
HANDS-ON USB DESIGN

34 elektor electronics - 3/2007

AVR drives USB
Design: Michael Odenwald en Michael Keller, Commitor GmBH

Is it possible to use a microcontroller from the pre-USB era to fashion a USB

device without using additional ICs? The designers set themselves this question

a while ago. Many long evenings later, the answer proved to be ‘yes’. As a result,

we can now present a USB I/O board based on a standard AVR microcontroller

– without any special USB chips!

USB interfaces in embedded devices
are commonplace nowadays. A varie-
ty of circuits with USB interfaces have
already appeared in the pages of Ele-
ktor Electronics. Particularly with the
availability of special-purpose chips
from our Scottish friends at FTDI (and
other manufacturers), it has become
very easy to include a USB interface in
a design.

If you are looking for a more tailored so-
lution, you can also take advantage of
several microcontrollers that come with
built-in USB interfaces. However, this
solution requires a rather good under-
standing of the USB bus. The fi rmware
must process the data packets received
from the USB bus and transmit its own
packets via the bus. If the device is not
a standard USB device, you also need
a special device driver – and you will
have to write it yourself.

100% soft
It’s also possible to fi t a USB interface
in an FPGA, as we showed in our FPGA
Course published as a series of instal-
ments from April 2006 through Febru-
ary 2007. In that case, we put an 8051
microcontroller core with an additional
USB interface in the FPGA. This was
our fi rst ‘100% software’ USB device.
The device described in this article
shows that a standard AVR microcon-
troller can also communicate via the
USB bus with the aid of only three re-

sistors (Figure 1). Besides processing
the data packets, the microcontroller
handles communication at the bit level.
The fi rmware looks after this entirely
on its own.

You may be thinking that the AVR has
to run at high clock speed to manage
all this, but that’s not true at all. The
microcontroller operates with a 12-
MHz clock here, but its maximum rat-
ed clock speed is 16 MHz. It thus has
room to spare.

USB specifi cations
The USB specifi cations [1] clearly in-
dicate that the USB bus uses a serial
data protocol. Data is transmitted on
two bidirectional lines. These lines (D+
and D–) transmit the data in differen-
tial mode. This means that the signals
on the D+ and D– lines are opposite to
each other. An exception to this rule
is made for synchronisation purposes:
the signal levels on both lines are set
low in that case.
Our device operates in the Low Speed
mode, which means the data transmis-
sion rate is 1.5 Mbit/s. Communication
at the bit level thus places some spe-
cifi c demands on the microcontroller.
In physical terms, it must have at least
two bidirectional ports. It must also be
able to read and process the status of
these ports very quickly in software in
order to keep pace with the data rate.
There are also numerous other require-

ments, but for now the only thing you
need to know is that each transaction
is initiated by the host device (usually
a PC). If the host wants to read data
from the connected device, the device
must respond by sending back the
data. The data is transmitted in data
packets, which must also comply with
various requirements.

There are also several built-in mecha-
nisms to ensure that the host can de-
tect new USB devices and assign them
addresses. This is all related to the
‘plug-n-play’ concept. The idea is to
minimize the actions that users must
perform in order to use USB devices.

Electronics
The electronic portion of this design
is fairly standard (aside from the USB
connector). The AVR microcontroller
(IC3) forms the heart of the circuit (see
Figure 1). Crystal X1 sets the clock rate
to 12 MHz.

The circuit has three analogue inputs
and fi ve digital inputs, which are avail-
able on connector K2. These lines are
routed directly to the I/O pins of the
microcontroller, and they are fitted
with 100-kΩ pull-down resistors. The
resistors prevent the inputs from gen-

Figure 1. As you can easily see from the schematic diagram,
the microcontroller forms the heart of the circuit.

353/2007 - elektor electronics

A development board
with a software-defi ned
USB interface
erating annoying problems due to stat-
ic charges if they left open.
The circuit also has a temperature sen-
sor (IC2). This is a ‘1-wire’ chip, which
means that only one I/O pin is neces-
sary to use the sensor. The input op-
tions are rounded out with fi ve push-
button switches.

