| | R e
l MICROPROCESSOR
() INTERFACING

TECHNIQUES

AUSTIN LESEA
SYBEX RODNAY ZAKS

¢

ONTIV4Y3ILNI

=
[»]
-
o
©
“‘.
o
a7 B
o=
(%]
=1
&
iz |
'

J

MICROPROCESSOR

INTERFACING
TECHNIQUES

AUSTIN-LESEA

RODNAY ZAKS

SYBEX

Published by: SYBEX Incorporated
2161 Shattuck Avenue
Berkeley, California 94704

In Europe: SYBEX-EUROPE
313 rue Lecourbe
75015-Paris, France

DISTRIBUTORS
L. P. ENTERPRISES
313 KINGSTON ROAD
ILFORD, Essex. IG1 1P)
Tel: 01-553 1001

$9.95 (USA)
FF66 (Europe)

FOREWARD

Every effort has been made to supply complete and accurate
information. However, Sybex assumes no responsibility for its use;
nor any infringements of patents or other rights of third parties which
would result. No license is granted by the equipment manufacturers
under any patent or patent rights. Manufacturers reserve the right to
change circuitry at any time without notice. -

In particular, technical characteristics and prices are subject to rapid
change. Comparisons and evaluations are presented for their educational
value and for guidance principles. The reader is referred to the manu-
facturer‘s data for exact specifications.

Copyright () 1977 SYBEX Inc. World Rights reserved. No part
of this publiCation may be stored in a retrieval system, copied,
transmitted, or reproduced in any way, including, but not limited to,
photocopy, photography, magnetic or other recording, without the prior
written permission of the publisher.

Library of Congress Card Number: 77-20627
ISBN Number: 0-89588-000-8

Printed in the United States of America
Printing 10987654321

CONTENTS

R A s Gi s we v tetialih 2 8w ey aumia e ras: ol n el e by s ats e e 5

VI

INTROBEESION o i i eyt i e siarelh e 7
Concepts, Techniques to be discussed, Bus Introduction, Bus

Details

ASSEMBLING THE CENTRAL PROCESSINGUNIT 17
Introduction, The 8080, The 6800, The Z-80: Dynamic

Memory, The 8085

BASIC INPHTORPIIIE. S0 00 omeis siivmss S bbidnb o 45
Parallel, Serial LSI Interface Chips

INTERFACING THE PERIPHERALS. 85

Keyboard, LED, Teletypewriter, Paper Tape Reader, Credit
Card Reader, Cassette Tape Recorder, Floppy-Disk, CRT

ANALOG CIRCUITRY - A/D and D/A CONVERSION 191

Introduction, Conceptual DJA, Practical DJA, Real Products,
The A/D, Sampling Theorem, Successive Approximation,
Integration, Direct Comparison Conversion, Real Products,
Interfacing DJA’s, Interfacing A/D’s, A Data Collection Sub-
System, Scaling, Offset, Conclusion

BUSSEANDARDS | ¢ i ciiesivios il siatsiatein e 215

Parallel: S100, 6800, IEEE-488, CAMAC
Serigl: EIA-RS232C, RS422, RS423, Synchronous Formats

TABLE OF CONTENTS

VIIL CASE-STUDY: A 32-CHANNEL MULTIPLEXER 259
Introduction, Specifications, Architecture, Software, CPU
Module, RAM Module, USART Module, Host Interface Module,
Conclusion
VII DIGITAL TROUBLE-SHOOTING 281
Introduction, What Goes Wrong: Components, Noise, Soft-
ware; The Tools and Methods: VOM, DVM, Oscilliscope,
Logic Probes, Signature Analysis, Emulation, Simulation, Logic
State Analyzers, Case-Study Trouble History, The Perfect Bench
IX CONCEUSION -EVOLUTION ., ;i ovionitecess o 317
The New Chips: 1-Chip Systems, Plastic Software
T T TR L e e i T SN, S S S 319
Manufacturers
sy D U e S I S < e 1, (A sl s | L 321
S100 Manufacturers

INDEX

PREFACE

Computer interfacing has traditionally been an art, the art to design and
implement the required control electronics for connecting a variety of
peripherals to the main processor.

With the advent of microprocessors, and of LSI chips, since 1976, mi-
croprocessor interfacing is no longer an art. It is a set of techniques, and in
some cases just a set of components. This book presents the techniques and
components required to assemble a complete system, from a basic central
processing unit, to a system equipped with all usual peripherals, from
keyboard to floppy-disk.

Chapters two and three are a recommended reading for every designer
who has not had the experience of designing a basic system. Chapter two
presents the construction of a basic CPU, in the case of popular micro-
processors such as the Intel 8080, 8085, and the Motorola 6800. Chapter
three presents the set of input-output techniques used to communicate with
the external world, and a brief survey of the existing chips which facilitate
the implementation of these techniques.

Chapter four is an essential chapter: the microprocessor-based CPU will
be successively interfaced to every major peripheral: keyboard, LED, tele-
type, floppy-disk, CRT display, tape-cassette.

The following chapters then focus on specific interfacing problems and
techniques, from industrial design (analog-to-digital conversion) (chapter
five) to communication with the outside world (busing, including S-100 and
other bus standards), in chapter six.

Chapter seven presents a detailed case study, which incorporates the
interfacing principles presented in the previous chapters: the design of a
real 32-channel multiplexer.

Finally, chapter eight presents the basic techniques and tools for
trouble-shooting microprocessor systems.

This book assumes a basic understanding of microprocessor systems,
equivalent to the level of book C201 - Microprocessors: from chips to sys-
tems.

CHAPTER 1
INTRODUCTION

OBJECTIVE

The objective of this book is to present the complete set of techniques
required to interface a microprocessor to the external world. Because of the
availability of new LSI interface chips, which implement most techniques in
hardware, it will be shown that interfacing has become simple.

FROM ART TO TECHNIQUE

Microcomputer interfacing has traditionally been the art of designing
complex boards of logic managing the data transfers and the synchroniza-
tion signals necessary for the processor to communicate with external de-
vices. The processor itself has traditionally required one or more boards of
logic. Each I/O interface has traditionally required on or more boards of
boards. Such Multi-board implementations are obsolete today in most
cases. Large scale integration (LSI) has now resulted in the implementation
of a complete (or almost complete) CPU in a single chip. The new market
created by microprocessors has introduced, in turn, the necessity for man-
ufacturers to provide the required support components. Most of the boards
required to assemble a complete system have now been shrunk into LSI
chips. Since 1976, even device-controller interface chips exist. They do for
interface design what the microprocessor has done for CPU design.

A complete interface board, or most of it, is today shrunk into a few LSI
chips. The price paid, just like in the case of a microprocessor, is that the
architecture is frozen inside the LSI chip.

It is now possible to implement a complete microcomputer system, in-
cluding interfaces, in a small number of LSI chips. If you are still imple-
menting your interfaces on one or more boards of logic, your design might
be obsolete!

Microprocessor interface-chips have not reached their maturity yet.
They are still “‘dumb’’ chips. In other words, they can execute only a very
few commands. It can be predicted that in view of the very low cost of a
processing-element, most microprocessor interface chips will become fully
programmable in the near future. They will become *‘processor-equipped’’,
and be capable of sophisticated programmed sequencing. They will become
““intelligent”’ interfaces.

Although this next step has not been reached yet, all the techniques
presented within this book should retain their validity in the future. There is
always a trade-off between software and hardware implementation. The
balance will change with the introduction of new components, and with the
trade-offs involved in each specific system design.

THE HARDWARE/SOFTWARE TRADE-OFF

Detailed techniques will be presented to solve all the common interfac-
ing problems. As usual in computer design, most of these techniques may
be implemented either by hardware (by components), or by software (by
programs), or by a combination of both. It is always up to the system
designer to strike a reasonable compromise between the efficiency of
hardware, and the lower component count of a software implementation.
Examples of both will be provided.

THE STANDARD MICROPROCESSOR SYSTEM

Throughout this book, reference will be made to a “‘standard micro-
processor.”” The “‘standard’’ microprocessor today is the 8-bit microproc-
essor. Examples are the Intel 8080, 8085, the Zilog Z-80, the Motorola 6800,
the Signetics 2650, etc. In view of the pin number limitation on DIP’s
(dual-in-line packages), the 8-bit microprocessor has become the norm. The
reason is simple:

The number of pins is limited to 40 (or 42) by economic considerations.
Industrial testers required to test components having more than 40 pins are
either not available, or would be extremely expensive. All standard testers
will accept only up to 40 or 42 pins. In addition, naturally, the cost of the
package itself increases rapidly over 40 pins.

Because of the limitation of the densities which can be achieved with the
MOS LSI process, it is not yet possible to integrate the complete memory,
plus I/O facilities directly on the microprocessor chip. In the standard
system, the microprocessor itself (abbreviated MPU), and perhaps the
clock, reside on a single chip. The memory (ROM, or Read-Only Memory,
and RAM, or Random-Access Memory) are external. Because memory
and /O chips are external to the microprocessor, a selection mechanism
must be provided to address the components: a microprocessor must be
equipped with an address-bus. The standard width of the address-bus is 16
bits, permitting the addressing of 64 K locations (where K = 1,024:; 216 =
64K).

An 8-bit microprocessor will transfer 8-bit data. It must be equipped
with an 8-bit data-bus. This requires 8 additional pins.

At least two pins must be provided for power, and two more for connec-
tion to an external crystal or oscillator. Finally 10 to 12 control lines must be
provided to provide the coordination of data transfers in the system (the
control-bus). The total number of pins used is 40. No pins are left unused.

Because of this pin-number limitation, a 16-bit microprocessor cannot
provide at the same time a 16-bit address-bus, and a 16-bit data-bus. One of
the buses must be multiplexed. This results in turn into a slower operation,
and in the necessity of external components to multiplex and de-multiplex
the buses.

It can be expected that the progress of integration will soon introduce a
new standard microprocessor, the [6-bit microcomputer-on-a-chip. A mi-
crocomputer-on-a-chip is a microprocessor-plus-clock-plus-memory (ROM
+ RAM) on a single chip. Since the memory is directly on the chip, there is
no longer the necessity to provide an external address-bus. 16 pins become
available. In such a system, at least 24 lines become available for data
transfers. They are general-purpose I/O lines. The disadvantage of current

. microcomputers is that, for the time being, the quantity of memory which
may be implemented directly on the microcomputer-chip is limited. The
current limitation is 2048 words for the ROM, and 512 words for the RAM.
Adding external memory involves complex muiltiplexing and de-
multiplexing, and is usually not worth it. However, if a system can be
implemented in the near future with a significantly larger memory, it can be
expected that it will become the next standard design.

POWER

8-BIT DATA BUS >

P
K
S I
1/0 BUS
r==""
ROM RAM PROGRAM- K :>| 10
MPU MABLE 1

1
Pro| | oATA) 1/0 @:) | VIS

] ¥
l - CONTROL = ===
AL 4 A S+ 3N
16-BIT ADDRESS BUS v
[>
CONTROL LINES

Fig. 1.1 Standard Microprocessor System

For the time being, the 8-bit microprocessor is indeed the standard de-
sign used for ‘*powerful’’ and flexible applications, and will be referenced as

INTRODUCTION 9

such. The basic diagram showing the architecture of a standard system
appears on Fig. 1-1. The microprocessor itself, labeled MPU, appears on
the left of the illustration. On most standard systems, up to 1976, the clock
was external to the MPU. It appears here on the far left at the illustration.
Since 1976, the clock circuitry has been incorporated in the microprocessor
chip itself and all recent products do not require this external clock. How-
ever they always require an external crystal or oscillator. It appears here,

connected to the clock.
The microprocessor creates three buses:

The 8-bit bi-directional data-bus (implemented in tri-state logic to allow
the use of a direct-memory-access controller, or DMACQC).

A 16-bit mono-directional address-bus, connected internally, within the
microprocessor, to the address-pointers, and in particular to the program-
counter (PC). The address-bus is also implemented in tri-state logic in order
to allow the use of a DMAC.

Finally, a 10 to 12-line control-bus, which carries the various synchroni-
zation signals to and from the microprocessor. Control lines are not neces-
sarily tri-state.

All the usual system components are directly connected to these three
buses. The three basic components appear on the illustration. They are
respectively the ROM, the RAM, and the PIO. The ROM is the Read-
Only Memory. It stores the programs. The RAM is the Random-Access-
Memory. It is a read-write MOS memory which stores the data. The PIO is
a programmable input-output chip which multiplexes the data-bus into two
or more input-output ports. It will be studied in more detail in chapter three.
These ports may be connected directly to input-output devices, or to
device-controllers, or may require the use of interface-circuits.

The interface-circuits or interface-chips required to interface this basic
system to actual 1/O devices will be connected to these buses, whether the
microprocessor buses or the input-output buses created by the PIO, or by
other chips.

Interfacing techniques are precisely those techniques required to con-
nect this basic system to the various input-output devices. The basic inter-
facing techniques required to connect any microprocessor system to input-
output devices are essentially identical. They will be described in detail in
chapters three, four, and five. At the level of the microprocessor itself, the
logical and electrical interface required is simple. All standard microproces-
sors have essentially the same data-bus and the same address-bus. The
essential difference is the control-bus. It is the specific characteristics of the
control-bus which make input-output interface chips compatible or incom-
patible from one microprocessor to the next. As an example of basic inter-
facing characteristics, the basic 8080, 6800, and SC/MP, interfacing charac-
teristics appear on Fig. 1-2. A more detailed listing of signal equivalences

10

appears on Fig. 1-3.

8080 PACE 6800 scP
ADDRESS WORD LENGTH 16-BIT 16-BIT DATA/ 16-BIT 12- OR 16-BIT
ADIRESS BUS
DATA WORD LENGTH 8-BIT 8-BIT 8-BIT
ADDRESS & DATA POLARITY msm1-mmmmmsmwsnmmmmm
AREUsm 8080 SYSTEM DATA AND ADDRESS BITS ARE § = TRUE
ADDRESS STROBE NONE =g TOSET WA=1 NADS = ¢
rmmmxms
LATCHES (CONCURRENT WITH)
MEMORY READ STROBE MRDC = # T0 READ IDS = 1 TO INPUT R/W = 1 TO READ NRDS = ¢ TO READ
DATA DATA DATA DATA
MAXIMUM CLOCK RATE 2MHz 2MHz 1MHz 1MHz

Fig. 1.2 Basic Interfacing Characteristics

Interfacing input-output devices requires the understanding of two basic
techniques:
1. The assembly of a complete CPU, using a microprocessor chip. This
topic will be addressed in chapter 2.

2. The fundamental input-output techniques used to communicate between
the microprocessor and the external world. This topic will be addressed
in chapter 3.

MICROPROCESSOR CONTROL SIGNALS

It has been shown that a standard MPU creates three busses: the 8-bit
biedirectional data bus, the 16-bit mono-directional address bus, and a
control-bus of varying width, depending on the microprocessor. The
data-bus is essentially identical for all microprocessors. It is 8-bit=bi direc-
tional bus, normally implemented in tri-state logic. Similarly, the address-
bus is almost universally a 16, or sometimes 15-bit mono-directional bus,
used to select a device external to the MPU. The actual use and inter-
connect of the address-bus and the data-bus will be presented in the next
chapter. The third bus is the only complex one. It carries the micro-
processor control signals or “interface signals.”

INTRODUCTION) 11

- F9a - - -
- 98l - —_ -
-— - IV -— -
- - HSIH - -
- - - TV -
- - - aos - STVNDIS
- - - as —
- - - I00 LASTY - TO4INGD
TN DN N dVeL -
- - - S°L Isy -- IHIO
- - - $*9 IsH -
-— - - §°S Is¥ -
-- - -~ - YISSNIVLS
- ITVH - - Nasng
2@ vue M/y 2@ pus M/4 BYUOI Puw ¥M IN/OI pPue umM K 0/I
2¢ pue M/y 2@ pus M/4 DYOI PUB Q4 |W/OI Puwe Qy ¥ 0/1
2¢ vus M/¥ 2¢ ous M/y DIYN PU® WM |W/OI Pwe ¥M MR
29 Pue M/M 2¢ pus M/y DI pwe @ [W/0I pwe qu N
- 84dd=(STY-¢V) PuU® VWA BYOI PUe TH VINI VINI
ONXS - ™ -~ ONES
IASTY 1asad LIS NI ZaSqd LISTL
plats -~ IIVA Qv xavay
- - - - IIVM
- - -- - FINT
YL bax INI YINT INT
pay23aI3s 2g POYD3IIIE 2P - pan] 2P
plertd IIVH busng TI0H TI0H
- VAA PUe VE qvsng VaOTH VaTH "TOMINOD
STEA ©3 gaa 1a o3 ga La o3 ga dTy pus 10 o3 ga viva
Lav o3 gav
9383573 j0u STV 03 gy STV ©% gv TTY PUE STV 03 STV o3 gy SSTHATY
STAV 0% gay 8v + LAV o1 gav
20S9SON 089K 082 $g0g 8228 2 0808

mgsabam STYNDIS SN¥ ILVNIXONdJY

Signal Equivalences

Fig.1.3

12

The control bus provides four functions:
1. memory synchronization

2. input-output synchronization

3.MPU scheduling -- interrupt and DMA
4. utilities, such as clock and reset.

Memory and input-output synchronization are essentially analogous.
A hand-shake procedure is used. In a “read” operation, a “ready” status
or signal will indicate the availability of data. Data will then be trans-
ferred on the data-bus. In the case of some input-output devices, an
“acknowledge” is generated, to confirm the receipt of data. For “‘write”
operation, the availability of the external device is verified through a
status-bit or signal, and the data is then deposited on the data-bus. Here
also an “acknowledge” might be generated by the device to confirm the
receipt of data.

The generation, or non-generation, of an ‘“‘acknowledge” is typical
of the use of the synchronous procedure versus an asynchronous one.
In a synchronous procedure, all events take place within a specified
period of time. In this case there is no need to acknowledge. In an asyn-
chronous system, an acknowledge must be generated. The choice of a
synchronous versus an asynchronous communication philosophy is basic
to the design of a control bus. A synchronous design has a potential
for a higher speed and a lower number of control lines. However it imposes
speed constraints on the external devices. An asynchronous design will
require an additional acknowledge, and somewhat more logic, but allows
the use of components of varying speeds in the same system.

—
8224 LN 8080
oy — meu
leLock SYNC -~
RESET
READY
HoLD — |__..08IN
HLDA -— }——-wR ;
wan sys neser N7 - INTA
INTE -—
Do INTA
— D—-. YoR
— -
— W
o7 MEMR
= mEne
MEMW
-
STATUS STROBE ow

8080 Control Signals

INTRODUCTION 13

®

M
- [\

A

A .u- ’ —L UNKNOWN
ore | / ® X : T TReATWE T T T 1
-/

DATA T~ AEAD MODE

-
1T T
warr / B
onm / _

wh
STATUS
e arion
DATA
Ao SAMPLE READY OPTIONAL FETCH DATA OPTIONAL
MEMORY ADDRESS HOLD AND MALT R
INSTRUCTION
10 DEVICE nuMBER oay ExecUTION
° MEMORY WRITE DATA 1F REQUIRED
STATUS INFORMATION ACCESS TIME
INTA ourt T
HLTA w0
T
e STACK
Basic 8080 Instruction Cycle
.
1 Ty T3 Ts

W NV \
ol /" \ -/ \

DBIN

DBIN IS TRIGGERED BY 0,

DBIN Timing

DATA BUS >

DBE
TSC
HALT

ggoo NI
RESET |
TRG lee

D@-D7

L A |

BA
VHMA

CLOCK

A A

R/
a

AD-A1S P
-

+5

ADDRESS BUS

D
e VYV VT T T 1]

CONTRO[, BUS >

1

6800 Bus Signals

n
CLOCK

m—-———b

RESET

1Ra
INTERRUPTS

ML >

HALT >
3-STATE CONTROL E——
DATA BUS ENABLE ——

BUS AVAILABLE I ——

R/W

VALID MEMORY ADDRESS €————

Detail: 6800 Bus Control

INTRODUCTION 15

L

U
i

AAR RN

=Tas

16

CHAPTER 2
ASSEMBLING THE CENTRAL
PROCESSING UNIT

INTRODUCTION

The heart of any microprocessor system is the central processing unit or
CPU. A CPU includes the microprocessor, plus any additional compo-
nents it may require. Memory devices, buffers, decoders, clock-drivers are
all included in the typical central processing unit. Many of these circuits are
now being integrated on the same chip as the processor. In fact, since 1976,
one-chip microcomputers are a reality. Yet, even with the advent of one-
chip microcomputers, there still exist certain limitations on integrated cir-
cuit fabrication. There are three basic limits of the present LSI technology:
yield limits the number of transistors per chip, packaging limits the number
of pins on the package, and substrate material prevents some devices from
being integrated.

1,000,0007 e
NUMBER
oF 10,000
TRANSISTORS/
CHIP
1000 |
1
v L} L]
1960 1970 1980
YEAR
2-1 Devices Integrated Versus Time

ASSEMBLING THE CENTRAL PROCESSING UNIT 17

At first, only single transistors were made on each chip. Later, differen-
tial pairs, and simple logic gates made their appearance. Present technology
allows for up to 30,000 devices to be integrated on a chip. A graph of
devices integrated versus time appears in F ig. 2-1. One factor has remained
constant throughout this process: process defects limit the maximum size of
the individual die. Yields are higher for smaller die sizes. (The yield is the
number of good devices per batch). In the design of any LSI chip, the
“‘real-estate’’ (chip-area) becomes an all important factor affecting the cost
of the final device. Fig. 2-2 illustrates the trade-off between yield and die-
size. Yields also increase with manufacturing experience—this is called the
“learning-curve’’: costs decrease with higher quantities, because of im-
proved yield.

YIELD I

DIE SIZE
—

2-2 Yield versus Die Size

A less obvious factor is the packaging of LSI devices. Present testing
equipment cannot handle packages with more than 40 pins. Future test
systems may overcome this limitation, but, for now, the scarcity of
package-pins may require the use of multiplexing techniques: the data-bus
may also be used to carry address or control information so that pins may
be conserved (ex: 8080, 8085).

How does the substrate material limit LSI technology? Certain compo-
nents require a different physical material. The simplest example is the

18

crystal required for timing. A crystal is cut from quartz. The integrated
circuit is made from silicon. All systems requiring accurate timing will
require a crystal. Because of its bulk, the crystal is external.

In addition to the fact that limitations of LSI technology partition our
system into multiple components, additional devices are often needed for
system expansion. Large microprocessor systems require a significant
amount of ‘‘support-logic’’.

This chapter will present the concepts, techniques, and components
required to build a complete CPU: from system architecture to support
logic. Four typical systems will be presented, using the 8080, 6800, Z-80,
and 8085 microprocessors.

SYSTEM ARCHITECTURE

Fig. 2-3 presents the block-diagram of a typical microprocessor system.
All standard microprocessors, such as the 8080 or the 6800, have a similar
architecture. Three buses connect the systems’ components: data; address;
and control-bus.

INTERR! CcPU OMA

LOGIC

ML T JI7 0T [

DATA

[] |10 1r Jil JI 1]

ADDRESS

Il il AT 3F 1 [

CONTROL

I

INTERFACE

PERIPHERAI

2-3 Typical System Architecture

The data-bus carries information to and from the processor element. It
carries the instructions fetched from memory, the data-input from input
devices, the data stored into memory, and the data-output going to the
output-devices.

To specify where the data are going, or where they are coming from, the

ASSEMBLING THE CENTRAL PROCESSING UNIT 19

address-bus is used. It selects a location in memory or a register of an
input-output device.

The control bus is used to control the sequencing and nature of the
operation being performed. The control-bus indicates in particular the type
of operation to be performed: ‘‘read from memory to the processor,”’
‘‘write to memory from the processor,”” ‘‘read from an input-device to the
processor,’” or ‘‘write to an output-device from the processor.’’ Addition-
ally, interrupt, direct memory access, and other control functions are car-
ried by lines of the control bus to implement the scheduling and synchroni-
zation of events.

Our standard microprocessor has 8 data-lines, 16 address-lines, and at
least 8 control-lines. 8 data-bits form a byte. The byte is the basic unit of
information in our standard system. Half of a byte is sometimes known as a
nibble. The 16 address-lines allow for addressing of 65,536 (216) different
memory locations or bytes. Two methods are used for selecting a memory
location, or a device-register: linear selection, and fully-decoded selection.

Linear Selection

In the microprocessor-world, memory is partitioned into read-only-
memory (ROM) for programs and fixed data tables, and random-access-
memory (RAM) for data storage and temporaries, because of the volatility
of MOS RAM’s.

When more than one type of memory is used, the two types of memory
are generally in separate packages. Also, the size of each will be considera-
bly less than the full 65,536 possible locations available to our system. We
must place each device in its proper place in our memory map. A memory
map is the addressing plan for the address bus bits.

Initially, each device, RAM and ROM for our system, will have 256
locations. This implies that eight address lines will be needed to select one
of the 256 possible locations in each chip. Besides these eight lines, the
processor must be able to select one device at a time. RAM and ROM
devices have, in addition to their address inputs, at least one ‘“‘chip-select’’
(CS). This select-line, when activated, allows the operation to be performed
on the device (Read or Write).

Two basic techniques are used to implement the chip selection: Linear-
selection connects individual address lines to individual chip-select inputs.
For example, if the most-significant address bit (bit 15) is tied to a chip-

. select, that chip is selected whenever the most-significant-bit is a one. This
occurs for half of the total memory locations. Assume that our ROM is

20

selected by this most-significant-bit being ‘‘0’’ and the RAM by this bit
being “‘1”’. To address the 256 locations available inside each device, we
will connect lines A0 to A7 of the address-bus.

The essential advantage of linear-selection is simplicity: no special logic
is necessary to select chips. Each new chip is selected by a dedicated
address-line. This is, indeed, the approach used in all small microprocessor
systems.

For example, a 1K X 8 ROM chip will be used and a 512 X 8 RAM, plus
3 peripheral chips. The 1K ROM requires 10 lines for address-selection: AQ
- A9, plus one line for the chip-select: A14. The RAM will use A0 - A8 for
address-selection, and A15 for the chip-select. Lines A12, A13, Al4, AlS
may be used for additional devices.

AIS Al4 A3 A2 All A0 | A9 AB A7 A6 A5 A4 A3 A2 Al A0

B

RAM PIO

24 Linear Selection

However linear selection divides the available memory in half every time
a separate address line is used. If the need exists to select more devices than
there are available address lines, another method must be used: fully-
decoded addressing.

Fully-Decoded Addressing

The goal of fully-decoded addressing is to provide a complete 64K ad-
dressing capability.

In our example, the 256-location RAM will reside in the last 256 loca-
tions of the memory. Expressed in binary, this is addresses
1111111100000000: to 11111111111111112. Grouping into four-bit groups
and converting to hexadecimal this is: FF00 to FFFF. (See appendix for
hexadecimal conversion table). We see that the RAM chip should be ena-
bled when the 8 high-order address bits are equal to *‘1”’. ““ANDing’’ these
bits together would form our chip select. Fig. 2-5 illustrates the decoding for
our example.

ASSEMBLING THE CENTRAL PROCESSING UNIT 21

A15

12
= >—¢
A9 |

A8

2-5 Fully Decoded Selection

Instead of using AND gates for every device, there exist general-
purpose gating devices known as decoders. An example is the 8205 or
74LS138 three-to-cight decoder. The 8205 has three inputs to select one of
eight mutually exclusive outputs, in function of three enable inputs. When
the three enable inputs are in their proper states, one of the outputs will be
active depending on the three select lines. Examples using the 8205 will be
presented in the hardware section to clarify full-decoding schemes.

AD S
A0 s
A2 __ h—S2
h—S0
£l 4o B
Ea DL

Sp = (AD-A1.A2) . (E1-E2.E3)
S1= (AD A1.A2) - (E1- E2 E3)

S7= (ADA1-A2) - (E1. E2. E3)

2-6 8205 Decoder

22

Complete-decoding selects devices without wasting available address
space. A contiguous memory may be built where addresses pass from one
device to the next without large areas of nonexistent or overlapping mem-
ory. The disadvantage of this approach is the cost of decoding. Most sys-
tems implement a mix of linear selection and partial decoding.

Storage Chips

The basic devices for storing information now used are the RAM and the
ROM. The ROM contains permanent information and cannot be changed
by the system. The RAM allows for temporary storage and retrieval of
information. The program information is usually kept in a non-volatile
ROM since it does not change, and the data and intermediate results are
stored in RAM.

“RAM” usually refers to a semiconductor device, but is also used for
other storage media such as core memory.

A RAM chip may contain from 256 to 16,384 cells, each cell representing
a bit of the information-word or byte. Each cell may consist of a flip-flop
type structure—in which case it is a static device, or it may consist of a
capacitor structure—in which case it is a dynamic device. The static RAM
will retain information as long as power is present, whereas the dynamic
device must be refreshed every few milliseconds in order to renew the
stored charge in each cell. This means that dynamic memory will undergo a
refresh cycle one to five percent of the time. This may be important in some

R,
AD —]]
p— CAS |
—1 103 RAS__1 2104
—_ AD |
—11024 x 1]
- —] 40%6x1
A9 ___| —
A7]
1103 uses 10 pins
18- PIN DIP
2104 user 10 pins
16- PIN DIP
Intel Dynamic RAMs Address is multi-plexed

ASSEMBLING THE CENTRAL PROCESSING UNIT 23

real-time applications as memory will be ‘‘busy’’ and unavailable for use as
long as a refresh cycle is in progress.

ROM will refer here to an LSI device, but may also be used to denote
other types of read-only memories. Several types of ROM’s are available.
The masked-ROM is ‘‘programmed’ by the manufacturer and will stay
programmed for the life of the chip. It cannot be altered. The PROM is
programmed by the user and may either be of the fusible-link type, where a
bit is programmed by blowing a microscopic fuse, or it may be a stored-
charge type that will retain the pattern for tens of years. The latter type is
also known as an EPROM because it can be erased by ultraviolet light and
reused. The EAROM is electrically erasable and could be considered as
RAM except that it takes 100 milliseconds or longer (typically) to erase the
device. This makes it inconvenient to use as a scratchpad for calculations or
data manipulations. The use of EAROM’s has been restricted so far to
military applications.

Buffering the Buses

Each input of a device presents a load on the output driving it. Most
components drive anywhere from one to twenty other components. Every
component must be checked for its input and output loading and driving
characteristics.

The microprocessor’s buses must connect to every memory and
peripheral input-output chip in a system. All MOS microprocessors lack the

ADDRESS BUFFERED ADDRESS BUS
DRIVER >

L '
MPU DECODER
AND),
DRIVER MEMORY

CONTROL
LOGIC

; Tt
PRIVES CONTROL BUS >

2-7 Buffering Address and Control Lines

output drive needed for a large system. Because of this, buffers or drivers
are used to boost the driving power of the buses. There are bus transmitters
for driving the bus, and bus receivers for listening to the bus and driving the
processor.

Fig. 2-7 illustrates the use of transmitters to buffer the address and
control-buses. The lines on the address and control buses are unidirec-
tional: the data flows in one direction.

Fig. 2-8 illustrates the use of bus transceivers for the data-bus. Data
must pass in both directions so both transmitters and receivers are used.
The bidirectional data-bus will receive data and transmit data, depending on
the function being performed.

MEMORY

TRUSCEIVER C:)

{ _

q— |3

VAN
V

BUFFERED DATA BUS 4

2-8 Buffering The Data Bus

The concept of a system architecture will be expanded and completed in
Chapter 3 on input and output techniques. To clarify the concepts pre-
sented so far, four real systems will now be assembled: an 8080, a 6800, a
Z-80 (with dynamic RAM), and an 8085 system.

THE 8080 SYSTEM

Intel’s 8080 has been the most widely used ‘‘standard’’-architecture-
microprocessor. The 8080 is a popular processor also used in many hobby
microcomputers. We will assemble the complete central processing module
for a typical 8080 computer system. The connection of the: clock, system

ASSEMBLING THE CENTRAL PROCESSING UNIT 25

controller, RAM, and ROM will be presented. Thé input-output will be
covered in detail in Chapter 3.

H A®
. .
17 .
29
1
n
b1 .
NT 14 " A?
— :; -

7o B0BOA L

" :
a0 ll H At
HOLD |t -
14

MDA |—4L
y;‘T oax:‘
ocs our 2
-] " 3Y Y s
1
AoV 5 10 1 3 'f’
i .
—d —2 swac
2| 8224 |4 23] cenor 13 L — .
REs N 1B eeser £ 8228 o7
#1 #2

1 22 5 »” y

10 o7 ¥yl 3 +

1jow ;

srsre|ot >0 NTA
$2(rrs) BusEN
. 2 x
INT
INTE
/DY

29 8080 Completed CPU

The Clock

The 8080 requires a two phase non-overlapping clock. This clock must
swing between +11 volts and +0.3 volts. The clock is therefore not TTL-
compatible. Initially, clock-drivers were made from discrete components or
special-driving integrated circuits. Intel introduced the 8224 clock chip to
reduce parts-count and simplify the clock interface problem. One merely
connects the crystal to the 8224, the 8224 to the 8080, and all clock interfac:
ing is complete.

The connection of the 8224 appears in Fig. 2-9, and the structure of the
8224 itself appears in Fig. 2-10.

The System Controller

When designing the 8080, the lack of pins became a major limitation. In
order to gate out the required control signals, pins have to be multiplexed.

26

XTAL 0sC]'> 0sc out
TANK __1
(]
FOUNTER
02 TTL
r—D 02
SYNC STB
RST 1 FF
>— r RESET
RIN READY
FF
L
2-10 8224 Schematic
BUSEN:
) 20 ™ 3 DBY
571 1 8216 6
D1 PYTY DBl
2 il 10 B2
b3 12,18] S 13 DB3
15Y Y
Dl 2,8 [3 DBl
0s 5.1 [8216 DBS
o6 o [086
o7 12,14 [_— E 13 D87
15 1
DBIN ci >_.| »_E
3 L INTA
8080 % = ‘-D)— VA
T {8 sTack
3 10 HLTA — 7R
. 16 8212 |15 our
18 7 M MEMR
20 |12 INP
22] .ZLJEHB_. /0w
STSTB ¥ 2113, r
T
2-11 System Controller Using 8212 and 8216’

Control or address functions would have to share lines with the data-bus. In
this case, the designers chose to multiplex control information or szatus on
the data-bus. This status byte may be latched for use at the time of the
SYNC signal. The lack of pins is essentially due to the early technology

ASSEMBLING THE CENTRAL PROCESSING UNIT

27

used for the 8080, which required three power levels, using four pins.

Early processor designs used latches and random-logic to capture these
status signals. In fact, this is why the actual S100 bus still retains what is
known as the old 8080 status signals. The design of what became known as
the system-controller appears in Fig. 2-11. The latch holds the status infor-
mation and the gates decode the status along with the other 8080 control
lines into control signals for the memory and input-output devices.

Intel, realizing early that the system-controller function should be inte-
grated into a single-chip, introduced the 8228 chip, shown in Fig. 2-12. This
device latches the status and drives the control bus. In addition, it buffers
the data bus, i.e. includes a data-bus driver.

DP <—p l¢—» DBY
oL <—>] BI-DIRECTIONAL [+—> DB
|| 2] < o5 || ST
BUS ey ssmiver T2 oas |} BUS
Dé l¢——3 DB6
D7 j¢— DB7
[_{‘ I
b MEMR
STATUS > .
LATCH AT b—w T70R
> ARRAY b——» 1/0W
? fre— BUSEN
STSTB —» b—a [ilTA
DBIN >
WR q
HLDA >

2-12 8228 System Controller

The trio of 8224, 8228, and 8080 now completes the central processor
function. The only other component required is the crystal. To complete
the CPU we need to add the program memory and the random-access
memory (ROM and RAM).

Connecting the ROM

Read-only memories come in two essential varieties: programmable and
masked. The programmable ROM’s may be programmed once at the time
they are to be used, (such as fusible link ROM’s or PROM’s); or they may
be programmed, used, and erased, (such as ultraviolet erasable ROM’s or
EPROM’s). The mask-ROM’s are programmed at the time of manufacture

28

and are used only in production systems. The erasable or fusible link
ROM’s are used for prototyping.

Address bits
Ap— A9

A9

8205

18\/

[
A0 Ml

Al Al
A2 A2
A13 .
A4 3

op-..07

TTrrrey

| 5

MEMR Data Bus

2-13 2708 Selection Using 8205

Address becomes stable

EwR }l o
T N S

le—>i
| 1
decoding
delay
DATA FROM 2708 < unstable X stable >
tri-state tri-state

| PROM |

I ACCESS |

TIME
2-14 PROM Timing

A typical erasable ROM appears connected to our 8080 buses in Fig.
2-13. This device, a 2708 EPROM, contains 1024 bytes of memory. In order
to address 1024 bytes, 10 address lines are needed, (21° = 1024). In addition,
the chip must be selected at its proper place in the memory map. We will

ASSEMBLING THE CENTRAL PROCESSING UNIT 29

choose to put this memory at locations 0000 through 03FF hexadecimal. In
order to decode this address space, an 8205 is used in addition to some other
selection logic for controlling the memory read condition. Note that it can
select up to seven additional, contiguously located, 2708’s, if required. The
data-bus connects directly to the data lines of the 8228 system-controller.
The only control-line required is the memory gead line. The timing of a
memory read appears in Fig. 2-14.

The address and memory-read lines activate the 2708. After a period of
time called access-time, the data byte fetched appears on the data-bus. The
processor reads this byte and executes the instruction.

Connecting the RAM

A convenient size for the economical manufacture of ROM’s is 1K by 8
bits (1K = 1024). RAM’s, however, come in different sizes. The most
inexpensive configuration is 1K by 1 bit (least number of pins). We need
eight bits for a byte, so that eight devices are needed—one for each bit.
Another popular size is 256 by 4 bits. This type of RAM is interfaced here.

256 by 4 implies that two devices are needed to complete the byte. The
schematic for the 256 by 4 memories, interfaced to the 8080 bus, appears in
Fig. 2-15.

DATA IN

DATA OUT

RAM

L
-
2
QUAD TRANSCEIVER

DO

IN/OUT

Buffing RAM data Lines Using a Bus Transceiver

30

DATA BUS

| pio@ p3 o4 | pbop (b7
A A
Al AL
i 2 1
= - a—
Al ﬂ
2 y—
% —
cs cs
Al ——— MR

2-15 Connecting the 2111 RAM

The address-bus lines needed to specify the address are connected to
each RAM chip. The eight address-lines will select one of the 256 bytes in
each RAM chip. The unused eight address lines are decoded by an eight
input NAND gate. As per our earlier discussion, the RAM will be located
from FF00 to FFFF hexadecimal. The data bus splits in two, with four bits
going to each of the 256 by 4 bit RAM’s. Control lines are needed to enable
the memories for reading and writing as well as controlling the timing of the

‘MBEM R
\ / READ CYCLE

b JRISTAIE Ao S e O-RISHE |
—

| Access |

MEM W —\ TIME —
DATA BUS M‘m FROM PROCESSOR >.IB.I§IAIE_

WRITE CYCLE

216 RAM Timing

ASSEMBLING THE CENTRAL PROCESSING UNIT 31

writing operation. The 2111 RAM’s used here have a number of extra
enable inputs, as well as a read/write line. The two signals: ‘‘memory-
read,” and ‘‘memory-write,”’ are used to control the RAM’s. ‘““Memory-
read’’ enables the output drivers of the chips to drive the data-bus. At all
other times, the chip is in a read-mode, but will not place information on the
bus. ‘“Memory-write’’ enables the RAM to perform a write cycle and gates
data presented on the data-bus into the RAM’s. Timings of these operations
are illustrated in Fig. 2-16. _

When the address becomes stable and “‘memory-read’’ is brought low,
the chip is enabled to drive the data-bus. After the byte is accessed, it
remains on the bus until fetched by the processor and ‘‘memory-read”’
returns high. The write-cycle is similar, except that, this time, ‘‘memory-
write’’ is brought low, forcing the data-bus contents to be written into the
RAM’s.

Integrating the processor and memory into an assembled module re-
quires only that we draw them all on the same schematic.

The Complete 8080 System

To make life more interesting, the system module presented here con-
tains only partial decoding for the PROM’s and linear-selection for the
RAM’s. The memory module appears in Fig. 2-17. The PROM’s will oc-
cupy locations 0000 through OFFF hexadecimal. The RAM will be at 2000
through 20FF hexadecimal. It will also be addressed for all addresses of the
form: OXX1XXXXXXXXXXXXX binary—where X is a one or a zero
(don’t care condition). The PROM is addressed for: XX00000000000000
through XX01111111111111 binary. We cannot add any other memory to
this system without further decoding.

The central-processor module will be the same as in Fig. 2-9. As an
exercise, the central processor assembly of Chapter 8 could be examined at
this time and the reader should verify his/her understanding of address-
decoding and buffering techniques.

THE 6800 SYSTEM

Developed by Motorola, the 6800 is also a popularly used ‘‘standard’’
type of microprocessor. In comparison to Intel’s device, the 6800 imple-
ments some design philosophy differences. The most obvious are the lack
of pin-multiplexing and the single power-supply requirement. Other differ-
ences lie in the instruction set, internal architecture, and control signals.
Overall, both devices are essentially similar. Fig. 2-18 shows a schematic of
a 6800 system.

32

Do
D7

2-17

(Yol wnp—
K O
(o}
9 x =
%)
o+
O
R 8
- = N =
Lo |
= = x &
o op—e
)
o0 = e |=
S
~ 8 2 |El&
p oo] = (=
— w
(&
ISSEERRALANARRRRERE
RN RN poooas s
IRERNERR f g =vasa:
ANRRNRY| B0
ARRRERY et
~ [FRRRRRR! |r
- gl |
" oo -
%) 0 F o»
= > =2 £ o
i %] o
%) > &5
>
P ol
b=]
0 o0
==
~ ~
OOOI
l Q
o
B
[S
N pa
o]
a
Lm
I +
o=
=
wl
=

=
<T

Complete 8080 System Memory

ASSEMBLING THE CENTRAL PROCESSING UNIT

(=2}
<C

—
—
<

Al15

33

DATA BUS

Z Rz

-

>
K~

6800 ROM RAM PIA

it 19t 198

! | ABDRESS BUS ,

=
N
D

R/W

2-18 6800 System Block Diagram

The Clock

The 6800 requires a non-TTL compatible clock-generator. Since no
other useful functions are needed for the two-phase clock generation, either
simple discrete clock circuits, or integrated drivers are used. Motorola
produces a hybrid device which contains the crystal and conveniently pro-
vides the necessary clock phases. Fig. 2-19 details the 6800 clock require-
ments.

l Feye l

g1 /"—
ﬂzx

2-19 6800 Non-Overlapping Clock Signals

6800 Buses

The 6800 architecture uses memory-mapped input-output (see Chapter
3) and requires only a single power-level, versus three for the 8080. As a
result, no multiplexing is required to gate the control signals. However, the
buses need to be buffered in any large system, making the parts count

34

essentially equal between 8080 and 6800 systems. (The 8228 system con-
troller includes a data-bus driver).

The data-bus is a bidirectional 8-bit bus. It requires buffering for most
applications. The suggested Motorola components appear in Fig. 2-20.

MC 6830

DATA
— <: QUAD 3-STATE BUS EXTENDER

BUS
MC 8726

6800
XC 6885
ADDRESS MEX 3-STATE BUFFER INVERTER
— g
XC 8195 NON/ INVERTING AVAILABLE

2-20 Buffing 6800 Buses - Suggested Devices

The address and control-buses are unidirectional with respectively 16
address lines, and ten control lines. Fig. 2-21 illustrates the 6800 bus signals.
For memory interfacing, the R/W, ®, and VMA signals are required. They
are the read/write control, phase two of the clock, and valid-memory-
address control line.

® TSC HIGH FORCES ADDRESS BUS AND R/W INTO HIGH-IMPEDANCE MODE
® DBE LOW FORCES DATA BUS INTO HIGH-Z MODE

e R/W MPU IS IN READ MODE WHEN LOW

® VMA IS VALID MEMORY ADDRESS. A HIGH ENABLES RAM, PIA. ACIA
e IRQ IS INTERRUPT REQUEST LINE. PC IS LOADED FROM FFF8, FFF9

e RESET STARTS THE 6800 FROM POWER-DOWN. PC IS LOADED FROM
FFFE. FFFF. 8 CYCLES ARE REQUIRED BEFORE

e NMI IS NON-MASKABLE INTERRUPT., PC IS LOADED FROM FFFC, FFFD
e HALT ALLOWS PROGRAM EXECUTION BY EXTERNAL SOURCE AND STEPPING

e BA (HALT OR WAIT) INDICATES THAT ADDRESS BUS IS AVAILABLE

2-21 6800 Control Signals

ASSEMBLING THE CENTRAL PROCESSING UNIT 35

The ROM

Motorola manufactures a line of 6800 compatible products which facili-
tate the interface requirements in small or medium-size systems. Their 1K
by 8-bit mask ROM includes four chip-select lines for selecting the ROM.

An+1

An+2

CHIP 1 CHIP 2 CHIP 3 CHIP8

3-Chip Selects Allow Connection of up to 8 Devices

t DATA_BUS >

D@-D7
1K BYTE

)| as-ag ROM

A10_ I es1
AL les

s [(50 ey 02

Y

+5v

L ADDRESS BUS

< CONTROL BUS

2-22 6800 ROM Connection

T D
»

In the example of Fig. 2-22, the chip-selects are connected to three of the
high-order address bits, and to the VMA signal ANDed with the ®2 signal.
In this way, the ROM is selected for any valid memory address cycle from

36

1C00 to FFFF hexadecimal. Of course, the ROM is only 1024 bytes, so the
large area it takes up is due to the ‘‘don’t cares’’ or the undecoded address
bits: A15, Al4, and A13. The essential advantage of providing the three
Chip-Selects is to allow the possibility of connecting up to 8 devices to only
3 address lines: no external decoder is needed (see Fig. 2-24).

The RAM

Motorola is one of the few manufacturers that makes a 128 by 8-bit
RAM. This is a convenient size for small systems. The interface to the 6810
RAM is aided by the large number of decoded chip-selects that are pro-
vided on the chip.

The interface of the RAM appears in Fig. 2-23. Note that only seven
address lines are needed to select one of the 128 RAM bytes. The other 9
address lines must be used in some combination to select the chip. In this
example, RAM is selected when Al1 through A7 are all low. This would be
address 0000 through 00FF hexadecimal. Since the highest four address bits
are not fully decoded, the memory is also enabled for addresses 1000
through 10FF. Similarly, it is enabled for 2000 through 20FF, and so on,
ending with F000 through FOFF.

<‘~ DATA BUS _ >

N

> Do-D7

A RAM
F'—_) AB-AG

A7' I
A8 1t (S3 |
L P RAH e
AlQ 63 tso

VMA - Zo

A1l

<+ 5v =
L — ADDRESS BUS >
A Jll

((CONTROL BUS

2-23 6800 RAM Connection - The 6810

ASSEMBLING THE CENTRAL PROCESSING UNIT 37

28 “YWA
M/Y4 DYl
| WA
A SNd SSTAAY mm <o
9-v| _ _ié
b\ 6Y| 8Y| LV
SOFIEREN b
- =
— N/Y fe] Ml\w_)<=
A4 $J kil
q v 3
._.m_omﬁv AR T m_\ SOt Y
o S 9 NdW
\ ﬁv d ISI[* cTV M/l S oy
140d L X 090 [WY WO
BEL]
J
it it Nz v
Ar S ISL
[D
LYvISHY

2-24 Completed 6800 System

38

In order to use our RAM with our ROM, we must select those places
where the two do not overlap. One example is ROM from FCO00 through
FFFF and RAM from 0000 through 00FF.

The VMA and ®2 signals select the device for the memory cycle, and
‘“‘read/write’” controls the function: fetching or storing.

The Complete 6800 System

In Fig. 2-24, the complete 6800 system is presented. Note that an input-
output device is included here. This will be explained in Chapter 3.

THE Z-80

Up to this point, the processors used were developed at about the same
time. Zilog, created by the designers of the Intel 8080, was determined to
improve the power of the original device. The Z-80 is software-compatible
with the 8080. (In addition, it has some additional instructions and registers
which improve its processing capability.) In particular, the Z-80 provides
the necessary signals to interface with the larger dynamic memory devices.
A Z-80 system appears in Fig. 2-25.

CLOCK _ POWER
! " A +§ v Gl\t)
ADDRESS
| mReQ
ROM
v D .

z-80<%£A 1 | pata

ouT
ES I0RQ I_L l
1 _

0

—d

b ~— A0
ml 1
| M A

.—’

2-25 2-80 System

QUTPUT INPUT
DATA DATA

ASSEMBLING THE CENTRAL PROCESSING UNIT 39

Dynamic RAM Interface

In our previous examples, the memory devices used were static RAM’s.
With static RAM’s data are retained as long as power is applied. Dynamic
RAM’s need to be refreshed periodically. A dynamic RAM stores informa-
tion in a FET capacitor. Such a device can only retain its charge for a few
milliseconds. The cell must be accessed every few milliseconds, in order to
renew, or “‘refresh’ the cell. The Z-80 provides the refresh address using a
design trick.

After an instruction is fetched, the address bus no longer needs to remain
stable. Instead of wasting this time, the Z-80 outputs on the lower 7 address
bits a refresh address. This address increments once each instruction-cycle.
With this method of *‘stealing’’ a refresh cycle in every instruction cycle,
and with the additional internal refresh register dynamic memories may be
interfaced easily to the Z-80.

Otherwise, the processor would have to wait while a separate circuit,
called the refresh-controller, stepped through the dynamic memory rows
refreshing the cells.

" | ‘ ’__@_":D~—

dynamis ram)
HEKXE
PAGE 1

DATA BUS

|
1,991

PAGE 0

—

=

The dynamic memory interface appears in Fig. 2-26. Mostek, which
second-sources Zilog, produces a single-board CPU, with 16K bytes of
RAM, 20K bytes of ROM and various input-output ports. The RAM bank

2-26 Z-80 Dynamic Memory Interfacing

40

[-R 4R 4

LR LY

<nQcuna

UOZREOA

P L1sY lg—
. 915¥% g
. s15Y Lggm
ta
avil lg—
sV
. no
siv
£808
v
EL)
UM pt——
WOl
AGY
N0 453Y fP
s3y
=] QT0H [.
—— vaiH
———t ¥INI
—— vin [T——-—
1no
YINWIL ECTY
f22z FoEgEmy At va STy UMy ITY 55 L@t da
3% [ESssE A
= (8 x952)
8XNT
0/1- Woud ssi8 ol1- WV sS18
oft- wod mmna
......... Lv G dad sodttt et w04 wvdTTUdvd
v .Eo._ 9 140d €1404 51804 v 1404

NI ¥3IWIL

41

SLINY¥ILINI

8085 System

2-27
ASSEMBLING THE CENTRAL PROCESSING UNIT

consists of eight 16K by 1-bit dynamic memories, and the ROM bank of five
4K by 8-bit ROM’s. This one board uses few chips to implement a powerful
processor. Compared to the 8080, the chip-count reduction is due to the
elimination of the 8224 clock, 8228 system controller, and refresh logic.

The 8085

Intel naturally also had to improve the 8080 design. The 8085 reduces the
parts count of an 8080 system while increasing the speed. Essentially, it
integrates the 8080, the 8224, and the 8228 into a single-chip.

This time, to provide expanded control functions, 16 address lines and 8
data lines, the decision was made to multiplex the low eight address bits. At
the beginning of every instruction cycle, the low eight address-lines appear
on the data-bus. To be used, they need to be latched. The multiplex-control
line ALE (‘‘address-latch enable’’) is used to latch and hold the lower
address bits.

Fig. 2-27 shows the 8085 system. Right away it should be apparent that
no latch is used for the low address bits! Intel has created a new line of
special RAM, ROM, PROM, and input-output chips which contain the
low-address latch. Thus, the 8085 bus has 8 data; 8 address; and 11 control-
lines.

The special peripheral chips contain combinations of RAM, PROM, and
input-output. In this way, complete systems with as few as three LSI chips
may be built. An 8277 PROM /O chip is presented in Fig. 2-28.

CLK

READY
DATA

ADDRESS

:AP(RT :
2K x8
EROM :BPORT:

i f
oc
POWER
228 8277PROM +1/0

10/M

RESET
RD

ALE
I0W

IOR
CE

03,

42

The clock circuitry has also been built into the 8085. The connection of a
crystal to two pins finishes the interface for the basic CPU.

N e X4 . X1
= S
J) R) : X2
7 | |7

WITH A CRYSTAL WITH AN R-C NETWORK

Clocking The 8085

SUMMARY

The standard microprocessor architecture, with its three buses, controls
the assembly of our complete microcomputer. The memory devices, RAM
and ROM, are easily connected to the standard microprocessor buses.
Small systems use partial or linear decoding to select the memory. Larger
systems use full address-decoding. The 8080, 6800, Z-80, and 8085 systems
were presented to illustrate the simplicity of CPU assembly. Future proc-
essors will contain almost everything—except for the crystal, making CPU
assembly obsolete. The only task remaining will be signal buffering and
input-output interfacing. The basic input-output techniques will now be
presented, before the interfacing of actual peripherals.

ASSEMBLING THE CENTRAL PROCESSING UNIT 43

44

BINARY

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

CONVERSION TABLE

DECIMAL HEXADECIMAL
¢ []
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 c
13 D
1 E
15 F

APPENDIX CHAPTER 2

OCTAL

10
11
12
13
1b
15
16

17

CHAPTER 3
BASIC INPUT-OUTPUT

INTRODUCTION

Now that the processing section of our microcomputer is complete, the
next step is to communicate with the peripherals. Information about the
outside world must be gathered and processed. Once processed, the infor-
mation must be displayed, and sent to control the various devices. This
chapter will present the input-output techniques, and illustrate them with
design examples. This will be done in two steps.

Basic input and output interfacing will first be described: Serial input-
output, and parallel input-output. The concepts will first be presented, then
the chips which implement the algorithms.

The scheduling techniques required for sequencing the input-output de-
vices will then be presented: polling, interrupts, and direct-memory-access.

A terminology problem will first be clarified. Larger computers have
been equipped traditionally with memory-type instructions, and with
1/O-type instructions. This distinction is obsolete for microprocessors.

MEMORY VS. YO MAPPING OF INPUT-OUTPUT DEVICES

The traditional implementation of computers distinguishes 1/O and
memory instructions:

Memory-Mapped /O

Memory-mapped 1/0 refers to the use of memory-type instructions to
access I/O devices. Memory-mapped input-output allows the processor to
use the same instructions for memory transfers as it does for input-output
transfers. An /O port is treated as a memory location. The advantage is
that the same powerful instructions used for reading and writing memory
can be used to input and output data. In a traditional computer, there are
usually many more memory instructions than /O instructions. For exam-
ple, in memory-mapped I/O, arithmetic may be performed directly on an
input or output latch, without having to transfer the contents in and out of
temporary registers.

