CHAPTER 4
THEORY OF NETWORKS
by F. Lancrorp-SmiTH, B.SC., B.E.

Section Page
1. Current and voltage ... 128
2. Resistance ... ... 130
3. Power ... 133
4. Capacitance ..o 134
5. Inductance ... ... 140
6. Impedance and admittance .. 144
7. Networks ... . ... ... 158
8. Filters o172
9. Practical resistors, condensers and inductors ... ... 186
For ease of reference
Mathematics . see Chapter 6
Mathematical symbols see Chapter 38 Sect. 6
Electrical and magnetic units see Chapter 38 Sect. 1
Electrical and magnetic symbols and abbreviations see Chapter 38 Sect. 6
Standard graphical symbols see Chapter 38 Sect. 7
Charts for calculation of reactance and impedance see Chapter 38 Sect. 9
Greek alphabet see Chapter 38 Sect. 14
Definitions see Chapter 38 Sect. 15
Trigonometrical and hyperbolic tables see Chapter 38 Sect. 21

SECTION 1: CURRENT AND VOLTAGE

(?) Direct current (i) Alternating current  (iii) Indications of polarity and current
Slow.

(i) Direct current

+
We speak of the flow of an electric current in sarreay O

more or less the same way that we speak of the CURRENT

flow of water, but we should remember that the FlLow Lonp | [EvRRENT

conventional direction of current is opposite to Frow

the actual flow of electrons. In most electrical
circuit theory however, it is sufficient to consider
only the conventional direction of current flow. Flo. an =
In Fig. 4.1 there is a battery connected to 4 load ;

the current flows from the positive (4-) terminal, Fia. 4.1
through the load, to the negative (—) terminal, en Ty
and then through the battery to the positive

terminal,

Flow of current with
battery and load.
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4.1 (i) DIRECT CURRENT 129

Batteries (or cells) may be connected in series as in Fig. 4.2 and the total voltage
is then equal to the sum of the voltages of the individual batteries (or cells). When
calculating the voltage of any intermediate point with respect to (say) the negative
terminal, count the number of cells passed through from the negative terminal to the
tapping point, and multiply by the voltage per cell. When batteries are connected
in series, each has to supply the full load current.

ORY CELLS ACCUMULATORS ] .
J o+ Batteries (or cells) are occasionally

connected in parallel as in Fig. 4.3.
(?zv (D1—9* In this case the terminal voltage is
the same as the voltage per battery

CURRENT

{or cell). The current does not
2y necessarily divide uniformly be-
o tween the cells, unless these all have
é identical voltages and internal re-
—}av

sistances.

Direct current may also be ob-
CURRENT ‘ tained from a d.c. generator, or

FLow from rectified and filtered a.c.
supply. In all such cases there is a
certain degree of ripple or hum
which prevents it from being pure
d.c. ; when the a.c. component is appreciable, the supply may be spoken of as * d.c.
with superimposed ripple (or hum) ” and must be treated as having the characteristics
of both d.c. and a.c. When we speak of d.c. in a theoretical treatise, it is intended to
imply pure, steady d.c.

(ii) Alternating current popeve— - +
The ordinary form of d.c. generator actu- l FLOW
ally generates a.c., which is converted to T
d.c, by the commutator. If a loop of wire rov
! : - —

- U Y

Fig. 4.2, CQells in series.

is rotated about its axis in a uniform
magnetic field, an alternating voltage is
generated across its terminals. Thus a.c.

is just as fundamental as d.c. The usual 5
power-house generates 3 phase a.c., but ) )
in radio receivers we are only concerned Fig, 4.3, Cells in parallel.
with one of these phases. A “ sine wave

alternating current is illustrated in Fig. 4.4, where the vertical scale may represeat
voltage or current, and the horizontal scale represents time.* A cycle is the alterna-
tion from A to E, or from B to F, or from C to G.

B F
o—f /]\c C/]_\G . .
\_l_/ Fig. 44. Farm of sine-

o wave alternating ecurrent.

P TIME

FIG. 4-4

Most power supplies have frequencies of either 50 or 60 cycles per secon_d (c/s}.
The period is the time taken by one cycle, which is 1/50 or 1/60 second, in these
two cases.

*For mathematical treatment of periodic ph see Chapter 6 Sect. 4.
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The precise shape of the wave is very important, and the sine wave has been adopted
as the standard a.c. waveform, since this is the only one which always has the current
waveform of the same shape as the voltage, when applied to a resistance, inductance
or capacitance.t In practice we have to deal with various waveforms, some of which
may be considered as imperfect (*° distorted *) sine waves, while others are of special
shapes such as square waves, saw-tooth, or pulse types, or rectified sine waves. How-
ever, when we speak of a.c, in any theoretical treatise, it is intended to imply a dis-
tortionless sine wave. Other waveforms may be resolved by Fourier Analysis into a
fundamental sine wave and a number of harmonic frequency sine waves, the latter
having frequencies which are multiples of the fundamental frequency. This subject
is treated mathematically in Chapter 6 Sect. 8.

When deriving the characteristics of any circuit, amplifier or network, it is usual
to assume the application of a pure sine-wave voltage to the input terminals, then to
calculate the currents and voltages in the circuit. In the case of a valve amplifier
(or any other non-linear component) the distortion may be either calculated, or
measured at the output terminals. If the device is to operate with a special input
waveform (e.g. square wave), it is usual to resolve this into its fundamental and har-
monic frequencies, and then to calculate the performance with the lowest (funda-
mental) frequency, an approximate middle** frequency, and the highest harmonic
frequency—all these being sine waves,

(iii) Indications of polarity and current flow

In circuit diagrams the polarity of any battery or other d.c. voltage source is usually
indicated by + and — signs ; alternatively it may be indicated by an arrow, the head
of the arrow indicating positive potential (e.g. Fig. 4.2). A similar convention may
be used for the voltage between any points in the circuit (e.g. Fig. 4.14A). The
direction of d.c. current flow is indicated by an arrow.

In the case of a.c. circuits a similar convention may be used, except that an arbitrary
instantanecus condition is represented (Fig. 4.18A).

SECTION 2 : RESISTANCE

(#) Ohm’s Law for d.c. (1) Ohm’s Law for a.c. (#t) Resistances in series (iv)
Resistances in parallel (v) Conductance in resistive circuits.

(i) Ohm’s Law for direct current

All substances offer some obstruction to the flow of electric current. Ohm’s Law
states that the current which flows is proportional to the applied voltage, in accordance
with the equation

I =E/R )

where R is the total resistance of the circuit. For example in Fig. 4.5 an ideal battery,
having zero internal resistance, and giving a constant voltage E under all conditions,
is connected across a resistance R. The current which flows is given by eqn. (1)
above, provided that

I is expressed in amperes,
; E is expressed in volts, ' ]
and R is expressed in ohms.* 23 e
Ohm’s Law may also be arranged, for convenience, in
the alternative forms

tat

FIG 45
E = IR @ Fig. 45. Circuit illus-
and R = E/I (3)  trating Ohm’s Law for d.c.

TA sinewave has its derivative and integral of the same form as itself.

**Preferably the geometrical mean fi ichis gi
and hioicrably the egn -ome m requency which is given by V. f1f2 where fy and f2 are the lowest

*It is assumed that the resistance remains constant under the conditions of operati
cases see Sect. 7(i). peration. For other
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In a circuit containing more than one battery (or other source of direct voltage),
the effective voltage is determined by adding together those voltages which are in the
same direction as the current, and subtracting any opposing voltages.

Ohm’s Law also holds for any single resistor or combination of resistances. The
voltage drop across any resistance R,, no matter what the external circuit may be,
is given by

Voltage drop = IR, @
where [ is the current flowing through R,.

(ii) Ohm’s Law for alternating current

Ohm’s Law holds also for alternating voltages and currents, except that in this
case the voltage (E) and the current (I) must be expressed in their effective or root-
mean-square values of volts and amperes.

(iif) Resistances in series
When two or more resistors are connected so that the current through one is com-~
pelled to flow through the others, they are said to be in series, and the total resistance
i the sum of their individual resistances. For example, in Fig. 4.6 the total resistance
of the circuit is given by
R=R,+R; +R; 5
and the current is given by
I = E/R = E/(R; + R, + Ry).
It is interesting to note that R;, R; and R, form a voltage divider, across the
battery E. Using eqn. (4):
voltage drop across R,
voltage drop across R,
voltage drop across R,
total voltage drop

IR, = [Ry/(R; + Ry + Ry)] X E
IR, = [Ry/(R; + Ry + R3)] X E
IR, = [Ra/(Rl + R: + Ra)] x E
IR, + IR, + IR,
I(R, + R, + Ry) = E.
For example, if E = 6 volts, R, = 10 ohms, R, = 10 ochms and R; = 10 chms, then
I=E/R, + R, + Rp) = 6/(10 + 10 + 10)
= 6/30 = 0.2 ampere.

Voltage between points C and D = 10 x 0.2 = 2 volts

Band D = 20 X 0.2 = 4 volts

Aand D = 30 x 0.2 = 6 volts,

The voltage across any section of the voltage divider is proportional to its
resistance (it is assumed that no current is drawn from the tapping points B or C).

I T

[}
F1G.46 FiG.4-7

Fig. 4.6. Reststances in series.
Fig. 4.7, Resistances in series, allowing for internal resistance of battery.

If the battery has any appreciable internal resistance the circuit must be modified
to the form of Fig. 4.7 where R, is the equivalent internal resistance. Here we have
four resistances effectively in series and I = E/(R; + Ry + Ry + Ry). The
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voltages between any of the points 4, B, C or D will be less than in the corresponding
" case for zero internal resistance, the actual values being
R, + R; + R,
R + R, + R + R, X voltage for R; = 0.
If R, is less than 19, of (R, + R, + R;), then its effect on voltages is less than 19%,.

(iv) Resistances in parallel
‘When two resistances are in parallel (Fig. 4.8) the effective total resistance is given by

1 2
R= R, + Rz ©
When R, = R,, R = R,/2 = R,/2.
When any number of resistances are in parallel (Fig, 4.9) the effective total resistance
is given by
1 1 1 1
—= - _— “ s v . 7
R R TR TR T @
When two or more resistors are in parallel, the total effective resistance may be de-
termined by the graphical method of Fig. 4,10. This method* only requires a piece
of ordinary graph paper (or alternatively a scale and set square). As an example,
to find the total resistance of two resistors, 50 000 and 30 000 ohms, in parallel take
any convenient base 4B with verticals AC and BD at the two ends. Take 50 000
ohms on BD and draw the straight line AD ; take 30 000 ohms on AC and draw
CB ; draw the line XY from their junction perpendicular to AB. The height of
XY gives the required result, on the same scale.

Py

FIG. 4.8 Fi1G.4-9

Fig, 48. Two resistances in parallel. Fig. 4.9. Several resistors tn parallel.

If it is required to determine the resistance of three resistors in parallel, the third
being say 20 000 ohms, proceed further to join points E and Y, and the desired result
is given by the height PQ. This may be continued indefinitely.

50000 0150000
4Q000 40000

. Fig. 4.10. Graphical method
3000 3 for the determination of the

effective resistance of two or
26000 X 520900 smore resistors in parallel (after
Wireless World).

10000 G, 10000

5 X Q ‘O
FIG.4°10

The same method may be used to determine suitable values of two resistors to be
connected in parallel to give a specified total resistance. In this case, select one
value (C) arbitrarily, mark X at the correct height and then find D ; if not a suitable
velue, move C to the next available value and repeat the process until satisfactory.

** Resistances in Parallel~—Capucitances in Series,” W.W. 48.9 (Sept 1942) 205.
“ Diallist ** *“ Series C and Plullel R,” W.W. 514 (April 1945) 126.
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When a network includes a number of resistors, some in series and some in parallel,
firstly convert all groups in parallel to their effective rotal resistances, then proceed
with the series chain.

{v) Conductance in resistive circuits
The conductance (G) of any resistor is its ability to conduct current, and this is
obviously the reciprocal of the resistance—

G =1/R 8)
Applying Ohm’s Law, we derive
I = EG ®

The unit of conductance is the mho (i.e. the reciprocal ohm).
When resistances are in parallel, their effective total conductance is the sum-of their
individual conductances—
G =G +G,+G3+.... (10)
When a number of resistors are in parallel, the current through each is proportional
to its conductance. Also,
1, G,

Itoml Gtotal

an

SECTION 3: POWER
(&) Power in d.c. circuits (it) Power in resistive a.c. circuits.

(i) Power in d.c. circuits
The power converted into heat in a resistance is directly proportional to the product
of the voltage and the current—

P=EXI @)
where P is expressed in watts, E in voits and [ in amperes. This equation may be
rearranged, by using Ohm’s Law, into the alternative forms—

P = I*R = E*/R )
where R is expressed in ohms.

The total energy developed is the product of the power and the time. Units of
energy are

(1) the watt-second or joule

(2) the kilowatt-hour (i.e. 1000 watts for 1 hour).

>

INSTANTANEOUS
POWER

Fig. 411, One cycle of

sine-wave woltage (¢) and

current (i) with zero phase

angle. The instantaneous

power (P) 1s always positive ;

the average power fis half °
the peak power.

AVERAGE POWER

¥ TIME

INSTANTANEQUS
VOLTAGE
INSTANTANEOUS
CURRENT

FiG. a1

(ii) Power in resistive a.c. circuits

The same general principles hold as for d.c., except that the voltage,. current and
power are varying. Fig. 4.11 shows one cycle of a sinewave voltage and current.
The instantaneous power is equal to the product of the instantaneous voltage and
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instantaneous current at any point in the cycle, The curve of instantaneous power
(P) may be plotted point by point, and is always positive.
The heating of a resistor is obviously the result of the average or effective power,
which is exactly half the peak power.
Pﬂeuk = Emaa: Imaz (3)
Ema:c Imaz Emﬂﬂ I"lﬂl’
Py = ——F— = ——= X —=
2 V2 V2
Emar/v'2 is called the effective or r.m.s. voltage
Imae/V'2 is called the effective or r.ms. current.

The effective values of voltage and current are the values which have the same heating
effect as with d.c. The initials r.m.s. stand for root mean square, indicating that it
is the square root of the average of the squares over the cycle.

In a.c. practice, any reference to voltages or currents without specifying which
value is intended, should always be interpreted as being r.m s. {or effective) values.
Measuring instruments are usually calibrated in r.m.s. values of currents and voltages.

The form factor is the ratio of the r.m.s. to the average value of the positive half-
cycle. The following table summarizes the principal characteristics of several wave-
forms, over the positive half-cycle in each case (see Chapter 30 for rectified

O

waveforms) : Triangular
Sine wave  Square wave wave

) (i.?sceles)
Form factor (= r.m.s./average) 7/2v/2 = 1.11 1.00 2/\/?1 = 1.15
Peak/r.m.s. V2 = 1414 1.00 V3 =173
R.M.S./peak 1/4/2 = 0.707 1.00 1/4/3 = 0.58
Peak/average m/2 = 1.57 1.00 2.0
Average/Peak 2/7 = 0.64 1.00 0.5

SECTION 4 : CAPACITANCE

(&) Introduction to capacitance (ii) Condensers in parallel and sertes (iii) Calcula-
tion of capacitance (iv) Condensers in d.c. circuits (v) Condensers in a.c. circuits.

(i) Introduction to capacitance

A capacitor* (or condenser) in its simplest form, consists of two plates separated
by an insulator (dielectric).

Any such condenser has a characteristic known as capacitancet whereby it is able
to hold an electric charge. When a voltage difference (E) is applied between the
plates, current flows instantaneously through the leads connecting the battery to the
condenser (Fig. 4.12) until the latter has built up its charge, the current dropping
gradually to zero. If the battery is removed, the condenser will hold its charge
indefinitely (in practice there is a gradual loss of charge through leakage). If a con-
cucting path is connected across the condenser plates, a current will flow through
the conductor but will gradually fall to zero as the condenser loses its charge.

It is found that the charge (i.e. the amount of electricity) which a condenser will
hold is proportional to the applied voltage and to the capacitance.

This may be put into the form of an equation :
CE

8Y)

where Q = quantity of electricity (the charge) in coulombs,
C = capacitance in farads,
and E = applied voltage.

*The American standard term is “‘ Capacitor.” X
11t is assumed here that the condenser is ideal, without series resistance, leakage, or dielectric lag.
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The unit of capacitance—the Farad (F)—is too large for convenience, so it is usual
to specify capacitance as so many microfarads (uF) or micro-microfarads* (u uF).
Any capacitance must be converted into its equivalent value in farad§ before being
used in any fundamental equation such as (1) above—

IpF =1 X 107 farad
1puF =1 % 10712 farad

Note : The abbreviations mF or mmF should not be used under any circumstances
to indicate microfarads or micro-microfarads, because mF is the symbol for milli-farads
(1 x 1073 farad). - Some reasonable latitude is allowable ewith most symbols, but here
there ts danger of serious error and misunderstanding.

The energy stored in placing a charge on a condenser is

W = $(QF) = { (CE®) = Q*/2C )]

where W = energy, expressed in joules (watt-seconds)
Q = charge in coulombs
C = capacitance in farads
and E = applied voltage.
@
. o ol el L
o=t =
: = 1 T 7T !
e - I
_7
FI1G. 412 FIG. 413

Fig. 412, Gondenser connecred to a battery.
Fig. 413, (A) Condensers in parallel. (B) Condensers in series.

(ii) Condensers in parallel and series
When two or more condensers are connected in parallel (Fig. 4.13A) the total
capacitance is the sum of their individual capacitances :
C=CI+C2+CS+ .o (3)
When two or more condensers are connected in series (Fig. 4.13B) the total capaci-
tance is given by:

1 1 1 1
— ==t + 5 +.. @
c~ ¢ + G + X +
When only two condensers are connected in series :
C = _GC (5)
TG+ G

When two or more equal condensers (C;) are connected in series, the total capaci-

tance is
C = (/2 for 2 condensers
and C = GC,/n for n condensers. )

Note : The curved plate of the symbol used for a condenser indicates the wrth.ed
(outer) plate of an electrolytic or circular paper condenser ; when this is not applic-
able the curved plate is regarded as the one more nearly at carth potential.

iii) Calculation of capacitance
Parallel plate condenser ) . . .
When there are two plates, close together, the capacitance 18 approximately :

C =-1—1§% wuF when dimensions are in centimetres

*The name picofarad (pF) is also used as an alternative.
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AK
or C = 4454 1 uF when dimensions are in inches
where 4 = useful area of one plate in square centimetres (or inches). The useful

area is approximately equal to the area of the smaller plate when the square root of
the area is large compared with the gap.
K = dielectric constant (for values of common materials see Chapter 38
Sect, 8, For air, K = 1.
d = gap between plates in centimetres (or inches).

Capacitance with air dieleétric, plates 1 mm,. apart
C = 0.884 uuF per sq. cm. area of one plate.

Capacitance with air dielectric, plates 0.10 inch apart

C = 2.244 puF per sq. inch area of one plate.
When there are more than two plates, the “ useful area ” should be interpreted as
the total useful area,

Cylindrical condenser (concentric cable)
N 7.354K

Y = logoD/d ¥

where D = inside diameter of outside cylinder (inches)
d = outside diameter of inner cylinder (inches)

and K = dielectric constant of material in gap.

(iv) Condensers in d.c. circuits

An ideal condenser is one which has no resistance, no leakage, and no inductance.
In practice, every condenser has some resistance, leakage and inductance, although
these may be neglected under certain conditions of operation.

#F per foot length

®
S ~ s2
-
z
+ LJ c \ p
=€
= < «
- R 3 .
/ U ~—N-0-368 1
1
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] T TIME
o
2 T £
o i
Sr——H#—o632€ w
=] ) g
< -
Y i i’
i/ BN
3 ; F-—~Ngo-368¢
> ! !
of 0

T TIME o T TIME
FIG. 414

Fig. 4.14. Condenser charge and discharge (A) Circuit (B) Discharge current
characteristic (C) Charge voltage characteristic (D) Discharge voltage characteristic.

In Fig. 4.14A, C is an ideal condenser which may be charged by closing switch S ;
r represents the combined internal resistance of the battery E and the resistance of
the leads in the circuit. When S, is closed, current () will flow as indicated in dia-
gram B, the peak current being I = E/r at time 7 = 0. The time for C to become
fully charged is infinite—in other words the current never quite reaches zero, although
it comes very close to zero after a short period. The equation for the current is of
logarithmic form :

6
i=—fe“‘/’(" ©
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where ¢ = base of natural logarithms (&~ 2.718)
t = time in seconds after closing switch S,
E = battery voltage
r = resistance in ohms

and C capacitance in farads.

The voltage (¢) across the condenser is

e =E—~ri=EQ1 — et/0) (7Ta)
and the curve (diagram C) is of the same shape as the current curve except that it
is upside down. The voltage never quite reaches the value E, although it approaches
it very closely.

The charge on the condenser is given by

g = Q1 — ¢—t/"C) (70)
where ¢ = instantaneous charge on condenser
and Q = EC = final charge on condenser
which follows the same law as the voltage (egn. 7a).
If we now assume that the condenser C is fully charged, switch S, is opened, and
switch S, is closed, the discharge characteristic will be given by

i

_ _E __yre

i R € 8
which is of the same form as diagram B, except that the current is in the opposite
direction.

The curve of voltage (and also charge) against time for a discharging condenser ig
in diagram D, and is of the same shape as for current, since ¢ = Ri. These charge
and discharge characteristics are called transients.

In order to make a convenient measure of the time taken to discharge a condenser,
we adopt the time constant which is the time taken to discharge a condenser on the
assumption that the current remains constant throughout the process at its initial
value. In practice, as explained above, the discharge current steadily falls with
time, and under these conditions the time constant is the time taken to discharge the
condenser to the point where the voltage or charge drops to 1/ ¢ or 36.89%, of its initial
value. The same applies also to the time taken by a condenser in process of being
charged, to reach a voltage or charge of (1 — 1/¢) or 63.29 of its final value.

The time constant (7) is equal to

T = RC )
where T is the time constant in seconds,

R is the total resistance in the circuit, either for charge or discharge, in ohms,
and C is the capacitance in farads.

This also holds when R is in megohms and C in microfarads.

