
hands-on fpga

56 elektor electronics - 11/2006

Most prototyping systems use an RS232 link to send and
receive data. This link normally goes to a PC running a
terminal emulator program. The user thus uses the monitor
of the PC as the actual output device and the keyboard as
the input device.

You can dispense with the PC if you connect a monitor
and keyboard directly to the prototyping board.

PS/2
Until recently, PC keyboards were always connected to
the PC via the PS/2 bus. The FPGA prototyping board
also has two PS/2 ports. Besides the power supply lines,
a PS/2 port has a data line and a clock line. Both of the
these lines are bi-directional, and here they are connected
directly to several pins of the FPGA on the circuit board.
Data is transmitted from a device (such as a keyboard)
to the host (in this case the FPGA) as follows. First, the
device transmits a start bit. The start bit is always a 0. It
then sends the eight data bits starting with the least signifi-
cant bit. Next comes a parity bit with odd parity, which
means the parity bit is a 1 if an even number of 1 bits are
present in the transmitted byte. Finally there is a stop bit,
which is always a 1.
The clock signal for the transmission is generated by the
device. The signal level on the data line changes only
when the clock signal is high (see Figure 1).

From host to device
Communication from the host to the device is somewhat
more complicated. First, the host must indicate that it
wants to transmit data. It does this by setting the clock
line low, which terminates any communication that may
already be in progress. After a brief delay, it sets the data
line low. Finally, it sets the clock line high again.
As a result, the device knows that the host will be trans-
mitting data. In response to this, the device generates a
clock signal. The host then sends one data bit for each
clock pulse. This starts with a start bit (0) followed by

eight data bits. These data bits are also sent starting with
the least significant bit. The next bit is a parity bit (odd).
Finally, the host sends a stop bit (1), but the communica-
tion session is not yet complete. The final action is that the
device sends an 0 as an acknowledgement (ACK) if the
data was received correctly (see Figure 2).

Software versus hardware
Of course, it is possible to implement the PS/2 protocol in
software. This approach was taken with the I2C bus in a
previous instalment. A disadvantage of this method is that
the processor must spend some of its time processing the
signals. It also doesn’t make the software any simpler.
An alternative approach is to design a hardware inter-
face that looks after generating and processing the sig-
nals. Here we describe how the PS/2 interface can be
implemented in hardware. With a hardware interface,
the microcontroller (8051) does not have to be concerned
with the details of how the PS/2 interface works.
Before examining the hardware the implementation
of the PS/2 interface, let’s have a look at the T8052
microcontroller.

T8052
We’ve already used the T51 softcore processor several
times in this course. The microcontroller consists of a proc-
essor portion called T51 and several peripheral devices,
such as a UART, timers, and so on. Like every MCS51
processor, the T51 uses a special system bus to drive the
peripheral devices. The registers on this bus are called
Special Function Registers (SFRs). The original microcon-
troller (8051) did not use all available addresses. This
was done intentionally to allow room for other periph-
eral devices. This possibility can be used to add a PS/2
interface to the microcontroller as shown in our ex17
example.

The code in T51_Glue.VHDL looks after decoding the ad-
dresses of the SFRs. We add the following lines here:

Part 6: connecting a keyboard
Paul Goossens and Andreas Voggeneder (FH Hagenberg)

You no doubt have an old PS/2 keyboard gathering dust somewhere. Now you can put it to
good use again as an input device for the FPGA prototyping board. This instalment of our
FPGA course tells you how.

FPGA Course (6)

5711/2006 - elektor electronics

Example
The first example of how to use the PS/2 interface is
ex17. Start by connecting a keyboard to the connector
labelled ‘KEYBOARD’, and then use the accompanying
configuration file to configure the FPGA.
If everything goes as it should, a message will appear on
the LCD. From now on, all data sent by the keyboard will

Figure 1. Data transmission from the device to the host. The upper trace shows the clock signa

This bit of code makes register PS2_DATA available at
SFR address 0xD9. Register PS2_CTRL_STAT is available
at address 0xD8.

PS/2 interface
The actual PS/2 interface is described in PS2Keyboard-
a.VHDL. The interface with the SFR bus is defined starting
with line 218. Line 218 is part of a process that is evalu-
ated on a rising clock edge. If a rising clock edge occurs
when data_wr_i is high, the content provided by the proc-
essor is loaded into register CmdReg. In addition, a 1 is
loaded into bit 8 (which is the ninth bit!).

If ctrl_stat_wr_i is high, several registers are loaded with
the corresponding bits present on the data bus. As you
can clearly see, the interface is returned to the quiescent
stat if bit 7 is a 1. It waits for data from the device when
it is in this state.

