Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html
link to the Technology | nterface
the Electronic Journal for Engineering Technology

the Technology I nterface /Fall 96

Use of a PC Printer Port for Control and Data
Acqguisition

by

Peter H. Anderson
pha@eng.morgan.edu
Department of Electrical Engineering
Morgan State University

Abstract: A PC printer port is an inexpensive and yet powerful platform for implementing projects dealing
with the control of real world peripherals. The printer port provides eight TTL outputs, five inputs and

four bidirectional leads and it provides a very simple means to use the PC interrupt structure.

This article discusses how to use program the printer port. A larger manual which deals with such topics as
driver circuits, optoisolators, control of DC and stepping motors, infrared and radio remote control,

digital and analog multiplexing, D/A and A/D is avaialable. See

http: //www.access.digex.net/~pha

A special thanks to Morgan State University students Towanda Malone, Christine Samuels and H. Paul

Roach for their technical contributions and to New Mexico State University student Kyle Quinnell for
preparing the html file.

|. Printer Port Basics
A. Port Assignments

Each printer port consists of three port addresses; data, status and control port. These addresses are in sequential
order. That is, if the data port is at address 0x0378, the corresponding status port is at 0x0379 and the control
port is at Ox037a.

Thefollowing istypical.

Printer Data Port St at us Contr ol
LPT1 0x03bc 0x03hd 0x03be
LPT2 0x0378 0x0379 0x037a
LPT3 0x0278 0x0279 0x027a

1of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

My experience has been that machines are assgned a base address for LPT1 of either 0x0378 or 0x03bc.

To définitively identify the assgnments for a particular machine, use the DOS debug program to display memory
locations 0040:0008. For example:

>debug
-d 0040: 0008 L8
0040: 0008 78 03 78 02 00 00 00 00

Notein the example that LPT1 isat 0x0378, LPT2 at 0x0278 and LPT3 and LPT4 are not assigned.

Thus, for this hypothetical machine;

Printer Data Port St at us Contr ol
LPT1 0x0378 0x0379 0x037a
LPT2 0x0278 0x0279 0x027a
LPT3 NONE
LPT4 NONE

An dternate technique is to run Microsoft Diagnogtics (MSD.EXE) and review the LPT assgnments.
B. Outputs

Please refer to the figurestitled Figure #1 - Pin Assgnments and Figure #2 - Port Assgnments. These two figures
illugtrate the pin assgnments on the 25 pin connector and the bit ass gnments on the three ports.

i ik View is lnoking at

I (mlxfulululnlulolnlnieieln) 0 s
ekralaher ol kol Cormector side of

DB-25 Iiale Connector.

Pin Description

1 Strobe PC Output

2 Diata 0 PC Outpat Pin bussi "

3 Datal PC Output T nSRIgIenS

2 Hate F ot Mote: 3 Data Cutputs

] Diata 3 P& Output A Wlisc Other Crutout
6 Datad PC Output 5e L utputs
7 Diata 5 PC Outpt

2 Dataf FC Qutput SRt lnputs

9 Drata 7 PC Outpat Mote: Pins 12.25 are

10 ECEK PC Input Cromd

11 Busy PC Inpt "

12 Paper Empty PC Inpot

13 Zelect PC Inpt

14 Euio Feed PC Outpat

15 FEmor PC Input

lé Initialize Printer P Cratpoat

17 Select Tnput P Output

Fig 1. Pin Assgnments

20f 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

Data Port Status Port Comirol Port
07— Data’7 L7 [—— Busy 07 Feserved
D ——= Diata 6 D (a— ECT D& Reserved
D5 —® Data 5 D5 -4——FE D5 ——m Direction
Didd —— Diata < D4 ra— Select D¢l —m=IFC) Enable
D3 ——m Data 3 D3 fg—— Enor D3 ——mTelect_Tn
D2 —— Diata 2 D2 lg— [F] D2 —m[NIT
D1 —®= Datal Dl ——— Reserved D1 |—mEufofeed
D0 —— Datall oo Feserved D0 |——m=Sirohe

Fig 2. Port Assgnments

Note that there are eight outputs on the Data Port (Data 7(msb) - Data 0) and four additiona outputs on the low
nibble of the Control Port. /SELECT _IN, INIT, /AUTO FEED and /STROBE.