(v) Condensers in a.c. circuits

When 2 condenser is connected to an a.c. line, current flows in the circuit, as may
be checked by inserting an a.c. ammeter in serics with the condenser. This does
not mean that electrons flow through the condenser from one plate to the other ;
they are insulated from one another.

Suppose that a condenser of capacitance C farads is connected directly across an
a.c. line, the voltage of which is given by the equation ¢ = E,, sin wt, The con-
denser will take sufficient charge to make the potential difference of its plates at every
instant equal to the voltage of the line. As the impressed voltage continually varies
in magnitude and direction, electrons must be continually passing in and out of the
condenser to maintain its plates at the correct potential difference. This continual
charging and discharging of the condenser constitutes the current read by theammeter.

At any instant, ¢ = Ce, where ¢ is the instantaneous charge on the condenser.
The current (7) is the rate of change (or differential* with respect to time)of the charge,

*See Chapter 6, Section 7,
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dg/dt
Ce = CE,, sin wt

d
Therefore 1 = @ (CE,, sin wr)

Therefore i = wCE, cos wt . (10)
Eqn. (10) is the equation of the current flowing through the condenser, from which
we may derive the following facts :

1, It has a peak value of wCE,, ; the current is therefore proportional to the applied
voltage, also to the capacitance and to the frequency (since f = w/2w).

2. It has the same angular velocity (w) and hence the same frequency as the applied
voltage.

3, It follows a cosine waveform whereas the applied voltage has a sine waveform.
This is the same as a sinewave advanced 90° in phase—we say that the current
leads the voltage by 90° (Fig. 4.15).

Considering only the magnitude of the condenser charging current,
I, = wCE,, (peak values)

Therefore I,ns = wCE,me (effective values)

Where I and E occur in a.c. theory, they should be understood as being the same as

Iy and E,pps.

‘This should be compared with the equivaleni expression when the condenser is

replaced by a resistance (R) :

i.e., 1
But q

Efm‘
Ioms = R *

. " It will be seen that R in the pesistance ¢ase, and
(1/ «C) in the capacitance case, have a similar effect
a A in limiting the current. We call (— 1/«C) the
capacitive reactancet (X.) of the condenser, since
it has the additional effect of advancing the phase of
the current, We here adopt the convention of

2 < making the capacitive reactance negative, and the
e inductive reactance positive ; the two types of re-

FiGaTs > actance are vectorially 180° out of phase,
Fig. 4.15. Alternating cur- The relationships between the various voltages

rent through an ideal condenser.  and  currents are well illustrated by a vector
diagram*. = Fig. 4.16A shows a circuit with R and C in series across an
ac, line with a voltage e = E,, sin wt. The instantaneous** values of voltage (e)
and current (¢) are shown with arrows to indicate the convention of positive direction.
It is quite clear that the same current which passes through R must also pass through
C. This causes a voltage drop RI across R and (I/ wG) across C where I is the r.m.s.
value of the current. The relative phase relationships are given by the angular dis-
placements in the vector diagram. These are determined trigonometrically by the
peak values I,, RI, and I,./wC ; for convenience, the lengths of the vectors are
marked in Fig. 4.16B according to the effective values I, R and I/ wC. The current
vector is distinguished by a solid arrowhead ; it may be to any convenient scale since
there is no connection between the voltage and current scales. Since R is purely
resistive, RI must be in phase with 1, but the current through C must lead the voltage
drop across C by 90°. This is shown on the vector diagram 4.16B where the direc-~
tion of I is taken as the starting point ; R/ is drawn in phase with I and of length equal
to the voltage drop on any convenient scale ; I/ «wC is drawn so that I leads it by 90° ;
and the resultant (E) of RJ and I/ wC is determined by completing the parallelogram

The resultant E is the vector sum of the voltage drops across R and C, which must

1A table of capacitive reactances is given in Chapter 38 Sect, 9 Table 42.

*See Chapter 6 Section 5(iv).

**It is illogical to show directions or polarities on ihe r.m.s. values of current (I) or voltage (E) since
these are the effective values of alternating currents.
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therefore be the applied (line) voltage. It will be seen that the current I leads the
voltage E by an angle ¢ where
wng o L L L _Ixd o
“WwC RITWCR™ R ° (102)
It R = 0, then tan ¢ = w, and ¢ = 90°,
Since ¢ is the phase angle of the current with respect to the voltage, the angle ¢
in the circuit of Fig. 4.16A is positive.
.The li)nstantaneous current flowing through the circuit of Fig. 4.16A is therefore
given by

i = I,sin{wt + ¢) (10b)
where ¢ = tan"! (1/wCR).
The value of I, in eqn. (10b) is given by
I.=E./Z (10c)

where Z is called the impedance.
Similarly in terms of effective values,

I=E/Z (10d)
Obviously Z is a vector (or complex) quantity having phase relationship as well as
magnitude, and is printed in bold face to indicate this fact. This may be developed
further by the use of the ;j notation.

4\ e
: ® 9
L R
E=EmSINWt l 1 £-21
@C
L T
FIG. 4-18 TTTTTTTTT

Fig. 4.16. (A) Resistance and capacitance across a.c. line (B) Vector diagram of
voltage relationships (C) Vector diagram of impedance (Z) with its real component
(R) and reactive component —j (1/ wC).

Using the j Notation
The operator j* significs a positive vector rotation of 90°, while —; signifies a
negative rotation of 90°. Instead of working out a detailed vector diagram, it is
possible to treat a circuit problem very much more simply by using the j notation,
For example in Fig. 4.16, we may equate the applied voltage E to the sum of the
voltage drops across R and C:
1
E = RI —; -C [€3))
the —; indicating 90° vector rotation in a negative direction, whichis exactly what
we have in diagram B.
It is sometimes more convenient to put —jl/«C into the alternative form +1/joC
which may be derived by multiplying both numerator and denominator by j (since

j*= —1). Thus

E = RI + I/jwC : (12)
From (11) we can derive:

Z = E/I =R —j(1/uC) 13)

For example, in Fig. 4.16A let R = 100 ohms and C = 10 xF, both connected in
series, and let the frequency be 1000 c/s.
27 X 1000 = 6280

Then w =
1/wC = 1/(6280 x 10 x 107%) = 15.9 ohms.
and Z =R —j(1/wC)
= 100 — ; 15.9 (13a)

Eqn. (13a) indicates at a glance a resistance of 100 ohms in series with a negative
reactance (i.e. a capacitive reactance) of 15.9 ohms. Values of capacitive reactances

*See Chapter 6 Sect. 5(iv).
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for selected capacitances and frequencies are given in Chapter 38 Sect. 9 Table 42.
Even if R = 0, we still write the impedance in the same form,

Z=0-—159 (13b)
Thus Z is a complex* quantity, that is to say it has a *‘ real » part (R) and an “ imagin-
ary > part (1/wC) at 90° to R, as shown in Fig. 4.16C. The absolute magnitude
(modulus) of Z is:

12| = V/R* + {1/wC)* (14)
and its phase angle ¢ is given by
1

which is the same as we derived above from the vector diagram, except for the sign.
The negative sign in eqn. (15) is because ¢ is the phase shift of Z with respect to R.

In a practical condenser, we may regard R in Fig. 4.16A as the equivalent series
loss resistance of the condenser itself.

It is obvious from Fig. 4.16B that

cos ¢ = R/Z (16a)

where Z is given by equation (13) above.
Cos ¢ is called the “ Power factor.”

If ¢ is nearly 90°, X is nearly equal to Z, apart from sign, and so
cos ¢ ~v R/|X| (16b)
where |X| indicates that the value of the reactance is taken apart from sign. With
this approximation we obtain
Power factor = cos ¢ & wCR an
Note that the power factor of any resistive component is always positive. A negative
power factor indicates generation of power,
The total power dissipated in the circuit (Fig. 4.16A) will be
P=EJ cos ¢ = EI X power factor’ (17a)
2
— 2 — — e
= I'R = pT ¥ x.5R% (17b)
where P = power in watts
X, = 1/wC
and cos ¢ is defined by eqn. (16a) or the approximation (16b).

The Q factor of a condenser is the ratio of its reactance to its resistance—
Q = 1/wCR = tan ¢ &~ 1/(power factor) (18)

SECTION 5 : INDUCTANCE

(&) Imtroduction to inductance (ii) Inductances in d.c. circuits (#5) Inductances
in series qnd parallel (7v) Mutual inductance (v) Inductances in a.c. circuits (vi)
Power in inductive circusts.

(i) Introduction to inductance

An inductor, in its simplest form, consists of a coil of wire with an air core as com-
monly used in r-f tuning circuits. Any inductor has a characteristic known as in-
ductance whereby it sets up an electro-magnetic field when a current is passed through
it. When the current is varied, the strength of the field varies ; as a result, an electro-
motive force is induced in the coil. This may be expressed by the equation :

d
e = —N }7? X 1078 volts e))
where e = e.m.f. induced at any instant
N = number of turns in the coil
¢ = flux through the coil

*See Chapter 6, Sect. 6(i).
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d
and ;1? == rate of change (differential with respect to time) of the flux.

The direction of the induced e.m.f. is always such as to oppose the change of current
which is producing the induced voltage, In other words, the effect of the induced
e.m f. is to assist in maintaining constant both current and field.
We may also express the relationship in the form :
di .

e = —L 2} (2)
where all the values are expressed in practical units—

e = e.m.f. induced at any instant, in volts

L = inductance, in henrys
{ = current in amperes
di
and i rate of change of current, in amperes per second.

The inductance L varies approximately* with the square of the number of turns
in the coil, and may be increased considerably by using iron cores** (for low fre-
quencies) or powdered iron (for radio frequencies). With iron cores the value of L
is not constant, so that eqn. (2) cannot be used accurately in such cases.

The energy stored in a magnetic field is

energy = % LI? (2a)
where energy is measured in joules (or watt seconds)
L is measured in henrys
and [ is measured in amperes.

(ii) Inductances in d.c. circuits

When an inductance (L henrys) with a total circuit resistance (R ohms) is connected
to a d.c. source of voltage (E), the current rises gradually to the steady value I = E/R.
During the gradual rise, the current follows the logarithmic law

i= g (1 — e~ RU/L) €)

where 7 = current in amperes at time ¢,
¢ = base of natural logarithms Ay 2.718,
and ¢ = time in seconds after switch is closed.

The time constant (T) is the time in seconds from the time that the switch is
closed until the current has risen to (1 — 1/¢€) or 63.29% of its final value :
T = L/R @
where L = inductance in henrys
and R = resistance in ohms.
The decay of current follows the law

i = g€ )
The rise and decay of current are called transients.

(iii) Inductances in series and parallel
Inductances in series
The total inductance is equal to the sum of the individual inductances, provided
that there is no coupling between them:
L =L, +Ly+Lzg+... (6)

Inductances in paraliel ) )

The total inductance is given by eqn. (7), provided that there is no coupling between
them :

1 1 1

- — - . 7
Lttt ™
*See Chapter 10 for formulae for calculating the inductance of coils.
**See Chapter 5 for iron cored inductances.
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(iv) Mutual inductance

When two coils are placed near to one another, there tends to be coupling between
them, which reaches a maximum when they are placed co-axially and with their
centres as close together as possible.

If one such coil is supplied with varying current, it will set up a varying magnetic
field, which in turn will induce an e.m.f. in the second coil. This induced e.m.f.
in the secondary is proportional to the rate of current change in the first coil (primary)
and to the mutual inductance of the two coils :

dr
ey = —M 71;‘- (8)
where e, = voltage induced in the secondary,
di
d—;l = rate of change of current in the primary in amperes per second,

and M = mutal inductance cf the two coils, in henrys.
(Compare Equations 2 and 8.)

M may be either positive or negative, depending on the rotation of, or connections
to, the secondary. M is regarded as positive if the secondary voltage (¢,) has the same
polarity as the induced voltage in a single coil.

The maximum possible (theoretical) value of M is when M = +/L,L,, being the
condition of unity coupling, but in practice this cannot be achieved. The coefficient

of coupling (&) is given by
k= M/\LL, ®
so that k is always less than unity.
If the secondary is loaded by a resistance R, (Fig. 4.17), current will flow through
the secondary circuit.
@

T T </ g

L 1 L 14 f
TS 2 E2 z EaEmSINGL wir U«',‘

|

F1G.4417

R

) RL -1

o -

FIG. 417

Fig. 4.17.  Two inductances coupled by mutual inductance (M) with the secondary
) . loaded by a resistance,
Fig. 4.18. (A) Equvalent circuit diagram of practical inductance (B) Vector
diagram of woltage relationships.

(v) Inductance in a.c. circuits

If an ideal inductance (L henrys) is connected across an a.c. line, the voltage of
which is given by the equation ¢ = E,, sin wt, a current will flow having the same
waveform as the line voltage, but the current will lag 90° behind the voltage. The
in(liluctance is said to have an inductive reactance* (X ;) equal to wL, and the current
will be

Irmt = Ermx/ wl (10)
We may helpfully compare this with the case of a condenser :
Current Reactance Phase shiftt
Capacitance: I, = oCE,,, X, = =1/0C +90°
Inductance : I,,, = E, ../ oL X, = oL —990°

Every practical inductance has appreciable resistance, and we may draw the equiva-
lent circuit of any normal inductor as an ideal inductance in series with a resistance

*A table of inductive reactances is given in Chapter 38 Sect. 9 Table 41.
1+Of current with respect to voltage.
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(Fig. 4.18A). If there is any other resistance in the circuit, it may be added to the
resistance of the inductor to give the total resistance R.

If an alternating voltage is applied across L and R in series (Fig. 4.18A) the vector
diagram may be drawn as in (B). The current vector I is first drawn to any con-
venient scale § the vector of voltage drop across R is then drawn as RJ in phase with
I ; the vector of voltage drop across L is then drawn as LI so that I will lag behind
it by 90°—hence wL]I is drawn as shown ; the paralielogram is then completed to
give the resultant £ = ZI with a phase angle such that tan ¢ = wl/R.

Using the j notation we may write :
E=RI+jull (11)
where -+ indicates 90° vector rotation in a positive direction.
From (11) we can derive :
Z — E/I =R + joL (12)
For example, if R = 150 ohms, L = 20 henrys and f = 1000 ¢/s, then
w = 27 X 1000 = 6280
wl 6280 X 20 = 125 600 ohms
and z 150 + ;j 125 600 (12a)
Eqn. (12a) indicates at a glance a resistance of 150 ohms in series with a positive
reactance (i.e. an inductive reactance) of 125 600 ohms. Values of inductive re~
actances are given in Chapter 38 Sect. 9 Table 41.
The magnitude (modulus) of Z is:
|Z| = 4/R?* + (wL)? 13)
and its phase angle is given by
tan ¢ = wlL/R (14)
as also shown by the vector diagram.

[

(vi) Power in inductive circuits
The power drawn from the line in Fig, 4.18A is the integral over one cycle of the
instantaneous values of ¢ X ¢. As shown by Fig. 4.19, during parts of each cycle
energy is being taken by the circuit, while during other parts of the cycle energy is
being given back by the circuit. The latter may be regarded as negative power being
taken by the circuit, and is so drawn. The expression for the power is
P = E, sin ot X I, sin (ot — ¢)
= Ep Insin wt . sin (ot — ¢)
= Ep I sin ot (sin wt cos ¢ — cos w? sin $)
= Epn I, (sin? wt cos ¢ — sin wt cos wr sin ¢).
Now the average value of (sin wz cos wr) over one cycle is zero*,
Therefore P = E,, I, (sin? wr cos ¢)
= % E,, I, (1 — cos 2wt) (cos ¢)
= Ermu Irmr cos ?S (15)
27
(since the average value of cos 2wt = O*)
0

where P is expressed in watts, E and I in volts and amperes.

Fig. 4.19. Power in an inductive
circuit with applied sine-wave
voltage (e). -

BY CIRCUIT
360°

FIG. 4-19

#See Chapter 6 Sect. 7({ii) (Definite Integrals).
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From eqn. (15) the power is equal to the product of the effective voltage and current
maultiplied by cos 4, which is called the Power Factor, its value being given by
cos ¢ = R/4/R? 4 (wL)?,

When the load is purely resistive, L = 0 and the power factor = 1 ; the power is
therefore P = E,ps Irps. .

From (15) we may derive for the general case :

P = EIcos ¢ ~ EI. R/VR® + (wL)?
Therefore P = I.I4/R? + (wL)? X R/A/R*® + (wL)® = IR (16a)
E2 .

or P = BT ¥ (wl)*/R7] (166)
Therefore R = P/I? amn
where P = power in watts

wl = inductive reactance in ohms
R = resistance in ohms
and I =- current in amperes.

In other words, the total power taken from the line in the circuit of Fig. 4.18A is
the power dissipated by the effective total resistance R. There is no loss of power
in an ideal inductance with zero resistance, although it draws current from an a.c.
line, because the power factor is zero (¢ = 90°, therefore cos ¢ = 0). The product
of I x E in this case is called the wattless power or reactive power, or more cor-
rectly the reactive velt-amperes,

The power factor at any given frequency gives the ratio of the resistance of a coil
to its impedance and may be used as a figure of merit for the coil. A good coil should
have a very small power factor.

The power factor is almost identical with the inverse of the coil magnification factor
0O (Chapter 9), and the error is less than 19, for values of Q greater than 7 :
Q = owL/R = tan ¢
Power factor = cos ¢ = R/Z
tan ¢ A 1/cos ¢ (error < 19, for ¢ > 82°)
Therefore Power Factor &~ 1/Q for QO > 7.

SECTION 6 : IMPEDANCE AND ADMITTANCE

(&) Impedance a complex quantity (i) Series circuits with L, C and R (#%) Parallel
combinations of L, C and R (iv) Series-parallel combinations of L, C and R (o)
Conduciance, susceptance and admittance (vi) Conuversion from series to parallel
impedance.

(i) Impedance, a complex quantity

Impedance has already been introduced in Sections 4 and 5, in connection with
series circuits of Cand Ror Land R.  Impedance is a complex quantity, having both a
resistive and a reactive component. We are therefore concerned, not only with its
magnitude, but also with its phase angle.

(ii) Series circuits with L, C and R

When a resistance, an inductance and a capacitance are connected in series across
an a.c. line (Fig. 4.20A), the same current will flow through each.

In using the j notation, remember that j simply means 90° positive vector rotation
(the voltage drop for an inductance) and —; means 90° negative vector rotation (the
voltage drop for a capacitance).

In terms of the effective values
where E = applied voltage
and I = current through circuit, we have :
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Voltage drop through R = RI
N » 33 L = jwLl
3 3 C = (-] / wC)I

»

The total voltage drop is equal to the applied voltage,
therefore E = [R - j(wL — 1/wC)] 1
Hence Z = R + j(wL — 1/0C) m

Here R is the resistive component of Z, while (wL. — 1/ wC) is the reactive com-
ponent.

It may therefore be written as

"Z =R + jX where X = (wL — 1/wC).
For example, let R = 500 ohms, L = 20 henrys, and C = 1 uF, all connected in
series across an a.c. line with a frequency of 50 c/s.
Then w = 27 X 50 = 314
1/wC = 1/(314 X 107%) = 3180 ohms
X = oL — 1/wC = 6280 — 3180 = 3100 ohms
(the positive sign indicates that this is inductively reactive) and
Z = R + jX = 500 + j 3100.
If L had been 5 henrys, then X would have been
1570 — 3180 = — 1610 ohms

which is capacitively reactive.

The phase angle is given by tan ¢ = X/R. The magnitude of the impedance
is given by |Z| = VR® + (oL — 1/wC)? (1a)

Fig, 420, (A) Circuit of
R, L and C in series
across a.c. line (B) Vector
diagram of woltage re-
lationships.

€= Em SINWL

FiG. 4-20

This may be illustrated by means of a vector diagram (Fig. 4.20 B) where I is drawn
to any convenient scale. The voltage-drop vectors are then drawn, to the selected
voltage scale, RI in phase with I, jwLI at 90° in advance of I and —jI/«C lagging
90° behind I. The simplest method of combining the three vectors is to take either
wLI or I/ »wC, whichever is the greater, and then to subtract the other from it, since
these two are exactly in phase opposition. In diagram B, wlL[I is the greater, so that
I/ wC is subtracted from wLl to give (wL — 1/wC)I. The two remaining vectors,
RI and j(wL — 1/wC)I are then combined by completing the parallelogram, to give
the resultant ZI which, of course, must be equal to the applied voltage E.

A special case arises when ol = 1/wC in eqn. (1); the reactive component
becomes zero and Z = R, This is the phenomenon of series resonance which
is considered in greater detail in Chapter 9.

Special cases of equation (1)
R and L only: Put 1/«C
R and C only: Put oL
L and C only: Put R

R +jwl
R —j/wC =R + 1/joC
HKwL — 1/ wC)

0,
0,
(V)

E]

I}

1

NNNNNN

R only: R +j0
L only: 0+ jwL )
C only: 0 —j/wC = 1juC

Note that @ = |tan ¢| = |X|/R.

A table of inductive reactances is given in Chapter 38 Sect. 9(i) Table 41.

A table of capacitive reactances is given in Chapter 38 Sect. 9(ii) Table 42.

A table and two charts to find X, R or Z, when a reactance and resistance are con-
nected in series, any two values being known, is given in Chap. 38 Sect %(iv) Table 44,



Series Combinations of L, C and R

Series combination Impedance Magnitude of impedance Phase angle Admittance*
Z=R +;X 1Z] =R + X* $ = tan"! (X/R) Y = 1/Z
ohms ohms radians mhos
R R R 0 1/R
L +fwL wl +n/2 —j(1/ L)
C —7(1/ Q) 1/wC — /2 joC
Ry, + R, R, + R, R, + R, 0 1/(R; + Ry
L (ML, +wlly + Ly £ 2M) w(l, + Ly 4+ 2M) + /2 —j/ oLy + L. & 2M)
C, + C, ,.‘_1_ C, + Cz) L C, + Cz) = w( \Cs )
T\ ¢, @\ C,C, 2 I\C G,
R+1L R+ joL VR* + wL? ran-1 2L R —joL
R RE + w2L8
R-+C R 1 \/wzczm +1 L1 w?C*R + jwC
RS w'C? T W URC w?C?R? + 1
L+c ( ) L) T _JeC
REAS o (“’L T wC +32 TWlLC — 1
R+L+C \/ ( _(wL~l/wC) R — j(wL — 1/ C)
R+J(¢.)L—~E> R® & L———) tan-! s RV % (al — 17wl

*See Sect. 6(v) below.
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General case with a number of arms connected in series, each arm being
of the form R + X
Arm (1): Z, = R, + jX, (ie. R, in series with X,)
Arm (2): Z, = R; + jX,
Arm (3): Z, = Ry + jX, cte.
then the total impedance is given by
Z =R +R+R+..)+i&X+X+Xs+..0)

(iii) Parallel combinations of L, C and R

When a number of resistance and reactive elements are connected in paraliel across
an a.c. line, the same voltage is applied across each. For example in Fig. 4.20C there
are threc parallel paths across the a.c. line, and the current through each may be
determined separately.

