

Thermal switch circuit

Design Goals

Temperature Switching Point	Output		Supply		
T _{sp}	$V_o = HIGH$	$V_o = LOW$	V _{cc}	V _{ee}	V _{pu}
100 °C	$T_A < T_{sp}$	$T_A > T_{sp}$	5V	0V	3.3V

Design Description

This thermal switch solution will signal low (to a GPIO pin) when a certain temperature is exceeded thus alerting when conditions are no longer optimal or device-safe. This circuit incorporates an NTC thermistor with a comparator configured in a non-inverting fashion.

Design Notes

- 1. The resistance of an NTC thermistor drops as temperature increases.
- 2. The TLV7041 has an open drain output, so a pull-up resistor is required.
- 3. Configurations where the thermistor is placed near the high side of the divider can be done; however, the comparator will have to be used in an inverting fashion to still have the output switch low.
- 4. To exercise good practice, a positive feedback resistor should be placed to add external hysteresis (for simplicity, it is not done in this example).

Design Steps

 Select an NTC thermistor, preferably one with a high nominal resistance, R₀, (resistance value when ambient temperature, T_A, is 25 °C) since the TLV7041 has a very low input bias current. This will help lower power consumption, thus reducing the likelihood of reading a slightly higher temperature due to thermal dissipation in the thermistor. The thermistor chosen has its R₀ and its material constant, β, listed below.

 $R_0 = 100 k\Omega$

- $\beta = 3977 K$
- Select R₁. For high temperature switching points, R₁ should be 10 times smaller than the nominal resistance of the thermistor. This causes a larger voltage difference per temperature change around the temperature switching point, which helps guarantee the output will switch at the desired temperature value.

$$\begin{split} R_1 &= \frac{R_0}{10} \\ R_1 &= \frac{100 k\Omega}{10} = 10 k\Omega \ \ (\text{Standard Value}) \end{split}$$

3. Select R_2 . Again, this can be a high resistance value.

 $R_2 = 1M\Omega$ (Standard Value)

4. Solve for the resistance of the thermistor, R_{thermistor}, at the desired temperature switching point. Using the β formula is an effective approximation for thermistor resistance across the temperature range of -20 °C to 120 °C. Alternatively, the Steinhart-Hart equation can be used, but several device-specific constants must be provided by the thermistor vendor. Note that temperature values are in Kelvin. Here T₀ = 25 °C = 298.15K.

$$\mathsf{R}_{\text{thermistor}}(\mathsf{T}_{\text{sp}}) = \mathsf{R}_{0} \times e^{\beta \times \left(\frac{1}{\mathsf{T}_{\text{sp}}} - \frac{1}{\mathsf{T}_{0}}\right)}$$

$$R_{\text{thermistor}}(100^{\circ}\text{C}) = 100\text{k}\Omega \times e^{3977\text{K} \times \left(\frac{1}{373.15\text{K}} - \frac{1}{298.15\text{K}}\right)}$$

 $R_{thermistor}(100^{\circ}C) = 6.85 \text{ k}\Omega$

5. Solve for V_{thermistor} at T_{sp}.

$$\begin{split} V_{thermistor}(T_{sp}) &= V_{cc} \star \frac{R_{thermistor}(T_{sp})}{R_1 + R_{thermistor}(T_{sp})} \\ V_{thermistor}(100^{\circ}C) &= 5V \star \frac{6.85 k\Omega}{10 k\Omega + 6.85 k\Omega} = 2.03V \end{split}$$

6. Solve for R_3 with the threshold voltage, V_{TH} , equal to $V_{thermistor}$. This ensures that $V_{thermistor}$ will always be larger than V_{TH} until the temperature switching point is exceeded.

$$\begin{split} \mathsf{R}_3 &= \frac{\mathsf{R}_2 \times \mathsf{V}_{\mathsf{TH}}}{\mathsf{V}_{\mathsf{cc}} - \mathsf{V}_{\mathsf{TH}}} \\ \mathsf{R}_3 &= \frac{\mathsf{1}\mathsf{M}\Omega \times 2.03\mathsf{V}}{\mathsf{5}\mathsf{V} - 2.03\mathsf{V}} = 685\mathsf{k}\Omega \\ \mathsf{R}_3 &= 680\mathsf{k}\Omega \quad \text{(Standard Value)} \end{split}$$

- 7. Select an appropriate pull up resistor, R_4 . Here, $V_{pu} = 3.3V$ (digital high for a microcontroller).
 - $R_4 = 51k\Omega$ (Standard Value)

www.ti.com

Design Simulations

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See Circuit SPICE Simulation File SLVMCS1, www.ti.com/lit/zip/slvmcs1.

Design Featured Comparator

TLV7041			
Output Type	Open-Drain		
V _{cc}	1.6V to 6.5V		
V _{inCM}	Rail-to-rail		
V _{os}	±100µV		
V _{HYS}	7mV		
Ι _q	335nA/Ch		
t _{pd}	3µs		
#Channels	1		
www.ti.com/product/tlv7041			

Design Alternate Comparator

TLV1701			
Output Type	Open-Collector		
V _{cc}	2.2V to 36V		
V _{inCM}	Rail-to-rail		
V _{os}	±500μV		
V _{HYS}	N/A		
l _q	55µA/Ch		
t _{pd}	560ns		
#Channels	1, 2, 4		
	www.ti.com/product/tlv1701		
	www.ti.com/product/tlv1701-q1		