ServiceManual
 Telephone Equipment KX-TG2559LBS

 2.4GHz Cordless System

 2.4GHz Cordless System
 Caller ID Compatible

Silver Version
(for Brazil)

SPECIFICATIONS

	Base Unit	Handset
Power Source:	AC Adaptor (PQLV17LBZ)	Rechargeable Ni-cd battery
Receiving Frequency:	24 channels within $2.4015 \sim 2.4705 \mathrm{GHz}$	24 channels within $2.4015 \sim 2.4705 \mathrm{GHz}$
Receiving Method:	Direct conversion	Direct conversion
Transmitting Frequency:	24 channels within $2.4015 \sim 2.4705 \mathrm{GHz}$	24 channels within 2.4015~2.4705 GHz
Oscillation Method:	PLL synthesizer	PLL synthesizer
Tolerance of OSC Frequency:	$24 \mathrm{MHz} \pm 720 \mathrm{~Hz}$	$24 \mathrm{MHz} \pm 720 \mathrm{~Hz}$
Modulation Method:	NA (FSK/SS)	NA (FSK/SS)
Spread spectrum Method:	Direct sequence	Direct sequence
Chip rate	15 chip	15 chip
ID Code:	22-bit	22-bit
Dial Mode:		Tone (DTMF)/Pulse
Redial:		Up to 32 digits
Speed Dialer:		Up to 48 digits
Power Consumption:		11 days at Standby, 4.5 hours at Talk (maximum)
Dimension ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$):	$2^{9 / 16^{\prime \prime}} \times 6^{1 / 2 \mathrm{~L}} \times 8^{\text {" }}(65 \times 165 \times 203 \mathrm{~mm})$	$115 / 32^{\prime \prime} \times 2^{9 / 32 " ~} \times 9^{11 / 32 " ~}(37 \times 58 \times 237 \mathrm{~mm})$
Weight	$0.73 \mathrm{lbs} .(330 \mathrm{~g})$	$0.51 \mathrm{lbs} .(230 \mathrm{~g})$

Design and specifications are subject to change without notice.

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

When you mention the serial number, write down all 11 digits. The serial number may be found on the label affixed to the bottom of the unit.

FOR SERVICE TECHNICIANS

ICs and LSIs are vulnerable to static electricity.
When replacing, the following precautions will help prevent recurring malfunctions.

1. Cover the plastic parts boxes with aluminum foil.
2. Ground the soldering irons.
3. Use a conductive mat on the work table.
4. Do not grasp IC or LSI pins with bare fingers.

CONTENTS

1 LOCATION OF CONTROLS 4
1.1. Base Unit 4
1.2. Handset 5
2 DISPLAY 6
3 SETTINGS 8
3.1. Connections 8
3.2. Adding Another Phone 9
3.3. STANDARD BATTERY LIFE 10
3.4. Selecting the Dialing Mode 12
3.5. Selecting the Line Mode 13
4 OPERATION 14
4.1. Making Calls 14
4.2. Answering Calls 16
4.3. Flash Button 17
4.4. Caller ID Service -18
5 DISASSEMBLY INSTRUCTIONS 26
6 ASSEMBLY INSTRUCTIONS 28
6.1. Assembly the LCD to P.C. Board (Handset) 28
6.2. How To Check Splash Resistance - 29
6.3. Replace the RF unit 30
7 TROUBLESHOOTING GUIDE 31
7.1. Check Power 32
7.2. Check Battery Charge 33
7.3. Check Link 34
7.4. Check the RF Unit 35
7.5. Check Handset Voice Transmission 42
7.6. Check Handset Voice Reception 42
7.7. Check Call ID 43
8 TEST MODE AND ADJUSTMENT 44
8.1. Test Mode Flow Chart for Base Unit 44
8.2. Test Mode Flow Chart for Handset 45
8.3. Adjustment Battery Low Detector Voltage 46
8.4. Base Unit Reference Drawing 1 47
Page Page4
8.5. Base Unit Reference Drawing 2 48
8.6. Handset Reference Drawing 49
8.7. Frequency Table 50
9 DESCRIPTION 51
9.1. Frequency 51
9.2. Time Division Duplex (TDD) operation 51
9.3. Spread Spectrum 52
9.4. Signal Flowchart in the Whole System 53
9.5. EXPLANATION OF DSP DATA COMMUNICATION 54
10 TERMINAL GUIDE OF IC'S, TRANSISTORS AND DIODES ---- 55
10.1. Base Unit 55
10.2. Handset 55
11 BLOCK DIAGRAM (Base Unit) 56
12 CIRCUIT OPERATION (Base Unit) 57
12.1. Power Supply Circuit 57
12.2. DTMF Signal 57
12.3. Line Sending Signal 58
12.4. Line Receiving Signal 58
12.5. Calling Line Identification Circuit (Caller ID) 59
12.6. Parallel Connection Detection Circuit 61
12.7. Telephone Line Interface 62
12.8. Initializing Circuit 63
12.9. Antenna Diversity 63
13 BLOCK DIAGRAM (Handset) 64
14 CIRCUIT OPERATION (Handset) 65
14.1. Power Supply Circuit 65
14.2. Charge Circuit 65
14.3. Ringer Circuit 66
14.4. Sending Signal 66
14.5. Reception Signal Circuit 67
15 CPU DATA (Base Unit) 68
15.1. IC501 68
16 CPU DATA (Handset) 69

17 EXPLANATION OF IC TERMINALS (RF Unit, Base Unit) -----. 70

18 HOW TO REPLACE FLAT PACKAGE IC ------------------------------ 71
18.1. Preparation --- 71

18.3. Modification Procedure of Bridge --......--..........................- 71

19 CABINET AND ELECTRICAL PARTS (Base Unit) -----------------72
20 CABINET AND ELECTRICAL PARTS (Handset) 73
21 ACCESSORIES AND PACKING MATERIALS -.-----..................... 74

22.3. ACCESSORIES AND PACKING MATERIALS …---------- 78

23.1. Base Unit (SCHEMATIC DIAGRAM (Base Unit)) ---------- 79
23.2. Handset (SCHEMATIC DIAGRAM (Handset)) -------------- 79

24 SCHMATIC DIAGRAM (RF UNIT) -- 81

25 SCHEMATIC DIAGRAM (Base Unit) .. 82

27 CIRCUIT BOARD (RF Unit) --- 86
27.1. RF Unit Reference Drawing (Base Unit and Handset) $\cdots-86$

28.1. Component View ...-. 87

29.1. Component View -...-. 89
29.2. Flow Solder Side View --.....-..-. 90

1 LOCATION OF CONTROLS

1.1. Base Unit

1.2. Handset

2 DISPLAY

The handset shows you instructions and information on the display.
These display prompts are shown below.

The Caller List is empty or there are no stored items in the directory.

The battery needs to be charged. Place the handset on the base unit to charge the battery.

The display shows the number of new calls and the battery strength while the handset is on the base unit.

This display shows the number of new calls when Δ or ∇ is pressed while the handset is off the base unit.
To search from the most recent call, press ∇. To search from the oldest call, press Δ.
To go to the directory list, press FWD/EDIT \square (Directory key).

When the handset ringer volume is set to OFF, "Ringer off" will flash for about 45 seconds before the handset returns to the standby mode.

When a call is received, the display shows the caller's name and number after the first ring.

During a conversation, the display shows the length of the call (ex. 1 hour, 6 minutes and 35 seconds). The battery strength is also displayed.

The handset has lost communication with the base unit. Place the handset on the base unit and try again.

This is an information from the Caller List. The display shows:
12223334444

- the caller's phone number, and

Save error

This is a name from the directory. The stored name and phone number are displayed.

When trying to store an item or Caller List information in the directory, the directory memory is full.

While storing items in the directory, the handset has lost communication with the base unit.

- the number of times called (ex. 3 times).

The base unit is paging the handset.
\square, Δ,BACK \triangle or FWD/EDIT \triangle was pressed with the handset while the handset was on the base unit. Lift the handset and press the button again.

While the base unit was not in the standby mode, ∇ or \triangle was pressed to search the Caller List/directory list, FWD/EDIT \square was pressed to select an option or CLEAR was pressed. Move closer to the base unit and try again.

3 SETTINGS

3.1. Connections

- USE ONLY WITH Panasonic AC ADAPTOR PQLV17LBZ
- The AC adaptor must remain connected at all times. (It is normal for the adaptor to feel warm during use.)
- If you unit is connected to a PBX which does not support Caller ID services, you cannot access those services.

3.2. Adding Another Phone

This unit will not function during a power failure. To connect a standard telephone on the same line, use a T-adaptor.

3.3. \quad STANDARD BATTERY LIFE

3.3.1. Battery Charge

Place the handset on the base unit and charge for about 6 hours before initial use.
-The CHARGE indicator lights and a beep sounds.

3.3.2. Battery strength

You can check the battery strength on the display while the handset is on the base unit, while it is in use (making/answering a call etc.), or after viewing the Caller List or directory items, programming etc.
The battery strength will remain for a few seconds after using the handset, then the display will return to the standby mode.
The battery strength is as shown in the chart below.

Display prompt	Battery strength
[III]	Fully charged
[II]	Medium
$[$ I]	Low
"[I $]^{\prime \prime}$ (flashing)	Needs to be recharged.

3.3.3. Recharge

Recharge the battery when:

- "Recharge battery" is displayed,

- "[!]" flashes on the display, or
-the handset beeps intermittently while it is in use.
- If you DO NOT recharge the handset battery for more than 15 minutes, the display will keep indicating "Recharge battery" and/or "[\|]" will continue to flash.

3.3.4. Battery information

After your Panasonic battery is fully charged:

Operation		Approx. battery life
While in use (TALK)	near the base unit*	Up to 4.5 hours
	away from the base unit	Up to 3.5 hours
While not in use (Standby)		Up to 11 days

*Within about 10 feet (3 m)

- Battery life may be shortened depending on usage conditions, such as viewing the Caller ID Caller List or directory list, and ambient temperature.
- Clean the handset and the base unit charge contacts with a soft, dry cloth. Clean if the unit is subject to grease, dust or high humidity. Otherwise the battery may not charge properly.
- If the battery is fully charged, you do not have to place the handset on the base unit until "Recharge battery" is displayed and/or " $\left[\begin{array}{ll}\text { I }\end{array}\right]$ " flashes. This will maximize the battery life.
- The battery cannot be overcharged.

3.3.5. Standby mode (The handset is off the base Unit)

The handset goes into the standby mode after you finish using the handset (making/answering a call, viewing the Caller List or directory items etc.). The display is blank, but the handset can receive calls. The battery life is conserved in this mode.

3.4. Selecting the Dialing Mode

You can program the dialing mode using the handset near the base unit.
If you have touch tone service, set to "Tone". If rotary or pulse service is used, set to "Pulse". Your phone comes from the factory set to "Tone".
Make sure the handset is in the standby mode initially.