[Note that with /SELECT _IN, the "in" refers to the printer. For normd printer operation, the PC exertsalogic
zero to indicate to the printer it is sdlected. The origind function of INIT was to initidize the printer, AUTO FEED
to advance the paper. In normd printing, STROBE is high. The character to be printed is output on the Data Port
and STROBE is momentarily brought low.]

All outputs on the Data Port are true logic. That is, writing alogic one to a bit causes the corresponding output to
go high. However, the/SELECT _IN, /AUTOFEED and /STROBE outputs on the Control Port have inverted
logic. That is, outputting alogic one to a bit causes alogic zero on the corresponding output. This adds some
complexity in using the printer port, but the fix isto smply invert those bits using the exclusve OR function prior to
outputting.

[One might ask why the designers of the printer port designed the port in this manner. Assume you have a printer
with no cable attached. An open usudly isread asalogic one. Thus, if alogic one onthe SELECT _IN,
AUTOFEED and STROBE |eads meant to take the gppropriate action, an unconnected printer would assume it
was selected, go into the autofeed mode and assume there was data on the outputs associated with the Data Port.
The printer would be going crazy when in fact it wasn't even connected. Thus, the designers used inverted logic. A
zero forces the appropriate action.]

Returning to the discussion of the Control Port, assume you have avaue va1l which isto be output on the Data
port and avaue val2 on the Control port:

#defi ne DATA 0x03bc
#defi ne STATUS DATA+1
#defi ne CONTROL DATA+2

int vall, val2;

val 1 = 0x81; /* 1000 0001 */ /* Data bits 7 and 0 at one */
out port b(DATA, val 1);
val 2 = 0x08; /* 0000 1000 */

out port b(CONTROL, VAL2"0x0b);
/* SELECT_IN =1, INIT = 0, /AUTO FEED = 0, /STROBE = 0 */

Note that only the lower nibble of va2 is significant. Note that in the last line of code, /SELECT _IN,

3of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

4.0f 18

/AUTO_FEED and /STROBE are output in inverted form by using the exclusive-or function so asto compensate
for the hardware inverson.

For example; if | intended to output 1 0 0 0 on the lower nibble and did not do the inversion, the hardware would
invert bit 3, leave bit 2 astrue and invert bits 1 and 0. The result, gppearing on the output would thenbe001 1
which is about as far from what was desired as one could get. By using the exclusve-or function, L000is
actualy sent to the port as0 0 1 1. The hardware then inverts bits 3, 1 and 0 and the output is then the desired 1 0
00.

C. Inputs

Note that in the diagram showing the Status Port there are five status leads from the printer. (BSY, /ACK, PE
(paper empty), SELECT, /ERROR).

[The origind intent in the naming of mogt of these isintuitive. A high on SELECT indicates the printer ison line. A
high on BSY or PE indicates to the PC that the printer is busy or out of paper. A low wink on /ACK indicatesthe
printer recelved something. A low on ERROR indicates the printer isin an error condition.]

These inputs are fetched by reading the five most sgnificant bits of the status port.

However, the origind designers of the printer interface circuitry, inverted the bit associated with the BSY using
hardware. That is, when a zero is present on input BSY,, the bit will actudly be read as alogic one. Normally, you
will want to use "true”’ logic, and thus you will want to invert this bit.

The following fragment illugtrates the reeding the five mogt sgnificant bitsin "true" logic.

#defi ne DATA 0x03bc
#defi ne STATUS DATA+1
unsi gned int in_val;

iﬁ;val = ((inportb(STATUS)~0x80) >> 3);
Note that the Status Port is read and the most significant bit, corresponding to the BSY lead isinverted using the
exclusve-or function. The result is then shifted such that the upper five bits are in the lower five bit positions.

0 0 0 BUSY /ACK PE SELECT /ERROR

Another input, IRQ on the Status Port is not brought to atermina on the DB-25 printer port connector. | have yet
to figure out how to use this bit.

At this point, you should see that, at a minimum, there are 12 outputs, eight on the Data Port and four on the lower
nibble of the Contral Port. There are five inputs, on the highest five bits of the Status Port. Three output bits on the
Control Port and one input on the Status Port are inverted by the hardware, but thisis easily handled by using the
excusive-or function to sdlectively invert bits.