Let E, = r.m.s. value of line voltage.

Then r.m.s. current through L = I, = E,/oL

3 2 33 3 C = In = Eowc
» » 2» 2 R = Is = Eo/R-

The phase relationships between these currents are shown in Fig. 4.20D. There
is 180° phase angle between the current through L and that through C, so that the
resultant of these two currents is (J; — I;). The vector resultant of (I; — I;) and I,
is given by I, in Fig. 4.20D. Thus the current through L and C may be considerably
greater than the total line current I,.

IRERR
i

° FIG. 4.20C

1, { ($=+907)

F—I:'In"‘

1,($20)

) L(‘D"W') FIG.4.200

Fig. 4.20.C Circuit of R, L and C in parallel across a.c. line.
Fig. 420.D Vector diagram of voltage relationships.

-

The impedance of the parallel combination may be derived by considering L and C
as being replaced by a single reactive element having a reactance of 1/(wC — 1/wL,.
Note that with parallel connection, the convention is that the phase of the capacitive
element is taken as positive. Thus

10 = 18 +j(12_11)
£ e (e )
=—R5_+J ANCY T L
1 ( 1
fore Z E, 1 X}i—’ wC — 77
Therefore =—=
AR SR P b W G
R TIN\eC—7p) ®RINC— L
1 ., 1
“*f(wc”;z 2

e
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The magnitude of the impedance of a reactance X in parallel with a resistance R is
given by
RX
VX?® + R?
wlR
I ————— when X = oL (3b)
\/ w?l? + R?
R
= oo when X = 1/wC (30)
41 + w2R2C?
- R when L and C
= i llel (3d)
v1 + R? (wC - l/wL)‘ are 1 paralie
B
A table and a chart to find X, R or Z when a reactance FIG. 4.20E
and resistance are connected in parallel, is given in
Chapter 38 Sect. 9(iii) Table 43.

A simple graphical method for determining the re-
sultant impedance of a reactance and a resistance in
parallel is given in Fig. 4.20E where OA and OB repre-
sent R and X respectively and OD is drawn at right
angles to the hypotenuse. The length OD represents D
the scalar value of the resultant impedance, while the
angle DOA is equal to the phase angle ¢ between the 7
applied voltage and the resultant current.

For other graphical methods for impedances in parallel () N
see Reed, CR.G. (letter) W.E. 28.328 (Jan. 1951) 32; © R
Benson, F. A. (letter) W.E. 28.331 (April 1951) 128. Fig. 4.20E. Impedances
in parallel.

|Z] (32)

Il

(iv) Series-paralle]l combinations of L, C and R

Some simple combinations of L, C and R are described in (A) to (E) below. The
general procedure for other combinations is described in (F) below.
(A) Parallel tuned circuit with losses in both L and C (Fig. 4.21A)

Impedance of branch (1): Z, = R, + jwL (4a)
2 2 2 (2) :Zy =Ry —j/wC (4b)
Let Z = total impedance of Z, and Z, in parallel.
Z R f . — 1]
Then Z — ZZ, (R +jelXR, —j/«C) (40)

Z,+2Z, (R + R+ j(wl — 1/wC)
Multiplying both numerator and denominator by (R, + R,) — (el — 1/«C),

we have

. (R\Ry; + jwLRy — jR;/wC + L/C)R, + R; — j(wL — 1/ ()]

z (RBI + Ry)? + (wl — 1/ 0C)? 5)
A+
Let Z = (R, + Ry* + (wL — 1/ wC)? (6)

and let us now determine the values of A and B:
Numerator = R;2R; + jRRswl — jRy*/wC + R, L/C + RR* + jRi*wl
— jRiRy/wC + RyL/C — jRRywl, + RywiL? — R,L/C
— jwL?®/C + jRR;/wC — RL/C + R/w®C? + jL/wGC?
— R,’R; + RR,? + R,w?L? + R,/w®C? 4+ j[R,?0wlL — R,*/wC
— wL?/C + L/wC?].
Therefore A= R,Ri(R; + Ry) + Ryw?L?® 4 R,/ w?C? )
and B = R,2wl. — R*/wC — (L/C)wl — 1/«C) ®
which values should be used in eqn. (6).
Note that A divided by the denominator (eqn. 6) is the effective resistance of the
total circuit, while B divided by the denominator is the effective reactance.
The magnitude of the impedance may be obtained most readily from egn. (4c)
by replacing Z, and Z, in the numerator only by Z, /¢, and Z; /¢, respectively.
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z - (Z, L)X Z2 L o) _ 2.2, L ($1 + ¢9)
TRy + Ry Fj(wl — 1/wC) T (Ry + Ry) + j(wl — 1/wC)
where Z, = vVR,? + w?L?
and Zy = A/Ry® + 1/ w2C?
whence [Z| = [(R‘2 + @PLHR, l/wzcz)}% (10)
Ry + Ry? + (oL — 1/ w()?
The phase angle is given by tan™! B/A4

®

. [R:*wLl — Ri2/wC — (L/CXwL — 1/wC)
ie. ¢ = tan™ RRR, F R + Ryw?L? + R,/ w?C? jl (11)
When LCw? = 1, eqn. (10) may be reduced to
12| = L. [LF (C/LYXR:® + Ry + (CY/LY RyR,'TE a2
C Ry + R,
or |Z] ~ (L/C)YRy + Ry (13)

with an etror < 19, provided Q > 10
where Q = wL/(R, + R,).

Ry 43 3Re 13k lJ.
e=EmSINWL c
7 J

Fig. 421. (A) Nerwork incorporating 4 clements for impedance calculations (B)
Simplified network with 3 elements.

®

-

E=Em SINWL

BRANCH()
r
BRANCH (&)

(B) Parallel tuned circuit with loss in L only (Fig. 4.21B)
This is a special case of (A) in which R, = 0.
It may be shown that eqn. (5) becomes
g _ R—JjwlCR® + L («*C — 1))
" w?C?R? + (wiLC — 1)2
The magnitude of the impedance derived from egn. (10) becomes
R? + w?L?2 ¥
= 1
IZI [wZCZRZ + (wZLC —_ I)ZJ ( 5)
The phase angle derived from eqn. (11) becomes
~, @[I{l — w?LC) — CR?]
$ = tan = (16)
(a) The effective reactance of eqn. (14) is zero (i.e. the power factor is unity)
when

(14)

CR? = L(1 — w2L0O)
i.e. when w?L?C = L — CR?
i.e. when w = S _ Rr? an
LC Lz
which can be written in the form
N A o

when w = —— e ot

\/Lg._ 1 2 woA/ 1 2 18)
where w, = 1/4/LC is the value of w when the resistance R is zero.

This condition, namely that the effective reactance is zero, which may also be
expressed as the condition of unity power factor, is one of several possible definitions
of parallel resonance. This is the definition used in Chapter 9. It should be
noted that the expression giving the value of w is not independent of the resistance
in the circuit as is the case with series resonance.
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If LCw?® = 1, which is the condition for resonance if the resistance is zero, the
impedance is given very closely, when R is small, by
Z ~ L/CR (19)
The remaining possible definitions of parallel resonance are conditions to give
maximum impedance, The condition of maximum impedance is sometimes called
anti-resonance, Maximum impedance occurs under slighily different conditions
for the variables C, L and w*.

(b) Condition of maximum total impedance when C is the variable

The maximum value of Z which can be obtained is
Rlﬂ _|_ w2L2

lZlmaz = T = R,(1 + Q% (20)
where Q = wL/R,
which occurs when C = —Eﬂ—i——ﬁg (21

This is also the condition giving unity power factor.

(c¢) Condition of maximum total impedance when L is the variable
The maximum value of Z which can be obtained is

2R,
,Z lmaz = P e (22)
V1§ 4wCR — 1
1 1 4w2:C%R,?
which occurs when L = + V1t 5 = ! (23)
2w2C
L
or when C = L R (29
If L is the variable and Q is maintained constant, the maximum value of Z which
can be obtained is
‘Z‘maz = Q/wC (25)
Qﬁ
which occurs when L= 200 + 05 (26)

(d) Condition of maximum total impedance when the applied frequency
is the variable

The maximum value of Z which can be obtained is

L
|Zlmaz = J L - A
C 2 27
cN R ~ 5 \/2R132+1—1) @n
which occurs when
w = 2af = \/ VORI +1_ R 28)
L

In practice, for all normal values of Q(= wL/R) as used in tuned circuits, these
four cases are almost identical and the frequency of parallel resonance is approxi-
mately the same as that for series resonance.

We may summarise the resonance frequencies for the various conditions given
above ¢

Series resonance LCw? =1
Parallel resonance (a) LCw? = 1 — CR?/L
(b) LCw?® = 1 — CR?*/L
(¢) LCw?® = 1 + CR?/L
(d) LCw?® = 4/1 + 2CR?*/L — CR*/L

*See R. S. Glasgow (Book) * Principles of Radio Engineering *’ (McGraw-Hill Book Co., New York
and London, 1936) pp. 35-44.
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Note that CR*/L = 1/Q? under conditions (a) and (b)
CR*/L & 1/Q? under conditions (c) and (d).
For further information on tuned circuits see.Chapter 9,

(C) Circuit of Fig. 4.21C
This is a special case of Fig. 4.21A in which
(1/wC) = 0, From eqn. (6)
7z RiRy(R; + Ry) + Ryw?L? + jwlR,®

(R, + Ry)* + w?L?

R + wiL? |3
VA R,[(Rl TR T wzu] (30)

(29)
From eqn. (10),

From eqn. (11)

~ tan™! wIR (31)
¢ =t R T Ry + wiL? ’
(D) Circuit of Fig. 4.21D
Impedance of arm (1) = Z, = R, + j{wl, — 1/wC))
33 3 3 (2) = Zy, = R, +j(wL3 - l/wcz)
Lt Xy = ol — 1/0G
and X, = oL, — 1/0C,
then 21 = R1 +]X1 H Zg = Rz +jX2.
Z — Z,Z, — (Ry + 1 XD)(R; + 5 X)
Z, +Z, (R, + 'Rz) + J(X; + X))
_ (RiRy — X1X5) + (R X, + R Xj)
(Ry + Rg) + j(X; + X3)
which may be put into the form
Z — Ri(Rs® + Xb%) + Ry(Ry® 4 X3 + jIXu(R,? + XD + Xo(Ry? + X, 9] (32)

Ry + Ry)® + (X; + X,)®
The magnitude of the impedance may be derived by the method used for deriving
eqn. (10)—-

2] = [(R12 + X (R, + Xzﬂé 33)
Ry + Ro)? + (X + Xo)
The phase angle may be derived from egn. (32)—
6 = tan™! Xi(Re? + X,%) + X(Re* 4 X9
Ri(Ry? 4 X% + Ry(R,? + X,%)

2
=l

(39

(E) Circuit of Fig. 4.21E
1. Determine the impedance (Z;) of L, C, and R, in series, using egn. (1)—
Z, = Ry +j(wL, — 1/wCy) (35)
2. Determine the impedance (Z,) of L;C; and R, in parallel using eqn. (2) but
separating the resistive and reactive components—

; (0 - ZlLZ) (36)

R, .
Zg=<1)2 ( 1 z“‘](l)2 T
I—Q; =+ ngHuTL—z 'R—z +(wC, w—L;>

3. Determine the combined impedance (Z) by adding the resistive and reagtive
components of (14) and (15)— ’

Z — 4+;B 1 6D
R,
where 4 = R, + e : i \e
(=) + (w6 - o)
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1
1 @G, — wlL,

Y (4]
R/ T\ "L

The magnitude of the impedance is given by

and B = oL, —

{Z| = \/A? + B? (38)
The phase angle ¢ is given by
¢ = tan" (B/A) (39)

where 4 and B have the same values as for eqn. (37).

R

FI1G.4.2i0

FIG.4.2iC

Fig.4.21. (C) (D) (E) Series-parallel networks for impedance calculations.

FIG.4.21E

(F) General procedure to find the impedance of a two-terminal network
1. If possible, divide the network into two or more parallel branches, each of which
is connected to the two terminals but has no other connection with any other branch.
2. Find the impedance of cach branch, using the methods described in A, B and C
above,
3. Determine the impedance (Z) of the network from the relation
1 1 1 1
7" Z Jrzz—}—za—}—... (40)
Note : If there are more than two paraliel branches it is more convenient to work
in terms of admittance-—see Sect. 6(v) below.
Alternatively, if the circuit cannot be divided into parallel branches, treat it as a
series circuit, firstly determining the resistive and reactive components of each section,
and then adding all the resistive and all the reactive values separately;, as in (E).

(v) Conductance, susceptance and admittance
In an arm* containing both reactance and resistance in series, the conductance
(G,) of the arm is given by

1
G, = RTT X, mhos 41)

where X; = (ol — 1/wGC;).
When there are a number of such arms in parallel, the resultant conductance is
the sum of their separate conductances, that is
G=G +G,+G; +...
The susceptance (B,) of the arm under similar conditions, is given by
X,
B, = R +‘ %0 mhos (42
where X; = (wL, — 1/wC)).
[Inductive susceptance is regarded as positive. Capacitive susceptance is regarded
as negative.]
When there are 2 number of such arms in parallel, the resultant susceptance is the
sum of their separate susceptances,
= B; + By + B3 + ... (43)
When any arm includes only resistance, the conductance of the arm is 1/R;
and the susceptance zero,
ie. G, = 1/R, B, = 0.

*An arm is a distinct set of elements in a network, electrically isolated from all other conductors except
at two points.
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When any arm has only inductance, the conductance of the arm is zero and the

susceptance is 1/wL,,
ie. Gy = 0 B, = 1/wlL,

When any arm has only capacitance, the conductance of the arm is zero, and
the susceptance is — wC,
ie. Gl =0 Bl = —w(

The following relationships hold between R, X, G and B

R = 49)

Gy B X TGty
The admittance (Y,) of any arm containing resistance and reactance in
series is given by
Y, = G, —jB, R - L 1 (45)
ie. Y, = G — By = 1’ +le‘2 - (46)
indicating that the admittance is the reciprocal of the impedance.
Thus the value of the admittance may always be derived from the impedance—

1 1 R —;X R —;X
Y =" Rix RSiXxX R 1 X (46a)
- 1L __ 1 G+jB_G+jB
Similarly Z = Y=G-7B G ¥/B " G' T B (46b)
The negative sign in front of /B in eqn. (45) deserves special attention—
Admittance of inductive arm (R and L in series) :
Y =G _jB—R=JeL A7
o I8 = R? + w?L? 47)

Admittance of capacitive arm (R and C in series) :
. R 4+ j/aC w?C?R + jwC
Y = = = .
CHiB = i {1/0iC: = o'CRE T 1 “8,
The admittance of any arm containing resistance, capacitance and in-
ductance in series (Fig. 4.20A) is given by

Y =G -—jB (49)
R
where G = m
X = (oL — 1/wC)
and B — X _ (oL — 1/wC)

R? + X% R? + (alL — 1/wC)?

R — j(wl — 1/wC)

R T (ol —1/aC)? (50)
Values of admittance for various series combinations are included in the table in

Sect  6(iii).

therefore Y =

Admittance of parallel-connected impedances

L and R in parallel : G =G +G=0+1/R=1/R
B =B, + By =1/wL +0 =1/wl
therefore Y = G — jB = (1/R) — j(1/ L)
Similarly
C and R in parallel : Y =G —~jB=(1/R) +juC
L and C in parallel: Y = G —jB =j(«C — 1/wl)

L, Cand R in parallel: Y = G — jB = (1/R) + j(«C — 1/wl)
See also table of Parallel Combinations of L, C and R—Column 5, in Sect. 6(iii).

Admittance of series-parallel-connected impedances

When there are a number of arms in parallel, each arm including resistance and
reactance in series,
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Amm (1): Z, = R, +jX, ot ¥, = G, — B,
Am (2): Z, = R, +jX; or Z, = G, — jB;
Arm (3). ZQ = Ra ‘I‘]Xg or Yz — G3 f]B:q 11+
where X, = (wL; — 1/wC,) erc.
then the total admittance is given by the vector sum
Y=Y, +Y, +Y¥Y:+ ...
=(G1+G2+Ga‘*‘---)*j(Bl“.”Bz‘f'Bﬂ'i‘---) (51}
The following examples may alternatively be handled by the use of eqn. (46a)
provided that the value of Z is known.
Example (A) : Fig. 421A
Arm (1) is inductive : Y, = G, — jB,

1 X
G = 53— Bi=53vTv3 (X, = wl)
R,® + X,* R? + X,?
Arm (2) is capacitive* Y, = G, + jB,
R, X |,
G, = Rt Xt B, = Rt Xt (X = — 1/ Q)
- n ~ n
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Fig. 4.21F. Chart for conversion between resistance and reactance, and conductance

and ‘susceptance )
= (R +jX)10", Y = (G F jB) 107
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On collecting the terms we get
Y = (G, + Gy —j(B, + By
Ry 4 «?CRBy (Ry + Ry + w'L*C*R,
. (R;? + w?iL?)(1 + w2C:R,?)
N jw[CR‘z — L + «!LC(L — CRJ)] (52)

(R?2 + i3l + «2C*R,?)
Example (B): Fig. 4.21B.
‘This is a special case of (A) in which R, = 0. From eqn. (52)
R —jw[L(1l — w?LC) — CR*]

Y = R 5 ail? (53)
Example (C): Fig. 4.21C.
This is a special case of Example (A) in which X, = (1/0C) = 0.
Ry (R + Ry) + w?L? ’_J"’-’LRz
= 54
Y R, (R,® + w?il?® (54)
Example (D) : Fig. 4.21D.
Y 6w R X
1 = by —7 1*‘R12+X12_]R12+X12
Y, = G, — jB, = R ot
2T TIR T RTIR TR+ X,
R, R, . X, X,
Y - R:.Z +X12 _F R22 +X22 A [_RJZ + Xl2 + R22 +X22
RIRZ(R1+R2)+R1X22+R2X12~j[Rl2X2+R22X1+X1X2(X1+X2)] (55)

(R *+-X, %Rz "+ X,7)

Chart for conversion between resistance and reactance, conductance and
susceptance.

Fig. 4.21F can be used in conversions between resistance and reactance, and con-
ductance and susceptance.

Example 1. The impedance of a circuit is 1 + 7 0.3 ; determine its admittance.

Method: Z = 1,0 + 5 03. Enter the chart on the semi-circle R = 1.0 and
follow it until it meets the arc X == 0.3. The corresponding values of G and B are
0.917 and 0.275. Thus Y = 0.917 — 7 0.275.

Example 2, The admittance of a circuit is 0.000 004 + 7 0.000 013 ; determine
its impedance.

Method : Y = 0.000004 - 7 0.000013 = (0.4 -+ 5 1.3) x10%,

Enter the chart on the lines G = 0.4 and B = 1.3.

The intersection is at R = 0.22, X = 0.7. Thus

Z — (0.22 — 7 0.7)10° = 22000 — j 70 000,

At series resonance, wl, = 1/wC FIG, 4.22

and X = 0, so that ¥ = G = 1/R. v

The admittance at any frequency is A
given graphically by the Admittance / \\
Circle Diagram (Fig. 4.22) in which ¥

the vector OY represents the admit- famf- O 5
tance, where Y is any point on the circle.

The diameter of the circle is equal to

1/R and the admittance at series re- -
sonance, when the frequency is fo, is
represented by OA,

fxf,
(reson%n:()

As the frequency of the voltage ap- /R
plied to the series tuned circuit (Fig.
4.20A) is increased from zero to in- Fig. 4.22. Admittance circle diagram.
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finity, so the point Y moves from O (at zero frequency) through C to A (at resonance)
and thence through E to O again (at an infinite frequency). The angle ¢ is the angle
by which the current 7 feads the applied voltage ¢ ; when ¢ is negative the current
lags behind the voltage. Thus when OY lies in the upper portion of the circle the
circuit is capacitive, and when it lies in the lower portian of the circle the circuit is
inductive.

R
Fig. 422.A  Series form of imped- M m
ance ; (B) Equivalent parallel form. [ X |

FiG.4,22A FIG, 4,228

When Y is at the point C, the admittance will be represented by OC and ¢ will
be 45°; the reactive and resistive components of the impedance will therefore be
equal. At zero frequency ¢ will be +90° and the admittance will be zero: at in-
finite frequency ¢ will be —90° and the admittance will also be zero.