What are the disadvantages? First, each /O port used in this way makes
one less location available for memory. Thus, if all 65,536 memory locations
are needed as memory, memory-mapped 1/O should not be used. Clearly,

BASIC INPUT-OUTPUT 45

this is virtually never the case in a microprocessor system. Second, instruc-
tions that operate on the memory normally require three bytes to address
the location of the port (there can be 65,536 locations, which require 16 bits
of address), whereas special I/O instructions may need only eight bits to
specify a port). Third, memory-mapped 1/O instructions may take longer to
execute than special 1/0 instructions because of the need for extra address
bytes. This problem is usually solved by allowing ‘‘short addressing”’, i.e.,
the use of 2-byte memory instructions.

I/O Mapped Input-Output

In I/O-mapped input-output, the processor sends control signals indicat-
ing that the present cycle is for input or output only—not for memory. Two
special lines are supplied for I/O read, and I/O write. Fewer address-lines
may be used to select input-output ports, since systems need less input-
output ports than memory locations.

There are three advantages to I/O-mapped input-output. One, since
separate I/O instructions are used, they can be easily distinguished from a
memory-reference instruction while programming, a convenience. Two,
because of shorter addressing, less hardware is necessary for decoding.
Three, the instructions are shorter. The disadvantages are two: One loses
the processing power of memory-mapped /O, but, most important, two
control pins must be “‘wasted” for I/O read and I/O write. For this reason,
this technique is almost never used with microprocessors (except the 8080).

Fig. 3-1 shows a memory-mapped input-output system, where the con-
trol signal, which determines whether the address is for memory or 1/O,
depends on the state of A15. If A15 is high, then all addresses on bits A14
through A0 specify an I/O device. If A15 is low, A14 through A0 specify a
memory location.

e)

T0
MEMW MEMORY

1/0R T0
'Doﬂ’“ o
Al5
3-1 Memory-Mapped Input-Output

46

Fig. 3-2 shows an [/O-mapped input-output system with separate control
lines for memory and 1/O-control functions. The address bus will select a
device and a register or location within the device. This is illustrated in
Fig. 3-3. The control-bus will specify the operation to be performed. This is
the standard design in most every microprocessor system.

MEMR
}TO MEMORY
MEMW
I0R
}TO 170
[OW
32 Input/Output Mapping
LINEAR SELECTION WASTES MEMORY:
. 5 10 7 [
ADDRESS 8ITs: HRNEEEENEEEEEEN
~— N
LINEAR 1K ADDRESS
SELECT
64K
UNUSED
(WASTE)
32K - BIT 16 ON
UNUSED
16K 1¢————— BIT 14 ON
UNUSED
8K | BIT 13 ON
4K P— I R R o]]
2K | 4——-ee BIT 11 ON
(4]

BASIC INPUT-OUTPUT

47

ADDRESS BUS (16)

M CHIP SELECT
LOCATTON s
SELECT

REGISTER
SELECT

MEMORY 1/0
3.3 Selection of an I/O Port (HP
‘DATA BUS

N/
SELECT INPUT BUFFER OUTPUT BUFFER

PN
Meas— 3 (2115

FROM DEVICE

=

ADDRESS BUS
34 Basic I/O Port

PARALLEL INPUT-OUTPUT

A minimum parallel interface requires latches and bus-drivers. Let us
look at a basic LSI input-output port. On Fig. 3-4, a port is equipped with
an input-buffer, which latches input signals from a device, and holds them
stable, until the microprocessor requires that information, and with an
output-buffer to latch microprocessor data, to hold them as long as the
external device requires. In addition, there must be a selection mechanism
and read/write control for the registers or ports. Figs. 3-5 and 3-6 illustrate
conceptually what a simple 1/O port requires.

This device has: an input-latch that can hold external information until
the system reads it; an output-latch to hold data from the system stable until
output, and bus-buffers to receive and drive the data-bus. Additionally,

48

DATA BUS >

ADDRESS BUS

.

1/0 1/0 DATA
ADDRESS DATA

1/0 DEVICE
1/0 INTERFACE
CONTROL

STATUS

Vs

CONTROL BUS

&

35 Simple 1/O Port (I)

<
\r"
|AIIRESS DECODER l

_G::q' [OUTPUT BUFFER FULL
s a DATA RECEIVED
WRITE
CLK EN
:> LATCH 3-STATE :>ouwu1
[_G:j F: @ - » INPUT BUFFER EMPTY

| C!K
s-state |3 o <:

< RE INPUT_STROBE _ R
1B0LBUS)

3-6 Simple 1/O Port (I)

BASIC INPUT-OUTPUT 49

there should be an internal status-register indicating if there are data to be
read, or whether the data has been output. Although such ports can be
constructed from discrete devices, a new component, the PIO, has made
them essentially obsolete.

Programmable Parallel Input-Output Device

The programmable parallel LSI input-output device (PIO) will perform
the following functions: address-decoding, data input-output buffering and
multiplexing, status for ‘‘handshaking’’, and other control functions, to be
described.

The address-decoder will select one of the internal registers to be read or
written. These registers may be the input-latch, output-latch, direction-
register, or status-register. Usually, three address-bits, as well as the chip-
select, will be required for 6 to 8 internal registers. In addition, the PIO is
“programmable’’.

The new concept is the use of a ‘‘data-direction register’’: it is possible,
on a bit-by-bit basis, to define a port as having the first three bits configured
as inputs and the last five as outputs, or any other combination.

The direction of every line of the PIO ports is programmable in direc-
tion. Each bit of the *‘data-direction register’’ specifies whether the corres-
ponding bit of the PIO port will be an input or an output. Typically, a ““0” is
the data-direction register specifies an input, while a *“1”° specifies an out-
put. A PIO is programmable in other ways. Each PIO has one or more
command-registers which specify other options, such as the configuration
of the ports, and the operation of the control logic.

Finally, each PIO multiplexes its connection to the microprocessor
data-bus into 2 or more 8-bit-ports. The maximum is 3, including control
lines for the I/O device, because of the 40-pin limitation on the package. A
typical PIO appears on Fig. 3-7. In this case, the device has two ports
equipped each with its own direction register. In addition, a status-register
is used to indicate the status of each port.

Example 1: the Motorola 6820 PIA

The internal diagram of the 6820 appears on Fig. 3-8. It has six registers,
two sets of three register per port. One set is for port A and the other is for
port B.

Let us examine the control register. Its format is shown on Fig. 3-9. Bit 7
indicates a transition of the CA1 input. It is used as an interrupt-flag. The
same is true of bit 6, except that it monitors the CA2 pin of CA2 used as an
input. Bits 5, 4, and 3 establish the eight different modes of the device, and
the function of the CA2 pin. Bit 2 indicates whether the direction-register or

50

PORT 1

1/0 DATA LINES

PORT 2

L]

|

L]

UL

| DATA BUFFER 1

|

[DATA BUFFER 2|
I

1
| FUNCTION Ree | [FuncTion ReG]
|
[MUX I CONTROL
LOGIC
T i
- 9 7 SELECT
MICROPROCESSOR CONTROL B
DATA BUS SIGNALS
3-7 Typical P10
le——— CAl
F‘QBA-W Fﬂm" e |t—»CA2
2g| (334 (B3 D
oaa s < 5 3 2f lBi k=
. o r e i ;
CRB DDRB PDRB
— 8
REGISTER | ~——{ RSB £% <:::>
SELECT | ——» RSL SS
TROA <—ro le———» (B2
TREE ~——f CBl
3-8 6820 PIA
BASIC INPUT-OUTPUT 51

7 6 5 4 3 2 ! 2

C IRAL | IR A2 CONTROL CAl
RA 1 IRaA W oc access | CONTROL
N —— T~ —— T— " —"
READ-ONLY READ/WRITE BY 6800
39 6820 Control Register Format

data-register is to be selected, as they have the same address. Bits 1 and 0
are the interrupt enable/disable control bits.

A clarification is needed here: Motorola’s PIA has 6 registers and only
two register-select (RS) pins, because of the 40-pin limitation. The DR and
the DDR in each port share the same address! They are differentiated by
the value of bit 2 of the control register, a programming nuisance.

Fig. 3-10 indicates how the registers are selected by use of the RSI and
RSO0 pins, and the state of the internal bit 2 of the control register.

SELECTING PIA REGISTERS USES 2 LINES (RSB, RS1). PLUS BIT 2 OF CR:

RS1 = SELECTS PORT A REGISTER

RS1 =1 SELECTS PORT B REGISTER

RS@ = 1 SELECTS CONTROL REGISTER (A OR B)

RS@ = @ SELECTS DATA DIRECTION OR BUFFER REGISTER

RS1 RS# CRA(2) CRB(2) REGISTER

0 0 0 - DATA DIRECTION REGISTER

0 1 - BUFFER REGISTER A
0 1 - - CONTROL REGISTER

1 0 - DATA DIRECTION REGISTER

1 0 - 1 BUFFER REGISTER B
1 1 - - CONTROL REGISTER

3-10 6820 Register Selection

Fig. 3-11 shows the connection to the 6800 buses, and Fig. 3-12 illus-
trates a typical application with the bits shown for the control and data

direction registers.

52

A

Y

[A2

RSO 1
RS1

cs
(1]

sl

E
R/W
RESET (B2 je——>

CAl

|

Pomer D
C—

A PRV

CBl [e—

W%%’

—AGGRESS BUS)

A Jiilvy

T

3-11 6820 and 6800 Interface

CAl
CA2

f<«——— INPUT READY
——— INPUT ACK

DATA

C: DATA

00000000

00100111

DATA

—

11111111

00100111

CB2
(Bl

———— QUTPUT READY
[«—— OUTPUT REQUEST

3-12 6820 Application

BASIC INPUT-OUTPUT

53

As a last note on the 6820, it is a good idea to buffer the data bus to this
chip as it cannot drive a heavily loaded data bus. Fig. 3-13 gives a suggested
buffering arrangement for the data lines.

DATA LINE X DATA
PIA (BIDIRECTIONAL
. CONNECT TON)

3-13 Data Bus Buffering

Example 2: Intel 8255 PPI

The 8255 contains four ports, two with eight bits each, and two with four
bits each. Each port can be programmed via the mode control register to be
either all inputs, all outputs, or a special function. The 8255 appears on
Fig. 3-14.

Table 3-15 indicates how the ports are addressed. There are several
modes of operation, where each half of port C are used for interrupt flag
inputs or handshaking signals. The Intel device is not programmable by bit,
but offers 4 more lines for control. Overall, the functions performed are
essentially analogous. In fact, a PIA can be used on an 8080 system, and
conversely. Each major microprocessor manufacturer has its own version
of a programmable parallel interface. Their.function is essentially similar.

54

1/0

GROUP A PAg-PA
7
A e =
GROUP A .
CONTROL <: e
DATA <:> PORT C PC“-PC7
<_'_"> BUS UPPER (4) |
BUFFER N T
’ N
— I GROUP B
R—»d READ/) roRr e
PTR—-"O WRITE LOWER (4)
A]_ oo
CONTROL GROUP B
Ag — GROUP B @ PORT B
RESET —>1 | oeic CONTROL ¢-—' (®)
? L i)
s—
3-14 8255 Addressing
S Al AOD RD WR OPERATION
0 0 0 0 1 PORT A TO DATA BUS MPU
0 0 1 0 1 PORT B TO DATA BUS READ
0 1 0 0 1 PORT € TO DATA BUS (\.3.0)
0 0 0 1 0 DATA BUS TO PORT A w0y
0 0 1 1 0 DATA BUS TO PORT B
0 1 0 ATA BUS TO P
0 1 DATA BUS TQ PORT C WRITE
0 1 1 1 0 DATA BUS TO €ONTROL /
0 1 1 0 1 TLLEGAL
1 - - - - DATA BUS TO 3-STATE (DISABLE)

3-15 8255 Addressing

SERIAL INPUT-OUTPUT:

Several devices require serial communication: teletype (TTY), tape,
disk.

BASIC INPUT-OUTPUT 55

Instead of latching eight bits of parallel data, we could pass each bit in
the byte to a single line one at a time. Known as bit-serial interfacing, there
are serial standards that cover this kind of transmission. Such standards are
discussed in Chapter 6. The format of the serial input-output to a teletype is
shown in Fig. 3-16.

MARK
START ST0P1

LSB MSB " eTOl
123 {uls]e]7 |3 SToP 2

SPACE

———— TIME

3-16 Serial Character Format

Since microcomputers are parallel systems, we need to convert an eight
bit byte of data to serial form before output, and from serial form to input.
There are two ways to perform this conversion: by software, or with a
UART (universal asynchronous receiver-transmitter).

Software Serial I/0:

In software, a program can simply accomplish the serialization-
deserialization. On input, the program will wait until it senses a start bit,
then sample at the proper times to read the data bits. On output, the pro-
gram will send the series of ones and zeroes to a single line, with a pro-
grammed delay between each bit.

An example of a teletype output program appears in the flowchart of
Fig. 3-17 and the 8080 program listing on Fig. 3-18.

It will be described in Chapter 4. The principles of a serialization routine
is to assemble an 8 (or more)-bit word in the accumulator, and to shift it out,
one bit at a time, at the proper frequency. The simplest way is to output the
contents of the accumulator to an output port which is connected only to
line 0. The accumulator is then shifted right, by one bit position, a delay is
implemented, and the next bit is output. After 8 (or more) outputs, the
initial parallel data has been serialized.

Conversely, assembling serial data into parallel form by program is just
as simple. Bit 0 is read into the accumulator. The accumulator is shifted Ieft.
After a specified delay, bit 0 is read again. After eight shifts, a byte has been
assembled.

56

ENTER ENTER
Y Y
SEND START COSUEJT&”TO
BIT ELEVEN
SEND DATA OUTPUT
BITS : il
7 Y

DELAY
SEND STOP 9,1 MSEC
BIT

3-17 Flowchart for Serial Conversion

THIS SUBROUTINE ENTERED WITH CHARACTER TO BE OUTPUT IN THE C REGISTER
YOUT: MVI B,11

[E TRV

SET COUNTER FOR 11 BITS

3
MOV A,C ; CHARACTER TO ACCUMULATOR
ORA A ; CLEAR CARRY-FOR START BIT
RAL ; MOVE CARRY TO A(0)
MORE: ouT 2 ; SEND TO TTY
CALL DELAY ; KILL TIME
RAR ; POSITION NEXT BIT
STC s SET CARRY-FOR STOP BITS
DCR B ; DECREMENT BIT COUNTER
JNZ MORE ; DONE?
RET ; YES
3
i 9 MSEC DELAY (ASSUME NO WAIT STATES)
i
DELAY: MVI D,6
DLO: MVI E,2000
DL1: DCR E ; 1.5 MSEC
JNZ DLl ; INNER LOOP
DCR D
JNZ DLO

3-18 8080 Serial Conversion Program

The advantage of a programmed implementation is simplicity and the
elimination of external hardware. However, it is slow, and might impair the
microprocessor’s performance. Also, no reliable delays can be imple-
mented in a system using interrupts. A hardware implementation is re-
quired.

BASIC INPUT-OUTPUT 57

UART and USART:

One of the earliest standard LSI devices was the UART. A UART is a
serial-to-parallel and parallel-to-serial converter. The UART has two func-
tions: to take parallel data and convert it to a serial bit stream with start,
parity, and stop characters, and to take a serial bit stream and convert it to
parallel data.

The functional block-diagram of the UART appears on Fig. 3-19. Each
UART has 3 sections: a transmitter, a receiver, and a control section.
Almost all the manufacturers have a pin-compatible or ‘‘improved’’ version
of the standard UART.

SERIAL INPUT——] ————+ PARALLEL
CLOCK——
ENABLE/RE SE T RECEIVER ———~+ OUTPUT
PARALLEL —] TRANSMITTER
1/0 — — & SERIAL
— OUTPUT
CLoCK —2]
CONTROL p—— CONTROL " SSITG'?\JTAULSS
FUNCTIONS — —+
POWER —

3-19 UART Block Diagram

The UART requires both an input port and an output port to interface to
a microcomputer system, so subsequent UART’s were designed to be di-
rectly bus-compatible with microprocessor buses. Two of these are: the
Motorola MC6850 ACIA (asynchronous communications interface adap-
tor), and the Intel 8251 USART (universal synchronous and asynchronous
receiver-transmitter).

Example 1: the Motorola 6850 ACIA

The internal block diagram of the ACIA appears on Fig. 3-20. Besides
the input and output serial/parallel registers, the control circuitry imple-
ments the control functions of the EIA RS232C standard. (See Chapter 6
for details on RS232C).

58

ACIA

TDR
f TRANSMIT » SERIAL
DATA
| - DATA OUT
g RECEIVE SERIAL
2 DATA IN
DATA BUS <::2> MU - i
R
CONTROL RTS
3-20 6850 ACIA
<L DATA BUS >
TxD
:) D@-D7 }SERIAL DATA
RXD ft—o
—» RS
cs1 DCD L___
52 S je——ro {MODEM CONTROL
RTS —»
CSP
— 3 ﬁ TxC {
—| R/H RxC RATE CLOCKS
—1 IR&
+5 =
C ADDRESS BUS ;}
A |
<‘ CONTROL_BUS >
| 4
321 6850 ACIA: Functions
BASIC INPUT-OUTPUT

59

Fig. 3-21 breaks down the inputs and outputs into their functions: the
serial data, the modem control, the clocks, and the buses. The serial data in
and out are TTL-compatible signals and must be buffered to provide the
necessary levels to drive serial devices. (See Chapter 4 for a full explanation
of how to connect a teletype to an ACIA). The modem-control controls the
interface required in an RS232C modem link.

The clocks control the bit rate of the serial data and may be different for
transmit and receive sections. The bus signals are the signals used in a 6800
system. The truth table showing the addressing of the internal registers,
appears on Table 3-22.

RS R/W REGISTER
2 ' CONTROL
(i 1 STATUS
1 1 RECEIVE DATA
1 1 TRANSMIT DATA

3-22 6850 Internal Register Addressing

Example 2: The Intel 8251 USART

The block-diagram and control signals for the 8251 USART are shown
on Fig. 3-23. This device differs from the ACIA.: it also provides synchron-
ous data transmission and reception, in addition to asynchronous transmis-
sion. (Motorola supplies a separate USRT, the ““SSDA”’ for synchronous
communication).

The 8251-t0-8080 system interface appears on Fig. 3-24. Some of the
internal circuitry of the 8251 is dynamic, hence the need for the ®2 clock
signal. The rest of the signals are straightforward.

The USART has five internal registers: receive data, transmit data,
mode, status, and control. Upon reset, the first byte sent to the 8251 as
control will set the mode. The next byte sent as control will be latched-in as
control. The mode determines whether the 8251 is to be used in synchron-
ous, or asynchronous, mode. The control indicates the word length and
other transmit parameters. Table 3-25 is a truth table of the 8251 bus control
signals.

60

READY TO ACCEPT DATA TxRDY = ——3 TxD SERIAL OUT

TRANSH, EMPTY TxE <] |CNOMTIER e mE TRANSMITTER CLOCK
(BAUD RATE OR MULTIPLE)

CHARACTER READY RxRDY —e—— (< RxD SERIAL IN

le— RxC RECEIV, CLOCK
l«—» SYNDET FOR SYNC. MODE

o

RECEIVER

Y e
be-7 " BUFFER

RESET ~————»
CLK —_—
c/b —_—
RD ————e—e O
WR —0
oo oS CONTROL
CONTROL DIR O
cTS ————)}
RTS <<

f

s
3-23 8251 USART

H l I
va Vv W

CRT |—a CRT
TERMINAL .
CONTROLLER J—— KEYBOARD

T sawn wate
L GENERATOR

3-24 8251 to 8080 Interface
Serial Interface Summary:

The two methods presented, hardware and software, illustrate the tradi-
tional trade-offs decisions to be made even in the simplest interface design.
Most small systems use a software serial interface whereas larger systems
tend to use the UART’s. Still more sophisticated circuits are being in-
troduced to perform new types of synchronous serial communications.
These LSI components implement the other serial standards described in
Chapter 6.

BASIC INPUT-OUTPUT 61

1

/D R W OGS OPERATION ,

0 0 1 o 8251 TO DATA BUS (READ) ;

0o 1 o 0 DATA BUS TO 8251 (WRITE) |

1 0 1 o STATUS TO DATA BUS ’

1 1 0 o0 DATA BUS TO CONTROL '

- - - DATA BUS TO 3-STATE :

B |

3.25 8251 Addressing Truth Table

THE THREE INPUT-OUTPUT CONTROL METHODS

We have introduced now the components and techniques required for
basic I/O interfacing: we can create parallel and serial ports.

The next problem is to manage data transfers, i.e., to implement a
scheduling-strategy. Three basic methods are used, and will be briefly de-
scribed. Additional chips will be introduced to facilitate each of these
strategies.

These three methods are illustrated on Fig. 3-26. They are called: poll-
ing, interrupt-controlled, and DMA. (Combinations may also be used).

Programmed I/O or Polling:

In programmed input-output, all transfers to and from devices are per-
formed by the program. The processor sends and requests data; all input
and output operations are under the control of the program being executed.
The transfers must be coordinated by a ‘“handshaking’’ process. The \basic
method for determining if an I/O operation is needed or possible is through
the use of flags. A flag is a bit which, when set, indicates that a condition
has occurred that needs attention. For example, a flag indicates ‘‘device-
ready’’ = buffer full for an input-device, or buffer empty for an output
device. ‘

The flag is continually checked: it is ‘‘polling.”” The characteristic of this
approach is to use a minimal amount of hardware at the expense of software
overhead. '

62

MEMORY
t DATA BUS

INTERRUPT

1
ﬁl/o

DA

3-26

Three Methods of I/O Control

REQUESTING
SERVICE?

SERVICE ROUTINE
FOR DEVICE A

B
REQUESTING
SERVICE ?

SERVICE ROUTINE
FOR DEVICE B

c
REQUESTING
SERVICE?

YES

RVICE ROUTINE
FOR DEVICE C

327

BASIC INPUT-OUTPUT

Polling Loop Flowchart

63

A flowchart for a polling loop appears on Fig. 3-27.

The program continually loops through a series of tests to determine if
input or output can/should be performed. When a device needing service is
found, the proper service-routine is activated and polling resumes after its
completion.

Two basic methods of sensing device-ready flags are used: the use of a
simple input-status port, and the use of a priority-encoder input-status port.

The simplest technique is to drive the data-bus with the device-ready
flags of eight devices when executing a read-status input-port instruction.
Fig. 3-28 illustrates such a system. The input-status port may be any conve-
nient decoded address. Usually, the first or last I/O port addresses are used
for this port. When the port is read in, the program will check each bit,
determine priority, and branch to the proper service routine.

b
INDIVIDUAL Iqi .
INTERFACE g
DEVICE HDZ >
FLAGS
] N D3
e 1'{___ CPU
] IN___{D4
LL o
Q N D5
- Sl
B N—D6
Q N D7 -
| W
DECODED
ADDRESS

3-28 Device Ready Flag Status Port

The second method is to perform the priority encoding with a look-up \‘

ROM or a priority-encoder chip. This way, the status port holds the actual
address of the highest-priority device requesting service. Figs. 3-29 and 3-30
show the byte format, and the hardware required.

64

L 1

0 0 O No service requested

0 O 1 Device 1 onport1

0 1 0O Device 2 on port 2

1 1 1 Device 7 onport7

3-29 Byte Format

Bus Driver

Priority
Encoder -_
Data B
7 ata Bus
—6
—— &
—_—1a
—3
D e]
1
noe— o
. Statusportin
3 bit
binary code
of input with
highest priority

3-30 © Polling Priority Encoder Hardware

By changing the upper five bits to any other code, other port addresses
may be generated. This will save looking up or generating the port address
from the device-ready status-port since that port holds the address of the
ready device.

Polling is the most common and simplest method of I/O control. It
requires no special hardware and all input-output transfers are controlled by
the program. Transfers are said to be synchronous with program execution.

BASIC INPUT-OUTPUT 65

Interrupts
The polling technique has two limitations:

1. It is wasteful of the processor’s time as it checks needlessly the status of
all peripherals all the time.

2. Itis intrinsically slow since it checks the status of all I/O devices before
coming back to any specific one. This may be objectionable in a real-time
system, where a peripheral expects service within a specified time. In
particular, when fast peripherals are connected to a system, polling may
simply not be fast enough to satisfy the minimum service requirements.
Fast devices such as the floppy disk or a CRT requires a near-
instantaneous response-time in order to transfer data without loss.
Polling is a synchronous mechanism, where devices are serviced in se-

quence. Interrupts are an asynchronous mechanism. The principle of inter-

rupts is illustrated on Fig. 3-31. Each I/O device, or its controller, is con-
nected to an interrupt line. This line will gate an interrupt request to the
microprocessor. Whenever one of the I/O devices needs service, it will
generate an interrupt pulse or level on this line to request the microproces-

sor’s attention.
1/0
INTERFACE 1
INT)

170

INTERFACE &

SEVERAL DEVICES MAY REQUEST SERVICE SIMULTANEOUSLY

3-31 Interrupt Sequence

A microprocessor will check for interrupts at the end of every instruc-
tion. If an interrupt is present, it will service the interrupt. If no interrupt is
present, it will fetch the next instruction. This is illustrated in Fig. 3-32.

During the execution of some critical processes, it must be guaranteed
that the program in execution will not be disturbed by external interrupts.
One such example is the execution of a power-fail routine. Power failure
can be easily detected. If the system is equipped with a battery back-up for
the memory, the processor may preserve the contents of its registers in
memory, and shut down the entire system in an orderly fashion. Several
milliseconds of processing time are normally left, by the time the power
failure is detected. A power-failure routine is then activated which should
execute regardless of other less important requests which might occur.
Other requests should be ‘‘masked-out’’. (Power-failure is considered a
‘‘non-maskable interrupt’’).

66

INTERRUPT LOGIC

EXECUTE
INSTRUCTION

NEXT INSTRUCTION

3-32

This is the purpose of the mask-bit (or mask-register when several inter-
rupt levels are available) in the microprocessor. Whenever the mask-bit is
on, interrupts will be ignored (see the chart in Fig. 3-33). The ‘‘mask”’
facility is also often called the ‘‘enable.”” An interrupt will be enabled
whenever it is not masked.

r SET MASK j
Y

PRESERVE REGISTERS

I UNSET MASK j
IDENTIFY DEVICE
r {If necessary j

l EXECUTE ROUTING

Ftssmns REGISTERS l

RETURN

S

INTERRUPT HANDLER

3-33 Interrupt Control

BASIC INPUT-OUTPUT 67

Servicing the Intérrupt

Once the interrupt request has been received, and accepted, by the
microprocessor, the device must be serviced. In order to service the device,
the microprocessor will execute a specialized service-routine. Two prob-
lems occur:

MICROPROCESSOR MEMORY
Ll —
PP
INT —f NEXT INSTRUCTION
GENERAL %
RIS ——] !
s PP IS PRESERVED
INTA " N Sk
¥ e
N
2 AN
sP { » INTERRUPT ROUTINE
RS
JADDRESS OF INTERRUPT
ROUTINE IS LOADED
3 INTO PC

INTERRUPT VECTOR

First the status of the program in execution on the microprocessor at the
time of the interrupt must be preserved. This implies saving away the con-
tents of all the registers of the microprocessor. These registers will be
preserved in the stack. At the very minimum, the program counter (PC)
must be pushed in the stack, in order to install a new branching address in
the PC, for execution of the interrupt-handler. Preserving the rest of the
registers can be done in hardware, by the microprocessor, or else may be
the responsibility of the interrupt-handling routine. Once the PC (plus pos-
sibly the other registers) has been preserved in the stack, the microproces-
sor will branch to the interrupt handler’s address. This is where the second
problem arises:

"A number of input-output devices are connected to the same interrupt
line. Where should the microprocessor branch in order to service this de-
vice? The problem is to identify the I/O device which triggered the inter-
rupt. This identification of the device may be done in hardware, in software,
or by a combination of both methods. Branching to the I/O device address
is called vectoring the interrupt. The simpler system, from a hardware
standpoint, will not provide vectored interrupts. A software routine will
determine the identity of the device which requested service. Polling will be
used. The technique is illustrated in Fig. 3-34. The interrupt identification
routine will poll every device connected to the system. It will check their

68

status register, usually testing bit 7. The presence of a 1 in a given bit
position will signal that the device did request the interrupt. Having iden-
tified the device which has triggered the interrupt, it will then branch to the
appropriate interrupt-handling-routine address. The order in which the poll-
ing is conducted will determine which device is serviced first. This imple-
ments a software-priority scheme, in the case where multiple devices might
have triggered an interrupt at the same time.

INTERRUPT

3-34 Polling the Interrupts

A second method, software-driven, but with the help of some additional
hardware, is significantly faster. It uses a daisy-chain to identify the device
which triggered the interrupt. This is illustrated on Fig. 3-35. After preserv-
ing the registers, the microprocessor generates an interrupt-acknowledge.
This acknowledge is gated to device 1. If device 1 did generate the inter-
rupt, it will place its identification number on the data bus, where it will be
read by the microprocessor. If it did not generate the interrupt, it will
propagate the acknowledge signal to device 2. Device 2 will follow the same
procedure, and so on. Because of the physical arrangement of devices, this
interconnect mechanism is called a daisy chain. This mechanism can be
implemented by most PIO’s.

The fastest method is the vectored-interrupt. It becomes the responsibil-
ity of the I/O device controller to supply both an interrupt and the identity
of the device causing the interrupt, or better yet the branching-address for
the interrupt-handling routine. If the controller just supplies the identity of
the device, it is a simple software task to look-up a table containing a
branching address for each device. This is simpler, from a hardware
standpoint, but does not achieve the highest possible performance. The
highest possible performance is achieved when the microprocessor receives
an interrupt and the direct 16-bit branching address. It can then directly

BASIC INPUT-OUTPUT : 69

INT -

(1 TO N LINES) i INT ?[NT TINT

DEVICE DEVICE DEVICE

1.D. D.

ak FITC A F T, _AcﬂJ\l]_>
&)

DATA BUS

3-35 Daisy Chain Scheme

branch to the required location in the memory, and start servicing the
device. The new PIC’s (Priority-Interrupt-Controller) chips have made this
a practical reality now.

Priorities

One more problem arises: several interrupts may be triggered simultane-
ously. The microprocessor must then decide in which order they should be
serviced. A priority is attached to each device. The microprocessor will
service each device in the order of their priorities. In the computer world,
priority level 0 is, by convention, the highest one, priority 1 is next, and so
on. Typically level 0 will be for a power-failure (PFR or Power-Failure-
Restart), level 1 will be for a CRT. Level 2 may be left vacant for the
possible addition of a second CRT. Level 3 could be a disk. Level 5 will be
a printer. Level 6 will be a teletype. Level 7 will be external switches. Level
4 is unused in this example. Priorities may be enforced in hardware or in
software. The software enforcement of priorities has been described above.
The routine looking at the devices will simply look at the device with the
highest-priority first. Enforcing priorities in hardware is also possible. It is
indeed accomplished in the recent PIC’s. In addition, these priority-
interrupt-controllers provide a full 8-bit mask which allows the programmer
to mask selectively any interrupt level. The basic structure of the PIC logic
appears on Fig. 3-36. It does not show the address vectoring, but simply the
generation of the level-vector. Such a device typically accepts 8 interrupt
levels. They appear on the right of the illustration and will set a bit in the

70

DATA BUS <:ﬂ1

| Eégiifj_____~________ INT 1
Iz
(s
—CJ=

INT-]

MASK REGISTER

DATA BUS

336 PIC Logic

interrupt register. The mask-register is used by the programmer to mask-out
interrupt levels selectively. Typically, unused interrupt levels will be
masked. However it is also possible to mask levels at specific times in the
program. A simple AND-gate will allow the propagation of unmasked inter-
rupts. The level of the interrupt of highest priority will be converted to a
three-bit code by a an 8 to 3 encoder. One more facility is provided: the
level of the interrupt is compared to the contents of the three-bit priority
register. The priority-register is set by the user. It will prevent any interrup-
tion by an interrupt of level higher than n, where n is the priority. It is a
global masking process for any interrupt of level higher than n. A com-
parator in the PIC determines that the level of the interrupt is acceptable,
and will then generate a final interrupt request. The microprocessor will
have available the three-bit interrupt vector. A more sophisticated PIC will
do more. Recent PIC’s will supply directly a 16-bit branching-address. This
is simply accomplished by including a RAM of 8 x 16-bit registers within
the PIC. The three-bit level vector is then used to select the contents of one
of these eight registers. The contents of these 16 8-bit registers are then
pulsed on the microprocessor data bus, or sometimes on its address bus.
This causes an automatic branch to the specified address. Naturally, these
registers are loaded by the programmer.

BASIC INPUT-OUTPUT 0!

l«—— INTO
le— INT1
l@— INT2
l—— INT3
l@— INT4
le—— INTS
l«—— INTE
l— INT?

LEVEL /%
VECTOR

jl INT REGISTER

ENCODER

INT
IRA—1 |oaic

MASK

lare

PRIORITY

L

INT DETECT

Interrupt Controller with Priority

INSTN j INST ' INSTN_INSTN
PROGRAM A I—-I——-'Ll RETURN '___._

CONTROL UNIT g~ — —

1

!
--J

OVER- SERVICE ROUTINE
HEAD

OVER-
HEAD

INTERRUPT HANDLER oo Ryra

-
——————_X____

e B e e
U A

x
w-—'.._—-_.._
-
E
o

- - = ——
— — - -

—
—_

3-37 Interrupt Sequence

Fig. 3-37 illustrates the sequencing of events during an interrupt. Going
from left to right on the illustration, program A is in execution until an
interrupt request in generated at time TrQ. This interrupt will be taken in
account at the end of the instruction, at Time TB. The control unit of the
microprocessor will then implement the branch to the necessary address.
Once this branch is accomplished, the interrupt handler (the third line of
Fig. 3-37) starts execution. The interrupt-handler may have to spend some
overhead-time in preserving the registers, which might not have been pre-
served automatically by the control unit of the microprocessor. The service

72

routine for the device then executes. At the end of execution, registers must
be restored (time TF to TR). A return instruction is then executed, and the
control unit restores the previous contents of the program counter (fetched
from the stack), so that execution of the previous program A may resume.
Program A resumes at time TP.

The time TRQ to Ts is the interrupt-response-time, i.e. the total time that
has elapsed between the interrupt request, and the effective time at which
the service routine has started doing its useful work. Some manufacturers
consider that the response-time is only TrQ to TH. The total length of time
lost to the program is T8 to Tp. The total overhead involved in the interrupt
is really TB to Ts + TF to TR. These numbers vary significantly from one
microprocessor to another.

TINE 1A T. T, T . i
PROGRAM P e m—mm — = — = — = == — = =
INTERRUPT 1, A = = = = = = —— = = = ——t

INTERKUPT 1
INTERRLPT 1

i
-~ gf g

3.38 Stack During Interrupts

Multiple interrupts and the stack.

Fig. 3-38 illustrates the role of the stack during multiple interrupts. At
Time TO program P is in execution. At time T1 interrupt I1 is accepted. The
registers used by program P are then pushed in the stack (see the bottom of
the illustration, on the left). Interrupt I1 executes until time T2. At time T2,
interrupt 12 occurs, and it is assumed here that 12 is of higher parity.
Interrupt I1 is suspended just like program P before. The registers used for
interrupt 11 are pushed in the stack. This is illustrated on Fig. 3-38 at the
bottom of the illustration, by time T2. Interrupt I2 then executes; this is the
third line of Fig. 3-38. Interrupt 12 executes to completion, at time T3. At
that time, the contents of the stack will be popped back in the microproces-
sor and only P is left in the stack. (see Fig. 3-38: the stack contains only P at
time T3). Interrupt I1 resumes execution, and, at time T4, it is interrupted

again by another interrupt, I3, of higher priority. Again two levels are in the
BASIC INPUT-OUTPUT 73

stack: I1 and P at time T4 (see Fig. 3-38). Interrupt I3 executes to comple-
tion, at time TS5. At that time I1 is popped from the stack (see Fig. 3-38) and
resumes execution. This time it runs to completion until time T6, at which
time program P is popped from the stack and resumes execution. It should
be noted that the number of levels contained in the stack is equal to the
number of suspended programs, i.e. to the number of dashed horizontal
lines at any time. This example illustrates the use of the stack during multi-
ple interrupts. Clearly, if a large number of interrupts may occur simultane-
ously, the programmer should allocate a large enough stack to contain the

successive levels.

J

TURN OFF INT

A
REQUESTING

YES

SER);ICE

B
REQUESTING
SERX]CE

Interrupt Service Flowchart

DEVICE A SERVICE

CLEAR DEVICE A
INTERRUPT FLAG

RETURN FROM

INTERRUPT
ﬁ__—* NTA N
cAs . — (8228)
cast CoRPARATOR
CAS2 RESET
—]
INITIALIZATION fe— IR
— R/ T&u SERVICE —
iy] — st Ko R KT romer ~—
— w'w"" Nl
he—
fe—
IR fe— IR7
DATA
7 &N
WFFER J—
8228 PRODUCES 3 INTA PULSES

8259 PLACES A 3-BYTE CALL ON DATA BUS

8259 Interrupt Controller

74

Direct Memory Access

Interrupts guarantee the fastest possible response to an input-output
device. However service to the device is accomplished by software. This
may still not be fast enough for processes involving fast memory transfers
such as disks and CRT displays. Again, the solution is to replace software
by hardware. The software routine performing the transfer between the
memory and the device is replaced by a specialized hardware processor, the
DMAC, or Direct-Memory-Access Controller. A DMAC is a specialized
processor designed to perform high speed data transfers between memory
and the device. In order to perform these transfers, the DMAC will require
the use of both the data-bus and the address-bus. DMAC philosophies
differ in the way they obtain access to these buses. For example a DMAC
may suspend a processor, or it may stop it, or it may steal memory cycles
from the processor, or it may stretch clock pulses. Some sophisticated
DMA'’s such as dynamic-memory-refresh DMA’s can also use some por-
tions of the instruction-cycle, when they ‘‘know’’ that the processor will not
require the use of the data-bus and the address-bus. A complete discussion
of DMA philosophies is beyond the scope of this book. The simplest ap-
proach, and the one usually implemented for most microprocessors, is to
suspend the operation of the processor. This is the reason for the tri-state
buses used for the data and the address-bus. The organization of a DMA
system is illustrated on Fig. 3-39. Each device will send its interrupt to the

16
ya
1. MPU ACCESSES MEMORY
MPU 7.8 2 MEMORY .
MPU MEMORY 2. DMA INTERRUPTS MPU
A HOLD
DMA = PERIPHERAL
________ 3. MPU FINISHES INSTRUC-
MPU N — :1 MEMORY TION THEN IS SUSPENDED
77 A DATA 4, DMA “TAKES CONTROL”
o oERIPHERAL MEMW OF BUS AND SIGNALS
DrA DRIVER 1/0 DEVICE T0
TRANSMIT

3-39 DMA Controller Operation

BASIC INPUT-OUTPUT 75

DMAC, rather than to the microprocessor. When the DMAC receives. an
interrupt from a device, it generates a special signal for the microprocessor,
the HOLD signal. The HOLD signal will suspend the microprocessor, and
place it in a dormant state. The microprocessor completes its instruction,
then releases the data-bus and the address-bus in the high-impedance state.
It is said to ““float”’ its buses. It then goes to sleep, and responds with the
““HOLD-acknowledge’’ signal. Upon receipt of the HOLD-acknowledge,
the DMA knows that the buses are released. It will then automatically
place an address on the address bus, which specifies the memory address at
which the data transfer is to take place. A DMAC connected to 8 I/O
devices will contain 8 16-bit address-registers for this purpose. Naturally,
the contents of these registers have been specified by the programmer for
each device. The DMAC specifies the address at which the transfer is to
take place, then generates a “‘read’’ or a ‘‘write”’ signal, and lets the 1/O
device generate the data, or receive the data, on the data-bus. In addition, a
DMAC contains an automatic sequencing mechanism for block-transfers.
This is particularly valuable for transmitting blocks of data (in the case of a
disk) or sequences of data (in the case of lines in a CRT). The DMAC is
equipped with a counter-register for each device. Typically an 8-bit counter
is used which allows automatic transfers of 1 to 256 words. After each
word-transfer, the counter is declamented. The data-transfer stops
whenever the counter goes down to 0, or whenever the DMA request from
the device disappears.

The advantage of a DMA is to guarantee the highest possible transfer-
speed for the device. Its disadvantage, naturally, is to slow down the opera-
tion of the processor. The DMA is a very complex device whose complex-
ity is analogous to the one of a micreprocessor. It is also expensive, since
DMA’s do not sell in the same quantities as microprocessors. In many
instances, it may be cheaper to dedicate a microprocessor plus memory to
doing dedicated block-transfers, than to use a DMA-chip. As an example,
the structure of an Intel DMAC appears in Fig. 3-40, and the structure of a
Motorola 6800 DMAC appears on Fig. 3-41. The DMA controller shown
on Fig. 3-41 is a cycle-stealing DMA controller. The address-bus and the
R/W float up to 500 ms. However the maximum duration of the suspension
may not exceed 5 microseconds, as the dynamic registers of the 6800 would
lose their content after this time. The new Motorola 6844 DMAC may
operate in three modes: halt-burst, halt-steal (1-byte transfer), and TSC
steal. In ‘‘halt-burst’’, a transfer request on T X RQ halts the 6800, and a
byte-count of 0 restarts-it. This is a block-transfer. In halt-steal, only one
byte is transferred. It has four DMA channels with 16-bit address, and

76

8-7
8 8 []
K 2 STB ey I S
- 1
2
EN .
— DMA
— -7 ._-—__—_>ACKNWLEDGE
>q
Rk —>
ROL
— —Noms ol

CONTROL ADRESS DAVA
s s ¥ 340 Intel DMAC

'y

4

J P

8

2
F
i
H

WOA HAG

'
T
Ty

onae
OAcks

i

= s SR

om0 1
i = Bac 1

ono 1
ce stLect x 0"
neaov oacK 3

oma 3
Gacx §

e ©

bt o anc
! fae snsnf

LT

DisaBLE 10
ADORESS BUS

BASIC INPUT-OUTPUT 77

6800

DATA BUS

<\/r

‘ :[]:
DRQH

> DMAC

MEMORY

PIO

U

A

b=

SS BUS)
Y R/W] ﬁ;

TxAK

CLOCK
PULSE
GEN

READY

REFRQ

TxRQ

78

1

REFGRT

Motorola DMAC

CS/TxAKB
R/W
2,DMA -
RESET
DGRANT
DRAT
DRGH .
TxADA
__TxsTB
IRQ/DEND
TxRQgy
TxRQ1
TxRQy
TxRQ3

I

|

|

6844

SS

Ag-15

TRI DMA
AODRESS BUS | STATE <:: ADDRESS
DRIVER COUNTER o -
STATE DATA
ROM RAM DMA DRIVER } | SOURCE
WORD
- COUNT
6800 REGISTER
DATA BUS __
R/W
DBE <] DMA
ISC
T A 3 CONTROL
I CLOCK 82

16-bit counter. The maximum transfer rate is 1 megabyte per second. This
is illustrated in Figs. 3-42 and 3-43. The Intel 8257 provides four channels
and operates by simply suspending the 8080 (for any length of time). It
requires an external 8212 latch for bits 8-15 of the address-bus. It is illus-
trated on Figs. 3-40 and 3-43. Finally, the interconnect of the Am 9517 of
AMD to an 8080 system is shown on 3-44.

DATA BUS

Z v v

MPU DMA RAM P10

KL e)
= vl T abDRESS BUS
R/W i INT!

b ol

3-42 DMA Block Diagram

BASIC INPUT-OUTPUT 79

= -
U

DRAA
~—— sl
8257 DACKA
. 1 DIk 2
. : RAM
8212 | DIk 3
i

L1 R 1

ADDRESS)

|| T iL

CONTROL
343 4 Channels of 8257

SUMMARY

The basic input-output techniques and components have been presented
in this chapter. In an actual system, the designer will select the combination
of hardware and software algorithms required to meet his performance and
cost constraints. More chips will be introduced in the future, which offer
still greater efficiency for high-speed input-output management.

The next, and most important, problem to be solved, is to interface the
peripherals. This will be done in Chapter 4.

80

z z
. "
2A uA
L L + i INAS
o |3, f
T 19835 o
< -
!z‘ | ‘l' ip » /g
E: < TN X Moe$S
82 act< J? QO
i3 o £ EE R] TTVE, 32
S re— e xTlelm 23 wm EE
é < +—q : avon
3 Lt L4 2
2 S e <
s §_\% F AVATH Vaw o
Qe \:" oAk dyaw| é
e ‘
~<«—fDONE 1% Mol =
ADSTR R BWIW
ADEN <C MW
DpAK £
17 I Y
W gy
3 PR B £v-f ¢ <po
< L} Lo g 2
#s S NS
b H— £
S + y o -
o > > 2
§ HLDRQ T worle] P
g 4 HLDAK "
> ADEN Ml E
M~
ADST8 T vl 8
«—]0ONF E
P |
S
- A oA $2 <
3 §*\ S av-gvi J J ‘o
§ g v g . FYvy i Yy
=, ? ol
3 =33
< R il
(23
< 3)
3 ok % Y
£ {/— N
A >)
< ‘\)

3.44

BASIC INPUT-OUTPUT

AM9517 Application Example

81

82

Appendix: Miscellaneous Useful Circuits.

TIMING ELEMENTS

D Vcc

INPUT

OUTPUT

INPUT

OuUTPUT"

3-46 One Shot Stretches Pulses

MULTIPLEXER

ruTs ———7 — outruT —_
p— —0
\O_
—_—0
_ ——0
<=>
—_ .
SIMILAR TO .

POSITION 1S SELECTED
BY ADDRESS INPUTS

ADDRESS

L

347 Multiplexer Operation

s

MPU RESET

348 MPU Reset Circuit

RESET

=

AL5 > | [>>_l new Al5

3-49 Address Vector on Reset to a Different Reset Vector

BASIC INPUT-OUTPUT

83

cm— | —
——H 7008 f—>
> PROM ’
— i
— ——-—4>]
p— EE—
] ——
input output
Tos

Code Converter:

Load Prom with-
Baudot to ASCIT
ASCITI to Baudot
EBCDIC to ASCII
ASCIT to EBCDIC
or other converson

tables.

3-50 Code Conversion Using PROM

check Interrupt on

a@ES_J\ ROM Soft-Fail detect
AB8-al5

_*/54 -
2;' <@
> ' A#B
low L data compare O———iiq>
> > B
JZRD 9

3-51 Software Failure Detecting Load ROM with
Table Derived from a Logic Analyzer

CHAPTER 4
PERIPHERAL INTERFACING

INTRODUCTION

Now that the CPU, memory and input-output are connected and work-
ing, how do we connect to the teletype in the corner? What about the
paper-tape punch, keyboard and telephone line? These are all peripherals
that allow the user, or another computer, to communicate with the system.
In this chapter, a number of common peripherals will be interfaced:

— Keyboard (including ASCII keyboard)
— LED Display

— Teletype (TTY)

— Paper-tape reader (PTR)

— Magnetic Stripe Credit Card Reader
— Cassette Recorder

— Floppy-Disk

— CRT Display’

KEYBOARDS

A keyboard consists of pressure- or touch-activated switches arranged
in a matrix fashion. To detect which key has been pressed usually requires
a combination of hardware and/or software means. Two basic types of
keyboards are available: encoded and non-encoded. Encoded keyboards
include the necessary hardware to detect which key was pressed and hold
that data until a new key stroke. Non-encoded keyboards have no hardware
and must be encoded by a software routine or by special hardware.

Bounce

One of the most common problems with a single switch is bounce. Key-
bounce refers to the fact that when the contacts of a mechanical switch
close, they bounce for a short time before staying together. This is also true
when the switch opens. Fig. 4-1 is a time-versus-resistance plot of a typical
switch contact.

INTERFACING THE PERIPHERALS 85

KEY
DEPRESSED ————»{

—n —

T

pe——] ——
LEADIUG TRAILING
EDGE EDGE
BOUNCE BOUNCE

e BOUNCE IS 10-20 MSEC
® HARDWARE SOLUTION: R-C FILTER
® SOFTWARE SOLUTION: VERIFY KEY STATUS FOR 20 MS

4-1 Key Bounce
The solution is to wait for the status of a key to remain stable for perhaps
20 milliseconds. This may be done by hardware-filtering or by a software-
delay routine. The hardware circuit appears in Fig. 4-2 and requires the

same circuitry for each key. This circuit is useful for the few front-panel
switches in a system. In the case of a larger number of keys, software is

often used.

+5V

NAND OUTPUT

——W

+5V

4-2 Debounce Circuit

86

py11j21]3
4151617
8 9 A B
CJDJE]F
A Hex Keyboard

Non-Encoded Keyboard

Usually, the keyboard is arranged in a row-and-column fashion, with an
n by m key organization. We can scan one set of lines with a “‘walking one”’
pattern and sense the other lines for a coincidence. (See Fig. 4-3). This
key-identification technique is known as ‘‘row-scanning.’”” Once a coinci-
dence is found, it is checked for 20 milliseconds or so, to see if it is stable
and then the corresponding data are generated.

ouTPUT OUTPUT
80 8 []
71717 .
Aray.u4 . /
71717 . -
A .
1 2
s 8 1 6 0 0 0 1
] 0
b ' b
A+] v
2 (]
3 (]
KEY (1-2) TDENTIFIED 3 4
4.3 Walking Ones Keyboard Decode

Larger keyboards require more select or sense lines. Fig. 4-4 shows how
a four to sixteen line decoder allows for a 64-key matrix with four bits of
output and four bits of input from the microprocessor I/O ports. Fig. 4-5

INTERFACING THE PERIPHERALS 87

shows a simple twelve-key matrix using four output bits and three input bits
on an F8 microprocessor system.

4

m— BB

16
[RoW SELECT rl:

DECODER 16 x 4
MPU
KEYBOARD
" \
< COLUMN SENSING |
4-4 4 to 16 Line Decoder with Keyboard
{
o7 A S
o — RoK 8 Z s e
p
oA A
- > 12 s :/D
F8 <l oA
o > 22 :/3 :/D
P > 32 o -./)
(0L 0
o1 1
o 2
4.5 Twelve-Key Matrix
Rollover

Rollover is the problem caused when more than one key is held down at
the same time. It is essential to detect this fact and to prevent wrong codes

88

from being generated. The three main techniques used to resolve this prob-
lem are the two-key rollover, the n-key rollover, and the n-key lock-out.

Two-key rollover provides protection for the case where two keys are
pressed at the same time. Two philosophies are used. The simplest two-key
rollover simply ignores the reading from the keyboard until only one key
closure is detected. The last key to remain pressed is the correct one. This
philosophy is normally used when software routines are used to provide
keyboard scanning andl decoding. The second philosophy is often used by
hardware devices. The second key closure is prevented from generating a
strobe until the first one is released. This is accomplished by an internal
delay mechanism which is latched as long as the first key is pressed. Clearly
for better protection, rollover should be provided for more than two keys.

N-key rollover will either ignore all keys pressed until only one remains
down, or else store the information in an internal buffer. A significant cost
of n-key rollover protection is that most systems need a diode in series with
every key in order to eliminate the problem created when three adjacent
keys at a right angle are pressed (‘‘ghost key’’). This increases the cost very
significantly and is seldom used on lost-cost systems.

N-key lock-out takes into account only one key pressed. Any additional
keys which might have been pressed and released do not generate any
codes. By convention it may be the first key pressed which will generate the
code, or else the last key left pushed. The system is simplest to implement
and most often used. However it may be objectionable to the user as it
slows down the typing: each key must be fully released before the next one
is pressed down.

Line-reversal Technique

The basic technique used in identifying the key which has been pressed
on a keyboard is row-scanning, as described above. However, because of
the availability of the universal parallel interface chip, the PIO, another
method can now be used. This is the line-reversal technique. This method
will use a complete port on a PIO, but will be more efficient soft-ware-
wise (faster). This method is illustrated below. In the example, a 16-key
keyboard is used. One port of the PIO is dedicated to the keyboard
interface. The identification of the key is performed in essentially four
instructions only. In practice, some more instructions may be needed,
because of the specific structure of the PIO used.

Step one: Output

Initially, the 8 lines of the PIO are configured as 4 lines in, and 4 lines

INTERFACING THE PERIPHERALS 89

DIRECTION DATA
REGISTER j lREGISTER

| D2
of1 D1
INPUT } 0|0 D2 KEYBOARD
ol
~ T 7E—oe s s el sy i
g |
110 D5 1 !
OUTPUTIL | 4 na : ;
111 7 E)
- -
PIO

Line Reversal: Step 1

INT

out. This will be accomplished by loading the proper data pattern in
the direction-register, which controls the direction of the lines. In the
example, the direction register is loaded with the value “00001111”.
This results in configuring the data lines DO through D3 as inputs, and
the data lines D4 through D7 as outputs. DO through D3 are the row
outputs of the keyboard. D4 through D7 are the column inputs to the
keyboard. It is assumed that the initial value of the data-register is all
zeroes. In other words, four zeroes are output on lines D4 through D7,
the row inputs to the keyboard. Whenever a key is pressed on the key-
board, the normal output on the column, which is a “one”, is grounded
by the key closure. As a result, a “zero” value will appear on the column
output on which a key has been pressed. In the example presented on
the illustration, a ‘“zero” appears on line D1 (the third column from
the left of the keyboard). The other three column outputs, i.c. lines
DO, D2, D3 have not been grounded by any key closure, and supply
a “one” output. Detecting the key closure itself can be accomplished
in two ways. A NAND gate, appearing under the keyboard in the
illustration, may be used to generate an interrupt to the microprocessor.
As an alternative, as usual, a polling program may read the contents
of the data register and detect the fact that a zero is present on any one
of lines DO through D3. The problem to be solved here is to identify
which key was pressed. The information available so far in the data
register, i.e. “10110000” is not sufficient. The column is identified, but
not the row. This problem was solved in the row-scanning technique
by supplying a ““one”” on each row in turn. Here a more “elegant” method
will be used, which will supply the same information in fewer steps.

90

|1
output | [! ?
1
(B 0]
-t~ y
of L T
0| 1 !
INPUT ol 1 | 1
o} ! !
| N SOpU IS W APV }
PIO

Line Reversal: Step 2

Step two: Line Reversal

At this point, the direction of the eight lines is simply reversed. Inputs
become outputs, and outputs become inputs. This is illustrated on the
right of the drawing. To perform this line-reversal, a single instruction
is necessary: ‘“‘complement the contents of the direction-register”.
Naturally, this assumes that such an instruction is available. On some
microprocessors, two, or even three instructions might be required to
perform this on an external location.