D. Smple Example

13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

Refer to the figure titled Figure #3 - Typica Application showing a normaly open push button switch being read
on the BUSY input (Status Port, Bit 7) and an LED which is controlled by Bit O on the Data Port. A C language
program which causes the LED to flash when the push-button is depressed appears below. Note that an output
logic zero causesthe LED to light.

/* File LED FLSH. C

* *

** ||lustrates sinple use of printer port. Wen switch is

** depressed LED flashes. Wen switch is not depressed, LED is
** turned off.

* %

** P.H. Anderson, Dec 25, '95

*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h> /* required for delay function */

#defi ne DATA 0x03bc
#def i ne STATUS DATA+1
#def i ne CONTROL DATA+2

voi d mai n(voi d)

{ . .
int in;
whi | e(1)
{
in = inporthb(STATUS)
if (((in"0x80)&0x80)==0)
/* if BUSY bit is at 0 (sw closed) */
{
out port b(DATA, 0x00) ; /* turn LED on */
del ay(100);
out port b(DATA, 0x01); [* turn it off */
del ay(100);
}
el se
{
out port b(DATA, 0x01) ;
/* if PB not depressed, turn LED off */
}
}
}

50f 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

‘3\ 330
Data 0 [+5
+5
; External 5w Supply
10k
§ Fush Button
B |
e
-g—— Prnter Port
Crround TG

Fig 3Printer Port - Typical Application

Circuit Description: Logic 1 on output DATA 0 (Data Port - Bit 0) causes LED to be off. Logic O causes LED
to turn on.

Normally open push-button causes +5V (logic 1) to appear on input BUSY (STATUS PORT - Bit 7). When
depressed, push-button closes and ground (logic 0) is gpplied to input Busy.

Note externa source of 5V.
Program Description: When idle, push-button is open and LED is off. On depressing push-button, LED blinks
on and off a nomindly 5 pulses per second.

E. Test Circuitry
Refer to the figure titled Figure #4 - Printer Port Test Circuitry. Thisillustrates a very ample test fixture to dlow
you to figure out what inversons are taking place in the hardware associated with the printer port. Program

test_prt.c sequentidly turns each of the 12 LED's on and then off and then continualy loops to display the settings
on the five input switches.

6 of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition

70of 18

Data Port

Conirol Port

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

Printer Port Cutputs 45 Printer Port Inputs
|
> 330 a4 %
Bit7) Datal ‘?ﬂ Wity +5 | | o Busy (Bit)
w30 vl +5
(Bit6) Datad| he—Ad +5 53 $1nk _
. X 710 | | IBCK (Bita)
{Bit5) Data$ ‘:l WA, +5 +5 E
e 330 52 4 PE Bit 5
(Bitd) Datadl Y +5 y §1nk (Bit 3) E
- 330 + @
(Bit 3 Data 3l AN +5 <] SELECT (Bit 4)
. 330 %101&
' 4 N i +5 % :
P £
(Bit1) Datal LA, +5 50 %101&
. 330 |
(Bit0) Datad-2 Ty +5 |
Maote: Bit 7is ireeerted. &fter
" 30 inptting use bitwise exclusie-or.
(Bit 3 [Select_In L —YYY +5
*x. 330
(Bit 2) oy LL NSy} +5
. 330 R ;
(Bit 1) fhutoFeed 14 I AR +5 - Hute_. Bits 3, .1 and 0 are rrverted. Use
hitwise exclustre-or pHor to outputting.
1 LA 730 ‘,// 4 BTG
(Bit0) [Strohe VY +5

GmundL{ | I

See C Language Boutine TEST PRT.C

Fig 4. Printer Port Test Circuitry

File TEST_PRT.C

Programto exercise 12 outputs and five inputs.

Program sequentially turns off LEDs on Bits 7, 6, 5, ... 0 on the

Data Port, and then Bits #, 2,

LED is held off for

Program t hen | oops,
and continuously displays the content in hexadecinmal.

P. H. Anderson,

Dec 25,

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

#defi ne DATA 0x03bc
#defi ne STATUS DATA+1
#def i ne CONTROL DATA+2

1 and 0 on the Control Port. Each

nom nally 1 second. Note that an LED is turned
off with a | ogic one

This process is executed once.