(vi) Conversion from series to parallel impedance
It is possible to convert from the series form Z = R, + jX, as shown in Fig, 4.22A

o © b o «© [=] o~ ° o o
~ ~ o0

&~ ~ ~ ~ - 8 3 8 L4
100 90\80 20 60 82 | 48 44 { ‘ 140
[ sapanqi==2snanzans T "
~ 5 e =88 ; 1 T 22 mas
H PARAL e SRS | R PO ; ST
o H EACTA N 1H in el s e == ' a8
- K T T 1T 1
TTy . v 1, T
TR N s, : 8 N
2T S S %
aas: T gw s PAR SR 410 AN S0k S 'rm:“f .11[ i u 1 T
I bt -
g AR me g h% 5 A\ 1S .t 8
PP Ny N \zr V:'vQF’ [hae ! =ah “td s 34
in S8} i U s va Pah P e o 7
"y L om0 & X ) A T +
= e Y g 048 O e e B A R ey : P 32
' SO ﬁs by 40 besita S ol S XN 1§ pmmase SWUE: 1T it
Hre -1 Jé\é, e e 58 : 1
n N L A4 A = A ’s
" E i Hn)zyd‘ ’;il - ; pi i ) a4 L
. B 0 oV i 0l e N B et TR o
A arimgm susas
- n e 4 A 425 189 % T o TIRTS . " T
-3 A 17,80 W P~ 08 . § 1 4 gl T 5
X - T Y S A A R HT PR S 28
- Sij s i e e e SH ik 8 .
w , ¥ 3
(z) o e 4 + —
R us ! AT LAY 26
U= ¥t JaTRE” |
P ] ;
a5 B! N
@ : i3, it
E ® AP ! :1 Y
» rx]
«© i
B 8
~ 3T 22
HHrT i g
0 ' °
@
n Hi
o
o
< T
- D ol 8
PEAL
724
o~ .’r_
TIRZ
67y
- ™
ke
\ L1l o
° !
] a8 ¢ o ) 2 13 14 1S 16 172 18 19 20

SERIES RESISTANCE Rg

Fig. 4.22C. Chart for conversion between series resistance and reactance and
equivalent parallel resistance and reactance.
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to the equivalent parallel form (B) and vice versa.

R,X,? X»
* T R+ X, X, R, (56
— +_—-
Rﬂ) k4
X = XoR," R,
* T R2+X,* X, R, (57)
R, "X,
The following approximations hold with an error within 19 :
(D If R, > 10X, or if R, < 0.1 X,,
then R, &~ X,*/R,; X~ X, (58)
and R, &r X,?/R,; X, ~ X, (59)
@1f R, <0l1X, or if R, > 10X,
then R, ~ R, X, ~ Ry /X, (60)
and R, A¢ R,; X, ~ R*/X, (61)

Fig. 4.22C can be used to make this conversion.

Example 1. Find the parallel circuit equivalent to a series connection of a 10.ohm
resistor (R,) and an inductor with a reactance of 3 ohms (X,).

Method : Enter the chart vertically from R, = 10 and horizontally from X, = 3.
These lines intersect at R, = 10.9 and X, == 36, so the equivalent parallel connec-
tion requires a 10.9 ohm resistor and an inductor with a reactance of 36 chms,

Example 2. Find the series circuit equivalent to a parallel connection of a 30 000
ohm resistor and a capacitor with a reactance of —8000 ohms.

Method : Enter the chart on the arcs R, = 30 and X, = 8. The intersection is

at R, = 2 and X, = 7.5, so the appropriate series elements are R, = 2000 ohms and
X, =~T7500 ohms.

SECTION 7 : NETWORKS

(&) Imtroduction to networks (i) Kirchhoff’s Laws (i) Potential Dividers (iv)
Thevenin's Thereom (v) Norton’s Theorem (vi) Maximum Power Transfer Theorem
(vit) Reciprocity Theorem (viti) Superposition Theorem (ix) Compensation Theorem
(%Y Four-terminal networks (xi) Multi-mesh networks (xit) Non-linear components
in networks (xiti) Phase-shift networks (xiv) Transients in networks (xv) Refer-
ences to nerworks.

(i) Introduction to networks

A network is any combination of impedances (*‘ elements >>)—whether resistances,
inductances, mutual inductances or capacitances. Ohm’s law may be applied either
to the voltage drop in any element, or in any branch, or to the voltage applied to the
whole network, involving the total network current and total network impedance,
provided that the impedances of the elements are constant. Other laws and theorems
which may be used for the solution of network problems are described below.

In network analysis it is assumed that the impedances of elements remain constant
under all conditions ; that is that the elements are linear devices, Some types of
resistors and capacitors and all air-cored inductors are linear, but iron-cored inductors
and amplifying valves are non-linear. Other non-linear devices include granule-
type microphones, electrolytic condensers, glow lamps, barretters (ballast tubes),
electric lamp filaments, temperature-controlled resistances such as thermistors¥,
and thyrite.f However, it is usually found that satisfactory results may be obtained
by applying the average characteristics of the non-linear devices under their operating
conditions. Further consideration of non-linear components is given in Sect, 7(xii).

*Thermistors are resistors with a_high negative temperature coefficient. See Sect. 9()a.

+Thyrite is a conductor whose resistance falls in the ratio 12.6 : 1 every time the voltage is doubled,
over a current ratio 10 000 000 to 1. See K. B. McEachron “ Thyrite, a new material for lightning
arresters * General Electric Review (U.S.A.) 33.2 (Feb. 1930) 92.
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Rectifiers, whether thermionic or otherwise, are non-linear devices ; they are
frequently represented by an equivalent circuit having a fixed series resistance in the
conducting direction and infinitely high resistance in the other. This approximation
is very inaccurate at low levels where they have effective resistance varying as a func-
tion of the applied voltage, while some rectifiers pass appreciable current in the reverse
direction.

Most elements (resistors, capacitors and inductors) transmit encrgy equally in either
direction and are referred to as *‘ bilateral ”’, but thermionic valves operate only in
one direction (*‘ unilateral ) ; when the latter form part of a network it is necessary
to exercise care, particularly if they are represented by equivalent circuits.

Hints on the solution of network problems
A complete solution of a network involves the determination of the current through
every element (or around every mesh), With simple networks the normal procedure
is to apply Kirchhoff’s Laws—Sect. 7(ii)—until all the currents and their directions
have been determined. The voltage drop across any element may then be derived
from a knowledge of the impedance of the element and the current through it.
As a first stage it is important to simplify the circuit, and to draw an equivalent
circuit diagram for analysis.
If in any arm there are two or more resistors connected in series, the equivalent
circuit diagram should be drawn with
R=R, +R, + ...
Similarly with inductance L = L; + L, + ...
and with capacitance 1
C=vg—1

—61 _é;+

If in any part of the circuit there are two or more elements of the same kind in
parallel (whether R, L, or C) the resultant should be determined and applied to the
equivalent circuit diagram,

An exception to this rule is where it is merely required to calculate the output
voltage from a passive resistive d-terminal network. In this case it is sometimes
helpful to arrange the network in the form of a potential divider, or sequence of
dividers, and to use the method of Sect. 7(iii).

It is very important to mark on the equivalent circuit diagram the directions or
polarities of the applied voltages (whether direct or alternating) and the assumed direc-
tions of the currents ; if any one of the latter is incorrect, this will be shown by a
negative sign in the calculated value. A clockwise direction for the flow of current
around any mesh is conventional.

In some cases it may be found simpler to reduce a passive 4-terminal network to
an equivalent T or = section—see Sect., 7(x)—than to analyse it by means of Kirch-
hoff’s Laws.

Definitions

An element is the smallest entity (i.e. a distinct unit) which may be connected
in a network—e.g. L, C or R.

An arm is a distinct set of elements, electrically isolated from all other conductors
except at two points.

A sgeries arm conducts the main current in the direction of propagation.

A shunt arm diverts a part of the main curren..

A branch is one of several parallel paths.

A mesh is a combination of elements forming a closed path.

A two-terminal network is one which has only two terminals for the application
of a source of power or connection to another network.

A four-terminal network is one which has four terminals for the application of
a source of power or connections to other networks. The common form of four-
terminal network has two input and two output terminals ; this term is used even
when one input terminal is directly connected to one output terminal, or both earthed.
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A passive network is one containing no source of power.

An active network is one containing one or more sources of power (e.g. batteries,
generators, amplifiers).

The input circuit of a network is that from which the network derives power.

The output circuit of a network is that into which the network delivers power.

Impedance matching—-two impedances are said to be matched when they have
the same magnitude and the same phase angle.

Reference may also be made to I.R.E. Standard 50IRE4.S1 published in Proc.
I.R.E.39.1 (Jan. 1951) 27.

Examples
An amplifier is a four-terminal active network.
An attenuator is a four-terminal passive network.
A conventional tone control is a two-terminal passive network.

Differentiating and Integrating Networks
Based on the fundamental mathematical analysis of the circuit, the following terms
are sometimes used in connection with 4-terminal networks.
Differentiating Networks-—(1) Series resistance and shunt inductance
or (2) Series capacitance and shunt resistance
Integrating Networks —(1) Series inductance and shunt resistance
or {2) Series resistance and shunt capacitance.

(if) Kirchhoff’s Laws
(1) The algebraic sum of all the instantaneous values of all currents flowing
towards any junction point in a circuit is zero at every instant.

This is illustrated for d.c. in Fig. 4.23. It will be seen that all junctions and corner
points are lettered for reference. The polarities of the two batteries and their voltages
are marked. The currents are marked in the obvious directions or, if this is not clear,
then arbitrarily in either direction (clockwise around each loop is preferred). Both
currents and voltages are referred to by the point lettering,

e.g. 1,, is the current flowing from a to b
7y, is the current flowing from b to a
e, . is the potental of point b with respect to point c.
Applying Kirchhoff’s first law, at point b
iab + i/a - ibc =0
or g + 1y = 1,, which is really obvious.
Positive current is taken as flowing rowards the junction point ; megative current as
flowing away from it.

+ + -g _‘T}{.

vE T4 : | g | §Re
] | S
4 !

£16.4.23 ¢ Z ¢ 3

FiGg.4-24

Fig. 4.23.  Nerwork incorporating 3 elements and 2 d.c. voltage sources.
Fig. 4.24. Nerwork incorporating & elements and one a.c. voltage source.

This law is illustrated for a.c. in Fig. 4.24 which follows the same general rules as
for d.c. The instantaneous generator voltage e is shown in an arbitrary direction and
the directions of the currents are then determined.

At point b,

. Top — lpy —ipe =0
following the general procedure as in the d.c. case.
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(2) The total rise or fall of potential at any instant in going around any closed
circuit is zero,

This is illustrated for d.c. in Fig. 4.23, taking each closed circuit in turn and pro-
ceeding clockwise in each case. Any voltage source is here regarded as positive if it
agsists in sending current clockwise around the closed circuit (i.e. voltage rise). The
voltage across any impedance is regarded as negative if the current arrow is in the same
direction as the direction of travel around the closed circuit (i.e. voltage drop).

Circuit dabec d: 4+ 6 — 161, —104,, =0 )
Circuit dabfgecd: +6 —1614,, + 81, —4 =0 2)
Circuit fbcg f: +4— 84, —107,, =0 3

Applying Kirchhoff’s first law to point b,
fap + Iy = 15, )

To find the values of the three unknown currents, it is necessary to apply three
suitable equations.

[ Stmilarly for all other cases—the total number of equations must be equal to the
number of unknowns. The number of equations based on Kirchhoff’s first law should
be one less than the number of junction points 5 those based on his second law should
equal the number of independent closed paths.]

Equations (1), (3) and (4) would be sufficient, since (2) merely duplicates parts of
(1) and (3).

From (4): Tar = fpo — Irp

Applyingin (1)t + 6 - 16(i,, - 1,,) — 10i,, =0
Therefore + 6 —161,, + 164, ~ 107,, =0
Therefore + 6 — 2061, + 164, =0 3)
Adding twice (3): -+ 8 — 20 iy, — 16 i, =0
Therefore + 14 — 461, =0
Therefore i,, == 14/46 ampere.

The other currents may be found by applying this value in (5) and then in (4).
Kirchhoff’s Second Law is illustrated for a.c. in Fig. 4.24. Here again, as in all
cases, it is assumed that we move around each loop of the network in a clockwise
- direction.
The voltage across—

a resistance is —~Ri where 1 is in the clockwise direction around
an inductance is —jwli the loop.
a capacitance is +/(1/ wCi

Circuit d a b ¢ d: ¢ — Ryiap 4 (1/@Ciy, = 0

Therefore Ryt,, — j(1/wC)iy, = e ) (6)
Circuit 8 f g ¢ b: —jJowLygy — Ryyy — J(1/wCiy, = 0
Therefore (JwL, + Rz)i,,, 4+ j1/wCiy, =0 (7

Applying Kirchhoff’s first law to junction b :
Tas ”*%f — 7bc =0
Therefore Tap = Ty + Tpe (8)
Adding (6) and (7)
Riizy + (JoLy + Ro)iy = e

Applying (8), Riiyy + Ryfse + (JwLy + Rp)iyy = e
Therefore Ri,. + Ry + Ry + jwLy)iy = e 9)
Multiplying (7) by (—jR,w(C)), remembering that j2 = — 1,
Riye + (Ryw?L,C, — jR{R,wCi)iy; = 0 (10)
Subtracting (10) from (9),
[(Ry + Ry — le *L,Cy) +f(“’L1 + RiRywC)] iy = ¢ (11)

which gives the value of 7,, when e is known.

The value of ¢, . may be found by substituting this value of 7,, in eqn. (7); i,
may then be determined by eqn. (8).
(iii) Potential Dividers

The fundamental form of potential divider (also known as voltage divider or poten-
tiometer) is shown in Fig. 4.25. Here a direct line voltage E is * divided ” into two
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voltages E, and E,, where E = E, + FE,. If no current is drawn from the junction
(or tap) B, the voltage across BC is given by

R.
E, = (m)& (L

and I, I, = E/(R, + Ry) @

I

Fig. 4.25. Potential divider across
a d.c. hine.

&
FIG.4:'28

On load

When a current I is drawn from B, the simplest analysis is to consider the effective
load resistance R; which will draw a current I; at a voltage E,', i.e. R, = E,'/I,.
We now have resistances R, and R; in parallel, and their total effective resistance is

therefore
R = R,R;3/(R: + Ry).
In this case the voltage divider is composed of R, and R’ in series, and the voltage at
the point B is given by
R
o o — JE
E (Rl ¥ R‘)

AN
_ R,R,  \E©
RiR; + RiR; + R,R,

, (R RR; \,; 5
E,) = (R1 i R2>E _<R1 +Rz> 3 3

The first term on the right hand side is the no-load voltage F, ; the second term is the
further reduction in voltage due to I;—-this being a linear equation.

vQoLTS
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(23
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\ i A
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F1G.4:26 CURRENT (1) F1G.4.27

Fig. 4.26. Graphical method for dez;rjm_z;dm'ng the ourput voltage from a potential
. o ) tvider.
Fig. 427. A potential divider with a load in the form of another potential divider.

Egn. (3) may be plotted* as in Fig. 4.26 where, as a typical example, E = 250 V,
R, = 10000 and R, = 15000 ohms, so that (R, 4+ R,) = 25000 ohms. E,, for

*Cundy, P. F. ““ Potential Divider Design,” W.W. 50.5 (May 1944) 154.
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no load, is obviously 150 volts (point B) while point C iz for the condition of maximum
current (I, ,) and zero voltage. The latter may be determined by putting F,’ = 0
in eqn. (3) which gives

Imwac = E/Rl (4)
In this condition we have, effectively, a resistance R, only, in series with a load of
Zero resistance.

If points B and C in Fig. 4.26 are joined by a straight line, we may then determine
the voltage for any value of load current (I,) between zero and maximum. For
example, with a load current of 10 mA, the voltage will be 90 V (point D).

It is sometimes useful to calculate on the basis of a drop in voltage (based on the
no-load voltage E,) of so many volts per milliamp of load current ; in this case the
drop is 150 volts for 25 mA, or 6 volts per milliamp. This rate of voltage drop is
actually the negative slope of the line BC.

The equivalent series source resistance (R,) is given by
E, 150

R, = T "B X109 — 6000 ohms.
This may be put into the alternative form
RyR;
. 5
R, R, + R, ®)

“ Regulation ” is defined differently in American and British practice.

American definition : The percentage voltage regulation is the difference be-
tween the full-load and no-load voltages, divided by the full-load voltage and multi-
plied by 100.

British definition : The percentage voltage regulation is the diﬁerence.bq1ween
the full-load and no-load voltages, divided by the no-load voltage and multiplied by
100.

In the examplie above for a current of 10 mA,

150 — 90 . ..
Regulation = 50 X 100 = 409 by British definition.

The line BD in Fig. 4.26 may be called the  regulation characteristic " for the
conditions specified above.

To find the load current corresponding to a specified value of Ey’, eqn. (3) may be
re-arranged in the form

_E (Bt Re ®)
13_R1_E2< R.R, )

R, + R
or Iy = Ies — E( ‘RIR;*) M

Special Case 1
If it is known that the voltage drops from E, at no load to E,’ for a load current I,
then the voltage E, corresponding to a load current I, is given by
E, = E, — (E; — E/YX1./1y) ®

Special case 2

If the voltages across the load (E., £,) for two different values of load current
(I, 1,) are known, the voltage at zero load current is given by
E EJI, —E|JI,

I, -1,

This is often useful for determining the no load voltage when the voltmeter draws
appreciable current. A method of applying this with a two range voltmeter has been
described*, and the true voltage is given by

)

5‘Laﬂ‘crty, R. E. * A correction formula for voltmeter loading > (lerter) Proc. LR.E. 34.6 (June 1946)
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S —-DE,

c 1

B= @) (10)

where S = ratio of the two voltmeter scales used for the two readings F, and E,,
E, = voltmeter reading on the higher voltage scale,

and E, = volimeter reading on the lower voltage scale.
If § = 2, then
E
B, = ———=_ 11
2 2 — (Ea:/Ey) ( )

Complicated divider network

When a voltage divider has another voltage divider as its load (Fig. 4.27) the best
procedure is to work throughout in resistances and voltages, and to leave currents
until after the voltages have been determined. The final equivalent load resistance
(Rs) must be determined before commencing calculations, then proceed—

R, in parallel with R;: R = R,R;/(R, + Rj)
R, in series with R’ : R" = R; + R’
R’ in parallel with R, : R = R,R"/(R, + R")
R///
- —=___\E 12
Then E, <R1 ¥ R”’> (12)
R
= | —= _\E, 13
and E, <R3 " R’) 2 (13)

A somewhat similar procedure may be adopted in any divider network.

(iv; Thevenin’s Theorem (pronounced * tay-venin’s ")
This theorem* may be expressed in various ways, of which one is :

®
Fig. 4.28. (A) An im-
NETWORK pedance commected to two
terminals of a metwork
(B) Thevemin’s equivalent
FiG.4:28 crrcutl.
A 8 . . .
° Fig. 4.29. (4A) an im-
104 . i pedance, carrying a current
NETWORK zy lu 1‘ & 2" IL’ connected to two ter-
204 " minals of a network ; (B)
o Norton’s equivalent circuit.
FIG.4.29 2

The current in any impedance, Z;, connected to two terminals of a network
consisting of any number of impedances and generators (or voltage sources)
is the same as though Z, were connected to a simple generator, whose gen-
erated voltage is the open-circuited voltage at the terminals in question,
and whose impedance is the impedance of the network looking back from the
terminals, with all generators replaced by impedances equal to the internal
impedances of these generators.

In Fig. 4.28, (A) shows an impedance Z , whose two ends are connected to the ter-
minals 1, 2 of any network. Diagram (R) shows Thevenin’s equivalent circuit, with
a generator E’ and series impedance Z,, where :

E’ is the voltage measured at the terminals 1, 2, with Z; removed,
and Z,, is the impedance of the network measured across the terminals 1, 2, when
looking backwards into the network, with all generators out of operation and each
replaced by an impedance equal to its internal impedance.

*For the proofs of this and subsequent theorems, see W, L. Everitt, Ref. 1 pp. 47-57.
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(v) Norton’s Theorem

This is similar in many ways to Thevenin’s Theorem, but provides 2 constant curs
rent generator and a shunt impedance,

The current in any impedance Z, connected to two terminals of a network,
is the same as though Z, were connected to a constant current generator
whose generated current is equal to the current which flows through the two
terminals when these terminals are short-circuited, the constant-current
generator being in shunt with an impedance equal to the impedance of the
network looking back from the terminals in question.

In Fig. 4.29, (A) shows an impedance Z, through which flows a current I, connected
to a network. Diagram (B) shows Norton’s equivalent circuit, with a constant current
generator delivering a current I’ to an impedance Z,, in shunt with Z;. As in dia-
gram A, the current through Z; is 1,.

Here I' = E'/Z,,
where E’ and Z,, are the same as in Fig. 4.28B (Thevenin’s Theorem).

(vi) Maximum Power Transfer Theorem

The maximum power will be absorbed by one network from another joined
to it at two terminals, when the impedance of the receiving network is varied,
if the impedances (looking into the two networks at the junction) are con-
jugates* of each other.

This is illustrated in Fig. 4.30 where E is the generated voltage, Z, the generator
internal impedance and Z; the load impedance. In the special case where Z, and Z
are pure resistances,

Z, will become R,
Z, will become R,
and maximum power transfer will occur when R, = R,.

In the general case, Z, = R, + X, and £, = R; + jX,; while for maximum
power transfer R; = R, and X, = —X,.

In other words, if Z, is inductive, Z, should be capacitive, and vice versa.

If the magnitude of the load impedance may be varied, but not the phase angle,
then the maximum power will be absorbed from a generator when the absolute value
of the load impedance is equal to the absolute value of the impedance of the supply
network.

See Ref 3 (References to networks). Sect. 7(xv).

(vii) Reciprocity Theorem

In any system composed of linear bilateral impedances, if an electromotive
force E is applied between any two terminals and the current I is measured
in any branch, their ratio (called the “ transfer impedance ”’) will be equal
to the ratio obtained if the positions of L and I are interchanged.

In Fig. 4.31 a generator supplies a voltage E to a network, and an ammeter A reads
the current I,. The transfer impedance is E/I,. If now E and A are reversed, the
new transfer impedance will have the same value as previously. In other words,
E being unchanged, the ammeter reading in the new position will be the same as
previously.

This theorem proves that a network of bilateral impedances transmits with equal
effectiveness in both directions, when generator and load have the same impedance.

(viii) Superposition Theorem

In any network consisting of generators and linear impedances, the current
flowing at any point is the sum of the currents which would flow if each
generator were considered separately, all other generators being replaced
at the time by impedances equal to their internal impedances.

