False, Reset the Bit

“ORing” two bits together is similar to the “AND” opera-
tion, except the result is expected to be false and when
either bit is set, the result is true:

478 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 478

bcf Result ; Assume the result is False
btfss BitA ; If BitA != 0 then result is True
btfsc BitB ; If BitB == 0 then result is False
bsf Result ; Result is True, Set the Bit

There are two ways of implementing the “NOT” opera-
tion based on where the input value is relative to the
output value. If they are the same (i.e., the operation is
to complement a specific bit), the code to be used is
simply:

movlw 1 << BitNumber ; Complement Specific
Bit for "NOT"

xorwf BitRegister, f

If the bit is in another register, then the value stored is
the complement of it:

bcf Result ; Assume that the Input Bit is Set
btfss Bit ; - If it is Set, then Result Correct
bsf Result ; Input Bit Reset, Set the Result

Constant Multiplication

The following macro will insert 8-bit multiplication by a
constant code:

multiply macro Register, ; Multiply 8 bit value by a
Value variable i = 0, ; constant
TValue

Useful Code “Snippets” 479

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 479

TValue = Value ; Save the Constant Multiplier
movf Register, w
movwf Temporary ; Use "Temporary" as Shifted

Value
clrf Temporary + 1
clrf Product
clrf Product + 1

while (i < 8)
if ((TValue & 1) != 0) ; If LSB Set, Add the Value
movf Temporary + 1, w
addwf Product + 1, f
movf Temporary, w
addwf Product, f
btfsc STATUS, C
incf Product + 1, f

endif
bcf STATUS, C ; Shift Up Temporary

multiplicand
rlf Temporary, f
rlf Temporary + 1, f

TValue = TValue >> 1 ; Shift down to check the Next
Bit

i = i + 1
endw
endm

Constant Division

The following code will return a rounded quotient for a
variable divided by a constant:

divide macro Register, Value ; Divide 8 bit value
variable i = 0, TValue by a constant

TValue = 0x010000 / Value ; Get the Constant Divider
movf Register, w
movwf Temporary + 1 ; Use "Temporary" as the

Shifted Value
clrf Temporary
clrf Quotient
clrf Quotient + 1

480 Chapter 11

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 480

while (i < 8)
bcf STATUS, C ; Shift Down the Temporary
rrf Temporary + 1, f
rrf Temporary, f

if ((TValue & 0x08000) != 0); If LSB Set, Add the
Value

movf Temporary + 1, w
addwf Quotient + 1, f
movf Temporary, w
addwf Quotient, f
btfsc STATUS, C
incf Quotient + 1, f

endif
TValue = TValue << 1 ; Shift up to check the

Next Bit
i = i + 1
endw
movf Quotient + 1, w ; Provide Result Rounding
btfsc Quotient, 7
incf Quotient � 1, w

movwf Quotient
endm

Useful Code “Snippets” 481

5194 Predko Pocket Chapter 11 9/25/01 4:29 PM Page 481

This page intentionally left blank.

12

483

Chapter

16-Bit Numbers

Defining 16 Bit Numbers

16-bit numbers can have their addresses declared
specifically, as in the example below:

RAM equ 12 ; Start of RAM for the
; PIC16C71

Reg_8 equ RAM ; Define the 8 Bit
Register

Reg_16 equ RAM + 1 ; Define the first 16
; Bit Register

Reg2_16 equ RAM + 3 ; Define the 2nd 16 Bit
; Register

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 483

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

or, using the “CBLOCK” Command in MPASM with the
number of bytes in the variable specified:

CBLOCK 12 ; Start of RAM for the
; 16C71

Reg_8 ; Define the 8 Bit
; Register

Reg_16:2 ; Define the first 16
; Bit Register

Reg2_16:2 ; Define the 2nd 16 Bit
; Register

ENDC

Increments and Decrements

Incrementing a 16-bit value in the low-end or mid-range
is accomplished by:

incf Reg, f ; Increment the Low byte
btfsc STATUS, Z ; Do we have Zero

; (Multiple of 256)?
incf Reg + 1, f ; Increment High byte

; (if necessary)

For the PIC17Cxx or a PIC18Cxx, the “infsnz” in-
struction is used to simplify the 16-bit increment by one
instruction:

infsnz Reg, f ; Increment “Reg’s” Low
; Byte and Skip

incf Reg + 1, f ; High Byte Increment
; if Result is Not
; Equal to Zero

The decrement of a 16-bit value for the PICmicro®

MCUs is a four instruction (instruction cycle) process:

movf Reg, f ; Set “Z” if LOW “Reg”
; == 0

btfsc STATUS, Z
decf Reg + 1, f ; If Low byte is Zero,

; Decrement High
decf Reg, f

484 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 484

Addition/Subtraction

Adding a Constant to a value in the low-end and mid-
range PICmicro® MCUs, that is,

Reg = Reg + 0x01234

is accomplished by:

movlw HIGH 0x01234 ; Add the high byte
; first

addwf Reg + 1, f
movlw LOW 0x01234 ; Add the Low Byte Next
addwf Reg, f
btfsc STATUS, C ; Don’t Inc high byte if

; carry Reset
incf Reg + 1, f

In the PIC17Cxx and PIC18Cxx, the “addwfc” instruc-
tions can be used to simplify the operation:

movlw LOW 0x01234 ; Add Low Byte First
addwf Reg, f
movlw HIGH 0x01234 ; Add High Byte Next
addwfc Reg + 1, f

The corresponding subtraction, that is,

Reg = Reg - 0x01234

looks like the following code for the low-end and mid-
range PICmicro® MCUs:

movlw HIGH 0x01234 ; Subtract the High Byte
; First

subwf Reg + 1, f
movlw LOW 0x01234 ; Subtract the Low Byte

; Next
subwf Reg, f
btfss STATUS, C ; Don’t Dec high byte if

; carry Set
decf Reg + 1, f

16-Bit Numbers 485

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 485

For the PIC17Cxx and PIC18Cxx, the “subwfb” instruc-
tion is used:

movlw LOW 0x01234 ; Subtract the Low Byte
; First

bsf STATUS, C ; Don’t pass any
; “Borrow”

subwfb Reg, f ; Reg = Reg - w - !C
movlw HIGH 0x01234
subwfb Reg + 1, f ; Reg + 1 = Reg + 1 - w

; - !C

The “addwfc” and “subwfb” enhancements can be used
in all the 16-bit addition and subtraction operations
given below. When using these instructions follow the
same format of finding the least significant byte’s result
followed by the most significant byte’s result, which is
opposite to how the operations are carried out in the
low-end and mid-range PICmicro® MCUs.

When adding to and subtracting from a 16-bit variable
and storing the result in another variable in the low-end
and mid-range PICmicro® MCUs:

Destination = Source + 0x05678

the assembly code will look like:

movlw HIGH 0x05678 ; Add High Byte First
addwf Source + 1, w
movwf Destination + 1, f ; Store Result in

; Destination
movlw LOW 0x05678 ; Add Low Byte Next
addwf Source, w
movwf Destination, f ; Store Result
btfsc STATUS, C ; Is the Carry Flag Set?
incf Destination + 1, f ; Yes, Increment High

; Byte

Addition of a 16-bit variable to another 16-bit variable is
similar to that of adding a Constant to a 16-bit variable.

486 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 486

If the destination is the same as one of the values, for
instance:

a = a + b

the low-end and mid-range assembly language code
looks like:

movf b + 1, w ; Add the High Bytes
addwf a + 1, f
movf b, w ; Add the Low Bytes
addwf a, f
btfsc STATUS, C ; Add the Carry to High

; Byte
incf a + 1, f

If the Destination is different from both values to be
added, for instance,

c = a + b

the code is changed to save the sums in "w" and then
store them in "c":

movf a + 1, w ; Add the High Bytes
addwf b + 1, w
movwf c + 1
movf a, w ; Add the Low Bytes
addwf b, w
movwf c
btfsc STATUS, C ; Increment due to Carry
incf c + 1

Subtraction is carried out in the same way, but care
must be taken to ensure that the subtracting Register is
kept straight. To implement

c = a - b

in assembly language, the following code would be used
in the low-end and mid-range PICmicro® MCUs:

16-Bit Numbers 487

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 487

movf b + 1, w ; Get Value to be
; subtracted

subwf a + 1, w ; Do the High Byte
movwf c + 1
movf b, w ; Get the Value to be

; Subbed
subwf a, w
movwf c
btfss STATUS, C ; Look for the Carry
decf c + 1

Bitwise Operations on Constants
and Variables

ANDing a 16-bit variable with 0x0A55A would be imple-
mented in this way:

movlw HIGH 0x0A55A ; Get Value for ANDING
andwf Reg + 1, f ; Do the High Byte
movlw LOW 0x0A55A ; Get Value for ANDING
andwf Reg, f ; Do the Low Byte

bcf STATUS, C ; Clear the Carry Flag
; for new bit

rlf Reg, f ; Shift the Low Byte
rlf Reg + 1, f ; Shift High Byte with

; Low Carry

and to shift right:

bcf STATUS, C ; Clear Carry Flag for
; the New bit

rrf Reg + 1, f ; Shift down the High
; Byte

rrf Reg, f ; Shift Low Byte with
; Valid Carry

488 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 488

Comparisons with 16-Bit Variables

12.3

movf Reg2 + 1, w ; Get the High Byte of
; the Result

subwf Reg1 + 1, w
movwf _2 ; Store in a Temporary

; Register
movf Reg2, w ; Get the Low Byte
subwf Reg1, w
btfss STATUS, C ; Decrement High if

; Necessary
decf _2

At the end of this series of instructions, “w” contains
Reg2 � Reg1 and “_2” contains Reg2HI � Reg1HI with
the borrow result of Reg2 � Reg1.

There are six basic conditions that you can look for:
Equals, Not Equals, Greater Than, Greater Than or
Equal To, Less Than, Less Than or Equal To. So, to dis-
cover whether or not I have any of these conditions, the
following code can be added.

For Equals and Not Equals, the value in “w” is ORed
with “_2” to see if the Result is equal to zero.

iorwf _2, w ; Is the Result == 0?

for Equals add the lines:

12.4

btfss STATUS, Z ; Execute following Code
; if == 0

goto Zero_Skip ; Else, Code != 0, Skip
; Over

16-Bit Numbers 489

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 489

for Not Equals, append:

btfsc STATUS, Z ; Execute following if
; != 0

goto NotZero_Skip ; Else, Code == 0, Skip
; Over

If Greater Than (the 16-bit variable is greater than the
comparison value), then the result will not be less than
Zero. Actually, the same code (just with a different Bit
Skip) can be used to test.

For Greater Than:

btfsc _2, 7 ; Not Negative, 16 Bit
; is Greater

goto NotGreater_Skip ; Else, Skip if Not
; Greater than

iorwf _2, w ; Is it Equal to Zero?
btfsc STATUS, z ; No, It is Greater

; than
Goto NotGreater_Skip ; Else, if Zero, Not

; Greater than

Note that just the most significant bit of the 16-bit
difference is checked. If this bit is set (� 1), then the
16-bit variable is less than the Comparison. If it is reset
(� 0), then it is greater than and you should check to
see if the result is not equal to zero (or else it is equal).

For Less Than:

490 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 490

btfss _2, 7 ; Negative, 16 Bit is
; Less Than

goto NotLess_Skip ; Else, Skip because Not
; Less Than

To check for Greater Than or Equal To, the last three
lines of the code checking for Greater Than are simply
erased. To check for Less Than or Equal To, the three
lines from Not Equals are added before the check for
less than.

Here is the complete code for compare and skip on
Reg1 less than or equal to Reg2:

movf Reg2 � 1, w ; Get the High Byte of
; the Result

subwf Reg1 � 1, w
movwf _2 ; Store in a Temporary

; Register
movf Reg2, w ; Get the Low Byte
subwf Reg1, w
btfss STATUS, C ; Decrement High if

; Necessary
decf _2

iorwf _2, w ; Check for Equal to
; Zero

btfsc STATUS, Z ; If Not Zero, Jump Over
goto EqualLess_Skip ; Equals, Jump to the

; Code
btfsc _2, 7 ; If Number is Negative,

; execute
goto EqualLess_Skip ; Else, Jump Over

16-Bit Numbers 491

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 491

Multiplication

Here is multiplication that requires a separate byte for
counting the iterations through “Loop”:

clrf Product
clrf Product + 1

movlw 16 ; Operating on 16 Bits
movwf BitCount

Loop ; Loop Here for Each Bit

rrf Multiplier + 1, f ; Shift the Multiplier
; down

rrf Multiplier, f ; by one
btfss STATUS, C ; If the bit is set, add
goto Skip ; the Multiplicand to

; the “Product”

movf Multiplicand + 1, w
addwf Product + 1, f
movf Multiplicand, w
addwf Product, f
btfsc STATUS, C
incf Product + 1, f

Skip ; Shift up Multiplicand
; and

bcf STATUS, C ; Loop Around
rlf Multiplicand, f
rlf Multiplicand + 1, f

decfsz BitCount
goto Loop

The code given below is the most efficient way of doing
a 16-bit multiply with a 32-bit result. It is not immedi-
ately obvious, but it is very clever. Rather than use a

492 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 492

32-bit add each time the shifted data is detected, it pro-
vides a 16-bit (with valid carry) add and then shifts the
data down. This Code does not change “Multiplicand”,
but does change “Multiplier”.

Note that in the code, a 32-bit value for “Product” (us-
ing a “Product:5” line in the “CBLOCK” variable declare
statement) is used.

clrf Product + 2 ; “Product” will be the
clrf Product + 3 ; Result of the

; Operation

movlw 16 ; Operating on 16 Bits
movwf BitCount

Loop ; Loop Here for Each Bit

rrf Multiplier + 1, f ; Shift the Multiplier
rrf Multiplier, f ; down by one

btfss STATUS, C ; If the bit is set, add
goto Skip ; the Multiplicand to

; the Product”

clrf Product � 4
movf Multiplicand + 1, w
addwf Product + 3, f
btfsc STATUS, C ; Make Sure the Carry is

; Passed
incf Product + 4, f ; to the Next Byte

movf Multiplicand, w
addwf Product + 2, f
btfsc STATUS, C
incfsz Product + 3, f ; Make Sure Carry is

; Passed with
goto $ + 2 ; the Shift

incf Product + 4, f

Skip ; Shift “Product” Down
; with

16-Bit Numbers 493

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 493

bcf STATUS, C
rrf Product + 4, f
rrf Product + 3, f ; the Reset Carry from
rrf Product + 3, f ; the
rrf Product + 2, f ; Multiplier shift down
rrf Product + 2, f ; or
rrf Product + 1, f ; the result of the
rrf Product + 1, f ; sixteen
rrf Product, f ; bit addition.

decfsz BitCount
goto Loop

Both of the Multiplication routines shown here will work
with positive and negative numbers.

For the PICmicro® MCUs that have built-in eight by
eight multipliers (PIC17Cxx and PIC18Cxx), the code
for 16-bit multiplication can be accomplished using the
code:

clrf Product + 2 ; Clear the High-Order
; Bits

clrf Product + 3
movf Al, w ; Do the “L”

; Multiplication first
mulwf Bl
movf PRODL, w ; Save result
movwf Product
movf PRODH, w
movwf Product + 1
movf Al, w ; Do the “I”

; Multiplication
mulwf Bh
movf PRODL, w ; Save the Most

; Significant Byte
; First

addwf Product + 1, f
movf PRODH, w

494 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 494

addwfc Product + 2, f ; Add to the Last Result
movf Ah, w ; Do the “O”

; Multiplication
mulwf Bl
movf PRODL, w ; Add the Lower Byte

; Next
addwf Product + 1, f
movf PRODH, w ; Add the High Byte

; First
addwfc Product + 2, f
btfsc STATUS, C ; Add the Carry
incf Product + 3, f

movf Ah, w ; Do the “F”
; Multiplication

mulwf Bh
movf PORDL, w
addwf Product + 2, f
movf PRODH, w
addwfc Product + 3, f

Division

The division routine provided here first finds how far
the divisor can be shifted up before comparing to
the quotient. The “Count” variable in this routine is a
16-bit variable that is used both to count the bits
and add to the quotient. “Temp” is an 8-bit temporary
Storage Variable. At the end of the division routine,
“Dividend” will contain the remainder of the operation.

clrf Quotient
clrf Quotient + 1

movlw 1 ; Initialize Count
movwf Count
clrf Count + 1

16-Bit Numbers 495

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 495

StartLoop ; Find How Large
; “Divisor” can
; be

btfsc Divisor + 1, 7 ; If at the “top”, then
; do

goto Loop ; the Division

bcf STATUS, C ; Shift Count and
; Divisor Up

rlf Count, f
rlf Count + 1, f

rlf Divisor, f
rlf Divisor + 1, f

goto StartLoop

Loop ; Now, Take Away
; “Divisor”
; from “Dividend”

movf Divisor + 1, w ; If Divisor < Dividend
; then

subwf Dividend + 1, w ; Don’t Take Away
movwf Temp
movf Divisor, w
subwf Dividend, w
btfss STATUS, C
decf Temp, f

btfsc Temp, 7 ; If “Temp” Negative
; then

goto Skip ; Divisor < Dividend

movwf Dividend ; Save the New Dividend
movf Temp, w
movwf Dividend + 1

movf Count, w ; Add Count to the
; Quotient

addwf Quotient + 1, f
movf Count, w
addwf Quotient + 1, f ; No Opportunity for

; Carry

Skip ; Shift Divisor/Count
; Down

496 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 496

bcf STATUS, C
rrf Divisor + 1, f
rrf Divisor, f

rrf Count + 1, f ; If Carry Set after
; Count

rrf Count, f ; Shift, Finished

btfss STATUS, C ; If Carry NOT Set, then
goto Loop ; Process next Bit

This division routine is designed to only handle positive
numbers—there is not a general algorithm that handles
both positive and negative numbers and passes back
both the quotient and remainder with the correct polar-
ity efficiently.

A general form for a division routine (using the algo-
rithm shown above) could be the division of the core of
the pseudo-code in a bit-shift analogous algorithm to
multiplication that can handle positive and negative
numbers.

if (Dividend < 0) { // Change dividend to
// positive number

Dividend = 0 - Dividend;
dividendneg = 1; // Mark we have to

// change it back
} else
dividendneg = 0;

if (Divisor < 0) { // Repeat with the
// Divisor

Divisor = 0 - Divisor;
divisorneg = 1;

} else
divisorneg = 0;

Count = 0; // Going to Count where
// division starts

16-Bit Numbers 497

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 497

Quotient = 0; // Store the Quotient
while ((Divisor & 0x0400) != 0) {

// Find the Start of the
// Division

Count = Count + 1; // Increment the Number
// of Bits Shifted

Divisor = Divisor << 1;
}

while (Count != 0) { // Now, do the Division
if (Dividend >= Divisor) {// A subtract can take

// place
Quotient = Quotient + 2 ^ Count;
Dividend = Dividend - Divisor;

}
Count = Count - 1;
Divisor = Divisor >> 1;
}

if (Dividendneg == 1) // Now, change the
// values

if (Divisorneg == 1) {
Quotient = Quotient;
Remainder = 0 - Dividend;

} else {
Quotient = 0 - Quotient;
Remainder = 0 - Dividend;

else // The Dividend was
// Positive

if (Divisorneg == 1) {
Quotient = 0 - Quotient;
Remainder = Dividend;

} else {
Quotient = Quotient;
Remainder = Dividend;

}

498 Chapter 12

5194 Predko Pocket Chapter 12 9/25/01 4:29 PM Page 498

Chapter

PICmicro® MCU
Operations Tables

The following information is based on the datasheets
available at the time of printing and are meant to be
used for providing a basic operating reference. Some
data is not complete due to “Advanced” copies of the
datasheets. “Idd”, or “intrinsic” current requirements, is
the amount of current required for the base PICmicro®

MCU to operate and does not include current required
for peripheral functions.

I/O Pin Current Capabilities

Current Source/Sink requirements are in milli-Amperes
(“mA”).

13

499

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 499

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

500

I/O Pin Current Source/Sink Capabilities

Pin Port Device Comments
Device Source/Sink Source/Sink Source/Sink GPIO used
PIC12C5xx 25/25 25/25 100/100 for Data
PIC14C000 25/25 200/200 250/300 I/O Pins

Also
Available
for LCD
driving

PIC16C5x 20/25 40/50 50/150
PIC16C55x 25/25 200/200 250/300
PIC16C6x 20/25-50/80 100/150 100/150
PIC16C62x 25/25 200/200 250/300
PIC16C7x 25/25 200/200 250/300
PIC16F84 20/25 50/80-100/150 100/150
PIC16F87x 25/25 200/200 250/300
PIC17C4x 20/35 100/150 200/250 RA2/RA3 able

to Sink 60 mA
PIC18Cxx(x) 25/25 200/200 50/300

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
3

9
/
2
5
/
0
1

4
:
3
0

P
M

P
a
g
e

5
0
0

RC Oscillator Component Values

The following table and chart outline different
Resistor/Capacitor values and current requirements for
the low-end PICmicro® MCUs and the PIC16F84 using
an RC oscillator. Note that RC oscillator operation can
have variances up to 30% according to Microchip docu-
mentation and are only recommended for time-insensi-
tive applications.

For the low-end PICmicro® MCUs, Table 13.1 shows
different capacitor values and Fig. 13.1 shows current
consumption for different operating speeds.

The PIC16F84 is a very common beginning user
PICmicro® MCU. Table 13.2 shows different frequencies
for different resistor/capacitor combinations and Fig.
13.2 shows the varying Idd current required for differ-
ent frequencies.

PICmicro® MCU Operations Tables 501

TABLE 13.1

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 501

502 Chapter 13

Figure 13.1

TABLE 13.2able body Table body body

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 502

PICmicro® MCU Operations Tables 503

LP Operating Mode Part Specification and Idd Current
Requirements

Device 32.768 KHz 200 KHz Idd Current
PIC12C5xx 15 pF N/A 10 uA
PIC16C5x 15 pF N/A 32 uA
PIC16C55x 68-100 pF 15-30 pF 32 uA
PIC16C6x 33-68 pF 15-47 pF 21 uA
PIC16C62x 68-100 pF 15-30 pF 32 uA
PIC16C7x 15-47 pF 15-33 pF 48 uA
PIC16F84 68-100 pF 15-33 pF 32 uA
PIC16F87x 33 pF 15 pF 48 uA
PIC18Cxx(x) 33 pF 15 pF N/A

LP Oscillator Operating Characteristics

The following table outlines different capacitor values
for different “LP” oscillator executing frequencies using
a crystal. Note that “LP” mode is active between 0 and
200 KHz only. The Idd (intrinsic) current requirements
are quoted for 32.768 kHz and powered by 5 volts and
are in micro-Amperes except where noted.

Figure 13.2

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 503

XT Oscillator Operating Characteristics

The following table outlines different capacitor values
for different “XT” oscillator executing frequencies using
a crystal or ceramic resonator. Note that “XT” mode is
active between 0 and 4 MHz. The Idd (intrinsic) current
requirements are quoted at 4 MHz and are in milli-
Amperes except where noted.

504 Chapter 13

HS Oscillator Operating Characteristics

The following table outlines different capacitor values
for different “HS” oscillator executing frequencies using
a crystal or ceramic resonator. Note that “HS” mode is
active for frequencies greater than 4 MHz. As a rule of
thumb, the maximum speed for low-end and mid-range
PICmicro® MCU EPROM program memory devices is 20
MHz. For Flash program memory parts, the maximum
speed is usually 10 MHz, except where noted. For the
PIC17Cxx, the maximum speed is 33 MHz and for the
PIC18Cxx the maximum clock speed is 10 MHz. In

XT Operating Mode Part Specification and Idd Current
Requirements

Device 200 KHz 1 MHz 4 MHz Idd Current
PIC12C5xx 47-68 pF 15 pF 15 pF 0.78 mA
PIC16C5x 15-30 pF 15-30 pF 15 pF 1.8 mA
PIC16C55x N/A 15-68 pF 15-68 pF 3.3 mA
PIC16C6x 33-68 pF 15-68 pF 15-33 pF 1.6 mA
PIC16C62x 33-68 pF 15-58 pF 15-68 pF 3.3 mA
PIC16C7x 33-68pF 15-68 pF 15-33 pF 5 mA
PIC16F84 68-100 pF 15-33 pF 15-33 pF 4.5 mA
PIC16F87x 47-68 pF 15 pF 15 pF 2 mA
PIC17C4x N/A 33-150 pF 15-68 pF 1.6 mA
PIC18Cxx(x) 47-68 pF 15 pF 15 pF N/A

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 504

PICmicro® MCU Operations Tables 505

HS Operating Mode Part Specification and Idd Current Requirements

Device 4 MHz 10 MHz 20 MHz 32 MHz Idd Curr
PIC14C000 15-68 pF 10-47 pF 10-47 pF N/A 4 mA
PIC16C5x 15 pF 15 pF 15 pF N/A 5 mA
PIC16C55x 15-30 pF 15-30 pF 15-30 pF N/A 20 mA
PIC16C6x 15-47 pF 15-47 pF 15-47 pF N/A 35 mA
PIC16C62x 15-47 pF 15-30 pF 15-30 pF N/A 20 mA
PIC16C7x 15-47 pF 15-47 pF 15-47 pF N/A 30 mA
PIC16F84 15-33 pF 15-33 pF N/A N/A 10 mA
PIC16F87x 15 pF 15-33 pF 15-33 pF N/A 20 mA
PIC17C4x 15-68 pF 15-47 pF 15-47 pF 0 40 mA
PIC18Cxx(x) 15 pF 15-33 pF 15-33 pF N/A 45 mA

the PIC18Cxx, the HS clock can be multiplied by four for
an actual internal clock speed of 40 MHz.

Idd (intrinsic) current requirements are taken from
the maximum speed and the PICmicro® MCU powered
by 5 volts. Capacitor values are in pFs and Idd current is
in milli-Amperes except where noted.

5194 Predko Pocket Chapter 13 9/25/01 4:30 PM Page 505

This page intentionally left blank.

Chapter

PICmicro® MCU
Application

Debugging Checklist

14

507

5194 Predko Pocket Chapter 14 9/25/01 4:30 PM Page 507

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Debugging Checklist

Problem Potential Causes Check
PICmicro® MCU 1 No/Bad Power 1a Make Sure Vdd is between
Application 4.5 Volts and 5.5 Volts
does Not Start Relative to Vss

1b Make Sure Vdd “ripple” is Less
than 100 mV

2 No/Bad Reset 2a Make Sure “_MCLR” is pulled up
to 4.5 Volts to 5.5 Volts

2b Make Sure Disabled _MCLR Pin is
not pulled below Ground

3 Missing/Bad 3a Check for 0.01 uF to 0.1 uF
Decoupling Capacitor Capacitor Close to PICmicro®

MCU’s Vdd Pin
4 Part Orientation 4a Check that PICmicro® MCU Part is

Installed Correctly
4b Make Sure the PICmicro® MCU is

NOT getting very hot
5 Oscillator Not 5a Check both the OSC1 and

Running OSC2 Pins With an Oscilloscope
or Logic Probe

5b If Internal Oscillator, Check
Configuration Fuses For
Correct Setting

5c Check for Present and Correct
Capacitors

6 Device Programming 6a Check/Verify Device
Incorrect Programming

6b Look for I/O Pins being set
high or low

508

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
0
8

7 Watchdog Timer 7a Check I/O pins for changing
Enabled between input Output states

7b Check Actual Configuration
Fuse Value

8 Uninitialized 8a Check Variable
Variable/Value initialization at
Incorrect application start

8b After resetting the simulated
PICmicro® MCU, load file
registers with a random value
(such as 0x05A)

9 Interrupt Handler 9a Simulate Interrupt Handler
NOT allowing and make sure that
execution exit execution can return to
From Handler Mainline before next Interrupt

Request is Acknowledged
9b Make Sure that correct

Interrupt Flag (“IF”) is Reset
in Handler

10 Variable Address 10a Make Sure that the
Overlayed onto Variable “CBLOCK”
a Hardware I/O statement is in the File
Register Register area of the PICmicro®

MCU and not in the Hardware
I/O Area

11 Outputs switching 11a Probe the Outputs using a
too fast to See Logic Probe or Oscilloscope

PICmicro® MCU 1 Watchdog Timer 1a Check Configuration Fuse
Device Seems to Enabled Values
Reset Itself 1b Check for I/O pins
Unexpectedly changing state with Reset

509

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
0
9

Debugging Checklist (Continued)

Problem Potential Causes Check
2 High Internal 2a Check for Correlation to

Current and to Reset with changes in
Inadequate Load drawn by PICmicro® MCU
Decoupling 2b Check for Power Supply

“sags” when the Load is drawn
3 Check for a “noisy” 3a Check for greater than

Power Supply 100 mV “Ripple” from Power
Supply

4 Execution Jumps 4a Check Code for Subroutine
past Application without “return” instruction
End or Table that is accessed past

its End
5 Uninitialized 5a Check Variable initialization

Variable/Value for missed Variable
Incorrect

5b Set Variables to Random values
(such as 0x05A) before
starting simulation to find
problem

Peripheral 1 Pin Programming not 1a Check Register Access
Hardware Not Correct Prerequisites
Active 1b Check TRIS registers

For Values which
Prevent Peripheral
Operation

2 Incorrect Part 2a Check to see if the
Number Part Being Actually Used has

hardware
2b Check to see that

Part Being used
Has Hardware Registers

510

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
0

That Match Source
3 Hardware Switching 3a Check the Hardware using

too fast to observe a Logic Probe or an Oscilloscope
No Output Mode 1 Incorrect TRIS 1a Check Values Saved in
For I/O Pin Specification TRIS Registers

1b Check for inadvertently
Execution

1c “Float” Pin (disconnect from
Circuit) to see if Pin is
Actually in Output Mode with a
Logic Probe

2 If Peripheral 2a This problem may NOT be apparent
Hardware Built into in MPLAB Simulation because
Pin, Check for Peripherals are often Not
Activation Modeled

2b If Pin Shared with “T0CKI” in
12C5xx or 16C505, check for
Correct State of “OPTION”
Register

3 If Dual-Use Pin 3a If Pin Shared with
Check for Output “_MCLR” in 12C5xx or
Capability 16C505, then no output

Capabilities are built in
3b If Pin Shared with “T0CKI” in

12C5xx or 16C505, check for
Correct State of “OPTION”
Register

Output Pin 1 Pin NOT in Output 1a “Float” Pin (disconnect from
Not Changing Mode Circuit) to see if Pin is
State Actually in Output Mode with a

Logic Probe
1b Check Causes for “No Output”

Mode for I/O Pin

511

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
1

Debugging Checklist (Continued)

Problem Potential Causes Check
2 Pin being held by 2a “Float” Pin and see if

high Current State Changes are
Source/Sink Possible with Pin

Disconnected
2b Look for Shorts to Vcc/Gnd
2c Look for Missing/Incorrect

Resistors or Components
3 Output Changing 3a Check output with a Logic

State too Quickly Probe or an Oscilloscope
to be Observed

Pin Changes 1 Look for “bcf”, 1a Check Value written to
State “bsf” or I/O Port
Unexpectedly “movf”/“movwf” 1b Check Computed Values

Instruction that are used to
Combinations that Modify Pin Values
May Reset the Pin 1c Look for Saved Port Values that

are Incorrect or Inappropriate
2 Look for Hardware 2a “Float” Pin (disconnect

that “Backdrives” from Circuit) to see if
the Pin state is incorrect

2b Check Output Enable pins of
Tri-State Drivers on the Pin’s
Net

3 Variable Address 3a Make Sure that the Variable
Overlayed onto “CBLOCK” statement is in the
a Hardware I/O File Register area of the
Register PICmicro® MCU and not in the

Hardware I/O Area

512

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
2

Output Timing 1 Delay Calculations 1a Check to see if the
Not as Incorrect Calculations match the
Expected Actual Output

1b Use the Assembler Calculator to
Calculate Delays and match to
Developer Values

2 Interrupt Handler 2a Check for Enabled
Active during Timed Interrupts
Output 2b Put “bcf INTCON, GIE” Before

Timed code and “bsf INTCON,
GIE” after

3 Check Instruction 3a Note that “goto”, “call”,
Timings “return” and PCL Modifications

require Two Instruction Cycles
Register Values 1 Check for Interrupt 1a Look for Instances in the
Incorrect/Change Handler Active Interrupt Handler when
Unexpectedly Register is Changed

1b Mask Interrupt Handler During
Critical Periods Of Register
Operation

1c Use another Register in the
Interrupt Handler and update
Mainline’s version as
appropriate

2 Make sure Variables 2a Check actual Register
are not located in Address from Listing
Hardware Register File to Hardware
Space Register Addresses

2b Make sure Variables are in
memory space “Above” the
Hardware Registers for all
PICmicro® MCU Family Devices
the Application Runs on

513

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
3

Debugging Checklist (Continued)

Problem Potential Causes Check
3 Variable Registers 3a Check File Register

in “shadowed” Addresses with
Memory Space “Shadowed” Registers

3b Mark unused “Shadow” Registers
as “BADRAM”

LED Not Lighting 1 LED Polarity 1a Short PICmicro® MCU Pin to
Incorrect Ground to ensure LED Can Light

2 Check PICmicro® MCU Pin 2a Check PICmicro® MCU Pin as
for NOT Changing to Specified Above
Output

3 PWM Active with 3a Check PWM Output with an
setting that turns Oscilloscope or Logic
off LED Probe

3b Check for PWM Code Active
4 PICmicro® MCU Not 4a Check the PICmicro® MCU as

Working Specified Above
5 Output Changing 5a Check the output using

too fast to a Logic Probe or an
Observe Oscilloscope

Button: No 1 Pin Pullup/Pull 1a Check the Wiring of
Response Down Incorrect the Button to the PICmicro®

MCU, Vcc and Gnd
1b Check the operation of the

PICmicro® MCU’s Internal Pull Ups
2 Pin in Output Mode 2a Check to make sure the PICmicro®

MCU I/O Pin is in “Input” Mode
2b Look for inadvertent Changes to

514

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
4

the “TRIS” Register
3 Output Changing 3a Check Pin output using a

to quickly to be Logic Probe or an
Observed Oscilloscope

Button: Strange 1 Poor Debounce 1a Check for Multiple Button
Response Presses Recognized by Software

1b Check Voltage Levels on
Hardware to Ensure Button
Press is within 0.2 Volts from
Vcc or Gnd

2 Interrupt Handler 2a Check the Interrupt
Response Incorrect Handler’s Operation with

The Input Conditions
LCD: No Output 1 Check Wiring 1a Check Ground is on Pin 1

1b Check Data Pins
1c Make Sure “R/W” line is held

low during Writes
2 Check Contrast 2a Contrast Different for

Different LCDs
3 Check Timing 3a Make Sure that LCD “E” Strobes

are a minimum of 450 nsecs in
width

3b Make Sure signals do not Change
during “E” Strobes

515

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
4

9
/
2
6
/
0
1

1
2
:
3
2

P
M

P
a
g
e

5
1
5

This page intentionally left blank.

