
40 elektor - 3/2007

TECHNOLOGY MICROCONTROLLERS

When designing USB devices you also need to write an
associated device driver. For many designers this is a very
tricky task and many won’t even attempt such a project
because of this. This is now all set to change! With the help
of our AVR USB board we’ll show you how we tackle this
driver problem, using an existing universal open source
device driver program.

Connections
Everything went smoothly as far as the hardware for
our AVR USB board was concerned, until we connected
it to the PC. Windows (XP) then politely asks us for a

device driver, as expected. And this doesn’t exist (yet)
for our hardware.
To help us out we made use of ‘libusb-win32’, a universal
open source USB device driver [1]. This comes as a DLL
and lets Windows applications communicate directly with
a USB device. With this we can deal with the (device
dependent) data stream in a Windows application and
there is no need for a specially written device driver.
Unlike the way a ‘normal’ device driver functions,
libusb-win32 lets us use an API (Application Programming
Interface) instead of having to communicate via a so-called
IOCTL (Input/Output ConTroL).

Universal USB Device
Michael Odenwald, Michael Keller and Paul Goossens

Designing your own USB device can be an enjoyable task for electronics hobbyists.
The main stumbling block is often the driver for the device.
Writing this piece of software can be a bit too diffi cult for many people.
A universal USB device driver, which is also open source, presents the solution!

Figure 1.
These are the steps

you’ll come across when
creating the INF fi le for the

universal USB driver.

413/2007 - elektor

Let’s get busy!
First we have to download libusb-win32 and extract all
fi les from this ZIP fi le in their own folder. Before we can
use this driver we fi rst have to create an INF fi le. This fi le
tells Windows which driver belongs to which device.
The creation of this INF fi le is made very easy by the
inclusion of a program in libusb-win32 (‘inf-wizard.exe’).
The INF fi le is created as follows: Power up the AVR USB
board and connect it to the PC. Windows will now ask
for the driver. Click on ‘Cancel’. Start the program
‘inf-wizard.exe’. In the fi rst window click on ‘Next’, after
which the second window appears. This contains a list
of all the connected USB devices. Select our AVR USB
board, with a VendorID of 0x0C7D and a ProductID of
0x0006, and click on ‘Next’. In the third window we can
give the device a different name, if required. This isn’t
necessary, so we click on ‘Next’ again. The program now
reports that it has generated an INF and a CAT fi le. Click
on ‘Finish’ to close the program. (See Figure 1.)

Initial test
We now have to disconnect the AVR board from the PC
and then reconnect it again. Windows will ask for the
driver program once more. This time, select the option
‘Specify a location’ and browse to the INF fi le that we
created with ‘inf-wizard.exe’.
If everything goes to plan, Windows will install the device
driver. From the Device Manager in Windows you should
now be able to see the AVR USB board.

Applications
We can now use the AVR USB board in our applications.
On the Elektor Electronics website are a few downloads
for this project, which contain several applications (in-
cluding the source code) for controlling the AVR USB
board. These applications have been written in C, .
NET and a few other languages. You can use the source
code as the basis for your own applications.
The testing of all functions of the AVR USB board is very
easy with the program ‘AVR-USB-Windows1.exe’. With
this you can test all I/O capabilities of the hardware.

A closer look at the source code
To give you an idea how we can control our USB device
from within an application, we’ll show you a few parts of
the source code. The saying ‘a picture is worth a thou-
sand words’ also applies to source code!
In Listing 1 you can see how the application searches
for a specifi c USB device. If it is found, a connection with
this device is initiated.
In a for-next loop all of the available USB busses of the
computer are interrogated. The VendorID and Produc-
tID of every USB device connected to each bus are
requested. When both the VendorID and ProductID have

the required values the program tries to ‘open’ this
device. The ‘handle’ for this device is stored in the global
variable ‘usb_dev_handle’. The last step is to confi gure
the device according to the USB standard and claim
exclusive rights to the use of this device.
When no unexpected errors occur the function will return
the value ‘1’ to indicate that everything went well. If any-
thing went wrong the function will return the value ‘0’.