The circuit is fi tted with an LCD that
is driven using four data bits and the

usual control signals. The microcontrol-
ler can also drive fi ve relays. There an
LED for each relay to indicate whether
the relay is actuated.
The USB port is extremely simply with
regard to the electronic components.
Resistor R4 causes the host to recognise
that a Low-Speed device is connect-
ed to the USB port. Resistors R6 and
R7 provide current limiting in case of
problems. They also have the pleasant

RESET

LED1
LED2
LED3
LED4
LED5
MOSI
MISO
SCK

K
10

IN6
6

OUT7
12

IN7
7

OUT6
13

OUT5
14

IN3
3

OUT4
15

IN1
1

OUT3
16

IN2
2

OUT8
11

GND
9

IN4
4

IN8
8

IN5
5

OUT1
18

OUT2
17

IC4

ULN2803A

GND

LED1
LED2
LED3
LED4
LED5
MOSI
MISO
SCK

D4 D7 D8 D11

5V

8x 4701

23456789

R9

5V

D+
D-

DQ
2

1
3 IC2

DS1820

GND

C2

100n
ONEWIRE

ONEWIRE

S1
S2
S3
S4
S5

AIN1
AIN2
AIN3

D7
D6
D5
D4

EN
R/W
RS

X1

12MHz

C8

18p

C9

18p

GND

DIGIN1DIGIN2

DIGIN3
DIGIN4
DIGIN5

1

23456789

R3 8x 100k

S1S2S3S4S5

GND

1
2
3
4
5
6
7
8
9

10

K2

5V

GND

AIN1
AIN2
AIN3

R1

4k
7

5V

DIGIN1
DIGIN2
DIGIN3
DIGIN4
DIGIN5

S6

R8

10
k

GND

5V

RESET

1
2
3
4

5 6

K3

R6
68

R7
68

R4

1k

RESET

5V

K6

K7

K8

K9

K10

COM
NC
NO

COM
NC
NO

COM
NC
NO

COM
NC
NO

COM
NC
NO

D2

GND

R2

1k

5V

POWER

1
2

3
4

5
6

7
8

9
10

K4

GND5V

RE
SE

T
SC

K
MI

SO

C6

100n

C7

100n

1 2 3 4 5 6 7 8 9 10 11 12 13 14

K5

GND

5V

P1

10k

RS R/
W

EN D7D6D5D4

LCD

PROG

AIN1
5V

AIN2
AIN3
DIGIN1
DIGIN2
DIGIN3
DIGIN4
DIGIN5
GND

D1

1N4001

GND

20V

C3

47u

1 3

2

IC1
MC7805BT

C5

100n

C4

100n
20V

C1

22u

5V2

3
1

K1

Re1

PB0 (XCK/T0)
1

PB1 (T1)
2

PB2 (AIN0/INT2)
3

PB3 (AIN1/OC0)
4

PB4 (SS)
5

PB5 (MOSI)
6

PB6 (MISO)
7

PB7 (SCK)
8

RESET
9

PD0 (RXD)
14

PD1 (TXD)
15

PD2 (INT0)
16

PD3 (INT1)
17

PD4 (OC1B)
18

PD5 (OC1A)
19

PD6 (ICP)
20

PD7 (OC2)
21

XT
AL

2
12

XT
AL

1
13

GN
D

11

PC0 (SCL)
22

PC1 (SDA)
23

PC2 (TCK)
24

PC3 (TMS)
25

PC4 (TDO)
26

PC5 (TDI)
27

PC6 (TOSC1)
28

PC7 (TOSC2)
29

AR
EF

32

AV
CC

30
GN

D
31

PA7 (ADC7)
33

PA6 (ADC6)
34

PA5 (ADC5)
35

PA4 (ADC4)
36

PA3 (ADC3)
37

PA2 (ADC2)
38

PA1 (ADC1)
39

PA0 (ADC0)
40

VC
C

10

IC3
ATmega32-16PC

D5 D6 D9 D10

Re2

Re3

Re4

Re5

R10

10
0k

5V

5V

D3

GND

R5

1k

GND

AIN1
AIN2
AIN3

S1
S2
S3
S4
S5

MO
SI

060276 - 11

HANDS-ON USB DESIGN

36 elektor electronics - 3/2007

proper-
ty of reduc-
ing refl ections
on the data lines,
which helps reduce
errors.