Chapter

PICmicro® MCU
Application Software

Development Tools

Microsoft Compatible Editor
“Ctrl” Key Combinations

Keystrokes Operation
Up Arrow Move Cursor up one Line
Down Arrow Move Cursor down one Line
Left Arrow Move Cursor left one Character
Right Arrow Move Cursor right on Arrow
Page Up Move viewed Window Up
Page Down Move viewed Window Down
Ctrl - Left Arrow Jump to Start of Word

15

517

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 517

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Ctrl - Right Arrow Jump to Start of next Word
Ctrl - Page Up Move Cursor to Top of viewed

Window
Ctrl - Page Down Move Cursor to Bottom of viewed

Window
Home Move Cursor to Start of Line
End Move Cursor to End of Line
Ctrl - Home Jump to Start of File
Ctrl - End Jump to End of File
Shift - Left Arrow Increase the Marked Block by one

character to the left
Shift - Right Arrow Increase the Marked Block by one

character to the right
Shift - Up Arrow Increase the Marked Block by one

line up
Shift - Down Arrow Increase the Marked Block by one

line down
Ctrl Shift - Increase the Marked Block by one
Left Arrow word to the left

Ctrl Shift - Increase the Marked Block by one
Right Arrow word to the Right

MPSIM.INI

A typical MPSIM.INI File for an application is

; MPSIM File for PROG2 - Turning on an LED
;
; Myke Predko - 96.05.20
;
P 84 ; Use a 16C84
SR X ; Hex Numbers in the Simulator
ZR ; Zero the Registers
RE ; Reset Elapsed Time and Step

Count
DW D ; Disable the WDT
V W,X,2 ; Display: the "W" Register
AD F3,B,8 ; Status Register
AD F4,X,2 ; FSR Register
AD OPT,X,2 ; Option Register
AD FB,B,8 ; INTCON Register
AD F2,X,3 ; PCL Register
AD FA,X,3 ; PCLATH Register
AD F1,X,2 ; TMR0 Register

518 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 518

AD IOA,X,2 ; Port "A" Tris Register
AD F5,X,2 ; Port "A" Register
AD IOB,X,2 ; Port "B" Tris Register
AD F6,X,2 ; Port "B" Register
AD FC,X,2 ; "Test" Register
rs
sc 4 ; Set the Clock to 1MHz
lo prog2
di 0,0 ; Display the First Instruction

MPLAB

MPLAB is a complete “Integrated Development
Environment” (“IDE”) for all the different PICmicro®

MCU architecture families that runs under Microsoft’s
“Windows” version 3.1x or later operating systems.
MPLAB integrates the different operations of develop-
ing a PICmicro® MCU application. This is done from a
user configurable “desk top” (see Fig. 15.1) with differ-
ent capabilities built into the program.

MPLAB can integrate the following different functions:

■ editor
■ assemblers
■ compilers

• linkers
■ programmers
■ emulators

The following files are accessed by MPLAB:

File Extension Function
.asm Application Source File
.$$$ Backup of the Application Source

File
.cod “Label Reference” for MPLAB

Simulator/Emulator

PICmicro® MCU Application Software 519

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 519

.err Error Summary File

.lst Listing File

.hex Hex File to be loaded into the
PICmicro® MCU

.bkx Backup of the Hex File

.pjt Project file

MPLAB has the capability of displaying specific regis-
ter and bit contents in the PICmicro® MCU. These win-
dows, such as the one shown in Fig. 15.2 allow you to
select the registers to monitor. To define a Watch
Window or add more registers to it, the “Register
Selection” Window is brought up for you to select the
registers you would like to monitor. The “Properties”
Window is selected from the “Register Selection”
Window (as is shown in Fig. 15.3) to specify the charac-
teristics of the register that is displayed.

520 Chapter 15

Figure 15.1 “MPLAB” IDE with PICStart Plus Interface

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 520

The most basic input method is the “Asynchronous
Stimulus” window (shown in Fig. 15.4) which consists of
a set of buttons that can be programmed to drive any of
the simulated PICmicro® MCU pins and can set the but-
ton to change the pin by:

PICmicro® MCU Application Software 521

Figure 15.2 Sample “Watch Window”

Figure 15.3 MPLAB stopwatch

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 521

Pulse

Low

High

Toggle

The “Pulse” option, pulses the input pin to the comple-
mented state and then back to the original state within
one instruction cycle. This mode is useful for clocking
TMR0 or requesting an external interrupt. Setting the
pin “High” or “Low” will drive the set value onto the pin.
To change the value of the pin between the two states,
you can program two buttons in parallel with each other
and each button changes the state. This can also be
done with a single “Toggle” button, which changes the
input state each time the button is pressed.

Clocks can be input into the simulated PICmicro®

MCU by clicking on the “Debug” pull down, “Simulator
Stimulus” and “Clock Stimulus . . .” selections. The
clock stimulus dialog box (Fig. 15.5) can input regular
clocks into a PICmicro® MCU by selecting the pin and
then the “High” and “Low” time of the clock along with
whether or not the clock is inverted (which means at re-
set, the clock will be low rather than high). The clock
counts in Fig. 15.5 are in instruction cycles. Clock stim-

522 Chapter 15

Figure 15.4 “Asynchronous Stimulus” Window

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 522

PICmicro® MCU Application Software 523

ulus can be used for simple I/O tests, but it is really best
suited for putting in repeating inputs that drive clocks or
interrupts.

The “Register Stimulus” feature will store a two-digit
hex value in a specified register every time a specific
address is encountered in the simulated application
execution. To load the operating parameters of the
Register Stimulus method, the “debug” pull down is
clicked, followed by “Simulator Stimulus” and then
“Register Stimulus” is “Enabled”. This brings up the
small window shown in Fig. 15.6 on which you will
select the address of the register to change as well
as the address that this happens at. Once the ad-
dresses have been specified, the register stimulus file
is selected by clicking on “Browse . . .”. The reg-
ister “Modify” Window (shown in Fig. 15.7) is available

Figure 15.5 MPLAB “Clocked Stimulus”

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 523

524 Chapter 15

Figure 15.6 MPLAB “Register Stimulus” Specification

Figure 15.7 MPLAB “Register Modify” Window

by clicking on the “Window” pull down and then select-
ing “Modify . . .”. This window can access any register
in the simulated device, including “w”, which cannot
be directly addressed in the low-end and mid-range
devices.

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 524

PICmicro® MCU Application Software 525

Stimulus (.STI) files

Stimulus Files require a clock “Step” specification along
with the pins to be driven. Comments in the file are pre-
ceded by a “!” character. The file below is a sample stim-
ulus file (which, by convention, always ends in ".sti"):

!
! Sample Stimulus File
!
Step MCLR RB4 ! Define the Bits to be

Controlled
1 1 1 ! Initialize the Bit Values

! Wait for the Program and Hardware to be
Initialized

500 0 1 ! Reset the PICmicro® MCU
1000 1 1
1500 1 0 ! Change the State of the Port

Bit
2000 1 1 ! Restore it for rest of

program

Stimulus Files are the recommended method to simu-
late an application and understand what are the poten-
tial software problems.

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 525

MPLAB assembler directives

Directive Usage Example Comments

__BADRAM __BADRAM Start, End Flag a range of file registers which are unimplemented

BANKISEL BANKISEL <label> Update the “IRP” bit of the “STATUS” register before
the “FSR” register is used to access a register
indirectly. This directive is normally used with
linked source files.

BANKSEL BANKSEL Label Update the “RPx” bits of the “STATUS” register before
accessing a file register directly. This directive is
not available for the low-end devices (for these
devices, the FSR register should be used to access
the specific address indirectly). This directive is
also not available for the High-end PICmicro® MCUs
which should use the “movlb” instruction.

CBLOCK CBLOCK Address Used to Define a starting address for variables or
Var1, Var2 constants which require increasing values. To declare
VarA:2 multiple byte variables or constants which increment
ENDC by more than one, a colon (“:”) is placed after the

label and before the number to increment by. This is
shown for “VarA” in the usage example. The “ENDC”
directive is required to “turn off” CBLOCK operation.

CODE CODE [Address] Used with an object file to define the start of
application code in the source file. A “Label” can be

526

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
2
6

527

specified before the directive to give a specific
label to the object file block of code. If no
“Address” is specified, then MPLINK will calculate
the appropriate address for the CODE statement and
the instructions that follow it.

__CONFIG __CONFIG Value This directive is used to set the PICmicro® MCU’s
configuration bits to a specific value. “__CONFIG”
automatically sets the correct address for the
specific PICmicro® MCU. The “Value” is made up of
constants declared in the PICmicro® MCU’s “.inc” file.

CONSTANT/ CONSTANT Label = Define a Constant Using one of the three formatting
=/EQU Value methods shown in usage example. The constant “Value”

or references to the “Label” and is evaluated when the
Label = Value “Label” is defined. For replacing a Label with a

or string, use “#DEFINE”.
Label EQU Value

DA/DATA/DB DA Value|”string” Set program memory words with the specified data
or values. If a “string” is defined, then each byte is

DATA Value|”string” put into its own word. The “DW” directive is
DB Value|”string” recommended to be used instead of “DATA” or “DB”

because its operation is less ambiguous when it comes
to how the data is stored. Note that “DATA”/“DB”/“DW”
do not store the data according as part of a “retlw”
instruction. For the “retlw” instruction to be
included with the data, the “DT” directive must be
used. These directives are best suited for use in
Serial EEPROM Source Files.

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
2
7

Directive Usage Example Comments

DE ORG 0x02100 This instruction is used to save initialization data
DE Value|”string” for the PICmicro® MCU’s built in Data EEPROM. Note

that an “org 0x02100” statement has to precede the
“de” directive to ensure that the PICmicro® MCU’s
program counter will be at the correct address for
programming.

#DEFINE #DEFINE Label Specify that any time “Label” is encountered, it is
[string] replaced by the string. Note that string is optional

and the defined “Label” can be used for conditional
assembly. If “Label” is to be replaced by a constant,
then one of the “CONSTANT” declarations should be
used. This directive is placed in the first column of
the source file.

DT DT Value Place the “Value” in a “retlw” statement. If DT’s
[.Value...]| parameter is part of a “string”, then
“string” each byte of the string is given its own “retlw”

statement. This directive is used for implementing
read-only tables in the PICmicro® MCU.

DW DW Value[,Value...] Reserve program memory for the specified “Value”. This
value will be placed in a full program memory word.

ELSE Used in conjunction with “IF”, “IFDEF” or “IFNDEF” to
provide an alternative path for conditional assembly.
Look at these directives for examples of how “ELSE”
is used.

528

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
2
8

END END End the program block. This directive is required at
the end of all application source files.

ENDC Used to end the “CBLOCK” Label constant value saving
and updating. See “CBLOCK” for an example of how this
directive is used.

ENDIF Used to end an “if” statement conditional code block.
See “IF”, “IFDEF” or “IFNDEF” for an example of how
this directive is used.

ENDM Used to end the “MACRO” Definition. See “CBLOCK” for
an example of how this directive is used.

ENDW Used to end the block of code repeated by the “WHILE”
Conditional Loop instruction. See “WHILE” for an
example of how this directive is used.

ERROR ERROR “string” Force an “ERROR” into the code with the “string”
message inserted into the Listing/Error Files.

ERRORLEVEL ERRORLEVEL Change the assembler’s response to the specific “Error”
0|1|2, +#|-# (“2”), “Warning” (“1”) or Message (“0”) Number (“#”).

Specifying “-“ before the Number will cause any
occurrences of the Error, Warning or Message to be
ignored by the assembler and not reported. Specifying
“+” before the Number will cause any occurrences of
the Error, Warning or Message to be output by the
Assembler.

EXITM For use within a MACRO to force the stopping of the
MACRO expansion. Using this directive is not

529

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
2
9

Directive Usage Example Comments

recommended except in the case where the MACRO’s
execution is in error and should not continue until
the error has been fixed. Using “EXITM” in the body
of the MACRO could result in “Phase Errors” which can
be very hard to find.

EXPAND EXPAND Enable printing MACRO Expansions in the listing file
after they have been disabled by the “NOEXPAND”
directive. Printing of MACRO Expansions is the
default in MPLAB.

EXTERN EXTERN Label Make a program memory Label in an object file
available to other object files.

FILL FILL Value, Put in “Value” for “Count” words. If “Value” is
Count surrounded by parenthesis, then an instruction can be

put in (ie “(goto 0)”). In earlier versions of MPLAB,
“Fill” did not have a “Count” parameter and replaced
any program memory address that does not have an
instruction assigned to it or areas that is not
reserved (using “RES”) with the “Value”.

GLOBAL GLOBAL Label Specify a Label within an object file that can be
accessed by other object files. “GLOBAL” is different
from “EXTERN” as it can only be put into the source
after the label is defined.

IDATA IDATA [Address] Used to specify a data area within an object file. If
no “Address” is specified, then the assembler

530

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
0

calculates the address. A Label can be used with
IDATA for referencing it.

__IDLOCS __IDLOCS Value Set the four ID Locations of the PICmicro® MCU with the
four nybbles of “Value”. This directive is not
available for the 17Cxx devices.

IF IF Parm1 COND Parm2 If “Parm1 COND Parm2” is “true”, then insert and
; “True” Code assemble the “True” code. Else, insert and assemble

ELSE the “False” code. The “Else” directive and “False”
; “False” Code codes are optional.

ENDIF

IFDEF IFDEF Label If the Label has been defined (using “#DEFINE”), then
; “True” Code insert and assemble the “True” code. Else, insert and

ELSE assemble the “False” code. The “Else” directive and
; “False” Code “False” codes are optional.

ENDIF

IFNDEF IFNDEF Label If the Label has NOT been defined (using “#DEFINE”),
; “True” Code then insert and assemble the “True” code. Else,

ELSE insert and assemble the “False” code. The “Else”
; “False” Code directive and “False” codes are optional.

ENDIF

INCLUDE INCLUDE Load “FileName.Ext” at the current location within
“FileName.Ext” the source code.

LIST LIST option[, ...] Define the assembler options for the source file. The
available options are:
Option Default Description
b=nnn 8 Set tab spaces.
c=nnn 132 Set column width.

531

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
1

Directive Usage Example Comments

Option Default Description
f=format INHX8M Set the hex file

output.
free FIXED Use free-format

parser.
fixed FIXED Use fixed-format

parser.
mm=ON|OFF ON Print memory map in

list file.
n=nnn 60 Set lines per page.
p=type None Set PICmicro® MCU

type.
r=radix HEX Set default radix

(HEX, DEC, or OCT
available)

st=ON|OFF ON Print symbol table
in list file.

t=ON|OFF OFF Truncate lines of
listing.

w=0|1|2 0 Set the message
level.

x=ON|OFF ON Turn macro
expansion on or
off.

LOCAL Fillup MACRO Size Define a Variable that is local to a MACRO and cannot
Local i be accessed outside of the MACRO.

i = 0

532

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
2

WHILE (i < Size)
DW 0x015AA

i = i + 1
ENDW
ENDM

MACRO Label MACRO Define a block of code that will replace the “Label”
[Parm[, ...]] every time it is encountered. The optional Parameters
bsf Parm, 0 will replace the parameters in the Macro itself.

ENDM

__MAXRAM __MAXRAM End Define the last File Register Address in a PICmicro®

MCU that can be used.

MESSG MESSG “string” Cause “String” to be inserted into the source file at
the “MESSG” statement. No errors or warnings are
generated for this instruction.

NOEXPAND NOEXPAND Turn off Macro expansion in the Listing File.

NOLIST NOLIST Turn off Source Code Listing Output in Listing File.

ORG ORG Address Set the Starting Address for the following code to be
placed at.

PAGE PAGE Insert a Page Break before the “PAGE” directive.

PAGESEL PAGESEL Label Insert the Instruction Page of a Label before jumping
goto Label to that Label or calling the subroutine at it.

533

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
3

Directive Usage Example Comments

PROCESSOR PROCESSOR type This directive is available for commonality with
earlier Microchip PICmicro® MCU assemblers. The
Processor option of the “LIST” directive should be
used instead.

RADIX RADIX Radix This directive is available for commonality with
earlier Microchip PICmicro® MCU assemblers. Available
options are “HEX”, “DEC” and “OCT”. The default radix
should be selected in the “LIST” directive instead.

RES RES MemorySize Reserve a block of program memory in an object file
for use by another. A label may be placed before the
RES directive to save what the value is.

SET Label SET Value “SET” is similar to the “CONSTANT”, “EQU” and “=”
directives, except that the “Label” can be changed
later in the code with another “SET” directive
statement.

SPACE SPACE Value Insert a Set number of blank lines into a listing
file.

SUBTITLE SUBTITLE “string” Insert “string” on the line following the “TITLE”
string on each page of a listing file.

TITLE TITLE “string” Insert “string” on the top line on each page of a
listing file.

534

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
4

UDATA UDATA [Address] Declare the beginning of an uninitialized data
Label1 RES 1 section. “RES” labels should follow to mark variables
Label2 RES 2 in the uninitialized data space. This command is

designed for Serial EEPROMS.

UDATA_ACS UDATA_ACS [Address] Declare the beginning of an uninitialized data section
Label1 RES 1 in a 18Cxx PICmicro® MCU. “RES” labels should

follow to mark variables in the uninitialized
Label2 RES 2 data space.

UDATA_OVR UDATA_OVR [Address] Declare the beginning of an uninitialized data section
Label1 RES 1 that can be overwritten by other files (as an
Label2 RES 2 “Overlay”).“RES” labels should follow to mark

variables in the uninitialized data space. This
command is designed for Serial EEPROMs.

UDATA_SHR UDATA_SHR [Address] Declare the beginning of data memory that is “shared”
Label1 RES 1 across all the register banks.

#UNDEFINE #UNDEFINE Label Delete a Label that was “#DEFINED”.

VARIABLE VARIABLE Label Declare an assembly-time variable that can be updated
[= Value] within the code using a simple assignment statement.

WHILE WHILE Parm1 COND Execute code within the “WHILE”/“ENDW” directives
Parm2 while the “Parm1 COND Parm2” test is true. Note that

; while “True” in the listing file, the code will appear as if the
ENDW code within the “WHILE”/”WEND” directives was

repeated a number of times.

535

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
3
5

Standard Declaration
and Include (“.inc”) Files

The Microchip developed standard “include” files are
recommended to be included into source code rather
than using developer supplied register definitions.
There is an “.inc” file for every PICmicro® MCU part
number in the format:

p<I>PICmicro® MCU</I>.inc

where “PICmicro® MCU” is the PICmicro® MCU part
number.

Linking–Linked Applications

Before creating the linked application object, the source
files to be linked together have to be created. Once the
files are created, “links” are created to addresses that
have to be accessed between the different files. It is im-
portant to remember that variables as well as instruction
addresses have to be common.

The following two example source code files show
how addresses are linked together. The first is the
“mainline”:

TITLE - Test3 - Jump to Test3A
;
; Example Application using the MPLAB Linker
;
; Myke Predko
; 2000.02.02
;
; Hardware Notes:
; PIC16F84 running in a Simulator
;

536 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 536

LIST R=DEC ; list directive to
define processor

#include "p16F84.inc" ; processor specific
variable

definitions

__CONFIG _CP_OFF & _WDT_ON & _PWRTE_ON & _XT_OSC

EXTERN TEST3A ; Specify Mainline
Location

GLOBAL TEST3AStart
GLOBAL flag ; Variable passed to

Linked File

;***** VARIABLE DEFINITIONS (examples)

; example of using Uninitialized Data Section
INT_VAR UDATA 0x0C
w_temp RES 1 ; variable used for

context saving
status_temp RES 1 ; variable used for

context saving
flag RES 2 ; temporary variable

(shared locations
- G_DATA)

;***
RESET_VECTOR CODE 0x000 ; processor reset

vector
goto start ; go to beginning of

program

INT_VECTOR CODE 0x004 ; interrupt vector
location

movwf w_temp
PROG CODE 0x005

movf STATUS, w
movwf status_temp

; isr code can go here or be located as a call
subroutine elsewhere

movf status_temp, w ; Restore
Context
Registers

movwf STATUS
swapf w_temp, f

PICmicro® MCU Application Software 537

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 537

swapf w_temp, w
retfie

start
goto TEST3A

TEST3AStart

END ; directive 'end
of program'

The second is the file that is linked to the “mainline”:

TITLE "Test3A - Actually Execute the Code"
;
; Example Application using the MPLAB Linker
;
; Myke Predko
; 2000.02.02
;
; Hardware Notes:
; PIC16F84 running in a Simulator
;

EXTERN flag ; External Values
Linked into Code

EXTERN TEST3AStart

list r=dec
#include "p16f84.inc"

TEST3ACODE CODE
TEST3A
GLOBAL TEST3A ; Address to Pass to

Linked File
banksel flag ; example
clrf flag ; example

; remaining code goes here

movlw 77
movwf flag
movlw 0x001
subwf flag, f
btfss STATUS, Z
goto $ - 2

538 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 538

goto $; Loop Here Forever

END ; directive
'end of
program'

Application Code Template

The following file should be used as a mid-range
PICmicro® MCU application source code template.

title "FileName - One Line Description"
#define _version "x.xx"
;
; Update History:
;
; Application Description/Comments
;
; Author
;
; Hardware Notes:
;
LIST R=DEC ; Device Specification
INCLUDE "p16cxx.inc" ; Include Files/Registers

; Variable Register Declarations

; Macros

__CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF &
_BODEN_OFF

org 0
Mainline

goto Mainline_Code

org 4 ; Interrupt Handler at
Address 4

Int

MainLine_Code

; Subroutines

end

PICmicro® MCU Application Software 539

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 539

The BASIC Language

BASIC variables do not have to be declared except in
specialized cases. The variable name itself follows nor-
mal conventions of a letter or “_” character as the first
character, followed by alphanumeric characters and “_”
for variable names. Variable (and Address “Label”)
names may be case sensitive, depending on the version.

To Specify Data Types, a “Suffix” character is added
to the end of the Variable name:

Suffix Function
$ String Data
% Integer
& Long Integer (32 Bits) - Microsoft

BASIC Extension
! Single Precision (32 Bits) -

Microsoft BASIC Extension
Double Precision (64 Bits) -

Microsoft BASIC Extension

The following table lists the different BASIC func-
tions:

Statement Function
BASE Starting Array Element
DATA Data Block Header
DIM Dimension Array Declaration
OPTION Starting Array Element
LET Assignment Statement (Not

Mandatory)
RANDOMIZE Reset Random Number “Seed”
INPUT [Prompt ,] Variables

Get Terminal Input
PRINT Output to a Terminal
? Output to a Terminal
READ Get “Data” Information
GOTO Jump to Line Number/Label
GOSUB Call Subroutine at Line

Number/Label
RETURN Return to Caller from Subroutine

540 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 540

IF Condition [THEN] Statement
Conditionally Execute the
“Statement”

FOR Variable = Init TO Last [STEP Inc] ... NEXT
[Variable] Loop Specified Number
of Times

ON Event GOTO On an Event, Jump to Line
Number/Label

RESTORE Restore the “DATA” Pointer
STOP Stop Program Execution
END End Program Execution
‘ Comment - Everything to the Right

is Ignored
REM Comment - Everything to the Right

is Ignored
ABS Get Absolute Value of a Number
SGN Return the Sign of a Number
COS Return Cosine of an Angle (input

usually in Radians)
SIN Return Sine of an Angle (input

usually in Radians)
SIN Return Tangent of an Angle (input

usually in Radians)
ATN Return the Arc Tangent of a Ratio
INT Convert Real Number to Integer
SQR Return the Square Root of a Number
EXP Return the Power of e for the

input
LOG Return the Natural Logarithm for

the Input
RND Return a Random Number
TAB Set Tab Columns on Printer

For assignment and “if” statements, the following op-
erators are available in BASIC:

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
^ Exponentiation
“ Start/End of Text String
, Separator

PICmicro® MCU Application Software 541

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 541

; Print Concatenation
$ String Variable Identifier
= Assignment/Equals To Test
< Less than
<= Less than or Equals To
> Greater than
>= Greater than or Equals To
<> Not Equals

BASIC’s Order of Operations is quite standard for pro-
gramming languages:

Operators Priority Type
Functions Expression Evaluation
= <> < <= > >= Highest Conditional Tests
^ Exponentiation
* / Multiplication/Division
+ - Lowest Addition/Subtraction

Microsoft BASIC Enhancements

The following functions are available in Microsoft ver-
sions of BASIC for the PC as well as some BASICs for the
PICmicro® MCU:

Function Operation
AND AND Logical Results
OR OR Logical Results
XOR XOR Logical Results
EQV Test Equivalence of Logical

Results
IMP Test Implication of Logical

Results
MOD Get the Modulus (remainder)

of an Integer Division
FIX Convert a Floating Point

Number to Integer
DEFSTR Variable Define the Variable as a

String (instead of the
“DIM” Statement)

DEFINT Variable Define the Variable as an
Integer (instead of the
“DIM” Statement)

542 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 542

DEFLNG Variable Define the Variable as a
“long” Integer (instead of
the “DIM” Statement)

DEFSNG Variable Define the Variable as a
Single Precision Floating
Point Number (instead of
the “DIM” Statement)

DEFDBL Variable Define the Variable as a
Double Precision Floating
Point Number (without using
the “DIM” Statement)

REDIM Variable([low TO] High[, [low TO] High...])
[AS Type]
Redefine a Variable

ERASE Erase an Array Variable from
Memory

LBOUND Return the First Index of an
Array Variable

UBOUND Return the Last Index of an
Array Variable

CONST Variable = Value Define a Constant Value
DECLARE Function | Subroutine

Declare a Subroutine/
Function Prototype at
Program Start

DEF FNFunction(Arg[, Arg...])
Define a Function
(“FNFunction”) that returns
a Value. If a Single Line,
then “END DEF” is not
required

END DEF End the Function Definition
FUNCTION Function(Arg[, Arg...])

Define a Function. Same
Operation, Different Syntax
as “DEF FNFunction”

END FUNCTION End a Function Declaration
SUB Subroutine(Arg[, Arg...])

