
projects usb-can adapter

44 elektor - 10/2008

Klaus Demlehner

Despite the fact that the CAN protocol is a serial protocol, it can’t just be connected to (the serial port
of) a computer. The all-round USB-CAN adapter described here provides a compact and simple solution.
With the help of the accompanying software you can follow all data communications taking place and
carry out operations such as filtering and storage at the flick of a (mouse) switch.

The CAN (Controller Area Network)
protocol was originally developed for
use in the automotive sector. It is now
over 20 years old, but is still frequently
used these days. The protocol was
invented by Bosch in order to let micro-
controllers and other electronic devices
communicate with each other.

It was specially designed for use in
environments where you have a lot of
electromagnetic interference. Because
of this it was decided to use differen-
tial signalling, all of which made CAN
especially suitable for use in the auto-
motive sector.

The design
The USB-CAN adapter presented here
makes it very easy to communicate

with the CAN bus. The data present
on the CAN bus can be read via a USB
connection, which can be found on vir-
tually every PC these days. You can of
course also transmit data. The recom-
mended software, Tiny CAN View, has
a handy and clearly laid out user inter-
face for this.

Apart from the recommended soft-
ware, the USB-CAN adapter can also
be used with other ‘third party’ soft-
ware such as CANopen Device Monitor
and CAN-REport. After installing the
device driver for the FTDI USB inter-
face chip used in the adapter it can be
easily accessed from either Windows
or Linux operating systems. When a
firmware update for the microcontroller
is required this can also be easily done
via the same USB connection.

The circuit diagram

The size of the circuit diagram (Fig-
ure 1) is certainly not reflected in the
size of the final PCB. The microcontrol-
ler in particular is a lot smaller in real
life, mainly because of its SMD packag-
ing. The other functional blocks in the
circuit diagram stand out very clearly:
nearly every block represents an IC.
The USB interface makes use of a USB-
to-serial converter chip (IC1). This chip
is the well-known FT232RL made by
FTDI. It is widely supported in both
the Windows and Linux operating
systems. The only external component
required by the FT232RL is a capaci-
tor (C6), which is used to stabilise the
internal 3.3V supply voltage.
The 16-bit microcontroller made by
Fujitsu (IC3) comes with integrated

Communicating
with CAN
Compact
USB-CAN
Adapter

4510/2008 - elektor

CAN support and forms the heart of
the circuit. From the controller we use
the serial and CAN interfaces, and the
controller also has a built-in 15-chan-
nel 10-bit A/D converter. However, the
latter is not used in this circuit.

To show the status of the USB-CAN
adapter we have connected four LEDs
(LD1 to LD4) to the controller. With
the help of Table 1 you will be able
to determine the current status of the
controller.

The microcontroller (IC3) can be pro-
grammed via the USB interface. D1 is
used here to protect against over-volt-
ages. Components C1, L1, C4 and C5
make sure that any RF interference
picked up by the USB cable stays out-

Hardware highlights
• Electrically isolated

• External power supply of 9 to 48 V

• Protection circuitry for CAN and external supply, especially for automotive applications

• Hardware based transmit buffer using an interval timer, with a capacity for up to 16 CAN
messages

• Microcontroller supervised by ‘Hardware Watchdog’

• Firmware for the module can be updated via the USB bus.

Software highlights
• Data reception in either polled or event-

driven mode (CallBack function)