The contents of the direction-register are now “11110000”. As a
result, the contents of bits DO through D3, which were previously in-
puts, are now outputs. The value “1011” is therefore output on the
columns of the keyboard. As a result, lines D4 through D7 are condi-
tioned by the rows of the keyboard. In this example, the resulting value
for D4 through D7 is “1011”. Wherever a key was pressed, a “zero”
is generated on input. Finally, it is sufficient to read the contents of
the data register to know which key was pressed. The contents of the
data register in our example is “10111011”. It indicates that the key
at the intersection of the third column and the third row was pressed.
It is then a simple matter of using a branch table, or any other conver-
sion technique, to obtain the code corresponding to the key. In addi-
tion, if more than one “zero” is present either in the first “nibble”
(group of four bits) or in the second one, it detects a multiple-key
closure, i.e. a roll-over problem. This is usually handied by the jump
table. Such a code, having illegal zeroes, will result in a branch to a
table entry which is invalid. This can be detected, or else this may cause

INTERFACING THE PERIPHERALS 91

the whole process to be restarted again, therefore ignoring the input
until only a single key is pressed.

The advantage of this technique is to require a very simple software
program, and to eliminate the circuitry needed to scan rows. The dis-
advantage is to dedicate one port of a PIO to keyboard management.
However in view of the very low cost of PIOs, this can be indeed a very
inexpensive alternative.

Encoded Keyboard

Not everyone enjoys writing the software required for keyboard encod-
ing. Various types of LSI interface-circuits are used to encode keyboards.
Usually, the circuit will scan the matrix, discover a coincidence, provide for
some amount of debounce and rollover, and latch the data for use in the
system. Some units also provide an internal ROM look-up table to generate
the proper code for the key pressed, such as ASCII or EBCDIC.

With this one chip and the microcomputer system, a complete entry and
display interface is accomplished. Note in Fig. 4-9 that the 8279 forms the
complete entry and display section interface for a point of sale terminal
using the 8048 single-chip microcomputer system.

Keyboard Encoders

The basic role of the keyboard encoder is to identify the key which has
been pressed and to supply the 8 bit key code corresponding to it. In
addition, a good keyboard chip should also solve the problems we have
described above. It should debounce and provide rollover-protection.
Three essential types of encoders are available: static encoders, scanning
encoders, and the converting encoder.

A static-encoder simply generates the code corresponding to the key. In
order to simplify the key-protection problem, the linear keyboard can be
considered. A linear keyboard is, for example, a 64-key keyboard which
provides a wire for every key pressed. Detection is then easy. The pulse
appears on the wire corresponding to the key pressed. This pulse is then
simply transformed into the suitable 8-bit code. However this means 64
separate incoming lines to produce one of 64 8-bit codes. In order to reduce
the cost of the wiring, and the necessity for encoders, most keyboards are
arranged in matrix fashion, for example 8 by 8. In an 8 by 8 keyboard, only
16 wires are used. The price paid is that the process necessary to identify
the key becomes more complex. This requires then a scanning encoder, or
the use of a scanning routine. Expensive ASCII keyboards (full keyboards)
can afford the luxury of a linear arrangement in view of the cost of every

92

key. No scanner is then necessary to identify the key. However most
keyboards have the matrix arrangement.

Scanning-Chip

A scanning-chip solves the problem of key identification, when using a
matrix-keyboard array. Each row of keys is scanned in turn by using a
counter. As long as no key is pressed, the scanning goes around in a circular
manner. As soon as the key is pressed, a key closure strobe is generated,
and scanning stops. The counter can be read: it identifies the row and
column on which the key has been pressed. Such a straightforward scanning
mechanism may not provide the desired two-key rollover protection. Scan-
ning in this system stops with the first key down which is encountered.
When two keys are pressed in close sequence, one which is identified might
well be the second one which was pressed. A better scanning mechanism
will scan the entire keyboard for key closure and will generate a valid code
only if only one key is pressed. Whenever more than one key is pressed, it
will simply keep scanning until only one is held down. This has the added
advantage of providing intrinsic automatic debouncing for the key.

5
ry
6-BIT 3
2
COUNTER 1
0
T [10F 8 DECODER I
cLoCK ROW -
OSCILLATOR| ‘ ‘ ‘ ‘ SCANNING
sToP '
oF
8x8 8
KEYBOARD DE-
Cco-
DER
® »{ DEBOUNCE }———p» STROBE

Scanning Keyboard

The above discussion was, in fact, simplified. In order to provide the
reading of the key down, it is necessary to supply the voltage on the col-
umns. If all columns were activated at the same time, it would be impossible

INTERFACING THE PERIPHERALS 93

to determine which column was pressed. In reality, a one is supplied on a
column, then on the next one, then on the next one. Whenever a key closure
is detected, the column is known, and the rows are scanned for another
closure.

The operation of the scanner is usually the following: a single 6-bit
counter is used. The top three bits of the counter are decoded by a 1 to 8
decoder and are used to activate sequentially each one of the 8 columns in
turn. The lower three bits of the counter, which change faster than the other
ones, are also decoded by a | to 8 decoder which is used to scan the rows.
This guarantees that every time a one is generated on one of the columns,
the 8 rows are scanned in turn. Then the next column is activated.
Whenever a key-closure occurs, the detection will occur whenever the row
is selected, and this will stop the six-bit counter. The contents of the
counter can then be read. They identify the column and the row which
correspond to the key closure.

Good keyboard-encoders are equipped with a read-only memory which
automatically supplies the output code corresponding to the key pressed.
They should also have separate shift and control inputs. In particular this
eliminates false output codes whenever wrong keys are pressed.

ADDING MEMORY TO SCANNED KEYBOARD CREATES FINAL CODE

— - 7(PARIT\4
—_— ——— 6 L
—— —— 5
—_— ROM - 4 A
» > 3 } CODE ;
—_— —— 2 c
SHIFT > 1
CTRL—) — 0 H
STROBE T

LATCH PROVIDES n - KEY ROLLOVER PROTECTION

[

ROM and Latch

As an example, the NECUPD 364D-02 keyboard incoder appears on
illustration 4-6.

It provides n-key lock-out, n-key rollover + debounce, frequency con-
trol oscillator, and 4 mode selections: shift, control, and shift plus control.

94

R s
R
b |
e Lo i ++2’_$ AFTN W1 ol e
Voa =1 1
3R g 1|
o |1 "
Ven 4G (RN “J \ e — Jf‘?mm |
| \ & v
! 10 BIT COMBARATER b=] conre, | |
! 1 SEILLATO ’ |
]
I 111 R |
1}]
I 0-STAGE L -
! WING COUNTER aox | 7_ pata |
! { CONTROL READY | |
i B
= [
] 1 | |
1 1 1
I 0 3 stree |
] L@H T oer, LELLLELLES
1 S— 1] |] |
! 113 |
supr o2 0 fi- 1 +
; - - Mt
contaoy =24 3800 BIT AGM o Fam H
. 180 VI T H
rewess {1OBITXQOREYS [D EEENE
T B HHH
s & FHH

ey u. .“u”- o

4-6 NEC Keyboard Encoder

It is equipped internally with a 3600 bit ROM. It provides a 10-bit output for
90 keys in 4 modes. The 90 keys of the keyboard must be organized as a 9 by
10 matrix. It is equipped internally with a 10-stage ring counter for the
columns, and a 9-stage ring counter for the rows. In addition, its memory
output is equipped with an output data buffer. This guarantees that there
will be no random code outputs, while scanning occurs with no keys
pressed. Other similar encoders are available from a variety of manufactur-
ers, such as General Instruments and others. The on-chip ROM can be
mask programmed to provide any desirable coding scheme—such as ASCII
or EBCDIC.

This device may be used in a microprocessor system as an input port
during the bus. The data ready line can be used to flag the processor when a
keystroke is ready to be read.

4-7 ASCIl Keyboard

INTERFACING THE PERIPHERALS 25

Intel 8279:

SHIFT
KEYBOARD
MATRIX
CONTROL
8 |8 coLumys
RETURN 8 ROWS
LINES
5V 8
y Y
B-BIT INT |suIFT RG-1
MICROPROCESSOR [~DATA FUS—] CONTROL VDD 1 of 8 DECODER
SYSTEM DATA VSS
BUS 8/ Dg_7 |
% »{ToF v 3
CONTROLS | oo dB__pudTOW Sg-3 v
RESET
| p——=——{RESET 8219 L
ADDRESS R SCAN LINES
BUS { C,/D /D?
CLocK oax cLy . PR 1 of 16 DECODER
¥
BLANK
DISPLAY .
% (DECODED)
DISPLAY
CHARACTERS
D\ |paTa
L/)
DISPLAY
4-8 8279 Keyboard/Display Interface

Pictured in Fig. 4-8, this LSI circuit provides for an 8 X 8 keyboard
matrix with shift and control keys. In this way, up to 256 codes can be
generated. For example, pressing control and shift and the letter *‘p’’ would
be one of the codes.

In addition to encoding the keyboard, the device will also scan a display
and light the display to display data stored in a RAM bank in the 8279

Similar devices are available from Rockwell and GI.

ASCII Keyboard

Keyboards may be purchased with the standard teletype or typewriter
layouts that generate the seven bit ASCII code. These keyboards contain
the keys, plus the LSI keyboard-controller chip. The output is usually
seven parallel bits with a strobe pulse. To interface this to a standard serial

input, a UART and clock may be added. The complete design appears in

Fig. 4-11.
The UART takes the seven bits of data and transmits them in a serial 10
or 11 bit format when the stroke pulse occurs. The keyboard is locked-out

96

CASH DRAW
KEY SWITCH

TOTALS
AUDIO INDICATOR

—
—

8748/8048
PROM/ROM

RAM
110 TIMER

G

DATA & STROBE
STEPPER MOTOR
CONTROL N
PAPER ADVANCE
STATUS

AV

MATRIX PRINTER®
WITH PAPER
ADVANCE

*ORUM PRINTER MAY BE USED. DRUM PRINTER REQUIRES

£ xTAL
T TO OPTIONAL
. TIONS
INTERFACE
© READER
INTERRUPT « STORE AND FORWARD
8279
KEYBOARD DISPLAY
1

4

SCAN LINES

FRONT AND
REAR DUAL
DISPLAY

* NUMERIC
o DEPT.

. ITEM
» TAX
* £7C.

CASH REGISTER KEYBOARD

[B]18]8] scoven [3]

INDICATOR LAMP MATRIX FOR
ILLUMINATED KEY TOPS

-

MOAE OUTPUTS WHICH CAN BE OBTAINED FROM AN EXPANDER

DEVICE.

49 8048 Point of Sale Terminal with 8279
BIT NUMBERS
o o |o o b b i |2
o |o {1 1 |o o |2 1
I ol 1| o 1o} 1]o 1
b7| b6 | bs| by | b3 bz | by |\ HEX 1
AN E
oo Jo]o o[wuL|oLe| sp o ¢ #[- P
o]o [o]r 1[son[pca| 1| A qf & q
ofjo J1]o 21smx|pc2| - 2] 8] r[® r
oo J2]2 3[erx|oc3| ¢ 3] c| s e s
ol1fo]o y|Eor|pcu| 8 s o| | a t
o202 s{ENg| Nax] s s| | u] e u
ol1f1fo 6fack|sn[| 6] f] V| * v
o1 1] 7| BEL] ETB] ¢ 7| o w| & w
1|ojojo 8| Bs |can] ¢ 8] u| x| n x
1{o]o]2 9| ur | Em) of 1 ¥| 1 y
1 o 1 0 10| LF SUB| L H J ¥4 J z
1lofrfa nfvr [esf + K o] x 1
1 1 o] 12| PP PS » < L \ 1 H
110} 13| cr | cs | =] o 3 = }
1 1 1 o 4] so RS . >| N A n o~
11]] 15 st | us / 2 o[o of DEL
4-10 ASCII Table

INTERFACING THE PERIPHERALS

97

while transmitting. The serial clock runs at 16 times the bit rate. For 110
baud, the oscillator is tuned to 1760 hertz. For 300 baud, it is tuned to 4800
hertz.

$1883 EIA driver
data lines
> U
> A
i R
; T R1
- 555 R2
from keybd. <
strobe timer- _L e
> baud-rate = é |
oscillator f
Bl B2

Baud-rate selection

4-11 ASCII Keyboard Serial Interface

LED DISPLAYS

Light-emitting-diodes (LED’s) are commonly used to indicate status or
other information to the user. LED displays may take a number of forms.
-Three of these are: single LED, seven-segment LED, and dot-matrix LED
displays.

The single LED is a diode with a voltage drop of 1.2 to 2.4 volts, depend-
ing on the type. It is a device that emits a narrow wavelength band of visible
or infrared light. The most-used LED’s are red LED’s. Others used, al-
though more expensive and sometimes not as efficient, are green, orange,
yellow, and infrared LED’s.

Fig. 4-12 shows an LED interface to an output port bit.

The current, I, that passes through the LED will determine its intensity.
The formula given can be simplified to: I = 3.5/R for a five volt supply.
Typical currents are from two to twenty milliamps. When the input is less
than 0.6 volts, the transistor is off and no current flows. When the input is
greater than 0.6 volts, the transistor turns on and allows current to flow,
lighting the LED.

98

+5V

A

* 1
NPN Transistor
TTLIN
5- (vd + Vce sat)
= R
4-12 Single LED Interface
Seven-Segment LED

A seven-segment LED display consists of a group of seven elementary
LED’s arranged as in Fig. 4-13.

A
AT A~AA
_»’__bl._
AT ~N
F B
AL AN
A A
G
N ~N
E (o}
~T ~S
AN AS
D

4-13 Seven Segment LED

With these segments, we can display the numerals 0 through 9 and some
letters of the alphabet. In this way, we have a readout of the seven drive
signals.

A common interface device is a BCD-to-seven-segment decoder/driver.
It will convert 4-bit BCD directly into the proper numerals and also drive

INTERFACING THE PERIPHERALS 99

LED USES7SEGMENTS:

/// __Nene
M a7
J Lo ararr
— [T T L
L
CH L [

7 Segment Characters

the LED’s directly with internal driver transistors. An example is the 7447
pictured in Fig. 4-14. An output port may drive the 7447 with four bits of
BCD data to light the proper segments.

R A
eyt

1 i3 7 J_S'S 6
1oL

1 T 01 1 I
[] [I S

e Uy
A
H
1

T
i

4-14 7447 Seven Segment Decoder/Driver

In order to save the cost of having one decoder for each LED digit
display, the displays may be multiplexed. Each digit is on for a short time
before a new digit is selected and turned on. In this way, one decoder can
serve a number of displays. There are many ways to multiplex. Two are
presented here:

Fig. 4-15 shows the first scheme, which scans both digit and data. Note
how external drivers are used. This is because, when multiplexing, each

100

NOTE
1
1

aNm
O ~r~0O0O0OO0O0O"FTOOOOOOOY ™ O
--lOoOr"rr"r00O0OrYFOO"Tr0O0OOr ™ O
| OrFOrrrO0rOrOrrrrOrr O
[d
V|OrO0Or-rOOrFOroOooOroorr-r-o
V|oOr-FOODOOOOOTrOvrYrrr~rvvrO
Blooooorrro00rrorr-rwvro
s|loroO0OrOrFOOOFrrroOorrvroO
8
Elrr e, r e e 00 T
~
«|lor-~rororororororor xox
MlOOrrOOrrOO™"r "rOOT™Y ™ XOX
E Olocooorr-rrro000O0OFrrrr-xo x
£ aloooocoo0ocOorrrrrrrrxo0 X
M 3 X X X X X X X X X X X X XX XO X
:v—v—v—vv—v—v—v-v-v—v-v-v—v—v-v—xv—o
w
2
<« - Zz
- < 9
T ;gs OrNOTLONDOIOTNNRTYTY G
= g 3 «
= o E
[-4
-

7447 Decoder Truth Table

INTERFACING THE PERIPHERALS

101

display must be N times as bright as when it operates alone since it is on 1/N
times as long. Thus, currents needed are N times as large. Most integrated
circuits cannot provide this current, so external discrete transistors must be
used.

BCD
1 —

— 3| DECODER
ll ARAA
SE?MENT
— sy
1
YYVYY YYYVY l y
‘min mgn LA nxﬁn
t A]}
1 1|
DIGIT DIGIT
SELECT > DRIVERS
-—

4-15 Multiplexing LED’s

The second scheme, in Fig. 4-16, uses a counter to advance the digit
count. The count is input to the processor and used to address the proper
data for the digit. The data are placed on an output port which drives the
7447 decoder. Note again that current-buffering is needed to increase the
brightness.

:> i scoment

- !

L/ TO ALL SUCH SEGMENT 'G!

3 W 4 DisPLAYS
y”
L

TO OTHER
SEGMENTS IN FIRST
cLogk oisPLAY

NeN
4 DISPLAY DIGIT ORIVERS
COUNTER

27 DECODER —
-
4-16 Multiplex Drivers in Scanning Scheme

102

Matrix LED

The LED matrix consists of five rows of seven columns of LED’s.
These 35 LED’s can display upper and lower case letters and numbers. A
typical arrangement appears on Fig. 4-17.

7 X 5DOT MATRIX

CHARACTER
ROM
ap | 7 ROWS I)
—{ A0 »ls 00D O
> mDOoOO0D
- R6 LU I
loooo s
ooooe
> A7 E s mEn
é%%%&ﬂ
‘CHARACTER
TO BE DISPLAYED
DATA
cp ca
DECODER
JUL
R COUNTER
4-17 7 x 5 Dot Matrix LED
cLOCK
AP 2048 x 8
Al |—aq ¢ 3te5
2 ADDRESS — * “
A3 ™ | » : DECODER _j
) o :]
——»4
. A4
PORT ~ %;A.—.-(DISPLAY L— —"
1
L] NC.

»

3k}

wp Y

[N o
PORT

4-18 Counter Multiplexed 7 x 5 Matrix LED

INTERFACING THE PERIPHERALS 103

The first output port selects the column data and the second output port
selects the row, through the decoder. With this technique, the program will
step through the five rows, displaying whatever character has been pro-
grammed into the 2048-by-8 read-only-memory.

Another technique is to have external hardware step through the rows
and display the proper data. Such a method is illustrated in Fig. 4-18.

The counter will start at 0 and count to 4. The character-ROM is being
addressed to the character ‘‘S’’. Column 0 addresses the row data to be
displayed. They are from R6 to RO: 1001111z2. The clock advances the
counter to column 1. The row data are now 1001001:. This continues
through row Column 4 and then repeats. All the letters of the alphabet may
be generated this way. A typical character-ROM is shown in Fig. 4-19.

Note that this part is for improved-resolution 7 x 9-displays. Also, this
character-ROM may be used with ASCII, Bandot or EBCDIC code, de-
pending on the table ordered.

Summary of Displays

There are many other displays. However, LED type displays are reli-
able, easy to interface, and illustrate the techniques used in most all other
display interfacing techniques. CRT-interfacing will be covered also in this
chapter, and the dot-matrix methods will be presented in that section.

QUTPUT ENABLE

BLOCK DIAGRAM l
OUTPUT
ENABLE
|
Al O—l []
O—*coLumn
O—>1pecoDER —
[] [] °
° °
As O] hd ®
5184 BIT | o o | outpPuT b
LATCHES
ROM MATRIX . ‘\g . L4
6axoxo | o ° .
[] i [] Y
A5 Ot [3) °
o—=| ROW ° ° Og
o—s]DECODER
O—]
orrer |
G
A0

READ

104

CHARACTER FONT

ASCII SET, VERTICAL SCAN 7X9 WITH CODE CONVERSION

[+ i L = — R 3 et
4 H] : ;

1T
<O <0

Dot Matrix ROM

TELETYPE

A teletype is a serial mechanical input-output device which usually oper-
ates at 110, 150 or 300 baud depending on the model and manufacturer.
Three methods of interfacing will be presented here: one for a UART, using
a model 33 Teletype®, one for a Motorola ACIA, using a model 33 Tele-
type® with opto-isolation, and one RS232EIA interface. A model 33 Tele-
type operates at 10 characters per second. Each character is encoded by
eleven bits: one start bit, 8 data bits, and 2 stop bits. The resulting transfer
rate is, therefore, 110 baud. The only significant interfacing problem is to

INTERFACING THE PERIPHERALS 105

assemble the 8-bit parallel data-byte from these 11 bits. Transmission is
asynchronous. The universal interface for a TTY is the UART, which was
described in the previous section. It performs automatically all the required
functions, and may operate in both directions.

DATA
33 17V
5V
+ SET TO:
-20 ma LOOP
PN jjgy — 1 |1-FuLL pupLex
UART —=
3
+5v0An—Fe Jo | P
o
]) —No—AA—F |5
—1Vo—a 6 RECEIVE
+5Vo— i
NPN o |7
. |8

4-20 UART TTY Interface

In Fig. 4-20, the UART is used for serial to parallel and parallel to serial
conversion ot the data. Fig. 4-21 illustrates the serial format, and 4-22
illustrates the timing sequence. The schematic of the interface shows how

STIPIIST(PZ.

MARK = - - AENBG AN DR
sPAcE----L-uJ—J—L-LJ—-I—Um 8

9,09 ns—';—i

4.21 Serial Data Format

VA

DATA READY

READER RUN—-&

TRANSMIT
BUFFER
LOAD

RECEIVE FROM TTY

TRANSMIT R TRANSMIT TO TTY
LoAD

4-22 Timing of UART

106

the TTL signals are converted into 20 milliamp current loop signals required
by the TTY.

In Fig. 4-23, opto-isolators are used to isolate the teletype electrically
from the microcomputer system, This requires that the + and — 12 volts
levels also be isolated from the microcomputer. The ACIA performs the
conversion and interfaces directly with the 6800 bus.

Rx DATA

6850
TTY
S12v SERIAL

COMMON 3,5

SERIAL
IN

!
!
!
i
|
ACIA R
|
|
Tx DATA | *
T
D]
|

4-23 Opto-Isolated TTY Interface

—12v

Some teletypes are equipped with EIA-RS232C in a serial configuration.
In RS232C teletypes, + and — 12 volt pulses rather than the presence or
absence of 20 milliamp currents are used. Fig. 4-24 illustrates a common set
of devices for EIA to TTL and TTL to EIA level conversion. These are the
MC1489 and MC1488 integrated circuits. There are four translators in each
package so a number of lines may be interfaced.

MC 1489
Ry SERIAL QUT
6850 DATA | RS-232
ACIA COMPATIBLE
TTY
MC 1488

Tx | SERIAL IN
DATA

4-24 MC1448 and MC1489

INTERFACING THE PERIPHERALS 107

NEXT 1

FRAM

OVRN

PAR

R DATA

NEXT

TX DATA

LDA A STACON
ASR A

BCS FRAM
ASR A

ASR A

BCC NEXT 1
BR ERROR 2
ASR A

ASR A

BCC OVRN
BR ERROR 3
ASR A

BCC PAR

BR ERROR 4
ASR A

BCC R DATA
BR ERROR 5
LDA B TXRX
RTS

LOAD STATUS
SHIFT RDRF BIT TO C-BIT POSITION
CHECK RDRF BIT

SHIFT DCD BIT TO C-BIT POSITION
CHECK DCD BIT
CARRIER LOSS ~ BRANCH TO ERROR ROUTINE

SHIFT FE BIT TO C-BIT POSITION

CHECK FE BIT

FRAMING ERROR - BRANCH TO ERROR ROUTINE
SHIFT OVRN BIT TO C-BIT POSITION

CHECK OVRN BIT

OVERRUN ERROR - BRANCH TO ERROR ROUTINE
SHIFT PE BIT TO C-BIT POSITION

CHECK PE BIT

PARITY ERROR - BRANCH TO ERROR ROUTINE
LOAD B REGISTER WITH DATA

RETURN FROM SUBROUTINE

6800 Transmit Subroutine (1)

LDA A STACON
ASR A

ASR A

BCC TX DATA
ASR A

ASR A

BCC NEXT

BR ERROR 1

STA B TXRX
RTS

LOAD STATUS

SHIFT TDRE BIT TO C-BIT POSITION
CHECK TDRE BIT

SHIFT CTS BIT TO C-BIT POSITION
CHECK CTS
CARRIER LOSS - BRANCH TO ERROR ROUTINE

STORE CHARACTER IN ACIA
RETURN FROM SUBROUTINE

6800 Transmit Subroutine (2)

Mechanically, the teletype appears complex, but is really quite simple.
To help understand the serial data format, an explanation of what happens

internally will be presented.

When the start bit comes in, two things happen: the clutch engages all

108

mechanical linkages so that a print cycle will occur, and prepares the decod-
ing selector-magnet for the decoding process. The next eight bits come in,
9.09 milliseconds apart. They each trip the selector-magnet, which stops
eight notched wheels from spinning—one after the other. In turn, the print
bars which select the character on the print-head are raised, or lowered, due
to the combination of notches on the wheels. The print-head selects the
proper character and the print-hammer strikes the head onto the ribbon and
paper. The stop-bits are required to allow enough time to finish the present
character before another comes along.

If the punch was on, the selection of the print-bars would also send
punches through the paper-tape, while printing the character.

When a key is pressed, the proper bit pattern is placed on eight contacts
on the distributor. The distributor is like the spark-distributor in an au-
tomobile. Fig. 425 illustrates the simplicity of this scheme. The motor is
engaged to turn the commutator once around, which opens and closes the
loop generating the 11-bit pattern for that key.

TTY DISTRIBUTOR

L.

OUTPUT

KEYBOARD
ENCODED

|r-——(

SWITCHES

425 Distributor in Teletype

Note that the synchronous motor is the timing source for the machine,
and an accurate line frequency is necessary, or else the machine will lose
sync due to old age, no oil, or other mechanical problems.

INTERFACING THE PERIPHERALS 109

A Teletype Output Subroutine

ENTER ENTER
» Y
SEND START COUNTER To
BIT ELEVEN
+ >
SEND DATA ouTPUT
BITS A 3”
y DELAY
SEND STOP 9.1 MSEC
BIT
EXIT
YES
RET
4-26 ACIA Transmit Software

It is assumed here that the teletype is connected to bit 0 of port 2. This
simple program will shift-out the 11 bits necessary to represent the charac-
ter in teletype format. The flow-chart appears on Fig. 4-26, the actual con-
nection appears on 4-27. The program appears below. Register B is used as

TELETYPE QUTPUT SUBROUTINE

(ASSUME TTY CONNECTED TO PORT 2 BIT

0)

; THIS SUBROUTINE ENTERED WITH CHARACTER TO BE OUTPUT IN THE

3
TYOUT: MVI B,11 H
MOV A,C H
ORA A H
RAL H
MORE: ouT 2 H
CALL DELAY H
RAR H
STC H
DCR B H
JINZ MORE H
RET H
k]
3 9 MSEC DELAY (ASSUME NO
3
DELAY: MVI D,6
DLO: MVI E, 2000
DL1: DCR E
JINZ DL1
DCR D
JNZ DLO
RET

110

C REGISTER
SET COUNTER FOR 11 BITS
CHARACTER TO ACCUMULATOR
CLEAR CARRY-FOR START BIT
MOVE CARRY TO A(0)
SEND TO TTY
KILL TIME
POSITION NEXT BIT
SET CARRY-FOR STOP BITS
DECREMENT BIT COUNTER
DONE?
YES

WAIT STATES)

1.5 MSEC
INNER LOOP

8080 TTY Output Program

a counter. It is initially set to 11. The contents of register B will be decre-
mented every time that the bit is shifted out, i.e. transmitted to port 2. It is
important to remember that only bit 0 of the accumulator matters in this
example. All other bits will be ignored. This is the right-most bit, or least
significant bit (LSB) of the accumulator. Initially the accumulator contains
the 8 bits to be transmitted. In addition, both the start-bit and the stop-bit
must be transmitted. This will be accomplished by using a feature of the
rotation instruction of the 8080. The carry bit, which is in fact the ninth bit
of the accumulator, in shift operations, will be set to 0. It will then be
rotated into the accumulator in bit position 0. This will be the start bit. The
crux of the operation is to use a rorate instruction. If the contents of the
accumulator were simply shifted left, the left-most bit would be lost. In this
case the left-most bit is preserved in the carry, while a 0 gets written in bit
position 0. It will be noted, in the program, that the next operation in the
accumulator will be a right rotation. It will re-install the former bit 7, which
had been preserved in the carry bit, in its correct position. Finally once this
has been done, successive rotations will rotate into the left of the ac-
cumulator successive ones created in the carry bit. This will guarantee that
the stop bits get transmitted at the end. The sequence of the program is
straight forward:

8080 —
DATA | LATCH — A
¢> — TTY TX DATA
8 7 -1ov____xv\/~_.| l
PORT 2 430/W

4.27 Hardware TTY Connection

The counter register B is set at value 11, the character which was pre-
served in register C is loaded into the accumulator A. The accumulator is
ored with itself (third instruction). This does not change its contents, but
guarantees that the carry is set to 0. This will be the start bit. A right rotate
is performed: RAR. This moves the carry into bit position 0 of the ac-
cumulator. The output then occurs: OUT 2. The bit is sent to the teletype.
Everytime that the bit is sent to the teletype, a delay-loop must be executed
to guarantee a 9 ms delay. The delay-routine is implemented as subroutine,

INTERFACING THE PERIPHERALS 111

and appears at the bottom of the program. Next, an RAR is executed to
shift into bit position 0 the correct next bit. The carry is set in anticipation of
ulterior rotations to guarantee that eventually the start bits will be correctly
transmitted. The bit-counter (register B) is then decremented and tested. If
the counter reaches the value 0, the program ends. If not, the program loops
by going back to address MORE, where the next output occurs.

Software Example for ACIA:

This subroutine sends a character to the teletype. If it is not ready to
transmit, the subroutine waits until ready. It also checks the clear-to-send
input (CTS) on the ACIA. This will be used with an EIA-RS232C interface
system.

TRANSMIT
ROUTINE

READ STATUS

NO

LOSS OF
CARRIER ERROR
ROUT INE
LOAD
CHARACTER
\
v RTS
4.28 ACIA Flowchart J

The first instruction loads the status of the ACIA into accumulator A.
The ready-to-transmit flag is in bit position 1, so it must be shifted twice to
the right, into carry, to be tested. If we are ready to transmit, the program
goes directly to DATA where the contents of accumulator B are sent to the
ACIA. '

If the ACIA was not ready to send, the CTS bit would be checked; if it
was clear-to-send, a carrier-loss would be indicated and the program would
branch to an error routine. If the ACIA is clear-to-send, the transmit-ready
flag would be checked until ready. This is a polling technique. Interrupts
could also be used.

112

NEXT LDA A STACON LOAD STATUS

ASR A

ASR A SHIFT TDRE BIT TO C-BIT POSITION

BCC TX DATA CHECK TDRE BIT

ASR A

ASR A SHIFT CTS BIT TO C-BIT POSITION

BCC NEXT CHECK CTS

BR ERROR 1 CARRIER LOSS - BRANCH TO ERROR ROUTINE
TX DATA STA B TXRX STORE CHARACTER IN ACIA

RTS RETURN FROM SUBROUTINE

ACIA Software

PAPER-TAPE-READER

The teletypewriters usually are slow for reading punched tapes. One
helpful peripheral would be a high-speed paper-tape reader. Such a device
would optically detect the code pattern on the paper-tape and advance to
the next frame quickly. A typical reader has the schematic shown on Fig.
4-29.

SCHMIDT TRIGGER EDGE
TTL_ CLEANUP BUFFER

HOLE
SENSE
PHOTO TRANSISTOR OUTPUTS

ONE OFF
]

=V Y=

IR LED LIGHT — SOURCE I (8 DATA —

1 FEEDHOLE)

HOLE, ONE OF
9 IN PAPER TAPE

MOTOR DRIVER

MOTOR TO DRIVE
PINCH ROLLERS TO
PULL TAPE THROUGH
LED - TRANSISTOR
SENSORS

4-29 Paper Tape Reader

INTERFACING THE PERIPHERALS 113

Our microcomputer must turn-on the motor, sense a feedhole (which are
smaller than the data, indicating the center of a bit frame), sense the frame-
pattern and store the data before the next feed-hole passes by. When an
end-of-tape character is sensed, the reader-motor should turn-off.

8 LEVEL — PAPER TAPE

3 3 o
(o) o] o
O 0 o
8000000008000000000000 < FEEDHOLES
00000 [e)o]
(o] O O
(o] (o] (o]
000 Q

4-30 8 Level Bit Frame

A bit-frame for our 8 level tape appears in Fig. 4-30. A typical problem is
caused by the ragged edges of the holes, or by dirt on the tape. The hole
data appears on Fig. 4-31. Due to this, the feedhole sensing might need
some extra delay so that the middle of the feedhole will be the time at which
the other holes are sampled. One must know the motor speed to do this.

Some systems can go forward and backwards so that blocks of data with
errors may be re-read.

The flowchart for this reader appears on Fig. 4-32.

4-31 Hole Data

LINE PRINTER

Usually, a teleprinter is too slow for printing long files. In this case, a
line-printer must be used. There are many types of line-printers. The one
described here is a dot-matrix type which uses seven print wires to make
seven dots on the page. By stepping the print wires across the page and
advancing the paper, characters are formed. The basic diagram of our
printer appears on Fig. 4-33.

To control this device, we need to step the platen, step the head position,
and specify the right combination of seven dots. In addition, we should
monitor the head position so that it does not print off the paper.

114

READ A TAPE

TURN ON MOTOR

-

STOP YES

ERROR
{NO TAPE)

(NO TAPE IN
REACTOR)

WAIT FOR

FEEDHOLE?

READ IN DATA, STORE

IN TABLE IN MEMORY

NQ

432 Reader Flowchart

STOP (OK)
—_— ~
ALRRALARVTIVARRIRRARRRRNRARY

H
RIGHT AND LEET LIMIT SWITCI €S WEAD POSITION

{HEAD AT END OF PAPER) SCREW SHAFT

4-33 "Line Printer Diagram
INTERFACING THE PERIPHERALS 115

To move the head and platen, stepping motors will be used. These
motors can move by a small amount, each time they are pulsed. Some are
accurate to over 1000 steps per rotation. The ones used here will have 32
steps for the head-motor, and 32 steps for the platen-motor.

Each character printed will be on a 7 x 9 dot-matrix. The head will step
once to put it at the next character position. The print wires will print the
top dots of the character. Then the platen will step once. The head wires
will print again. The process will repeat until the character is finished. When
a character has been printed, the head will position itself for the next
character.

<——— 7 IRON ALLOY WIRES

. 7 solenoids

PRINT HEAD
\\\ \Y \\ \\ \\\\ ” PRINT HEAD POSITION
\ SCREW SHAFT
Print Head Detail

But wait—the platen is no longer at the top of the character. To prevent
unnecessary stepping, the whole row of the tops of characters will be
printed before advancing. The same will be true for each row of dots.
Because of this, we will need to buffer a complete line before starting to
print.

Now, complete 7 by 9 characters may be typed 32 per line. In addition,
pseudo-graphics may be added by using only the top row as dots and using
the full range of platen steps. Fig. 4-34 illustrates the flowchart for the
printer interface.

The program will advance to the new line starting position after checking
if enough data is present to print. The program will then print dot row by dot
row each character on the line.

One important hardware consideration for this printer is that the print
wire solenoid will be damaged if left on too long. If our control program
were to ‘‘crash”, or any hardware were to malfunction, the print solenoids

116

PRINT A LINE

RETURN, BUFFER EMPTY

STEP HEAD TO

LEFT MARGIN

FIND BEGINNING
OF NEW LINE

STEP PLATTEN 10
STEPS UP
(1 CHARACTER/
LINE)

ISET CHARACTER
PRINTER TO
FIRST CHARACTER

INITIATIVE
POINTERS

SET ROW COUNT
TO
FIRST ROW

4.34A Line Printer Flowchart

may be damaged. To prevent this, special charge dump drivers are used to
trigger the solenoids. This is illustrated for one solenoid on Fig. 4-35.

When the transistor conducts, the energy stored in the capacitor will be
used to fire the solenoid and drive the print wire against the ribbon. If the
input remains on for too long, the current is limited by the charging resistor.

When the transistor stops conducting, the capacitor will charge through
the charging resistor so that the circuit will be ready for the next pulse to
fire.

INTERFACING THE PERIPHERALS 117

©

PRINT DATA
FOR ROW AND
CHARACTER
POINTED TO

INCREMENT

CHARACTER
COUNT

LAST
CHARACTER?

DONE WITH
LINE

4-35

INCREMENT ROW
COUNT AND SET
CHARACTER COUNT
BACK TO THE FIRST

4.34B

Line Printer Flowchart, Continued
+24 VOLTS

CHARGING RESISTOR

SOLINOID

Change Dump Solenoid Driver

118

TT.
INPUT

=l

CAPACITOR

NdRn

€ uQ I0jop
AA asuag pae)
¢ ASUIG SIANY
HNINOILLIANOD
LAA((
e)ep avad
t——
feuIas
TVNDIS

Stripe Reader

4-36

INTERFACING THE PERIPHERALS

aavd

119

The diode across the solenoid protects the transistor and capacitor from
the inductive voltage spike caused by the collapse of the magnetic field in
the solenoid, when it is shut-off.

This type of printer is most common in the new point-of-sale terminals.
It is inexpensive, has few moving parts and the interface can be done mostly
with software routines.

MAGNETIC-STRIPE-CREDIT-CARD CARD-READER

One of the latest developments in the technology has been the use of

encoded stripes on the backs of charge or bank-cards to carry information
- about the bearer’s account. Described here is an interface for just such a
stripe reader. Fig. 4-36 shows the block diagram of the interface.

The program will control the decoding of the information on the stripe
and the movement of the card in the reader. In normal operation, the card
will be sensed at the pressure roller, the drive will be turned on, and the
card will be read. If the data is bad or represents a forgery, the card will be
‘“‘eaten’’ by the reader. If valid, the card will be returned.

We will assume that the card has been recorded in F2F coding,
(““frequency-double frequency’’), where each *‘1’’ bit is two transitions,
and each “‘0”’ bit is one transition, per bit cell. Thus, the data off the head
may appear as in Fig. 4-37, second trace down.

DIGITAL

DATA
PLAYBACK

HEAD SOmy
ONCR. L

4-37 Recorded Data

In order to use this signal, it must be conditioned. An analog pulse
amplifier-detector will produce an output like the one in Fig. 4-38. The
software, through timing loops, may then decode the waveform, back into
serial bits, and then into characters. In order to insure proper data, and
security, data should be written three times in a scrambled form, with
various parity checks and heading, and trailing blocks of ones or zeroes.

120

If it is necessary to write on the card, it can be read while going in and
written while being returned. One must have a special software routine to
reverse the sense of the data so that it can be read again upon reentry.

The control necessary will be three inputs: card-in sense, serial-data
read, end-of-card sense (reverse motor to return); and two outputs: motor-
on (automatically will reverse, unless turned-off), and serial-data-to-be-
written. Thus, one half of a 6820 PIA or 8255 PPI will be sufficient input-
out hardware! :

THE KIM CASSETTE INTERFACE

In order to save programs and reload them when needed, some form of
long-term storage is necessary. The inexpensive portable cassette tape-
recorder can be used without modification to store and load digital informa-
tion. The interface required is simple to build, and easy to program. De-
scribed here is the KIM-I® interface to a cassette-recorder.

The format for transmission will need to convert the binary information
in memory into a serial stream of bits that can be recorded on the tape. The
logic conditions will be represented by the combination of two tones: 3700
hertz and 2400 hertz. The signals for a *“1’” or a *‘0’" are illustrated on Fig.
4-39.

1 BIT TIME

9 PULSES l 9 PULSES | 6 PULSES
LOGIC

_ I I °

|<—9 PULSES —+— 6 PULSES —+— 6 Puu.ses——|

LOGIC
| | —
. o]
}e I BIT »|
4-39 Bit Format for KIM-I Cassette
Two Tone Combination Recording

®MOS Technology Registered Trademark.

INTERFACING THE PERIPHERALS 121

The program will generate these tones by counting loops that will gener-
ate either tone. This will use one output bit from the programmable inter-
face and ROM-chip on the board. This output bit will be buffered and
filtered to conform to the input specifications of most tape recorders.

When a tone is sensed, the phase lock loop circuit on the board will
differentiate between a 3700 hertz or 2400 hertz tone. By timing the duration

of the tones, the data bits may be decoded. Fig. 4-40 is the complete tape

recorder interface schematic.
vece

conl AUDIO OUT (LO)
: AUDIO OUT (HI)
+12 V.

.||__)|.__<.

AUDIO
IN

+N V.

1
-~
vee
<>
LMS56S :;

4-40 Tape Interface Schematic
122

Note that different means of modulation exist that will result in higher
densities. Because all timing for transmit and receive is done in software,
different timing schemes may be implemented. However, the method de-
scribed here is the most reliable, as the tape-recorders are not well suited to
any higher density recording, due to wow and flutter problems. A high
quality tape-deck may be used at higher densities if necessary.

The software breaks each byte of data into two 4-bit nibbles. Each nibble
is then converted to a seven-bit ASCII character, plus parity. Two such
ASCII characters now represent the original data byte. In order that the
recorded block of data be identified, a header and trailer are added. The
format appears on Fig. 4-41.

4 ¢ £ ¢
rr 7

é I-- 100 " “”’l“gh‘ncl Ls]"5 ‘ @ DATA, B> |st1°'“|°'<”| 04"104,‘1 2%
24 = f F—

l,: I RECORD =|.

441 Tape Data Format

The long block of one hundred 16 hexadecimal bytes allows the software
to synchronize to the data rate and find the first bit of each byte without any
other timing information. Following the sync characters, come the start-of-
record character, and record-number bytes. After that, the starting address
of the data-block, and the block itself are written. At the end, a ‘“2F”’
hexadecimal is written, as well as two check-characters. After that, two
‘04>’ hexadecimal are written, to indicate the end of the block.

This format is typical of many block-synchronous transmission schemes
used. Other examples are the floppy-disk, magnetic-stripe card-reader, and
inter-machine communications links (see Chapter 6 for the latter).

SC/MP Cassette Interface

Peripheral decoding is illustrated on Fig. 4-41.1, and the interface cir-
cuit on 441.2. Memory address decoding appears on Fig. 441.3. Finally,
the message format is illustrated on 4-41.4. The message format starts
with a leader containing 128 bytes of 0’s. It is followed by a single byte
identification word containing hexadecimal “85”. It is then followed by
the user-defined addesses entered in 16-bit locations. They are the starting
addess of the program being stored, the entry-point address, and the
length. The program itself follows, and is terminated by a one byte
check-sum. The actual routines used for this interface are presented in
Figs.4.41.5.

INTERFACING THE PERIPHERALS 123

P
WyY Wod
Wy o EY
A “ 2N\ ,
A. viva L
¥IQ0IY L — v
31135SV) wou
9 S
.w:mzH m_._mu:._.n__._.z_.wuoz ¥aav W
ANIW I 1 (]
] SYOLVITANT 440 HOMV3S zmﬁouuﬁ
T i aan “— oW S
ol e}
orany o1any ST | #0103 | coqngy W3LSAS
HO¥Y3S/103 NO 103 |
ENLELEIL]) ¥ dW/3s
INdNT L1910 L33T3S. NHOWIW T
4 ISN3S

Overall SC/MP Interface

124

YOLVIIQNI

00k W

RITER
| ¥OlVD1QNI
a4 an

00h/ Wa

O 103

SC/MP Peripheral Decoding

125

INTERFACING THE PERIPHERALS

YAQODIA WO¥d
LOINT TYLIDIA

?ZH ISNIS NdD O 1¥N08T) NOTSEEANOD TVLIHIA OL OIaNW!

B 2096WaS/T

J4dogt

!
!
H 1
1 — —
¢
y ! |
s+ b |
1 1
9 |
NS t | |
: ' |
= afro: 1 !
T |
. !
'y 1
i . |
'y !
'y T 1
! | 0T T .~ !
! I04LN0 |
) 1 /\/\ hd HOLINOW 2
! ALLASSYO X
! WOMd NI OIany H \
_“ I
| 1 !
| N |
I |
! |

I0ANI ENOH SWYO00T
LoudIn_ aLIasSyo
I 1IN0 oTany

L 0L 100 oT@NY. _ _ _ e L L o S |

SC/MP Interface Circuit

126

80T-h LINOHI) IWREINI
0L EUESR 35T VIV 30 0D |

A wm@i M

._mwzuz

viva

£TT8Wa

84T
133138

SOWN

LINT] |hisic

9
AR 6
TT g7 S
BT 0¥ | (S
hT 69 ¥aQv | \aisis
ST gg yaqy = WOd

o)

0008.X
30023d

401vYvdWo)

Tem8

uu>

[¥a]

snd
SS3yaav
W3LSAS
WoY4

127

Memory Address Decoding

INTERFACING THE PERIPHERALS

sTARTING | enTAY | LengTH
eaoeR | ioentirication] aooress | poinT OF {1 PROGRAM | CHECKSUM
128 BYTES OF WORD of | aooréss | rrocram
s X'AS PROGRAM | (x'820C) | (x'8208)
(x'8203) | (x'8200) § (x'8208)
{x'8208)
A 8 BITS
8 HITS 16 BITS EACH
GENERATED USER ENTERS HIS

BY BLOCK TRANSFER
ROUTINE

128

Message Format

ADDRESSES IN THESE
6 SPECIFIC LOCATIONS

YALNIOd 440 QAT HOHVES
YAINIOd NO QT HOUVES
YALNIOd 440 QdT FTVIL 40 ANI
YAINIOd NO JdT dJVL 40 dNI

(9EM0T) SSHUQAQY YAASNVIL
(¥4ddn) SSTHAaY HIJASNVYL
(9IMOT) INNOD QYOM

(43ddn) INNOD QqHOM
SNOILYOO0T JOVHOLS A¥VHOWIL
SNOILYJ0T HDOVYOLS RYVHOJWAL
SNOILVDOT FOVHOLS IUVHOIWAL
SNOILVYDOT HOVHOLS AYVHOIWNHL
HAINAOD LI

(¥EMOT) SSTYAAY ONIIMVILS
(43ddn) SSHUAQV DNIIYVIS

: YEINNOD WAS MOHHD
YQYET Y04 YALNNOD AAISLAO
HEAVIT H0d ¥AINNOD HAISNI

[# YIINIOL
Z# HEINIOd
C# 9HINIOd

LNIOd ¥0d SSHYAQY TVIIHII¥Ad
YALNIOd HOd SSHYATAV WVY

 SANILNOY dN/0S

_QHNM
nnn

B Y S LT S L IR RY
LU T I 1} wononou

SRR S 3

|- N Mg N\ - O\

LR ey

JOYHDS
NOHDYS
J40L0d

NOLOH

SAA00 YAQYO TVHAHATYAd ¢

TIL
ndune
TINOAM
AINDAM
HAWEL,
€ dNEL
ZIWAL
TIWIL
INOIIE
TINVIS
AINYIS
WSO
TIND
NIND

VIVA XYVHO4WHIL ¢

d
cd
€d

HAT¥Ed
WV

€000
2pgp
hep
pape

apgp
ogeg
apep
vepg
6999
el lo]1)
Logy
90gp
]
ngee
X 001)
2peg
0ep
o)

909
cpeg
EPPP

gpeS
pocg

poee

129

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS

AN M INO -0 O

T HO¥YVES NO N¥AL

€d NI

YILNIOd TVHHHIIHHd I0d
JHILNNOD WNSMDEHD HZITVILINI
HOLVTINNNODY ¥VHTIO

2d NI
YAINIOd WYY IZITVILINI
#9998 .X 0L NOIILVOOTAM HOd

TR AT

(£d)NOHOYUS
€d
(HdT¥Ed)H
€d
(HATYAd)T
(2d) KNS
¢

2d

(WV¥)H

2d

(Wve)T

NVYD0Hd ¥3sN OL qEEYHIASNVEL NHHIL SI TOYINOD

TIVINOD SWNSMDFHO 41 NO QT HOHVES
ALATJINOD NOILJEDEY NHHM NO QdT (IOH) IAVI 40 dNF
QHATHOTY ¥YALOVYVHD MHIJILNAAI NAIHM 440 QHT HOUVES
SLYVILS WVED0dd NMHM NO Q1 HOMVAS

TLood

an s en en

*SYOIVOIANTI QAT 40 NOIIVYAJO ININI ¢

*¥AQYOT NO-MIMO4 ¥ SY NOILONNI ¢

OL ¢P@@ X SSHYAQY Ol CITIWESSYEY Id AVW WVYO0Md SIHL ¢

*HdVL NO SI ONIQVOT ¥OJd NOILVWHMOINI AUVSSHDEN TIV ¢
*UNILNOY ¥IAVOT dvMISLOod ¢

‘HAVEL WOMd WVHD0Md SHEATHDIY

OVId ELIUM/AVI™

<

+JEAVOT dVYLSLOOE: dDVd

DVIL

npee

198
P18
a¢pg
aggs
appg
60090
Logg
9gee
heep
Eppe
099
pogp

L9
99
S9
9
€9
g9
9
09
65
8¢

LS

99
44
19
€5
2s
TS
0$
6%
8%
Ln
m
sn
i
e
2
™
o
6¢
ge

LE
9¢
43

SC/MP CASSETTE PROGRAM

130

WASHDEHD OL ¥dLOVHVHO adv
HAINIOd INIWIHONI ANV HHOLS
HAIZOH OL OD

(¥3ddn) INNOD QUOM IID

(¥IMOT) INNOD QUOM IdD

‘WYY NI HAVS
ANV SSETHAAY JIASNVEL LHD

(¥dddn) SSEYAAV HNIINVLIS LED
€4 NI HOV'Id ANV
(¥IM0T) SSTHAAY DNILYVLIS LID

1d NI

AIZDTY LA A0 SSAHAAY FOVId
a1 HO¥VIS 440 NMNL

*LIg IXAN 13D dSTd ‘Wv¥Do¥d
JO ISEY VLI ‘TIAIEOTY QI JI
YALOVEVHD QI ¥AJOMd HOd MOEHO

INANT Y04 LIGLdD OL 09

1d NI

LI9 I¥D J0 SSHHAAY dOVIid
JALSIDIY d ¥VETD
HOLVIAWNODV ¥VIID

d¥T IdVL 40 QNF 440 NUAL

P Y LI T

PR T T PPN

2d) WNSHO
(2d)WNSHD
(ed)18
d

(2d)NINDaM
Td
(2d)TINDQM

(ADHY)H

d
T-(ADTH)T
(€d)JOHOHS
arno1
INATIS
SV X

Td

d
LIGLED)H

d
T-(LI9139)1

(H4T¥Ed)T
(€d) 44010

*NIZOOd

SLNdILES

*qI001

2Py
gped
P40

ac

V@vo
g@vD
o[/ 4]

apvo
3
LE
ae
€e

93
ggHd
TE
aotd
£@d0
g4p6
2pg6
SyHE
on
ac
23
g@gno
€
Ciekifol
¢
ggnd
Tpa0

Enge
Tr¢8
JEPY
aeps

oEPR
aepg
6e0g
8EP8
9edg
Segg
€cpg
2EP8
TEPQ
pePg
4208
q2Pg
azpg
g2¢g
ve@g
820g
92¢p
hepg
228
gede
ATg8
aTPg
atgg
a1gg
vVige
8108
L1gg
S1p8
€108

10T
00T
66
96
16
96
4
"6
€6
26
16
06
68
88
g
98
58
w8

<8
18
0g
6L
8L
LL
9L
Sl
il
€L
2l
19
oL
69
89

SC/MP CASSETTE PROGRAM

131

INTERFACING THE PERIPHERALS

‘Td NI ¢ 1d TVdX
IIGLED J0 SSIYAAY IIVIL ¢ T-0LIgLdD)T Iq1 $ADEY

*MOIVIOWNOOV ¢
OILNT ¥EIOVHVHO IIS-g ENO SEATAOXY ‘INTINOS FATEOEH ¢

TLOOAXF ¢ €d 0ddx
HOLId ¥04 HAINIOL INTWIHOAd ¢ (€d)T-8 a1
€d HYdX
(ed)ndawne a1
€d TVaX
SSTYAAY YAJSNVMIL qQVOT ¢ (2d)dannre a1
QT HOVYES NO NMNL ¢ (€d) NOHOYS Is
Qa1 IJVL 40 QNI NO NMNL ¢ (€d) NOTOE IS
€d HV3X
(H4I¥dd)H Ia1
€d TVIX

(HdTHEd)T IQT :9d0ax™
“LIVH QNV HOM¥d WNSMOHHD ¢ ITVH
GLYDIANI O @dT IOF NO N¥AL ¢ €d)NOIOZ IS
€d HVJX
(HAT¥Ed)H Iq1
€d TVdX

€

RVYO08d QEQVOT FLNOAXH ¢ Ammmwwmmm Hmw
INTVA QIALVINOTVD O FUVAWOD ¢ (2d)Wnsyo 40X
HJVL WOMd WASNDIHD Lad ¢ d 0ddx
NOISSIWSNVYL 40 QNI ¥OJ MOHHD ¢ NILOOE ZNP
YAINNOD QUOM ¥HAJdN INIWAHONI ¢ (2d)nINoam a1
0¥dZ 04 MOFHD ¢ NILOOH ZNP
YAINNOD QUOM HAMOT INAWAMONI ¢ (2d)TINoaM a1z

1€
4870

pLgg
29¢9

ases
2908
v9P8
8908
Logg
S99
€908
9¢8
poee
asp8
asge
508

vS@g
8509
L4¢g
Ssdg
ns@g
24P
#sPQ
Ineg
angg
angg
6408
Lhgg
Sneg

GET
neET
€ET
2T
€T
0ET
621
82T
k4
921
Gat
2T
A
22T
12T
021
6TT
81T
LTT
91T
STT
7TT
€TT
21T
11T
0TT
60T
80T
LOT
90T
0T
70T
€0T
20T

SC/MP CASSETTE PROGRAM

132

QIATHOTY II9 ‘OHIZ AI
SV

YOLVIAWNOOV OL SAIVLS Xd0D
YILSIOEY ¥ LJIHS

€d J0 SINIINOD TYNIDI¥O HAVS

€d NI SSTYAAV TVYEHII¥Ad IIVId

HILSIOHY & OLNI

NEOLAY
HOLVINWNDDY NI ¥EIOVHVHD HDV'Id

* SLNELNOD
TYNIDINO OL Td HUOLSHY

0NIZ H04 MDHHD
INNOD IIE INIWHYDIQ
II613D O 09
¥HISTOEE ¥ YVHIO
HOLVIAWNDOY HVATD

INNOD LI LIS

Td J0 SINAINOD LNIHMND HAVS

PR et e

iy

LI9 T SYAIZOEY

LY

n en o .