The D+ and D– signal lines are
connected to separate I/O pins of
the microcontroller. D+ is also con-
nected to the INT0 input of the micro-
controller. This makes it possible to
generate an interrupt each time the
signal level on the D+ line changes.
Don’t be misled by the fact that the
D+ and D– lines are connected to the
UART pins of the microcontroller. The
software uses these two pins as nor-
mal I/O pins. The built-in UART of the
microcontroller is not used for the USB
interface.
The PCB track and component layouts
are shown in Figure 2.

Power supply
An AC mains adapter is suitable for
powering the entire circuit. In princi-
ple, it is also possible to power USB
devices from the host, but this option
is not suitable here. According to the
specifi cations, the voltage on the USB
bus can range from 4.4 V to 5.25 V.
However, voltages seen in practice of-
ten differ from the specifi cations. With
regard to current consumption, the
maximum current a device is allowed
to draw before enumeration (see in-
set) is 100 mA. During the enumeration
process, the device states how much
current it wishes to draw from the USB
port (up to a maximum of 500 mA).

In this case, we need a minimum voltage
of 5 V for the microcontroller. Although
it would be possible to use a step-up

Figure 2. The microcontroller also occupies the central position
on the circuit board.
As you can see, there is a wealth of I/O options.

373/2007 - elektor electronics

con-
verter

to boost the
voltage on the

USB port to 5 V if it
is too low, this would

increase the current con-
sumption. It could also gen-

erate noise (and thus problems).
Our aim here is to create a reliable

DIY design that is also reliable in oper-
ation, so we chose the simple solution
of a standard power supply using an
AC mains adapter. Diode D1 protects
the voltage regulator (IC1) against re-
verse-polarity connection of the mains
adapter.

Firmware
Naturally, the driving force of this
project is the fi rmware. The fi rmware
consists of several modules, which are
predominantly written in C. Assembly-
language code is only used for driving
the USB lines, since it is faster.

The device descriptor is located in
the usb.h file. During the enumera-
tion process, the host uses the data
in the device descriptor to determine
what sort of device is connected. If you
want to adapt the circuit to your own
purposes (or just play with it), this is
where you can ensure that the host
recognises your device correctly. Of
course, this requires a certain amount
of knowledge of the USB protocol.

The avr-usb.h fi le contains a list of re-
quests that are supported by the con-
nected device. The host can send a re-
quest to the device, which performs
the associated action in response.
Some examples of typical actions are
clearing the LCD, actuating or releas-
ing a relay, and so on. In some cases,
the request requires the device to re-
turn data to the host. One example of
this is reading the temperature.

Compiling
The complete fi rmware, including the
assembly-language code, can be com-
piled using the AVR GCC compiler [2],
which is a (free) open-source compiler.
There is also a downloadable ‘make’
fi le, which makes the compilation proc-
ess a lot easier (see [3]).

The circuit has a programming inter-
face, so you can program new fi rmware

into the microcontroller while it is fi t-
ted to the board (‘in system’). However,
you must set the proper fuse bits for
this, since otherwise the entire process
won’t work. The palmaver site [4] de-
scribes a convenient way to determine
the proper confi guration bytes. You can
determine the right settings for this
circuit by entering ‘0x3fDf’ in the box
at the upper right (see Figure 3). This
corresponds to programming the BOD-

COMPONENTS
LIST
Resistors
R1 = 4kΩ7
R2,R4,R5 = 1kΩ
R3 = SIL array 8x 100kΩ
R6,R7 = 68Ω
R8 = 10kΩ
R9 = SIL array 8x 470Ω
R10 = 100Ωk
P1 = 10kΩ preset

Capacitors
C1 = 22µF 20V radial
C2,C4,C5,C6,C7 = 100nF
C3 = 47µF 20V radial
C8,C9 = 18pF

