
Build a
Computer-Controlled
Kill Switch BY JOHN YACONO and

MARC SPIWAK

You need not hang around your computer waiting
for a long job to finish.

For those of you who are fortu
nate enough to have your
computer do work for you unat

tended, it really can be irritating when
you have to return to it, just to turn it off.
And it goes against the laws of logic to
leave the computer on until you re
turn, which could very well be the next
day. We have a gadget that will elimi
nate that predicament: our comput
er-controlled Kill Switch. Not only can
the device be used to turn off the
computer that's controlling it, but it
can also be used to turn off, by com
puter control, anything else that plugs
into an outlet.

The Switch can automatically turn
off a computer and a peripheral after
handling a FAX or modem communi
cation, printing a document, or allow
ing a lengthy program to complete
(so you can begin your home-ward
commute, or whatever, that much
sooner). It can enable you to control
AC devices via your computer, and
when used with a timer program, it
can turn something off according to a
schedule. Although it connects to the
computer's parallel port, it is designed
to pass signals through to a printer
and will not interfere with normal
printer operation.

Th~ Parallel Interface. Simply put,
the Kill Switch does its job by compar
ing the data (8-bit characters) com-

ing from your computer's parallel
printer port to a value (an 8-bit
character) set by the user. When there
is a match between the preset value
and data from the computer, the unit
shuts down both the computer and
itself. To help explain how the com
parison is performed, let's talk about
how data appears at a parallel
printer port in the first place.

Oddly enough, most parallel ports
on the back of IBM-compatible com
puters sport a DB-25 connector. That's
odd because the DB-25 connector is
the standard connector used for se
rial interfaces. The connector is usually
female (having holes instead of pins)
to distinguish it from any serial con
nectors (which are normally female
only on cabling) that may also be on
the computer.

The designations of each pin on the
DB-25 connector are shown in Fig. 1.
The signals that occupy those pins
can be broken down into four basic
groups: grounds, data outputs, hand
shaking inputs, and handshaking out
puts. In Fig. 1, grounds are denoted by
c:;ircles, handshaking inputs are indi
cated by arrows pointing to the con
nector, and outputs (both for data
and handshaking) have arrows point
ing away from the connector. (Note
that some of the signal lines have a
fairly standard abbreviation shown in
parenthesis.)

The grounds perform two jobs: One,
they link the signal grounds of the two
devices being connected so they can
share a common ground to use as a
signal reference. Two, since the con
nection between the two devices is
often made via ribbon cable, the
grounds (often called ground returns
when discussed in this context) act as
shields for the more. important lines.
For example, the wire connected to
pin 19 on a ribbon cable would shield
pin 6 from pin 7, and vice versa. That
prevents D4 signals (whose function
we'll get to in a bit) from capacitively
affecting the D5 line, and vice versa.
In quality cables not made with rib
bon cable, each ground return is
twisted around a signal line to form a
twisted pair that provides a little
shielding.

As their name implies, the data out
puts transfer information from the
computer to a parallel peripheral.
That is done eight bits (one byte) at a
time using pins 2- 9. Bit DO is consid
ered the least-significant bit (or LSB)
and D7 is the most-significant bit (or
MSB). (Note that some computer
manuals use designations D1- D8 in
stead of DO-D?.)

The bits, as well as all the other sig
nals, are represented by standard TTL
voltage levels; a signal between 2.4
and 5 volts is a high, or a binary 1,
anything between 0 and 0.8 volts is a
low, or binary 0. Anything between 0.8
and 2.4 volts is considered invalid
data. Table 1 shows all standard IBM
compatible characters and their as
sociated logic values.

Since a computer is much faster
than any peripheral that it communi
cates with, it could easily transmit
more data than a peripheral could
handle. So peripherals use special
signals to tell the computer to mo
mentarily stop sending data when
they have enough to work with. That
gives the peripheral a chance to
catch up and the computer can per
form some other task in the mean
time. Once sufficiently caught-up, the
peripheral tells the computer to trans
mit more data and the process con
tinues.

That computerized game of "red
light, green light" is accomplished by
sending signals along wires dedi
cated to that purpose. The process of
using signals to control the flow of
data is called "handshaking," so the 41

42

DATA5(D5) The remaining lines (select, auto
feed, and initialize) are beyond the
scope of this article. But now that you
know how data appears at the paral
lel port, lefs talk about how a device
might hunt for the desired data and
ignore all else.

SELECT
(SEL OR
SLCT)

DATA4 (04)

DATA3 (03)

2 (02)

Fig. 1. The parallel port on most IBM-compatible (and some non-compatible
computers) looks like this . The arrows pointing away from the DB-25 connector are
outputs, the ones pointing to the connector are inputs, and the remaining pin outs
(shown with circles) are grounds.