s

30010
pe X

(2d)Ednal,
€d
(HATI¥Ad)H
(2d) HdWEL
€d
(HATY¥ZA)T

AOTY
Td

1d

(2d) TdWEL
T4
(2d)edndL
d001
SNYIEY
(2d)INDLIE
d

[
(2d)INdLIg
8
(2d) TdNEL
Td
(II91ED)H
(2d)eanaL

r
INV
A
0Is

LS

HVdX
a1

LS

TVaIX
Ia1

dne
0ddX
qa7
HVdX
a1
TVdX
a1
dure
ir
a1a
0ddX
qvx
IaT
&S
a1
IS
HVdX
Ia1
&S

$VSHD

*LILED

*ENIINOY &IF IED ¢

P CNELAY

+d00T

2086
Pend
99
6T
8ovd
Le
€810
68vD

geno

aapge
ac
P
49
9peo

Lped
6496
2pg6
Spve

ac

24
pono
SPvo
8840
9¢v0

43
geno
LpvD

F698
0699
9608
V688
868
L6¢g
G608
€609
2608
p6p8

888
ages
08¢
2803
6898
8808
9808
sl
288
peps
JLg8
ILgg
oLgg
v.gg
81dg
9Lgg
SLgg
€L9g
TLOg

69T
891
L9t
99T
91
"9t
€91
29T
19T
09T
65T
QST
L6t
96T
(143
#ST
€61
2sT
6T
0$T
64T
gHT
Lnt
T
SHT
T
enT
ent
™t
ontT
6£T
geT
LET
9€T

SC/MP CASSETTE PROGRAM

133

INTERFACING THE PERIPHERALS

LIETINOD ¥AQVATT NEHM NO QT HOMVES

‘SHOLVOIANI Q&1 40 NOILVYELO Indrno ¢

“HAQVAT SV IOV ANV MOVE AVId NO TILLIS O VI ¢
¥04 MOTIV OL (P@PT Inogy) ,@, 40 SANODIS % aNds ¢

1+ SENTLOOY HLI¥YM VIV,

NN

¢d HYOLSHY

LISEY SI HOLVTI 4I MDFHD
ASVH

JOLVINWADOY O SNLVLS X400
HOIVT LHSEY

HILSIDHEY H NI JAVS
HZLOVYVHO OL &II9 ,T, 4av

uwTu V SI II9 NEHI ‘O¥IZ JI
ASVH

HOLVINWNDOY 0L SALVIS Xd0D
MOQNIM J0 TICQIW ISVd AVIEA
AVIEd ¥0d HOIVINAADOY IINI
HOIVI IISTEY

(EWIL 118 #/T) SK T AVIEd
AVIEQ ¥0d ¥OLVINWNDOY UVATD
*NIVDY MDEHD

D R L T A Py L)

LI9LID
d
€d

(ed)EanEL
. €d
(2d Y ndWaL
LASTY
g2.x

(€d)ovid
08X
LISTY

gNO
ge.x

qIVd

dnr
0ddX

al
TVaX
a1
r
INY
vso
&S

LENMLEY

s LASHH

{ENO

300710

Sofg

£098
008
popg
Hapg
ogpg
Yagg
0
Lagg
940g
wapg
€dapg
Tagg
avpg
avpe
ovpg

gveg
oveg
hvpg
cveg
pvee

c0e
T02
002
66T
86T
L6t
961
S61

761
€61
261
61
06T
691
881
181
981
S8t
"8t
€8T
28T
9T

6LT
8Lt
LT
9LT
elt
LIAd
€LT
elt
Ut
0LT

SC/MP CASSETTE PROGRAM

134

Qa7 HOMVES NO NYAL

O¥HZ NVHI SSEI H0J4 MOEHO
OYEZ HOJA MOEHD

YAINNOD HANNT LNIWI¥DEd
ANIL II9 T XVIEd
JOLVINWNDOY ¥YViETD

DVIJ HII¥M dSTNd

JAINNOD HANNI LIS
HIINAOD YALNO LES

a1 AJVI 40 ANE 440 NEOL
Qa7 HOMVES 440 NYNL

Q@] VI J0 ANI 440 NMEAL
Q1 HOYVES 440 NYNL

INNOD HHAMOT A0 dWOD S, T WHOL

OVId ANIT/REEYD ¥VEIO
YOLVINWNDOY ¥VATIO

‘€d NI
SSEYAAY TVYHEHdI¥Ed HOVId
(4gddan)

(9EMOT)
2d NI YAINIOd WVY EOVId

FESRT T

o oen

an en

o

o

e on

LT IRY N

LRI Y

LYY

(€£d) NOHDHS
TLND
(2d)1IND
SLND

kf

[
(£d)ovid
(2d)nIND
#38.X
(2d)TIND

8
(€d)d40L0F
(€d) ACHDES
(2d)nLNdam
(2d)NINOIM
¢

(2d) TLNDAM
(2d)T1INOaM

[}

€d
(HAT¥HEd)H
€4
(HAT¥Hd)T
2d

(WYd)E

2d

(Wvg)1

LS
dr
a1d
ZNe
a1a
Ia1
hAS]
LS
Ia1

Ia1

IaT

HLTTANOD NOISSIWSNVYL NIHM NO QAT HJVI 40 QNI
HIATINOD NOISSIWSNVYL NIHM 440 QIT HOYVES

$SLND

$TIND

$HATANS

+dWOD

*LINI

e on

vapg
8408
9408
hdpg
2498
papg
TIPQ
oapg
vaps
8408
9apg
nagg
zagy
pags
qapg
oapg
vagg
8aps
9apg
sagg
€ags
2apg
page
4008
aopg
00¢g
vops
6008
Logg

9€e
cee
wee
gee
2te
€2
ote
622
gce
Lez
9ce
¢ee
fee
€ece
éce
Tee
0ce
612
gTe
Lte
912
STe
W12
£TC
cete
Tt
0Te
602
g0
Loz
902
S0¢
®0e
€0c

SC/MP CASSETTE PROGRAM

135

INTERFACING THE PERIPHERALS

HIDNIT 1ID

SSHUAAV HHASNVEL LAD

HdVI OLNO ILIYM

SSEYAQAY ONIIMVIS LID
EdVL NO I ILTUM

QI HIIM HOLVINWNODY QVOT

Td NI EIT¥M 40 SSEYAAY FOVId
HELNNOD WNSHOFEHD HZITVILINI
HOLVIANNDIY ¥VETD

D Y L)

1d
(2d)AINOaM

Id
(2d)1IN0aM

(2d)nI8vIs
d
(2d)1I4vis

ITT 310019

SSTYAQV HEASNVHL 40 SLIE @ HEMOT —— apeg.X

(INIOd X¥INE) SSTNAAY FMASNVHIL 40 SIIS g ddddn -- 0@eg X
HLONAT WV¥DOMd J0 SLIE @ MAMOT -~ €@eg,X

HLONHT WVYDOMd 40 SIIE @ HAddN -- Vpeg.X

SSHYAAV WY¥DOHd J0 SIIE § HAMOT -- hgeg.X

SSEYAQAY WYHDOMd 40 SLIE ¢ ¥Addn -- £42g.X

‘RVHDOYd ALTYM FHI ONITNDIXT

Y0439 gIsn X4 CEAAVOT 34 LSAW SESSTYAAY ONIMOTTIOL THI

HLLASSYD OL VIVA 40 ¥DOTE SANFS

*ENILNOY YIASNVYI D014

LT Ry IR IET SR SN

ac
vY@eo

aped
Jo 110
ageo
€@20
wPed
SYHD

1€
o

49
810

PV
o110

41718
VITg
8118
LTTg
§TT8
nItg
2118
TTT8
IpTg
p1e
P18
4pTg
60T
8018
9918
SPTg
EgTg
eP1g
a4gg
04pg

0L2
692
892
192
992
s92
w92
€92
292
92
092
652
852
Ls2
9%2
44
wse
€62
252
152
0se
6ne
gne
ne
k(7
She
e
£€ne
ene
™He
one
6ee
g€e
Lez

SC/MP CASSETTE PROGRAM

136

INNOD LI LIS
YELSINEY & NI HELOVYVHD HAVS

FIYL NO YALOVYVHD II€-g T SHLIHM

QIHSINIA NIHM LIVH
¥l VL 40 QNI NO NHNL
Qa7 HO¥VES 440 NYNL

HAVI OL WASMOHTHD QNES

0¥dZ ¥04 MOEHO
JAINNOD QUOM LNEWIHONT
YILOVYVHO (NES
*D0V NI MIALOVYVHO HOVId

WASMDHHD dIvadn

*Td 40 SINZINOD INSNYND JAVS
ANy ZII¥M 40 SSHHQAV LID
*YILSIOTY & NI FAVS QNV HIINIOL
HONOYHL HEIOVYVHD IdD

1d NI SSTYAAY LNHREOD HOVId.

<
(3

LAY A R

.
[
<
3

(2d)LNOLIE
8

(£4)NOLIO
(E4)JOHOHS
14
(2d)WASHD
LAGLED
(2d)AINOQM
IXL1TD
(2d) TINOQM
1d

(ed)WnNsid
(2d)WNSAD

(2d)niuvis
d
(EILTYM)H
(2d)1I9vLS
d
T-(ILIUM)T

(1d) 1@

d
(2d)NIUVIS
15

(e2d)1IdvLs

LS
Ia1

IIVH
i)

Spvo
gpHo
:ILTHM TP

*@NILNOY ELI¥M VIVA ¢

(IXEIED K@D

8118
oMT8
I8

I8
enTg
pnTs
4T
acTe
gE1g
6518
LETR
GETR
neTg
£ETR
€18
A21Q
qzTg8
0218
4219
6218
L21g
9218
nets
€218
1218
ge1s
aTTg
attg
atig

70€
co¢
20¢
TOE
00€
662
862
L62
962
G62
762
€62
e62
62
062
6ge
88¢
lge
98¢
age
nge
£ge
2ge
182
082
6L2
gL
Lle
9le
sle
wle
€Le
ele
Tle

SC/MP CASSETTE PROGRAM

137

INTERFACING THE PERIPHERALS

(

ggeg- Wvd
cppp 2d
418 SV
og¢p adawar
4118 1X9I9D
9S@g ¥IDEXH
» €agg dWOD
oage SLND
2999 WasMo
gpge zoo0d
MNLIY

LIg LXAN dNFES

O¥HEZ ¥0d MOFHD
YEINNOD II9 INEWIYOEQ
HHLSIDIY H IJIHS

MOQNIM 40 QNI OL XV'IEQ
AVTIEQ ¥04 “ODV ¥VIID
OVI1d ELITYM dSINg

MOQNIM 40 ATAAIN OL AVIZQ
OVI4 ELI¥M FSINg

SW %) EWIL II9 T AVIEQ
OVId HLIYM ESTING

AVIId Y04 YOLVINWADOY YVETID
wLly ¥0 @, IIS 4T MOTHD

JASYHW

Y PP ST

..

0 enem o

I T IRY WP PN

@#PEQ HATHEd
9090 d
ILpg doo1
ageg TaRne
g6gg LIdIED
pgdg NozoOd
@999 nIND
8EpPg TIND
608 VD

» 0dgg o014
zoog ang
FLTYM dHe
d oddx

JASYW e
TNMLTY Ay
(2d)INOLIg aa
0Is

2 11a

) a1
(€d)oV1d Is
2 x1a
(€d)DVId Is
[Ia1

IJTIHS e

L X1
(€d)oVId Is
¢ IT1

TANIS ZNe

T NV

@I

$TNULEY

‘LATHS

* TANES

‘gaNds

$ISYVH

epgp
€qpg
a1
Logg
hopp
Tpgp
TPep
cves
qePg
sppe

90¢Q
8ag6
ac

gaP6
2pg6
Sgve

6T

2pdg
PoHo
hgdo
epag
neao
g4
0996
©gdg
wpdao
ppno
8@06
ha

ph

€d

HNO

arno1
LINI
DVId
J40L0F
TIND
J00TO
NIzOOd
INOLIS
92E

G2€

9918 #et
Y918 €2
9918 22¢
9918 Tet
w919 02€
€918 6TE
gTE

918 LTE
dS1g 9T1¢
astg <1e
g5TQ HIE
65T ETE
L6Tg 2t
GeTg TIE
€618 OT€
618 60€
InTg Qo€
anTg LoE
gnTg 90¢
YHIg SOE

SC/MP CASSETTE PROGRAM

138

SHTg
6009
9999
zppe
€918
» 1618
Vo918

ALTHM
HIAEL
TdWAL

NOHOYS
IATHS
ganas

TNUIZY

vpee
8909
£Ppg
£ppg
92p8
» 24P8
Lage

FACP - XTH JOIDIS LNANI TYNIL
DDEP - XTH ¥OLOIS LNJNI ISYIL
/690=NNSADTHO FOUNOS

SANIT ¥O¥dd ON

NILNDAM

€INAL
NIYVLS
J0HOY¥S
INJLES
ENGLAY

LIsHY

9099
Lgpp
wpoe
* hAPQ
Le18
9898
aops

TINDOAM
SdNHEL
TILYVLS
HaTANS
TANES
SNYLEY
ADEY

SC/MP CASSETTE PROGRAM

139

INTERFACING THE PERIPHERALS

ONE CHIP DIGITAL CASSETTE CONTROLLER

The NEC UPD371D provides in a single chip most of the functions
required for interfacing a digital cassette-transport. It uses the ISO format
and performs:

— Parallel-to-serial and serial-to-parallel data-conversion (functions
normally accomplished by a UART)

— Error-detection, including CRC (CRC will be explained in the disk
section)

— Data-encoding two-phase encoding format

— It can control up to two cassette-transports with read/write or rewind
on one unit, or simultaneous rewind. It interfaces directly to the
8080A. The structure of the system is illustrated on -41.6, and its
interface to the 8080 appears on 4-41.7.

T [
0ATA_Bus . P
" § e MARKER 40,9 casserTe
TAANSPORT
REGISTER SELECT 3
FoRwARD T e
INPUT/QUTPYT SELECT 108 A T wAne gnaie e I
xaitd pars L
AEAD DATA (POSITIVEL £
a_READ DAT
ner Ee— ¢
¢ b LT T
¢ P SELECT s ROY o
5 1 iatl TECT. ”
So€ |a_SI0E_ cAsSETTE
1 TRANSPORT
. ~ INTERRUPT AEQUEST =
cry T - L)
m o3t
H “ v M T ot
H o [REWRD MO 1 it
B 0.(L — MK g MARKER WO 1
€
st o1}_0ATA BT Timng
o
e, Sl e
toGfe—lBOOLTECT GENERATOR
00 e—RROP QUT
oveariow wep [¥RITE CLOCN PUE]

Fig. 4416 NEC UPD37ID Cassette Interface

140

CASSETTE TRANSFORT UNIT
srosT!

de
ras ray
3 i WRITE PEAMIT
- N -t FI(AD PERMIT
sar7esl 7 Do oama
o 8 g % No
v €cr
——t 0y b
Vo
v N o 5vml—lj Cleor
—— T <}
- ~ NIt o
7 vty
10 cru - " oata
WiiRace] Tpme-ow .
—d L I oane s
—{150 ” " 1) B4
o] 1 | 1= € provect
rer b il T i AESET
P T -
——or ' ' | i
Taszse ! I © CASSETTE TRanseORT umT
: R
a2 144 I v‘ ' PR R]
: ! - RS wRITE PramT
O “ean prawT

WRITL oaTA
HEv/5TOP
w075 TOR

LN
|

e L e (urAu CATA &

a1z a2y

: - Y duap ams
. - :
L B — e, . iy i
—dzeus! = 2] : o i
B 3 [N U400 S 4 - dswe emoricr
v nesET
& <

3 reser
o2y o3y -sv anp (TO CPUINTERTACE)

Fig.4-41.7 8080 Interfaced with UPD371D

INTERFACING THE PERIPHERALS 141

CRT DISPLAY INTERFACE

A number of CRT’s displays have been created, to be used specifically
as computer terminals. In the microprocessor world, the cost of peripherals
is of critical importance. Therefore, the most-often-used CRT-device, in
the case of microprocessor systems, is the home television-set. Higher
quality CRT-displays are used in the case of development systems, in order
to permit the user to display more characters, more lines, or more dots per
character. In addition, full graphics capability exists on specialized and
expensive displays. We will concentrate here on the direct interface to a
television-type display.

TRANSFORMER T

COUPLER SOUND TRAP

2v FILTER
; VIDEO REMOVES . VIDEO
DETECTO CARRIER AMPLIFIER
PULSES 4.5 MHz
UN
1-F

SYNG sou!
SEPARATOR
v
4
SCANNING
SYNCHRO

y

&6 M U c
FILTER
AMPLIFIER

CONNECT H
HERE SYNC

SOUND

Fig. 4-42 A Television Block Diagram

The organization of a typical television appears on F ig. 4-42. The signal
is fed from the antennae into the tuner, which outputs a video i-f frequency,
at 4.5 MHz. The signal is fed into a filter-amplifier which is transformer-
coupled to the video-detector. The output of the detector is the video-signal
proper, with a 2-volt swing. It is fed to a filter, in order to remove the carrier
frequency, and then to the video-amplifier. The signal is then split three
ways. The video signal is directed to the CRT through a sound trap which
eliminates the sound-carrier frequency. The FM sound-carrier is fed to a
sound i-f amplifier (4.5 MHz) and the output is fed into the loud-speaker.

142

Finally, the sync pulses are separated from the video signal, and identified
as H (horizontal) sync, and V (vertical) sync. The H-sync and the V-sync
are used to synchronize the display on the screen.

The microprocessor system can interface to the television at two points:
it can be coupled directly to the television-set antennae—this is the RF
modulation method, or else the video signal can be fed directly at the output
of the video-detector. This is the direct video input method. The advantage
of the RF modulation method is that it does not require any connection
inside the set. The output wires of the microprocessor system are simply
connected to the antennae screws.

Besides requiring compliance with FCC regulations, the RF modulation
method has a bandwidth limitation problem. Using standard television sets,
the limit would be from 3 to 3.5 MHz. This limit could be, in fact, signifi-
cantly lower with lesser quality sets. The bandwidth of the set will severely
limit the definition on the screen as well as the total number of characters
which can be displayed.

The disadvantage of the direct video input is naturally that it requires a
connection within the television-set itself. A few sets are equipped with an
external connector for a direct video entry. This is often the case on color
television-sets in Europe, but not yet the case in the US.

In order to interface to the television-set, we will review here briefly the
principles of television operation, and then present the techniques used to
display characters on a screen.

30 Hz
OR 2625
60 Hz OR

— 512 LINES
PER FRAME.

15,750 Hz (B & W)
or 15,736 Hz (COLOR)

Fig. 443 TV Timing

INTERFACING THE PERIPHERALS 143

A raster-scan television uses a beam of electrons which is deflected
horizontally across the screen, with a varying intensity. When it reaches
one end of the screen, the beam is blanked off and it flies back to the other
side of the screen, while going down one line. This is called the
“‘horizontal-fly-back’” phase. It is illustrated on Fig. 4-43. Two types of
scan are used, called respectively the direct-scan and the interlaced-scan.
In the interlaced scheme, the screen is scanned twice. The second scanning,
or field, is made on lines between the previous ones. 262.5 lines are avail-
able in each field. An interlaced scheme therefore provides 525 lines per
frame. In the case of a TV display connected to a microprocessor, the usual
method is not to use interlace, and to use a straight single-scan of the screen
on 262 lines. The frame rate is then 60 Hz. Interlaced could be used to
provide titles or to superimpose messages or titles on a TV broadcast. Two
synchronization signals are used to synchronize the motion of the dot
across the screen: The line-sync supplies the flyback signal, and the
vertical-sync provides the vertical flyback signal to the beginning of the first
line. Some limitations are imposed, which are illustrated on Fig. 4-44. The
horizontal scan is usually longer than the screen-size. The amount by which
the dot deflects past the end of the screen is called the screen-overscan. In
addition, the message displayed on the screen is shorter than the screen
itself. This is shown as the display-time on the illustration. Whenever the
dot reaches the end of the display-time, it goes black. The time from the end
of the display-time to the line-sync is called the blank-time. (See Fig. 4-44.)

fe——— SCREEN STZE =) LINE SYNC
| ;
i flyback . - — T T
VERTICAL : [P — ~
FLYBACK |— — i

|
|

BLARK DISPLAY TIME BLANK
, T
[L)I
SCREEN SCREEN
OVERSCAN OVERSCAN

144 Fig. 4-44 TV Blank Time

l
I

— g
“l

Generating Characters

Characters are represented on the screen by a pattern of dots called a
dot-matrix. Two standard formats are used to represent characters. The
most frequently used is the 5 x 7 dot-matrix. A lesser-used system is the 7
% 9 dot-matrix. The advantage of a 7 X 9 dot-matrix is a better definition of
characters, and a more pleasing representation of lower-case letters. How-
ever, a7 X 9 dot-matrix requires the use of a high bandwidth, and, for this
reason, is much less used. A 5 X 7 dot-matrix represents each character
with 35 dots. It uses 7 rows of 5 dots, and each character is represented by a
sequence of dots and un-dots (blank dots or rather ‘‘black’ dots). The
representation of characters is illustrated on Fig. 4-45. Each scan of a TV
line will present on the screen the five dots belonging to all the characters of
the line. Then, it will present the next row of dots for these characters, and
so on. At a minimum, a 5 x 7 dot-matrix will require eight lines on the
screen, since one blank line must be used between the characters. In prac-
tice, for good visual presentation, ten lines are used, and sometimes twelve,
to present a line of characters.

6
CHARACTER . ,
ASCII]
CODE 1 ! !
Ad
ROW CHARACTER
-——’A
ADDRESS

GENERATOR
—* A2

5

ROW CODE
(LI olejoo|e® ole|®
[] o| |0 [
[] [[]
[] (L0 20 []
[[[]
[o |0 []
oloj® olejo[®|® 0|00

(5 x 7 DOT MATRIX)
Fig. 4-45 Dot - Matrix Characters

INTERFACING THE PERIPHERALS 145

Each character is represented within the microprocessor system by its
code, normally ASCII. The table of ASCII codes appears on Fig. 4-46.
This seven bit ASCII code must be converted into the dot-matrix repre-
sentation. This can be accomplished simply by a ROM look-up mechanism.
Or a specialized chip may be used, a dot-matrix character-generator. When
using the generator, the first line of dots for each successive character will
be output, then the next one, then the next one, up to the seventh one. A
simple counter is used to keep track of the row of dots being currently
output. It will be shown in the next sections how the dots are converted into
video signals that will be fed to the television-set.

8 TO8BITS

CHARACTER CODE CHARACTER VIDEO
omress” T wewor ron =) quoso

i i NEW DATA i i

CURSOR
EDITOR LOGIC

Raster Generation

In addition, the whole picture, or frame, needs to be refreshed at a 60Hz
frequency, i.e., 60 times per second to avoid flicker. This implies the neces-
sity of a refresh-memory. The timing for refreshing the screen is usually so
fast, that a standard microprocessor cannot be used. External circuits such
as a DMA, or other special circuits, must be used. The advantage of using a
DMA is that the main memory of the microprocessor system can be shared
with the screen refresh. However, it slows down the microprocessor’s op-
eration. In many cases, dedicated memory is used to refresh the screen. In
this case, there is no slowdown of the microprocessor’s operation.

Character-generators are available from most semiconductor manufac-
turers, such as Fairchild, General Instruments, Monolithic Memories,
MOS Technology, American Microsystems, Electronic Arrays, Signetics,
and Texas Instruments.

146

The number of characters that can be displayed on the screen is limited
by the bandwidth of the set being used. Assuming the use of a standard
television without modifications, a 5 x 7 dot-matrix will usually be selected,
and the popular combination is to use 10 lines of 32 characters, or up to 16
lines of 32 characters, for a total of 512 characters. A complete scan line will
require approximately 63.5 microseconds. The usable portion of the scan
line will be perhaps 43 microseconds. Displaying 32 characters in 43 micro-
seconds will leave us approximately 1.3 microseconds per character. This
leaves plenty of time for using a relatively slow memory. If we were using
80 characters per line, an access time of less than 0.5 microsecond would be
required for the memory.

LA.CH
S r=n
e } 4
> —
Lmaaes o } +—
ASC 1l — ' .
CHAR n F—
] GEN L_J
.,||F
, ' IT31111 8
SERIAL
SHIFT REG ouT
LINE SELECT
CLOCK EN

Fig. 4-46 Shift Register Serializes Characters

Converting to Serial Video

The dots coming out of the character generator must how be shifted out
into serial form, to be presented as a video signal to the television. This is
illustrated on Fig. 4-46. The character-generator provides a row output for
each character of the line. The 7-bit ASCII is presented on the left of the
character-generator on the illustration, and the three line-select lines, ap-
pearing at the bottom of the character-generator, specify which one of the 7
rows of the dot-matrix is being output on the right. The five dots corre-
sponding to the row contents are then gated into the shift-register, and are
being clocked out in serial form to the video output.

INTERFACING THE PERIPHERALS 147

Four kinds of data must be encoded into a composite video signal:
1. the dots representing the character
. the eventual blinking signal (usually for the cursor)

the cursor

e

finally the H and V Sync signals.

A simple analog switch will normally be used to form this composite
video signal and the mechanism is illustrated on Fig. 4-47.

DQTS

I

ANALOG
;—'» VIDEO

SWITCH

CURSOR

H SYNC

SRRy

V SYNC L.

Fig. 4-47 Mixing to Produce Video with Sync

Typical video interface levels are 0 to 2.0 volts, .5 to .75 for the black
level, and .15 to 2 volts for the white level. This is illustrated on Fig. 4-48.
The sync signal is referred to as the sync tip. Its duration is 4.7 us. It is
followed by the black and white dot signals encoded as a voltage swing
between .5 and 2 volts. The timing appears on Fig. 4-49. On a standard
television, white is 100% level, black is 25 to 30%, and sync is 0%. Typical
voltage swing is 2 volts. Standard television line time is 45 us.

Finally, the composite video output can be connected to the television
set either directly, at the level of video entry which has been presented, or
through an RF modulator, for connection to the television antenna. This is
illustrated on Fig. 4-50.

148

TRANSISTOR
INTERFACE TV
LEVEL LEVEL

1662 V 3v

WHITE siuln T mlm
GRAY
(OPTIONAL) 1 v
BLACK — Uy LL—\— LTMV
SYNC PV o v 1V
Fig. 4-48 Composite Video and Sync
-«—— DISPLAY ON SCREEN i
WHITE 100%
{(FLYBACK)
BLACK 25 to 30%
| |
SYNC | ! 0
1 Jus __ 18. 45.7ys !
[«—BLANKTIME USABLEDIPLAYTIME ——
LINE TIME
= 64us
Fig. 4-49 TV Timing
CHARACTER o VIDEO
GENERATOR Lagl OUTPUT) 4 TV VIDEQ ENTRY
|
|
1
|
RF
b woouLaTor > v ‘;:I)E”TRY
Fig.4-50 Video vs RF Entry

INTERFACING THE PERIPHERALS

149

MEMORY TIMING

» RAM
or
ROM
A [
—— 320r 64 > boT
COUNTER COUNTER
*+ 10or 11

Character Memory Timing Generation

Refresh Memory

For simplicity in the design, the refresh is usually performed from a
dedicated memory. However, a microprocessor system equipped with a
DMA can be directly used to refresh a screen. In this case, dual line buffers
are used during the DMA transfers between the microprocessor’s memory
and the television display. This is illustrated on Fig. 4-51. The DMA will
first fill line buffer 1. During this time, line buffer 2, which was presumed to
be full, will empty itself into the output paths, on the right of the illustration.
Typically line buffer 2 will empty itself during time 2T or more, where T is
the time necessary for the DMA to fill one of the buffers. Whenever line
buffer 2 will have finished emptying itself, line buffer 1, which was long
since full, will be switched on, and will start emptying itself through the
multiplexer. As soon as line buffer 1 is switched on, the DMA will quickly
refill line buffer 2. This dual buffering scheme guarantees continuous sys-
tem operation. The only timing requirement is that the DMA be capable of
filling one of the line buffers in less time than it takes the other to empty
itself. Clearly the DMA should do better than this. The DMA should be
capable of loading one of the line buffers much faster than the other empties
itself. Otherwise, the memory and the DMA would practically be used
exclusively for memory refresh, and no program could execute on the mi-
croprocessor itself.

150

USING A u P MEMORY REQUIRES LINE BUFFERS

MPU RAM DMA

T

Mux MUX ﬁ > ouT

LINE BUF 2

Fig. 4-51MPURequires Line Buffers
One-Chip CRT Controllers

The new one-chip CRT-controllers (CRTC’s) simplify the interfacing of
a microprocessor system to a CRT. However, despite their name, they do
not implement in a single chip all the functions required to interface to a
CRT. They are intended for raster-scan CRT, and usually require a RAM
page-buffer. This RAM page-buffer may have a size of 2K words or more
(requiring then 11 address outputs, at least). A 2K RAM is sufficient for 25
lines of 80 characters.

The CRTC provides the logic for cursor control, sync pulse generation,
and dot-row selection in an external character-generator. All present
CRT’s require an external refresh, a ROM character-generator, and the
downstream logic which has been described, including essentially the shift-
register and video output. The use of such a typical CRTC is illustrated on
Fig. 4-52.

Ke DRTA RS —>
it T
U <
CRTC REFRESH | BUFFER
&

LATCH

w —
H o—
v

CHARACTER SHIFT p VIDEO ___>
V| GENERATOR REGISTER OUTPUT

Fig. 4-52 CRT Controller Block Diagram

INTERFACING THE PERIPHERALS 151

The Motorola 6845 CRTC

The chip pinout appears on Fig. 4-53. It generates the row-count for the
character-generator, the V and H sync, the blanking signal, and a 14-bit
refresh address for the RAM buffer. In addition, it provides scrolling and
paging. Scrolling refers to the vertical shifting of lines across the screen.
Paging refers to the automatic display of the next screen-full of characters.
It is equipped with a cursor register, a light-pen register, and
does not need a line buffer.

Programmable features are:

— Dot/rasters per character

— Characters per line

— Lines per sync

— Horizontal/vertical sync position
— Cursor appearance.

RS cS E
R/W ——
RB-4 :> ROW COUNT TO CHARACTER
DCLK —— GENERATOR (ROM) .
— ———— VSYNC
RESET meepm

> HSYNC
LPSTP ——t — BLANK

CURSOR<—| D0-7 (T DATA BUS

AB-13 > REFRESH ADDRESS

Fig. 4-53 CRT Chip Pinout

152

STOYLNOD 03AIA

G

]
ALISNILNI S
WOTLNIA o ¥ 9V 28\
INIWIL
NAS .1 100 .-
TYND I S H9IH Y01YyINI9 1¥) YWa
03aIA ¥3LIVYYHI 528 nia /578
&b
YINI MNOVH
$2 OYH
ay 5]
UM ¥01
-840 MWIW
/3 MOl
= YWIW
/-09a
{ NIF| AS 0208 ¢
SITHOWIW

Fig. 4-54 Using DMA to Refresh CRTC Memory

153

INTERFACING THE PERIPHERALS

The Intel 8275 CRTC

Similarly, the Intel 8275 CRTC will interface to a 5 X 7 or 7 x 9
character-generator, and generate all the usual video controls. The basic
interconnect of the chip in a system appears in Fig. 4-54.

As usual, the CRTC provides 11 address lines to address the buffer. It
includes logic for cursor control, (CM0/CM2 inputs on Fig. 4-54) and sync
pulse generation (COMP SYNC, VRT SYNCO).

It is programmable:

— Display format (FS0-FS2 control inputs)

— Matrix size (5 X 7 or 7 X 9 dot-matrix)

— Scroll-mode (this is controlled by the scroll input)
— Auto-feeding of new line

— Refresh rate (50 Hz/60 Hz — RR input)

Other output signals are:

— DLCO0-3 is the dot line counter: it provides the line-address in a
character.

— LDV is “‘loaded video’’. It is the output dot into the external shift-
register.

— Blank is the blanking signal

— Blink is for flashing the cursor or any other symbol on the screen.

As an example, the 8 code-combinations allowed by CM0-CM1-CM2
for cursor motion-control appear on Fig. 4-55.

FLOPPY DISK

A floppy-disk and its controller appear on illustration4-57. A floppy-disk
is simply a disk coded with a magnetic material, and divided into sectors
and rracks, on which data is recorded. It provides a very low-cost storage
medium with high-speed access and a large capacity. Two types of floppy
disk exist today: the regular floppy-disk and the mini-floppy.

A regular floppy-disk such as the SHUGART SAS800 provides the fol-
lowing facilities: (It can be either single-density or double-density. We as-
sume single density here.)

— Total capacity per disk: 3.2 Megabits.
— Capacity per track: 41.7 kilobits (unformatted).

154

POWER DE |—— DATA ENABLE
WE }—— WRITE ENABLE

—>] SO Ag >
~— FS1 A
—1 FS2 A2 ——

5x7/7x9 ~——PIMIX Ay —s

e } M

SCROLL/PAGE —™] scROLL A> AEWEXS
60Hz/50Hz —™{RR A7

WRITE REQUEST ———3of W

CURSOR %'_" Ea? ale —>

0
MOTION —3] (M2 DLCE b——>

C
worion storace | ™ DLCE =2 por LINE CounT

CLOCK —»1 (P DLC3 —>

FORMAT
SELECT

. LOAD VIDEO
RESET ——f MR LDV SHIFT REGISTER

Fie [~ CURSOR FLAG
BLINK |—— BLINK
BLANK [—— BLANK

AUTO —>1 AL COMP SYNC " COMPOSITE SYNC
LINE FEED

VERT SYNC VERTICAL SYNC

Fig. 4-55 CRTC Pinout

2
S

M (Mo FUNCTION

up
RETURN
LEFT
HOME
DOWN

NEW LINE
RIGHT

OUTPUT CURSOR ADDRESS
(ADDRESS IS VALID WHEN
DE OUTPUT IS LOW)

T xT =T T rrrrrrrre
T T rrxTT rr -
T rT=TrMrr x> x>

Fig. 4-56 Cursor Functions
INTERFACING THE PERIPHERALS 155

Fig. 4-57 Shugart Mini-Floppy

156

PREAMBLE 46 BYTES
ADDRESS MARK 1 BYTE

PREAMBLE 32 BYTES

26 SECTIONS

POSTAMBLE 241 BYTES

Fig. 4-58 Floppy-Disk Format

In IBM format, capacities become:

— per disk: 2.0 megabits
— per track: 26.6 kilobits.
— Transfer rate is 250 kilobits/sec.

The access times are:

— track to track: 8 ms

— Average access time: 250 ms

— Settling time: 8 ms

— The head load time is: 35 ms.

— The rotational speed of the disk is 360 rpm and the recording density
(inside track) is 3200 bpi for single density, and 6400 bpi for double
density.

— The track density is 48 tpi and the number of tracks is 77.

For a mini-floppy, the characteristics are:

— capacity:
— Unformatted: 109.4 kilobytes per disk and 3125 bytes per track.
— Formatted: Two cases must be distinguished: soft-format and
hard-format.

INTERFACING THE PERIPHERALS 157

5.75in. (203.2mm)

(146.1mm)
\/

Fig.4-60 Size of Mini-Floppy

In a hard-format, actual holes are punched on the disk, to mark the begin-
ning of the new sector. In a soft-format, only one hole is punched to indi-
cate the beginning of every track, but the length of sectors on the track is
left up to the designer, or the programmer.

Soft Hard
Per disk: 80.6 Kbytes 72.03 Kbytes
Per track: 2304 bytes 2058 Kbytes
Per sector: 128 bytes 128 bytes
Sectors/track: 18 16

The transfer-rate is 125.0 kilobits per second.
The access-time is:
Track-to-track: 40 ms
Average: 463 ms
Settling time: 10 ms
The head loading time is: 75 ms
Rotational speed is: 300 rpm
Density is 2581 bpi (for the inside track)
The total number of tracks is: 35
Track density is: 48 bpi

INTERFACING THE PERIPHERALS 159

&
-
// -
Vs
/ //
/oy
/
;!
/
Double-Sided -
Stepping Motor Head Assembly . l \\ .
) \ N
i —_ 2
\\\,_;7///
Magnetic Heads
7
//
-
//
L Carriage Way Double-Sided
Diskette

Carriage

Base Casting Capstan Fig.4-61 Detail of Head Positioning
Mounting Plate Mechanism for Double-sided Floppy

These numbers are based on the SHUGART SA400 disk drive. The disk
itself is 130.2 millimeters and recording method is FM.
— Reliability data are:
Life is rated at 10.3° passes per track. MTTR is 30 minutes. MTBF is
8000 POM.
— Errors rating are:
— Soft: 1078
— Hard: 10"
— Seek: 1076

Consumption is: 15 watts is continuous duty, and 7.5 watts in standby
power. Required power supply is 12 and 5 volts DC.

160

A disk can be simply protected against accidental erasure by using a
write protect tab on the disk cardboard envelope. This is illustrated on Fig.

4-62.
Permanent Label Temporary ID Label
\\ /I

8.00 in. Spi
pindle
(200mm) Hole
Write
Head Slot ——= Protect
Notch
.

© @e—Index Holes

Drive

[t 6.25 in. (159mm)—>|

j¢———— 8.00 in. (200mm) ——————»|

SA 104/105/124

5.25 in.
{133mm)

@@
L— 5.25 in. (133mm) —>|

Write
Protect
Notch

=

3.93 in.
(100mm)

Fig. 4-62 Comparison: “Floppy” vs “Flippy”

:

The Disk Drive

The disk drive itself includes the following facilities:

1. Read/write control, plus control electronics (2 PC boards)

The drive mechanism

Rl

The read write head

The read/write head positioning mechanism

INTERFACING THE PERIPHERALS

161

The read-write facilities, mentioned in 1 above, include:

— index and sector detection

— R/W head position actuator drivers

— R/W load actuator drivers

— Write drivers

— Read amplifier, plus transition detectors
— Write-protect detector

— Drive-select circuits

— Drive-motor control circuits

Accessing a Track

The head moves over the disk surface from track to track. It is moved
along a radius of the disk by a stepping motor. In order to access a track, the
following sequence will occur:

1. the drive-select must be activated. Usually a disk controller may control
more than 1 unit, and will enable the drive-select of the mechanism
which is selected for access.

2. the direction-select will be set, resulting in a latching of the direction of
the movement of the head. The head will move either towards the center
of the disk, or towards its periphery.

3. the write-gate goes inactive. During head movement, no writing should
occur.

4. the step-line will be pulsed until the desired track is reached. Each pulse
will result in a step of the head over to the next track, in the direction
which has been latched.

Reading and Writing
Reading is simply accomplished by:

— activate the drive-select
— write-gate inactive.

Writing is accomplished by:

— activate the drive-select
— activate the write-gate
— pulse data in on the write data-line.

162

DRIVE V ——— |

SELECT SA 400

2 —
[—

MOTOR ON

DIRECTION SELECT
STEP
WRITE GATE

TRACK 00
INDEX/SECTOR
WRITE PROTECT

(CLOCK + DATA) READ DATA
WRITE DATA

LU

|

+6V +12v

Fig. 4-63 SA 400 Floppy-Disk Drive

Signals of the Disk Drive

The signals required by, or generated by, the SA 400 mini-floppy disk-
drive appear on illustration 4-50. Six essential signals are used to communi-
cate with the disk drive:

MOTOR ON

The signal will turn the motor on, or off. When turning the motor on, 1
second should be allowed after activation. Conversely, the disk-drive
should be deactivated after 2 seconds (or 10 revolutions), whenever no
further commands are issued. This will extend the life of the drive.

DIRECTION SELECT

This input selects the direction in which the read/write head will be
moved. The actual motion will be accomplished by pulsing the step line.

STEP

This moves the head by 1 track position towards the center or away from
it. The movement occurs on the trailing edge of the pulse.

WRITE GATE

Write is enabled when this line is active. Read is specified when the line
is inactive.

INTERFACING THE PERIPHERALS 163

TRACK 00

The signal indicates that the head has reached the outside of the disk,
e., its outermost track or track 0. The head will move no further even if
additional step commands are issued.

INDEX/SECTOR

A signal is issued whenever a hole is sensed in the disk. Two types of
holes may be used, index-holes, and sector-holes. Every disk will provide
an index-hole marking the beginning of the first sector on the disk.

A hard-formatted disk, which will be described below, has an addtional
number of holes marking the beginning of every sector. When soft-sector is
used, one pulse is issued per revolution at the beginning of a track. This is
every 200 ms. When using a hard-sectored disk, 11 or 17 pulses are issued
per revolution.

. CURRENT

R A s

RECORDED BIT

Fig. 4-64 Recording A Bit On A Disk

1 1 0

Cc D Cc D Cc

l BIT CELL ' BIT CELL IBITCELLI
) | 1 I 2 |

Fig. 4-65 Representing Check and Data

164

Disk Formatting

Both clock and data information are encoded into the same signal. Clock
pulses are issued for every bit. ‘A **0”’ data is indicated by no further pulse
during the bit cell time. This is illustrated on Fig. 4-65. A *“1”’ is indicated
by a data pulse occurring in the middle of the bit cell interval.

INDEX PULSE
TRACK UNIQUE UNIQUE .
10 RECORD Gar | 10 OTHER RECORD(S)

Fig. 4-66 Record Identifier

Soft-sectoring refers to the fact that the division of the disk or track into
sectors is performed by software. This is opposed to hard-sectoring, where
the beginning of each sector is physically delineated by a hole punched in
the disk. In soft-sectoring, each track is started by a physical index-pulse,
corresponding to the detection of the index-hole on the disk. Every record
is preceded by a unique identifier. See Fig. 4-46. Successive records are
separated by gaps. Gaps are necessary in order to upgrade information
without erasing the following or the preceding record. Because of minor
speed variations in the disk drive motor, whenever a record will have all or
part of its contents rewritten, the end of the record might extend beyond the
previous record end.

DATA: (HEX:B)

-
o
-
—

CLOCK

Hexadecimal F

Fig. 4-67 ldentifier Format

INTERFACING THE PERIPHERALS 165

166

DATA CLOCK

INDEX ADDRESS MARK FC
ID ADDRESS MARK FE
DATA ADDRESS MARK FB
DELETED DATA AM F8

DT
cT
CT
cT

ADDRESS MARKS

ﬂ INDEX HOLE

GAP4 | GAP1 ! AP 2 ‘ %
E 1 DATA FIELD
RE (5) RECORD 1(131) [PAPA | 192 E“P///l 7

l (18)
GAP 34NC
GAP 3: IFF! FF I 0011
12 17 18 21 (BYTES)
oaTA: | | - l USER DATA - 128 BYTES lc:tcl cR
29 31
GAP SYNC
GAP 2: FF 00
6 7 10
ID __ITRACK| sECT cac CRC
D 1: = ADDRALDR LDDR 2
4 5
GAP SYNG
GAP 1: —
-—’r FF [00 I
% 17 20

Fig. 4-68 IBM Floppy-Disk Format

For this reason, a blank gap must be provided between the end of one
record, and the beginning of the next one. In fact, a gap must be provided
between any two zones which might be updated separately. Most often, the
IBM disk-track format is used, sometimes with minor variations. This for-
mat is illustrated on Fig. 4-68. Four kinds of gaps are used:

Gap 4 is used only once on the track. It is the free-index gap. It appears
at the end of the track just before the index-hole position.

Gap | is called the index-gap, and is used at the beginning of every track.
It contains 20 bytes: the first 16 bytes contain the hexadecimal pattern
“FF”’ followed by 4 bytes containing ¢‘00’’. These four bytes of 0’s are the
classical way to provide the synchronization for the data-separator. The
length of gap 1 may never vary in length. The index-gap is followed by the
identification of the first record.

ID 1 is the identification-field of the first record. It uses 5 bytes: the ID
address-mark, the track-address, the sector-address, and two CRC check-
sum bytes to verify the integrity of the field. The track-address and the
sector-address provide a verification that the right track and sector have
indeed been accessed.

CLOCK

DATA cLocK
ot WRITE SIGNAL
i [:
3]
Y ta. -
2 1
| us : :
! 4us |
i
200us. - READ BACK
:]
!
it
1.8 to 2.4us !
|

I
3.4't0 4.6us :

|
Fig. 4-69 Timing

INTERFACING THE PERIPHERALS 167

Gap 2 is called the ID-gap and separates each successive identification
field from its data field. It uses 10 bytes. The first 6 bytes contain the
hexadecimal pattern “‘F*’. It is followed by the four usual synchronization
bytes containing *“00”. The length of gap 2 may vary in length after file
updating.

The first record, or data-field follows. It uses 131 bytes (see Fig. 4-47).
The first bytes contains data or deleted address-mark. It is followed by the
actual 128 bytes of user data. It is terminated by the two usual CRC check-
sum bytes. ,

Finally, Gap 3 terminates the first record. It is called the data-gap and
uses 18 bytes. The first 17 bytes are set to the pattern ‘“FF’, and the four
last bytes contain ‘00", for the sync. Every successive record on the disk,
or sector, will start with ID, gap 2, and so on.

Hard-sectoring

When using hard-sectoring, a special diskette and drive are used. A hole
is punched at the beginning of every sector on the disk. Each sector is then
started by a physical sector pulse. In the case of the mini-floppy disk, two
configurations are used: 16 sectors of 128 bytes or 10 sectors of 256 bytes
per track. The track is started by the index pulse. This is illustrated on Fig.
4-70.

b ona | N1, | sector N | secror 1 Isecror.2
I I
I ;[SECTOR ' t SECTOR PULSE
| fe———
N = 16 t = 12.5ms
N =10 t = 20ms

Fig. 4-70 ~Hard-Sectored Disk Timing

168

Error Detection and Correction

Three types of errors are distinguished:

Write Error

This corresponds to the case where the data being written on the disk is
not written correctly. The way to verify whether data has been correctly
written is to use a ‘‘write-check’” procedure, where the data is read again
during the next revolution of the disk. Normally, the user will simply write
again data which has not been correctly written on the disk, and attempt to
do so repeatedly (up to 10 times). If this effort fails continuously, the sector
or the track must be considered as damaged and not usable.

Read Errror

Two types of read errors must be distinguished:

1. Soft: this corresponds to the case where the error has been transient and
is corrected by simple re-reading (up to 10 times) or by moving the head
back and forth once.

Typically the head is moved one more step in its previous direction, then
moved back. Usually this corrects most reading errors. If this procedure
fails, we have a hard error:

2. Hard: Whenever usual correction procedures fail to read data from the
disk, it must be deemed unrecoverable. This is a fatal error. Data is lost.

SEEK ERROR

This corresponds to the case where the head does not reach the correct
track. This can be verified by reading the ID field at the beginning of the
track. It contains the track address. Whenever an error is detected, the
track-counter of the disk drive must be recalibrated. The head is moved
back to track 00 and a new Seek order is issued.

DETECTING ERRORS

Universally, the error-detection for any data written on a disk is ac-
complished by using a check-sum method. Cyclic-redundancy-check
(CRQ) is used for this purpose. Each field is terminated with two CRC
bytes. The data bits are divided by a generator polynominal G(X) such as
G(X) = X8 + X!2 + X3 + 1. The remainder of this division is called the
CRC. It is written in the two bytes that follow the data. When reading back
data from the diskette, everything is read, including data in the CRC bytes.

INTERFACING THE PERIPHERALS 169

170

Fig. 4-71 Picture of Double-Sided Floppy

If the remainder of the division by the G(X) polynomial is not 0, an error
has been detected.

Single-chip CRC’s exist such as the Fairchild 9401, the Motorola 8501,
and others, that will detect such failures in a single chip. One-chip floppy-
disk-controllers (FDC) also accomplish the CRC generation and checking,
within the single chip.

DAYA
INPUT

£F F FE FF F

—to @ o a o @ o a CRC
FF b 3 b FF b FF SPFF

Fig. 4-72 CRC Check Hardware Detail

cLoCK

Cyclic Redundancy Check

CRC is the favorite method for varifying the integrity of memory areas
with a minimal waste of bits. Parity will detect a single-bit error within a
word. Whenever parity is not available, or would be too costly to provide,
CRC is used to detect errors in a block of words. In particular CRC is
almost always used in the case of floppy-disks, and tape-cassettes. In addi-
tion, it is often used to verify the integrity of a ROM. The principle of a
CRC technique is the following: the eight bits of the word are treated as
coefficients of a polynomial of degree 7.

The bit pattern B; Bs Bs Bs Bs B2 B1 Bo is interpreted as Bz X7 + Bs X*
+ Bs X5 + Bs X* + B3 X3 + B2 X2 + B: X! + Bo X°.

X is called here a dummy variable.

For example, the binary word: ‘10000011’ will represent:

BX) =1 X +0X6+0X5+0X*+0X>+0X>+1X+1X°

=X+ X*+ 1.

INTERFACING THE PERIPHERALS ' 171

(42X + g1X + gy X

NOLLYHINID JHO 3IHVMAYVH

20070

o
2 o8 28
cO-t—y

%)

viva L
L _ a Aw
- QIIQ s @ - IIQ

o4

P4

[i

NI- 14IHS = %0v80334

138

1353y

{d31s 3ain0)

viva

Fig. 4-73 CRC Generation Hardware Detail

172

A generator polynomial G(X) will be used. The polynomial B(X) corre-
sponding to the binary word is divided by this generator G(X). The result is
the quotient Q(X) and a reminder R(X).

B(X) = G(X) Q(R) + R(X)

The value of CRC-redundancy-checking is to append to a bit string an
extra byte (or bytes), equal to R(X), so that the total string will be c:,xactly
divisible by the generator polynomial. The above equation can be rewritten:
B(X) — R(X) = Q(X) - G(X). The string formed by B and the remainder R
is exactly divisble by G(X). The extra bits appended to the string B are
called the CRC bits (or bytes). When receiving for the first time a string B,
the CRC generator will compute the remainder R which will be appended to
the string. When the string will be retrieved another time, the complete
sequence of bits, including the CRC bits will be read. They should then be
exactly divisible by the generator polynomial G(X). If they are not, an error
has been detected. If they are divisible, no error has occurred, or else a
non-detectable error has occurred.

As usual, the CRC algorithm can be implemented either in hardware, or
in software. One-chip CRC generators are available. An example of a pro-
grammed CRC, using the Signetics 2650 appears on Fig. 4-52. The program
which implements an emulation of the hardware appearing in Fig. 4-53. The
hardware division is accomplished there by the shift-register with feedback.
The CRC generator corresponding to the illustration is G(X) = X' + X1'®
+ X2 + 1. The exclusive-OR feedback accomplishes the division during the
successive shifts through the flip-flops of the register.

Summary of Disk Operation

The complete principles of floppy-disk operation have now been pre-
sented. The signals necessary to drive the disk, its operation, the formatting
of data, as well as the error-checking mechanisms that must be im-
plemented. We will now describe the implementation of a disk-drive con-
troller to be interfaced to a microprocessor system.

Example: The SHUGART SA 4400 Mini-floppy Controller

This controller-board is implemented with the SMS/Signetics 300 bipolar
controller chip. It is designed to control 1, 2, or 3 SA 400 mini-floppies. It
will be briefly described here, in order to show the capabilities of a full
mini-floppy controller. Then other compact designs will be presented, using
the new FDC chips.

This controller is compatible with the IBM 3740 format, but uses a
modified gap structure (the pre-index gap, gap 4, is shorter). It provides a
128-byte buffer for the data. Eight control functionssare supplied:

INTERFACING THE PERIPHERALS 173

174

* CYCLIC REDUNDANCY CHECK SUBROUTINE (SIGNETICS 2650)
-

* THIS ROUTINE GENERATES A 16-BIT CHECK CHARACTER FOR
THE DATA CHARACTER IN R@; VARIOUS POLYNOMIALS
CAN BE ACCOMODATED BY CHANGING THE CONSTANTS

THE TABLE BELOW

-

-

* SPECIFIED AT PROGRAM LOCATIONS CK@ AND CK1 AS PRR
-

-

-

DEFINITION OF SYMBOLS
L]

R$ EQU ? PROCESSOR REGISTERS
R1 EQU 1
R2 EQU 2
We EQU H'@8' PSL: 1=WITH,P=WITHOUT CARRY
c EQU H'p1’ CARRY/BORROW
UN EQU 3 BRANCH CONDITION UNCONDITIONAL
EQ EQU [} EQUAL
.
* TABLE OF POLYNOMIALS
-
CRCF§ EQU H'L@' CRC16 FORWARD
CRCF1 EQU HUg2!
CKCR¢ EQU H'28' CRC16 REVERSE
CRCR1 EQU H'gL!
CCIF§ EQU H'@8' CCITT FORWARD
CCIF1 EQU H'1¢*
CCIRg EQU H'@L' CCITT REVERSE
CCIRL EQU H'@8'
-
* BEGINNING OF SUBROUTINE
»
ORG ¢
* INITIALIZATION
CRCGEN PPSL WC OPERATIONS WITH CARRY
LODI,R2 & INITIALIZE BIT COUNTER
LODA,R1l CRC+1 GET OLD REMAINDER LSB
EORA,R¢ CRC EX-OR OLD REMAINDER MSB WITH DATA
-
TEST CPSL C CLEAR CARRY
TMI,R¢ H'8¢' TEST MS-BIT OF R§
BCFR,EQ SHIFT BRANCH IF NOT A '1'
PPSL € PRESET CARRY
CK¢ EORI,R¢ CRCF@ APPLY 'FEEDBACK'
CKl EORI,Rl CRCF1
-
SHIFT RRL,R1 SHIFT THE DOUBLE CHARACTER
RRL,R@
BDRR,R2 TEST CHECK IF DONE
STRA,R@ CRC SAVE THE NEW REMAINDER
STRA,Rl CRC+1
RETC,UN
L]
* RAM AREA
-
ORG H'508"
CRC RES 2 REMAINDER MSB IN CRC
END CRCGEN

Fig. 4-74 2650 Check Program

— INIT: it resets the controller in the disk

— SEEK: steps ahead to the specified track

— READ: reads a sector (128 bytes)

— READ ID: reads the nest sector-identification

— WRITE: writes a sector of data (128 bytes) with data AM

SA 4400
Controller
1 Floppy = 80.6 Kbytes
|4 Dats, Cof Staws ~ DISK DRIVE
N
8 status)
Busy
MPU Xfer FDC
SYSTEM {Data or Status available) Direction
FDCOn
Command
Acknowledge
Halt
Reset

Fig. 4-75 Interface Signals

The previous three commands will read or write data between the host-
processor and the disk-buffer, or between the buffer and the disk.

— WRITE — DDL: accomplishes the same as the WRITE command
but with deleted data AM (address mark)

— FORMAT: writes address-marks, gaps, data on the entire track in
3740 format

— STATUS: gets status for the drive

The signals used by the 4400 interface to communicate with the host
microprocessor system appear on illustration 4-75. The basic sequence of
events implemented by the controller is simply:

1. Seek track.

2. Find sector.

3. Shift and transfer the desired number of sectors.
4. Check the CRC.

Few commands are necessary for the controller’s operation and most
controllers provide six to ten commands only.

