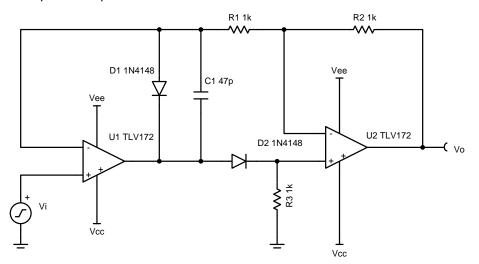


SBOA217A-January 2018-Revised January 2019


Full-wave rectifier circuit

Design Goals

Input		Output		Supply		
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
±25mV	±10V	25mV	10V	15V	-15V	0V

Design Description

This absolute value circuit can turn alternating current (AC) signals to single polarity signals. This circuit functions with limited distortion for ± 10 -V input signals at frequencies up to 50kHz and for signals as small as ± 25 mV at frequencies up to 1kHz.

Design Notes

- 1. Be sure to select an op amp with sufficient bandwidth and a high slew rate.
- 2. For greater precision look for an op amp with low offset voltage, low noise, and low total harmonic distortion (THD).
- 3. The resistors were selected to be 0.1% tolerance to reduce gain error.
- 4. Selecting too large of a capacitor C₁ will cause large distortion on the transition edges when the input signal changes polarity. C₁ may not be required for all op amps.
- 5. Use a fast switching diode.

www.ti.com

Design Steps

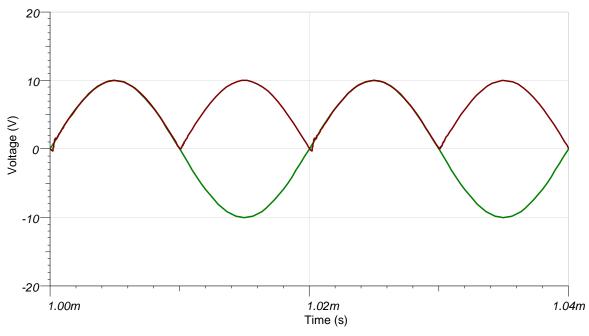
- 1. Select gain resistors.
 - a. Gain for positive input signals.

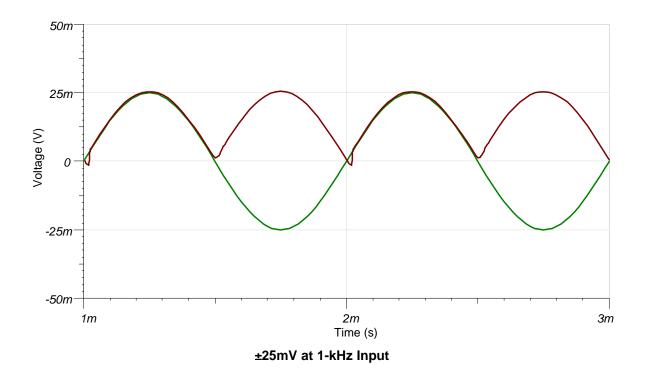
$$\frac{V_{o}}{V} = 1\frac{V}{V}$$

b. Gain for negative input signals.

 $\frac{V_o}{V_i} = - \frac{R_2}{R_1} = - \mathbf{1} \frac{V}{V}$

- 2. Select R₁ and R₂ to reduce thermal noise and to minimize voltage drops due to the reverse leakage current of the diode. These resistors will appear as loads to U₁ and U₂ during negative input signals. $R_1 = R_2 = 1$ kΩ
- 3. R_3 biases the non-inverting node of U_2 to GND during negative input signals. Select R_3 to be the same value as R_1 and R_2 . U_1 must be able to drive the R_3 load during positive input signals. $R_3 = 1$ k Ω
- 4. Select C₁ based on the desired transient response. See the Design Reference section for more information.


 $C_1 = 47 pF$


www.ti.com

Design Simulations

±10V at 50-kHz Input

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit SPICE simulation file SBOC517.

See TIPD139, www.ti.com/tool/tipd139.

Design Featured Op Amp

TLV172				
V _{cc}	4.5V to 36V			
V _{inCM}	Vee to (Vcc-2V)			
V _{out}	Rail-to-rail			
V _{os}	0.5mV			
l _q	1.6mA/Ch			
l _b	10pA			
UGBW	10MHz			
SR	10V/µs			
#Channels	1, 2, 4			
www.ti.com/product/tlv172				

Design Alternate Op Amp

OPA197			
V _{cc}	4.5V to 36V		
V _{inCM}	Rail-to-rail		
V _{out}	Rail-to-rail		
V _{os}	25µV		
lq	1mA/Ch		
l _b	5pA		
UGBW	10MHz		
SR	20V/µs		
#Channels	1, 2, 4		
www.ti.com/pi	roduct/opa197		

Revision History

Revision	Date	Change	
A	January 2019	Downscale the title and changed title role to 'Amplifiers'. Added link to circuit cookbook landing page and Spice simulation file.	