Character Detection. The theory
behind detecting the proper data or
character at the parallel port is pretty
simple. Lefs say, for instance, that we
wanted to detect the ASCII character
represented by the binary number
11111111 (character 255) at the printer
port. An easy way to do that would be
to connect pins 2-9 on the parallel
port to an eight-input AND gate. The
output of the AND gate will then go

signals used for that purpose are
called "handshaking signals."

The strobe. busy, and acknowledge
signals are the most important hand
shaking signals. To help explain how
they are related and control data
flow. take a look at Fig. 2. There the
eight data lines are shown lumped
together at the top as a single band.
Don't let that throw you, the value of
the individual bits is not important.
What is important is the time at which
data undergoes a transition (repre
sented by the crossed lines) and the
time that it remains constant (the
bands).

The data that is being output on
lines DO-D? starts to form at time tt
and it settles down and is ready for
use by time t2. A moment later (at t3),
the computer sends a momentary
low-going pulse (called the strobe sig
nal) to the peripheral to indicate that
the data is ready and waiting on the
data lines. After t3, the peripheral may
respond in one of two ways: it can pull
the busy line high until irs ready for
more data, or it can wait until it has
used the new data and then send a
low-going acknowledge pulse to the
computer when it wants more. Either
response keeps the computer from
proceeding until the peripheral says
ifs ready. After the busy line goes low
or an acknowledge pulse is received,
the computer will set up the data lines
for the next byte, and the procedure
repeats.

Along similar lines, sometimes par
allel peripherals (especially printers)
use dedicated wires to indicate their
status. Since the status of a peripheral

11 12

D0-07

\ t
---=x----->C~~

FROM THE
COMPUTER

STROBE

13

~ v
BUSY --~!

FROM THE
PERIPHERAL

ACKNOWLEDGE v
Fig . 2. Once a computer sets up the data on the parallel data lines, it signals the
peripheral with a low-going strobe pulse . The peripheral responds by sending the busy
line high until it's ready for more, and/or it waits until its finished with the data and
sends a low-going acknowledge pulse.

can affect the flow of data, this can
also be considered a form of hand
shaking. For example, if a printer, plot
ter, or oscillograph needs to tell the
computer that irs out of paper, it can
do so by holding the "paper empty"
line (look back at Fig. 1) high until its
supply is replenished. That keeps the
computer from sending data to the
peripheral when the device is inca
pable of doing anything with it.

A peripheral can tell the computer
that ifs powered-up and on-line by
holding the "selecf' line at pin 13 high.
(Note that there are two select lines,
so don't confuse them.) This signal is
necessary because some peripherals
can be powered up, buttaken off line
by sending them a special "deselecf'
character. A peripheral can even cry
for help by holding the error line low.

high only if all eight inputs are high.
Now. if we were to use an eight-input
NAND gate instead, the only difference
would be that the gate output would
go low when all inputs are high. Since
we want the gate's output to activate
another device when triggered, a
NAND gate is actually preferred over an
AND gate, because TIL IC's are very
p6or at supplying current to other de
vices, but they are pretty good at sink
ing it.

That arrangement is fine if you are
only interested in detecting ASCII
character 255, but what about
characters with binary zeros in them?
The obvious answer is to invert each
bit that should be zero before sending
it to the NAND gate. However, using in
verters is a bad idea because you'll
have to rewire the circuit whenever

07 0
8 it 06 0

Values: 05 0
04 0

0 0 0 •

0 0 1

0 1 0 0

0 0 +

0
0
0

§

0
0
1
0

..

$

%

0 1 0 • t< &

0 1 1 • t

0 0 0 a r (

0 0 1)

0 1 0

1 0 1 +

0 0

1 0 ...
1 0 ··fll ...

I

Notes:

0
0
1
1

TABLE 1-CHARACTERS AND BIT VALUES

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

2 a R b r e ~ , 6 I ~· · T r '
'3 J. S m

1 f.#
..

r t n ,, ~
5 6 u e u

6 F v f v 0 9

G w

8 t H X x e
y Y e

J z j ;?: •.. ;

K [

< L \ £

= M m } ¥ I
} N

0 0 Q

(1) The null character, which is not printable.
(2) The space character, which cannot be represented.
(3) Undefined character.

you want detect a different character.
Not only that. you could wind up with
phase-delay problems.