This theorem considerably simplifies the analysis of any network containing more
than one generator. It is important to note the linearity requirements, as the theorem

*Two impedances are conjugates of each other when their res@stive components are equal, and their
reactive components are equal in magnitude but opposite in sign.
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breaks down under other conditions. It is therefore only applicable to valves when
these are being operated to give negligible distortion.

et { —]) T
Fig. 430. A generator, with s 7 b2
internal impedance Z,, connected bl 2
to a load Z,, to illustrate the - £ ‘3i 23
maximum’ power transfer. E
Fig. 431. A generator E supply- Freaze Fre 4t
ing woltage to a mnetwork, with
an ammeter A to read the current A L
I,. The reciprocity theorem el ot
states that, when A and E are ks > T
reversed, the transfer impedance NETWORK z e TORK E i
E/I, will be unchanged. ] ]
F16.4:32

Fig. 432, (A) An impedance Z

in a network with current I and woltage drop ZI (B) Equivalent circuit having
identical results so far as current and woltage drop are comcerned, with a generator
developing a woltage E = ZI. This illustrates the Compensation Theorem.

(ix) Compensation Theorem

An impedance in a network may be replaced by a generator of zero internal
impedance, whose generated voltage at any instant is equal to the instan-
taneous potential difference produced across the replaced impedance by the
current flowing through it.

This is illustrated in Fig. 4.32 where in (A) a current [ is flowing through an im-
pedance Z with a voltage drop IZ. This is equivalent to an identical network, as
in (B), where Z has been replaced by a generator of zero internal impedance, whose
generated voltage (E) is equal in magnitude to IZ, and is in a direction opposing the
flow of current,

(x) Four-terminal networks

The most common fundamental types of four terminal networks are illustrated
in Fig. 4.33, where (A) is a T section, (B) is a I7 section and (C) a Lattice section.
Both A and B are called 3 element networks, and C a 4 element network, from the
number of arms containing impedances. In conventional operation, the left-hand
tecminals 1, 2, are regarded as the input terminals, to which is connected some genera-
tor, or other network containing a generator. Terminals 3, 4, are normally regarded
as the output terminals, across which is connected a load impedance Z,.

If we are concerned only with the observable impedances between terminals, it is
possible—by selecting suitable values—to convert a T section to a I7 section, and
vice versa, but only for one particular frequency. This equivalence is independent
of the character of the generator or load.

Equivalent T section Equivalent II section
P Z,Zg 7 - 2,72y + 237y + 2,2,

YU Z 4+ Zg 4 Z, 4 Z,

B ZyZ ¢ 2\Zy ¥ 2.2, + 2,7, L (14
Bz vz, 17, Zr = z
4 B C 3

P Z,Z 0 P 2,7y + 2,24 + Z,Z;

YU Z, v Z,+ 7, ¢ Z, )

TI}e bridged T section of Fig. 4.33E may be reduced to the equivalent T section
of Fig. 4.33F, or vice versa, by using the same equivalent values as for equivalent T
and I/ sections (above).
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. Any complex fpur—terminal network can be reduced, at a single frequency, to a
single T or ITsection. The procedure is to measure (or calculate) the three constants :
Z,, = the impedance at the input terminals when the output terminals are open-
circuited.

Z,, = the impedance at the output end looking back into the network with the input
terminals open-circuited.

Z,, = the impedance at the input end with the output terminals short-circuited.

When these are known, the constants for the equivalent T and IT sections are :

Equsvalent T section Equivalent II section
Zl. = Loy _\/.Zoz(zal - Zu) ZA — ZnZss b
Zoz “"\/Zoz(zol - Zol)
Zy = Zy —NZolZy — z,
2 2 \/Z 2(Zal Zn) 5= 102 r (15)
'\/Zaz(Zol - Zu)
Zy = '\/Zoz(zal - Zu) ZC - ZuZoz _
Zoy ~V(Zn — 22
It would also be possible to ®
derive expressions for the equi-  |oaaar—s—AAA—OD DY
valent sections, using Z,, in 7 z2 Zg
place of Z,, where Z, == im- b3 s
pedance at the output end with IE,_ls z 3zc
the input terminals short-cir- T s
cuited.

A lattice network may be re-
duced to an equivalent T or I7
network (see any suitable text-
book) but it is interesting 10 note
that it is essentially a * bridge
circuit, Fig, 4.33 (C) may be
re-drawn as in (D) without any
change being made.

Four-terminal- networks are
considered further in Sect. 8;
they may also be treated as
multi-mesh networks as in Sect.
7(xi) below.

(xi) Multi-Mesh Networks
A typical flat multi-mesh net-
work is shown in Fig. 4.33G.
A “flat” nperwork is defined
as one which can be flattened Fie.4.33. Four Terminal Networks (4) T Secti
i i i 1g. 4.33. Four Terminal Networks ection
:::gsi‘z:hg::r }:‘:;gm_?lg;h?gz (B% IT Section (C) Lattice Section (D) Larttice

: : : Section redrawn in the form of a bridge (E) Bridged
g;fit:xr:g éﬁt tr?éiwg?;:gbm])}:néf T Section (F) T Section equivalent to Bridged T.

tions at which the current can divide are called branch points (A, B, C, D, E). In Fig.
4.33G there are 5 meshes, and the circulating mesh current of each is marked (Iy, Iy,
etc.) in the conventional clockwise direction. The simplest form of solution is by means
of the Mesh Equations. The basis for the use of these equations is given in Ref. 4,
Sect. 7(xv). Impedances in the network are numbered Z; os 230, €tC., when they form
part of one mesh only (mesh 1, mesh 2, etc.). Impedances which are common to
two meshes are numbered Z,,, Z,s, etc., and are called mutual impedances, the

20—

b —04 20~ 04
FIG. 4.33
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suffixes indicating the meshes to which they are common. The applied alternating
voltages are also numbered E,, E,, etc. where the suffix indicates the mesh number.
If there is more than one voltage source in any mesh, E, etc. will indicate the vector
sum of these voltages,

There must be the same number of mesh equations as there are meshes in the net-
work. The mesh equations are written in the general form for » meshes as

Zyly + Zyoly + Zyls + v Zigd, = E,
Zoly + Zoyly, + Zyly + oo Zyd, = E, (16)
anll + ZnQIQ + Zn!!IR + ... Znnln = E'n

where each Z is of the form R + j(wL — 1/wC) and Z,y, Z,,, etc. is called the self-
impedance of the individual mesh, i.e., the impedance round the mesh if all other
branches of the network other than those included in the mesh in question were open-
circuited.
For example, in Fig. 4.33G—
Zy = Zyy + Zyy + Zyy
= Ryo +jX10 + Ris +jX1s + Ry + 7 X5
= Ryo +j(wlyo — 1/wCy4) + Ryg + j(wl,y — 1/ wCyy)
+ Ry + j(wlyy — 1/ wCyy)
ie. Zy = (Ryo + Rug + Rup) + jl{wlyy + wlyy + wLy,)
= (1/ Gy + 1/ @Gy + 1/ wCp)) a7
Note that Z,; is the same as Z,, etc. and that the signs of the mutual impedances
may be positive or negative (see below).

An impedance that is common to two branches is considered to be a positive mutual
impedance when the arrows representing the corresponding mesh currents pass
through the impedance in the same direction ; or a negative mutual impedance if
the arrows pass through the impedance in opposite directions.

Thus in Fig. 4.33G the arrows representing the corresponding mesh currents pass
through the impedances Z,,, Z,,, Z,, and Z,, in opposite directions, so that these
constitute negative mutual impedances, and have negative signs in eqn. (16).

A mutual inductance may be defined as positive or negative according to whether
it acts with a polarity the satne as, or opposite to, that of a corresponding common
inductance*,

ZSO
FIG. 4.33G
FIG, 4.33H
Fig. 4.33G. Typical multi-mesh net- Fig. 433H. Simple 2-
work. mesh network.

A simple example is the 2-mesh network of Fig. 4.33H. Applying eqn. (16) we
have

Zy = Ry, +]i[won — 1/ @Gy, (18
Zys = Ry, +]_[‘UL20 — 1/ wCy] (19
Ziy = Zy = j(1/wCy) (20)

Since there are two meshes, there will be two mesh equations—
Znly + Zyl, == E,
Zyly + Zypl, =0 @

*The opposite definition is also used.
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These linear simultaneous equations may be solved by elimination, but any more
complicated network would have to be solved by the use of Determinants, for which
see any suitable mathematical textbook.

The total current in any common branch may be determined by the difference
between the two mesh currents.

The method of handling mutual inductance is illustrated by the 2-mesh network
of Fig. 4.331. Here

Zyy = (Ryy + Ry ‘f‘]:(wLw “+ wLliy — 1/ wCy) (22)
Za = Ry + Ray) ‘*‘J.(‘"le + @Ly —~ 1/ wCy) (23)
Zyy = Zn = Ry + (ol + oM (29)

and the two mesh equations will be as eqn. (21).

The polarity of M, in eqn. (24) must be determined in accordance with the accepted
convention, as described in connection with eqn. (16).

A solution of eqn. (16) by means of Determinants shows that in the general case
the Determinant D is given by

anxz .. Zln
D =\ZpZs ... Zs, (25)
ZuZus . . Zun

and the current [, in the kth mesh that flows as the result of the voltage E; acting in
the j*h mesh is

I, = E, B—l')’i (26)
where B;, is the principal minor of D multiplied by (— 1)/**. This minor is
formed by cancelling the jth row and the kth column
and then moving the remainder together to form a new
determinant with one less row and column than D,
where D is the determinant defined by eqn. (25).
The row cancelled corresponds to the mesh containing
the input voltage, the column cancellied to the mesh
containing the required current.

The input impedance of a passive network with
a single applied voltage (Fig. 4.33]) is given by

LS
" FIG. 3.331 Input impedance = E;/I, = D/By (27)
Fiv 4.33 L. Two-mesh net where E, = voltage applied to input terminals
1g.4.33 1. 0~ - I, = input current
work incorporating mutual D = determinant defined by eqn. (25)

and B,, is the minor of D obtained by cancelling the
first row and columnmn.

The transfer impedance of a 4-terminal network (Fig. 4.33K) is defined as the
ratio of the voltage applied to the input terminals to the resulting current through
the load impedance connected to the output terminals (i.e, the n'h mesh).

1 | 3
FOUR
i —— ——
g, b PASSIVE E, I, | TERMINAL In 2,
‘ NETWORK :2?3!(\)/:
K
2 2 4
FIG. 4.33J FIG.4.33K

Fig. 4.33]. lllustrating input impedance of network.
Fig. 433K. Four terminal network illustrating input and transfer impedances.

Transfer impedance = E,/I; = D/By, (28)
where D = determinant defined by eqn. (25)
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and B,, is the minor of D obtained by cancelling the first row and »n** column,
and applying the factor (— 1)*+t3,

References to multi-mesh networks : Refs. 1, 2, 4, 5, 6, 7. Sect. 7(xv).

(xii) Non-linear components in networks

In radio engineering the principal non-linear components in networks are valves,
although certain resistors and iron~cored inductances are also non-linear. The non-
linearity can only be neglected when the voltage swing across any non-linear com-
ponent is so limited that the characteristic is substantially constant over the range of
operation,

In 2 non-linear component the impedance is not constant, but varies with the
applied voltage*. Each such impedance must be treated as having an impedance which
is a function of voltage,
ie. Z = F(e).

The mathematical theory of circuits containing non-linear components is com-
plicated and, in the general form, outside the scope of this handbook. Those who are
interested are referred to the list at the end of this subsection.

The treatment of non-linearity in valve characteristics is covered in Chapter 27 for

detection and Chapter 25 for frequency conversion. Distortion through curvature
of valve characteristics is covered in Chapter 2 Sect. 9 and Chapter 13.

References to non-linearity

(other than those covered elsewhere)

Chaffee, E. L. ‘““ Theory of Thermionic Vacuum Tubes” (McGraw-Hill Book
Company, New York and London, 1st edit. 1933) Chapter 21,

Llewellyn, F. B., and L. C. Peterson. * Vacuum tube networks ” Proc. I.R.E. 32.3
(March 1944) 144.

(xiii) Phase-shift networks

The bridge type phase-shift network of Fig. 4.34 has the advantage of providing
full range phase shifting from 0 to 180°, with constant attenuation (6db) for all degrees
of phase shiftt.

p
R,
l c oo

FIG.4-34

Fig. 4.34 (A) A phase-shift network providing full range phase shifting from 0 to 180°
with 6 db attentuation for ail degrees of phase shift (B) vector diagram of voltage
relationships.

It may be shown, when R, = R,” = 1/wC, that

E, _ 2R,R,
—#  amdg = (m—>

\E

which is illustrated by the vector diagram Fig. 4.34B, where E z1 and Ep, are equal,
and both equal to E,; Ej, and E, are at right angles, but their vector sum is E.
Point P is therefore on the circumnference of a semi-circle.

“It is assumed here that the impedance is not a function of time ; this occurs the case of barretters
i the
H Tl 24

{Lafferty, R. E. “ Phase~shifter nomograph,” Elect. 19.5 (May 1946) 158.
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(xiv) Transients in Networks

The treatment of networks earlier in this Section has been on the basis of a steady
applied direct voltage, or a steady alternating voltage, or a combination of the two.
It is also important to know the transient currents which may flow during the period
from the application of a voltage until the steady state has been reached or during
the period from the disconnection of the voltage until a steady state has been reached,
or due to some sudden change in operating conditions after the steady state has been
reached.

The simple cases of a capacitance and inductance each in series with a resistance,
on direct charge and discharge, have been covered in Sects. 4 and 5. These charge
and discharge characteristics are of a logarithmic form, and non-oscillatory. How-
ever, in any network including L, C and R, the transient characteristics tend to be
oscillatory. These oscillatory transients may be more or less heavily damped, and
normally become of negligible value after a short period of time. On the other hand,
they may continue as sustained oscillations.

Amplifiers, particularly those with feedback, should have a sufficiently damped
oscillatory transient in the output circuit when the input is increased instantaneously
from zero to some predetermined steady voltage (thisis called “unitstep ” input). In
practice it is more convenient to use a periodic rectangular wave input, with the time
period of the ** flat top * sufficiently long to allow for the decay of damped oscillatory
transients. A C.R.O. is commonly used for observation of such a waveform.

Alternatively, an impulse having very short time duration may be applied to the
network or amplifier. This differs from unit step input in that the input voltage re=
turns to zero almost instantaneously.

The complete mathematical analysis of all but very simple networks is very com-
plicated and specializéd, and outside the scope of this Handbook.

For further information see Refs. 4, 7 and 8.

(xv) References to Networks

1. Everitt, W. L. (book) * Communication Engineering.” (McGraw-Hill Book
Co. Inc., New York and London, 1937).

2. Shea, T. E. (book) * Transmission Networks and Wave Filters” (D. Van
Nostrand Co. Inc.,, New York, 1943).

3. Ellithorn, H. E. ¢ Conditions for transfer of maximum power.” Comm. 26.10
(Oct. 1946) 26.

4. Guillemin, E. A. (book) * Communication Networks > Vol, 1, (John Wiley
and Sons Inc. New York ; Chapman and Hall Ltd., London, 1931).

5. Terman, F. E. (book).* Radio Engineers’ Handbook ”* (McGraw-Hill Book Co.;
New York and London, 1943).

6. Johnson, K. S. (book) *“ Transmission Circuits for Telephonic Communication ’
(D. Van Nostrand Co. Inc. New York, 1931).

7. Valley, G. E., and H. Wallman (book) * Vacuum Tube Amplifiers ” (McGraw-
Hill Book Co. New York and London, 1948).

8, Gardner, M. F., and J. L. Barnes (book) * Transients in Linear Systems”
(John Wiley and Sons, Inc. New York, 1942).

See Supplement for additional references.
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SECTION 8 : FILTERS

(i) Introduction to filters (if) Resistance-capacitance filters, high-pass and low-pass
(itt) Special types of resistance-capacitance filters (1v) Iterative impedances of four~
terminal networks (v) Image tmpedances and image rransfer constant of four-terminal
networks (vi) Symmetrical networks (vit) *“ Constant R filters (viii) M Derived
filters  (1x) Practical filters (x) Frequency dividing networks (xi) References to
Sfilters.

(i) Introduction to filters

A filter is any passive* network which discriminates between different frequencies,
that is to say it provides substantially constant ** transmission > over any desired
range of frequencies and a high degree of attenuation for all other frequencies.

Filters are conveniently grouped as under :

Low pass filters—transmission band from zero {or some very low) frequency to
a gpecified frequency. Attenuation for all higher frequencies.

High pass filters—transmission band from some specified frequency to very high
frequencies. Attenuation for all lower frequencies.

Band pass filters—transmission band from one to another specified frequency.
Attenuation for all lower and higher frequencies.

Band elimination filters—** traps.”

Practical filters, particularly of the simple variety, have only a gradual change in
attenuation. The sharper the required change in atfenuation, the more complicated
becomes the filter.

Some very simple filters are :

1. The grid coupling condenser and grid resistor of an amplifier (high pass resist-
ance-capacitance filter).

2. The series condenser and variable resistor of a conventional tone control (low
pass resistance-capacitance, with adjustable attenuation).

3. The smoothing filter of a power supply, including one or two inductances and
two or three capacitances (low pass filter).

4. An overcoupled i-f transformer (tuned band pass filter),

5. A tuned aerial coil or r-f transformer (tuned narrow band pass filter).

See Chapter 6 for mathematics.

(ii) Resistance—capacitance filters
Fig. 4.35A shows a r.c. high pass filter as for grid coupling in an amplifier. This
is essentially a voltage divider in which C forms a reactive, and R a resistive, arm,
If the generator has zero resistance and if there is no loading on the outpur, theratio
of output to input voltages is given by

E, R
E == m“v where Xc = - 1/27TfC
Therefore Ev = = ! a
E|l VR*+X* 1+ (X/R):? )

If we select a frequency (f;) at which |X .| = R, then |E,/E,;| = 0.707 which is
practically equivalent to an attenuation of 3 db. This frequency is the reference
point used for design ; it is called the theoretical cut-off frequency. Its value is
given byt

fi = 1/27RC) ¢/s (2)
where R and C are in ohms and farads (or in megohms and microfarads). The value
RC is called the time constant and is measured in seconds (see Sect. 4(iv)) so that

*i.¢. not including a valve or generator. X
tA nomogram to determine the value of 1 is given by E. Frank *“ Resistance Capacitance Filter Chart »
Elect. 18.11 (Nov. 1945) 164.
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® the low frequency response of an

& C2 amplifier is sometimes defined by
specifying a time constant of so many
microseconds. If the time constant
is, say 3000 microseconds,

- _
) _.I
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I
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‘r‘/v:’{v\/‘{
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R
Nv-»l
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04 RC = 3000 x 107% seconds,
so that
, ©, £ = 1/(2 x 3000 X 10°) = 53 c/s.
v §
€L " R Eg gs
&° Fig. 4.36 shows the attenuation in
al JL < db plotted against frequency for R = 1

megohm and selected values of C,

It will be seen that the slope of the
attenuation characteristics approaches

® 6 db per octave (i.e. the attenuation
increases by 6 db every time the fre-

F1G.4-28 quency is halved), and is very close
Fig. 435. (A) is a resistance capacitance indeed to this value for attenuations
high-pass filter ; (B) is a two section filter ; beyond 10 db. Each of these charac-
(C) is a modified form of A, providing attenua- terigtics is exactly the same shape as

tion within Zizpctg;l ddfggfi‘;’; IZ}mﬁ 5 (D) is the the other, only moved bodily sideways.
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Fig. 4.36. Attenuation in decibels versus frequency for a resistance-capacitance
coupling or filter (Fig. 4.35A) in which the total resistance (R) = 1 megohm. If
applied to a resistance-coupled valve amplifier, R =R, + R /(r, + R If
7, is less than 10 000 ohms, the error in neglecting the secomj term is lgxs than 1%,.
If the valve is a pentode, R may be taken as (R, + R;) with a sufficient accuracy
for most purposes. ) )
If R = 0.5 megohm, multiply values of C by 2 and similarly in proportion for other
resistances.
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One of these attenuation characteristics is shown in Fig. 4.36A together with the
straight line AB which is the tangent to the curve and has a constant slope of 6 db/
octave (or 20 db/decade). The point of intersection between AB and the zero db
line is point A which corresponds to the theoretical cut-off frequency f;. For ease
in calculation, the *‘ straight-line ” approximate characteristic CAB is sometimes
used in calculations in place of the actual attenuation characteristic, the maximum
error being 3 db.

In Fig. 4.35(B) there are two such filters in cascade and further sections may also
be added. A two-section filter in which R, = R, and C, = C, will have somewhat
more than twice the attenuation in decibels of a single section filter, and the ultimate
slope of the attenuation characteristic will approach 12 db/octave.

o A <o
;L/Oc]r:vt JZ !i
-3 AN L3
LN A ACTUAL ‘
ATTENUATION
- 1 CHARACTERISTIC ! ] ¢ =
s / \f £
Y L
$ J ]
g -1 /A ! 15 <
—w/ e ’ { i8
; i NN

o-if, fi 10f,
FIG. 4.36A

Fig. 436A4. Actual and approximate attenuation characteristics, using the theo-
retical cut-off frequency f, as the reference frequency.

If C in diagram (A) is shunted by a resistance R’, as in Fig. 4.35(C), the effect is
to limit the attenuation to that giveh by R’ and R as a voltage divider, i.e.,
E,/E; = R/(R + R’). The shape of the attenuation characteristic at low values
of attenuation is very little affected by R’.

The reactance of C in Fig. 4.35A causes a phase difference between E, and £,
as shown by the vector diagram (D). The phase angle is given by

cos ¢ = E,/E; 3

For an attenuation of 3 db, E,/E; = 0.707 and ¢ = 45° ; thus E, leads E, by 45°.