Define a “Subroutine” which
does not return a Value. If
a Single Line, then “END
DEF” is not required

END SUB End the Subroutine
Definition

DATA Value[, Value...] Specify File Data

PICmicro® MCU Application Software 543

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 543

READ Variable[, Variable...]
Read from the “Data” File
Data

IF Condition THEN Statements ELSE Statements END IF
Perform a Structured
If/Else/Endif

ELSEIF Perform a Condition
Test/Structured
If/Else/Endif instead of
simply “Else”

ON ERROR GOTO Label On Error Condition, Jump to
Handler

RESUME [Label] Executed at the End of an
Error Handler. Can either
return to current location,
0 (Start of Application) or
a specific label

ERR Return the Current Error
Number

ERL Return the Line the Error
Occurred at

ERROR # Execute an Application-
Specific Error (Number “#”)

DO WHILE Condition Statements LOOP
Execute “Statements” while
“Condition” is True

DO Statements LOOP WHILE Condition
Execute “Statements” while
“Condition” is True

DO Statements LOOP UNTIL Condition
Execute “Statements” until
“Condition” is True

EXIT Exit Executing “FOR”,
“WHILE” and “UNTIL” Loops
without executing Check

SELECT Variable Execute based on “Value”
“CASE” Statements used to
Test the Value and Execute
Conditionally

CASE Value Execute within a “SELECT”
Statement if the “Variable”
Equals “Value”. “CASE ELSE”
is the Default Case

END SELECT End the “SELECT” Statement
LINE INPUT Get Formatted Input from the

User

544 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 544

INPUT$(#) Get the Specified Number
(“#”) of Characters from
the User

INKEY$ Check Keyboard and Return
Pending Characters or Zero

ASC Convert the Character into
an Integer ASCII

Code
CHR$ Convert the Integer ASCII

Code into a Character
VAR Convert the String into an

Integer Number
STR$ Convert the Integer Number

into a String
LEFT$(String, #) Return the Specified Number

(“#”) of Left Most
Characters in “String”

RIGHT$(String, #) Return the Specified Number
(“#”) of Right Most
Characters in “String”

MID$(String, Start, #)
Return/Overwrite the
Specified Number (“#”) of
Characters at Position
“Start” in “String”

SPACE$(#) Returns a String of the
Specified Number (“#”) of
ASCII Blanks

LTRIM$ Remove the Leading Blanks
from a String

RTRIM$ Remove the Trailing Blanks
from a String

INSTR(String, SubString)
Return the Position of
“SubString” in “String”

UCASE$ Convert all the Lower Case
Characters in a String to
Upper Case

LCASE$ Convert all the Upper Case
Characters in a String to
Upper Case

LEN Return the Length of a
String

CLS Clear the Screen
CSRLIN Return the Current Line that

the Cursor is On

PICmicro® MCU Application Software 545

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 545

POS Return the Current Column
that the Cursor is On

LOCATE X, Y Specify the Row/Column of
the Cursor (Top Left is
1,1)

SPC Move the Display the
Specified Number of Spaces

PRINT USING “Format” Print the Value in the
Specified Format. “+”, “#”,
“.”, “^” Characters are
used for number formats

SCREEN mode[, [Color] [,[Page] [,Visual]
Set the Screen Mode. “Color”
is 0 to display on a
“Color” display, 1 to
display on a “Monochrome”.
“Page” is the Page that
receives I/O and “Visual”
is the Page that is
currently active.

COLOR [foreground] [,[background] [,border]]
Specify the Currently Active
Colors

PALETTE [attribute, color]
Change Color Assignments.

VIEW [[SCREEN] (x1,y1) - (x2,y2)[,[color]]
[,border]]]

Create a small Graphics
Window known as a
“Viewport”

WINDOW [[SCREEN] (x1,y1) - (x2,y2)]
Specify the Viewport’s
logical location on the
Display

PSET (x,y)[,color] Put a Point on the Display
PRESET (x,y) Return the Point to the

Background Color
LINE (x1,y1)-(x2,y2)[,[Color][,[B|BF][,style]]]

Draw a Line between the two
specified points. If “B” or
“BF” specified, Draw a Box
(“BF” is “Filled”)

CIRCLE (x,y), radius[,[color] [,[start] [,end]
[,aspect]]]

Draw the Circle at center
location and with the

546 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 546

specified “radius”. “start”
and “end” are starting and
ending angles (in radians).
“aspect” is the circle’s
aspect for drawing ellipses

DRAW CommandString Draw an arbitrary Graphics
Figure. There should be
spaces between the commands
Commands:
U# - Moves Cursor up #
Pixels
D# - Moves Cursor down #
Pixels
E# - Moves Cursor up and to
the right # Pixels
F# - Moves Cursor down and
to the right # Pixels
G# - Moves Cursor down and
to the Left # Pixels
H# - Moves Cursor up and to
the left # Pixels
L# - Moves Cursor Left #
Pixels
R# - Moves Cursor Right #
Pixels
Mxy - Move the Cursor to the
Specified x,y Position
B - Turn Off Pixel Drawing
N - Turns On Cursor and Move
to Original Position

Position A# - Rotate Shape in 90
Degree Increments
C# - Set the Drawing Color
P#Color#Border - Set the
Shape Fill and Border
Colors
S# - Set the Drawing Scale
T# - Rotates # Degrees

LPRINT Send Output to the Printer
BEEP “Beep” the Speaker
SOUND Frequency, Duration

Make the Specified Sound on
the PC’s Speaker

PLAY NoteString Output the Specified String
of “Notes” to the PC’s
Speaker

PICmicro® MCU Application Software 547

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 547

DATE$ Return the Current Date
TIME$ Return the Current Time
TIMER Return the Number of Seconds

since Midnight
NAME FileName AS NewFileName

Change the Name of a File
KILL FileName Delete the File
FILES [FileName.Ext] List the File (MS-DOS

“dir”). “FileName.Ext”
can contain “Wild
Cards”

OPEN FileName [FOR Access] AS #Handle
Open the File as the
Specified Handle (Starting
with the “#” Character).
Access:
I - Open for Text Input
O - Open for Text Output
A - Open to Append Text
B - File is Opened to Access
Single Bytes
R - Open to Read and Write
Structured Variables

CLOSE #Handle Close the Specified File
RESET Close all Open Files
EOF Returns “True” if at the End

of a File
READ #Handle, Variable Read Data from the File
GET #Handle, Variable Read a Variable from the

File
INPUT #Handle, Variable Read Formatted Data from the

File using “INPUT”,“INPUT
USING” and “INPUT$” Formats

WRITE #Handle, Variable Write Data to the File
PUT #Handle, Variable Write a Variable to a File
PRINT #Handle, Output Write Data to the File using

the “PRINT” and “PRINT
USING” Formats

SEEK #Handle, Offset Move the File Pointer to the
Specified Offset within the
File

548 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 548

PicBasic

microEngineering Labs, Inc.’s (“meLab’s”), “PicBasic” is
an excellent tool for learning about the PICmicro® MCU,
before taking the big plunge into assembly language pro-
gramming. The source code required by the compiler is
similar to the Parallax Basic Stamp BS2’s “PBASIC” with
many improvements and changes to make the language
easier to work with and support different PICmicro®

MCUs.
PicBasic does not currently have the ability to link to-

gether multiple source files which means that multiple
source files must be “included” in the overall source.
Assembly language statements are inserted in line to the
application. PicBasic produces either assembler source
files or completed “.hex” files. It does not create object
files for linking modules together.

For additional information and the latest device li-
braries, look at the microEngineering Labs, Inc., Web
page at:

http://www.melabs.com/mel/home.htm

PicBasic Pro is an MS-DOS command line application
that is invoked using the statement:

PBP[W] [options...] source

“Options” are compiler execution options and are listed
in the table below:

Option Function
-h/-? Display the help screen. The help

screen is also displayed if no options
or source file name is specified

PICmicro® MCU Application Software 549

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 549

-ampasm Use the MPASM Assembler and not the
PicBasic Assembler

-c Insert Comments into PicBasic Compiler
produced Assembler Source File. Using
this option is recommended if you are
going to produce MPASM Assembler
Source from PicBasic

-iPath Specify a new directory “Path” to use
for include files in PicBasic

-lLibrary Specify a different library to use
when compiling. Device specific
libraries are provided by PicBasic
when the processor is specified

-od Generate a listing, symbol table and
map files

-ol Generate a listing file
-pPICmicro® Specify the “PICmicro® MCU” that the
MCU source is to be compiled into. If

this parameter is not specified, then
a PIC16F84 is used as the processor.
“PICmicro® MCU” is in the format:
16F84, where the “PIC” at the start
of the Microchip part number is not
specified.

-s Do not assemble the compiled code
-v Turn on “Verbose Mode” which provides

additional information when the
application is compiled

PicBasic does assume a constant set of configuration
values. For most PICmicro® MCUs the configuration
fuses are set as listed in the table below:

Feature PicBasic Setting
Code Protect Off
Oscillator XT - or Internal RC if 12Cxxx
WDT On
PWRTE Off

Each byte takes place in one of the words; for exam-
ple, “b4” is the least significant byte of “w2”. The 16-bit
variables are defined as being a part of the 16-bits taken

550 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 550

up by “w0” (“b0” and “b1”). This method works well, but
care has to be taken to make sure that the overlapping
variables are kept track of and not used incorrectly. The
most common problem for new Basic Stamp developers
is defining a variable on b0 and w0 and having problems
when a write to one variable overwrites the other.

To provide these variables to the PicBasic application,
the Basic Stamp variable declaration files are defined in
the following two “include” files that are shown within
“include” statements below. Only one of these state-
ments can be used in an application.

include “bs1defs.bas”
include “bs2defs.bas”

A much better way of declaring variables is to use the
“var” directive to select the different variables at the
start of the application and let the PicBasic compiler de-
termine where the variables belong and how they are ac-
cessed (i.e., put in different variable pages). Along with
the “var” directive, the “word”, “byte”, and “bit” direc-
tives are used to specify the size of the variable. Some
example variable declarations are

WordVariable var word ‘ Declare a 16 Bit Variable
ByteVariable var byte ‘ Declare an 8 Bit Variable
BitVariable var bit ‘ Declare a single byte

Variable

Initial values for the variables cannot be made at the
variable declarations.

Along with defining variables, the “var” directive can
be used to define variable labels built out of previously
defined variables to specify specific data. Using the vari-
ables above, I can break “WordVariable” up into a top
half and bottom half and “ByteVariable” into specific
bytes with the statements:

PICmicro® MCU Application Software 551

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 551

552 Chapter 15

WordVariableTop var WordVariable.byte1
WordVariableBottom var WordVariable.byte0

BitVariableMSB var BitVariable.bit7
BitVariableLSB var BitVariable.0

Variables can also be defined over registers. When the
PicBasic libraries are merged with the source code, the
standard PICmicro® MCU register names are available
within the application. Using this capability, labels
within the application can be made to help make the ap-
plication easier to work with. For example, to define the
bits needed for an LCD, the declarations below could be
used:

LCDData var PORTB ‘ PORTB as the 8 Bits of Data
LCDE var PORTA.0 ‘ RA0 is “E” Strobe
LCDRS var PORTA.1 ‘ RA1 is Data/Instruction

Select
LCDRW var PORTA.2 ‘ RA2 is the Read/Write

Select Bit

When variables are defined using the “var” and “system”
directives, specific addresses can be made in the appli-
cation. For example, the statement:

int_w var byte $0C system

will define the variable “_w” at address 0x00C in the sys-
tem. This reserves address 0x00C and does not allow its
use by any other variables. The bank of a variable can be
specified using the “system” directive like:

int_status var byte bank0 system

These two options to the “var” directive are useful when
defining variables for interrupt handlers as discussed
below.

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 552

PICmicro® MCU Application Software 553

Along with redefining variables with the “var” state-
ment, PicBasic also has the “symbol” directive. The
symbol directive provides the same capabilities as the
“var” statement and it is provided simply for compatibil-
ity with the BS1. If you were only developing PicBasic
applications, I would recommend only using “var” and
avoiding the “symbol” directive. Single dimensional ar-
rays can be defined within PicBasic for each of the three
data types when the variable is declared.

WordArray var word[10] ‘ Ten Word Array
ByteArray var byte[11] ‘ Eleven Byte Array
BitArray var bit[12] ‘ Twelve Bit Array

Note that bits can be handled as an array element.
Depending on the PICmicro® MCU part number, the
maximum array sizes are

Variable Type Maximum Number of Elements
Word 32
Byte 64
Bit 128

As part of the “bit” definition, I/O port pins are prede-
fined within PicBasic. Up to 16 pins (addressed using
the “Pin#” format, where “#” is the pin number) can be
accessed, although how they are accessed changes ac-
cording to the PICmicro® MCU part number the applica-
tion is designed for. The pins for different parts are
defined as:

Number of Pins Pins 0 - 7 Pins 8 - 15
8 GPIO Mapped onto Pins

0 - 5
18 PORTB PORTA

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 553

554 Chapter 15

28 - Not PIC14C000 PORTB PORTC
14C000 PORTC PORTD
40 Pin PORTB PORTC

Note that not all the ports that have 8 pins are specified.
For example, accessing “RA6” in an 18-pin device
(which does not have an “RA6” bit) will not do anything.

Constants are declared in a similar manner to vari-
ables, but by using the “con” directive with a constant
parameter:

SampleConstant con 3 + 7 ‘ Define a Sample Constant

Constant values can be in four different formats. The
table below lists the different formats and the modifiers
to indicate to the PicBasic compiler which data type is
being specified:

Data Type Modifier Comments
Decimal None PicBasic Default is Decimal
Hex $ “$” is placed before the

Number
Binary % “%” is placed before the

Number
ASCII “ Double Quotes placed around

a Single Character

In the table above, note that only an ASCII byte can be
passed within double quotes. Some instructions (de-
scribed below) can be defined with strings of characters
that are enclosed within double quotes.

The “define” statement is used to change constants
given defaults within the PICmicro® MCU when a
PicBasic compiled application is running. The format is

DEFINE Label NewValue

The labels, their default values, and their values are
listed in the table below:

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 554

Define Default Optional Values Comments
BUTTON_PAUSE 10 Any Positive Int Button Debounce Delay in msecs
CHAR_PACING 1000 Any Positive Int Time between SerOut Characters
DEBUG_BAUD 2400 Any Specified Data Rate of Debug

information
DEBUG_BIT 0 0 - 7 Output Pin for Debug Serial Output
DEBUG_MODE 1 0, 1 Polarity of Debug NRZ Output data. “0”

Positive, “1” Inverted
DEBUG_PACING 1000 Any Positive Int Time between Output Characters for

DEBUG Statements
DEBUG_REG PORTB Any PORT Port Debug Output Pin is Connected to
DEBUGIN_BIT 0 0 - 7 Input Pin for Debug Serial Output
DEBUGIN_MODE 1 0, 1 Polarity of Debug NRZ Input data. “0”

Positive, “1” Inverted
DEBUGIN_REG PORTB Any PORT Port Debug Input Pin is Connected to
HSER_BAUD 2400 Any Hardware Serial Port’s Data Rate
HSER_SPBRG 25 0 - 0x0FF Hardware Serial Port’s SPBRG Register

Value
HSER_RCSTA 0x090 0 - 0x0FF Hardware Serial Port’s Initialization

value for “RCSTA” register. Default
set for Asynchronous Communications

HSER_TXSTA 0x020 0 - 0x0FF Hardware Serial Port’s Initialization
value for “TXSTA” register. Default
set for Asynchronous Communications

HSER_EVEN 1 0, 1 Hardware Serial Port’s Parity Select
Values. Only used if Parity checking
is desired

HSER_ODD 1 0, 1 Hardware Serial Port’s Parity Select
Values. Only used if Parity checking
is desired

555

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
5
5

Define Default Optional Values Comments
I2C_HOLD 1 0, 1 Stop I2C transmission while the SCL

line is held low
I2C_INTERNAL 1 0, 1 Set to use Internal EEPROM in the

12Cexx PICmicro® MCUs
I2C_SCLOUT 1 0, 1 Use a Bipolar Driver instead of an

Open-Drain I2C Clock Driver
I2C_SLOW 1 0, 1 Run the I2C at no more than 100 kbps

data rate
LCD_BITS 4 4, 8 Number of Bits for LCD Interface
LCD_DBIT 0 0, 4 Specify the Data bit for LCD Data
LCD_DREG PORTA Any PORT Select the LCD Data Port
LCD_EBIT 3 0 - 7 Specify the Bit for the LCD Clock
LCD_EREG PORTB Any PORT Specify the Port for the LCD “E” Clock

Bit
LCD_LINES 2 1, 2 Specify the Number of Lines on the

LCD. Check Information on LCDs for
how the multiple line specification
is used in some single line LCDs.

LCD_RSBIT 4 Any PORT LCD RS Bit Selection
LCD_RSREG PORTA Any PORT LCD RS Bit Select Register
OSC 4 3, 4, 8, 10, 12, Specify PICmicro® MCU Operating Speed

16, 20 in MHz. Note “3” is actually 3.58
OSCCAL_1K 1 0, 1 Set OSCCAL for PIC12C672
OSCCAL_2K 1 0, 1 Set OSCCAL for PIC12C672
SER2_BITS 8 4 - 8 Specify Number of bits sent with

“SERIN2” and “SEROUT2” instructions

556

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
5
6

The “OSC” define should be specified if serial I/O is
going to be implemented in the PICmicro® MCU. This
value is used by the compiler to calculate the time de-
lays necessary for each bit.

Assembly language can be inserted at any point
within a PicBasic application. Single instructions can be
inserted by simply starting the line with a “@” character:

@bcf INTCON, T0IF ; Reset T0IF Flag

Multiple lines of assembly language are prefaced by the
“asm” statement and finished with the “endasm”. An ex-
ample of this is shown below:

asm
movlw 8 ; Loop 8x

Loop
bsf PORTA, 0 ; Pulse the Bit
bcf PORTA, 0
addlw $0FF ; Subtract 1 from “w”
btfss STATUS, Z ; Do 8x
goto Loop

endasm

Note that labels inside the assembler statements do not
have a colon at the end of the string and that the tradi-
tional assembly language comment indicator (the semi-
colon [“;”]) is used.

Implementing interrupt handlers in PicBasic can be
done in one of two ways. The simplest way of imple-
menting it is using the “ON INTERRUPT GOTO Label”
statement. Using this statement, any time an interrupt
request is received, the “Label” specified in the ON IN-
TERRUPT statement will be executed until there is a
“resume” instruction, which returns from an interrupt.
Using this type of interrupt handler, straight PicBasic
statements can be used and assembly language state-
ments avoided.

PICmicro® MCU Application Software 557

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 557

The basic operation looks like:

:

ON INTERRUPT GOTO IntHandler

:

IntHandler:

disable ‘ Turn off interrupt and debug
requests

: ‘ Process Interrupt

enable ‘ Enable other Interrupts and debug
‘ requests

resume ‘ Return to the executing code

The problem with this method is the interrupt handler is
executed once the current instruction has completed. If
a very long statement is being executed (say a string
serial send), then the interrupt will not be serviced in a
timely manner.

The best way of handling an interrupt is to add the in-
terrupt handler as an assembly language routine. To ref-
erence the interrupt handler, the “define INTHAND
Label” instruction is used to identify the label where the
assembly language code is listed. The interrupt handler
will be moved to start at address 0x004 in the mid-range
devices.

A code template for generic mid-range PICmicro®

MCU interrupt handlers is

int_w var byte 0x020 system ‘ Define the
Context Save

Variables
int_status var byte bank0 system
int_fsr var byte bank0 system
int_pclath byte bank0 system
:

558 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 558

define INTHAND IntHandler ‘ Specify what the
Interrupt

‘ Handler is
:

‘ Interrupt Handler - to be relocated to 0x00004
asm
IntHandler

movwf int_w ; Save the Context
Registers

movf STATUS, w
bcf STATUS, RP0 ; Move to bank 0
bcf STATUS, RP1
movwf int_status
movf FSR, w
movwf int_fsr
movf PCLATH, w
movwf int_pclath
clrf PCLATH

; #### - Execute Interrupt Handler Code Here

movf int_pclath, w ; Finished,
restore the
Context

movwf PCLATH ; Registers
movf int_fsr, w
movwf FSR
movf int_status, w
movwf STATUS
swapf int_w, f
swapf int_w, w
retfie

endasm

In the interrupt template, note that the “worst case”
condition context register save is presented.

Mathematical operators used in assignment state-
ments and PicBasic instructions are very straightfor-
ward in PicBasic and work conventionally. In Basic
Stamp PBASIC, you must remember that the operations
execute from left to right. This means that the
statement:

A � B � C * D

PICmicro® MCU Application Software 559

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 559

which would be expected to operate as:

1. Multiply “C” and “D”

2. Add the results from one to “B”

in Parallax PBASIC, returns the result of:

1. Get the Sum of “B” and “C”

2. Multiply the results from one with “D”

PicBasic does not follow the PBASIC evaluation con-
vention and returns the “expected” result from complex
statements like the one above. This means that in
PicBasic, you do not have to break complex statements
up into single operations, like you do in PBASIC, to
avoid unexpected expression evaluation. If you are us-
ing a Basic Stamp to “prototype” PicBasic applications,
then break up the complex statements and use the tem-
porary values.

The mathematical operators used are listed in the
table below along with their execution priority and para-
meters. All mathematical operators work with 16-bit
values.

560 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 560

Priority Operator Operation
Lowest Parm1 + Parm2 Return the Sum of “Parm1” and “Parm2”

Parm1 - Parm2 Return the Result of “Parm2” Subtracted from “Parm1”
Parm1 * Parm2 Return the least significant sixteen bits of the product

of “Parm1” and “Parm2”. This is often referred to as
Bytes 0 and 1 of the result

Parm1 */ Parm2 Return the middle sixteen bits of the product of “Parm1”
and “Parm2”. This is often referred to as Bytes 1 and 2
of the result

Parm1 ** Parm2 Return the most significant sixteen bits of the product of
“Parm1” and “Parm2”. This is often referred to as Bytes 2
and 3 of the result

Parm1 / Parm2 Return the number of times Parm2 can be divided into Parm1
evenly

Parm1 // Parm2 Return the remainder from dividing Parm2 into Parm1. This
is known as the “Modulus”.

Parm1 & Parm2 Return the bitwise value of “Parm1” AND “Parm2”
Parm1 | Parm2 Return the bitwise value of “PARM1” OR “Parm2”
Parm1 ^ Parm2 Return the bitwise value of “PARM1” XOR “Parm2”
~ Parm1 Return the inverted bitwise value of “PARM1”
Parm1 &/ Parm2 Return the inverted bitwise value of “Parm1” AND “Parm2”
Parm1 |/ Parm2 Return the inverted bitwise value of “PARM1” OR “Parm2”
Parm1 ^/ Parm2 Return the inverted bitwise value of “PARM1” XOR “Parm2”
Parm1 << Parm2 Shift “Parm1” to the left “Parm2” bits. The new least

significant bits will all be zero
Parm1 >> Parm2 Shift “Parm1” to the right “Parm2” bits. The new most

significant bits will all be zero
ABS Parm1 Return the magnitude of a number. (“ABS -4” is equal to

“ABS 4” and returns “4”)

561

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
6
1

Priority Operator Operation
Parm1 MAX Parm2 Return the higher Parameter
Parm1 MIN Parm2 Return the lower Parameter
Parm1 DIG Parm2 Return Digit Number “Parm2” (Zero Based) of “Parm1”. (“123

DIG 1” returns “2”)
DCD Parm1 Return a value with only the “Parm1” bit Set. (“DCD 4”

returns “%00010000”)
NCD Parm1 Return the Bit number of the highest set bit in “Parm1”
Parm1 REV Parm2 Reverse the Bits in “Parm1” from zero to “Parm2”.

(“%10101100 REV 4” will return “%10100011”)
SQR Parm1 Return the Integer Square Root of “Parm1”
SIN Parm1 Return the Trigonometric “Sine” of “Parm1”. The returned

value will be based on a circle of radius 127 and 256
degrees (not the traditional 360)

Highest COS Parm1 Return the Trigonometric “Cosine” of “Parm1”. The returned
value will be based on a circle of radius 127 and 256
degrees (not the traditional 360)

562

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

5
6
2

Along with the mathematical operators, the “if” state-
ment provides the following “Test Conditions”. This is
listed in the following table. Note that both the “BASIC”
standard labels as well as the “C” standard labels are
used. “Parm1” and “Parm2” are constants, variables, or
statements made up of expression statements along with
the different mathematical operators and test conditions.

When a test condition is true, a nonzero is returned, if
it is false, then a zero is returned. Using this convention,
single variable parameters can be tested in “if” state-
ments rather than performing comparisons of them to
zero.

Test Condition Description
Parm1 = Parm2 Return a Non-Zero if “Parm1”

equals “Parm2”
Parm1 == Parm2 Return a Non-Zero if “Parm1”

equals “Parm2”
Parm1 <> Parm2 Return a Non-Zero if “Parm1”

does not equal “Parm2”
Parm1 != Parm2 Return a Non-Zero if “Parm1”

does not equal “Parm2”
Parm1 < Parm2 Return a Non-Zero if “Parm1”

is less than “Parm2”
Parm1 <= Parm2 Return a Non-Zero if “Parm1”

is less than or equal to
“Parm2”

Parm1 > Parm2 Return a Non-Zero if “Parm1”
is greater than “Parm2”

Parm1 >= Parm2 Return a Non-Zero if “Parm1”
is greater than or equal to
“Parm2”

Parm1 AND Parm2 Return a Non-Zero if “Parm1”
is Non-Zero and “Parm2” is
Non-Zero

Parm1 && Parm2 Return a Non-Zero if “Parm1”
is Non-Zero and “Parm2” is
Non-Zero

Parm1 OR Parm2 Return a Non-Zero if “Parm1”
is Non-Zero or “Parm2” is
Non-Zero

PICmicro® MCU Application Software 563

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 563

Parm1 || Parm2 Return a Non-Zero if “Parm1”
is Non-Zero or “Parm2” is
Non-Zero

Parm1 XOR Parm2 Return a Non-Zero if “Parm1”
and “Parm2” are different
logical values.

Parm1 ^^ Parm2 Return a Non-Zero if “Parm1”
and “Parm2” are different
logical values.

Parm1 NOT AND Parm2 Return Zero if “Parm1” is
Non-Zero and “Parm2” is
Non-Zero

Parm1 NOT OR Parm2 Return Zero if “Parm1” is
Non-Zero or “Parm2” is
Non-Zero

Parm1 NOT XOR Parm2 Return a Non-Zero if “Parm1”
and “Parm2” are in the same
logical state.

The PicBasic instructions are based on the Parallax
Basic Stamp “PBASIC” language and while there are a
lot of similarities, they are really two different lan-
guages. In the following table, all the PicBasic instruc-
tions are listed with indications of any special
considerations that should be made for them with re-
spect to being compiled in a PICmicro® MCU.

These “instructions” are really “library routines” that
are called by the mainline of the application. I am men-
tioning this because you will notice that the size of the
application changes based on the number of instructions
that are used in the application. Program memory size
can be drastically reduced by looking at the different in-
structions that are used and changing the statements to
assembler or explicit PicBasic statements.

When the various instructions are specified, note that
the square brackets (“[” and “]”) are used to specify data
tables in some instructions. For this reason, optional val-
ues use braces (“{” and “}”), which breaks with the con-
ventions used in the rest of the book.

564 Chapter 15

5194 Predko Pocket Chapter 15 9/25/01 4:31 PM Page 564

Instruction Description
BRANCH Index,[Label Jump to the “Label” specified by the value in “Index”.
(,Label. . .}] “Index” is zero based, so an Index of zero will cause

execution jump to the first “Label”, an “Index” of one will
cause execution to jump to the second “Label” and so on. This
instruction only jumps within the current page; if a
PICmicro® MCU with more than one page of program memory is
used, then the “BRANCHL” instruction is recommend

BRANCHL Index,[Label Jump to the “Label” specified by the value in “Index”.
{,Label. . .}] “Index” is zero based, so an Index of zero will cause

execution jump to the first “Label”, an “Index” of one will
cause execution to jump to the second “Label” and so on. This
instruction can jump anywhere in PICmicro® MCU program memory

BUTTON Pin, Down, Jump to “Label” when the Button has been Delay, Rate, Bvar,
pressed for the specified number of milliseconds. “Rate” is
how many invocations after the first “BUTTON” jump is true
that an “autorepeat” happens. “Bvar” is a byte sized variable
only used in this function. “Action” is whether or not you
want the jump to take place when the key is pressed (“1”) or
released (“0”)

CALL Label Execute the assembly language “call” instructions
CLEAR Load all the Variables with Zero
COUNT Pin, Period, Count the number of pulses on “Pin” that occur in
Variable “Period” msecs

DATA @Location, Store Constants in Data EEPROM starting at
Constant “Location” when the PICmicro® MCU is programmed.
{,Constant. . .} For data at different addresses, use multiple “DATA”

statements.

565

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
6
5

Instruction Description
DEBUG Value Define the “DEBUG” pin as output with the
{,Value. . .} serial output parameters used in the “DEBUG” defines at

reset. When this instruction is executed, pass the parameter
data. If an ASCII “#” (0x023) is sent before a “Value”, the
decimal numeric is sent, rather than the ASCII byte. This
instruction (and “DEBUGIN”) can be used for serial I/O as
they take up less space than the “SERIN” and “SEROUT”
instructions

DEBUGIN {TimeOut, Define the “DEBUGIN” pin as an input with the
Label,}[Variable serial input parameters used in the “DEBUGIN”
{,Variable. . .}] defines at reset. When this instruction is executed, wait

for a data byte to come in or jump to the label if the
“TimeOut” value (which is specified in msecs) is reached

DISABLE DISABLE Interrupts and Debug Operations. Interrupts will still
be acknowledged by “ON INTERRUPT GOTO” Will not execute

DISABLE INTERRUPT DISABLE Interrupts and Debug Operations. Interrupts will still
be acknowledged by “ON INTERRUPT GOTO” Will not execute

DTMFOUT Pin,{On,Off,} Output the Touch tone sequence on the specified pin. Tones “0”
[Tone{,Tone. . .}] through “9” are the same as on the telephone keypad. Tone 10

is the “*” key and tone 11 is the “#” key. Tones 12 through
15 correspond to the extended key standards for “A” to “D”.
Filtering is required on the pin output to “smooth” out the
signal output

EEPROM Location, Store new values in EEPROM when the PICmicro® MCU is
[Constant programmed. This instruction is the same as
{[,Constant. . .}] “DATA”

ENABLE Enable debug and interrupt processing that was stopped by
“DISABLE”

566

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
6
6

ENABLE DEBUG Enable debug operations that were stopped by “DISABLE”
ENABLE INTERRUPT Enable Interrupt operations that were stopped by the

“DISABLE” and “DISABLE INTERRUPT” instructions
END Stop processing the application and put the PICmicro® MCU in

a low power “Sleep” mode
FOR Variable = Start Execute a Loop, first initializing “Variable” to the “Start”
TO Stop {STEP Value} value until it reaches the “Stop” Value. The increment value
: defaults to one if no “STEP” value is specified. When “NEXT”

NEXT {Variable} is encountered “Variable” is incremented and tested against
the “Stop” Value

FREQOUT Pin, On, Output the specified “Frequency” on the “Pin” for “On” msecs.
Frequency If a second “Frequency” is specified, output this at the same
{,Frequency} time. Filtering is required on the pin output to “smooth”

out the signal output
GOSUB Label Call the subroutine that starts at address “Label”. The

existence of “Label” is checked at compile time
GOTO Label Jump to the code that starts at address “Label”.
HIGH Pin Make “Pin” an Output and drive it High
HSERIN {ParityLabel,} Receive one or more bytes from the built in USART (if
{TimeOut,Label,} present). The “ParityLabel” will be jumped to if the parity
[Variable of the incoming data is incorrect. To use “ParityLabel”,
{[,Variable. . .}] make sure the “HSER_EVEN” or “HSER_ODD” defines have been

specified
HSEROUT [Value Transmit one or more bytes from the built in USART (if
{,Value. . .}] present)

I2CREAD DataPin, Read a Byte string from an I2C device. The “ControlByte” is
ClockPin, ControlByte, used to access the device with block or device select bits.
{Address,} This instruction can be used to access internal EEPROM in the

567

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
6
7

Instruction Description
[Variable PIC12CExxx devices by entering the “define I2C_INTERNAL 1”
{,Variable. . .}] statement at the start of the application code.
{,NoAckLabel}

I2CWRITE DataPin, Send a byte string to an I2C device. The “ControlByte” is used
ClockPin, Control, to access the device with block or device select bits. This
{Address,} instruction can be used to access internal EEPROM in the
[Value{,Value. . .}] PIC12CExxx devices by entering the “define I2C_Internal 1”
{,NoAckLabel} statement at the start of the application code.