A chip's phase delay is the time dif
ference between a change at the in
put and the corresponding change
at the output.lfs like when you're play
ing catch with someone; there is a
time difference between when you
catch the ball and when you throw it.
That's not to be confused with rise
time; the output of the chip takes time
to reach the peak voltage after it has
"made up its mind." Just like when you
throw a ball up in the air; it takes a
certain amount of time for the ball to

reach its peak altitude after it has left
your hand.

So, if an inverter is used along one
of the data lines, it will slow that line
down so all the bits will not arrive at
the NAND gate at the same time. If the
phase delay is long enough in com
parison to the transmission speed, the

· device will fail to function properly.
What we need, then, is a gate that

can be used as an inverter or a buffer.
That way, signals that need inverting
will pass through the same number of
gates as signals that are simply buff
ered. Further. if the gate can be "pro
grammed" to be an inverter or a

l r

buffer with a simple switch, then there
will be no need to rewire the circuit to
detect a different character. Simply
set the switches to invert the lines you
expect to be low, and buffer the rest.

The perfect gate for our purpose is
the xoR gate. If you hold one of an xoR
gate's inputs high, the compliment (in
verse) of the other input appears at
the output. If you hold one input low,
the signal at the other input will be
buffered through unchanged.

There are a few chips that actuaOy
contain a combination of xoR gates
and a NAND gate configured to com
pare bits just as we've described. We 43

44

used one such chip in the Kill Switch.
Denoted the 74521, that chip's inter
nal arrangement and pinout is shown
in Fig. 3. Note that the chip contains
xoR gates and a NAND gate wired as
described with an additional input (at
pin 1) that acts as a chip-enable pin. If
two eight-bit numbers, A (composed
of bits AO-A7) and B (made up of bits
BO-B?) are applied to the indicated
inputs, and if A equals B and the G
input is held low, the output (pin 19) of
the chip will go low. Now lefs discuss
how the chip is implemented.

The Circuit. The schematic diagram
for the Kill Switch is shown in Fig. 4. One
obvious feature of the circuit is the
straight-through cable formed by PL2
and S02. That cable allows data from
the computer (attached to PL2) to
flow freely to any printer cable con
nected to S02. That permits the
printer to operate normally without
any hindrance from the Switch. If you
will not be using a printer along with
the unit you can dispense with S02,
but you might have to further modify
the cable to eliminate handshaking
problems (more on that later).

Note that the strobe and data lines
are tapped off and sent to the 7 4521.
The strobe line is used to enable the
chip (when the strobe goes low to

74521

Fig. 3. TJ:re 74521 is technically known
as an 8-bit identity comparator. Its
output will go low provided each of its A
inputs matches its corresponding B
inputs and the enable input (G) is low.

PL2

01
IN914

Fig. 4. At long last, here is the schematic diagram for the Kill Switch. Note how the
74521 is connected directly to the data lines.

indicate the presence of data, the
chip is enabled), while the data lines
feed the B inputs of the chip. The B
inputs are compared with the A in
puts, which are set by the ganged
switches S3-a through S3-h as follows:
If a switch is closed, it grounds its corre
sponding input and if a switch is
open, the input in question is pulled
high by one of the pull-up resistors (R5-
a through R5-h). In effect each time

data is present on lines DO through D7
and the strobe is brought low, the
7 4521 compares the data against the
switch settings. To see what affect the
result of the comparison has, lefs ex
amine the rest of the circuit.

Imagine that PL 1 is plugged into a
wall socket and S1 is closed. That al
lows power to flow to sockets S01-a
and S01-b (two halves of a duplex AC
socket used to power a computer

and an optional peripheral), and to
the 5-volt power supply composed of
T1. BR1. C1. U1. and C2. Diode LED1 acts
as a power indicator for the 5-volt sup
ply.

Note that the normally open con
tacts of K1 prevent current from flow
ing to the rest of the circuit at this
point. That can be resolved by de
pressing S2, which momentarily ap
plies power to the remainder of the
circuit including the relay coil. There
lay then closes so S2 can be released
without a loss of power. With the
power applied, current flows through
the LED in the optocoupler activating
the Triac output and the Triac.

Lefs say that we turn off (open) S1.
which will not affect the circuit be
cause it is shorted by the Triac; now
the system is armed. If any data from
the parallel port matches the switch
settings while the strobe line is low. the
output of the 7 4521 will go low depriv
ing the relay coil of power. The relay
will immediately let go, depriving the
main circuit (including the op
tocoupler's LED) of power. The op
tocoupler will then shut down so the
Triac goes off. The sockets are then
powerless so the computer and pe
ripheral shut down, and after the filter
capacitor (C1) discharges, the power
LED goes out. Thafs how the unit does
its job.