Fig. 4.37 shows a typical r.c. low-pass filter, as used
for tone control, decoupling in multistage amplifiers, or A 2
smoothing filters for power supplies when a large voltage
drop in the filter is permissible. It is readily seen that

this is the same as Fig. 4.35A except that R and C have N ‘T fo
been interchanged. The theoretical cut-off frequency l I
f1s at which X —= R, is therefore unchanged and equal 2 34

to 1/(2nRC).  Provided that the generator impedance Fic. 437

is zero, and thgt there is no load across the output ter- Fig. 437. Is a low pass

minals, the ratio of output to input veltages is given by resistance-capacitance filter
E, X,

= m where X, = — 1/2xfC
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Fig. 4.38. Shows the attenuation characteristics for the low-pass filter of Fig. 4.37
for the values of R and G shown below :

R (ohms) C (ppF)
Curve A B C D E
400,000 10 20 40 80 160
200,000 20 40 80 160 320
100,000 40 80 160 320 640
50,000 80 160 320 640 1280
20,000 200 400 800 1600 3200
10,000 400 800 1600 3200 6400
Therefore gf = _i{_c“. == _.._1‘:*.:_*_ (4)
d VR + X V14 R/X)

If the generator has a resistance R,, then R in the egn. (4) should include R,.

Attenuation characteristics derived from this equation are given in Fig, 4.38 in a
form capable of adaptation to most problems involving limited attenuation.

The rate of attenuation approaches 6 db/octave, and the shape of the curve is a
mirror-image of that for the high-pass filter (Figs. 4.35A and 4.36).

If the filter is used as a smoothing filter, the ratio E,/E; is frequently 0.1 or less
and under these conditions (with a maximum error of 19,)—-
E,| 1
SOy
E|™ 2afRC

R me I e—y— »

ST
S O A S

FIG.4:39 Fi1G.4-40

(5)

Fig. 4.39 is a two section low pass resistance-capacitance filter.
Fig. 4.40 is a Parallel T Network for the complete elimination of a particular imput
frequency from the outpur voltage.
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If additional filtering is Tequired, it is possible to usg twe or more filter sections
(Fig. 4.39). Provided that R, > 10X.,; R, > 10X, and R, > 10X.,, the
voltage ratio is given (with a maximum error of 3%,) by

E, 1

E.| ™ 20f* X R,R.C,C,
(iii) Special types of resistance-capacitance filters

An important method of eliminating a particular input frequency from the output
voltage is the Parallel T Network as in Fig. 4.40. In the usual symmetrical form*,
Ry, = R, = 2R,; C;, = C; = $C,; and R, = 1/2+/C));

infinite attenuation is obtained at a frequency f where
f = 1/@2aR,C)) ™
irrespective of the loading of the output terminals.
The mathematical analysis of the general case has been publishedt, showing that
the unsymmetrical case provides an improvement in the discrimination.
The case with finite generator resistance and terminated into a resistive load has
also been analysedf.

(iv) Iterative impedances of four-terminal networks

A four-terminal network or filter is shown in Fig. 4.41 with a generator E,, having
a gefies genierator impedance.Z,, applied to the input terminals, 1, 2, and a load im~
pedance Z, across the output terminals 3, 4. The input impedance under these
conditions, looking into the network from terminals 1, 2 is shown as Z;,. The output
impedance, looking into the network from terminals 3, 4 is shown as Z;,. When Z,
is adjusted to be equal to Z,, we have a special case which is of interest when similar
filter séctionis are to be connected together in a chain so that each section is a load
on the one preceding it. Under those conditions we call Z,, an iterative impedance
of the network

We must also adjust Z, to be equal to Z ,, this being the second iterative impedance.

If the network is a single T section, as in Fig. 442, and if Z, = Z,, then

Zo = Zyy = NV Z2(Z2, + 22y (®

and the two iterative impedances are equal.

If the network is a single L section (as in Fig. 4.42 but with Z, = 0) then the
iterative impedances are given by

(6

z: 0z
Zy = ,\/Tl + 22+ 5 (82)
Z,? z
Zka::l\/v;—;kzlzaﬁ?l (Sb)
If we now define a quantity P, called the iterative transfer constant, such that
P = 10ge (I,/1,) (9a)
where I, = input current
and I, = output current
the formulae for the L section may be written in the alternative forms
Z,€f
Zyy = 17 Zy(ef — 1) (9b)
Zyy = Zyye*

Z, Z, + 22,
where cosh P = 1 + 27, = T

(See Chapter 38 Sect. 21 Table 73 for hyperbolic sines, cosines and tangents.)

ggg)cott,ﬁﬂ. H., “ A new type of selective circuit and some applications.” Proc. LR.E. 26.2 (Feb.
1 226.

TWolf, A. ““ Note on a parallel-T resistance-capacitance network,” Proc. I.R.E. 34.9 (Sept, 1946) 659.
See also Hastings, A. E. *‘ Analysis of a resistance-capacitance parallel-T network and applications,”
Proc. I.R.E. 34.3 (March 1946) 126P ; McGaughan, H. S. *“ Variation of an RC parallel-T null net-
work,” Tele-Tech, 6.8 (Aug. 1947) 48. .

tCowles, L. C. ““ The parallel-T resistance-capacitance network *’ Proc. I.R.E. 40.12 (Dec. 1952) 1712.

Corr. 42.10 (Oct. 1954) 1547.
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For a T network with iterative impedances,
P = cosh™[(Z, + Z, + 2Z,)/2Z;] (10)
If a number of networks are connected in a chain, with each section having the same
two iterative impedances Z,, and Z;, as Fig. 4.43, we may regard the combined net-
works as equivalent to a single network having iterative impedances Z,;, and Z,,
respectiveiy. The iterative transfer constant (P) is then given by
P=(4, + 4, + Ay) +j(Bl + By + By) an
where P, = propagation constant of the first section of the network
= A, +jB,
P, = A, + jB, etc.
A, = attenuation constant (nepers)
and B; = phase constant (radians).

-

(v) Image impedances and image transfer constant of four-terminal
networks

An alternative way of expressing the constants of a network is by the use of image

impedances. A T network is shown in Fig. 4.44 with generator and load impedances

Z,, and Z,, respectively. 1t is possible to adjust Z Z, and Z to give an input

impedance (looking into the network from terminals 1, 2 with load connected) equal

3

NETWORK
OR 2y LN

Fig. 4.41 shows a four terminal network
FILTER [

with generator and load.

Fig. 4.42 is a single T section network
applicable 10 Fig. 4.41.

FiG. 4-42
O 30O Ot {
Fig. 443 is a combination of three Ix 2, 2n, 25,
. ) ’ . i, L L L
networks in cascade, with iterative 23] T T T ZKﬂ Ry
impedance relationships. &
Loz 4 2 40- 2 40+
FIG. 4-43

Fig. 4.44 is a single T section network

terminated in its image impedances. 212

FiG. 4-44

to Z,;, and at the same time to give an output impedance (looking from terminals
3, 4 with generator connected) equal to Z,,. Under these conditions the impedance
on each side of terminals 1, 2 is an *“ image *’ of the other (since they are both identical)
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and similarly with the impedances on each side of terminals 3, 4. The two image
impedances are given by

Z, = \/(ZA + ZNZ4Zp + ZyZ + ZpZe)

G 7y (12a)
_ Zy +ZXN2,75 +Z, 7, + Z,Z.)
Z,, = B cHhLytn aZzc B C.
1% \/ @, 20 (12b)

Similarly a II network as shown in Fig. 4.44A may have the values of the clements
adjusted so that the network is terminated in its image impedances. The two image
impedances are then given by

Zn=2n) . Gt 22, 13
DTN Z T Iz k7 ¥ 2y (130)

_ Z, + Z)Z

Z, = 22\/ (Zy + Z)Zs 13b
” @ F 20 + 2o T 2 (130)
The two image impedances may also be expressed in terms of the open-circuit

and short-circuit impedances (Sect.7(ix))

Zpn = VZuZy (14)
Zp =N ZyZy (15)
1 3
—O—ANVWA-
4
A
Zl, 11
1 —o ZC -¢—sz 2
Eg
O EN O—
2 4
FIG, 4,44 A FIG, 4,448

Fig. 4.444 is a single IT section network terminated in its tmage impedances.
Fig. 4.44B is a single L section network terminated in its image impedances.

The transfer of power is indicated by the image transfer constant 8 whose value
is given by
€ é Z—Il = log { . 12/
LY z 72 Vo
provided that the network is terminated in its image impedances,
where E, and I, are voltage and current at terminals 1, 2
E, and I, are voltage and current at terminals 3, 4
I’ and I’ are currents at terminals 1, 2 and 3, 4

respectively with transmission in the reversed direction.

=11 Edy
= § loge L= log (16)

1 30 01 30— O 30§

WS a4 Jme | _J 2, | Fig. 4.45 is a combination of three
21, 214 24 Z14) networks in cascade, with tmage
@ oz o3 tmpedance relationships.

02 4 2 40 02 40

FIG. 4-45

When every section of a filter is working between its image impedances, there are
no reflection effects. Fig. 4.45 shows a three section group connected on an image
impedance basis. This is equivalent to a single network having image impedances
Z,, and Z,, respectively,
and 0 = (o + oy + a3) + 7B + B + Bs) = a + jB (16a)
where 6, = a; + jB;, etc.

The real part (¢, + «; + a3 == «) of the image transfer constant 8 is called the
image attenuation constant, and the imaginary part (8, + B, + B; = B) is called
the image phase constant,
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Wher'e the values of the elements of the T and IT networks are known, the value
of the image transfer constant is given by
T Network (Fig. 4.44) :

(ZZy + 2,20 + ZpZy)

tanh 6 =
Z, + 202, + Zo) (16b)
IT Network (Fig. 4.44A) :
tanh § = ZZy + 2, + Z4) (16¢)

(Zy + Z)Zy + Zo)

If the image impedances and transfer constant are known, the impedances of T,
IT and L networks are given by
For T Section (Fig. 4.44) :

VZpZp
Zc = “Gnh @ (72)
. le
Zy = 5%~ Zc (17b)
zZ. = Zn -z 17
4 tanh 4 ¢ (17¢)
For a IT Section (Fig. 4.44A) :
Zs = A/Z,Z,, sinh 8 (17d)
zZ, = L
11 (17¢)
Z, tanh ¢ Zs
zZ, 1

S (17f)
Z;tanh 8 Z,
For an L Section (Fig. 4.44B):

Zy,=NZpZn -~ Zp (17g)
Z
Z,=Z __Zn__
¢ I Zn " Zn (17h)
cosh 8 = A(Z,/Z.3) QA7)

(vi) Symmetrical networks

When a network is symmetrical, that is when it may be reversed in the circuit with
respect to the direction of propagation without alterations in the voltages and currents
external to the network, the two iterative impedances become equal to each other and
to the two image impedances :

ZK:ZKlr«Zmr—-Z,:Zn:Zﬂ (18)
(this is sometimes called the characteristic impedance)
Also P =0 =a +jB a9

where « = image attenuation constant
and B = image phase constant.

(vil) « Constant 2% filters
A “constant k” filter is one in which

Z.Z, = kt (20)
where Z, and Z, are the two arms of a filter section, and k is a constant, independent
of frequency. Fig. 4.46 shows a symmetrical T type section terminated in its image
impedances, which is a ¢ constant & > filter provided that Z,Z, == k*. The constant
k2 has the dimensions of a resistance squared, so that we replace k2 by R? in the follow-
ing analysis. This requirement is fulfilled when Z, and Z, are reciprocal reactances ;
the simplest case is when Z, is a capacitance with zero resistance and Z, an inductance
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with zero resistance or vice versa. Some popular combinations are given below :

Original (Z,) Reciprocal (Z,)
L C = L/R?
L + r in series C = L/R?in shunt with R?/r
C -+ r in series L = R2(C in shunt with R%/r
L 4+ C inseries C’ = L/R?in shunt with L’ = R2C
r + L 4- C in series R2/r in shunt with C* = L/R?

and with L’ = R*C

2
FIG. 4:46 FIG.4.47

Fig. 4.46 is a symmetrical T section terminated in its image impedances.
Fig. 447 is a symmetrical Il section terminated in its image impedances.

Z, is called the mid-series image impedance in a symmetrical T section (Fig.
4.46) while Z is called the mid-shunt image impedance in a symmetrical /7 section

(Fig. 4.47) :
T section : mid-series image impedance
Z, =NZ,Z, + (Z,*/%) = RV'1 + (Z,/2R)? 3]
IT section : mid-shunt image impedance
R
z/ = Al (22
1+ Z,/4Z, V1 + (Z:/2R)?
Therefore Z,Z, = R* = Z,Z, (23)
If Z, is a pure reactance (X,),
then Z, = RV1 — (X,/2R)* (24)
R
and 2, = ——rr———— 25
VT (X, /2R)? @)
The image transfer constant 8 for either T or /T sections is given by
cosh 8 = 1 + (Z,/2Z,) (25a)
Half sections have exactly half the image transfer constant of a full section.
In the pass band : a = 0 _ (25b)
cos f = 1 4 (2,/22,) (25¢)
In the stop band: cosh a = |1 + (Z,/2Z,) | (25d)
Phase shift = 0 or 4 180° (25e)

21 Fig. 4.48 is a half section terminated
in its tmage impedances.

FIG.4:48

Fig. 4.48 is a half-section terminated in its image impedances, which in this case
are unequal. Two such half-sections, with the second one reversed left-to-right, are
equivalent to a single T section.

Z, =V ZZ, + (Z,/% (25f)
. ZZ
z; =n)  LZr (250)

1 +(Z,/42y)
An ideal filter in which the reactances have zero loss has zero attenuation for all
frequencies that make (Z,/4Z,) between 0 and —1 ; this range of frequencies is called
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the pass band. All other frequencies are attenuated and are said to lie in the stop
band (or attenuation band) of the filter.

Low pass filter—constant % type
Fig. 4.49 shows three forms of simple low-pass filters of the constant % type. In
each case
Z, = jwL
and Z, = 1/jwC.
Now Z,Z, =: R?, therefore L/C = R?, where R may havc any convenient value.
The mid-series .image impedance is
Z; = RV'1 — (wL/2R)* = RV1 — (J/f,)* (26)
where f, = 1/mV/LC), f, = cut-off frequency.
When f = f;3, Z; = 0 and there is infinite attenuation if L and C have no resistance.
The mid-shunt image impedance is
A R R @7
TN = (wL2RE N1 = (f/fo)?
When f = fy, Z; becomes infinite.

® ©
L2 Lfz WH L
1 3 ! ¥ 1 3
z z 21 zy 2]
i ¢ <L — cf2 2 —» ~2cj2 2 <1
T I T T
20— l 04 20 ‘ 04 20 ¢ 4 04
FIG. 4:49

Fig. 4.49. Three varieties of low-pass constant k filters: (A) T section (B) Half
section (C) II section.

With both T and [T arrangements, the ideal filter has zero attenuation for frequencies
Iess than fo, a sharp cut-off at f,, and a very rapid attenuation immediately above f,.
However the rate of attenuation gradually falls as the frequency is increased, and
approaches 12 db/octave for the single section at frequencies much greater than fo.

Both image impedance characteristics are purely resistive below f, and purely re-
active at higher frequencies.

The phase shift varies from zero at zero frequency to 180° at f,, but is constant
at 180° for all frequencies higher than f,.

® ©
10— ¢<—on 10— ] 3 | 3
2¢ 2¢ 2c c
. 2 77
2y L <AL 3 W FEL K -
20— —0 4 20— —_—Qa

20 —O04
FIG. 4.50

Fig. 4.50. Three varieties of high-pass constant k filters (A) T section (B) Half
section (C) II section.

High-pass filter—constant % type
Fig. 4.50 shows three forms of simple high-pass filters of the constant k type

In each case

Z, = 1/jwC

Z, = jowlL.
Now Z,Z, = R?, therefore L/C = R?, where R may have any convenient value.
The mid-series image impedance is

Z; = RV1 — (1/2RwC)* = RV1 — (f/f)? 28)
where f, = l/(47r\/ LQC), fy = cut-off frequency.
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The mid-shunt image impedance is
R

R
= = 29
VT apRaCr VI G @)
With both T and IT arrangements, the ideal filter has zero attenuation for fre-
quencies greater than f,, a sharp cut-off at f,, and a very rapid attenuation immediately
below f,. However, the rate of attenuation gradually falls as the frequency is de~
creased, and approaches 12 db/octave for the single section for frequencies much less
than f,.
Thﬁophase shift varies from nearly zero at very high frequencies to 180° at f,,
but is constant at 180° for all frequencies lower than f,.
Both image impedance characteristics are purely resistive above f,, and purely
reactive at lower frequencies.

Fig. 451. (A) T section
(B) II section, series m-
derived filters.

20— -04
FIG, 4.5

viii) M-derived filters

This is a modified form of the constant % filter. Fig. 4.51A shows a T section
series m-derived filter, which has the same value of Z, as its prototype (Fig. 4.46 and
egn. 21). In fact, when m = 1, it becomes the prototype. In general, m may have
any value between 0 and 1. It may be joined, at either end, to a constant k£ or m-
derived section, or half-section, having an image impedance equal to Z,;. This derived
filter has the same pass band and cut-off frequency f, as the prototype, but different
attenuation characteristics with sharper cut-off and infinite attenuation at the resonant
frequency of the shunt arm, provided that the elements have zero loss.

FiG, 4,51

mL/2 mL/2 2C/m 2C/m m2, /2

m
3 1y
4m
Tfl-—mz}c
[ 4 © [ b <
LOW PASS HIGH PASS

Fig. 451. (C) Low pass (D) High pass T section m-derived filters (E) m-derived

half-section for matching purposes.

Values of Z, and Z, are as for the prototype (constant k) filter. A low-pass T section
series m-derived filter is shown in Fig. 4.51C, and an equivalent high-pass section
in Fig. 451D. In both cases the shunt arm becomes resonant at a frequency fo
given by

1
Low pass i 30
P y /(1 — m3LC 0
Vi — m?
High pass fo = ————— 1
gh pi f 4m/IC (€28

In the theoretical case when the reactances have zero loss, the shunt arm will have
zero impedance and therefore infinite attenuation at frequency foo .
The cut-off frequency f, is given by
. fo = 1/(4n/LC) (32)
and the following relationships hold.



4.8 (viii) M-DERIVED FILTERS 183

Low pass High pass
fo = fo/(V1 — m? fo = fV1 —m? (33)
m =1 = (fo/fo)? m =71 — (foo /fo)t (3%

The frequency of ““infinite” attenuation (sometimes called the peak atrtenuation
frequency) may be controlled by varying the value of m, which variation does not
affect the image impedances.

It is generally desirable, for good attenuation characteristics, that the ratio of the
cut-off frequency to the frequency of peak attenuation in a high-pass filter should be as
high as possible, and not less than 1.25, and in a low pass filter it should be as low as
possible and not greater than 0.8. 'The value of m as given by eqn. (34) is 0.6 whea the
ratio is 1.25 or 0.8 respectively.

The equivalent II section series m-derived filter is shown in Fig. 4.51B but here the
mid-shunt image impedance is different, and this section cannot be connected at
either end to a constant k2 or m-derived T section except through a half-section to
match the respective image impedances.

Zw = Z/ [ + (1 — m®(Z,/2R)*] (35)
In other respects (B) has the same characteristics as (A). An m-type half-section for
matching sections having different image impedances is Fig. 4.51E, the values shown
being for matching a constant % section on the left and a series m-derived JI section
on the right. The value of m should be approximately 0.6 to provide the most nearly
constant value of image impedance in the pass band.

m2)

Fig. 452. (AT

section (B) II sec-

tion shunt m-derived
filters.

20~ -04
F1G.4-52

Two forms of shunt m-derived filters are shown in Fig. 4.52. The II section (B)
may be joined at either end to a constant k section or half-section of mid-shunt image
impedance Z,. 'The T section requires the medium of a half-section to match the
impedances before being so connected.

z,
= - (36
B Zim = T30 = moZy/a2y) )
(B) Z; is as for Fig. 4.47 (Eqn. 22)
Therefore Z,,2m" = Z;Z; = R? 37

The design of multiple-section filters

A multiple-section filter is made up from any desired number of intermediate
sections (either T or IT), and usually of the m-derived type, together with a terminal
half-section at each end. All sections in the filter are matched at each junction on an
image~impedance basis. The intermediate sections usually have different values of m
such that frequencies which are only slightly attenuated by one section are strongly
attenuated by another. The image impedances of these sections are far from constant
over the pass band of the filter ; hence the necessity for using suitable terminal half-
sections.

The terminal half-sections should be designed with a value of m approximately
equal to 0.6 to provide the most nearly constant image impedance charactefisFics in
the pass band ; with this value of m the image impedance is held constant within 4%,
over 909, of the pass band. Each of the terminal end sections should, however, be
so designed that its frequency of peak attenuation is staggered with respect to the
other, and the intermediate sections should then be staggered for the best overall
attenuation characteristic.
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The total attenuation or phase shift of the combined multi-section filter would be
given by the sum of the attenuations or phase shifts respectively of the individual
sections or half-sections,

When the design has been completed for all the sections in the filter, the practical
form will be obtained by neglecting the juncuon points between sections and by
adding together the values of the inductors in series in each arm, and those of the
capacitors in parallel in each arm. If capacitors are in series, of inductors in parallel,
the total effective value should be calculated and used in the practical form of the filter,

1 1
nalf section beg——me—— {ntermediate "T" Sections ——— 3t haif section

T T

FIG. 4 .52 C

1
!
haif section r<————— Intermedigte 1T 5::!ion:————~>—: half section

20—

o4
FIG.4.52D

Fig. 452. (G and D) Method of building up a multi-section filter using T or 11
tnrermediate sections.

For further information on the design of m-derived filters, reference may be made to
Shea (Ref. 1) pp 244-285 ; Guillemin (Ref. 4) Vol. 2, pp. 324-338 ; Johnson (Ref, 6)
pp. 192-195, 204-228, 293 303 ; Terman (Ref. 2) pp. 226-238 ; Everitt (Ref. 3)
pp. 194-214 ; (Ref 6) pp. 130- 152 (Ref. 7) pp. 6-33 to 6-62. References are listed
in Sect. 8(xi).

(ix) Practical filters

In practice a filter network is usually terminated, not by its image impedance which
is a function of frequency, but by a resistance of fixed value R where

R =7z, (38)

As a result, the impedance mismatching causes some attenuation in the pass-band,
which is increased further by the unavoidable losses in the inductors, Morcover,
the attenuation in the attenuation-band is less than for the ideal case, and of course
never reaches infinity except in the case of a null network.

(x) Frequency dividing networks

Frequency dividing networks are of two types, the filter type (which has only ap-
proximately constant input impedance) and the constant-resistance type.