2 Press $\boldsymbol{\nabla}$ or Δ repeatedly until the arrow points to "Program".

3 Press FWD/EDIT (Yes key).

4 Press ∇ or Δ repeatedly until the arrow points to "Set dial mode".

5 Press FWD/EDIT (Yes key).

6 Press $\boldsymbol{\nabla}$ or to select "Pulse" or "Tone".

7 Press FWD/EDIT \square (Save key). -To return to the standby mode, press

Dial mode
: Pulse FUNCTION/EXIT/CH.

- You can exit the programming mode any time by pressing FUNCTION/EXIT/CH. - If the handset has lost communication with the base unit, 3 beeps sound and "No link to base. Place on cradle and try again." is displayed.

3.5. Selecting the Line Mode

If the line is connected to a low voltage system such as a PBX, set to " B ". Otherwise the unit may not work properly.
Your phone comes from the factory set to " A ". Use the handset near the base unit. Make sure the unit is in the standby mode initially.

1 Press FUNCTION/EXIT/CH.

2
Press ∇ or \triangle repeatedly until the arrow points to "Program".

3 Press FWD/EDIT \square (Yes key).

4
Press $\boldsymbol{\nabla}$ or repeatedly until the arrow points to "Set line mode".

5 Press FWD/EDIT \square (Yes key).

6 Press $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ to select "B" or "A".

7 Press FWD/EDIT \triangle (Save key).
-A beep sounds.
-To return to the standby mode, press
Line mode FUNCTION/EXIT/CH.

- You can exit the programming mode any time by pressing FUNCTION/EXIT/CH. -If the handset has lost communication with the base unit, 3 beeps sound and "no link to base. Place on cradle and try again." is displayed.

4 OPERATION

4.1. \quad Making Calls

2
Dial a phone number.

- The dialed number is displayed.
- After a few seconds, the display will show the length of the call and the battery strength.

Talk 1112222	
Talk	
$00-00-00$	[ani]

3
To hang up, press TALK or place the handset on the base unit.

Off	
$00-01-08$	[III]

- If the handset has lost communication with the base unit, 3 beeps sound and " No link to base. Place on cradle and try again." is displayed.

If noise interferes with the conversation

Press FUNCTION/EXIT/CH to select a clearer channel or move closer to the base unit.

To redial the last number dialed

Press TALK and press REDIALPAUSE.

To dial after confirming the entered number
1 Dial a phone number.

- If you misdial, press CLEAR and
 dial again.

3
To hang up, press TALK or place the handset on the base unit.

To redial after confirming the last number dialed

Press REDIAL/PAUSE and press TALK.

To adjust the receiver volume while talking

To increase, press Δ.
To decrease, press ∇.

- Each time you press $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$, the volume level will change.
- The display will return to the length of the call.

4.2. Answering Calls

When a call is received, the unit rings, "Incoming call" is displayed and the CALLER ID indicator flashes quickly.
If you subscribe to a Caller ID service, the calling party information will be displayed after the first ring. In order to view the Caller ID information, please wait until the second ring to answer a call.

If the handset is off the base unit, press TALK.

- You can also answer a call by pressing any dialing button 0 to 9 , * or \# (-Any Key Talk).

Auto Talk

If you set the Auto Talk feature to ON, you can answer a call by lifting the handset off the base unit without pressing TALK.

4.3. Flash Button

Pressing FLASH allows you to use special features of your host PBX such as transferring an extension call or accessing special telephone services (optional) such as call waiting.

Selecting the flash time

The flash time depends on your telephone exchange or host PBX.
You can select the following flash times: "700, 600, 400, 300, 250, 110, 100 or 90 ms (milliseconds)". Your phone comes from the factory set to " 700 ms ".
Make sure the handset is in the standby mode initially.
1 Press FUNCTION/EXIT/CH.
2 Press ∇ or Δ repeatedly until the arrow points to "Program", and Press FWD/EDIT \square (Yes key).
3
Press $\boldsymbol{\nabla}$ or repeatedly until the arrow points to "Set flash time", and press FWD/EDIT \square (Yes key).

Press $\boldsymbol{\nabla}$ or \triangle repeatedly until the desired time is displayed, and press FWD/EDIT \triangle (Yes key).
-A beep sounds.
-To return to the standby mode, press FUNCTION/EXIT/CH.

- You can exit the programming mode any time by pressing FUNCTION/EXIT/CH. -lf you are connected via a PBX, a longer flash time may be necessary to use PBX functions (transferring a call etc.). Consult your PBX supplier for the correct setting.

4.4. Caller ID Service

This unit is compatible with a Caller ID service offered by your telephone company. If you subscribe to a Caller ID service, the calling party's information will be displayed after the first ring.
The unit can record information of up to 50 different callers in the Caller List. The Caller List information is sorted by the most recent to the oldest call. When the 51st call is received, the first call is deleted.
Using the list, you can automatically call back a caller. You can store the caller's names and numbers from the Caller List into the directory.
The information at the handset display depends on the information sent by the telephone company. Most of time the telephone company can send only the telephone numbers and it will not be able to send others information. If you have any doubt, please contact your telephone company.

4.4.1. How caller information is displayed when a call is received

*Private name display

If you receive a call from one of the same phone numbers stored in the directory, the caller's name will be displayed.

-To use this function, names and phone numbers must be
stored in the directory.
-Caller information cannot be displayed in the following cases:
-If the caller dialed from an area which does not provide a Caller ID service, the display will show "Out of area".
-If the caller has requested not to display his/her information, the display will show "Private caller".
-If your unit is connected to a PBX which does not support Caller ID services, you cannot access those services.

- If the name and the time/date display service is available in your area, the display will show callers' names and the time/date the calls were received. For further information, please contact your telephone company.
- If you receive a call with the Caller ID information while viewing the Caller List or directory items, the caller's information may not be displayed.

4.4.2. To check the number of new calls

When new calls have been received, the CALLER ID indicator flashes slowly on the base unit.
When new calls have been received, the CALLER ID indicator flashes slowly on the base unit.

While the handset is off the base unit:
Press ∇ or Δ to turn the display on. If you have received 10 new calls, the display will show the following:

- If "No items stored" is displayed, the Caller List is empty.

4.4.3. Viewing the caller list

You can view the caller list with the handset. Caller List information includes the caller's phone number, and the number of times that caller called.
Make sure the handset is in the standby mode initially.
1 Press ∇ or Δ to enter the Caller
List.
-The display will show, for example, the following.

- You can go to the directory list by pressing FWD/EDIT \square.
2
To search from the most recent call, press ∇.
To search from the oldest call, press $\boldsymbol{\Delta}$.
-To scroll between callers, press $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

3 To exit the list, press
-The handset will return to the
 standby mode.

- Once new calls have been checked, " V " will be added.
- If "No items stored" is displayed, the Caller List is empty.
- If more than one call is received from the same caller, the date and time of the last call will be recorded. If the same caller calls again, the call entry with " V " will be deleted.

Ex. When you search from the most recent call:

Display meaning:

: You have checked this caller information, answered the call or called back the caller.
$\times 2-\times 9$: The number of times the same caller called (up to 9). After checking, " $\times 2$ " - " $\times 9$ " will be replaced with " V ".

4.4.4. Calling back from the caller list

1 Press $\boldsymbol{\nabla}$ or to enter the Caller List.

2 Press ∇ or Δ repeatedly to find the desired caller.

12344567890

3 Press TALK.
-The displayed phone number is dialed automatically.
Talk
12344567890

Talk	
$01-06-35$	[חII]

- In some cases, you may have to edit the number before dialing.
- If a phone number is not displayed in the caller information, you cannot call back that caller.

4.4.5. Editing the caller's phone number

You can edit a phone number in the Caller List. After editing the number, you can continue with calling back or directory storing procedures.
Make sure the handset is in the standby mode initially.

Press $\boldsymbol{\nabla}$ or to enter the Caller List.
2
Press $\boldsymbol{\nabla}$ or repeatedly to find the desired caller, and press FWD/EDIT \square.

3
While the arrow points to "Edit", press FWD/EDIT (Yes key).

4
Add a number to the current number.

- Each time you press CLEAR the digit to the left of the cursor is erased.

5 After editing the number, you can continue with calling back or 5 storing procedures. To call back, press TALK.

To store the number in the directory, press $\boldsymbol{\nabla}$ (Next key), and press FWD/EDIT \triangle (Save key).
-The number edited in step 4 will not be maintained in the Caller List.

4.4.6. Storing caller list information in the directory

You can store names and phone numbers that are in the Caller List into the directory.
Make sure the handset is in the standby mode initially.
Press $\boldsymbol{\nabla}$ or to enter the Caller List.

2
Press ∇ or Δ repeatedly to find the caller you want to store in the directory, and press FWD/EDIT \triangle (Yes key).

3
Press $\boldsymbol{\nabla}$ or to select "Save directory", and press FWD/EDIT (Yes key).

When the caller's name is not displayed in the Caller List:
a) If a name is not required, press ∇ (Next key) and press FWD/EDIT \square (Save key).
b) If a name is required, enter the name. When finished, press ∇ (Next key) and press FWD/EDIT \square (Save key).

- A beep sounds.
- To continue storing other items, repeat from step 2.
- To return to the standby mode, press FUNCTION/EXIT/CH.
- You can exit the programming mode any time by pressing FUNCTION/EXIT/CH.
-If the display shows "Directory full" in step 3, press FUNCTION/EXIT/CH to exit the list.
-After the maximum of 50 items has been stored "Directory full" is also displayed.
- You cannot store caller information in the directory if a phone number is not displayed.
-If 3 beeps sound and the display shows "Save error" in step3, move closer to the base unit and start again from step 2.

4.4.7. Erasing caller list information

After checking the Caller List, you can erase some or all of the entries.
Make sure the handset is in the standby mode initially.
To erase a specific caller from the Caller List
1 Press ∇ or Δ to enter the Caller List.
10 new calls
『^ \quad =Directory
2 Press ∇ or Δ repeatedly to find the caller you want to erase from the Caller List.

18887776666
V

3 Press CLEAR.

- A beep sounds and the information is erased.
-To erase other items, repeat from step 2.
-To return to the standby mode, press FUNCTION/EXIT/CH.

4.4.8. To erase all entries in the Caller List

Before erasing all entries, make sure that " 0 new call" is displayed.
1 Press $\boldsymbol{\nabla}$ or to enter the Caller List.

