SPECIAL-EFFECTS GENERATOR SEG-1

TABLE OF CONTENTS

General Description 1
Circuit Description 1
Transistor Voltage Chart. 3
Illustrations 4
Test Points and Waveforms, Signal Processing Board. 4
Test Points and Waveforms, Sync Generator Board 5
Schematic Diagram, Signal Processing Board 6
Printed Circuit, Signal Processing Board 7
Schematic Diagram, Sync Generator Board 8
Printed Circuit, Sync Generator Board 9
Parts List 10
Supplement 13

GENERAL DESCRIPTION

INTRODUCTION

SONY Model SEG-1 is a special-effects generator with facilities for switching, fading, superimposing, and wiping two video signals. Inputs accept up to four SONY video cameras and provisions are included to monitor the output of each camera. One channel may be inverted, if desired, to yield a negative picture. In addition, an internal sync generator supplies 2:1 interlace sync, or sync may be supplied from an external source.

The SEG-1 may be used with any SONY video camera, monitor, and/or Videocorder. Refer to the Owner's Instruction Manual for the complete operating procedure.

TECHNICAL SPECIFICATIONS

Camera video inputs:
$1.0-1.4 \mathrm{~V}$ p-p, sync neg. 75Ω impedance. Input 1 must be supplied with composite video.
Number of camera inputs: 4, Hirschmann 6 Pin receptacle
Monitor video outputs: $1.0 \cdot 1.4 \mathrm{~V}$ p-p, (dependent upon input), sync negative, 75Ω impedance
Number of monitor outputs: 4, SO-239 UHF receptacle Number of line outputs:

Internal sync:

2, 1-Hirschmann 6 Pin receptacle
1 -SO -239UHF
receptacle
2:1 interlace when SYNC
SELECT switch is set to INT.

Power requirements:
Power consumption: Dimensions: Weight:

Accepts vertical and horizontal sync from CVSeries Videocorders or vertical sync (-4 V p-p) from an external 2:1 EIA sync generator. See pin connections below.

$117 \mathrm{~V}, 60 \mathrm{~Hz} 3$-wire parallel ground plug
7 watts
$51 / 4^{\prime \prime} \mathrm{H} \times 151 / 2^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D}$
$81 / 2 \mathrm{lb}$.

CIRCUIT DESCRIPIION

VIDEO INPUT

Figure 1 shows the block diagram of the SEG-1. Up to four cameras, either 4 CV-Series or 4 DXC-Series can be driven through Hirschmann connectors. To develop the sync pulse in the SEG-1, Camera \#l must always be connected with composite video signals, while either composite -- or non-composite -- video signal is acceptable through Camera \#2, \#3 and \#4. Each camera output can be monitored through four (4) sourceterminated SO-239 UHF receptacles.

Any combination of input selector switches is accepted.

Video signals are balanced between A- and Bchannel by potentiometer VRI. If the output video

Fig. 1. Block Diagram of SEG-1
levels of A- and B-channel cameras are very different, the camera lens f-stop should be readjusted.

VIDEO INVERIER

To produce a negative picture, an inverting one-stage amplifier, Q2, is employed in channel B. Gain and level adjustments are accomplished by VR2 and VR3 respectively. Either a negative or a positive picture can be obtained on channel B by means of SW-3.

DISSOLVE

The two selected signals are independently attenuated by dissolve potentiometers VR4 and VR5, mixed by R24 and R25 and, with SW5-a in the FADE position, presented to the video amplifier.

WIPES

When mode switch SW5-a is set to WIPE, analog gates Q3 and Q4 switch rapidly between the two selected channels in accordance with the logic signals on their bases. The switched video signals are mixed by R27 and R28. Logic signals are arranged so that whenever one transistor is turned on (turning off its video signal), the other is turned off. This guarantees that one channel or the other feeds the monitor at all times.

