
party IP (intellectual-property) cores, 
and complex hardware/software inter-
actions. The ability to debug such an 
FPGA design determines time-to-mar-
ket—and time-to-profit—success. How-
ever, debugging one of today’s multimil-

lion-gate FPGA designs is not a trivial 
task.

Consider a generic, high-level view 
of the conventional FPGA design flow 
(Figure 1). As an engineer, you could 
draw this figure in various ways—adding 

and rearranging the various blocks and 
arguing about minutiae. Newcomers who 
come to the design with faith in various 
aspects of the FPGA design flow soon 
discover how unfounded this faith can 
be. For example, it’s common in FPGA 
IP to use two representations—one for 
high-level simulation and the other for 
the actual implementation. Many de-
sign-and-verification engineers assume 
that these two representations are guar-
anteed functionally identical. But some-
times they are not. It is also reasonable 
to assume that synthesis and place-and-
route tools are robust and will not intro-
duce errors in the design. But they some-
times do. When you move to FPGAs 
from ASICs, you may quickly discover 
that bugs can appear at any stage of the 
FPGA design flow.

Debugging FPGA designs may be 

HARDER THAN 
YOU EXPECT

BUGS CAN ORIGINATE AT EVERY STAGE 
IN THE FPGA DESIGN FLOW; DEBUG-
GING SUCCESS DEPENDS ON USING 
THE RIGHT TOOLS AND METHODS.

BY CHRIS SCHALICK • GATEROCKET

 I
n the not-so-distant past, the question used to be, “Can you 
do that task in an FPGA?” With the advent of modern FPGA 
devices, however, the question has become, “Why wouldn’t 
you use an FPGA?” Modern FPGAs’ complexity rivals that of 
ASICs. The chips contain hundreds of thousands of flip-flops, 
multimegabits of RAM, thousands of DSP slices, multiple soft 
or hard processor cores, multiple SERDES (serializer/deseri-
alizer) channels, and more. Integration of FPGA designs no 
longer takes place with one hardware engineer working in rel-

ative isolation and designing from the ground up. Instead, modern 
projects require team-based design, substantial quantities of third-

OCTOBER 22, 2009  |  EDN  23

edn091002df_id   23edn091002df_id   23 10/6/2009   4:09:58 PM10/6/2009   4:09:58 PM



Most techies occasionally use design-
related forums and sites. On these sites, 
real-world engineers post some cases 
spanning the FPGA design flow. The 
following examples illustrate the types 
of issues FPGA designers can encounter. 
The user, vendor, and tool names in this 
article are not the actual names of the 
participants. These examples involve a 
number of design issues: the quality of 
RTL (register-transfer-level) code, the 
quality of the IP, the quality of results 
from the synthesis engine, and the qual-
ity of results from the place-and-route 
engines.

CASE 1: RTL QUALITY
It isn’t surprising to hear that you’re 

going to get better or worse results de-
pending on how you write your RTL 
code. Consider an example from open 
cores.org (Figure 2). This engineer’s 
well-intentioned desire was to produce a 
better gate-level implementation netlist. 
Unfortunately, this code behaves differ-
ently in synthesis from the way it be-
haves in simulation, simply because the 
simulator ignores the synthesis pragmas.

Here, the pragma tells the synthesis 
tool that it can make arbitrary decisions 
about unspecified choices. This state-
ment is contrary to what happens in the 
simulator. The end result of this differ-
ence is that inadvertently writing to an 
unspecified address actually overwrites 
a real register. One approach is to use 
linting tools, but most FPGA designers 

don’t use them. Linting tools are com-
mon in ASIC environments, but design 
engineers who gained their experience 
in a traditional FPGA shop tend to have 
no ASIC tools lying around. Managers 
don’t want to spend money buying such 
tools, designers don’t want to spend time 
learning to use them, and so registers are 
overwritten.