2
Press CLEAR.

3 Press $\boldsymbol{\nabla}$ or to select "A11 clear".

4
Press FWD/EDIT \square (Yes key) or CLEAR.

All clear
-A beep sounds and all entries are erased.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Ref. No.	Procedure	Shown in Fig -.	To remove -.	Remove -.
1	1	1	Lower Cabinet	Screws (2.6 $\times 14$).......(A) $\times 5$
2	1, 2	2	Main P.C. Board	Remove the Main P.C. Board
3	3	3	Battery Cover	Remove the Battery Cover
4	3, 4	4	Rear Cabinet	Screws (2.6×12).....(B) $\times 2$ Screws (2×8). (C) $\times 2$ Screw (2.6×12).......(D) $\times 1$
5	$3 \sim 5$	5	Antenna	Screw (2.6 $\times 12$)(E) $\times 1$
			Main P.C. Board	Screws (2×8)....(F) $\times 4$
6	$3 \sim 6$	6	Main P.C. Board	Pull the Charge Terminals outside Remove the Main P.C. Board

6.1. Assembly the LCD to P.C. Board (Handset)

4
AFTER LCD ATTACHMENT, TURN OVER THE LCD HOLDER AND LOCK WITH PARTS (A) AND (B)

6.2. How To Check Splash Resistance

(10) Attach careflly not to turn up packing.

(11) Attach the battery cover.

6.3. Replace the RF unit

For HS

Follow this procedure below when replacing HS RF unit.

1. Remove speaker cables of LCD unit on HS main board.

And remove LCD unit.
2. Remove solder on six legs of RF unit.
3. Remove solder on all pads of RF unit.
4. Replace defective RF unit with new HS RF unit.

NOTE:

Do not use BU RF unit for HS one.
HS RF unit is different from BU one.
5. Solder all pads of RF unit.
6. Solder six RF legs.
7. Put LCD unit and solder speaker wire.

NOTE:
Speaker wire has polarity.

7 TROUBLESHOOTING GUIDE

MAIN

7.1. Check Power

BASE UNIT
Is the AC Adaptor inserted into 120 V outlet?

7.2. Check Battery Charge

BASE UNIT

NOTE:

- CP/CM: Refer to Base Unit Reference Drawing 1.
- TP-BL: Refer to Handset Reference Drawing.

HANDSET

7.3. Check Link

BASE UNIT

HANDSET

7.4. Check the RF Unit

7.4.1. Finding out the Defective Unit

Prepare HS Test Fixture and BU Test Fixture. Place the HS Test Fixture on the cradle of the base unit for checking, then confirm that they are linked. Place the handset for checking on the cradle of the BU Test Fixture, then confirm that they are linked. How to confirm the link is as follows; press the TALK button and confirm Handset in use is displayed on BU LCD.

7.4.2. Handset Test Fixture for Base Unit

Test Fixture has two modes.

1. TEST mode: (RF Power Low mode)

The switch of Test Fixture changed with TEST mode side.
Then Test Fixture is in TEST mode.
2. Normal mode: (RF Power Normal mode)

The switch of Test Fixture changed with Normal mode side.
Then Test Fixture is in Normal mode.
NOTE:
Audio is coming from Receiver whether switch is TEST mode or Normal mode.

This test simulates the handset is at very large distance from the base unit and the TX signal from handset to base is very small.
Procedure: First place handset Test Fixture on base under test to charge (exchange security code); then remove handset from base after you hear a beep; then press TALK to operate. The LCD will show TALK. This means that the base unit sensitivity is OK. If a beep is not heard, Replace the RF unit.

NOTE:

1) Only KX-TG2583/2563/2553/2403 with marks HS Test Fixture can be used for troubleshooting. Regular KXTG2583/2563/2553/2403 production samples do not have the switches needed for troubleshooting.

KX-TG2559LBS

7.4.2.1. Handset Test Fixture Reference Drawing

As for TEST fixture, only the switch as shown in figure is connected to mass production set.

NOTE:
SW: ON (Base Unit: Normal)
10 m more: No Link
5 m less: Link

7.4.3. Base Unit Test Fixture for Handset

Switch to control normal mode and test mode on this BU Test Fixture.
Test Fixture has two modes.

1. TEST mode: (RF Power Low mode)

The switch of Test Fixture changed with TEST mode side.
Then Test Fixture is in TEST mode.
2. Normal mode: (RF Power Normal mode)

The switch of Test Fixture changed with TEST mode side.
Then Test Fixture is in Normal mode.
NOTE:
Audio is coming from Receiver whether switch is inserted or not.

This test simulates the handset is at very large distance from the base unit and the TX signal from base to handset is very small.
Procedure: First, place handset under test to charge (exchange security code), then remove handset from base after you hear a beep. Press TALK button on handset and if it links with the base, then this handset sensitivity is OK. If a beep is not heard, Replace the RF unit.

NOTE:

1) Only KX-TG2583/2563/2553/2403 with marks BU Test Fixture can be used for troubleshooting. Regular KXTG2583/2563/2553/2403 production samples do not have the software needed for troubleshooting.

KX-TG2559LBS

7.4.3.1. Base Unit Test Fixture Reference Drawing

As for TEST fixture, only the switch as shown in a figure is connected to the mass-production set.

Note:
SW : ON (Portable Unit : Normal)
10m more: No Link
5m less: Link

7.4.4. RF Check Flowchart

Each item (1a~6) of RF Check Flowchart is corresponded to Check Table for RF Block. Please refer each item one by one.

(*1) See RF Unit Reference Drawing (Base Unit and Handset).
(*2) Base unit RF only, refer to Check Table for RF Block.

7.4.5. Check Table for RF Block

No.	Item	BU (Base unit) (*1)	HS (Handset) (*1)
1a	Link confirmation Normal	1. The switch of "HS Test Fixture" is changed to normal mode side, and is charge of "HS Test Fixture". 2. Press [TALK] key of "HS Test Fixture" to establish link about one foot $(30 \mathrm{~cm})$ away from "Base unit". 3. Confirm to link.	1. The swich of "BU TEST Fixture" is changed to "Normal mode side", and is charge of "BU Test Fixture". 2. Press [TALK] key of "Handset" to establish link about one foot $(30 \mathrm{~cm})$ away from "BU Test Fixture". 3. Confirm to link.
1b	Link confirmation Test	1. The switch of "HS Test Fixture" is changed to TEST mode side, and is charge of "HS Test Fixture". 2. Press [TALK] key of "HS Test Fixture" to establish link about one foot $(30 \mathrm{~cm})$ away from "Base unit". 3. Confirm to link.	1. The swich of "BU TEST Fixture" is changed to "TEST mode side", and is charge of "BU Test Fixture". 2. Press [TALK] key of "Handset" to establish link about one foot (30 cm) away from "BU Test Fixture". 3. Confirm to link
1c	Check Antenna connection	1. Check ANT1(*2) and ANT2(*2) soldering. 2. Check ANT1(*2) and ANT2(*2) points are not shorted to GND.	1. Check Antenna(*3) on HS mainboard soldering.
2	24MHz Adjustment	1. Set BU to [Test STANDBY] mode (*5) 2. Confirm X101 frequency within $24 \mathrm{MHz} \pm 720 \mathrm{~Hz}$ at TP_FREQ (*4) of RF Unit. If X 101 frequency is spec out than adjust frequency within $24 \mathrm{MHz} \pm 100 \mathrm{~Hz}$ by VC101.	1. Set HS to [Test STANDBY] mode (*5) 2. Confirm X101 frequency within $24 \mathrm{MHz} \pm 720 \mathrm{~Hz}$ at TP FREQ**) of RF Unit. If X 101 frequency is spec out than adjust frequency within $24 \mathrm{MHz} \pm 100 \mathrm{~Hz}$ by VC101.
3	TX Pow_Low confirmation	1. Put low loss high frequency wire to ANT1(*2) and GND(*2) 2. Connect this wire to Spectrum analyzer. 3. Set BU to [Low Power] mode (*5) 4. Confirm TX power level within $-5 \sim+10 \mathrm{dBm}$	1. Remove Antenna on HS main board. Put low loss high frequency wire to $\operatorname{ANT}(* 3)$ and GND (*3) 2. Connect this wire to Spectrum analyzer. 3. Set HS to [Low Power] mode (*5) 4. Confirm TX power level within $-5 \sim+10 \mathrm{dBm}$
4	TX Pow_High confirmation	5. Set BU to [High Power] mode (*5) 6. Confirm TX power level within $+20 \pm 4 \mathrm{dBm}$	5. Set HS to [High Power] mode (*5) 6. Confirm TX power level within $+20 \pm 4 \mathrm{dBm}$
5	Antenna Diversity confirmation	7. Set BU to [Test STANDBY] mode (*5) 8. Put low loss high frequency wire to ANT2 (*2) and GND (*2) 9. Connect this wire to Spectrum analyzer 10. Press [1] key to activate the ANT2. 11. Set BU to [High Power] mode (*5) 12. Confirm TX power level within $+20 \pm 4 \mathrm{dBm}$	
6	Receiver confirmation	Same as Item 1b.	Same as Item 1b.

(*1) BU: Base Unit, HS: Handset.
(*2) See Base Unit Reference Drawing 1.
(*3) See Handset Reference Drawing.
(*4) See RF Unit Reference Drawing (Base Unit and Handset).
(*5) See TEST MODE AND ADJUSTMENT.

7.4.6. RF-DSP Interface Signal Wave Form

(1) Serial control line
<Standby mode>

(2) ADPCM (Digital sound) line <Standby mode>

<Talk mode>

7.5. Check Handset Voice Transmission

HANDSET

7.6. Check Handset Voice Reception

BASE UNIT

HANDSET

7.7. Check Call ID

BASE UNIT

8 TEST MODE AND ADJUSTMENT

8.1. \quad Test Mode Flow Chart for Base Unit

(*1) See Base Unit Reference Drawing 1.
(*2) Special check method for Base Unit individually.

8.2. Test Mode Flow Chart for Handset

(*1) See Handset Reference Drawing.
(*2) Special check method for Handset individually.

8.3. Adjustment Battery Low Detector Voltage

After replacing handset's DSP (IC201) and EEPROM, Re-writing Battery Low voltage to EEPROM is required.
Following Test mode flow chart (Refer to Test Mode Flow Chart for Handset),
DC power supply and Battery connector are required in this adjustment.

1. Set 3.9 V for DC power supply.
2. Place handset in test mode.
3. Press "TALK" key 4 times to TX-Low mode. (CW Tx Low is displayed on LCD)
4. Set 3.51V for DC power supply.

* Check voltage at battery connector, because some voltage drop is happened, using long or thin cable.

5. Press "\#" key to write voltage value in EEPROM.
6. Turn power off. Then this value is available.

NOTE

Refer to Handset Reference Drawing for connection of DC power source and voltmeter.

