

Program Design Using JSP
A Practical Introduction

M. J. King and J. P. Pardoe

School of Computing and Mathematical Sciences
Liverpool John Moore's University

Second Edition

~
MACMILLAN

Contents

Preface

Acknowledgements

1 The Importance of Program Design

1.1 Introduction
1.2 Requirements of a software design method
1.3 The characteristics of JSP
1.4 The stages of JSP

2 Data Structures

2.1 The JSP notation
2.2 Data and procedures
2.3 Examples of how data structures are produced
2.4 Exercises

viii

X

1

1
1
2
2

4

4
6
7

13

3 Data Structures for Particular Problems 16

3.1 Physical data structures and logical data structures 16
3.2 A logical data structure for a simple problem 18
3.3 Exercises 20

4 Program Structures 23

4.1 Identifying correspondences 23
4.2 Combining data structures to produce program structures 24
4.3 Exercises 33

5 Elementary Program Operations and Conditions 36

5.1 Listing the conditions
5.2 Listing the elementary program operations
5.3 Allocating the conditions and operations
5.4 Exercises

v

36
38
40
44

vi Contents

,
Schematic Logic 45 "
6.1 Production of schematic logic (pseudo-code) 45
6.2 Schematic logic for a complete program 49
6.3 Exercises 51

7 Implementation in a High Level Programming Language 52

7.1 From schematic logic to target language 52
7.2 Pascal as target language 53
7.3 COBOL as target language 58
7.4 Exercises 64

8 More Than One Input File 65

8.1 Merging data (at most, one record per key per file) 65
8.2 More complex merges (more than one record per key) 72
8.3 The sequential file update 76
8.4 Exercises 81

9 Structure Clashes and Inversion 83

9.1 Types of structure clash 83
9.2 Ordering clash 83
9.3 Boundary clash 84

9.3.1 Why boundary clashes occur 84
9.3.2 A typical example 86

9.4 Solving the boundary clash 87
9.5 Program inversion 94
9.6 Interleaving clash 99
9.7 Exercises 101

10 Recognition Problems and Backtracking 103

10.1 Introduction 103
10.2 The technique of backtracking 105
10.3 The accepted and rejected batch problem 106
10.4 Dealing with intolerable side effects 110
10.5 Implementing quits 112
10.6 Quit from iteration 114
10.7 Exercise 115

11 Procedurisation 116

11.1 Introduction 116
11.2 Bottom-up procedures 116
11.3 Top-down procedures 117

12 Interactive Systems

12.1 Interactive dialogue
12.2 Menu selection
12.3 Form filling
12.4 Question and answer
12.5 Interrogate or command
12.6 Exercises

Contents

13 Testing, Documentation and Program Amendment

13.1 Testing
13.1.1 What to test
13.1.2 Testing the design
13.1.3 Testing the coding

13.2 Producing test data using SIM
13.2.1 What is SIM?
13.2.2 The SIM algebra
13.2.3 Deriving conditional expressions
13.2.4 Applying the method

13.3 Documentation
13.4 Program amendment
13.5 Exercises

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Appendix I:
Appendix J:

Solutions to Exercises
An Invoice Printing Case Study
A Label Production Case Study
A Course File Completeness Case Study
An Interactive System Case Study
The Invoice Printing Case Study - a Solution
The Label Production Case Study - a Solution
The Course File Completeness Case Study - a Solution
The Interactive System Case Study - a Solution
Complete Programs for the Inversion Example (Chnpter 9)

vii

120

120
120
124
126
131
133

136

136
136
137
138
139
139
140
142
145
149
150
151

153
244
247
249
251
255
261
272
279
286

Preface

Aims of the book

This text aims to provide a practical course for those who want to both
understand and apply the Jackson Structured Programming GSP) approach
to program design. It has been designed for trainee and experienced
programmers, and students on BTEC courses (such as the Higher National
Diploma in Computing) and degree courses that incorporate the study of
program design.

The aim is to present the principles and techniques of JSP in a way that
will enable the reader to apply the method with confidence.

Structure of the book

The book first presents, in chapters 1-6, the basic method for relatively
straightforward problems while stressing the important aspects through
numerous examples and exercises. The production of logical data structures,
being the basis of the method and the area where students may initially
encounter difficulties, is dealt with at length. Chapter 4 then explains how
the identification of corresponding components in the input and output
structures enables them to be combined to form a program structure. The
allocation of conditions and operations to this program structure is covered
in chapter 5; conversion of the program structure with allocated conditions
and operations into schematic logic (that is, a pseudo-code representation) is
then explained in chapter 6.

Since JSP does not presume upon any particular programming language,
neither does this book. However, to illustrate the ease with which programs
can be coded after they have been designed in a language-free manner, the
appropriate coding rules for COBOL and Pascal are outlined in chapter 7.

After the basic techniques have been mastered, the student may then
proceed to the more difficult aspects. The concepts of processing more than
one 'input file, including different types of merge problems, are examined in
detail. The concepts of structure clashes and recognition problems, together
with their solutions (that is, inversion and backtracking respectively) are
examined in a practical manner. Interactive programs appear to be a special

viii

Preface ix

class of problem, so a separate chapter deals with the application of the
method to such problems.

The book also illustrates the usefulness of the design method in respect
of procedurisation, testing, documentation and amendment of existing
programs. Special attention is given to a structural testing method.

Use of the book

To ensure that each technique is mastered as it is introduced, we strongly
urge the reader to attempt all the exercises given at the end of most
chapters, and to arrive at his/her own solutions before turning to the
solutions provided in appendix A.

Since this is primarily a book on program design, these solutions are
normally given as logical data structures, program structure diagrams with
allocated conditions and operations, or as schematic logic. However, having
completed the design, the reader may wish to experience the satisfaction of
running the program by translating certain solutions into a target language
(see chapter 7).

Four case studies and their solutions are also provided in the
appendixes. A note is included at the end of chapters 6, 9, 10 and 12,
indicating that the appropriate case study may then be attempted. These
extended problems can therefore be used for reinforcement and additional
practice immediately after the appropriate chapter, or for revision purposes
at a later stage.

Acknowledgements

It would be inappropriate to write a book on JSP without acknowledging
the work of Michael Jackson, particularly his book Principles of Program
Design. Our interest in Jackson's method was also stimulated by Brian
Ratcliff of the Universtity of Aston in Birmingham.

We would like to thank our colleagues at Liverpool Polytechnic for their
advice, assistance and encouragement. Our thanks also to all those students
who attended the lecture courses on which this book is based - their
questions and comments have helped enormously and contributed to the
changes made in this second edition.

X

1 The Importance of Program Design

1.1 Introduction

The importance of properly designed software of any kind, from the trivial
application program to the most complex operating system, cannot be over­
stressed. In these days when software production and maintenance costs are
escalating in relation to total system costs and there is a shortage of skilled
software producers, the computing profession can ill-afford to produce
substandard software. Yet, much poor software is produced, mainly due to
poor problem definition and poor program design.

Much can be done to improve problem definition, and the problem of
poor program design can be overcome by the adoption of formalised
methods of design.

To quote Wirth [Communications of the ACM, April 1971, p.221]
'Programming courses should teach methods of design and construction,
and the selected examples should be such that a gradual development can
be nicely demonstrated.'

This text aims to satisfy these criteria by concentrating on a particular
design method, namely Jackson Structured Programming GSP). In this
chapter, we discuss briefly the general requirements of a software design
method and provide an overview of JSP.

1.2 Requirements of a software design method

A software design method is a set of basic principles and techniques that
enables problems to be solved using a computer. Any design method worth
using must have a set of rules to identify the class of problem that can be
solved and to guide the problem solver in a step-by-step manner through
the various stages of software production. It must emphasise that the
solution of the problem is dependent on the transformation of the input
data into results. The outcome of each stage in the design process should
yield good documentation, allow progress to be assessed and give an early
warning of errors. It is critically important that errors are diagnosed as
early as possible before they become entrenched and consequently more
difficult, and thus more costly, to remove.

1

2 Program Design Using JSP

The requirements of a software design method may be summarised as
follows:

1. To enable correct programs to be produced.
2. To facilitate the organised control of software projects.
3. To facilitate the handling of large and/or complex projects.
4. To enable systematic methods to be applied rigorously by trained

personnel.
5. To provide a method that is 'workable' within the intellectual

limitations of the average programmer.
6. To afford techniques that can be taught and do not rely on inspiration

or perspiration.

1.3 The characteristics of JSP

Jackson describes his own method as having the following characteristics:

1. It is non-inspirational; it depends little, or not at all, on invention and
insight on the part of the designer.

2. It is rational; the design procedure is based on reasoned principles,
and each step may be validated in the light of these principles.

3. It is teachable; people can be taught to practise the method and two
or more programmers using the method to solve the same problem
will arrive at substantially the same solution.

4. It is practical; the method itself is simple and easy to understand and
the designs produced can be implemented without difficulty in any
ordinary programming environment.

1.4 The stages of JSP

The details of JSP are developed gradually throughout the book. In this
section we merely describe the basic principles and design stages so that
the reader may gain some insight into where each stage fits within the
overall method.

The principles of JSP are as follows:

1. Analysis of the problem that the program is to solve and the
production of structure diagrams; data are usually the basis of the
program, so data structures are created.

2. Analysis of the main programming tasks and the production of a
program structure based on the data structures.

The Importance of Program Design 3

3. Definition of the tasks in terms of elementary operations and
allocation of each of these to the component parts of the program
structure.

4. Conversion (or translation) of the program structure and (allocated)
operations into a computer programming language.

Specifically, to design a computer program we must:

1. Draw structure diagrams for each set of data such that the structures
reflect the way in which the data are to be processed; we may call
these 'logical data structures' to distinguish them from 'physical data
structures' which take no account of the problem at hand.

2. Identify points of correspondence of a one-for-one nature between
components of individual data structures.

3. Produce a program structure diagram using the same notation as for
the data structures and based upon the data structures, by combining
them at the points of correspondence.

4. Where a single program structure cannot be produced directly from
the data structures because of a 'structure clash', proceed to design
two (or more) separate programs with communication via an
intermediate file which corresponds to both program structures.

5. For each iteration and selection, construct appropriate conditions;
where this is not possible use special techniques which overcome
recognition problems.

6. Examine the specification and the conditions and from these draw up
a list of basic program operations in plain language.

7. Allocate the conditions and operations to the appropriate components
of the program structure.

8. Produce 'schematic logic' (pseudo code) from the program structure.
9. Implement the schematic logic in a target high level programming

language.

2 Data Structures

2.1 The JSP notation

For any programming problem (not involving parallel activities) structure
diagrams may be drawn consisting of just 3 basic construct types:

0 Sequence
0 Iteration (loop)
0 Selection (choice)

(a) The notation for a sequence is shown in figure 2.1.

A

I
I I

B c

Figure 2.1

Component (box) A is a sequence. Boxes B and C represent component
parts of the sequence. In this case they are not further defined and hence
have no 'structure' of their own; they are known as elementary components.

In the above example, A is a sequence of the two components B
followed by C. The notation could of course be extended for a sequence of
any number of component parts.

(b) The notation for an iteration is shown in figure 2.2.

E

I condition

*
F

Figure 2.2

4

Data Structures 5

Component (box) E is an iteration. The box F is the iteration component
part. E is an iteration of a number (possibly zero) of Fs. The number of Fs
is controlled by the specified condition.

(c) The notation for a selection is shown in figure 2.3.

X

I
I condition I ELSE

0 0
y z

Figure 2.3

Box X is a selection. Boxes Y and Z are component parts of the selection.
In the above example, X is a selection (or choice) of Y or Z. Only the

condition for the choice of Y is specified - if this condition is not true Z is
chosen.

As for a sequence, the notation can be extended for any number of
component parts (or choices). The final choice is always governed by the
'else' situation.

For every structure diagram, each component is of a unique type, that is,
either a selection or an iteration or a sequence or an elementary component.
In drawing a diagram, the type of a particular component is indicated in its
component part(s). Thus, when interpreting a structure diagram, the type of
a component is deduced by looking at the next level down. In (b) above,
for example, we look at the '*' notation in the Box F to deduce that E is an
iteration. Similarly, we ·can see that A is a sequence and X is a selection.

Notice that a component cannot have a mixture of component parts; for
example, an iteration may only have one iteration component part, and a
selection may only have selection component parts. Figures 2.4 and 2.5
illustrate incorrect constructs.

B

I
I I

*
A D

Figure 2.4

6 Program Design Using JSP

s
I

I I I
0 0

A D E

Figure 2.5

In figure 2.4, component B is neither a sequence nor an iteration. In
figure 2.5, component S is neither a sequence nor a selection.

2.2 Data and procedures

Structure diagrams can be used to depict data and problem procedures. We
will use simple COBOL statements to make this point.

Consider the sequence in section 2.1
procedure:

A.
B. MOVE 1 TO COUNT.
C. ADD 2 TO TOTAL.

The procedural component A is a sequence of the component (or
statement) labelled B followed by the component (statement) labelled C.
data:

01 A.
03 B PIC 9.
03 C PIC X(4).

The data component (record) A is a sequence of the component (or field)
B followed by the component (field) C.

Consider the iteration in section 2.1
procedure:

E.
PERFORM F UNTIL CONDITION-1.

The procedural component E is an iteration (or repetition) of the
component F until some terminating condition.
data:

01 E.
03 F PIC X(4) OCCURS N TIMES.

The data component (record) E is an iteration (or repetition) of the data
component (or field) labelled F. That is, E contains N occurrences of F.

Data Structures

Finally, consider the selection in section 2.1
procedure:

X.
IF CONDITION·FOR·Y

PERFORM Y
ELSE

PERFORM Z.

7

The procedural component X executes a selection of either the
component Y or the component Z depending upon the stated condition.
data:

01 X.
03 Y PIC X(4).
03 Z REDEFINES Y PIC 9(4).

The data component X is a selection of either the component (field) Y
which has one definition, or the component (field) Z which has another
definition.

2.3 Examples of how data structures are produced

When developing data structures, we strongly recommend the following
approach, particularly the use of an annotated sketch, for all but the most
trivial cases.

1. From the given narrative, first note the smallest data items of interest,
then sketch sample data in a form that clearly indicates all relevant
features including any repetitions (as these will become iteration com­
ponent parts) and choices (as these will become selection component
parts).

2. Working from the top level down to the smallest required data item,
and for each level in turn, identify relevant groupings and ordering
of the data, clearly indicating any repetitions and selections.

3. Translate this annotated sketch into a structure diagram.
4. Verify your structure diagram by reading it back to yourself checking

that it is consistent with and incorporates all features of the given
narrative.

Notice that each representation of the data, the given narrative, the
annotated sketch with groupings and the structure diagram, is in effect a
different way of communicating the same information.

The following examples show how a data structure may be produced
from a narrative description using the three constructs, described in section
2.1, in various combinations.

(a) Consider a pack of playing cards as data. If the cards are not sorted
the data can be represented by the annotated sketch shown as figure

8 Program Design Using JSP

2.6. Note the use of the same code (CD) to identify each component
part of the iteration, that is, the repeated data items. This can now
be easily translated into the data structure given as figure 2.7.

D c~

D c~

D PACK
c~

D c~

D c~

Figure 2.6

PACK

I
*

CARD

Figure 2.7

At this stage we do not include conditions on the structure dia­
gram. However, there is no harm in considering what the condition
should be. In this case, it is obviously UNTIL END OF PACK.

(b) If the pack was sorted by suit, all the spades, then the hearts, then
the diamonds, then the clubs, we would need to show this division
of suits and the order of their appearance in the pack. Figure 2.8 is
an annotated sketch that will help you to visualise the structure.
From the sketch, we see that the PACK is now a sequence of SPADE
SUIT, then HEART. SUIT, then DIAMOND SUIT, then CLUB SUIT.
Each suit is then an iteration of the appropriate card type. From this
sketch we arrive at the data structure given in figure 2.9.

(c) Again, consider a complete pack of playing cards with just the first
card face up. If it is a picture card we win, otherwise we lose. An
annotated sketch is given as figure 2.10, and the data structure for

[)ata Structures 9

[!][!][!][!J!!J!!J[!]
[!]!!J[!][!]!!J!!J

SPAD~ s~ ..
s§]

[!] [!][!] [!] [!] [!][!]
f!J!!Jf!J!!J!!Jf!J
[!]~~[!][!][!][!]
[!][!][!][!][!][!]

HEARTj

H~
..

H£j
PACK

DIAMOND~ D§]

D£]

~~~~~~~ 
~~~~~~ CLUB~ c~ .. 

c£]

Figure 2.8

PACK

I
I I I I

SPADE HEART DIAMOND CLUB
SUIT SUIT SUIT SUIT

I I I I
* * * * SPADE HEART DIAMOND CLUB

CARD CARD CARD CARD

Figure 2.9

the pack is shown in figure 2.11. In this case, although we have
shown the remainder of the pack as an iteration of 51 occurrences of
card it is really irrelevant to the problem we are trying to depict. If
we chose to omit this detail we would be making a distinction
between the physical structure of the pack of cards and the logical
structure in respect of the problem being tackled. We shall consider
this distinction in the next chapter.

(d) In a game of 5 card poker, two hands are left in the game. Honest

10

I

Program Design Using JSP

D I
DDDDDDD
DODD ODD
DODDDDD
DDDDDDD PACK

ODD DODD
DDDDDDD
DDDDDDD
DO

Figure 2.10

I

FIRST

CARD

I
I I

0 0
PICTURE

LOS~
(WIN)

Figure 2.11

FIRST J <Picture (win)

CARD Not (lose)

REMAINDER
OF PACK

PACK

I
I

REMAINDER

I

CARD

c~
c~
c~

c~

*

Joe has three aces and two kings. Dodgy George, therefore, has a
hand of cards which may either win or lose. To win he must have a
running flush or four of a kind. In this case, sketching the data for
George's hand is no real help. We simply need to recognise that the
hand is either a winner or a loser, that there are two possible ways
of winning and that each possible hand is an iteration of card. The
structure diagram is given as figure 2.12.

Notice that in this example we have a selection where one of the

Data Structures 11

HAND

I
0 0

WINNER LOSER

I
I I I

0 0 CARD IN *
RUNNING FOUR OF

LOSING
FLUSH A KIND

HAND

I I
CARD IN * CARD IN *
RUNNING FOUR OF

FLUSH A KIND

Figure 2.12

selected components is itself a selection. In such cases we may
consider combining these selections at one level, giving HAND as a
selection of the three components WINNER WITH RUNNING
FLUSH or WINNER WITH FOUR OF A KIND or LOSER. You
might care to draw this alternative structure and consider which if
any is better.

(e) Let us now consider a computer file. A sales file contains a header
record, followed by detail records grouped according to the month,
with a total at the end of each month. At the end of the file there
may or may not be a grand total record.

We note that a record is the smallest item of interest and then list
a typical sales file with one record per line. (Notice that we have
omitted some of the repeated groups but indicated their omission by
dotted lines.) We then identify the order and grouping of the data
by working from the top level and considering each level in turn.
The resultant annotated sketch is shown as figure 2.13.

We perceive, at the top level, that the SALES FILE consists of
three parts - the HEADER RECORD (HR) followed by the SALES
FILE BODY and then the GRAND TOTAL RECORD (GTR). It is
therefore a sequence.

Now consider the next level. HEADER RECORD needs no further
refinement and from the narrative we know that GRAND TOTAL
RECORD is a selection with elementary component parts; SALES
FILE BODY is an iteration of MONTHLY SECTION.

12 Program Design Using]SP

header record HI]

month 1 detail rec. D~
month 1 detail rec. MON~ D~ MONTHLY BODY
month 1 detail rec. SECTION

D~
month 1 total record M"@

SALES FILE
FILE BODY

month 12 detail rec.

month 12 detail rec. MONTHLY

month 12 detail rec. SECTION

month 12 total record

grand total record ~<Present
(may be missing) GT

Absent

Figure 2.13

Concentrating on MONTHLY SECfiON reveals a sequence of
MONTHLY SECfiON BODY followed by MONTH TOTAL RECORD
(MTR).

Finally MONTHLY SECfiON BODY is an iteration of DETAIL
RECORD (DR). Thus, the data structure is as shown in figure 2.14.

When considering later examples or attempting exercises, we strongly
recommend the use of an annotated sketch similar to figure 2.13. You may
wish to devise your own notation, but note the repeated use of the same
nomenclature (for example, MONTHLY SECfiON and DR) to identify the
component part of an iteration.

Data Structures 13

SALES

FILE

I
I I I

HEADER
SALES GRAND

FILE TOTAL
RECORD

BODY RECORD

r
I
I -1

* 0 0
MONTHLY

PRESENT ABSENT
SECTION

I
I I

MONTHLY MONTH

SECTION TOTAL
BODY RECORD

I
* DETAIL

RECORD

Figure 2.14

2.4 Exercises

2.4.1 Suppose the pack of cards was arranged such that we have all the
picture cards first, followed by the rest of the pack. What would be
an appropriate data structure? Produce an annotated sketch of the
data before drawing the data structure.

2.4.2 From a shuffled pack, you deal a hand face upwards until you have
dealt an ace. Produce an annotated sketch of the hand that you have
dealt. Then draw a data structure diagram. What is the minimum
number of cards in the hand?

2.4.3 The pack of cards is sorted by suit, but the order of the suits is not
known. Produce an annotated sketch of some data, then draw a data
structure diagram.

14 Program Design Using]SP

24.4 A book consists of a number of chapters followed by an appendix.
Each chapter consists of a number of paragraphs and the appendix
has a number of keyword sections consisting of one or more defini­
tions. Produce an annotated sketch•of some data, then draw the data
structure.

24.5 A customer file is sorted by region code. There are a number of
regions in the file and there could be any number of records per
region. Produce an annotated sketch of a sample file, then draw the
data structure.

2.4.6 The same customer file is sorted by credit limit code within region
code. Produce an annotated sketch of a sample file, then draw the
data structure.

2.4.7 An invoice has the customer's name and address at the top and the
total amount payable at the bottom. In between there are a number
of lines for individual items (we may call this the body of the
invoice). Produce an annotated sketch of a sample invoice, then draw
the data structure.

2.4.8 A fence consists of a number of posts each followed by 10 boards,
and then a final post at the end, as shown in figure 2.15. Identify the
ordered components and the groupings in figure 2.15, then draw a
data structure diagram for the fence.

1111111111111111111111111111111

Figure 2.15

2.4.9 Amend the above for a fence where the last section has only 6
boards.

2.4.10 The standard design for a house includes a specification as follows.
The front of the house (looking at it from left to right) has a large
window which may be Georgian style or a picture window, followed
by a door which may or may not have a glazed upper section. If the
door has no glazing it may be painted red or green; glazed doors are

Data Structures 15

always green. After the door (on the right-hand side of the house)
there are either two small windows or a large window. Draw an
annotated sketch and a data structure for the front of the house.

2.4.11 In a 'fun run' a majority of the runners completed the course and of
these a significant proportion recorded their best time. There was no
discrimination between the sexes, but there were two categories of
runner - 'beginner' and 'past-it'. Draw an annotated sketch and data
structure of all the competitors using the above information.

For this problem it is necessary to think in terms of the different
choices in describing a runner. For example, a runner may or may
not complete the course. Whether he completes the course or not, he
may or may not be a beginner~ If he completes the course, he may or
may not achieve a personal best time. Hence the solution does not
reflect the order in which the competitors finished, but shows the
different ways in which a runner can be described as a number of
related selections.

2.4.12 A disk contains production details as follows. For each machine
group there are a number of detailed records followed by a total
record; for each area there are a number of machine grqups. At the
end of the file there may or may not be a grand total record. Pro­
duce an annotated sketch of a sample production file, then draw the
data structure.

3 Data Structures for Particular Problems

3.1 Physical data structures and logical data structures

A physical data structure fully describes some data without taking into
account any particular use to which the data may be put; that is, without
taking into account the problem under consideration.

A logical data structure describes some data in respect of a particular
use or for a certain problem. For example, the physical data structure of a
pack of playing cards which are fully sorted (ace to king) for each suit, but
with no particular suit order, is shown in figure 3.1.

PACK

*
SUIT

Figure 3.1

A logical data structure cannot deny any of the components of the
physical structure and is essentially an extract of it. For example, given the
same pack of cards, but with a problem specification of isolating the aces,
we would draw the logical data structure shown in figure 3.2.

Given the same sorted pack of cards, let us now consider the problem of
putting all of the hearts on the right hand side of the table and all of the
cards in the other suits on the left hand side. The logical data structure
represents how we would 'view' or 'process' the data for that particular

16

Data Structures for Particular Problems 17

PACK

I
*

SUIT

I
I I

ACE
REMAINDER

OF SUIT

I
*

CARD

Figure 3.2

PACK

I
*

SUIT

I
0 0

HEART OTHER

I I
* * HEART OTHER

CARD CARD

Figure 3.3

problem. This data structure is shown in figure 3.3.
It is stressed that, although the physical data structure remains un­

altered, we may arrive at different logical structures depending on the
problem. The logical structures must always be consistent with the physical

18 Program Design Using JSP

data structure; that is, they must not violate the physical structure. You
should convince yourself that this is true in the above example.

3.2 A logical data structure for a simple problem

Let us now consider certain aspects of logical data structures in the context
of producing a program. Eventually, we shall draw logical data structures
for all input and output files, combine these to produce a program structure
and then allocate conditions and operations (e.g. print report headings)
which can easily be translated into a programming language. At this stage,
we are concentrating on the production of individual logical data structures,
which reflect the structure and processing logic of the problem.

A file containing records of students on a three-year course is sorted into
ascending order of year. A program is required to count the number of
second-year students who have paid their fees. A sketch of a typical file
showing its logical groupings and emphasising the order of its components
is given in figure 3.4. Noting that the component SECOND YEAR contains
data items indicating either 'paid fees' or 'not paid', that is, a selection, we
can produce the logical data structure as shown in figure 3.5.

1st year student 1~
1st year student FIRST 1~

YEAR

1st year student 1~

STUDENT ~ < Paid
FILE

2y Not paid

2~
I 2nd year • paid fees I
I 2nd year • not paid I

I 2nd year • not paid I SECOND 2~
YEAR

I 2nd year · paid fees I 2~

3rd year students THIR~
YEAR

Figure 3.4

Note that figure 3.5 reflects the way in which the data are to be
processed, but does not contain any processing detail such as 'read student

Data Structures for Particular Problems 19

STUDENT
FILE

I
I I I

FIRST SECOND THIRD
YEAR YEAR YEAR

I l
* * FIRST YEAR SECOND YEAR

STUDENT STUDENT

I
J I

0 0

PAID ~-

Figure 3.5

file' or 'increment student-paid count'.
Output from the program would contain, amongst other things, the

required student total, but this element of data does not appear on the
input file and therefore does not appear on the above structure.

The selection SECOND YEAR STUDENT is necessary because the way in
which we are to process a second-year student depends on whether the
appropriate data on the student record indicates payment of fees or not. We
have introduced here the null elementary component (the selection part
with a dash in) which may be used for the ELSE option for elementary
components.

The component FIRST YEAR is regarded as an iteration of FIRST YEAR
STUDENT because we will have to process these records by reading past
them. Although the physical data structure would indicate that THIRD
YEAR is also an iteration of student, these records do not need to appear
on the logical data structure. Omitting this component is allowed in the
sense that we are not contradicting the physical structure. However, if a
different problem required us to process all the third year students before
the first-year students, then we would not be able to draw a logical data
structure consistent with the physical organisation.

Since the logical data structure is a representation of 'how' we would
process the data for a particular problem, the following illustration may
help you to understand how we arrive at this correct structure for the
above example. Imagine the student file of records to be a box-file of cards.
Just as a computer program has to read one record at a time from the
beginning of the file, you flick through the cards from the beginning of the
box-file. In this case, you would simply flick through each first-year student

20 Program Design Using]SP

card (all year one students are processed the same), then as you go through
the second-year student cards, you would note whether or not they have
paid their fees (a selection). When you reach the first third year student
card, you would stop flicking through the cards, ignoring all cards from
this point.

The technique of sketching some sample data and using an approach
similar to that outlined above to ·determine how the data would be
processed (in order to identify appropriate groupings, repetitions and
selections) can be used to develop a logical data structure for any input file.
The processing involved in producing an output file is the actual writing or
printing to the file. Thus, the logical data structure for an output file
represents what physically appears on the file. As such, the production of
logical data structures for output files tends to be somewhat easier than for
input files. We would still recommend the use of an annotated sketch, but
this will be generally easier to produce and annotate.

3.3 Exercises

Note that each of the first two questions is concerned with an output file.
The rest of the exercises refer to input files. Notice also the important points
illustrated by exercises 3.3.3, 3.3.4, 3.3.5 and 3.3.6.

3.3.1 ·A report is to be produced. Each page contains 42 detail lines in
addition to page headings and a total line. The total line includes
appropriate text, indicating that it may be a grand total or a cumula­
tive carried forward total. Produce a sketch of a sample report, anno­
tate it, then draw the logical data structure for the report file.

3.3.2 Produce an annotated sketch and then the logical data structure for a
file of self-adhesive labels where the labels are '3 up' across the page.
The labels may contain 3 or 4 lines of print. You may assume that a
row of labels can be constructed in memory and that a complete row
can be printed before moving on to the next one. This means that
you can consider a row as a component containing a number of
labels (in this case 3), each of which may contain 3 or 4 lines.

3.3.3 A file contains three different types of records (type 1, type 2, type
3). Records of type 1 are processed by summing the amounts.
Records of type 2 are processed according to a region code - if the
code is A the record is displayed, otherwise the first 20 characters
only are displayed. Records of type 3 are ignored. First produce an
annotated sketch for some sample data, . then draw the logical data
structure of the file in respect of the above problem.

Remember that the structure diagram should reflect the way that
the data are to be processed, but it does not contain any processing

Data Structures for Particular Problems 21

detail such as 'accumulate the amounts' or 'display record'.

3.3.4 A payroll file has records for individual employees containing a
department code.

(a) A program is required to extract one specific department's data.
Produce an annotated sketch of the payroll file, then draw a
logical data structure.

(b) If the file is sorted into ascending order of department code,
draw a revised annotated sketch and logical data structure.

This exercise illustrates that, even though the problem is the same,
different physical organisations of the same data will give rise to
different logical structures.

3.3.5 Consider a customer file sorted by credit limit code within region
code. The region code may have a value of A, B or C only. With the
aid of an annotated sketch, draw the logical data structure for each
of the following.

(a) A program to count the number of records.
(b) A program to count the number of records in region A.
(c) A program to count the number of records in region C.
(d) A program to sum the amount due of all records with credit limit

code= 1.
(e) A program to print the names of customers who have a credit

limit of 4 who are not in region A.

This exercise illustrates that different problems give rise to different
logical data structures for the same physical organisation.

3.3.6 A criminal record file is purged (that is, the redundant records are
removed) according to the following criteria:

(i) When the prisoner is released for offences carrying a sentence of
less than two years.

(ii) Three years after the prisoner is released for offences carrying a
sentence of two years or more, unless the offence is murder when
the recor9. is not removed at all.

You may assume that murder will always carry a sentence of at least
two years.

Draw an annotated sketch and then a logical data structure in
respect of the 'purging' program for each of the following:

(a) The file is organised in ascending sequence of prison sentence
term.

(b) The file is organised into offence order (that is, all the burglaries

22 Program Design Using JSP

together, all the murders together etc).
(c) The file is organised in alphabetic order of surname.

For this exercise, when drawing the sketch, it will be necessary to
make a note of a number of nested se!ections after determining the
possible effect of the physical organisation of the file.

3.3.7 A program is required to print each detail record of a transaction file
together with an indication of the record type. In the file there may
be three types of batch - credits, debits and account descriptions.
Each batch has a batch header followed by any number of detail
records. There may be any number of batches and they can occur in
any order.

(a) Draw the annotated sketch and the logical data structure for the
transaction file.

(b) Amend the above data structure to show that credit batches may
contain 'cash' records and 'cheque' records in any order.

(c) Further amend the data structure to show that debit batches con­
tain pairs of records - a sales record followed by a discount
record.

3.3.8 A sales file contains a header record followed by details for several
salesmen. For each salesman there will be a header record followed
by sales detail records which are either 'cash' or 'account'.

(a) Draw an annotated sketch and the logical data structure for the
sales file in respect of a program which is to display the 'cash'
detail records and sum the amounts from the 'account' detail
records for each salesman.

(b) Amend the above data structure to show an optional total record
at the end of each group of salesman's records.

(c) Further amend the data structure to show that all 'cash: sales
values of £10 or more attract a discount which has to be high­
lighted in the output.

4 Progrann St~ctures

4.1 Identifying correspondences

A correct program structure will 'mirror' the data structures of its input and
output. So we now consider how to produce a program structure by com­
bining the logical data structures (at this stage we will assume a maximum
of one input and one output structure).

This means starting at the highest level and looking for components of
the data structures which correspond in the sense that the whole of one
component is used (or processed) to produce the whole of the other.

Particularly, the components. should correspond in that the data repre­
sented by the corresponding components of the data structures must occur
in the same order, and there should be the same number of each. Consider
the structures shown in figure 4.1.

A J

I I
* *

8 K

I
I I

L M

Figure 4.1

Starting from the top, A corresponds with J because there is one of each
and we process A to obtain J. B corresponds with K if we process B to
obtain K and the data which they represent can be shown diagrammatically
as in figure 4.2.

23

24 Program Design Using JSP

Figure 4.2

Note that the data satisfies the rules:
1. Same order.
2. Same number of each.
3. Output derived from input.

Components B and K would not correspond in the cases shown in figure
4.3.

b1 k1 b1 k1

b2 k2 b2~k2
b3 k3 b3 :..----- k3

b4 k4 b4

Figure 4.3

Having identified correspondences we indicate them by drawing a line
between the corresponding components as in figure 4.1. If we are to
produce the program structure from the data structures, we must ensure
that each component corresponds with no more than one component from
another data structure.

4.2 Combining data structures to produce program structures

We shall illustrate the approach by considering examples.

Example 1

We have a serial file of records and we wish to print them one record per
line. The input file data structure is simply an iteration of records for
printing and the output file data structure is an iteration of lines (each

Program Structures 25

INPUT OUTPUT

FILE FILE

I I
* *

RECORD LINE

Figure 4.4

containing one record), as shown in figure 4.4.
Combining these data structures is easy because INPUT FILE corres­

ponds with OUTPUT FILE and RECORD corresponds with LINE.
How so? In the first case, there is one input file that will be processed

to produce one output file. In the second case, one record is processed to
produce one line; and record and line are in the same order (record n of
the input file will be printed on line n).

The components that correspond can now be combined to give the
program structure exactly common to both of the data structures; see figure
4.5.

PROCESS
INPUT TO

GIVE OUTPUT

1
PROCESS *
RECORD
TO LINE

Figure 4.5

Example 2

Extending the above example, suppose we wanted to print a report heading
at the start and a line containing a record count at the end. The data
structures are as shown in figure 4.6.

The input file remains the same and the correspondences are the same
as in the first example (INPUT FILE to REPORT FILE and RECORD to
LINE).

The components REPORT HEADING, REPORT FILE BODY and
RECORD COUNT, although appearing in only one of the data structures,
do not cause any conflict. REPORT FILE BODY, in a sense, is necessary
only because of the need to distinguish between the report heading, the
body of the report and the record count.

26 Program Design Using JSP

INPUT REPORT
FILE FILE

I
I

I I I
* REPORT

RECORD
REPORT

FILE
RECORD

HEADING
BODY

COUNT

I
*

LINE

Figure 4.6

Then by combining these data structures at their points of correspon­
dence we produce the program structure shown in figure 4.7.

In this case the relative positions of the components without correspon­
dences are easily determined from the output structure. Note that the
program structure also retains the logic of the input structure, in that
PROCESS INPliT TO GNE REPORT can be regarded indirectly (through
the intermediate component PROCESS REPORT FILE BODY) as an iteration
of PROCESS RECORD TO LINE.

PROCESS
INPUT TO

GIVE OUTPUT

I
I I I

PROCESS PROCESS PROCESS
REPORT REPORT RECORD
HEADING FILE BODY COUNT

f
PROCESS *
RECORD
TO LINE

Figure 4.7

Example 3

Let us now consider an example that will be developed in later chapters.
We have a sales file which is sorted into year within sales area code. It

is required to produce a report to show the sales details, with appropriate

Program Structures 27

highlighting for low, medium and high sales {that is, a single exclamation
mark when the sales value is less than 100, two exclamation marks when
the sales value is between 100 and 300, and three exclamation marks for
greater than 300). Headings are required for each area and totals are to be
produced at relevant control breaks, that is, at change of year and area
code.

To help us visualise the relevant order and groupings of both the input
sales file and the output report, we produce annotated sketches emphasising
the logic of the problem. These sketches are shown as figures 4.8 and 4.9.
The data structures indicating correspondences are shown in figure 4.10.

area A year 1 sales 35

area A year 1 sales 105

area A year 1 sales 350

. ,. '4 .. J~
..... \,~l~~

AREA

area A year 9 sales 178

area A year 9 sales 500

area A year 9 sales 45

area A year 9 sales 120 SALES

..........
area X year 1 sales 190

area X year 1 sales 670

area X year 9 sales 98

area X year 9 sales 250

area X year 9 sales 406

FILE

AREA

Figure 4.8

YEAR

..

YEAR

/ Low
R~ ~ Moderate

R~ High

R~

28

I

Program Design Using JSP

AREA 'A' HEADINGS

: I area A year 1 sales 35 I I
I area A year 1 sales 105 uj _

.' r rea A year 1 sales 350 1111 .

I

I

'

YEAR 1 TOTAL 490

.......
I area A year 9 sales 178 uj

jarea A year 9 sales 5001111

!area A year 9 sales 45 1 I ·
I area A year 9 sales 120 111 '

I YEAR 9 TOTAL 843 I'

AREA 'A' TOTAL 1753

•••• Ill •••••
AREA 'X' HEADINGS

I area X year 1 sales 190 II I
~rea X year 1 sales 670 mj

YEAR 1 TOTAL 860

.......
I area X year 9 sales 98 1 I
!area X year 9 sales 250 111

~rea X year 9 sales 406 1111

YEAR 9 TOTAL 754

AREA 'X' TOTAL 5614

I

I
I

SALES
REPORT

AREA

AREA

Figure 4.9

HE~

AREA
BODY

AT~

~ YE~ ~ YEAR BODY

QJ
YT~

Note:
each occurrence of
LP may be low or
moderate or high

YEAR

Program Structures 29

OUTPUT
REPORT

FILE

I
*

SALES

k
AREA

FILE

I
I I

AREA *V AREA AREA AREA
HEADINGS BODY TOTAL

I
* *

YEAR YEAR

I

*
I I

RECORD YEAR YEAR
BODY TOTAL

I I
0 0 0 * SALES SALES SALES LINE OF

UNDER 100 100 TO 300 OVER 300 PRINT

I
r I I

0 0 0
LOW SALE MODERATE HIGH SALE

LINE SALE LINE LINE

+ t
Figure 4.10

In respect of the problem under consideration, for each record in the
input file there are three possibilities that are relevant: sales under 100, sales
between 100 and 300, and sales over 300. There are also three different lines
of print, depending on whether the sales are low, moderate or high. Thus
both data structures contain a selection at the lowest level.