' 95

scanni ng the highest five bits on the Status Port

/* required for delay function */

/* for the PC | used */

13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition

8of 18

http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

voi d mai n(voi d)

{

int in, n;

out port b(DATA, 0x00); /* turn on all LEDs on Data Port */
out port b(CONTROL, 0x0070x0b); /* same with Control Port */

/* now turn off each LED on Data Port in turn by positioning a |logic
one in each bit position and outputing.

*/

for (n=7; n>=0; n++)

{
out port b(DATA, 0x01 << n);
del ay(1000);

}

out port b(DATA, 0x00);

/* now turnoff each LED on control port in turn
** note exclusive-or to conpensate for hardware inversions

*/

out port b(CONTROL, 0x08"0xO0b); [* bit 3 */
del ay(1000);

out port b(CONTROL, 0x04"0x0b); [* bit 2 */
del ay(1000);

out port b(CONTROL, 0x02”"0x0b); [* bit 1 */
del ay(1000);

out port b(CONTROL, 0x01"0x0b); [* bit 0 */

del ay(1000);
out port b(CONTROL, 0x00);
/* Continuously scan switches and print result in hexadeci mal */

whi | e(1)
{
in = (inportb(STATUS)~0x80) &0xf 8;
/* Note that BUSY (nsbit) is inverted and only the
** five npst significant bits on the Status Port are displayed.
*/
printf("%%\n", in);

F. Interrupts

Again refer to Figure #2-Port assignments. Note that bit 4 on the Control Bit isidentified as IRQ Engble.
Normadly, thishit is set to zero.

However, there are times when interrupts are of great vaue. An interrupt is nothing more than a hardware event
which causes your program to momentarily stop what it is doing, and jump to a function to do what you desire.
When thisis complete, your program returns to where it Ieft off.

13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

9of 18

In using the printer port, if the IRQ Enableis set to alogic one, an interrupt occurs when input ACK next goes
from alogic oneto logic zero. For example, you might use input ACK for an intruson darm. Y ou might have a
program running which is continudly monitoring temperature. But, when input ACK goes low, it interrupts your
temperature monitoring and goes to some other code you have written to handle an alarm. Perhaps, to fetch the
time and date off the system clock and write thisto an Intrusion File. When done, your program continues
monitoring temperature.

Interrupts are trested in detall esewhere in this manudl.
G. Changing Only Selected Bits

Frequently, when outputting, the programmer isinterested in only a portion of abyte and it is a burden to
remember what dl the other bits are. Please review the following where bit 2 is brought high for 200ms and then
brought low.

i nt data;

data=data | O0x04;/* bring bit 2 high */
out port b(DATA, dat a) ;

del ay(100);

data=data & Oxfb; /* bring bit 2 |ow */
out port b(DATA, dat a) ;

Note that variable data keeps track of the current state on the output port. Each bit manipulation is performed on
data and variable data is then outpuit.

To bring a specific hit to alogic one, use the OR function to OR that bit with alogic one (and dl others with alogic
zero.)

To bring a specific bit to alogic zero, AND that bit with azero (and dl others with alogic one)) Cdculating this
value can be tedious. Consder this dternative:

dat a=data & Oxfb; /* hard to calculate */
dat a=data & (~0x04); /* the same but a | ot easier */

Thisredly it very difficult. Assume, you currently have, XX XX XXXX and desire XX01 X 100.

data=data & (~0x20) | Ox10 | Ox04 & (~0x02) & (~0x01);

H. Portson Newer PC's
A few words about the DIRECTION hit on the Control Port. | have seen PC's where this bit may be set to alogic
"one" which turns around the Data Port such that al of the Data leads are inputs. | have dso seen PC's where this
worked for only the lower nibble of the Data Port and other PC'swhere it did nothing. It is probably best not to
use this feature. Rather, leave the DIRECTION bit set to logic "zero".

|. Differences|n Printer Ports

13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

The materid discussed aboveis believed to be pretty generic; that is, common to al manufacturers.

Y ou may well ask, "why would they be different. After al, programs such as WordPerfect must work on dl
machines." The answer isthat the programmers who write such programs as WordPerfect do not get down to this
low level of hardware detail. Rather, they write to interface with the PC's BIOS.

The BIOS (Basic Input-Output System) isa ROM built in to the PC which makes dl PC's gppear the same. This
isapretty nice way for each vendor to implement their design with a degree of flexibility.

An example isthe port assgnments discussed above. This datais read from the BIOS ROM when your PC boots
up and written to memory locations beginning at 0040:0008. Thus, the designers of WordPerfect don't worry
about the port assgnments. Rather, they read the appropriate memory location.