8.4. Base Unit Reference Drawing 1

8.5. Base Unit Reference Drawing 2

8.6. Handset Reference Drawing

8.7. Frequency Table

(TDD: time division duplex)

Channel	TX/RX Frequency (GHz)	Channel	TX/RX Frequency (GHz)
1	2.4015	13	2.4375
2	2.4045	14	2.4405
3	2.4075	15	2.4435
4	2.4105	16	2.4465
5	2.4135	17	2.4495
6	2.4165	18	2.4525
7	2.4195	19	2.4555
8	2.4225	20	2.4585
9	2.4255	21	2.4615
10	2.4285	22	2.4645
11	2.4315	23	2.4675
12	2.4345	24	2.4705

9 DESCRIPTION

9.1. Frequency

The frequency range of $2.4015 \mathrm{GHz} \sim 2.4705 \mathrm{GHz}$ is used. Transmitting and receiving channels between base unit and handset is same frequency. Refer to the Frequency Table.

9.2. Time Division Duplex (TDD) operation

Transmission/reception between the base unit and handset is performed by time-sharing as shown in Fig. 7. 1 slot time of transmission and reception is 1 mS . Same frequency is used in transmitting and receiving. The figure shows an example; the frequency of 1 ch is used in transmitting between the base unit and handset.

Fig. 7

9.2.1. TDD Frame Format

The TDD frame is 2 mS in length, and is composed of two symmetrical $960 \mu \mathrm{~S}$ TX and RX subframes. Each subframe contains 96 bits of $10 \mu \mathrm{~S}$ duration, with $40 \mu \mathrm{~S}$ guard times between both $T X$ and $R X$ subframes.
Each subframe consists of the following five fields:

- A 12-bit Preamble field
- An 8-bit Data Channel field
- An 8-bit Sync Word
- A 64-bit ADPCM Payload
- A 4-bit Post-amble

Both the 8-bit sync word and 8-bit data channels are programmable via the DSP interface. In addition, the 64-bit payload can be filled either with ADPCM voice data, or can be used by the host DSP as a fast data channel between base and handset.

9.3. Spread Spectrum

Transmission and reception are operated using the spread spectrum method.

DSS (Digital Spread Spectrum)

Mixing the original signal with the pseudo random noise code (PN code) works the spread spectrum. In this system PN code is 15 chip. Although the band width is spread fifteen times, the power level per channel becomes lower.

Fig. 8

9.4. Signal Flowchart in the Whole System

Reception

CN101 of the base unit is connected to the TEL line, and the signal is input through the bridge diode D101. While talking the relay (Q121) is turned ON and amplified at the amplifiers Q461, then led to DSP (IC501). DSP generates ADPCM signal. The ADPCM signal is input to RFIC (IC101) of RF UNIT, and is mixed with pseudo random noise code (PN code) to spread the spectrum. RFIC outputs FSK modulated RF signal. The RF signal is passed through the balun (T101) and filter (L107) to the T/R switch (IC109). And the RF signal amplifies by the power amplifier (IC105) and fed into T/R switch (IC110) and passes through filter (L106) to Diversity ANTENNA. As for the handset, RF signal from the antenna passes through filter (L106) and switch by T/R switch (IC110) to LNA (IC106). The RF signal is amplified by LNA (IC106) and switched by T/R switch (IC109) and input to RFIC passing through filter (L107) and the balun (T101) to perform the de-spread, then input to DSP (IC201). DSP performs ADPCM decoding to convert the signal into the voice signal, then it is output to the speaker.

Transmission

The voice signal input from the microphone is led to DSP (IC201). The DSP generates ADPCM signal. As well as the reception, it is converted into the RF signal by RFIC (IC101). Passing through the balun (T101) and filter (L107), to the T/R switch (IC109). And the RF signal amplifies by the power amplifier (IC105) and fed into T/R switch (IC110) and passes through filter (L106) to ANTENNA. As for the base unit, RF signal from the Diversity antenna passes through filter (L106) and switch by T/R switch (IC110) to LNA (IC106). The RF signal is amplified by LNA (IC106) and switched by T/R switch (IC109) and is input to RFIC (IC101) passing through filter (L107) and the balum (T101) to perform the de-spread, then input to DSP (IC201). DSP performs ADPCM decoding to convert the signal into the voice signal. The voice signal is amplified at the TX amplifier (Q131), then output to the TEL line (CN101) through the relay (Q121) and bridge (D101).

Fig. 9-1 BASE UNIT

Fig. 9-2 HANDSET

9.5. EXPLANATION OF DSP DATA COMMUNICATION

9.5.1. Calling

(STANDBY MODE)

Handse	t Base U	
		When standby mode, a communication request DATA (Standby-Link) is transmitted from the Handset, every 25 sec and a permitting DATA (Standby-Link) is returned from the Base Unit after detecting handset standby-Link data.
TALK	TALK_Ack Ack_OK	OFF HOOK IN USE LED ON
LED ON Voice Mute OFF	Talk command	When pushing Talk button, TALK request DATA (Talk_Ack) is transmitted from the Handset. DATA (Ack_OK) is returned from the Base Unit to it, then DATA (Talk-command) is sent from the Handset. At that time the audio path opens.

9.5.2. To Terminate Communication

9.5.3. \quad Ringing

(STANDBY MODE)
Handset Base Unit

$|$| | $\begin{array}{l}\text { - Ring Signal } \\ \text { IN USE LED Flashing }\end{array}$ |
| :--- | :--- |
| Standby-Link | When the base unit detects |

 the handset, the base unit sends "Bell-Link". Then receiving the bell data from the base unit causes to ring the bell of the handset.

9.5.4. ID CHANGE

10 TERMINAL GUIDE OF IC'S, TRANSISTORS AND DIODES

10.1. Base Unit

$\begin{aligned} & \text { Anode } \\ & \text { PQathode } \\ & \text { PQVDRLZ2RO } \\ & \text { PQVRLZ2OA } \end{aligned}$	C2HBBH000007	MA153	LNJ308G8JRA PQVDEL1921SR	2SD1819A	PQVIXCF4502P PQVITC7W74U
	2SD2136			Anode A8043, MA8082, A8036H, MA8220,	2SD2137
 PQVISPM3204T	PQWIG2559LBH		 PQVIPS3432UT	 PQVITC7S08FU	

10.2. Handset

C2HBBH000025	PQVTD123T14 PQVDTA143TU	${ }^{C}$ QVTDTC143E D1819A,UN521	PQVD1SR154 MA2ZD1400 MA8150, MA111	Cathode PQVDSML310MT LNJ308G8JRA	PQWIG2559LBR
2SA1797Q	PQVIXCP3302M	 PQVIC62FP33M	 PQVIC61CN32N		

11 BLOCK DIAGRAM (Base Unit)

12 CIRCUIT OPERATION (Base Unit)

12.1. Power Supply Circuit

Function:

Power from the AC adaptor passes through a regulating consisting of IC301.

Circuit Operation:

IC301 is a regulated power supply. The voltage at point A is regulated to 4.5 V by IC301.
The voltage at point B is dropped by D509 to 4.1 V .
The voltage at point C is dropped by D521 to 3.8 V .
The voltage at point E is dropped by Q 601 to 3.6 V

Circuit Diagram

12.2. DTMF Signal

When the DTMF data from the Handset is received, the DTMF signal is output from pin 36 of IC501 and sent to the line through Q131.

12.3. Line Sending Signal

The coded signal input from the RF unit is decoded by IC501.
The audio signal output from IC501-36 and is input to telephone line.
Circuit Diagram

12.4. Line Receiving Signal

The audio signal from line passes through Q131 and Q461 to pin38 and 39 of IC501(DSP). IC501 modulates this input audio signal to output to the RF unit.

Circuit Diagram

12.5. Calling Line Identification Circuit (Caller ID)

Function:

The caller ID is a chargeable ID which the user of a telephone circuit obtains by entering a contract with the telephone company to utilize a caller ID service. For this reason, the operation of this circuit assumes that a caller ID service contract has been entered for the circuit being used. This model can receive 2 types of Caller ID (FSK type, DTMF type)

- FSK type

The data for the caller ID from the telephone exchange is sent during the interval between the first and second rings of the bell signal. The data from the telephone exchange is a modem signal which is modulated in an FSK (Frequency Shift Keying) format. Data " 0 " is a 1200 Hz or 1300 Hz sine wave, and data 1 a 2200 Hz or 2100 Hz sine wave.

The data for the caller ID from the telphone exchange is DTMF signal. It is sent before the first ring of bell signal.

Circuit Diagram

12.6. Parallel Connection Detection Circuit

Function:

In order to disable call waiting and stutter tone functions when using telephones connected in parallel, it is necessary to have a circuit that judges whether a telephone connected in parallel is in use or not. This circuit determines whether the telephone connected in parallel is on hook or off hook by detecting changes in the T/R voltage.

Circuit Operation:

Parallel connection detection when on hook:
When on hook Q115 is ON, the voltage is monitored pin 40 of IC501. There is no parallel connection if the voltage is 1.65 V or higher, while a parallel connection is deemed to exist if the voltage is lower.

Parallel connection detection when off hook:
When off hook Q115 is OFF, the voltage is monitored pin 40 of IC501; the presence/absence of a parallel connection is determined when the voltage changes by 0.2 V or more.

12.7. Telephone Line Interface

Circuit Operation:

- ANSWER

In the idle mode, Q121 is open to cut the DC loop current and decrease the ring load. When ring voltage appears at the Tip (T) and Ring (R) leads (When the telephone rings), the $A C$ ring voltage is transferred as follows:
$\mathrm{T} \rightarrow \mathrm{L} 101 \rightarrow \mathrm{R} 103 \rightarrow \mathrm{C} 103 \rightarrow$ Q101 \rightarrow IC501 pin 64.
When the CPU (DSP) detects a ring signal, Q121 turns on, thus providing an off-hook condition (active DC current flow through the circuit) and the following signal flow is for the voice signal.
$\mathrm{T} \rightarrow \mathrm{D} 101 \rightarrow$ Q121 \rightarrow Q131 \rightarrow R139/R140 $\rightarrow \mathrm{C} 139 \rightarrow \mathrm{RX}$

- ON HOOK

Q121 is open, Q121 is connected as to cut the DC loop current and to cut the voice signal. The unit is consequently in an onhook condition.

- SPECIFICATIONS

In the on-hook state (idle), the current flows between the telephone line and the unit is as follows:
$\mathrm{T} \rightarrow \mathrm{L} 101 \rightarrow \mathrm{R} 103 \rightarrow \mathrm{C} 103 \rightarrow \mathrm{R} 106 \rightarrow \mathrm{C} 104 \rightarrow \mathrm{R} 104 \rightarrow \mathrm{~L} 102 \rightarrow \mathrm{PO} 101 \rightarrow \mathrm{R}$.
The DC component is blocked by C103, C104: thereby providing an on-hook condition.
The $A C$ interface impedance is over $47 \mathrm{k} \Omega$; thus, satisfying the telephone company requirements.