INTERFACING THE PERIPHERALS 175

(ZHW 2J
LIH —d t—— 12
TAH ~——
LM = ¢ v
NIg =
e — v
3 P O a—— | an
O4IA/THd ~—] - - 21907 o4O
AdL, T] j—— 3y
AQVIY] IGHINOD
— 0
2oL |'|I' qovd oo? l—— w 4010313
LHdI ~HAINT TOMINGD FOVANIINI | o — -
& > ——3» DUINI WY
€N Ol -~ As1a vVid HILNdWOO _ .
on ~— —> ®uq l_ (327a oL)
rs _ vIva
v e 1y .
_ HIISIOIY HALTHAM
> wouvuvass r LAIHS VIVa
viva ’ y
Y
HALG 103 4ALSIOAY MALSTOAY | | HILSIOTY H3LSI0AY
SALYLS NOVHL HOLOAS ANYWWOD viva
¥I44NE
110 VIva

| = .

F—

Fig. 4-76. FDC Chip: Western Digital

176

Western Digital FD1771D FDC

This one-chip floppy-disk controller — formatter will interface to most
drive manufacturers and is naturally IBM 3740 compatible. It provides:

— automatic track-seek with verification. This feature must be provided
on all FDC’s.

__ soft-sector format compatibility. This feature should be standard on
an FDC.

— read or write with:
— single or multiple records
— automatic sector search
— entire track read or write

Again, these features should be standard in an FDC.

— programmable controls:
— track to track stepping time
— head-settling time
— head engage time
— three-phase or step-plus-direction motor-control
— DMA or program transfers

The alert reader will notice that all of the above features are essentially
standard for all FDC’s. The differences are usually the level of the number
of disk-drives that one chip will control simultaneously.

The internal architecture of the FD1771B appears on illustration 4-76. It
will be described in detail now. It contains five essential functional circuits,
six registers, and two interfaces: a processor-interface and a floppy-disk
interface. Each will now be examined.

The Four Functional Circuits

The four essential circuits, which appear on the illustration, are:

— the CRC logic which generates the check-character.

— the ALU (Arithmetic-Logical-Unit), which was used for the obvious
arithmetic functions, in particular, to compare characters for incre-
menting or decrementing contents.

— the disk-interface control.

— the computer-interface control.

Both interfaces will be described below.

INTERFACING THE PERIPHERALS 177

Q=X Qx—>uw

wJoaa>

stzrts—

L+

T S
22012 a4

Viva 4

d dd 99 ss
A A AN
(ZHWD) 1)
T
cad
o1 o1
e
U0 | 8
PR . B
.
431 1WWH04 . S
/43TI04LNOD v
! P
XSIO Add0d [, v -

)

—ZFUxu<<ow

OOoOXTADFWa

Fig. 4-77 Floppy-Disk Interface Using FD1771.

178

The Six Internal Registers

6.

From left to right in illustration 4-76, one can distinguish:

. the data-shift register: assembles 8 bits from the floppy-disk data, or

serializes 8 bits received from the microprocessor data-bus into the
floppy-disk data-line.

the data-register is a simple holding register for a byte during read and
write operations. Communicates with the data-out buffer, and may re-
ceive data directly from the microprocessor data bus.

. The command-register is used to hold the 8 bit command being exe-

cuted. This register is loaded by the programmer and specifies the mode
of operation of the disk.

. The sector-register holds the address of the desired sector position.

The track-register holds the track number of the current head position. It
is incremented towards the inside (up to track 76 on the regular-size
disk), and decremented otherwise.

The status-register simply holds the status information of the controller.

Processor Interface

The processor-interface and the floppy-disk interface are illustrated on

4-77. The FDC communicates with the processor via 8 bi-directional data
lines labelled DAL (Data-Access-Lines). An input is specified when CS
and WE (write-enable) are active. An act is specified when CS and RE
(read-enable) are active. The internal destination is specified by Al1-A0
according to the table below:

The data-request-output (DRO) is used for the DMA. The interrupt-

request (INTRT) is activated by various conditions.

(COMMAND WORD) RATE
BIT 1 BIT @ PERIOD (MS) (STEPS/S)
8 [6 166
[1 6 166
1 [} 8 125
1 1 10 100

Fig. 4-78 Command Word Bits

INTERFACING THE PERIPHERALS 179

Al AP RE WE

STATUS REG.| COMMAND REG.
TRACK REG. | TRACK REG.
SECTOR REG.| SECTOR REG.
DATA REG. | DATA REG.

- e s
- RN

Fig. 4-79 Register Addressing

Floppy Disk Interface

The signals appear on the right of illustration 4-77. They provide head-

positioning controls, write controls, and data-transfers. The clock is a
2MHz square-wave clock, internally divided by 4, yielding 500 KHz. It
provides three programmable stepping-rates, controlled by bit 0 and bit 1 of
the command word according to the table below:

The head-settling time is additional and involves 10 milliseconds.

Disk Operation

[I - SER V)

—

180

N s w o

A read-operation on the disk is performed in five steps:

. Load the track-register

. Give the Seek-command

. Wait for verification

- Transfer data to the microprocessor under interrupt control.

. Check for interrupt after the correct number of transfers.

Conversely, a write-operation is performed in seven steps:
Load the track-register

Give the seek-command

. Wait for verification

Give the write-command

Load the first data after the data-request is received.

. Load the remaining data

Check BUSY and CRC-error flag

PROCESSOR INTERFACE DISK DRIVE INTERFACE

PD372
| Ty TO
RESET —egRST wol'®—e wRITE DATA DISK DRIVE
Lo |2 nEAD LOAD 3
REGISTER WRITE/READ SELECT —={w/R LT 2= Low CURRENT
REGISTER DATA STROBE ——0s wer |23 —e WRITE FAULT RESET
REGISTER .
SELECT REGISTER SELECT 2 ——edRS2 we 24—« wRITE cuRRENT ENaBLE
COMMANDS N 25
REGISTER SELECT 1| ——efRSL 505 | 23— STEP OUT OR STEP | 015K DRvE
REGISTER SELECT & —S{Rso 1025w step in o DinecTion | COMMANDS
ust |2l —e DisKk ORIVE 81 SELECT
80 25— DiSK DRIVE BO SELECT
INTERRUPT u UAL F22 e DISK DRIVE AL SELECT
as 122w pisk ORIVE e SELECT
e 3
DATA BUS @ =—>nise
oata sus 1 =2fos rex 42— Rrean cLock
3; |
oATA Bus 2 =—22{oez ro j*-— Rreao cata DiSK DRIV
oata eus 3 =—Sfoes
DATA BUS ¢ » :
: oaTa Bus 4 =—2fose
oata sus 5 =—%{oes 1oxE— 1noex
oaTa Bus 6 =—>5does weT — waiTe FauLt
1 K DRIV
L oaTA Bus 7 =—ce7 100 }3—— TRACK ZERO °'Sm'}us €
rva 22— 015k ORIVE A READY
Ave k—" DISK ORIVE 8 READY
13
WRITE CLOCK ——efweK
]
TIMING o —2es cxs f2—e cLock sTatus MISC.
4
a2 —%de2 awt & e aLwars Low
vss _ves _vcc vop

GNO -5V SV w2V

Fig. 4.80 NEC UPD372 FDC

INTERFACING THE PERIPHERALS 181

ups

]) o]
A €2 CE| .
As 014 A7) AT
a7l per \ 04 A6 A6 o83
A S
ad o T
aal
o 085 ooz 2| a2 LU}
I BT P,
AL a4 01 Y ey oee
) = o el
uPD458 PROM uPD2I0IAL-4 uPD2IOIAL-4
IK BYTES RAM 256 BYTES RAM
r_"'_"w., uPD2308 ROM }
3
y
* n
L U
t
A -
.
H-AL, 2
..
uPDBOBOA
w U5)
A
wereaoy |—ac}es
g pE T a6
5 ..
8 b
g =
i
3 H
[PpTe————
w]
2 EwENR
8 foied
@ faci] |
3
&
g Ooe
o082
5 oai
v
¢
joi3 op3}s
H-087 003 oszjHS.
n-08e 0 (2
) r
wons ' o o
H-oBe oo
! |, pae C-MOLD 125
ksl 2% — cmoa -
PB82I6e . [
23013 e !
ons g w
ooz " - n
H-DBL g?l' l‘ﬁ
L_ =) o >
wP3 CTINYE

182

Fig. 4-81

NEC 8080 Disk Controller

FLOPPY DISK DRIVE CABLE CONNECTOR

INY —LL]
T P uie BTRECTION
2 o firpese e |
w £ ' il
083 41 003]
oe2 o2 et |
g
T FETARE |
32,
081 . om wwreare |
o088) 8 3
W ————— e R
2.8y
23 sv
2 onp
1
TiNTA 1
4 [}
Az £ ez]
Al ——% o RSt |
» &} - !
e2(rTL) usza PULL UP [}
P2 WTES SOURCES []
ue2]
N . s I
wipt —————p— 1

RESET Mreser
e rn
02 4
uP2 uP2
af o ® o 1
e2(TTL)

noTes
1 e oSt PROCESSOR ARE BOTH uPDBOSOA'S . & RSO-RS) WUST BE STABLE FROM I 10m AFTER THE TNAILING
ROCE3S0R SINALS -uc nsmea WITH H-. CONTROLLEK PROCESSOR €oce ¢ o1 isce uPo3TE um:munm) 570 Vs TvucnowEs Moo, R
2 i uo:?‘.[TDIRELT MEMONY u::;n INTC THE CONTROLLER-NOT VICE VERSA. g LR MaeniTons %
3 - OTHERWISE SPECIFIED AL AES! iraw, s
S MOST ADDRESS SIGNALS ACH THE COI WEMOR (ES UNTIL * srec
-MLOA IS GRANTED DURING A NOBT ACCESS. THE HOST IS THEN IN A
STATE. ONE_SHOT #READY LINE LOW (TO MAINTAIN ADDRESS
i DATA PATIS) FOR AT LEAST TE 450ns MEWORY AcCESs T.ME,
4 W-WR IS ALREADY ounmﬂ A WRITE CYOLE WNEN THE. HOST ADORESS
IGNALS REAGH T TAOLLER WEMORIES (NOST 1S I A TW STATE AT C NLOA).
THIS OELAY CIRCUIT KEEPS THE CONTROLLER AW R/ SIGHAL WiGH F
I EE uPOZIOIAL SPECIFICATION.
5 (HEX) CODE (ENASLE INTERRUPT) ONTO THE

T CIRCULT JAMS, AR -F
OATA 8US OURING C-INTA.

Fig. 4-82 NEC 8080 Disk Controller

INTERFACING THE PERIPHERALS

183

Summary

The FDI1771D illustrates how it is possible to integrate most of the
functions required for the control of a regular floppy-disk into a single chip.

It provides essentially all the facilities needed to control and format the
disk.

OTHER FDC’s

The NEC FDC is called the UPD372D. It is compatible with the IBM
3740 as well as the SHUGART mini-floppy. It provides the usual facilities,
such as CRC-generation, programmable step-pulse, track-stepping rate,
sector-size, data-transfer rate. In addition, it controls up to 4 disk drives,
but with read/write limited to one drive, with simultaneous track-seek on
the others.

Other disk drives are:

CAL COMP 140, CDC BR 803, GSI 050, and 110, INNOVEX 210,
ORBIS 74, PERSCI 75, PERTEC FD400, POTTER DD4740,
SYCOR 145.

The UPD 372D chip appears on Fig. 4-47. A complete interface using the
372D appears on Figs. 4-62 and 4-63.

The Motorola 6843FDC

This FDC is designed for direct interface to the 6800. It provides 10
macrocommands:

1. Seek track 0 (STZ)

. Seek (SEK)

. Single-sector-write (SSW)

. SSW with delected address-mark (SWD)
. Single-sector read (SSR)

. Read CRC (RCR)

. Multiple-sector-write (MSW)

. Multiple-sector-read (MSR)

O Q0 N N AW

. Free-format-write (FFW)

_
e

Free-format-read (FFR)

184

RSE DATA OUT-W CURRENT TRACK ADDRESS-R/W f#—— FILE INOPERABLE (F)

81— [OITIITT] OIIIIIL) e moex Gox)

Rg DATA IN-R CAPSTAN STATUS-R [TRACK ZERO ("R? ,

€S — [T OOIIIInm ":::’("‘:‘:CT""
— —

N SET-UP-W COMMAND-W R RDY

E— OoOomom ormoram st G

2 <> ERROR STATUS-R GENERAL COUNT-W *FI RESET (FIR)
S EEEEe) TTTIIITT |———»HEAD DIRECTION (HDR)
. [——HEAD LOAD (HLD)
b7 SECTOR W INTERRUPT STATUS-R | > WRITE GATE -(WeT)
RQ " LOW CURRENT (LCT)
RESET ——» SEARCH TRACK ADDRESS CRC CONTROL-W

[~——"WRITE DATA (WDT)

CLOCK —— fe——— DATA cLOCK (DCK)

BUS nm:czgg - R-READ ONLY REGISTER L«——— READ DATA (RDT)
DMA enD (DM] W-WRITE ONLY REGISTER
R/W-READ/WRITE REGISTER [VFo cotRaL. (veoc)
- —
DMA ACK%HERS —> — cnD

Fig. 4-83 Register Format

It is naturally equipped with two programmable delays for seek-time and
for settling-time. The chip signals are illustrated in 4-65. This FDC requires
three DMA channels. It uses an average of three percent MPU time. As-
suming 256 KPS transfer rate, the maximum MPU load is 12.5%.

Rockwell 10936 FDC.

The basic interconnect of this FDC in a Rockwell system appears on
Fig. 4-84. It uses three DMA channels (see Fig. 4-85), where channel 7
refreshes channel 1. The FDC I/O instructions appear in Fig. 4-86. Typical
floppy disk routines for the Rockwell PPS-8 appear on Fig. 4-87.

INTERFACING THE PERIPHERALS 185

1 AS1a

TT0Y1NOD
JA1 A

T04INOY [(9 40 ¥) 12373 LIND ¥SIQ
IAIYE
1y A TOUING) NOT1150d Qvan
' §
),
SNIVLS i
Amﬁ T04LNO)
v ¥SIQ

J0d
o

0/1d9

8-Sdd

Fig. 4-84 PPS-8 FDC

186

"YIVQ ANY TT0YINO3 LYWYMO4 ‘SHIYd ¢ STHINDIY 204
NAAA N\

(S31A4 82T)
21307

y1vd VoS

¢ TINNVHD

a4
ﬂ pot

T TINNVHD o
(WEI/SILAE-
:mmmu_wmAﬁ K 907
£ TINNVH) J041NOD
1YWy04 04
IVWa Wvd

187

Fig. 4-85 PPS-8 FDC DMAC Block Diagram

INTERFACING THE PERIPHERALS

188

01sS0000
01ss0001
01sS0010
0180011
01sslo1lo0
01ss1100
01881101
01§s0100
01ss111o0
01SS100-
00001000

NooP

START

LOAD

CLEAR

READ DATA

READ STATUS
READ STATUS
NooP

NooP
UNDEFINED READ

READ INTERRUPT STATUS

Fig. 4-86 Commands

CPU ENTRY
SERVICE ROUTINE

CPU INTERRUPT
SERVICE ROUTINE

@ FROM FOC
CONTROL
y
HEAD MOVED e
TO TRACK @
REGISTERS \
INITIALIZED FOC
NEW FDC INTERRUPT)} GENERATED
COMMAND INTERRUPT
ENTER FROM
DMA BLOCK 1
FORMAT I I
| CPU STORES s l
REGISTERS | orersury
IN STACK SERVICE I
RESTART | track moTION ROUTINE
FROM >
“RETRY " AND HEA FOC |
LOAD ROUTINE I RESPONDS
WITH
ADDRESS & l
I STATUS
-_— — — — — — — __l
l CPU RETRY/TERMINATE
I SERVICE ROUTINE '
APPLICATION DISK SERVICE
UNTIL ' OPERATION OTHER
INTERRUPT TO FOC NOT INTERRUPT
CONTROL COMPLETE
T0CPU l l
INTERRUPT -
RETRY ENTER ERROR
e | | ontiion mocting |
HEopthch SUBROUTINE
DIsK
OPERATION
COMPLETE
| RETURN I
10
INTERRUPTED
I FROGRAM y B l
I 34 l

- 1]

Fig. 4-87

Software Flowchart

INTERFACING THE PERIPHERALS

189

190 INTERFACING THE PERIPHERALS

CHAPTER 5
ANALOG TO DIGITAL
AND DIGITAL TO
ANALOG CONVERSION

INTRODUCTION

In any system, two basic kinds of signals must be measured, or gener-
ated. They are analog and digital signals. Analog signals assume a continu-
ous range of values, whereas digital signals assume only a finite number of
values. As an example, a binary signal is a digital signal which assumes one
of two values, either ““on’’ or “‘off”” (‘1" or *‘0’"). A typical example of an
analog signal is the value of the temperature in an oven. The temperature,
being an analog variable, can assume an infinite number of intermediate
values.

In view of the finite precision and limited storage of a computer, a digital
representation will be used. The precision of the measurement is said to be
limited to n significant digits. In addition, sampling will be used to reduce
the overall storage required. The concept of sampling will be presented
below.

This chapter will explain how to perform analog-to-digital conversion
(A/D) and digital-to-analog conversion (D/A). In addition, the specific
components required to build a complete data collection system will be
introduced. We will consider successively:

— areal D/A converter (or DAC)
— areal A/D converter (or ADC)
— the sampling process
— analog multiplexing.

Finally, all these techniques will be used to design a complete data
collection system.

A CONCEPTUAL D/A

Let us consider the problem of converting a binary number into an
analog voltage. This is the typical problem of digital-to-analog conversion.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 191

A simple solution is the following: a voltage is generated for each bit-
position of the binary number. The value of the voltage is proportional to
the binary weight of the bit.

For example, bit 0 will generate a voltage V(2°); bit 1 will generate a
voltage 2V(21); bit 2 will generate a voltage 4V(2?); and, bit n will generate a
voltage 2n X V. The resulting voltages are simply added. The result is
proportional to the original binary number.

A simple 4-bit D/A appears on Fig. 5-1. This D/A consists of: four
switches, four proportional summing resistors, an operational amplifier, and
a proportional feedback-resistor. The values of the resistors are in the
proportion 1, 2, 4, 8. This results in gains of: -8, —14, —%, and —1. Let us
examine the function of this circuit.

10.000 VOLTS - STABLE REFERENCE

* {/c R f

BIT 3 2R

@ o- AV 9
BIT 2 4R

o A= - AAA
BIT 1 BR

O — VA @
BIT 0

OPERATIONAL
AMPLIFIER

5-1 A Simple 4-Bit D/A

Let us begin with all the switches in the open position. Since there is no
input to the operational amplifier, the output will be *‘0’’. Closing the bit
switch numbered ‘‘0>’ will apply the —10V reference to the input of the
operational amplifier, through the resistor marked 8R. This will result in an
output voltage of 1.25V (due to the gain of —¥3 at this point). Closing the
switch marked “‘bit 1°* will then add 2.5V to the previous value (1.25V) (due
to the gain of —' at this point). The resulting output is 3.75V. If all
switches are closed, the resulting output voltage is 10.0 + 5.0 + 2.5 + 1.25
or 18.75 volts. Here, we have converted a 4-bit binary number, represented
by the four switches, into a voltage. It is the analog representation of one of
the 16 possible digital values.

We will now examine the structure of a practical D/A converter.

192

A Practical D/A

The practical design in Fig. 5-2 illustrates the typical design for a
monolithic D/A converter. This device has four bits of resolution. Practi-
cally, currents are summed instead of voltages, due to the fact that currents
are easier to switch on and off accurately. To provide a voltage output, the
last stage of the converter is a current-to-voltage converter. This is easily
done by an operational amplifier. Typical converters have eight bits of
resolution.

DATA LINES

BIT SWITCH

BIT SINK | 3

RES. NET.

52 A Practical Converter Schematic

Fig. 5-3 illustrates the functional elements of our converter. They are:
the reference-current source, the bit-sink transistors, the ladder-resistor-
network, the bit-sink switches, and the voltage-current converter.

The bit-sink current reference establishes a stable reference current. The
bit-sink current sources will be proportional to this reference current. The
current in each bit-sink transistor is established by its position on the R-2R
ladder-resistor-network. The R-2R resistor-network produces a 2°" series
of currents flowing through each bit-sink collector. The switches will route
the current either to the bit-sink bus, which connects to the current-to-

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 193

voltage converter—or to ground. In our example, these currents are Y20
ampere, '/s0 ampere, '/so ampere, and /160 ampere. These elements com-
bine to perform the conversion from a 4-bit binary number into an analog
voltage.

LOGIC
INPUTS 01 01 O'l
BIT SINK
SWITCH o O O <O
L 4 L 4
REFERENCE BIT ouT
CURRENT SINK
BUS
LADDER NETWpRK
5-3 Monolithic Converter Functional Elements
V REF

[l

EMITTERS

F 5V +.
100 100 1740 §1/80 .
190 100 100 1,160
1/20 9.5
. REFl l h 25Y] l 625
20 l 200 200 | 2007
-10v -10vV -10v

54 Completed Monolithic Converter

194

An actual monolithic converter uses transistors as switches to route the
current between the bit-sink bus to the amplifier and ground. Fig. 5-4 shows
the logic-signal-to bit-current-sink switches interface circuitry. When the
input is a logic “‘0’’, which corresponds to 0V, the bit-sink will draw current
through Q4 to the bit-sink bus. When the input is a logic “‘1’’, which corre-
sponds to an input voltage greater than 2V, the bit-sink will draw current
through Q3, instead of Q4, disconnecting the bit-sink bus from this sink bit.
The four binary signals will switch the four bit-sinks on and off the bit-sink
bus. The resulting current is converted to the output voltage.

+5V

LOGICIN
BIT SINK BUS
i l

¥

FROM OTHER

Ll SINKS

BIT SINK

Detail - The Bit Switches

By extending the R-2R ladder network and adding more bit-sink transis-
tors, we can increase the resolution of our converter to more than 10 bits.
Any more than 14 bits results in stability problems that this simple circuit
cannot overcome. In fact, 16-bit converters are usually certified to be cali-
brated against a national standard. (One must remember that 16 bits results
in an accuracy of 1 part in 65,000!).

Real Products

Table 5-5 represents a sampling of some real products that perform D/A
conversion. Cost increases with speed.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 195

TABLE 5-5 D/A Converters

Manufacturer Type # Resolution Speed
Motorola MC1408 8 300ns
PMI DAC-08 8 100ns
PMI DAC-03 10 250ns
Analog Devices AD7520 10 500ns
Datel DAC-4Z12D 12 lus
Burr-Brown DAC70/CSB 16 75us
THE A/D

Now that we have converted the binary representation of a number into
an analog signal, we must solve the reverse problem. We must measure an
analog signal and convert it into a binary number. There are three methods
of conversion: successive approximation, integration, and direct compari-
son. Before discussing these, we must first examine the concept of
sampling.

Sampling

The binary number representing our analog signal represents a value at
one point in time. This is known as a sample. In the following waveform, in
Fig. 5-6, we have sampled where indicated. The sample values will not give
us any information as to the true shape of the analog signal. We must collect
samples which will accurately represent the signal. The frequency at which
we sample is known as the sampling rate. In order to represent accurately
we must sample more frequently. How often must we sample?

S3 Sg S7
> time

5-6 Infrequent Sampling

196

The Sampling Theorem

The answer lies in the sampling theorem: We must sample at least twice
as fast as the fastest occurring signal in our system. As a rough rule, in
order to represent our signal, we must sample at least 10 times as fast as our
average frequency. Fig. 5-7 illustrates the results of more frequent
sampling.

5-7 Frequent Sampling

Sample and Hold

The analog input to a converter must be stable for the duration of the
time it takes to complete the conversion. This may be accomplished by
using a sample and hold circuit. This device will sample the analog input
and hold it constant until the next sample of the input. The device holds the
sample in a high-quality capacitor, buffered by an operational amplifier.
Sample-and-holds are available in both monolithic and hybrid forms.

SUCCESSIVE APPROXIMATION A/D CONVERSION

By using a D/A we can perform A/D conversion. Let us compare our
unknown analog input signal to a ‘‘guess”’. Increasing or decreasing our
guess, based upon the knowledge of our guess being too large or too small,
allows us to converge towards the correct value of the analog input signal.
In Fig. 5-8, we have connected the output of our 4-bit D/A converter to the

COMPARE

UNKNOWN = 0 IF LESS THAN

1 IF GREATER THAN

Successive Approximation Hardware

MSB LSB

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 197

input of a comparator. The other input is connected to our unknown analog
signal. The output of the comparator will be **0”’ if the unknown is less than
the D/A output, or ‘1" if the unknown is greater than the D/A output.

The algorithm for ‘‘guessing’ is to turn-on each successive bit in our
binary number starting with the most significant bit (MSB). As we turt on
each bit, we test to see if we are greater than, or less than, at the comparator
output. If less-than, we leave the bit on; if greater than, we turn the bit off.
In either case, we go to the next least-significant-bit until we reach the last
bit. Fig. 5-9 illustrates such a guessing procedure for our 4-bit converter.
Fig. 5-10 illustrates the flowchart for the same guessing procedure. This
procedure is known as successive-approximation analog-to-digital conver-
sion.

15
INPUT
1/2 .5 .625] .6875
1 2 3 4 riME
GUESS # —
5-9 Guess Versus Time: Successive Approximation

Using this method, we must make as many guesses as there are bits in
the binary number being converted to. This is the most common method for
A/D conversion.

There are two ways to perform successive approximation: using
hardware, and using software mixed with hardware. Fig. 5-11 illustrates a
practical A/D design using a successive-approximation register or SAR.
This successive-approximation-register performs the bit-shift and test-
function in hardware. The other alternative is to perform the function of the
successive-approximation-register by a software algorithm. A complete

198

I

START WITH MSB

- ~

OUTPUT A BIT
TO D/A AS A
lll"

UTPUT TO SAME
IT AS BEFORE
lloll

SIGNIFICANT

GO TO NEXT
LEAST SIGNIFI-
CANT BIT

5-10 Successive Approximation Flowchart

monolithic A/D converter without reference, but with the successive-
approximation-register, is illustrated in Fig. 5-12. Besides successive-
approximation, two other essential techniques are used for conversion:
integration, and direct comparison.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 199

=15V +15V INPUT

+15V
.01t
+10V REF Ce
REF-01 T
0
L Ik
A
= SKa DAC-08E
= AN-—
OUTPUT __|
B o L
B2 O—14 =
BE O
o
8% S
(e
BT O
B &
AM2502
SUCCESSIVE APPROX
REGISTER

CLOCK INPUT o |
2.25 MHZ

5-11 A/D Using a SAR

25" SUCCESSIVE
STRT O APPROXIMATION
cLK 0’5'6'1—" LOGIC

m o X -

Vee Donp Vop AgND

5-12 Monolithic A/D

200

INTEGRATION

The second way of performing the analog-to-digital conversion is analog
integration. Measuring the time that it takes for a capacitor to charge to the
unknown voltage, and to discharge under a known reference voltage, form
the basis of this method. The time-ratio between our known and unknown
voltages is equal to the ratio of the values of the two time measurements.

In practice, we integrate a positive unknown voltage and a negative
known reference. The positive voltage will result in the charge increasing
on the capacitor. After a known period of time, the reference voltage will be
applied to the integrator and we will measure the time required for the
charge to reach ‘‘0”’. Fig. 5-13 illustrates the timing diagram of such a
technique.

CHARGE %

>

> TIME PULSES

1 v
0 1000 1000 + N

e INTEGRATING CAPACITOR CHARGES AT CONSTANT RATE PROPORTIONAL TO
INPUT VOLTAGE
e DISCHARGES BY CALIBRATED REFERENCE CURRENT

5-13 Integration Timing

Fig. 5-14 illustrates a monolithic conversion device using a modification
of this dual-slope integration technique known as quad slope.. In addition to
integrating the known and unknown voltages, it also integrates inaccuracies
caused by offset and ground errors that may be present.

The dual-slope integration technique results in high accuracy measure-
ments. This accuracy comes at the expense of the time that it takes to
convert the analog signal. Thus, dual-slope conversion is slow, compared to
a successive-approximation conversion technique discussed earlier, but
more accurate.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 201

DIRECT COMPARISON

Direct comparison is used only where extreme speed is required. Usu-
ally less than five bits of resolution are needed in such applications. The
circuitry contains 2" comparators (where n is the number of bits in the
binary output word desired). Let us examine how this works.

We have a 3-bit direct comparison converter. Our input can be measured
in terms of eight levels. Fig. 5-15 illustrates the structure of our converter.
The seven comparators will establish if our input voltage is greater than, or
less than, each of the possible eight reference values. For example, if all
comparators below the fifth one are on, and all above it are off, then the
priority encoder will encode the eight inputs into a 3-bit binary number,
1002. Other inputs will be encoded into other 3-bit representations.

Such systems provide a resolution of five bits in less than 100 ns per
conversion. The need for many comparators and reference voltages, and a
complex priority scheme, results in this method being the most expensive
for anything beyond 3-bits of resolution.

However, AMD has announced a 4-bit monolithic device for less than
$50 that will perform this direct comparison in less than 50 ns.

202

INPUT Vy

vy Vy PRIORITY ENCODER
V REF 1
Va2 Vx _
v Rer 2} [outrur
Va Vx
Ve Vx
V REF 4
—
Vs Vx
V REF 5

Ve Vx

V REF 6

V REF 7
s

|5

—0 EC

{11)]
O

ﬂ[\/ | 4
1>-F> =D

a2 -
>

K

= -

1)
o—

Al

{2}
e

H -

J

Y Y
¥y

Output Control

8 to 3 Priority Encoder

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 203

TYPICAL DEVICES

Table 5-16 lists examples of conversion devices and the technologies
used to implement them. In general, the faster the conversion, the more
expensive; the more accurate, the more expensive; and, the more external
components required, the more expensive. :

TABLE 5-16 A/D CONVERTERS

Type of
Manufacturer Type # Resolution Speed Conversion Cost
National MM5357 8 40us SA $10
PMI AD-02 8 8us SA
Analog Devices AD7570 10 18us SA $70
Datel ADC-EKI2B 12 24ms Integrating
Analog Devices AD7550 13 40ms Integrating $25

A/D SUMMARY

The three techniques of A/D conversion, successive approximation, in-
tegration, and direct comparison, are all available as monolithic LSI mod-
ules. The trade-offs among the three techniques are simple. The direct
converter is fast, but with little accuracy. The successive-approximation
converter is of medium speed, and average resolution. Dual-slope integra-
tion conversion has the highest accuracy, but requires the most time to
perform this conversion. The time the analog signal must be held stable, and
the time it takes to convert, determine the maximum sampling frequency
and the need for a sample-and-hold circuit.

CONSTRUCTING ANALOG-DIGITAL DATA COLLECTION SYSTEMS

To interface these analog conversion products to our digital system to
collect, analyze, and control analog signals, we must find out how to use
these products optimally. Usually more than one signal needs to be moni-
tored. This indicates that more than one A/D and D/A are required. In
some systems, many hundreds of analog signals need to be measured. The
techniques used to design a cost-effective system are: simple interfaces,
multiplexing, and scaling.

Interfacing the D/A

The D/A converter requires a parallel digital word that will remain stable
as long as the analog output is needed. This is easily accomplished for eight

204

or less bits since most microcomputers have output-latches eight-bit wide.
Fig. 5-17 shows such an interface. In the case where the D/A has more than
eight bits of resolution, special techniques may be required for interfacing:

LATCH 8 BIT
] o
- . ANALOG OUTPUT
———o0
DATA -
8US
STROBE I T
8 BITS
5-17 Parallel Output D/A Interface
HIGH
DATA BUS N LaTcH 13 BIT
mMsB
—] N o
115 HiGH
BITS
Low LOW
NJ LATcH NJ HoLD N
LATCH 8 LOW
— —1 — BITS

5-18 Adding the Extra Latch

For example, take the case of interfacing a 12-bit D/A converter. If we
use two separate 8-bit latches, using 8 bits from the first, and 4 bits from the
second, there is a problem. When the first latch is loaded, the D/A convert-
er immediately begins converting to the new value presented. However,
some microseconds later we change the second latch, so as to complete the
needed bits for the D/A. The effect causes a glitch on the D/A output
because of the input change. All input bits to a D/A converter must be

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 205

changed at the same time in order to prevent output glitches. Fig. 5-18
indicates how an extra latch is added to the low-order latch path, in order to
prevent the low bits from changing, until the bits on the high latch change.
The low-byte is sent first, and the high-byte is sent second, with the most-
significant-bit equal to “‘1’’. When the temporary holding low latch is
strobed by the “‘1’” from the high latch, the low order bits will pass through
to the converter, delayed by the delay of the latch. If this delay is also too
severe, a fourth latch may be used in the high bit path to equalize delays.

The new D/A converters include an on-chip latch for ease in interfacing.

Example of D/A Interfacing

Fig. 5-19 is the schematic for a D/A interface to the SC/MP microproc-
essor. The 7418374 octal latch is used to hold the information while the
D/A performs the conversion. Even though this converter has 12 bits of
resolution, only 8 are used in this example. The unused inputs are tied to
+5V. Unused inputs may be tied to either +35, or 0.0V depending on the
binary coding scheme used.

ANALOG
ouT

5-19 SC/MP D/A Interface

(DA 1200)

VoL
Ls8 mopg18

+5V

74L8374

NWDS
DECODE _—_D)—— |
—i] +5V

OFFSET 17
18 4

MsB 24

DATA »
BUS

QloiN folo (Alwin]-
N
o

=
o

N O O A WN - O
N
e
YN
- lalw
+
-
o
<

gy
N

206

Interfacing the A/D

As D/A’s require an output port, A/D’s require an input port. In addi-
tion, the A/D requires an output to initiate a new conversion, and an input
to indicate when that conversion is complete. The A/D may take as long as
100 ms to complete its conversion. To prevent the processor from execut-
ing instructions while waiting, would waste valuable time for processing.
The A/D as an input device should operate on a polled or interrupt basis.
Five A/D interface examples are presented here:

Examples of A/D Interfacing

Fig. 5-20 illustrates a National MM5357 A/D converter. The device has
eight bits of data output, a start-conversion input, an end-of-conversion
output, an output-enable, and a clock signal input. The start-conversion line
(SC) may be activated from an output port bit, or it may be tied to the
end-of-conversion signal (EOC). If SC is tied to EOC, as soon as a conver-
sion is complete, a new one will immediately begin. The end-of-conversion
signal can be connected to an input-port bit, so it may be polled. EOC can
also activate an interrupt input, depending on the software considerations.

VN —] 8-BITS

 «———— OUTPUT ENABLE
sC

EDC

-
+5V | " CLOCK

S

| 1]

5V 0 12V
5-20 The MM5357 Converter

etpmmna—

Fig. 5-21 illustrates the use of an A/D converter, where the status of the
conversion can be read on the data bus, without the use of bus drivers, or a
separate input port. The Analog Devices’ AD7550 accomplishes this by

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 207

using internal tri-state output buffers, that may be independently enabled
for the low byte, high byte, and status outputs. The only signal required is
the start-conversion signal, which must be generated from an output port
bit.

< 8-BIT DATA BUS (Dp - D7) >

A
8z 53 233 E ENABLE)
23 aa 223 |——0HBEN (HIGH BYTE ENAB

——O LBEN (LOW BYTE ENABLE)
AD7550 l—— O STEN (STATUS ENABLE)

—o0
JSTA RT_rL

521 Analog Devices’ AD7550 Interface

Most systems require more than one analog input. To provide these
inputs, we can connect a number of A/D’s to the bus and select them with a
decoder. Each input would have its own A/D. Fig. 5-22 shows the schema-
tic for four converters in an 8080 system. The 8205 decoder selects the data
read from ports ‘“‘F8”, ““F9”, “FA”’, and ““FB’’ hexadecimal. The ports
“FC”, “FD”’, “FE”, and “‘FF”’, when read, trigger the start conversion
lines on the corresponding A/D. Input port ““FO’" is the end-of-conversion
status word, with the lower four bits corresponding to the end-of-
conversion outputs of the four A/D’s. This port is polled by the program to
control the A/D’s.

Fig. 5-23 shows a technique for successive-approximation using a D/A
comparator. The peripheral input adapter (PIA) controls the D/A converter
and has the output of the comparator as its input. By monitoring the output
bit of the comparator, we can tell whether the byte output on PAO-PA7 was
either too large or too small. The successive-approximation flowchart may
be coded in software and used to control the progress of the conversion.

Through these five examples, we have examined the techniques for in-
terfacing the A/D to our microprocessor system. Other A/D converters
have similar interfacing requirements. Careful study of the data sheets and a
programmable input-output port solve most A/D interfacing problems.

208

DATA BUS

8 BITS

74L8125

EOC

MM4357

MMA4357

MM4357

MM4357

741504 & OF

il

8205

sC

i

OE ?SC

OEXC

27K

R
(+6v) NEF—

30 PF I

!

5-22 Four MM5357 on an 8080 Bus
V) (FULL ‘SCALE) = VREF _ (RI+ R2)
RREF s
ViN c1741
5y 15V '.!,] { 500 (FULL SCALE
1’ OHMS CALIBRATION)
S B2
Vrer fc VEE . 100
COMPENSATION 9
GN
VREF() RANGE MLM301A IN914
1A2A38 R3
= 45V O=w—0.15V =
+5V 10K +5V
—— OFFSET
w MPSE514
© o a3 1
© =
H 9 3
PA7 PAD PB1 PB7 PB4 150
> EOC LED
MPU/PIA SYSTEM MLEDG50
431
5-23 Using a D/A for Successive Approximation A/D

ANALOG CIRCUITRY - A/D AND D/A CONVERSION

209

More Channels

If the need arises for more analog input channels, or it is too expensive to
have a single A/D per channel, another alternative exists for design. More
channels can be added through the use of analog multiplexing. The multi-
plexer acts as a switch so that the input of the A/D is selected from many
sample inputs. It is illustrated in Fig. 5-24. The entire A/D system will
contain other components as well. We will now closely examine a hybrid
device from Burr-Brown that interfaces directly with the 6800 bus.

INPUT :

S oTa A
s; oral__
S30- gTalt |

S4 0~ al ! 1
s ' ANNEED
5 1

S, A
6 O

$0 gTaL
SgO- A

Sq
$100- ogTal !

S110- —gTal

S A
120- ;
S130 D’rﬁ '
S140+———a Ty T
!

$150] 'L:
1
i

v--eo—eo—eo—

-0
OUTPUT

8160—"()’:11

SWITCH SELECT. LOGIC AND DRIVERS

1
11
N
(1t
()
I
v
(NN
(NN
|;|
[T]
L

REE B IE L B [I i G R

S I ey &Y

SWITCH OPEN = 10 SWITCH CLOSED = 200

s & b b

A3 - A2 At A0 ENABLE

5-24 An Analog Multiplexer

The MP21

The MP21 module contains all necessary components to provide a com-
plete A/D system for a 6800 microprocessor. The block diagram in Fig. 5-25
illustrates the internal functions of the MP21 module. The module has a
16-channel multiplexer, that can be wired to provide eight differential inputs

210

P ADDRESS BUS

P CONTROL BUS

P DATA BUS

or 16 single-ended inputs. The channel-number is selected by the lower four
address-bits and latched on a read-command by the control-logic.

MP21 BLOCK DIAGRAM

ANALOG INPUTS

P777979% T09TTYY

-~
w ow
i}
. o @
g £32
a A
o x x 2
a 332
a EZE 0
? 99
A0 O
A1 LATCH
A2 O—
X R S—

A4

DECODER)

;

8 CHANNEL 8 CHANNEL
ANALOG ANALOG
MULTIPLEXER MULTIPLEXER

. O]
. 8—_-: AND
: O-—'E fg;‘;“‘“ CONTROL
A5 O LOGIC GAIN
= l JoFFsET
$=%] faoore INSTRUMENTATION ADJUST
&3] |serecr AMPLIFIER JampLiFIER
oo DELAY
¢ 1A OUT
sz & .
RIW g z POSSIBLE
VMA ; SAMPLE
H foLo
RESET O : HERE
HALT O CONTROL LOGIC £
INT O z
8 [
I STATUS
DO,
. [TRI-STAT 8 BIT AD
g 8=:c OUTPUT
| g CONVERTER
Ol
07 Ha] =
s <
(!)2 S b33
= o«
o4
5-25 The Internal MP21 Schematic

The instrumentation amplifier provides the differential-to-single-ended
conversion (if required), and can be programmed by external resistors to
provide different gains and offsets. If required, a sample-and-hold may be
inserted in between the multiplexer and the instrumentation amplifier. Ad-
ditional multiplexers can be added at this point also to increase the number

of input channels.

The heart of the unit is the 8-bit A/D converter which performs the
conversion. The end-of-conversion will interrupt the 6800 through the
internal interrupt control logic on the hybrid module.

All necessary interfacing has been done for the user so that the module

ANALOG CIRCUITRY - A/D AND D/A CONVERSION

211

will be as simple to use as possible. F ig. 5-26 indicates the necessary signals
for a typical application utilizing a 650X or 6800 processor.

ADDRESS BUS

2 oJRESET T __40
2 | vmaps__ 5§ VMAS
z bl 34 o
= gﬂéw 2 R/W ©
o 2bke 37
R na
<_ﬂ HALT P4 4
Z
<

DATA BUS

5-26 V 6800 and 650X Interface

Techniques for Increasing the Resolution

There are two basic techniques for extending the resolution of our A/D
conversion without changing the basic accuracy of our A/D converter.
These are scaling and offset.

Scaling

If the input signal is 1.0 volts and the full scale input of the A/D is +10.0
volts, we should increase the gain of the amplifiers before the A/D conver-
ter, so as to take advantage of the full-scale resolution of the A/D. By
increasing the gain by a known amount, we can measure smaller signals
more accurately. If the input was 20.0 volts, we could decrease the gain of
the input amplifier in order to attenuate the input signal. This will allow us
to measure larger voltages than could otherwise normally be measured. By
these examples, the need for scaling becomes evident. We scale the input to
obtain maximum information upon conversion from our A/D converter.

Offset

By connecting the output of a separate D/A to the offset input before our
amplifier, we could automatically correct for offset errors, or we could

212

offset a voltage to increase the accuracy further. If the input is 10.0 volts
and we are interested in small changes around this value, we can offset the
input by an equal and opposite amount. The output of the offset D/A is then
—10.0 volts. Adding the two together, we get some small value which
depends upon the difference between the offset D/A and our input voltage.
Now, we increase the gain of the input amplifier so that any difference
between the input 10.0 volts and the offset 10.0 volts can be measured with
the full accuracy of the A/D converter.

Summary of Enhanced Resolution Techniques

By these methods, an 8-bit resolution A/D can be enhanced to provide
many more bits of magnitude information in a coded form. The form of our
information for this example is listed in Table 5-27.

OFFSET GAIN A/D OUTPUT
X X X XXX XXX XXX XXX KXX
+ 10 VOLTS x 1/2 (+ 10 voLTS)

527 Scaling, Offset A/D Data Format

Of course, the accuracy of the amplifier and offset D/A must be suffi-
cient not to introduce errors of their own in the measurement process.

SUMMARY

Our microprocessor can now be used to gather information, process it,
and output that information in a new form in the analog world through the
use of these conversion products. The D/A or digital-to-analog-converter
providing the microcomputer with the means for generating the analog sig-
nals, and the A/D or analog-to-digital-converter providing the means for
measuring the analog signals, form the basis of any conversion system. The
use of sample-and-hold, multiplexers, and scaling/offset techniques, allow
us to quantify any signal, process it, and pass it back in most any form we
require.

One last constraint may be to supply interface signals in a standard form.
This will be examined in Chapter 6.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 213

214

ANALOG CIRCUITRY - A/D AND D/A CONVERSION

CHAPTER 6
BUS STANDARDS
AND TECHNIQUES

INTRODUCTION

Connecting more than one module requires a communication path. Each
module must be able to talk and listen to its neighbors. The components on
a module need to communicate with one another. The problem of compo-
nent interconnection has been addressed in Chapters 2 and 3. The
techniques of module-to-module, and system-to-system communication will
be covered in this chapter on busing techniques.

Two bus types will be distinguished: parallel buses and bit-serial buses.
They are:

— parallel
— microprocessor S100 Bus
— microprocessor 6800 Bus
— IEEE-488 general interface bus
— IEEE-583 CAMAC interface system
— serial
— EIA-RS232C asynchronous communications
— EIA-RS422&423 asynchronous and synchronous
communications
— ASCII information standard
— synchrbnous communication

Parallel buses are useful for high-speed module-to-module communica-
tion in the case of microprocessor buses, and for system-to-system com-
munication in the case of IEEE-488. CAMAC is the only exception—the
CAMAC standard covers all communications from the component level
on up.

Serial buses require fewer lines, and are used to connect communica-
tions terminals to the computer system. Terminals such as, CRT’s,
(cathode-ray-tube terminals), teleprinters, teletypewriters, and remote data
collection devices, all rely on some form of bit-serial communication.

Serial standards cover the bit-rates, electrical characteristics, and data
format. There are basically two types of standards: asynchronous and syn-
chronous. The asynchronous standard is used for data rates of less than

BUS STANDARDS 215

20,000 bits-per-second, and the synchronous standard is used for data rates
of more than 10,000 bits-per-second. In the overlapping region, both types
may be used.

An example of an S100 bus interface to an inexpensive analog-to-digital
converter will be presented at the end of this chapter.

PARALLEL BUSES:

Parallel buses transfer all bits of information across separate wires, at
the same time. Lines must be provided for the data-bus, lines for the
address-bus, and lines for the control-bus. Each set of lines contains infor-
mation on the current cycle of operation.

A typical microprocessor system, will need 8 data, 16 address, and 5-12
control lines.

— The 8 data lines are for all transfers in and out of the processor.

— The 16 address lines determine what memory location or I/O port the
transfer is for.

— The 5 basic control lines will be a read or write cycle line, a valid
address present line, an interrupt line, a DMA request line, and a
wait line.

In this basic system, the control bus will have the timing shown in
Fig. 6-1.

VALID -

womss 00K QAN
N

R/W /

[}
|
DATA MUST BE |
!
DATA VM FALLS

MEMORY FETCH

ADDRESS / 0(><S N\ \
R/) —_\ /-__

™
DATA WILL REMAIN
DATA W RISES.
MEMORY ?TORE
6.1 Timing on the Control Bus

216

These 29 signals are all that are needed for most simple parallel buses.
Timing will vary, and separate read and write lines may be used, but all
buses function in a similar fashion.

Future systems will require at least 16 data lines and perhaps as many as
24 address lines. In addition, many additional control lines are desirable for
flexible input-output management.

THE S100 BUS

The “‘hobby-computer’’ market was revealed at the Atlantic-City con-
ference in August 1976. The impact of one company, however, was greater
than most at the time. This was MITS, the producers of the Altair mi-
crocomputers. The bus they used in their 8080-based system had 100 lines.
Other manufacturers (in particular IMSAI) realized that making their
memories and peripherals compatible would help them sell in this new
market. Now there are over 600 different types of boards and systems
available for this bus from over 100 manufacturers.

The bus signals and definitions are presented in Tables 6-2 through 6-8.

Some problems of this bus are: clock lines adjacent to control signals,
pin layout problems, and power supply distribution.

The ®1, ®2, and 2MHz clock signals are near nine other control signals.
All of these clock-pulses have sharp rise and fall times and occur continu-
ously. Because of this, these clock-signals are most easily coupled to the
other lines, unless unusal shielding measures are taken. Because of the
2MHz clock present, the bus must be designed for 4MHz noise immunity
when no other signal occurs at that rate.

What if a board is unplugged with the power on? The possibility of the
—18 volts touching the +8 volts, due to misalignment, is great. If this
happens . . . well, let us hope it doesn’t. At best, only the regulators may
blow out; at worst, every chip tied to +5 volts may be damaged.

Ideally, boards should be protected against being unplugged or reversed
with power on. A symmetric arrangement of power pins that will shut down
all power if boards are inserted improperly is one good idea, and the careful
distribution of voltages in between grounded pins is another good idea.
Variations in supply voltage from module to module reduces noise immun-
ity and may cause difficulties. The solution is to use high quality regulators
costing more or matching those used (an impossible job). There is no best
way to solve this problem—and a central power distribution scheme has its
own problems.

The interrupt lines are reserved for interrupt requests to an interrupt-
controller board on the bus. No standard way of using these is established

BUS STANDARDS 217

PIN

THE S-100 BUS (ALTAIR)

NUMBER SYMBOL

218

10

11

12

13
to

18

+8V

+18V

XRDY

VIO

vii

Vi2

VI3

Vvi4

ViS5

vie

viI?7

*XRDY?2

NAME

+8 Volts

+18 Volts

EXTERNAL READY

Vectored Interrupt
Line O

Vectored Interrupt
Line 1

Vectored Interrupt
Line 2

Vectored Interrupt
Line 3

Vectored Interrupt
Line 4

Vectored Interrupt
Line 5

Vectored Interrupt
Line 6

Vectored Interrupt
Line 7

EXTERNAL READY 2

*New bus signal for 8800b.

TO BE DEFINED

STAT DsB

6.2

STATUS DISABLE

Altair Bus

FUNCTION

Unregulated voltage on
bus, supplied to PC
boards and regulated
to bV.

Positive
voltage.

pre-regulated

External ready input to
CPU Board's ready cir-
cuitry.

A second external
ready line similar to
XRDY.

Allows the buffers for
the 8 status lines to be
tri-stated.

PIN
NUMBER SYMBOL

19 C/C DSB

20 UNPROT

21 SS

22 ADD DsB

23 DO DsB
24 02

25 01

26 PHLDA
27 PWAIT

BUS STANDARDS

NAME

COMMAND/CONTROL

DISABLE

UNPROTECT

SINGLE STEP

ADDRESS DISABLE

DATA OUT DISABLE

PHASE 2 CLOCK

PHASE 1 CLOCK

HOLD ACKNOWLEDGE

WAIT

FUNCTION

Allows the buffers for
the 6 output command/
control lines to be
tri-stated.

Input to the memory
protect flip-flop on a
given memory board.

Indicates that the
machine is in the pro-
cess of performing a
single step (i.e., that SS
flip-flop on D/C is set).

Allows the buffers for
the 16 address lines to
be tri-stated.

Allows the buffers for
the 8 data output lines
to be tri-stated.

Processor command/
control output signal
that appears in response
to the HOLD signal;
indicates that the data
and address bus will
go to the high imped-
ance state and pro-
cessor will enter HOLD
state after completion
of the current machine
cycle.

Processor command/
control signal that
appears in response to
the - READY signal
going low; indicates
processor will enter a
series of .5 microsecond

WAIT states until
READY again goes
high.

219

PIN
NUMBER SYMBOL

28

29
30
31
32
33
34
35
36
37
38
39
40
41

42

43

44

220

PINTE

A5
A4
A3
A15
A12
A9
DO
DOO
A10
DO4
DOS
DO6
Di2
DI3

D17

SM1

NAME

INTERRUPT ENABLE

Address Line 5
Address Line 4
Address Line 3
Address Line 15
Address Line 12
Address Line 9
Data Out Line 1
Data Out Line O
Address Line 10
Data Out Line 4
Data Out Line 5
Data Out Line 6
Data In Line 2
Data In Line 3

Data In Line 7

MACHINE CYCLE 1

FUNCTION

Processor command/
control output signal;
indicates interrupts are
enabled, as determined
by the contents of the
CPU internal interrupt
flip-flop. When the flip-
flop is set (Enable
Interrupt instruction),
interrupts are accepted
by the CPU; when it
is reset (Disable Inter-
rupt instruction), inter-
rupts are inhibited.

(MSB)

(LSB)

(MSB)

Status output signal
that indicates that the
processor is in the fetch
cycle for the first byte
of an instruction.

PIN
NUMBER SYMBOL

45 SOUT
46 SINP
47 SMEMR
48 SHLTA
49 CLOCK
50 GND

51 +8V

52 -18v

53 SsSwi

BUS STANDARDS

OUTPUT

INPUT

MEMORY READ

HALT

CLOCK

GROUND

+8 Volts

-18 Volts

SENSE SWITCH INPUT

b) Enable the Display/

Control Board
driver’'s Data Input
(FDIO-FDI7);

FUNCTION

Status output signal
that indicates the ad-
dress bus contains the
address of an output
device and the data bus
will contain the output

data when PWR is
active,
Status output signal

that indicates the ad-
dress bus contains the
address of an input
device and the input
data should be placed
on the data bus when
PDBIN is active.

Status output signal
that indicates the data
bus will be used to
read memory data.

Status output signal
that acknowledges a
HALT instruction.

Inverted output of the
02 CLOCK'

Unregulated input to 5
volt regulators.

Negative pre-regulated
voltage.

Indicates that an input
data transfer from the
sense switches is to take
place. This signal is
used by the Display/
Control logic to:

a) Enable sense switch
drivers;

c) Disable the CPU
Board Data Input
Drivers (D10-D17).

221

PIN

NUMBER SYMBOL

54

55

56

57

58

59
to
67

EXT CLR

*RTC

*STSTB

*DIGI

*FRDY

TO BE DEFINED

*New bus signal for 8800b.

222

NAME

EXTERNAL CLEAR

REAL-TIME CLOCK

STATUS STROBE

DATA INPUT GATE 1

FRONT PANEL READY

FUNCTION
Clear signal for 1/0
devices (front-panel
switch closure to

ground).

B60HZ signal is used as
timing reference by the

Real-Time Clock/
Vectored Interrupt
Board.

Output strobe signal

supplied by the 8224
clock generator. Pri-
mary purpose is to
strobe the 8212 status
latch so that status is
set up as soon in the

machine cycle as
possible. This signal
is also used by

Display/Control logic.

Output signal from the
Display/Control logic
that determines which
set of Data Input
Drivers have control of
the CPU board’s bidi-
rectional data bus. If
DIGI is HIGH, the CPU
drivers have control; if
it is LOW, the Display/
Control logic drivers
have control.

Output signal from D/C
logic that allows the
front panel to contro}
the READY lines to
the CPU.

PIN
NUMBER SYMBOL

68 MWRITE
69 PS

70 PROT
7" RUN

72 PRDY
73 PINT

BUS STANDARDS

NAME

MEMORY WRITE

PROTECT STATUS

PROTECT

RUN

PROCESSOR READY

INTERRUPT REQUEST

FUNCTION

Indicates that the data
present on the Data
Out Bus is to be written
into the memory loca-
tion currently on the
address bus.

Indicates the status of
the memory protect
flip-flop on the
memory board current-
ly addressed.