In the same way, they interface with the BIOS for printing. For example, if the desgners want to print a character,
the AH regigter is set to zero, the character to be printed isloaded into AL, the port (LPT1, LPT2, etc) isloaded
into the DX register. They then execute aBIOS INT 17h. Program contral is then passed to the BIOS and which
performs at the low level of hardware desgn which we are trying to work. The BIOS varies from one hardware
design to another; it's purposeis to work with the hardware. If inversons are necessary, it is done in the BIOS.
When the BIOS has completed whatever bit sequencing is required to write the character to the printer, control is
passed back to the program with status information in the AH regider.

J. Summary
In summary, the printer port affords a very smple technique for interfacing with externd circuitry. Twelve output
bits are available, eight on the Data Port and four on the lower nibble of the Control Port. Inversions are necessary

on three of the bits on the Control Port. Five inputs are available on the Status Port. One software inverson is
necessary when reading these bits.

I1. Forcing an Interrupt on the Printer Port.
A. Introduction

This section describes how to use hardware interrupts using the printer port. The discusson closdly follows
programs prnt_int.c and time_int.c

A hardware interrupt is a capability where a hardware event causes the software to stop whatever it is doing and
to be redirected to afunction to handle the interrupt. When done, the program picks up where it left off. Asde
from loosing time in executing the interrupt service routine, the operation of the main program remains unaffected
by the interrupt.

Thisis quite powerful and athough &t firgt, the whole process may gppear difficult to grasp, it isin fact quite
ample

Although this discusson focuses on using the interrupt associated with the printer port, the same technique may be
adapted to exerting interrupts directly on the |SA bus.

10 of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

B. Interrupt Handler Table
When an interrupt occurs, the PC must know where to go to handle the interrupt.

The origina 8088 PC design provided for up to 256 interrupts (0x00 - 0xff). Thisincludes both hardware and
software interrupts. Each of these 256 interrupt types has four bytesin atable beginning at memory location
0x00000. Thus, INT 0 uses memory locations 0x00000, 0x00001, 0x00002, 0x00003, INT 1 uses the next four
bytesin the table, etc. Note that INT 8 then uses the four bytes at 0x0020, INT 9 begins a 0x0024, etc. This
1024 bytes (256x4) is termed the interrupt vector table.

These four bytes contain the address of where the PC isto go to when an interrupt occurs. Most of the tableis
loaded when you boot up the machine. The table may be added to or entries modified when you run various
gpplications.

IBM reserved eight hardware interrupts beginning a INT 0x08 for interrupt expansion. These are commonly
known as IRQO - IRQ7, the IRQ corresponding to the lead designations associated with the Intel 8259 which
was used to control these interrupts. Thus, IRQ 0 correspondsto INT 8, IRQ 1 correspondsto INT 9, etc.

Exercise. Use debug to examine the interrupt vector table which is assigned to IRQ 0 through IRQ 7.

-d 00000: 0020 20

B3 10 3B 0B 73 2C 3B 0B-57 00 70 03 8B 3B 3B 0B
ED 3B 3B 0B AC 3A 3B 0B-B7 00 70 03 F4 06 70 00

(Recdll that the table alocation for INT 8 begins at 0x0020).

From this| can see that the address for the interrupt service routine associated with IRQ 0 is 0B3B:10B3. For
IRQ 7, 0070:06F4. Y ou should be able to see the algorithm | used to obtain this.

Thus, when an IRQ 7 interrupt occurs, we know this corresponds to INT OxOf and the address of the interrupt
service routineis located at 0070:06F4.

Exercise. Use the debugger to examine the interrupt vector table. Then use Microsoft Diagnostics (MSD) and
examine the IRQ addresses and compare the two.

C. Modifying the Interrupt Handler Table
Assume, you are going to use IRQ 7. Assume that when an IRQ 7 interrupt occurs, you desire your program to
proceed to function irg7_int_serv, afunction which you wrote. In order to do so, you must first modify the
interrupt handler table. Of course, you may wish to carefully take what is dready there in the table and save it
somewhere and then when you leave your program, put the old vaue back.