Once again, using the criteria of 'processing the whole of one component
to produce the other, and order and number of data', identifying the

30 Program Design Using JSP

SALES

REPORT

I
*

AREA

I
I l I

AREA AREA AREA
HEADINGS BODY TOTAL

I
*

YEAR

I
I I

YEAR YEAR
BODY TOTAL

I
* RECORD

TO LINE

I
I I I

0 0 0
LOW SALE MODERATE HIGH SALE

LINE SALE LINE LINE

Figure 4.11

correspondences is straightforward. Fortunately, both files are sorted by
year within area code and each detail line of print is obtained by
processing the corresponding sales record. The positions of the non­
corresponding components in the program structure are given by the output
structure - see figure 4.11.

Since it can be taken as read, we shall not include 'PROCESS' in naming
program structure components from now on.

The program structure (figure 4.11) again retains the logic of both data
structures. You should be able to perceive the SALES F1LE structure
through intermediate components.

Program Structures 31

PERSONNEL REPORT
FILE FILE

1 I
r I

* REPORT
PERSON

REPORT
FILE

HEADINGS
BODY

I I I I
0 0 FACTORY * OFFICE FACTORY

WORKER WORKER WORKER'S
DETAILS

Figure 4.12

Example 4

A personnel file contains records of factory and office workers. A report,
with headings, giving details of the factory workers is required. The data
structures are given in figure 4.12.

A comparison with the previous example raises two questions.
Why have we not included the selection parts on the REPORT FILE?

Simply because there are no office workers' details on the output file. The
selection parts are on the PERSONNEL FILE because that is where the data
that enables us to distinguish between an office worker and a factory
worker resides.

Why does FACI"ORY WORKER'S .DETAILS correspond with FACTORY
WORKER? Simply because the correspondence satisfies our criteria; FAC­
TORY WORKER'S DETAILS does not correspond with PERSON since, in
general, there will be fewer FACI"ORY WORKER'S DETAIL lines than
PERSON records.

It is also a little more difficult to produce the program structure. The
position of PERSON relative to REPORT HEADINGS and REPORT FILE
BODY is not obvious from the data structures, and the component part
indicators of corresponding components do not match.

We overcome these problems by always merging the data structures
such that:

1. Corresponding components are combined.

2. The lo&.c of the data structures, as defined by the problem specifica­
tion, is retained in the program structure.

PERSON cannot be a sequence of REPORT HEADINGS and REPORT
FILE BODY, as this would include headings for each person and contradict
the structure of REPORT FILE. However, making REPORT FILE BODY an

32 Program Design Using JSP

PRODUCE
REPORT

I
I L

REPORT
PRODUCE
REPORT

HEADINGS
BODY

I
*

PERSON

I
I I

0 0
OFFICE FACTORY

WORKER WORKER

Figure 4.13

iteration of PERSON retains the required logic. The specification also
requires us to retain the two selection parts, hence FACTORY WORKER'S
DETAILS is combined with FACTORY WORKER as a selection part of
PERSON. The program structure is shown in figure 4.13.

Again, you should be able to perceive the data structures in the program
structure. So far as the output file is concerned, REPORT FILE BODY
remains an iteration of FACTORY WORKER'S DETAilS because FACTORY
WORKER is part of the iteration part PERSON.

It should be stressed that the program structure must always be derived
from the data structures. As mentioned in chapter 1, one of the require­
ments of a software design method is that errors should be identified as
soon as possible. Logical data structures tha• are difficult to combine may
well, though not necessarily, contain errors. If you have any difficulty
combining data structures or cannot find correspondences, first check that
the logical data structures are correct in respect of the problem to be solved.
The temptation to omit or introduce components arbitrarily should be
resisted in favour of re-examining the data structures.

Unfortunately there are times when the data structures are correct but it
is still not possible to produce a correct program structure. This occurs
when data structures contradict or clash with each other. Even this situation
can be resolved as we shall see in chapter 9.

Now for some more exercises. Data structures are to be produced
followed by program structures based entirely on the data structures.

Program Structures 33

4.3 Exercises

For each of the following six problem descriptions, follow the procedure as
outlined below.

1. Sketch sample data for both input and output files and annotate the
sketches to indicate groupings, repetitions and selections. As we
require logical data structures, remember the hints given in chapter 3.
For input, consider how you might solve the problem in terms of a
box-file of cards. For output, the logical data structure represents
what appears physically in the file.

2. Produce logical data structures for both input and output files.

3. Indicate correspondences between components of the data structures.

4. Derive a program structure entirely from the logical data structures.
Do not be tempted to invent n~w components or omit any com­
ponents at this stage.

4.3.1 A production file contains a number of records about machines, in­
dicating whether or not they are due for replacement. It is required
to produce a duplicate file with one extra record at the end contain­
ing a count of the machines which are due for replacement.

4.3.2 A hospital file contains records of staff and patients sorted into
ascending order of surname within ward. It is required to print all
the names of the staff in ward order, with a heading at the start of
each ward.

4.3.3 A personnel file is sorted by grade of staff and contains records of
employees' qualifications. It is required to produce a list of the num­
ber of staff in each grade who possess a degree. The record layout
for the personnel file is as follows:

character positions 1 - 3 Grade of staff

4-20 Name

21 No. of '0' levels

22 No. of 'A' levels

23 Degree (Y or N)

34 Program Design Using JSP

The output required is of the form:

XYZ COMPANY - EMPWYEFS WITH DEGREFS

GRADE NUMBER

1 23
6 15

12 16
15 0

100 10
TOTAL 64

Hints.
Not all of the detail contained in the input record is pertinent to the
problem at hand. Remember that you are drawing logical data struc­
tures that describe the data in respect of this particular problem.

Your sketch of sample data may help to identify correspondences.
It should be apparent that certain groups of records in the input file
correspond to certain lines on the output.

4.3.4 A product file contains a number of product records. Each record
contains an area code, a district code, a product code and a value.
The file is sorted into product within district within area. A program
is required to select certain product codes and produce a report
showing district and area totals of the values of the selected products
in the order implied by the product file.

4.3.5 A student application file contains records which hold the status of
applicants. The file is sorted into ascending order of course code. For
each course there may be records of applicants who have merely
been offered a place, followed by records of applicants who have
been offered a place and 'accepted it, followed by records of appli­
cants who have been rejected.

(a) It is required to print a listing, containing a report for each
course of all rejected applicants in ascending order of course
code. The reports contain a heading followed by the various
applicants' names (one per line) followed by a total of such
names. Note that the logic of the problem means that we need
not differentiate between the batches of applicants who have been
offered places and the batches of applicants who have accepted
places.

(b) It is further required to produce a file containing records of
accepted applicants in ascending order of course code. This is the

Program Structures 35

first problem you have encountered with more than one output.
You will need to draw correspondences between each output file
and the input file, before combining all three to produce the
program structure.

4.3.6 A payroll file is sorted by employee number and contains records of
employees' pay details. Included in each employee record is a group
of ten deductions which are specified by a code followed by an
amount. It is required to produce a report showing those employees
who pay deduction code 20. The format of the output is:

EMPLOYEES PAYING UNION FEES

NAN.ffi AMOUNT

B. JONES 1.10

F. SMITH 3.50

R. BROWN 2.75

TOTAL 7.35

There is at most one occurrence of deduction code 20 in a record.
If that deduction code is present, it can be in any of the ten elements
of the deduction group.

Ideally we should stop examining the deduction group once the
required deduction has been found. However, to avoid using an
advanced technique explained in chapter 10, you may assume an
examination of all elements of the group.

5 Elementary Program Operations and
Conditions

s.t Listing the conditions

When we are happy with our program structure, we are then in a position
to think about the elementary program operations that must be included
within the structure, and the conditions that control the iterations and selec­
tions. First we identify and list the conditions.

For each iteration we require a terminating condition, so we ask:

'How will the end of the iteration be detected?'
or:
'What condition must always be true for the iteration to continue?'.

Note that the answer to the first question gives the terminating condition
directly, but the answer to the second gives the condition for the iteration
to continue, which must therefore be negated.

Using the 'sales report' program structure from chapter 4 (see figure 5.1),
let us list the conditions for the iterations.

The iteration SALES REPORT is concluded when there are no more
AREAs to process. Or put another way, the iteration continues while there
are AREAs to process. In other words the condition is

process SALES REPORT until end of sales file.

Note that, at this stage, the conditions are written in a form that is
independent of any programming language (that is, end of sales file).

The definition of an iteration (see chapter 2) allows for SALES REPORT
to be an iteration of zero AREAs (that is, the loop may not be entered). To
allow for this we must assume that the condition is tested at the start of the
loop. While there is a case to be made for an iteration construct of at least
one occurrence, as well as the one we have already defined, we shall not
draw this distinction.

The iteration AREA BODY continues while there are YEARs of the
current AREA to process. How can we detect that there are no more YEARs

36

Elementary Program Operations and Conditions 37

SALES
REPORT

I
*

AREA

I
I I I

AREA AREA AREA
HEADINGS BODY TOTAL

I
*

YEAR

I
I I

YEAR YEAR
BODY TOTAL

I
* RECORD

TO LINE

I
I I I

0 0 0
LOW SALE MODERATE HIGH SALE

LINE SALE LINE LINE

Figure 5.1

of the current AREA? Clearly there are no more YEARs of any AREA at the
end of the file, so that must come into it. Further, when a new AREA is to
be processed, there are no more YEARs for the old AREA. The condition
then is a compound one:

process AREA BODY until end of sales file or a change of area.

In this nested loop situation, the condition for the outer loop (in this
case 'end of sales file') should always be included as part of the condition
for the inner loop. This ensures that the inner loop will eventually terminate
even though 'a change of area' may not be detected.

One can use similar reasoning to determine the condition for the

38 Program Design Using]SP

iteration YEAR BODY. One recognises the end of the records that relate to a
particular YEAR for a particular AREA when the YEAR changes, or when
the AREA changes, or when the end of the file is reached. So:

process YEAR BODY until end of sales file or a change of area or a
change of year.

For the selections, we ask:

'What must be true for each of the options?'
'Are the conditions mutually exclusive?'
'Is the last option covered by ELSE?'

For the selection RECORD TO LINE, we need two conditions. There are
three choices, but we have made the decision that the last selection part
shall always be conditionless (that is, will be reached by ELSE). The
conditions are:

select LOW SALE LINE if sales value< 100
else select MODERATE SALE LINE if sales value<= 300
else select HIGH SALE UNE.

This gives a condition list as follows:

0 Until end of sales file
C2 Until end of sales file or change of area
C3 Until end of sales file or change of area or change of year
C4 if sales value < 100
C5 If sales value <= 300 (and >= 100)

5.2 Listing the elementaty program operations

The elementary program operations can be listed by studying the program
specification and taking cognisance of the program structure and conditions.
What do we mean by elementary program operations? Here we will not
consider the operations in terms of any particular programming language,
but rather, entities that we know will be very easily converted to one or
more program language statements.

We can tackle this part of the design in steps.

1. List the program initialisation and finalisation operations such as
open and close files.

2. Identify the input records or components and hence list the input
operations.

Elementary Program· Operations and Conditions 39

3. Identify the output records or components and hence list the output
operations.

4. Identify any computations or transformations from input to output
necessary to produce the detailed aspects of the required results.

5. List any detailed initialisation operations that will be required.
6. List any operations necessary to support the condition list.

In our 'sales report' program, the program initialisation and finalisation
operations are:

1 Open files
2 Oose files
3 Stop

There is only one input operation:

4 Read a sales file record

The principal operations to produce the required output are:

5 Print area headings
6 Print area total
7 Print year total
8 Print a low sales line
9 Print a moderate sales line

10 Print a high sales line

Operations 6 and 7 require some computation, hence:

11 Add to area total
12 Add to year total

The above, in turn, require initialisation operations:

13 Initialise area total to zero
14 Initialise year total to zero

Finally two operations are necessary because we need to be able to compare
the AREA (or YEAR) of. the record just read with the AREA (or YEAR)
currently being processed. This is in order to construct the conditions
'change of year' and 'change of area' for the iterations YEAR BODY and
AREA BODY.

15 Store area code
16 Store year

40 Program Design Using]SP

5.3 Allocating the conditions and operations

Allocation of the conditions is simple. We simply draw up a condition list
and then write the appropriate reference above and to the right of the
iteration or selection component part, as illustrated by the 'sales report'
program structure (figure 5.2).

Allocation of the program operations takes more thought, but should not
present any difficulties. If we have difficulty deciding where a particular
operation is to be performed in respect of a program structure, there are
three possible causes:

1. We do not need the operation, in that case we should re-examine the
problem specification.

2. The program structure is deficient, in that case we must go back to
the data structures.

3. The operation implies a condition, in that case we need to be more
specific in our choice of operations.

Figure 5.2 shows the 'sales report' program structure with the operation
numbers added to it in appropriate places. We shall now discuss how the
decisions for allocation were arrived at. Basically, for each operation we ask
two questions:

1. How many times and where in the program structure should the
operation be executed? This identifies the component.

2. Should it be executed at the beginning, the middle or the end of the
identified component?

All operations are allocated to elementary components. In some cases the
component already exists (for example, 6 is allocated to AREA TOTAL); in
other cases we effectively create a component (for example, the allocation of
2 and 3). When allocating an operation to a component already containing
operations, you should ascertain its correct position relative to those already
allocated (see operation 3 below).

Let us ask the above questions of the operations. We will leave operation
number 4 for the moment.

Operation 1 (open files)
Once per program execution (SALES REPORT)
At the beginning.

Operation 2 (close files)
Once per program execution (SALES REPORT)
At the end.

Operation 3 (stop)
Once per program execution (SALES REPORT)
At the end (after operation 2).

Elementary Program Operations and Conditions

Operation 5 (print area headings)
Once per area (AREA)
At the beginning (AREA HEADINGS).

Operation 6 (print area total)
Once per area (AREA)
At the end (AREA TOTAL).

Operation 7 (print year total)
Once per year (YEAR)
At the end (YEAR TOTAL).

Operation 8 (print a low sales line)
Once per record with sales under 100 (LOW SALE LINE)
Not applicable.

Operation 9 (print a moderate sales line)

41

Once per record with 100 <= sales<= 300 (MODERATE SALE LINE)
Not applicable.

Operation 10 (print a high sales line)
Once per record with sales> 300 (HIGH SALE LINE)
Not applicable.

Operation 11 (add to area total)
Once per record (RECORD TO LINE)
Beginning or end.

Operation 12 (add to year total)
Once per record (RECORD TO LINE)
Beginning or end.

Operation 13 (initialise area total to zero)
Once per area (AREA)
At the beginning (AREA HEADINGS).

Operation 14 (initialise year total to zero)
Once per year (YEAR)
At the beginning.

Operation 15 (store area code)
Once per area (AREA)
At the beginning (AREA HEADINGS).

Operation 16 (store year)
Once per year (YEAR)
At the beginning.

For operation 4 (read a sales file record) we apply a rule:

We should read immediately after opening the file and again as soon
as a record has been processed.

So we allocate operation 4 immediately after operation 1 and at the end
of RECORD TO LINE after operations 11 and 12.

42 Program Design Using JSP

SALES
REPORT

I
I I C1 I

~ *
2.3 1 AREA

I
I I I

AREA AREA AREA
HEADINGS BODY TOTAL

I I C2 I
15;~3. I I I * 6

YEAR

I
I I I

114,161
YEAR YEAR
BODY TOTAL

I C3 T

~ * RECORD
TO LINE

I
I C4 I cs I ELSE I

0 0 0 r 11~12. 1 LOW SALE MODERATE HIGH SALE
LINE SALE LINE LINE

I I l

I 8 I I 9 I I 10 1

Figure 5.2

This completes the allocation, but the creation of extra elementary
component boxes has disturbed the rules of construction:

SALES REPORT now appears to be both a sequence and an iteration,
RECORD TO LINE appears to be both a sequence and a selection.

To overcome this, we insert 'BODY' boxes at appropriate points; see figure 5.3.

Elementary Program Operations and Conditions 43

SALES
REPORT

I
_l l J

l SALES

.~ 1,4
REPORT

2,3

BODY

I C1

*
AREA

I
I I I

AREA AREA AREA
HEADINGS BODY TOTAL

I I C2 I
I 5;~3. I I 6 I *

YEAR

I
I I I

114,161
YEAR YEAR
BODY TOTAL

I C3 I

I 7 I * RECORD
TO LINE

I
I I

RECORD [11~12. I
TO LINE

BODY

I
I C4 I cs I ELSE

0 0 0
LOW SALE MODERATE HIGH SALE

LINE SALE LINE LINE

I I I

I 8 I I 9 I I 10 I

Figure 5.3

44 Program Design Using JSP

Once we have produced a revised program structure with allocated
operations and conditions, we can check the design before proceeding to
later stages of program production. A systematic method of doing this (by
means of a trace table) is shown in section 13.1.2 of chapter 13.

5.4 Exercises

5.4.1 to 5.4.6

For each of the exercises at the end of chapter 4, except 4.3.5(a):

(a) List the operations and conditions.
(b) Allocate the conditions.
(c) Allocate the operations (after applying the two questions discussed

in this chapter).
(d) Make any necessary revisions to the program structure by inserting

appropriate 'BODY' boxes.

You will need to refer back to the exercises at the end of chapter 4 and
then use the program structures given as the answers to those exercises.

6 Schematic Logic

6.1 Production of schematic logic (pseudo-code)

Schematic logic is a pseudo-code representation of the program structure
with allocated operations and conditions. We will first produce schematic
logic, then code the program in a high level programming language. Most
programmers find it easier to translate the pseudo-code, rather than the
program structure diagram, into the target language. Furthermore, when
using one of the more advanced JSP techniques (covered in chapter 10), we
shall find it necessary to amend the schematic logic, by introducing addi­
tional operations and conditions, without changing the program structure.

Let us describe the production of schematic logic for each of the three
basic constructs, then put it all together for a whole program.

(a) Sequence.- see figure 6.1

A

B

Figure 6.1

Here, A is a sequence of B (which has two operations, 3 then 4) followed
by C (of unknown construct type) followed by the operations 5 then 6.

The schematic logic for this is given as figure 6.2. Notice that we specify

45

46

A SEQ
B

DO 3,4
BEND
c

C END
DO 5,6

A END

Program Design Using JSP

{construct-name · type

[component C is not defined but
it has a start and an end and
comes after B]

Figure 6.2

the construct name followed by the type of construct.
Elementary components are shown as construct name without type (for

example, B). Elementary operations are shown as 00 statements either with
or without operation descriptions. For example

DO 1,4

or
DO 1 [open files
DO 4 [read a sales file record

(b) Iteration - see figure 6.3

G

C3

*
H

Figure 6.3

Here, G is an iteration of H, which is a sequence of the elementary
component with operations 11 and 12, followed by the component I.
Remember that it is component G that is the iteration construct, not H
which is the component part of the iteration.

Schematic Logic

G ITER UNTIL C3 [construct-name · type · condition
H SEQ

DO 11,12
I

I END
H END

G END

Figure 6.4

47

The schematic logic for this example is given as figure 6.4. Notice here
that the condition that controls the iteration (C3) is written after the
component name G, the type ITER and the word UNTIL.

c) Selection - see figure 6.5

J

cs C6 ELSE
0 0 0

K L M

Figure 6.5

Here, J is a selection of K (which has the operation 3), or L (of unknown
construct type), or M (which has the operations 15 then 4). Recall that with
a selection, the last component part has no specified condition; it is
controlled by the 'else' situation (that is, when the other conditions are all
false).

The schematic logic is shown a5 figure 6.6. Here we see the condition IF
C5 given after the component name J and type SEL. Also, the first
alternative is specified by repeating the component name followed by the
word ELSE 1 and the condition IF C6. The last (second) alternative does not
have a condition, hence it is written as component name J followed by
ELSE 2 only.

In the three examples above you will notice how the indentation
matches the program structure. The convention used here, and in the
following examples, is to indent by two spaces in the schematic logic for
each level of the structure. You may decide to emphasise the levels of
structure by using deeper indentation.

48

J SEL IF CS
K

003
K END

Program Design Using JSP

[construct-name - type - condition

J ELSE 1 IF C6 [name - 1st alternative - condition
L

LEND
J ELSE 2

M
[name - 2nd (last) alternative - no condition

DO 15,4
MEND

J END

Figure 6.6

(d) An example of all three combined- see figure 6.7

A

C1

*
c

ELSE
0 0

D E

C3 C4

* 0

F G H

Figure 6.7

C5 ELSE
0 0

Schematic Logic

A SEQ
B ITER UNTIL C1

C SEL IF C2
D ITER UNTIL C3

F
DO 1,4

FEND
D END

C ELSE 1
E SEL IF C4

G

DO 2,3,5
G END

E ELSE 1 IF C5
H

DO 8,6,7
H END

E ELSE 2
I

[note - no operations
I END

E END
C END

BEND
DO 15,8

A END

Figure 6.8

49

Sometimes, as illustrated by I in figure 6.7, a component part of a
selection has no elementary operations. In this case we still include the
construct in our schematic logic (possibly with a comment to emphasise the
'passive' component).

The schematic logic is shown in figure 6.8.

6.2 Schematic logic for a complete program

Can we now tackle the production of schematic logic for the program
structure for the 'sales report' program? You will find the program structure
with allocated operations and conditions in figure 5.3. The schematic logic is
shown in figure 6.9.

Check that figure 6.9 is an accurate translation of the program structure
(figure 5.3) in chapter 5. Notice how the indentation of the schematic logic
matches the number of levels in the program structure.

50 Program Design Using]SP

SALES REPORT SEQ
DO 1 [open files
DO 4 [read a sales file record
SALES REPORT BODY ITER UNTIL C1 [end of sales file

AREA SEQ
AREA HEADINGS

DO 5 [print area headings
DO 13 [initialise area total to zero
DO 15 [store area code

AREA HEADINGS END
AREA BODY ITER UNTIL C2 [end of sales file

or change of area
YEAR SEQ

DO 14 [initialise year total to zero
DO 16 [store year
YEAR BODY ITER UNTIL C3 [end of sales file or change

of area or change of year
RECORD TO LINE SEQ

RECORD TO LINE BODY SEL IF C4 [if sales < 100
LOW SALE LINE

DO 8 [print a low sales line
LOW SALE LINE END

RECORD TO LINE BODY ELSE 1 IF C5 [if sales <• 300
(and >• 100)

MODERATE SALE LINE
DO 9 [print a moderate sales line

MODERATE SALE LINE END

RECORD TO LINE BODY ELSE 2
HIGH SALE LINE

DO 10 [print a high sales line
HIGH SALE LINE END

RECORD TO LINE BODY END

DO 11 [add to area total
DO 12 [add to year total
DO 4 [read a sales file record

RECORD TO LINE END

YEAR BODY END

YEAR TOTAL
DO 7 [print year total

YEAR TOTAL END

YEAR END
AREA BODY END
AREA TOTAL

DO 6 [print area total
AREA TOTAL END

AREA END
SALES REPORT BODY END
DO 2 [close files
DO 3 [stop

SALES REPORT END

Figure 6.9

Schematic Logic 51

6.3 Exercises

6.3.1 to 6.3.6

The exercises at the end of chapter 5 asked you to produce program struc­
tures with allocated operations and conditions. For each of these, produce
the schematic logic. You will note that the solutions include descriptions for
each condition and elementary operation, as in figure 6.9; you may omit
these descriptions.

If you wish, you may now attempt the case study in appendix B.

7 Implementation in a High Level
Programming Language

7.1 From schematic logic to target language

The production of schematic logic, an elementary program operation list
and condition list, essentially concludes the design stage. It remains only to
translate these into a high level programming language. This involves:

1. Coding the declaration part of the program (as required by COBOL
and Pascal for example).

2. Implementing the schematic constructs - SEQ SEL and ITER - using
control constructs provided by the target language.

3. Translating each elementary operation and condition into the target
language, bearing in mind that certain operations will require more
than one program statement.

We shall illustrate this coding process for Pascal and COBOL. For each
language we provide ruies for implementation of the three basic constructs
using the schematic logic examples from the previous chapter with 'OPE­
RATION N' and 'CONDITION CN' denoting the appropriate coding for
'Do N' and 'CN'; then we illustrate the complete process by producing a
working program for the 'sales report' problem.

Though the reader may adopt different conventions regarding inden­
tation, the use of lower and upper case and the amount of schematic logic
retained in the program as comments, it is suggested that the control logic
of the rules given in the following sections shouid be adhered to. The
experienced programmer will observe that there are obvious alternatives to
the coding ruies; we have used rules in this chapter that retain the structure
of the schematic logic.

As can be seen from the following sections, converting the schematic
logic constructs into a target language is a 'mechanical' process based on
simple ruies. Software packages that perform this process are now widely
available. Typically, a JSP pre-processor requires input in the form of a
declaration section, elementary operation list and condition list, all in the
target language, followed by the schematic logic. The resuiting output is a
complete, coded program.

52

Implementation in a High Level Programming Language 53

7.2 Pascal as target language

The block structure of Pascal is identical to that used in the schematic logic;
their control constructs are almost identical - the only difference being the
operation of the controlling predicates in the ITER and WHILE constructs
(see below). The Pascal code will therefore closely resemble the schematic
logic.

(a) Sequence and elementary component

The sequence parts are retained in the same order as they appear in the
schematic logic - see figure 7.1.

ii. SEQ

B

DO 3,4
B END

c

C END

DO 5,6

<* A. seq •)

(* B *)

OPERATION 3
OPERATION 4

(* B end *)

(* c *)

(* C END *)

OPERATION 5
OPERATION 6

Figure 7.1

.

Hence the rules for coding a sequence or elementary component are:
1. At the start:

create a comment, such as (* component name seq *) or
(* component name *).

2. At the end:
create a comment, such as (* component name end *).

(b) Iteration

Pascal provides both a 'WHILE condition 00 statement(s)' construct and a
'REPEAT statement(s) UNTIL condition' construct. The condition in the
REPEAT construct is tested at the end of the loop. The iteration will
therefore always occur at least once. Since it does not allow for zero
occurrences the REPEAT statement should not be used to code the ITER
construct.

The WHILE statement, with the condition tested at the head of the loop,
does allow for zero or more occurrences. However, for the ITER construct

54 Program Design Using JSP

the iteration stops when the condition is true; for the WHILE statement the
iteration stops when the condition is false. The ITER construct is therefore
coded by means of the WHILE statement with the negation of the ITER
condition - see figure 7.2.

(• G ite1; *)
G ITER UNTIL CJ WHILE NO'I;' (CONDITION C3) DO

BEGIN

H SEQ (* H seq *)

DO 11,12 OPERATION 11

I OPERATION 12

(* I • • • •,, *)
I END

H END (* I END •)

(• H end •)

END ;

G END (* G end *)

Figure 7.2

The coding rules for an iteration are:
1. At the start:

create a comment, such as (* component name iter *);
use the WHILE construct with the negation of the ITER
condition.

2. At the end:
create a comment, such as (*component name end *).

(c) Selection

The SEL ... ELSE ... construct translates directly into the Pascal 'IF condition
THEN statement(s) ELSE statement(s)' construct - see figure 7.3.

The coding rules for a selection are:
1. At the start:

create a comment, such as (* component name sel *);
use the IF THEN part of the IF THEN ELSE construct with
the appropriate condition from the condition list.

2. At ELSEn:
create a comment, such as (* component name else n *);
use the ELSE IF THEN part of the IF THEN ELSE construct
with the appropriate condition from the condition list, except for
the last ELSEn where there is no condition.

3. At the end:
create a comment, such as (* component name end *).

Implementation in a High Level Programming Language 55

(• J ••1 .,
J SEL u· cs

IF CONDITION C5 'l'HEN

It (• It •)
DO 3 OPERATION 3

It END (• J: end •)

(• J .. el•e 1 •)
J ELSE 1 IF C6

ELSE IP CONDITION C6 TliEN

L
BEGIN
(• L •)

L END
.

(• L end •)
END

(• J ELSE 2 •)
J ELSE 2 ELSE

BEGIN

M
(• M •)

OPERATION 15
DO 15,4

OPERATION 4
M END

(• M end •)

END ;

J END (• J end •)

Figure 7.3

(d) Complete program

We shall now code a complete program (see figure 6.9 for the schematic
logic of the 'sales report' example) using the following approach.

1. Inspect the problem specification and hence declare those variables
required for input and output, such as salesrec, salesfile and
reportfile.

2. Inspect the elementary operations and conditions and hence declare
any additional data items that will be required, such as storedyear.

3. Code the executable part of the program from the schematic logic,
using the above rules for the control constructs and translating
operations and conditions into Pascal. For example

5 Print area headings

becomes
Writeln (reportfile,'AREA ' ,area}

Writeln (reportfile} ;

As each operation and condition is coded,

(i) check that appropriate variables have been declared;
(ii) to prevent recoding of an operation or condition already used and

56 Program Design Using JSP

to ensure that they are all eventually coded, tick each one off on
the appropriate list.

As can be seen from the above example and the program shown in
figure 7.4, an elementary operation may require more than one program
statement.

Note that the solution in figure 7.4 asssumes that the last record on the
input file is a dummy record (sentinel) with Z as the area code. End of file
can then be detected by area = 'Z'.

PROGRAM Sales (salesfile, reportfile)

TYPE
record type

VAR

= RECORD
area
year
salesproduct

salesamount
END ;

char ;
0 •• 99 ;

0 •• 99999
record type

char ;
0 .. 99 ;
PACKED ARRAY [1 .. 20]

OF char
0 •• 999 ;

storedarea
storedyear
areatotal,
year total
salesrec
salesfile
reportfile

FILE OF recordtype
text ;

BEGIN
(* sales report seq *)

Reset (salesfile) ;
Rewrite (reportfile)
Read (salesfile, salesrec)
WITH salesrec DO
(* sales report body iter *)

WHILE NOT (area = 'Z') DO
BEGIN
(* area seq *)

(* area headings *)
Writeln (reportfile, 'AREA
Writeln (reportfile)
areatotal :• 0 ;
storedarea := area

(* area headings end *)
(* area body iter *)

area)

WHILE NOT ((area= 'Z') OR (storedarea <> area)) DO
BEGIN

Figure 7.4 above and opposite

Implementation in a High Level Programming Language

(* year seq *)

yeartotal := 0 ;
storedyear := year
(* year body iter *)

WHILE NOT ((area • 'Z') OR (storedarea <> area) OR
(storedyear <>year)) DO

BEGIN
(* record to line seq *)

(* record to line body sel *)
IF salesamount < 100 THEN

(* low sale line *)

Writeln (reportfile, salesproduct:20,
salesamount: 8, ' I ')

(* low sale line end *)
(* record to line body else 1 *)
ELSE IF salesamount <= 300 THEN

(* moderate sale line *)
Writeln (reportfile, salesproduct:20,

salesamount: 8, ' I I ')

(* moderate sale line end *)
(* record to line body else 2 *)
ELSE

(* high sale line *)
Writeln (reportfile, salesproduct:20,

salesamount:8, ' I I I') ;

(* high sale line end *)
(* record to line body end *)

areatotal := areatotal + salesamount
yeartotal := yeartotal + salesamount
Read (salesfile, salesrec)

(* record to line end *)
END i

(* year body end *)
(* year total *)

Writeln (reportfile)

57

Writeln (reportfile, 'YEAR TOTAL ':23, yeartotal:S);
Writeln (reportfile)

(* year total end *)

(* year end *)

END i
(* area body end *)
(* area total *)

Writeln (reportfile)
Writeln (reportfile, 'AREA TOTAL ':23, areatotal:S)
Writeln (reportfile)
Writeln (reportfile)

(* area total end *)
(* area end *)

END i
(* sales report body end *)

(* sales report end *)
END.

58 Program Design Using JSP

7.3 COBOL as target language

The following examples illustrate how the schematic logic can be translated
directly into COBOL code. We have not used the PERFORM verb in the
coding rules because to do so would give a disjointed translation. A
performed routine would not appear in the same relative position within
the COBOL code as that of the corresponding pseudo-code within the
schematic logic. Chapter 11 gives reasons why the use of PERFORM is not
recommended when using the more advanced features of JSP, which are
described in chapters 9 and 10.

(a) Sequence and elementary component

The sequence parts are retained in the same order as they appear in the
schematic logic - see figure 7.5.

A SEQ A·SEQ.

B.
B OPERATION 3

DO 3,4
B END OPERATION <I

B-END.

c C· • • • • • •
....

c END C-END.

DO 5,6
OPERATION s
OPERATION 6

A END A-END,

Figure 7.5

The coding rules for a sequence or elementary component are:
1. At the start:

use the paragraph name COMPONENT-NAME-SEQ or
COMPONENT-NAME.

2. At the end:
use the paragraph name COMPONENT-NAME-END.

(b) Iteration

We use the COBOL IF and GO TO statements to implement the ITER
construct, as indicated in figure 7.6.

Implementation in a High Level Programming Language 59

G-ITEll.
G I TEll UN'l'XL Cl IP CONDITION 'b

00 '1'0 G·J!:ND,

B· SEO.
B SEO

OPERATION 11
DO 11,1~

I
OPERATION ll

I-
I 000

I END
........

B END
I-END.
H-END.

00 '1'0 G·ITEll.
G END

G-END.

Figure 7.6

The coding rules for an iteration are:
1. At the start:

use the paragraph name CO:MPONENf-NAME-ITER;
use an IF statement with the ITER condition and true action
GO TO COMPONENf-NAME-END.

2. At the end:
use GO TO COMPONENf-NAME-ITER;
use the paragraph name COMPONENf-NAME-END.

(c) Selection

Using the COBOL IF THEN ELSE and GO TO statements, as indicated in
figure 7.7, enables us to retain the structure of the schematic logic.

The coding rules for a selection are:
1. At the start:

use the paragraph name COMPONENf -NAME-SEL;
use an IF statement with the SEL condition,

true action NEXT SENfENCE,
and false action GO TO COMPONENf-NAME-ELSE-1.

2. At ELSEn:
use GO TO COMPONENf-NAME-END;
use the paragraph name COMPONENf-NAME-ELSE-N;
then provided it is not the last ELSE, use an IF statement with
the ELSE n condition,

true action NEXT SENfENCE,
and false action GO TO COMPONENf-NAME-ELSE-M
(where M is N+l).

3. At the end:
use the paragraph name COMPONENf-NAME-END.

60 Program Design Using JSP

J · SEL .

IF CONDITION C5
J BEL IF C5 NEXT SENTENCE

ELSE
GO TO J·ELSE·1

K K.
DO 3 OPERATION 3

K END K·END .

GO TO J·END. ,,

J·ELSE-·1.
IF CONDITION C6

J ELSE 1 IF C6
NEXT SENTENCE

ELSE

·' GO TO J "ELSE· 2.

L L · • .
..

L END L · END,

GO TO J · END.
J ELSE 2

J·ELSE·2.

M.
M

OPERATION 15
DO l.S , o&

OPERATION 4
M END

M· END.

J END J·END.

Figure 7.7

There is an alternative that could equally well be used. All the
'IF condition

NEXT SENTENCE
ELSE

GO TO next else' statements

could be replaced by
'IF not condition

GO TO next else'.

The slight disadvantage of having to negate the appropriate condition is
balanced by not having to use the ELSE part of the IF statement.

(d) Complete program

We shall now code a complete program (see figure 6.9 for schematic logic
of the 'sales report' example) using the following approach.

1. Code the Identification Division, Environment Division and those
parts of the Data Division required for input or output from the

Implementation in a High Level Programming Language 61

problem specification. For example

01 AREA-HEADINGS.

03 FILLER

03 AREA-HD

PIC X(6) VALUE •AREA•.

PIC X.

2. From an inspection of the elementary operations and conditions,
include in the Data Division any additional data items that will be
required such as STORED-YEAR.

3. Code the Procedure Division from the schematic logic, using the
above rules for the control constructs and translating operations
and conditions into COBOL. For example

5 Print area headings

becomes
MOVE IN-AREA TO AREA- HD

WRITE PRINT-LINE FROM AREA-HEADINGS

WRITE PRINT-LINE FROM SPACES AFTER 1.

As each operation or condition is coded:

(i) Check that appropriate data items have been included in the Data
Division.

(ii) To prevent recoding of an operation or condition already used
and to ensure that they are all coded, tick each one off on the
appropriate list.

As can be seen from the above example and the program in figure 7.8,
an elementary operation may require more than one program statement.

62 Program Design Using]SP

IDENTIFICATION DIVISION.
PROGRAM- ID. SALES.
ENVIRONMENT DIVISION.
INPtJ'l'- OtJ'l'PUT SECTION.
FILE- CONTROL.

SELECT SALES-FILE ASSIGN TO •SALES.SEQ-.
SELECT OUTPtJ'l'-REPORT-FILE ASSIGN TO •SALES.LPT•.

DATA DIVISION.
FILE SECTION.
FD SALES-FILE.
01 SALES-REC.

03 IN-AREA
03 IN-YEAR
03 IN-PRODUCT
03 IN-AMOUNT

FD OtJ'l'PtJ'l'-REPORT-FILE.

PIC X.
PIC 99.
PIC X(20).
PIC 999.

01 PRINT-LINE PIC X(BO).
WORKING-STORAGE SECTION.
01 AREA-HEADINGS.

03 FILLER
03 AREA-HD

01 YEAR-TOTAL-LINE.
03 FILLER
03 FILLER
03 YEAR-TOT

01 AREA-TOTAL-LINE.
03 FILLER
03 FILLER
03 AREA-TOT

01 DETAIL-LINE.
03 OUT-PRODUCT
0 3 0'0'1'- AMOUNT
03 FILLER
03 0'0'1'-RATING

77 TOTAL-FOR-AREA
77 TOTAL-FOR-YEAR
77 STORED-AREA
77 STORED-YEAR
PROCEDURE DIVISION.
SALES-REPORT-SEQ.

PIC X(6)
PIC X.

VALUE "AREA'".

PIC X(12) VALUE SPACES.
PIC X(11) VALUE "YEAR TOTAL'".
PIC ZZZZ9.

PIC X(12) VALUE SPACES.
PIC X(ll) VALUE "AREA TOTAL'".
PIC ZZZZ9.