CASE 2: IP QUALITY
In the case of ASIC designs, third-

party IP vendors typically deliver their 
cores in the form of RTL, which may be 
encrypted, obfuscated, or unencrypted. 
Therefore, the same RTL representa-
tions of the IP blocks that you use dur-
ing initial software simulation are the 
representations that you subsequently 

synthesize, place, and route along with 
the rest of the design. This commonality 
provides a high level of confidence that 
the RTL and gate-level representations 
are functionally equivalent.

The situation is different with FPGAs. 
IP vendors often supply two models—
one at a high level of abstraction and one 
at the gate level. So the IP models you 
use for simulation may differ in signifi-
cant ways from the corresponding models 
the place-and-route software uses. Often, 
the high-level simulation model con-
tains behavioral constructs to make the 
software simulations run faster. Synthe-
sis tools cannot handle these constructs, 
however. Moreover, subtle differences 
often exist between the behavioral- and 
gate-level representations that manifest 
themselves only when you deploy the 
FPGA design in its target system.

Consider an example from an FPGA 
vendor’s user-forum site (Figure 3). 
Running the simulation on the gate-lev-
el netlist from the IP vendor shows dif-
ferent results from those of the behav-
ioral model from the same vendor. In 
this case, the gate-level representation 
was correct and the behavioral model 
wasn’t. In many cases, it’s the other way 
around.

CASE 3: SYNTHESIS PROBLEMS
People believe that synthesis tools are 

more robust than they are. Even though 
some synthesis tools have been around 
for years, users are still logging bugs 

24  EDN  |  OCTOBER 22, 2009

AT A  G LAN CE
Issues that arise during FPGA 

debugging include the quality of 
RTL (register-transfer-level) code, 
the quality of the IP (intellectual 
property), the quality of results from 
the synthesis engine, and the quality 
of results from the place-and-route 
engines.

It’s common in FPGA IP to use 
two representations—one for high-
level simulation and the other for the 
actual implementation.

IP models you use for simula-
tion may differ in significant ways 
from the corresponding models the 
place-and-route software uses.

�

�

�

ARCHITECTURE
SPECIFICATION

RTL
SPECIFICATION

RTL
DESIGN

FUNCTIONAL
SIMULATION

GATE
SIMULATION

SYSTEM
SIMULATION

SYNTHESIS PLACE AND
ROUTE

TIMING
ANALYSIS

PROGRAM
FILE

PCB
SCHEMATIC

PCB
LAYOUT

HARDWARE
ASSEMBLY

PROTOTYPE
HARDWARE

SOFTWARE
SPECIFICATION

SOFTWARE
CODING

SOFTWARE
INTEGRATION

IP
SELECTION

IP
INTEGRATION

Figure 1 A modern FPGA design flow has many discrete steps.

edn091002df_id   24edn091002df_id   24 10/6/2009   4:10:02 PM10/6/2009   4:10:02 PM



against them. Consider a case from fpga-faq.com (Figure 4). 
This example involves a bizarre set of circumstances. First, the 
synthesis tool makes an odd choice. Then, critical warnings 
come up that are tremendously informative, but a deluge of 
messages buries them, causing the designer to overlook them.

In this case, the tool acknowledges that it’s making an odd 
choice and is telling the user that it’s worried. In many cases, 
the tool thinks that it’s doing the right thing and doesn’t say a 

word. The problem stems from aggressive optimizations on the 
tool’s part. Today’s designs are large and their corresponding 
synthesis can take a long time, so synthesis-engine develop-
ers take short cuts. Whenever the synthesis-engine developer 
cuts a corner, however, he must account for an enormous set 
of possible conditions. Assumptions can turn into errors.

CASE 4: PLACEMENT-AND-ROUTING PROBLEMS
As a final example, consider a power-up initialization prob-

lem from fpga-faq.com (Figure 5). In this case, the place-and-
route tool doesn’t know what to do; it decides that a register 
must have some state, so it makes an arbitrary—and unfortu-
nate—choice that causes the silicon to do something odd and 
unexpected. The engineer is coming up with solutions but is 
unsure whether they will work because visibility into the root 
cause is so low.

