An Enhancer for Cleaner Video Duplicating

enhance

bypass

video control

(70 (70 (7)

enhance

gamma

zer enhal

stabilize

RF mod.

BUILD THIS

WITH COPY GUARD STABILIZER

stabilize

AF MOD

gamma

zor onhou

Inexpensive video control unit eliminates troublesome copy guard and recovers picture detail lost through videocassette recording

enhance

bypass

video control

video enhancer_

Owners of videocassette tape machines soon realize that there are some problems to overcome. One is the expense of video tape, which motivates the user to record at a slower speed. This, however, degrades picture quality. Another consideration is that many prerecorded movies, concerts, and special programs available for sale or rent are "copy guarded." Accordingly, some television receivers will not play these tapes well because the guard signal makes the picture roll, jitter, or disappear altogether.

To overcome these challenges, here is a low-cost professional unit that will allow you to record video at slower speeds or copy any tape with improved picture quality. The unit also provides a distribution power amplifier for driving more than one tape machine and permits use of an r-f modulator for real-time enhancement while viewing.

Copy Guarding. Video is made up of two components: sync pulses and picture information. Sync pulses are as important as picture information because they format the picture on the screen. Television is made up of fields of pictures traced on the screen of a picture tube by an electron beam. A vertical oscillator controls the picture tracing from top to bottom of the screen. Every 1/60 second, vertical sync pulses in the video signal reset the oscillator, which starts the trace at the top of the screen again. If the vertical sync pulses were missing, the picture would appear to roll uncontrollably.

Tracing action of the beam for one field is illustrated in Fig. 1. Normal vertical sync pulses in the video signal are illustrated in Fig. 2. These pulses are stripped out of the video signal by circuitry in the VCR or TV receiver and then integrated to create a ramping voltage. When this voltage reaches a set threshold, the vertical oscillator driving the picture tube is reset, starting the beam at the upper left of the picture tube screen.

The path of the vertical sync pulses is shown in Fig. 3. Most TV receivers have the designation "vertical hold" for the threshold control, accessible as either a front- or rear-panel control. Some TV receivers and especially videocassette recorders have automatic or fixed thresholds.

When vertical sync pulses are altered, the picture will roll and, therefore, be unviewable. Most manufacturers of prerecorded video tapes, especially of motion pictures, are processing the vertical sync pulses to prevent buyers and renters from copying the tapes. The guard process, however, alters the width of the vertical sync pulses, making them narrower than normal, as shown in Fig. 2B. When integrated, these sync pulses will not produce enough voltage to reach the fixed threshold of the vertical timing circuit in VCRs, "confusing" the VCR's circuitry and preventing recording. The original tape can be viewed normally on TV receivers equipped with verticalhold controls because vertical hold can be adjusted to compensate for the guard. A problem occurs, though, when a tape is viewed on a TV receiver that has no vertical-hold control. For these receivers, this outboard guard-defeating circuit is needed.

Picture Enhancing. The picture portion of the video signal carries the visual scenes that are actually viewed. The picture is made up of a luminance signal (the black-and-white portion) and a chrominance signal (the color portion). Picture clarity and detail or sharpness is carried by the luminance signal, while color and tone are added by the chrominance signal. As in audio, the luminance signal has a frequency range, though a much wider one. As shown in Fig. 4, the standard luminance signal's bandwidth ranges from dc to approximately 4 MHz, whereas audio ranges from dc to 20 kHz. The highest frequencies of 2 to 4 MHz correspond to the smallest details in the picture. Without these high frequencies, the picture appears fuzzy-soft and fine detail is lost.