Circuit Diagram

12.8. Initializing Circuit

Function:
This circuit is used for to initialize the microcomputer when it incorporates an AC adaptor.

Circuit Operation:

When the AC Adaptor is inserted into the unit, then the voltage is shifted by IC301, D509 and power is supplied to the DSP.
The set can operate beyond point A in the circuit voltage diagram.

Circuit Diagram

12.9. Antenna Diversity

Antenna Diversity improve conversation quality. This means to reduce some noise during conversation. RF unit send LQA (Link Quality Alarm) signal to IC751 when increase Error Bit's. Then IC751 control RF switch IC761 to switch another Antenna. Antenna selection control by IC501 is available only in test mode.

14 CIRCUIT OPERATION (Handset)

14.1. Power Supply Circuit

Voltage is supplied separately to each block.

Block Diagram (Handset Power)

14.2. Charge Circuit

Ni-cd battery is connected to CN202. When the handset is put on the cradle of the base unit, the power is supplied from CHARGE1 and CHARGE2 terminals to charge the battery. Q207 detects the voltage of CHARGE1 and CHARGE2 terminals, then the handset makes ID code setting (*) with the base unit.

14.3. Ringer Circuit

If the ringer volume is set to low and an alarm tone is output from 39 pin, IC201 DSP and input to Q209. Then Q208 is turned off. If the ringer volume is set to high, Q208 turns on and results in a louder beep tone.

Circuit Diagram

14.4. Sending Signal

The voice signal from the microphone input to pin 42 (CIDIP) and pin 41 (CIDIN) of IC201 (DSP). CN203 is the headphone jack. When the headphone is connected, the Q206 detect it. The input from the microphone of the handset (CIDIN, CIDIP) is cut and the microphone signal from the headphone is input to pin 47 of IC201 (HMIN). Also the power for the microphone is supplied from Q211, and the power is turned OFF on standby.

Circuit Diagram

14.5. Reception Signal Circuit

The received signal from the base unit is output from pins 33 (SPN) and 32 (SPP) of IC201 (DSP) as the voice signal. SPN is the inverse output of SPP, and the speaker is driven by SPN and SPP. CN203 is the headphone jack. When the headphone is connected to this jack, the output to the speaker of the handset (SPN,SPP) is cut and the voice signal is output to the headphone (HSOUT) only.

Circuit Diagram

15 CPU DATA (Base Unit)

15.1. IC501

Pin	Description	1/O	High	$\mathrm{Hi}-\mathrm{Z}$	Low
1	PCONT	D. 0	pin2=Hiziziligh Power priz $=$ L:	-	min2=Hi:ZLow Pywer cin 2 -L: Sinee Lon Ponee
2	S_LOW	D.O	-	pint1-HH\|ligh Poher pintl: LLow Power	
3	NC	D.O	-	-	-
4	NC	D. 0	-	-	-
5	NC	D. 0	-	-	-
6	NC	D.O	-	-	-
7	NC	D. 0	-	-	-
8	NC	D. 0	-	-	-
9	EP_SDA	D.O	High	-	Low
10	EP_SCL	D.O	High	-	Low
11	EP_WP	D.O	WP	-	Write
12	VCC	VCC	Vcc	-	-
13	GND	GND	-	-	GND
14	NC	D.O	-	-	-
15	BBIC_PWDN	D.O	Not	-	Active
16	RF_RESET	D.O	Normal	-	Reset
17	ATN_DVC	D.O	High	-	Low
18	KEYF	D.O	Active	Not	-
19	NC	D.O	Active	Not	-
20	NC	D.O	Active	Not	-
21	KEYC	D.O	Active	Not	-
22	NC	D. 0	Active	Not	-
23	NC	D. O	Active	Not	-
24	USE_CTL (LBL2)	D. O	RLY Off	-	RLY On
25	SPI_DOUT	D. 1	High	-	Low
26	SPI_EN	D. 0	Not	-	Active
27	SPI_CLK	D.O	High	-	Low
28	GND	GND	-	-	GND
29	SPI_DIN	D.O	High	-	Low
30	NC	D.O	-	-	-
31	GNDPA	GND	-	-	GND
32	SPP	A.O	-	-	-
33	SPN	A.O	-	-	-
34	VCCPA	VCC	VCC	-	-
35	HSOUT	A.O	-	-	-
36	LOUT	A.O	-	-	-
37	VCCA	VCC	VCC	-	-
38	LIN	A. 1	-	-	-
39	LGS	A.O	-	-	-
40	DCIN	A.I	-	-	-
41	CIDIN	A.I	-	-	-
42	CIDIP	A.I	-	-	-
43	CIDO	A.O	-	-	-
44	HMGS	A.O	-	-	-
45	HMIN	A. 1	-	-	-
46	GNDA	GND	-	-	GND
47	HIN	A. 1	-	-	-
48	HGS	A.O	-	-	-
49	VREF	A.O	-	-	-
50	GNDPLL	GND	-	-	GND

Pin	Description	I/O	High	$\mathrm{Hi}-\mathrm{z}$	Low
51	VCCPLL	VCC	VCC	-	-
52	VRTC	VCC	VCC	-	-
53	XOUT	A.O	-	-	-
54	XIN	A. 1	-	-	-
55	GND	GND	-	-	GND
56	RSTN	D. 1	Normal	-	Reset
57	PDN	D. 1	Power On	-	Power Down
58	NC	D.O	-	-	-
59	IRQ TXRX	D. 1	Normal	-	Interrupt
60	CHG	D. 1	Off charge	-	On Charge
61	NC	D.O	-	-	-
62	NC	D.O	-	-	-
63	NC	D. 0	-	-	-
64	BELL	D. 1	High	-	Low
65	(SOUT) INUSE_LED	D. 0	Off	-	On
66	CHARGE LED	D.O	Off	-	On
67	C-ID_LED	D.O	Off	-	On
68	(HS_DET) F/E	D.I	E2PROM	-	FLASH
69	ADPCM BCLK	D. 1	High	-	Low
70	ADPCM SYNC	D. 1	High	-	Low
71	ADPCM_OUT	D. 1	High	-	Low
72	ADPCM IN	D. 0	High	-	Low
73	CHGCTL	D.O	-	Charge	Non Charge
74	GND	GND	-	-	GND
75	VCC	VCC	VCC	-	-
76	KEY5	D. 1	Key In	-	Non
77	KEY6	D.I	Key In	-	Non
78	KEY1	D.I	Key In	-	Non
79	KEY2	D. 1	Key In	-	Non
80	NC	D. 1	-	-	-
81	NC	D.I	-	-	-
82	NC	D.O	-	-	-
83	NC	D.O	-	-	-
84	NC	D.O	-	-	-
85	NC	D.O	-	-	-
86	NC	D.O	-	-	-
87	NC	D.O	-	-	-
88	NC	D.O	-	-	-
89	NC	D.O	-	-	-
90	NC	D.O	-	-	-
91	NC	D.O	-	-	-
92	GND	GND	-	-	GND
93	VCC	VCC	VCC	-	-
94	NC	D.O	-	-	-
95	NC	D.O	-	-	-
96	UART_RX	D. 1	High	-	Low
97	UART_TX	D. 0	High	-	Low
98	NC	D.O	-	-	-
99	RLY (+USECTL)	D.O	On	-	Off
100	NC	D.O	Off	-	On

16 CPU DATA (Handset)

16.1. IC201

Pin	Description	I/O	High	$\mathrm{Hi}-\mathrm{z}$	Low	Pin	Description	I/O	High	$\mathrm{Hi}-\mathrm{z}$	Low
1	EEPROM_CS	D. 0	Active	-	Not	51	VCCPLL	VCC	VCC	-	-
2	LCD_POWER	D.O	Off	-	On	52	VRTC	VCC	VCC	-	-
3	MIC_SW	D. 0	Bias Off	-	Bias On	53	XOUT	A.O	-	-	-
4	LCD_CSB	D. 0	Not	-	Active	54	XIN	A.I	-	-	-
5	LCD_RS	D. 0	Data	-	Instruct	55	GND	GND	-	-	GND
6	LCD_WR	D. 0	Read	-	Write	56	RESET	D.I	Normal	-	Reset
7	LCD RD	D. O	Active	-	Not	57	PDN	D.I	Power On	-	Power Down
8	LCD DR0	D. 0	High	-	Low	58	NC	D. 0	-	-	Normal
9	LCD_DR1	D. 0	High	-	Low	59	IRQ_TXRX	D. 1	Normal	-	Interrupt
10	LCD_DR2	D. 0	High	-	Low	60	NC	D. 0	-	-	Normal
11	LCD_DR3	D. 0	High	-	Low	61	NC	D. 0	-	-	Normal
12	VCC	VCC	Vcc	-	-	62	NC	D. 0	-	-	Normal
13	GND	GND	-	-	GND	63	NC	D. 0	-	-	Normal
14	RF_PW_CTL	D. 0	Off	-	On	64	HEADSET	D. 1	Headset In	-	Non
15	BBIC_PWDN	D. 0	Not	-	Active	65	LCD_B.L	D. 0	On	-	Off
16	EGPIO2 KEY_STROB	D. 0	Active	Not	-	66	NC	D. 0	-	-	Normal
17	LCD RESET	D. 0	Not	-	Reset	67	NC	D.O	-	-	Normal
18	EGPIO4 KEY STROB	D. 0	Active	Not	-	68	LIGHTED LED	D. 0	On	-	Off
19	EGPIO5 KEY_STROB	D. 0	Active	Not	-	69	ADPCM_BCLK	D.I	High	-	Low
20	EGPIO6 KEY_STROB	D. 0	Active	Not	-	70	ADPCM_SYNC	D. 1	High	-	Low
21	EGPIO7 KEY_STROB	D. 0	Active	Not	-	71	ADPCM_OUT	D. 1	High	-	Low
22	EGPIO8 KEY_STROB	D. 0	Active	Not	-	72	ADPCM_IN	D. 0	High	-	Low
23	EGPIO9 KEY_STROB	D. 0	Active	Not	-	73	RF_RESET	D. 0	Normal	-	Reset
24	NC	D. 0	-	-	-	74	GND	GND	-	-	GND
25	SPI_DOUT	D.I	High	-	Low	75	VCC	VCC	VCC	-	-
26	SPI_EN	D. 0	Not	-	Active	76	CD15	D. 1	Key In	-	Non
27	SPI CLK	D.O	High	-	Low	77	CD14	D.I	Key In	-	Non
28	GND	-	-	-	GND	78	CD13	D.I	Key In	-	Non
29	SPI_DIN	D. O	High	-	Low	79	CD12	D.I	Key In	-	Non
30	ALARM V VOL	D. 0	Off	-	On	80	NC	D. 0	-	-	Normal
31	GNDPA	GND	-	-	GND	81	CHG	D. 1	Off Charge	-	On Charge
32	SPP	A.O	-	-	-	82	S LOW			Pin $83=\mathrm{H}$: High Power	P82 = Hizz: Low Power
33	SPN	A.O	-	-	-	82	S_LOW	0.0	$\square-$	Pin $83=$ L:	P82 =L: Super Low Power
34	VCCPA	VCC	VCC	-	\cdot	83	PCONT	D.O	Pin 82 = Hi.z: High Power Fin $82=L \cdot$ Super Low Fower	-	Super Low Power
35	HSOUT	A.O	-	-	-	84	NC	D. 0	-	-	Normal
36	LOUT	A.O	-	-	-	85	NC	D. 0	-	-	Normal
37	VCCA	VCC	VCC	-	-	86	NC	D.O	-	-	Normal
38	LIN	A.I	-	-	-	87	NC	D.O	.	-	Normal
39	LGS	A.O	-	-	-	88	NC	D.O	-	-	Normal
40	DCIN	A. 1	-	-	-	89	NC	D.O	-	-	Normal
41	CIDIN	A. 1	-	-	-	90	NC	D.O	-	-	Normal
42	CIDIP	A.I	-	-	-	91	NC	D. 0	-	-	Normal
43	CIDO	A.O	-	-	-	92	GND	GND	-	-	GND
44	HMGS	A.O	-	-	-	93	VCC	VCC	VCC	-	-
45	HMIN	A.I	-	-	,	94	VCC	VCC	VCC	-	-
46	GNDA	GND	-	-	GND	95	GND	GND	-	-	GND
47	MIN	A.I	-	-	-	96	UART_RX	D.I	High	-	Low
48	MGS	A. O	-	-	-	97	UART_TX	D. 0	High	.	Low
49	VREF	A.O	-	-	-	98	EEPROM_CLK	D. 0	High	-	Low
50	GNDPLL	GND	-	-	GND	99	EEPROM_DI	D.O	High	\cdot	Low
						100	EEPROM DO	D. 1	High	-	Low