Hardware control
Controlling the hardware is also very simple. In Listing
2 you can see how the status of the digital inputs is read.
This assumes that the function ‘searchUSBDevice’ (from
listing 1) has previously been called to assign a valid

Driver Say goodbye to
connection problems

Listing 1
Globale variabele:
usb_dev_handle *usbIODevice; /* The usb device handle */

Funktie:

int searchUSBDevice(int vendorID, int productID)
{
 struct usb_bus *busses;
 struct usb_bus *bus;
 struct usb_device *dev;

 if (usbIODevice != NULL)
 {
 usb_close(usbIODevice);
 }

 usbIODevice=NULL;

 /* Find the device for the given vendorID and
productID*/
 usb_init();
 usb_fi nd_busses();
 usb_fi nd_devices();
 busses = usb_get_busses();

 for (bus=busses; bus; bus=bus->next) {
 for (dev=bus->devices; dev; dev=dev->next) {
 if (dev->descriptor.idVendor == vendorID &&
 dev->descriptor.idProduct == productID) {
 usbIODevice=usb_open(dev);
 if(usb_set_confi guration(usbIODevice, 1)) return 0;
 if(usb_claim_interface(usbIODevice, 0)) return 0;
 return 1;
 }
 }
 }
 return 0;
}

42 elektor - 3/2007

TECHNOLOGY MICROCONTROLLERS

handle to ‘usb_dev_handle’.
With the help of ‘sendUSBVendorCmdIn’ we send the
command ‘AVR_USB_READ_DIGITAL’. This command can
also be found in the source code of the fi rmware. With
this we also specify from which port we want to read (the
second parameter). The result is put into the array ‘iodata’.
The application can then use these returned values to
determine what the status of the relevant digital input is.

Experimenting
The best way to familiarise yourself with this software is
to go through the examples. The examples avr-usb1 to
avr-usb4 (which can be downloaded from [2]) can all be
compiled using GCC [3]. (GCC stands for GNU Compi-
ler Collection, a free ANSI-C compiler with support for
K&R C, C++, Objective C, Java, and Fortran.)
The other examples have been written in C#.

With the many examples available, you should be able to
write applications for the AVR USB board in other deve-
lopment environments under Windows as well.

And fi nally ...
For ideas or help when you get stuck you should take a
look at the forum for the open source driver [4]. In here
you’ll fi nd many enthusiastic programmers who pass on
useful information, and you can also ask questions.
You can of course also use our own forum on the Elektor
Electronics website to share your experiences with other
readers. For those of you with a grasp of foreign langua-
ges it would also be useful to visit the forums of our
French, German or Dutch websites. Here you’ll undou-
btedly fi nd other electronics hobbyists who’ll make worth-
while contributions to this project and who in turn would
be interested in your experiences.

(060226-I)

Weblinks
[1] http://libusb-win32.sourceforge.net/

[2] http://www.elektor-electronics.co.uk/

[3] gcc.gnu.org

[4] http://sourceforge.net/forum/?group_id=78138

Listing 2
int digiportTest(void)

{

 int i;

 int result;

 unsigned char iodata[8];

 printf(“digiport: AVR-USB get value from digital input Port:\n\r”);

 for (i=0; i<=1000; i++)

 {

 if((result = sendUSBVendorCmdIn(AVR_USB_READ_DIGITAL, AVR_USB_DIGITAL_P1, 0, iodata, 8)) < 0)

printf(„Error sendUSBVendorCmd %d“, result);

 printf(„digital in status P1 is %s\n\r“, (iodata[0]) ? „close“ : „open“);

 if((result = sendUSBVendorCmdIn(AVR_USB_READ_DIGITAL, AVR_USB_DIGITAL_P2, 0, iodata, 8)) < 0)

printf(„Error sendUSBVendorCmd %d“, result);

 printf(„digital in status P2 is %s\n\r“, (iodata[0]) ? „close“ : „open“);

 if((result = sendUSBVendorCmdIn(AVR_USB_READ_DIGITAL, AVR_USB_DIGITAL_P3, 0, iodata, 8)) < 0)

printf(„Error sendUSBVendorCmd %d“, result);

 printf(„digital in status P3 is %s\n\r“, (iodata[0]) ? „close“ : „open“);

 if((result = sendUSBVendorCmdIn(AVR_USB_READ_DIGITAL, AVR_USB_DIGITAL_P4, 0, iodata, 8)) < 0)

printf(„Error sendUSBVendorCmd %d“, result);

 printf(„digital in status P4 is %s\n\r“, (iodata[0]) ? „close“ : „open“);

 Sleep(500);

 }

 return 0;

}