PIC X(25).
PIC ZZ9,
PIC XX
PIC X(3).
PIC 9(5).
PIC 9(5).
PIC X.
PIC 99.

VALUE SPACES.

OPEN INPtJ'l' SALES-FILE OtJ'l'PUT OUTPUT-REPORT-FILE.
READ SALES-FILE AT END

MOVE HIGH-VALUES TO SALES-REC.
SALES-REPORT-BODY-ITER.

IF SALES-REC • HIGH-VALUES
GO TO SALES-REPORT-BODY-END.

AREA-SEQ.
AREA- HEADINGS.

MOVE IN -AREA TO AREA- HD
WRITE PRINT- LINE FROM AREA- HEADINGS
WRITE PRINT-LINE FROM SPACES AFTER 1.
MOVE ZERO TO TOTAL-FOR-AREA.
MOVE IN-AREA TO STORED-AREA.

AREA-HEADINGS-END.
AREA-BODY-ITER.

IF SALES-REC • HIGH-VALUES OR IN-AREA NOT • STORED-AREA
GO TO AREA- BODY- END.

YEAR-SEQ.
MOVE ZERO TO TOTAL-FOR-YEAR.

Figure 7.8 above and opposite

Implementation in a High Level Programming Language 63

MOVE IN- YEAR TO STORED- YEAR.
YEAR-BODY-ITER.

IF SALES-REC • HIGH-VALUES OR IN-AREA NOT • STORED-AREA
OR IN-YEAR NOT • STORED-YEAR
GO TO YEAR-BODY-END.

RECORD-TO-LINE-SEQ.
RECORD-TO-LINE-BODY-SEL.

IF IN-AMOUNT < 100 NEXT SENTENCE
ELSE GO TO RECORD-TO-LINE-BODY-ELSE-1.

LOW-SALE-LINE.
MOVE IN-PRODUCT TO OUT-PRODUCT
MOVE IN -AMOUNT TO OUT- AMOUNT
MOVE •1• TO OUT-RATING
WRITE PRINT-LINE FROM DETAIL-LINE AFTER 1.

LOW-SALE-LINE-END.
GO TO RECORD-TO-LINE-BODY-END.

RECORD-TO-LINE-BODY-ELSE-1.
IF IN-AMOUNT NOT > 300 NEXT SENTENCE

ELSE GO TO RECORD-TO-LINE-BODY-ELSE-2.
MODERATE-SALE-LINE.

MOVE IN-PRODUCT TO OUT-PRODUCT
MOVE IN -AMOUNT TO OUT -AMOUNT
MOVE •11• TO OUT-RATING
WRITE PRINT-LINE FROM DETAIL-LINE AFTER 1.

MODERATE-SALE-LINE-END.
GO TO RECORD-TO-LINE-BODY-END.

RECORD-TO-LINE-BODY-ELSE-2.
HIGH-SALE-LINE.

MOVE IN-PRODUCT TO OUT-PRODUCT
MOVE IN -AMOUNT TO OUT- AMOUNT
MOVE •1 11• TO OUT-RATING
WRITE PRINT-LINE FROM DETAIL-LINE AFTER 1.

HIGH-SALE-LINE-END.
RECORD-TO-LINE-BODY-END.

ADD IN -AMOUNT TO TOTAL- FOR -AREA.
ADD IN-AMOUNT TO TOTAL-FOR-YEAR.
READ SALES-FILE AT END

MOVE HIGH-VALUES TO SALES-REC.
RECORD-TO-LINE-END,

GO TO YEAR-BODY-ITER.
YEAR-BODY-END.
YEAR-TOTAL.

MOVE TOTAL-FOR-YEAR TO YEAR-TOT
WRITE PRINT-LINE FROM YEAR-TOTAL-LINE AFTER 2
WRITE PRINT-LINE FROM SPACES AFTER 1.

YEAR-TOTAL-END.
YEAR-END.

GO TO AREA- BODY- ITER.
AREA- BODY- END.
AREA- TOTAL.

MOVE TOTAL- FOR -AREA TO AREA- TOT
WRITE PRINT-LINE FROM AREA-TOTAL-LINE AFTER 2
WRITE PRINT-LINE FROM SPACES AFTER 2.

AREA- TOTAL- END.
AREA-END.

GO TO SALES-REPORT-BODY-ITER.
SALES-REPORT-BODY-END.

CLOSE SALES-FILE OUTPUT-REPORT-FILE.
STOP RUN.

SALES-REPORT-END.

64 Program Design Using JSP

7.4 Exercises

7.4.1 Code the program for exercise 4.3.1 in COBOL. The schematic logic is
given in appendix A as solution 6.3.1. The record descriptions for the
production files are given in figure 7.9.

01 PRODUCTION-RECORD.
03 RECORD-TYPE PIC 9.

88 END-OF-FILE VALUE 9.
03 MACHINE PIC X(20).
03 DATE-PURCHASED PIC X(8).
03 REPLACEMENT PIC 9.

88 REPLACEMENT-DUE VALUE 9.
01 COUNT-RECORD.

03 FILLER PIC 9
VALUE 8.

03 REPLACE-COUNT PIC 9(6).

Figure 7.9

7.4.2 Code the program for exercise 4.3.2 in Pascal. The schematic logic is
given in appendix A as solution 6.3.2. The final record in the hospital
file contains ZZZZ for ward as an end of file indicator. Use the type
declarations shown in figure 7.10.

TYPE
paeked4
reeordtype

PACKED ARRAY [1 .. 4] OF ehar
= RECORD

ward
name
patient

END ;

paeked4 ;
PACKED ARRAY [1 .. 20] OF ehar
boolean ;

Figure 7.10

7.4.3 Code the program for exercise 4.3.3 In COBOL. The schematic logic is
given in appendix A as solution 6.3.3. Use the personnel record
description given in figure 7.11.

01 PERSONNEL-REC.
03 GRADE PIC 999.
03 NAME PIC X(17).
03 0-LEVELS PIC 9.
03 A-LEVELS PIC 9.
03 DEGREE-Y-N PIC X.

88 HAS-DEGREE VALUE •y•.

Figure 7.11

8 More Than One Input File

8.1 Merging data (at most, one record per key per file)

If we are to process more than one input file simultaneously, then very
often the input files will have to be sorted into a specific order and, at the
top level, will have very similar logical data structures.

One way of viewing such problems is that we must collate or merge the
data from the input files in order to produce the required output. Such
operations are done on the basis of matching key fields. Throughout this
chapter, we assume that input files are sorted into ascending order of key
value. At this stage we shall assume that there is, at most, one record per
key per file.

The top level of the logical data structures for each input file in a collate
or merge problem will inevitably indicate that the file is an iteration of each
possible matching key - see figure 8.1.

INPUT FILE
TO COLLATE

PROBLEM

I
POSSIBLE *

MATCHING
KEY

Figure 8.1

We use the term 'possible matching key' because each input file has the
same set of allowable key values; so there is a potential for matching any
key in one file with its corresponding key in another input file.

Furthermore, each possible key may or may not be present in a
particular file, and is therefore a selection of either being present or absent
To illustrate this, consider two files containing records with unique keys -
the range of possible key values being 1 to 4. The maximum number of
possible records on each file is therefore 4. Let us say for file A that we
have keys 1 and 3, and in file B that we have keys 2 and 3; that is

65

66 Progrmn Design Using JSP

FILE A
1
3

FILE B
2
3

Oearly the presence or absence of a particular key value in a given file
will have an effect on the collate process. Also the combinations of 'present'
and 'absent' may indicate different processing actions (for example, if a
record of a given key is present in file A only - copy the record to output;
if present in both files - merge the data before output; if present in file B
only - display an error message). The logical data structures for both files
must therefore represent the following situation:

key 1 is present or absent
key 2 is present or absent
key 3 is present or absent
key 4 is present or absent

which gives the structure shown in figure 8.2.

FILE

A

I
POSSIBLE *

MATCHING
KEY

I
l I I

0 0

PRESENT ABSENT PRESENT

Figure 8.2

FILE
B

I
POSSIBLE *

MATCHING
KEY

I
J

0 0

ABSENT

Notice that we did not regard FILE A as an iteration of KEY PRESENT
ON A, nor FILE B as an iteration of KEY PRESENT ON B. Since these
components do not correspond, we would not be able to combine the two
input structures. So, how did we arrive at the above correspondences? The
basic rule for more than one input file is that corresponding components
must match. Oearly, FILE A and FILE B correspond. Since each file is an
iteration of each possible key (1, 2, 3 and 4 in the above example), the
components POSSffiLE MATOfiNG KEY also correspond. As for the
selection parts, file A key present does not necessarily match with file B key
present, and similarly for the other selection parts.

More Than One Input File 61

MERGED
INPUTS

I
POSSIBLE *

MATCHING
KEY

I
I I

FILE A 0 FILE A 0

RECORD RECORD
PRESENT ABSENT

I I
L I I I

FILE B 0 FILE B 0 FILE B 0 FILE B 0

RECORD RECORD RECORD RECORD

PRESENT ABSENT PRESENT ABSENT

Figure 8.3

If we refer back to the simple key range of 1 to 4 only, there are
obviously four combinations of 'PRESENT and ABSENT'. These combina­
tions are obtained by combining both selection components from file B with
each selection component in file A, as illustrated in the merged input
structure, figure 8.3.

This can be simplified by regarding the selection POSSIBLE MATCHING
KEY as having four component parts as shown in figure 8.4.

MERGED

INPUTS

I
POSSIBLE *

MATCHING

KEY

I
I I I I

FILE A 0 FILE A 0 FILE A 0 FILE A 0

REC. PRESENT REC. PRESENT REC. ABSENT REC. ABSENT
FILE B FILE B FILE B FILE B

REC. PRESENT REC. ABSENT REC. PRESENT REC. ABSENT

Figure 8.4

68 Program Design Using JSP

Further examination of the problem indicates that the fourth selection
part, 'file A record absent and file B record absent', is only detectable if we
process every possible key value (for example, by means of a key counter).
If we are processing only those keys that actually occur in the input files,
then this selection part does not appear on the combined input structure.

We can illustrate the difference in the two cases by solving the problem
of counting the number of key values for each of the conditions. The output
for such a problem is trivial, so our combined input structure becomes the
program structure and we can proceed to allocate operations (which include
the use of a key counter) to it. After we have solved this problem, we shall
apply an operation list which does not include the use of a counter to a
structure without the final selection part. The operation list including the
use of a key counter is:

1 Open files
2 Oose files
3 Stop
4 Read a file 'A' record
5 Read a file 'B' record
6 Print all totals
7 Add 1 to 'both present' total
8 Add 1 to 'A only' total
9 Add 1 to 'B only' total

10 Add 1 to 'both absent' total
11 Add 1 to key counter
12 Initialise all totals
13 Initialise key counter= 1

Allocating these to the program structure and including body boxes as
required, gives the structure shown in figure 8.5 for the COLLATE
PROBLEM WITH ALL POSSIBLE KEYS PROCESSED.

The condition list for this problem is:

a Until end of key range (key counter > maximum)
C2 If key counter = A key = B key
C3 If key counter = A key <> B key
C4 If key counter = B key <> A key

Note that the conditions C2, C3 and C4 will be affected by the way in
which the target language handles end of file. For example, C3 in full
should allow for the cases where end of file has been reached. That is

C3 If (key counter = A key and not end of file A)
and (key counter <> B key or end of file B)

C2
0

BOTH
PRESENT

More Than One Input File

FILE A
ONLY

COLLATE
PROGRAM

'A'

C1

POSSIBLE *
MATCHING

KEY

POSSIBLE
MATCHING
KEY BODY

Figure 8.5

FILE B
ONLY

C4
0

ELSE

BOTH
ABSENT

0

69

If, however, the key of each file is set to an impossibly high value when
end of file is reached, then whenever end of file B is true, so is key counter
<> B key; similarly, key counter = A key will ensure that we are not at the
end of file A. Henceforth, we shall assume that end of file is handled in
this way and use the above simplified versions of C2, C3 and C4.

Now let us turn our attention to the problem where we are interested in
only the keys for which records are present in one or both input files. In
this case, the data structures of figure 8.2 are combined to give a merged
input structure which, assuming that only the appropriate totals are output,
becomes the program structure - COLLATE PROBLEM WITH ONLY
THOSE KEYS PRESENT ON ONE OR BOTH OF THE INPUT FILES
PROCESSED - see figure 8.6.

For this problem we have a different condition list and, of course, do
not need operations 10, 11 and 13 from the operation list.

0 Until end of both files
C2 If A key = B key
C3 If A key < B key

70

C2
0

BOTH
PRESENT

Program Design Using JSP

COLLATE
PROGRAM

'B'

COLLATE
PROGRAM
'B' BODY

C1
POSSIBLE *

MATCHING
KEY

FILE A
ONLY

Figure 8.6

C3
0

FILE B
ONLY

ELSE
0

At this stage it should be stressed that, as file A and file B are both
sequential files then, irrespective of the problem, we must retain the three
selection component parts identified in figure 8.6. The reason is that we still
need to process each record, even if this is merely reading past "unwanted
records".

One further case, which follows from the above, occurs when we are
required to process all records from one file only (file A) but selecti~ely
take into account any data that may be present for corresponding keys in
another file (file B). In other words, we are interested in only two of the
collate possibilities:

file A record present and file B record present;
file A record present and file B record absent.

In this case, we should make file B a direct access file. The 'read a file B
record' operation (number 5 in our list) then becomes:

5 Attempt to read file B record with key = A key

Now, the data structures of figure 8.2 are combined to give a merged
input structure which, assuming that only appropriate totals are output,

More Than One Input File

BOTH
PRESENT

COLLATE
PROGRAM

·c·

PROGRAM
'C' BODY

C1
POSSIBLE *

MATCHING
KEY

POSSIBLE
MATCHING
KEY BODY

Figure 8.7

FILE A
ONLY

71

ELSE
0

becomes the program structure - COLLATE PROBLEM WITH ONLY
THOSE KEYS PRESENT ON ONE OF THE INPUT FILES PROCESSED - see
figure 8.7.

Note that figure 8.7 needs only operations 1 to 8 and 12 (9, 10, 11 and
13 from the original list are obviously not required) and has only two
conditions:

0 Until end of file A
C2 If record found in direct access file B

In the above examples, we have virtually ignored the influence of output
files so that we could concentrate on the merging of input files. Let us now
consider a collate example with a simple output file.

In a payroll system, two sequential files are used: a wages file for
weekly paid employees and a salaries file for monthly paid employees. Both
files are sorted by employee number. An employee should not be present in
both files, but it is thought that this might have occurred due to clerical

72 Program Design Using JSP

errors. It is therefore required to produce a report with headings, the details
of any employees who are on both files, and then totals of the number of
records in each file.

Having drawn the data structures for both input files (see figure 8.2)
and the output file, first we combine the input files and then draw
correspondences between the output and the combined input, as shown in
figure 8.8.

This gives us the program structure shown in figure 8.9.
The design would then be completed in the usual way by listing the

operations and conditions and allocating them to the program structure.
It is recommended that exercises 8.4.1, 8.4.2 and 8.4.3 at the end of this

chapter are attempted at this stage, before we go on to deal with more
complex problems.

COMBINED OUTPUT

SALARIES REPORT

AND WAGES FILE

I
I

I I I
POSSIBLE *

REPORT
OUTPUT

REPORT
MATCHING REPORT

EMPLOYEE
HEADINGS

FILE BODY
TOTALS

I
I I I I

SALARIES o SALARIES o WAGES 0 * EMPLOYEE
AND WAGES ONLY ONLY

DETAIL
PRESENT PRESENT PRESENT

t t

Figure 8.8

8.2 More complex merges (more than one record per key)

The solutions given above really only apply to the cases where there is, at
most, one record per key per file. If we consider a problem where the two
input files may have more than one record per key, we have extended data
structures as shown in figure 8.10.

If we assume that all possible keys are processed and ignore the
influence of an output data structure, the program structure derived from
figure 8.10 is as detailed in figure 8.11.

More Than One Input File 73

SALARIES
AND WAGES

I
J I I

REPORT
SALARIES

REPORT
HEADINGS

AND WAGES
TOTALS

BODY

I
POSSIBLE *

MATCHING
EMPLOYEE

I
I I I

SALARIES o SALARIES o WAGES 0

AND WAGES ONLY ONLY
PRESENT PRESENT PRESENT

Figure 8.9

FILE FILE
A B

I I
POSSIBLE * POSSIBLE *
MATCHING MATCHING

KEY KEY

1 j
I I I I

0 0 0 0

PRESENT ABSENT PRESENT ABSENT

I I
* * A B

RECORD RECORD

Figure 8.10

74 Program Design Using JSP

COLLATE

PROGRAM

I C1
POSSIBLE *

MATCHING
KEY

I
I C2 I C3 I C4 I ELSE

0 0 0 0
BOTH FILE A FILE B BOTH

PRESENT ONLY ONLY ABSENT

I
I I f I cs

RECORDS RECORDS * A B
FROM FILE FROM FILE

RECORD RECORD
A B

I cs I C6
MATCHED * MATCHED *

A B

RECORD RECORD

Figure 8.11

The condition list is as follows:

0 Until end of key range
C2 If key counter = A key = B key
C3 If key counter = A key <> B key
C4 If key counter = B key <> A key

C6

*

C5 Until end of A records of current key (A key <>
key counter)

C6 Until end of B records of current key (B key <>
key counter)

As in the previous section, we have simplified the structure by
regarding POSSIBLE MATCHING KEY as a selection of four component
parts.

BOTH PRESENT is shown as a sequence of RECORDS FROM FILE A
followed by RECORDS FROM FILE B, because the iteration of A RECORD
from the FILE A data structure and the iteration of B RECORD from the
FILE B data structure must both occur as part of the component BOTH
PRESENT.

More Than One Input File 75

Given the specific problem of counting all records that are matched, all
that are in file A only, and all that are in file B only (that is, only those
keys present on one or both of the files processed), the data structures of
figure 8.10 are combined to give the program structure shown in figure
8.12.

RECORDS

FROM FILE
A

C4

BOTH
PRESENT

RECORDS
FROM FILE

B

C2
0

MATCHED * r-------'--------:-1

A
RECORD RECORD

COMPLEX

COLLATE

COMPLEX

COLLATE
BODY

C1

POSSIBLE *
MATCHING

KEY

POSSIBLE

MATCHING

KEY BODY

C3
0

FILE A
ONLY

C4

* A
RECORD

Figure 8.12

ELSE
0

FILE B
ONLY

cs
* B

RECORD

76 Program Design Using]SP

The condition list for this is:

0 Until end of both input files
C2 IfAkey=Bkey
C3 IfAkey<Bkey
C4 Until change of key (A key <> stored key)
CS Until change of key (B key<> stored key)

An additional operation to those used in the previous section is
necessary in order to implement C4 and CS:

14 Store key (the lower of A and B)

8.3 The sequential file update

We can apply the collate problem solution to the sequential file update
problem. Assuming, at most, one record per key per file, the data structures
of an input and output master file and a transaction file are as shown in
figure 8.13.

TRANSAC-
INPUT OUTPUT

TION FILE
MASTER MASTER

FILE FILE

I I
POSSIBLE * POSSIBLE * POSSIBLE *

MATCHING MATCHING MATCHING

KEY KEY KEY

I I
I I I

0 0 0 0

PRESENT ABSENT PRESENT ABSENT

I I
0 0 0

ADDITION CHANGE DELETION

Figure 8.13

C2
MASTER 0

AND
TRANS.

More Than One Input File

UPDATE
PROGRAM

PROGRAM
BODY

C1

POSSIBLE*
MATCHING

KEY

C3
0

MASTER
ALONE

77

ELSE
0

TRANS.
ALONE

.-----L__-=C--'-J4 .-----'-----"Cc:.,S .-----'---E=-=L=-=-S;=,E
0 0 0 ADDITION o CHANGE o DELETION o

MATCHED , MATCHED MATCHED NOT NOT NOT
ADDITION CHANGE DELETION MATCHED MATCHED MATCHED

Figure 8.14

By combining the data structures, as we did in section 8.1, and noting
that we are not interested in the condition 'transaction file record absent
and input master record absent', we arrive at the program structure shown
in figure 8.14.

Notice how the components of the transaction file that are part of
PRESENT are repeated in the program structure for each of the selection
parts that include 'transaction present'.

The above example demonstrates the principles of the sequential file
update when there is, at most, one transaction per master file record.

78 Program Design Using]SP

The allocated conditions and operations for figure 8.14 are:

0 Until end of both input files
C2 If master key = transaction key
C3 If master key < transaction key
C4 If transaction type = 'addition'
CS If transaction type = 'change'

1 Open files
2 Oose files
3 Stop
4 Read a master record
5 Read a transaction record
6 Write a new master record
7 Change an existing record and write to output
8 Display 'error- addition for existing record'
9 Display 'error- delete for non-existent record'

10 Display 'error- change for non-existent record'
11 Write unchanged master record to output

Let us now consider a problem where there is more than one transaction
record for a given key.

In a simple stock control system, a sequential master file is maintained
with one record for each product in stock. The products are identified by a
stock number. A transaction file is applied to the master file at the end of
each day and a new carried forward master file is produced. The
transaction file records are of two types: (a) change the description of the
product; and (b) change the quantity. There may be more than one
transaction record for any given stock number. An error message is
displayed for each transaction record without a corresponding master file
record. The data structures for this problem are given in figure 8.15.

Combining at the points of correspondence and remembering the
principles from our previous examples gives us the program structure of
figure 8.16, to which we have added appropriate operations and conditions.

Note that the components DESCRIP. ALONE and QUANTITY ALONE
have the same allocated operations. One could optimise this by removing
these components and making TRANS. RECORD ALONE an elementary
component with the allocated operations 8 and 5. Optimisation of this kind
will simplify the structure, but it will also make it more difficult to amend.
For instance, if we were later required to display a particular error message
for an unmatched description transaction, we would have to restore the
components that we removed.

More Tlum One Input File

TRANSAC·
INPUT

TION FILE
MASTER

FILE

I I
POSSIBLE * POSSIBLE *

MATCHING MATCHING

STOCK NO. STOCK NO.

I I
I l I

0 0 0

PRESENT ABSENT PRESENT ABSENT

I
TRANSAC· *

TION

RECORD

I
I I

0 0

DESCRIPTION QUANTITY

Figure 8.15

The conditions and operations for figure 8.16 are:

0 Until end of both input files

OUTPUT
MASTER

FILE

l
POSSIBLE *

MATCHING

STOCK NO.

0

C2 If master stock number = transaction stock number
C3 If master stock number < transaction stock number
C4 Until change of transaction stock number
CS If transaction type = change of description

1 Open files
2 Oose files
3 Stop
4 Read a master file record
5 Read a transaction file record
6 Write unchanged master record to output
7 Write amended master record to output
8 Display 'transaction alone' error message
9 Change master file record description

10 Change master file record quantity
11 Store transaction stock number

79

80 Program Design Using]SP

r

1 11 .~

I
11.4.5 1

C2

MASTER 0

&
TRANS.

I
I

MASTER

& TRANS.

BODY

I C4

* TRANS.

RECORD

I
I C5 I ELSE

0 0
MATCHED MATCHED

DESCRIP. QUANTITY

UPDATE

STOCK

I
I

UPDATE

STOCK

BODY

I C1

POSSIBLE*

MATCHING
STOCK NO.

I
I C3

0
MASTER

ALONE

Figure 8.16

I ELSE

TRANS.

ALONE

l
I

TRANS.

ALONE

BODY

I

0

C4

TRANS. *

RECORD

ALONE

1
I C5 I ELSE

0 0

DESCRIP. QUANTITY

ALONE ALONE

I I

I 8.5 I I 8.5 I

More Than One Input File 81

Of course, many sequential file updates are more complex than the
above, essentially because of the complexity of the transaction file. For
instance, a realistic transaction file would be sorted so that for any key the
addition(s) come before the change(s) which come before the deletion(s).
Also, second and subsequent additions and deletions for any key would
give rise to an error.

8.4 Exercises

For each of the first three exercises you should:

(a) Produce logical data structures for the input files identical to figure
8.2 (though you should use component names appropriate to the
problem), together with an output file structure.

(b) Combine the input data structures to produce a merged input struc­
ture with selection parts appropriate to the problem; then combine
this structure with the output structure to produce a program struc­
ture.

(c) List conditions and elementary operations, then allocate them to the
program structure, incorporating 'body' boxes as necessary.

You may assume in each case that the files are appropriately sorted.

8.4.1 A large used car sales organisation keeps a direct access file contain­
ing records of each car it has for sale. Included in the records are
registration number, manufacturer and model. A second file is built
up as cars are sold - the records in this file contain only registration
number and date sold. Once weekly, the files are used to produce a
list of descriptions (that is, manufacturer and model) of cars sold.
Occasionally, there is a sale recorded without a corresponding
description record being available, in which case 'description not
known' is printed.

8.4.2 Two files are kept by Computa Training Limited. The first contains
the names of all students who have been entered by Computa Train­
ing for the COBOL proficiency exam. The second contains the names
of all students who have passed the exam. Not all students pass the
exam and some may have been recorded as passed without being
recorded as entered. It is required to produce an error report of those
in this \atter category, followed by the percentage pass rate of the
correct records.

8.4.3 A CAL program for infants requires them to match each of a list of
26 words (each beginning with a different letter) with a set of 26

82 Program Design Using JSP

pictures. The pictures are flashed onto a VDU screen and the infant
has 20 seconds to make the match. When the match is made, the
picture is deleted from the picture file and the word from the word
list file. The initial letter of the word is used as the key in each file.
After 30 minutes the session is over and this leaves a number of
picture recorqs (which incidentally contain graphics details and the
word that the picture represents) in one file, and a number of word
records in another. The number of records in each should be the
same, but due to a software bug, they are not.

To help the software design team to find the bug, you are
required to produce the following:
(i) a list of initial letters of the words that have been deleted from

both files, followed by
(ii) the percentage of picture file records remaining, followed by
(iii) the percentage of word file records remaining, followed by
(iv) the number of words with corresponding pictures that remain in

the files.

8.4.4 A library records the following data when a book is borrowed, retur-
ned or renewed:

0 borrower's reference number (6 digits)
0 the date (dd mm yy)
0 the book catalogue number (8 chars)
0 a code = 1 for loan; 2 for renewal; 3 for return
0 the time (hh mm ss).

At the end of each day the data collected are sorted into ascending
order of time of day within catalogue number. The sorted file is then
used to update a sequential book master file containing records as
follows:

0 book catalogue number (the sort key)
0 date
0 by whom borrowed (reference number) if applicable.

If the transaction code = 1, the date and the borrower's reference
are changed in the master file record. If the transaction code = 2, the
date only is changed. If the transaction code = 3, the borrower's
reference in the master file is filled with spaces. There may be more
than one transaction per book.

The only error situation to be considered is when a transaction
record does not match a master record. This should be reported by a
simple displayed message.

You are required to design a program to update the book status
master file. Go through each stage from logical data structures to a
program structure with allocated operations and conditions.

9 Structure Clashes and Inversion

9.1 Types of structure clash

We briefly mentioned the idea of structure clashes at the end of chapter 4.
Structw:e clashes occur when it is not possible to combine logical data
structures to produce a single program structure, because the logical data
structures contradict or clash with each other.

There are, in fact, three different types of structure clash to consider -
and resolve:

(a) ordering clash
(b) boundary clash
(c) interleaving clash.

In this chapter we will describe each of the three different types, how and
why they arise, and a method of solution in each case.

9.2 Ordering clash

A company keeps an expenditure file sorted by department. If it was
required to produce a list of all items costing more than £100 in ascending
order of cost, irrespective of department, we would create the data
structures shown in figure 9.1.

Although the set of items represented by HIGH COST is identical to the
set of items represented by HIGH COST ITEM, the items are not in the
same order and hence we cannot draw a correspondence between them.
Consequently, we cannot combine the structures to produce a single
program structure.

However, we could resolve the clash by sorting the expenditure file into
strict order of item cost only, and use the sorted file as input to a program
to extract the high cost items as required. This solution is shown in figure
9.2.

83

84

I
HIGH
COST

EXPENSES
FILE

0

9.3 Boundary clash

Program Design Using]SP

EXPENSES
FILE

I
*

ITEM

I
I

0

--

Figure 9.1

SORT

LIST
PROGRAM

Figure 9.2

9.3.1 Why boundary clashes occur

HIGH COST
LIST

I
HIGH COST

ITEM

SORTED
EXPENSES

FILE

HIGH COST
LIST

*

Suppose we are to produce a print program in which variable length blocks
of information are to be printed about cars, one for each model in a car
details file. Each block has a car make and model, followed by a variable
number of print lines. The pages are to be numbered, and the car make and
model are to be repeated at the head of a page when a block is split over
more than one page. The print file has effectively two structures: the
structure of the physical medium on which it is written (the printed page),
and the structure of the data to be written (the grouping of lines by car
model). Both of these structures must be taken into account. But, ignoring
headings for the sake of simplicity, this gives us the situation shown in
figure 9.3.

Structure Clashes and Inversion 85

REPORT REPORT

(PHYSICAL) (LOGICAL)

FILE FILE

I I
* *

PAGE
CAR

BLOCK

I I
* *

LINE LINE

Figure 9.3

c I CAR BLOCK 1
PAGE 1

I CAR BLOCK 2 c PAGE 2 I CAR BLOCK 3

PAGE 3 c ~ CAR BLOCK 4

c PAGE 4 CAR BLOCK 5

Figure 9.4

The difficulty is that a car block may be entirely contained within one

page or may be split between pages- see figure 9.4.

Obviously we cannot draw a correspondence beween PAGE and CAR

BLOCK Furthermore, we cannot regard PAGE as an iteration of CAR

BLOCK, or CAR BLOCK as an iteration of PAGE. Neither represents the

relationship between pages and car blocks, since the boundary of a page

clashes with the boundary of a car block.

Thus, we cannot produce a logical data structure for the report file that

contains both· the components PAGE and CAR BLOCK

86 Program Design Using JSP

9.3.2 A typical example

A student file contains marks sorted by course. We are required to produce
a report which is split into pages, with a heading on each page. Student
names and marks are to be listed with totals at the end of each course.
There is no relationship between course and page. We could have a number
of courses per page (and several total lines) or a course could be spread
over a number of pages. We cannot ignore the division of the input file into
courses (because we are to produce totals at the end of each course), and
we cannot ignore the division of the output file into pages (because we are
to produce headings at the beginning of each page).

The appropriate data structures are shown in figure 9.5.

STUDENT REPORT
FILE FILE

I I
* I PAGE

*
COURSE

I
I

I j
* STUDENT PAGE PAGE

MARK HEADING BODY

I
*

LINE

I
I I

0 0

DETAIL TOTAL

Figure 9.5

In producing the logical data structure for the report file, we have the
same problem with the components PAGE and COURSE as we identified at
the end of section 9.3.1. Having retained the component PAGE, we are
unable to include COURSE as a component. We attempt to overcome this
problem by means of a selection - each line on the page is either a detail
line or a course total line.

Structure Clashes and Inversion 87

Obviously STUDENT FILE corresponds with REPORT FILE and STU­
DENT MARK corresponds with DETAIL. But, COURSE does not correspond
with PAGE and we cannot regard one as an iteration of the other. The
boundary of COURSE clashes with the boundary of PAGE. Oearly we are
not going to be able to combine them to produce a program structure.
However, there is a solution to the problem.

9.4 Solving the boundary clash

First, notice how· we overcame the ordering clash (figure 9.2). In creating
the intermediate file, SORTED EXPENSES FILE, we have, in effect, solved
two simpler problems. We can use a similar approach when faced with the
more difficult problem of a boundary clash.

Consider the student marks problem above. There would be no difficulty
in creating a program which read the student file and simply produced
detail lines of print and, at appropriate points, course totals (that is, we did
not have the complication of page boundaries).

The data structures and resultant program structure are given in figure
9.6.

STUDENT INTERMEDIATE

FILE FILE

PRODUCE
INTERMEDIATE

FILE

* * *
COURSE COURSE COURSE

I I
I I I

* STUDENT COURSE COURSE COURSE COURSE
MARK BODY TOTAL BODY TOTAL

I I
* *

LINE
MARK

TO LINE

Figure 9.6

Similarly, if we had an intermediate file consisting simply of lines of
print (detail lines interspersed at appropriate points by total lines), we
would have little difficulty in producing the report file complete with page
headings from it. The data structures are shown in figure 9.7.

88 Program Design Using JSP

REPORT

FILE

j
*

PAGE

I
I I

INTERMEDIATE PAGE PAGE
FILE HEADING BODY

I I
* *

LINE LINE

I I
1 I I I

0 0 0 0

DETAIL TOTAL DETAIL TOTAL

T
t t t

I

Figure 9.7

These give the program structure shown in figure 9.8.
So, we have solved two smaller problems and we can connect them as

shown in figure 9.9.
Because we have both to write to and read from the intermediate file,

perhaps this is not the most efficient solution from a processing point of
view. But, the structures that we have produced are correct and maintain­
able, and there is a technique called program_ inversion which gets rid of
the need for the intermediate file.

Obviously, there is only one physical intermediate file. However, as this
example illustrates, the logical data structures for this file may vary,
depending on whether it is viewed as the output (as in the first program)
or the input (as in the second program).

We can now complete the design of the two programs separately by
listing the conditions and operations, allocating them to the program
structure and then producing schematic logic.

As we shall eventually replace the input and output (1/0) operations for
the intermediate file by 'logical 1/0 operations', they have to be clearly
identified. Therefore, in the first program, instead of just one operation

Structure Clashes and Inversion

PRODUCE
REPORT

I
*

PAGE

I
I I

PAGE PAGE
HEADING BODY

I
*

LINE

I
I I

0

DETAIL TOTAL

Figure 9.8

PRODUCE
+-----+!INTERMEDIATE~----+!

FILE

0

PRODUCE I I '----1----+17 REPORT _ REPORT _ .

Figure 9.9

89

90 Program Design Using JSP

'open files', we use two separate operations for student file and inter­
mediate file and similarly for 'dose files'. In the second program we 'open'
and 'dose' the intermediate file and report file separately.

Program 1 - produce an intermediate file from the student file (see figure 9.10)

The condition list is:

PRODUCE
INTERMEDIATE

FILE

PRODUCE
INTERMEDIATE

FILE BODY

COURSE

MARK
TO LINE

C1

*

Figure 9.10

0 Until end of student file

COURSE
TOTAL

C2 Until change of course or end of student file

Structure Clashes and Inversion

The operation list is:

1 Open student file
2 Open intermediate file
3 Oose student file
4 Oose intermediate file
5 Stop
6 Read a student file record
7 Write intermediate file detail record
8 Write intermediate file total record
9 Accumulate course total

10 Initialise course total
11 Store course code

Now the schematic logic is shown in figure 9.11.

PRODUCE INTERMEDIATE FILE SEQ [Program 1
DO 1 [Open student file
DO 2 [Open intermediate file
DO 6 [Read a student file record
PRODUCE INTERMEDIATE FILE BODY ITER UNTIL C1 [end of

student file
COURSE SEQ

DO 10 [Initialise course total
DO 11 [Store course code
COURSE BODY ITER UNTIL C2 [change of course or end

of student file
MARK TO LINE

DO 7 [Write intermediate file detail record
DO 9 [Accumulate course total
DO 6 [Read a student file record

MARK TO LINE END
COURSE BODY END

COURSE TOTAL
DO 8 [Write intermediate file total record

COURSE TOTAL END

COURSE END

PRODUCE INTERMEDIATE FILE BODY END

DO 3 [Close student file
DO 4 [Close intermediate file
DO 5 [Stop

PRODUCE INTERMEDIATE FILE END

Figure 9.11

91

92 Program Design Using]SP

Program 2 - produce report file from the intennediate file (see figure 9.12)

The condition list is:

PRODUCE
REPORT

REPORT
BODY

PAGE

PAGE PAGE
HEADING BODY

DETAIL

LINE
BODY

Figure 9.12

C3

*

C4

*

TOTAL

C3 Until end of intermediate file

ELSE
0

C4 Until end of page or end of intermediate file
C5 If a detail line

Structure Clashes and Inversion

The operation list is:

21 Open intermediate file
22 Open report file
23 dose report file
24 dose intermediate file
25 Stop
26 Read an intermediate file record
'ZJ Print page headings
28 Print a detail line
29 Print a total line
30 Increment line count by 1
31 Increment line count by 4
32 Initialise line count

The schematic logic is as shown in figure 9.13.

PRODUCE REPORT SEQ [Program 2
DO 21 [Open intermediate file
DO 22 [Open report file
DO 26 [Re~d an intermediate file record
PRODUCE REPORT BODY ITER UNTIL C3 [end of intermediate file

PAGE SEQ
PAGE HEADING

DO 27 [Print page headings
DO 32 [Initialise line count

PAGE HEADING END
PAGE BODY ITER UNTIL C4 [end of page or end of

intermediate file
I.:t:NE SEQ

LINE BODY SEL IF CS [detail line
DETAIL

DO 28 (Print a detail line
DO 30 [Increment line count by 1

DETAIL END

LINE BODY ELSE 1
TOTAL

DO 29 [Print a total line
DO 31 [Increment line count by 4

TOTAL END

LINE BODY END

DO 26 [Read an intermediate file record
LINE END

PAGE BODY END

PAGE END

PRODUCE REPORT BODY END

DO 23 (Close report file
DO 24 (Close intermediate file
DO 25 [Stop

PRODUCE REPORT END

Figure 9.13

93

94 Program Design Using JSP

9.5 Program inversion

The intermediate file is a serial file. This means that when writing, the
records are written one after another as they are produced; and on reading,
the records are read in the same order in which they have been written.

If the two programs that write and read the intermediate file were
executed at the same time, theoretically, once a record was written by the
first program, it could be read by the second program. We could represent
this diagrammatically as shown in figure 9.14.

FIRST I I SECOND
PROGRAM I

A RECORD
I PROGRAM

l repeat until no I
more records

Figure 9.14

A practical method of achieving this is to combine the two programs by
making one a subprogram (subroutine or procedure) of the other, with an
intermediate file record being passed from the main program to the
subprogram (or vice versa). Thus we no longer need a physical intermediate
file since only one record is active at any one time. This means that the
operations for the intermediate file (open, close, read and write) have to be
replaced by 'logical 1/0 operations'. In effect, as we shall see later, instead
of writing to the intermediate file, we pass the intermediate file record to
the subprogram as a parameter. Then, instead of reading from the
intermediate file, we exit to the main program to obtain another record.