Input to the memory
protect flip-flop on the
board currently ad-
dressed.

Indicates that the 64
/RUN flip-flop is Reset;
i.e., machine is in RUN
mode.

Memory and 1/0 input
to the CPU Board wait
circuitry.

The processor recog-
nizes an interrupt re-
quest on this line at the
end of the current
instruction or while
halted. If the processor
is in the HOLD state
or the Interrupt Enable
flip-flop is reset, it will
not honor the request.

—

223

PIN
NUMBER SYMBOL

224

74

75

76

77

78

79

80

81

PHOLD

PRESET

PSYNC

PWR

PDBIN

A0

A1l

A2

NAME

HOLD

RESET

SYNC

WRITE

DATA BUSIN

Address Line O

Address Line 1

Address Line 2

FUNCTION

Processor command/
control input signal
that requests the
processor enter the
HOLD state; allows an
external device to gain
control of address and
data buses as soon as
the processor has com-
pleted its uses of these
buses for the current
machine cycle.

Processor command/
control input; while
activated, the content
of the program
counter is cleared and
the instruction register
isset to 0.

Processor command/
control output; pro-
vides a signal to indi-
cate the beginning of
each machine cycle.

Processor command/
control output; used
for memory write or
1/0 output control.
Data on the data bus
is stable while the PWR
is active.

Processor command/
control output; indi-
cates to external
circuits that the data
bus is in the input
mode.

(LSB)

PIN

NUMBER SYMBOL NAME FUNCTION

82 A6 Address Line 6
83 A7 Address Line 7
84 A8 Address Line 8
85 A13 Address Line 13
86 A14 Address Line 14
87 A1 Address Line 11

. 88 DO2 Data Out Line 2
89 D03 Data Out Line 3
90 DO7 Data Out Line 7
91 Di4 Data In Line 4
92 Dis Data In Line 6
93 DIé Data In Line 6
94 Di1 Data In Line 1
95 DI0 Data In Line O (LSB)
96 SINTA INTERRUPT Status output signal;

ACKNOWLEDGE acknowledges signal for

INTERRUPT request.

97 SWO WRITE OUT Status output signal;
indicates that the oper-
ation in the current
machine cycle will be a
WRITE memory or
output function.

98 SSTACK STACK Status output signal;
indicates that the ad-
dress bus holds the
pushdown stack address
from the Stack Pointer,

99 POC POWER-ON CLEAR

100 GND GROUND

BUS STANDARDS 225

as 7Z-80’s, 6502’s (and even 6800°s) can also be used (and are used) in S100
systems.

The other host of signals are control signals. The S100 bus has far more
than anyone will ever need of these, and suffers from being designed before
a system-controller chip was made available for the 8080. Because of this,
many of the signals are due to the original Intel problem with pin limita-
tions, as discussed in Chapter 2. Obviously, a new S100 bus would be
needed, with these control signals reduced to a managable number. This
will probably never happen. A standard can always be improved: but it
won’t be—this is why it is a standard!

The S100 bus is a practical bus, and will perform well in most applica-
tions. The problems mentioned here should be avoided, when new bussing
schemes are being considered in the next few years for fu-
ture systems.

Y M3
T T T3 T T Ty
o A "\
e __ [\ /S S\

f15-0 J BYTE __/ syt \

ONE) TWO

-= < 7 g
D70 / sTaTUS _LSB'S’ / STATUS \MSB's /

PWR
STATUS
INFORMATION XSMWR >< SMEMR

6.9 Memory Read Cycle on S100 Bus

226

The bus provides: 8 data in, 8 data out, 16 address, 3 power-supply, 8
interrupt and 39 control lines. Other pins are unused or reserved for future
use.

The data-bus has been changed from the normal bidirectional 8080 bus
to two unidirectional data buses. One for data-input to the processor, and
one for data-output from the processor. In this system, there is no real
advantage to this, as many peripherals actually hardwire the two buses
together. There is also no real disadvantage, except the need for eight
more pins.

The address-bus is the typical buffered 16-address-lines, which are
found in every standard microprocessor system.

The power-supplies are most interesting. There are two philosophies for

.
o S\
e_ [\ S [

A MEMORY \
15-0 ADDRESS

D / S'I'ATUSY ACCUMJILATOR \
PSYNC _/_—\

PDBIN

|/

STATUS
INFORMATION X o

6.10 Memory Write Cycle on S100 Bus

BUS STANDARDS 227

power distribution: regulate at a control location and distribute power, or
regulate locally on each module. Altair chose the latter. It is a good choice
because power distribution to the modules is simplified, and noise cross-
coupling between the modules is reduced. It is a more expensive choice in
that the regulators cost must more than a single good regulator would cost,
and it is a marginal choice due to the variations in regulated voltages be-
tween modules.

The design of an S100-bus-compatible peripheral is discussed in the
example at the end of this chapter. Timing diagrams for memory-fetch and
store cycles are presented in Fig. 6-9 and 6-10. They illustrate the basic
timing of the 8080 system, and the basic signals used for these transfers.
Note how the most important signals are PWR and PDBIN. These two
signals control the direction of the data on the buses: fetching or storing. In
conjunction with the status information, all memory transfers can be iden-
tified by these few lines.

A 6800 SYSTEM BUS:

Described here is the Altair-680B 6800-system-bus. This bus was well
thought-out, by comparison to the problems of the S100-bus.

" The system has eight bidirectional lines for data, sixteen unidirectional
lines for address, and nine control lines.

The data and address buses are quite the same as any other system’s
buses. The control lines contain the minimum number of useful lines
needed. They are: clock @2, reset, halt, R'W, VMA, DBE, R/W-P, BA,
and TSC. These are summarized in Table 6-11. Not described in the Table
are the IRQ and NMI interrupt-request lines. They appear also on the
control bus.

This bus provides clean, concise signals for fetching and storing informa-
tion. It is an example of a well thought-out design. Unfortunately, the &1,
and ®, drive and ®2-drive clock signals are present on this bus for no
reason, except presumably to decrease noise-immunity. One well-isolated
high-speed clock is all that most buses can have, without resorting to un-
usual and expensive shielded backplanes.

IEEE-488-1975

This bus is intended for connecting systems, rather than modules. Such
devices as computers, voltmeters, power-supplies, frequency-generators,
and others can be equipped with a 488 bus. The 488-bus was a result of three
years of discussion in the IEC (International Electrotechnical Commis-

228

SYSTEM CONTROL BUS
The System Control Bus censists of the following signals:

CLOCK: The system clock is a 500 KHz asymmetrical, two phase,
non-overlapping clock that runs at the vce voltage level. Phase
one (01) is used for internal chip operations. All data transfers
take place during Phase Two (02). Therefore, 02 is used
throughout the system to enable memory and interfaces such
as the Asynchronous Communication Interface Adapter
(ACIA).

RESET: This input is used to initialize the system after a power down
condition due to either an initial start-up or power failure.
It is also used to reinitialize the MPU at any time after start
up. When a positive edge is detected on the RESET input,
which is caused by a manual front panel reset, the MPU will
begin the restart sequence. Within the restart sequence, the
Program Counter is loaded with the contents of the reset
vector location (FFFE, FFFF), which contains the starting
address of the System Monitor.

HALT: The Halt line is used for external control of program execution.
When in the high state (RUN), the MPU will fetch the instruc-
tion addressed by the program counter and begin program
execution. When the Halt line is low, all of the activity within
the MPU will be halted. The Bus Available (BA) signal will
then go high and the Read-Write (R/W), Address and Data lines
will all be in the high impedance state. With BA high, the front
panel addressing and data deposit functions will be enabled.

R/W: Read/Write controls and indicates the direction of data trans-
fer. When in the high state (READ), data is read into the MPU
from memory and peripherals. When in the low state (WRITE),
data is written into memory or peripherals. When the processor
is halted, R/W will turn to the off (high impedance) state.

VMA: The VMA output indicates to the memory or the peripherals,
such as an ACIA, that a stable, valid memory address is on the
bus.

DBE: The DBE input is the three-state control signal for the MPU
data bus and will enable the bus drivers of the 6800 when in
the high state. Phase 2 is used to directly drive this input.
During an MPU read cycle, the data bus drivers are disabled
internally, i.e., within the MPU.

R/W-P: Read/Write-Prime is developed by NANDing the Read/Write
signal and 02. The Read/Write-Prime signal assures that data
will always be read or written while the data bus is enabled and
not during period of invalid data.

BUS STANDARDS 6-11 229

sion). In 1974, the IEEE approved the IEC draft, resulting in IEEE-488-
1975. Hewlett-Packard was one of the prime influences in the development
of this bus, and the handshake technique used is patented by Hewlett-
Packard. All producers of a 488 compatible interface must purchase the
license to use the bus handshake circuitry (The bus is sometimes called
HPIB or Hewlett-Packard Interface Bus).

pu— DATA BUS (8)
<

N

”
DAY t DATA

NRFD BYTE
NDAC RANSFER

1FC
ATN
SRQ

REN

! T </ T \/ I \/ \/

DEVICE A DEVICE B DEVICE € DEVICE D

GENERAL
INTERFACE
MANAGEMENT

= TALK - TALK === - TALK
= LISTEN = LISTEN =~ LISTEN —-
- CONTROL iy puetiy —

EX: MPU EX: DMM EX: SIGNAL EX: COUNTER
GEN,

6.12 488 Bus Signals

The basic bus connects to devices that can do one or more of the
following:

1. control other units — controller
2. take information from the controlling unit — listener
3. give information to the controlling unit — talker

The bus consists of eight bidirectional data lines, three byte-transfer
control lines, and five general control lines.

The eight data lines will carry: device commands (only 7 bits used),
address and data (8 bits).

Since this system has no address or complete-control buses, the data bus
is used to perform all these functions. The rest of the lines control the
function of the data-bus and how it is used.

The transfer-control lines are used to implement the ‘‘handshaking’’
required between the device outputting and the device inputting.

The last five lines control the general conditions of the system. These
are: Attention, Interface Clear, Service Request, Remote Enable, and
End-or-Identify.

230

Attention, when false, indicates that the data-lines contain data from one
to eight bits. When true, the data-bus contains a seven-bit command or
seven-bit address.

Interface Clear puts the system in a known state. It is similar to a
system-reset.

Service Request, when set true, flags the controlling unit to indicate a
device needs attention.

Remote Enable sets the mode of each device, in conjunction with other
codes, to operate remotely or locally.

End-or-Identify is used to flag the controlling unit, as to the end of a data
transfer.

The ‘‘handshaking”’ function is used when devices must wait for infor-
mation to become available. One line says, ‘“How do you do?’’ The other
replies, ‘‘Fine, thank you, I have something for you’’. In return, the reply
is: “‘Please give it to me, I am ready’’. The dialogue continues with, ‘‘OK,
here it is’’, and ends with, ‘*“Thank you, nice meeting you.”

In our case, we have three lines: DAYV (data valid on data lines), NFRD
(not-ready-for-data; true indicates information accepted by listening de-
vice), and NDAC (not-data-accepted; true indicates system module ready
to accept data). The timing of the handshake appears in Fig. 6-13.

FIRST DATA BYTE SECOND DATA BYTE

A_V////////////////////////////AQ

Q.0

HOT VALID

@A VALID @

NRFD

NDAC

NONE ACCEPTED

o t8 ty tioln tl2 613tk
&

SOME
ACCEPTED

]

11
ma———‘jg AcDs g: ANRS—=

6.13 488 Handshake Timing

t2 t1 tp tl t2 t

SCHB:
SOURCE HANDSHAKE FUNCTION

ACTIVE STATE SEQUENCE

ACCEPTOR HANDSHAKE FUNCTION
ACTIVE STATE SEQUENCE

Note how all listening devices must accept the transfer of data before the
next transfer is initiated. If it appears complex — it is! Use of this standard

BUS STANDARDS 231

requires complete knowledge of all the states allowed by the protocol.
Some simple examples are presented in Fig. 6-14.

A DATA BUS

SOURCE r 1
TALK LISTEN
hmusws]:-I n I‘] i
DEVICE i
DATA l b
LAST
BYTE

INDICATOR 6.14 Talker

DATA BUS >

ADDRESS

ATA \Z

D
r==="

DEV,

I il ACCEPTOR
1 TALK pt—— LISTEN | HANDSHAKE
| !

¢ 1

6.14% Listener

b d

In the “‘talk’’ example, the controller sends the address and command-
to-talk to the talker, by using ATN and the data-bus. Upon recognizing its
address, and the command, the talker will then send information to a lis-
tener, via the data-bus, using the handshake signals. When the transfer is
finished, the EOI line may be used to indicate the end of the block.

The “listen’” example works similarly. The controller sends the address
via the data-bus, using the ATN line as before. In this case, the command
sent next is for the device to listen to a talker. The transfer of data, byte by
byte, is then begun using the data-bus, and handshake signals. The EOI
then indicates that the transfer is complete.]

In summary, the IEEE-488 bus represents quite an advancement in intel-
ligent data acquisition systems. As more manufacturers produce compatible
equipment, the standard will become even more widespread. In fact, the
Commodore Business Machines home microcomputer system is equipped

232

with an IEEE-488 bus interface. This may indicate a new trend in home
computing as well as in industry.

The example presented here illustrates how a 6800 system can be inter-
faced to the 488 bus. The schematic appears in Fig. 6-15, and contains two
PIA’s, bus transceivers, and some random logic for the control lines. The
software uses over 800 bytes of ROM for the program, and 1024 bytes of
RAM for buffer space.

- L=
{) 4 data
dd F

RANDOM
LOGIC

CONTROL contrOl

LINES

v mode switches

____________ .‘l
control |
\ ’11——le 7] |
— I 18 ! l Y |n—oo—
T8 8 568§ 5§ T,
6.15 6800 to 488 Bus Interface
CAMAC

The TEEE-583 standard describes what is known as the ‘‘Computer-
Automated-Measurement-and-Control-Standard or CAMAC. These also
cover CAMAC related standards.

The CAMAC concept covers all areas of instrument interfacing. There
is the rack and card-cage standards for physical dimensions, there is the
power-supply standards, and there is the ‘‘dataway’’ bus standard. In addi-
tion, there are standards for the inter-rack bus: the *‘parallel highway,”’ and
serial inter-rack communications: the *‘serial highway.”’

It was developed for the nuclear industry, and all domains of the
CAMAC standard contain rigorous specifications. CAMAC systems are
required to be built to quite exacting standards.

Physical Dimensions:

Fig. 6-17 illustrates a CAMAC *“‘crate’’. The crate is the basic system
sub-unit. 1t contains a controller, and up to 24 peripheral interfaces. The

BUS STANDARDS 233

,_"{Hs!.ﬁhi

6.16 HP 1600S Analyzer

234

6.17 CAMAC CRATE with Modules

BUS STANDARDS 235

' :i’ §§0§0f§o§-o ey ’_

P

Vigie iR igieieiei e ee i

it _ﬁfi .

y
f ’

f o
.

6.18 CRATE and Power Supply
236

size of each card, and the connector types, are all specified.
Power-Supply

The power-supply is a four-voltage type, supplying regulated +6 and +24
volts. Stability, regulation, and transient suppression are all covered in the
standard. Remember that the power supply, while often ignored, is the
basic most important unit in any system. Any flaws in the power supply will
show up everywhere else in the system. Thus, CAMAC does something no
other standard does: it guarantees the user that the power supply will be the
least of all problems in the system. Fig. 6-18 illustrates the crate and
power-supply (Pictures are courtesy of Lawrence Berkeley Laboratory).

Dataway

The CAMAC Dataway bus consists of the following lines: three control,
five command, five address, twenty-four read, twenty-four write, two tim-
ing, and four status. The lines are described in Table 6-19.

The three controls are: initialize, inhibit and clear. These signals are
used to put all devices on the dataway into a known state.

The five command lines determine the function to be performed. The 32
possible functions are all defined in the standard. Some functions are for
read, write, and status transfers. Others are either reserved for future use,
or not defined.

The 24 read and write lines form the data bus. If extra address informa-
tion is required, the data buses may be used to load further address informa-
tion. 24 bits allows for simultaneous transfer of three 8-bit bytes for efficient
operation. Since some CAMAC systems contain microprocessors, these 24
lines could carry the address and data from the microprocessor. Since data
transfers may occur as fast as 10° period second, this bus has a greater
bandwidth than the other buses so far described.

CAMAC can transfer: 24 bits x 10¢ transfers/second, or 24 million
bits/second. This is important in nuclear applications, where large amounts
of data must be transferred quickly during each experiment.

The two timing signals provide the information necessary to indicate
when data are valid.

The status lines are used to monitor the requests for service to the
controller from the peripheral dataway interfaces. There can be 24 separate
requests in a single crate.

In summary, the CAMAC standard truly implements a concept. It cov-
ers all aspects of the communication problem. It includes standards for
data-formatting and crate-to-crate communications, as well as software
conventions.

BUS STANDARDS 237

A list of Dataway signals available at each of the normal

stations 1 through 24 of a 25-station CAMAC crate

Use in Module

Title Designation
Common Control Signals
Initialize Z
Inhibit I
Clear c
Commands , addressed
Function codes F1,2,4,8,16
Addressing
Station number N
Subaddress A1,2,4,8
Data
Read bus R1-R2k
Write bus WL-w2h
in,

Strobe 1 and Strobe 2 51,52

Status
Look-at-Me L
Q-Response Q
Command Accepted X
Busy B

Sets registers or control functions in a module
to an initial state, particularly when power
turned on.

Disables features for duration of signal.
Clears registers, or resets flip-flops.

Carried on Dataway in binary code. Defines the
function to be performed in a module during
command operations.

Selects the module. There is an individual 1line
from crate controller to each station.

Also binary coded. Selects a location, within
the module, to which the command is directed.
There are 16 possible subaddresses.

Transmits digital information from module to
Crate Controller. Format is bit-parallel words,
24 bits maximum,

Transmits digital informstion from Crate
Controller to module. Format is same as for
Read bus.

These strobes are generated by CC during every
Dataway operation. Used by modules for timing
acceptance of data or execution of features of
an operation.

A signal from module to Crate Controller indicating
request for service or attention. There is an
individual line from each module to control
station.

A one-bit reply by module to certain commands
issued by Crate Controller.

Indicates the ability of a module to execute the
current command operation.

Indicates a Dataway operation is in progress.

6.19 Dataway Signals

238

SERIAL STANDARDS:

Serial transmission requires only one or two wires to carry all necessary
signals between modules or systems. In order to transmit address, data, and
control, they must be sent bit by bit.

Described here are the RS232C, RS422 and 423, asynchronous and syn-
chronous communication standards. In addition, data standards such as
ASCII and SDLC will be covered.

EIA-RS232C

The Electronics Industry Association (EIA) standard RS232C covers
the electrical specifications for bit-serial transmission, as well as the physi--
cal specifications. It defines the handshaking signals used to control stan-
dard telephone connection equipment, and standard modulator-demod-
ulators (modems).)

Electrically, the standard uses nominal plus and minus 12 volt pulses to
effect information transfer. The RS232C standard specifies a 25-pin connec-
tor with the signals shown in Table 6-20. All 25 lines are specified, but only
the first fifteen in the Table will be described.

- GROUND

- XMIT DATA (70 COM EQUIPMENT)
- REC DATA (FROM COM)
- REQUEST TO SENT (T0 COM)

- CLEAR TO SEND (FROM COM)
~ DATA SET READY (FROM COM)
~ DATA TERMINAL READY o com)

~ RING INDICATOR (FROM COM)
~ RECEIVED LINE SIGNAL DETECTOR (FROM COM)
~ SIGNAL QUALITY DETECTOR (FROM COM)
- DATA RATE SELECTOR (70 COM)

~ DATA RATE SELECTOR (FROM COM)
-~ TRANSMITTER TIMING (70 COM)

- TRANSMITTER TIMING (FROM COM)
- RECEIVER TIMING (FROM COM)

+

SECONDARY DATA AND REQUESTS

6.20 EIA RS232C Signals

The secondary lines provide the data and control paths for a second
serial channel running at a much lower speed than the primary channel. The
second channel is then identical to the first, except for speed. The second
channel is hardly ever used, but when it is, it contains control information
for the modems connected at each end of the communications line.

The main signal lines are transmit data and receive data. These lines are

BUS STANDARDS 239

used to send serial information between the two systems. The bit rate may
be any one of the following standard rates:

19,200 1,200 110

9,600 600 75
4,800 300 50
2,400 150

Other rates are also occasionally used. The teletypewriter terminals run at
110, 150, or 300 bits/second. CRT terminals typically use any of the speeds
above 1,200.

Quite often, serial data are transmitted over telephone voice-grade lines.
The data must first be modulated, so that they may be transmitted. For bit
rates of less than 300, the method of modulation is known as FSK:
frequency-shift-keying. The ‘‘marking”’ or logic *‘1*’ condition is repre-
sented by a tone of given frequency, and the “‘spacing’’ or logic ‘‘0*’ condi-
tion is represented by a second, different, frequency. Bit rates above 300
must use phase-modulation techniques, due to the lack of available
bandwidth. Quite often, voice-grade lines are too noisy for high-rate com-
munications. More expensive data-grade lines must be used.

The other signals are used to indicate the status of the modulator-
demodulator (modem) communications link. Signals such as: ‘‘request-to-
send”’, ‘‘clear-to-send’’, ‘‘data-set-ready’’, ‘‘data-terminal-ready”’, are
used to control the modem link.

PHONE LINE ANSWERED

-

CLEAR TO SEND I

DATA TERM READY l

DATA LINES

%Hffﬁ

6.21 EIA RS232C Modem Handshake

240

The timing in Fig.6-2] is meant to show a typical communications
transaction. Note how the signals between the modem (communications
equipment) and the computer (or terminal) implement a similar kind of
handshake to that used in most buses—especially the IEEE-488. The dif-
ference, in this case, is that the handshake is used only at the beginning, and
end, of a block of serial data.

RS232C is popular, as almost all dial-up time-share systems use this
standard in their communication subsystems. A similar standard is current-
loop. This is used in the mechanical teletypewriters. A good thing to do is to
convert all loop devices to EIA-RS232C via a loop-to-EIA converter. In
this way, all communications become standardized. A loop-to-EIA con-
verter for a teletype is shown in Fig. 6-22. Also useful is what is known as
auto-loop back, shown in Fig. 6-23. This is where the computer, terminal,
or modem, does not have the full standard implemented. The jumpers
specified will usually allow the devices to believe that all conditions are
“OK”’ for data to pass. k

TTY
LOOP. EIA
+ oO—m— = + v
KEYBOARD
3.3
- & NS TO COMPUTER
i 3.3K r

+ O—m I 10k
PRINTER A
FROM COMPUTER
-9 W o1l |

vlerIys 4, 5, 8, 20 TOGETHER
ON EACH PLUG
/ GROUND /ﬂ
XMIT RCV
COMPUTER - - MODEM
_ OR
B TERMINAL
1 - RS232C LINK —_— "KJ

6.23 Auto Loop Back Connection
BUS STANDARDS 241

RS422 and 423:

RS232C transmits signals as single-ended voltages. The ‘‘mark’ or
“‘space”’ condition is represented by the voltage between two wires. Thus,
the transmit path has two wires, and the receive path has two wires. The
advantage is that the path may be physically longer between devices, due to
the noise immunity of a differential channel. In the same way, the data rate
may be higher, due to reduced noise effects.

CHARACTERISTIC RS232 RSb22 RSb23

MAXIMUM LINE LENGTH 100 ft. 5000 ft. 5000 ft.

MAXIMUM BITS/SEC. © 2 x 10t 106 105

DATA "1' = MARKING 1.5 36V — VA VB VA = -

DATA "0' = SPACING +1.5V 436V VA VB VB = +
_—

SHORT CIRCUIT 100 100 200

TAWER-OFF LEAKAGE,

MAXIMUM VOLT APPLIED 300 100 A 100 A

TO UNPOWERED

g-h.m * 1.5V (single-ended)| 100 mV (differential) | 200 mv (differential) |

6.24 Comparison of RS232C, RS422, and RS423

Fig. 6-24 illustrates the difference between the three standards. Fig. 6-25
shows the types of drivers and receivers used for the lines. RS422 and 423
are not used often due to the already widespread use of RS232C and the
infrequent need for such high data rates and line lengths.

Of course, the data sent back and forth may be formatted in many ways.
The topics of asynchronous, and synchronous data transmission and stan-
dards for information exchange will be covered next.

ASYNCHRONOUS COMMUNICATION

When data are sent in bursts of equal duration, without clock informa-
tion, they are being sent asynchronously, without a clock. When data are

242

TTL py TTL
7
12 VOLTS

—_:IT‘ MC1L88 MC 1489 "[

COMMON GROUND

RSk22
TTL TTL
]'>‘ l_/’ =
~ MC1h MC -
< NO COMMON GROUND ——
(UNBALANCED DIFFENTIAL
TRANSMISSION)
Rsk23
/ ..
TTL S { TTL
3
7 / p”
{{
4

l)k—db

(BALANCED LINE) =

6.25 Drivers for RS422 and RS423

sent with synchronizing character codes imbedded within the blocks, they
are being sent synchronously: with a clock.

The most common asynchronous data structure, shown in Fig. 6-26, is
used by most CRT’s and teletypewriters. It consists of the 10 (or 11) bits
described in Chapter 4. The start bit, eight data, and one or two stop bits,
comprise a character. The most popular standards for character codes are
ASCII and EBCDIC.

ASCII stands for ‘‘American Standard Code for Information Ex-
change’’. It uses seven bits to encode 128 possible characters. An eighth bit

5KP1|SKP%
MARK = ~ —-= T T
) 213145161718
S R A ED A0 B
9,09 Ms -"T'“
1
DATA READY }

6.26 Serial Data Format

BUS STANDARDS 243

may be used for parity. Note that many codes are used for controlling the
functions of a data link. Codes such as: **Begin Text’’, “‘End of Text”, etc.
are used to format and transfer blocks of characters.

EBCDIC is similar except that the 128 codes are encoded differently.
Simple code-conversion ROM’s can convert ASCII to EBCDIC, and
EBCDIC to ASCII. Such a ROM has 8 inputs: seven address-lines for the
data input, and one address-line to specify the conversion (either ASCII to
EBCDIC or EBCDIC to ASCII). It has seven outputs for the converted
character. The size of this ROM would be 256 bytes by 7 bits/byte. This is a
small ROM by today’s standards and it is relatively inexpensive to program
or purchase.

Who uses EBCDIC? IBM. Who uses ASCII? Practically everyone
else. Other codes exist, such as the five-bit Baudot code (obsolete today)
which can also be converted also by a look-up ROM.

Naturally, a program may be also be used to convert from one code to
another.

BIT NUMBERS
o o |o °o 11 1 1
o [o |1 1]o0 jo 2 1
I 0 1] o 10| 1fo0 1
b7 B6 | bs| ba| b3 | by | by [\ HEX 1
IR AR RERIRE HEX 2 oy 2 3Iv)5 |6 7

6jo fo'|o 0| NUL | DLE| SP of e p|- P
oo o1 1| SOH | bC1 H 1] Al Q] a q
o jo |1}o 2| sTx | DC2 . 2| B| R| b r
oo 1|12 3| ETX | DC3 ’ 3] ¢| s| e s
o1 o |o 4 [EOT | DCU s al of 1| 4 t
of11]o0 1 5| ENQ| NAK[% S| E| Ul e u
o1 |1 o 6| ACK| SYN| & (6] P| V[r v
ol111 11 7| BEL| ETB| ¢ 71 of w| g w
1]0fo]o 8| 8BS | caN (8 H x| n x
1{ofo |1 9| HT | EM) 9l 1| Y| 1 y
1o |1fo 10{LF | suB| Jloz| z
101 (12 11| vr | ESC + Y I I {
1140 o0 12 PP | Ps . <] L \| 1
110 (1 13| ¢R | Gs - -l M I} m]
111110 14 so | Rs - > N Al n] o~
111 (1] 15 S1 [US / 2l ol °| o DEL

6.27 ASCII Code Table

244

W= A oo

RS R

4 g
o1doua

T fIapuxay

mMIZEOMOE

«RUARL DGR~

e g

RHIBIK]

Kl
W
ag
o8
ad
vé
6a
Pr
u
94

Tuw Dapuxafy

eI >3 KRN

—Sx~8EE0RCL

13

u
W4 g
pitink)

Tuwoap Xl

H
3
?
3
3
q
L
“
h
[
'
i
]
[
(
.
$

hia ¢

a3

Tow}oapexay

LRI

k3 LI
Rl (ki]

f eCT T

I g
311043

CHAMrNYrROKRLAWLQ

Tuwy33puxs

EBCDIC CODE TABLE

6.28

245

BUS STANDARDS

SYNCHRONOUS COMMUNICATION

An asynchronous transmission format contains at least two extra bits per
character: start and stop. When data are sent as a continuous stream of bits,
with no start or stop, the receiver might loose its timing, and scramble the
incoming data. To prevent this, synchronizing characters are sent every
hundred or so bytes. There exists the necessary logic, at the receiving end,
to resynchronize the decoding circuitry, often enought to remain locked in.
Using this method, known as synchronous communication, there will only
be eight extra bits, for every 800 bits. This is 1% extra data versus 20%
extra data in the asynchronous case.

Various protocols are used for synchronous data links. A simple one that
was described earlier is the data-format for the floppy-disk, or the KIM-1
tape-recording standard. The format for the disk is similar to most syn-
chronous formats. In general, the transmission begins with a few syn-
chronizing characters, continues with long data blocks interspersed with
synchronizing characters, and ends with a parity or check-sum character,
plus end-of-record character. Upon receiving a block, if the check-
character does not agree with the data, the receiving end will ask the trans-
mitter to retransmit or try again.

l SYNC CHARS I“CA':SI DATA I . I DATA I‘”‘“j‘"? EI SYNC CHARS ** I

@ s PREAMBLE — . POSTAMBLE -

Synchronous Data Format

*SYNC AS OFTEN **MAY NOT BE NECESSARY
A8 NEEDED MAY
NOT BE NECESSARY

IBM Bi-sync, SDLC, and other protocols differ in complexity and
communications control abilities. Basically, they are all synchronous for-
mats. An important point of synchronous communications is that the error
checking schemes are much more complex than in asynchronous communi-
cations. Since synchronous communication saves as to the number of bits
transmitted, extra bits are sometimes added to each block so that, not only
errors can be detected, but they can be corrected. This means retransmis-
sion may not be necessary.

A CASE-STUDY: INEXPENSIVE ANALOG BOARD FOR S100 BUS:

This circuit in Fig. 6-29 shows a digital-to-analog converter with analog-
to-digital conversion capability. The circuit has 6 integrated circuits: one

246

AS 1TV OL

NOILD3LOYd
4NdNI
HOLVHVJWOD

u.o—

.n_\s 28
LNdN) —\ g
39VLI0A NMONMINN
A0L-0 AG+

sELSINL 3

ot 4300030 M
1ndN) w

MA “ V
0L

o
.OII..Iml
Q
13A31 01 %028
ﬂ — 1nos
43IANAY 000LX NIVD 19 Z0] p15vwe —

ONVN umd

Swoot *HV
>m_._ SNg viva jo L 118
A
€| v/a 1no0 X
" _ HOLV
] 8 8 1nd1no [\e
ASlL+ _ sng viva
B0¥IOW ziz8

dNIS
NIgad

39V.110A
NMONM y34an

247

S100 A/D, D/A Board

6.29

BUS STANDARDS

triple three-input nand-gate, one 74LS138 decoder, one 74LS125 tri-state
bus-driver, one 8212 octal-latch, one MC1408 D/A converter, and one
L.M324 quad operational amplifier. With these components, an S100 bus
analog measurement assembly has been designed.

Features of this module are:

— S100 bus compatible, only 1 LSTTL load per bus-line

— 8-bit resolution for both D/A and A/D

— DJ/A conversion in 20us

— A/D conversion in 1ms

— 0-10 volt input and output with extra 1 to 1000 gain stage for low-level
inputs. :

The circuit will be described part by part, to explain the function of each
component.

The Hardware:

The output data-bus which performs all data transfers to memory or
output ports is connected to an 8212 latch. Each bit is loaded by an input of
the latch. Each input represents 24 of a low-power-Schottky input load.

The 74L.S138 decoder, along with the 74L.S10 and 74L.S04 decodes the
output to port “‘F8’’ (hexadecimal). The address is partially decoded by ¥4
of the 74LS10 so that bits A7, A6, AS must all be “‘1’s’’ to enable the
74LS138 decoder. Then the bits A0, A1, A2, A3, and A4 are decoded by
the 74L.S138. The first output represents ‘‘FO’’ on the low eight address-
bits. This enables one of the chip-selects on the 8212 latch.

The other chip-select is driven by the condition PWR false and SOUT
true. This is done by inverting PWR and “NANDing’’ it with SOUT. The
output of the NAND is passed through an invérter to the second chip-select
of the 8212.

This way, the output data-bus is latched into the 8212 latch when the
address is ‘“F0’’, and the control signals indicate an output instruction is
being executed. The timing is shown in Fig. 6-30.

The latched data is sent to a MC1408 digital-to-analog converter. At the
output of the converter, a current proportional to the binary input is pres- .
ent. In order to convert it to a voltage, a current-to-voltage converter circuit
is used. It is implemented with Y of the LM324 quad op-amp.

The output is now a voltage between 0 and 10 volts for inputs between
00" and ‘‘FF”’ (hexadecimal). The next op-amp, in the LM324, is used to
buffer the output so that an output may be driven, without affecting the
comparator section.

248

i) "))
k) T 13 T T T T no!l N T n
«N A W N VN VS N 3 WO W U
. !
o f arre : @ a’: X ‘i xg::sv;cz \ .
Oro / L __ /] roating F A N T T[T X Jaccumutaton\ ;
e L — Iam |
am e : i
READY - i
o : i
wair il : !
- K
wrontt © ® 1o

6.30 S$100 Output Write Cycle Timing

The third op-amp is used as a comparator for the analog-to-digital con-
version. The op-amp compares the unknown input with the output of the
D/A. If the unknown signal is too small, a variable-gain amplifier, im-
plemented with the fourth op-amp is used to boost the signal. Note the
protection diodes, that are used, so that no damage will be caused to the
inputs, as long as voltage transients there are kept below 100 volts.

The output of the comparator is clamped to TTL levels by the resistor-
diode combination, so the 74L.S125 tri-state driver can be driven. The driver
is enabled by an input command, and the address *‘F9”’ (hexadecimal). The
decoding is done similarly to the output port, except that the second output -
of the 74L.S138 is used to decode the address “‘F1.’” In addition, the control
lines PDBIN and SINP are ‘““ANDed’’ with the address, to enable the
driver to bit 7 of the data-bus.

By driving bit 7, we can input from port *‘F1°*, rotate bit 7 into the carry
bit, and test the carry, to see if we are above, or below, the unknown input
voltage. Outputting a new value to port *“F0’’, and checking “‘F7’’ again,
will form the basis of our analog-to-digital converter. Timing for an input
operation appears in Fig. 6-31.

Power is supplied by the +5 volt voltage-regulator for all Vcc pins, and
the Zener-diode regulators for the + and — 15 volts voltages, required for
the op-amp package. ,

Note that three of the bus drivers were used as inverters. Fig. 6-32
shows how this is done.

BUS STANDARDS 249

L ’ \ ! . : : ;

i . 1/0 DEVICE NUMBER

awe | [isvre \unknown /-, BYTE .4 INPUT DATA TO

| | ONE TWO ACCUMULATOR

o - "

o0 L[] V.o =4 FLOATING / vt s 14 K
; ;

SYNC [\ ’ / \ / \ .
- .
I [;

oo 4\ B sanen ¥ 4\

READY
WAIT
WR

. . 1 i
. ’ i }
Wotanon | /® f(® Xo

, L

631 $100 Input Read Cycle Timing

+ 6V 7415125

OUTPUT

INPUT 6.32 Use of 74LSI25 As An Inverter

When the input is low, the driver is enabled, and the output will be pulled
up to a logic ‘‘1”’. When the input is high, the driver is disabled and the
240-ohm resistor pulls the output to a logic ‘‘0’’. We could have used a hex
inverter for these functions, but it would have increased the parts count.

The Software

For digital-to-analog conversion, the binary value to be converted is
output to port ‘‘FO’’. Each step represents 10.0 volts/256 = 39.0625 milli-
volts. This means that if you want 2.5 volts out, the binary number is:

vout convert
=3 = Numijy ——— > Bin:
39.0625 x 10 to
binary

250

or

2.5
= 6419 ——» 0100 0000

39.0625 x 10°

or 40 hexadecimal. 80 hex will be § volts, because the converter is linear. In
software we need:

MOV A, M : get value from memory to output
OUT FOH : output

QUESTION: What is the highest frequency we could generate with this
converter?

ANSWER: Since the sampling theorem states we need to sample, or, alter-
natively, to output a value, at least at twice the rate of the highest
Sfrequency—we would have:

—_— 15 = fmax
conversion
or
I
—— - 14 =250 Khz
20 x 107°

In practice, our program will not be able to fetch information fast enough to
use this bandwidth; but, we will be able to generate music or voice range
sounds.

Analog-to-Digital Conversion

To perform the A/D conversion, we need to implement the successive-
approximation algorithm in software. Another technique which can be used
is the counting conversion technique. Both will be discussed.

Successive-approximation was presented in Chapter S. In order to code
this into an 8080 assembly-language subroutine, we need to examine the
flowchart of Fig. 6-33.

A program that will perform this conversion appears on Fig. 6-34. Note
how this program uses the ““NOP’’ and “CMP E,M"’ instructions to bal-
ance the timing of the ““JC’’ instruction. This is done so that the conversion
will take the same amount of time to execute through either path of the
flowchart.

BUS STANDARDS 251

CALL CONV:

Set Bit Mask

fSet Guess = HI

——————— JOUTPUT TO DAC

otate Bit
Mask, is it
g2

INPUT SENSE

Or Guess DONE (RET)

‘1' With Mask

NO
last guess
to small

YES last guess to,big

Driv. old Bit Mask and
AND with guess

6.33 Successive Approximation Flowchart

The conversion time is 373.5 uS according to the instruction execution
times, without a wait state. We can only sample every 380 uS approxi-
mately.

QUESTION: What is the highest frequency we can sample?

252

MVI
MVI
MVI
GUESSOUT: MOV

ouT

MOV
RRC
RC

MOV

IN

RLC
JC

MOV
RRC
MOV
Mov
ORA
MOV
CMP
JMP

BIGGER: MOV
CMP

Mov
RRC
MOV
NOP
JMP

6.34

BUS STANDARDS

D, 80H : temp mask in D
B, 80H : mask in B

C, 80H : guess in C
A,C

DAC ¢ OUTPUT GUESS

done if carry bit

set

D,A

GUESSOUT

Program For A/D Conversion

253

ANSWER: Again, according to the sampling theorem it is:
1

- 15 = fmax
conversion time

1

¥ =1316 HZ
380 x 107

This means our converter can just barely go fast enough to digitize speech.
If we know our input is a slowly-varying waveform, we can convert in a
simple fashion. The flowchart appears on Fig. 6-35.

INIT
COUNTER

!

GUESS
(1/2 wAY)

i

OUT TO DAC

NO @ YES
NO
CoUNT COUNT
ul, DOWN 1 uP 1
YES T

. Y]
1 STORE IN
TABLE
poxz 6.35 Slow Conversion Flowchart

NMAX

GUESS VOLTAGE

ACTUAL VOLTAGE

The routine, as coded in Fig. 6-36 will place a new guess in memory
every 45 uS. As soon as 256 samples have been taken, the program will exit.
Note how instructions to store guesses, and ‘‘check for the end-of-table’’,

254

LXI H, TABLE START

MVZ A, 80H
LOOP: OUT DAC
MOV M, A
INX H
MOV B,A
MOV A,L
CPI
RZ
MOV A,B
IN SENSE
RRC
JC BIGGER

INR A
CMP E,M

JMP LOOP

BIGGER DpCR A

NOP

JMP LOOP

6.36 Software For Slow Guess Table Converter

BUS STANDARDS

OUT GUESS
STORE GUESS

ADVANCE TO NEXT ENTRY
POINT

255

are placed before the ‘‘IN’’ instruction, to allow for the settling time of the .
comparator.

This scheme does not really convert to a number, for each sample: it
merely tries to track the slope of the input-signal. This means that, as long
as the input changes no more than:

39.0625 x 10°° volts

45.0 x 1078 seconds

= .86 volts/second,

the numbers in the table will be accurate. How fast does a 1KHz sine wave
change at its steepest slope? In Fig. 6-37 we find that it is 1000 volts/second:

So, we are limited by this method to sampling low frequencies, much below

1 Hz.
' SLOPE 1S Vg .
1 VOLT/uS
=1000/8
1 VoLT
‘_A 1 x 1073 seconps
6.37 1000 volts/second 1KHz sine wave

SUMMARY

We have designed an analog data-collection and control board. It was
designed to be connected to the S100 bus. Software was written to use the
features of this D/A and A/D-converter.

The buses and standards described are intended to make the job of
interfacing easier. To plug the device into a system with no extra work is
every interface designer’s dream. We have seen how the many users of the
S100, CAMAC, IEEE-488 and EIA-RS232C standards create a large need
for standard-compatible devices, modules, and systems. If at all possible—
stay within a standard. The design will be easier and your time may be
spent on the harder problems.

Paralle]l and serial bus standards, methods of communication between

256

modules, and an actual bus-interface example were presented. The S100
bus is the most popular parallel bus used now, with over 600 different types
of compatible boards being produced. The serial RS232C standard is the
most popular standard for data communications, and versions of data for-
matting are used, with modems, to store and retrieve data from cassettes
and cartridges, as described in Chapter 4.

BUS STANDARDS 257

258

B
3
[d
.
v
3
L
L
4

CHAPTER 7
THE MULTIPLEXER —
A CASE STUDY

INTRODUCTION

This system is intended to concentrate 32 EIA RS232C compatible ter-
minals onto a single two-way high-speed transmission line. Each terminal
has buffered output and character-by-character input. Thus, the host com-
puter can spend less time executing the multiplexing task.

Designed for a PDP 11/70 , the system is also applicable, with only code
changes in the host machine, to almost any host computer. The cost of
providing this function is $50 per channel, as compared to usually around
$250 per channel. The system is also cost-effective in clusters of less than 32
terminals. '

BUS

PROGRAM
i BOOT ROM
SERIAL CENTRAL [DATA BUFFERS |
- < Pt
INTERFACE PROCESSOR CORE OR RAM
T _ | AvUTORESTART
i = POWER FAIL
THE MULTIPLEXED
SERIAL LINK TO THE
HOST COMPUTER
N-CHANNEL
TERMINAL
SERIAL INTERFACE

@hge

E/ TERMINALS

7.0 System Overview

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 259

The system uses the 8080 microprocessor, 8251 USRT, 8259 interrupt
controller, and other components in the 8080 family. The system has no
modem-control features, as it was intended to be at the sight of the termi-
nals, saving even more money in man-hours of time, and cost of wire for
connection. This does not even include the cost-benefit of fewer telephone
lines and modems.

THE SPECIFICATIONS

The ability to connect a large umber of terminals to a time-sharing facil-
ity always presents the engineer with a number of problems. Most have to
do with the interconnection headaches of modems, telephone wiring,
patchboards for testing, and internal machine interfacing. '

Remotely-located concentrators would eliminate many problems. The
new problem: cost. The design goal here is to service 32 terminals at an
input rate never exceeding 30 characters-per-second, and an output rate as
fast as possible. Given that the 8080A could execute roughly 300 instruc-
tions in the time between characters at 9600 baud, if it were to service 32
terminals on input, it would have to have less than 300 instructions in the
polling loop for the terminals. Any time left over would be used for output.
The code would have to be thought out byte-by-byte, with all coding being
carefully optimized. A prototype was built, under the assumption that it
could at least service 16 terminals in a degraded mode. '

The typical statistics of our input was a maximum of 150 baud for any
second, and a rate of 50 baud, for all 32 terminals combined. Thus, when
completed, the multiplexer could handle a maximum of 150 baud on all 32 at
once, or a maximum of 300 baud on one. The output was a minimum of 300
baud for all 32 at once, and a typical 6000 baud, when there was a specific
demand from a single user.

ARCHITECTURE

The architectual block diagram is presented in Fig, 7-1. Each terminal
has its own USART, because each needs a dedicated serial interface. The
USART’s are grouped into fours, and then placed onto cards, which are on
the 8080A system bus. There are 8,192 bytes of RAM for data storage, and
1,024 bytes of EAROM for program, in the system. Lastly, there is an
interrupt-controller and high-speed-channel card, which is on the bus.

Each terminal, through its USART, has a 128-character buffer as-
sociated with it, for buffering output to the terminal. This takes 4,096 bytes
of the available RAM. The terminals-to-host queue is 256 characters long.
These lengths were chosen to optimize the communication-channel trans-
fers. The method will not be discussed here.

260

E1A RS232C LINES

=

USART USART
CHANNEL CPU 4096 4096 CARD CARD
USART (8080) BY BY 4 . BOARD
251y (8224) 8 8 8251 8251
INTERRUPT (8228) RAM RAM AND eo e AND
CONTROL ROM 32. 32- STATUS | UPTO ?r STATUS POWER
(8259) (8708) 91L02 91L02 cusmt
FAIL
? 7
RESTART
N >
8080A BUS
-DATA
- ADDRESS
-CONTROL
7.1 Multiplexer Block Diagram

There are three processes, running one at a time: input-output service
polling routine, host-to-terminal buffer interrupt process, and terminal-
holding-queue to host interrupt process. They will be described in the fol-
lowing section.

SOFTWARE

A flowchart of the software appears in Figs. 7-2, 7-3, 7-4 and 7-5. The
software can be divided into four parts: the initialization routine, the polling
routine, the interrupt routine to fill terminal buffers from the host, and the
interrupt routine to empty the terminal-to-host waiting-queue.

The initialization runs only when reset, then the latter processes may
run, one at a time. They communicate only through the output data-buffers
and share no other common memory space, other than pointer tables.

The initialization routine clears all memory, sets up tables, finds which
boards are plugged in, resets all USART’s, and will print out errors, if a
debug board is installed. This is roughly all the system housekeeping. It sets
the stack-pointer, resets and sets the mode, speed, and number of bits-
per-word on the USART’s. This section of the program is 60% of the code
used for the whole application.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 261

PROCESS B

INITIALIZATION PROGRAM
PROCESS 1 ANDAUTO RESTART
. DETECT AND ALARM

CHANNEL SERVICE

INTERRUPT SUBROUTINE]

PROGCESS 2

TERMINAL TO BUFFER
AND BUFFER TO TERMINAL
POLLING ROUTINE (MAIN)

INTERRUPTS

INTERRUPTS

PROCESS 3

BUFFER TO CHANNEL

FULL INTERRUPT ROUTINE

TOTAL 8080A BYTES FOR PROGRAM: 526 BYTES! LESS THAN % OF THE 2708 USED

7.2 Multiple){er Software: Overall Program Flow

262

Initialization
USART MODES
BOARDS UNPLUGGED
Self test and
memory clear
Go to first board

Polling
fheck status
of board
Check first
buffer for
characters
to terminals

here a characte
rom a terminal?

Place tag and
character in
waiting queue
to host

Try next USART
tufrfer area

7.3

Get character from
terminal's buffer
in RAM and output
to terminal

Set up for next
board in system

the last USART
on the board?

Fetch character
waiting in host
USART

Place in last
dbuffer pointed
to

Last board
checked?

_ye

Empty terminal to
host queue by one
character if full
(PRIME QUEUE)

f

Multiplexer Software: Polling Loop

Status Request
Send status
Update status

Update last
buffer pointer

7.4 Multiplexer Software: Host to Mux Interrupt
CASE-STUDY: A 32-CHANNEL MULTIPLEXER

263

Queue
to host full?

RETURN
Empty queue by
one character
RETURN
7.5 Multiplexer Software: Mux to Host Queue Interrupt

264

The polling routine goes through the list set up by the initialization
program, testing to see if there has been a character typed by a terminal, or
if there is data in a buffer, to be output to a terminal. Thus, each of the 32
terminals is serviced once during each pass. If the channel-to-host is busy
(it takes 1 millisecond to transmit a character at 9600 baud), the characters
are put into a waiting queue, that will be serviced when the ‘‘channel-not-
busy’’ interrupt comes in. If the channel is not-busy, the waiting queue is
emptied by one character, and the character currently waiting is placed at
the end of the line, in the queue. In this way, the queue-service routine is
primed and will continue to interrupt, when not busy, to empty all the
characters waiting for the channel. The format used for data transmission is
the following: the tag for that terminal is sent first, and then the character is
sent to the host, via the queue routine. Each board has its own priority
table, so that only one input is processed, per pass, per board. After a
character is transmitted, or, if a board has no characters, the buffer area for
each terminal is then checked to find if there is an output character pending.
These are placed in the buffer by the host-interrupt routine. If so, the buffer
gives its character to the USART, to be transmitted, and all the pointers are
updated. When there are no incoming characters, and no buffer is full, the
system still polls each board for input, and each USART buffer for output.

The channel-queue-interrupt routine looks at the queue, and transmits a
character, if there is one waiting; otherwise it returns. This routine will not
be called again by interrupt, until the polling routine primes it by sending a 4
character.

The host-interrupt routine waits for information to come from the 11/70,
or host-machine, before it executes. When a character is received, and
ready, an interrupt is generated, that then starts this interrupt process. This
process checks the incoming character and, if it is data, places it in the
appropriate output buffer area. After this, polling resumes. Other charac-
ters from the host perform status requests, data-tag-switch, and soft-restart
commands.

The host-interrupt routine may interrupt at any time during polling. It .
first saves the status-vector of the machine, then picks up the character that
caused the interrupt. If the most-significant-bit (MSB) is a *‘1”’, the charac- ‘
ter is a tag, or a command. Ifit is a tag, it is stored, so that the following data
characters are loaded into the buffer pointed to by the last tag.

The most-significant-bit could also mean that it is a command. The
commands allowed are: ‘‘status-request’’, ‘‘status-change’, and ‘‘soft-
restart’’. ‘‘Status-request’’ will send back a status-tag followed by the
status of that USART. ‘‘Status-change’’ will take the next character, and

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 265

transfer it to the USART control register. This can be used to turn ports on
or off, and change baud-rate by a factor of four. *‘Soft-restart’’ will re-
initialize the entire system. Caution is advised in the use of these controls:
do not expect the data buffers to be unaffected by their use! This is because
these commands require more time than is allowed to poll all the terminals.
Thus, interrupts are locked-out and characters may be lost. These com-
mands are usually used to re-initialize the system from the host, after the
host crashes.

The most-significant-bit being ‘‘0’’ means that the character presents
data. This character is then loaded into the last place in the buffer pointed to
by the last tag. All following characters will load into the same buffer, until
a new tag is sent.

The CPU and PROM Module

In Fig. 7-6, we see the 8080 CPU-board schematic. This board contains
all of the necessary CPU interface circuitry along with one 2708 program-
mable ROM, and the necessary bus buffers.

l———(Int Req

ADDRESS BUS N

+ A1 | 8205
8080 A2 Decode
CPU A13
System
ﬁ D ’—-] Control DATA BUS
- —>
i l MEMR
MEMW
L] 822 o
cLocK —TIOW
CONTROL BUS
t] I T T
7.6 CPU Board Schematic

266

The 8080 needs a clock, and a system-controller. These functions are
provided by the 8224 and the 8228 chips, respectively. The 8224 provides
the necessary timing from the 18 megahertz crystal to drive the two-phase
clock of the 8080. It also provides the reset signal synchronization
necessary.

The 8228 system-controller provides the system with the control-bus and
also buffers the data-bus, so that all of the modules in the system can be
driven with no load limitations.

Also on this board are 1,024 bytes of EPROM provided by the 2708.
Notice that the selection of this device is fully decoded. The EPROM will
only respond to addresses from ‘0000’ hexadecimal to ‘‘03FF’’ hexadeci-
mal. This is where the multiplexer program resides.

The selection is done as follows: all address bits A10 through A15 must
be low, to enable the EPROM, as well as the MEMR signal. The first four
of those signals, along with this MEMR, go to a 1-of-8 decoder, an 8205. If
all of these are zero, then the first output is selected. Then this output is

7.7 RAM Board

Bit 0 Bit 7

mg ’D_T 91102 81102

e 00000

oo
DI
— p—

91Loz 9102 |

i
1

91L02 91L02

g 8205

o 00 &0 0

e
L
Uiy

ADDRESS BUS 91L02 91L02
A9__ AP eeeoeoe /
e ~—
L o)
MEMR - -
8216 ____J “__ 8216
< ———l | | L__
DATA BUS]

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 267

checked with the last two address lines. If all are zero, then the CS is held
low, selecting the EPROM. The EPROM bus driver, an 8212, is also ena-
bled at this time to drive the appropriate cells’ data onto the data-bus, to be
read by the processor.

RAM Modules

There are two memory-cards in this system. They are both identical,
except one is for addresses ‘‘1000” hexadecimal through ‘1 FFF’’ hexadec-
imal, and the other is for addresses ‘‘2000’’ hexadecimal through ‘2FFF”
hexadecimal. These two cards provide 8,192 bytes of RAM storage.

Each card contains 32 static 1,024 x 1-bit RAM chips, bus-drivers and
receivers, and address-selection logic.

A single RAM chip can store 1,024 bits of information. In order to store
4,096 x 8 bits, we need to organize these chips into a memory array. Note
that we need one chip for each bit, and that we need four sets for 4,096
bytes.

AD +4% —0

GND o
At CELL ARRAY

ROW
SELECT 32 ROWS

A2 X

32 COLUMNS

A3

A4

ol

Do
COLUMN 1/0 H:

COLUMN SELECT ,

I] ! | !

RW DATA

CONTROL

1Y HHEHY

cs

i

A9 A8 A7 A6 A5

7.8 Detail of 91L02C

268

Since, for any group of 1,024 bytes, eight 91L.02’s will need to be ena-
bled, the chip-selects for each of the groups of eight are tied together. From
there, these four group-selects go to a 1-of-8 decoder.

a8 [} :] A7 S
AS E :] A8 —_—] A
—a2 ool
RW E D A9 "1
Al E ’:]cs e
a2 [oo — s
A3 E :]m —Are ol
— A7 -
A4 E :]*5 — e
Ap E :]GND ——]ae
AW cs
Pinout of 91L02C

p1 @ IWJ:
o
po#d jﬂ\r
—
o f& L oel
pol | j"
N
]
D1 2 J‘E
17
) ¢——DB2
Do 2 _a:%
D1 3 P‘: '
| 4 DB3
o3 :Q
|i Ql cs
DIEN

79 8216 Bidirectional Bus Drivers

CASE-STUDY: A 32-CHANNEL MULTIPLEXER . 269

The data bits are bussed from each group in the direction perpendicular
to the chip select. All bit 0’s should be tied together, as well as bit 1’s, bit
2’s, bit 3’s, etc. Since 91L02’s cannot drive the bus directly, all input data
lines come from an 8216 bidirectional bus-driver-and-receiver. In a similar
fashion, all data outputs from the 911.02’s go to the 8216 bidirectional bus-
drivers. An illustration of the 8216 appears on Fig. 7-9.