Borland's Turbo C provides functions to do this.

int intlev=0x0f;

11 of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

ol df unc = getvect (intlev);
/* The content of OxO0f is fetched and saved for future
**use. */

setvect (intlev, irq7_int_serv);
/* New address is placed in table. */

/* irq7_int_serv is the nane of routine and is of type
** interrupt far*/

Thismay look bad, but, in fact it isn't. Smply get the vector now associated with INT OxOf and saveit in avariable
named oldfunc. Then set the entry associated with INT OxOf to be the address of your interrupt service routine.

Good programming dictates that once you are done with your program, you would restore the entry to what it
was,

setvect (intlev, oldfunc);

After dl, what would you think of WordPerfect, if after running it, you couldn't use your modem without rebooting.
D. Masking

The programmer can mask interrupts. If an interrupt is masked you are saying to the PC, "for the moment ignore
any IRQ 7 type interrupts'. Normally, we don't do this. Rather we desire to set the interrupt mask such that IRQ 7
is enabled.

Port Ox21 is associated with the interrupt mask. To enable a particular IRQ, write a zero to that bit location.
However, you don't want to disturb any of the other bits.

mask=i nport b(0x21) & ~0x80;
/* Get current mask. Set bit 7 to 0. Leave other bits
** undi sturbed. */

out portb(0x21, mask);

The user isnow ready for IRQ 7 interrupts. Note that each timethereisan IRQ 7 interrupt, the program is
unconditiondly redirected to the function irg7_int_serv. The user isfree to do whatever they like but must tdll the
PC that the interrupt has been processed;

out portb(0x20, 0x20);
Prior to exiting the program, the user should return the system to its origina state; setting bit 7 of the interrupt mask

to logic one and restoring the interrupt vector.

mask=i nportb(0x21) | 0x80
out portb(0x21, mask);

setvect (intlev, oldfunc);

E. Interrupt Service Routine

12 of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

In theory, you should be able to do anything in your interrupt service routine (ISR). For example, an interrupt might
be forced by externd hardware detecting an intrusion. The ISR might fetch the time off the system clock, open a
file and write the time and other information to the file, close the file and then return to the main program.

Infact, | have not had good luck in doing this and you will note that my interrupt service routines are limited;

disable any further interrupts.

set avariable such that in returning to the main program there is an indication that an interrupt occurred.
indicate to the PC that the interrupt was processed; outportb(0x20,0x20);

enable interrupts.

| think thet my problem is that interrupts are turned off during the entire ISR which may well preclude a C function
which may use interrupts. For example, in opening afile, | assume interrupts are used by Turbo C to interface with
the disk drive. Unlike the IRQ we are discussing, the actud implementation of how C handles these interrupts
necessary to implement a C function will not be "heard” by the PC and the program will appear to bomb.

My suggestion is that you initidly use the technique | have used in writing your interrupt service routine. That is,
very smple; ether setting or incrementing a variable. However, recognize that thisis bardly scratching the surface.

Then you might try amore complex ISR of the following form. At the time of thiswriting | have not tried this.

dissble dl interrupts.

set mask to disable IRQ 7 interrupts.
outportb(0x20,0x20).

endble dl interrupts.

.. do whatever needsto be done ..
disble dl interrupts.

set mask to enable IRQ 7 interrupts.
< enableinterrupts.

Note the difference from the previous. Any further IRQ 7 interrupts are blocked whilein the ISR, but in the middle
of the ISR, dl other interrupts are enabled. This should permit dl C functions to work.

F. IRQ Enable Bit
Recall that there are three ports associated with the control of aprinter port; Data, Status and Control. Bit 4 of the
Control Port isa PC output; IRQ Enable. Note that Bit 2 of the Status Port is a PC input; /IRQ. Neither of these
bits are associated with the DB-25 connector. Rather, they control logic on the printer card or PC motherboard.

If the IRQ Enable output is a logic one, an interrupt occurs on a negetive going trandtion on the /ACK inpuit. (I
have yet to figure out what the IRQ input does).

Thus, in addition to setting the mask to entertain interrupts from IRQ 7 as discussed above, you must dso st IRQ
Enableto alogic one.

mask=i nport b(0x21) & ~0x80;
out portb(0x21, mask); [/* as discussed above */

130of 18 13/09/00 6:00 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

out port b(CONTROL, i nportb(CONTROL) | 0x10);

Note that in this implementation, al bits other than Bit 4 on the Control Port are |eft as they were.