We can summarise the 'rules' for program inversion as follows:

1. Decide on the most appropriate inversion (that is, which program
should be the subprogram).

2. Identify the 1/0 operations for the intermediate file as 'logical 1/0
operations'.

3. Apply specific rules for the implementation of the 'logical 1/0
operations' at the coding stage.

The way in which we remove the intermediate file and make one
program a subprogram called by the other is now demonstrated in detail.

We will choose to make the second program a subroutine of the first.
Coding from the schematic logic may now be done with specific rules for
the identified 'logical 1/0 operations'.

First, the main program (program 1). Instead of writing to the inter­
mediate file, we are going to call the subroutine and pass an intermediate

Structure Clashes and Inversion 95

file record together with an intermediate file status indicator, which
indicates when the file is open or closed (in order to implement 'end of
intermediate file' for conditions C3 and C4 in the subprogram).

We code

2 Open intermediate file

by initialising an intermediate file status indicator.
In COBOL,

I MOVE 0 TO INTER·EOF.

In Pascal,

inter_eof := FALSE

We code

7 Write intermediate file detail record

by calling the subroutine and making available the intermediate file record
and the intermediate file status indicator. The type of intermediate file
record (detail or total) must also be conveyed to the subroutine. For
illustrative purposes, we will make these available by parameter passing in
COBOL and using global areas in Pascal.

In COBOL,

In Pascal,

We code

MOVE •D• TO D·REC·TYPE.
MOVE COURSE· CODE TO D ·COURSE.
MOVE NAME TO D·NAME.
MOVE MARK TO D·MARK.
CALL REP·SR USING INT~R·EOF DETAIL-RECORD.

rectype : • 'D'
Reportsr ;

8 Write intermediate file total record

by calling the subprogram as above.

96 Program Design Using]SP

In COBOL,

In Pascal,

We code

MOVE •T• TO T-REC-TYPE.
MOVE STORED- COURSE TO T- COURSE.
MOVE COUPSE-TOT TO T-TOTAL.
CALL REP- SR USING INTER- EOF TOTAL- RECORD.

rectype :• 'T'
Reporter ;

4 Close intermediate file

by calling the subprogram as above, except that the intermediate file status
indicator is set to 'end of file' and the intermediate file record contents are
irrelevant.

In COBOL,

In Pascal,

MOVE 1 TO INTER-EOF,
CALL REP-SR OSXNG XNTER-EOF NOLL-RECORD,

inter_eof := TRUE
Reporter ;

Now the coding for the subprogram (program 2). For a 'logical read' of
the intermediate file we exit to the main program to obtain an intermediate
file record. In order to maintain continuity within the subprogram, on
re-entry, we must ensure that the subprogram is executed from the
instruction after the appropriate 'read'. This means inserting labels at each
point of exit, and right at the beginning of the subprogram including a
statement which will transfer control to the point in the code from where
we last exited.

In COBOL,

GOTO ENTRY-1 ENTRY-2 ..••.. ENTRY-n
DEPENDING ON ENTRY-STATUS.

ENTRY-1.

Structure Clashes and Inversion

There will be the same number of ENTRY -n labels as read intermediate file
statements (that is, 2 in our case). ENTRY-STATUS is a WORKING­
STORAGE entry in the subprogram, with an initial value of one.

In Pascal,

10:

IF entrystatus • 1 THEN GOTO 10
ELSE IF entrystatus • 2 THEN GOTO 20
ELSE IF entrystatus • n THEN GOTO nO ;

where 10, 20, nO are declared as labels. entrystatus is an integer variable
initialised to 1 at the start of the main program.

We code

21 Open intermediate file

and the first occurrence of

26 Read an intermediate file record

by nothing!! This is because the first call of the subroutine passes the first
inte-rmediate file record.

We code the second and subsequent occurrences of

26 Read an intermediate file record

by setting the entry status indicator to a value that indicates which
occurrence of the 'read' it is (that is, for the second read use value 2, for
the third use 3 etc.); then exiting from the subprogram (or passing control
to a common exit point); then inserting a label to correspond to the entry
point handling code mentioned above.

In COBOL,

MOVE 2 TO ENTRY-STATUS.
EXIT PROGRAM.

ENTRY-2.

In Pascal,

20:

entrystatus :• 2
GOTO 9999

where the label 9999 is situated as a common exit point from the
subprogram (procedure).

98 Program Design Using JSP

We code

I 24 Close intermediate file

by nothing!!
We replace

I 25 Stop

by code to exit from the subprogram:
In COBOL,

EXIT PROGRAM.

In Pascal, this is not applicable.

We code

end of intermediate file in C3 and C4

by testing the value of the intermediate file status indicator.

A full implementation of this boundary clash solution is given in both
languages in appendix J.

The coding rules given above are now summarised in figure 9.15. You
may find it beneficial to re-examine the rules in the light of this diagram.

In the above example we overcame the structure clash by creating an
intermediate file of LINES (that is, using one LINE per intermediate file
record). There was no point in using a record larger than LINE (such as
PAGE), since that would not remove the clash. If the clashing logical data
structures had contained an entity smaller than LINE (for example, FIELD
or CHARACTER) in addition to LINE, then creating an intermediate file of
this entity would have removed the clash, but would obviously be
inefficient. In general, we create an intermediate file of the largest entity
common to the clashing structures (that is, the highest level non-clashing
component).

We have explained the technique of inversion by providing coding rules
that can be applied directly to the schematic logic of the two programs.
However, when developing such programs, it is recommended that you
initially code the two programs separately (that is, without using subpro­
grams); test program 1 to create the intermediate file, then test program 2
using this intermediate file as input; then, once the two programs are
correct, apply the coding rules to remove the intermediate file by making
program 2 a subprogram of program 1.

Structure Clashes and Inversion 99

MAIN PROGRAM SUBROUTINE

Initialise intermediate
file status indicator

[Open intermediate file]

Call the subroutine
[Write intermediate file]

Call the ·subroutine
[Write intermediate file] ,,

'' ''
!!

Set intermediate file
status indicator to 'end
of file': call subroutine
[Oose intermediate file]

END OF MAIN
PROGRAM

Figure 9.15

Control passing mech­
anism for ~~gical reads

::
[Open intermediate file]

(dO I rothing)

[Read interhitediate file]
(do nothing)

::
II

Establish return point
exit to main program

[Read interp;tediate file]

i!
~ ~

Establish return point
exit to main program

[Read interiTediate file]

[Oose inte~~ediate file]
(do, 11othing)

ll
Exit to ~i~ program

[Stop]

As exercises 9.7.1 and 9.7.2 relate to the boundary clash and program
inversion, you may attempt them at this stage, before considering the
interleaving clash.

9.6 Interleaving clash

Consider a multiprogramming computer which runs a number of jobs (each
containing a number of programs) simultaneously. We could show the
schedule with a simple bar chart like that shown in figure 9.16.

Suppose the computer logged the start and finish of the jobs and the
programs, then the data would be as shown in figure 9.17.

If we attempt to process the data (log file) to produce details of elapsed
time per job and per program, we find that the structure of the log file just
does not represent job or program entities. The entities that we want are
interleaved; the only way we can draw a logical data structure is to show
that the logging file records are either job starts, job ends, program starts or
program ends. So, we have the structures given in figure 9.18.

The structure clash is clear. LOG FILE corresponds with LOG ANALYSIS,

100 Program Design Using JSP

TIME

JOB 1 PROGRAM t1 • ···1 I PROQRAII tf ·• I !·•. PROGRAM i;3 I
JoB 2 r· ... pRoo~Ar.t}z;r ···. ·1 1 PFIOaBAM:tj:2 · · · .··.1

JoB 3 1 · PROGRAM 3•1 . ·. 1 r. PaoaRAr.t 1r · ·.. • l
JOB 4 PROGR~A:t(· ·>J [:J:tfiOGFIAM.d>C <l jref!b.aitAMYt3/i ?I

Figure 9.16

JOB 1 START 9.00
PROGRAM 1.1 START 9.00
JOB 2 START 10.00
PROGRAM 2.1 START 10.00
JOB 4 START 10.30
PROGRAM 4.1 START 10.30
JOB 3 START 10.45
PROGRAM 3.1 START 10.45
PROGRAM 1.1 END 11.00
PROGRAM 1.2 START 11.00
PROGRAM 2.1 END 11.30
PROGRAM 2.2 START 11.30

etc etc.

Figure 9.17

LOG LOG
FILE ANALYSIS

I
* *

RECORD JOB

I I
r I I I I

0 0 0 0
JOB JOB PROGRAM PROGRAM JOB JOB

START END START END BODY TOTAL

*
PROGRAM

Figure 9.18

Structure Clashes and Inversion 101

but further correspondences are impossible. One solution is perhaps obvious -
if we sort the log file into program within job order, we have no problems. But
what if there is no time to sort or if we want a continuous analysis throughout
the day? We must apply another solution.

Program inversion can be applied to solve the problem. Essentially, the
solution is the same as that outlined for the boundary clash problem above,
except that we have more than one intermediate file (that is, one per job).
The first program simply creates a new file for each new job and writes
each record from the log file to the appropriate job file. The second
program reads each job file in turn and produces the analysis. Of course,
one needs to keep track of all the files created and if the number of files is
known to be small then th~ data could be kept in store. The technique of
program inversion allows us to combine the two programs into one, thus
allowing immediate production of analysis data as soon as all data for a job
are assembled.

9.7 Exercises

9.7.1 In respect of the student marks problem (figures 9.11, 9.13 and
appendix J), given the following data, show the contents of the entry
status indicator, the intermediate file status indicator and the inter­
mediate file record (or equivalent global data areas) for each
occurrence of the operations affected by the coding rules (that is 2, 4,
7, 8, 21, 24, 25, 26).

Use a student file of the form:
MATHS F JONES 35
MATHS C DODD 48
SCLENCE J BROWN 62

9.7.2 A stock file contains product detail records comprtsmg: a product
group code, a product code, the product description and the stock
level. The file is sorted into product code within product group
order. An example of the file contents is:

group product code description stock level
A 1234 NUTS 25
A 1316 BOLTS 13
A 4312 SCREWS 46
c 1625 WOOD GLUE 15
c 2315 SUPER GLUE 29
D 1234 HAMMER 42
D 6678 CHISEL 32

A report is required of all products for which the stock level has
fallen below the reserve level of 20. The report is to be paged with
standard page headings (title, page number and date). In addition to

102 Program Design Using JSP

the product details being printed (one per line), a total of the number
of different products selected per product group is to be shown at
the end of each group. There is no relationship between product
group and page. There could be more than one product group per
page, and a product group could span.more than one page. You may
assume that there are no blank lines in the report.

Design a program to produce this report by following these steps:

(a) Draw logical data structures for the stock file and report, and
then, as you attempt to find correspondences, you should
identify a boundary clash.

(b) For program 1 (produce intermediate file from stock file), go
through each stage from logical data structures to program
structure with allocated operations and conditions.

(c) Repeat (b) for program 2 (produce report from intermediate
file).

(d) Indicate how you would now remove the intermediate file by
amending certain operations, including others and making one
program a subprogram of the other.

9.7.3 Describe in your own words

(a) Why structure clashes occur.
(b) How program inversion aids the solution of structure clashes.

If you wish, you may now attempt the case study in appendix C.

10 Recognition Problems and Backtracking

10.1 Introduction

For most problems we can 'find our way' through the program structure by
reading one record ahead. By inspecting the next record to be processed
(that is, the record just read), we can determine whether or not there is a
further occurrence of the iterated part of an iteration and which part of a
selection is to be executed.

Sometimes, however, we need to read more than one record ahead.
Consider a file of personnel detaib where for each person there is either
one or two records - a financial record and/ or a non-financial record. It is
possible to have (for any person) either one of the records, or both records
in either order. We have a structure as shown in figure 10.1.

PERSONNEL
FILE

I
*

PERSON

I
I I I I

NON-FIN. o 0 FINANCIAL o 0

AND FINANCIAL NON-FINANCIAL AND NON-FIN. FINANCIAL

PAIR ONLY PAIR ONLY

I I
I J I I

NON-FINANCIAL FINANCIAL FINANCIAL NON-FINANCIAL
RECORD RECORD RECORD RECORD

Figure 10.1

103

104 Program Design Using JSP

The problem with this structure is that we cannot construct the
conditions unless we have the next two records to be processed available
for selection. So we introduce a two record read ahead.

A simple two record read ahead routine might be:

Copy area-2 into area-l
If not end of file

read a record into area-2

This routine would be performed for every record required. That is, it
would be performed twice at the beginning and when two records have
been processed, and once when one record has been processed.

Now consider the problem of validating a transaction file containing
batches of records. Each batch contains a number of detail records ·followed
by a batch total record. Each record is of fixed length containing a batch
number, a code, an amount and the type (detail or total). The amount in the
total record is the sum of each detail record (but it could be wrong). The
code in the total record is always zeros and does not need validating, but
the code in the detail records should be within a specific range. The
validation rules state that batches without errors are written to an accepted
batches file, and batches with errors are written to a rejected batches file.
Also, the computed batch total amount for an accepted batch is displayed at
the operator's terminal.

In drawing a logical data structure for the transaction file, we must
distinguish between an accepted batch and a rejected batch. For an accepted
batch we include only components relevant to the processing of an accepted
batch; for example, the computed total is displayed only for an accepted
batch. For a rejected batch we include only components relevant to the
treatment of a batch known to contain errors; thus there is no need to
distinguish between detail records and total records for a rejected batch,
assuming that we can use the same write operation for both. The structure
will not contain a selection component of valid or invalid record depending
on code, because the accepted batch will contain only valid records and the
rejected batch processing for this problem does not need to distinguish
between the valid and invalid records. For the same reason, we do not
include a selection component of correct or incorrect batch total record.

The data structure for the transaction file is as shown in figure 10.2.
The problem here is that we cannot evaluate the condition for

ACCEPTED BATCH until we have processed the whole batch. The solution
would appear to be a multiple record read ahead. But how many records do
we read?

A more practical solu~on is found in the technique of backtracking. It
must be stressed, however, that the structures for ACCEPTED BATCH and
REJECTED BATCH would still be produced on the 'assumption' that we
could evaluate the condition.

Recognition Problems and Backtracking 105

TRANSACTION
FILE

I
*

BATCH

I
r I

0 0
ACCEPTED REJECTED

BATCH BATCH

I I I I
ACCEPTED ACCEPTED REJECTED *

BATCH BATCH BATCH
BODY TOTAL RECORD

I
*

ACCEPTED
RECORD

Figure 10.2

10.2 The technique of backtracking

In general, this technique may be applied where we have recognition pro­
blems. That is, when the natural and correct program structure cannot be
directly implemented because of an inability to evaluate the controlling
condition for one or more constructs. The solution to such problems is first
described by means of an allegory.

':Suppose we have two sets of playing cards which are placed face down
on a table, and it is known that one set contains an ace (and no kings) and
the other set a king (and no aces). How do we select the one with the ace?
We cannot know which to select, so we make an arbitrary choice and
examine the selected set, one card at a time, until we find the ace (we have
made the right choice!) or we find the king (we have made the wrong
choice!). In the latter case we now pick up the second set and, if necessary,
re-arrange the first set as if it had not been disturbed.

If we cannot make a decision at the outset, then we adopt the following
procedure:

1. Make an arbitrary choice (or an informed guess if there are some
clues) assuming it to be the correct one. We call this a POSIT.

106 Program Design Using]SP

2. Follow up that choice until such time as it is proved to be right or
wrong.

3. If the choice is found to be incorrect, then stop following the choice
made (we call this a QUIT) and follow instead the alternative choice
(this is called an ADMIT).

4. If by taking the wrong choice we have disturbed something, we
must identify the importance of this disturbance. We call such
disturbances SIDE EFFECTS.

5. A side effect may be intolerable; for example, we should not have
disturbed the first set of cards.

6. Or a side effect may be neutral (or tolerable); for example, it does
not matter that we have disturbed the first set of cards.

7. Or a side effect may be favourable; for example, we needed to move
the first set of cards anyway.

8. For the intolerable side effects, we make arrangements to reverse
them; for example, replace the first set in exactly the same place and
order.

10.3 The accepted and rejected batch problem

Let us now apply the above technique to the accepted and rejected batch
problem introduced in section 10.1. The input data structure is given in
figure 10.2.

The output structures are 'accepted file', an iteration of 'accepted batch'
whose structure is given by the component ACCEPTED BATCH in figure
10.2; and 'rejected file', an iteration of 'rejected batch' whose structure is
given by the component REJECTED BATCH also in figure 10.2. The
correspondences being obvious, we arrive at the program structure shown
in figure 10.3 with allocated operations and conditions.

The conditions and operations are:

0 Until end of file
C2 If a valid (accepted) batch !!!
C3 Until end of batch record (that is, total record)
C4 Until change of batch or end of file

1 Open files
2 dose files
3 Stop
4 Read a transaction file record
5 Write transaction record to accepted file
6 Display computed batch total
7 Write transaction record to rejected file
8 Add amount to batch total
9 Initialise batch total

10 Store batch number

Recognition Problems and Backtracking

BODY

C3

* ACCEPTED

RECORD

C21
0

ACCEPTED

BATCH

ACCEPTED

BATCH

TOTAL

Figure 10.3

VALIDATE

TRANSACTION

FILE

TRANSACTION

FILE BODY

C1

*
BATCH

ELSE
0

REJECTED

BATCH

BATCH BODY

C4

* REJECTED
RECORD

107

We now continue with the design process and produce schematic logic,
omitting the reference to condition C2. This gives the schematic logic shown
in figure 10.4.

Next we amend the schematic logic by adopting the following pro­
cedure. (The modified schematic logic is given in figure 10.5.)

(a) Replace the BATCH SEL by BATCH POSIT.

(b) Replace the BATCH ELSE 1 by BATCH ADMIT.

(c) Identify the points in the accepted batch procedures where it may
become known that the batch is invalid and insert QUIT statements.

108 Program Design Using]SP

VALJ:DATE TRANSACTJ:ON l"J:LE SEQ
DO 1 [Open files
DO 4 [Read a transaction file record
VALJ:DATE TRANSACTJ:ON l"J:LE BODY :ITER ONTJ:L C1 [end of file

BATCH SEL
ACCEPTED BATCH SEQ

DO 9 [:Initialise batch total
ACCEPTED BATCH BODY :ITER ONTJ:L C3 [end of batch record

ACCEPTED RECORD
DO 5 rKrite transaction record to accepted file
DO 8 [Add amount to batch total
DO 4 [Read a transaction file record

ACCEPTED RECORD END
ACCEPTED BATCH BODY END
ACCEPTED BATCH TOTAL

DO 5 [Write transaction record to accepted file
DO 6 [Display computed batch total
DO 4 [Read a transaction file record

ACCEPTED BATCH TOTAL END
ACCEPTED BATCH END

BATCH ELSE 1
REJECTED BATCH SEQ

DO 10 [Store batch number
REJECTED BATCH BODY :ITER UNTJ:L C4 [change of batch or

end of file
REJECTED RECORD

DO 7 [Write transaction record to rejected file
DO 4 [Read a transaction file record

REJECTED RECORD END
REJECTED BATCH BODY END

REJECTED BATCH END
BATCH END

VALJ:DATE TRANSACTJ:ON l"J:LE BODY END
DO 2 [Close files
DO 3 [Stop

VALJ:DATE TRANSACTJ:ON l"J:LE END

Figure 10.4

Two QUITs from BATCH POSIT are necessary:

(i) If the code in a detail record is invalid (not in range).
(ii) If the computed batch total is not equal to the total in the batch

total record.

We insert the first at the beginning of ACCEPTED RECORD, and the
second at the beginning of ACCEPTED BATCH TOfAL. The
conditions for the QUITs are added to the condition list:

Recognition Problems and Backtracking 109

CS If invalid code
C6 If computed total not = total in the batch total record

(Occasionally, though not in this case, it may be necessary to support
a condition by including additional operations before a QUIT.)

(d) Identify and classify side effects. We look at all operations in the
ACCEPTED BATCH process that come logically before the last
QUIT. Hence:

(i) Operation 9 [Initialise batch total] is a neutral side effect.
(ii) Operation 5 [Write transaction record to accepted file], in

ACCEPTED RECORD, is an intolerable side effect because, if
the batch turns out to be a rejected one, none of its records
should be written to the accepted file.

(iii) Operation 8 [Add amount to batch total] is a neutral side effect
because although it is unnecessary to the REJECTED BATCH
process, it will not interfere with it, and anyway its effects are
cancelled at the beginning of a new batch.

(iv) Operation 4 [Read a transaction file record], after operation 8, is
an intolerable side effect because a read statement for a serial or
sequential file advances past the last record read, and it is
necessary to process the records in a rejected batch from the
beginning of the batch.

(e) Insert operations to overcome the intolerable side effects (see - in
figure 10.5}.

For (ii) above, we need to postpone the output to the accepted file
by writing it to a temporary file. This means

I 11 Initialise temporary file (reset to beginning if necessary) I
is allocated right at the beginning of BATCH POSIT.
The first operation 5 becomes

SA Write transaction record to temporary file

Then

12 Copy temporary file contents to accepted file

is included immediately after the last QUIT.
(The coding of operation 11 must allow for the situation where the
temporary file has remained open owing to a prior quit from the
accepted batch process.)

110 Program Design Using JSP

For (iv) we need to undo the reading of the transaction file by
repositioning to the beginning of the current batch. This means

I 13 Store position of start of the batch

is allocated at the beginning of BATCH POSIT, and

14 Reposition the transaction file to start of the current
batch

is allocated right at the beginning of BATCH ADMIT.

In this particular problem both the 'read' and 'write' are intolerable side
effects. This is not always the case as you will see later from exercise 10.7.1
and case study D.

10.4 Dealing with intolerable side effects

Having classified the side effects as favourable, neutral or intolerable by
examining each operation of the POSIT which comes logically before the
last QUIT we must overcome the intolerable side effects. We shall now
summarise the main techniques.

Consider the situation where POSIT processing may change the state of
certain variables, but ADMIT needs the original states. This can be catered
for by storing (or freezing) the state of computation on entry to the POSIT,
and retrieving (or unfreezing) on entry to the ADMIT. For example, on
entry to POSIT we may store a copy of the contents of all variables whose
state is (or may be) changed by POSIT processing; then if the ADMIT
component is entered, the values would be retrieved from the temporary
copy area.

Serial access read operations in the POSIT can give rise to intolerable
side effects (for example, 'read a transaction file record' in the problem of
section 10.3) as ADMIT may need to access the records read past. This can
be overcome, as indicated in section 10.3, by storing the position of the file
at the beginning of the POSIT and then repositioning the file to the stored
position right at the beginning of the ADMIT.

The basic principle employed in both the above situations is the same -
store at the start of POSIT and retrieve at the start of ADMIT.

Output operations in the POSIT can also lead to intolerable side effects.
As we saw in section 10.3, the first occurrence of 'write transaction record
to accepted file' was intolerable, because if the batch turns out to be a
rejected one, none of its records should be written to the accepted file. We
therefore replaced the above write by 'write transaction record to temporary

Recognition Problems and Backtracking 111

VALIDATE TRANSACTION FILE SEQ
DO 1 [Open files
DO 4 [Read a transaction file record
VALIDATE TRANSACTION FILE BODY ITER UNTIL C1 [end of file

BATCH POSIT (Batch is an accepted batch)
DO 11 [Initialise temporary file **
DO 13 [Store position of start of the batch **
ACCEPTED BATCH SEQ

DO 9 [Initialise batch total
ACCEPTED BATCH BODY ITER UNTIL C3 [end of batch record

ACCEPTED RECORD
QUIT BATCH POSIT IF CS [invalid code
DO SA [Write transaction record to temporary file **
DO 8 [Add amount to batch total
DO 4 [Read a transaction file record

ACCEPTED RECORD END
ACCEPTED BATCH BODY END
ACCEPTED BATCH TOTAL

QUIT BATCH POSIT IF C6 [computed total <> total in the
batch total record

DO 12 [Copy temporary file contents to accepted file**
DO 5 [Write transaction record to accepted file
DO 6 [Display computed batch total
DO 4 [Read a transaction file record

ACCEPTED BATCH TOTAL END
ACCEPTED BATCH END

BATCH ADMIT (Batch is not accepted)
DO 14 [Reposition the transaction file to the start of

the current batch **
REJECTED BATCH SEQ

DO 10 [Store batch number
REJECTED BATCH BODY ITER UNTIL C4 [change of batch or

end of file
REJECTED RECORD

DO 7 [Write transaction record to rejected file
DO 4 [Read a transaction file record

REJECTED RECORD END
REJECTED BATCH BODY END

REJECTED BATCH END
BATCH END

VALIDATE TRANSACTION FILE BODY END
DO 2 [Close files
DO 3 [Stop

VALIDATE TRANSACTION FILE END

Figure 10.5

112 Program Design Using JSP

file' and then copied the contents of the temporary file to the accepted file
immediately after the last QUIT.

In the batch problem, a file has to be used as the temporary storage
area, because we do not know the size of the batch. Obviously, the precise
form of this temporary area (or buffer) will depend on the data being held.
In some cases a few records or an array might suffice.

POSIT and ADWI' processing may output to different files (as in the
batch problem) or require different output to the same file. In all cases the
basic principle remains the same - we do not execute the write statement at
the point indicated in the POSIT, but postpone the output until all QUIT
points have been passed.

10.5 Implementing quits

We shall now consider another typical validation situation, which would
normally be part of a larger problem, and then illustrate the coding
required for QUITs.

A record has three fields: a code, a type and a part number. The record
is valid if, and only if, all three fields are valid. The structure of the record
can be shown simply as in figure 10.6.

VALID

CODE

VALID

RECORD

VALID

TYPE

0

RECORD

VALID

PART NUMBER

Figure 10.6

INVALID
RECORD

0

This structure shows clearly that we are interested in only two
possibilities. The record is either valid or it is invalid. H it is invalid, we
wish to regard it merely as a bad or rejected record. H it is valid we wish
to process the fields code, type and part number in certain specific ways.
What the structure does not show is that we cannot evaluate the selection

Recognition Problems and Backtracking 113

between valid record and invalid record so simply. This is because the
processing of the first field (code) establishes the conditions for validating
the second field (type), and the processing of the second field establishes
the conditions· for validating the third field (part number). So we begin the
processing of the record as if it were a valid record, and take steps to
recognise at a later stage that what we may have is an invalid record.

Employing the POSIT I ADMIT construct we have the schematic logic as
shown in figure 10.7 (note that elementary components have been omitted
for clarity).

The COBOL coding for this example is given in figure 10.8. In Pascal,
we might code the example as shown in figure 10.9.

Note the strictly controlled use of GOTO. For each QUIT we go to the
ADMIT branch. At the end of the POSIT branch, we go to the end of the
POSIT I ADMIT component.

RECORD POSIT (a valid record)
VALID RECORD SEQ

QUIT RECORD POSIT IF C1 [code is invalid
DO 10 [Process code
QUIT RECORD POSIT IF C2 [type is invalid
DO 11 [Process type
QUIT RECORD POSIT IF C3 [part number is invalid
DO 12 [Process part number

VALID RECORD END
RECORD ADMIT (an invalid record)

DO 13 [Process error record
RECORD END

RECORD-POSIT.
VALID- RECORD- SEQ.

Figure 10.7

IF CODE- ERROR GO TO RECORD -ADMIT.
Process code
IF TYPE- ERROR GO TO RECORD-ADMIT.
Process type
IF PART-NO-ERROR GO TO RECORD-ADMIT.
Process part number

VALID-RECORD-END.
GO TO RECORD- END.

RECORD-ADMIT.
Process error record

RECORD-END.

Figure 10.8

114 Program Design Using JSP

LABEL 30,40 ;

(* record posit - a valid record *)
(* valid record seq *)

:IF code_error THEN GOTO 30
Process code
:IF type_error 'l'HEN GO'l'O 30
Process type
:IF part_no_error THEN GOTO 30
Process part number

(* valid record end *)
GOTO 40;

30: (* record admit - an invalid record *)
Process error record

40: (* record end *)

Figure 10.9

10.6 Quit from iteration

If necessary, the QUIT statement can be introduced into the iteration con­
struct. The ordinary form of iteration imposes the constraint .that the ter­
minating condition must be capable of evaluation at the head of the loop. In
some situations this cannot be satisfied without introducing switches, which
inevitably makes the structure more complex. There may be several circum­
stances under which the iteration is to be terminated, and they may not all
be capable of evaluation at the head of the loop. In some processes, some of
the processing within the iteration component must be completed before
exiting, or some of the processing may be necessary for elaboration of the
terminating condition. We therefore introduce the QUIT statement into the
iteration construct.

The condition is normally removed from the head of the iteration and

QUIT COMPONENT-NAME ITER
or

QUIT COMPONENT-NAME ITER IF CN [terminating condition

is then included at the appropriate place within the iterated component. In
the first case, the effect is to transfer control to the end of the iteration
unconditionally; in the second case, control is passed to the end of the
iteration when the condition is true.

We consider an application of QUIT from iteration in chapter 12 when
dealing with one of the possible implementations for an iteration of at least
one occurrence - the iterated component must be executed in order to
establish the terminating condition.

Recognition Problems and Backtracking 115

10.7 Exercise

10.7 .1 A chain store file contains records, each containing a department
code, record type indicator and other fields. A type 1 record contains
the start-of-day cash figure; a type 2 record the end-of-day cash
figure. A program is required that will detect errors and store cor­
rect data in an accepted file. If the data for a department are valid,
they are written to the accepted file; if invalid in any way, the data
are rejected and the following message is displayed:

INCORRECT DATA FOR DEPARTMENT nnnnnn

Data for a department are valid if:

(i) There are exactly 2 records for the department, a type 1 and a
type 2 record, in that order.

(ii) The value of both cash fields is in the range £100 to £100,000.
(iii) The value of cash at the end of day on the type 2 record is

strictly greater than the value of cash at the start of the day on
the type 1 record.

The records are sorted into ascending order of record type in­
dicator within department code.

Design the program to detect the above errors and produce appro­
priate output by following these steps:

(a) Construct logical data structures for
0 the chain store file
0 the accepted file.

(b) Identify correspondences and produce a program structure.
(c) List the elementary operations and conditions.
(d) Allocate these to the program structure.
(e) Revise the program structure to include body boxes, if necessary.
(f) Produce schematic logic.
(g) Revise the schematic logic to introduce as appropriate POSIT,

ADMIT and QUIT.
(h) Oassify any side effects.
(i) Amend the operation list and condition list to cater for side

effect processing and QUITs.
G) Revise the schematic logic to incorporate side effect processing.

If you wish, you may now attempt the case study in appendix D.

11 Procedurisation

11.1 Introduction

We shall use the term 'procedure' in a general sense to include ti1ose parts
of a complete program variously called subprograms, functions, subroutines
and segments. In general, procedurisation is used to break the problem
down into more manageable parts to facilitate detail design, testing and
maintenance. However, the programmer is often faced with the dilemma of
deciding which parts to procedurise. In addition to run-time overheads and
the problems of interfacing, the ill-advised use of procedures can lead to
implementation and maintenance problems rather than reducing them. The
programmer should therefore always have sound reasons for procedurising
and, in doing so, should ensure that the principles of JSP are not
contradicted. For example, in chapter 9 we used a subprogram, with good
reason, to solve the structure clash problem by considering two simpler
problems instead. The purpose of this chapter is to provide some general
guidelines on procedurisation within the context of JSP.

11.2 Bottom-up procedures

A programmer should be aware of and make use of, with due consideration
for portability, the available facilities (such as string handling routines, sort
procedures etc.), whether these are provided by the programming language
or a library. However, if the base design level, as defined by the facilities of
the target language and the available library routines, does not contain the
required operations or data structures, then such facilities can be created.
Procedures created in this way are often termed 'bottom-up' procedures.
The decision to use them could be made on inspection of the problem
specification (that is, before data structures are produced).

For example, suppose it is required to produce a piece of software based
on the processing of days of the week. Irrespective of the overall task to be
accomplished, it could be decided that the following basic facilities are
needed:

(a) A data structure to represent days of the week.
(b) Routines for the input, output and comparison of the days of the week.

116

Procedurisation 117

Given that these facilities are not present in the target language, they
would have to be constructed. Thus, the base level is raised in the sense
that 'write day of the week', for example, could then be regarded as an
elementary operation and coded by a procedure call.

11.3 Top-down procedures

Consider the fragment shown in figure 11.1 from a program structure.

A LARGE COMPLEX
STRUCTURE

Figure 11.1

If we assume that CODE IN TABLE is large or complex, then the
program quality may be improved by making CODE IN TABLE a separate
procedure. Such a decision could be made when developing the program
structure, before operations and conditions are allocated.

This would mean:

1. Separating the structures, so that in effect CODE IN TABLE becomes
an elementary component of the higher level structure, as shown in
figure 11.2. Note that the references 3.4/CODE-SUB and 3.4/MAIN­
PROG are used to link the two structures for documentation pur­
poses.

2. When allocati-ng operations,

I 12 Derive table code (say)

would be allocated to CODE IN TABLE.
3. At the coding stage this operation would then be coded by the pro­

ced ure call.

Similarly, if the structure subordinate to TERMINATOR is large or

118 Program Design Using JSP

CODE AND
TERMINATOR

Figure 11.2

3.4/MAINPROG
CODE IN

TABLE

I
A LARGE COMPLEX

STRUCTURE

complex then this could also be procedurised. The purpose of such
procedurisation is primarily to enhance readability. The overall process
performed by the higher level structure (the calling procedure) should then
be easily perceived without recourse to the detailed structures of the called
procedures.

There are no parameters to procedures created in this way because they
are dependent on program context in terms of both function and interface.
Parameters would be artificial.

Let us now consider the example shown in figure 11.3.
We shall assume that the structures with allocated operations and

conditions subordinate to both occurrences of TYPE 1 GROUP are non­
trivial and identical. We can then avoid repetition of the same code, and
hence reduce program size, by using a procedure for TYPE 1 GROUP. This
is known as coding optimisation. Obviously, the decision to use procedures
in this way can only be taken by inspecting th2 program structure with
allocated operations and conditions. The procedure is implemented using
the steps outlined in the previous example. Once again we have the
advantage of enl1anced readability. Similarly, if the structures with allocated
operations and conditions subordinate to the components TYPE. 2 GROUP
were identical, then they could also be procedurised.

However, in making the decision to optimise on space, we must be
aware of the consequences. Using the same procedure in two different
contexts means that it may have to be parameterised. The program may
also be more difficult to debug and modify. If an error occurs in such a
procedure, unless we had detailed tracing information, we would not know
from which part of the program it had been called. A minor modification to
the program specification could mean that the structures subordinate to the
components TYPE 1 GROUP were no longer identical, in which case the
procedure could no longer be used. For this reason, if the decision to
optimise is taken, one should always preserve the unoptimised design.

Let us now assume that the structure with allocated operations and
conditions for TYPE 1 GROUP is similar, but not identical, to that for TYPE
2 GROUP. Some programmers may then be tempted to devise a general

Procedurisation 119

I
POSSIBLE*

MATCHING

KEY

I
-~ l 1

0 0

~1W"H TYPE 1 TYPE 2

PE 2 GROUP GROUP

r--
I I I I

* *
TYPE 1 TYPE 2

TYPE 1 TYPE 2
GROUP GROUP

I I 1 1 * *
TYPE 1 TYPE 2

1 1
Figure 11.3

procedure which could be used for both TYPE 1 GROUP and TYPE 2
GROUP. This form of procedurisation is not recommended. The program
code should always be derived from the program structure which, in turn,
must be derived from the data structures. The program structure should
never be modified merely to allow procedurisation to be used.

Finally, a word of warning. Problems can arise if procedures are used
within programs involving inversion or backtracking. Both these techniques
require the use of GOTO, but transferring control from one procedure to
another invariably causes problems. The precise effect of such a jump can
vary from one language to another; it may even vary between implemen­
tations of a particular language, and it may even depend on the type of
procedure being used (for example, PERFORM or CALL in COBOL). It is
not the intention therefore to discuss this problem in any depth, but merely
to remind you that:

1. To maintain continuity within an inverted program, a statement is
inserted at the beginning of the subprogram to transfer control to the
point in the code from which we last exited (see chapter 9). If the
subprogram is itself procedurised then this could mean jumping out
of one procedure to the middle of another.

2. The QUIT in backtracking involves jumping from the POSIT to the
ADMIT structure. If they are in separate procedures, then once again
the results could be unpredictable.

12 Interactive Systems

12.1 Interactive dialogue

Many systems allow individual users to interact with the computer directly.
This involves the use of a dialogue between a terminal user and the com­
puter. The most common basic types of interactive dialogue are:

(a) menu selection
(b) form filling
(c) question and answer
(d) interrogate or command.

In this chapter we develop program structures with allocated operations
and conditions for each of the above. Each example is considered to be part
of a larger problem - in practice it could be a self-contained procedure -
and therefore we include only the structure, operations and conditions rele­
vant to the dialogue.

When considering data structures for a screen dialogue one could argue
that, so far as the program is concerned, the screen includes both input
data, because user responses are 'accepted', and output data, because text is
'displayed'. However, all data on the screen, whether regarded as input or
output, must appear sequentially, for example, prompt (output) then user
response (input) and so on. Thus, there is no point in producing two
separate structures and we shall develop just one data structure for each
screen.

12.2 Menu selection

Consider the menu selection dialogue shown in figure 12.1.
The whole screen is used repeatedly until a user response of 'E' is

received. If the user types anything other than A, D, I, R or E, an error
message inviting him to try again is displayed at the bottom of the screen;
the message is erased once the user has tried again. Valid responses invoke
calls to separate procedures (one per option). A possible procedure for the
ADD option is developed in the next section.

120

Interactive Systems

STOCK CONTROL SYSTEM

A. Add a new stock item
D. Delete a stock item
I. Inspect a stock item
R. Re-order a stock item
E. Exit from the system

Please enter A,D,I,R or E

Figure 12.1

121

Thus the logical data structure consists of an iteration of screens, each of
which is a sequence of the headings, followed by the menu, followed by
the prompt, followed by the user response. Since the user must eventually
type a valid response after having typed any number of invalid responses
(including zero), we show an iteration of invalid response, followed by a
valid response which is either A, D, I, R or E - see figure 12.2.

MENU
SCREENS

I
*

SCREEN

I
I I I I

HEADINGS MENU PROMPT
INVALID VALID

RESPONSES RESPONSE

I
* INVALID

RESPONSE

8
I I I

0 0 0 0

DELETE INSPECT RE-ORDER EXIT

Figure 12.2

122 Program Design Using JSP

As there is only one data structure for this procedure, it will form the
program structure and we can now produce a condition and operation list.

a Until user response = 'E'
C2 Until a valid response
C3 If user response = 'A'
C4 If user response = 'D'
C5 If user response = 'I'
C6 If user response = 'R'

1 Display headings on clear screen
2 Display menu lines
3 Display selection prompt
4 Accept user response
5 Display error message line (try again)
6 Clear error message line
7 Call 'Add' procedure
8 Call 'Delete' procedure
9 Call 'Inspect' procedure

10 Call'Re-order' procedure
11 Initialise user response (to space)

The program structure is now given in figure 12.3 with allocated
operations and conditions.