IF Comp THEN Label Evaluate the “Comp” Comparison Expression and if it is not
Label equal to zero then jump to “Label”

IF Comp THEN Evaluate the “Comp” Comparison Expression and if it is not
Statement equal to zero then execute the “Statements” below until

: either an “ELSE” or an “ENDIF” statement is encountered.
{ELSE If an “ELSE” statement is encountered, then the code after
Statement it, to the “ENDIF” instruction is ignored. If “Comp”

:} evaluates to zero, then skip over the “Statements” after the
ENDIF “IF” statement are ignored to the “ELSE” or “ENDIF”

Statements, after which any Statements are executed
INCLUDE “file” Load in “file.bas” in the current directory and insert it at

the current location in the source file
INPUT Pin Put the specified pin into “Input Mode”
{LET} Assignment Optional instruction value for an Assignment statement
LCDOUT Value{,Value...} Send the specified Bytes to the LCD connected to the

PICmicro® MCU. The LCD’s operating parameters are set with
the “LCD” defines. To send an instruction byte to the LCD, a
$0FE byte is sent first

LOOKDOWN offset, Go through a list of Constants with an “offset” and store
[Constant the constant value at the offset in the second “Variable”.

568

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
6
8

{,Constant. . .}], If the “offset” is greater than the number of constants, then
Variable Zero is returned in “Variable”. “Offset” is Zero based, the

first constant is returned if “offset” is equal to zero.
LOOKDOWN2 offset, Search the list and find the Constant value that meets the
{Test}[Constant condition “Test”. If “Test” is omitted, then the “LOOKDOWN2”
{,Constant. . .}], instruction behaves like the “LOOKDOWN” instruction with the
Variable “Test” is assumed to be and equals sign (“=”).

LOOKUP Variable, Compare the first “Variable” value with a constant string and
[Constant return the offset into the constant string in the second
{,Constant. . .}], “Variable”. If there is no match, then the second “Variable”
Variable is not changed

LOOKUP2 Variable, Compare the first “Variable” value with a “Value” string and
[Value return the offset into the “Value” string in the second
{,Value. . .}], “Variable”. If there is no match, then the second “Variable”
Variable is not changed. LOOKUP2 differs from LOOKUP as the “Values”

can be sixteen bit variable values
LOW Pin Make “Pin” an Output pin and drive it with a “High” Voltage
NAP Period Put the PICmicro® MCU to “sleep” for the period value which

is given in the table below:
Period Delay

0 18 msecs
1 36 msecs
2 73 msecs
3 144 msecs
4 288 msecs
5 576 msecs
6 1,152 msecs
7 2,304 msecs

569

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
6
9

Instruction Description
ON DEBUG GOTO Label When invoked, every time an instruction is about to be

invoked, the Debug monitor program at “Label” is executed.
Two Variables, the “DEBUG_ADDRESS” word and “DEBUG_STACK”
byte must be defined as “bank0 system” bytes. To return from
the debug monitor, a “RESUME” instruction is used

ON INTERRUPT GOTO Label Jump to the Interrupt Handler starting at “Label”. When the
interrupt handler is complete, execute a “RESUME” instruction

OUTPUT Pin Put “Pin” into Output Mode
PAUSE Period Stop the PICmicro® MCU from executing the next instruction

for “Period” milliseconds. “PAUSE” does not put the
PICmicro® MCU to “sleep” like “NAP” does

PAUSEUS Period Stop the PICmicro® MCU from executing the next instruction
for “Period” microseconds

PEEK Address, Variable Return the Value at the register “Address” in “Variable”
POKE Address, Value Write the register “Address” with the “Value”
POT Pin, Scale, Read a Potentiometer’s wiper when one of its pins is
Variable connected to a capacitor. “Scale” is a value which will

change the returned value until it is in the range of 0 to
0x0FF (255)

PULSIN Pin, State, Measure an incoming pulse width of “Pin”. “State” indicates
Variable the state of the expected Pulse. If a 4 MHz clock is used

with the PICmicro® MCU, the time intervals have a
granularity of 10 usecs

PULSOUT Pin, Period Pulse the “Pin” for the “Period”. If the PICmicro® MCU is run
with a 4 MHz clock, then the pulse “Period” will have a
granularity of 10 usecs

PWM Pin, Duty, Cycle Output a Pulse Width modulated signal on “Pin”. Each cycle is
5 msecs long for a PICmicro® MCU running at 4 MHz. “Duty”

570

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
0

selects the fraction of the cycles (zero to 255) that the
PWM is active. “Cycle” specifies the number of cycles that
is output.

RANDOM Variable Load “Variable” with a pseudo-random Variable
RCTIME Pin, State, Measure the absolute time required for a signal to be delayed
Variable in a RC Network. If a 4 MHz oscillator is used with the

PICmicro® MCU, then the value returned will be in 10 usec
increments

READ Address,Variable Read the Byte in the built in Data EEPROM at “Address” and
return its value into “Variable”. This instruction does not
work with the built in EEPROM of PIC12CExx parts

RESUME {Label} Restore execution at the instruction after the “ON DEBUG” or
“ON INTERRUP” instruction handler was executed. If a “Label”
is specified then the hardware is returned to its original
state and execute jumps to the code after “Label”

RETURN Return to the instruction after the “GOSUB” instruction
REVERSE Pin Reverse the function of the specified “Pin”. For example, if

it were in “output mode”, it is changed to “input mode”
SERIN Pin, Receive one or more asynchronous data bytes on “Pin”. The
Mode,{Timeout,Label,} “Pin” can be defined at run time. The “Qual” bytes are test
{Qual,. . .} qualifiers that only pass following bytes when the first byte
[Variable of the incoming string match them. The “Timeout” value is in
{,Variable. . .}] msecs and execution jumps to “Label” when the “Timeout”

interval passes without any data being received. “Mode” is
used to specify the operation of the Pin and is defined in
the table below:
Mode Baud Rate State
T300 300 Positive
T1200 1200 Positive

571

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
1

Instruction Description
T2400 2400 Positive
T9600 9600 Positive
N300 300 Negative
N1200 1200 Negative
N2400 2400 Negative
N9600 9600 Negative

SERIN2 Pin{\FlowPin}, Receive one or more asynchronous data bytes on “Pin”.
Mode,{ParityLabel,} “FlowPin” is used to control the input of data to the
{Timeout,Label,} PICmicro® MCU to make sure there is no overrun. If Even Parity
[Specification] is selected in the “Mode” Parameter, then any time an

invalid byte is received, execution will jump to the
“ParityLabel”. Input Timeouts can be specified in 1 msec
intervals with no data received in the specified period
causing execution to jump to “Label”. “Mode” selection is
made by passing a sixteen bit variable to the SERIN2
instruction. The bits are defined as:
Bit Function
15 Unused
14 Set if Input Data is Negative
13 Set if Even Parity is to be used with the Data

12–0 Data Rate Specification, found by the formula:
Rate � (1,000,000/Baud) - 20

The “Specification” is a string of data qualifiers/modifiers
and destination variables that are used to filter and
process the incoming data. The qualifiers/modifiers are
listed in the table below:
Modifier Operation
Bin{1. . .16} Var Receive Up to 16 Binary

Digits and store in “Var”

572

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
2

DEC{1. . .5} Var Receive Up to 5 Decimal
Digits and store in “Var”

HEX{1. . .4} Var Receive Up to 4 Hexadecimal
Digits and store in “Var”

SKIP # Skip “#” Received Characters
STR Array\n\c Receive a string of “n”

characters and store in “Array”.
Optionally ended by character “c”

WAIT(“String”) Wait for the Specified
“String” of Characters

WAITSTR Array\n Wait for a Character String “n”
characters long

SEROUT Pin,Mode, Send one or more asynchronous data bytes on “Pin”. The “Pin”
[Value{,Value. . .}] can be defined at run time. “Mode” is used to specify the

operation of the Pin and the output driver and is defined in
the table below:
Mode Baud Rate State Driver
T300 300 Positive CMOS
T1200 1200 Positive CMOS
T2400 2400 Positive CMOS
T9600 9600 Positive CMOS
N300 300 Negative CMOS
N1200 1200 Negative CMOS
N2400 2400 Negative CMOS
N9600 9600 Negative CMOS
OT300 300 Positive Open-Drain
OT1200 1200 Positive Open-Drain
OT2400 2400 Positive Open-Drain
OT9600 9600 Positive Open-Drain

573

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
3

Instruction Description
Mode Baud Rate State Driver
ON300 300 Negative Open-Drain
ON1200 1200 Negative Open-Drain
ON2400 2400 Negative Open-Drain
ON9600 9600 Negative Open-Drain

SEROUT2 Pin{\FlowPin}, Send one or more asynchronous data bytes on “Pin”. “FlowPin”
Mode,{Pace,} is used to control the output of data to the PICmicro® MCU

to
{Timeout,Label,} make sure there is no overrun. Timeouts can be specified
[Specification] in 1 msec intervals with no “Flow” control on the receiver

the specified period causing execution to jump to “Label”.
The optional “Pace” parameter is used to specify the length
of time (measured in usecs) that the PICmicro® MCU delays
before sending out the next character. “Mode” selection is
made by passing a sixteen bit variable to the SERIN2
instruction. The bits are defined as:
Bit Function
15 CMOS/Open Drain Driver

Specification. If Set, Open Drain Output
14 Set if Input Data is Negative
13 Set if Even Parity is to be used with the Data

12–0 Data Rate Specification, found by the formula:
Rate � (1,000,000/Baud) - 20

The “Specification” is a string of data qualifiers/modifiers
and source values that are used to format the outgoing data.
The output format data can be specified with an “I” prefix to
indicate that the data type is to be sent before the data and
the “S” prefix indicates that a sign (“-“) indicator is sent
for negative values. The qualifiers/modifiers are listed in

574

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
4

the table below:
Modifier Operation
Bin{1. . .16} Var Receive Up to 16 Binary Digits and

store in “Var”
DEC{1. . .5} Var Receive Up to 5 Decimal Digits and

store in “Var”
HEX{1. . .4} Var Receive Up to 4 Hexadecimal Digits and

store in “Var”
SKIP # Skip “#” Received Characters
STR Array\n\c Receive a string of “n” characters and

store in “Array”. Optionally ended by
character “c”

WAIT(“String”) Wait for the Specified “String” of
Characters

WAITSTR Array\n Wait for a Character String “n”
characters long

SHIFTIN DataPin, Synchronously shift data into the PICmicro® MCU.
ClockPin,Mode, The “Bits” Parameter is used to specify the
[Variable{\Bits} number of bits that are actually shifted in
{,Variable. . .}] (if “Bits” is not specified, the default is

8). The “Mode” Parameter is used to indicate how the data is
to be transferred and the values are listed in the table
below:
Mode Function
MSBPRE Most Significant Bit First, Read Data before

pulsing Clock
LSBPRE Least Significant Bit First, Read Data before

pulsing Clock
MSBPOST Most Significant Bit First, Read Data after

575

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
5

pulsing Clock
Instruction Description

Mode Function
LSBPOST Least Significant Bit First, Read Data after

pulsing Clock
SHIFTOUT DataPin, Synchronously shift data out of the PICmicro® MCU. The “Bits”
ClockPin,Mode, Parameter is used to specify how many bits are to be shifted
[Variable{\Bits} out in each word (if not specified, the default is 8). The
{,Variable. . .}] “Mode” parameter is used to specify how the data is to be

shifted out and the values are listed in the table below:
Mode Function
LSBFIRST Least Significant Bit First
MSBFIRST Most Significant Bit First

SLEEP Period Put the PICmicro® MCU into “Sleep” mode for “Period” seconds
SOUND Pin, Output a string of Tones and Durations (which can be used to
[Note,Duration create a simple tune) on the “Pin”. Note “0” is silence and
{,Note,Duration. . .}] Notes “128” to “255” are “white noise”. Note “1” (78.5 Hz for

a 4 MHz PICmicro® MCU) is the lowest valid tone and note “127”
is the highest (10 kHz in a 4 MHz PICmicro® MCU). Duration is
specified in 12 msec increments

STOP Place the PICmicro® MCU into an endless loop. The PICmicro®

MCU is not put into “Sleep” mode
SWAP Variable, Variable Exchange the values in the two Variables
TOGGLE Pin Toggle the Output Value of the Specified Pin
WHILE Cond Execute the code between the “WHILE” and the
: “WEND” statements while the “Cond” condition

WEND returns a non-zero value. Execution exits the loop when
“Cond” is evaluated to Zero

WRITE Address, Value Write the Byte “Value” into the built in Data EEPROM. This
instruction will not work with the built in EEPROM in the

576

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
6

PIC12CExxx devices
XIN DataPin,ZeroPin, Receive data from X-10 devices. “ZeroPin” is
{Timeout,Label,} used to detect the “Zero Crossing” of the
[Variable input AC Signal. Both “DataPin” and “ZeroPin”
{,Variable...}] should be pulled up with 4.7 K resistors. The optional

Timeout (specified in 8.33 msec intervals) will cause
execution to jump to “Label” if no data is received by the
specified interval. If the first Variable data destination is
sixteen bits, then both the “House Code” and the “Key Code”
will be saved. If the first Variable is eight bits in size,
then only the “Key Code” will be saved.

XOUT DataPin,ZeroPin, Send X-10 data to other devices. The “ZeroPin” is an input and
[HouseCode\KeyCode should be pulled up with a 4.7K resistor. “HouseCode” is a
{\Repeat}{,Value...}] number between 0 and 15 and corresponds to the “House Code”

set on the X-10 Modules A through P. The “KeyCode” can either
be the number of a specific X-10 receiver or the function to
be performed by the module.

577

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
5

9
/
2
6
/
0
1

1
2
:
4
7

P
M

P
a
g
e

5
7
7

Visual Basic

Microsoft’s “Visual Basic” is probably the fastest way to
get into Microsoft “Windows” application programming.
The ease of using the language and development system
also makes it great as a “what if” tool and allows you to
write an application quickly to try out new ideas.

To create an application, the Primary dialog box
(which is known as a “form” and is shown in Fig. 15.8)
is created first, with different features (I/O boxes,
buttons, etc.). These features are known as “controls”
within Visual Basic. With the Window defined, by sim-
ply clicking on the different controls, subroutine proto-
types to handle “events” (such as mouse clicks over
these features) are automatically created. Additional
features in Visual Basic’s source code editor allow

578 Chapter 15

Figure 15.8 “Visual Basic” Development System

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 578

you to specify the control parameters (known as “prop-
erties”). Visual Basic applications are built around
“The Dialog Box Editor” desktop. When application
development is started, Visual Basic provides you
with the initial “Dialog” box of the application that can
be seen in Fig. 15.9. From here, “Dialog Resources” are
selected from the “ToolBox” and placed upon the
dialog.

Control attributes (also known as “Properties”) can
be set globally from the Integrated Development
Environment or from within the “Event Handlers”. The
event handler’s code is written in pretty standard
Microsoft BASIC. Once the handler prototypes are cre-
ated by Visual Basic, it is up to the application devel-
oper to add the response code for the application.
Visual Basic provides a large number of built-in func-
tions, including trigonometric functions, logarithm

PICmicro® MCU Application Software 579

Figure 15.9 Visual Basic Desktop

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 579

functions, and the ability to interface with the file sys-
tem and dialog controls.

Variables in Visual Basic are typically “Integer”, which
is to say they are sixteen bit values in the ranges �32768
to �32765. Thirty-two bit integer variables can be speci-
fied by putting a “%” character at the end of the variable
label. One important thing to note about variables is that
they are local to the event routine they are used in unless
they are declared globally in the “General Module”,
which executes at the beginning of the application and is
not specific to any controls.

There are a number of controls that are basic to
Visual Basic with others being available for download
off the Internet or bought which can make your Visual
Basic applications more impressive and lend “pizzazz”
to Windows applications.

Control Description
Pull Downs Selected from the “Menu Editor”

icon on the “ToolBar”
PictureBox Display Bitmaps and other graphic

files on the Dialog Box
Label Put Text in the Dialog Box
TextBox Input/Output Text Box
Frame Put a Frame around Resources
CommandButton Button for Code Operation
CheckBox For Checking Multiple Selections
OptionButton Also known as the “Radio Button”.

For Checking one selection for a
list of Multiple options

ComboBox Select or Enter Test in a Box/List
ListBox List Data (with User controlled

Scrolling)
HScrollBar Provide Horizontal Scrolling in a

Text or Graphic Output Control
VscrollBar Provide Vertical Scrolling in a

Text or Graphic Output Control
Timer Cause a periodic interrupt

580 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 580

DriveListBox Select a Drive for File I/O
DirListBox Select a Subdirectory for File I/O

on a Specific Drive
FileListBox Display Files for a Specific

Subdirectory on a Specific Drive
Shape Put a Graphics Shape on the Dialog

Box
Line Draw a Line on the Dialog Box
Image Display an Image File on the Dialog

Box
OLE Insert OLE Objects to the Dialog

There are a number of controls that cannot be activated
with a left button click and cannot be “seen” on the ap-
plication’s form. The one that is used the most is the
“Timer”. This control causes an event after a set period
of microseconds. This control can be set within the dia-
log editor or modified within the application itself. The
Timer can provide many different advanced functions
without requiring any interrupt interfaces.

MSComm control

The MSComm control recommended initialization se-
quence is

1. Specify the Hardware Serial Port to be used.

2. Set the speed and data format to be used.

3. Define the buffer size.

4. Open the port and begin to use it.

The instructions used to perform these functions are
placed in the “Form_Load” subroutine, which means the
port is enabled before the primary dialog box is execut-
ing. The following code is an example of an MSComm
object initialization:

PICmicro® MCU Application Software 581

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 581

Private Sub Form_Load()
' On Form Load, Setup Serial Port 3 for YAP
' Programmer

MSComm3.CommPort = 3

MSComm3.Settings = "1200,N,8,1"

MSComm3.InputLen = 0

MSComm3.PortOpen = True

Text1.Text = "Turn on YAP Programmer"

End Sub

A 50-msec timer can be used to continually poll the se-
rial port and display data in the “Text” Box when it is
received:

Private Sub Timer1_Timer()
' Interrupt every 50 msecs and Read in the Buffer
Dim InputString

InputString = MSComm3.Input

If (InputString <> "") Then
If (Text1.Text = "Turn on YAP Programmer") Then

Text1.Text = "" ' Clear the Display Buffer
End If
Text1.Text = Text1.Text + InputString

End If

End Sub

Once the “MSComm” control is placed on the display,
the following properties are used to control it:

Property Setting Description

Break True/False When set to “True”, Break
Sends a “0” break signal
until the property is
changed to “False”.

582 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 582

CDHolding True/False Read only property that
indicates if the “Carrier
Detect” line is active.
This is an important line
to poll in applications
which use modems.

CommEvent Integer Read only property that is
only available while the
application is running.
If the application is
running without any
problems, this property
returns zero. This
property is read by the
“OnComm” event handler
code to process the
reason why the “event”
was caused.

CommID Object Read only property that
returns an identifier for
the serial port assigned
to the MSComm control.

CommPort Integer Specify the “COMx” (1–3)
serial port that is used
by the MSComm control.

CTSHolding True/False Read only property that
returns the current state
of the serial port’s
“Clear To Send” line.

DSRHolding True/False Read only property that
returns the current state
of the serial port’s
“Data Set Ready” line.

DTREnable True/False Property used to specify
the state of the “Data
Terminal Ready” line.

EOFEnable True/False Specify whether or not an
“OnComm” event will be
generated if an “End Of
File” character (0x01A)
is encountered.

PICmicro® MCU Application Software 583

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 583

Handshaking 0, 1, 2 or 3 Sets the current
handshaking protocol for
the serial port:
0 - No handshaking

(default)
1 - XON/XOFF

Handshaking
2 - RTS/CTS (Hardware)

Handshaking
3 - Both XON/XOFF and

RTS/CTS
Handshaking

InBufferCount Integer Read only property
indicating how many
characters have been
received by the serial
port.

InBufferSize Integer Property used to specify
the number of bytes
available for the Input
Data Buffer. The default
size is 1024 bytes.

Input String Return a String of
Characters from the
Input Buffer.

InputMode Integer Specify how data is to be
retrieved using the
“Input” property. Zero
specifies data will be
received as Text
(Default). One will
specify that data will
be passed without
editing (“Binary”
format).

InputLen Integer Sets the Maximum Number
of characters that will
be returned when the
“Input” property is
accessed. Setting this
value to zero will
return the entire
buffer.

584 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 584

NullDiscard True/False Specify whether or not
Null Characters are
transferred from the
port to the receiver
buffer.

OutBufferCount Integer Read only property that
returns the Number of
Characters waiting in
the Output Buffer.

OutBufferSize Integer Specify the size of the
Output Buffer. The
default is 512 Bytes.

Output Integer Output a string of
characters through the
serial port.

ParityReplace Integer Specify the character
that will replace
characters which have a
“Parity” Error. The
default character is “?”
and the ASCII code for
the replacement
character must be
specified.

PortOpen True/False Specify whether or not
the data port is to be
transmitting and
receiving data. Normally
a port is closed
(“False”).

Rthreshold Integer Specify the number of
characters before there
is an “OnComm” event.
The default value of
zero disables event
generation. Setting the
“Rthreshold” to one will
cause an “OnComm” event
each time a character is
received.

PICmicro® MCU Application Software 585

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 585

RTSEnable True/False Specify the value output
on the “Request To Send”
line.

Settings String Send a String to the
Serial Port to specify
its operating
characteristics. The
String is in the format
“Speed, Parity, Length,
Stop” with the following
valid parameter values:
Speed: Data Rate of the
Communication

110
300
600

1200
2400
9600 (Default)

14400
19200
28800
38400
56000

128000
256000

Parity: The type of error
checking sent with the
byte
E - Even Parity
M - Mark Parity
N - No Parity (Default)
O - Odd Parity
S - Space Parity

Length: The number of
bits transmitted at a
time
4 - 4 Bits
5 - 5 Bits
6 - 6 Bits
7 - 7 Bits
8 - 8 Bits (Default)

Stop: The number of stop
bits transmitted with
the byte

586 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 586

1 - 1 Stop Bit (Default)
1.5 - 1.5 Stop Bits
2 - 2 Stop Bits

Sthreshold Integer Specify the number of
bytes to be transmitted
before an “OnComm” event
is generated. The
default is zero (which
means no “OnComm” event
is generated for
transmission). Setting
this value to one will
cause an “OnComm” event
after each character is
transmitted.

Further enhancing the usefulness of the “MSComm”
control is the “OnComm” event. This routine is similar to
an interrupt, as it is requested after specified events in
the serial port. The “CommEvent” property contains the
reason code for the event. These codes include:

CommEvent Identifier CommEvent Code Description
comEvSend 1 Specified Number

of Characters
Sent

comEvReceive 2 Specified Number
of Characters
Received

comEvCTS 3 Change in the
“Clear To Send”
line

comEvDSR 4 Change in the
“Data Set Ready”
line

comEvCD 5 Change in the
“Carrier Detect”
line

comEvRing 6 Ring Detect is
Active

comEvEOF 7 “End Of File”
Character
Detected

PICmicro® MCU Application Software 587

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 587

comEventBreak 1001 Break Signal
Received

comEventFrame 1004 Framing Error in
incoming data

comEventOverrun 1006 Receive Port
Overrun

comEventRxOver 1008 Receive Buffer
Overflow

comEventRxParity 1009 Parity Error in
Received Data

comEventTxFull 1010 Transmit Buffer
Full

comEventDCB 1011 Unexpected Device
Control Block
Error

The “C” Language

Declarations

Constant declaration:

const int Label = Value;

Variable declaration:

type Label [= Value];

“Value” is an optional Initialization Constant, where
“type” can be:

char
int
unsigned int
float

588 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 588

Note that “int” is defined as the “word size” of the
processor/operating system. For PCs, an “int” can be a
Word (16 bits) or a Double Word (32 bits). For the
PICmicro® MCU, an “int” is normally 8 bits (a byte).

There may also be other basic types defined in the
language implementation. Single dimensional arrays are
declared using the form:

type Label[Size] [= { Initialization Values..}];

Note that the array “Size” is enclosed within square
brackets (“[” and “]”) and should not be confused with
the optional “Initialization Values”.

Strings are defined as single dimensional ASCIIZ ar-
rays:

char String[17] = “This is a String”;

where the last character is an ASCII “NUL”.
Strings can also be defined as pointers to characters:

char *String = “This is a String”;

although this implementation requires the text “This is a
String” to be stored in two locations (in code and data
space). For the PICmicro® MCU and other Harvard ar-
chitected processors, the text data could be written into
data space when the application first starts up as part of
the language’s initialization.

Multidimensional Arrays are defined with each di-
mension separately identified within Square Brackets
(“[” and “]”):

int ThreeDSpace[32][32][32];

Array Dimensions must be specified unless the Variable
is a pointer to a Single Dimensional Array.

PICmicro® MCU Application Software 589

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 589

Pointers are declared with the “*” character after the
“type”

char * String = “This is a String”;

Accessing the address of the Pointer in Memory is ac-
complished using the “&” character:

StringAddr = &String;

Accessing the address of a specific element in a String is
accomplished using the “&” character and a String Array
Element:

StringStart = &String[n];

In the PC running MS-DOS, it is recommended that
“far” (32 bit) pointers be always used with absolute off-
set:segment addresses within the PC memory space to
avoid problems with varying segments. In the PICmicro®

MCU, all addresses can be specified with two bytes.
The Variable’s “Type” can be “overridden” by plac-

ing the new type in front of the variable in single
brackets:

(long) StringAddr = 0x0123450000;

Statements

Application “Mainline”.
main(envp)

char *envp;
{ // Application Code

: // Application Code

} // End Application

590 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 590

Function format.
Return_Type Function(Type Parameter [, Type
Parameter..])
{ // Function Start

: // Function Code

return value;

} // End Function

Function prototype.
Return_Type Function(Type Parameter [, Type
Parameter..]);

Expression.
[(..] Variable | Constant [Operator [(..] Variable |
Constant][)..]]

Assignment statement.
Variable = Expression;

“C” conditional statements (consisting of “if”,
“?”, “while”, “do”, “for” and “switch”).
The “if” statement is defined as

if (Statement)
; | { Assignment Statement | Conditional
Statement.. } | Assignment Statement | Conditional
Statement

[else ;| { Assignment Statement | Conditional
Statement..} | Assignment Statement | Conditional
Statement]

The “? :” statement evaluates the statement (normally a
comparison) and if not equal to zero, executes the first
statement, else executes the statement after the “:”.

PICmicro® MCU Application Software 591

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 591

Statement ? Assignment Statement | Conditional
Statement : Assignment Statement | Conditional
Statement

The “while” statement is added to the application fol-
lowing the definition below:

while (Statement) ; | { Assignment Statement |
Conditional Statement.. } | Assignment Statement |
Conditional Statement

The “for” statement is defined as:

for (initialization (Assignment) Statement;
Conditional Statement; Loop Expression (Increment)
Statement)
; | { Assignment Statement | Conditional Statement..
} | Assignment Statement | Conditional Statement

To jump out of a currently executing loop, “break”
statement

break;

is used.
The “continue” statement skips over remaining code

in a loop and jumps directly to the loop condition (for
use with “while”, “for” and “do/while” Loops). The for-
mat of the statement is

continue;

For looping until a condition is true, the “do/while”
statement is used:

do

Assignment Statement | Conditional Statement..

while (Expression);

592 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 592

To conditionally execute according to a value, the
“switch” statement is used:

switch(Expression) {
case Value: // Execute if “Statement”

== “Value”
[Assignment Statement | Conditional Statement..]
[break;]

default: // If no “case” Statements
are True

[Assignment Statement | Conditional Statement..]
} // End switch

Finally, the “goto Label” statement is used to jump to
a specific address:

goto Label;

Label:

To return a value from a function, the “return” state-
ment is used:

return Statement;

Operators

Statement operators.
Operator Operation
! Logical Negation
! Bitwise Negation
&& Logical AND
& Bitwise AND, Address
|| Logical OR
| Bitwise OR
^ Bitwise XOR
+ Addition
++ Increment

PICmicro® MCU Application Software 593

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 593

- Subtraction, Negation
–- Decrement
* Multiplication, Indirection
/ Division
% Modulus
== Equals
!= Not Equals
< Less Than
<= Less Than or Equals To
<< Shift Left
> Greater Than
>= Greater Than or Equals To
>> Shift Right

Compound assignment operators.
Operator Operation
&= AND with the Variable and Store

Result in the Variable
|= OR with the Variable and Store

Result in the Variable
^= XOR with the Variable and Store

Result in the Variable
+= Add to the Variable
-= Subtract from the Variable
*= Multiply to the Variable
/= Divide from the Variable
%= Get the Modulus and Store in the

Variable
<<= Shift Left and Store in the

Variable
>>= Shift Right and Store in the

Variable

Order of operations.
Operators Priority Type
() [] . -> Highest Expression

Evaluation
- ~ ! & * ++ -- Unary Operators
* / % Multiplicative
+ - Additive
<< >> Shifting
< <= >= > Comparison

594 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 594

== != Comparison
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
?: Conditional

Execution
= &= |= ^= += -= *= /= %= >>= <<= Assignments
, Lowest Sequential

Evaluation

Directives

All Directives start with “#” and are executed before the
code is compiled.

Directive Function
#define Label[(Parameters)] Text Define a Label that

will be replaced
with “Text” when
it is found in the
code. If
“Parameters” are
specified, then
replace them in
the code, similar
to a macro.

#undefine Label Erase the defined
Label and Text in
Memory.

#include “File” | <File> Load the Specified
File in Line to
the Text. When “<”
“>” encloses the
Filename, then the
file is found
using the
“INCLUDE”
Environment Path
Variable. If “””
“”” encloses the
Filename, then the

PICmicro® MCU Application Software 595

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 595

file in the
current directory
is searched before
checking the
“INCLUDE” Path.

#error Text Force the Error
listed in “Text”

#if Condition If the “Condition”
is True, then
Compile the
following code to
“#elif”, “#else”
or “#endif”. If
the “Condition” is
False, then ignore
the following code
to “#elif”,
“#else” or
“#endif”.

#ifdef Label If the “#define”
Label exists, then
Compile the
Following Code.
“#elif”, “#else”
and “#endif” work
as expected with
“#if”.