Triggering. Since you can send data
through the parallel port in a variety
of ways, the Kill Switch can be tripped
in just as many ways. For example, you
could send the switch data from a
program, DOS, keyboard, batch pro
cedure, or word processor.

To "trip the unit from a BASIC pro
gram, use a statement like:

LPRINT A$

where A$ is a string variable con
taining the data to trip the Switch.
From any other language, any output
statement that can send data to the
parallel port will work.

Take a look at Listing 1 for some as
sembly language programming ex
amples. Each program addresses
one of the three printer ports avail
able on a PC or compatible. Other
than that they are identical. so we'll
only explain how the first one works. By
the way. if you don't understand how
parallel ports are addressed, check
out the article "Programming Parallel
Printer Ports , in the February. 1993 is
sue of Popular Electronics.

The first line simply places the ad
dress of the first printer port (3BC in
hexadecimal) in the DX register. The
next instruction places the value 255
(FF in hexadecimal) in the AL register.
That value will be used in this example
to trip the unit. so all the switches in the
device must be open for that value to
work. (If necessary, alter that value to
accommodate the switch setting you
wish to use.) With the registers properly
set, the third line uses the data in the
registers to output value 255 to port
3BC. All that makes the data lines (DO
to D7) go high.

The next line adds two to the ad
dress to give the address that controls
the strobe line (3BE). A one must be
placed in that address to make the
strobe line go low. so a one is next
placed in the AL register. The next out
put instruction sends the number one
to the address for the strobe line.
Once the strobe line goes low. the Kill
Switch should pull the plug.

There is a chance that the unit will
not turn off immediately. That is be
cause the AC waveform through the
Triac must go to zero before the Triac
will shut off. If the data at the port
triggers the 7 4521 while the AC wave
is not at zero, the Triac may not shut off.
For that reason, the last line of the
program causes it to try again and

PARTS LtST FOR THE KILL '
SWITCH

SEMICONDUC10RS
Ul-7805, 5-volt~gulator,

integrated circuit
{)"2-MOC3010 optocoupler,

integ~fed circuit ,
U3-745218-bitjdentity-comparator, ,

integrated circuit ~
TR~~amp "WO-volt Triac j
Dl-1N400l l-amp, 50-PIV, rectifier i

diode i
BRJ-l.,am,J>t50-PlY, fullwave bridge ~

rectifier · · ~
EEDI_;,;.M1niature ,ed light~emitting l

diode ~
RESIStoRS ~ ow fix~.d resistors are !<'4-watt, 5%

uQ.its.) '
.Rt, R3-36Q-ohm
R2---cl80-ohrrt
Rt--47-Qbm . •.
RS,.....:27,000-obm, 8-resistor SIP

pack

· CAPACI'IQRS
Cl-l()()O-JU' electro~ic capacitqr
C2.,.....Q, t:P:F monolithic capacitor
C3-4).0t.p,~ monolithic capacitor

AODltiOHAL PARTS AND
l MATERIALS

1 ., ~1----cM_ iniature 5-volt, SPST relay
, PLl.,-,ACplug and linecqrd
j PL2-DB-25 male connector

l. Sl.,-SPST switch
! 82.,-Sf>ST~ normally open.
· momentary-contact switeh

SH-station DIP switch
SOl-;Duplex AC $ocket
S02-DB-25 femaleconnector
Tl.......6.3•volt, 300-mA power

transformer
Pe.rfboard materials, cabinet, 25-

conductor ribbon cable; wire-wraQ
sockets. solder posts. wire-wrap
wire, bus wire, solder, etc.

l!lote: Copies of the software in
Listing l are available already
assembled 1)11 floppy disk for $5
(postage paid) from John Yacono,
.P:O. Box 4042, farmingdale, NY
11735, S~cify floppy size (5>4 or
3\12 inches) when ordering: AIL·
paymentS in U.S. funds only; NY
reSidt~pts must add appropriate
sales tax.

again until the computer shuts down.
That generally takes only a couple of
high-speed passes at most.

If you wish to use any of these pro
grams .but do not own an assembler.

(Continued on page 88) 45

88

COMPUTER KILL SWITCH
(Continued from page 45)

you can use th.e DEBUG.COM pro
gram supplied with DOS to directly as
sembly the programs. See your DOS
manual for instructions on using the
DEBUG.COM program. Alternatively,
you can order a copy of the programs
compiled on diskette from the sup
plier mentioned in the Parts List.