The content of SFR_Data_o is read by the processor in
case of a read operation. Line 236 causes the content of
the internal DataReg register to be passed if it is selected
by the data_sel_i signal. Otherwise the content of the sta-
tus register is passed.
The actual data transfer to the processor is handled by the
T8051.VHDL file.

The remainder of the PS2Keyboard-a.VHD file describes
the communication between the FPGA and the PS/2 bus.
The comments in the source code should make it reasona-
bly easy to understand how this works. If you can’t figure
it out, you can always use the simulator to examine the
interactions between the internal signals.

 ps2_data_sel <= ‘1’ when IO_Addr = “1011001” else ‘0’; -- 0xD9
 ps2_data_wr <= ‘1’ when IO_Addr_r = “1011001” and IO_Wr = ‘1’ else ‘0’; -- 0xD9
 ps2_ctrl_stat_sel <= ‘1’ when IO_Addr = “1011000” else ‘0’; -- 0xD8
 ps2_ctrl_stat_wr <= ‘1’ when IO_Addr_r = “1011000” and IO_Wr = ‘1’ else ‘0’; -- 0xD8

hands-on fpga

58 elektor electronics - 11/2006

be shown on the LCD in hexadecimal form. The keyboard
will not send any data when it is not being used.
Start by pressing any desired key of the keyboard. The
corresponding data will be sent immediately to the FPGA
to report this action. If you hold a key pressed for longer
than a certain interval, the keyboard will transmit the cor-
responding code repeatedly.
Let’s suppose you pressed the ‘w’ key. According to the
LCD, the keyboard sent the code 0x1D. The keyboard
actually sends two codes when a key is released. The
first code it sends is ‘0F’, which indicates that the user
has released a key. After this, it sends the code of the key
concerned.

Firmware
How is all of this handled in the software? First, the LCD
is initialised as usual. After this, the init_kb() routine is
called. This is located in kb.c. Initial values are assigned
to the variables here. After this, the final action is to call
InitKbd(), which is located in fpga_lib.c. It shows how
data can be sent to the keyboard and read from the key-
board. The first action is to send the code 0xFF to the key-
board to perform a reset. The keyboard returns an ACK
(0xFA) if this code is received correctly. If the keyboard
returns 0xFE, an error has occurred during the communi-
cation process.
If everything has gone as it should up to now, the key-
board will execute a self-test. This is indicated by briefly
lighting the LEDs on the keyboard. If this test is completed
successfully, the keyboard sends 0xAA as a sign that it is
OK. From this point on, the keyboard operates the way it
is supposed to.
The rest of the code has been kept very simple. Whenever
data is received, the interrupt routine ext_int2_isr() causes
the data to be stored in a buffer.

Scan codes
OK, now you can communicate with the keyboard. Key-
presses are also being sent to the processor, but what you

actually want to receive is normal ASCII characters. For
this reason, we extended the interrupt routine of kb.c in a
new example (ex18). The new version of the interrupt rou-
tine converts the scan codes into ASCII characters.
Our more inquisitive readers will have certainly also tried
the CapsLock key in the previous example. If you did
so, you would have seen that the associate LED did not
respond at all. That’s also the way it should be, since the
LEDs are driven by the host. The routine Set_LED() in ex-
ample 8 shows how you can drive the keyboard LEDs. In
this example, the number of typed characters is counted
and the result is indicated by the LEDs on the keyboard.
As only three LEDs available, only numbers in the range
of 0 to 7 can be indicated.

This instalment clearly shows that the full power of the
FPGA can only be utilised if you make use of the advan-
tages of configurable logic relative to conventional micro-
controller systems. Of course, you could also implement
the entire PS/2 protocol in software, but that would cost
extra processing time. With the hardware implementation
described here, the processor does not have to look after
handling the electrical signals on the PS/2 bus, so it has
more time for other tasks.
The I2C protocol, which was implemented in software in a
previous instalment of this course, could also be imple-
mented in hardware in a similar manner.

In the next instalment, we will add a fully functional VGA
output to the microcontroller system of this month’s instal-
ment. Naturally, it will also be implemented in hardware.

(060025-VI)

Figure 2. A data block transmitted from the host to the device.

Join the FPGA Course
with the
Elektor FPGA Package!
The basis of this course is an FPGA Module powered by an
Altera Cyclone FPGA chip, installed on an FPGA Prototy-
ping Board equipped with a wealth of I/O and two displays
(see the March 2006 issue).

Both boards are available ready-populated and tested.
Together they form a solid basis for you to try out the
examples presented as part of the course and so build per-
sonal expertise and know-how in the field of FPGAs.

Further information may be found on the shop/kits & mo-
dules pages at www.elektor.com