#ifndef Label If the “#define”
Label does NOT
exist, then
Compile the
Following Code.
“#elif”, “#else”
and “#endif” work
as expected with
“#if”.

#elif Condition This Directive
works as an “#else
#if” to avoid
lengthy nested
“#if”s.
If the previous
condition was
False,checks the
Condition.

596 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 596

#else Placed after “#if”
or “#elif” and
toggles the
Current Compile
Condition. If the
Current Compile
Condition was
False, after
“#else”, it will
be True. If the
Current Compile
Condition was
True, after
“#else”, it will
be False.

#endif Used to End an
“#if”, “#elif”,
“#else”, “#ifdef”
or “#ifndef”
directive.

#pragma String This is a Compiler
dependent
Directive with
different
“Strings” required
for different
cases.

The following words cannot be used in “C” applications
as labels:

break
case
continue
default
do
else
for
goto
if
return
switch
while

PICmicro® MCU Application Software 597

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 597

“Backslash” characters
String ASCII Character
\r 0x00D Carriage Return (“CR”)
\n 0x00A Line Feed (“LF”)
\f 0x00C Form Feed (“FF”)
\b 0x008 Backspace (“BS”)
\t 0x009 Horizontal Tab (“HT”)
\v 0x00B Vertical Tab (“VT”)
\a 0x007 Bell (“BEL”)
\’ 0x027 Single Quote (“’”)
\” 0x022 Double Quote (“””)
\\ 0x05C Backslash (“\”)
\ddd N/A Octal Number
\xddd 0x0dd Hexadecimal Character

Common C functions

As Defined by Kernighan and Ritchie:

Function Operation
int getchar(void) Get one Character from

“Standard Input” (the
Keyboard). If no
Character available,
then wait for it.

int putchar(int) Output one Character to
the “Standard Output”
(the Screen).

int printf(char *Const[, arg...])
Output the “Const” String
Text. “Escape Sequence”
Characters for Output
are embedded in the
“Const” String Text.
Different Data Outputs
are defined using the
“Conversion Characters”:
%d, %i - Decimal Integer
%o - Octal Integer
%x, %X - Hex Integer
(with upper or lower
case values). No leading
“0x” character String
Output

598 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 598

%u - Unsigned Integer
%c - Single ASCII
Character
%s - ASCIIZ String
%f - Floating Point
%#e, %#E - Floating
Point with the precision
specified by “#”
%g, %G - Floating Point
%p - Pointer
%% - Print “%” Character
Different C
Implementations will
have different “printf”
parameters.

int scanf(char *Const, arg [, *arg...])
Provide Formatted Input
from the user. The
“Const” ASCIIZ String is
used as a “Prompt” for
the user. Note that the
input parameters are
always pointers.
“Conversion Characters”
are similar to “printf”:
%d - Decimal Integer
%i - Integer. In Octal
if leading “0” or hex
if leading “0x” or “0X”
%o - Octal Integer
(Leading “0” Not
Required)
%x - Hex Integer
(Leading “0x” or “0X”
Not Required)
%c - Single Character
%s - ASCIIZ String of
Characters. When Saved,
a NULL character is put
at the end of the String
%e, %f, %g - Floating
Point Value with
optional sign, decimal
point and exponent
%% - Display “%”
character in prompt

PICmicro® MCU Application Software 599

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 599

handle fopen(char *FileName, Open File and Return
char *mode) Handle (or NULL for

Error).
“mode” is a String
consisting of the
optional characters:
r - Open File for

Reading
w - Open File for

Writing
a - Open File for

Appending to
Existing Files

Some systems handle
“Text” and “Binary”
files. A “Text” file has
the CR/LF characters
represented as a single
CR. A “Binary” file does
not delete any
characters.

int fclose(handle) Close the File.
int getc(handle) Receive data from a file

one character at a time.
If at the end of an
input file, then “EOF”
is returned.

int putc(handle, char) Output data to a file one
character at a time.
Error is indicated by
“EOF” returned.

int fprintf(handle, char *Const[, arg...])
Output String of
Information to a File.
The same “Conversion
Characters” and
arguments as “printf”
are used.

int fscanf(handle, char *Const, arg[, arg...])
Input and Process String
of Information from a
File. The same
“Conversion Characters”

600 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 600

and arguments as “scanf”
are used.

int fgets(char *Line, int LineLength, handle)
Get the ASCIIZ String
from the file.

int fputs(char *line, handle)
Output an ASCIIZ String
to a file.

strcat(Old, Append) Put ASCIIZ “Append”
String on the end of the
“Old” ASCIIZ String.

strncat(Old, Append, #)
Put “#” of characters
from “Append” on the end
of the “Old” ASCIIZ
String.

int strcmp(String1, String2)
Compare two ASCIIZ
Strings. Zero is
returned for match,
negative for “String1” <
“String2” and positive
for “String1” >
“String2”.

int strncmp(String1, String2, #)
Compare two ASCIIZ
Strings for “#”
characters. Zero is
returned for match,
negative for “String1”
< “String2” and positive
for “String1”
> “String2”.

strcpy(String1, String2) Copy the Contents of
ASCIIZ “String2” into
“String1”.

strncpy(String1, String2, #)
Copy “#” Characters from
“String2” into “String1”.

strlen(String) Return the length of
ASCIIZ Character
“String”

int strchr(String, char) Return the Position of
the first “char” in the
ASCIIZ “String”.

PICmicro® MCU Application Software 601

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 601

int strrchr(String, char) Return the Position of
the last “char” in the
ASCIIZ “String”.

system(String) Executes the System
Command “String”.

*malloc(size) Allocate the Specified
Number of Bytes of
Memory. If insufficient
space available, return
NUL.

*calloc(#, size) Allocate Memory for the
specified “#” of data
elements of “size”.

free(*) Free the Memory.
float sin(angle) Find the “Sine” of the

“angle” (which in
Radians).

float cos(angle) Find the “Cosine” of the
“angle” (which in
Radians).

float atan2(y, x) Find the “Arctangent” of
the “X” and “Y” in
Radians.

float exp(x) Calculate the natural
exponent.

float log(x) Calculate the natural
logarithm.

float log10(x) Calculate the base 10
logarithm.

float pow(x, y) Calculate “x” to the
power “y”.

float sqrt(x) Calculate the Square Root
of “x”.

float fabs(x) Calculate the Absolute
Value of “x”.

float frand() Get a Random Number.
int isalpha(char) Return Non-Zero if

Character is “a”-“z” or
“A”-“Z”.

int isupper(char) Return Non-Zero if
Character is “A”-“Z”.

int islower(char) Return Non-Zero if
Character is “a”-“z”.

int isdigit(char) Return Non-Zero if
Character is “0”-“9”.

602 Chapter 15

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 602

int isalnum(char) Return Non-Zero if
Character is “a”-“z”,
“A”-“Z” or “0”-“9”.

int isspace(char) Return Non-Zero if
Character is “ “, HT,
LF, CR, FF or VT.

int toupper(char) Convert the Character to
Upper Case.

int tolower(char) Convert the Character to
Lower Case.

PICmicro® MCU enhancement functions

Useful Functions in PICmicro® MCU C implementations:

Function Operation
inp, outp Provide method for directly

accessing system registers.
SerIn, SerOut NR2 Non-Return to Zero
12C 12C Interface
PNM Measure/output PNM signals

PICmicro® MCU Application Software 603

5194 Predko Pocket Chapter 15 9/26/01 12:47 PM Page 603

This page intentionally left blank.

Chapter

Constants and
Data Tables

Mathematical and Physical Constants

Symbol Value Description
AU 149.59787x(10^6) km Astronomical Unit

(Distance from92,955,628 miles
the Sun to the
Earth)

c 2.99792458x(10^8) m/s Speed of Light in
a Vacuum

16

605

186,282 miles/s
e 2.7182818285
Epsilon-o 8.854187817x(10^-12) F/m

Permittivity of
Free Space

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 605

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Ev 1.60217733x(10^-19) J Electron Volt
Value

g 32.174 ft/sec^2 Acceleration due
9.807 m/sec^2 to gravity

h 6.626x(10^-34) Js Planck Constant
k 1.380658x(10^-23) J/K Boltzmann Entropy

Constant
me 9.1093897x(10^-31) kg Electron Rest Mass
mn 1.67493x*10^-27) kg Neutron Rest Mass
mp 1.67263x(10^-27) kg Proton Rest Mass
pc 2.06246x(10^5) AU Parsec
pi 3.1415926535898 Ratio of

circumference to
Diameter of a
circle

R 8.314510 J/(K * mol) Gas Constant
sigma 5.67051x(10^-8) W/(m^2 * K^4)

Stefan-Boltzmann
Constant

u 1.66054x(10^-27) grams Atomic Mass Unit
mu-o 1.25664x(10^-7) N/A^2 Permeability of

Vacuum
None 331.45 m/s Speed of Sound at

1087.4 ft/s Sea Level, in Dry
Air at 20C

None 1480 m/s Speed of Sound in
4856 ft/s Water at 20C

ASCII

The ASCII Definition uses the seven bits of each ASCII
character.

3-0 |6-4 -> 000 001 | 010 011 100 101 110 111
V | Control | Characters

0000 | NUL DLE | Space 0 @ P ` p
0001 | SOH DC1 | ! 1 A Q a q
0010 | STX DC2 | “ 2 B R b r
0011 | ETX DC3 | # 3 C S c s
0100 | EOT DC4 | $ 4 D T d t
0101 | ENQ NAK | % 5 E U e u

606 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 606

0110 | ACK SYN | & 6 F V f v
0111 | BEL ETB | ‘ 7 G W g w
1000 | BS CAN | (8 H X h x
1001 | HT EM |) 9 I Y i y
1010 | LF SUB | * : J Z j z
1011 | VT ESC | + ; K [k {
1100 | FF FS | , < L \ l |
1101 | CR GS | - = M] m }
1110 | SO RS | . > N ^ n ~
1111 | SI US | / ? O _ o DEL

ASCII control characters

The ASCII Control Characters were specified as a means
of allowing one computer to communicate and control
another. These characters are actually commands and if
the BIOS or MS-DOS display or communications APIs
are used with them they will revert back to their original
purpose. Writing these values (all less than 0x020) to
the display will display graphics characters in the
IBM PC.

Normally, only “Carriage Return”/“Line Feed” are
used to indicate the start of a line. “Null” is used to indi-
cate the end of an ASCIIZ string. “Backspace” will move
the cursor back one column to the start of the line. The
“Bell” character, when sent to MS-DOS will cause the
PC’s speaker to “beep”. “Horizontal Tab” is used to move
the cursor to the start of the next column that is evenly
distributed by eight. “Form Feed” is used to clear the
screen.

Hex Mnemonic Definition
00 NUL “Null” - Used to indicate the end

of a string
01 SOH Message “Start of Header”
02 STX Message “Start of Text”
03 ETX Message “End of Text”

Data Tables 607

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 607

04 EOT “End of Transmission”
05 ENQ “Enquire” for Identification or

Information
06 ACK “Acknowledge” the previous

transmission
07 BEL Ring the “BELL”
08 BS “Backspace” - Move the Cursor on

column to the left
09 HT “Horizontal Tab” - Move the Cursor

to the Right to the next “Tab
Stop” (Normally a column evenly
divisible by eight)

0A LF “Line Feed” - Move the Cursor down
one line

0B VT “Vertical Tab” - Move the Cursor
down to the next “Tab Line”

0C FF “Form Feed” up to the start of the
new page. For CRT displays, this
is often used to clear the screen

0D CR “Carriage Return” - Move the
Cursor to the leftmost column

0E SO Next Group of Characters do not
follow ASCII Control conventions
so they are “Shifted Out”

0F SI The following Characters do follow
the ASCII Control conventions and
are “Shifted In”

10 DLE “Data Link Escape” - ASCII Control
Character start of an Escape
sequence. In most modern
applications “Escape” (0x01B) is
used for this function

11 DC1 Not defined - Normally application
specific

12 DC2 Not defined - Normally application
specific

13 DC3 Not defined - Normally application
specific

14 DC4 Not defined - Normally application
specific

15 NAK “Negative Acknowledge” - the
previous transmission was not
properly received

16 SYN “Synchronous Idle” - If the serial
transmission uses a synchronous

608 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 608

protocol, this character is sent
to ensure the transmitter and
receiver remain synched

17 ETB “End of Transmission Block”
18 CAN “Cancel” and disregard the

previous transmission
19 EM “End of Medium” - Indicates end of

a file. For MS-DOS files, 0x01A
is often used instead

1A SUB “Substitute” the following
character with an incorrect one

1B ESC “Escape” - Used to temporarily
halt execution or put an
application into a mode to
receive information

1C FS Marker for “File Separation” of
data being sent

1D GS Marker for “Group Separation” of
data being sent

1E RS Marker for “Record Separation” of
data being sent

1F US Marker for “Unit Separation” of
data being sent

ANSI display control sequences

From MS-DOS applications you can move the cursor or
change the current display colors one of two ways.
Normally I use the BIOS functions and direct writes to
video RAM. The second way is to load the “ANSI.SYS”
device driver in the “config.sys” using the statement:

device = [d:][path]ANSI.SYS

When the “Escape Sequences” listed below are output
using the standard output device (using the MS-DOS
APIs), the commands are executed.

This method is not often used for two reasons. The first
is that it is much slower than using the BIOS APIs and
writing directly to video RAM. For an application that

Data Tables 609

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 609

seems to change the screen in the blink of an eye, the
ANSI Display Control Sequences are not the way to do it.
The second is that “ANSI.SYS” takes away 10 KBytes of
memory that would normally be available for applications.

There are two advantages to using the ANSI Display
Control Sequences. The first is that it will make applica-
tions very portable. Passing the source to another sys-
tem’s just requires recompilation and linking. The
second advantage is that sending data serially to a re-
ceiver set up able to receive these sequences (set up as
an “ANSI” or “VT100 Compatible” Terminal), will pro-
vide simple graphic operations in an application.

In the table below, “ESC” is the ASCII “Escape”
Character 0x01B.

Sequence Function
Esc[=#h Set the PC’s Display mode. This is not

available in “true” ANSI compatible
devices.
= 0 - 40x25 Monochrome
= 1 - 40x25 Color
= 2 - 80x25 Monochrome
= 3 - 80x25 Color
= 4 - 320x200 Color Graphics
= 5 - 320x200 Monochrome Graphics
= 6 - 640x200 Monochrome Graphics
= 7 - wrap to next line at line end
= 14 - 640x200 Color Graphics
= 15 - 640x350 Monochrome Graphics
= 16 - 640x480 Color Graphics
= 17 - 640x480 Color Graphics
= 18 - 640x480 Color Graphics
= 19 - 320x200 Color Graphics

Esc[=#l Reset the PC’s Display mode. This is not
available in “true” ANSI compatible
devices.
= 0 - 40x25 Monochrome
= 1 - 40x25 Color
= 2 - 80x25 Monochrome
= 3 - 80x25 Color

610 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 610

= 4 - 320x200 Color Graphics
= 5 - 320x200 Monochrome Graphics
= 6 - 640x200 Monochrome Graphics
= 7 - do not wrap at line end

Esc[#m Set Character Attributes
= 0 - Normal (gray on black)
= 1 - Intensity Bit set for

Foreground Colors
= 4 - Underscore Characters in MDA
= 5 - Blink Characters in MDA
= 7 - Reverse the Character

Foreground Color with the
background

= 8 - Make MDA Characters Invisible
= 30 - Black Foreground
= 31 - Red Foreground
= 32 - Green Foreground
= 33 - Yellow Foreground
= 34 - Blue Foreground
= 35 - Magenta Foreground
= 36 - Cyan Foreground
= 37 - White Foreground
= 40 - Black Background
= 41 - Red Background
= 42 - Green Background
= 43 - Yellow Background
= 44 - Blue Background
= 45 - Magenta Background
= 46 - Cyan Background
= 47 - White Background

Esc[2j Clear the Display
Esc[K Erases from the Current Cursor Position

to End of the Line
Esc[6n Device Status Report - request the

current position to be returned in the
“Standard Input” Device

Esc[#;%R This is the Current Cursor Row (“#”) and
Column (“%”) loaded into the “Standard
Input” after a “Device Status Report”

Esc[#;%f Move Cursor to Row “#” and Column “%”
Esc[#;%F Move Cursor to Row “#” and Column “%”
Esc[#;%H Move Cursor to Row “#” and Column “%”
Esc[#A Move the Cursor Up # Rows
Esc[#B Move the Cursor Down # Rows
Esc[#C Move the Cursor to the Right by #

Columns

Data Tables 611

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 611

Esc[#D Move the Cursor to the Left by # Columns
Esc[s Saves the Current Cursor Position
Esc[u Restores the Cursor Position to the

saved position
Esc[F Move the Cursor to the “Home” Position

(Row = Column = 1)
Esc[H Move the Cursor to the “Home” Position

(Row = Column = 1)
Esc[#;%p Reassign key “#” to “%”
Esc[#;STRp Reassign key “#” to String “STR”

IBM PC extended ASCII characters

The additional 128 characters shown in Fig. 16.2 can do a
lot to enhance a character mode application without hav-
ing to resort to using graphics. These enhancements in-
clude special characters for languages other than English,
engineering symbols, and simple graphics characters.
These simple graphics characters allow lines, and boxes
in applications can be created (Figs. 16.1 and 16.2).

Windows ASCII characters

ASCII control characters do have meaning in Windows
applications and do not have corresponding graphics
characters for video RAM. The Windows character set
starts with the “Blank” (ASCII 0x020) and only has the
232 upper characters defined. This character set is
based on ASCII with the upper 128 characters defined
for special functions and “National Languages” (Fig.
16.3).

EBCDIC

“Extended Binary-Coded Decimal Interchange Code”.
In the Table below, empty spaces do not have any char-
acters. Note that EBCDIC is an 8-bit code.

612 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 612

Data Tables 613

Figure 16.1 IBM PC “Extended ASCII” Set 0-0x07F

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 613

614 Chapter 16

Figure 16.2 IBM PC “Extended ASCII” Set 0x080-0x0FF

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 614

Data Tables 615

Figure 16.3 Microsoft Windows “Arial” Font

3-0 7-4> 0 1 2 3 4 5 6 7 8 9 A B C D E F
V
0 SP & - 0
1 / a j A J 1
2 b k s B K S 2
3 c l t C L T 3
4 d m u D M U 4
5 LF e n v E N V 5
6 f o w F O W 6
7 g p x G P X 7
8 h q y H Q Y 8
9 i r z I R Z 9
A CT ! :
B . $, #
C < * % @
D () _
E � ; > =
F | ? “

“SP” is “Space” and “CT” is a “Cents” (“¢”) character.

Audio Notes

Notes around Middle “C”. Note that an Octave above is
twice the note frequency and an Octave below is one-
half the note frequency.

Note Frequency
G 392 Hz

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 615

616 Chapter 16

G# 415.3 Hz
A 440 Hz
A# 466.2 Hz
B 493.9 Hz
C 523.3 Hz
C# 554.4 Hz
D 587.3 Hz
D# 622.3 Hz
E 659.3 Hz
F 698.5 Hz
F# 740.0 Hz
G 784.0 Hz
G# 830.6 Hz
A 880.0 Hz
A# 932.3 Hz
B 987.8 Hz

“Touch-Tone” Telephone Frequencies
Frequency 1209 Hz 1336 Hz 1477 Hz
697 Hz 1 2 3
770 Hz 4 5 6
852 Hz 7 8 9
941 Hz * 0 #

Modem “AT” Commands

“AT” refers to the command “prefix” that is sent before
each command to the modem. All Commands (except
for “A/”) must start with the ASCII Characters “AT” and
end with an ASCII Carriage Return (0x00D).

Command “A/” will cause the modem to repeat the
last command. The command will repeat upon receipt of
the “/” character.

Command “+++” will force the modem from “on-line”
state to local (“AT Command Set”) state. Do not pass
data to the modem for one second before and one sec-
ond after this command.

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 616

617

Command Operation Expected Reply
AT If “AT” Sent without a prefix, then Modem is tested “OK”
A “ATA” forces the modem to take the line “off hook”. “OK”

Before executing this command, make sure the string
“RING” has been received by the modem

B# Set the Communications Preference “OK”
= 0, CCITT Mode
= 1, Bell 103/212A
Default - V.21/V.22 (High Speed)

DP “ATDP #######” Dial the Specified Number using “Pulse NO DIALTONE
Dialing”. “,” in digit string causes a delay. “W” in NO ANSWER
digit string causes the modem to wait for a dial tone NO CARRIER
before continuing. “:” in digit string causes a wait BUSY
for calling card tone. “@” in digit string causes a CONNECT 300
wait for quiet period “!” in digit string causes the CONNECT 300/REL
modem to go on hook and off hook momentarily. “R” at CONNECT 1200
the end of the digit string causes the modem to go CONNECT 1200/REL
on hook and into “auto answer” mode after dialing. CONNECT 2400
“;” at the end of the digit string causes the modem CONNECT 2400/REL
to go into the local command state after connecting. CONNECT 4800
“S#” dials the number stored in location “#” CONNECT 4800/REL

CONNECT 7200
CONNECT 7200/REL
CONNECT 9600
CONNECT 9600/REL
CONNECT 12000
CONNECT 12000/REL
CONNECT 14400
CONNECT 14400/REL

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
1
7

Command Operation Expected Reply
DT “ATDT #######” Dial the Specified Number using “Tone NO DIALTONE

Dialing”. “,” in digit string causes a delay. “W” in NO ANSWER
digit string causes the modem to wait for a dial tone NO CARRIER
before continuing. “:” in digit string causes a wait BUSY
for calling card tone. “@” in digit string causes a CONNECT 300
wait for quiet period. “!” in digit string causes the CONNECT 300/REL
modem to go on hook and off hook momentarily. “R” at CONNECT 1200
the end of the digit string causes the modem to go on CONNECT 1200/REL
hook and into “auto answer” mode after dialing. “;” at CONNECT 2400
the end of the digit string causes the modem to go CONNECT 2400/REL
into the local command state after connecting. “S#” CONNECT 4800
dials the number stored in location “#” CONNECT 4800/REL

CONNECT 7200
CONNECT 7200/REL
CONNECT 9600
CONNECT 9600/REL
CONNECT 12000
CONNECT 12000/REL
CONNECT 14400
CONNECT 14400/REL

E# Turn on or off the AT Command “Echo” OK
State.
= 0, Turn off “Echo” Mode
= 1, Turn on “Echo” Mode (Default)

H[#] First Enter “+++” Command and then send OK
“ATH#”.
= 0, Put modem on hook
= 1, Put modem off hook

618

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
1
8

I# Request Modem Information # = 0, Product ID
= 1, Modem Code
= 2, “OK”
= 3, Country

Code
= 4, Return

Features
L# Speaker Code (0 Soft, 9 Loud) OK
M# Control Speaker OK

= 0, Turn off Speaker
= 1, Turn on Speaker until Carrier

Established (Default)
= 2, Leave Speaker on Continuously
= 3, Speaker on except when dialing

N# Specify Communication Preference OK
= 0, Use S37 for Speed Selection. If

S37 = 0, then connect at
Highest Speed Possible

= 1, Connect at Speed Set in S37
O# Return to on line state OK

= 0, Return to on line state after
using “+++” Command Sequence

= 1, Return to on line state after
Carrier “retrain”

P Enable Pulse Dialing
Q# Specify modem reply returned. See “V#” OK

= 0, Send Result Codes (Default)
= 1, Turn off Messages
= 2, Send Result Codes when

Originating call

619

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
1
9

Command Operation Expected Reply
S#? Return the Contents of the Register “#” Register Contents
S#=Constant Set the Register “#” to “Constant” OK
T Enable Tone Dialing
V# Verbalize Commands. See “Q#” OK

= 0, Displays Response Numbers
= 1, Displays Response Reply (Default)

W# Process Result Codes OK
= 0, Do not display “Carrier”

Information (Default)
= 1, Display “Carrier” Information

X# Output Active Result Codes OK
= 0, Return only Error and “CONNECT”

Replies
= 1, Return only Error and Initial

“CONNECT” Replies
= 2, Return only Error and Initial

“CONNECT” Replies
= 3, Return all Error and Initial

“CONNECT” Replies
= 4, Return all Replies (Default)

Y# Indicate “Break” interval OK
= 0, Breaks are Ignored (Default)
= 1, Hang up when Break Received
= 2, Return to Command State but

do NOT hang up when Break
Received

Z# Modem Reset OK
= n, Load Profile n

620

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
2
0

&F Recall Default Profile OK
&G# Specify Guard Tone Transmission OK

= 0, No Guard Tone (Default)
= 1, Output 1.8 KHz Guard Tone

&L# Specify Leased Line for Signal Lock OK
= 0, Dial up line (Default)
= 1, Conditioned Leased Line

&Q# Select Connection Mode OK
= 0, Asynchronous, No Error Control
= 5, Fastest Connection Possible made,

Fallback if Problems
&V Display Current and Saved Profiles Active Profile

Saved Profile 0
Saved Profile 1
Saved Telephone
Numbers

&W# Save Current Profile OK
= 0, Save Current in Profile 0
= 1, Save Current in Profile 1

&Y# Specify Start up Profile “#” OK
&Z#=###... Save Specified Telephone Number. Note OK

Digit String can have the parameters
Listed in “DP” and “DT”

621

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
2
1

Modem registers

All registers are 8 bits in size and take the range 0x000
to 0x0FF unless otherwise noted. Registers handle nu-
meric data as decimal rather than Hex. Below are Hex
Values shown for compatibility with this chapter.

622 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 622

Register Description Default
S0 Number of Rings before Auto-Answer 0
S1 Ring Counter N/A
S2 Escape Character (7 Bit ASCII) 0x02B
(“�”)
S3 Line End Character 0x00D (CR)
S4 Line Feed Character 0x00A (LF)
S5 Backspace Character 0x008 (BS)
S6 Initial Dialing Wait (in Seconds) 2
S7 Carrier Wait (Seconds) 50
S8 Pause Time (Seconds) 2
S9 Carrier Detect Response Time 6

(1/10 Seconds)
S10 Disconnect Time (1/10 Seconds) 14
S11 Tone Dialing Spacing (msecs) 95
S12 Escape Code Guard Time (1/50 Seconds) 50
S18 Self Test Duration (Seconds) 0
S36 Negotiation Failure Response (Settings) 5

= 0, Attempt V.42
= 3, Attempt V.42/Attempt MNP
= 4, Attempt V.42/Attempt MNP
= 5, Attempt V.42/Attempt MNP/Attempt

Asynchronous Connection
S37 Desired Connection Speed 0

= 0, Connect at Highest Possible
Speed (Default)

= 3, 300 bps
= 5, 1200 bps
= 6, 2400 bps
= 7, 4800 bps

623

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
2
3

Register Description Default
= 8, 7200 bps
= 9, 9600 bps
= 10, 12000 bps
= 11, 14400 bps

S38 Delay before hang up (Seconds) 0
S46 V.42 bis Data Compression Settings 138

= 136, V.42 only
= 138, V.42 with V.42 bis compression

(Default)
S48 Feature Negotiation 7

= 0, Negotiation Disabled
= 3, Negotiation without Detection

Phase
= 7, Negotiation with Detection Phase

(Default)
S95 Error Control Negotiation Messaging 32

= 1, Not Used
= 4, Enables Carrier Messages Only
= 8, Enables Carrier and Protocol

Messages Only
= 32, Enables Carrier, Protocol and

Compression Messages (Default)

624

5
1
9
4

P
r
e
d
k
o

P
o
c
k
e
t

C
h
a
p
t
e
r

1
6

9
/
2
5
/
0
1

4
:
3
1

P
M

P
a
g
e

6
2
4

Morse Code

“.” - Dot
“-” - Dash
Character Code
A .-
B -...

C -.-.

D -..

E .

F ..-.

G --.

H

I ..

J .---
K -.-
L .-..

M --
N -.

O ---
P .--.

Q --.-
R .-.

S ...

T -
U ..-
V ...-
W .-
X -..-
Y -.--
Z --..

1 .----
2 ..---
3 ...--
4 -
5

6 -....

7 --...

8 ---..

9 ----.

0 -----
Period .-.-.-
, --..-
: ---..

Dash -...-

Data Tables 625

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 625

/ -..-.

? ..--..

Error

End Trans .-.-.

Inv Trans -.-

Phonetic Alphabets

Letter Engineering Aviation
A Able Alpha
B Baker Bravo
C Charlie Charlie
D Dog Delta
E Easy Echo
F Fox Foxtrot
G George Gulf
H Harry Hotel
I Izzy India
J Joe Juliet
K Kitten Kilo
L Larry Lima
M Mike Mike
N Nancy November
O Oscar Oscar
P Peter Papa
Q Quincy Quebec
R Robert Romeo
S Sam Sierra
T Tom Tango
U Under Uniform
V Vic Victor
W Walter Whiskey
X X-Ray X-Ray
Y Young Yankee
Z Zebra Zulu

“Ten” Radio Codes

Code Message
10-1 Receiving Poorly, Bad Signal
10-2 Receiving OK, Strong Signal
10-3 Stop Transmitting
10-4 Message Received

626 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 626

10-5 Relay Message
10-6 Busy, Please Stand By
10-7 Out of Service
10-8 In Service
10-9 Repeat Message
10-10 Finished, Standing By
10-11 Talk Slower
10-12 Visitors Present
10-13 Need Weather/Road Conditions
10-16 Pickup Needed at
10-17 Urgent Business
10-18 Is there anything for us
10-19 Nothing for you, Return to Base
10-20 My Location is
10-21 Use a Telephone
10-22 Report in Person to
10-23 Stand By
10-24 Finished Last Assignment
10-25 Contact
10-26 Disregard Last Information
10-27 I’m Changing to Channel
10-28 Identify your Station
10-29 You Time is up for Contact
10-30 Does not Conform to FCC Rules
10-32 I’ll Give you a Radio Check
10-33 Emergency Traffic at this Station
10-34 Help Needed at this Station
10-35 Confidential Information
10-36 The Correct Time is
10-37 Wrecker needed at
10-38 Ambulance needed at
10-39 Your Message has been Delivered
10-41 Please Change to Channel
10-42 Traffic Accident at
10-43 Traffic Congestion at
10-44 I have a Message for
10-45 All Units Within Range Please Report In
10-50 Break Channel
10-60 What is the Next Message Number
10-62 Unable to Copy, Please call on Telephone
10-63 Net Directed to
10-64 Net Clear
10-65 Standing By, Awaiting Your Next Message
10-67 All Units Comply
10-70 Fire at

Data Tables 627

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 627

10-71 Proceed with Transmission in Sequence
10-73 Speed Trap at
10-75 Your Transmission is Causing Interference
10-77 Negative Contact
10-81 Reserve Hotel Room for
10-82 Reserve Room for
10-84 My Telephone Number is
10-85 My Address is
10-89 Radio Repairman is Needed at
10-90 I have TVI
10-91 Talk Closer to the Microphone
10-92 Your Transmitter Needs Adjustment
10-93 Check my Frequency on this Channel
10-94 Please give me a Long Count
10-95 Transmit Dead Carrier for 5 Seconds
10-99 Mission Completed, All Units Secure
10-200 Police Needed at

628 Chapter 16

5194 Predko Pocket Chapter 16 9/25/01 4:31 PM Page 628

Chapter

Miscellaneous
Electronics

Resistor Color Coding

Color Coding on resistors is based on the “Bands”
around the device (Fig. 17.1).