• Selection of received messages via filter

rules

• Transmit buffer with an interval timer

• Supports saving of log files

C6

100n

C5

47p

C4

47p

D1

SMBJ5V0A

C1

10n

C2

100n

C3

22µ

L1
WE-742792116

FT232RL

3V3OUT

SSOP28

CBUS1

CBUS0

CBUS4

CBUS3

RESET

USBDP

USBDM

VCCIO

CBUS2

TEST

IC1

OSCO

AGND

OSCI

DCD

DSR

RXD

RTS

TXD

CTS

DTR

VCC

GND GND GND

27

28

25

22

23

12

26

10

11

14

19

17

15

16

20

13

RI

18 21

4

9

5

3

1

2

6

7

VCC VCC

Q1

4MHzC7

33p

C8

33p

C11

100n

RN2

4x 1k

7 5 3 1

2468

LD2

red

LD3

yellow

LD1

green

LD4

yellow

RN1.B

4k
7

3

4

RN1.A

4k
7

1

2

TPS3825-33

IC2
RST

GND

VDD

RST

MR

5

2

14

3
J1

VCC

VCC

R1

10
k

R2

1k

PCA82C251T

IC4

CANH

CANLVREF

GND

TXD

RXD

VCC

RS

5 6

3

2

1

4

78

X2

SUB D9

1

2

3

4

5

6

7

8

9

R3

12
0Ω

J3

T1

BSS84

RN1.D

4k
7

8

7

J2

P2.5/A21/IN1/ADTG

P0.2/AD02/INT10

P0.3/AD03/INT11

P0.4/AD04/INT12

P0.5/AD05/INT13

P0.6/AD06/INT14

P0.7/AD07/INT15

P4.4/SDA0/FRCK0

P4.5/SCL0/FRCK1

P1.2/AD10/SIN3

P1.3/AD11/SOT3

P1.4/AD12/SCK3

P0.0/AD00/INT8

P0.1/AD01/INT9

P1.0/AD08/TIN1

P1.1/AD09/TOT1

P5.2/AN10/SCK2

P5.3/AN10/TIN3

P5.4/AN12/TOT3

P3.2/WR/INT10R

P2.0/A16/PPG9

P2.1/A17/PPGB

P2.2/A18/PPGD

P2.3/A19/PPGF

P6.2/AN2/PPG4

P6.3/AN3/PPG6

P6.4/AN4/PPG8

P6.5/AN5/PPGA

P6.6/AN6/PPGC

P6.7/AN7/PPGE

P5.0/AN8/SIN2

P5.1/AN9/SOT2

P3.4/HRQ/OUT4

P3.5/HAK/OUT5

P3.7/CLK/OUT7

MB90F352SPFV

P2.4/A20/IN0

P4.2/IN6/RX1

P4.3/IN7/TX1

P3.0/ALE/IN4

P3.6/RDY/IN6

P3.1/RD/IN4

P1.5/AD13

P1.6/AD14

P1.7/AD15

P5.5/AN13

P5.6/AN14

P6.0/AN0

P6.1/AN1

P4.0/X0A

P4.1/X1A

P3.3/WRH

IC3

G
N

D
1

G
N

D
2

A
V

S
S

A
V

R
H

A
V

C
C

V
C

C
1

MD2

MD1

MD0

RST

62

X0 X1

24

47 4618 48

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

51

21

22

23

63

10

11

12

13

14

15

19

20

16

17

52

53

54

55

56

57

58

59

60

61

64

45

49

50

1

3

4

5

6

7

8

9

2

C

VCC

VCC

C10

100n

C12

100n

C9

22µ

C13

100n

C14

100n

RN1.C

4k
7

5

6

UBUS

X1

GND

D–

D+

5

1

2

3

4

USB

071120 - 11

Figure 1. The circuit diagram seems much larger than the PCB. It is clear that the microcontroller made by Fujitsu (IC3) plays the main role in this circuit.

projects usb-can adapter

46 elektor - 10/2008

side the circuit. In that way they also
protect IC1.

When programming jumper (J2) is
not plugged in, pin 23 (MD0) is con-
nected to the positive supply via RN1C
and pin 21 is connected to ground via
RN1D. The controller is then in run
mode. With the programming jumper
in place, pin 23 (MD0) is connected to
ground. Transistor T1 will then conduct
and present a logic High level to pin 21
(MD2). The controller is then in its pro-
gramming mode.

IC2 is a reset controller, which together
with jumper J1 serves as an external
reset circuit for the microcontroller.

a Windows based system this library
needs to be installed first.
When Tiny CAN View is started for
the first time, the program warns that
it can’t find a configuration file. After a
click on ‘OK’ you should therefore first
enter a few settings.

In the main window (see Figure 4) you
can see all information at a glance. In
(1) the received messages are dis-
played. This requires that the trace

function has been enabled first. In (2)
the filtered messages are displayed, (3)
shows the macro list and (4) the trans-
mit list. In this case a macro is a stored
CAN message, which makes it an easy
and fast way to transmit messages.
Macros can be created easily via the
macro menu.