Prior to exiting from your program, it is good practice to leave thingstidy. That is, set Bit 4 back to a zero.

out port b(CONTROL, inportb(CONTROL) & ~0x10);

+5 76 54 3210 Interrupt capability via the
' Comtol [T [[T [[[] Frivterportis enabled by
| 10k setting Bit 4 of Control Port
! | 10 I&CK IR() Enable to logic 1.

716 543210 Interrupt occurs on negathe going
Statws [[[T T T T 1T 1 transition (switch closing) em JACK
* inpt.
RQ
B (Bit 2% on Status Port - Use 18 unkown

IHWGmuml

In handling interTupis
Abhreviated Vector Tahle

@ Revverse vector Table. Save current entry
(00000 INT O i variahle old and modify to point to your
Q00004 INT 1 Interrpt service routine
Set bit 4 of Control port to logie 1
Cx00010 INT 2/1RQ0 ; ; ;
00014 IMT 9 IIR.Q 1 Set appmpnﬂte bit of mask to].Dg.ﬂ]
Ox0001% INT 10/JIRQ 2
76 54 32110
Cxfo01c: INT 11 /IR 3 TTTTTTT]
Cx00020 INT 12JIRQ 4 = =
Ox=00024 INT 13/IRQ 5 ¥ g
Ox00025 IMT 14/IEQ & = =
OO0 INT 157 IR} 7
* O interrupt, prograrn flow will be
trarsferred to sour interrupt service
@ ronting.
Old . : Let PC knowr that internipt hias been
Interrupt Service Routine processed by writing a logie | tobit 5 of
port O:0020.

On learving prograte, restore wector table to original and reset mask on port 0x0021.

Fig5. Useof Paralld Printer Port For Interrupts

G. Programs
Program PRNT _INT.C smply causes a screen message to indicate an interrupt has occurred. Note that global

varigble "int_occurred” is set to fase in the declaration. On interrupt, thisis set to true. Thus, the code in main
within theif(int_occurred) is only executed if a hardware interrupt did indeed occur.

14 of 18 13/09/00 6:01 PM

Use of a PC Printer Port for Control and Data Acquisition

http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

Program TIME_INT.C is the same except for main. When the firgt interrupt occurs, the time is fetched off the
systemn clock. Otherwise the new time is fetched and the differenceis calculated and displayed.

/*
* %

Program PRNT_I NT. C

* %

Uses interrupt service routine to note interrupt fromprinter
The interrupt
This m ght be adapted to an intrusion detector

Note that on ny machine the printer
0x037a and is associated with I RQ 7.
Di agnostics (MSD) to ascertain assignments on your

port

PC.

* * Name Address in Table

* %

* %

| R 0x0a
| RY 0x0c

| RQ5 0x0d
| RQ7 0xOf

* %
* %
* %

* %

* %

*/

P.H Anderson, MSU, 12 May 91; 26 July 95

#i ncl ude <stdi o. h>
#i ncl ude <bi os. h>
#i ncl ude <dos. h>

#def i
#def i
#def i

DATA 0x0378
STATUS DATA+1
CONTROL DATA+2

ne
ne
ne

#defi
#defi

TRUE 1
FALSE 0O

ne
ne

voi d
voi d
voi d
voi d

open_i ntserv(void);
close_intserv(void);

i nt_processed(void);
interrupt far intserv(void);
nt | ev=0x0f ; l evel
interrupt far
nt _occurred =

associated with I RQ7 */

i nt
voi d
int i

[* interrupt
(*ol dfunc) ();
FALSE; /* Note global definitions */
i nt

{

mai n(voi d)

open_intserv();

out port b(CONTROL, i nportb(CONTROL) | 0x10);

/* set bit 4 on control port to |logic one */
whi | e(1)
{

if (int_occurred)

15 of 18

is caused by a negative on /ACK i nput on Printer
and tenperature | ogger

port.
Port.

is | ocated at 0x0378 -
You should run M crosoft

13/09/00 6:01 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

printf("Interrupt Occurred\n");
i nt _occurred=FALSE;
}
}

close_intserv();
return(0);

void interrupt far intserv(void)

/* This is witten by the user. Note that the source of the interrupt
** must be cleared and then the PC 8259 cleared (int_processed).