WIPE LOGIC

The logic signals that control these transistors are derived from the horizontal and vertical sync pulses. Each horizontal pulse triggers a one-shot multivibrator (Q21/Q22) whose on time is determined by the setting of the horizontal wipe pot VR6. At one extreme, a transition between channels is produced at the left side of the screen. At the other pot extreme, a long ($60 \sim \mu \mathrm{~s}$) pulse is produced that delays the transition until the right side of the screen.

Vertical wipe pot VR7 does a similar job at a slower ($\mathrm{O}-16 \mathrm{~ms}$.) rate: Vertical one-shot Q23/Q24, produces variable width pulses, triggered by the vertical pulse, for horizontal direction wipes. By using in combination independently adjustable pots VR6 (horizontal wipe) and VR7 (vertical wipe) and wipe selector switch, SW-6, it is possible to obtain four corner wipes, as well as vertical and horizontal wipes. The variable-duration pulses produced
by the two wipe one-shots are manipulated by resis-tor-transistor-logic (RTL) inverters IC-1, RTL NOR gate IC-2 and switches SW-6 to arrange the vertical, horizontal and corner wipes.

CLAMPING

The video signal selected by mode switch SW-5 is clamped to ground during blanking time by Q5. The horizontal blanking pulse includes front and back porch, while the vertical blanking pulse has only a back porch.

The horizontal blanking pulse is developed from Camera \#l and is a composite video signal. Sync separator Q8 produces mixed sync, which is a positive going 6 volt pulse. By means of a one-shot multivibrator (Q $9 / \mathrm{Q} 10$), a $60-\mu \mathrm{s}$ delayed pulse occurs about $2 \mu \mathrm{~s}$ in front of the sync pulse to form the front porch.

The sync pulses are delayed by Cl 6 to form the horizontal back porch. The horizontal front porch, mixed sync, horizontal back porch and the vertical blanking pulse are added with diodes $\mathrm{Dl}-\mathrm{D} 3$ to give mixed blanking. This signal is sent to clamping transistor, Q5.

VIDEO AMPLFIER

A two-stage feedback amplifier (Q6/Q7) is employed as the final stage. This gives low output impedance to drive two 75 -ohm lines. Mixed sync from Camera \#l is inserted at the output of the video amplifier.

CAMERA DRIVE

Two modes of camera drive, external and internal, are available. In the SEG-1, a two-toone interlace sync generator is installed which is phase locked to either incoming vertical pulses (through a Hirschmann male receptacle) or to internal 60 Hz line frequency.

After the sync generator, both the horizontal and the vertical pulses are shaped by Q13-Q16 and Q17-Q20 respectively. These pulse-shaping amplifiers can drive a $19(75 \div 4)$ ohm load with a 4 -volt negative-going pulse.

Due to the phase difference of horizontal driving pulses, a combination of DXC-Series and CVC-Series cameras is not recommended.

TRANSISTOR VOLTAGE CHART

SIG NAL PROCESSING BOARD

TRANSISTOR	B	C	E	LOCATION *
Q1	2. 80	7. 60	2. 30	c-4
Q2	6. 90	0. 28	7. 60	E-3
Q3	0	0. 05	0	F-2
Q4	0	0. 05	0	F-2
Q5	0. 16	0. 75	0	H-2
Q6	2.10	7. 0	1. 65	J-2
Q7	7.20	1.20	8. 0	J-2
Q8	6. 20	0. 45	6. 0	c-5
Q9	0. 08	5. 0	0	c-5
Q1O	6. 70	0. 73	6. 0	E-5
Q11	0.01	5. 50	0	F-4
Q12	5. 50	6. 10	4. 8	G-4
Q13	0. 65	0. 45	0	C-6
Q14	6. 60	6. 80	7.1	C-6
Q15	6. 80	0. 82	7.1	D-6
Q16	0. 32	6. 40	0	E-6
Q17	0.10	6. 10	0	C-8
Q18	0. 63	0. 28	0	C-8
Q19	0. 08	6. 40	0	D-7
Q20	6. 40	6. 80	5. 90	E-7
Q21	0. 08	2.40	0	G-6
Q22	7.10	4. 20	7. 50	G-5
Q23	0. 06	2. 05	0	G-8
Q24	7. 0	3. 50	7. 60	G-8
Q25	8. 0	11. 0	7. 60	L-4

All voltages above measured with a 20,000 ohms-per-volt VOM.