These examples are teasers; you occasionally hear more 
complex stories. In one such story, a design team lost weeks go-

I2C Core RTL Simulation / FPGA mismatch...: 
 
Subject:  I2C Core RTL Simulation / FPGA mismatch... 
msg#00024, hardware.opencores.cores

I’m using an FPGA to verify an ASIC which is using the 
I2C core. I’m getting a mismatch between the RTL simu-
lation & the actual FPGA gates when writing to the I2C 
CR (command register). I setup the 2 prer bytes with 
known values. Then when I write the Cr register, the 
value written to the cr overwrites the prer(7:0). This 
is the case only in the FPGA. In rtl simulation, it 
works as expected. 

Upon further examination of the rtl code, I think I 
have found an issue.  Please correct me if I’m wrong.

Here’s the code snippet with the case statement...

// generate registers
always @(posedge wb_clk_i or negedge rst_i)
  if (!rst_i)
    begin
      prer <= #1 16’hffff;
      ctr   <= #1 8’h0;
      txr   <= #1 8’h0;
    end
 else if (wb_rst_i)
  begin
      prer <= #1 16’hffff;
      ctr  <= #1 8’h0;
      txr  <= #1 8’h0;
    end
  else
    if (wb_wacc)
      case (wb_adr_i) // synopsys full_case paral-
lel_case 
        3’b000 : prer [ 7:0]  <= #1 wb_dat_i;
        3’b001 : prer [15:8] <= #1 wb_dat_i;
        3’b010 : ctr             <= #1 wb_dat_i;
        3’b011 : txr             <= #1 wb_dat_i;
      endcase 

Does the // synopsys full_case parallel_case not tell 
the synthesis Tool that ALL the cases are listed? All 
other cases are considered “don’t care” by the synthe-
sis tool, right?

The “cr” register is mapped at address 3’b100. This 
case is not 
Listed in the case statement, so this bit is optimized 
away and is not considered important.

That’s the problem... now when address 3’b100 is writ-
ten, the case statement sees it as 3’bx00 and the 
prer(7:0) is written as well as cr.

Does the case statement not need a default line which 
keeps the 
Previous values for the 4 registers? Am I misunder-
standing this concept?

January 9th, 2008, 12:00 AM 
username   
Vendor Pupil 
Posts: 9 Rep Power: 558 
 
VHO bug for FFT v2.2.1 (streaming) 
I have simulated a 2048 point FFT v2.2.1 (streaming) 
in both ModelSim and vendor tool. In vendor tool cor-
rect streaming  behaviour is observed, with assertion 
of master_source_sop  immediately following assertion 
master_source_eop, and  master_source_ena remaining 
high at all times.

When simulating the VHO file in the simulator incor-
rect behaviour is observed, with a gap between master_
source_eop and master_source_sop assertions, during 
which time master_source_ena is taken low.

Attached are the plots of what I have described. Does 
anyone know of a solution to this problem? (Besides 
trying the latest ver FFT core which is not an option)

#2    January 9th, 2008, 12:08 AM  
Location: Bochum Germany
Posts: 1,011 
 
Hello username,
if the error is with the FFT compiler generated simu-
lation model, who about Modelsim gate level simulation 
of the Vendor compiled FFT design? I guess, the simu-
lation model may be faulty,

Regards,contributor 
……
#4    January 9th, 2008, 05:54 PM  
Posts: 9 
Rep Power: 558 
  
Re: VHO bug for FFT v2.2.1 (streaming) 
Thanks for the response contributor. I did try regen-
erating the VHO using the post synthesis netlist gen-
eration as you suggested.

This has fixed my problem but of course results in 
considerably slower simulations.
  
username 

Figure 2 In this posting from opencores.org, an engineer wanted 
to produce a better gate-level implementation netlist, but the 
code behaves differently in synthesis from the way it behaves in 
simulation.

Figure 3 In this posting, a user finds that running the simulation 
on the gate-level netlist from the IP vendor yields different results 
from those of the behavioral model from the same vendor.