Examination of the program structure with allocated operations and
conditions reveals a design consideration which will also appear in the next
two examples. The condition a (until user response = 'E') cannot be
implemented until the user has responded. We cannot employ the usual
read ahead technique and allocate operation 4 (accept user response) to the
beginning of MENU SCREENS, since it must come after the prompt. In
effect we require the iteration MENU SCREENS BODY to have at least one
occurrence of SCREEN. We can therefore overcome the problem in three
ways.

The first way is by initialising the user response to a value other than
'E' at the beginning of MENU SCREENS. This is the approach adopted
above, where operation 11 is included as an initialising operation to support
the condition list.

The second way is to use QUIT from iteration. In this case, operation 11
and the component MENU SCREENS BODY would not have been included
in figure 12.3. The condition a is omitted from the head of the iteration,
and QUIT MENU SCREENS ITER is allocated to the component EXIT. We
shall demonstrate this approach in section 12.4.

The third way is to implement the iteration in the target language as an
iteration of at least one occurrence. For example, in the 'REPEAT state­
ment(s) UNTIL condition' construct of Pascal, at least one occurrence of the

HEADINGS MENU

C3 C4
0 0

ADD DELETE

Interactive Systems

MENU
SCREENS

SCREEN

PROMPT

C1

*

0

INSPECT

Figure 12.3

INVALID
RESPONSES

C2

* INVALID
RESPONSE

C6
0

RE-ORDER

VALID
RESPONSE

ELSE
0

EXIT

123

iteration is processed and the controlling condition is evaluated at the
bottom of the loop. This can be implemented in COBOL by removing the
code for 'if condition go to end of the iteration' from the start of the
iteration and, at the end of the iteration, replacing the code for 'go to start
of iteration' by the code for 'if not condition go to the start of the iteration'.

Having overcome the above problem, note that we can use a read ahead
technique for the iteration INVALID RESPONSES. We allocate operation 4
as soon as the prompt has been displayed and once for every time the user
must repeat to correct an error.

124 Program Design Using JSP

12.3 Fonn filling

A simple example of a form filling dialogue is now given in figure 12.4.

STOCK CONTROL SYSTEM

ADD NEW STOCK ITEM

Stock number
Description
Location
Re-order level __ _

Confirm that the above is correct (Y/N)

Do you wish to repeat this transaction (Y/N) _

Figure 12.4

The whole of the 'form' is displayed on the screen and the terminal user
is guided through it. The screen cursor is first positioned after 'stock
number'; if the user enters an invalid stock number, an error message
inviting him to try again is displayed at the bottom of the screen and the
cursor returns to the appropriate position; the new stock number having
been entered, the message disappears. After a valid response, the cursor
moves to the description field position and so on. There is no validation for
description, location or re-order level. After the four fields are completed,
the user is asked if the information is correct; only if the response is
affirmative are the data written to a direct access file. The user may then
elect to repeat the transaction or not; if he wishes to do so, the entries on
the form (but not the headings and skeleton) are cleared and the cursor
returns to the stock number position. Also, for simplicity, we assume that Y
or N (yes/no) responses are not validated (Y means yes, anything else
means no).

The logical data structure is more complicated than for the menu
selection - see figure 12.5. Note that stock number is shown as a sequence
of an iteration of invalid entries (possibly zero) followed by a valid entry.
This is because the user is forced to enter a valid stock number before
continuing, after (possibly) entering a number of invalid ones.

Assuming that the record is written to a direct access file, we have no
other data structures to take into account, the above data structure becomes
the program structure and we can list the conditions and operations.

The program structure with allocated operations and conditions is now
produced - see figure 12.6. You should examine it carefully. Note that the
structure should be redrawn to include 'body' boxes after operations 9 and
10. Note also that we have exactly the same problem with 0 as we had in
the previous example, and we overcome it in the same way.

Interactive Systems

ADD
SCREEN

I
I I I

FORM
ADD

HEAD.INGS
SKELETON

SCREEN
BODY

l
* USER

COMPLETION

1
r T 1 1 1 I

STOCK I DESCRIPT'N LOCATION
RE-ORDER USER REPEAT

NUMBER j LEVEL CONFIRM RESPONSE
I L-.~.-

I I
I

[INVALID
STOCK

NUMBERS

1
INVALI~

STOCK NO.

[~]
I I I

0 0 0
YES YES

--
(CONFIRM) (REPEAT)

Figure 12.5

0 Until user no longer wants to add new stock
items (that is, until repeat response <> 'Y')

C2 Until stock number is a valid one
C3 If user confirmation = 'Y'
C4 If repeat response = 'Y'

1 Display headings on clear screen
2 Display form skeleton (that is, as in figure 12.4)
3 Accept stock number
4 Accept description
5 Accept location
6 Accept re-order level
7 Display error message line
8 Clear error message line
9 Accept confirm response

10 Accept repeat response
11 Clear form entries
12 Write new stock item record
13 Initialise repeat response (= 'Y')

125

I
0

--

126 Program Design Using JSP

STOCK

NUMBER

HEADINGS
FORM

SKELETON

DESCRIPT'N LOCATION

VALID

C2

* INVALID

STOCK NO.

12.4 Question and answer

ADD

SCREEN

ADD

SCREEN

BODY

C1

*
COMPLETION

RE-ORDER
LEVEL

USER

CONFIRM

REPEAT

RESPONSE

,-----"--=-C~3 ,-----"'--'E"-=L"-SE=, ,--L_----"C'-i4 ,--__J'---E=L=S-=,E
0

YES

(CONFIRM)

Figure 12.6

0 0 0
YES

(REPEAT)

This type of dialogue, although normally not difficult to analyse, may often
appear tedious when drawing data structures. We will consider a simple
one by examining an example conversation which could be used to view
the data of the previous example - see figure 12.7. The user input is shown
in italics.

We can see that there are only 3 basic questions which lead to a number
of responses by the user. The user's response determines what happens

Interactive Systems

WHAT STOCK NUMBER? f()()(N

ACCESS NOT ALLOWED

DO YOU WISH TO TRY AGAIN? }'

WHAT STOCK NUMBER? $S(/(/6

DOES NOT EXIST

DO YOU WISH TO TRY AGAIN? }'

WHAT STOCK NUMBER? 251.12
O.K. WHAT FIELD? re-ortf-feye/

DOES NOT EXIST

DO YOU WISH TO TRY AGAIN? }'

WHAT STOCK NUMBER? 251.12
0. K. WHAT FIELD? location
ACCESS NOT ALLOWED

DO YOU WISH TO TRY AGAIN? }'

WHAT STOCK NUMBER? 26.121

O.K. WHAT FIELD? descnpUon
O.K. BROWN LEATHER BOOTS SIZE 6

DO YOU WISH TO TRY AGAIN? n
EXIT

Figure 12.7

127

next. The response to 'WHAT SfOCK NUMBER?' may be valid, with or
without access rights, or invalid. If the number is valid (that is, if it exists)
and the user has access rights, then he is asked to specify which field he
wishes to view (O.K. WHAT FIELD?). Possible responses to this question
are valid field names, with or without access rights, or an invalid field
name. Entering a valid field name with access rights produces the
appropriate data value (O.K. BROWN LEATHER BOOTS SIZE 6). Whenever
an invalid stock number or invalid field is entered, the same message
(DOES NOT EXISf) is displayed; similarly, whenever access is not allowed,
the same message (ACCESS NOT ALLOWED) is displayed. Once either of
these messages or the appropriate data has been displayed, the user is
invited to re-try (DO YOU WISH TO TRY AGAIN?). A response of 'y' leads
to a repeat of the above, beginning with 'WHAT SfOCK NUMBER?',
otherwise the dialogue terminates with EXIT.

We can use the sample dialogue to identify the order and grouping of
the data, before drawing the data structure. At the top level we recognise
that the dialogue is a sequence of Q & A DIALOGUE BODY followed by
EXIT. The body of the dialogue is then an iteration of USER REQUESf,
which consists of the-lines from 'WHAT SfOCK NUMBER?' to 'DO YOU
WISH TO TRY AGAIN?'. USER REQUESf is a sequence of the what stock
number question, followed by the lines dealing with a specific stock
number, followed by the try again question. Now, by incorporating the
appropriate selections, we arrive at the data structure shown in figure 12.8.

128 Program Design Using JSP

Q&A J DIALOGUE

I
I

l~J Q&A

DIALOGUE

BODY

I
* USER

REQUEST

I
I

I] [£] WHAT
STOCK TRY

STOCK
NUMBER NUMBER AGAIN

I
I I I

VALID o VALID o 0
INVALID

ACCESS ACCESS NOT
STOCK NO.

ALLOWED ALLOWED

I
I I I I

0 0 0 0

DESCRIPT'N RE-ORDER LOCATION INVALID
LEVEL FIELD

I I

~~1
I

c-~]
I I

ACCESS o ACCESS o 0 ACCESS o o
ALLOWED ALLOWED -- ALLOWED --

DESCRIPT'N RE-ORDER LOCATION
'---

Figure 12.8

This type of deeply nested selection dominated structure can often be
simplified by employing the POSIT I ADMIT construct. We could, for each
stock number, presume (or POSIT) a valid request with access rights
resulting in the appropriate data being displayed, unless forced to admit
this is not true. When the admit path (that is, not valid or no access rights)
is taken we have a simple choice of two different error messages.

The simplified structure is shown in figure 12.9.
If we assume direct access to the required information, then figure 12.9

is the only logical data structure which will influence our design. We can,
therefore, proceed with the condition list and operation list.

Once again the condition 0 is difficult to implement until the user has
had an opportunity to respond to the 'try again' question. It should be

Interactive Systems

I

I
WHAT I
STOCK I

I NUMBER

Q&A

DIALOGUE

I
I

Q&A
I

DIALOGUE EXIT

BODY

I

USER

REQUEST

I
I

STOCK

NUMBER

I

*

I POSIT
VALID o

AND ACCESS
ALLOWED

I ADMIT
NOT o

VALID OR

NO ACCESS

I
I I I --

0

DESCRIPT'N

0
RE-ORDER

LEVEL

0

LOCATION

Figure 12.9

0
NOT

VALID

0 Until user response (try again) <> 'Y'
C2 If field = DESCRIPTION
C3 If field = RE-ORDER LEVEL
C4 If stock number or field invalid

1 Display 'what stock number' prompt
2 Accept user response (stock number)
3 Display 'try again' prompt
4 Accept user response (try again)
5 Display 'does not exist'
6 Display 'what field' prompt
7 Accept user response (field)
8 Attempt to retrieve required stock item
9 Display description

10 Display re-order level
11 Display location
12 Display 'exit'
13 Display 'access not allowed'

I
l

0
NO ACCESS

ALLOWED

129

130 Program Design Using JSP

noted that by including the question right at the beginning of the dialogue
as well, we would remove the difficulty as we could then use the standard
read ahead 'technique. Nevertheless, in this example, we demonstrate how
QUIT from iteration can overcome the problem. The allocation of the
conditions and operations to the program structure is fairly easy, so for
demonstration purposes only, we will go straight to the schematic logic -
see figure 12.10. You should examine it carefully, paying particular attention
to the QUITs from POSIT and the QUIT from iteration. You will notice that,
in this case, the QUIT from iteration has an associated condition.

Q+A DIALOGUE SEQ
Q+A DIALOGUE BODY ITER (no condition defined at the top)

USER REQUEST SEQ
WHAT STOCK NUMBER

DO 1 [Display 'what stock number' prompt
DO 2 [Accept user response (stock number)

WHAT STOCK NUMBER END
STOCK NUMBER POSIT valid and allowable request

VALID AND ACCESS ALLOWED SEQ
DO 8 [Attempt to retrieve required stock item
QUIT STOCK NUMBER POSIT IF CS [no stock item retrieved
QUIT STOCK NUMBER POSIT IF C6 [no access rights for

stock item
DO 6 [Display 'what field' prompt
DO 7 [Accept user response (field)
QUIT STOCK NUMBER POSIT IF C7 [field name invalid
VALID AND ACCESS ALLOWED BODY SEL IF C2 [field =

DESCRIPTION
DESCRIPTION

QUIT STOCK NUMBER POSIT IF C8 [no access rights
for descript.

DO 9 [Display description
DESCRIPTION END

VALID AND ACCESS ALLOWED BODY ELSE 1 IF C3 [field :
RE-ORDER

RE-ORDER LEVEL
QUIT STOCK NUMBER POSIT IF C9 [no access rights

for re-order
DO 10 [Display re-order level

RE-ORDER LEVEL END
VALID AND ACCESS ALLOWED BODY ELSE 2

LOCATION
QUIT STOCK NUMBER POSIT IF C10 [no access rights

for location
DO 11 [Display location

LOCATION END
VALID AND ACCESS ALLOWED BODY END

VALID AND ACCESS ALLOWED END
STOCK NUMBER ADMIT request is not (valid and allowable)

Figure 12.10 (above and on following page)

Interactive Systems 131

NOT VALlO OR NO ACCESS SEL IP C4 [stock number or field
invalid

NOT VALID
DO 5 [Display 'does not exist'

NOT VALID END
NOT VALID OR NO ACCESS ELSE 1

NO ACCESS ALLOWED
DO 13 [Display 'access not allowed'

NO ACCESS ALLOWED END
NOT VALID OR NO ACCESS END

STOCK NUMBER END
TRY AGAIN

DO 3 [Display try again prompt
DO 4 [Accept user response (try again)
QUIT Q+A DIALOGUE BODY ITER IF C1 [again response <> 'Y'

TRY AGAIN END
USER REQUEST END

Q+A DIALOGUE BODY END
EXIT

DO 12 [Display 'exit'
EXIT END

Q+A DIALOGUE END

12.5 Interrogate or command

Consider a direct access file containing student names with their project
title. A simple command language to interrogate this file might consist of
three commands: FIND, PRINT and EXIT. The formats could be:

(a) FIND attribute = value
(b) PRINT attribute
(c) EXIT

where attribute may be NAME or TITLE

An example of the dialogue with computer responses in italics is shown
in figure 12.11.

A data structure to reflect this dialogue is quite simple. We obviously
have an iteration of command until the user types 'EXIT'. There are two
other valid commands, so we need to indicate the choice. Then for both
FIND and PRINT there is a choice of attributes. An attribute value (in the
FIND command) may be found or not found. The data structure, which is
essentially driven by the possible user inputs, is shown in figure 12.12.

We will assume that the direct access file has no extra influence on our
design; figure 12.12 becomes the program structure.

132

I
0

NAME
FOUND

Program Design Using JSP

FIND NAME = SMITH

notlovnd

FIND NAME = BROWN

found

PRINT TOTLE

no svch aUribvte

PRINT TITLE

IJmphics in Ada

FIND TOTLE • RELATIONAL DATABASE
no svch aUribvte

FIND TITLE • RELATIONAL DATABASE
lovnd

PRING NAME

no svch command

PRINT NAME

P.Forster

EXIT

Figure 12.11

INTERRO·
GATION

l
*

COMMAND

I
I

0

FIND

I
0

PRINT

I
0

INVALID
COMMAND

I I
L J I l I

0 0 0 0 0
FIND FIND INVALID PRINT PRINT
NAME TITLE FIND NAME TITLE

I I
I I I

0 0 0
NAME TITLE TITLE

NOT FOUND FOUND NOT FOUND

Figure 12.12

I
0

INVALID
PRINT

Interactive Systems 133

The revised program structure with allocated operations and conditions
(below) is given in figure 12.13.

0 Until user command EXIT
C2 If command = FIND
C3 If command = PRINT
C4 If attribute = NAME
CS If attribute = TITLE
C6 If required name found
C1 If required title found

1 Accept command string
2 Get symbol (command)
3 Get symbol (attribute)
4 Get symbol (value)
5 Attempt to retrieve record with required name
6 Attempt to retrieve record with required title
7 Display name
8 Display title
9 Display 'not found'

10 Display 'found'
11 Display 'no such command'
12 Display 'no such attribute'
13 Initialise name and title to null

Note that operations 2 to 4 may well be implemented as a single
parameterised subprogram which delivers the required character string.
Operation 13 is used so that there is no need to insist on a valid FIND
before a PRINT.

12.6 Exercises

12.6.1 Design an interactive procedure which allows the terminal user to
choose between capturing details of persons' home addresses or
details of their family cars. Use a simple menu selection dialogue for
the choice, similar to that described in section 12.2, and form filling
dialogues for the data capture functions, similar to that described in
section 12.3.

Each address has three lines, name, road and town, and the car
details form should capture the person's name, car make and model.
There is no validation on either form.

You may assume that all data are written to a direct access file.
You should use separate subprograms for the menu selection, the

address data capture and the car details capture.
Continue your design as far as the production of program struc-

134 Program Design Using JSP

tures with allocated operations and conditions. For each screen,
briefly explain how you would use QUIT out of iteration to overcome
the 'read ahead' difficulty discussed in section 12.2.

12.6.2 Design an interactive procedure to view the car detail records of the
previous exercise by means of a dialogue typified by that shown in
figure 12.14. The user input is shown in italics.

WHICH PERSON? A II Sllli/11
DOES NOT EXIST
DO YOU WISH TO TRY ANOTHER NAME? y
WHICH PERSON? N Zaln/

O.K. WHICH FIELD? q~
DOES NOT EXIST
DO YOU WISH TO TRY ANOTHER FIELD? y
0. K. WHICH FIELD? mlk'
O.K. FORD
DO YOU WISH TO TRY ANOTHER FIELD? y

O.K. WHICH FIELD? m~'/
O.K. SIERRA
DO YOU WISH TO TRY ANOTHER FIELD? H

DO YOU WISH TO TRY ANOTHER NAME? y

WHICH PERSON? G A Ro/M/'1$

DOES NOT EXIST
DO YOU WISH TO TRY ANOTHER NAME? H

EXIT

Figure 12.14

You may assume that all features of the dialogue have been inclu­
ded here and that data are held in a direct access file in records
containing name, car make and car model.

Continue your design as far as the production of a program struc­
ture with allocated operations and conditions. In this case do not use
backtracking or quit out of iteration.

If you wish, you may now attempt the case study in appendix E.

FIND

NAME

NAME

BODY

0

FIND

FIND

TITLE

Interactive Systems

0

0

INTERRO­

GATION

C1

*
COMMAND

0
INVALID

FIND

TITLE

BODY

0

PRINT

0
PRINT

NAME

ELSE
0 0

TITLE TITLE

FOUND NOT FOUND

Figure 12.13

ELSE
0

INVALID

COMMAND

PRINT

TITLE

0

135

ELSE
0

INVALID

PRINT

13 Testing, Documentation and Program
Amendment

13.1 Testing

13.1.1 What to test

By now you should appreciate that the main feature of JSP is the way in
which we proceed from data structures to program code, through well­
defined manageable stages (please refer to section 1.4.). You should also
have realised that if we make a mistake, then certain errors may become
apparent at an early stage. For example, if data structures without clashes
cannot be combined easily, then the structures should be carefully checked
to see if they are correct. If you cannot find an obvious position on the
program structure for a certain operation, then you should first ascertain
whether or not that operation is necessary and then, provided it is, check
the program structure. Having taken due care in applying the principles
and rules of JSP, you should always be reasonably confident that the
program is correct.

However, mistakes can still occur and obviously further testing should
be incorporated, in keeping with the philosophy of 'identifying errors as
soon as possible'. We can test the design once the program structure with
allocated operations and conditions has been produced and when we have
produced the final schematic logic. In each case, we check the structure,
overall logic and data values - in particular, the results to be output. Such
details as the correct formats for input and correct layout for output are not
included in the elementary operations and therefore cannot be checked until
later. They have to be checked at a later stage when testing the program
code.

In addition, we may need to test for compatibility with associated
software, which means ensuring that programs or subprograms interact
correctly. We may also need to test for customer (or user) satisfaction (often
called acceptance trials).

136

Testing, Documentation and Program Amendment 137

13.1.2 Testing the design

We shall describe a method of testing the design by means of a so-called
desk check (trace table or dry run) using the program structure with alloca­
ted conditions and operations. The principles described. apply also to testing
the design using the schematic logic.

For example, consider the sales report program (figure 5.3 in chapter 5).
Given the program structure with allocated operations and conditions, we
must first devise some test data. This aspect of testing will be considered in
more detail in section 13.2; here, for illustrative purposes we shall use the
following:

AREA YEAR PRODUCT SALES VALUE
1st record A 92 PENS 300
2nd record B 92 PENCILS 500
3rd record B 93 RUBBERS so

end of file indicator

We then record the results that should be achieved, remembering that, at
this stage, we cannot check the precise layout:

Headings for area A
Sales 100 to 300 line for 300 pens
Year total (for '92) of 300
Area total (for A) of 300
Headings for area B
Sales over 300 line for 500 pencils
Year total (for '92) of 500
Sales under 100 line for 50 rubbers
Year total (for '93) of 50
Area total (for B) of 550

Next we head up a sheet of paper with the names of data areas to be
used in the program. One way of doing this for the sales report problem is
illustrated in figure 13.1. Then we process the test data by hand, doing only
what is indicated by the program structure. Changes to data area contents
and the values of conditional expressions are noted. For each output
operation we check the current value(s) in the table against the results that
should be achieved, for example, the first occurrence of operation 5 should
output headings for area A. The start of the trace table is shown in figure
13.1.

We will not complete the desk check here, but invite you to do so. As
the test data leads us to the operations and conditions (including the ElSE)
they should be ticked off on the program structure.

Finally, when we have exhausted the test data, we check that:

138 Program Design Using JSP

1. We have achieved the correct results.
2. We have ticked off every operation and condition on the program

structure. If we have not, we need more exhaustive test data and
should repeat the process.

Testing the design will ensure that we have the correct structure, and
have correctly allocated operations and conditions. Also it may reveal
possible coding pitfalls. For instance, suppose that the appropriate area was
to be included in the area total line. As we arrive at operation 6 in the dry
run, we would read off a correct value of 300 for area total, a value of B
for area and A for stored area. We would then note that stored area (and
not area from the current record) should be used when coding operation 6.

OPERATIONS/ CURRENT SALES RECORD STORED STORED AREA YEAR
OUTPUT CONDITIONS AREA YEAR PRODUCT VALUE AREA YEAR TOTAL TOTAL

1
4 A 92 PENS 300

C1 (false)
5 -/

13 0
15 A

C2 (false)
14 0
16 92

C3 (false)
C4 (false)
C5 (true)

9 ,/
11 300
12 300
4 B 92 PENCILS 500

C3 {truet
7 J

C2 (true)
6 J

Figure 13.1

13.1.3 Testing the coding

We must test the program code to ensure that the elementary operations,
conditions and control constructs of the program structure and schematic
logic are correctly translated into the target language (see chapter 7). This
includes checking the precise details of input and output layouts against the
problem specification.

Testing, Documentation and Program Amendment 139

The principles that we have seen in testing the design obviously apply
to testing the coding. We must obtain suitable test data; we must know
what results are correct and we must aim to test as thoroughly as possible.

Testing the coding will obviously involve using the computer and, as
such, the programmer might be able to utilise testing software such as trace
programs and debugging aids. These vary considerably from computer to
computer so we will not attempt a description here. Rather, we will give a
list of the objectives to be met in this aspect of program testing.

1. Ensure that each program statement is executed at least once. This
is an obvious point, although it is sometimes not achieved, parti­
cularly in the handling of rare error conditions.

2. Ensure that each type of input data has been read at least once.
In particular, with variable length fields and records, minimum
and maximum lengths should have been specified.

3. Ensure that each type of output data has been written at least
once. For example, in printed output check detail lines, headings,
total lines, footings etc.

4. Ensure that the terminating condition for each iteration is used.
Take care to allow for the alternatives in compound conditions.

5. Ensure that each selection condition is used. Do not forget the
ELSE.

6. Ensure that each program statement gives the expected result.
Beware of data truncation, rounding, accuracy etc.

13.2 Producing test data using STM

13.2.1 What is STM?

Although there are some aids to the production of test data, this task is still
viewed as a chore by many programmers, with the r.esult that test data
choice is often poor. It is not sufficient merely to test according to simple
criteria, such as, there are four record types so we need four records in the
test data. So-called 'white-box' testing methods use the internal states of the
program, as revealed by the program structure, to direct the testing. Paths
through the program are identified, then test data are produced to exercise
these paths. The objective is to maximise the possibility of discovering
program errors, but using the minimum number of test data cases.

The Structural Testing Method (SfM)# has been specifically developed to
test JSP designed programs. Paths through the program structure are
described in terms of sequences of program conditions and referred to as
condition paths.

M. Roper and P. Smith, 'A Structural Testing Method for JSP Designed Programs',
Software · Practice and Experience, Vol. 17(2), 135-137 (1987).

140 Program Design Using JSP

The method has three stages:

1. The derivation of a 'conditional expression' from a pre-order tra­
versal of the program structure. This is a single 'conditional
expression', consisting of program conditions and conditional
operators.

2. The use of the SfM algebra to expand the 'conditional expres­
sion', in order to find all 'condition paths' through the program.

3. The production of test data cases and combining 'condition
paths', as applicable, to minimise the number of test runs.

Since the algebraic notation is used when producing the conditional
expression, we shall first explain the SfM algebra, then describe how to
produce the conditional expression before applying the complete method to
a specific example.

13.2.2 The STM algebra

The SfM algebra is similar to ordinary boolean algebra. It can be described
in terms of the following operators:

A
AnB
AUB
AB

means
means
means
means

NOT A
A AND B
A ORB
A then B (one condition then another as a sequence)

The letters A and B represent simple conditions (that is, non-compound
relational expressions). For example,

the program condition 'not (deduction code 20 and amount> £1)'
would be expressed as 0 n C2
where 0 is 'deduction code 20'

C2 is 'amount> £1'.
Similarly,

the program condition
would be expressed as
where

'end of file or change of area'
C3UC4
C3 is 'end of file'
C4 is 'change of area'.

In order to simplify boolean expressions we make use of De Morgan's
Laws. These are:

{1) AnB is equivalent to AUB

(2) CUD is equivalent to CnD

Testing, Documentation and Program Amendment 141

We shall now illustrate the first rule. Suppose the variable x can only have
the values 1, 2, 3, 4, 5, 6, 7, 8, then

and

A x>2 is true for the values 3, 4, 5, 6, 7, 8
B x<6 is true for the values 1, 2, 3, 4, 5
AnB is true for the values 3, 4, 5
AnB is true for the values 1, 2, 6, 7, 8

A
B
AUB

x<=2
x>=6

is true for the values 1, 2
is true for the values 6, 7, 8
is true for the values 1, 2, 6, 7, 8

You might like to use a similar approach to illustrate the second rule.
In SfM, we derive a conditional expression from the program structure

and then expand it according to the following rules:

(1) AB gives A,B (the path taken when A is true, then B is true).

(2) AUB gives A (this describes one path)
B (this describes another path)

Note that (1) has a higher precedence than (2). For example,

(a) ABU A gives A (path 1)
A,B (path 2)

(b) (AnB)(CUD) gives AnB,C (path 1)
AnB, D (path 2)

(c) (AnB)C U D gives AnB, C (path 1)
D (path 2)

(d) 0 (C2nC3) Cl U 0 gives 0 (C2UC3) 0 U 0 (De Morgan)

that is 0 _(path 1)
and 0 ~2UC3) 0

which becomes 0, C2, 0 (path 2)
0, C3, 0 (path 3)

If necessary, expressions can be expanded in stages, as in (d) above.
Note that the conditions are in the order in which they are encountered
along the path and thus do not have to be true simultaneously. This means
that A A is meaningful, A is ·true at the first evaluation, NOT A is true at
the next one.

142 Program Design Using JSP

13.2.3 Deriving conditional expressions

The conditional expression is a single expression, written in terms of pro­
gram conditions, which describes all of the. condition paths through the
program. Before tackling a complete program, we shall state the conditional
expression and examine the directed graph of condition paths for each of
the basic JSP constructs. The directed graph helps us to visualise the con­
dition paths. The beginning and end of non-elementary components are
indicated by 'b' and 'e' respectively.

(a) Sequence - see figure 13.2

2 3

Figure 13.2

A sequence does not involve any conditions and therefore only one path
exists. For figure 13.2, the conditional expression (expr.l) is:

expr.l (expr.2)(expr.3)

(b) Selection - see figure 13.3

Each selection component with a simple (that is, non-compound) condition
generates one path. Notice that the ELSE, which normally governs the final
choice, has to be replaced by the appropriate specific condition. In this case,
because we have only two choices, the ELSE becomes 0.

Testing, Documentation and Program Amendment

1

Cl

0

Figure 13.3

For figure 13.3 the conditional expression (expr.l) is:

expr.l : O(expr.2) U O(expr.3)

143

(c) Iteration with simple condition and at least one occurrence of the iteration
component part - see figure 13.4

1

1 Cl

*
2 (at least one

occurrence)

Figure 13.4

Cl

When the iteration component part is executed at least once, we have a
conditional expression of the form: the condition (0) which causes the

144 Program Design Using JSP

iteration component part (2 in figure 13.4) to be executed, the expression for
the component part, and the terminating condition (a). This gives the
conditional expression (expr.1) for figure 13.4:

expr.1 : a (expr.2) a

(d) Iteration with simple condition and zero or more occurrences of the iteration
component - see figure 13.5

1

I C1

*
2 (zero or more

occurrences)

Figure 13.5

C1

The possibility of zero iterations introduces another path. The conditional
expression (expr.1) for figure 13.5 is:

expr.1 : a (expr.2) a u a

(e) Iteration with a compound condition - see figure 13.6

Using figure 13.6, and assuming that we must execute the iteration com­
ponent part at least once, we produce an initial expression as in part (c)
above:

expr.1
or

(aUC2) (aUC2)
(anC2) (auC2)

giving the expressions:

(anC2) a
(anC2) C2

(using De Morgan's law)

Testing, Documentation and Program Amendment

I~ I
I C1UC2

*
2 (at least one

occurrence) C1

Figure 13.6

which identify the two terminating conditions (0 and C2).

145

c~

Note that an elementary component (for example, 2 in figure 13.6) does
not generate a sub-expression (expr.N).

The example shown in figure 13.6 illustrates the difference between a
'route' through a program and a 'condition path'. Fo:.. example, the route
through the program would be: the beginning of component 1, then
component 2, then the end of component 1; the latter part of this route
however, may be achieved by either of the condition paths 0 or C2.

13.2.4 Applying the method

Consider a program to produce a simple sales analysis. Each record of the
input file contains region code, salesman's name and sales-figure. The file is
sorted in ascending order of region code. The required output is a report
that lists the details of each salesman and, at the end of each region, the
number of salesmen who have achieved a sales target in excess of 100 units.
The program structure with allocated conditions is shown in figure 13.7 and
the directed graph is shown as figure 13.8. The condition list is:

0 End of file
C2 Different region
C3 Sales > 100 units

The outer iteration is classified as 'zero or more' to allow for an empty
input file (in which case the inner iteration will never be reached). For a
non-empty file, the inner iteration will be reached and there will then be at
least one occurrence of SALES RECORD.

146 Program Design Using JSP

SALES
ANALYSIS
PROGRAM

2 I C1

*
REGION (zero or more

occurrences)

I
3 I 4 I

REGION
BODY

TOTAL

5 I C1UC2

* SALES (at least one
RECORD occurrence)

I

G
6 I C3

0
SALES
> 100

Figure 13.7

Notice how we have implemented other conventions specific to STM:
components are numbered; the use of simple (that is, non-compound)
conditions; and <:3 replacing ELSE.

We now write down the conditional expression (using the component
numbers as identifiers) for each component, ignoring the elementary ones.

expr.l
expr.2
expr.3
expr.S

0 (expr.2) 0 U 0
expr.3
(0 UC2) (expr.S) (0 UC2)
C3 u C3

[see (d) in section 13.2.3]
[see (a) in section 13.2.3]
[see (e) in section 13.2.3]
[see (b) in section 13.2.3]

Now, starting at the bottom, we substitute the conditional expressions
one at a time into an expression above it until we have a single expression
for expr.l.

expr.3
expr.2
expr.l

(OUC2) (C3UC3) (OUC2)
(0 UC2) (C3UC3) (0 UC2)
0 (OUC2) (C3UC3) (OUC2) 0 U 0

Testing, Documentation and Program Amendment 147

C1 C2

2e

C1

Figure 13.8

We apply De Morgan's laws as necessary for compound conditions. In
our case, we arrive at:

expr.l 0 (OnC2) (C3UC3) (C1UC2) 0 U 0

Now we separate the expression into individual condition paths. Essen­
tially, we look for ORs and divide the conditional expression at these points
remembering that ORs have a lower precedence than condition sequences.

148 Program Design Using JSP

This gives us the following paths:

path 1
path 2
path 3
path 4
path 5

0, OnC2, C3, 0, 0 ----
0, OnC2, C3, 0, 0
0, OnC2, C3, C2, 0 ----
0, OnC2, C3, C2, 0
0

We need to examine the specification of the program to determine the
layout and contents of the test data records. In our example, we have a
simple record layout containing region code, name and sales.

Now we look at each condition path in turn and produce appropriate
test data. In our example, we get:

path 1 Region A W. ANDREW 101
end of file

path 2 Region A F. STEVENS 86
end of file

path 3 Region A R. GREENFIELD 199
Region B D. GRAY 156
end of file

path 4 Region A P. WRIGHT 99
Region B R. SMIT 20
end of file

path 5 end of file

We arrived at this data for each path by examining each condition in
turn, and deducing the corresponding requirements in terms of actual data.
We can use path 4 to illustrate this.

0 not end of file - at least one record
- -
OnC2 not end of file and

not different region - no additional requirement
C3 not (sales > 100 units) - sales <= 100 (that is, 99)
C2 different region - another record with a different

region
0 end of file - no more data

Thus, the critical aspects of the data given for this path are: the sales
value of 99, a change of region from A to B, and the end of file.

By examining the condition paths, we may be able to combine some
paths and hence reduce the number of test data cases. For example, in path

Testing, Documentation and Program Amendment 149

3, having changed the region to leave the inner iteration, we must re-enter
it to process the second record and detect end of file. This suggests that the
sequence of conditions C3, 0 from path 1 could be exercised after the C3,
C2 in path 3. These two paths can therefore be combined to give:

path 1&3 0, OnC2, C3, C2, C3, 0, 0

with corresponding test data:

path 1&3 Region A
Region B
end of file

R. GREENFIELD

D. GRAY
199
156

Paths 2 and 4 could be combined in a similar manner. Although
combining paths in this way may reduce the number of test runs, there are
inherent problems. It may not be feasible, it is largely intuitive, and care
must be taken to ensure that all the original paths are retained.

13.3 Documentation

Documentation should proceed throughout the design process. JSP certainly
yields useful documentation at each of the design stages. In thi.s text we
have indicated the general way in which structure diagrams and schematic
logic could be presented. Specific standards will exist in most computer
installations in respect of cross-referencing, size and format. In fact,
although attempts are made to provide widely accepted standards of docu­
mentation, there is a wide variety of opinion as to what is required and the
format of documents.

The principle to guide us is:

The documentation should enable someone other than the originator,
but who is familiar with the design methods and documentation stan­
dards, to fully understand the program's purpose and the way that pur­
pose has been achieved.

To this end one might consider producing a documentation file for a
computer program "from the following list:

1. The specification including record, screen and print layouts.
2. Data structures.
3. Revised program structure(s) with allocated operations and con­

ditions.
4. Operation and condition lists.
5. Schematic logic(s) (unoptimised).

150 Program Design Using JSP

6. Revised schematic logic(s) when backtracking is used.
7. Optimised schematic logic(s).
8. The source code with suitable comments to describe each com­

ponent.
9. A test plan with annotated test results.

10. Amendments list.

13.4 Program amendment

It is a fact of life that all applications programs will need amending or
enhancing during their lifetime. Indeed, many programming departments
spend a majority of their resources in program maintenance.

Often programmers do not like the program maintenance task because it
may be tedious and frustrating due to a lack of adequate documentation or
sloppy programming practice. If a program has been designed according to
a reasonable design method, then the maintenance should be that much
easier and satisfying.

From what we have seen of JSP, it should be apparent that amendments
(enhancements) are of two basic types:

(a) functional
(b) structural.

We must first be able to make this distinction. Never be tempted to
attempt coding modifications without first assessing the scale and type of
the amendment and making the changes necessary at each design stage.

A functional amendment is one that merely affects the elementary
operations (or conditions). We might ask ourselves:

"Can I change one (or more) of the existing operations?"
or "Can I simply add one (or more) operations?"

If we answer 'yes' to either of the above, we can test our answer by
(re)allocating the operation(s) to the program structure. If this task is in any
way difficult, then we should investigate further to see if the amendment is
structural.

For a structural amendment, a change is made to one or more of the
data structures. In such a case one proceeds through each stage of the
design making all necessary changes at each stage.

It is obvious that the distinction between the two types of amendment is
crucial to planning the work of a department. The former will generally
take a very short time, the latter considerably longer.

We defined the main requirements of a software design method (see
section 1.2 in chapter 1) as enabling correct programs to be produced and

Testing, Documentation and Program Amendment 151

facilitating the organised control of software projects. Most software projects
will involve a high proportion of maintenance as user requirements change.
Using JSP will help the production of correct software and ensure that it
remains correct during its lifetime of inevitable amendment.

13.5 Exercises

13.5.1 Test the design of the program produced for exercise 4.3.2 (see solu­
tion for exercise 5.4.2), by first stating the expected results and then
producing a trace table, using the following data:

Ward
record 1 A100

record 2 A100

Name
J G SMITH

J L THOMAS

record 3
record 4

A100 B C WHITE

B300 A B GREEN

end of file indicator

Patient or Staff
PATIENT

PATIENT

STAFF

STAFF

13.5.2 Test the design of the collate problem from chapter 8 in which only
those keys present on one or both of the input files are processed
(see figure 8.6 and associated operation and condition lists).
Using the following data (9999 acts as an end of file indicator), state
the expected results and then produce a trace table.

FILE A (key value)
1235
1468
1532
9999

Are the data sufficient?

FILE B (key value)
1468
1532

9999

13.5.3 Expand the following conditional expressions using STM algebra:

(a) 0 (C2nC3) 0 u 0
(b) 0 (C2n0) (C3UC4) 0 U (C5UC6)
(c) 0 (C2UC3) (C4UC5)
(d) 0 (C2nq) (C7nC8) (C4UC5) 0 U 0
(e) 0 (C5UC6) (C3nC4) 0 U 0

152 Program Design Using JSP

13.5.4 For exercise 4.3.1 (see also solution 4.3.1 in appendix A}

(a) Draw the program structure with allocated conditions using SfM
conventions.