SYNC GENERATOR BOARD

TRANSISTOR	B	C	E	LOCA TION*
Q1	-0.66	0. 58	0	B-2
Q2	0. 66	0. 55	0	c-2
Q3	0	0. 58	0.55	D-2
Q4 (FET)	$\text { 5. } 30^{\mathbf{a}}$	$0.58 "$	1.75^{c}	D-2
Q5 (UJT)	0.30^{d}	$\text { 4. } 80^{\mathbf{e}}$	3. $00^{\text {f }}$	E-2

All voltages above measured with a VTVM.

SEG-1 CONTROL SETTINGS:

TEST POINTS AND WAVEFORMS, SIGNAL PROCESSING BOARD

Note:
Amplitude settings given are actual scope settings using a 10:1 probe.

TRANSISTOR AND TEST POINT LOCATION

Transistor	Location
Q1	C-4
Q2	E-3
Q3	F-2
Q4	F-2
Q5	H-2
Q6	J-2
Q7	J-2
Q8	C-5
Q9	C-5
Q1 0	E-5
Q11	F-4
Q12	G-4
Q12	C-6
Q14	C-6
Q15	D-6
Q16	E-6
Q17	C-8
Q18	C-8
Q19	D-7
Q20	E-7
Q21	G-6
Q22	G-5
Q23	G-8
Q24	G-8
Q25	L-4
Test Point	Location
T P-1	L-4
TP-2	F-6
TP-3	F-7
TP-4	E-2
TP-5	E-2
TP-6	E-5
TP-7	K-3
TP-8	K-6
TP-9	K-2

Schematic Diagram, Signal Processing Board

TRANSISTOR AND TEST POINT LOCATION

Transistor	Location	Transistor	Location	Test Point	Location
Q1	K-2	Q14	C-4	TP-1	A-4
Q2	J-3	Q15	C-4	TP-2	E-4
Q3	K-3	Q16	B-4	TP-3	F-4
Q4	J-3	Q17	E-3	TP-4	G-4
Q5	H-2	Q18	D-3	TP-5	G-4
Q6	J-3	Q19	D-3	TP-6	H-2
Q7	J-3	Q20	D-3	TP-7	F-3
Q8	G-3	Q21	E-4	TP-8	C-3
Q9	G-3	Q22	D-4	TP-9	F-4
Q10	H-3	Q23	C-2		
Q11	F-2	Q24	D-3		
Q12	F-3	Q25	F-3		
Q13	C-4				

Schematic Diagram, Sync Generator Board

TRANSISTOR AND TEST POINT LOCATION

Transistor	Location		Location	
	Q1	B-2		Test Point
Q2	C-2		TP-10	TP-11
Q3	D-2		TP-12	F-2
Q4	D-2		TP-13	B-2
Q5	E-2		TP-14	B-2

TRANSISTOR AND TEST POINT LOCATION

Transistor	Location	Test Point	Location
Q1	F-4	TP-10	B-2
Q2	F-3	TP-11	D-4
Q3	E-4	TP-12	B-4
Q4	E-4	TP-13	B-3
Q5	D-4	TP-14	B-3

MECHANICAL PARTS

No.Description 'ty. Screw, Pan Head (+) \#4-40 x l/4 Clear Mylar Washer \#4 Front Panel Switch Mounting Bracket Screw, Pan Head (+) \#6-32x 3/8 Clear Mylar Washers \#4 Speed Nut, Tinnerman \#C8936-632 Speed Nut, Tinnerman \#C-7795-440-1 Pal Nut, Reg. Type \#4-40 Screw, Flat Head (+) \#4-40 x 3/4 Speed Nut, Tinnerman \#C-8022-632-27 PalNut \#4-40 Rubber Bumper \#4076 Bottom Assembly, Top Cover Assembly Knobs for Pushbutton Switch Knobs for Slide Switch Knobs for Rotating Pots Standoff	4

ASSEMBLED PARTS
 Part Number \quad Description
 AS-SEG-1-1 Signal Processing Board, with components and switchbracket
 AS-SEG-1-2 Sync Generator Board, with components.
 SIGNAL PROCESSING BOARD RESISTO RS

All resistors are $1 / 4$ watt, 10% unless otherwise noted.