High frequencies are lost due to the

Photo shows interior construction details of the Video Enhancer.

video enhancer_

C1,C2,C11,C14,C16,C24,C25,C28,C31— 2.2- μ F, 50-volt electrolytic capacitor C3—220-pF, 50-volt disc capacitor C4—0.0047- μ F, 100-volt Mylar capacitor C5,C27—0.1- μ F, disc capacitor C6—0.0022- μ F Mylar capacitor C7—100-pF disc capacitor

PARTS LIST

C8,C9,C10,C15,C19,C20,C21,C22,C26, C29,C32,C33-0.05-µF disc capacitor

C12,C13,C17—22-pF disc capacitor C18—270-pF disc capacitor C23—100- μ F, 10-volt electrolytic

capacitor

Fig. 6. Schematic diagram of Video Enhancer.

video enhancer.

C30-470-µF, 35-volt electrolytic capacitor C34-5-55-pF trimmer capacitor D1,D2-1N270 zener diode D3.D4.D5-1N914 diode D6-1N4001 rectifier diode IC1-555 timer IC IC2-7808 8-volt regulator IC J1 thru J7-Phono jack J8-Miniature phone jack L1-33-uH high-Q inductor coil Q1 thru Q10,Q13,Q14,Q16,Q18,-Q20,Q21,Q24-Sylvania ECG287 npn transistor Q11,Q12,Q15,Q17,Q19,Q22,Q23,Q25-Sylvania ECG288 pnp transistor All resistors 1/4 watt, 5% tolerance: R1,R63,R64,R65-75 ohms R2,R28,R36,R40,R41,R52-150 ohms R3,R44,R59-22,000 ohms R4-27,000 ohms R5,R6,R7,R23,R30,R39,R57,R67,R69-1000 ohms R8.R11,R18,R19,R68,R74-10,000 ohms R9-820,000 ohms R10.R14.R15-5600 ohms R12,R13,R17,R33-33,000 ohms R16-470,000 ohms R20,R21,R70-38,000 ohms R22,R24,R26,R38,R42,R58,R62-2200 ohms R25,R49-220 ohms R27-100,000 ohms R29-4700 ohms R31-270 ohms R32,R54,R66-100 ohms R34-3900 ohms R35-390 ohms R37-330 ohms R43,R73-47,000 ohms R45,R46-8200 ohms R47,R50-4700 ohms R48-3600 ohms R51-220,000 ohms R53,R61-470 ohms R55,R56-56 ohms R60-1200 ohms R71,R72-56,000 ohms R75-3300 ohms The following are linear-taper potentiometers: R76-10,000 ohms R77-2000 ohms R78-250,000 ohms R79-1000-ohm trimmer potentiometer S1-Spdt switch TVM1-TV r-f modulator and antenna

- switch (Radio Shack kit Cat. No. 277-122)
- Misc.—117-volt ac to 12-volt dc, 300 mA power adaptor; printed-circuit board; control knobs; line cord; aluminum or steel cabinet; machine hardware; hookup wire; solder; etc.

Note: The following are available from Video Control, 3314 H Street, Vancouver, WA 98663 (tel. 1-206-693-3834): Complete kit containing pc board, power adapter, case, and all parts but excluding r-f modulator/antenna switch for \$110; etched and drilled pc board for \$15; power adapter for \$10. Please add \$3.50 for postage and handling.

Fig. 7A. Actual-size etching and drilling guide for enhancer project.

video enhancer_

Fig. 7B. Componentsplacement guide for enhancer project.

Notes: R77 CONNECTS BETWEEN HOLES *E* AND *F* R76 CONNECTS BETWEEN HOLES *G* AND *I*, WIPER TO HOLE *H* S1 CONNECTS ACROSS R76 (HOLE *G* TO HOLE *I*)

recording process and limitations of the recording tape (Fig. 4). Every recording (generation) from the original causes more loss in detail. The pictureenhancing portion of this project reequalizes the luminance bandwidth by boosting the high frequencies. When this is done prior to recording, the loss caused by the tape and machine can be canceled out, giving a copy that has as much detail as the original.

Enhancing high-frequency components of the video signal may increase noise, appearing as snow in the picture. This noise is reduced by a logarithmic gamma circuit that acts like an amplitude expander. When properly adjusted, low-level noise is eliminated by the logarithmic gamma circuit.

