

SBOA227A-February 2018-Revised January 2019

Half-wave rectifier circuit

Design Goals

Input		Output		Supply	
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}
$\pm 0.2 \text{mV}_{\text{pp}}$	±4V _{pp}	0.1V _p	2V _p	2.5V	–2.5V

Design Description

The precision half-wave rectifier inverts and transfers only the negative-half input of a time varying input signal (preferably sinusoidal) to its output. By appropriately selecting the feedback resistor values, different gains can be achieved. Precision half-wave rectifiers are commonly used with other op amp circuits such as a peak-detector or bandwidth limited non-inverting amplifier to produce a DC output voltage. This configuration has been designed to work for sinusoidal input signals between $0.2mV_{pp}$ and $4V_{pp}$ at frequencies up to 50kHz.

Design Notes

- 1. Select an op amp with a high slew rate. When the input signal changes polarities, the amplifier output must slew two diode voltage drops.
- 2. Set output range based on linear output swing (see A_{ol} specification).
- 3. Use fast switching diodes. High-frequency input signals will be distorted depending on the speed by which the diodes can transition from blocking to forward conducting mode. Schottky diodes might be a preferable choice, since these have faster transitions than pn-junction diodes at the expense of higher reverse leakage.
- 4. The resistor tolerance sets the circuit gain error.
- 5. Minimize noise errors by selecting low-value resistors.

www.ti.com

Design Steps

1. Set the desired gain of the half-wave rectifier to select the feedback resistors.

 $V_o = \text{Gain} \times V_i$ $\text{Gain} = -\frac{R_f}{R_1} = -1$

 $R_{f}\!=R_{1}\!=2 \textbf{\times} R_{eq}$

- Where $R_{\scriptscriptstyle eq}$ is the parallel combination of $R_{\scriptscriptstyle 1}$ and $R_{\scriptscriptstyle f}$
- 2. Select the resistors such that the resistor noise is negligible compared to the voltage broadband noise of the op amp.

$$\begin{split} \mathsf{E}_{\mathsf{nr}} &= \sqrt{4 \times \mathsf{k}_{\mathsf{b}} \times \mathsf{T} \times \mathsf{R}_{\mathsf{eq}}} \\ \mathsf{R}_{\mathsf{eq}} &\leq \frac{\mathsf{E}_{\mathsf{nbb}}^2}{4 \times \mathsf{k}_{\mathsf{b}} \times \mathsf{T} \times 3^2} = (\mathsf{E}\mathsf{nbb}) \\ &= 7 \cdot 5 \frac{\mathsf{nV}}{\sqrt{\mathsf{Hz}}} = \frac{(7.5 \times 10^{-9})^2}{4 \times 1.381 \times 10^{-23} \times 298 \times 3^2} = 380\Omega \\ \mathsf{R}_{\mathsf{f}} &= \mathsf{R}_1 \leq 760\Omega \to 750\Omega \text{ (Standard Value)} \end{split}$$

Design Simulations

DC Simulation Results

www.ti.com

 $2V_{\mbox{\tiny pp}}$ at 50kHz

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit SPICE simulation file SBOC509.

Design Featured Op Amp

OPA322				
V _{ss}	1.8V to 5.5V			
V _{inCM}	Rail-to-rail			
V _{out}	Rail-to-rail			
V _{os}	500µV			
l _q	1.6mA/Ch			
I _b	0.2pA			
UGBW	20MHz			
SR	10V/µs			
#Channels	1, 2, 4			
www.ti.com/product/opa322				

Design Alternate Op Amp

OPA2325				
V _{ss}	2.2V to 5.5V			
V _{inCM}	Rail-to-rail			
V _{out}	Rail-to-rail			
V _{os}	40µV			
l _q	0.65mA/Ch			
I _b	0.2pA			
UGBW	10MHz			
SR	5V/µs			
#Channels	2μ			
www.ti.com/product/opa2325				

Revision History

Revision	Date	Change
А	January 2019	Downscale the title and changed title role to 'Amplifiers'. Added link to circuit cookbook landing page and link to Spice simulation file.