OCTOBER 22, 2009  |  EDN  25

edn091002df_id   25edn091002df_id   25 10/6/2009   4:10:04 PM10/6/2009   4:10:04 PM



ing back and forth with IP vendors trying to work out a prob-
lem. In one case, a place-and-route tool optimized some core 
functions out of the vendor’s own IP. Nevertheless, you can 
do astounding things with a modern high-end FPGA and as-
sociated design tools. You can—in one day and on your desk-
top—synthesize a design that’s equivalent in complexity to a 
Pentium CPU, run place-and-route tools, and generate the 
corresponding FPGA-configuration file. Just five years ago in 
the ASIC world, you needed a design center for one to three 
months to come up with a workable place-and-route strategy.

Despite these advantages, the downside is that errors can 
creep into the design at every stage in the process, and these 
errors often don’t manifest themselves until the design is in 
a real board in the laboratory, by which time they can be dif-
ficult and time-consuming to detect, isolate, identify, and re-
solve. Software simulation provides a high level of visibility 
into the design, but it runs relatively slowly even at the RTL. 
By comparison, running the design in real FPGA hardware, 
such as a development or prototype board, provides hardware 
speeds, so any problems quickly manifest themselves by crash-
ing and burning. Due to lack of visibility into the chip, it can 
be difficult to determine what’s gone wrong. Is there an error 
with the RTL source code that causes it to behave differently 
with the simulator from the way it behaves with the synthe-
sis engine? Are there functional differences between one or 
more of your behavioral third-party IP blocks and their gate-
level equivalents? Is it perhaps a case in which your RTL and 
IP are functionally correct, but the synthesis engine, place-
and-route engine, or both have introduced errors? Or do you 
have a mixture of all of these situations?

Figure 4 In this posting from fpga-faq.com, the problem stems 
from aggressive optimizations on the tool’s part.

Hello Sir,
    We have investigated this and discovered that the 
message “Critical Warning: Ignored Power-Up Level 
option on the following nodes --...”  is a side effect 
of a synthesis bug. This bug occurs if there is a 
State Machine Synthesis with the following conditions:

1. The State Machine is specified in VHDL.
2. The State Machine inferred by Integrated Synthesis 
(map) does NOT have a reset signal in it.
3. State Machine Processing is set to either Auto or 
One-Hot
4. Software version x.y is being used.

    If your state machine has a reset in it you can 
ignore this message. Your design will provide expected 
results on the board.  If your state machine does not 
have a reset you will need to add a reset to it, else 
it will not work on the board.

This bug exists in software version x.y only. It has 
been fixed in version x.y service pack 1 which will be 
released ...

EACH FUNCTIONAL BLOCK IN THE 
DESIGN SHOULD BE ABLE TO 
RESIDE IN THE SOFTWARE 
DOMAIN, THE HARDWARE 
REALM, OR BOTH.

VISIT US AT:
AP.COM/BESTINCLASS

CHOOSE WISELY.
When decisions worth millions of dollars are 

being based on your recommendations, your 

data must be beyond question. Our analyzers 

are on R&D benches and production lines 

across the world because engineers want the 

assurance of instruments that are best in class: 

best for performance, best for supporting the 

newest audio formats and digital interfaces, 

best for speed, data sharing, and ease-of-use.

Audio Precision: best in class and
the recognized standard in audio test.

APX585 MULTICHANNEL AUDIO ANALYZER
WITH HDMI AND DIGITAL SERIAL I/O.

edn091002df_id.indd   26edn091002df_id.indd   26 10/6/2009   4:58:36 PM10/6/2009   4:58:36 PM



OCTOBER 22, 2009  |  EDN  27

Answering all these questions requires a different approach. 
Software simulations offer visibility into the design but are 
slow. Verifying the design in hardware is fast but provides lim-
ited visibility into the internals of the system. So the answer 
is to create an environment in which software and hardware 
representations of the design can coexist. In other words, each 
functional block in the design should be able to reside in the 
software domain, the hardware realm, or both.