Symbol	Part No.	Description
R1	R82-1/4-10C	820 hms
R3	1	"
R4	1	"
R5	$\mathrm{RlK}-1 / 4-10 \mathrm{C}$	1 k
R7	1	1
R8	1	1
R9	RlOK-1/4-10C	10 k
R10	R6.8K-1/4-10C	6.8 k
Rll	R680-1/4-10C	680
R12	R220-1/4-10C	220
R13	,	,
R14	1	1
R15	"	1
R16	R6.8K-1/4-10C	6.8 k

Symbol
Part No.

R1.5K-l/4-10C	1.5 k
R10K-l/4-10C	10 k
R560-1/4-10C	560
R18K-1/4-10C	18 k
R180-1/4-10C	180
R1K-1/4-10C	1 k
R3.3K-1/4-10C	3.3 k
R1K-1/4-10C	1 k
R1.5K-1/4-10C	1.5 k
R6.8K-1/4-10C	6.8 k
R33K-1/4-10C	33 k
R18K-l/4-10C	18 k
R2.2K-1/4-10C	2.2 k

R4.7K-1/4-10C $\quad 4.7 \mathrm{k}$
R3.3K-1/4-10C $\quad 3.3 \mathrm{k}$
R68-1/4-10C 68

R3.3K-l/4-10C 3.3 k
RlK-l/4-10C 1 k
R68-1/4-10C 68
$"$
820
$\begin{array}{ll}\text { R220K-1/4-10C } & 220 \mathrm{k} \\ \text { R1.5K-1/4-10C } & 1.5 \mathrm{k}\end{array}$
RloK-l/4-10C 10 k
R3.3K-1/4-10C 3.3 k
R4.7K-1/4-10C 4.7 k
R68K-1/4-10C 68 k
R2.2K-l/4-10C 2. 2 k
R82-1/4-10C 82
RloK-l/4-10C 10 k
R3.3K-1/4-10C 3.3 k
R560-1/4-10C 560
R2.2K-1/4-10C 2. 2 k
R680-1/4-10C 680
RlK-1/4-10C 1 k
R33K-1/4-10C 33 k
RlOK-l/4-10C 10k
R56K-l/4-10C 56k
R4.7K-l/4-10C $\quad 4.7 \mathrm{k}$
R2.2K-1/4-10C 2.2 k
R560-1/4-10C 560
R680-1/4-10C 680
Rl00-1/4-10C 100
R47-1/4-10C 47
R4.7K-l/4-10C 4.7 k
R3.3K-l/4-10C 3.3 k
R18K-1/4-10C 18 k
R680-1/4-10C 680
R2.2K-1/4-10C 2. 2 k
R560-1/4-10C 560
R47-1/4-10C 47
RloK-1/4-10C 10 k
R6.8K-1/4-10C $\quad 6.8 \mathrm{k}$
R220-1/4-10C 220

Symbol	Part No.	Description
R79	R68K-1/4-10C	68 k
R80	Rl OK-1/4-1 OC	10 k
R81	R82-1/4-10C	82
R82	R3.3K-1/4-1 OC	3.3 k
R83	R220-1/4-10C	220
R84		
R85	R1OK-1/4-1OC	10 k
R86	R18K-1/4-10C	18 k
R87	R12OK-1/4-IOC	120 k
R88	R1OK-1/4-1OC	10 k
R89	R3. 3K-1/4-10C	3.3 k
R90	R82-1/4-10C	82
R91	R150-1/4-10C	
R92	R150	150
R93		