About The Circuit. This project has three controls. Adjustment of the EN-HANCE control increases detail and edge sharpness. Proper adjustment of the GAMMA control complements the enhance adjustment by reducing snow and other low-level luminance noise. The STABILIZE control locks in the picture and cancels the copy-guard signal. (A block diagram of the enhancer stabilizer circuit is shown in Fig. 5.)

As shown in Fig. 6, Q1 acts as a buffer for video inputs. Transistors Q2 and Q3, capacitors C3. C4, and C5, and resistor R8 separate sync pulses from the video. Sensing of vertical sync and triggering of IC1 is accomplished with C6and R11, while Q4 and Q5 clamp the video to ground. The width of the sync pulse is set by C10, R16 and R78.

The output of IC1 drives Q6 and Q7, which mix the new vertical sync pulses in with the video. At this point, any guard signal is eliminated. Buffer Q8drives a chroma filter madeves up of R23, C13, C34, and L1, which reduces any color shift that may occur as a result of over-enhancing. High-pass filter C17/R39 is driven by Q9, Q10, Q11, and Q12. Clamping transistors Q15 and Q16 are driven by inverter Q13/Q14. Diodes D1 and D2 clamp any signal overshoot, while transistors Q17 and Q18 make up a cascode amplifier that drives gamma circuit D3/D4. The diodes operate as a nonlinear signal expander whose threshold is controlled by the setting of R77.

The gamma circuit reduces any noise introduced by enhancing action, by an amount set by R76. Switch S1 inserts and defeats enhancement. Buffer Q19 delivers the signal to the output mixer, while R79 mixes in the original video. The output mixer amplifier is made up of Q20, Q21, Q22, and Q25. The video is prepared for r-f modulator TVM1 by R60, R61, D5, and Q23. A modulator designed for reception on a standard TV receiver on Channel 2 or 3 must be used. A typical example of such a modulator is Radio Shack's Catalog No. 277-122, which includes an antenna isolation switch for attachment at the TV receiver's antenna terminals.

Audio preamplifier Q24 preemphasizes high frequencies for the r-f modulator. System power is regulated at 8 volts by *IC2*, while input power requirements are 12 volts dc at 300 mA, obtained from a standard battery eliminator/charger.

Construction. A printed circuit board is imperative for this project, due to the high-frequency requirements of low stray capacitance. An actual-size etching and drilling guide and a components-placement diagram are shown in Fig. 7.

Proper orientation of parts during assembly is very important. So, take careful note of the directions of transistors, diodes, and electrolytic capacitors. The plus (+) lead holes for the electrolytic capacitors are identified by circles on the board. Since high frequencies are involved, it is a good idea to keep all component leads as short as possible. And, when soldering in the r-f modulator, make certain that the ground pins are fully coated with solder and firmly attached to the copper traces.

Once the project is assembled, install jumper CH3 if you plan to use the device on TV Channel 3; otherwise, the modulator will transmit on Channel 4. Also, after soldering components to the board traces, clean away the flux residue with alcohol and follow up with a careful inspection to make sure that there are no solder bridges between closely spaced traces.

The project is designed to fit into a custom aluminum case to insure low r-f radiation. Before placing the top on the case, however, connect the project to the VIDEO OUT jack of a VCR and the device's r-f modulator output to a TV receiver's antenna isolation switch. With the enhancer defeated, play a tape and adjust R79 so that the picture on the screen is as bright as a regular TV program's. Engage the enhancer at full enhancement and adjust C34 so that the picture is enhanced without altering the color. This done, assemble the case.

Summing Up. The enhancer/stabilizer is an excellent tool for making copies as good as the original and for viewing older video tapes. Furthermore, it will save money spent on tapes by giving comparable viewing quality of the 2hour mode when recording in the 6hour mode.

This project is not intended to be used for illegal copying, of course. It is intended solely to correct problems arising when a copy-guarded tape is played on a TV receiver that has a limited-range vertical-hold control.