(b) Draw the directed graph of condition paths.
(c) Derive the conditional expression.
(d) Expand the conditional expression to obtain all condition paths.
(e) Produce appropriate test data cases. (Each record in the input file

contains a machine description and a 'due for repacement' in­
dicator.)

13.5.5 For exercise 4.3.2 (see also solution 4.3.2 in appendix A)

(a) Draw the program structure with allocated conditions using STM
conventions.

(b) Draw the directed graph of condition paths.
(c) Derive the conditional expression.
(d) Expand the conditional expression to obtain all condition paths.
(e) Produce appropriate test data cases. (Each record in the input file

contains a ward code, a name, and a 'staff/patient' indicator.)

Appendix A : Solutions to Exercises

The specimen solutions given in this appendix may have equally correct
alternatives. In particular, the annotated sketches contain the minimum
amount of data to illustrate the groupings, in most cases showing the
boundaries of the various groups only.

Chapter 2

24.1

000@]00
@]@]000@]

PICTUR~ p~ ..
CARDS ..

p~

DDDDDDDD c~

DDDDDDDD PACK

DDDDDDDD
DDDDDDDD

REST OF
PACK

DDDDDDDD c~

PACK

I
I I

PICTURE REST OF
CARDS PACK

I I
* * PICTURE OTHER

CARD CARD

153

154 Program Design Using JSP

24.2

DODD
DODD
DO HAND

~

HAND

I
I I

CARDS
BEFORE ACE

ACE

I
*

CARD

CARDS BEFORE ACE is an iteration of CARD. An iteration may be of zero
occurrences, so the minimum number of cards in the hand is one - an ace.

24.3

DDDDDDD SUij ~~
DO DODD ~~
DDDDDDD SUIJ DO DODD PACK

...........
DOD DODD su~ DDDDDD

Appendix A: Solutions to Exercises 155

PACK

I
*

SUIT

I
*

CARD

2.4.4

I chapter 1 paragraph 1 I
..........

I chapter 1 paragraph n I
CHAPTEl

PAR~

PAR~

.............. CHAPTERS
I chapter 9 paragraph 1 I

..........
J chapter 9 paragraph n I

CHAPTEj

BOOK

Jkeyword 1 definition 1 I
Jkeyword 1 definition n I

l~o•l DEF~

DEF~

.............. APPENDIX
J keyword 9 definition 1 I
lkeyword 9 definition n I

KEYWORl

156 Program Design Using JSP

BOOK

I
l I

CHAPTERS APPENDIX

I I
* *

CHAPTER KEYWORD

I I
* *

PARAGRAPH DEFINITION

24.5

Region 1 record 1· RE~
Region 1 record 2 RE~

REGION
Region 1 record n RE~
...........

CUSTOMER
FILE

Region n record 1

Region n record 2
REGION

Region n record n

Appendix A: Solutions to Exerdses 157

CUSTOMER
FILE

I
*

REGION

I
*

RECORD

2.4.6

Region 1 credit 1 record 1

I Region 1 credit 1 record n

CREJ
RE~

LIMIT

RE£]

REGION

I Region 1 credit m record 1

I Region 1 cred~ m record n I
CRED~ LIMIT

CUSTOMER
FILE

I Region x credit 1 record 1

Region x credit 1 record n

REGION

I Region x Cledit m record 1

I Region x Cledit m record n I

158 Program Design Using JSP

CUSTOMER
FILE

I
*

REGION

I
* CREDIT

LIMIT

1
*

RECORD

2.4.7

A.J .Hardware NAME AN~
Litherland ADDRESS

200 Nuts £10.00 ITE~

500 Bolts £20.00 INVOICE INVOICE IT~
.... BODY

300 Screws £t 5.00 I ITE~

Total £65.00 TOTA~

2.4.8

I
I
I

I

I
I
I

I

I

Appendix A: Solutions to Exercises

I
NAME AND
ADDRESS

POST I
Board number 1 I
Board number 2 I

Board number 10 I

............
POST I

Board number 1 I
Board number 2 I

Board number 10 I

FINAL POST

INVOICE

I
I

INVOICE
BODY

1
ITEM

FENCE

I

*

FENCE
BODY

FINATl
POS_!_j

I

TOTAL

SECTION

SECTION

159

Pos!]

BR~

SECTION BR~
BODY

BR~

160 Program Design Using JSP

I I
FENCE FINAL
BODY POST

I
*

SECTION

I
l l

POST
SECTION

BODY

I
*

BOARD

Alternatively, we could regard FENCE as a sequence of FIRSf POST followed
by FENCE BODY. SECTION would then be a sequence of SECTION BODY
followed by POST.

2.4.9

I POST

I Board number 1

I Board number 2

.........
I Board number 10

............
I POST

I Board number 1

I Board number 2

.........
I Board number 1 0

I POST

I Board number 1

I Board number 2

.........
I Board number 6

I FINAL POST

Appendix A: Solutions to Exercises

I

I
I

I

I
I
I FENCE

I

I
I
I

I
I

l
SECTION

FENCE
BODY

SECTION

POS~

LAST
LAST

SECTION SECTION
BODY

POS~

SECTION
BODY

BR~

BR~

BR~

161

BR~

BR~

BR~

162

I

POST

2.4.10

large window

door

right window

Program Design Using JSP

FENCE

I
I

FENCE
BODY

I
*

SECTION

I
I

SECTION
BODY

I
* BOARD

(10)

1

LAST
SECTION

I
I I I

POST OF LAST SECTION FINAL
LAST SECTION BODY POST

HOUSE

I
* BOARD

(6)

L.WINI < G.eorgian
~ Picture

~< Glazed
DOO < Green

Not glazed
Red

R .WI~< Large
~ Two small

J
LARGE

WINDOW

I
I I

0
GEORGIAN

PICTURE
STYLE

24.11

Runner number 1

Runner number 2

Runner number 999

Appendix A: Solutions to Exercises 163

0

FUN

RUN

HOUSE

I
I I

DOOR
RIGHT

WINDOW

I I
I I I l

0 0 0 0
GLAZED NOT

LARGE
TWO

(GREEN) GLAZED SMALL

l
l l

0 0

GREEN RED

< Best time< Beginner

<Com leted Past h
p < Beginner

Not
AU~ Past h

<
Beginner

~ Not
AU~ Past it

AU~

164 Program Design Using JSP

FUN
RUN

I
*

RUNNER

I
I I

0 0
COMPLETED NOT

COURSE COMPLETED

I L
I I I I

0 0 0 0
BEST NOT BEST BEGINNER PAST IT
TIME TIME (NOT COMP) (NOT COMP)

I I
I I I I

0 0 0 0
BEGINNER PAST IT BEGINNER PAST IT

(BEST TIME) (BEST TIME) (NOT BEST) (NOT BEST)

There are a number of possible solutions to this problem because we do not
know which of the various selections should be at the top level. More
knowledge of the problem that we are trying to solve and the physical order
of the data would enable us to decide upon the most appropriate structure.

24.12

Appendix A: Solutions to Exerdses

I Area A group 1 rec.1 I
I Area A group 1 rec.n I

Area A group 1 total

............
I Area A group 9 rec.1 I
I Area A group 9 rec.n I

Area A group 9 total

............

I Area Z group 1 rec.1 I
I Area Z group 1 rec.n I

Area Z group 1 total

.......... ' ..
I Area Z group 9 rec.1 I
I Area Z group 9 rec.n I

Area Z group 9 total

Total record

AREA

PROD. FILE
FILE BODY

AREA

M/C
GAP

M/C
GAP

K Present
FT

Absent

165

M/~ R~ GAP
BODY R~

GT~

166 Program Design Using]SP

PRODUCTION
FILE

I
I I

PRODUCTION FINAL
FILE BODY TOTAL

I
I
I

* 0

AREA PRESENT

I
* MACHINE

GROUP

I
I I

MACHINE MACHINE
GROUP GROUP
BODY TOTAL

I
* DETAILED

RECORD

Appendix A: Solutions to Exercises 167

Chapter3

3.3.1

I Page headings I
I line number 1 I
I line number 42 I

I Page total I
.......... REPORT

I Page headings I
I line number 1 I PAGE

I line number 42 I
I Page total I

REPORT

I
*

PAGE

I
I I I

PAGE PAGE PAGE
HEADING BODY TOTAL

I I
I I

* 0 0

LINE
CARRIED GRAND

FORWARD TOTAL

168

3.3.2

3.3.3

Program Design Using]SP

..........

I
3 LINE
LABEL

Record number 1

Record number 2

Record number n

0

FILE

LABEL
PRINT
FILE

I
* ROW OF

LABELS

I
* LABEL

(MAX 3)

I
I

4 LINE
LABEL

RE~

0

~31ines
LA~

4 lines

LA~

3.3.4 (a)

Appendix A: Solutions to Exerdses

I
0

TYPE 1

Record number 1

Record number 2

Record number n

I

FILE

I
RECORD

I
I

TYPE 2

I
I

REGION
CODE "A"

PAYROLL
FILE

PAYROLL
FILE

I
RECORD

I

0
REQUIRED

DEPARTMENT

*

I
0 0

TYPE 3

I
0 0

--

RE~ Required dept.

~ Not required dept.

RE~

RE~

*

I
0

--

169

170

3.3.4 (b)

3.3.5 (a)

Program Design Using]SP

I Dept. A record 1
I Dept. E record n

I Dept. X record 1
I Dept. X record n

I Dept. Y record 1 ·
I Dept. Z record n

I
BEFORE

REQUIRED
DEPARTMENT

I
RECORD *

(NOT
REQUIRED)

I

I

DEPTS~ BEFORE
REQUIRED

DEPT.

NR~

I
PAYROLL REQUIR~

FILE DEPTJ

NR~

RR~

I

I

I

PAYROLL
FILE

I
I

REQUIRED
DEPARTMENT

I
* RECORD

(REQUIRED)

DEPTS~ AFTER
REQUIRED

DEPT.

RR~

I
AFTER

REQUIRED
DEPARTMENT

I Region A credit 1 amount 1 0 l RE~

CUSTOMER
FILE

I
..........

I Region C credit n amount 451

CUSTOMER
FILE

RE~
RECORD

*

3.3.5 (b)

3.3.5 (c)

Appendix A: Solutions to Exerdses

I Region A credit 1 amount 10 I
..........

I Region A Cledit n amount 151

I Region B Cledit 1 amount 19 I
..........

I Reg ion C credit n amount 45 1

CUSTOMER
FILE

I
I

REGION
A

I
*

RECORD

I Region A credit 1 amount 1 0 I
..........

[Region B credit n amount 10 I

[Region C credit 1 amount 25 1
..........

I Region C credit n amount 451

CUSTOMER

FILE

l
OTHER

REGION

A

OTHER

REGIONS

REGIONS

REGIONS

A AND B

CUSTOMER

FILE

REGION

c

171

RE~

RE~

ABR~

ABR~

CR~

CR~

172

3.3.5 (d)

Program Design Using JSP

CUSTOMER

I
REGIONS
A AND B

I
* RECORD

(REGION A/B)

I Region A credit 1 amount 10 J
I Region C credit n amount 45 \

CUSTOMER
FILE

I
RECORD

I
I

CREDIT
LIMIT • 1

*

0

FILE

I
I

REGION
c

I
* RECORD

(REGION C)

CUSTOMER
FILE

< Credit •1
REC. ~ Credit not • 1

RE~

I
0

--

Appendix A: Solutions to Exercises

3.3.5 (e)

Region A credit 1 amount 1 0

..........
I Region A Cledit n amount 15 1

I Region B credit 1 amount 19 J

..........
J Region C Cledit n amount 45 1

CUSTOMER
FILE

I
I

REGION
A

I
* RECORD

(REGION A)

CUSTOMER

FILE

I
OTHER

REGIONS

I
RECORD *

(REGION BIG)

I
I

0
CREDIT

LIMIT • 4

REGION

A

OTHER

REGIONS

AR~

AR~

BCR~

I

--

173

0

174 Program Design Using JSP

3.3.6 (a)

I 3 months for theft - released I
I 23 months for arson - not rei. I

I 2 years for assault - not rei. I
118 years for murder - released I

CRIMINAL

RECORD

FILE

< 2 YRS

GROUP

>• 2 YRS

GROUP

R~ <Murder

REel 3yrs after

~ < release • • Not

~ Not
R~

CRIMINAL
RECORD

FILE

I
I I

SENTENCE SENTENCE
< 2 YEARS >• 2 YEARS

GROUP GROUP

1 I
* * RECORD RECORD

(< 2 YEARS) (>• 2 YEARS)

I I
l I l I

0 0 0 0

RELEASED
NOT

MURDER
NOT

RELEASED MURDER

I
I I

3 YEARS o 0

AFTER --
RELEASE

Appendix A: Solutions to Exercises 175

3.3.6 (b)

I 3 months for theft • released I
I 20 months for theft - released I

CRIMINAL

RECORD

FILE

..........

I 9 years for murder - not rei. I
118 years for murder - released I

CRIMINAL
RECORD

FILE

I
*

OFFENCE

I
I I

0 0

MURDER
NOT

MURDER

I I
* * RECORD RECORD

(MURDER) (NOT MURDER)

l
I

0
SENTENCE
< 2 YEARS

I
I I

0 0

RELEASED - - -

OFFENCE

OFFENCE

I

< Released << 2yrs
NMREcl Not
~ 3yrs alter
: : >• 2yr< release

Not
NMR~

MR~

MR~

0

Note:
OFFENCE is a selection of
murder or not murder. In
the latter case only, a record
is also a selection as
illustrated

SENTENCE
>• 2 YEARS

I
I I

3 YEARS 0 0

AFTER ---
RELEASE

176 Program Design Using]SP

3.3.6 (c)

I 3 months for thelt · released I
118 years for murder · released !

I 9 years for murder · not rei. I
CRIMINAL
RECORD

FILE
! 20 months for theft · released I

CRIMINAL
RECORD

FILE

I
*

RECORD

I
I I

0
NOT

MURDER
MURDER

l
I

SENTENCE
< 2 YEARS

I
I I

0

RELEASED --

0

0

0

R~KC Murder Released

REC << 2yrs<

REC Not ~;~ after ~ >• 2yr< release
• • Not

R~

I
0

SENTENCE
>• 2 YEARS

I
I I

3 YEARS 0 0

AFTER ---
RELEASE

Appendix A: Solutions to Exercises 177

3.3.7 (a)

I Credit batch header I
H:§j

I Credit record 1 I
I Credit record n I

BATCH R~ BAT~ BODY

R~

I Debit batch header I

I Debit record 1 I BATCH FILE
• • • • It ••••

I Debit record n I
............

INc desCI'iptlon header I

I Description record 1 1 BATCH
I DesCI'iptio n record nJ

Here we note that each of the occurrences of BATCH may be a credit, a debit
or an account description. Hence BATCH is a selection.

178 Program Design Using JSP

TRANSACT.
FILE

l
*

BATCH

I
I I I

0 0 0
CREDIT DEBIT ACCOUNT

DESCRIPT.

I I I
I I I I I I

CREDIT CREDIT DEBIT DEBIT ACCOUNT ACCOUNT
BATCH BATCH BATCH BATCH BATCH BATCH

HEADER BODY HEADER BODY HEADER BODY

I I I
* * * CREDIT DEBIT ACCOUNT

RECORD RECORD RECORD

3.3.7 (b)

The component CREDIT RECORD is amended as follows:

I
* CREDIT

RECORD

I
I I

0 0

CASH CHEQUE

Appendix A: Solutions to Exerdses 179

3.3.7 (c)

DEBIT BATCH BODY is amended as follows:

I
DEBIT
BATCH
BODY

I
* DEBIT

PAIR

I
I I

SALES DISCOUNT
RECORD RECORD

3.3.8 (a)

I File header I FH~

SH~
< Cash

SALES REC. SA~ ~ Account
MAN MAN

BODY R~
SALES SALES

I Salesman header I

I Detail record 1 I
I Detail record n I

............. FILE FILE
BODY

I Salesman header I
SALES
MAN

I Detail record 1 I
• • • .. • • tl ••

I Detail record n I

180 Program Design Using]SP

SALES
FILE

I
I I

FILE SALES FILE
HEADER BODY

I
*

SALESMAN

I
I I

SALESMAN SALESMAN
HEADER BODY

I
* DATAIL

RECORD

I
I I

0 0

CASH ACCOUNT

3.3.8 (b)
The component SALESMAN is amended as follows:

I
*

SALESMAN

T
I I I

SALESMAN SALESMAN SALESMAN
HEADER BODY TOTAL

T I
I I

0 0

PRESENT ABSENT

Appendix A: Solutions to Exercises 181

3.3.8 (c)

DETAIL RECORD is changed to:

I
* DETAIL

RECORD

I
J I

0 0

CASH ACCOUNT

I
I I

0 0
>= £10 < £10
(CASH) (CASH)

182 Program Design Using JSP

Chapter4

4.3.1 The annotated sketch of the input file.

Machine no. 1 • due

Machine no. 2 - not due

..........
Machine no. n - not due

PRODUCTION

FILE

4.3.1 The annotated sketch of the output file.

Machine no. 1 - due

Machine no. 2 - not due

M/g

DUPLICATE
.......... DUPLICATE FILE BODY

FILE
Machine no. n - not due

Replacement count • 35 COUNT]

4.3.1 The logical data structures.

PRODUCTION DUPLICATE
FILE FILE

I
T
r

* DUPLICATE
MACHINE

FILE BODY

I
I I I

0 0 * DUE FOR
MACHINE

REPLACEMENT
--

M/g
M/g

M/g

I

REPLACEMENT
COUNT

Appendix A: Solutions to Exercises

4.3.1 The program structure.

PRODUCE
DUPLICATE

FILE

I
I

DUPLICATE
FILE BODY

I
*

MACHINE

I
I

0
DUE FOR

REPLACEMENT

4.3.2 The annotated sketch of the input file.

[Ward A patient no.1 I
Ward A staff no.1

Ward A staff no. n

Ward Z staff no.1

I Ward Z patient no.1 I

[Ward Z patient no. n I

HOSPITAL

FILE

I
REPLACEMENT

COUNT

I
0

WARD

WARD

~<Staff
PE~

Patient
PE~

PE~

183

184 Program Design Using JSP

4.3.2 The annotated sketch of the output file.

I Ward A headings I

I Ward A staff no.1 I
II II II II •• II II II

I Ward A staff no. n I
............

I Ward Z headings

I Ward Z staff no.1 I
I Ward z staff no. n I

4.3.2 The logical data structures.

HOSPITAL
FILE

I
*

WARD

I
*

PERSONNEL

I
I I

0 0

PATIENT STAFF

I

REPORT
FILE

HD:g

WARD WARD
BODY

WARD

I
WARD

HEADING

STA~

STA~

REPORT
FILE

I
*

WARD

I
I

WARD
BODY

I
*

STAFF

Appendix A: Solutions to Exerdses 185

4.3.2 The program structure.

PRODUCE
HOSPITAL
REPORT

I
*

WARD

I
I I

WARD WARD
HEADING BODY

I
*

PERSONNEL

I
I I

0 0

PATIENT STAFF

4.3.3 The annotated sketch of the input file.

I Grade 1 employee 1 · no degree I
I Grade 1 employee 2 -.degree I GRADE
I Grade 1 employee n - no degree I

PERSONNEL
FILE

I Grade 9 employee 1 - degree I
I Grade 9 employee 2 - degree I GRADE
I Grade 9 ;~~o·y;: ~ ~ ~o degree I

186 Program Design Using JSP

4.3.3 The annotated sketch of the output file.

I EMPLOYEES WITH DEGREES I H~

l Grade 1 number 23 I
l Grade 6 number 15 I

REPORT
GT~

REPORT GT~
FILE FILE

BODY

I Grade 1 00 number 10 I GT~

I TOTAL 64 I T~

4.3.3 The logical data structures.

PERSONNEL REPORT
FILE FILE

I
I

I I I
*

GRADE REPORT REPORT GRAND
HEADING FILE BODY TOTAL

EMPL~YEE• ~ I
GRADE *
TOTAL
LINE

I
I I

0 0

DEGREE
NO

DEGREE

Appendix A: Solutions to Exerdses 187

4.3.3 The program structure.

PRODUCE
PERSONNEL

REPORT

I
I I I

REPORT PERSONNEL GRAND
HEADINGS REPORT BODY TOTAL

1
GRADE *
TOTAL
LINE

I
*

EMPLOYEE

I
I I

0 0

DEGREE
NO

DEGREE

4.3.4 The annotated sketch of the output file.

··~ DT~

AREA BODY

DT~

Area A district 1 total

Area A district n total

Area A total AT~
REPORT

FILE

Area Z district 1 total

AREA
Area Z district n total

Area Z total

188 Program Design Using JSP

4.3.4 The annotated sketch of the input file.

I Area A district 1 product 10 I

I Area A district 1 product 241

I Area A district n product 151

I Area A district n product 35 J

I Area Z district 1 product 10 I

I Area Z district 1 product 48 1

I Area Z district n product 15 1

Area Z district n product 42

PRODUCT
FILE

DISTR~
AREA

DISTR~

AREA

PR~

Appendix A: Solutions to Exerdses 189

4.3.4 The logical data structures.

PRODUCT REPORT
FILE FILE

I I
* *

AREA AREA

J I
I I

*
DISTRICT AREA AREA

BODY TOTAL

I I

PRODUCTJ
* DISTRICT

TOTAL

I
I I

0 0

REQUIRED ~~

190 Program Design Using JSP

4.3.4 The program structure.

PRODUCE
PRODUCT
REPORT

I
*

AREA

I
I I

AREA AREA
BODY TOTAL

I
*

DISTRICT

I
*

PRODUCT

I
I I

0 0

REQUIRED --

Appendix A: Solutions to Exerdses 191

4.3.5 (a) The annotated sketch of the input file.

!course A student 1 offered I
I Course A student m accepte~ '"'] ST~

REJECTED
GROUP

sT§j
COURSE

!course A student n rejected I
..........

!course A student x rejected I

RJ~
REJECj

GROUP
RJ~

............... STUDENT
FILE

!course Z student 1 offered I
!course z student m accepted!

COURSE

!course Z student n rejected I
..........

Jcourse Z student x rejected J

192 Program Design Using JSP

4.3.5 (a) The annotated sketch of the output file.

Course A headings

I Course A student n rejected I

I Course A student x rejected I
Course A total

Course Z headings

I Course Z student n rejected I

Course Z student x rejected

Course Z total

4.3.5 (a) The logical data structures.

STUDENT
FILE

I
*

COURSE

J
I I

PRE·REJECTED REJECTED

GROUP GROUP

REJECTED

REPORT

I
COURSE

HEADINGS

COURSE

COURSE

HD~

COURJ

BODYJ

TO~

REJECTED
REPORT

I
*

COURSE

I
I

COURSE
BODY

I I '----/ I
* * * STUDENT STUDENT

STUDENT
(REJECTED) (REJECTED)

RJ~

RJ~

I
COURSE

TOTAL

Appendix A: Solutions to Exercises 193

4.3.5 (a) The program structure.

PRODUCE
REJECTED

REPORT

I
*

COURSE

I
I I I I

COURSE PRE-REJECTED REJECTED COURSE

HEADINGS GROUP GROUP TOTAL

I I
* *

STUDENT
STUDENT

(REJECTED)

4.3.5 (b) The annotated sketch of the second output file.

COURJ
AC~

AC~

leourse A student I accepted I

p ourse A student m accepted!

ACCEPTED
REPORT

I Course Z student I accepted I
COURSE

pourse Z student m accepted!

194 Program Design Using JSP

4.3.5 (b) The annotated sketch of the input file (revised).

l Course A student 1 offered I
,.I. Course A student k offered I

OFFER~ OF~
GROUP

OF~

.: I Course A student 1 accepted !
II II Ill • • • II • II •

,,F urse A student m accepted!

ACCEPT~ AC~
COURSE

GROUP

AC~
..

. I Course A student n rejected I
,. -~ .

·!·
I Course A student X rejected I

' :·:·

RJ~ REJECT~ GROUP
RJ~

STUDENT
FILE

.I Course Z student 1 offered j
..........

. , Course Z student k offered I

:·! cour~ z student 1 accepted ! COURSE
..

§ourse Z student m accepted!

·,:I Course Z student n rejected I
• :!' ••••. •••• . ·~

j ~urse Z student x rejected j ·

Appendix A: Solutions to Exercises 195

4.3.5 (b) The logical data structures.

ACCEPTED STUDENT REJECTED

REPORT FILE REPORT

J _I

• • •
COURSE

~
COURSE COURSE

I I
1"- I I I I L

• STUDENT OFFERED ACCEPTED REJECTED COURSE COURSE COURSE

(ACCEPTED) GROUP GROUP GROUP HEADINGS BODY TOTAL

I J l ' j I . • • • STUDENT STUDENT STUDENT STUDENT

(OFFERED) (ACCEPTED) (REJECTED) (REJECTED)

' J
4.3.5 (b) The program structure.

STUDENT
REPORTS

I
*

COURSE

I
I I I L I

OFFERED ACCEPTED COURSE REJECTED COURSE
GROUP GROUP HEADINGS· GROUP TOTAL

I I I
* * * STUDENT STUDENT STUDENT

(OFFERED) (ACCEPTED) (REJECTED)

196 Program Design Using JSP

4.3.6 The annotated sketch of the input file.

I Employee 1 deduction 1 • 20 I
I deduction 2 • not 20 I
I deduction 10 • not 201

I Employee n deduction 1 • 20 I
I deduction 2 • not 20 I
I deduction 1 0 · not 2~

PAYROLL
FILE

4.3.6 The annotated sketch of the output file.

I EMPLOYEES PAYING UNION FEES I
B.Jones £1 .10

EMPLOYEE

EMPLOYEE

. .
DE~

H~

I I DEDUCTION DEDUCTIO I F.Smith £3.50 I REPORT REPORT BODY
I R.Brown £2.75 I
I TOTAL £35.76 I T~

DT~

DT~
. .

DT~

Appendix A: Solutions to Exercises 197

4.3.6 The logical data structures.

PAYROLL DEDUCTION

FILE REPORT

l I
I J I

*
EMPLOYEE

REPORT DEDUCTION REPORT

HEADINGS REPORT BODY TOTAL

I I
* *

DEDUCTION
DETAIL

LINE

l
I I

0 0
NOT

REQUIRED
REQUIRED

4.3.6 The program structure.

PRODUCE
DEDUCTION

REPORT

I
I I I

REPORT DEDUCTION REPORT

HEADINGS REPORT BODY TOTAL

I
*

EMPLOYEE

I
*

DEDUCTION

I
I I

0 0
NOT

REQUIRED
REQUIRED

198

ChapterS

5.4.1 (a)

5.4.1 (b) - (d)

Program Design Using JSP

a Until end of the input file
C2 If machine due for replacement

1 Open files
2 dose files
3 Stop
4 Read a machine record
5 Copy a machine record to output
6 Write the count record
7 Increment replacement count
8 Initialise replacement count

DUE FOR

PRODUCE
DUPLICATE

FILE

DUPLICATE
FILE BODY

MACHINE

MACHINE
BODY

REPLACEMENT

C1

*

REPLACEMENT
COUNT

ELSE
0

5.4.2 (a)

Appendix A: Solutions to Exercises

0 Until end of the input file
C2 Until change of ward or end of the input file
C3 If person is a patient

1 Open files
2 Oose files
3 Stop
4 Read a hospital file record
5 Print ward headings
6 Print staff name
7 Store ward

5.4.2 (b) - (d) PRODUCE

WARD
HEADING

HOSPITAL
REPORT

HOSPITAL
REPORT

BODY

WARD

WARD
BODY

C1

*

C2

*
PERSONNEL

PERSONNEL
BODY

PATIENT

C3
0

ELSE
0

STAFF

199

200

5.4.3 (a)

Program Design Using JSP

0 Until end of the input file
C2 Until change of grade or end of the input file
C3 If degree • 'Y'

1 Open files
2 dose files
3 Stop
4 Read a personnel file record
5 Print report headings
6 Print grade and number line
7 Print grand total line
8 Increment degree count
9 Increment grand total

10 Initialise degree count (=0)
11 Initialise grand total (=0)
12 Store grade

5.4.3 (b)- (d)

REPORT
HEADINGS

Appendix A: Solutions to Exercises

PRODUCE
PERSONNEL

REPORT

PERSONNEL

REPORT BODY

Ct

GRADE *
TOTAL
LINE

GRADE TOTAL
UNE BODY

EMPLOYEE

EMPLOYEE
BODY

DEGREE

C2

*

C3
0

GRAND
TOTAL

ELSE
0

NO DEGREE

201

202 Program Design Using JSP

5.4.4 (a)

0 Until end of the input file
C2 Until change of area or end of the input file
C3 Until change of district or change of area or end of the input file
C4 If product code is a required one

1 Open files
2 Oose files
3 Stop
4 Read a product file record
5 Print area total line
6 Print district total line
7 Add selected value to area total
8 Add selected value to district total
9 Initialise area total

10 Initialise district total
11 Store area code
12 Store district code

Appendix A: Solutions to Exercises 203

5.4.4 (b) - (d) PRODUCE
PRODUCT
REPORT

I
I I l

I 1.4 I PRODUCT

~ REPORT
BODY

I C1

*
AREA

I
l I I

1 9.11 1
AREA AREA
BODY TOTAL

I C2 LJ *
DISTRICT

I
I I 8 110,121 DISTRICT

BODY

l C3

*
PRODUCT

I
I [] PRODUCT

BODY

I
I C4 I ELSE

0 0

REQUIRED --

204

5.4.5 (a)

Program Design Using JSP

a Until end of the input file
C2 Until end of offered group or change of cotirse or end of

the input file
C3 Until end of accepted group or change of course or end of

the input file
C4 Until change of course or end of the input file

1 Open files
2 dose files
3 Stop
4 Read a student file record
5 Print reject report headings
6 Print rejected student name
7 Print reject total
8 Write accepted student record
9 Increment reject total

10 Initialise reject total
11 Store course code

5.4.5 (b) - (d)

STUDENT
(OFFERED)

ACCEPTED
GROUP

STUDENT
REPORTS

REPORTS
BODY

COURSE

C1

*

COURSE
HEADINGS

REJECTED
GROUP

COURSE
TOTAL

5.4.6 (a)

Appendix A: Solutions to Exercises

a Until end of the input file
C2 Until end of deduction group
C3 If not deduction code 20

1 Open files
2 Oose files
3 Stop
4 Read a payroll file record
5 Print report headings
6 Print name and amount line
7 Print total line
8 Add deduction amount to total
9 Initialise total (=0)

10 Initialise deduction counter
11 Increment deduction counter

205

206

5.4.6 (b) - (d)

REPORT
HEADINGS

Program Design Using JSP

PRODUCE
DEDUCTION

REPORT

DEDUCTION
REPORT BODY

EMPLOYEE

EMPLOYEE
BODY

DEDUCTION

DEDUCTION
BODY

C1

*

C2

*

REPORT
TOTAL

ELSE
0

NOT
REQUIRED

REQUIRED

Appendix A: Solutions to Exercises

Chapter6

6.3.1

PRODUCE DUPLICATE FILE SEQ

DO 1 [Open files

DO 4 [Read a machine record

DO 8 [Initialise replacement count

DUPLICATE FILE BODY ITER UNTIL C1 [end of the input file

MACHINE SEQ

MACHINE BODY SEL IF C2 [machine due for replacement

DUE FOR REPLACEMENT

DO 7 [Increment replacement count

DUE FOR REPLACEMENT END

MACHINE BODY ELSE 1

[note NULL component

MACHINE BODY END

DO 5 [Copy a machine record to output

DO 4 [Read a machine record

MACHINE END

DUPLICATE FILE BODY END

REPLACEMENT COUNT

DO 6 [Write the count record

DO 2 [Close files

DO 3 [Stop

REPLACEMENT COUNT END

PRODUCE DUPLICATE FILE END

207

208 Program Design Using JSP

6.3.2

PRODUCE HOSPITAL REPORT SEQ

DO 1 [Open files

DO 4 [Read a hospital file record

HOSPITAL REPORT BODY ITER UNTIL C1 [end of the input file
WARD SEQ

WARD HEADING

DO 5 [Print ward headings

DO 7 [Store ward

WARD HEADING END

WARD BODY ITER UNTIL C2 [change of ward or end of

the input file

PERSONNEL SEQ

PERSONNEL BODY SEL IF C3 [person is a patient
PATIENT

[note - no operations for this component

PATIENT END

PERSONNEL BODY ELSE 1

STAFF

DO 6 [Print staff name

STAFF END

PERSONNEL BODY END

DO 4 [Read a hospital file record

PERSONNEL END

WARD BODY END

WARD END

HOSPITAL REPORT BODY END

DO 2 [Close files

DO 3 [Stop

PRODUCE HOSPITAL REPORT END

Appendix A: Solutions to Exercises 209

6.3.3

PRODUCE PERSONNEL REPORT SEQ

REPORT HEADINGS

DO 1 [Open files

DO 4 [Read a personnel file record

DO 5 [Print report headings

DO 11 [Initialise grand total (=0)

REPORT HEADINGS END

PERSONNEL REPORT BODY ITER UNTIL C1 [end of the input file

GRADE TOTAL LINE SEQ

DO 10 [Initialise degree count (=0)

DO 12 [Store grade

GRADE TOTAL LINE BODY ITER UNTIL C2 [change of grade or

end of input file

EMPLOYEE SEQ

EMPLOYEE BODY SEL IF C3 [degree = 'Y'

DEGREE

DO 8 [Increment degree count

DO 9 [Increment grand total

DEGREE END

EMPLOYEE BODY ELSE 1

NO DEGREE

[note - no operations for this component

NO DEGREE END

EMPLOYEE BODY END

DO 4 [Read a personnel file record

EMPLOYEE END

GRADE TOTAL LINE BODY END

DO 6 [Print grade and number line

GRADE TOTAL LINE END

PERSONNEL REPORT BODY END

GRAND TOTAL

DO 7 [Print grand total line

DO 2 [Close files

DO 3 [Stop

GRAND TOTAL END

PRODUCE PERSONNEL REPORT END

210 Program Design Using]SP

6.3.4

PRODUCE PRODUCT REPORT SEQ
DO 1 [Open files
DO 4 [Read a product file record
PRODUCT REPORT BODY ITER UNTIL C1 [end of the input file

AREA SEQ

DO 9 [Initialise area total
DO 11 [Store area code
AREA BODY ITER UNTIL C2 [change of area or end of the

input file
DISTRICT SEQ

DO 10 [Initialise district total
DO 12 [Store district code
DISTRICT BODY ITER UNTIL C3 [change of district or

change of area or end of the input file
PRODUCT SEQ

PRODUCT BODY SEL IF C4 [product code is a

required one
REQUIRED

DO 7 [Add selected value to area total
DO 8 [Add selected value to district total

REQUIRED END

PRODUCT BODY ELSE 1
[note NULL component

PRODUCT BODY END
DO 4 [Read a product file record

PRODUCT END

DISTRICT BODY END

DO 6 [Print district total line

DISTRICT END

AREA BODY END

AREA TOTAL

DO 5 [Print area total line

AREA TOTAL END

AREA END

PRODUCT REPORT BODY END
DO 2 [Close files

DO 3 [Stop

PRODUCE PRODUCT REPORT END

Appendix A: Solutions to Exercises

6.3.5

STUDENT REPORTS SEQ

DO 1 [Open files

DO 4 [Read a student file record

STUDENT REPORTS BODY ITER UNTIL C1 [end of the input file

COURSE SEQ

DO 11 [Store course code

211

OFFERED GROUP ITER UNTIL C2 [end of offered group or

change of course or end of the input file

STUDENT (OFFERED)

DO 4 [Read a student file record

STUDENT (OFFERED) END

OFFERED GROUP END

ACCEPTED GROUP ITER UNTIL C3 [end of accepted group or

change of course or end of the input file

STUDENT (ACCEPTED)

DO 8 [Write accepted student record

DO 4 [Read a student file record

STUDENT (ACCEPTED) END

ACCEPTED GROUP END

COURSE HEADINGS

DO 10 [Initialise reject total

DO 5 [Print reject report headings

COURSE HEADINGS END

REJECTED GROUP ITER UNTIL C4 [change of course or

end of the input file

STUDENT (REJECTED)

DO 9 [Increment reject total

DO 6 [Print rejected student name

DO 4 [Read a student file record

STUDENT (REJECTED) END

REJECTED GROUP END

COURSE TOTAL

DO 7 [Print reject total

COURSE TOTAL END

COURSE END

STUDENT REPORTS BODY END

DO 2 [Close files

DO 3 [Stop

STUDENT REPORTS END

212 Program Design Using JSP

6.3.6

PRODUCE DEDUCTION REPORT SEQ

REPORT HEADINGS

DO l [Open files

DO 4 [Read a payroll file record

DO 5 [Print report headings

DO 9 [Initialise total (=0)

REPORT HEADINGS END

DEDUCTION REPORT BODY ITER UNTIL Cl [end of the input file

EMPLOYEE SEQ

DO 10 [Initialise deduction counter

EMPLOYEE BODY ITER UNTIL C2 [end of deduction group

DEDUCTION SEQ

DEDUCTION BODY SEL IF C3 [not deduction code 20

NOT REQUIRED

[note no operations

NOT REQUIRED END

DEDUCTION BODY ELSE l

REQUIRED

DO 6 [Print name and amount line

DO 8 [Add deduction amount to total

REQUIRED END

DEDUCTION BODY END

DO ll [Increment deduction counter

DEDUCTION END

EMPLOYEE BODY END

DO 4 [Read a payroll file record

EMPLOYEE END

DEDUCTION REPORT BODY END

REPORT TOTAL

DO 7 [Print total line

DO 2 [Close files

DO 3 [Stop

REPORT TOTAL END

PRODUCE DEDUCTION REPORT END

Appendix A: Solutions to Exercises

Chapter7

7.4.1

IDENTIFICATION DIVISION.
PROGRAM- ID. MACHINES.
ENVIRONMENT DIVISION.
INPUT- OUTPUT SECTION.
FILE-CONTROL.

SELECT OLD-FILE ASSIGN TO •PRODFILE.INP•.
SELECT NEW-FILE ASSIGN TO •DUPFILE.OUT•.

DATA DIVISION.
FILE SECTION.
FD OLD-FILE.
01 PRODUCTION-RECORD.

03 RECORD- TYPE
88 END-OF-FILE

03 MACHINE
03 DATE-PURCHASED
0 3 REPLACEMENT

8 8 REPLACEMENT- DUE
FD NEW-FILE.