When required, the transmit list can be
expanded to several lines via the setup
menu (Options -> Setup, transmit tab).
The filtering of messages can be set up

As with all CAN circuits, this project
requires a CAN transceiver. In our case
this is IC4, a PCA82C251, which con-
forms to the ISO-11898 standard. This
IC has a similar function in this circuit
to that of a MAX232 used in conjunction
with a PC: it converts the 24 V CAN sig-
nals to TTL levels and vice versa.
As far as the other components are
concerned, R1 makes sure that the
microcontroller can’t block the CAN
bus during the initialisation. R2 man-

ages the ‘slope control’, although this
function isn’t used here. When jumper
J3 is plugged on, the CAN bus is ter-
minated by R3 (120Ω). C2, C3, C9,
C10, C12, C13 and C14 are decoupling
capacitors. Figure 2 shows the pinout
for the CAN connector. The PCB com-
ponent layout is shown in Figure 3.

Software
The Tiny CAN View monitoring pro-
gram is based on the GTK+ library. On

1 2 3 4 5

6 7 8 9

9-way sub-D plug

Pin Signal Description
1 - reserved
2 CAN-L CAN bus signal, Low
3 CAN-GND CAN ground
4 - reserved
5 CAN Shield not wired
6 GND CAN ground (optional)
7 CAN-H CAN bus signal, High
8 - reserved
9 CAN-V+ not wired

071120 - 12

Figure 2. This shows the pinout of the 9-way sub-D plug used
for connections to the CAN bus.

Figure 3. PCB component layout as seen from above. The size
of the PCB shows just how compact this project is.

COMPONENTS LIST
Resistors
R1 = 10kΩ
R2 = 1kΩ
R3 = 120Ω
RN1 = 4-way 4kΩ7 SIL array
RN2 = 4-way 1kΩ SIL array

Capacitors
C1 = 10nF
C2,C6, C10-C14 = 100nF
C3,C9 = 22µF
C4,C5 = 47pF
C7,C8 = 33pF

Semiconductors
D1 = SMBJ5V0A
IC1 = FT232RL
IC2 = TPS3825-33

IC3 = MB90F352SPFV
IC4 = PCA82C251T
LD1 = LED, 3mm, low power, green
LD2 = LED 3mm, low power, red
LD3,LD4 = LED 3mm, low power, yellow
T1 = BSS84

Miscellaneous
Q1 = 4MHz quartz crystal
L1 = WE-742792116 SMD ferrite (Würth

Electronics)
X1 = USB 2.0 type B in-equipment connector
X2 = 9-way sub-D plug (male)
J1,J2 = 4-way pinheader
J3 = 2-way pinheader
Kit of parts comprising PCB with premoun-

ted SMD parts and all other parts: Elektor
SHOP no. 071120-71 (www.elektor.com)

Table 1. LED status indicators

LEDs Description

LD1 LD2

off on Firmware on the module has been started.

on – Module ready, no communications with the PC.

flickering – Active connection with the PC.

– flashing
CAN bus status: ‘Error Warning’ -
the FIFO receive buffer is full.

– on CAN bus status: ‘Bus Off’.

LD3 LD4

flickering/on – CAN bus message successfully received.

– flickering/on CAN bus message successfully sent.

4710/2008 - elektor

and adapted via the Filter sub-menu.
Messages can be filtered in three dif-
ferent ways:

- single: a CAN message with a certain
Id is extracted from the data stream.
- range: messages with an Id between
two programmable values (‘Id start’
and ‘Id stop’) are displayed.
- masked: the Id is filtered using a
mask. Only those bits that have a ‘1’ in
the mask field (see Figure 5) are com-
pared. The values of the other bits in
the received message are ignored.

In the transmit list the values for the
CAN Id and other data can be rep-
resented in several ways. A prefix
is used to show how the data is dis-
played: ‘x’ stands for hexadecimal, ‘d’
stands for decimal, ‘b’ for binary and
‘c’ for ASCII. To change the display
method you should click on the prefix
with the mouse.

Let’s get started!
The module is supplied with all SMD
components already mounted. Only
the through-hole components need to
be soldered on the board (Figure 6).
When the USB connector has been
mounted the controller can be pro-
grammed. But before you can do this,
the driver for the FTDI chip (USB inter-
face) has to be installed. Until this
has happened you should not con-
nect the module to the USB port. The
most up-to-date driver can be down-
loaded from the FTDI website [1]. At
the time of writing these are version
1.35r1 for Linux and version 2.04.06
for Windows, for which you can also
download a ‘setup executable’ called
CDM 2.04.04.exe.

To program the microcontroller you first
need to plug on programming jumper
J2. Only then should you connect the
USB cable (please note: J2 should
NEVER be plugged on or removed
while the USB cable is connected!).
The computer will then detect the new
hardware (in the case of Windows) and
show it as a USB serial port.