CAPACITORS

All capacitors are electrolytic, 20%, unless
otherwise noted

Cl	ClOOM-15-20E	1OOuF, 15WV
c 2		
C3		
C4		
C5		
C6		
C7		
C8		
C9		
Cl0	C5M-15-20E	$5 \mu \mathrm{~F}, 15 \mathrm{WV}$
Cl1	C390-3-20E	$390 \mu \mathrm{~F}, 3 \mathrm{WV}$
Cl 2	ClOOM-15-20E	100ヶF, 15WV
C13	C5M-15-20E	$5 \mu \mathrm{~F}, 15 \mathrm{WV}$
C14	co. 001M-600-10MY	0. 001 mylar 600WV,10\%
C15	ClOOM-15-20E	100uF,15WV
C16	ClOOP-600-1OC	lOOpF, ceramic 10%
C17	CO. OOIM-15-10E	0. OOluF, ceramic 10\%
C18	ClOOM-15-20E	100uF,15WV
C19	C27OP-15-20C	270pF, ceramic 20\%
C20	CO.OIM-15-20C	0 . OlhF, ceramic 20\%
C21	ClOOM-15-20E	100uF,15WV
c 22	CO. 05M-25-20C	$0.05 \mu F$, ceramic 20\%
c23	ClOO-15-20E	100pF, 15 wv
C24		
c 25	CO. $0015 \mathrm{M}-600-10 \mathrm{MY}$	0. $0015 \mu \mathrm{~F}, 600 \mathrm{WV}$
C26	Cl00M-15-20E	10OuF, 15WV
C27	CO. 22-600-1OMY	0.22 FF , mylar, 10%
C28	ClOOM-15-20E	100uF, 15WV
C 29	CO. OlM-12-20E	0. $01 \mu \mathrm{~F}, 12 \mathrm{WV}$
C30	C3000M-15-20E	3000uF, 15WV
C3 1	Cl 00M -15-2 OE	100uF, 15WV
C32		
C3 3	"	

TRA NSISTO RS

Q1	TR-2N4123	2N4123
Q2	TR-2N3906	2N3906
Q3	TR-2N3646	2N3646
Q4		

Symbol	Part No.	Description
Q5	TR-2N4123	2N4123
Q6		
Q7	TR-2N3906	2N3906
Q8		
Q9	TR-2N4123	2N4123
Q10	TR-2N3906	2N3906
Q11	TR-2N4123	2N4123
Q12	"	
Q13		
Q14	TR-2N3906	2N3906
Q15		
Q16	TR-2N4123	2N4123
Q17	"	
Q18	"	
Q19	"	
Q20	"	
Q21		
Q22	TR-2N3906	2N3906
Q23	TR-2N4123	2N4123
Q24	TR-2N3906	2N3906
Q25	TR -2N3053	2N3053

INTEG RATED CIRC UITS

IC-1	IC-MC714	MC 714, Dual
		Nor Gate
IC-2	IC-MC789	MC 789, Hex
		Inverter

POTENTIO METERS

VRl	P-2. 5K-2-BW	2.5 k
VR2		
VR3		-
VR4	SP-1K-1-BW	1 k , Slide Pot.
VR5		
VR6		
VR7		
VR8	TP-1OK-1/4-BC	10 k
VR9 " "		
DIO DES		
D1	D-1N914	lN914
D2 " ${ }^{\text {2 }}$		
D3		
D4		
D5		
D6		
D7	D-1N4002	1N4002
D8 ${ }^{\text {a }}$		
D9	D-IN914	lN914
DlO " "		
D11	2D-IN5235	lN5235

SWITC HES

SW-1	PSW-4-16PDT	4 section pushbutton
SW-2	PSW-4-16PDT	DPDT (black) Slide
SW-3	SLSW-1-DPDT	switch
		DPDT Slide switch
SW-4		2 section pushbutton
SW-5	PSW-2-6PDT	3PDT/section
		4 section pushbutton
SW-6	PSW-4-16PDT	4PDT/section
		DPDT with Red
SW-7	SLSW-1-DPDT-NE	
		Neon Lamp