The Actual Value is determined as:

Resistance � (First Digit * 10 � Second Digit) *
Multiplier

Number Color Band1 Band2 Band3 Band4 Optional Band5
0 Black N/A 0 0 10 ** 0 N/A
1 Brown 1 1 1 10 ** 1 1% Tolerance
2 Red 2 2 2 10 ** 2 2% Tolerance

17

629

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 629

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

3 Orange 3 3 3 10 ** 3 N/A
4 Yellow 4 4 4 10 ** 4 N/A
5 Green 5 5 5 10 ** 5 0.5% Tolerance
6 Blue 6 6 6 10 ** 6 0.25%

Tolerance
7 Violet 7 7 7 10 ** 7 0.1% Tolerance
8 Gray 8 8 8 10 ** 8 0.05%

Tolerance
9 White 9 9 9 10 ** 9 N/A
N/A Gold N/A N/A N/A 10 ** -1 5% Tolerance
N/A Silver N/A N/A N/A 10 ** -2 10% Tolerance

Electromagnetic Spectrum

Frequency Use
0 Hz Direct Current (DC)

15-20,000 Hz Audio Frequencies
30-15,000 Hz Human Hearing
16-4186.01 Hz Musical Scales
10 KHz - 16 KHz “Ultrasonics”

3-30 KHz Very Low Frequency
3-30 Hz Extremely Low Frequency

Radio Transmissions
30-300 Hz Ultra Low Frequency Radio

Transmissions

30 KHz - 300 MHz Radio Frequencies
53.5 KHz - 170.5 KHz AM Broadcast Bands

630 Chapter 17

Figure 17.1 Resistor Bands

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 630

3.5 MHz - 4 MHz 80 Meter Amateur Band
7 MHz - 7.3 MHz 40 Meter Amateur Band
10.100 MHz - 10.150 MHz 30 Meter Amateur Band
14.10 MHz - 14.35 MHz 20 Meter Amateur Band
18.068 MHz - 18.168 MHz 17 Meter Amateur Band
21.00 MHz - 21.45 MHz 15 Meter Amateur Band
24.890 MHz - 24.990 MHz 12 Meter Amateur Band
26.965 MHz - 27.405 MHz Citizens Band (“CB”)
26.95 MHz - 27.54 MHz Industrial, Scientific,

Medical Use
28.00 MHz - 29.70 MHz 10 Meter Amateur Band

30 MHz - 300 MHz Very High Frequencies
30 MHz - 50 MHz Police, Fire, Forest,

Highway, Railroad
50 MHz - 54 MHz 6 Meter Amateur Band
54 MHz - 72 MHz TV Channels 2 to 4
72 MHz - 76 MHz Government
76 MHz - 88 MHz TV Channels 5 and 6
88 MHz - 108 MHz FM Broadcast Band
108 MHz - 118 MHz Aeronautical Navigation
118 MHz - 136 MHz Civil Communication Band
148 MHz - 174 MHz Government
144 MHz - 148 MHz 2 Meter Amateur Band
174 MHz - 216 MHz TV Channels 7 through 13
216 MHz - 470 MHz Miscellaneous Communication
220 MHz - 225 MHz 1 1/4 Meter Amateur Band
225 MHz - 400 MHz Military
420 MHz - 450 MHz 0.7 Meter Amateur Band
462.55 MHz - 563.20 MHz Citizens Band

300 MHz - 3000 MHz Ultra High
Frequencies/Radar

470 MHz - 806 MHz TV Channels 14 through 69
806 MHz - 890 MHz Cellular Telephone
890 MHz - 3000 MHz Miscellaneous Communication
3 GHz - 30 GHz Miscellaneous

Communication/Radar

30 GHz - 300 GHz Super High
Frequencies/Radar

Wavelength Radiation Type
30 um - 0.76 um Infrared Light and Heat

Miscellaneous Electronics 631

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 631

0.76 um - 0.39 um Visible Light
6470 - 7000 Angstroms Red Light
5850 - 6470 Angstroms Orange Light
5750 - 5850 Angstroms Yellow Light
5560 - 5750 Angstroms Maximum Visibility Light
4912 - 5560 Angstroms Green Light
4240 - 4912 Angstroms Blue Light
4000 - 4240 Angstroms Violet Light

320 - 4000 Angstroms Ultraviolet Light

0.032 - 0.00001 um X-Rays

0.00001 - 0.0000006 um Gamma Rays

< 0.0005 Angstroms Cosmic Rays

Radar bands

Frequency Band
390 - 1,550 MHz L
1,550 - 5,200 MHz S
5,200 - 10,900 MHz X
10,900 - 36,000 MHz K
36,000 - 46,000 MHz Q
46,000 - 56,000 MHz V
56,000 - 100,000 MHz W

Digital Logic

The Output/Threshold Levels for �5V Logic is:

Technology Input Output “Low” Output “High”
Threshold

TTL 1.4 Volts 0.3 Volts 3.3 Volts
HC 2.4 Volts 0.1 Volts 4.9 Volts
HCT 1.4 Volts 0.1 Volts 4.9 Volts
CMOS 2.5 Volts 0.1 Volts 4.9 Volts

Gates

The six most common Logic Gates are:

632 Chapter 17

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 632

Type Symbol State Table
NOT “A” | Output

----+-------
0 | 1
1 | 0

AND “A” “B” | Output
--------+-------
0 0 | 0
0 1 | 0
1 0 | 0
2 1 | 1

OR “A” “B” | Output
--------+-------
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 1

XOR “A” “B” | Output
--------+-------
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 0

NAND “A” “B” | Output
0 0 | 1
0 1 | 1
1 0 | 1
1 1 | 0

NOR “A” “B” | Output
0 0 | 1
0 1 | 0
1 0 | 0
1 1 | 0

Flip flops

Type Symbol Operation
RS “R” “S” | “Q” “_Q” | State

--------+----------+-------
1 0 | 0 1 | Reset
0 1 | 1 0 | Set
0 0 | Qo _Qo | Saved
1 1 | Illegal | Illegal

Miscellaneous Electronics 633

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 633

JK “J” “K” | “Q” “_Q” | State
--------+----------+-------
1 0 | 1 0 | Set
0 1 | 0 1 | Reset
0 0 | Qo _Qo | Saved
1 1 | _Qo Q0 | Toggle

T “T” | “Q” “_Q” | State
--------+----------+-------
0 | Qo _Qo | Saved
1 | _Qo Qo | Toggle

D “D” Clk | “Q” “_Q” | State
--------+----------+-------
0 Up | 0 1 | Latch “0”
1 Up | 1 0 | Latch “1”
x Dwn | Qo _Qo | Saved
x 0 | Qo _Qo | Saved
x 1 | Qo _Qo | Saved

634 Chapter 17

5194 Predko Pocket Chapter 17 9/25/01 4:32 PM Page 634

Chapter

Formulas

DC Electronics Formulas

Ohm’s Law:

V = IR

Power:

P = VI

Series Resistance:

Rt = R1 + R2 ...

18

635

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 635

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

Parallel Resistance:

Rt = 1 / ((1/R1) + (1/R2) ...)

Two Resistors in Parallel:

Rt = (R1 * R2) / (R1 + R2)

Series Capacitance:

Ct = 1 / ((1/C1) + (1/C2) ...)

Parallel Capacitance:

Ct = C1 + C2 . . .

Wheatstone Bridge:

636 Chapter 18

AC Electronics Formulas

Resonance:

frequency = 1 / (2 * pi * SQRT(L * C))

RC Time Constant:

Tau = R * C

RL Time Constant:

Tau = L / R

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 636

RC Charging:

V(t) = Vf * (1 - e^(-t/Tau))

i(t) = if * (1 - e^(-t/Tau))

RC Discharging:

V(t) = Vi * e ^ (-t/Tau)

i(t) = ii * e ^ (-t/Tau)

Coil Inductance Formulas:
• Coil around Linear Form:

Inductance = Permeability of Form *
(Number of Turns ^ 2)
* Form Area / Coil Length

• Coil Around Toroid with a square cross-section:

Inductance = ln(Outer Diameter / Inner
Diameter) * Permeability of
Form * (Number of Turns ^ 2
) * Thickness of Toroid / (2
* pi)

Transformer Current/Voltage:
• Turns Ratio � Number of Turns on Primary (“p”)

Side/Number of Turns on Secondary (“s”) Side

Turns Ratio = Vs / Vp = Ip / Is

• Transmission Line Characteristic Impedance:

Zo = SQRT(L / C)

Formulas 637

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 637

Mathematical Formulas

Frequency = Speed / Wavelength

For Electromagnetic Waves:

Frequency = c / Wavelength

Perfect Gas Law:

PV = nRT

Boolean Arithmetic

Identify Functions:

A AND 1 = A
A OR 0 = A

Output Set/Reset:

A AND 0 = 0
A OR 1 = 1

Identity Law:

A = A

Double Negation Law:

NOT(NOT(A)) = A

Complementary Law:

A AND NOT(A) = 0

638 Chapter 18

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 638

A OR NOT(A) = 1

Idempotent Law:

A AND A = A
A OR A = A

Commutative Law:

A AND B = B AND A
A OR B = B OR A

Associative Law:

(A AND B) AND C = A AND (B AND C)
= A AND B AND C

(A OR B) OR C = A OR (B OR C)
= A OR B OR C

Distributive Law:

A AND (B OR C) = (A AND B) OR
(A AND C)

A OR (B AND C) = (A OR B) AND
(A OR C)

De Morgan’s Theorem:

NOT(A OR B) = NOT(A) AND NOT(B)
NOT(A AND B) = NOT(A) OR NOT (B)

Note:

AND is often represented as multiplication, nothing
between terms, “.” or “*”.

OR is often represented as addition with “�” between
terms.

Formulas 639

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 639

Conversions

1 Inch � 2.54 Centimeters

1 Mile � 1.609 Kilometers

1 Ounce � 29.57 Grams

1 Gallon � 3.78 Liters

1 Atmosphere � 29.9213 Inches of Mercury

� 14.6960 Pounds per Square Inch

� 101.325 kiloPascals

10,000,000,000 Angstroms � 1 Meter

1,000,000 Microns � 1 Meter

Tera � 1,000 Giga

Giga � 1,000 Mega

Mega � 1,000 Kilo

Kilo � 1,000 Units

Unit � 100 Centi

Unit � 1,000 Milli

1 Hour � 3,600 Seconds

1 Year � 8,760 Hours

640 Chapter 18

5194 Predko Pocket Chapter 18 9/25/01 4:32 PM Page 640

Chapter

Resources

Microchip

Microchip’s corporate headquarters is

Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224
Phone: (480) 786-7200
Fax: (480) 917-4150

Their Web site (“Planet Microchip”) is at
http://www.microchip.com and contains a complete

19

641

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 641

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

set of data sheets in .pdf format for download as well as
the latest versions of MPLAB. Also on the website is the
link to http://buy.microchip.com, which is Microchip’s
on-line ordering system for parts and development
tools.

Microchip puts on a series of seminars throughout the
world every year. Information on these events can be
found on the microchip Web page.

PICmicro® MCU Books

Note that Microchip has excellent datasheets available
for download from their Web site as well as available on
CD-ROM.

Programming and Customizing the PICmicro® MCU

Eight Bit Microcontroller—Second Edition

Author: M. Predko
ISBN: 0-07-136175-8

Design with PIC Microcontrollers

Author: J. B. Peatman
ISBN: 0-13-759259-0

PICTUTOR

Author: J. Becker
URL:

http://www.matrixmultimedia.co.uk/picprods.htm

PIC’n Techniques

Author: D. Benson
ISBN: 0-9654162-3-2

642 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 642

PIC’n Up the Pace

Author: D. Benson
ISBN: 0-9654162-1-6

Serial PIC’n

Author: D. Benson
ISBN: 0-9654162-2-4

Easy PIC’n

Author: D. Benson
ISBN: 0-9654162-0-8

The Microcontroller Beginner’s Handbook—

2nd Edition

Author: L. Duarte
ISBN: 0-79061-153-8

An Introduction to PIC Microcontrollers

Author: R. A. Penfold
ISBN: 0-85934-394-4

Practical PIC Microcontroller Projects

Author: R. A. Penfold
ISBN: 0-85934-444-4

A Beginners Guide to the Microchip PIC—2nd

Edition

Author: N. Gardner
ISBN: 1-899013-01-6

PIC Cookbook

Author: N. Gardner
ISBN: 1-899013-02-4

Useful Books

Here are a collection of books that are useful for devel-
oping electronics and software for applications. Some of

Resources 643

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 643

these are hard to find, but definitely worth the effort in
finding them in a used bookstore.

The Art of Electronics–1989

Horowitz and Hill’s definitive book on electronics—a
complete electrical engineering course wrapped up in
1125 pages. Some people may find it to be a bit too com-
plex, but just about any analog electronics question you
could have will be answered in this book. The digital in-
formation in this book is less complete.

ISBN: 0-521-37095-7

Bebop to the Boolean Boogie–1995

Somewhat deeper in digital electronics (and less seri-
ous) than The Art of Electronics, Clive Maxwell’s intro-
duction to electronics stands out with clear and
insightful explanations of how things work and why
things are done the way they are. It distinguishes itself
from other books by explaining Printed Wiring Assembly
technology (PCB Boards, Components, and Soldering).
This book complements The Art of Electronics very
nicely.

ISBN: 1-878707-22-1

The Encyclopedia of Electronic Circuits–Volume 1 to 7

Rudolf Graf’s Encyclopedia series of Electronic
Circuits is an excellent resource of circuits and ideas
that have been cataloged according to circuit type. Each
book contains thousands of circuits and can really
make your life easier when you are trying to figure out
how to do something. Each volume contains an index
listing circuits for the current volume and the previous
ones.

644 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 644

Volume 1, ISBN: 0-8306-1938-0; Volume 2, ISBN: 0-
8306-3138-0; Volume 3, ISBN: 0-8306-3348-0; Volume 4,
ISBN: 0-8306-3895-4; Volume 5, ISBN: 0-07-011077-8;
Volume 6, ISBN: 0-07-011276-2; Volume 7, ISBN: 0-07-
015116-4.

CMOS Cookbook–Revised 1988

In CMOS Cookbook, Don Lancaster introduces the
reader to basic digital electronic theory, while also ex-
plaining the operation of CMOS gates, providing hints on
soldering and prototyping, listing common CMOS parts
(along with TTL pinout equivalents) and providing a
number of example circuits (including a good basic def-
inition of how NTSC video works). The update by
Howard Berlin has made sure the chips presented in the
book are still available. In the 1970s, Don Lancaster also
wrote the TTL Cookbook, 555 Timer Cookbook, and
Active Filter Cookbook.

ISBN: 0-7506-9943-4

The TTL Data Book for Design Engineers–Texas
Instruments

I have a couple of 1981 printed copies of the second
edition of this book and they are all falling apart from
overuse. The Texas Instruments TTL data books have
been used for years by hundreds of thousands of engi-
neers to develop their circuits. Each datasheet is com-
plete with pinouts, operating characteristics, and
internal circuit diagrams. While the data books are not
complete for the latest “HC” parts, they will give you just
about everything you want to know about the operation
of small scale digital logic.

ISBN: N/A

Resources 645

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 645

PC PhD–1999

This book/CD-ROM package was written to give a
clear introduction to the PC, from a “bottoms up” hard-
ware perspective as well as an explanation of how
code works in the PC. Along with explaining the archi-
tecture, there are also over twenty applications that will
help the reader understand exactly how MS-DOS and
Windows code executes in the PC and how hardware is
accessed using the various interfaces available within
the PC.

ISBN: 0-07-134186-2

PC Interfacing Pocket Reference–1999

This book is designed as an easy to use pocket refer-
ence for programmers and engineers working on the PC.
Along with detailing the PC’s architecture, the Intel
8086 and later microprocessors are described. The in-
struction sets used in the processor are listed along with
addressing and value information. The information is
useful for all PCs from the first 8088s to the most mod-
ern multi-Pentium III systems.

ISBN: 0-07-135525-1

The Programmer’s PC Source Book–2nd Edition, 1991

Thom Hogan’s 850 page book is just about the best
and most complete reference that you can find any-
where on the PC. This book basically ends at the 386 (no
486, Pentiums of any flavor, PCI, Northbridge,
Southbridge or SuperIO, or any ASICs of any type), but
is the most complete PC reference that explains BIOS,
all the “Standard” I/O, DOS and Windows 3.x Interfaces
you can find.

ISBN: 1-55615-118-7

646 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 646

The Embedded PC’s ISA Bus: Firmware, Gadgets and

Practical Tricks–1997

Ed Nisley’s book is an almost complete opposite to the
previous two books and The Programmer’s PC Source

Book. Where the others’ books focus is on documenting
the innards of the PC, Nisley’s shows you how to practi-
cally interface to the PC’s "Industry Standard
Architecture" ("ISA") bus and if you follow through the
book you will end up with an LCD graphic display.
Theory, register addresses, and programming informa-
tion is available in this book, but it is presented as Ed
works through the projects. This book is a resource that
you can go back to and look at actual scope photographs
of bus accesses or discussions on how to decode bus sig-
nals. There are a lot of great tricks in this book that can
be used for many different PC interfacing applications.

ISBN: 1-5739-8017-X

Handbook of Microcontrollers–1998

Introduction and complete reference package for
modern 8-bit embedded microcontrollers. As well as
providing technical and processor programming infor-
mation on the: Intel 8051, Motorola 68HC05, Microchip
PICmicro® MCU, Atmel AVR and Parallax Basic Stamp,
datasheets, development tools and sample applications
are included on the included CD-ROM. To help with
your future applications, interfacing to RS-232, I2C,
LCD and other devices is explored and a fair amount of
space is devoted to such advanced topics as Fuzzy
Logic, Compilers, Real Time Operating Systems (I have
included a sample one for the 68HC05), and Network
Communications.

ISBN: 0-07-913716-4

Resources 647

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 647

IBM PC and Assembly Language and Programming–

4th Edition, 1997

This is an excellent introduction to assembly language
programming with a fairly low level approach concen-
trating on Microsoft’s “MASM” and Borland’s “TASM”.
“Debug.com” is used exclusively as a debug tool, which
makes this book reasonably inexpensive to get involved
with.

ISBN: 1-1375-6610-7

The C Programming Language–2nd Edition, 1988

Brian W. Kernighan, Dennis M. Ritchie’s classic text
explaining the “C” programming language has not lost
any of its usefulness since its first introduction. This
book has probably been used by more students in more
colleges and universities than any other. Despite the fact
that the book was written originally for a programming
course, the writing is crisp, sharp, and easily under-
standable.

ISBN: 0-13110-362-8

PICList Internet List Server

These guidelines should be used and followed for any
list server or news group. After the guidelines, there are
instructions for subscribing to the PICList.

1. Don't subscribe to a list and then immediately start
sending questions to the list. Instead, wait a day or
so to get the hang of how messages are sent and
replied to on the list and get a "feel" for the best way
of asking questions.

648 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 648

2. Some lists send an email sent to them back to the
author (while others do not). If you receive a copy
of your first email, don’t automatically assume that
it is a "bounce" (wrong address) and resend it. In
this case, you might want to wait a day or so to see
if any replies show up before trying to resend it.
Once you have been on the list for a while, you
should get an idea of how long it takes to show up on
the list and how long it takes to get a reply.

3. If you don’t get a reply to a request, don’t get angry
or frustrated and send off a reply demanding help.
There is a good chance that nobody on the list
knows exactly how to solve your problem. In this
case, try to break down the problem and ask the
question a different way.

4. Do not count on getting replies to questions within
minutes. Nobody on the PICList is paid to reply to
your questions. The majority of people who reply
are doing so to help others. Please respect that and
do not badger, and help out in anyway that you can.

5. If you are changing the "Subject" line of a post,
please reference the previous topic (i.e., put in
"was: '...'"). This will help others keep track of the
conversation.

6. When replying to a previous post, try to minimize
how much of the previous note is copied in your
note and maximize the relevance to your reply. This
is not to say that none of the message should be
copied or referenced. There is a very fine balance
between having too much and too little. The sender
of the note you are replying to should be referenced
(with their name or ID).

Resources 649

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 649

My rule of thumb is, if the original question is less
than ten lines, I copy it all. If it is longer, then I cut it
down (identifying what was cut out with a "SNIP"
Message), leaving just the question and any relevant
information as quoted. Most mail programs will
mark the quoted text with a ">" character, please
use this convention to make it easier for others to
follow your reply.

7. If you have an application that doesn't work, please
don't copy the entire source code into an email and
post it to a list. As soon as I see an email like this I
just delete it and go on to the next one (and I sus-
pect that I’m not the only one). Also, some lists may
have a message size limit (anything above this limit
is thrown out) and you will not receive any kind of
confirmation.

If you are going to post source code: keep it short.
People on the list are more than happy and willing
to answer specific questions, but simply copying the
complete source code in the note and asking a ques-
tion like "Why won’t the LCD display anything" re-
ally isn't useful for anybody. Instead, try to isolate
the failing code and describe what is actually hap-
pening along with what you want to happen. If you
do this, chances are you will get a helpful answer
quickly.

A good thing to remember when asking why
something won't work, make sure you discuss the
hardware that you are using. If you are asking about
support hardware (i.e., a programmer or emulator),
make sure you describe your PC (or workstation)
setup. If your application isn't working as expected,
describe the hardware that you are using and what

650 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 650

you have observed (i.e., if the clock lines are wig-
gling, or the application works normally when you
put a scope probe on a pin).

8. You may find a totally awesome and appropriate
Web page and want to share it with the list. Please
make it easier on the people in the list to cut and
paste the URL by putting it on a line all by itself in
the format:

http://www.awesome-pic-page.com

9. If you have a new application, graphic, or whatever,
that takes up more than 1K which you would like to
share with everyone on the list, please don’t send it
as an attachment in a note to the list. Instead, either
indicate that you have this amazing piece of work
and tell people that you have it and where to re-
quest it (either to you directly or to a Web server ad-
dress). If a large file is received many list servers
may automatically delete it (thrown into the “bit
bucket”) and you may or may not get a message
telling you what happened.

If you don’t have a Web page of your own or one
you can access, requesting that somebody put it on
their Web page or ftp server is acceptable.

10. Many of these List Servers are made available, main-
tained, and/or moderated by a device manufacturer.
Keep this in mind if you are going to advertise your
own product and understand what the company’s
policy is on this before sending out an advertise-
ment.

The PICList is quite tolerant of advertisements of
relevant products. If you are boarding puppies or

Resources 651

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 651

have something equally non-PICmicro® MCU re-
lated, find somewhere else to advertise it.

11. Putting job postings or employment requests may

be appropriate for a list (like the previous point,
check with the list’s maintainer). However, I don't
recommend that the rate of pay or conditions of em-
ployment should be included in the note (unless
you want to be characterized as cheap, greedy, un-
reasonable, or exploitive).

12. "Spams" are sent to every list server occasionally.
Please do not "reply" to the note even if the message
says that to get off the spammer’s mailing list just
"reply". This will send a message to everyone in the
list. If you must send a note detailing your disgust,
send it to the spam originator (although to their ISP
will probably get better results).

NOTE: There are a number of companies sending
out bogus spams to collect the originating addresses
of replying messages and sell them to other compa-
nies or distributors of addresses on CD-ROM. When
receiving a spam, see if it has been sent to you per-
sonally or the list before replying—but beware if
you are replying to the spam, you may be just send-
ing your e-mail address for some company to resell
to real spammers.

13. Following up with the previous message, if you are go-
ing to put in pointers to a list server, just put a hyper-
link to the list server request email address, NOT TO
THE LIST SERVER ITSELF. If you provide the ad-
dress to the list server, spammers can pull the link
from your page and use it as an address to send spams
to. By not doing this, you will be minimizing the op-
portunity for spammers to send notes to the list.

652 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 652

14. By sending off-topic messages, while it is tolerated,
you will probably bring lots of abuse upon yourself,
especially if you are belligerent about it. An occa-
sional notice about something interesting or a joke
is fine as long as it is unusual and not likely to attract
a lot of replies.

If you feel it is appropriate to send an off-topic
message; some lists request that you put "[OT]" in
the subject line, some members of the list use mail
filters and this will allow them to ignore the off-topic
posts automatically.

Eventually a discussion (this usually happens
with off-topic discussions) will get so strung out
that there are only two people left arguing with each
other. At this point stop the discussion entirely or go
‘private’. You can obtain the other person’s e-mail
address from the header of the message—send your
message to him or her and not to the entire list.
Everyone else on the list would have lost interest a
long time ago and probably would like the discus-
sion to just go away (so oblige them).

15. Posts referencing Pirate sites and sources for
"cracked" or "hacked" software are not appropriate
in any case and may be illegal. If you are not sure if
it is okay to post the latest software you've found on
the Web, then DON’T until you have checked with
the owners of the software and gotten their permis-
sion. It would also be a good idea to indicate in your
post that you have the owner’s permission to dis-
tribute cracked software.

A variety of different microcontrollers are used in
"Smart Cards" (such as used with Cable and
Satellite scrambling) or video game machines and

Resources 653

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 653

asking how they work will probably result in abusive
replies at worst or having your questions ignored at
best. If you have a legitimate reason for asking about
smart cards, make sure you state it in your email to
the list.

16. When you first subscribe to a list, you will get a re-
ply telling you how to unsubscribe from the list.
DON'T LOSE THIS NOTE. In the past in some lists,
people having trouble unsubscribing have sent
questions to the list asking how and sometimes get-
ting angry when their requests go unheeded. If you
are trying to unsubscribe from a list and need help
from others on the list, explain what you are trying
to do and how you've tried to accomplish it.

17. When working with a list server, do not have auto-
mated replies sent. If they are enabled, then all mes-
sages sent by the server to you will be replied to
back to the list server. This is annoying for other list
members and should be avoided.

18. Lastly, please try to be courteous to all on the list.
Others may not have your knowledge and experi-
ence or they may be sensitive about different issues.
There is a very high level of professionalism on all
the lists presented below, please help maintain it.
Being insulting or rude will only get you the same
attitude back and probably will lead to your posts
and legitimate questions being ignored in the future
by others on the list who don't want to have any-
thing to do with you.

To put this succinctly: "Don’t be offensive or eas-

ily offended."

654 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 654

To subscribe to the PICList, send an email to

listserv@mitvma.mit.edu

with the message:

subscribe piclist <I>your name</I>

in the body of your email.

Save the confirmation message; this will give you the
instructions for signing off the list as well as instructions
on how to access more advanced PICList List Server
functions.

To sign off the list, send a note to the same address
(listserv@mitvma.mit.edu) with the message:

signoff piclist

When signing off the PICList make sure that you are
doing it from the ID that you used to sign on to the list.

Once you have subscribed to the PICLIST, you will be-
gin receiving mail from

piclist@mitvma.mit.edu

Emails can be sent to this address directly or can be
replied to directly from your mailer. The list archive is
available at:

http://www.iversoft.com/piclist/

and it has a searchable summary of the emails that have
been sent to the PICList.

Resources 655

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 655

Recommended PICmicro® MCU Web Sites

At the time of writing, there is somewhere in the neigh-
borhood of one thousand Web pages devoted to the
PICmicro® MCU with different applications, code snip-
pets, code development tools, programmers, and other
miscellaneous information on the PICmicro® MCU and
other microcontrollers. The following sites are excellent
places to start and work through.

The author’s Web page has the latest PICmicro® MCU
information as well as errata for this book and sample
PICmicro® MCU projects.

http://www.myke.com

Alexy Vladimirov’s outstanding list of PICmicro® MCU
resource pages. Over 700 listed as of February 2000.

http://www.geocities.com/SiliconValley/Way/5807/

Bob Blick’s Web site. Some interesting PICmicro®

MCU projects that are quite a bit different than the run
of the mill.

http://www.bobblick.com/

Scott Dattalo’s highly optimized PICmicro® MCU
math algorithms. The best place to go if you are looking
to calculate Trigonometric Sines in a PICmicro® MCU.

http://www.dattalo.com/technical/software/software.html

Along with the very fast PICmicro® MCU routines,
Scott has also been working on some GNU General
Purpose License Tools designed to run under Linux.

656 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 656

The tools can be downloaded from:

http://www.dattalo.com/gnupic/gpsim.html

http://www.dattalo.com/gnupic/gpasm.html

Marco Di Leo’s “PIC Corner”. Some interesting appli-
cations including information on networking PICmicro®

MCUs and using them for cryptography.

http://members.tripod.com/~mdileo/

Dontronics Home Page. Don McKenzie has a wealth of
information on the PICmicro® MCU as well as other elec-
tronic products. There are lots of useful links to other
sites and it is the home of the SimmStick.

http://www.dontronics.com/

Fast Forward Engineering. Andrew Warren’s page of
PICmicro® MCU information and highly useful ques-
tion/answer page.

http://home.netcom.com/~fastfwd/

Steve Lawther’s list of PICmicro® MCU Projects.
Interesting PICmicro® MCU (and other microcontroller)
projects.

http://ourworld.compuserve.com/homepages/steve_lawther/
ucindex.htm

Eric Smith’s PIC Page. Some interesting projects and
code examples to work through.

http://www.brouhaha.com/~eric/pic/

Resources 657

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 657

Rickard’s PIC-Wall. Good site with a design for
PICmicro® MCU-based composite video game generator.

http://www.efd.lth.se/~e96rg/pic.html

PicPoint—Lots of good projects to choose from in-
cluding 5 MB free to anyone that wants to start their
own PICmicro® MCU Web page.

http://www.picpoint.com/

MicroTronics—Programmers and Application reviews.

http://www.eedevl.com/index.html

Tony Nixon’s “Pic ‘n Poke” Development Systems
Home page to the “Pic ‘n Poke” development system.
This system includes an animated simulator that is an
excellent tool for learning how data flows and instruc-
tions execute in the PICmicro® MCU microcontroller.

http://www.picnpoke.com/

Periodicals

Here are a number of magazines that do give a lot of in-
formation and projects on PICmicro® MCUs. Every
month, each magazine has a better than 50% chance of
presenting a PICmicro® MCU application.

Circuit Cellar Ink

Subscriptions:
P.O. Box 698
Holmes, PA 19043-9613
1(800)269-6301
Web Site: http://www.circellar.com/

BBS: (860)871-1988

658 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 658

Poptronics

Subscriptions:
Subscription Department
P.O. Box 55115
Boulder, CO
1(800)999-7139
Web Site: http://www.gernsback.com

Microcontroller Journal

Web Site: http://www.mcjournal.com/

This is published on the Web.