** nmust be included in this function.

*/
{
di sabl e();
i nt _processed();
i nt _occurred=TRUE;
enabl e();
}

voi d open_i ntserv(void)

/* enables IRQ7 interrupt. On interrupt (low on /ACK) junps to intserv.
** all interrupts disabled during this function; enabled on exit.

*/

int int_mask;
disable(); /* disable all ints */
ol df unc=getvect (intlev); [/* save any old vector */
setvect (intlev, intserv); /[/* set up for newint serv */
i nt _mask=i nportb(0x21); /* 1101 1111 */
out portb(0x21, int_mask & ~0x80); /[/* set bit 7 to zero */
/* -leave others alone */
enabl e();

voi d close_intserv(void)
/* disables IRQ7 interrupt */

{
int int_mask;
di sabl e();
setvect (intlev, ol dfunc);
i nt_mask=inportb (0x21) | 0x80; /* bit 7 to one */
out port b(0x21, int_mask);
enabl e();
}

voi d int_processed(void)
/* signals 8259 in PC that interrupt has been processed */

out port b(0x20, 0x20);

/*
* Program TI ME_INT. C

*

16 of 18 13/09/00 6:01 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

Uses interrupt service routine to note interrupt fromprinter port.
The interrupt is caused by a negative on /ACK i nput on Printer Port.

Cal cul ates tine and displays the time in ns between interrupts.

* P.H Anderson, MSU, 10 Jan, '96
*/

#i ncl ude <stdi o. h>

#i ncl ude <bi os. h>

#i ncl ude <dos. h>

#i ncl ude <sys\tineb. h>

#defi ne DATA 0x0378
#defi ne STATUS DATA+1
#defi ne CONTROL DATA+2

#define TRUE 1
#define FALSE O

voi d open_intserv(void);
voi d close_intserv(void);
voi d int_processed(void);
void interrupt far intserv(void);

int intlev=0x0f; /[/* interrupt |level associated with |IRQ7 */
void interrupt far (*oldfunc)();
int int_occured=FALSE; /* Note global definitions */

int main(void)
{
int first=FALSE;
int secs, nsecs;
struct timeb t1, t2;
open_intserv();
out port b(CONTROL, inportb(CONTROL) | 0x10);
/* set bit 4 on control port (irq enable) to |logic one */
whi | e(1)
{
if (int_occurred)
{
i nt _occurred=FALSE;
if (first==FALSE)
[* if this is the first interrupt, just fetch the tine */

{ ftime(&t?2);
first=TRUE;

}

el se

{

t1=t2; /* otherwi se, save old time, fetch new */
ftinme(&t2); /* and conpute difference */
secs=t2.tinme - tl.tine;

neecs=t2. mllitm- t1l.mllitm

if (msecsé&l t0)

{

--secs;

17 of 18 13/09/00 6:01 PM

Use of a PC Printer Port for Control and Data Acquisition http://et.nmsu.edu/~etti/fall 96/computer/printer/printer.html

18 of 18

voi
/*
/*
/*

/**

voi
/*
/*

/**

voi
/*

voi
/*

msecs=nmsecs+1000;

printf("El apsed time is %\ n", 1000*secs+nsecs);
}
}
}

close_intserv();
return(0);

d interrupt far intserv(void)

This is witten by the user. Note that the source of the interrupt
nmust be cleared and then the PC 8259 cleared (int_processed).

nmust be included in this function.

*****/

di sabl e();

i nt _processed();

i nt _occurred=TRUE;
enabl e();

d open_intserv(void)
enables IRQ7 interrupt. On interrupt (low on /ACK) junps to intserv.
all interrupts disabled during this function; enabled on exit.

*****/

int int_mask;

disable(); /* disable all ints */

ol df unc=getvect (intlev); [/* save any old vector */

setvect(intlev, intserv); [/* set up for newint serv */

i nt _mask=i nportb(0x21); /* 1101 1111 */

out portb(0x21, int_mask & ~0x80); /[/* set bit 7 to zero */
/* -leave others alone */

enabl e();

d close_intserv(void)
di sables I1RQ7 interrupt */

int int_mask;

di sabl e();

setvect (intlev, oldfunc);

i nt _mask=i nportb(0x21) | O0x80; /* bit 7 to one */
out port b(0x21,int_mask);

enabl e() ;

d int_processed(void)
signals 8259 in PC that interrupt has been processed */

out port b(0x20, 0x20);

13/09/00 6:01 PM