PIC 9.
VALUE 9.
PIC X(20).
PIC X(8).
PIC 9.
VALUE 9.

01 NEW-PRODUCTION-RECORD PIC X(30) .
WORKING-STORAGE SECTION.
01 COUNT-RECORD.

03 FILLER

0 3 REPLACE- COUNT
PROCEDURE DIVISION.
PRODUCE-DUPLICATE-FILE-SEQ.

PIC·9
VALUE 8.
PIC 9(6).

OPEN INPUT OLD-FILE OUTPUT NEW-FILE.
READ OLD-FILE AT END MOVE 9 TO RECORD-TYPE.
MOVE 0 TO REPLACE-COUNT.

DUPLICATE-FILE-BODY-ITER.
IF END-OF-FILE GO TO DUPLICATE-FILE-BODY-END.

MACHINE-SEQ.
MACHINE-BODY-SEL.

IF REPLACEMENT- DUE NEXT SENTENCE
ELSE GO TO MACHINE-BODY-ELSE-1.

DUE-FOR-REPLACEMENT.
ADD 1 TO REPLACE-COUNT.

DUE-FOR-REPLACEMENT-END.
GO TO MACHINE- BODY- END.

MACHINE-BODY-ELSE-1.
** null component **
MACHINE-BODY-END.

WRITE NEW-PRODUCTION-RECORD FROM PRODUCTION-RECORD.
READ OLD-FILE AT END MOVE 9 TO RECORD-TYPE.

MACHINE-END.
GO TO DUPLICATE-FILE-BODY-ITER.

DUPLICATE-FILE-BODY-END.
REPLACEMENT-COUNT.

WRITE NEW-PRODUCTION-RECORD FROM COUNT-RECORD.
CLOSE OLD-FILE NEW-FILE.
STOP RUN.

REPLACEMENT-COUNT-END,
PRODUCE-DUPLICATE-FILE-END.

213

214 Program Design Using JSP

7.4.2
PROGRAM Hospital (hospfile, staffile} ;
TYPE

VAR

packed4
recordtYP£

• PACKED ARRAY [1 .. 4] OF char
• RECORD

ward
name
patient

END ;

packed4 ;
PACKED ARRAY [1 .. 20] OF char
boolean ;

storedward
hosprecord
hospfile
staffile

packed4
record type
FILE OF recordtype
text ;

BEGIN
(* produce hospital report seq *}

Reset (hospfile} ;
Rewrite (staffile} ;
Read (hospfile, hosprecord}
WITH hosprecord DO
(* hospital report body iter *}
WHILE NOT (ward • 'ZZZZ'} DO

BEGIN
(* ward seq *}

(* ward heading *}
Writeln (staffile, 'STAFF ON WARD ' ward}
Writeln (staffile}
storedward :• ward

(* ward heading end *}
(* ward body iter *}

WHILE NOT ((ward • 'ZZZZ'} OR (ward <> storedward}} DO
BEGIN
(* personnel seq *}

(* personnel body sel *}
IF patient THEN

(* patient *}

(* no operations for this component *}
(* patient end *}

(* personnel body else 1 *}
ELSE

(* staff *}
Writeln (staffile, name}

(* staff end *}

(* personnel body end *}
Read (hospfile, hosprecord}

(* personnel end *}
END ;

(* ward body end *}
(* ward end *}

END ;
(* hospital report body end *}

(* produce hospital report end *}
END.

Appendix A: Solutions to Exercises

7.4.3

IDENTIFICATION DIVISION.
PROGRAM-ID. PERSON.
ENVIRONMENT DIVISION.
rNPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PERSONNEL-FILE ASSIGN TO "PERSON.SEQ-.
SELECT OUTPUT-REPORT-FILE ASSIGN TO "REPORT.LPT".

DATA DIVISION.
FILE SECTION.
FD PERSONNEL-FILE.
01 PERSONNEL-REC.

03 GRADE
03 NAME
03 0-LEVELS
03 A-LEVELS
03 DEGREE-Y-N

88 HAS-DEGREE
FD OUTPUT-REPORT-FILE.
01 PRINT-LINE
WORKING-STORAGE SECTION.
01 MAIN-HEADINGS

"XYZ COMPANY - EMPLOYEES
01 SUB-HEADINGS

PIC 999.
PIC X(17).
PIC 9.
PIC 9.
PIC X.
VALUE "Y".

PIC X(80).

PIC X(36) VALUE
WITH DEGREES".
PIC X(24) VALUE

GRADE
01 DETAIL-LINE.

NUMBER".

01

03 FILLER
03 OUT-GRADE
03 FILLER
03 OUT-DEGREE-COUNT
TOTAL-LINE.

PIC
PIC
PIC
PIC

X(7)
ZZ9.
X(7)
ZZZ9.

VALUE SPACES.

VALUE SPACES.

215

03 FILLER PIC
PIC
PIC

X(16) VALUE "
ZZZZ9.

TOTAL".

77
03 OUT-GRAND-TOTAL-COUNT
DEGREE-COUNT

77 GRAND-TOTAL-COUNT
77 STORED-GRADE
PROCEDURE DIVISION.
PRODUCE-PERSONNEL-REPORT-SEQ.
REPORT-HEADINGS.

PIC
PIC

9 (4) •
9 (5) •
999.

OPEN INPUT PERSONNEL-FILE OUTPUT OUTPUT-REPORT-FILE.
READ PERSONNEL-FILE AT END MOVE 999 TO GRADE.
WRITE PRINT-LINE FROM MAIN-HEADINGS
WRITE PRINT-LINE FROM SUB-HEADINGS AFTER 1
WRITE PRINT-LINE FROM SPACES AFTER 1.
MOVE ZERO TO GRAND-TOTAL-COUNT.

REPORT-HEADINGS-END.
PERSONNEL-REPORT-BODY-ITER.

IF GRADE = 999 GO TO PERSONNEL-REPORT-BODY-END.
GRADE-TOTAL-LINE-SEQ.

MOVE ZERO TO DEGREE-COUNT.
MOVE GRADE TO STORED-GRADE.

GRADE-TOTAL-LINE-BODY-ITER.
IF GRADE • 999 OR GRADE NOT • STORED-GRADE

GO TO GRADE-TOTAL-LINE-BODY-END.
EMPLOYEE-SEQ.
EMPLOYEE-BODY-SEL.

IF HAS-DEGREE NEXT SENTENCE
ELSE GO TO EMPLOYEE-BODY-ELSE-1.

216 Program Design Using JSP

DEGREE.
ADD 1 TO DEGREE-COUNT.
ADD 1 TO GRAND-TOTAL-COUNT.

DEGREE-END.
GO TO EMPLOYEE-BODY-END.

EMPLOYEE-BODY-ELSE-1.
NO-DEGREE.
** NO OPERATIONS FOR THIS COMPONENT **
NO-DEGREE-END.
EMPLOYEE-BODY-END.

READ PERSONNEL-FILE AT END MOVE 999 TO GRADE.
EMPLOYEE-END.

GO TO GRADE-TOTAL-LINE-BODY-ITER.
GRADE-TOTAL-LINE-BODY-END.

MOVE STORED-GRADE TO OUT-GRADE
MOVE DEGREE-COUNT TO OUT-DEGREE-COUNT
WRITE PRINT-LINE FROM DETAIL-LINE.

GRADE-TOTAL-LINE-END.
GO TO PERSONNEL-REPORT-BODY-ITER.

PERSONNEL-REPORT-BODY-END.
GRAND-TOTAL.

MOVE GRAND-TOTAL-COUNT TO OUT-GRAND-TOTAL-COUNT
WRITE PRINT-LINE FROM TOTAL-LINE.
CLOSE PERSONNEL-FILE OUTPUT-REPORT-FILE.
STOP RUN.

GRAND-TOTAL-END.
PRODUCE-PERSONNEL-REPORT-END.

Appendix A: Solutions to Exercises

ChapterS

8.4.1

CARS
REPORT

I
I

I 1,4 I CARS
I 2,3 I REPORT

BODY

I C1

POSSIBLE *
MATCHING
REG. NO.

I
I I

I I
POSSIBLE

I 4 I
5

MATCHING
REG. NO. BODY

I
I C2 I ELSE

0 0
DESCRIPTION DESCRIPTION

PRESENT ABSENT

[jJ I

I 7 I

Q Until end of CARS SOLD file
C2 If record found in CARS FOR SALE file (direct access)

1 Open files
2 Oose files
3 Stop
4 Read a CARS SOLD file record
5 Attempt to access CARS FOR SALE file record with registration

number = that in CARS SOLD file record
6 Print car description
7 Print 'description not known'

217

218

8.4.2

C2
0

ENTERED

Program Design Using JSP

COBOL
EXAM

EXAM
BODY

C1
POSSIBLE *

MATCHING
NAME

C3
0

ENTERED

PASS
RATE

ELSE
0

AND PASSED ONLY
PASSED

ONLY

0 Until end of both input files
C2 If ENTERED name = PASSED name
C3 If ENTERED name < PASSED name

1 Open files
2 Close files
3 Stop
4 Read ENTERED file record
5 Read PASSED file record
6 Print passed/not entered name
7 Compute and print pass rate
8 Increment entered count
9 Increment passed count

10 Initialise entered count
11 Initialise passed count

8.4.3

Appendix A: Solutions to Exercises

C.A.L.
PROGRAM

C1
POSSIBLE *

MATCHING
LETTER

POSSIBLE
MATCHING

LffiER BODY

FINAL
TOTALS

C2 C4 ELSE
0 0 0

PICTURE REC. PICTURE WORD BOTH
& WORD REC. RECORD ONLY RECORD ONLY ABSENT

EJ 0 0
0 Until end of letter range
C2 If current letter = PICTURE file letter = WORD file letter
C3 If current letter = PICTURE file letter <> WORD file letter
C4 If current letter = WORD file letter <> PICTURE file letter

1 Open files
2 Close files
3 Stop
4 Read PICTURE file record
5 Read WORD file record
6 Print appropriate initial letter
7 Compute and print percentages
8 Increment picture only total
9 Increment word only total

10 Increment picture with word total
11 Increment current letter (move to next in alphabet)
12 Initialise all totals
13 Initialise current letter (= A)

0

219

220

8.4.4

cs
0

LOAN

Program Design Using JSP

C2
0

MASTER AND
TRANSACTION

MASTER AND
TRANS BODY

C4

* TRANSACTION
RECORD

TRANSACTION

RECORD

BODY

C6
0

RENEWAL

D

LIBRARY
UPDATE

LIBRARY
UPDATE

BODY

C1
POSSIBLE *

MATCHING
CAT. NUMBER

MASTER
ONLY

ELSE
0

RETURN

C3
0

ELSE
0

TRANSACTION
ONLY

C4

* TRANSACTION
ERROR

Appendix A: Solutions to Exerdses 221

In this solution we have simplified the component TRANSACTION ERROR.
Strictly, it should contain the same structure as that for TRANSACTION
RECORD BODY. However, the only operation to be allocated to each of the
three selection part components would be number 6, display 'transaction
alone' error message.

0 Until end of both input files
C2 If MASTER catalogue number = TRANSACTION catalogue number
C3 If MASTER catalogue number < TRANSACTION catalogue number
C4 Until change of TRANSACTION catalogue number
C5 If CODE= 1
C6 If CODE= 2

1 Open files
2 Oose files
3 Stop
4 Read MASTER file record
5 Read TRANSACTION file record
6 Display 'transaction alone' error message
7 Write master record to output
8 Update borrower's reference and date in master record
9 Update date in master record

10 Space-fill borrower's reference in master record
11 Store TRANSACTION catalogue number

222 Program Design Using JSP

Chapter9

9.7.1

operation inter. entry intermediate file record
status status type contents

2 o (False)

7 DETAIL MATHS F JONES 35

21

26 (1st)

26 (2nd) 2

7 DETAIL MATHS C DODD 48

26 (2nd) 2

8 TOTAL MATHS 83

26 (2nd) 2

7 DETAIL SCIENCE J BROWN 62

26 (2nd) 2

8 TOTAL SCIENCE 62

26 (2nd) 2

4 1 (True) NULL NULL

24

25

In Pascal, entry status is initialised to 1 at the start of the main program. In
COBOL it is initialised to 1 in the WORKING-SfORAGE of the subprogram.

Appendix A: Solutions to Exerdses 223

9.7.2 (a)

STOCK REPORT

FILE FILE

I
* * PRODUCT PAGE

GROUP

I
I I

* PRODUCT PAGE PAGE

DETAIL HEADINGS BODY

I I
BELOW 0 NOT BELOWO *

RESERVE RESERVE LINE
LEVEL LEVEL

I
I I

0 0

........ PRODUCT GROUP
DETAIL TOTAL

A structure clash exists between PRODUCT GROUP and PAGE.

224 Program Design Using JSP

9.7.2 (b) Data structures (program 1)

STOCK INTERMEDIATE
FILE FILE

I I
* * PRODUCT PRODUCT

GROUP GROUP

I
L
I I

* PRODUCT GROUP GROUP
DETAIL BODY TOTAL

L I I J
BELOW 0 NOT BELOWO REQUIRED*

RESERVE RESERVE PRODUCT
LEVEL LEVEL DETAIL

\.)

9.7.2 (b) Condition and operation lists (program 1)

a Until end of stock file
C2 Until change of product group or end of stock file
C3 If stock level < 20

1 Open stock file
2 Open intermediate file
3 Oose stock file
4 Close intermediate file
5 Stop
6 Read a stock file record
7 Write detail record to intermediate file
8 Write total record to intermediate file
9 Increment group total

10 Initialise group total (=0)
11 Store product group code

Appendix A: Solutions to Exercises

9.7.2 (b) Program structure (program 1)

PRODUCE
INTERMEDIATE

FILE

INTERMEDIATE
FILE BODY

PRODUCT
GROUP

GROUP
BODY

PRODUCT
DETAIL

BELOW
RESERVE

LEVEL

C1

*

C2

*

C3
0

GROUP
TOTAL

ELSE
NOT BELOWO

RESERVE
LEVEL

225

226 Program Design Using JSP

9.7.2 (c) Data structures (program 2)

INTERMEDIATE
FILE

*
LINE

I
0 0

PRODUCT GROUP PAGE
DETAIL TOTAL HEADINGS

......

J

'
0

PRODUCT
DETAIL

'
9.7.2 (c) Condition and operation lists (program 2)

0 Until end of intermediate file
C2 Until end of page or end of intermediate file
C3 If a product detail line

1 Open intermediate file
2 Open report file
3 Close report file
4 Close intermediate file
5 Stop
6 Read an intermediate file record
7 Print page headings
8 Print detail line
9 Print total line

10 Increment line count
11 Increment page count
12 Initialise line count (=0)
13 Initialise page count (=0)

REPORT
FILE

I
*

PAGE

I
I

PAGE
BODY

I
*

LINE

I
I

0
GROUP
TOTAL

)

Appendix A: Solutions to Exercises

9.7.2 (c) Program structure (program 2)

PAGE
HEADINGS

9.7.2 (d)

PRODUCE
REPORT

REPORT
BODY

PAGE

PAGE
BODY

LINE

PRODUCT
DETAIL

C1

*

C2

*

C3
0

227

ELSE
0

GROUP
TOTAL

Use the rules from section 9.5 to code operations 2, 4, 7 and 8 from program 1,
and operations 1, 4, 5 and 6 from program 2.

Initialise entry status and include code at the beginning of program 2 for
the control passing mechanism.

228 Program Design Using JSP

Chapter10

10.7.1 Data structures

CHAIN
ACCEPTED

STORE
FILE

FILE

I I
* *

DEPARTMENT
ACCEPTED

I DEPARTMENT

I I
I , I

0 0
CORRECT INCORRECT TYPE 1 TYPE 2

DEPARTMENT DEPARTMENT RECORD RECORD

I
I I I

* TYPE 1 TYPE 2 INCORRECT
RECORD RECORD RECORD

t t
I /

10.7.1 The initial condition and operation lists

0 Until end of chain store file
C2 Until change of department or end of chain store file

1 Open files
2 Oose file
3 Stop
4 Read a chain store file record
5 Write a type 1 record
6 Write a type 2 record
7 Display error message
8 Store department code

Appendix A: Solutions to Exercises

10.7.1 The program structure with allocated operations and conditions

TYPE 1
RECORD

VALIDATE
CHAIN STORE

FILE

VALIDATE
CHAIN STORE

FILE BODY

C1

*
DEPARTMENT

DEPARTMENT
BODY

0
ACCEPTED

DEPARTMENT

TYPE 2
RECORD

?
0

INCORRECT
DEPARTMENT

DEPARTMENT
BODY

?

C2

* INCORRECT
RECORD

229

230 Program Design Using JSP

10.7.1 The final schematic logic

VALIDATE CHAIN STORE FILE SEQ
DO 1 [Open files
DO 4 [Read a chain store file record
VALIDATE CHAIN STORE FILE BODY ITER UNTIL C1 [end of chain

store file
DEPARTMENT SEQ

DO 8 [Store department code
DEPARTMENT BODY POSIT (a good department)

ACCEPTED DEPARTMENT SEQ
TYPE 1 RECORD

QUIT DEPARTMENT BODY POSIT IF C3 [record not a tYPe 1
or cash value out of range

DO 5 [Store a tYPe 1 record **
DO 4 [Read a chain store file record
QUIT DEPARTMENT BODY POSIT IF C4 [not the same

department or not a tYPe 2 record
TYPE 1 RECORD END
TYPE 2 RECORD

QUIT DEPARTMENT BODY POSIT IF CS [cash value out of
range or end of day cash not > start of day cash

DO 6 [Store a type 2 record **
DO 4 [Read a chain store file record
QUIT DEPARTMENT BODY POSIT IF C6 [same department

TYPE 2 RECORD END
DO SA [Write stored tYPe 1 record **
DO 6A [Write stored type 2 record **

ACCEPTED DEPARTMENT END
DEPARTMENT BODY ADMIT (an incorrect department)

INCORRECT DEPARTMENT SEQ
DO 7 [Display error message
INCORRECT DEPARTMENT BODY ITER UNTIL C2 [change of

department or end of file
INCORRECT RECORD

DO 4 [Read a chain store file record
INCORRECT RECORD END

INCORRECT DEPARTMENT BODY END
INCORRECT DEPARTMENT END

DEPARTMENT BODY END
DEPARTMENT END

VALIDATE CHAIN STORE FILE BODY END
DO 2 [Close files
DO 3 [Stop

VALIDATE CHAIN STORE FILE END

Note that both occurrences of operation 4 (in TYPE 1 RECORD and TYPE 2
RECORD) are favourable. Operations 5 and 6 have been changed from write
operations to store operations in order to overcome intolerable side effects.
Operations SA and 6A are the postponed write operations (from stored areas),
implemented after all QUITs.

Appendix A: Solutions to Exercises

Chapter12

12.6.1 The menu selection process program structure

MENU
SCREENS

SCREEN

PROMPT

Cl

*

C3

ADDRESS 0

CAPTURE

C1 Until user chooses 'exit'
C2 Until a valid response

INVALID
RESPONSES

C2

INVALID
RESPONSE

*

C4

CAR DETAIL 0

CAPTURE

C3 If user chooses 'address details'
C4 If user chooses 'car details'

VALID
RESPONSE

231

ELSE
0

EXIT

232 Program Design Using JSP

1 Display headings on clear screen
2 Display menu lines
3 Display selection prompt
4 Accept user response
5 Display error message (try again)
6 Gear error message
7 Call address capture subprogram (see below)
8 Call car details capture subprogram (see below)

To implement QUIT from iteration at the schematic logic stage: remove
condition a from the head of the iteration MENU SCREENS. Allocate QUIT
MENU SCREENS ITER to the component EXIT.

12.6.1 The address capture process program structure

HEADINGS

NAME

FORM
SKELETON

ROAD

5.4/MENU
ADDRESS
CAPTURE

CAPTURE
BODY

C11

*
USER

COMPLETION

TOWN

0
YES

(CONFIRM)

USER
CONFIRM

REPEAT
RESPONSE

.-----'--C=-=1:.::,3 ELSE
0 0

YES
(REPEAT)

Note that the structure diagram should be redrawn to include 'body' boxes
after operations 16 and 18.

Appendix A: Solutions to Exercises

01 Until repeat response<> 'Y'
02 If user confirmation affirmative
03 If repeat response affirmative

11 Display headings on clear screen
12 Oisplay form skeleton
13 Accept name
14 Accept road
15 Accept town
16 Accept user confirmation
17 Write accepted data
18 Accept repeat response
19 Oear form entries

233

To implement a QUIT from iteration: remove 01 from the head of the
iteration ADDRESS CAPfURE BODY and allocate QUIT ADDRESS CAPTURE
BODY ITER to the ELSE component of REPEAT RESPONSE BODY.

12.6.1 The car details capture process program structure

5.4/MENU

HEADINGS

NAME

FORM
SKELETON

MAKE

CAR DETAIL
CAPTURE

CAR DETAIL
CAPTURE

BODY

C21

*
COMPLETION

MODEL

YES
(CONFIRM)

USER
CONFIRM

REPEAT
RESPONSE

YES
(REPEAT)

ELSE
0

234 Program Design Using]SP

Note that the structure diagram should be redrawn to include 'body' boxes
after operations 26 and 28.

C21 Until repeat response <> 'Y'
C22 If user confirmation affirmative
C23 If repeat response affirmative

21 Display headings on clear screen
22 Display form skeleton
23 Accept name
24 Accept make
25 Accept model
26 Accept user confirmation
'17 Write accepted data
28 Accept repeat response
29 Oear form entries

We may employ QUIT from iteration in a similar manner to that described for
the address capture subprogram.

12.6.2

0 Until user requests no more (another name
response <> 'Y')

C2 If record for required name found (that is, valid)
C3 Until user requests no more (another field

response <> 'Y')
C4 If field = 'MAKE'
C5 If field = 'MODEL'

1 Display 'which person?' prompt
2 Accept user response (name)
3 Attempt to retrieve required record
4 Display 'does not exist'
5 Display 'which field?' prompt
6 Accept user response (field name)
7 Display make of car
8 Display model of car
9 Display 'try another field' prompt

10 Accept user response (another field)
11 Display 'try another name' prompt
12 Accept user response (another name)
13 Display 'exit'
14 Initialise another name response= Y
15 Initialise another field response= Y

Appendix A: Solutions to Exercises 235

RETRIEVE
CAR DATA

I

8 I l
RETRIEVE
CAR DATA EXIT

BODY

I
I

C1

I I 13
*

PERSON

1
I I I

WHICH PERSON TRY ANOTHER
PERSON BODY NAME

I I EJ 11.2.3 1
C2 I ELSE
0 0

VALID INVALID
NAME NAME

I

I 4

r
15 I VALID NAME

BODY

C3

*
FIELD

I I I

WHICH FIELD TRY ANOTHER

FIELD BODY FIELD

l I R I I
C4 I C5 I ELSE

5,6 0 0 0
INVALID

MAKE MODEL
FIELD

u ~ 0

236 Program Design Using JSP

Chapter13

13.5.1

The expected results are:

Headings for ward AlOO
Staff name B C WHITE
Headings for ward 8300
Staff name A B GREEN

pPERATIONS/ CURRENT RECORD
r.oNDITIONS WARD NAME

1
4 A100 J G SMITH

C1 (false)
5
7

C2 (false)
C3 (true)

4 A100 J L THOMAS
C2 (false)
C3 (true)

4 A100 8 C WHITE
C2 (false)
C3 (false)

6
4 8300 A 8 GREEN

C2 (true)
C1 (false)

5
7

C2 (false)
C3 (false)

6
4 END OF FILE

C2 (true)
C1 (true)

2
3

STORED
P/S WARD

p

A100

p

s

s

8300

. ...

OUTPUT
(RESULTS)

/

/

/

J

Appendix A: Solutions to Exerdses 237

13.5.2

The expected results are:
Present on both 2, A only 1, B only 0

::>PERATIONS/ A B A ONLY B ONLY BOTH OUTPUT
~ONDITIONS RECORD RECORD COUNT COUNT COUNT (RESULTS)

1
4 1235
5 1468

12 0 0 0
C1 (false)
C2 (false)
C3 (true)

8 1
4 1468

C1 (false)
C2 (true)

7 1
4 1532
5 1532

C1 (false)
C2 (true)

7 2
4 9999
5 9999

C1 (true)
6 /
2
3

The test data are insufficient because the ELSE path of the selection POSSffiLE
MATCHING KEY has not been used and hence operations 9 and 5 of the
elementary component FILE B ONLY have not been tested.

13.5.3 (a)
path 1 a, C2nC3,a
path2 a

13.5.3 (b)
path 1 a, c2na, C3, a
path2 a, c2na, C4, a
path3 C5

path4 C6

238 Program Design Using JSP

13.5.3 (c)

Using De Morgan's law, we get:

a (C2UC3) (C4nC5)

This gives the following paths:

13.5.3 (d)

path 1 a, C2, C4ncs
path 2 a, C3, C4nC5

Using De Morgan's law, we get:

a (C2UC3) (C7nC8) (C4UC5) a U a

This gives the following paths:

13.5.3 (e)

path 1
path2
path 3
path4
pathS

a, c2, Clncs, C4, a
a, C3, Clncs, C4, a
a, c2, Clncs, cs, a - -a, C3, C7 nCB, cs, a
a

Using De Morgan's law, we get:

a (C5UC6) (C3UC4) a U a

This gives the following paths:

path 1

path2
path3
path4
pathS

a, cs, C3, a
a, C6, C3, a
a, cs, C4, a
a, c6, C4, a
a

Appendix A: Solutions to Exerdses 239

13.5.4 (a)

PRODUCE
DUPLICATE

FILE

I
2 I 3 I

DUPLICATE REPLACEMENT
FILE BODY COUNT

4 I C1

*
MACHINE

(zero or more
occurrences)

I -
5 I C2 6 I C2

0 0
DUE FOR --

REPLACEMENT

C1 End of file
C2 Due for replacement

240

13.5.4 (b)

13.5.4 (c)

Hence

13.5.4 (d)

Program Design Using JSP

expr.l : expr2
expr.2 : 0 (expr.4) 0 U 0
expr.4 : C2UC2

expr.l : 0 (C2UC2) 0 U 0

path 1
path2
path3

0, C2, 0
0, C2, 0
0

C1

13.5.4 (e)

13.5.5 (a)

3

Appendix A: Solutions to Exercises

path 1 Machine 1 due for replacement
end of file

path 2 Machine 2 not due for replacement
end of file

path 3 end of file

PRODUCE
HOSPITAL
REPORT

2 I C1

*
WARD

(zero or more
occurrences)

I
I 4 I

WARD WARD
HEADING BODY

5 I C1UC2

*
PERSONNEL

(at least one
occurrence)

I
6 I C3 7

0
1

PATIENT STAFF

0 End of file
C2 Change of ward
C3 Person is a patient

241

-
C3
0

242 Program Design Using]SP

13.5.5 (b)

C3

C1 C2

C1

13.5.5 (c)

Hence

13.5.5 (d)

13.5.5 (e)

Appendix A: Solutions to Exercises

expr.1 : 0 (expr.2) 0 U 0
expr.2 : expr.4
expr.4 : (0 UC2) (expr.5) (0 UC2)
expr.5 : C3UC3

expr.1 : 0 (0 nC2) (C3UC3} (0 UC2} 0 U 0

path 1

path2
path3
path4
pathS

path 1

path 2

path 3

path 4

path 5

0, OnC2, C3, 0, 0
0, 0 nC2, C3, 0, 0
0, 0 nC2, C3, C2, 0
0, 0 nC2, C3, C2, 0
0

Ward A J.Smith patient
end of file
Ward A I. Green staff
end of file
Ward A T.White patient
Ward B F. Wise patient
end of file
Ward A M.Hall staff
Ward B F.Young staff
end of file
end of file

243

Appendix B: An Invoice Printing Case Study

B.l Objectives

To print invoices from a sales invoice file - see figure B.1. A single customer
may have one invoice or one invoice with one or more extension invoices.

B.2 Problem description

INVOICE
PRINTING
PROGRAM

Figure B.1

1. It is required to print invoices from a single sales invoice file. The file is
structured such that there may be any number of sales detail records
following each customer detail record. There may be more than one invoice
to be printed per customer but, where it is necessary to print more than one
invoice, the extension invoice(s) are identified by customer name only.

2. The sales details for each customer are in individual records (see SALES
RECORD - figure B.2) following a record containing the customer's name
and address (see CUSTOMER RECORD - figure B.3).

3. Each invoice can hold a maximum of 10 sales detail lines. If there are more
than 10 sales details for a customer, extension invoices are produced. The
extended invoices will contain a carried forward total, the extension
invoices a brought forward total. The final invoice for a customer has a
grand total. See figures B.4 and B.S for samples of an extended first invoice
and a final extension invoice.

244

Appendix B: An Invoice Printing Case Study 245

SALES RECORD
CUSTOMER NUMBER 4 digits
PRODUCT DESCRIPTION 30 characters

PRICE 6 digits

(including 2 dec. places)

Figure B.2

CUSTOMER RECORD
CUSTOMER NUMBER 4 digits

NAME 20 characters

STREET 20 characters

TOWN 20 characters
COUNTY 20 characters

Figure B.3

P.J.PRENDERGAST LTD. I

MARKET GARDENS I

APPLE TERRACE,

LONDON WC1 3AS

30 BAGS GROW MORE MANURE 50.00
12 1KG BONE MEAL 34.70
15 2KG BONE MEAL 85.00
10 3KG BONE MEAL 84.65
20 5KG BONE MEAL 145.70
20 1KG BULB FIBRE 74.42
24 2KG BULB FIBRE 125.50
36 3KG BULB FIBRE 240.70
18 4KG BULB FIBRE 192.35
48 5KG BULB FIBRE 405.63

CARRIED FORWARD 1438.65

Figure B.4

246 Program Design Using JSP

p • J. PRENDERGAST L'l'D. I

BROUGHT FORWARD 1438.65

9 DOZ MIXED TULIPS 20.00

12 DOZ RED TULIPS 15.00

20 DOZ BLUE TULIPS 30.00

10 30KG PEAT 25.00

20 50KG PEAT 95.00

GRAND TOTAL 1623.65

Figure B.S

Appendix C: A Label Production Case Study

C.l Objectives

To produce adhesive label sets containing hospital patient identification
information - see figure C.l. The number of individual labels per patient
varies according to laboratory test categories.

PATIENT
IDENTITY

FILE

C.2 Problem description

LABEL
PRODUCTION ~---IW

PROGRAM

Figure C.1

1. In a hospital system, a file (fEST REQUEST FILE) is created each day,
containing records of patients due to enter hospital for laboratory tests. The
records contain a patient number and test code, with just one record (that is,
test) for each patient. The file is sorted into ascending order of patient
number. Another sequential file (PATIENT IDENTITY FILE) is maintained,
in patient number order, containing patient identification details (name, age
etc.).

247

248 Program Design Using JSP

2. As both files are sorted into ascending order of patient number, we attempt
to match records on the basis of this key field (see figures C.2 and C.3).

3. It is required to produce sets of adhesive labels, such that 3 labels are
produced if the test code = 1; 4labels if the test code= 2; Slabels otherwise.
In the event of patient identification details not being found for a particular
test request record, a message is displayed to the computer operator (see
figure C.4 for a sample set of labels).

4. The type of label available for printing is self-adhesive on continuous
stationery backing, 3 across the page. The program should be easily
modifiable to accommodate different types of labels.

PATIENT IDENTITY FILE

5 digits PATIENT NUMBER

NAME

AGE

15 characters

2 digits

SEX

CONSULTANT

1 character (M or F)

15 characters

Figure C.2

TEST REQUEST FILE

PATIENT NUMBER

TEST CODE

5 digits

1 digit

10015

K.B.GREENFIELD

35 M

MR. I.ANDREWS

Figure C.3

10105

S.R.WHITE

28 F

MR. K.SPICER

Figure C.4

10105

S.R.WHITE

28 F

MR. K.SPICER

Appendix D: A Course File Completeness
Case Study

D.l Objectives

To read the course membership file and determine the extent of completeness
- see figure D.l

EXAMINE COURSE
COURSE FILE FOR

FILE +-----+1 COMPLETENESS

Figure 0.1

0.2 Problem description

ANALYSIS
REPORT

1. The file is sorted such that all records for a course are grouped together. A
course may be complete (valid) or incomplete (invalid).

2. A complete course will consist of a header record (see HEADER RECORD -
figure 0.2); followed by a number of student description records (see
DESCRIPTION RECORD - figure D.3); followed by a course end record (see
END RECORD - figure D.4).

3. A course may be incomplete for three reasons:

(a) the header record is missing;
or (b) the end record is missing;
or (c) the student count in the end record does not correspond with the

number of student description records.

4. For a complete course only, it is required to print out details of each student
(see figure D.5).

5. If a course is incomplete, only the first error detected is reported as a single
line of print in the report (see figure D.5).

6. At the end of the report a summary line is produced showing the number of
incomplete courses found (see figure D5).

249

250 Program Design Using JSP

COURSE CODE

RECORD TYPE

COURSE CODE

RECORD TYPE

STUDENT NAME

ADDRESS

COURSE CODE

RECORD TYPE

STUDENT COUNT

HEADER RECORD

8 characters

1 character (• A)

Figure D.2

DESCRIPTION RECORD

8 characters

1 character (= B)

15 characters

24 characters

Figure D.3

END RECORD

8 characters

1 character (• E)
3 digits

Figure D.4

COURSE FILE - COMPLETENESS ANALYSIS 12-JAN-92

COURSE STUDENT NAME

BSCASCIV K.SHERROCKS
BSCASCIV P.FORSTER

BSCASCII

BSCASCI

HNDCSII

ADDRESS / COMMENT

ROOM 2, BRYARS HALL
ROOM 2 9, MOUNTFORD BLDG

STUDENT COUNT INCORRECT

HEADER RECORD MISSING

END RECORD MISSING

** 3 INVALID COURSES FOUND **

Figure D.S

Appendix E: An Interactive System Case
Study

E.l Objectives

To allow the insertion of new contracts to, and the deletion of old contracts
from, a microcomputer maintenance contract database. To allow certain inter­
rogation facilities. See figure E.l.

E.2 Problem description

MAINTENANCE
CONTRACTS

PROGRAM

Figure E.1

1. Four facilities are required of the program:

CONTRACT
DATABASE

(a) insert new contract details (see screen layout INSERT NEW CON­
TRACT - figure E.3);

(b) delete cancelled contracts (see DELETE CANCELLED CONTRACT -
figure E.4);

(c) view or inspect the details of a given contract (see VIEW CONTRACT
DETAILS - figure E.S);

(d) list all contract details where the cost is high, that is, over £200 per
annum (see LISf CONTRACT DETAILS - figure E.6).

The selection of the required facilities is done by a simple menu (see MENU
- figure E.2).

2. The only data validation, except by the user's visual inspection, is when
attempts are made to access a contract that does not exist and when an
invalid menu choice is made. In such cases an error message is displayed
(see figures E.2, E.4 and E.S).

251

252 Program Design Using JSP

3. The simple database contains, for each contract, a contract number, a model
description and the maintenance cost per annum. Facilities of the database
management system, which can be incorporated into the program, include
the ability to access directly any contract by reference to the contract
number, and to find (or locate) all contracts with given attribute values (for
example, model = 386SX, cost > £200) and return the number of records
found.

MICROCOMPOTER IIAIHTI:NANCE SYSTDI

MENU

I. Insert new contract (s)
D. Delete cancelled contract(&)
v. View existing contract (s)
L. List high cost contracts
E. Exit from the system

Please enter I,D,V,L or E Ll

**** INCORRECT ENTRY • PLEASE RE·ENTER ****

Figure E.2

In figure E.2, the error message on the bottom line is displayed only after an
incorrect entry and is cleared after the user has entered a new value. The user
must eventually enter a correct value.

MICROCOIIPOTER IIAIHTI:NANCE SYSTEM

INSERT NEW CONTRACT

CONTRACT NO. [___]

MODEL [. _________ ___

COST [_. __] P.A.

Please confirm that the above is correct (Y/N) [_]

Do you wish to enter another contract (Y/N) [_]

Figure E.3

Appendix E: An Interactive System Case Study 253

In figure E.3, the whole of the 'form' is displayed on the screen and the user is
guided through it. After each response the cursor moves to the next position.
The data are written to the database only if user confirmation response is Y. If
the user elects to repeat the transaction, the entries on the form, but nothing
else, are cleared.

MICROCOMPUTER MAINTENANCE SYSTEM

DELETE CANCELLED CONTRACT

CONTRACT NO. [___]

MODEL XXXXXXXXXXXXXXX

COST XXXX. XX

Please confirm the above deletion (Y/N) [_]

Do you wish to cancel another contract (Y/N) [_]

**** CONTRACT DOES NOT EXIST ****

Figure E.4

In figure E.4, the headings and the contract number prompt are displayed on a
cleared screen. If the user enters a valid contract number, the contract details
are displayed and then the user confirmation prompt. The record is deleted
only if the confirmation response is Y. The repeat prompt is then displayed.
For an invalid contract number, the error message is displayed and then the
repeat prompt. If the user elects to delete another contract, the above process is
repeated.

MICROCOMPUTER MAINTENANCE SYSTEM

VIEW CONTRACT DETAILS

CONTRACT NO. [___]

MODEL XXXXXXXXXXXXXXX

COST XXXX. XX

Do you wish to view another contract (Y/N) [_]

**** CONTRACT DOES NOT EXIST ****

Figure E.5

254 Program Design Using]SP

The operation of the screen shown as figure E.S is similar to the DELETE
CANCELLED CONTRACT screen.

MICROCOMPUTER MAINTENANCE SYSTEM

LIST CONTRACT DETAILS

CONTRACT NO. XXXXXX

MODEL XXXXXXXXXXXXXXX

COST XXXX. XX

Please press any key to continue [_]

Figure E.6

In figure E.6, the headings are displayed first. If there are no high cost
contracts, the message

NO CONTRACTS FOUND

is displayed in the centre of the screen, and the prompt

PLEASE PRESS ANY KEY TO CONTINUE [_]

is displayed at the bottom of the screen. For each high cost contract, the details
and prompt given in figure E.6 are displayed.