Nuts & Volts

Subscriptions:
430 Princeland Court
Corona, CA 91719
1(800)-783-4624
Web Site: http://www.nutsvolts.com

Everyday Practical Electronics

Subscriptions:
EPE Subscriptions Dept.
Allen House, East Borough,
Wimborne, Dorset,
BH21 1PF
United Kingdom
+44 (0)1202 881749
Web Site: http://www.epemag.wimborne.co.uk

Useful Web Sites
While none of these are PICmicro® MCU specific, they
are a good source of ideas, information, and products
that will make your life a bit more interesting and
maybe give you some ideas for projects for the
PICmicro® MCU.

Resources 659

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 659

Seattle Robotics Society

http://www.hhhh.org/srs/

The Seattle Robotics Society has lots of information
on interfacing digital devices to such "real world" de-
vices as motors, sensors, and servos. They also do a
lot of exciting things in the automation arena. Most of
the applications use the Motorola 68HC11.

List Of Stamp Applications (L.O.S.A)

http://www.hth.com/losa.htm

The List of Parallax Basic Stamp Applications will give
you an idea of what can be done with the Basic Stamp
(and other microcontrollers, such as the PICmicro®

MCU). The list contains projects ranging from using a
Basic Stamp to giving a cat medication to providing a
simple telemetry system for model rockets.

Adobe PDF Viewers

http://www.adobe.com

Adobe .pdf file format is used for virtually all vendor
datasheets, including the devices presented in this
book (and their datasheets on the CD-ROM).

“PKZip” and “PKUnZip”

http://www.pkware.com

PKWare's "zip" file compression format is a "Standard"
for combining and compressing files for transfer.

Hardware FAQs
http:paranoia.com/~filipg/HTML/LINK/LINK_IN

.html

A set of FAQs (Frequently Asked Questions) about
the PC and other hardware platforms that will come in

660 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 660

useful when interfacing a microcontroller to a Host
PC.

http://www.innovatus.com

Innovatus has made available "PICBots", an interest-
ing PICmicro® MCU simulator which allows programs
to be written for virtual robots which will fight
amongst themselves.

Part Suppliers

The following companies supplied components that are
used in this book. I am listing them because they all pro-
vide excellent customer service and are able to ship
parts anywhere you need them.

Digi-Key

Digi-Key is an excellent source for a wide range of elec-
tronic parts. They are reasonably priced and most or-
ders will be delivered the next day. They are real
lifesavers when you’re on a deadline.

Digi-Key Corporation
701 Brooks Avenue South
P.O. Box 677
Thief River Falls, MN 56701-0677

Phone: 1(800)344-4539 [1(800)DIGI-KEY]
Fax: (218)681-3380

http://www.digi-key.com/

AP Circuits

AP Circuits will build prototype bare boards from your
"Gerber" files. Boards are available within three days. I
have been a customer of theirs for several years and

Resources 661

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 661

they have always produced excellent quality and been
helpful in providing direction to learning how to develop
my own bare boards. Their Web site contains the
“EasyTrax” and “GCPrevue” MS-DOS tools necessary to
develop your own Gerber files.

Alberta Printed Circuits Ltd.
#3, 1112-40th Avenue N.E.
Calgary, Alberta T2E 5T8

Phone: (403)250-3406
BBS: (403)291-9342
Email: staff@apcircuits.com

http://www.apcircuits.com/

Wirz Electronics

Wirz Electronics is a full service Microcontroller compo-
nent and development system supplier. Wirz Electronics
is the main distributor for projects contained in this
book and will sell assembled and tested kits of the proj-
ects. Wirz Electronics also carries the "SimmStick" pro-
totyping systems as well as their own line of motor and
robot controllers.

Wirz Electronics
P.O. Box 457
Littleton, MA 01460-0457

Toll Free in the USA & Canada: 1(888)289-9479
[1(888)BUY-WIRZ]
Email: sales@wirz.com

http://www.wirz.com/

662 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 662

Tower Hobbies

Excellent source for Servos and R/C parts useful in
homebuilt robots.

Tower Hobbies
P.O. Box 9078
Champaign, IL 61826-9078

Toll Free Ordering in the USA & Canada: 1(800)637-
4989
Toll Free Fax in the USA & Canada: 1(800)637-7303
Toll Free Support in the USA & Canada: 1(800)637-
6050
Phone: (217)398-3636
Fax: (217)356-6608
Email: orders@towerhobbies.com

http://www.towerhobbies.com/

Jameco

Components, PC Parts/Accessories, and hard to find
connectors.

Jameco
1355 Shoreway Road
Belmont, CA 94002-4100

Toll Free in the USA & Canada: 1(800)831-4242

http://www.jameco.com/

JDR

Components, PC Parts/Accessories, and hard to find
connectors.

Resources 663

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 663

JDR Microdevices
1850 South 10th St.
San Jose, CA 95112-4108

Toll Free in the USA & Canada: 1(800)538-5000
Toll Free Fax in the USA & Canada: 1(800)538-5005
Phone: (408)494-1400
Email: techsupport@jdr.com
BBS: (408)494-1430
Compuserve: 70007,1561

http://www.jdr.com/JDR

Newark

Components—Including the Dallas Line of Semi-
conductors (the DS87C520 and DS275 is used for
RS-232 Level Conversion in this book).

Toll Free in the USA & Canada: 1(800)463-9275
[1(800)4-NEWARK]

http://www.newark.com/

Marshall Industries

Marshall is a full-service distributor of Philips microcon-
trollers as well as other parts.

Marshall Industries
9320 Telstar Avenue
El Monte, CA 91731
1(800)833-9910

http://www.marshall.com

664 Chapter 19

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 664

Mouser Electronics

Mouser is the distributor for the Seiko S7600A TCP/IP
Stack Chips.

Mouser Electronics, Inc.
958 North Main Street
Mansfield, Texas 76063
Sales: (800) 346-6873
Sales: (817) 483-6888
Fax: (817) 483-6899
Email: sales@mouser.com

http://www.mouser.com

Mondo-tronics Robotics Store

Self-proclaimed as "The World's Biggest Collection of
Miniature Robots and Supplies" and I have to agree with
them. This is a great source for Servos, Tracked
Vehicles, and Robot Arms.

Order Desk
Mondo-tronics Inc.
524 San Anselmo Ave #107-13
San Anselmo, CA 94960

Toll Free in the USA & Canada: 1(800)374-5764
Fax: (415)455-9333

http://www.robotstore.com/

Resources 665

5194 Predko Pocket Chapter 19 9/25/01 4:33 PM Page 665

This page intentionally left blank.

Index

addlw, 31, 41, 63–64, 468
addresses

C language, 590
mid-range device,

154–155
addwf, 23, 31, 42–44, 64–65,

113, 117, 118, 119, 121,
485, 486

ADIF register, 168
ADRES module, 168
ADRESL/ADRESH registers,

168, 182, 197, 255–256
ALUSTA register, 170
analog to digital conversion

(ADC), 252–257, 253

ADCONxx registers,
166–167, 180–182,
195–197, 252–257

AND, 23, 31, 32, 44, 67, 113,
123, 124
16-bit numbers, bitwise

operations, 488
BASIC function,

542

ABS, BASIC function, 541
ABS, PicBasic, 560
AC electronics formulas,

636–637
AC power control, 373, 373

acceleration due to gravity,
606

Access Bank, 143
accumulator, 136, 143
ADCON0/ADCON1 registers,

166–167, 180–182,
195–197, 252–257

Add, 23, 31, 42–43, 63–66,
106, 123

Add Constant, 41
ADD Parm, 113
ADDB, 115
addcf, 106
adddcf, 106, 110
addition

16-bit numbers, 485–488
BASIC function, 541
C language, 593, 594
PicBasic, 560

667

Note: Boldface numbers indicate illustrations.

5194 Pocket Predko Index 9/25/01 4:33 PM Page 667

Copyright 2001 The McGraw-Hill Companies. Click Here for Terms of Use.

AND, continued

bitwise operations, 2,
478–479

Boolean, 638, 639
C language, 593, 594,

595
PicBasic, 560

AND gate, 633, 633

andlw, 23, 31, 44, 67, 113
andwf, 23, 32, 44, 67,

113
ANSI display control

sequences, 609–612
application code template,

539
application software (See

also BASIC; C language;
PICBasic; Visual Basic)
application code

template, 539
BASIC language (See

also BASIC;
PICBasic; Visual
Basic), 540–588

C language (See also C
language), 588–603

include (inc) files,
536

linking–linked
applications, 536–539

standard declaration
files, 536

Visual Basic, 578–588,
578

architectures, processor,
123–150
Access Bank, 143
accumulator, 136, 143
arithmetic logic unit

(ALU), 123–124, 124

BSR Register, 137, 138,
144, 149

call stack, 130, 134
fast stack, 147, 149–150
File (Variable)

Registers, 132
File Register Bank,

137
FSR (index) register,

127, 131, 144–145
INDF register, 145
INTCON register,

134–135
interrupt handler

skeleton, 135–136,
142, 150

interrupt operation,
134–135, 140–141,
150

interrupt requests,
134–135, 142

jumps, 129, 134
low-end, 125–130
memory space, 142
mid-range, 130–136
multiplier, 142
OPTION register, 136

668 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 668

oscillator calibration
(OSCCAL) register,
126

PCL register, 134, 140
PCLATH register, 134,

140, 147
PCLATU register, 147
PIC17Cxx, 136–142,

137

PIC18Cxx, 142–150, 143

PIE/PIR registers,
134–135

program counter,
128–130, 129,
133–134, 133, 137,
139–140, 140, 143,
147–150, 148

push operations, 145
register access,

126–127, 130–132,
131, 137–138,
144–146, 144

reset address, 137, 143
Reset addresses, 126
Special Function

Registers (SFR), 132,
137

STATUS register, 128,
130, 132–133, 136,
138–139, 146–147,
148–149

STKPTR register,
148–149

WREG, 143, 145

arithmetic logic unit (ALU),
123–124, 124

arrays
C language, 589–590
PicBasic, 553

ASC, BASIC function, 545
ASCII code

ANSI display control
sequences, 609–612

backslash characters, C
language, 598

character set/table,
606–607

control characters,
607–609

convert ASCII byte to
hex nybble, 471

convert ASCII to
uppercase, 475

convert nybble to
ASCII, 470–471

IBM PC extended
ASCII, 612, 613, 614

Windows ASCII
characters, 612, 615

assembler directives,
MPLAB, 526–535

assembly language use,
PicBasic, 557

assignment operator
BASIC function, 542
C language, 591

associative law, Boolean,
639

Index 669

5194 Pocket Predko Index 9/25/01 4:33 PM Page 669

astronomical unit (AU), 605
asynchronous serial

communications, 164
asynchronous serial I/O

software routines,
347–357

AT command, modems,
216–221

atan2, C language, 602
ATN, BASIC function, 541
atomic mass unit, 606
audio output, 371–372, 372,

615–616

B, 106
backslash characters, 598
BADRAM, MPLAB
BAKSEL/ BANKISEL,

MPLAB, 526
BASE, BASIC function, 540
base addresses, serial port,

443–444
BASIC language (See also

BASIC; PICBasic; Visual
Basic), 540–588
data types, 540
functions, 540–541,

542–548
Microsoft enhancements,

542–548
operators, 541–542
order of operations, 542
PicBasic, 549–577
variables, 540

Basic SSP (BSSP), 240
bc, 68, 106
bcf, 23, 24, 32, 45, 68, 104,

115, 116, 119
BDC, 106
BEEP, BASIC function, 547
binary numbers, 2
BIOS interfaces

ISA bus, 436–440
parallel port, 459–460

bit banging master interface,
I2C, 334–338

bits per second (bps), 1
bitwise AND, 2
bitwise operations, 478–479

16-bit numbers, 488
C language, 593, 595
PicBasic, 560

bitwise OR, 2
bitwise XOR, 2
bn, 69
bnc, 69, 106
BNDC, 107
bnn, 70
bnov, 70
bnz, 71, 107
Boltzmann entropy constant,

606
books on PICMicro® MCU,

642–648
Boolean arithmetic, 638
boot code, 401–402
bov, 71
bra, 72

670 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 670

Branch, 68, 69, 70, 71, 72,
74, 106, 107

BRANCH, PicBasic, 564
branching, conditional

branching, 465–466
BRANCHL, PicBasic, 564
break, C language, 592,

597
brown out reset circuit, 279,

279

bsf, 45, 72, 104, 115, 119
BSR Register, 137, 138, 144,

149, 169, 172, 203
BSSP modules, 161
btfsc, 24, 32, 33, 45, 72, 115,

116, 117, 118, 120, 121,
122

btfss, 45, 73, 115, 116, 117,
118, 119, 120, 121,
122

btg, 45, 73
bubble sort, compare and

swap if Y greater than
X, 476

buffers, I/O, 161
built-in hardware features,

207–276
analog to digital

conversion (ADC),
252–257, 253

capture/compare/PWM
(CCP) module,
228–232

CCP modules, 228–232

CCP1CON/CCP2CON
registers, 229

CCPR register, 229
comparators, 257–261,

258, 260

configuration registers,
207–208

EEPROM data memory
access, 263–269, 265

EPROM program
memory access,
269–271

flash program memory
access, 271–272

input/output ports,
217–221, 218, 219,

220

INTCON registers, 225
OPTION register,

216–217, 223
oscillators, 208–213,

209, 210, 212

parallel memory,
external, 273–276,
274, 275

parallel slave port
(PSP), 261–263, 261

PIE/PIR registers, 225,
228

PORTxx registers,
217–221, 218, 219,

220

prescaler, 223–224, 224

PWM mode, 230–232

Index 671

5194 Pocket Predko Index 9/25/01 4:33 PM Page 671

sleep function, 213–215,
215

Synchronous Serial
Protocol (SSP)
module, 239–252,
240

T2CON register, 227
TMR0 register/counter,

222–223, 222

TMR1 register, 224–226,
225

TMR2 register, 227–228,
227

TRIS registers,
217–221, 218, 219,

220

USART module,
232–239, 233–236

Watchdog Timer, 221,
221

button interface, 284–287,
284

BUTTON, PicBasic, 564
BUTTON_PAUSE, PicBasic,

555
bytes, 1

counting 1s in a byte,
476–477

generating parity for
byte, 477

bz, 74, 107

C language, 588–603
addresses, 590
arrays, 589–590
assignment, 591
backslash characters,

598
compound assignment

operators, C
language, 594

conditional statements,
591–593

data types, 588
declarations, 588
directives, 595–597
enhancement functions,

603
expressions, 591
Function format, 591
Function prototype, 591
functions, 591, 598–603
Mainline application

statement, 590
operator order, C

language, 594
operators, 593–595
pointers, 590
reserved words, 597
string operations, 589,

601–602
variables, 588

CA2L/CA2H registers,
176–177, 184

CA4L/CA4H registers, 184
calibration register, 157, 220

672 Index

built-in hardware features,
continued

5194 Pocket Predko Index 9/25/01 4:33 PM Page 672

call, 24, 33, 45, 52, 74, 89,
104, 119, 128–130, 140,
149, 156
jump outside current

page, 461–462
call stack, 130, 134
CALL, PicBasic, 564
calloc, C language, 602
capacitance

parallel capacitance,
636

series capacitance, 636
capture and compare

operations
PWM (CCP) module,

228–232
TMR1/TMR2 registers,

160
carry flag, rotating byte in

place, 469
CASE, BASIC function, 544
case, C language, 597
CBLOCK, MPLAB, 526
CCP register, 159, 160–161,

228–232
CCP1CON/CCP2CON

registers, 193–195, 229
CCPRxx registers, 194, 195,

229
ceramic resonator

oscillators, 208, 209,
211

CHAR_PACING, PicBasic,
555

characteristic impedance,
transmission line, 637

charging/discharging, RC,
637

Check Register, 27, 35
CHRS, BASIC function, 545
CIRCLE, BASIC function,

546–547
CJA, 117, 120
CJAE, 117, 121
CJB, 121
CJBE, 121
CJE, 121, 122
CJNE, 122
CLC, 115
Clear, 23, 24, 32, 33, 45, 68,

75, 107
Clear Watchdog Timer, 24,

33, 46, 75
CLEAR, PicBasic, 564
clock

synchronization (See

also TMRxx
registers), 222

USART module,
232–239, 233–236

CLOSE, BASIC function, 548
clr, 112
CLR Parm, 112
CLRB, 115
clrc, 107
clrdc, 107
clrf, 24, 33, 45, 75
clrw, 24, 33, 112

Index 673

5194 Pocket Predko Index 9/25/01 4:33 PM Page 673

clrwdt, 24, 33, 46, 75, 112,
221

clrz, 107
CLS, BASIC function, 545
CLZ, 115
CMCON register, 165–166,

257–258
CMOS, 632
code snippets, 461–481

16-bit pulse
measurement, 5-cycle
delay, 473–474

bitwise operations,
478–479

compare and swap if Y
greater than X, 476

conditional branching,
465–466

constant division,
480–481

constant multiplication,
479–480

convert ASCII byte to
hex nybble, 471

convert ASCII to
uppercase, 475

convert nybble to
ASCII, 470–471

copy bits between
registers, 470

counting 1s in a byte,
476–477

detect change in
register, 474

divide by three,
472–473

generating parity for
byte, 477

increment/decrement w,
468–469

jump outside current
page, 461–462

keeping variable within
range, 477–478

negating register
contents, 467–468

rotating byte in place,
469

swap contents of
registers, 475–476

swap w contents with
register, 475

swapping bit pairs, 478
T0CKI used as interrupt

source pin, 471–472
table code, 462–465
test byte within

register, 474
time delays, 466–467

CODE, MPLAB, 526–527
coil inductance, 637
collisions, SSP module,

251–252, 252

COLOR, BASIC function, 546
color codes, resistors,

629–630, 630

comf, 25, 33, 46, 75–76, 112,
114, 115

674 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 674

comment, BASIC function,
541

CommEvent, Visual Basic
and Windows
programming, 587–588

commutative law, Boolean,
639

comparators, 257–261, 258,

260

CMCON register,
257–258

reference voltages,
259–261

compare and swap if Y
greater than X, 476

Compare, 46–47, 62, 76–77,
78, 102

Complement, 25, 33, 46,
75–76, 124

complementary law,
Boolean, 638

concatenation, BASIC
function, 542

conditional branching,
465–466

conditional statements, C
language, 591–593

CONFIG statements, 208
CONFIG, MPLAB, 527
configuration registers,

207–208
CONST, BASIC function,

543
CONSTANT, MPLAB, 527

constants
16-bit numbers, bitwise

operations, 488
division, 480–481
mathematical constants,

605–606
multiplication, 479–480
physical constants,

605–606
PicBasic, 554

continue, C language, 592,
597

contrast voltage circuit,
LCD, 297, 297

control attributes
(properties), Visual
Basic and Windows
programming, 579,
582–588

control characters, ASCII,
607–609

controls, Visual Basic and
Windows programming,
580–581

conventions, 1–2
conversion table, 640
copy bits between registers,

470
COS, BASIC function, 541
cos, C language, 602
COS, PicBasic, 561
COUNT, PicBasic, 564
counter, program counter,

385–386

Index 675

5194 Pocket Predko Index 9/25/01 4:33 PM Page 675

counting 1s in a byte,
476–477

cpfseq, 46, 76
cpfsgt, 77
cpfslt, 47, 78
CPUSTA register, 171
cqfsgt, 46–47
crystal oscillators, 208, 209,

210, 211, 212

CSB, 118
CSBE, 118
CSE, 118
CSNE, 118
CSRLIN, BASIC function, 545
Ctrl key combinations,

Microsoft compatible
editor, 517–518

current source/sink
requirements, 500

DA/DATA/DB, MPLAB, 527
Dallas Semiconductor one-

wire interface, 357–363,
358, 359

DATA, BASIC function, 540,
543

data memory, EEPROM data
memory access,
263–269, 265

data types
BASIC function, 540
C language, 588
PicBasic, 554

DATA, PicBasic, 564
DATES, BASIC function, 548
daw, 47, 78
DB-25, 442, 442

DC electronics formulas,
636

DCD, PicBasic, 561
dcfsnz, 49, 81
DDRB/C/D/E/F/G registers,

173, 174, 179, 180
De Morgan’s theorem,

Boolean, 639
DE, MPLAB, 528
DEBUG, PicBasic, 565
DEBUG_xxx, PicBasic, 555
debugging, 207, 507–515
DEBUGIN, PicBasic, 565
DEC Parm, 114
decf, 25, 34, 48, 79–80, 112,

114, 115
decfsz, 25, 34, 49, 80, 117,

120
Decimal Adjust, 47, 78
decimal numbers, 2
declarations, C language,

588
DECLARE, BASIC function,

543
Decrement, 25, 34, 48–49,

79–80, 123
16-bit numbers, 484
C language, 594
decrement w, 468–469,

468

676 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 676

DECSZ, 117
DEF, BASIC function, 543
default, C language, 597
DEFDBL, BASIC function,

543
define, C language, 595
DEFINE, MPLAB, 528
DEFINT, BASIC function,

542
DEFLNG, BASIC function,

543
DEFSNG, BASIC function,

543
DEFSTR, BASIC function,

542
delays, time delays, 466–467
detect change in register,

474
device pinouts, 7–19

18-pin mid-range,
11, 11

28-pin mid-range,
11, 11

28-pin mid-range,
13, 13

40-pin mid-range,
12, 12

44-pin PLCC mid-range,
12, 12

44-pin QFP mid-range,
13, 13

64-pin mid-range,
14, 14

low-end, 8–9

mid-range, 10–14
PIC17Cxx, 14–16, 15

PIC18Cxx, 17–19,
18–19

DIG, PicBasic, 561
digital logic, 282, 632
DIM, BASIC function, 540
directives, C language,

595–597
DISABLE, PicBasic, 565
display control sequences,

ANSI, 609–612
distributive law, Boolean,

639
division

16-bit numbers,
495–498

BASIC function, 541
C language, 594
constant division,

480–481
divide by three,

472–473
PicBasic, 560

DJNZ, 120
DO LOOPs, BASIC function,

544
DO WHILE, BASIC function,

544
do, C language, 591, 597
do/while loop, C language,

592
double negation law,

Boolean, 638

Index 677

5194 Pocket Predko Index 9/25/01 4:33 PM Page 677

downloadable programmers,
406

DRAW, BASIC function, 547
DT, MPLAB, 528
DTMFOUT, PicBasic, 565
dual inline packages (DIP),

7, 10
DW, MPLAB, 528

18-pin mid-range pinouts,
11, 11

8250 UART
block diagram, 443, 443

registers, serial port,
444–449

EBCDIC code, 612, 615
edge detect circuits, 229
EEADR/EEDATA registers,

157–158, 263
EECON1/EECON2 registers,

158, 263
EEDATA register, 263
EEPROM, 157, 158, 565
EEPROM data memory

access, 263–269, 265

access control, 263–264
address data, 268
driver circuit, 265–266
EEADR register, 263
EECON1/EECON2

registers, 263
EEDATA register, 263
GPIO port, 266
operations, 267

PIC12CE5xx, 267
Read operations, 267,

268–269
reads, 266
start/stop bits, 266
Write operations, 264
write interrupt request

bit (EEIE), 158
electromagnetic spectrum,

630–632
electron rest mass, 606
electron volt, 606
elif, C language, 596
else, C language, 597
ELSE, MPLAB, 528
ELSE, PicBasic, 567
ELSEIF, BASIC function,

544
ENABLE DEBUG, PicBasic,

566
ENABLE INTERRUPT,

PicBasic, 566
ENABLE, PicBasic, 565
END, BASIC function, 541
END DEF, BASIC function,

543
END FUNCTION, BASIC

function, 543
END SELECT, BASIC

function, 544
END SUB, BASIC function,

543
END, MPLAB, 529
END, PicBasic, 566

678 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 678

ENDC, MPLAB, 529
endif, C language, 597
ENDIF, MPLAB, 529
ENDIF, PicBasic, 567
ENDM, MPLAB, 529
ENDW, MPLAB, 529
enhancement functions, C

language, 603
EOF, BASIC function, 548
EPROM program memory

access, 269–271
equals, C language, 594
EQV, BASIC function, 542
ERASE, BASIC function, 543
ERL, BASIC function, 544
ERR, BASIC function, 544
ERROR, BASIC function,

544
error, C language, 596
ERROR, MPLAB, 529
ERRORLEVEL, MPLAB, 529
EXIT, BASIC function, 544
EXITM, MPLAB, 529–530
EXP, BASIC function, 541
exp, C language, 602
EXPAND, MPLAB, 530
exponentiation, BASIC

function, 541
expressions, C language, 591
EXTERN, MPLAB, 530
external oscillators, 208,

211, 212, 213
external parallel memory,

273–276, 274, 275

40-pin mid-range pinouts,
12, 12

44-pin PLCC mid-range
pinouts, 12, 12

44-pin QFP mid-range
pinouts, 13, 13

fabs, C language, 602
farads, 2
fast stack, 147, 149–150
fast verify waveforms,

programming, 384–385,
384

fclose, C language, 600
feature to part number

table, 3–5
fgets, C language, 601
File (Variable) Registers,

132
File Register Bank, 137
FILES, BASIC function, 548
FILL, MPLAB, 530
FIX, BASIC function, 542
flash program memory

access, 271–272
flash programming circuit,

391, 392, 394
flip-flops, 633–634, 634

float, C language, 602
FOR, BASIC function, 541
for, C language, 591, 592,

597
FOR, PicBasic, 566
fprintf, C language, 600
fputs, C language, 601

Index 679

5194 Pocket Predko Index 9/25/01 4:33 PM Page 679

frand, C language, 602
free, C language, 602
FREQOUT, PicBasic, 566
frequency, 638
fscanf, C language, 600–601
FSR (index) register, 127,

131, 144–145, 154
FSR0 register, 170
FSR1 register, 172
FSR1L/FSR1H register,

203–204
FSR2L/FSR2H registers, 203
FSROL/FSROH registers,

204
FUNCTION, BASIC function,

543
functions

BASIC function,
540–541, 542–548

C language, 591,
598–603

Visual Basic and
Windows
programming,
579–580

gas constant, 606
gas law, 638
gates, logic, 632–633, 633

generating parity for byte,
477

GET, BASIC function, 548
getc, C language, 600

getchar, C language, 598
gigahertz (GHz), 1
GLOBAL, MPLAB, 530
GOSUB, BASIC function,

540
GOSUB, PicBasic, 566
goto, 25, 34, 49, 81, 104,

119, 120, 121, 122,
128–130, 140, 156
BASIC function, 540
C language, 593, 597
jump outside current

page, 461–462
PicBasic, 566

GPIO port, EEPROM, 266
greater than, 542, 594

H-bridge motor driver
circuit, 365–366, 366

Hall-effect sensors, 374, 374

hardware FAQs, 660–661
hardware interfacing (See

also PC interface),
277–378
AC power control, 373,

373

asynchronous serial I/O
software routines,
347–357

audio output, 371–372,
372

button interface,
284–287, 284

680 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 680

Dallas Semiconductor
one-wire interface,
357–363, 358, 359

digital logic interface,
282

Hall-effect sensors, 374,
374

I2C bit banging master
interface, 334–338

infrared TV remote
control (Sony),
374–378, 375

input/output
combination, 291,
291, 292

light emitting diodes
(LEDs), 293–296,
294, 295

liquid crystal display
(LCD) (See also

liquid crystal
display), 296–333

motor drivers, 365–370,
366, 367

open collector/open
drain I/O simulation,
292–293, 293

parallel bus device
interface, 282–284,
283

potentiometer reading
using parallel I/O
pins, 363–365, 363,

364

power connections,
277–281, 278, 279,

280

R/C servo control,
370–371, 371

reset circuit, 281, 282

RS-232 interfaces,
338–345, 340, 341,

342, 344

RS-422 interface,
345–346, 345, 346,

347

RS-485 interface,
345–346, 345, 346,

347

switch matrix
keypad/keyboard
interface, 287–291,
287, 288

HC logic, 632
HCT logic, 632
hertz, 1
hex file format,

programming, 379–381
hexadecimal numbers, 2

convert ASCII byte to
hex nybble, 471

HIGH, PicBasic, 566
high-voltage circuit, 279,

280

HS oscillator, 213, 504–505
HSER_xxx, PicBasic, 555
HSERIN/HSEROUT,

PicBasic, 566

Index 681

5194 Pocket Predko Index 9/25/01 4:33 PM Page 681

I/O port definition, PicBasic,
553–554

I/O space map, 407–421
I2C
I2C operation

bit banging master
interface, 334–338

I2C_xxx, PicBasic, 556
I2CREAD, PicBasic, 566
I2CWRITE, PicBasic,

567
SSP module, 244–252

IBM PC extended ASCII,
612, 613, 614

ICSP programming
connector, 405–406,
406

IDATA, MPLAB, 530–531
idempotent law, Boolean,

639
identity function, Boolean,

638
identity law, Boolean, 638
IDLOCS, MPLAB, 531
If and IF THEN

BASIC function, 541
BASIC function, 544
C language, 591, 596,

597
MPLAB, 531
PicBasic, 563–564,

567
ifdef, C language, 596
IFDEF, MPLAB, 531

ifndef, C language, 596
IFNDEF, MPLAB, 531
IJNZ, 120
IMP, BASIC function, 542
INC Parm, 114
incf, 26, 34, 50, 82–83, 112,

114, 115
incfsz, 26, 35, 51, 83–84,

117, 120
include (inc) files, 536
Include

C language, 595
MPLAB, 531
PicBasic, 567

Increment, 26, 34, 35, 50–51,
82–84, 123
16-bit numbers, 484
increment/decrement w,

468–469
increment, C language, 593
INCSZ, 117
INDFxx registers, 145, 170,

172, 203, 204
inductance, 637
infrared TV remote control

(Sony), 374–378, 375

infsnz, 51, 84, 484
INKEYS, BASIC function,

545
inp, C language, 603
INPUT, BASIC function, 540,

548
INPUT, PicBasic, 567

682 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 682

input/output
asynchronous serial I/O

software routines,
347–357

audio output, 371–372,
372

combining I/O, 291,
291, 292

I/O pin current
capabilities, 500

I/O space map, 407–421
ISA bus, pinouts,

425–428, 425, 426

open collector/open
drain I/O simulation,
292–293, 293

parallel port, 455–460,
455

PicBasic I/O port
definition, 553–554

ports, 217–221, 218,

219, 220

potentiometer reading
using parallel I/O pins,
363–365, 363, 364

serial port, 441–454
INPUTS, BASIC function, 545
INSTR, BASIC function, 545
instruction programming,

388–390
instruction sets, 21–122

liquid crystal displays
(LCD), 298–299

low-end, 22–30

mid-range, 31–39
MPASM, 104–110, 111
Parallax Inc., 111–122
parameters, 21–22
PASM, 111–112
PIC17Cxx, 40–62
PIC18Cxx, 63–103
PicBasic, 565–577
special instruction

mnemonics, 104–110
INT, BASIC function, 541
INTCON registers, 134–135,

157, 158, 204–205, 225
internal clocking oscillators,

208, 209
Internet list servers,

PICMicro® MCU,
648–655

interrupt handler skeleton,
135–136, 142, 150

interrupt handlers, PicBasic,
557–559

interrupt requests, 134–135,
142

interrupts/interrupt
operations, 134–135,
140–141, 150
INTCON register, 157
interrupt function by

number, PC, 422–424
ISA bus, 429–430, 429

PicBasic, 557–559
register mapping, 157,

158

Index 683

5194 Pocket Predko Index 9/25/01 4:33 PM Page 683

RS-232 serial port
interrupt APIs (14h),
451–454

serial port, 446, 446,
449–450

T0CKI used as interrupt
source pin, 471–472

INTSTA register, 172
iorl, 35
iorlw, 26, 51, 85, 114, 115
iorwf, 26, 35, 52, 85, 114
IPR registers, 190–192
ISA bus