Semiconductors
D1 = 1N4001
D2-D11 = low-current LED, red, lead pitch

2.5mm
IC1 = 7805CP
IC2 = DS1820
IC3 = ATmega32-16PC (programmed, E-

SHOP # 060276-41)
IC4 = ULN2003A

Miscellaneous
K1= 2.5mm mains adaptopr socket
K2= 10-way PCB terminal block, lead

pitch 2.54 mm (e.g. Phoenix contact #
1725737)

K3= USB-B connector
K4 = 10-way boxheader
K5= 14-way pinheader
K6-K10= 3-way PCB terminal block, lead

pitch 2.54mm (e.g. Phoenix contact #
1725669)

Re1-Re5 = 5V relay (e.g. OMRON
G5V-1-DC5)

S1-S6 = pushbutton (e.g. OMRON
B3F-1002)

X1 = 12MHz quartz crystal, HC49/U case
LCD module, 2x16 characters
PCB, E-SHOP # 060276-1

Figure 3. It’s easy to determine the right fuse settings with this handy online tool [4].

HANDS-ON USB DESIGN

38 elektor electronics - 3/2007

LEVEL, BODEN and SPIEN bits (set-
ting them to logic 0) and leaving the
other bits unprogrammed (logic 1).

Assembly and testing
The circuit should be easy to assemble
if you use the accompanying PCB de-
sign. The circuit does not include any
diffi cult SMD components, and every-
thing is readily available. The PCB is
also available from our E-SHOP [3].

After soldering all the components
in place, inspect the results careful-
ly to ensure that all the solder joints

enumeration process.
You can skip installation of the driver
for now, since you don’t yet have a spe-
cifi c driver for this circuit. The driver
(which is also open-source software) is
described in the ‘Universal USB Driver’
article in this issue.

USBview
You don’t necessarily need a driver to
test USB communications. Instead, you
can use Microsoft’s USBview utility.
This program is included in the Micro-
soft Driver Development Kit (DDK) [5].
You can use it to view the data from
the device descriptor of the USB device
(see Figure 4).

This program works without a device
driver. You can test USB communica-
tions by viewing the data from your de-
vice in the USBview window. All the
data you see there comes from the de-
vice and is sent to the PC via the USB
bus.

If all the test results are positive, the
hardware is ready and you can start
working on the device driver. Refer to
the ‘Universal USB Driver’ article else-
where in this issue for the details.

(060276-1)

Web links
[1] www.usb.org/developers/docs.html

[2] winavr.sourceforge.net/

[3] www.elektor-electronics.co.uk

[4] palmavr.sourceforge.net/cgi-bin/fc.cgi

[5] www.microsoft.com/whdc/devtools/ddk/
default.mspx

are good and you haven’t created any
shorts. It’s also a good idea to double-
check the values of the resistors and
capacitors and verify that all the ICs
are oriented correctly in their sockets.

Once you have completed the inspec-
tion, you can start testing the board
– cautiously of course! First connect
an AC mains adaptor with a DC out-
put voltage of 9–12 V. If everything is
as it should be, LED D2 will light up.
Next, connect the circuit to a PC via
a USB cable. LED D3 should also light
up now. Windows (assuming you are
running Windows) will then start the

Enumeration
The host device must perform a process called ‘enumera-
tion’ before it can use a connected USB device. The fi rst step
in the process takes place in he USB device, where a pull-up
resistor in the device signals its presence on the USB bus.

In the case of a Low-Speed device (1.5 Mbit/s), the pull-up
resistor must pull the D– line to +3.3 V. In the case of Full-
Speed (12 Mbit/s) and High-Speed (480 MB/s) devices, the
D+ line must be pulled to +3.3 V.

In response to the change in the signal level on the data line,

the host uses a predefi ned protocol to try to determine what

sort of device is connected to the USB port. Besides the ex-

pected data (such as the VID and PID), the device must also

report which class it belongs to, along with other information

such as its version number, name, and so on. A USB address

is also assigned to the device. The host uses the addresses to

distinguish the different USB devices.

The information described above enables the host to deter-

mine which device driver it needs in order to use the device.

Figure 4. USBview gives you a bird’s-eye view of everything connected to the USB.