Appendix F: The Invoice Printing Case
Study - a Solution

F.l Stage 1 - the logical data structures

INPUT
FILE

I
*

CUSTOMER

I
I I I

NAME AND SALES OTHER
ADDRESS DETAILS FOR SALES
RECORD 1ST INVOICE DETAILS

I I
SALES * *

RECORD SUBSEQUENT

(FIRST) INVOICE

I
SALES *

RECORD
(SUBSEQUENT)

Figure F.l

In respect of the input file (see figure F.l), logically we know that the sales
details for each customer may make up more than one invoice, of which the
first has special significance in that it will contain full headings. We can reflect
this, as shown above, by recognising that each customer has a sequence of a

255

256 Program Design Using JSP

PRINT
FILE

l
* CUSTOMER

INVOICE

I
I I I I

FULL
FIRST SUBSEQUENT

CUSTOMER
HEADINGS

INVOICE FOR INVOICES FOR
TOTAL CUSTOMER CUSTOMER

I I
SALES * *
LINE INVOICE

(FIRST)

I
I I

INTERMEDIATE
INVOICE TOTALS AND

SHORT HEADGS BODY

I
SALES *
LINE

(SUBSEQUENT)

Figure F.2

name and address record, followed by the sales detail records, which make up
the first invoice, followed by the sales detail records which make up any
subsequent invoices.

The print file (see figure F.2) is also logically concerned with first and
subsequent invoices, and also with final and intermediate totals. Note that the
carried forward total at the end of an extended invoice, together with the
name and brought forward total at the head of the extension invoice are
grouped together as one component INTERMEDIATE TOTAI.S AND SHORT
HEADGS.

Appendix F: The Invoice Printing Case Study - a Solution 257

F.2 Stage 2 - correspondences and program structure

The correspondences are:

INPUT FILE

CUSTOMER

NAME AND
ADDRESS RECORD

SALES DETAILS FOR
1ST INVOICE

corresponds to PRINT FILE

corresponds to CUSTOMER INVOICE

corresponds to FULL HEADINGS

corresponds to FIRST INVOICE FOR CUSTOMER

OTHER SALES DETAILS corresponds to SUBSEQUENT INVOICES FOR
CUSTOMER

SUBSEQUENT INVOICE corresponds to INVOICE

SALES RECORD (FIRST) corresponds to SALES LINE (FIRST)

SALES RECORD
(SUBSEQUENT) corresponds to SALES LINE (SUBSEQUENT)

This leaves three components on the print file structure that have no
corresponding components on the input file structure. Two of these are
elementary components and as such will not affect the problem structure. The
component INVOICE BODY is necessary only to avoid having two different
component type parts at the same level. The program structure is shown in
figure F.3.

F.3 Stage 3- the condition and operation lists

There are four iterations in the program structure; this indicates four
conditions, but we can use C2 in two places.

0 Until end of input file
C2 Until change of customer or end of input file or

expiration of line count (invoice full)
C3 Until change of customer or end of input file

258 Program Design Using JSP

INVOICE
PROCESS

I
* CUSTOMER

INVOICE

I
r 1 I

FULL FIRST SUBSEQUENT
HEADINGS INVOICE INVOICES

I I
SALES * *
LINE SUBSEQUENT

(FIRST) INVOICE

I
I I

INTERMEDIATE SUBSEQUENT
TOTALS AND INVOICE

SHORT HEADGS BODY

I
SALES *
LINE

(SUBSEQUENT)

Figure F.3

1 Open files
2 Oose files
3 Stop
4 Read an input file record
5 Print customer name and address at head of form
6 Print grand total
7 Print a sales detail line
8 Print stored customer name at head of form
9 Print brought forward total

10 Print carried forward total
11 Accumulate customer total
12 Store customer name (for short headings)
13 Initialise customer total(= 0)
14 Increment line count
15 Store customer number
16 Set line count = 0

I

CUSTOMER
TOTAL

Appendix F: The Invoice Printing Case Study - a Solution 259

F.4 Stage 4- allocation of operations and conditions

FULL
HEADINGS

FIRST
INVOICE

INVOICE
PROCESS

INVOICE
PROCESS

BODY

CUSTOMER
INVOICE

C2

C1

*

SUBSEQUENT
INVOICES

C3

SALES *
LINE

* SUBSEQUENT
INVOICE

INTERMEDIATE
TOTALS AND

SHORT HEADGS

Figure F.4

CUSTOMER
TOTAL

SUBSEQUENT
INVOICE

BODY

C2

SALES *
LINE

(SUBSEQUENT)

260 Program Design Using JSP

F.S Stage 5- the schematic logic

XHVOXCE PROCESS SEQ
DO 1 [Open files
DO 4 [Read an input file record
XHVOXCE PROCESS BODY XTER ONTXL C1 [end of input file

CUSTOMER XHVOXCE SEQ
FULL HEADXNGS

DO 16 [Set line count • 0
DO 12 [Store customer name
DO 15 [Store customer number
DO 13 [Xnitialise customer total
DO 5 [Print customer name and address at top of form
DO 4 [Read an input file record

FULL HEADXNGS END
FXRST XHVOXCE XTER ONTXL C2 [change of customer or end

of input file or expiration of line count
SALES LXNE (FXRST)

DO 14 [Xncrement line count
DO 11 [Accumulate customer total
DO 7 [Print a sales detail line
DO 4 [Read an input file record

SALES LXNE (FXRST) END
FXRST XHVOXCE END
SUBSEQUENT XNVOXCES XTER ONTXL C3 [change of customer

or end of file
SUBSEQUENT XNVOXCE SEQ

XNTERMEDIATE TOTALS AND SHORT HEADGS
DO 10 [Print carried forward total
DO 8 [Print stored customer name at head of form
DO 9 [Print brought forward total
DO 16 [Set line count • 0

XNTERMEDIATE TOTALS AND SHORT HEADGS END
SUBSEQUENT XNVOXCE BODY XTER ONTXL C2 [change of

customer or end of input file or
expiration of line count

SALES LXNE (SUBSEQUENT)
DO 14 [Xncrement line count
DO 11 [Accumulate customer total
DO 7 [Print a sales detail line
DO 4 [Read an input file record

SALES LXNE (SUBSEQUENT) END
SUBSEQUENT XNVOXCE BODY END

SUBSEQUENT XNVOXCE END
SUBSEQUENT XNVOXCES END
CUSTOMER TOTAL

DO 6 [Print grand total
CUSTOMER TOTAL END

CUSTOMER XNVOXCE END
XNVOXCE PROCESS BODY END
DO 2 [Close files
DO 3 [Stop

XNVOXCE PROCESS END

Figure F.5

Appendix G: The Label Production Case
Study - a Solution

G.l Stage 1 - the logical data structures

TEST
FILE

I
POSSIBLE *

MATCHING
PATIENT NO.

I
I l

0 0

PRESENT ABSENT

I
l I I

0 0 0
TEST CODE TEST CODE TEST CODE

OF 1 OF 2 OVER 2

Figure G.1

The test file (see figure G.l) is logically an iteration of possible matching
patient number that is either present or absent. If the patient number is
present, then it is associated with a test code which has a choice (selection) of
three pertinent values.

The patient identity file (see figure G.2) is also an iteration of possible
matching patient number which is either present or absent.

Correspondences between the input files are easy to find, and follow the
usual course for the merge or collate solution, giving the merged input file
structure shown in figure G.3.

261

262 Program Design Using JSP

The output or label file (see figure G.4) is an iteration of label set each of
which, allowing for the last set, is an iteration of up to three labels.

PATIENT
IDENTITY

FILE

I
POSSIBLE *

MATCHING
PATIENT NO.

I
I I

0 0

PRESENT ABSENT

Figure G.2

MERGED
INPUTS

I
POSSIBLE*
MATCHING
PATIENT NO

I
I J I

PRESENT o PRESENT o PRESENT o
ON BOTH ON PATIENT ON TEST

FILES FILE ONLY FILE ONLY

l I
I I I I I I

0 0 TEST o 0 0 TEST 0

TEST CODE TEST CODE CODE OVER TEST CODE TEST CODE CODE OVER
OF 1 (BOTH) OF 2 (BOTH) 2 (BOTH) OF 1 (TEST) OF 2 (TEST) 2 (TEST)

Figure G.3

Appendix G: The Label Production Case Study- a Solution 263

LABEL
FILE

I
*

LABEL SET

I
*

LABEL

Figure G.4

G.2 Stage 2 - correspondences and program structure

The component MERGED INPUTS obviously corresponds to LABEL FILE, but
there are no more correspondences. Since the labels for a particular patient
may be contained within one label set (of 3) or spread over two or three label
sets, the boundary of POSSffiLE MATCHING PATIENT NO. clashes with the
boundary of LABEL SET. It is therefore impossible to produce a single pro­
gram structure.

We solve the problem by designing two separate programs. Program 1
merges the two input files and produces an intermediate file of records
containing the relevant label data (patient number, name etc.), with one record
for each label. Program 2 then reads the intermediate file and produces labels,
3 up across the page.

(a) For program 1 the logical data structure for the intermediate file is shown in
figure G.S.

We can now identify correspondences with the merged input file:

MERGED INPUTS corresponds to INTERMEDIATE FILE

PRESENT ON BOTH corresponds to MATCHED PATIENT NO.
FILES

TESf CODE OF 1 (BOTH) corresponds to THREE LABEL RECORDS

TEST CODE OF 2 (BOTH) corresponds to FOUR LABEL RECORDS

TESf CODE OF 3 (BOTH) corresponds to FIVE LABEL RECORDS

Thus the program structure is shown in figure G.6.

264 Program Design Using JSP

INTERMEDIATE
FILE

I
* MATCHED

PATIENT NO.

I
I I I

0 0 0 THREE LABEL FOUR LABEL FIVE LABEL
RECORDS RECORDS RECORDS

I I I
* * * LABEL DATA LABEL DATA LABEL DATA

RECORD (3) RECORD (4) RECORD (5)

Figure G.S

MATCHING
PROCESS

I
POSSIBLE*
MATCHING
PATIENT NO

I
I I I

PRESENT o PRESENT o PRESENT o
ON BOTH ON PATIENT ON TEST
FILES FILE ONLY FILE ONLY

I I
I I I I I I

0 0 TEST o 0 0 TEST o
TEST CODE TEST CODE CODE OVER TEST CODE TEST CODE CODE OVER
OF 1 (BOTH) OF 2 (BOTH) 2 (BOTH) OF 1 (TEST) OF 2 (TEST) 2 (TEST)

I I I
* * *

LABEL DATA LABEL DATA LABEL DATA
RECORD (3) RECORD (4) RECORD (5)

Figure G.6

Appendix G: The Label Production Case Study- a Solution 265

(b) For program 2 the logical data structure for the intermediate file is given in figure
G.7.

INTERMEDIATE

FILE

I
II LABEL *

DATA RECORD
i

FigureG.7

Correspondences with the output file are now straightforward. LABEL FILE
corresponds with INI'ERMEDIATE FILE and LABEL corresponds with
LABEL DATA RECORD.

Thus the program structure is shown in figure G.B.

LABEL
PRODUCTION

PROCESS

I
*

LABEL SET

I
*

ONE LABEL

Figure G.B

After we have completed the design process for the two programs, we can
use the technique of inversion to combine the two programs. This involves
making one program a subprogram or procedure of the other.

266 Program Design Using JSP

G.3 Stage 3 - the condition and operation lists

(a) For program 1 - the matching process

Before listing the conditions and operations we note that each iteration of
LABEL DATA RECORD (N) is simply an iteration of N records (where N = 3
or 4 or 5). We can therefore remove each of these elementary components,
provided that we use elementary operations which write the appropriate
number of records.

a Until end of test request file
C2 If patient number of the test file = patient number

of the patient identity file
C3 If patient number of the test file > patient number

of the patient identity file
C4 If test code = 1
C5 If test code = 2

1 Open input files
2 Open intermediate file
3 Oose input files
4 Close intermediate file
5 Stop
6 Read a test file record
7 Read a patient identity file record
8 Write 3 intermediate file records
9 Write 4 intermediate file records

10 Write 5 intermediate file records
11 Display error message

(b) For program 2 - tlte label production process

a Until end of intermediate file
C2 Until end of label set or end of intermediate file

1 Open intermediate file
2 Open label file
3 Close intermediate file
4 Close label file
5 Stop
6 Read an intermediate file record
7 Write a set of labels
8 Construct a label in set (indexed by label subscript)
9 Increment label subscript

10 Set label subscript= 1
11 Initialise a label set (space fill a label set area)

Appendix G: Tire Label Production Case Study- a Solution 267

G.4 Stage 4 - allocation of conditions and operations

(a) Program 1 - tire matdting process

From the problem specification we note that each selection part of PRESENT
ON TEST FILE ONLY generates the same error message. The selection is
unnecessary and will therefore be omitted. Thus the program structure is as
shown in figure G.9.

C4
0

TEST CODE
OF 1

C2
0

PRESENT ON
BOTH FILES

BOTH FILES
BODY

cs
0

TEST CODE
OF 2

MATCHING
PROCESS

MATCHING
PROCESS

BODY

C1

POSSIBLE *
MATCHING

PATIENT NO.

C3

PRESENT o
ON PATIENT ID.

FILE ONLY

ELSE
0

TEST CODE
OVER 2

FigureG.9

ELSE

PRESENT o
ON TEST FILE

ONLY

268 Program Design Using JSP

(b) Program 2 - the label production process

See figure G.lO.

G.S Stage 5 - the schematic logic

See figures G.ll and G.12

LABEL
PRODUCTION

PROCESS

LABEL
PRODUCTION

BODY

LABEL SET

LABEL SET
BODY

ONE LABEL

C1

*

C2

*

Figure G.10

Appendix G: The Label Production Case Study- a Solution 269

MATCHING PROCESS SEQ
DO 1 [Open input files
DO 2 [Open intermediate file
DO 6 [Read a test file record
DO 7 [Read a patient identity file record
MATCHING PROCESS BODY ITER UNTIL C1 [end of test request file

POSSIBLE MATCHING PATIENT NO. SEL IF C2 [patient no. of the
test file = patient no. of the patient identity file

PRESENT ON BOTH FILES SEQ
BOTH FILES BODY SEL IF C4 [test code = 1

TEST CODE OF 1
DO 8 [Write 3 intermediate file records

TEST CODE OF 1 END
BOTH FILES BODY ELSE 1 IF C5 [test code = 2

TEST CODE OF 2
DO 9 [Write 4 intermediate file records

TEST CODE OF 2 END
BOTH FILES BODY ELSE 2

TEST CODE OVER 2
DO 10 [Write 5 intermediate file records

TEST CODE OVER 2 END
BOTH FILES BODY END
DO 6 [Read a test file record
DO 7 [Read a patient identity file record

PRESENT ON BOTH FILES END
POSSIBLE MATCHING PATIENT NO. ELSE 1 IF C3 [patient no. of

the test file > patient no. of the patient identity file
PRESENT ON PATIENT ID FILE ONLY

DO 7 [Read a patient identity file record
PRESENT ON PATIENT ID FILE ONLY

POSSIBLE MATCHING PATIENT NO. ELSE 2
PRESENT ON TEST FILE ONLY

DO 11 [Display error message
DO 6 [Read a test file record

PRESENT ON TEST FILE ONLY END
POSSIBLE MATCHING PATIENT NO. END

MATCHING PROCESS BODY END
DO 3 [Close input files
DO 4 [Close intermediate file
DO 5 [Stop

MATCHING PROCESS END

FigureG.11

270 Program Design Using JSP

LABEL PRODUCTION PROCESS SEQ
DO 1 [Open intermediate file
DO 2 [Open label file
DO 6 [Read an intermediate file record
LABEL PRODUCTION BODY ITER UNTIL C1 [end of intermediate file

LABEL SET SEQ
DO 11 [Initialise a label set (space fill a label set

area)
DO 10 [Set label subscript • 1
LABEL SET BODY ITER UNTIL C2 [end of label set or end of

intermediate file
ONE LABEL

DO 8 [Construct a label in set (label subscript)
DO 9 [Increment label subscript
DO 6 [Read an intermediate file record

ONE LABEL END
LABEL SET BODY END
DO 7 [Write a set of labels

LABEL SET END
LABEL PRODUCTION BODY END
DO 3 [Close intermediate file
DO 4 [Close label file
DO 5 [Stop

LABEL PRODUCTION PROCESS END

Figure G.12

G.6 Stage 6 - applying the technique of inversion

We shall choose to make the label production process a subprogram of the
matching program. This means observing the following when implementing
our design in the target language.

(a) For the main program (program 1)

We code

2 Open intermediate file

by initialising an intermediate file status indicator.

We code

8, 9 and 10 Write intermediate file records

by calling the subprogram N times and passing the two parameters: the
intermediate file record and the intermediate file status indicator.

Appendix G: The Label Production Case Study- a Solution 271

We code

4 Oose intermediate file

by calling the subprogram with the intermediate file status indicator set to
'end of file'.

(b) For the subprogram (program 2)

At the start of the subprogram we include code to implement the control
passing mechanism for logical reads.

We code

1 Open intermediate file

and the first occurrence of

6 Read an intermediate file record

by nothing.

We code the other occurrence of

6 Read an intermediate file record

by setting the entry status indicator to a value of 2, indicating which
occurrence of the 'read' it is, then exiting from the subprogram, then inserting
an entry-point label.

We code

by nothing.

We code

3 Oose intermediate file record

5 Stop

by code to exit from the subprogram.

Appendix H: The Course File Completeness
Case Study - a Solution

H.l Stage 1 - the logical data structures

COURSE
FILE

I
*

COURSE

I
I I

0 0
COMPLETE INCOMPLETE

COURSE COURSE

I I
I I I I I I

COMPLETE 0 0 0
COURSE

COURSE
COURSE

NO HEADER NO END
INVALID

HEADER
BODY

COUNT COUNT

J I I I
* * * * STUDENT INVALID INVALID INVALID

RECORD RECORD 1 RECORD 2 RECORD 3

Figure H.1

The course file (figure H.l) is an iteration of course, each of which may be
regarded as either complete (valid) or incomplete (invalid). A complete course
is a sequence of a header, followed by a body (which is an iteration of student
record), followed by an end record. The incomplete course is a selection of the
causes of incompleteness, because each cause gives rise to a different error

272

Appendix H: The Course File Completeness Case Study- a Solution 273

ANALYSIS
REPORT

I
I I I

REPORT
ANALYSIS

REPORT
HEADINGS

REPORT
SUMMARY

BODY

I
*

COURSE

I
I I

0 0
COMPLETE INCOMPLETE
COURSE COUnSE

I
I

I I I
* 0 0 0

STUDENT
NO HEADER NO END

INVALID
DETAIL COUNT

Figure H.2

message (that is, no header or no end record or invalid count of students).
Each type of incomplete course is an iteration of invalid record

The report (figure H.2) has headings followed by the main body followed
by the summary line. The report body is an iteration of course, each of which
may be complete or incomplete. The former is simply an iteration of student
detail; the latter a choice of error reasons (messages).

H.2 Stage 2 - correspondences and program structure

There are eight points of correspondence:

COURSE FILE
COURSE
COMPLETE COURSE
INCOMPLETE COURSE
SfUDENT RECORD
NO HEADER
NO END
INVALID COUNT

corresponds to ANALYSIS REPORT
corresponds to COURSE
corresponds to COMPLETE COURSE
corresponds to INCOMPLETE COURSE
corresponds to SfUDENT DETAIL
corresponds to NO HEADER
corresponds to NO END
corresponds to INVALID COUNT

The resultant program structure is shown in figure H.3.

274 Program Design Using JSP

COURSE
ANALYSIS

J
I I I

REPORT
COURSE

REPORT
HEADINGS

ANALYSIS
SUMMARY

BODY

I
*

COURSE

I
I I

0 0
COMPLETE INCOMPLETE
COURSE COURSE

I I
I I I I I

COMPLETE 0 0
COURSE

COURSE
COURSE

NO HEADER NO END
HEADER

BODY
COUNT

I I I
* * *

STUDENT
INVALID INVALID

RECORD 1 RECORD 2

Figure H.3

H.3 Stage 3 - the condition and operation lists

0 Until end of course file
C2 If a complete course!!!
C3 Until course end record
C4 If error 'header record missing'
C5 If error 'end record missing'
C6 Until change of course or end of file

I
0

INVALID
COUNT

I
* INVALID

RECORD 3

Appendix H: 17te Course File Completeness Case Study- a Solution 275

1 Open files
2 Oose files
3 Stop
4 Read a course file record
5 Print analysis headings
6 Print a student's details
7 Print error line 'student count incorrect'
8 Print error line 'header record missing'
9 Print error line 'end record missing'

10 Print summary
11 Increment student record count
12 Increment incomplete course count
13 Initialise student record count
14 Initialise incomplete course count
15 Store course code

H.4 Stage 4 - allocation of conditions and operations

Condition C2 cannot be appropriately implemented, so we recognise a
backtracking problem. We will continue with the allocation, which leads to the
following revised program structure shown in figure H.4

H.S Stage 5 - the schematic logic

Having established a backtracking solution, the selection COURSE BODY
becomes a POSIT I ADMIT construct and QUITs are introduced in the POSIT
component when causes for incompleteness are recognised. The intolerable
side effect of printing a student's details (if the course turns out to be
incomplete) is dealt with by postponing the printing. Operation 6 becomes

6 Store a student's details in a temporary file

and a new operation must be introduced to accommodate the printing after all
QUITs have been passed:

I 16 Print all student details from the temporary file

To support operations 6 and 16 we also need:

I 17 Initialise temporary file

The revised schematic logic is shown in figure H.5.

276

COURSE
HEADER

Program Design Using JSP

COURSE
ANALYSIS

REPORT
HEADINGS

COURSE
ANALYSIS

BODY

POSIT
0

COMPLETE
COURSE

COURSE
BODY

C3

*

COURSE
COUNT

REPORT
SUMMARY

0

ADMIT
0

INCOMPLETE
COURSE

0

STUDENT 8 NO HEADER NO END

B
* * INVALID INVALID

RECORD 1 RECORD 2

FigureH.4

ELSE
0

INVALID
COUNT

C6

* INVALID
RECORD 3

Appendix H: The Course File Completeness Case Study- a Solution 277

COURSE ANALYSIS SEQ
REPORT HEADINGS

DO 1 [Open files
DO 4 [Read a course file record
DO 5 [Print analysis headings
DO 14 [Initialise incomplete course count

REPORT HEADINGS END
COURSE ANALYSIS BODY ITER UNTIL C1 [end of course file

COURSE SEQ
DO 15 [Store course code
COURSE BODY POSIT (Complete course)

DO 17 [Initialise temporary file
COMPLETE COURSE SEQ

COURSE HEADER
QUIT COURSE BODY POSIT IF C7 [not a course header
DO 13 [Initialise student record count
DC 4 [Read a course file record
QUIT COURSE BODY POSIT IF C8 [not the same course

or end of file
COURSE HEADER END
COMPLETE COURSE BODY ITER UNTIL C3 [course end record

STUDENT
DO 6 [Store a student's details in temp. file
DO 11 [Increment student record count
DO 4 [Read a course file record
QUIT COURSE BODY POSIT IF C8 [not the same course

or end of file
STUDENT END

COMPLETE COURSE BODY END
COURSE COUNT

QUIT COURSE BODY POSIT IF C9 [computed count <> end
record count

DO 16 [Print all student details from temp. file
DO 4 [Read a course file record

COURSE COUNT END
COMPLETE COURSE END

COURSE BODY'ADMIT (Incomplete course)
INCOMPLETE COURSE SEQ

DO 12 [Increment incomplete course count
INCOMPLETE COURSE BODY SEL IF C4 [error 'heading

record missing'
NO HEADER SEQ

DO 8 [Print error line 'header record missing'
NO HEADER BODY ITER UNTIL C6 [change of course or

end of file
INVALID RECORD 1

DO 4 [Read a course file record
INVALID RECORD 1 END

NO HEADER BODY END
NO HEADER END

INCOMPLETE COURSE BODY ELSE 1 IF C5 [error 'end
record missing'

NO END SEQ
DO 9 [Print error line 'end record missing'

Figure H.S above and overleaf

278 Program Design Using JSP

NO END BODY ITER UNTIL C6 [change of course or
end of file

INVALID RECORD 2
DO 4 [Read a course file record

INVALID RECORD 2 END
NO END BODY END

NO END END
INCOMPLETE COURSE BODY ELSE 2

INVALID COUNT SEQ
DO 7 [Print error line 'student count incorrect'
INVALID COUNT BODY ITER UNTIL C6 [change of

course or end of file
INVALID RECORD 3

DO 4 [Read a course file record
INVALID RECORD 3 END

INVALID COUNT BODY END
INVALID COUNT END

INCOMPLETE COURSE BODY END
INCOMPLETE COURSE END

COURSE BODY END
COURSE END

COURSE ANALYSIS BODY END
REPORT SUMMARY

DO 10 [Print summary
D02 [Close files
D03 [Stop

REPORT SUMMARY END
COURSE ANALYSIS END

Appendix 1: The Interactive System Case
Study - a Solution

As we develop the data structure for the menu screen, it becomes apparent
that we can best proceed by designing five small processes: a menu driver as
the main program and four separate subprograms for the facilities insert,
delete, view and list. Furthermore, the simple database, with its direct access
facilities, will not influence our design. This means that the structure of each
screen becomes the appropriate subprogram structure. The solution is
therefore presented in the form of five program structures with allocated
operations and conditions.

The program structure for the MENU driver process is first given - see
figure 1.1.

The condition and operation list is:

0 Until user chooses to exit (note that this is
implemented by allocating a QUIT from iteration
to the component EXIT)

C2 Until a valid response
C3 If an insert request
C4 If a deletion request
CS If a view request
C6 If a list request

1 Initialise (open) database
2 Reset (close) database
3 Stop
4 Display headings on clear screen
5 Display menu lines
6 Display sel~ction prompt
7 Accept menu choice
8 Display error message
9 Gear error message from screen

10 Call insert requests procedure
11 Call deletion requests procedure
12 Call view requests procedure
13 Call list request procedure

279

280

HEADINGS

Program Design Using JSP

MENU

MICRO

PROGRAM

MENU

DISPLAY

PROMPT

C1

*

INVALID

RESPONSES

C2

* INVALID
RESPONSE

VALID
RESPONSE

C3 C4 C6 ELSE

INSERT o
REQUESTS

DELETION o
REQUESTS

VIEW 0

REQUESTS

Figure 1.1

LIST 0

REQUEST EXIT

Next we show the INSERT REQUESIS procedure - see figure 1.2.

The condition and operation list is:

01 Until user no longer requires this option (note that
this is implemented by allocating a conditional
QUIT from iteration to the component REPEAT
RESPONSE after operation 17)

02 If user confirmation = 'Y'

0

HEADINGS

CONTRACT

NUMBER

Appendix I: The Interactive System Case Study- a Solution 281

FORM
SKELETON

MODEL

3.4/MENU

INSERT
REQUESTS

INSERT
REQUESTS

BODY

C11

*
USER

COMPLETION

MAINTENANCE

COST

YES

Figure I.2

0

USER

CONFIRM

10 Display headings on clear screen
11 Display insertion 'form' skeleton
12 Accept contract number
13 Accept model
14 Accept maintenance cost
15 Accept user confirmation
16 Write new data to database
17 Accept repeat response
18 Clear form entries

0

REPEAT

RESPONSE

282 Program Design Using JSP

Next we show the DELETION REQUESI'S procedure - see figure 1.3 .

HEADINGS
CONTRACT

NUMBER

MODEL
AND COST

. 4/M NU

DELETION
REQUESTS

C21

DELETION
SCREEN

DELETION
SCREEN

BODY

*

,------'---C-'--2-c,2 ELSE
0 0

VALID INVALID
CONTRACT NO CONTRACT NO

USER
CONFIRM

CONFIRM
BODY

C23
0

YES

Figure 1.3

ELSE
0

REPEAT
RESPONSE

Appendix I: The Interactive System Case Study - a Solution 283

The condition and operation list is:

C21 Until user no longer requires this option (note that
this is implemented by allocating a conditional
QUIT from iteration to the component REPEAT
RESPONSE after operation 28)

C22 If contract number found in database
C23 If user confirmation = 'Y'

20 dear screen and display headings
21 Display contract no. prompt
22 Accept contract number
23 Attempt to retrieve contract details
24 Display model and cost
25 Display prompt and accept user confirmation
26 Delete contract from database
27 Display error message
28 Display prompt and accept repeat request

Next we show the VIEW REQUESTS procedure - see figure 1.4.

HEADINGS
CONTRACT

NUMBER

C32
0

VALID
CONTRACT NO

Figure I.4

3.4/MENU

VIEW
REQUESTS

C31

VIEW
SCREEN

VIEW
SCREEN

BODY

*

INVALID 0

CONTRACT NO

REPEAT
RESPONSE

284 Program Design Using]SP

The condition and operation list is:

C31 Until user no longer requires this option (note that
this is implemented by allocating a conditional
QUIT from iteration to the component REPEAT
RESPONSE after operation 36)

C32 If contract number found in database

30 Oear screen and display headings
31 Display contract no. prompt
32 Accept contract number
33 Attempt to retrieve contract details
34 Display model and cost
35 Display error message
36 Display prompt and accept repeat response

Finally, we show the LISf REQUESI' procedure - see figure 1.5.

HEADING

ERROR
MESSAGE

LIST
REQUEST

LIST
REQUEST

BODY

C41 ELSE
0 0

CONTRACTS CONTRACTS

FOUND FOUND

C42

* CONTINUE DETAILS
PROMPT AND PROMPT

DETAILS

Figure 1.5

CONTINUE
PROMPT

Appendix I: The Interactive System Case Study- a Solution 285

The condition and operation list is:

C41 If no contracts found
C42 Until the count of records to be displayed is zero

41 Display headings
42 Find all contracts where cost is 'high'; store

number found in counter
43 Display 'none found'
44 Display prompt and accept user continue signal
45 Retrieve the next record found
46 Clear screen body and display contract details
47 Decrement count of records

Appendix J: Complete Programs for the
Inversion Example (Chapter 9)

IDENTIFICATION DIVISION.
**** Program to produce an intermediate file ****
**** from the student file ****
PROGRAM-ID. STUDRP.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-FILE ASSIGN TO •STUDENT.SEQ•.
DATA DIVISION.
FILE SECTION.
FD STUDENT-FILE.
01 STUDENT-FILE-REC.

03 COURSE-CODE PIC X(8).
03 NAME PIC X(20).
03 MARK PIC 999.

WORKING-STORAGE SECTION.
77 INTER-EOF
77 COURSE-TOT
77 STORED-COURSE
01 DETAIL-RECORD.

03 D-REC-TYPE
03 D-REC-DATA.

OS D-COURSE
OS D-NAME
OS D-MARK

01 TOTAL-RECORD.
03 T-REC-TYPE
03 T-REC-DATA.

OS T-COURSE
OS FILLER
OS T-TOTAL

01 NULL- RECORD
PROCEDURE DIVISION.
PROD-INTER-FILE-SEQ.

PIC
PIC
PIC

PIC

PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC

OPEN INPUT STUDENT-FILE.
MOVE 0 TO INTER-EOF.
READ STUDENT-FILE

9.
S9(S).
X (8) •

X.

X(10).
X(22).
- (S) 9.

x.

X(10).
X(22) VALUE
- (S) 9.
X(40) VALUE

•TOTAL•.

LOW-VALUES.

AT END MOVE HIGH-VALUES TO COURSE-CODE.
PROD-INTER-FILE-BODY-ITER.

IF COURSE-CODE • HIGH-VALUES
GO TO PROD-INTER-FILE-BODY-END.

COURSE- SEQ.
MOVE 0 TO COURSE-TOT.
MOVE COURSE-CODE TO STORED-COURSE.

286

Appendix f: Complete Programs for the Inversion Example 287

COURSE-BODY-ITER.
XF (STORED-COURSE NOT • COURSE-CODE) OR

(COURSE-CODE • HIGH-VALUES)
GO TO COURSE- BODY- END.

MARK- TO- LINE .
MOVE •D• TO D-REC-TYPE.
MOVE COURSE-CODE TO D-COURSE.
MOVE NAME TO D- NAME.
MOVE MARK TO D-MARK.
CALL REP-SR USXNG INTER-EOF DETAIL-RECORD.
ADD MARK TO COURSE- TOT.
READ STUDENT-FILE

AT END MOVE HIGH-VALUES TO COURSE-CODE.
MARK-TO-LINE-END.

GO TO COURSE-BODY-ITER.
COURSE-BODY-END.
COURSE-TOTAL.

MOVE •T• TO T-REC-TYPE.
MOVE STORED-COURSE TO T-COURSE.
MOVE COURSE-TOT TO T-TOTAL.
CALL REP-SR USING INTER-EOF TOTAL-RECORD.

COURSE-TOTAL-END.
COURSE-END.

GO TO PROD-INTER-FILE-BODY-ITER.
PROD-INTER-FILE-BODY-END.

CLOSE STUDENT-FILE.
MOVE 1 TO INTER-EOF.
CALL REP-SR USING INTER-EOF NULL-RECORD.
STOP RUN.

PROD-INTER-FILE-END.

IDENTIFICATION DIVISION.
**** Subprogram to produce report ****
**** from the intermediate file ****
PROGRAM-ID. REP-SR.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CHANNEL (1) IS HEAD-OF-FORM.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MARKS-FILE ASSIGN TO ~RKS.SEQ•.
DATA DIVISION.
FILE SECTION.
FD MARKS-FILE.
01 MARKS-FILE-REC
LINKAGE SECTION.
01 DATA-RECORD.

03 L-REC-TYPE
03 L-REC-DATA

77 XNTER-EOF
WORKING-STORAGE SECTION.
77 ENTRY-STATUS

PIC X(BO).

PIC X.
PIC X(38).
PIC 9.

PIC 9
77 LINE-COUNT PIC 99.

VALUE 1.

01 HEADINGS-REC PIC X(40) VALUE
•STUDENT MARKS FOR ALL FULL-TIME COURSES•.

288 Program Design Using JSP

PROCEDURE DIVISION USING IN'l'ER·EOF DATA-RECORD.
PROD·REPORT·SEQ.

GO TO ENTRY·1 ENTRY·2 DEPENDING ON EN'l'RY·STATOS,
ENTRY·1.

OPEN OUTPUT MARXS·FILE.
PROD·REPORT·BODY·ITER.

IF IN'l'ER·EOF • 1
GO TO PROD·REPORT·BODY·END.

PAGE-SEQ.
PAGE-HEADING.

WRITE MARXS·FILE·REC FROM HEADINGS·REC AFTER HEAD·OF·FORM.
WRITE MARXS·FILE·REC FROM SPACES AFTER 2.
MOVE 0 TO LINE· COUNT.

PAGE·HEADING·END.
PAGE·BODY·ITER.

IF IN'l'ER·EOF • 1 OR LINE-COUNT > 20
GO TO PAGE·BODY·END.

LINE-SEQ.
LINE·BODY·SEL.

IF L·REC·TYPE • •D•
NEXT SENTENCE

ELSE
GO TO LINE·BODY·ELSE-1.

DETAIL.
WRITE MARXS·FILE·REC FROM L·REC·DATA AFTER 1,
ADD 1 TO LINE-COUNT.

DETAIL-END.
GO TO LINE· BODY· END.

LINE·BODY·ELSE-1.
TOTAL.

WRITE MARXS·FILE·REC FROM L·REC·DATA AFTER 2,
WRITE MARXS·FILE·REC FROM SPACES AFTER 2.
ADD 4 TO LINE· COUNT,

TOTAL-END.
LINE·BODY·END.

MOVE 2 TO ENTRY-STATUS.
EXIT PROGRAM.

ENTRY-2.
LINE-END.

GO TO PAGE·BODY·ITER.
PAGE·BODY·END,
PAGE-END.

GO TO PROD·REPORT·BODY·ITER.
PROD·REPORT·BODY·END.

CLOSE MAAKS·FILE.
EXIT PROGRAM.

PROD-REPORT· END,

Figure J.1

Appendix J: Complete Programs for the Inversion Example

PROGRAM Marks (student_file, report_file)

TYPE
course_string =PACKED ARRAY [1 .. 8] OF char;
student_rectype = RECORD

VAR
entry_status
inter_eof
line_count
stored_ course
course_ total
rectype
student_rec
student_file
report_file

PROCEDURE Reportsr

LABEL
10,20,9999

course_code
name

mark
END ;

1 .. 2 ;
boolean
integer ;
course_string
integer ;
char ;
student_rectype

course_string
PACKED ARRAY [1 .. 20]

OF char
0 .. 100 ;

FILE OF student_rectype
text ;

289

CONST
page_headings ' STUDENT MARKS FOR ALL FULL- TIME COURSES'

BEGIN
(* produce report seq *)

IF entry_status • 1 THEN GOTO 10
ELSE IF entry_status • 2 THEN GOTO 20
10:
Rewrite (report file) ;
(* produce repo~t body iter *)

WHILE NOT inter_eof DO
BEGIN
(* page seq *)

(* page heading *)
Page (report_file)
Writeln (report_file, page_headings:39)
Writeln (report_file)
Writeln (report_file)
line_count := 0 ;

(* page heading end *)
(* page body iter *)

WHILE NOT (inter_eof OR (line_count > 20)) DO
BEGIN
(* line seq *)

(* line body sel *)
IF rectype • 'D' THEN

BEGIN
(* detail *)

WITH student_rec DO
Writeln (report_file, course_code:lO,

290 Program Design Using JSP

name:22, mark:6) ;
line count :• line count + 1

{* det~il end *) -
END

{* line body else 1 *)
ELSE

BEGIN
{* total *)

Writeln {report_file) ;
Writeln {report_file, stored_course:10,

'total':22, course_total:6)
Writeln {report file) ;
Writeln {report-file) ;
line_count ·• llne_count + 4

{* total end *)
END ;

{* line body end *)
entry_status := 2 ;
GOTO 9999
20:

{* line end *)
END ;

{* page body end *)
{* page end *)
END ;

{* produce report body end *)
9999:

{* produce report end *)
END ;

BEGIN
{* produce intermediate file seq *)

entry_status := 1 ;
Reset {student_file) ;
inter_eof :• FALSE ;
Read {student_file, student_rec) ;
WITH student_rec DO
{* produce intermediate file body iter *)

WHILE NOT {course_code = 'ZZZZ ') DO
BEGIN
{* course seq *)

course_total :• o ;
stored_course := course_code
{* course body iter *)
WHILE NOT {{stored_course <> course_code) OR

{course_code = 'ZZZZ ')) DO
BEGIN
{* mark to line *)

rectype :• 'D' ;
Reportsr ;
course_total := course_total +mark
Read {student_file, student_rec)

{* mark to line end *)
END ;

{* course body end *)
{* course total *)

Appendix J: Ccnnplete Programs for the Inversion Example 291

rectype : • ''1" ;
Reportsr ;

(* course total end *)
(* course end *)

END i
(* produce intermediate file body end *)
inter_eof :• TRUE ;
Reportsr ;

(* produce intermediate file end *)
END.

Figure/.2