BIOS interfaces,
436–440

interrupts, 429–430, 429

keyboard and mouse
ports, 430

keyboard commands,
441

keyboard controller
commands, 436

keyboard scan codes,
432–435

keyboard timing
diagrams, 431–432

keyboard/mouse
connectors, 430–431,
431

PC interfaces, 425–428,
425, 426

isalnum, C language, 603

isalpha, C language, 602
isdigit, C language, 602
islower, C language, 602
isspace, C language, 603
isupper, C language, 602

JB, 120
JC, 120
JMP Parm, 119
JNB, 120
JNC, 120
JNZ, 120
jump operations, 129, 134

jump outside current
page, 461–462

jump to, 25, 34
JZ, 120

keyboards
commands, 441
connectors, 430–431,

431

controller commands,
436

Ctrl key combinations,
Microsoft compatible
editor, 517–518

key scan, 287–291
ports, 430
scan codes, 432–435
switch matrix interface,

287–291, 287, 288

timing diagrams,
431–432

684 Index

interrupts/interrupt
operations, continued

5194 Pocket Predko Index 9/25/01 4:33 PM Page 684

KILL, BASIC function, 548
kilohertz (kHz), 1
Kirashov, Dmitry, 476

labels, PicBasic, 557
LATA/LATB/LATC/LATD/

LATE registers, 188
LBOUND, BASIC function,

543
lcall, 52, 104, 107, 119
LCASES, BASIC function,

545
LCD drivers, 10
LCD_xxx, PicBasic, 556
LCDOUT, PicBasic, 567
least significant bit (LSB),

PicBasic, 560
LED control registers,

register mapping, 168
LEFTS, BASIC function, 545
LEN, BASIC function, 545
less than, 542, 594
LET, BASIC function, 540
lfsr, 86
lgoto, 108
light emitting diodes

(LEDs), 293–296, 294,

295

light, speed of, 605
LINE, BASIC function, 546
LINE INPUT, BASIC

function, 544
linking–linked applications,

536–539

liquid crystal display (LCD),
296–333
basic interface macro

(LCD8), 305–310
bit descriptions for

commands, 299–300
character box, 304–305,

304

character set, 302, 303,
304

contrast voltage circuit,
297, 297

four-bit mode
initialization/interface,
315–324

initialization, 305
instruction set,

298–299
moving to locations

within display,
300–305, 302

polling LCD, LCD8Poll
macro, 310–315

read/write waveforms,
297–298, 298

two-wire interface,
324–333, 324, 325

LIST, MPLAB, 531–532
LJMP, 119
Load, 27, 36, 86, 108,

110
LOCAL, MPLAB, 532–533
LOCATE X, Y, BASIC

function, 546

Index 685

5194 Pocket Predko Index 9/25/01 4:33 PM Page 685

LOG, BASIC function, 541
log, C language, 602
log10, C language, 602
logic interface, 282
logic, digital, 632
Long Call, 107
Long Goto, 108
LOOKDOWN/LOOKDOWN2,

PicBasic, 567–568
LOOKUP/LOOKUP2,

PicBasic, 568
loop, 492, 592
LOW, PicBasic, 568
low-end device pinouts,

8–9, 8
LP oscillator, 213, 501–502
LPRINT, BASIC function,

547
LSET Addr, 116
LTRIMS, BASIC function,

545
LVDCON register, 201–202

MACRO, MPLAB, 533
Mainline application

statement, C language,
590

malloc, C language, 602
mapping

I/O space map, 407–421
register mapping,

151–206
mass, 606

Master SSP (MSSP) module,
162–163, 245–247,
251–252, 252

mathematical constants,
605–606

mathematical operators,
PicBasic, 559–560

MAX, PicBasic, 561
MAXRAM, MPLAB, 533
megahertz (MHz), 1
memory map, PC interfaces,

407, 408

memory space, 142
MESSG, MPLAB, 533
metric conversion, 640
Microchip Corporation,

641–642
mid-range device pinouts,

10–14
MIDS, BASIC function, 545
milli-/microseconds, 2
MIN, PicBasic, 561
MOD, BASIC function, 542
modems

AT command, 216–221
registers, 622–624

modulus, C language, 594
Morse code, 625–626
MOSFET, 209
most significant bit (MSB),

PicBasic, 560
motor drivers/control,

365–370, 366, 367

686 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 686

H-bridge circuit,
365–366, 366

pulse wave modulation
(PWM) control,
366–367, 367

stepper motor control,
368–370, 369

mouse ports, 430
MOV, 112
MOVB, 116
move, 27, 30, 39, 40, 52, 53,

86, 87, 123, 169
movf, 27, 35, 86, 112, 113,

114, 115, 117, 120, 121,
122

movff, 86
movfp, 52
movfw, 108, 110
movlb, 52, 87
movlr, 52
movlw, 27, 36, 53, 87, 112,

113, 114, 117, 118, 120,
121, 122, 404

movpf, 53
MOVSZ, 117
movwf, 27, 36, 53, 87, 112,

113, 119, 404
MPASM, 104–110, 111
MPLAB, 208, 519–535, 520

assembler directives,
526–535

Asynchronous Stimulus
window, 521–522,
522

clocked stimulus,
522–523, 522

Ctrl key combinations,
Microsoft compatible
editor, 517–518

file formats accessed,
519–520

function integration,
519

High option, 522
Low option, 522
MPLAB (See also

MPLAB), 519–535,
520

MPSIM.INI, 518–519
Pulse option, 522
Register modify,

523–524, 524

register monitoring
(Watch window),
520–521, 521

Register stimulus,
523–524, 524

Stimulus (.STI) files,
525

Toggle option, 522
MPSIM.INI, 518–519
MScomm control, Visual

Basic and Windows
programming, 581–588

mull, 87
mullw, 53
mullwf, 53, 87–88

Index 687

5194 Pocket Predko Index 9/25/01 4:33 PM Page 687

multiplication
16-bit numbers,

492–495
BASIC function, 541
C language, 594
constant multiplication,

479–480
PicBasic, 560

multiplier, 142
Multiply, 53, 87–88

NAME, BASIC function, 548
NAND gate, 633, 633

NAP, PicBasic, 568
NCD, PicBasic, 561
NEG Parm, 114
Negate, 54, 88, 108, 123
negating register contents,

467–468
negative active pin, 2
negf, 104, 108
negw, 54, 88
neutron rest mass, 606
NEXT, PicBasic, 566
No operation, 27, 36, 54, 89,

215
NOEXPAND, MPLAB, 533
NOLIST, MPLAB, 533
non-return to zero (NRZ),

164
nop, 27, 36, 54, 89, 116, 215,

271–272, 403
NOR gate, 633, 633

NOT, 115
bitwise operations,

478–479
Boolean, 638, 639
not equals, 542, 594

NOT gate, 633, 633

nybble
convert ASCII byte to

hex nybble, 471
convert nybble to

ASCII, 470–471

Ohm’s law, 635
ON DEBUG GOTO, PicBasic,

569
ON ERROR GOTO, BASIC

function, 544
ON GOTO, BASIC function,

541
ON INTERRUPT GOTO,

PicBasic, 569
OnComm event, Visual

Basic and Windows
programming,
587–588

one-wire interface, Dallas
Semiconductor,
357–363, 358, 359

OPEN, BASIC function,
548

open collector/open drain
I/O simulation, 292–293,
293

688 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 688

operations tables, 499–505
HS oscillator operating

characteristics,
504–505

I/O pin current
capabilities, 500

LP oscillator operating
characteristics,
501–502

RC oscillator
component values,
500–501, 502

XT oscillator operating
characteristics,
502–504, 503

operators
BASIC function, 541–542
C language, 593–595
PicBasic, 559–560

option, 27, 36, 112, 281
OPTION, BASIC function,

540
OPTION register, 136,

152–156, 216–217, 223
options, PicBasic, 549–550
OR, 26, 35, 51, 52, 85, 114,

124
BASIC function, 542
bitwise operations, 2,

478–479
Boolean, 638, 639
C language, 593, 594,

595
PicBasic, 560

OR gate, 633, 633

order of operations, BASIC
function, 542

order of operations, C
language, 594

ORG, MPLAB, 533
OSC, PicBasic, 556–557
OSCCAL register, 152, 157,

209, 220
OSCCAL_1K/2K, PicBasic,

556
OSCCON register, 202
oscillator calibration

(OSCCAL) register, 126
Oscillator Mode, 207
oscillators, 208–213, 209,

210, 212

analog to digital
conversion (ADC),
254

ceramic resonator, 208,
209, 211

crystal, 208, 209, 210,
211, 212

external, 208, 211, 212,
213

HS, 213, 504–505
internal clocking, 208,

209
LP, 213, 501–502
modes, 211, 213
OSCCAL register, 157
PIC18Cxx, 211, 214

Index 689

5194 Pocket Predko Index 9/25/01 4:33 PM Page 689

R/C network, 208, 209,
210, 213, 500–501,
502

speed ranges, 211
TMR1, 213, 224–226,

225

XT, 213, 502–504, 503

outp, C language, 603
output set/reset, Boolean,

638
OUTPUT, PicBasic, 569

page address, 129
PAGE, MPLAB, 533
PAGESEL, MPLAB, 533
PALETTE, BASIC function,

546
Parallax Inc. MCU

instruction set, 111–122
parallel bus device interface,

282–284, 283

parallel capacitance, 636
parallel memory, external,

273–276, 274, 275

parallel port, 455–458
base registers, 457
BIOS interfaces, 459–460
block diagram, 455–456,

455

connectors, 455–456,
456

data output waveform,
458, 458

potentiometer reading
using parallel I/O pins,
363–365, 363, 364

registers, 457–458
Parallel protocol

programming, 381–385
parallel resistance, 636
parallel slave port (PSP),

261–263, 261

PIE/PIR registers, 158
PORTxx registers,

262–263
TRISE registers, 262

parameters, 2, 21–22
parity, generating parity for

byte, 477
parsec, 606
part suppliers, 661–665
PASM instruction set,

111–112
PAUSE, PicBasic, 569
PAUSEUS, PicBasic, 569
PC interfaces (See also

hardware interfacing),
407–460
8250 UART registers,

serial port, 444–449
BIOS interfaces, ISA

bus, 436–440
BIOS interfaces, parallel

port, 459–460
I/O space map, 407–421
interrupt function by

number, 422–424

690 Index

oscillators, continued

5194 Pocket Predko Index 9/25/01 4:33 PM Page 690

interrupts, ISA bus,
429–430, 429

interrupts, RS-232 APIs
(14h), 451–454

interrupts, serial port,
449–450

ISA bus, pinouts,
425–428, 425, 426

keyboard and mouse
ports, 430

keyboard commands,
441

keyboard controller
commands, 436

keyboard scan codes,
432–435

keyboard timing
diagrams, 431–432

keyboard/mouse
connectors, 430–431,
431

memory map, 407, 408

parallel port, 455–460,
455

serial port base
addresses, 443–444

serial port, pinouts,
441–454, 442

PCKATHU register, 206
PCL register, 134, 140, 170,

206
PCLATH register, 134, 140,

147, 156, 170, 206, 464
PCLATU register, 147, 464

PCON register, 156
PEEK, PicBasic, 569
perfect gas law, 638
periodicals on PICmicro

topics, 658–659
peripheral device interrupts,

PIE/PIR registers,
157–158

permeability of vacuum, 606
permittivity of free space,

605
phonetic alphabet, 626
physical constants, 605–606
pi, 606
PIC12C5xx

architecture, 125
pinout, 8, 8

programming, 390, 391
PIC12C6xx architecture,

130
PIC12CE5xx EEPROM, 267
PIC14000

architecture, 130
pinouts, 10, 10, 13, 13

PIC16C5xx
architecture, 125, 130
pinouts, 8, 8, 9, 9
programming, 390, 391

PIC16C54 pinouts, 9, 9

PIC16C56 pinouts, 9, 9

PIC16C57 pinouts, 9, 9

PIC16C6x architecture, 130
PIC16C7x architecture, 130
PIC16C8x architecture, 130

Index 691

5194 Pocket Predko Index 9/25/01 4:33 PM Page 691

PIC16C9xx
architecture, 130
pinouts, 10, 10, 14, 14

PIC16F8x programming
cycle, 393–394

PIC17C4x 40-pin pinouts, 15
PIC17C4xx 44-pin

pinouts, 16
PIC17C75x 64-pin

pinouts, 15
PIC17Cxx

accumulator, 136
architecture, 124,

136–142, 137

banking scheme, 169
EPROM program

memory access,
269–271

File Register Bank,
137

instruction set, 40–62
interrupt handler

skeleton, 142
interrupt operation,

140–141
parallel memory,

external, 273–276,
274, 275

pinouts, 14–16, 15, 16

primary banks, 169
primary register set,

169
program counter, 137,

139–140, 140

programming, 394–398,
395, 396, 397

register access, 137–138
register mapping,

169–185
PIC18C2X2 28-pin

pinouts, 17
PIC18C4X2 40-pin

pinouts, 18
PIC18C4X2 44-pin pinouts,

18, 19
PIC18Cxx

Access Bank, 143
accumulator, 143
architecture, 124,

142–150, 143

fast stack, 147, 149–150
instruction set, 63–103
interrupt handler

skeleton, 150
interrupt operation, 150
interrupt requests, 142
memory space, 142
multiplier, 142
oscillator/oscillator

modes, 211, 214

pinouts, 17–19, 18–19

program counter, 143,
147–150, 148

programming, 402–405,
403, 404

push operations, 145
register access,

144–146, 144

692 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 692

register mapping,
186–206

reset address, 143
PicBasic, 549–577

arrays, 553
assembly language use,

557
configuration values,

550
constant definition, 554
data types, 554
developer/supplier, web

site, 549
I/O port definition,

553–554
If statement, 563–564
instructions, 565–577
interrupt handlers,

557–559, 557
labels, 557
mathematical operators,

559–560
options, 549–550
symbols, 553
variables, 550–553

PICI12C509 pinout, 8, 8

PICList Internet List Server,
648–655

PIE/PIR registers, 134–135,
157, 158, 175, 178–179,
189–190, 191, 225, 228

pin-through-hole (PTH), 7, 8
Planck’s constant, 606
PLAY, BASIC function, 547

PLUSW0/1/2 registers,
203–204

pointers, C language, 590
POKE, PicBasic, 569
Pop, 89
ports, keyboard and mouse

ports, 430
PORTxx registers (A–G),

152, 158, 173–175, 180,
187–188, 217–221, 218,

219, 220, 262–263,
282–284

POS, BASIC function, 546
POSTDEC0/1/2 registers,

203–204
POSTINC0/1/2 registers,

203–204
POT, PicBasic, 569
potentiometer reading using

parallel I/O pins,
363–365, 363, 364

pow, C language, 602
power, 635
power connections,

277–281, 278, 279, 280

Power Down state, 57, 94
PR1/PR2 register, 176, 200
PR3L/PR3H register, 176
pragma, C language, 597
PREINC0/1/2 registers,

203–204
prescaler, 223–224, 224

PRESET, BASIC function,
546

Index 693

5194 Pocket Predko Index 9/25/01 4:33 PM Page 693

PRINT, BASIC function, 540,
548

PRINT USING, BASIC
function, 546

printf, C language, 598–599
PROCESSOR, MPLAB, 534
PRODL/PRODH registers,

185, 205
program counter, 128–130,

129, 133–134, 133, 137,
139–140, 140, 143,
147–150, 148

program memory
checking before

programming,
387–388

EPROM program
memory access,
269–271

flash program memory
access, 271–272

Program Memory
Protection, 207

programming, 379–406
boot code, 401–402
counter, program

counter, 385–386
data packet commands,

392–393
fast verify waveforms,

384–385, 384

flash programming
circuit, 391, 392, 394

hex file format, 379–381
ICSP programming

connector, 405–406,
406

initializing programming
mode, 385–386, 386

instruction
programming,
388–390

low-end devices,
381–385, 382, 383,

384

mid-range devices,
385–394

Parallel protocol,
381–385

PIC12C50x, 390
PIC16C50x, 390
PIC16F8x programming

cycle, 393–394
PIC17Cxx ICSP,

398–402, 401

PIC17Cxx, 394–398,
395, 396, 397

PIC18Cxx, 402–405,
403, 404

program memory check,
387–388

programming mode
initialization,
385–386, 386

serial programming,
385–394

694 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 694

third-party/downloadable
programmers, 406

voltage/current
requirements,
391–392

programming connector,
ICSP, 405–406, 406

proton rest mass, 606
PSET, BASIC function, 546
PSMODE, 158
pulse measurement, 16-bit,

5-cycle delay, 473–474
pulse wave modulation

(PWM) motor control,
366–367, 367

PULSIN/PULSOUT, PicBasic,
569

Push, 89, 145
PUT, BASIC function, 548
putc, C language, 600
putchar, C language, 598
PW1DCH/PW2DCH

registers, 176
PW1DCL/PW2DCH

registers, 176
PW3DCL /PW3DCH

registers, 184
PWM mode, 230–232, 569

quad plastic chip carriers, 7
? (question mark command),

540, 591

R/C network oscillators, 208,
209, 210, 213, 500–501,
502

R/C servo control, 370–371,
371

radar bands, 632
radio Ten codes, 626–628
RADIX, MPLAB, 534
RANDOM, PicBasic, 570
RANDOMIZE, BASIC

function, 540
RC charging/discharging,

637
RC time constant, 636
rcall, 89
RCIE/RCIF registers, 164
RCON register, 200–201
RCREG register, 164, 174,

179, 193
RCSTA register, 174, 192,

236, 237
RCTIME, PicBasic, 570
Read, 61, 100–101
READ, BASIC function, 540,

544
READ, PicBasic, 570
REDIM, BASIC function,

543
reference voltages, 259–261
register access, 126–127,

130–132, 131, 137–138,
144–146, 144

Index 695

5194 Pocket Predko Index 9/25/01 4:33 PM Page 695

registers/register mapping
(See also individual
register name entries),
151–206
addresses, mid-range

devices, 154–155
copy bits between

registers, 470
detect change in

register, 474
interrupts, 157, 158
low-end devices,

151–154, 152

mid-range devices,
154–168

modem registers,
622–624

MSSP module, 162–163,
162

negating register
contents, 467–468,

non-return to zero
(NRZ), 164

parallel port, 457–458
swap contents of

registers, 475–476
swap w contents with

register, 475
Synchronous Serial

Protocol (SSP)
module, 161–162, 161

test byte within
register, 474

REM, BASIC function, 541
remote control, infrared, TV

(Sony), 374–378, 375

RES, MPLAB, 534
reserved words, C language,

597
Reset, 90, 126, 137, 143
RESET, BASIC function, 548
reset circuit, 281, 282

reset parameters, 207
resistors

color coding, 629–630,
630

parallel resistance, 636
series resistance, 635

resonance, 636
resources, 641–665
RESTORE, BASIC function,

541
RESUME, BASIC function,

544
Resume Execution, 27,

36, 37
RESUME, PicBasic, 570
RET, 119
retfie, 36, 54, 90
retlw, 27, 36, 55, 90, 119
return, 27, 37, 54, 55, 90, 91,

149
BASIC function, 540
C language, 597
PicBasic, 570

RETW, 119

696 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 696

REV, PicBasic, 561
REVERSE, PicBasic, 570
RIGHTS, BASIC function, 545
RL Parm, 115
RL time constant, 636
rlcf, 55, 91
rlcnf, 55, 92
rlf, 28, 37, 112
RND, BASIC function, 541
Rotate, 28, 37, 55–56, 91,

92, 93
rotate byte in place, 469
RR Parm, 115
rrcf, 56, 92
rrcnf, 56, 93
rrf, 28, 37, 112, 115
RS-232 interfaces, 338–345,

340, 341, 342, 344,
442, 442

interrupt APIs (14h),
451–454

RS-422 interface, 345–346,
345, 346, 347

RS-485 interface, 345–346,
345, 346, 347

16-bit numbers, 483–498
addition, 485–488
address declaration/

defining, 483–484
bitwise operations,

constants and
variables, 488

comparing variables,
489–491

decrement, 484
division, 495–498
increment, 484
multiplication, 492–495
subtraction, 485–488

Save Stack Pointer, 24, 33
SB, 117
SC, 117
scan codes, keyboard,

432–435
scanf, C language, 599–600
Schmidt trigger, 209, 222
SCREEN, BASIC function,

546
SEEK, BASIC function, 548
SELECT, BASIC function,

544
sensors, Hall-effect sensors,

374, 374

separators, BASIC function,
541

SER2_BITS, PicBasic, 556
serial communications, 164
serial port

8250 UART block
diagram, 443, 443

8250 UART registers,
serial port, 444–449

asynchronous serial I/O
software routines,
347–357

Index 697

5194 Pocket Predko Index 9/25/01 4:33 PM Page 697

base addresses,
443–444

connector pinouts, 442,
442

DB-25, 442, 442

interrupt enable
hardware, 446, 446

interrupts, 449–450
PC interfaces, 441–454
RS-232 interrupt APIs

(14h), 451–454
RS-232, 338–345, 340,

341, 342, 344, 442,
442

RS-422 interface,
345–346, 345, 346,

347

RS-485 interface,
345–346, 345, 346,

347

serial programming, 385–394
series capacitance, 636
series resistance, 635
SERIN/SEROUT, PicBasic,

570–574
SERIN2/SEROUT2,

PicBasic, 571–575
servo control, R/C, 370–371,

371

Set, 24, 32, 45, 56, 72, 93,
108

SET, MPLAB, 534
SETB, 115

setc, 108
setdc, 108
setf, 56, 93
setz, 108
seven-segment LED display,

293–296, 294, 295

SGN, BASIC function, 541
Shift, 124
shift left/right, C language,

594
shift, PicBasic, 560
SHIFTIN/SHIFTOUT,

PicBasic, 575–576
SIN, BASIC function, 541
sin, C language, 602
SIN, PicBasic, 561
Skip, 24, 32, 33, 109, 119
skpc, 109
skpdc, 109
skpnc, 109
skpndc, 109
skpnz, 109
skpz, 109
slave mode interface, 161
sleep, 28, 37, 57, 94, 116,

213–215, 215

SLEEP, PicBasic, 576
SNB/SNC, 117
software development tools,

517–603
sound

audio notes, 615–616
speed of, 606

SOUND, BASIC function, 547

698 Index

serial port, continued

5194 Pocket Predko Index 9/25/01 4:33 PM Page 698

SOUND, PicBasic, 576
SPACE, MPLAB, 534
SPACES, BASIC function,

545
SPBRG register, 174, 179,

193, 233, 237
SPC, BASIC function, 546
speakers, audio output,

371–372, 372

Special Function Registers
(SFR), 132, 137

special instruction
mnemonics, 104–110

speed of light, 605
speed of sound, 606
SPI operation, SSP module,

239–244, 241, 242, 243

SQR, BASIC function, 541
SQR, PicBasic, 561
sqrt, C language, 602
SSPADD register, 182, 199,

245, 247
SSPBUF register, 161, 184,

199, 243–245
SSPCONxx registers,

161–163, 182–183,
197–198, 240–241,
244–246, 252

SSPSTAT register, 162,
163–164, 183–184,
198–199, 241–242, 245,
246

standard declaration files,
536

Standby mode, 28, 37
STATUS register, 128, 130,

132–133, 136, 138–139,
146–147, 149, 153–155,
203

STC, 115
Stefan-Boltzmann constant,

606
stepper motor control,

368–370, 369

Stimulus (.STI) files,
MPLAB, 525

STKPTR register, 148–149,
206

STOP, BASIC function, 541
STOP, PicBasic, 576
Store value, 27, 36
strcat, C language, 601
strchr, C language, 601
strcmp, C language, 601
strcpy, C language, 601
string operations

BASIC function, 541
C language, 589,

601–602
strlen, C language, 601
strncat, C language, 601
strncmp, C language, 601
strncpy, C language, 601
strrchr, C language, 602
STRS, BASIC function, 545
STZ, 115
SUB, BASIC function, 543
SUB Parm, 113

Index 699

5194 Pocket Predko Index 9/25/01 4:33 PM Page 699

SUBB, 115
subcf, 109–110
sublw, 38, 57–58, 95–96, 468
SUBTITLE, MPLAB, 534
Subtract, 29, 38, 57–60,

94–99, 109–110, 123
subtraction

16-bit numbers,
485–488

BASIC function, 541
C language, 594
PicBasic, 560

subwf, 29, 38, 58–59, 97–98,
112, 113, 117, 118, 120,
121, 122

subwfb, 59–60, 94–95,
98–99, 486

suppliers, 661–665
surface mount technology

(SMT), 7, 8
Swap, 29, 39, 60, 100,

475–476
SWAP Parm, 115
SWAP, PicBasic, 576
swapf, 29, 39, 60, 100, 112,

115
swapping bit pairs, 478
switch matrix

keypad/keyboard
interface, 287–291,
287, 288

switch, C language, 591, 593,
597

switches, Hall-effect sensors,
374, 374

symbols, PicBasic, 553
synchronization, 222
synchronous serial

communications, 164
Synchronous Serial Protocol

(SSP) module, 239–252,
240

Basic SSP (BSSP), 240
clock setting, 240
collisions, 251–252, 252

I2C operation, 244–252,
244

Master SSP (MSSP),
162, 245–247,
251–252, 252

receive data from I2C
device, 249–251

register mapping,
161–162

SDA/SDL connections,
247, 247

send data to I2C device,
248–249

SPI operation, 239–244,
241, 242, 243

SSPADD register, 245,
247

SSPBUF register,
243–245

SSPCON register,
240–241, 244–245, 252

700 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 700

SSPSTAT register,
241–242, 245, 246

system, C language, 602

28-pin mid-range pinouts,
11, 11, 13, 13

T0CKI used as interrupt
source pin, 471–472

T0CON register, 202–203
T1CON register, 177–178,

200
T2CON register, 159–160,

199–200, 227
T3CON register, 185, 193
TAB, BASIC function, 541
TABLATH/TABLATL

registers, 205, 274, 398,
399

table code, 462–465
tablrd, 61, 100–101, 274,

275
tablwt, 61, 101–102, 274
TBLPTRH/TBLPTRL

registers, 172, 205, 274,
399

tblrd, 402
tblwt, 402, 404
template, application code,

539
“Ten” radio codes, 626–628
test byte within register, 474
Test Register, 45, 72, 73,

115

thermometer application,
one-wire interface,
358–359, 358

third-party/downloadable
programmers, 406

thyristors, 373, 373

time constants, 636
time delays, 466–467
TIMER, BASIC function, 548
TIMES, BASIC function, 548
timing operations,

TMR0/TMR1/TMR2
registers, 159–160

TITLE, MPLAB, 534
tlrd, 61
tlwt, 61
TMR0/TMR1/TMR2

registers, 159–160, 176,
200, 203, 213, 222–228,
222, 225, 227, 399
T0CKI used as interrupt

source pin, 471–472
TMR0L/TMR0H registers,

203
TMR1L/TMR1H registers,

200
TMR3H/TMR3L registers,

176, 193
TMROH/TMROL registers,

172
Toggle Bit, 45, 73
TOGGLE, PicBasic, 576
tolower, C language, 603

Index 701

5194 Pocket Predko Index 9/25/01 4:33 PM Page 701

TOSL/TOSH register, 206
TOSTA register, 170–171
TOSU register, 206
Touch-Tone telephone

frequencies, 616
toupper, C language, 603
transformer current/voltage,

637
transmission line

characteristic
impedance, 637

triacs, 373, 373

tris, 30, 39, 112, 188–189,
218, 281

TRIS registers, 152, 158,
217–221, 218, 219,

220, 262
tstfsz, 62, 102
TTL, 632
turns ratio, transformers,

637
TV remote control, infrared

(Sony), 374–378, 375

TX register, 164
TXIE register, 164
TXREG register, 164, 174,

179, 192, 234, 238–239
TXSTA register, 164, 174,

179, 192, 236–237

UARTS
8250 registers, serial

port, 444–449

8250 UART block
diagram, 443, 443

UBOUND, BASIC function,
543

UCASES, BASIC function,
545

UDATA, MPLAB, 535
UDATA_ACS, MPLAB, 535
UDATA_OVR, MPLAB, 535
UDATA_SHR, MPLAB, 535
undefine, C language, 595
UNDEFINE, MPLAB, 535
units of measure, 1–2
USART module, 232–239,

233–236

asynchronous data,
235–236

data errors, 235
holding register, 235
RCSTA register, 236,

237
register mapping, 164
SPBRG register, 233,

237
TXREG register, 234
TXREG register,

238–239
TXSTA register,

236–237

VAR, BASIC function, 545
VARIABLE, MPLAB, 535

702 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 702

variables
16-bit numbers, bitwise

operations, 488
16-bit numbers,

comparing values,
489–491

BASIC function, 540, 542
C language, 588
keeping variable within

range, 477–478
PicBasic, 550–553
Visual Basic and

Windows
programming, 580

VIEW, BASIC function, 546
Visual Basic and Windows

programming, 578–588,
578

CommEvent, 587–588
control attributes

(properties), 579,
582–588

controls, 580–581
desktop, 579

functions, 579–580
MScomm control,

581–588
OnComm event,

587–588
variables, 580
Windows programming,

578–588
voltage comparator, 165–166

voltage reference source,
165, 259–261

VRCON register, 165

Warren, Andy, 472
Waste Instruction, 27
Watchdog Timer, 24, 33,

46, 75, 207, 221, 221

WDTCON register, 201
web sites, PICmicro® MCU,

656–658, 659–661
WEND, PicBasic, 576
Wheatstone bridge, 636, 636

while, C language, 591, 592,
597

WHILE, MPLAB, 535
WHILE, PicBasic, 576
WINDOW, BASIC function,

546
Windows ASCII characters,

612, 615

Windows programming (See

also Visual Basic),
578–588

WREG register, 143, 145,
172, 204

Write, 61, 101–102
WRITE, BASIC function, 548
WRITE, PicBasic, 576

XIN/XOUT, PicBasic,
577

Index 703

5194 Pocket Predko Index 9/25/01 4:33 PM Page 703

XOR, 30, 39, 62, 103, 114,
123, 124, 131
BASIC function, 542
bitwise, 2
C language, 593, 594, 595
PicBasic, 560

XOR gate, 633, 633

xorlw, 30, 39, 62, 103, 114,
115

xorwf, 30, 39, 62, 103, 114
XT oscillators, 213, 502–504,

503

704 Index

5194 Pocket Predko Index 9/25/01 4:33 PM Page 704