Symbol	Part No.	Description
CO NNEC TORS		
CN 1,2,	CN-S0239	
3,4		Coaxial Receptacles
CN 6,7,	CN-MAB6	
8,9		Hirschmann 6 pin
CN 10	CN-MASE16	female Receptacles
	Hirschmann 6 pin	
CN 11	CN-482379-9	male Receptacles
		AMP Edge Connector,
CN 12	CN-582370-9	22 pin
		AMP Edge Connector,
CN 13	CN-582375-9	5 pin
		AMP Edge Connector,
		4 pin

Symbol	Part No.	Description
C6	C25M-25-20E	$25 \mu \mathrm{~F}, 25 \mathrm{WV}$
C7	ClOOOP-400-10MY	$100 \mathrm{OpF}, 400 \mathrm{WV}$,
		10%, mylar
C8	ClOOM-15-20E	$100 \mu \mathrm{~F}, 15 \mathrm{WV}$
C9	C470P-400-10C	$470 \mathrm{pF}, 400 \mathrm{WV}$
		10%, ceramic
Cl0	co. $2-12-20 \mathrm{C}$	$0.2 \mu \mathrm{~F}, 12 \mathrm{WV}$,
		20%, ceramic
Cl1	CO. $05 \mathrm{M}-12-20 \mathrm{C}$	$0.05 \mu \mathrm{~F}, 12 \mathrm{WV}$,
		20%, ceramic
Cl2	CO. lM-12-20C	O.lpF,12WV,
		20%, ceramic

DIODES

D1	ZD-lN4729	lN4729
D2	ZD-lN5232	IN5232

TRA NSISTO RS

Q1	TR-1N4123	2N4123
Q2	$"$	$"$
Q3	FET-2N5484	2N5484(FET)
Q4	UJT-2N4870	2N4870
Q5		

INTEGRATED CIRCUITS

IC-1 IC-MC790
MC790(Dual J-K Flip Flop)
IC-2
IC-3
IC-4
IC-5
IC-6
IC-7 IC-MC724
IC-8
IC-MC799

MC724 (Quad 2 Input
Nand/Nor Gate
MC799 (Dual Buffer)

POTENTIO METER

VR-1 TPlOK 1/4-10BC
10 k

C APACITORS

Cl	CO. $1 \mathrm{M}-12-20 \mathrm{C}$	$\mathrm{O} .1 \mu \mathrm{~F}, 12 \mathrm{WV}$,
		20%, ceramic
c2	co. 02M-12-20C	$0.02 \mu \mathrm{~F}, 12 \mathrm{WV}$
		20%, ceramic
c3	C5M-25-20E	$5 \mu \mathrm{~F}, 25 \mathrm{WV}$
c4	CO. $1 \mathrm{M}-12-20 \mathrm{C}$	$0.1 \mu \mathrm{~F}, 12 \mathrm{WV}$
		20%, ceramic
c5	CO. OlM-12-20C	$0.01 \mu \mathrm{~F}, 12 \mathrm{WV}$
		20%, ceramic

SUPPLEMENT

The following changes are incorporated into all SEG-1 Special-Effects Generators bearing Serial No. 1523 and higher. Minor modifications have been made to the circuit boards to accommodate these changes. Refer to the revised schematic diagram and the SEG-1 Service Manual.

From Serial No. 2000 and higher, the Signal Processing Board has been redesigned as a two-sided printed board. The Sync Generator Board has undergone minor changes in. printed design as of the same serial number, and chassis modifications have been performed accordingly.

Details of the changes are given in the table below. Symbols and area coordinates refer to the schematic diagrams.