Two of these devices will provide a standard method of listening to, and
driving, the data-bus. The DIEN signal controls whether the bus is driven
by the 8216, or whether the bus is listened to. The CS enables the outputs to
drive both the bus, and the D0 outputs. If CS is high, all of the DB and D0
pins are in the high-impedance state.

The direction of data-flow is determined by the MEMR signal. When it is
low, the RAM will put data out onto the DI lines of the 8216’s. The bus-
drivers will be enabled, to drive the 8080 data-bus with this data. At all
other times, the memory-array listens to the bus. The only time it will write
data into the memory is when the MEMW signal goes low, and the chips are
selected.

The address-selection is performed in a way so that the address of the
board may be selected by jumper wires. The low ten address bits go directly
to the 91L02’s. The next two bits go to a 1-of-8 decoder (8205) to select one
of the four sets of eight memory chips. The enable line of the 8205 comes
from a wire-ANDed combination of exclusive-or (XOR) gates.

Only when all of the outputs from these four gates are high, will the
memory board be enabled. Each XOR gate compares an address-bit with a
jumper wired to ‘1>’ or **0”’. If both are identical, the output will be ““0°’. If
they are different, the output will be ““1°’. To set these Jjumpers for the right
address, we set the jumper to the opposite of what the high four address-bits
should be. If we want ‘0010°°, for A15-A12, the jumpers should be tied to
17,0017, 407, 177, respectively. In this way, the board will respond only
when an address lies in the area of 0100XX XX XXXXXXXe. This is pages
*20”’ through ‘“2F>’ hexadecimal, or ‘2000’ through “2FFF’’ hexadeci-
mal. Exercise for the alert reader: What should the Jumpers be for ‘1000’
through “‘IFFF’’?

The USART Board

In Fig. 7-10, the basic card for all the terminals’ interface is shown. This
card contains four 8251 USART’s, a baud-rate clock-generator, and a
priority-encoded status-generation PROM.

270

syndino pue
sindul Jo
$1as 1oy

J0 3uQ

SHOLVISNVYHL

OCeLsSH Vi3

13AT —

51310 0 ApYXYH

wosg

SLlHvVSN €
npool

sng
viva
—\ WoH Aluoud
SLHVSN € 49RO oL
Apyxy
HOLVHINID
X1
31vH anva
oxy
axl
axy

— >

[14vsn
HMm ‘ay

1928

sna viva

v ‘ov

sNg ss3yvaav

s

C
<
5

SN9 T04LNOD

USART Board

7.10

271

CASE-STUDY: A 32-CHANNEL MULTIPLEXER

The 8251 is the basic serial interface element. Grouped four to a card,
they are connected together on their data-buses to form an on-card data-
bus. Similar to the memory card, this on-card bus is buffered by 8216’s onto
the system-bus. This is because the 8251 cannot drive more than eight other
LSTTL loads. The 8251 is selected by implementing an address-decoding
technique, using an 8205. Note how these devices are memory-mapped
input- input-output. That is, since the same signals that control memory (MEMW,
MEMR) control the USART’s, they appear as memory locations. Accord-
ing to our memory map, when bit Al15 is high, we are addressing input-
output. This corresponds to locations from ““8000°° to *‘8FFF’’ hexadeci-
mal. Note that since the lower eight address-lines are not decoded, these
are ‘‘don’t cares’’ in our memory-mapped I/O map.

The first card starts at ‘80X X"’ (where ‘“XX’’ means that these bits do
not matter) and, since each USART has two registers (input-output and
control), the address ends at ‘‘87XX’’ hexadecimal. The next card goes
from *‘88XX’" to ‘“8FXX’’, and so on, with the last card addressed by
“B8XX’’ to ““BFXX’’. The even page-addresses are the status-registers,
and the odd ones are the data-in and data-out registers.

Note also that there is a special PROM on the card, which is decoded by
a separate decoder. Its address is ““70X X’ for the first card and “‘77XX”’
for the last card. The function of this PROM is to place on the data-bus the
actual address of the USART which has received a character from its
terminal. How is this done? Each of the ‘“‘RxRdy’’ lines on the USART’s
indicate whether a character has been received. These four lines, one from
each USART, are tied to the address-lines of the PROM.

One of 16 possible bytes may be selected by the decoding. The fifth
address-bit is jumpered to a one or a zero. In this way, the same PROM can
be used for board 0 or board 1, by placing in the other 16 locations the
addresses for board 1, and setting the jumper on the fifth address bitto a 1.
(Jumper to zero for even, one for odd). What are these 16 locations? They
are simply a table of the addresses “‘81°°, *‘83"’, “‘85’* and “‘87"’ hexadeci-
mal for board zero, and *89’’, “‘8B”’, “‘8D"’, “‘8F”’ for board one. Similar
PROM'’s are made for the other six boards.

The values are placed in such a way that the first location in the PROM
is a byte of zeroes. That way, when no USART has a character, and all
RxRdy linés are low, the byte of status is all zeroes, indicating that there is
““nothing’’ to do for this board. If it is not zero, then a character is waiting.
To make sure that it is easy to tell which USART is waiting, the next
location contains the value ‘81"’ if the first USART is waiting, and all the
others are not, the program will receive an *‘81”° from the status PROM.
The program can then use this value to directly address the actual character

272

waiting. What is more, the value **81°" can be masked, to form the tag for
the data fetched.

The next two locations contain ‘‘83’’, the next four ‘‘85"’, and the next
eight, ‘87", In this way, a priority table is formed so that, as each USART
is serviced, the next one waiting will be serviced in turn.

This method of addressing the status-PROM allows the program to use
only a few instructions to identify which USART, out of 32 possible ones,
is ready with a character, fetch the character, and generate the proper tag
from that status information.

There are two interface chips to take the TTL serial inputs and outputs
from the USART’s and convert them to EIA RS232C +12 and —12 volt
serial pulses. These are simple level-translator integrated circuits.

19,200
0sc
XTAL 2 | 9600
|
4800
COUNTERS 2
L ‘ 2400
, 1200
2's 600
300
150
110
7.11 Baud Rate Generator

The last section consists of an astable multivibrator, synchronized by a
crystal to provide the timing for the serial bit clocks. Two simple dividers
are ‘on each board to provide the USART’s with all of the common serial
rates. This is shown in Fig. 7-11.

The Host Interface Board

This module contains: the host USART, the interrupt-controller, and a
baud-rate generator for the host-to-multiplexer communication rates. It ap-
pears in Fig. 7-12.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 273

DATA

i O .

8259 &5l |RED o hosT

2l

Txe LLa .Baud Rate
ADDRESS
INT/_INTL SELECTION RXC -‘-T Generator
R X RDY
T X RDY

up

7.12 Host Interface Board

The units on this board are addressed as input-output ports, instead of
memory locations. The USART is addressed as ports ‘“F9’’ and ‘“FA”
hexadecimal, for control and data, respectively. There is a duplicate of the
baud-rate circuit here to generate the ‘““TxC’’ and ‘“RxC’’ signals for the
host-to-multiplexer USART, as these rates may differ from any of the
others in a typical system.

The interrupt-controller takes the ‘‘RxRdy’’ and “Tdey” signals from
the USART, and generates two interrupt-vectors, number 1 and number 7.
Number 1 is to signal that a character has been received from the host, and
should be processed, and number 7 indicates that the USART can be re-
loaded to transmit another character to the host.

The 8259 interrupt-controller is set up by the initialization routine, to call
the service routines at the proper locations, and service the interrupts on a
rotating basis. After an interrupt has been serviced, the software will reset
the corresponding bit-flag in the 8259, and proceed with polling, until a new
interrupt arrives.

Fig. 7-13 illustrates the initialization procedure of the PIC and Fig. 7-14
presents the interrupt-handling code at the beginning of memory.

274

PORTs F7 and F8 are PIC

CONTROL ADDRESS DATA OPERATION
WRITE I/O F8 32 sets low address for call
for INT 1
WRITE I/0 F7 "] sets high address for call
WRITE 1/0 F8 F2 sets low address for call
for INT T
WRITE 1/0 F7] sets high address for call
WRITE I/0 FT TO lenables only INT 1 and INT T
WRITE 1/0 F8 AP sets rotating priority reset mode
7.13 PIC Software Load Format
0000 ORG OH sINITIALIZATION STARTS
0000 00 RSTO: NOP
0001 31FF2F LXI SP,2FFFH ;SET THE STACK POINTER
000k F3 DI ;DISABLE THE INTRRUPTS
0005 C3D700 JMP INIT ;SYSTEM RESTART UPON RESET
0008 C5 RST1: PUSH B ;HOST TO MUX RST VECTOR
0009 DS PUSH D sPUSH STATUS VECTOR
000A E5 PUSH H
000B F5 PUSH PSW
000C CDL90O CALL INTTO 3INT70 GETS THE CHARACTER FROM
O0OF 3E08 MVI A,0008H ;HOST~-DECCDES IT AND RETURNS.
0011 D3F8 OUT OOF8H ;INTERRUPT CONTROLLER RESET INT 1
0013 F1 POP PSW
001k E1 POP H
0015 D1 POP D ;FLAG
0016 C1 POP B ;POP STATUS VECTOR
0017 EF RST 5 sPRIME QUEUE
0018 FB EI
0019 C9 RET
0020 ORG 0020H
0020 CDCT00 RSTh: CALL SND50 ;SOFTWARE RESET
0023 C7 RST O
0028 ORG 0028H
0028 F5 RSTS: PUSH PSW ;SAVE A AND FLAGS
0029 DBFA IN OOFAH ;READ THE USRT STATUS
002B E601 ANI 0001H ;CHK FOR TXRDY
002D CA3100 JZ POPAF ;IF USRT IS BUSY RETURN
0030 FF RST 7 ;ELSE CALL RST7 FOR FIFO SERVICE
;70 CHK IF ANYTHING IS IN THE
;FIFO TO SEND TO 11/70
0031 F1 POPAF: POP PSW
0032 €9 RET
0038 ORG 0038H
0038 C5 RSTT: PUSH B ;MUX TO HOST RST VECTOR
0039 D5 PUSH D
003A ES PUSH H ;CHANNEL NOT BUST
003B F5 PUSH PSW
003¢ CD1802 CALL OINT ;OINT IS OUTPUT A CHARACTER
003F 3E08 MVI A,0008H
00kl D3F8 OUT OOF8H ;FROM QUEUE
0043 F1 POP PSW
ookl E1 POP H
0045 D1 POP D
7.14 Example of Interrupt Control

CASE-STUDY: A 32-CHANNEL MULTIPLEXER

275

RSTH@;

RST1;

RST4;

RSTS5;

RST7;

276

Hardware Initialize.

Character from Host
has arrived.

Soft-reset on pro-
gram fail ROM detect.

Channel to Host is
not-busy check. Mux
to Host buffer queue
should be emptied.

Channel to Host is
not-busy. Check
buffer queue for
characters, if any
transmit, if not,
return.

7.15 Vectors in Software

The channel-to-host was set to 9600 baud in both directions. The charac-
ters from each terminal must be echoed, as this is a full duplex system. For
every character generated, the host must process and return the echo.
There are 24 Lear-Siegler ADM-3s terminals, set to 9600-baud input and
output. There are also four 300-baud terminals and four 300-baud dial-up
lines on the multiplexer.

Typical averaged input rate is ten characters-per-second. Average out-
put rate is 200 characters-per-second. Buffers in the host, for characters
waiting for output channel are 95% of the time empty, indicating the host
can get rid of data as fast as the channel can handle it, rather than as fast as
the terminals can print. Maximum rates measured are 15 characters-per-
second on input, and 620 characters-per-second on output. The maximum
and typical figures were obtained over a 17-hour period, when 90% of the
terminals on the multiplexer were in use.

Error rates were entirely due to the channel, or at least indistinguishable
from other errors, such as operator errors, and host errors.

Photographs of the printed-circuit boards appear in Figs. 7-16, 7-17,
7-18, 7-19.

PICTURES OF MULTIPLEXER PROTOTYPE P.C. BOARDS

7.16 CPU

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 277

7.18 TERMINALS’ USARTS

278

719 HOST AND INTERRUPT CONTROL

CONCLUSION

In this chapter. a complete interface was described. A step-by-step dis-
cussion of how each component was integrated into a module, how the
modules created a subsystem and then the overall system, should enable the
reader to follow through most any other microprocessor interface applica-
tion. This particular application utilizes most of the techniques discussed in
previous chapters: interrupts, memory and 1/O management, integrating
special techniques for software reduction in hardware, and external device
interface were used here.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 279

TIME-SHARE SYSTEM .

THE SYSTEM OVERVIEW

CENTRAL PROCESSOR
. MAIN MEMORY
. DISK STORAGE
. TAPE DRIVES
. COMMUNICATIONS PROCESSOR
. PRINTER
. REMOTE MULTIPLEXER

N oL AaAW N -

REMOTE MULTIPLEXER

280

COMMUNICATIONS CHANNELS

HOST ~¢—— ~———3 USER

7.20 OVERALL SYSTEM

USER TERMINALS

CHAPTER 8
TESTING

INTRODUCTION

What do you do when it doesn’t work? What went wrong and why? The
debugging process, also known as testing or trouble-shooting, is an integral
part of any system design. Murphy’s Law usually holds: if anything can go
wrong, it will.

When faced with a misbehaving system, there are a number of
techniques available to the designer to identify and correct problems. In this
chapter, the causes of common problems, and their solutions, will be pre-
sented. Problems such as: component failure, software failure, noise-
induced failure, will be analyzed, and methods for identifying them will be
presented.

The tools necessary to identify and locate these problems will also be
described: voltmeter, logic probe, signature analyzer, oscilloscope, digital
analyzer, in-circuit emulator, emulator, and simulator.

Finally, a case history of the “One Bit in 16,384 will be presented. The
example illustrates the debugging phase in the actual design of the multi-
plexer presented in Chapter 7.

WHAT GOES WRONG?

Four essential problems may arise in a system: wiring fault—a short or
open circuit; component failure—including wrong value components;
software bugs; and noise or interference—either internal or external.

Wiring faults are detected by a resistance-check from point to point in
the system. Check each wire: make sure it goes to the right pin and no other
on the integrated circuit. Make sure you look-up circuit pin-outs twice. Do
not be confident that the schematic is without fault until the system works.

Wiring faults are the most common and troublesome problems. They are
easily solved—although they take time. Most circuit boards are ‘‘buzz-
tested’’ with a simple continuity-checker that emits a tone for a short, and
no noise for an open. Such a tester leaves both hands and eyes free to keep
track of the wiring.

Component Failure

Components such as resistors, capacitors, inductors, transformers,

DIGITAL TROUBLE-SHOOTING 281

transistors, diodes, integrated circuits, and connectors may all experience
failures. Resistors crack open, capacitors leak out their electrolyte. In
short, no component is perfect. Everything fails sooner or later. Each com-
ponent is given a figure of merit, known as its mean-time-between-failures
or MTBF. This is a statistical prediction, in hours, of how long the part will
last in a given environment. A table of percent/1000 hours failure-rate is
shown in Table 8-1 for applications in milifary avionics.

TABLE 8-1
(%/1,000 hr)

Component Failure Rate
1. Capacitor 0.02
2. Connector contact 0.005
3. Diode 0.013
4. Integrated circuits, SSI, MSI, and LSI 0.015
5. Quartz crystal 0.05
6. Resistor 0.002
7. Soldered joint ©0.0002
8. Transformer 0.5
9. Transistor 0.04
10. Variable resistor 0.01
11. Wire-wrapped joint 0.00002

Some parts last longer, on the average, than others. Of course, this table
assumes that all parts are being used properly. These figures are based on
accelerated-life-tests on a large sample for each part.

Failure-rate is defined as 1I/MTBF. Knowing the failure-rate of each
component in a system will yield the failure-rate for the entire system. The
rule is to add the failure-rates of all of the components in the system. This
gives the system failure-rate—the inverse of which is the system mean-
time-between-failures.

For example, suppose we have three LSI chips, one crystal, ten resis-
tors, ten capacitors, a printed circuit board with connectors, a transformer,
four diodes, and an IC voltage-regulator. This system is to be used in the
same environment as the components that were tested. What is the system
failure-rate? Using Table 8-1, we find:

282

four IC’s .06

crystal .05

ten resistors .02

ten capacitors .50

P.C. board ~.60 (10 connectors, 500 soldered points)
transformer .50

diodes .052

TOTAL 1.82%/1,000 hours
This yields a MTBF for the system of:
1/1.82%/1,000 hours or = 60,000 hours

Suppose we made 1000 of these systems, and used them in the specified
environment? After 1000 hours, it would be most probable that 18 would
have failed. After 10,000 hours, 180 would have failed.

How often do parts fail? This simple question, which we have answered
on an average basis, tells us nothing about the distribution of failures. It
gives the mean. Most components exhibit the following lifetime characteris-
tics shown in Fig. 8-2.

%/1000 HR.
FAILURE

INFANT MIDDLE-AGE OLD AGE

- LIFE
8.2 %/1000 hr Failure versus Age

Most failures occur when new, or when old, and fewer failures occur in
the ‘‘middle-age’’ of the components.

“New’’ and ‘“‘old”’ differs for each component. In-depth analysis of the
entire system involves simple, but time-consuming calculations, concerning
each component’s lifetime failure history.

DIGITAL TROUBLE-SHOOTING 283

A “‘burn-in”’ test tries to weed out the ‘‘infant-mortality’’ part of the
curve before parts are shipped to the buyer.

The Table is accurate only for the environment specified. Commercial,
industrial, and military applications, all lead to different ways of measuring
the MTBF. A unit designed for a child’s toy may last five years, if used as a
toy; if shot into space, it would not last five minutes. The application’s
environment determines the basic reliability statistics to be used.

We have only addressed so far the topic of reliability. A separate prob-
lem is quality. Contrary to intuition, high quality doesn’t always mean high
reliability. Quality refers to how well a component will last, doing its job.
The part may be noisy, dissipate lots of heat—but it may also work longer
than a part that is quiet and dissipates less heat. Only thorough statistical
analysis can determine reliability. Quality is easily measured on a part-by-
part basis.

Software

Software can be at fault. For example, suppose there is a special routine
in the program to handle a power failure. The problem is that, when coding,
a mistake was made in the part of the program which restores the machine
when power returns. If you never tested this routine, it may not be used
until the power fails. Only then, will you know that your machine does not
meet specifications.

A second example is when an arithmetic calculation causes an
overflow-and-halt condition only when some measured input value is “‘0’.
The system may work well for months, and then stop mysteriously, every
two days after that. Software problems, or bugs, are often the hardest to
identify.

Tools for finding who is at fault, engineer vs. programmer, will be after
the noise discussion. However, software problems are the most common in
a microcomputer system. No program is ever perfect. A program is limited
in precision, speed, and flexibility. The smart programmer is a complete
pessimist about his software until it has been running for a number of years.

Noise

Noise is everywhere. Whenever there is a current in a wire, there is an
electromagnetic field. Thus, fields from power transformers, motors, and
electrical wiring are everywhere. In addition, with all the radio, television,
citizens’ band, and amateur radio transmitters—any length of wire becomes
an antenna. Not only can noise come from the outside, but it can be gener-
ated inside your system.

284

Four examples are:

1. When integrated circuits switch, they generate small current changes in
their power requirements because of internal circuit characteristics. If
too many circuits switch at once, the power-supply voltage may change
enough to affect other parts of the circuit. There are usually bypass-
capacitors near each integrated circuit to prevent this type of noise.

2. If two wires are close together, a pulse traveling along one induces a
pulse in the other, because of the transformer action between the two.
The induced pulse may reflect, and toggle a flip-flop, or cause the data to
be incorrect. To prevent this, twisted and shielded pair transmission
lines are used.

3. The power-supply may not be properly designed. There is a small
amount of 60-cycle ripple on the 5-volt supply. This may affect the
contents of memory, and cause an improper read or write. Proper
power-supply design accounts for the droop in voltage under heavy load
before the regulation circuits.

Transformer

Regulstor

+5.0 volts

output
117 VAC .
Rectifier

83 Noise Spike on Power Line

4. In Fig. 8-3, there is a typical noise spike from turning on a teletype on the
power line. Notice what happens to that noise spike in a plain power
supply in Fig. 8-4, without noise filters. If that glitch happens at a crucial
moment, data are lost and the machine fails.

I +5.0 voit out
2000 V p-p I
117 VAC niose spike - \
line voitage 1.0V pp

noise spike
NW_;’ noise ::::: :Io:l:lnr
8.4 Power Supply Without Line Filter

DIGITAL TROUBLE-SHOOTING 285

The solution here is to use a line filter, and a shielded transformer, that
prevents high-frequency noise pulses from getting through as in Fig. 8-5.

E 33
VIt .o 1

Shielded Transformer

Isolated Grounds in Equipment-

prevents ground noise
Line Filter

8.5 Power Supply With Line Filter

Summary of Common Failures

Components fail at predictable rates, software may not be reliable and
correct, and noise may be happening all around and inside the system. How
do we go about finding the fault in a rational fashion?

The next section will deal with the tools used to find the faults and
identify them. In this discussion of tools, the tell-tale signs of each problem
will be discussed.

The Trouble-Shooting Tools

We will present here the, tools available, and the kinds of problems
which can be identified with them. Tools will be examined closely as to their
own limitations.

Table 8-6 presents a short summary of problems and tools. The discus-
sion will follow this Table and expand on each problem—what a tool can a8
to find it, and how long it would take.

Simple Problems

Short and open conductors, wrong voltages—these are the most com-
mon problems. Luckily, they are the easiest to detect. Any ohm-meter can
check for gross conditions such as open, or short, and a digital voltmeter
(DVM) or volt-ohm-milliampmeter (VOM) will suffice, to check voltage
and currents. If you know your components and design, it is an easy matter
(although time-consuming) to make sure everything goes where it belongs,
and draws the right currents from the proper voltages.

286

THE DEBUG MATRIX: PROBLEMS & TOOLS

You have
Equipment
You can solve
problems like:
VOM PROBES SGN.ANA. 0SC. D.D.A. I.C.E. EMU.
* shorts, opens, b be
wrong voltages yes maybe no yes maybe may’ no
+ bad resistors, yes no no yes no no no
caparitors
+ unknown logic signals
bad-fault tree yes yes yes yes yes no no
already generated
+ unknown logic signals yes yes no yes yes yes no
bad-fault tree time time
available consuming consuming
software problem no no no maybe yes yes yes

You need at least

To fix a typical

Problem:
Eventually yes
In an average time yes

Fastest way possible yes

VOM
PROBES
SGN.ANA.
0scC.
D.D.A.
I.C.E.

8.6

yes yes
yes yes
yes yes Yyes

TABLE OF ABBREVIATIONS

VOLT-OHM-MILLIAMPMETER

LOGIC PROBES

SIGNATURE ANALYSER
OSCILLOSCOPE

DIGITAL DOMAIR ANALYSER

IN CIRCUIT EMULATOR

SOFTWARE EMULATOR OR SIMULATOR

Problems and Tools

DIGITAL TROUBLE-SHOOTING

287

The VOM

To measure a voltage, the meter is placed in parallel with the circuit
element. Fig. 8-7 shows the measurement of the power-supply voltage at
the output of a regulator. The VOM will easily measure all such voltages,
but be warned that it will not detect excessive ripple or noise on the power
supplies.

+10 VOLTS 1.5 AMPS MAX. .T5 AMPS TYPICAL

ll@ﬁ :

VOLTAGE

+5 VOLTS + 5%

LOAD
TTL
CIRCUITY,

ree

OPENED CIRCUIT

Yy

8.7 Measuring Voltage and Current With a VOM

To measure a current, the meter must be placed in series with the com-
ponent. This means the circuit must be broken. If possible, connections
should be made, so that in-circuit current measurements need not cut wires
or traces. Any dynamic behavior of the circuit may not be measurable, yet
could cause problems.

In the power-supply example, the meter measured the voltage across the
load, and then by disconnecting the load, and reconnecting it through the
meter, the current was measured. Be sure to check that these measure-
ments are within the required tolerances. Improper values may indicate
later trouble.

Bad Components

Resistors, capacitors, diodes, and transistors can all be checked against
known good devices. They can be measured with the DVM or VOM to
determine whether they are basically functional. Other special test equip-
ment is needed for diodes and transistors to establish device characteristics.

288

Integrated circuits are difficult to test without expensive equipment.
When debugging, several of each device used should be kept in stock, in
order to replace a device with an inherent malfunction. Once the entire
circuit is working, all devices in stock should be tested in the prototype
system to make sure that no marginal problems occur in production, due to
component tolerance changes.

Simple problems usually prevent the system from working at all. Inter-
mittent failures are most often due to connector or bad solder joint prob-
lems. These should be checked first, before assuming something else is a
fault. All intermittent problems will require an oscilloscope (preferably with
storage) or a logic-analyzer for quick, effective debugging.

All static problems can be solved. This is the first step: be completely
confident about this stage before continuing.

Design Problems

You thought you knew what you wanted—but you didn’t. Yes, we all
make mistakes so we might as well admit it. Design errors are divided into
two general categories: improper specification and improper use. Examples
of each follow.

Improper Use:

Passing too much current through a resistor will cause it to burn up.
Applying too much voltage to a capacitor will cause it to short. Every
device has its limits. The ‘‘too much’’ problem is the most common. For
example, too many loads on a single output line may cause the system to
read or write improper data values intermittently depending on temperature
variations.

Improper Specification

If we believe a part to be able to drive 30 bus loads when it can only drive
20—this is improper specification. It simply was not noticed in the data-
sheet upon specification.

More subtly, the timing of a particular part may be misunderstood. For
example, if the address gated to a memory part must be stable 20
nanoseconds before the data and write pulses, this may have been over-
looked and the system timing design violates this condition.

Design problems require a full range of equipment for proper trouble-
shooting, but a VOM-oscilloscope combination will suffice if time is of little
concern. These problems manifest themselves primarily in an intermittent
fashion in the case of overloading bus lines, and in burning and smoking
parts, in the case of overvoltage/current.

DIGITAL TROUBLE-SHOOTING 289

290

Logic Probes

The burning parts problems are simple—get a bigger part or improve the
design so it will work with the parts you have.

The intermittent problems require that all input-output loading be
checked, all device specifications be checked, and the system operated at
different temperatures to localize the sensitive component(s).

A can of freeze spray and a heat lamp can locate temperature sensitive
problems quickly and easily, by selectively heating and cooling the sus-
pected parts.

Logic Probes

Logic probes can verify logic levels quickly so as to isolate any static
conditions efficiently. The probes will indicate whether a signal is a 0, 1, or
undetermined by using an LED indicator or light bulb. Watch out for unde-
termined states: unless it is a tri-state bus floating, and it is supposed to be
floating, something may be wrong. Fig. 8-8 illustrates a logic probe in use.

DYNAMIC PROBLEMS

In operation, the system doesn’t work. The VOM, logic probe etc. will
not indicate time. Thus, they are of little use in the dynamic case. We need
devices which will indicate that the logic level timing is correct.

The Oscilloscope

To obtain timing information, the oscilloscope is most commonly used.
With one or more traces, events may be measured accurately in amplitude
and duration, in function of time. In microprocessor systems, events as
short as 10 nanoseconds should be observable with an oscilloscope. A 10
nanosecond square wave will appear as a sine wave on a 10 megahertz
oscilloscope. 'Thus, to see these events clearly, a 50 or 100 megahertz scope
is desirable. Fig. 8-9 illustrates the trace on a typical oscilloscope of a TTL
logic control signal.

The logic zone definitions here are for standard TTL. The logic ‘0"
signal is for any voltage between —0.6 and +0.8 volts. The logic ‘1’ signal
is from +2.0 volts to +5.5 volts. Anything in the zone from +0.8 to +2.0 is
considered undefined. Transitions from one level to the other should occur
in much less than one microsecond to avoid noise problems. The oscillo-
scope will indicate if a bad logic level is present. For example, if two TTL
outputs are connected together, we have violated a design rule. If the condi-
tion occurs, where the two outputs wish to go in opposite directions, one of

DIGITAL TROUBLE-SHOOTING 291

1VOLT/DIVISION UNDEFINED
BT R R R T
8.9 TTL Logic Signal

10 ns PER DIVISION _|>

the gates may be destroyed. If the condition occurs for only a few micro-
seconds at a time, no harm will be done; however, the fault will cause
problems. Fig. 8-10 shows a trace for such a condition. Note how the logic
“0”’ level is not correct.

20 ma

-

I | l | 10 TTL LOADS
' | 16 ma

(;6 ma!

8.10 TTL OUTPUT FAULT
‘ 20 ma

{ 16 ma

RISE DUE TO 20 ma
1.2 VOLTS EXTRA CURRENT-NO LONGER BELOW 0.8

m Y
"4

\ 4

Such a measurement, along with the knowledge of the logic family drive
specifications, will indicate to the trouble-shooter where the fault lies.

Observing chip-select, control and bus lines with the oscilloscope will
clue you to load problems, timing problems, and noise problems. Make sure
that the logic levels are well defined. TTL *‘0”’ should be from —0.6 to +0.8
volts. TTL “‘1” should be from 2.0 to 5.5 volts. Anything else means
trouble.

292

"*'l"l':n‘

mmcau-.. - "——! & N

16008 Analyzer
DIGITAL TROUBLE-SHOOTING 293

STATE MEASUREMENT

All system timing and system logic levels are correct when observing
any single bit or line—but we need to observe all the lines at once in time.
We could gather 16 oscilloscopes together, and early analyzers were simply
multi-channel oscilloscopes, but is is not specially convenient to observe 32
tiny traces on the face of an oscilloscope tube. For this reason, we de-
veloped logic analyzers, or more accurately, digital-domain analyzers.

P ROM RAM
12848

Y 4 » g » eroze

3 t

PIA 8 DATA

16 ADDRESS
CLOCK

R/W

INT

6800

Connecting the Analyzer

Logic Analyzer

What does a digital-domain analyzer do? It allows to observe up to 32
nodes in the system, simultaneously. It will display these bits in binary,
octal, hexadecimal, or in the form of conventional oscilloscope traces. It
will begin displaying the information when a given combination of bits, or
trigger occurs. It will store every clock cycle, or more often a new set of
signals, and be able to display a few sets of signals before and after the
trigger set. Each set of signals in time is known as a szate.

Available analyzers fall into two categories: those that emphasize timing
information, and those that emphasize state information.

Timing-oriented analyzers are merely multi-channel oscilloscopes.
These devices are useful where logic glitches, noise, or logic level problems
are suspected.

State-oriented analyzers attempt to present the flow of the system’s
program by monitoring all important circuit points. State-analyzers are ef-
fective in debugging software and complex software-hardware faults.

294

Example of a State Analyzer

The Hewlett-Packard 1600S Analyzer has 32 channels, two clocks, four
trigger qualifiers, and many other features. The instrument will take a
**snapshot’” of the state of the system on every clock cycle. We will use the
HP1600S to observe the interrupt cycle in a 6800-based processing system.

Table 8-11 lists the format of the data displayed on the 1600S. The .
probes were attached to the lines indicated. The clock was connected to ®2.

16 ADDRESS R

¥sB LS8 cB2 | V™A DATA

| ms LSB

|
XXXX XXXX XXXX XXXX XXX XXXX XXXX

CLOCK IS ON &2 OF BYSTEM CPU

8.11 HP 16008 Display Format for 6800 Interrupt

The 1600S was triggered by the interrupt signal. In Fig. 8-12, the state
flow is displayed. The data displayed are:

1. The current instruction cycle is finished. Instruction is an **F2"" hex at
location **1385"" hex.

2. The status is now pushed onto the stack, before going to the service
routine vector location. Note the stack is at locations “3FF" hex
downward. The program-counter, index-register, accumulators, and
flags, are stored in successive locations in the stack.

CcB2
READ/WRITE
VMA

DATA
ADDRESS |

l_"_l_'__l
0001 0011 1000 Ol101
0001 0011 OtL11 Ol

8.12 Interrupt Sequence

%

888
8835

0000
0000
0000

0001 0011 O111 0111 |
(0001 00T [OTTToTT) | 0000 0000
0000 0011 1111 11 IO'M: PCL
0000 001l 1111 11 101 PCH 4P STORES
0000 0011 1111 1101 101 IXL INTERNAL
0000 0011 1111 1100 101 IXH REGISTERS
0000 0011 1111 1011 101 ACC A ON STACK
0000 0011 1111 1010 101 ACC B
0000 0011 1111 1001 101 CCR
0000 0011 1111 1000 110
LOAD PC FETCH INTERRUPT
BERL LERE BRED 1000 " LOAD PCH § oERyICE ROUTINE
1000 1000 1040 100) i LOAD PCL {AgDRESS
0001 00 11 FIRST LOCATION (_jf
0001 mllW i INTERRUPT

SERVICE ROUTINE

DIGITAL TROUBLE-SHOOTING 295

3. The microprocessor now fetches the contents of addresses ‘‘FFF8’’ and
“FFF9” hex. The contents are transferred to the program-counter.

4. Interrupt-service routine begins at ‘‘1351’° hex. Execution continues
from this point.

With such a device we have a roadmap of where the system was, where
it is, and where it is going.

Some analyzers store a proper sequence of states, continuously compare
those with the current states, and stop upon a mismatch. Others display a
“1”?, X", or ‘0" for each bit in a page of memory, and indicate if that bit
has been read or written. Some store more states than others. However, all
of these analyzers have similar basic characteristics of being able to observe
a number of states in a system, in a time sequence.

The digital domain analyzer allows the designer to monitor software
execution so that wrong data, wrong addresses, or wrong instructions, may
be found. If a digital-domain analyzer is used to trigger an oscilloscope,
noise problems and subtle timing problems may also be identified.

In-Circuit Emulation

In-circuit emulation allows to ‘‘get inside” the microprocessor itself,
dynamically watch where it is going, what it is reading and writing. It makes
it possible to monitor the processor itself. It includes breakpoints and test
routines to allow you to ‘‘catch’’ a specific section of code as it goes by, and
display the contents of the internal registers. By checking these against
what you expected, the fault may be located.

Signature Analysis

There are a whole range of special tools usable only once an initial
system has been built and tested. These systems rely on the known be-
havior of the original system in order to predict what went wrong in the
system, in the field.

These techniques rely on a fault-tree. That is: everything that could go
wrong has been made to go wrong, and in each case, nodes in the circuit
were measured to discover just how such a failure would manifest itself.
Some fault-trees are short: if the fuse blows, replace it; if the fuse blows
again, call the service department. Some trees walk the service person
through the entire system, depending on measured values.

296

Biomation Logic Analyzer

DIGITAL TROUBLE-SHOOTING 297

8.13 HP ICE for 8080 System
208 Mnemonic Analyzer

e

HP Signature Analyzer

DIGITAL TROUBLE-SHOOTING _ 299

A Signature Analyzer

This device relies on the fact that any repetitive sequence of signal
values may be stored in a recirculating shift-register, whose value, clocked
into a display each time around, will have a certain value. A device can be
designed so that the probability of two bit streams having the same value or
‘‘signature”’ is extremely small.

Thus, each node in a system will have its own signature when it is
working correctly. It will also have a special signature for each possible
problem. By using a fault-tree method, developed by using the analyzer, all
faulty equipment can be debugged quickly down to a faulty component.

It will not find initial software problems, or the cause of intermittent
failures in a system.

In Fig. 8-14, we see the trouble-shooting flowchart, using an HPS004A
Signature Analyzer. These signatures were generated on a good instrument
and the chart developed to speed repair.

SOFTWARE TESTING TECHNIQUES

The underlying principle of all testing techniques is to compare an
existing board, component, or system, to “what it should be”. The
problem may naturally be to know what it should be, or else to imple-
ment a reasonable procedure for performing this comparison in a
systematic manner. In addition, two supplementary problems arise:
making the measurements themselves, and recording the history of
the last n signals. For this purpose, a number of new hardward and soft-
ware tools have been developed. The test instruments and techniques
used in performing such comparisons have been described in the pre-
ceding section. As usual in the computer world, either hardware or soft-
ware methods can be used. The purpose of this section is to explain
the software testing techniques.

The four basic methods used in testing microprocessor-related equip-
ment are: comparison testing, self-diagnostic, stored-response, algorith-
mic pattern generation.

Comparison Testing

In this method, a device, or a board, is compared to a known “good”
device, or “good” board. They share the same common input, and out-
puts are compared. This is a hardware method, and the required tools
have been presented. The next three techniques are essentially software
techniques.

300

B Certar That The Test
Jumper On The A3 Assem
bly s Disconnected, The
Ptug 1s Discunnecied From
AlJ7 And AIl HP-IB
Switches Are Ser To The
@ " postwer. Ture The
Insttument ON

!

Connect the SIGNATURE
ANALYZER START and
STOP Inputs to A3TP3 Con-
nect the CLOCK Input 1o
A3TFS and the GND Input
1o the Chassis. {See Note 1
for SIGNATURE ANALY —
ZER Control Settings.)

!

Pres. And Hoig Tre Feont
Panet LOCAL Key

Is Is
The Sunature NO The Sarature YE
AL ATUST Py 14 At ATUST Pan 15
6464 6464
YES NO
While observing A1US7
Pin 14 with the SIGNA. I8
TURE ANALYZER, press Thw Devicr ve
each of the Math Enny St 5'”."“’“"
Keys (those marked in A ‘“Uf’“P -9
blue and the STORE keys}. Foars
NO
G Te The Devir Seove
Truutreshootno P
Craur

[
The Signatur

ts

330H When Tre Siunatur:
Each Key Is A AT1USY Pin &
Pressed 31CL?

’

While observing A1US7 Invetes ATUSS. SWI'CT‘)
S1-86. S10-S12. 828

Pin 14 with the SIGNA- $28. Cable A2W2 O
TURE ANALYZER, press A1057
each of the remaining keys
{except the LINE and
GUARD keys).

8.14 Fault Tree

DIGITAL TROUBLE-SHOOTING

S

w

A2S1. A2W2 O ANUST

A1U81

Vgt

1t AVUSYT (O

A1US3

Lacr

301

Self-diagnostic

In the self-diagnostic method, the microprocessor system itself deter-
mines whether it is operational, and if not, which part of the system is
defective. The basic principle of self-diagnostic is to execute a “worst-
case” sequence, and to observe the results. In the case of the MPU it-
self, a worse-case sequence of instructions is usually available from the
manufacturer. Typically such a sequence will exercise all the machine’s
instructions, in a pre-determined order. In addition, it may include some
critical sequence of instructions which has been found to fail in some
cases. Clearly this information is usually available only from the manu-
facturer. Most of them are cooperative in supplying such a program.
Naturally, the following question arises: what if the MPU itself is indeed
defective? If it is defective, it is likely that the program will not terminate
successfully, and that the system will “crash”, with no external warning.
When performing such a self-diagnostic, an automatic warning mechanism
must be used. For example, the system will print a message on the prin-
ter saying “undergoing diagnostic testing at time X”. At time X plus
one minute, the system should have completed diagnostic testing, and
should print the message ‘diagnostic-testing completed successfully”.
If such a message is not printed, the system will be assumed to have
failed. Optionally, external devices may be set. For example, an external
alarm, with its own timing mechanism may be actuated at the beginning
of the test. Unless the timer is reset within a specified amount of time,
the alarm will go off, signaling an MPU failure automatically.

Such self-diagnostic programs are extensively used on systems enjoy-
ing idle time. It is a simple matter to write the basic test program using
most of the machine instructions, and residing in some unused portion
of the ROM. Whenever the microprocessor is idle, such a program may
be run, and thus verify the machine integrity. In addition, if it is run
continuously for a period of time, it will help isolate intermittent
failures of the system. Naturally, it need not reside in ROM, and may
be loaded in RAM from an external device.

Self-diagnostic is also used to test memory or input/output facili-
ties. The topic of memory-testing will be addressed in detail, in a
paragraph below on algorithmic pattern-generation. In the case of a
ROM memory, the simplest form of self-diagnostic is called checksum-
validation. In this technique, each block of data such as 16, 32, or
256 words is followed by a one byte or two-byte checksum. Typically,
such a checksum is computed by summing the n half-bytes of the
block of n words, using hexadecimal arithmetic. This sum is then trun-
cated to the last four binary digits, and the checksum character is the
ASCII encoding of the resulting hexadecimal digit. A simple program

302

executing in a secure area of the ROM (a portion of the ROM which is
assumed to be good) can read the contents of the rest of the ROM, re-
compute the. checksum, and then compare it to the value which has
been stored. If a mismatch is detected, a ROM failure has been
identified.

Testing input-output interfaces and I/O devices is usually complex,
in view of the delicate timing relationships involved. However a rough
checking is possible as to the correct overall operation of the devices them-
selves. Provided that feedback information is available from the device,
an order will be issued by the program such as: “close relay A.” Provided
that the feedback path be available, relay closure can be verified within n
milliseconds. In this way, the system can exercise all of the external con-
trol devices, and verify their proper overall operation. In addition, during
systems operation, ‘reasonableness-tests” are usually run on all input
devices (see book C20 for a complete discussion). Such tests will compare
the value of input parameters to values in a table, stored in the memory,
and determine whether this input data is “reasonable.” For ¢xample, when
measuring the temperature of water, temperatures below C and over
100O C will be deemed “unreasonable.” Similarly, for a microprocessor
controlling a traffic light at an intersection, detecting vehicle speeds over
200 mph will be deemed unreasonable. Naturally tests can be much finer
than the simplified examples, in a specific environment. Such reasonable-
ness-testing will detect intermittent and permanent failures of input de-
vices and will set-off an external alarm.

Stored-response

In the stored-response method, a large-scale computer system is used
to emulate, or simulate, the device, or the board, under test. First, a pro-
gram is used to measure the characteristics of the device, or system, under
test, preferably under dynamic circumstances. This data is then recorded,
and will be used by the comparison program. The comparison program
is then applied to the device. It will generate input signals. The outputs
are measured, and compared to the previous response of the system, as
stored in the tables. In such a system, two phases are necessary. The first
phase is a characterization phase where the computer system is used to
record essential responses of the system that will be later used as referen-
ces. Once these responses are obtained, in phase two, the system will only
run in comparison mode by executing a specific test program and measur-
ing the response.

This method is used essentially in production, and for incoming testers.
The cost of the system required to provide efficient stored-response
testing, plus the programs, can range from $50,000 to $500,000.

DIGITAL TROUBLE-SHOOTING 303

Algorithmic pattern generation

Algorithmic pattern-generation is essentially used for testing RAM
memory. The principle is to write a pattern in the memory, and then
verify that:

1: it was written correctly, and

2: that nothing was written anywhere else because of a RAM malfunc-
tion. The two basic pattern generation techniques used in RAM testing
are fixed-pattern tests, and galloping-pattern tests.

Fixed-pattern Testing

In a fixed-pattern test, identical, alternating, cyclical patterns are succes-
sively written, then read, at each memory location. This will detect gross
RAM failures. However, this will not detect pattern-sensitivity problems.
Pattern-sensitivity is a typical source of failure in high density chips. Be-
cause of the geometrical layout of the chip, some combination of bits
written at some instant of time in memory cells might cause some other
bit position elsewhere in the device to turn on or off. This problem can
happen in RAM memories or in microprocessors themselves. Whenever
this problem occurs in a microprocessor, it is a basic design failure, and
there is not much the user can do about it. The best that can be done
by the user is to run a worst-case program, supplied by the manufacturer,
which has been shown to make similar units fail because of the specific
sequence of instructions involved. This problem will not be considered
here as it is deemed highly infrequent, once a chip has been in the field
for more than a year. In the case of memory, however, especially in the
case of high-density memory, pattern-sensitivity is a frequent problem
which can be diagnosed relatively easily using an algorithmic pattern-
generation test. This will be described in the following section.

Galloping-pattern testing

The galloping pattern test is usually abbreviated “galpat.” The princi-
ple of this technique is to write successive binary values into memory
cells, then compare them to all of the rest of the memory, before moving
on to the next memory location. In this way, if writing into memory
cell zero affected the contents of memory cell 102, this will be detected
by the test. In a typical galpat, the memory will be initialized with a
known content, such as all ones, or all zeros. The basic test algorithm
is the following:

304

1. The contents of a location L-1 are tested against the contents of
all other memory locations. They should match.

2. The address L-1 is then incremented by one, and step one is carried
out until all memory locations are tested.

3. The initial data pattern is then complemented, and one goes back
to step one.

Many variations are possible on this basic galput. They have been
nicknamed “marching ones and zeros,” “walking ones and zeros,” and
“galloping patterns” (galpat one and galpat two).

Ideally, one should write all possible patterns in each memory loca-
tion, and after writing a pattern in every word, check every other word
of the memory, to verify whether it might have been changed. In addi-
tion, after checking each of the other memory words, one should imme-
diately come back to the original memory location under test in order
to verify that its pattern has not been changed by the tests performed
on another memory location. It could happen that the fact of checking
every other memory location would modify the original contents of the
memory cell, then modify them again so that eventually they would
have the correct initial contents. A possible failure would then not be
detected if one did not come back every time to verify the contents of
the initial cell. It is easy to see that such exhaustive testing will require
a very high number of operations. A simple memory exerciser, checking
a 32 K memory will typically run for several minutes. It will, for example,
write all zeros, or all ones, or write its own address in each memory
location, and then rotate these addresses through the available memory.
If the test uses galpat techniques, it could easily run for half an hour,
or even for several hours. For this reason, these tests are usually run
only during the initial debugging phase of the system, or when a mal-
function is suspected. It is not practical to consider their use once the
microprocessor system is operational, unless a simplified version is used.

SIMULATION AND EMULATION

Let us first introduce the basic definitions. Simulation refers to the
functional replacement of a hardware device by a program. It is said
that the device is simulated by software. The program will generate the
same outputs as the hardware device, in response to the same inputs.
Unfortunately, it will perform such a simulation much slower than the
original device.

DIGITAL TROUBLE-SHOOTING 305

Emulation refers essentially to a simulation performed in real-time.
In fact, many emulators will simulate the operation of a complete system
even faster than the model. For example, many bit-slice systems emulate
the instruction-set of another computer. They will execute all the instruc-
tions of the processor being emulated at the same speed, or sometimes
even faster.

Simulation is used for two essential devices: the microprocessor itself
and the ROM memory. ROM simulation, or emulation, is performed by
executing programs out of RAM, as if they were in ROM. This is normally
done during the development phase of all programs. Clearly an initial
program will contain a number of bugs, and should not be directly placed
in a final ROM or PROM. In a typical development-system, such a pro-
gram will be installed in RAM memory and be tested and debugged there.
The two main problems are to convert the addresses of the final program
into those required by the ROM and to maintain speed compatibility.
Typically the RAM-board resides at a specific physical address which
will not correspond to the actual address of the ROM chip in the final
system. The second problem is a synchronization problem whenever
a slow RAM is used initially, and a program is then installed on a faster
ROM. Such ROM emulation or ROM simulation facilities are a normal
part of any microcomputer development system and will not be addressed
in greater detail here.

Simulation and emulating the microprocessor itself is much more
complex. Simulating the microprocessor is used in two cases:

1. when the MPU itself is not available.

2. for convenience in debugging.

These two cases will not be detailed. When programs are developed
on a large-scale system, cross programs are used. A cross-assembler will
create for example 8080 code on an IBM 370. It is necessary to test the
correct execution of the resulting 8080 code. This will be performed
with a simulator. An 8080 simulator will be used, which executes all
the 8080 instructions in simulated time. In this way the complete logic
of the program will be tested. The essential limitation of such a simulator
is the fact that no input-output can be tested, unless the user deposits
known data at the right time into selected memory locations. Input-
output registers are then simulated by memory locations, Unfortunately
the timing of input-output is often random, and almost always complex.
For this reason, a simulator is only used to test the overall logic of a
program. This is fine for testing numerical algorithms, such as a floating-
point package. This is inadequate for debugging a complex input-output
interface.

306

In any system where the user must test real input-output in real time,
one of the most significant aids in testing is the emulation of the micro-
processor itself. This is called “in-circuit-emulation.”

215

Software Development

In-Circuit-Emulation

In-circuit-emulation was originally introduced by INTEL on its MDS
system, and is now available on every leading microprocessor development

DIGITAL TROUBLE-SHOOTING 307

system, as well as on independent systems. The picture of an actual
“in-circuit-emulator” (“ICE”) appears on the illustration. A special board
has been inserted on the INTEL MDS system on the left which provides
the in-circuit-emulation facility. On the right appears a system under
development. The board with the microprocessor itself has been pulled
out of the rack and plugged into an extension board so that its com-
ponents be easily accessible. The 8080 itself has been removed from its
socket, and a special cable called the “umbilical cord” has been plugged
into the socket. This is the cable appearing in the illustration. This 40-
line cable is terminated by a 40-pin connector identical to an actual
8080. The essential difference is that all the signals carried by this cable
are generated by, or under the control of, the in-circuit-emulator, rather
than the real 8080. What is the purpose of replacing an actual 8080
by a software emulator? The essential facility provided by the emulator
is to completely control and test the system under development (on the
right) from the console. 1t is possible to stop the operation of the 8080.
It is possible to examine the registers or change them. Doing this on an
actual 8080 would require opening up the package, removing the lid,
and placing microprobes under a microscope, to obtain the contents
of the registers, if indeed this were possible. The contents of the regis-
ters are not available in an actual 8080. Only the values on the busses
are. Using an emulator, it is possible to stop the operation of the 8080
automatically, using breakpoints in the program. This facility will be
clarified below. It is possible to examine, or change, registers, as well
as the contents of the memory. It is possible to sit at the keyboard,
and execute actual input-output instructions, such as closing a relay,
by hitting a key on the keyboard. It is then possible to stop again the
processor and examine the busses, the registers, or the memory. In
addition, all the operations may be performed in conjunction with the
powerful software-aids available in a development-system. Examining,
or changing, memory can be performed in symbolic form, rather than
in binary or hexadecimal. This is called symbolic debugging.

Breakpoints are a facility to specify and address where the program
will automatically stop. Addresses are selected, and a list of breakpoints
is given to the emulator. When the specified location is reached during
execution, the emulated microprocessor will automatically stop, and
allow the user to verify contents of registers, busses or memory. In addi-
tion, an in-circuit-emulator provides an essential capability called trace-
back. It provides essentially a snapshot of the history of the signals on
the busses during a specified length of time. In the case of the INTEL
ICE, it provides a 44 machine-cycle trace-back. Whenever a breakpoint

308

is encountered, the in-circuit-emulator stops the execution, and pro-
vides the user with a symbolic debugging facility. Typically, when an
error is detected at the breakpoint, it was not caused by the instruction
at the breakpoint, but was the result of a previous instruction in the
program. The essential problem is to locate the previous instruction
which caused the problem. This is a fracing problem. With the traceback
capability, it is possible to examine the previous signals, and to determine
which were the instructions executed before the detection of the error.
If this historical record is not long enough, an earlier breakpoint can be
set-up and an additional segment of the history of the system will be-
come available. This process can be repeated until the error is finally
identified.

An in-circuit-emulator does not require an important configuration
for software or hardware to execute. It is an essential debugging
capability, as it provides for the first time a tool for checking the opera-
tion of the complete system including the actual input-output devices,
in real time. In any system involving debugging of actual input-output
boards, or interfaces, the availability of an in-circuit-emulator is essential.

DEBUGGING A CONCEPTUAL PROCESSOR

After all logic levels are verified to be reasonable, the system is ready for
some simple test programs. Do not get too ahead of yourself here! Try
simple things such as: address sequentially every possible memory location,
jump to “‘0000’’ hexadecimal continually, input from a port, and output the
data input to an output port. Put these tests in separate PROM’s so that
they can be executed individually.

The address-test should result in each of the address bit lines toggling at
increasing long time with square waves.

The jump-test is so short, that it is usually possible to observe all lines
with an oscilloscope to check all dynamic conditions. Also, all of the ad-
dress bits—from bit A2 to bit A15—should be all zeroes in the suggested
test.

The input-output will allow each input bit to be tested. If the bit is held
high, the corresponding bit on the output should also go high. If it does not,
there is a fault with the input-output scheme in the system, or the micro-
processor.

Now it can get interesting. Try larger programs, working your way up to
the final applications program. At this point, all problems should be
software ones. If you are sure it is hardware—why? Go back and write
different simple test programs to establish whether you are right or wrong.
Remember: if a few instructions work OK, usually they all work OK.

DIGITAL TROUBLE-SHOOTING 309

Wv4904d
@Eavon

Debug Flowchart

8.16

oy

AJOLVINWI
4399N1d3a
HOLVIMWIS

Y

;T 40SS3004d

WYH904d %
133rdo

d3TAWASSY

T ¥0SS3304d

}

Wv490dd

40SS3204d

YIWWYHO0Yd WO¥d f—> SWONd
0/1 ﬂﬁam
B WILSAS d
TINY INOY
SOILSONOVIA
YINIYd
QWYOdAIN fe—SIONYHI-1S3L
43INTHd — ONI1S]]
QYV0dATY fe— WWII0U
N3 LLTYM-ONVH
=
II1AC -

A helpful point here is that small debugging systems’ software ROM’s
are available for most prototyping situations. They are usually called Hex
(or Octal) Debug and Test Programs, or System Monitors. Fig. 8-16 illus-
trates the debug flow for a typical situation.

Typical Problems Unique to Micros

The following is a list of some interesting problems the authors have
found:

— A bad address bit on the microprocessor causing any program be-
yond “‘1FFF’’ hex to not execute properly.

— Excessively leaky EPROM lost its data before you could plug it back
into the system from the PROM-programmer.

— PMOS and NMOS circuits cannot always be connected without buf-
fering. This is true of all logic families. ‘‘TTL-compatible’’ means it
will connect to TTL—not that it connects to something else labelled
TTL-compatible! This may cause serious problems. As an example:
a PMOS address-line to an NMOS RAM may cause one bit in the
RAM to go bad at random! These problems are usually heat and
power-supply sensitive. Your system should work over a wide range
of temperature and over a specified power-supply range. Check all
specifications closely.

— Dynamic RAM’s can and do go bad at one single bit location at
random. This is the reason for error-detection, parity, and error-
correction in large memory systems.

— Know your buses. As a rule, connect no more than one input and one
output to any bus line. Overlooking this may cause noise sensitivity
problems due to overloading. The most common line that violates
this rule is the RESET line.

— Don’t plug it in upside down or skewed down by one pin. Know which
way is up, down, right and left. If in doubt, measure your circuit at
the socket and call the manufacturer to find where pin one is.

A trouble-shooting flowchart is present in Fig. 8-17.