With either type, the cross-over frequency (f.) is the frequency at which the
power delivered to the two loads is equal. This occurs with an artenuation of 3 db
for each load, with an ideal dividing network having no loss.

The nominal attenuation per octave beyond the crossover frequency may be :

6db : available with constant-resistance, but attenuation not sufficiently rapid for
general use with loudspeaker dividing networks (Fig. 4.53A)
Ly = Ry/@2nf.) Cy = 1/Q27f Ry)

12db : available with either type, and very suitable for general use with loudspeaker
dividing networks. Fig. 4.53B shows the constant-resistance type. This
is a very popular ar-angement.

Ly = Ro/(2V/2nf ) Ly = Ro/(V/27f )
Cy = 1/(V/2xf Ry Co = 1/(2V27f Ry)

!

i
I
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The filter type has identical circuit connections but the condensers and inductors
are unequal (see Chapter 21 Sect. 3).
18db : available with filter type. This is the maximum rate of attenuation normally
used with loudspeaker dividing networks (Fig. 4.53C).

L, = Ry/(2nf ) Ly = (1 + m)Ry/(27f,)
Lg = 2R,/(2nf ) Ly = Ry/(2uf.)
L; = R,/(1 + m)2nf.) Ly = Ro/(4nf;)
Cy = 1/2nf Ry) Cy = 1/(nf Ry)
Cy — 1/(4nf R,) Co = 11} m)2nf R
C; = (1 + m)/(2=f R,) Cy = 1/Q2af R,)
(L in henrys; C in farads)
See also Chapter 21 Sect. 4.
SERIES PARALLEL
‘f -I-co zon_.r :{o to roF-
® ®o [ >
Lo RoH.F Co ROHF.
I

© Le INPUT (3 I L4 AgLF.
3

cr Cq ROLF i TCs

INPUT

Ly Ro H.F Ca S RoH.F.

<
[ Ls

FIG. 4:%%

Fig. 4.53. Frequency dividing networks (A) 6db (B) 12db (C) 18db for the octave
beyond the cross-over frequency. L.E. indicates low frequency, H.F. indicates high
frequency speakers.

(xi) References to filters

Many textbooks including—

1. Shea, T. E. “ Transmission Networks and Wave Filters > (D. van Nostrand Company, New York,
1943).

2. Terman, F. E. *“ Radio Engineers’ Handbook ”” (McGraw-Hill Book Company, New York and
London, 1943).

3, Everitt, W. L. “ Communication Engineering ™ (McGraw-Hill Book Co. Inc. New York and
London, 1937). !

4. Guillemin, E. A. “ Communication Networks ** Vols. 1 and 2 (John Wiley and Sons Inc. New
York ; Chapman and Hall Ltd. London, 1931).

5. Johnson, K. S. ‘ Transmission Circuits for Telephonic C icati » (D. van Nostrand Co.

Inc. New York, 1931).
6. “ Reference Data for Radio Engineers *’ (Federal Telephone and Radio Corporation, 3rd ed. 1949).

7. Pender, H., and K. Mcllwain “ Electrical Engineers’ Handbook : Electric Communication and
Electronics *’ (John Wiley and Sons, Inc. New York ; Chapman and Hall Ltd., London, 1950).

Charts for the prediction of audio-frequency response :

Crowhurst, N. H. “ The prediction of audio-frequency response » Electronic Eng. No. 1-—Circuits
with single reactance element, 23.285 (Nov. 1951) 440. No. 2~—Circuits with two reactive elements,
23.286 (Dec. 1951) 483 ; 24.287 (Jan. 1952) 33; 24.288 (Feb. 1952) 82. No. 3——Single complex
impedance in resistive network, 24.291 (May 1952) 241. No. 4—Step circuits 24.293 (July 1952) 337.

Sec Supplement for additional references.
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SECTION 9: PRACTICAL RESISTORS, CONDENSERS AND
INDUCTORS

() Practical resistors {(it) Practical condensers (it5) Combination units (iv) Prac-
tical inductors (v) References to practical resistors and condensers.

(i) Practical resistors

Resistors are in two main groups, wire-wound and carbon, although each group is
subdivided. Wire-wound resistors are available with ordinary and non-inductive
windings. Nichrome wire is suitable for operation at high temperatures but has a
large temperature coefficient ; it is suitable for use with 4 59; or 109, tolerances.
Advance (or constantan, or eureka) is limited in its operating temperature, but is used
for tolerances of about + 19%,. Wire-wound resistors are also graded by the type of
coating material.

Carbon resistors are divided into insulated and non-insulated types, while the
resistance material may be composition or cracked carbon (high stability). The re-
sistance material may be either solid (e.g. rod) or in the form of a film.

For American and English standard specifications on resistors see Chapter 38
Sect. 3(i) and (ii), including standard resistance values. For Colour Codes sece
Chapter 38 Sect, 2,

(a) Tolerances
Every resistor has tolerances in resistance, and the price increases as the percentage
tolerance is made smaller. Composition resistors are usually obtainable with the
following tolerances :
-+ 59, For critical positions only
+ 109% Desirable for semi-critical use in radio receivers and amplifiers (e.g.,
plate, screen and bias resistors)
+ 209, For non-critical positions only (e.g. grid resistors).
“ High stability ” carbon resistors are available with resistance tolerances of = 5%,
+ 29% and -+ 1% (Ref, A26).
Wire-wound resistors are available with almost any desired tolerances in resistance
(4 5%, 109% are usual values in radio receivers).

Comment on tolerances in components

When a manufacturer of resistors or capacitors selects simultaneously for large
quantities of each of three tolerances, + 5%, + 109, and 4 209%, there is a distinct
possibility that the -+ 109, tolerance group may be nearly all outside the 4+ 5%
tolerances, and therefore in two “ channels * differing by more than 109, Similarly
with + 109 and £ 209, tolerances. It is therefore good engineering practice to
design on the expectation of a large percentage of components lying close to the two
limits.

(b) Stability

The resistance of carbon resistors tends to drift with time. Ordinary composition
resistors may drift as much as + 29, during storage for 3 months at 70°C and normal
humidity (Ref. A27). See also Ref. A35.

Some high stability carbon resistors are limited to a maximum change in resistance
of £+ 0.59% after 3 months’ storage at 70°C (Ref. A26).

(¢) Dissipation

Composition resistors are usually available with nominal dissipation ratings of
1 3, 1, 2, 4 and 5 watts (JAN-R-11). The English RIC/113 standard (Ref. A27)
includes ratings of 1/10, ¢, 4, #, 1 and 2.5 watts. Other manufacturers produce 3,
4, 14 and 3 watt ratings.

English high stability resistors are available with 1/10, 4, §, 4, $, 1, 14 and 2
watt ratings (Ref, A26).
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In accordance with the American R.M.A. Standard and JAN-R-11 characteristics
A, B, C and D |see Chapter 38 Sect. 3(i)], composition resistors may be used at their
maximum ratings with ambient temperatures up to 40°C.

The JAN-R-11 characteristic G and some English resistors (Refs. A3, A26, A27)
may be used with maximum ratings up to an ambient temperature of 70°C. 1In
one case (Ref. A27) higher ratings than the nominal value are permitted below 70°C
ambient temperature (see below).

At ambient temperatures greater than the maximum rating, resistors may only be
used with reduced dissipation and maximum voltage, in accordance with derating
curves.

The following is a typical power dissipation derating curve for the temperature
limits 40°C and 110°C (JAN-R-11 types, 4, B, C, D) :

Temperature 40° 50° 60° 70°  80° 90° 100° 110°
Dissipation 1009, 83% 669, 50% 339% 17% 5% 0

The following is the English derating curve for high stability Grade 1, RIC/112
(Ref. A26) :

Temperature 70° 80~ 90° 100° 110° 120° 130° 140° 150°
Dissipation 1009, 87.5%75% 62.59% 509 37.59% 25% 12.59%0

The following is the English rating and derating curve for Grade 2, RIC/113
(Ref. A27):

Temperature 40°  50° 60° 70° 80° 90° 100° 110°
Dissipation 175% 150% 125% 100% 75% 50% 25% O

A typical voltage de-rating curve is the American R.M.A,, see Chapter 38 Sect.
33).

It is good engineering practice to select a composition resistor, for any particular
application, such that the actual dissipation is about 609 of the resistor rated dis-
sipation, after making allowance for any de-rating due to high ambient temperature.

Wirewound resistors are usually available with nominal dissipation ratings of
54 1,2,3,5,8, 10, 12, 16, 20 watts and upwards. These are also normally available
with tappings.

Wirewound resistors, vitreous enamelled, are usually available in dissipation
ratings of 5 or 10 watts and upwards. These are also normally available with tappings.

Adjustable voltage dividers are manufactured in 8 or 10 wait dissipation ratings,
together with larger sizes.

‘“ Radio ” voltage dividers usually have resistances of 25,000 and 15,000 ohms
suitable for connection across 250 volts. The maximum dissipation is something
like 5 watts.

(d) Voltage ratings

With low resistances, the applied voltage is always limited by the permissible dis-
sipation. With high resistances there is an additional condition to be met in the
maximum voltage rating. In general the maximum voltage is between 250 and 500
volts for } to 1 watt ratings, although there are a few below 250 volts, some (} watt
and over) with maximum voltages of 700 volts or more, and some (§ watt and over)
with maximum voltages of 1060 volts or more.

(e) Temperature rise

A temperature rise of from 40°C to 62°C (with 40°C ambient temperature) is to be
expected with ordinary composition resistors at maximum ratings, English resistors
which are rated at an ambient temperature of 70°C have a maximum surface tempera-
ture not greater than 120°C (Grade 2) or 150°C (Grade 1, high stability) (Refs. A26,
A27).

A typical small wire-wound resistor may have a maximum temperature of 110°C
for 1 watt or 135°C for 2 watts dissipation.

A typical large bare or organic-coating wire-wound resistor has a maximum surface
temperature from 170°C to 220°C. ‘

A typical lacquered wire-wound resistor has a maximum surface temperature of
about 130°C.
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A typical vitreous-enamelled resistor normally has.a maximum surface temperature
from 200°C to 270°C, but even higher temperatures are sometimes used.

High dissipation resistors should be mounted vertically to allow good air circulation,
and should be spaced well away from other resistors or components. When mounted
in a confined space they should be used ar about half the rated maximum dissipation.

(f) Effect of temperature on resistance

The resistance of composition resistors always tends to rise as the temperature is
reduced below 20° or 25°C, but at higher temperatures the resistance may either rise
or fall, or may fall and then rise (for curves see Ref. Al4).

For a temperature rise from 25° to 80°C, the change of resistance is usually under
+ 7% for low values of resistance.

For the same rise of temperature, high stability resistors have a change of resistance
not greater than + 0 — 2.29, for resistances up to 2 megohms (1 and 2 watts, Ref.
A26). See also Ref. A36.

The resistance of composition resistors is also affected by a temporary severe change
in ambient temperature, followed by return to normal (Ref. A35).

The resistance of a wire-wound resistor generally increases as the temperature is
increased, the change being usually not more than 0.025% per °C in the case of low
temperature units.

See also Chapter 38 Sect. 3(i) and (ii) for standard specifications.

The effect of soldering

Small (} watt) composition resistors are subject to as much as 39, change in resist-
ance, approximately half of which may be permanent, due to soldering ; larger dis-
sipation resistors are usually not affected more than 19, (Ref. A24). The maximum
permissible change in resistance due to soldering is + 29 (Class 2) or 4+ 0.39%
(Class 1, high stability) for resistors coming under the English RIC Specifications
(Refs. A26, A2T7).

(g) Effect of voltage on resistance

The resistance of a composition resistor decreases when the voltage applied across
it increases. The percentage change increases as the resistance increases. For a
1 megohm resistor, a typical percentage fall in resistance is given by (Erie Resistor

Co.):
Size 3 b3 1 2 watts
Voltage from zero to 200 350 500 500 volts
Fall in resistance 2.1 2.5 1.3 1.5 %

The voltage coefficient is defined as (Ref. A27) :
100 (R, — R,)
Ry (B, — Eyp)
where R, and E, are the resistance and voltage respectively at the normal maximum
rating, and R, and E, are the values at one-tenth of £;. Limiting values of the voltage
coefficient are (Ref. A27):

0.0259%, per volt for values below 1 megohm

0.05%, per volt for values above 1 megohm.

This effect is much reduced by the use of * high stability >* resistors, a typical value
being 0.49% fall in resistance for 1 megohin, with voltage change from zero to 500 volts
(Dubilier). The limiting value of the voltage coefficient for Specification RIC/112
(Ref. A26) is 0.0029, per volt.

Some applications require a resistor whose resistance falls as the applied voltage is
increased ; a wide range of characteristics is available (e.g. Carborundum ** Globar”
ceramic resistors).

See Chapter 38 Sect. 3(i) for standard specifications.

Voltage coefficient =

(h) Effect of humidity on resistance

The effect of humidity is to increase the resistance by up to about 39, under normal
conditions. Extreme tropical humidity may cause an increase in resistance generally
less than 109%. Some insulated resistors have less than 19, change in humidity due
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to humidity tests (e.g., I.R.C. type BTA). See Chapter 38 Sect. 3(i) for humidity
tests and limits.

(i) Capacitance of resistors

Every resistor has a capacitance which, at the lower radio frequencies, may be con-
sidered as a capacitance between the two ends of the resistor (usually between 0.1 and
1.0 uuF for composition resistors). This capacitance may usually be neglected in
normal applications in radio receivers. At higher frequencies it is necessary to con-
sider the capacitance as being distributed along the resistance element. This leads
to a reduction in resistance which, unlike the end-to-end capacitance, is not removable
by tuning {see (k) below]. References A5, A6, A7, A8, A9, Al4.

(3) Inductance of resistors

Every resistor has an inductance, partly due to the inductance of the resistor itself
and partly due to the leads. However, experience shows that at high frequencies
the effect of the inductance is negligible compared with the effects of capacitance.

Typical values of inductance of composition resistors (Dubilier) are given below :

Resistarice 100 ohms 1 megohm
Inductance 1 watt 0.0007 0.06 rH
1 watt 0.017 2.0 wH

Wire-wound resistors have much greater inductance than composition types, but
where they must be used it is possible to adopt a ‘“ non-inductive ”* winding which
reduces the inductance to a low value.

(k) Effect of frequency on resistance

Largely as a result of the distributed capacitance effects, the effective resistance of
a rod type carbon or composition resistor falls as the frequency is increased. With
resistances up to approximately 1 megohm, the theoretical curve of effective resistance
plotted against frequency is given in Ref. A29 (Fig. 5). The effective resistance drops
to 90% of the d.c. value

when f = Eﬁt — cycles per second where C, = total distributed capacitance of rod ;
at\d e

or as an approximation, assuming C’ &z Cy/3, when f &~ 1/10C’R ; , cycles per second
where C’ = equivalent shunt capacitance at low frequencies (this is usually the pub-
lished capacitance of the resistor).

If C’ is measured with the resistor in its operating position in relation to other com-
ponents and metal parts, the proximity effects will be included.

C’ is constant below 4 Mc/s (Ref. A29).

References A4, A5, A6, A7, A8, A9, Al4, A29.

We give below some experimental values :

Ratio of effective resistance to d.c. resistance

R (megohms d.c.) x f(Mc/s)=0.1 0.5 1.0 5 10 20

IR.C. type BTR (W) 0.98 0.93 0.89 0.62 0.46 0.30
IR.C. type BTA (1W) 0.95 .80 71 .48 37 24
IR.C. type BT-2 (2W) 0.80 53 .40 .19 14 A1
IL.R.C. type BTS 1.00 .89 .79 .61 57 —
I.R.C. type F (lower limit) — — — .84 .80 .75
Allen Bradley GB-1 0.85 .60 AR 24 17 12
Allen Bradley EB} 0.90 .68 57 .46 23 15
Speer SCT } 0.92 70 .60 35 27 .20

Reference Al4.

(1) Noise of resistors
All resistors have an inherent minimum noise voltage due to thermal agitation
(* Johnson noise >*) which is given at 30°C (80°F) by
e = 129 x 10714/ Af X R



190 (1) PRACTICAL RESISTORS 4.9

where ¢ = r.m.s. noise voltage
Af = bandwidth in ¢/s of the noise measuring instrument
and R = resistance in ohms,

"The thermal agitation noise of ideal resistors at 30°C is tabulated below for a band-
width of 5000 c/s.
Resistance 1600 10 000 100 000 1 Meg 8 Meg ohms
Noise 0.29 0.91 2.9 9.1 25.7 uV

When a current flows through the resistor, there is a small increase in the magnitude
of the thermal agitation noise.

In addirion to the thermal agitation noise, carbon and metallized resistors also have
a noise voltage which is approximately proportional to the direct voltage applied across
the resistance. This has been called current noise or resistance fluctuation noise
(Ref. A25). The frequency distribution of this additional noise component, unlike
thermal agitation noise, is not uniform but its value decreases with increasing frequency
from 30 c/s upwards. The amount of noise varies according to the material and
construction of the resistor, and even varies considerably from one resistor to another
equivalent type. The “ current noise >’ voltages of some typical English composition
resistors (Ref. A3) are given below :

Resistance 1000 10 000 100 000 1 Meg 8 Meg ohms
Average noise 0.03 0.18 0.35 05 0.6 pV/V
Mazx. noise 0.13 0.62 1.3 1.8 2.2 uV/V

Noise values up to 20 xV/V have been measured in commercial radio resistors (Ref.
A25). The English Specification RIC/113 (Grade 2) issued June 1950, gives the
limit of noise as log,o RpV/V ; this is equivalent to 6 uV/V for 1 megohm.

Lower ¢ current noise ” voltages are produced by high stability cracked carbon
resistors (see below) and also by palladium film resistors (Ref. A21).

In addition to the steady * current noise ”” fluctuations, all carbon composition
resistors show abnormal fluctuations which do not appear to bear any simple re-
lationship to the steady “ current noise ” (Ref. A21).

References A2, A3, A4, Al3, Al4, Al5, Al6, Al7, Al8, A19, A20, A21, A25, A32.

(m) High stability cracked carbon resistors (Refs. A10, A26, A28)

These not only have high short and long period stability and close tolerances (up
to 4 1%) but also have low noise, low voltage coefficient and low temperature co-
efficient. They have practically no non-linearity of resistance and the inductance
is very low except for the higher resistance values. They are manufactured in Eng-
land with resistances from 10 ohms to 10 megohms and dissipations from 1 to 2 watts.
The extremely high resistance values are only obtainable in the higher wattage ratings.
See also (b), (e), (f) and (g) above, and Chapter 38 Sect. 3(i) for standards.

The historical development, constructions and special features of cracked carbon
resistors, with a very extensive bibliography, are given in Ref. A28,

These resistors are particularly suited for use in low-level high-gain a-f amplifiers,
and in r-f applications up to 100 Mc/s. The inductance varies from 0.001 pH for
a small 100 ohm resistor to 2 uH for a large (spiral element) 1 megohm resistor.

The I.R.C: deposited carbon resistors have tolerances of + 1%, -+ 2% and 4 5%.
The voltage coefficient is approx. 10 parts per million per volt. The temperature
coefficient varies linearly from — 0.025 1o — 0.05 (10 M type DCH) or — 0.065
(10 M2 type DCF). Maximum dissipations for high stability are } and 3 watt ;
when high stability is not essential the values are % and 1 watt,

(m) Negative temperature coefficient resistors (Thermistors)

Negative temperature coefficient resistors are sometimes used in a.c./d.c. receivers
to safeguard the dial lamps when the set is first switched on. For example, one
such NTC resistor has a resistance of 3 000 ohms cold and only 200 ohms when
the heater current of 0.1 ampere is passing through it. By its use the initial surge
on a 230 volt supply may be limited to 0.12 ampere. See also page 1267.

They are also known as “‘ Varistors.” Refs. A22, A28, A31, A34.
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(o) Variable composition resistors (‘ potentiometers **)

Standard variable composition resistors are described in Chapter 38 Sect. 3(viii).
In radio receivers and amplifiers these are commonly used as diode load resistances
and as volume controls (attenuators). In general it is desirable to reduce to a mini-
mum or eliminate entirely any direct voltage across them, and any current drawn by
the moving contact. Whether or not a current is passed through the terminations,
noisc voltages appear across any two of the three terminations and, so long as the rotor
1s stationary, the noise docs not differ from that of a fixed resistor of equal resistance.
However, when the rotor is turned, additional noise is produced which is of the order
of 1 or 2 millivolts per volt applied across the extreme terminations for a speed of
rotation of one full rotation per second. The noise produced at any point of the track
is approximately proportional to the voltage gradient at this point ; consequently
the rotation-noise is greater over that portion of a logarithmic resistance characteristic
where the most rapid change in resistance occurs, than for the other end of the same
characteristic or for a linear characteristic. When a logarithmic characteristic is
used for volume control, the rotation noise will therefore be much lower at settings
for low volume where noise would be most noticeable (Ref. A30).

Some receiver manufacturers avoid the increased rotation noise caused by direct
diode current in a volume control by using a fixed diode load resistor with capacitance

coupling to a separate volume control having at least four times the resistance of the
diode load resistor.

Variable composition resistors are available with a choice of up to 6 tapers 3 tappings
may be provided at 389 and 629, effective rotation (Mallory). They are also avail-
able, if desired, with a switch.

(ii) Practical condensers
(a) Summary of characteristics

A condenser has tolerances in the value of its capacitance. For most radio receiver
applications, tolerances of +4- 209, or even higher may be used. The closest toler-
ances available with paper dielectric condensers are + 109, [see Chapter 38 Sect.
3(iii)]. Where closer tolerances are required it is necessary to adopt mica dielectric
condensers in which the tolerance may be any standard value between + 209 and
+ 29 [Chapter 38 Sect. 3(v)].

The capacitance changes with frequency, with temperature, and with age.

A condenser has inductance, so that at some high frequency it becomes series-
resonant.

A condenser has a.c. resistance, and dissipates energy in the form of heat ; the loss
is approximately proportional to the square of the frequency and is also affected by
the temperature. This energy loss is partly dielectric loss (which predominates at
low frequencies) and partly electrode and lead losses (which predominate at higher
frequencies). It may be replaced for the purpose of calculation by the *‘ equivalent
series resistance.”