For example, consider a design comprising, say, 100 func-
tional blocks. Some of these blocks could be your own inter-
nally developed, proven IP from previous projects; some could 
be IP from third-party vendors; and some would be your new 
“secret sauce” to differentiate your design from all others. 
Now, suppose that you could immediately move the gate-lev-
el representations of any known-good blocks, such as your in-
ternally developed IP and trusted third-party IP cores, for ex-
ample, into the same type of FPGA you are targeting for your 
real-world design. Also assume that you could now verify 
these blocks in conjunction with the rest of the design run-
ning in your software simulator of choice. Right from the 
start, you have dramatically speeded your verification runs.

Now, as you verify each of the new blocks at the RTL or 
behavioral level in the context of the full-chip design, you 
could move the synthesized/gate-level equivalent of each 
verified block into the physical FPGA. As soon as any prob-
lems manifest themselves, you could repeat the verification 
run with the RTL version of the suspicious block, resident 
in the simulation world, running in parallel with the gate-
level version in the physical FPGA. A software application 
could—on the fly—compare the signals from the peripheries 

of these blocks, along with any designated signals inside the 
blocks. This combination of conventional simulation with 
physical hardware and an appropriate debugging environ-
ment would make it possible to detect, isolate, identify, and 
resolve bugs, no matter where they originated in the design 
flow. 

Leading FPGA vendors are continuing to innovate and 
produce larger, more complex chips that are quickly landing 
in applications that would have been ASIC-only just a few 
years ago. This fact means that lots of designers are on a steep 
FPGA-design learning curve, probably with limited resources 
and time. For FPGA vendors and tool suppliers, this situation 
presents a great opportunity to simplify and streamline de-
velopment, thereby converting occasional users into lifelong 
customers.EDN

AUTH OR’S  B I OG RAPHY
Chris Schalick is the founder and chief technology officer 
of GateRocket, which specializes in FPGA-design and 
-debugging technology. He has 20 years of experience 
in modular-system design and behavioral-system mod-
eling for consumer and industrial equipment. Schal-

ick has held senior engineering positions for raster-imaging, data-
networking, and semiconductor-test-equipment companies and was 
instrumental in delivering products to market at Teradyne, Tenor 
Networks, Packet Engines, and Cabletron Systems. He holds a 
bachelor’s degree in electrical engineering from the Massachusetts 
Institute of Technology (Cambridge, MA).

I want a FF in my XYZ project to be ‘0’ at power-up; 
be later set by an external input; and never subse-
quently reset.  I placed an SRFF with S to the exter-
nal input; clock to the clock; and R to ground. I 
assumed it would power-up at ‘0’ but I got analysis 
and synthesis errors:

“Info: Power-up level of register inst is not speci-
fied -- using 
Unspecified power-up level” and “output pins are stuck 
at VCC or GND” - so I created an assignment:

set_instance_assignment -name POWER_UP_LEVEL LOW -to 
inst

I was surprised it needed this, but it seems to work. 
That sorted, I placed an inverter between the Q output 
of the SRFF and an external output pin – I want the FF 
to drive an external active-low signal. 

This doesn’t work in the simulator or the real sili-
con: the output is permanently asserted. But, if I 
connect another output directly to q - so I have both 
q and /q output pins – then it works!

I’m guessing that place / route software can’t invert 
the signal between the … FF and output pin, so it 
needs to use another … cell just for the inverter, but 
something goes wrong with the optimization.

Am I warm? Is this a known bug? Is there some option I 
need to set, or must I dedicate an output pin for the 
unwanted true q - just to make the /q output work??

I’m using software version x.y Web Edition.

Figure 5 A posting from fpga-faq.com discusses a place-and-
route tool that makes an arbitrary choice that causes the silicon 
do something odd and unexpected.

For details: write, call, fax
or visit our website 

www.batteryholders.com

AA Model
BK-92

AAA Model BK-82

Easy Solder
AA & AAA Battery Clips

Made of extremely reliable nickel-plated 
phosphor bronze, these clips are strong

yet flexible, making batteries easy to
install, retain and replace.

Key Features:

edn091002df_id.indd   27edn091002df_id.indd   27 10/6/2009   4:58:41 PM10/6/2009   4:58:41 PM