THE ONE BIT IN 16,384

The multiplexer design described in Chapter 8 took six man-months
to debug completely, with two full-time engineers assigned to this task,
with all of the tools mentioned in this chapter available to them. Thus,
the real cost of debugging this system was:

— 6 months salary: $10,000
— 6 months equipment: $15,000 (if rented)
$ 8,000 (five-year use).

DIGITAL TROUBLE-SHOOTING 31

1

BAS THE SYSTEM BUZZ-TEST —
BEEN CHECKED FOR - CONTINUITY AND
ALL WIRING ERRORS? |no OPEN CHECK
WITH VOM
*yes
WITHOUT PARTS IN
THE SYSTEM - APPLY
POWER. ARE ALL
CHECK POWER no VOLTAGES CORRECT
SUPPLIES - ON EACH IC?
tyes
INSERT COMPONENTS
WITH POWER OFF.
Check twice-they
are where they
POWER OFF'! yes| belong! POWER ON
(Replace burned -t IS ANYTHING TOO
out part) WARM?IS THERE SMOKE?
l no
- WIRING ERROR
CHECK ALL BUS LINES - TWO OUTPUTS
FOR PROPER LOGIC yes gigbI'I‘gGEIHER
LEVELS. IS THERE - I.C.
A BAD LEVEL? - NOISE PROBLEM*
-t
A . Y
- SOFTWARE BUG IN TRY EXECUTING
TEST PROGRAM - SIMPLE SOFTWARE
| - wIRDG ERROR o TEST PROGRAMS-
-~ DESIGN ERROR DO THEY WORK?
- NOISE PROBLEM* l - ngw\m; B,'.A’ED -
yes -
#(IF SO, CORRECT) OFSUNIJEPS'I‘
’ TRY APPLICATION- FUNCTION
PROGRAM WORK? [7G™] - HARDWARE NOISE*
lyes
DONE
8.17 Trouble-Shooting Flowchart

This section will focus on actual problems, as they were found.

Week 1:

Wire-wrapped version of design finished. Buzz-testing begun.

Week 2:

Buzz-test finished. Each module has about 20 errors out of 1000 connec-
tions. Power applied and one board had a short between power and ground.
Power supply blew up. Wire found by applying large current to board with
no parts in it, and ‘‘burning out” the short. It was a shorted bypass

capacitor on a memory board.

312

Week 3:

Each board being checked for logic signals, etc., separately. Average of
one more error per board found in wiring. Printed-circuit boards being made
for wire-wrap modules.

Week 4:

Prototype system executes all simple test routines. Bad memory chip
found in RAM boards upon a memory test program that wrote alternate
ones and zeroes into every cell.

Week 5:

Bus loading problem with system program. EPROM on CPU card, a
buffer added to this card. Applications program can do input and output for
a while without crashing.

Week 6:
Looks like only software problems now. P.C. layouts are ready for
wiring check before boards are made.

Week 7:

P.C. board layout approved, about 5 errors per board found. System has
a baffling problem: will run for a few hours then give garbage to host
system.

Week 8:
P.C. boards back and debugged. Replaced wire-wrap boards with P.C.
boards, one at a time, to check for errors.

Week 9:
Still fixing wiring errors on P.C. boards. System still acting funny. Logic
Analyzer is being used extensively to find the problem.

Week 10:

Bad bus driver on host USART card found. Now only crashes every day
or so. P.C. boards finished. System will sometimes pick up improper data
from terminal. In-circuit emulator being used to check the data pick-up
routine on a trace-back basis. Problem only happens every 8 hours or
so—thus, truly difficult to catch.

Week 11:
Argument between programmers and designers—unhealthy finger-
pointing session. Friday the fault is found. Two problems.

Week 12:

There was a bad bit in the EPROM used for the program, and the carry
bit was not cleared upon entering the interrupt routines, where an add with
carry instruction was used, instead of an add with no carry instruction. The

DIGITAL TROUBLE-SHOOTING 313

instruction determined the location of the data to be transmitted, hence it
would occasionally get the wrong data upon encountering a carry set after
an interrupt. The problem of the bad bit came by checking the PROM
against the listing four times (it escaped detection that long!). The problem
of the wrong instruction was traced back using the Logic Analyzer when it
triggered on a read from the wrong place.

Epilog:

Except for statistical failures, three identical systems have been in use
since the end of Week 12. There have been fewer failures in the multiplex-
ers, with ten times less downtime, than in the main computers to which they
are connected.

SUMMARY

Components, software, and noise are the only ‘‘things to blame’’ if a
problem occurs. The flowcharts presented have described a simple method
of approaching typical microprocessor-related problems. The equipment
needed for a good microprocessor debugging station was presented, and
examples of each have been given. For reference, all of the equipment
required in a prototyping situation is illustrated in Fig. 8-18. Note the cost:
typically $45,000. Use anything less, and the time required to fix things, or
find out what is wrong, will increase.

BOOKSHELF WITH ALL UPDATED
AND CORRECTED CATALOGS

il

a

)

BOX OF LOGIC
PROBES AND TOOLS

VOM or OVI

MODULE UNDER TEST

“SMTCH USED TO SELECT
- ok
- SYSTEM UNDER TEST
+ TIMESHARE ASSEMBLER £0ITOR SYSTEM

8.18 Prototyping Equipment

314

Future hardware debugging tools will be oriented towards the state-type
of analyzer discussed. A large number of state, trace, and trigger-
capabilities, as well as the ability to format the display of the states in any
machine’s mnemonics will be features of the new machines. Also their use
on minicomputers and large computers will become widespread with some
systems including an analyzer in the unit for self-diagnosis.

DIGITAL TROUBLE-SHOOTING 315

316

CHAPTER 9
EVOLUTION

TECHNOLOGICAL EVOLUTION

Beginning with the fundamentals of system interconnection, we have
traveled through the interfacing techniques. Throughout, the direction
of the evolution has been towards the use of completely integrated inter-
faces. The original racks, full of circuitry, previously required, have now
been reduced to a small number of LSI chips. The future will bring more
intelligent peripheral-chips which will result in increased performance
and flexibility.

The central processor at the heart of every system, is now a single
LSI chip. The interconnection of the memories and processor will be
eliminated in the future by one-chip microcomputers. These one-chip
devices will contain adequate ROM, RAM, and input-output facilities
to perform most interface tasks. Such devices are already being intro-
duced: the Texas Instrument 9940, the Intel 8048, Fairchild Mostek
3870, and others. They are characterized by a 1K to 2K ROM, plus
64 to 128 words of RAM, plus clock and timer on the MPU chip. The 16
pins freed by the unnecessary address bus become available as two 8-bit
input-output ports.

The Texas Instrument 9940 is a 16-bit microcomputer with 1K ROM,
RAM, and input-output in a single chip. The power of a 16-bit instruction
allows the implementation of a complete instruction-set, including hard-
ware multiply and divide. Unfortunately, the small ROM is a major limi-
tation. v

The Intel 8048 integrates a 1K by 8 PROM and a 32-byte register
file on a single chip, and provides 27 lines of input-output. An EPROM
version, the 8748, allows the program to be erased and reprogrammed
during development. The versatility gained by using an eraseable ROM,
on the same chip as the processor and input-output, makes 8748 easily
adaptable to changing interface requirements.

The 8041 is a “slave-version” of the 8048, intended as a “universal
peripheral interface.” It can be programmed to act as any device con-
troller, and interfaces easily to a standard microprocessor system.

CONCLUSION EVOLUTION 317

The Mostek Fairchild 3870 integrates a 2K ROM, plus RAM, and is
software-compatible with the F8.

PROGRAMMABLE INTERFACES

Because of the low-cost of one-chip processors, device interface chips
are becoming “intelligent,” i.e. processor-equipped. They receive instruc-
tions from the MPU, and implement all required control and sequencing.
The decoding and sequencing are usually accomplished by a micropro-
gram internal to the chip.

It is interesting to note that the complexity of a standard MPU is
about 6000 transistors. The complexity of an FDC or CRTC is 15000
to 22000 transistors.

One-chip interfaces are special-purpose processors for device control.
As integration progresses, the complete controller will eventually be
shrunk in a single-chip.

COST

The cost of interfaces will probably remain higher than the cost of a
processor, because of higher complexity, and lower volume. However,
it has become almost negligible compared to the cost of peripherals.

“PLASTIC SOFTWARE”

As soon as a software algorithm becomes well-defined, it can now be
solidified into LSI at low-cost. This is “plastic-software”: programs can
be purchased as a plastic LSI chip.

In the next step of evolution, it is likely that many of the algorithms
or programs which have been presented throughout this book will be
implemented as part of complex LSI chips. They will have become plastic .
software.

Interfacing will then have been essentially reduced to the simple inter-
connect of the required chips. When this time comes, it is hoped that the
techniques presented here will contribute to understanding it.

318

APPENDIX A

MANUFACTURERS

AMD (Advanced Micro Devices)
901 Thompson Place
Sunnyvale, CA 94608
(408) 732-2400
Telex: 346306

AMI (American Microsystems)
3800 Homestead Road
Santa Clara, CA 95051
(408) 246-0330

DATA GENERAL
Southboro, MASS 01772
(617) 485-9100
Telex: 48460

ELECTRONIC ARRAYS
550 East Middlefield Road
Mountain View, CA 94043
(415) 964-4321

FAIRCHILD SEMICONDUCTOR
1725 Technology Drive
San Jose, CA 95110
(408) 998-0123

Gl (General Instruments)
600 West John Street
Hicksville, NY 16002
(516) 733-3107
TWX: (510) 221-1666

HARRIS SEMICONDUCTOR
Box 883
Melbourne, FLA 32901
(305) 724-7430
TWX: (610) 959-6259

INTEL
3065 Bowers Avenue
Santa Clara, CA 95051
(408) 246-7501
Telex: 346372

INTERSIL
10090 North Tantau Avenue
Cuppertino, CA 95014
(408) 996-5000
TWX: (916) 338-0228

MMI (Monolithic Memories)
1165 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-3535

MOS TECHNOLOGY
950 Rittenhouse Road
Norristown, PA 19401
(215) 666-7950
TWX: (510) 660-4033

MOSTEK
1215 West Crosby Road
Carollton, TX 75006
(214) 242-0444
Telex: 30423

MOTOROLA SEMICONDUCTOR
Box 20912
Phoenix, ARIZ 85036
(602) 244-6900
Telex: 67325

NS (National Semiconductor)
2900 Semiconductor Drive
Santa Clara, CA 95051
(408) 732-5000
TWX: (910) 339-9240

RAYTHEON SEMICONDUCTOR
350 Ellis Street
Mountain View, CA 94042
(415) 968-9211
TWX: (910) 379-6481

RCA SOLID STATE
Box 3200
Somerville, NJ 08876
(201) 722-3200
TWX: (718) 4809333

ROCKWELL INTERNATIONAL
Box 3669
Anaheim, CA 92803
(714) 632-3698

SIGNETICS
811 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-7700

SYNERTEK
3050 Coronado Drive
Santa Clara, CA 95051
(408) 984-8900
TWX: (910) 338-0135

319

320

TI (Texas Instruments)
Digital Systems Division
P.O. Box 1444
Houston, TX 77001
(713) 494-5115

WESTERN DIGITAL CORP.
3128 Redhili Avenue
Newport Beach, CA 92663
(714) 557-3550
TWX: (910) 595-1139

ZILOG
170 State Street
Los Altos, CA 94022
(415) 526-2748
TWX: (910) 370-7955

APPENDIX B
S-100

MANUFACTURERS

COMPUTER SYSTEMS

Byte Shop Byt-B 349.00
Computer Power & Light COMPAL-80 (assembled) 2,300.00
Cromemco Z-1 (assembled) 2,495.00
Cromemco Z-2K 595.00
Electronic Control Technology ECT-100-8080 320.00
Electronic Control Technology ECT-100-Z80 420.00
Equinox 100 699.00
Forethought Products KIMSI connector and KIM (6502) 370.00
IMSA| 8080 Computer {chassis, power, & CPU) 699.00
IMSAI PKG-1 4,444 .00
IMSAI PKG-2 9,013.00
MITS Altair 88008 875.00
Morrow’s Micro Stuff Signa 100 250.00
PolyMorphic Systems POLY -88 System 0 525.00
PolyMorphic Systems POLY-88 System 2 - 735.00
PolyMorphic Systems POLY-88 System 6 1,575.00
PolyMorphic Disk System (1 disk) 3,250.00
Processor Technology SOL-PC Single Board 475,00
Processor Technology SOL-10 Terminal Computer 795.00
Processor Technology SOL-20 Terminal Computer 995.00
Processor Technology System | 1,649.00
Processor Technology System || 1,883.00
Processor Technology System |11 4,237.00
Quay Al 2-80 CPU, SIO, P10, ROM, Programmer Board 450.00
Technical Design Labs XITAN Alpha 1 769.00
Technical Design Labs XITAN Alpha 2 1,369.00
Vector Graphics Vector | 699.00
Vector Graphics Vector | without PROM/RAM 519.00
Vector Graphics Vector | without CPU 499.00
Vector Graphics Vector | without CPU, PROM/RAM 349.00
Western Data Systems DATA HANDLER (used MOS 6502) 179.95
Western Data Systems DATA HANDLER (bare bones) 79.95

321

SECOND OR REPLACEMENT CPU BOARD

Affordable Computer Products AZPU (uses Z-80) 249.00
Alpha Micro Systems AM-100 (16 bit) 1,495.00
CGRS 6502 ?
Cromemco ZPU (uses Z-80/4 microprocessor) 295.00
IMSAI MPU-A (requires additional boards) 190.00
MRS AM6800 CK (uses 6800 MPU) 110.00
MRS AM6800 (without the 6800 MPU chip) 78.00
MRS AM6800 PC Board 30.00
R.H.S. Marketing Piggy-Back Z80-80 (assembled) 159.95
SD Sales Z2-80 CPU 149.00
Technical Design Labs Z-80 (uses Z-80) 269.00

READ/WRITE MEMORY BOARD

Advanced Microcomputer Products Logos 8K RAM 219.95
Advanced Microcomputer Products 801C 8K RAM 207.95
Advanced Microcomputer Products 32K RAM 1,150.00
Artec 32K Memory Board (8K, 250 nS) 290.00
Artec 32K Memory Board (32K, 250 nS) 1,055.00
Associated Electronics 15K Pseudo-Static 349.95
Base-2 BKS-A 38.00
Base-2 BKS-B (450 nS) 123.00
Base-2 BKS-Z 143.00
BISI CCK Board (64K) 190.00
Crestline Micro Systems (8K, low power, assembled) 179.00
Cromemco 4KZ (4K 4MHz) (Bank selectable) 195.00
Cromemco 16KZ (16K 250 nX access and cycle) 495.00
Cybercom MBG6A Blue Board (8K static) 250.00
Cybercom MB7 (16K low power static) 525.00
Data Sync 16K (assembled) 298.00
Duston 8K Memory Board (bare) 29.00
Dutronics 4KLST (4K low power static) 139.00
Dutronics 8KLST (8K low power static) 285.00
E.E. & P.S. 8K (8K static) 295.00
E.E.& P.S. 16K (16K dynamic) 599.00
E.E. & P.S. 32K (32K dynamic) 895.00
Electronic Control Technology 8KM (8K 215 nS) 295.00
Electronic Control Technology 16K RAM (16K static) 555.00
Electronic Control Technology 16K RAM (with only 4K) 169.00
Electronic Control Technology 16K RAM (with only 8K) 295.00
Electronic Control Technology 16K RAM (with only 12K) 425.00
Extensys RM64-32 (32K) 895.00
Extensys RM64-48 (48K) 1,195.00
Extensys RM64-64 (64K) 1,495.00
Franklin Electric 8K Static RAM 225.00
Godbout Econoram (4K static) 99.95

322

Godbout Econoram 11 (8K) 163.84

IMSA| RAM 4A-4 (4K without sockets) 139.00
IMSA!I RAM 4A-4 (4K with sockets) 159.00
IMSA| 65K {(dynamic) 2,599.00
IMSA! 32K (dynamic) 749.00
IMSA1 16K (dynamic) 449.00
Kent-Moore 4K (assembled) 107.00
Microdesign MR8 (EPROM/RAM) 124.95
Micromation JUMP START (4K static) 145.00
Midwest Scientific Instruments PROM/RAM Board 95.00
Mikro-D MD-2046-4 (4K static) 205.00
Mikro-D MD-2046-8 (8K static) 345.00
Mikro-D MD-2046-12 (12K static) 485.00
Mikro-D MD 2046-16 (16K static) 625.00
MiniMicroMart C-80-4K-100 (4K blank board) 39.95
MiniMicroMart C-80-4K-700 {4K blank board plus) 49.95
MiniMicroMart C-80-4K-300S (4K 2102) 79.95
MiniMicroMart C-80-4K-300LP (4K 91L02A) 99.95
MiniMicroMart C-80-4K-350LP (4K 91L02C) 129.95
MiniMicroMart C-80-16K-300 (16K E MM4200) 479.95
MITS 88-4MCS (4K static) 167.00
MITS 88-16MCS (16K static) 765.00
MITS 88-S4K (4K dynamic) 155.00
Morrow Intelligent Cassette {512 static) 96.00
Mountain Hardware PROROM (256) 164.00
Omni (16K static) 459.00
Omni with paging option (16K static) 468.00
Prime Rodi x 40K (dynamic) 1,490.00
Prime Rodi x 48K {dynamic) 1,680.00
Prime Rodi x 56K {dynamic) 1,670.00
Prime Rodi x 64K (dynamic) 1,750.00
Processor Technology 4KRA (4K static with sockets) 154.00
Processor Technology 8KRA (8K static with sockets) 295.00
Processor Technology 16KRA (16K static assembled) 529.00
PolyMorphic Systems MEM-8K (8K static) 300.00
R.H.S. Marketing DYNABYTE 16K (dynamic, assembled) 485.00
J-K Electronics DYNA-RAM 16 (16K) 339.00
S. D. Sales Company 4K (4K static) 89.95
Seals Electronics 8KSC-8 (8K static) 269.00
Seals Electronics 8KSC-Z (8K 250 nS) 295.00
Seals Electronics 8KSCL M (less memory chips) 124.00
Seals Electronics 16KSC-16 (16K static) 579.00
Solid State Music M8-4 (4K 91L02A) 129.95
Solid State Music M8-4 (8K 91L02A) 209.00
Solid State Music M8-4 {(board only) 30.00
Solid State Music M8-4 (board only) 35.00
Solid State Music M8-6 (8K 91LO2APC static) ' 265.00
Solid State Music M8-7 (16K static) 525.00
Technical Design Labs Z8K (4K 215 nS) 169.00
Technical Design Labs Z8K (8K 215 nS) 295.00

323

Technical Design Labs 212K (12K 215 nS)

Technical Design Labs Z16K (16K 215 nS)

Technical Design Labs Z Monitor Board with 2K RAM
Vandenberg 16K RAM (dynamic)

Vector Graphics 8K RAM

Vector Graphic Reset and Go PROM/RAM

Xybek PRAMMER (256 bytes & 1702 PROMs)

PROM PROGRAMMER BOARD

Cromemco BYTESAVER for 2704 & 2708

Mountain Hardware PROROM (AMI| 6834)

Quay Al Z-80 with 2708 Programmer

Szerlip Enterprises The Prom Setter (1702A and 2708)
Xebek PRAMMER for 1702 (with 1702 & RAM)

PLUG IN SOFTWARE BOARD

Computer Kits Power-Start

Cromemco 280 Monitor Board with PROM Programmer
Godbout 8080 Software Board

Microdesign MR8 with MM 2K

Micronics Better Bug Trap (assembled)

Midwest Scientific Instruments PROM/RAM Monitor
Mountain Hardware PROROM

National Multiplex Corp No. 2 SIO with monitor
Processor Technology ALS-8 (assembled)

Processor Technology ALS-8 with SIM-|

Processor Technology ALS-8 with TXT-I

Technical Design Labs Z System Monitor Board
Vector Graphics Reset and Go (2 1702A)

Vector Graphics Reset and Go (3 1702A)

SERIAL INTERFACE BOARD

Advanced Microcomputer Products (3P + S compatible}
Cromemco TU-ART (2 parts)

IMSA! SIO 2-1 (one part, without cables)
IMSAI S10 2-2 (two parts, without cables)
IMSAI SI0 (serial, parallel, & tape interface)
Morrow Intelligent Cassette with one part
MiniMicroMart C80-S1/0-300 {TTL)

MITS 88-2510 (one part)

MITS 88-2S10 + SP {two parts)

MITS 88 S10B

National Multiplex Corp No. 2 S10 with ROM

324

435.00
574.00
295.00
299.00
265.00

89.00
189.00

145.00
164.00
450.00
165.00
209.00

165.00
220.00
189.95
224 .45
180.00
245.00
164.00
140.00
425.00
520.00
520.00
295.00
129.00
159.00

125.00
195.00
125.00
156.00
195.00
108.00

44,95
150.00
188.00
124.00
140.00

Processor Technology 3P+S (with sockets)

Solid State Music 1/0-2 (two parts)

Solid State Music 1/0-2 (PC board only)

Technical Design Labs Z Monitor Board (two parts)
WIZARD PSIOB (3P+S compatible)

ANALOG INTERFACE BOARD

Cromemco D+7A10 (7analog inputs & 7 outputs)
Micro Data ADC/DAC

MITS 88-ADC (assembled only)

MITS 88-Mux (assembled only)

MITS AD/DA (assembled)

PolyMorphic Systems ADA/I (1 analog output)
PolyMorphic Systems ADA/2 (2 analog outputs)

MODEM BOARD

International Data Systems 88-MODE M
Hayes 80-103A (assembled)
Hayes 80-103A (board only)

AUDIO CASSETTE INTERFACE BOARD

Affordable Computer Products Triple Standard
DAJEN Cassette Interface

DAJEN Universal Cassette Interface (Relay Control)
IMSAI MIO (tape interface, parallel, & serial)
MiniTerm Associates MERLIN with cassette interface
MITS 88-ACR

National Multiplex Corp No. 2 SIO with ROM
Morrow Intelligent Cassette Interface

Morrow Intelligent Cassette Interface (3 drives)
PerCom Data Cl-812

Processor Technology CUTS

RO-CHE with Tarbell (two parts)

RO-CHE with Tarbell (four parts)

Tarbell

TAPE DRIVE INTERFACE BOARDS

MECA ALPHA-| System

Micro Design Model 100 {assembled)
Micro Design Model 200 (assembled)
MicroLogic M712 DG PhiDeck
National M.C. 2 S10 (R} 1 ROM

149.00
47.50
25.00

295.00

125.00

145.00
250.00
524.00
319.00
235.00
145.00
195.00

199.00
279.95
49,95

135.00
120.00
135.00
195.00
298.00
145.00
140.00

96.00
102.00

89.95

87.00
245.00
245.00
120.00

400.00
600.00
875.00

69.95
169.95

325

Nationai M.C.2 SIO (R) 2 ROM 189.95
National M.C. 2 SIO (R) with 3M3 (3M drive) 369.90
National M.C. 2 S10 (R) with 3M3 {mini 3M drive) 339.90

FLOPPY DISK INTERFACE BOARD

Alpha Micro Systems AM-200 Controller 695.00
Alpha Micro Systems AM-201 Controller 695.00
CHP Floppy Disk Controlier 300.00
Computer Hobbyist Products Controller 300.00
Computer Hobbyist Products (single drive) 850.00
DigiComm 8040 Floppy Disk Controller 265.00
Digital Systems IBM campatible 1,5695.00
Digital Systems dual IBM campatible 2,170.00
iCOM Microfloppy Model FD2411 (assembled) 1,095.00
IMSAI F IF 599.00
IMSAI F DC2-1 & F IF 1,694.00
IMSAI F DC2-2 & F IF 2,789.00
INFO 2000 Adapter (without RAM) 120.00
INFO 2000 Adapter {(with 4K RAM) 160.00
INFO 2000 Adapter - Per Sci 1070 Controller 860.00
Micromation Universal Disc Controller 229.00
Micromation MACRO DISC System, Model 164K 900.00
Micromation MACRO DISC System, Model 256K 1,100.00
Micropolis 1053 Mod Il (630K) 1,795.00
Micropolis 1043 Mod Il (315K) 1,095.00
Micropolis 1053 Mod | (286K) 1,545.00
Micropolis 1043 Mod | (143K) 945.00
MITS 88-DCDD (Controller & disk) 1,425.00
MITS 88-DISK 1,215.00
North Star Computers MICRO-DISK 699.00
PerCom Data Co. 695.00
Peripheral Vision interface and floppy 750.00
Peripheral Vision IFF-KC interface 245.00
Pertec RD2411 1,095.00
Processor Applications FDC-1016K Controller 395.00
Processor Technology Helios (dual) 1,895.00
Realistic Controls Z1/25 1,095.00
Synetic Designs interface and floppys 2,690.00
Tarbell Bare Board Interface 40.00
Tarbell Interface 190.00

HARD DISK INTERFACE BOARD

IMSAI DISK-50 12,500.00
IMSAI DISK-80 14,700.00
IMSAI DISK-200 24,500.00
IMSAI Interface {(assembled) 3,900.00

326

PROM BOARD

Crea Comp M 100/16 (16K, 2116)

Crea Comp M 100/16 (with parity)

Crea Comp M 100/32 (32K, 2116)

Crea Comp M 100/32 (with parity)
Cromemco BYTESAVER (8K)

Cromemco 16KPR-K (16K, Bank selectable)
DigiComm Byteuser {uses 2708)

Digiteck PROM CARD (2K assembled without PROMS)

Electronic Contro! Technology 2K ROM/2K RAM
Godbout Econoram (2K)

Godbout Econoram (4K)

Godbout Econoram (8K)

IBEX 16K PROM Board

IMSAI PROM 4-4 (4K PROM)

IMSAI PROM 4-512 (I/2K PROM)

Microdesign MR8 (for 2708)

Midwest Scientific Instruments PROM/RAM Board
MiniMicroMart C80-1702-| (a!l except PROMS)
MiniMicroMart C80-2708-2 (all except PROMS)
MiniMicroMart C80-256 (boot strap board, fuse link)
MITS PMC (2K)

Processor Technology 2KRO

Seals Electronics 4KROM

Solid State Music MB-3 2K {8 1702As)

Solid State Music MB-3 4K (16 1702As)

Solid State Music MB-3 {(without PROMs)

Solid State Music MB-8 (2708)

Vector Graphic Reset and Go PROM/RAM

Xybek PRAMMER for 1702 (with a 1702 & RAM)

MEMORY CONTROL BOARD

IMSA| IMM ROM Control Kit
IMSA|l IMM EROM Control Kit

HARDWARE MULTIPLY/DIVIDE BOARD

GNAT 8006 Module (5 u-sec. process time)
GNAT 8006 Module (2.5 u-sec. process time)
North Star Computers (floating point)

CALCULATOR INTERFACE BOARD

COMPU/TIME CT 100
COMPU/TIME C 101
MiniMicroMart C80-SCI1-300

485.00
560.00
885.00
990.00
145.00
145.00
65.00
56.95
120.00
135.00
179.95
269.00
85.00
399.00
165.00
99.50
95.00
49.95
49.95
34.95
85.00
65.00
119.00
105.00
145.00
65.00
85.00
89.00
189.00

299.00
499.00

225.00
275.00
359.00

195.00
149.00
99.95

327

SPEECH SYNTHESIZER BOARD

Ai Cybernetic Systems Model 1000
Computalker Speech Synthesizer CT-I
Logistics Synthesizer {(multipurpose)

SPEECH RECOGNITION BOARD

Heuristic Speechlab
Phonics SR/8 (assembled)

JOYSTICK INTERFACE KITS

Cromemco Joystick Kit & D+7A1/0
Cromemco Dual Joystick Kits & D+7A1/0

INTERRUPT BOARD

Cromemco TU-ART

E! Paso Computer Group (board only)
IMSA| PIC-8 (with internal clock)
MITS 88-VI/RTC

REAL-TIME CLOCK

Comptek CL2400

COMPU/TIME CT 100

COMPU/TIME T 102

International Data Systems SMP-88

Lincoin Semiconductor Clock and Display Driver

AC POWER CONTROL

Comptek PC3216 Control Logic Interface
Comptek PC3216 & PC3202 Power Control Unit
Comptek PC3216 & 16 PC3202 16 Channel System
Comptek PC3232 Control Logic Interface

E.E.& P.S.II5V I/O

Mullen Relay/Opto Isolator Control Board

BATTERY BACK-UP BOARD

Seals Electronics BBUC (12 amper hours)
E.E.&P.S.

328

325.00
395.00
525.00

245.00
550.00

210.00
275.00

195.00

20.00
125.00
136.00

98.00
195.00
165.00

96.00

95.00

189.00
228.50
821.00
299.00
249.00
117.00

55.00
65.00

MUSIC SYNTHESIZER BOARD

ALF Quad Cromatic Pitch Generator (1 channel)

ALF Quad Cromatic Pitch Generator (2 channels)
ALF Quad Cromatic Pitch Generator (3 channels)
ALF Quad Cromatic Pitch Generator (4 channels)
Cybercam 581 Synthesizer Kit

Galazy Systems MG -1

Logistics Synthesizer (multipurpose)

SRS Polyphonic Synthesizer SRS-320 (assembled)
SRS Polyphonic Synthesizer SRS-321 for the SRS-320

PRINTER INTERFACE BOARD

Peripheral Vision PRT-KC Printer Kit

FREQUENCY COUNTER BOARD
International Data Systems 88-UFC
IBM SELECTRIC INTERFACE BOARD

Micromation TYPEAWAY

PARALLEL INTERFACE BOARD

Advanced Microcomputer Products (3P+S compatible)
Cromemco D+7A10 (one part with seven analog parts)
Cromemco TU-ART (2 parts)

IMSA] P10 4-] {one port without cables)

IMSA| P10 4-1 & PIOM (two ports without cables)
IMSAI P10 4-1 & PIOM (three ports without cables)
IMSAI P10 4-4 (four ports without cables)

IMSAI P10 6-3 {three ports and bus without cables)
IMSA| P10 6-6 (six ports and bus without cables)
IMSAI MOI {two ports & serial & tape interface)
MicrobLogic M712 (one port)

MiniMicroMart C80-P 1/O (two ports)

MiniMicroMart C80-P 1/O with cables C80-P 1/0-540
MITS 88-4P10 (one port)

MITS 88-4P10 + PP (two ports)

MITS 88-4P10 + 2PP (three ports)

MITS 88-4P10 + 3PP (four ports)

Morrow Intelligent Cassette with one port
PolyMorphic VT1/32 (one input port with video)
PolyMorphic VTI/64 (one input port with video)

111.00
127.00
143.00
159.00
250.00
299.00
525.00
175.00
175.00

495.00

149.00

225.00

125.00
145.00
195.00

93.00
115.00
137.00
156.00
139.00
169.00
195.00

69.95

49.95

57.45
105.00
148.00
191.00
234.00
102.00
185.00
210.00

329

Processor Technology 3P+S {with sockets)

Solid State Music 1/0-1 {one port)

Solid State Music 1/0-l (PC board only)

Solid State Music 1/0-2 (two ports)

Solid State Music 1/0-2 (PC board only)

Technical Design Labs Z Monitor Board (one port)
WIZARD PSIOB (3P+S compatible)

PROTOTYPE BOARD

Advanced Microcomputer Products Universal Proto
Artec GP-100

Cromemco WWB-2K

Electronic Control Technology PB-I

E.E. & P.S. Wire Wrap

E&L Instruments Breadboarding/Interfacing Station
Electronic Control Technology PB-I

Galaxy Systems PB-I|

Harnestead Technology HTC-88P (QT sockets)
Harnestead Technology HTC-88PF (fell pattern)
IMSAI GP-88

IMSA| 88C-5 & P106-6 Intelligent Breadboard System
IMSA| 88C-3 & P106-3 Intelligent Breadboard System
MiniMicroMart C-80-WW (wire wrap type)
MiniMicroMart C-80-DIP (for point to point)
MiniMicroMart C-80-BUS-WW (wire wrap)
MiniMicroMart C-80-BUS-WW-125 (with components)
MiniMicroMart C-80-DIP-BUS (for point to point)
MiniMicroMart C-80-DIP-BUS-125 (with components)
MITS 88-PPCB

MITS 88-WWB

PolyMorphics Poly /O

Processor Technology WWB

Sargent’s Dist. Co.

Seals Electronics WWC

Tarbell Electronics

Vector 8800V

Vector 8800-A

Vector 8800-B

EXTENDED BOARD

Advanced Microcomputer Products Extender
Artec EXT-100

Cromemco EXC-2

E.E. & P.S. Extender W/C

Galaxy Systems E X-|

IMSAI EXT

MiniMicroMart C-80-EXC

330

149.00
42.00
25.00
47.50
25.00

295.00

125.00

39.95
20.00
35.00
22.00
39.00
241.50
28.00
30.00
138.00
38.00
39.80
699.00
464.00
19.95
18.95
21.95
27.45
20.95
26.45
45.00
20.00
55.00
40.00
25.00
37.50
28.00
19.95
29.95
89.00

34.95
12.00
35.00
34.00
25.00
39.00
24.95

Mullen (with logic probe)
Processor Technology EXB

Seals Electronics EXT

Solid State Music {less connectors)
Solid State Music {w/w connector)
Suntronics EXT-I

Vector 3690-12 (assembled)

ADAPTER BOARD

MiniMicroMart C80-8A (for MOD 8/C-MOD 80 boards)
Forethought Products KIMSI {for KIM)

CARD CAGE AND/OR MOTHERBOARD

Advanced Microcomputer Products 8 slot MS w/connectors
Byte, Inc. Byt-8

Computer Data Systems Versatile CRT (assembled)
Electronic Control Technology ECT-100
Electronic Control Technology MB-20

Godbout Motherboard (10 slot)

Godbout Motherboard (18 slot)

Integrand Research Corp. 808

Integrand Research Corp. 808A

MiniMicroMart Expander (4 slots)

MiniMicroMart Expander (9 slots)

Morrow MotherBoard

Objective Design Crate Book (plans only)
PolyMorphic P+S Chassis

TE| Model MCS-112

T&H Engineering Low Cost Buses

Vector 18 Slot Motherboard

TERMINATION BOARD

Godbout

VIDEO INTERFACE BOARD -BLACK & WHITE

Computer Kits INTELLITERM (characters)
Computer Graphics GDT-I {graphics and light pen)
Environmental Interface 1l (monitor)
Environmental Interface 11l (oscilloscope)
Kent-Moore alpha (assembled)

Kent-Moore graphic {assembled)

35.00
35.00
29.00

8.00
12.50

9.95
25.00

19.95
125.00

79.95
229.00
699.95
100.00

60.00

85..00
118.00
200.00
275.00

10.95

17.95

76.00

19.95
235.00
316.00
149.00

49.00

25.00

395.00
185.00
245.00
495.00
107.00
137.00

331

Micro GRAPHICS “THE DEALER" (graphics and characters)

MiniMicroMart C80-VBA

MiniTerm Associates MERLIN (without memory)
MiniTerm Associates MERLIN (with memory)
MiniTerm Associates MERLIN Super Dense Graphics
Polymorphics VTI/64 (graphics and characters)
Processor Technology VDM-| (characters)

Solid State Music 64 x 16 {(graphics and characters)

VIDEO INTERFACE BOARD -COLOR

Cromemco TV DAZZLER (graphics)

TV CAMERA INTERFACE BOARD

Cromemco 88-CCC-K

Cromemco 88-CCC-K with Camera Kit 88-ACC-K

Environmental Interface |

Environmental Interface with camera

Affordable Computer Products
Byte Shop No. 2

3400 El Camino Real

Santa Clara, CA 95051

(408) 2494221

Advanced Microcomputer Products
P.O. Box 17329

Irvine, CA 92713

(714) 558-8813

Ai Cybernetic Systems
P.O. Box 4691
University Park, NM 88003

ALF Products, Inc.
128 S. Taft
Lakewood, CO 80228

Alpha Micro Systems
17875 N. SkyPark North
Irvine, CA 92714

(714) 957-1404

Altair (see MITS)

332

Artec Electronics, Inc.
605 Old Country Road
San Carlos, CA 94070
(415) 5922740

Associated Electronics
12444 Lambert Circle
Garden Grove, CA 92641
(714) 5390735

Base-2, Inc.
P.O. Box 9941
Marina del Rey, CA 90291

Byte Shop
1450 Koll Circle, No. 105
San Jose, CA 95112

CGRS Microtech, Inc.
Unknown

CHP, Inc.
P.O. Box 18113
San Jose, CA 95158

249.00
149.95
269.00
303.95
308.00
210.00
199.00
179.95

215.00

195.00
390.00
295.00
595.00

Comptek

P.0.Box 516

La Canada, CA 91011
(213) 790-7957

Computalker Consultants
P.O. Box 1951
Santa Monica, CA 90406

Computer Data Systems
English Village, Atram 3
Newark, DE 19711

Computer Kits Inc.
1044 University Avenue
Berkeley, CA 94710
(415) 845-5300

Computer Graphics Associates
56 Sicker Road
Latham, NY 12110

Computer Hobbyist Products, Inc.

P.O.Box 18113
San Jose, CA 95158
(408) 6299108

COMPU/TIME

P.0O. Box 417

Huntington Beach, CA 92648
(714) 638-2094

Computer Power & Light
12321 Ventura Blvd.
Studio City, CA 91604
(213) 760-0405

Crea Comp System, Inc.
Suite 305

4175 Veterans Highways
Ronkonkoma, NY 11779
(516) 585-1606

Crestline Micro Systems
P.O. Box 3313
Riverside, CA 92519

Cromemco

2432 Charleston Road
Mountain View, CA 94043
(415) 964-7400

Cybercom

2102A Walsh Avenue
Santa Clara, CA 95050
(408) 246-2707

DAIJEN

David C. Jenkins

7214 Springleaf Court
Citrus Heights, CA 95610
(916) 723-1050

Data Sync

201 W. Mill

Santa Maria, CA 93454
(805) 963-8678

DigiComm
6205 Rose Court
Roseville, CA 95678

Digital Systems

1154 Dunsmuir Place
Livermore, CA

(415) 4134078

Digiteck
P.O. Box 6838]
Grosse Point, Michigan 48236

Duston, Forrest
885 Aster Avenue
Palatine, I 60067

333

Dutronics
P.O. Box 9160
Stockton, CA 94608

E & L Instruments, Inc.
61 First Street

Derby, Conn. 06418
(203) 735-8774

EE.&PS.

Electronic Eng. & Production Service

Route No. 2
Louisville, Tennessee
(615) 984-9640

Electronic Control Technology
P.O.Box 6
Union City, NJ 07083

El Paso Computer Group
9716 Saigon Drive
El Pase, TX 79925

Environmental Interfaces
3207 Meadowbrook Blvd.
Cleveland, Ohio 44118
(216) 371-8482

Equinox Division
Parasitic Engineering
P.O.Box 6314
Albany, CA 94706
(800) 648-5311

Extensys Corp.
592 Weddell Drive, S-3
Sunnyvale, CA 94086
(408) 734-1525

Forethought Products

P.O. Box 386-A
Coburg, Oregon 97401

334

Franklin Electric Co.

733 Lakefield Road
Westlake Village, CA 91361
(805) 497-7755

Galaxy Systems

P.O. Box 2475

Woodland Hills, CA" 91364
(213) 888-7233

GNAT Computers
8869 Balboa, Unit C
San Diego, CA 12123

Godbout Electronics
Box 2355
Oakland Airport, CA 94614

Hayes

P.O. Box 9884
Atlanta, GA 30319
(404) 231-0574

Heuristic, Inc.

900 N. San Antonio Road
Suite C-1

Los Altos, CA 94022

Hornestead Technologies Corp.
891 Briarcliff Road N.E.

Suite B-11

Atlanta, GA 30306

iCOM Division

6741 Variel Avenue
Conoga Park, CA 91303
(213) 348-1391

IBEX

1010 Morse Avenue, No. 5
Sunnyvale, CA 94086
739-3770

I M S Associates, Inc.
14860 Wicks Blvd.

San Leandro, CA 94577
(415) 483-2093

INFO 2000
P.O.Box 316
Culver City, CA 90230

Integrand Research Corp.
8474 Avenue 296
Visalia, CA 93277

(209) 733-9288

International Data Systems
400 North Washington Street,
Suite 200

Falls Church, VA 22046
(703) 536-7373

Kent-Moore Instrument Co.
P.O. Box 507

Industrial Avenue

Pioneer, Ohio 43554

(419) 737-2352

Lewis and Associates

68 Post Street, Suite 506
San Francisco, CA 94104
(415) 391-1498

Lincoln Semiconductor
P.O. Box 68

Milpitas, CA 95035
(408) 734-8020

Logistics
Box 9970
Marina Del Rey, CA 90291

North Star Computers
2465 Fourth Street
Berkeley, CA 94710

MECA

7344 Warnego Trail
Yucca Valley, CA 92284
(714) 365-7686

Micro Data
3199 Trinity Place
San Jose, CA 95124

Microdesign

8187 Havasu Circle
Buena Park, CA 90621
(415) 465-1861

Micro Designs, Inc.
499 Embarcadero
Oakland, CA 94606
(415) 465-1861

MicroGRAPHICS
P.O. Box 2189, Station A
Champaign, IL 61820

MicroLogic
P.O. Box 55484
Indianapolis, IN 46220

Micromation

524 Union Street

San Francisco, CA 94133
(415) 398-0289

Micronics, Inc.
P.O.Box 3514
Greenville, NC 27834

Micropolis Corp.
9017 Reseda Blvd.
Northridge, CA 91324

Midwest Scientific Instruments

220 West Cedar
Olathe, Kansas 66061

335

MIKRA-D, Inc.
P.O. Box 403
Hollister, Mass. 01746

Mini Micro Mart
1618 James Street
Syrecuse, NY 13203

MiniTerm Associates
Box 268
Bedford, Mass. 01730

MITS (Altair)
2450 Alamo S. E.
Albuquerque, NM 87106

Morrow’s Micro-Stuff
Box 6194
Albany, CA 94706

MRS
P.O.Box 1220
Hawthorne, CA 90250

Mullen Computer Boards
Box 6214
Hayward, CA 94545

Mountain Hardware
Box 1133
Ben Lamand, CA 95005

National Multiplex Corp.
3474 Rand Avenue, Box 288
South Plainfield, NJ 07080

Objective Design, Inc.
P.O. Box 7536 Univ. Station
Provo, Utah 84602

PerCom Data Company

4021 Windsor
Garland, TX 75042

336

Peripheral Vision
P.O. Box 6267
Denver, Colorado 80206

Phonics, Inc.
P.O. Box 62275
Sunnyvale, CA 94086

Polymorphic Systems
737 S. Kellogg
Galeta, CA 94608

Prime Rodix Inc.
P.O.Box 11245
Denver, Colorado 80211

Processor Applications, Ltd.
2801 East Valley Veiw Avenue
West Covina, CA 91792

Processor Technology
6200-L Hollis Street
Emeryville, CA 94608

Quay Corporation
P.O. Box 386
Freehold, NJ 07728

Realistic Controls Corporation
3530 Warrensville Center Road
Cleveland, Ohio 44122

R.H.S. Marketing
2233 El Camino Real
Palo Alto, CA 94306

RO-CHE Systems
7101 Mammoth Avenue
Van Nuys, CA 91405

S. D. Sales
P.O. Box 28810
Dallas, Texas 75228

Sargent’s Dist. Co.
4209 Knoxville
Lakewood, CA 90713

Scientific Research Instruments
P.O. Drawer C
Marcy, NJ 13403

Seals Electronics
Box 11651
Knoxville, TN 37919

Smoke Signal Boardcasting
P.O. Box 2017
Hollywood, CA 90028

Solid State Music
MIKOS

419 Portofino Drive
San Carlos, CA 94070

Stillman Research Systems (SRS)
P.0. Box 14036
Phoenix, AZ 85063

Suntronics Company
360 Merrimack Street
Lawrence, MA 01843

Synetic Designs Company
P.O. Box 2627
Pomona, CA 91766 -

Szerlip Enterprises
1414 W. 259th Street
Harbor City, CA 90710

TEI Inc.
7231 Fondren Road
Houston, Texas 77036

T&H Engineering
P.O. Box 352
Cardiff, CA 92007

Tarbell Electronics

20620 South Leapwood Avenue
Suite P

Carson, CA 90746

Technical Design Labs Inc.
342 Columbus Avenue
Trenton, NJ 08629

Vandenberg Data Products
P.0. Box 2507
Santa Maria, CA 93454

Vector Electronics Company, Inc.
12460 Gladstone Avenue
Sylmar, CA 91342

Vector Graphic Inc.
717 Lakefield Road, Suite F
Westlake Village, CA 91361

Western Data Systems
3650 Charles Street, No. Z
Santa Clara, CA 95050

WIZARD Engineering
8205 Ronson Road, Suite C
San Diego, CA 92111

Xybek

P.O. Box 4925
Stanford, CA 94305

337

A

ACIA
acknowledge
address-bus
analog to digital
analyser

ASCII

asynchronous

B

band-rate
bidirectional
bounce
breakpoints
buffering

bus-drivers

C

CAMAC

cassette

central processor unit

clock

338

INDEX

58,107,112

13

8,10,20

191, 197, 204, 207
287,293
97,147,215, 244
13,242

240, 273
25

85

308
24,125,269
48

215,233
85,121,123, 140
17

26,34,43

component failure
control-bus
counter

CRC

CRT

D
daisy-chain
data-bus
decoders

digital to analog

direct-comparison
direct memory access
distributor

DMAC

dot-matrix

drivers

dual-slope

DVM

dynamic RAM

E
EBCDIC
EPROM

error detection

281

9,10

102

17
85,142,151

69

8,10, 19

22

191, 193, 196, 206, 246

202

75

109
75,185,187
104, 105, 145
100

201

287,288
23,39

245
29
169

339

floppy-disk

fully decoded selection

G
glitch

I

IEEE - 488
in-circuit emulation
integration
interface chips
interrupts

1/0 mapped 1/0

H
hard-format
hardware

hexadecimal

K
keyboard

L
latches
LED

linear selection

340

85,154,173,177, 180, 184, 185
21

205

228

296, 306
201

10

66

46

159, 168
8
44

85,95,96

48
85,98, 103
20,32

line printer

LSI

M

magnetic stripe reader
memory-array

memory map
memory-mapped I/O
microcomputer-on-a-chip
microprocessor

MTBF

multiplexer

N

noise

0]
offset
one-shot

oscilloscope

P

packaging

paper tape reader
partial-decoding

pattern testing

114

85,120

268

20

45

9,317

8

282

9, 82, 83, 210, 259

284,285

212
82,83
287, 291

17
85,113
32

304

341

PIA

PIC

PIO

plastic software
polling

PPI

priority

probe
programmable

programmed I/O

Q
quad-slope

queue

R

RAM

refresh

refresh address
refresh controller
rollover

ROM

RS232C

342

50
69, 74,274
50

318

62, 64, 68
54

64,70
287, 290
50

62

201
260

23

40

40

40

88

24, 84
215,239, 259

S

S$100

sampling
sampling theorem
scaling

scanning
self-diagnostic
serial I/O
signature analysis
simulation
soft-fail
soft-format
software
software-priority
stack

state

static RAM
stored-response

substrate material

successive approximation

synchronous

system controller

215,217
196, 197
197

212
87,93
302

56

300

305

84

159
8,284

. 69

73
293,295
23

303
17,18, 19
197
13,243, 246
28

343

teletype
testing

transceivers

U

UART
USART

A%

vectored-interrupt

VOM

Y

yield

344

85105
281,300
25,269

56, 58,61, 106
58, 60, 260, 270

69
287,288

17,18

MICROPROCESSOR BOOKS

BOOKS
C200

C201
C4
C207

MD

AN INTRODUCTION TO PERSONAL COMPUTING,
by Rodnay Zaks

MICROPROCESSORS, from chips to systems,

by Rodnay Zaks

LES MICROPROCESSEURS: du composant au systeme,
par Rodnay Zaks et Pierre Le Beux

MICROPROCESSOR INTERFACING TECHNIQUES

by Austin Lesea and Rodnay Zaks

INTERNATIONAL MICROPROCESSOR DICTIONARY

(10 languages)

CASSETTES (2 cassettes plus special book)

S1 INTRODUCTION TO MICROPROCESSORS

S2 PROGRAMMING MICROPROCESSORS
SEMINAR BOOKS

B1 MICROPROCESSORS

B2 PROGRAMMING AND MICROPROGRAMMING

B3 MILITARY MICROPROCESSOR SYSTEMS

BS BIT-SLICE

B6 INDUSTRIAL MICROPROCESSOR SYSTEMS

B7 INTERFACING TECHNIQUES

IN HOUSE TRAINING AND SEMINARS

SYBEX offers over 12 different' seminars which can be
presented at your facility for a minimum group of 15
participants (world-wide). Please contact the nearest
SYBEX office for full details.

345

346

INFORMATION REQUEST (see other side)

FIRST CLASS
Permit No. 2587
BERKELEY, CA

BUSINESS REPLY MAIL

No postage stamp necessary if mailed in the United States

Postage will be paid by

SY BE x INCORPORATED

2161 SHATTUCK AVENUE
BERKELEY, CA 94704

347

|'
|
|
|
II
!
|
!
i
|
|
!
I
!
|
|
|
|
!

————————__ CUT HERE

INFORMATION REQUEST

NAME POSITION

COMPANY ADDRESS

CITY STATE ZIP. TEL:

Send me information on:
O BOOKS O IN-HOUSE COURSES
O HOME STUDY WITH CASSETTES O CONSULTING
O SEMINARS O OTHER

348

0 IMMEDIATELY

FOLD HERE, THEN STAPLE

SYBEX

SYBEX

-

Microprocessor

INTERFACING

Techniques

I'NTERFAECING

	wt0003
	wt0005
	wt0006
	wt0007
	wt0008
	wt0009
	wt0010
	wt0011
	wt0012
	wt0013
	wt0014
	wt0015
	wt0016
	wt0017
	wt0018
	wt0019
	wt0020
	wt0021
	wt0022
	wt0023
	wt0024
	wt0025
	wt0026
	wt0027
	wt0028
	wt0029
	wt0030
	wt0031
	wt0032
	wt0033
	wt0034
	wt0035
	wt0036
	wt0037
	wt0038
	wt0039
	wt0040
	wt0041
	wt0042
	wt0043
	wt0044
	wt0045
	wt0046
	wt0047
	wt0048
	wt0049
	wt0050
	wt0051
	wt0052
	wt0053
	wt0054
	wt0055
	wt0056
	wt0057
	wt0058
	wt0059
	wt0060
	wt0061
	wt0062
	wt0063
	wt0064
	wt0065
	wt0066
	wt0067
	wt0068
	wt0069
	wt0070
	wt0071
	wt0072
	wt0073
	wt0074
	wt0075
	wt0076
	wt0077
	wt0078
	wt0079
	wt0080
	wt0081
	wt0082
	wt0083
	wt0084
	wt0085
	wt0086
	wt0087
	wt0088
	wt0089
	wt0090
	wt0091
	wt0092
	wt0093
	wt0094
	wt0095
	wt0096
	wt0097
	wt0098
	wt0099
	wt0100
	wt0101
	wt0102
	wt0103
	wt0104
	wt0105
	wt0106
	wt0107
	wt0108
	wt0109
	wt0110
	wt0111
	wt0112
	wt0113
	wt0114
	wt0115
	wt0116
	wt0117
	wt0118
	wt0119
	wt0120
	wt0121
	wt0122
	wt0123
	wt0124
	wt0125
	wt0126
	wt0127
	wt0128
	wt0129
	wt0130
	wt0131
	wt0132
	wt0133
	wt0134
	wt0135
	wt0136
	wt0137
	wt0138
	wt0139
	wt0140
	wt0141
	wt0142
	wt0143
	wt0144
	wt0145
	wt0146
	wt0147
	wt0148
	wt0149
	wt0150
	wt0151
	wt0152
	wt0153
	wt0154
	wt0155
	wt0156
	wt0157
	wt0158
	wt0159
	wt0160
	wt0161
	wt0162
	wt0163
	wt0164
	wt0165
	wt0166
	wt0167
	wt0168
	wt0169
	wt0170
	wt0171
	wt0172
	wt0173
	wt0174
	wt0175
	wt0176
	wt0177
	wt0178
	wt0179
	wt0180
	wt0181
	wt0182
	wt0183
	wt0184
	wt0185
	wt0186
	wt0187
	wt0188
	wt0189
	wt0190
	wt0191
	wt0192
	wt0193
	wt0194
	wt0195
	wt0196
	wt0197
	wt0198
	wt0199
	wt0200
	wt0201
	wt0202
	wt0203
	wt0204
	wt0205
	wt0206
	wt0207
	wt0208
	wt0209
	wt0210
	wt0211
	wt0212
	wt0213
	wt0214
	wt0215
	wt0216
	wt0217
	wt0218
	wt0219
	wt0220
	wt0221
	wt0222
	wt0223
	wt0224
	wt0225
	wt0226
	wt0227
	wt0228
	wt0229
	wt0230
	wt0231
	wt0232
	wt0233
	wt0234
	wt0235
	wt0236
	wt0237
	wt0238
	wt0239
	wt0240
	wt0241
	wt0242
	wt0243
	wt0244
	wt0245
	wt0246
	wt0247
	wt0248
	wt0249
	wt0250
	wt0251
	wt0252
	wt0253
	wt0254
	wt0255
	wt0256
	wt0257
	wt0258
	wt0259
	wt0260
	wt0261
	wt0262
	wt0263
	wt0264
	wt0265
	wt0266
	wt0267
	wt0268
	wt0269
	wt0270
	wt0271
	wt0272
	wt0273
	wt0274
	wt0275
	wt0276
	wt0277
	wt0278
	wt0279
	wt0280
	wt0281
	wt0282
	wt0283
	wt0284
	wt0285
	wt0286
	wt0287
	wt0288
	wt0289
	wt0290
	wt0291
	wt0292
	wt0293
	wt0294
	wt0295
	wt0296
	wt0297
	wt0298
	wt0299
	wt0300
	wt0301
	wt0302
	wt0303
	wt0304
	wt0305
	wt0306
	wt0307
	wt0308
	wt0309
	wt0310
	wt0311
	wt0312
	wt0313
	wt0314
	wt0315
	wt0316
	wt0317
	wt0318
	wt0319
	wt0320
	wt0321
	wt0322
	wt0323
	wt0324
	wt0325
	wt0326
	wt0327
	wt0328
	wt0329
	wt0330
	wt0331
	wt0332
	wt0333
	wt0334
	wt0335
	wt0336
	wt0337
	wt0338
	wt0339
	wt0340
	wt0341
	wt0342
	wt0343
	wt0344
	wt0345
	wt0346
	wt0347
	wt0348
	wt0349
	wt0350
	wt0351
	wt0352
	wt0353
	z