SIGNAL PROCESSING BOARD

Symbol	Old Value	New Value	New Part No.	Remarks	Location
C19	270 pF	150 pF	C15OP-400-20C	Changed	C-6
c22	$05 \mu \mathrm{~F}$	02 $\mu \mathrm{F}$	CO. $02 \mathrm{M}-25-20 \mathrm{C}$		C-8
Q26		2N5485	FET2N5485	Added	H-2
R30	33 k			Deleted	G-1
R32	2.2 k	820R	R820-1/4-10C	Changed	H-2
R49	68 kR	56 k	R56K-1/4-10C		D-5
R79	68 kR	56 k	R56K-1/4-1 OC		G-6
R8-7	120 kR	100 k	Rl OOK-1/4-1 OC		G-8
R94		68 k	R68K-1/4-1 OC	Added	H-2
R95		1 k	RIK-1/4-1OC	Added	H-2
VR8	10 k	25 k	TP-25-1/4-BC	Changed	D-5
VR9	10 k	25 k	TP-25-1/4-BC		H-2
VR1O		25 k	TP-25-1/4-BC	Added	G-6
VRll		25 k	TP-25-1/4-BC		G-8

SYNC GENERATOR BOARD *

Symbol	Old Value	New Value	New Part No.	Remarks	Location
c4					
Cl3	O.luF	$.02 \mu \mathrm{~F}$	CO. 02M-15-20C	Changed	$\mathrm{c}-2$
IC-6		$.01 \mu \mathrm{~F}$	CO. OlM-15-20C	Added	$\mathrm{c}-2$
		MC790	IC-MC790	l/2 section	A-3
Q6				Added	
R5	33 k	2 N 4123	TR2N4123	Added	$\mathrm{c}-2$
R7	3.3 k	10 k	R47K-1/4-1 OC	Changed	$\mathrm{c}-2$
R16	150 R	1 k	Rl OK-1/4-l OC	RlK-1/4-1 OC	$"$
R20		10 k	Rl OK-1/4-1 OC	Added	D-2

*Modification recommended to older units.

PRINTED CIRCUIT, SIGNAL PROCESSING BOARD, Serial No. 1523 to 1999

PRINTED CIRCUIT, SYNC GENERATOR BOARD, Serial No. 1523 to 1999

PRINTED CIRCUIT, SIGNAL PROCESSING BOARD, Serial No. 2000 and Later

PRINTED CIRCUIT, SYNC GENERATOR BOARD, Serial No. 2000 and Later

The following list contains stock numbers for cabinet parts and hardware. Refer to the SEG-1 Service Manual for a complete list of electrical parts.

MECHANICAL PARTS

Part No.	Description	Q'ty
DWG-V-218-1	$\begin{aligned} & \text { Screw, Pan Head (+) } \\ & \# 4-40 \times 1 / 4 \end{aligned}$	4
-2	Clear Mylar Washer \#4	4
-3	Front Panel	1
-4	Switch Mounting Bracket	1
-7	Screw, Pan Head (+) \#6-32 $\times 3 / 8$	8
-8	Clear Mylar Washer \#4	8
-9	Speed Nut, Tinnerman \# C8936-632	4
-11	Speed Nut, Tinnerman \#C-7795-440-1	12
-12	Pal Nut, Reg. Type \# 4-40	4
-13	Screw, Flat Head (+) \# 4-40 x 3/4	4
-14	Speed Nut, Tinnerman \# C-8022-632-27	4
-15	Pal Nut \#4-40	12
-18	Rubber Bumper \# 4076	4
-20	Bottom Assembly	1
-21	Top Cover Assembly	1
-22	Knob for Pushbutton Switch	14
-23	Knob for Slide Switch	4
-24	Knob for Rotating Pots	3
-25	Standoff	8
-26	Screw, Flat Head (-) \#4-40 x 3/16	8
-27	Sync Board Screw (+) \#4-40 x 3/4	4
-28	Power Cord Strain Relief Bushing	1
-29	Screw, Flat Head (+) \# 4-40 x l/2	4
-30	Screw, Flat Head (+) \# $6-32 \times 1 / 4$	8