17 EXPLANATION OF IC TERMINALS (RF Unit, Base Unit)

17.1. IC101

Pin	Description	I/O
1	SUBVCO	GND
2	VDDRFVCO	VCC
3	GNDRFVCO	GND
4	GNDRFPA	GND
5	VDDRFPA	VCC
6	GNDRFPA	GND
7	GNDRFPO	GND
8	RF ION	I/O
9	RF IOP	I/O
10	GNDRFIO	GND
11	GNDRFSUB	GND
12	ESDRING	GND
13	VDDRFLNA	VCC
14	GNDPABIAS	GND
15	RBIAS	I
16	ROCS	I
17	COSC	I
18	GNDBIAS	GND
19	VDDBIAS	VCC
20	GNDMX	GND
21	VDDMX	VCC
22	VDDAF	VCC
23	GNDAF	GND
24	TP3	O
25	VDDSCFAD	VCC
26	GNDSCFAD	GND
27	VREFADP	VCC
28	VREFADN	I
29	SOFT_DIG_VDD	VCC
30	SPIDOUT	D.O
31	SPIDIN	D.I
32	SOFT_DIG_GND	GND

Pin	Description	I/O
33	TXENOUT	D.O
34	SPICLK	D.I
35	SPIENB	D.I
36	RESET	D.I
37	PWRDWN	D.I
38	MCLKOUT	0
39	VDDPAD	VCC
40	GNDPAD	GND
41	SUBPAD	GND
42	TP6	D.O
43	RXENOUT	D.O
44	PCMBCLK	D.O
45	PCMSYNC	D.O
46	RXADPCM	D.O
47	TXADPCM	D.I
48	TP7	D.O
49	IRQ	D.O
50	TESTEN	D.I
51	XUBDMD	GND
52	GNDDMD	GND
53	VDDDMD	VCC
54	LQA	D.O
55	BATMON	I
56	VDDXO	VDD
57	XTALIN	I
58	XTALO	O
59	GNDXO	GND
60	TP8	D.I
61	GNDSYN	GND
62	VDDSYN	VCC
63	PLLRC	O
64	PLLVR	I

18 HOW TO REPLACE FLAT PACKAGE IC

18.1. Preparation

- SOLDER

Sparkle Solder 115A-1, 115B-1 or Almit Solder KR-19, KR19RMA

- Soldering iron

Recommended power consumption will be between 30 W to 40 W .
Temperature of Copper Rod $662 \pm 50^{\circ} \mathrm{F}\left(350 \pm 10^{\circ} \mathrm{C}\right)$
(An expert may handle between 60 W to 80 W iron, but beginner might damage foil by overheating.)

- Flux

HI115 Specific gravity 0.863
(Original flux will be replaced daily.)

18.2. Procedure

1. Temporary fix FLAT PACKAGE IC by soldering on two marked 2 pins.

-

Temporary soldering point.
*Most important matter is accurate setting of IC to the corresponding soldering foil.
2. Apply flux for all pins of FLAT PACKAGE IC.

3. Solder employing specified solder to direction of arrow, as sliding the soldering iron.

18.3. Modification Procedure of Bridge

1. Re-solder slightly on bridged portion.
2. Remove remained solder along pins employing soldering iron as shown in below figure.

20 CABINET AND ELECTRICAL PARTS (Handset)

KX-TG2559LBS

21 ACCESSORIES AND PACKING MATERIALS

22 REPLACEMENT PARTS LIST

This replacement parts list are Brazil version only. Note:

1. RTL (Retention Time Limited)

The marking ($R T L$) indicates that the Retention Time is limited for this item.
After the discontinuation of this assembly in production, the item will continue to be available for a specific period of time. The retention period of availability is dependent on the type of assembly, and in accordance with the laws governing part and product retention.
After the end of this period, the assembly will no longer be available.
2. Important safety notice

Components identified by a $₫$ mark special characteristics important for safety. When replacing any of these components, use only manufacture's specified parts.
3. The S mark indicates service standard parts and may differ from production parts.
4. RESISTORS \& CAPACITORS

Unless otherwise specified;
All resistors are in ohms $(\Omega) \mathrm{K}=1000 \Omega, \mathrm{M}=1000 \mathrm{k} \Omega$
All capacitors are in MICRO FARADS ($\mu \mathrm{F}$) $\mathrm{P}=\mu \mu \mathrm{F}$
*Type \& Wattage of Resistor

Type

ERC:Solid ERD:Carbon PQRD:Carbon		ERX:Metal Film ERG:Metal Oxide ER0:Metal Film		PQ4R:Carbon ERS:Fusible Resistor ERF:Cement Resistor		
Wattege						
10,16:1/8W	14,25:1/4W	V 12:1/2W		1:1W	2:2W	3:3W
*Type \& Voltage of Capacitor Type						
ECFD:Semi-Conductor ECQS:Styrol PQCUV:Chip ECQMS:Mica		ECCD,ECKD,ECBT,PQCBC:Ceramic ECQE,ECQV,ECQG:Polyester ECEA,ECSZ:Electlytic ECQP:Polypropylene				
Voltage						
ECQ Type	ECQG ECQV Type	ECSZ Type	Others			
1H:50V	$\begin{gathered} 05: 50 \mathrm{~V} \\ 1: 100 \mathrm{~V} \\ 2: 200 \mathrm{~V} \end{gathered}$	0F:3.15V 1A:10V $1 \mathrm{~V}: 35 \mathrm{~V}$ $0 \mathrm{~J}: 6.3 \mathrm{~V}$	OJ	:6.3V		:35V
2A:100V				:10V	50,1H	:50V
2E:250V				:16V	1 J	:63V
2H:500V				5:25V	2A	:100V

22.1. Base Unit

22.1.1. CABINET AND ELECTRICAL PARTS

Ref. No.	Part No.	Part Name \& Description	Remarks
1	PQBC10333Z1	LOCATOR BUTTON	S
2	PQGB7Y	BADGE	
3	PQGT14750Z	NAME PLATE	
4	PQHR10845Z	LED LENS	
5	PQKE10333Z1	HOOK LEVER	S
6	PQSA10109Y	ANTENNA	

Ref. No.	Part No.	Part Name \& Description	Remarks
7	PQSA10110Y	ANTENNA	
8	PQYF10195W1	LOWER CABINET	S
9	PQYM10111W2	UPPER CABINET	S
10	PQZHTG2583BH	CHARGE TERMINAL ASS 'Y	

22.1.2. MAIN P.C. BOARD PARTS

Ref.	Part No.	Part Name \& Description	Remarks
PCB1	PQWPG2559LBH	MAIN P.C. BOARD ASS'Y (RTL)	
		(ICS)	
IC301	PQVIXCF4502P	IC	S
IC331	PQVIPS3432UT	IC	S
IC501	C2HBBJ000007	IC	
IC551	PQWIG2559LBH	IC	
IC741	PQVITC7S08FU	IC	S
IC751	PQVITC7W74U	IC	S
IC761	PQVISPM3204T	IC	S
		(TRANSISTORS)	
Q101	2SD1819A	TRANSISTOR(SI)	
Q115	2SD1819A	TRANSISTOR(SI)	
Q121	2SA1625	TRANSISTOR(SI)	S
Q122	PQVT2N6517CA	TRANSISTOR(SI)	S
Q131	2SC2120	TRANSISTOR(SI)	S
Q311	2SD2136	TRANSISTOR (SI)	
Q321	2SD1819A	TRANSISTOR (SI)	
Q341	2SD1819A	TRANSISTOR(SI)	
Q342	2SD1819A	TRANSISTOR(SI)	
Q343	2SD1819A	TRANSISTOR (SI)	
Q371	2SD2136	TRANSISTOR (SI)	
Q381	2SD1819A	TRANSISTOR(SI)	
Q445	2SD1819A	TRANSISTOR (SI)	
Q461	2SD1819A	TRANSISTOR (SI)	
Q551	2SD1819A	TRANSISTOR(SI)	
Q601	2SD1994A	TRANSISTOR (SI)	
Q611	2SD1994A	TRANSISTOR (SI)	
Q621	2SD2137	TRANSISTOR (SI)	
		(DIODES)	
D101	PQVDS1ZB60F1	DIODE (SI)	S
D103	MA111	DIODE (SI)	
D117	MA111	DIODE (SI)	
D118	MA111	DIODE (SI)	
D121	PQVDRLZ20A	DIODE (SI)	S
D131	PQVDRLZ2R0	DIODE (SI)	S
D311	MA8075	DIODE (SI)	
D321	MA111	DIODE (SI)	
D331	MA8036H	DIODE (SI)	
D371	MA111	DIODE (SI)	
D376	MA8220	DIODE (SI)	
D377	MA8220	DIODE (SI)	
D445	MA153	DIODE (SI)	
D509	PQVDHRU0203A	DIODE (SI)	S
D515	MA111	DIODE (SI)	
D519	MA111	DIODE (SI)	
D521	PQVDHRU0203A	DIODE (SI)	S
D611	MA8043	DIODE (SI)	
D621	MA8082	DIODE (SI)	
D741	MA111	DIODE (SI)	
D751	MA111	DIODE (SI)	
		(LEDS)	
LED541	LNJ308G8JRA	LED	
LED542	PQVDEL1921SR	LED	
LED543	PQVDEL1921SR	LED	
		(COILS)	
L101	PQLQXF330K	COIL	S
L102	PQLQXF330K	COIL	S
L501	PFVF2P221SG	COIL	
L515	PQLQR2K1A102	COIL	
		(SURGE ABSORBERS)	
SA101	PQVDDSS301L	SURGE ABSORBERS	S
SA102	PQVDDSS301L	SURGE ABSORBERS	S
		(OTHERS)	
CN101	PQJJ2H003Z	DC-TEL	S