The programs can simply be run
from DOS, which sounds a bit inade
quate, but let's examine what you can
do with these simple programs and
DOS. Let's say your word processor is
printing a long document in your of
fice and you'd prefer beating rush
hour traffic rather than waiting for the
printout to finish. While your word pro
cessor is busy with the print job (and
ignoring the keyboard), just type in
the command to exit to DOS and en
ter the name of whichever program
you will use from Listing 1 followed by a
carriage return. Arm the Switch by
pressing S2, turn off S1, get your coat,
and run for the parking lot. When the
word processor is through printing it
will process the keystrokes that allow it
to exit to DOS, DOS will process the
keyboard input to run the program,
and the cor'nputer (and the printer if
it's plugged into the unit) will shut
down for the night.

You can use that technique when
dealing with almost any prolonged
software process- faxes, modem
communications, CAD computations,
etc. We use it to shut our system down
at night after some CAD software
routes a large PC board using multi
ple routing strategies. Large double
sided boards can take a long time,
and since we ask the computer to try it
twelve different ways (typically start
ing late at night), the process some
times ends in the wee hours of the
morning. We like our work, but not
enough to sit in front of a computer all
bleary eyed just to shut it off after four
or five hours.

There·are yet other ways to get DOS
to control the Kill Switch. For example,
you could use DOS's print command
to transmit a file containing the trigger
character. You could also use DOS to
run a batch file· containing an appro
priate command or two to send the
data to the port. You could even use
DOS to give you keyboard control

over the interface. To do that type:

COPY CON: PRN:

at the DOS prompt. That command
will cause anything that you type at
the keyboard to pass to the printer
port. You can now type-in the trigger
character and send it to the printer by
pressing the control and Z keys simul
taneously followed by enter.
. You can use a word processor, too.
You can place the trigger character in
a file and print the file from the word
processor. That is a particularly good
technique if you want the computer
to shut down after printing out a file;
just place the trigger character at the
end of the file.

Construction. The authors' pro
totype was built into a relatively small
case considering everything that's
·packed into it. All of the small compo
nents are mounted on a piece of per
fboard and point-to-point wired
together.

To make the straight-through con
nection between the computer and
printer, we attached PL2 (the male
DB-25) to the free end of a 3-foot rib
bon cable, and attached S02 (the
female DB-25), mounted on one end
of the case, about 6 inches short of
the other end of the cable. The extra 6
inches of ribbon cable makes the
connections from the computer/
printer combination to the rest of the
circuitry. The LED and switches S1 and
S2 are mounted on the top of the
case.

The linecord from PL 1 enters the
case at the other end, and the
ground and neutral leads connect di
rectly to the AC sockets (S01-a and
S01-b). The hot lead from PL 1 con
nects directly to S1 and TR1, which are
mounted on the perfboard. The out
put of TR1 is then connected directly
to the hot side of S01-a and S01-b.
The openings for the AC receptacles
were cut in the case using a nibbling
tool. After drilling a small hole, the nib
bling tool allows you to carefully cut
an opening in almost any project
case. No electronics hobbyist should
be without one. Radio Shack sells a
pretty good nibbling tool for about
ten dollars.

As mentioned earlier, you can use
the device without a printer. That
should cause no trouble for those of
you who will control the switch using

Here's the authors' completed prototype
for their computer-controlled Kill
Switch.

the software in Listing 1. However, if you
will be using software that relies on
DOS and/or the computer's BIOS, you
could run into trouble unless you mod
ify the Kill Switch. Unlike our program,
DOS and the BIOS might look at the
various handshaking lines to make
sure the. "printer" is okay. Of course,
since there is no printer, DOS and the
BIOS will assume something is wrong
and never send data to the port.

One way around that is to trick the
computer into thinking that there is a
ready and waiting printer available
by tying the handshaking inputs to
appropriate logic levels. Specifically,
tie pin 12 (paper empty) and pin 11
(busyi low, tie pin 13 (select) and pin 15
(error) high, and connected p in 10
(acknowledge) to the strobe line.
Note: the strobe line should still also be
connected to the 7 4521.

Now you might be wondering why
you should tie the acknowledge line
to the strobe line. That permits the
computer to "shake its own hand."
When the computer sends the strobe
pulse, it considers the falling edge the
start of transmission (that's indicated
by the arrow on that ecjge). By the
time the strobe line is low, the comput
er has already begun waiting for the
acknowledge pulse . Interestingly
enough, the computer only concerns
itself with the rising edge of the ac
knowledge pulse; it pays no attention
to the pulse's logic level or its falling
edge. Since the computer starts wait
ing for the rising edge of the acknowl
edge pulse right after the falling edge
of the strobe pulse, we can use the
rising edge of the strobe pulse in
place of the rising edge of the ac
knowledge pulse. That's what the
strange connection accomplishes.

Once you have a working Kill
Switch, you'll wonder how you ever
got along without one. •