Download the software from the Ele-
ktor website and extract the files
from the zip file. Next run the pro-
gram TCanFirst in the folder .../Tiny-
CAN/fu_down/TCanFirst. This pro-
grams the Flash Bios of the module.
After a message has appeared say-
ing the flashing has completed suc-
cessfully you can unplug the USB

cable and remove the programming
jumper (J2).
After reconnecting the USB cable the
red LED should light up. You are now
at the stage where you can program
the actual firmware. For this you need
to run the program TCanProg that
is found in the folder .../Tiny-CAN/
fu_down/TCanProg. When the green
LED lights up you know that every-
thing has completed successfully. For a
future firmware update you only need
to carry out the last action again (run
TCanProg). The CAN monitor program
can now be started.
Tiny CAN View is a CAN monitor pro-
gram available for both Windows and

3
1

2

4

Figure 4. The relevant information is clearly laid out in the main window of the software.

Figure 5. The filter parameters can be easily modified in the
filter setup window.

Figure 6. The module is really very compact and tidily laid out. The status LEDs show the current operational status.

projects usb-can adapter

48 elektor - 10/2008

Linux. It can be downloaded from the
Elektor website via the link on the
project page for this article. The pro-
gram is a GNU Open Source project and
has been written in C with MinGW/
Gtk+ and it makes use of the GTK+
library, as we mentioned earlier. This
can be downloaded from the link in [2].
Choose the Development Environment
Revision and install the library.

Tiny-CAN View makes an automatic
connection with the USB-CAN adapter
when mhstcan1.dll is chosen as the
driver. In the CAN tab in the setup
menu you can select maximum data
rate. The other tabs aren’t required
for the first run and can be ignored for
now. As we mentioned earlier, the pro-
gram makes use of filters to keep the
data stream to a manageable level. The
received data can also be stored in a
file and CAN messages can be trans-
mitted. Support for Standard (11-bit
IDs) and Extended Frames (29-bit IDs)
is built in.

All required links and programs have
been grouped together on the project
page for this article on the Elektor
website. From there it is easy to find
all the software and drivers. The PCB
layout for the circuit can also be found
there.

For those of you who find the SMD
packages too small to solder, the mod-
ule is also available as a kit of parts
from the SHOP section of our website
www.elektor.com. This kit consists of
a board that has al SMD components
already mounted. You are therefore
left to solder only the through-hole
(‘leaded’) components.

(071120-I)

Internet Links
[1] www.ftdichip.com

[2] http://gladewin32.sourceforge.net

[3] www.mhs-elektronik.de/tiny-can

Some projects using CAN

Home automation
http://caraca.sourceforge.net — CARACA
stands for CAN Remote Automation and
Control with the AVR. CARACA is a home
automation project based on a network of
individually programmable circuits. These
circuits can carry out different tasks, such
as switching devices on or off, decoding
signals from IR remote controls, controlling
thermostats, and so on. Each node in the
network can communicate with any other
node via the robust CAN protocol and the
status can be monitored on a PC, which in turn can be connected to the Internet.

Toyota Prius
www.eaa-phev.org/wiki/Prius_PHEV_User_Interfaces — On this page the possibilities are
discussed regarding the modification of the user interface and the State Of Charge Manipu-
lation in the Toyota Prius. Such a device should be able to deal with the logic as described in
the Prius PHEV Pseudo Code.

Satellite
http://can-do.moraco.info — CAN-Do! is a microcontroller (widget) that was designed for
use as an interface to the wiring harness of a satellite and use this network to gain access to
the integrated Housekeeping Unit that manages the different satellite subsystems. The pri-
mary aims are the reduction in the required amount of cabling and the simplification of the
integration in a space ship.

Temperature control
www.ece.usu.edu/experiences/5770_projects/zone_heating_system_sp03/index.htm
– On this site a system is described that has been developed by a group of students, and
which controls the temperature in a number of separate rooms within a house. A computer
program is used to set the temperature for several ‘zones’ and to view the current status. A
dedicated controller keeps track of the status
of each zone and turns on the heating or air
conditioning when required.
The main controller communicates via a CAN
bus with the zone controllers, which control
the valves in the central heating system and
which return the temperature to the main con-
troller. The PC communicates with the main
controller using a standard serial link.