Ref. No.	Part No.	Part Name \& Description	Remarks
$\times 501$	PQVCK4096N9Z	CRyStal OSCILLATOR	s
G601	PQJT10152Z	BATTERY TERMINAL	
G602	PQJT10152Z	BATTERY TERMINAL	
G603	PQJT10152Z	BATTERY TERMINAL	
G604	PQJT10152Z	BATTERY TERMINAL	
G605	PQJT10152Z	BATTERY TERMINAL	
G606	PQJT10152Z	BATTERY TERMINAL	
P101	PQRPAR390N	POSISTOR	s
S546	EVQPC005K	PUSH SWITC	
		(RESISTORS)	
R103	ERJ3GEYJ104	100k	
R104	ERJ3GEYJ104	100k	
R106	ERJ3GEYJ472	4.7k	
R107	ERJ3GEYJ473	47k	
R111	ERJ3GEYJ394	390k	
R112	ERJ3GEYJ394	390k	
R113	ERJ3GEYJ472	4.7k	
R115	ERJ3GEYJ125	1.2M	
R116	ERDS1VJ106	10M	
R117	ERJ3GEYJ335	3. 3M	
R118	ERJ3GEYJ102	1k	
R121	ERJ3GEYJ104	100k	
R122	ERJ3GEYJ103	10k	
R123	ERJ3GEYJ153	15k	
R124	ERJ3GEYJ473	47k	
R128	ERJ3GEYJ103	10k	
R132	ERJ3GEYJ393	39k	
R133	ERJ3GEYJ102	1k	
R134	ERJ3GEYORO0	0	
R136	ERDS1TJ330	33	s
R138	ERJ3GEYJ470	47	
R139	ERJ3GEYJ122	1.2k	
R140	ERJ3GEYJ821	820	
R311	ERD25TJ221	220	s
R331	ERJ3GEYJ273	27k	
R332	ERJ3GEYJ683	68k	
R333	ERJ3GEYJ103	10k	
R335	ERJ3GEYJ561	560	
R336	ERJ3GEYJ563	56k	
R341	ERJ3GEYJ473	47k	
R342	ERJ3GEYJ224	220k	
R344	ERJ3GEYJ104	100k	
R345	ERJ3GEYJ224	220k	
R371	ERJ3GEYJ121	120	
R372	ERJ3GEYJ561	560	
R373	ERJ3GEYJ390	39	
R374	ERJ3GEYJ220	22	
R375	ERJ3GEYJ220	22	
R376	ERJ3GEYJ220	22	
R377	ERDS1TJ221	220	S
R378	ERDS1TJ221	220	S
R381	ERJ3GEYJ563	56k	
R382	ERJ3GEYJ563	56k	
R383	ERJ3GEYJ103	10k	
R384	ERJ3GEYJ104	100k	
R411	ERJ3GEYJ224	220k	
R412	ERJ3GEYJ224	220k	
R413	ERJ3GEYJ103	10k	
R414	ERJ3GEYJ103	10k	
R415	ERJ3GEYJ473	47k	
R431	ERJ3GEYJ222	2.2k	
R433	ERJ3GEYJ393	39k	
R442	ERJ3GEYJ682	6.8k	
R443	ERJ3GEYJ103	10k	
R444	ERJ3GEYJ332	3.3k	
R445	ERJ3GEYJ564	560k	
R446	ERJ3GEYJ105	1M	
R447	ERJ3GEYJ151	150	
R448	ERJ3GEYJ222	2.2k	
R449	ERJ3GEYJ102	1k	
R451	ERJ3GEYJ103	10k	
R461	ERJ3GEYJ150	15	
R462	ERJ3GEYJ392	3.9k	

Ref. No.	Part No.	Part Name \& Description	Remarks
R464	ERJ3GEYJ474	470k	
R465	ERJ3GEYJ390	39	
R516	ERJ3GEY0R00	0	
R521	ERJ3GEYOR00	0	
R541	ERJ3GEYJ151	150	
R542	ERJ3GEYJ331	330	
R543	ERJ3GEYJ471	470	
R546	ERJ3GEYJ472	4.7k	
R551	ERJ3GEYJ274	270k	
R553	ERJ3GEYJ103	10k	
R554	ERJ3GEYJ103	10k	
R559	ERJ3GEYJ104	100k	
R593	ERJ3GEYJ472	4.7k	
R611	ERJ3GEYJ221	220	
R621	ERJ3GEYJ471	470	
R658	ERJ3GEYJ180	18	
R659	ERJ3GEYJ221	220	
R660	ERJ3GEYJ821	820	
R664	ERJ3GEYJ180	18	
R666	ERJ3GEYJ180	18	
R751	ERJ3GEYJ103	10k	
R753	ERJ3GEYJ104	100k	
R754	ERJ3GEYJ104	100k	
		(CAPACITORS)	
C101	ECKD2H681KB	680p	s
C102	ECKD2H681KB	680p	s
C103	PQCUV1H154KR	0.15	
C104	PQCUV1H154KR	0.15	
C106	PQCUV1A684KB	0.68	
C111	ECKD2H681KB	680p	s
C112	ECKD2H681KB	680p	s
C115	ECUV1H103KBV	0.01	
C121	ECUV1H103KBV	0.01	
C131	ECUV1H101JCV	100p	
C132	ECUV1H103KBV	0.01	
C134	ECEA1HKS100	10	S
C139	ECEA1CKA100	10	
C140	ECUV1C473kBV	0.047	
C301	ECUV1H103KBV	0.01	
c302	ECUV1C104zFV	0.1	
C303	ECUV1C104zFV	0.1	
C304	ECEA1CKA100	10	
с306	ECEA1AU221	220	
c308	ECUV1H103kBV	0.01	
C311	ECEA1CKA100	10	
C333	ECUV1H103kBV	0.01	
C341	ECUV1H102KBV	0.001	
C342	ECUV1H102KBV	0.001	
C344	ECUV1C104zFV	0.1	
C345	ECUV1C104KBV	0.1	
C371	ECUV1C104zFV	0.1	
C373	ECUV1H103KBV	0.01	
C383	ECUV1H103KBV	0.01	
C411	ECUV1H331JCV	330p	
C412	ECUV1A105ZFV	1	
C413	ECUV1H331JCV	330p	
C414	ECEA1CKA100	10	
C415	ECUV1A105ZFV	1	
C431	ECUV1H272KBV	0.0027	
C432	ECUV1C104KBV	0.1	
C440	ECUV1H100DCV	10p	S
C441	ECUV1A224KBV	0.22	
C442	ECUV1C683KBV	0.068	
C443	ECuV1H101JCV	100p	
C444	ECUV1C104KBV	0.1	
C445	ECEA1CKA100	10	
C448	ECUV1C473kBV	0.047	
C449	ECUV1C104KBV	0.1	
C451	ECUV1C473KBV	0.047	
C452	ERJ3GEY0R00	0	
C461	ECUV1C104zFV	0.1	
C464	ECuV1H101JCV	100p	
C467	ECUV1H070CCV	7p	

Ref. No.	Part No.	Part Name \& Description	Remarks
C501	ECEA0JU102	1000	
C502	ECUV1C104ZFV	0.1	
C503	ECUV1C104ZFV	0.1	
C504	ECUV1C104ZFV	0.1	
C505	ECUV1C104 ZFV	0.1	
C506	ECUV1H080CCV	8p	
C507	ECUV1H050CCV	5p	
C508	ECUV1H332KBV	0.0033	
C511	ECUV1H152KBV	0.0015	
C513	ECUV1C104 ZFV	0.1	
C515	ECEA1CKS220	22	S
C516	ECUV1C104 ZFV	0.1	
C521	ECEA1AU101	100	S
C522	ECUV1C104 ZFV	0.1	
C525	ECUV1C104 ZFV	0.1	
C526	ECUV1H332KBV	0.0033	
C551	ECUV1C104 ZFV	0.1	
C601	ECEA1AU101	100	S
C603	ECUV1C104 ZFV	0.1	
C611	ECEA1AU101	100	S
C613	ECEA1AU101	100	S
C614	ECUV1C104 ZFV	0.1	
C621	ECEA1EU101	100	S
C631	ECUV1H103KBV	0.01	
C654	ECUV1C104 ZFV	0.1	
C657	ECUV1H680JCV	68p	
C663	ECUV1H680JCV	68p	
C665	ECUV1H680JCV	68p	
C741	ECUV1C104ZFV	0.1	
C751	ECUV1H100DCV	10p	S
C752	ECUV1H100DCV	10p	S
C753	ECUV1C104 ZFV	0.1	
C760	ECUV1H070CCV	7p	
C761	ECUV1H070CCV	7p	
C763	ECUV1H070CCV	7p	
C764	ECUV1H070CCV	7 p	

22.1.3. RF P.C. BOARD PARTS

Ref. No.	Part No.	Part Name \& Description	Remarks
PCB2	PQLP10243Z	RF BLOCK	

22.2. Handset

22.2.1. CABINET AND ELECTRICAL PARTS

Ref. No.	Part No.	Part Name \& Description	Remarks
101	PQADGP0831GN	LIQUID CRYSTAL DISPLAY	S
102	PQAX2P07Z	SPEAKER	
103	PQBC10335Z1	NAVI KEY BUTTON	S
104	PQGT14751Z	NAME PLATE	
105	PQHE10119Z	CUSHION , URETHANE FORM	
106	PQHG10620Z	PACKING RUBBER , BATTERY CO	
107	PQHG10621Z	RINGER RUBBER	
108	PQHG10630Z	PACKING RUBBER	
109	PQHR10727Z	LCD PLATE	
110	PQHR10739Z	SPEAKER HOLDER	
111	PQHR10850Z	LCD HOLDER	
112	PQHS10384Z	PACKING SHEET, RINGER	
113	PQHS10386Z	PACKING SHEET, MIC	
114	PQHS10461Z	PACKING SHEET, SPEAKER	
115	PQHS10484Z	PACKING SHEET, EARPHONE CAP	
116	PQHS10485Z	CUSHION, SPEAKER	
117	PQHX10862Z	LCD COVER SHEET	S
118	PQHX10934Z	SHEET	S
119	PQHX10959Z	RF SPONGE	
120	PQJT10175Z	CHARGE TERMINAL	
121	PQKE10128Z1	EARPHONE CAP	
122	PQKE10129Z1	COVER	