A condenser thus has a complex impedance, with resistive, capacitive and inductive
components. The impedance may be capacitive over one range of frequencies,
inductive over another, and resistive at one or more frequencies.

A condenser with a solid or liquid diclectric takes a longer time to charge than an
ideal condenser having the same capacitance; this effect is due to “ dielectric absorp-
tion.” When such a condenser is short-circuited it fails to discharge instantaneously
—a second discharge may be obtained a few seconds later. As a consequence the
capacitance of such a condenser is a function of the duration of the applied direct
voltage ; when it is used in an a.c. circuit, the capacitance decreases as the frequency
rises. This effect is pronounced with paper dielectric, but is very small with mica
dielectric condensers.

A condenser has d.c. leakage, and behaves as though it were an ideal condenser with
a high resistance shunted across it.

A condenser with a solid dielectric tends to deteriorate during service, and may
break down even when it is being operated within its maximum limits.
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(b) The service life of a condenser

Condensers under voltage may be subject to gradual deterioration and possible
breakdown, due to the solid dielectric (if any) and other insulation. This deterioration
is much more rapid with some dielectrics than with others, and also varies consider-
ably between different batches from the same factory.

Except for electrolytic condensers, there should be no deterioration with age except
while under voltage ; the service life may therefore be taken as the time of operation
under voltage.

The maximum temperature of a condenser has a pronounced effect on the service
life. In some types, every 10°C rise in temperature causes 509, decrease in life ;
other types are less sensitive to temperature,

The safe working voltage of a condenser at a given temperature is much less than
the * ultimate dielectric strength ”’—as low as one tenth of this value in some cases.
The “ factory test ** voltage is intermediate between these two values, but it is no guide
to the safe working voltage. The only satisfactory procedure, if long life is essential,
is to obtain from the manufacturer the safe working voltage at the proposed tempera-
ture of operadion.

Condensers for operation on a.c. should have maximum a.c. ratings for safe working
voltage, frequency and temperature. The peak operating voltage, whether a.c. or
pulse, should be within the maximum voltage rating. The maximum surge voltage
(usually during ‘“ warming up ») should be within the surge rating, if quoted, or
alternatively should not exceed the maximum working voltage by more than 15%,.

(¢) Electrolytic condensers*

An electrolytic condenser provides more capacitance in a given space and at a lower
cost per microfarad than any other. It is usually manufactured with a capacitance
of 4uF or more. The capacitance tolerances may be — 20%,, -+ 100%, or — 20%,
+ 50%, while JAN-C-62 permits + 2509,. Unlike other types, electrolytic con-
densers may only be used on substantially direct voltage, and they must be correctly
connected with regard to polarity. Electrolytic condensers are generally used in
radio receivers and amplifiers with a steady direct voltage plus an a.c. ripple. The
highest rated voltage rarely exceeds 500 V peak, even for use under the most favour-
able conditions.

The capacitance increases somewhat with increase of temperature, and
decreases rapidly with temperatures below — 5°C. The capacitance also decreases
with age—one dry type shows a 59, decrease in capacitance after 7000 hours operation
at 20°C ambient temperature, and a 209, decrease at 40°C.

The capacitance at 10 000 ¢/s is usually less than that at low frequencies. Typical
wet types at 10 000 c/s have only from 309%, to 50% of the capacitance at 50 c¢/s.
Typical dry types are better in this regard, having capacitances at 10 000 c¢/s from 42,
to 859% of that at 50 c/s, at 20°C. However, the temperature has a marked effect
on the capacitance versus frequency characteristic. One etched-foil type (Ref. B13)
has 429, of its nominal capacitance at 20°C, 95% at 33°C, and 107% at 50°C.

The series-resistance of a new condenser at ordinary working temperature is
fairly low (not more than 25 ohms for 8 uF at 20°C, 450 V working) but it rises rapidly
at higher temperatures and temperatures below 10°C. The series resistance rises
considerably during life and eventually may be the cause of unsatisfactory operation
of a receiver.

Among dry electrolytics, those with etched foil anodes are much inferior to those
with plain foil electrodes when used for a-f by-passing, owing to their high impedance
particularly at the higher frequencies. For example, at 10 000 c/s an ideal 8 uF
capacitor has an impedance of approximately 2 ohms, whereas typical plain-foil
electrolytics have impedances from 3.5 to 6.5 ohms and those with etched-foil elec-
trodes have impedances from 8 to 22 ohms (Ref, B13).

( R‘;l"hglf%lowing remarks apply to aluminjum electrodes. However tantalum electrodes are also used
et., .
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The dissipation factor is a function of both frequency and temperature. One
10 uF etched-foil capacitor has a dissipation factor of 109, at 100 ¢/s, 689, at 1000 c/s
and 929, at 10000 c¢/s, at 20°C. The dissipation factor decreases rapidly with
increase of temperature, and at 1000 c¢/s is 30% at 33°C and 13% at 50°C for the
same capacitor (Ref. B13).

When electrolytic condensers are required to be operated across voltages of more
than 450 volts, two or more condensers may be connected in series but the effective
total capacitance will then be half (or less) that of the single unit. In such a case it is
advisable to connect a resistor, say 0.25 megohm, across each capacitor.

Electrolytic condensers have self-healing properties—after a momentary surge
of over-voltage, resulting in break-down of the diclectric, the electrolytic condenser
is more likely to recover than a non-electrolytic type. Wet electrolytic condensers
are very good in this respect.

Electrolytic condensers have an appreciable leakage current ; this may be from
0.002 to 0.25 mA per microfarad and varies considerably with the type of condenser
and the * working voltage,” being higher for higher values of working voltage. The
maximum leakage current in milliamperes permitred by JAN-C-62 is (0.04 x capacit~
ance in microfarads) + 0.3. This is equivalent to a shunt resistor of 0.7 megohm
for an 8 uF condenser, 450 V rating. At voltages lower than the working voltage,
the leakage current falls, but at higher voltages it increases very rapidly. The leakage
current also increases rapidly at higher temperatures.

If an electrolytic condenser is left idle for some days, the initial leakage may be
quite substantial, but it tends to become normal after a few minutes. If the condenser
has been left idle for severa! months, the time of recovery is longer.

The power factor of an electrolytic condenser may be between 2%, and 3% for
the best condensers and is usnally between 5% and 109%,. Some of the older wet
types had power factors of 259, or greater.

Electrolytic condensers should not be used in positions where the ambient tem-
perature is high or the alternating current component is excessive, otherwise the
service life will be short. Ambient temperatures up to 50°C are always satisfactory
while 60°, 65°C or 70°C is permissible for many types and some may be used at higher
temperatures (e.g. 85°C).

Special types are available for very low temperatures (Ref. B18),

Electrolytic condensers are in two major groups.

Wet electrolytic condensers have vents, and must be mounted vertically with
the vent unobstructed. They are valuable as first filter condensers in a rectifier
system. Some wet types are used as voltage regulating devices, to limit the peak
voltage during the warming-up period. All wet types have rather greater leakage
currents than dry types. Dry electrolytic condensers are very widely used as
filter and by-pass condensers. They are inferior to the wet type as regards frequent
and severe voltage surges and short period overloads, when they are liable to fail
permanently, but are preferable to the wet type in most other respects. They are
manufactured in several forms—plain foil, etched, sprayed or fabricated foil. Most
modern compact units have etched or fabricated foil, but the plain foil type has a
lower impedance at radio frequencies. *“ Surgeproof” types are available with a
safe operating voltage of 450 volts but which have heavy leakage current when the
voltage exceeds 500 volts. This type is able to handle very heavy ripple currents
without deterioration.

Reversible dry electrolvtic condensers are manufactured, but they have higher
leakage currents than standard types.

Electrolytic condensers when used as first filter condensers in condenser-input
filters require careful consideration. The d.c. voltage plus the peak value of the
ripple voltage must not exceed the rated voltage of the capacitor while the ripple
current must not exceed the ripple current rating. The ripple current may be
measured by a low-resistance moving iron, or thermal, meter ; a moving-coil rectifier
type of instrument is not suitable. Alternatively the ripple current may be calculated
—see Chapter 30 Sect. 2.

Some typical ripple current ratings are given below (T.C.C.). Plain foil types
have a higher ripple current rating than equivalent etched foil types.
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Ambient temperature 20°C 40°C 60°C 70°C
8 pF 350 V ““ micropack > plain foil 148 125 85 32 mA
16 pF 350 V ““ micropack ” plain foil 250 200 110 50 mA
8 uF 450 V etched foil 88 67 33 10 mA
16 pF 450 V etched foil 162 122 62 20 mA
16 pF 450 V plain foil 300 260 160 85 mA
32 uF 450 V plain foil 500 405 230 100 mA

With multiple capacitor units, only one of the units is normally intended for use
as the first filter condenser ; see catalogues for identification.
See Chapter 38 Sect. 3(x) for standard ratings.

(d) Paper dielectric condensers

Impregnated paper forms a very useful dielectric, being intermediate between
electrolytic and mica condensers as regards cost, size and leakage for a given capacit~
ance. It is usually manufactured in units from 0.001 to 0.5 uF, larger values being
built up from several smaller units in parallel in one container. The impregnating
material may be resin, wax, oil or a synthetic compound. Some impregnating mater-
ials enable condensers to withstand extremely wide temperature ranges (e.g. — 50°
to + 125°C—Sprague “ Prokar ” with plastic impregnant). Wazxes may be used for
moderate voltages and temperatures, as in radio receivers (from — 30°C to + 65°C
for R.M.A. Class W). Other impregnants are used for higher temperatures (e.g.,
85°C, as R.M.A. Class M ; 100°C as T.C.C. “ metalpack ”’ and ‘‘ metalmite >).
The permissible insulation resistance at 25°C is not less than 5000 megohms for
capacitances up to 0.15 uF, falling to 1000 megohms for 1 pF, but this falls rapidly
at higher temperatures, being 35%, of these values at 40°C.

A typical 1 microfarad wax paper condenser designed for audio frequency applica-
tions has the following characteristics :

Frequency 1000 ¢/s 10000 ¢/s 100 360 Ke/s
Inductance 0.2 0.2 0.2 0.2 uH
Resistance (effective) 1.1 0.43 0.3 0.25 ohms
Reactance — 159* -~ 159* —1.50 0** ohms
(o) 145 37 5 0
Power factor 0.007 0.027 0.19 1
Percentage power factor 0.7 2.1 19 100 %

* equal to ideal ** resonance

Some paper dielectric capacitors are impregnated with a high permittivity wax to
reduce the dimensions of the capacitor (Ref. B13). These capacitors have less de-
sirable electrical characteristics than those with normal waxes. At 10000 c¢/s the
capacitance falls to 899, of its value at 100 c¢/s ; the capacitance varies from — 19%
to + 69 as the temperature is varied from — 30° to - 70°C.

Wax-impregnated paper dielectric condensers are sometimes used for grid coupling
purposes from a preceding plate at high potential, but plastic-impregnated or mica
dielectric is to be preferred on account of leakage. As an example, take a paper con-~
denser with capacitance = 0.01 puF at 40°C. The minimum insulation resistance
will be 5000 x 0.35 = 1750 megohms. If the grid resistor has a resistance of 1
megohm and the preceding plate voltage is 175 volts, there will be a voltage of 0.1
volt on the grid as the direct result of leakage.

In most other applications the leakage may be neglected entirely.

Plastic (polystyrene) impregnated paper dielectric condensers have a very high
insulation resistance, of the order of 500 000 megohms per microfarad, and are much
more suitable for use as grid coupling condensers (e.g. T.C.C. Plastapacks, 50 to
5000 puF). A test after 9 months’ handling under bad climatic conditions showed
insulation resistances of 24 000 to 100 000 megohms (Aerovox Duranite, 0.01 to
0.22 uF). These condensers have power factors as low as those of mica condensers,
while the temperature coefficient of capacitance is from — 100 to — 160 parts in a
million per °C. For maximum stability they should not be operated above 60°C,
but the insulation resistance remains very high even up to 75°C. These are available
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in capacitances from 100 to 10 000 uuF in tubular form and from 0.02 to 4 wF in
rectangular metal boxes (Ref. BII).

Mineral oil is used as an impregnant for working voltages from 1000 to 25 000
volts and operating temperatures from — 30° to + 71°C (T.C.C. “ Cathodray ).
The insulation resistance of a mineral oil impregnated capacitor is greater than that
with petroleum jelly impregnation, in the ratio of 2.5 to 1 at 0°C, rising to 12.5 to 1
at 70°C (Ref. B13).

Paper dielectric condensers are made in two forms—inductive, and non-inductive.
The former is limited to a-f applications, while the latter may be used at radio fre-
quencies.

Ordinary paper dielectric capacitors should not be subjected to high a.c. potentials.
Special types are produced by some manufacturers for use under these conditions,
for example with vibrator power packs and line filters.

For Standard Specifications see Chapter 38 Sect. 3(iii) and (iv).

Metallized paper diclectric condensers

This type utilizes a metal-sprayed or metal-evaporated paper dielectric instead of
the more conventional metal foil and paper construction. This construction results
in considerable reduction in size, while it also has a partial self-healing property in the
case of breakdown. The insulation resistance of unlacquered condensers is quite
low—of the order of 100 megohm microfarads—but some of those with a lacquered
film have an average insulation resistance as high as 8000 megohm microfarads at
25°C (Refs, Bi4, B15).

There is a gradual reducticn in the insulation resistance due to the self-healing
property, the degree depending on the number of punctures. It is desirable for the
total circuit resistance to be not less than 500 or 1000 ohms, to reduce the carbonising
effect of the arc. However if the circuit resistance is high, there may be insufficient
current to clear completely any breakdown, and the insulation resistance may fall.
Consequently, this type of condenser should not be used in high impedance circuits
without seeking the advice of the manufacturer.

A metallized paper dielectric unit should be used with discretion as the first filter
condenser following a thermonic rectifier, since the high peak breakdown current
may damage the rectifier unless the circuit resistance is sufficiently high.

The ratio of reactance to resistance (Q) of one lacquered unit with a capacitance of
2 uF is 200 at 0.5 Kc/s, 140 ar 2 Kc/s and 60 at 10 Mc/s ; a 0.1 pF unit has Q@ = 98
at 10 Mc/s (Ref. B15).

The inductance may be made very low, and these condensers are very useful for
a-f and r-f by-passing. The usual (English) temperature limit is 71°C for d.c. opera-
tion, 60°C for a.c. In tubular form (wax-coated) these are available from 0.0001
to 2 uF with voltage ratings 150, 250, 350 and 500 V d.c. (RIC/136). Larger sizes
are available with capacitances up to 20 uF (400 V d.c. or 250 V a.c.) and voltages up
to 550 V d.c. (4 nF).

Voltage-temperature derating curves for Astron (U.S.A.) are 100% up to 86°C,
linearly down to 389, at 120°C for units up to 1} uF ; larger units are 100% up to
76°C, down to 229 at 120°C (Ref. BI6).

The effect of 5000 hours’ operating life on capacitance is negligible up to 65°C and
89, at 100°C. The effect of the same operation is to increase the power factor from
an initial value of 0.5% to 0.6% at 65°C, or 0.8% at 100°C (Ref. B16).

The paper is usually impregnated with wax, although mineral oil has also been
used. Mineral wax impregnared units are generally preferred because of their
higher breakdown voltage, although their capacitance falls about 109% as the tem-
perature is increased from 50°C to 85°C. Mineral oil impregnated units have more
constant capacitance with temperature change.

These condensers are damaged by moisture and the unit is therefore well dried
initially and hermetically sealed to prevent the ingress of moisture.

References B10, B12, Bl4, B15, Bl16.

Standard Specifications—Chapter 38 Sect. 3(ix).
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(e) Mica dielectric condensers

Mica has very high electrical stability and very low a.c. loss. It also permits the
manufacture of condensers with close tolerances in capacitance, and low leakage.
It is used in the manufacture of condensers with capacitances from 5 u uF to 0.047 uF
for radio receiver applications, with voltage ratings from 300 to 2500 V. The in-
sulation resistance is in excess of 3000 for the cheaper grade (Class A) and 6000
megohms for other classes (American R.M.A. REC-115). The value of Q is over
1000 for a typical capacitance of 200 uuF ar a frequency of 1 Mc/s 3 the maximum
value of Q occurs at frequencies about 100 Kc/s.

Mica condensers are available in metal, moulded and ceramic casings [see Chapter 38
Sect. 3(v)].

“ Silvered mica’”’ condensers are used when very high precision is required.
Such a condenser with a capacitance of 1000 puF exhibits a capacitance change of
less than 0.1% over a frequency range from low frequencies to 2 Mc/s. "The effect
of temperarure on capacitance is a change of less than 60 parts in a million for 1°C
temperature change (RIC/137).

A typical 0.001 microfarad silvered mica condenser has the following characteris-
tics :

Frequency 1000 ¢/s 10000 ¢/s 100 500 Kc/s
Resistance (effective) 0.024 0.024 0.024 0.024 ohm
[0} 3400 5500 7000 5800

Power factor 0.00029 0.00018 0.00014 0.00017
Percentage power factor  0.029 0.018 0.014 0.017 %

Silvered mica condensers are normally available with capacitances from 5 to 20 000
puF with tolerances =+ 1%, + 2%, + 5%, =+ 109% and -+ 209, (subject to mini-
mum tolerance &+ 1 wupF) (RIC/137). The average temperature coefficient is
+ 25 X 107 per °C, with limits from -+ 5 X 107 to + 50 x 107 per °C(U.I.C.).

Standard Specifications—Chapter 38 Sect. 3(v).

(f) Ceramic dielectric condensers
Ceramic diclectric condensers may be grouped under five heads :

1. Types intended primarily for temperature compensation, having a scries of
negative and positive temperature coefficients with close tolerances on the coefficients.

2. Types having temperature coefficients nearly zero.

3, General purpose types with a broad spread of temperature coefficients, This
may be further divided into two groups, those having positive and negative tempera-
ture coefficients.

4. Types with temperature coefficients not specified. These are available with
capacitances from 0.5 puF upwards.

5. High-K types having relatively poor power factors and indeterminate tempera-
ture coefficients.

The first group is intended for use in the tuned circuits of radio receivers, in which
their special temperature versus capacitance characteristics are used to reduce fre-
quency drift during warming-up and running. A condenser having a negative tem-
perature coefficient may be used to compensate the positive temperature coefficient
of the tuned circuit alone. For standard specifications see Chapter 38 Sect. 3(vi).

The second group is intended for use in tuned circuits requiring nearly constant
capacitance, such as in i-f transformers.

All except High-K types have high stability and values of Q. .from 335 to 1000,
except for capacitances less than 30 puF. The insulation resistance is not less than
7500 megohms (R.M.A.).

The High-K types are not suitable for compensation purposes, but are used for
by-passing and other non-critical applications. They are manufactured with capacit-
ances up to 15000 uuF, with capacitance tolerances of + 20%. The value of Q
is from 30 to 100.



4.9 (iiiy COMBINATION UNITS 197

(g) Gang condensers

Gang condensers usually have air dielectric, and are available in 1, 2 and 3 (occa-
sionally 4) gang units. Some are fitted with trimmer condensers—see (h) below—
while others are not. The shape of the plates may be designed to provide any desired
capacitance characteristic (Refs. B5a, B5b) among which are :

(1) Straight line capacitance : Each degree of rotation should contribute an
equal increment in capacitance.

(2) Straight line frequency : Each degree of rotation should contribute an equal
increment in frequency.

(3) Logarithmic Law : Each degree of rotation should contribute a constant
percentage change of frequency.

(4) Square Law : The variation in capacitance should be proportional to the
square of the angle of rotation.

Some gang condensers have all sections identical, while others have the oscillator
section with specially shaped plates to give correct tracking without the use of a padder
condenser. For standard specifications, see Chapter 38 Sect. 3(vii).

The normal construction incorporates an earthed rotor, but condensers with
insulated rotors are also available. Condensers with split stators and either earthed
or insulated rotors are available for special applications,

(h) Trimmer condensers (*‘ compensators **)
These are available in innumerable forms, and can only be briefly mentioned.
The compression mica type is the least satisfactory of all since it tends to suffer
from drift in capacitance, and is far from being linear in its characteristic. It is used

in receivers for the medium frequency broadcast band and in the less expensive dual-
wave receivers.

The concentric or vane gir-dielectric types arc more c¢xpensive but have greater
stability, are easier to adjust, and the better types are more satisfactory under tropical
conditions. Ceramic trimmers are also obtainable.

Trimmers are avaijlable in a wide range of capacitances, but for ordinary use with
gang condensers should preferably have a minimum capacitance not greater than
2 uuF, and a capacitance change not less than 15 puF (R.M.A. REC-101, REC-
106-A).

See also Chapter 38 Sect. 3(vii and xi) for standard specifications.

iii) Combination units

Combinations of one or more capacitors with one or more resistors are becoming
common, and are very convenient. Some popular combinations are

(a) Diode filters incorporating one resistor and two capacitors with a common
earth return.

(b) Cathode bias units incorporating one resistor shunted by a capacitor.
(c) Plate and grid decoupling units incorporating one capacitor and one resistor.

(d) Audio frequency coupling unit incorporating a plate load resistor, coupling
capacitor and grid resistor with also (in one example) a grid stopper resistor and
capacitor.

(iv) Practical inductors

Iron-cored inductors are covered in Chapter 5. Radio frequency inductors, bqth
air-cored and iron-dust cored, are covered in Chapter 11. The calculation of in-
ductance of air-cored inductors at all frequencies is covered in Chapter 10.
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(v) References to practical resistors and condensers

(A) REFERENCES TO PRACTICAL RESISTORS

Al. Pender, H,, & K. Mcllwain (book) “ Electrical Engineers’ Handbook—Electrical Communication
and Electronics > (John Wiley & Sons, New York ; Chapman & Hall Ltd,, London, 4th edit.
1950) Section 3. . »

A2. American R.M.A, Standards (see Chapter 38 Sect. 3(i) and (ii)).

A3. Spratt, H. G, M, ““ Resistor ratings,” W.W. 54.11 (Nov. 1948) 419,
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