Ref. No.	Part No.	Part Name \& Description	Remarks
123	PQP510SVC	BATTERY	S
124	PQQT22262Z	CHARGE LABEL	
125	PQSA10120U	ANTENNA	
126	PQSX10171Z	RUBBER SWITCH	S
127	PQKF10514Z2	LOWER CABINET	S
128	PQKK10117Z2	BATTERY COVER	
129	PQHG10629Z	RUBER, BATTERY	
130	PQYMG2553BXS	FRONT CABINET ASS'Y	

22.2.2. MAIN P.C. BOARD PARTS

Ref. No.	Part No.	Part Name \& Description	Remarks
PCB100	PQWPG2559LBR	MIAN P.C BOARD ASS'Y (RTL)	
		(ICS)	
IC201	C2HBBH000025	IC	
IC202	PQWIG2559LBR	IC	
IC203	PQVIC62FP33M	IC	s
IC204	PQVIXCP3302M	IC	s
IC205	PQVIC61CN32N	IC	S
		(TRANSISTORS)	
Q201	PQVTDTC143E	TRANSISTOR(SI)	s
Q202	PQVTDTC143E	TRANSISTOR(SI)	s
Q203	PQVTDTA143TU	TRANSISTOR(SI)	
Q204	2SA17972	TRANSISTOR(SI)	S
Q205	2SD1819A	TRANSISTOR(SI)	
Q206	PQVTDTC143E	TRANSISTOR(SI)	S
Q207	2SD1819A	TRANSISTOR(SI)	
Q208	PQVTD123T146	TRANSISTOR(SI)	S
Q209	PQVTD123T146	TRANSISTOR(SI)	S
Q210	UN521	TRANSISTOR(SI)	
Q211	PQVTDTA143TU	TRANSISTOR(SI)	
		(DIODES)	
D203	MA111	DIODE (SI)	
D212	MA8150	DIODE (SI)	
D213	MA8150	DIODE (SI)	
D214	PQVD1SR154	DIODE (SI)	S
D215	MA2ZD1400	DIODE (SI)	
D216	PQVD1SR154	DIODE (SI)	S
		(LEDS)	
LED201	PQVDSML310MT	LED	S
LED202	PQVDSML310MT	LED	S
LED203	PQVDSML310MT	LED	S
LED204	PQVDSML310MT	LED	S
LED205	LNJ308G8JRA	LED	
LED206	LNJ308G8JRA	LED	
LED207	LNJ308G8JRA	LED	
		(COILS)	
L204	PQLQR3FL121	COIL	S
L205	PQLQR3FL121	COIL	S
		(CONNECTORS)	
CN201	PQJS22B11Z	CONNECTOR	
CN202	PQJP2D13Z	FPC CONNECTOR	S
CN203	PQJJ1J007z	EAR JACK	S
		(OTHERS)	
E101	PQJM146Y	MICROPHONE	
E102	PQEFBC12111B	RINGER	S
$\times 201$	PQVCI4096N3Z	CRYSTAL OSCILLATOR	
G1	PQJT10152Z	CHARGE TERMINAL	
G2	PQJT10152Z	CHARGE TERMINAL	
G3	PQJT10152Z	CHARGE TERMINAL	
G4	PQJT10152Z	CHARGE TERMINAL	
G5	PQJT10152Z	CHARGE TERMINAL	
G6	PQJT10152z	CHARGE TERMINAL	
		(RESISTORS)	
R201	ERJ3GEYJ331	330	
R202	ERJ3GEYJ331	330	
R203	ERJ3GEYJ331	330	
R204	ERJ3GEYJ331	330	
R205	ERJ3GEYJ101	100	
R206	ERJ3GEYJ101	100	
R207	ERJ3GEYJ101	100	
R209	ERJ3GEYJ102	1 k	

Ref.	Part No.	Part Name \& Description	Remarks
R210	ERJ3GEYJ104	100k	
R211	ERJ3GEYJ104	100k	
R212	ERJ3GEYJ101	100	
R213	ERJ3GEYJ101	100	
R217	ERJ3EKF4533	453k	
R218	ERJ3GEYF824	820k	s
R220	ERJ3GEYJ474	470k	
R221	ERJ3GEYJ103	10k	
R222	ERJ3GEYJ101	100	
R223	ERJ3GEYOROO	0	
R224	ERJ3GEYJ103	10k	
R225	ERJ3GEYJ472	4.7 k	
R226	ERJ3GEYJ103	10k	
R227	ERJ3GEYJ473	47k	
R228	ERJ3GEYJ224	220k	
R229	ERJ3GEYJ102	1k	
R230	ERJ3GEYJ102	1k	
R231	ERJ3GEYJ102	1k	
R232	ERJ3GEYJ103	10k	
R233	ERJ3GEY0R00	0	
R234	ERJ3EKF2204	2.2M	
R235	ERJ3EKF2204	2.2M	
R236	ERJ3GEYJ473	47 k	
R241	ERJ3GEYOROO	0	
R242	ERJ3GEYJ180	18	
R243	ERJ3GEYJ180	18	
R244	ERJ3GEYJ473	47k	
R245	ERJ3GEYJ103	10k	
R246	ERJ3GEYJ153	15k	
R247	ERJ3GEYJ391	390	
R248	ERJ3GEYJ393	39k	
R249	ERJ3GEYJ222	2.2k	
R250	ERJ3GEYJ222	2.2k	
R251	ERJ3GEYJ120	12	
R252	ERJ3GEYJ820	82	
R253	ERJ3GEYJ222	2.2k	
R260	ERJ3GEYJ103	10k	
R263	ERJ3GEYJ104	100k	
R264	ERJ3GEYJ103	10k	
R265	ERJ3GEYJ103	10k	
R266	ERJ3GEYJ105	19	
R270	ERJ3GEYJ104	100k	
R271	ERJ3GEYOROO	0	
R272	ERJ3GEYJ105	1M	
R273	ERJ3GEYOR00	0	
R274	ERJ3GEYOROO	0	
R275	ERJ3GEYOROO	0	
		(CAPACITORS)	
C203	ECUV1C104zFV	0.1	
C205	ECUV1H101JCV	100p	
C206	ECUV1C104KBV	0.1	
C207	ECUV1C104KBV	0.1	
C208	ECUV1C104KBV	0.1	
C209	ECUV1C104KBV	0.1	
C210	ECUV1C104KBV	0.1	
C211	ECUV1A474KBV	0.47	
C212	ECUV1A474KBV	0.47	
C213	ECEV1AA221	220	
C214	ECUV1H103KBV	0.01	
C215	ECUV1A474KBV	0.47	
C217	ECUV1C104zFV	0.1	
C218	ECUV1C104zFV	0.1	
C219	ECUV1H470JCV	47p	
C220	ECEV0JA101	100	
C221	ECUV1C104zFV	0.1	
C222	ECUV1C104zFV	0.1	
C223	ECST0JY106	10	
C224	ECUV1C104zFV	0.1	
C226	ECUV1C104zFV	0.1	
C227	ECUV1H470JCV	47p	
C228	ECUV1C104zFV	0.1	
C229	ECUV1C104zFV	0.1	
C230	ECUV1C104KBV	0.1	

Ref. No.	Part No.	Part Name \& Description	Remarks
C231	ECUV1A224KBV	0.22	
C232	ECUV1C104KBV	0.1	
C233	ECUV1C104zFV	0.1	
C234	ECUV1A224KBV	0.22	
C236	ECUV1H060DCV	6p	s
C237	ECUV1H060dCV	6p	s
C239	ECUV1H103KBV	0.01	
C249	ECST0GY226	22	
C255	ECUV1A224KBV	0.22	
C267	ECST0JY226	22	
C270	ECST0JY475	4.7	
C274	ECUV1C104zFV	0.1	
C280	ECUV1C104zFV	0.1	
C283	ECUV1A105zFV	1	
C290	ECUV1H102KBV	0.001	
C291	ECUV1H102KBV	0.001	
C294	ECUV1H103KBV	0.01	
c296	ECUV1C104zFV	1	
C297	ECUV1C104zFV	0.1	
c298	ECUV1A105ZFV	1	

22.2.3. RF P.C. BOARD PARTS

Ref. No.	Part No.	Part Name \& Description	Remarks
PCB200	PQLP10244Z	RF BLOCK	

22.3. ACCESSORIES AND PACKING MATERIALS

Ref. No.	Part No.	Part Name \& Description	Remarks
A1	PQJA10075Z	TEL CORD	
A2	PQKE10127Z1	BELT CLIP	S
A3	PQKL10038Y3	WALL MOUNT ADAPTOR	S
A4	PQLV17LBZ	AC ADAPTOR	©
A5	PQQX13104Z	INSTRUCTION BOOK	
P1	XZB21X35A03	PROTECTION COVER (For Base unit)	
P2	XZB10X35A02	PROTECTION COVER (for Handset)	
P3	PQPK13456Z	GIFT BOX	

23 FOR SCHEMATIC DIAGRAM

23.1. Base Unit (SCHEMATIC DIAGRAM (Base Unit))

Notes:

1. DC voltage measurements are taken with voltmeter from the negative voltage line.

Important Safety Notice:
Components identified by \triangle mark have special characteristics important for safety. When replacing any of these components, use only the manufacturer's specified parts.
2. This schematic diagram may be modified at any time with the development of new technology.

23.2. Handset (SCHEMATIC DIAGRAM (Handset))

Notes:

1. DC voltage measurements are taken with an oscilloscope or a tester with a ground.
2. The schematic diagrams and circuit board may be modified at any time with the development of new technology.

Kx-TG2559LBS

23.3. MEMO

24 SCHMATIC DIAGRAM (RF UNIT)

24.1. Base Unit and Handset

9.0 .9
10.9
$\pi \quad \pi \quad \pi u_{i-0}$ Shield Shield

25 SCHEMATIC DIAGRAM (Base Unit)

26 SCHEMATIC DIAGRAM (Handset)

 $\stackrel{\aleph}{\aleph}$ \qquad TG2559LBS: SCHEMATIC DIAGRAM (Handset)

KX-TG2559LBS

27 CIRCUIT BOARD (RF Unit)

27.1. RF Unit Reference Drawing (Base Unit and Handset)

28 CIRCUIT BOARD (Base Unit)

28.1. Component View

29 CIRCUIT BOARD (Handset)

29.1. Component View

