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Foreword
THIS IS THE SECOND BOOK I have written that cover a series of interesting
Raspberry Pi (RasPi) projects. The first book, Raspberry Pi Projects for the
Evil Genius is more introductory in the sense that the projects are somewhat
less complex as compared to this book’s projects. This book’s projects
utilize the latest features of this single board computer first introduced by
the Raspberry Pi Foundation in 2013. The creator of the board, Dr. Eben
Upton, originally thought it might sell upwards of 10,000 units; however,
there have been over 5 million RasPis in various versions manufactured to
date.

I have tried to present a range of projects in this book, which should
intersect with the interests and hobbies of my readers. There is one on
photography, another on radio communication, two on robots and a variety
on computer-related subjects, including one on how to build your own
computer cluster for those who wish to take on an ambitious project.



Introduction
THIS PROJECT BOOK IS ABOUT building a series of interesting projects and
also about providing an education regarding the underlying project
technologies. I am positive that my extensive experience as a college
educator required me to ensure readers not only could build the projects but
also understand why they function as designed.

Building a successful project is a reward unto itself, but additionally
understanding why and how it functions is far more important. The reader
should expect a great increase in experience and knowledge with the
Raspberry Pi if a commitment is made to complete most of these projects. I
personally always learn a great deal while designing and finishing them.
Often, things work out just fine while at other times they are fraught with
problems. However, that’s what I consider the joy of experimenting. As the
renowned Professor Einstein once stated, “Anyone who has never made a
mistake has never tried anything new.”

The joy of learning about building projects are the key concepts within
this book. I designed and built all of the projects and along the way gained a
lot of knowledge about Linux and how it really shines as an operating
system for embedded development platforms.

The complexity of the book projects are relatively equal and you should
read each one that interests you and decide if you want to tackle it. Be
assured that I have built and tested every project and can unequivocally
state that they will function as designed if you do not deviate from the
chapter instructions. You should also gain experience and confidence in
dealing with the Linux OS, Java, and Python languages as you proceed
through these projects.

Experienced Linux developers should feel free to jump into any of the
projects, however, there are useful hints and techniques sprinkled
throughout the book that might be missed by taking too selective an
approach to reading the book. I have also tried to point out constraints and
limitations of the Raspberry Pi as I encountered them when designing and



building the projects. Just keep in mind, a $35 computer simply cannot
meet all expectations.

Most of the book projects may be expanded and modified as desired. I
tried to point out areas where you can make changes to suit your
preferences and to suit your own particular situation. I strongly recommend
that readers try to experiment and modify as this only enhances the learning
experience. It has been stated that “The ability to experiment has been
described as one of the key attributes that modern employers are looking for
in twenty-first century employees.”



CHAPTER 1

Introduction

THIS IS A RASPBERRY PI BOOK in which I will provide 10 interesting
projects. However, before I start discussing the projects, I think it is
important to provide some background and configuration information so that
you gain an understanding of options available in the extensive Raspberry
board series and how they compare with each other.

Brief Raspberry Pi Background
The Raspberry Pi (RasPi) had been in existence for three years at the time
this book was written. More than 5 million RasPis have been produced since
it was introduced, which is not too shabby considering that the creator, Eben
Upton, originally thought that about 10,000 boards would be sold. I will not
go into extensive detail about the origins, history, and structure of the RasPi
because I have already covered that subject in my original Evil Genius book,
Raspberry Pi Projects for the Evil Genius . However, I will reiterate some
key RasPi concepts that are critical to your success in building the RasPi
projects in this book, and it is always convenient to have the data
immediately available and in one place.

I also believe that it is important to have an understanding of all the
different RasPi models and revisions that have been manufactured to date.
Having this knowledge should enable you to select that best RasPi for a
particular project. It is also important to realize that the core features of the
RasPi have been relatively unchanged from the original models to the latest
ones. The RasPi still remains a rather inexpensive single-board computer
that is capable of running a full-featured Linux operating system (OS).



Differences in models and revisions arise mainly with regard to supported
peripherals, on-board memory, and central processing unit (CPU) clock
speed.

Chapter 1 Parts List
The following is a composite list of parts used throughout all the following
chapters in this book. Not all the listed parts are used in every chapter, but
they are listed for your reference.





Table 1-1 lists the key features of all RasPi models and revisions arranged
by date of introduction. The original model B Raspberry Pi is shown in
Figure 1-1 .
TABLE 1-1 Key Features for All RasPi Models and Revisions





Figure 1-1  Model B Raspberry Pi board.

The latest and greatest Model B Raspberry Pi 2 is shown in Figure 1-2 for
your comparison with the original Model B.



Figure 1-2  Model B Raspberry Pi 2.



What is most remarkable about these two boards, which are separated by
more than three years between their dates of introduction, is that the RasPi 2
Model B is six times faster than the original Model B, has twice the dynamic
memory, and yet costs exactly the same as the original.

Cheaper models, such as A and A+, are available, but they do not have an
onboard Ethernet port, and they have fewer USB ports and only half the
memory of the corresponding RasPi 2 Model B or the original Model B.
Interestingly, none of these two constraints would prevent you from using
Model A or Models A+, but you would need to provide a wireless USB
adapter for Internet connectivity, and the diminished memory certainly
would slow down the RasPi applications while they were running. The
Raspberry Pi Foundation’s (RPF’s) design intent for the A models was that
they would be used in strictly embedded applications where user interaction
is typically not required, such as monitoring and controlling a home
automation application.

Most real-world projects involve using some type of digital input and/or
output (I/O) to interface with sensors and actuators. These digital I/Os are
generally referred to as general-purpose input-output (GPIO). The RasPi
GPIOs have specific maximum voltage and current limits that most be
followed to prevent damage to the board. Unfortunately, this damage is
irreversible, rendering the board nonoperative or useless.

Raspberry Pi GPIO
The RasPi Models A+, B+, and B gen 2 use a 40-pin connector designated
as J8 for its GPIO. This connector on the Model B gen 2 is shown in Figure
1-3 with the first two beginning and ending pin numbers annotated for
orientation and reference.



Figure 1-3  Model B gen 2 GPIO J8 connector (40 pins).

The 40-pin connector is a change from the previous 26-pin connector
used on Models A and B. The 26-pin connector from a Model B is marked
as P1 and is shown in Figure 1-4 .



Figure 1-4  Model B GPIO P1 connector (26 pins).



The reason for the change was to make nine additional GPIO pins
available for project use. These additional pins are clearly shown in Figure
1-5 , which also contains the 26-pin configurations for both the RasPi
Models A and B.

Figure 1-5  GPIO pin configurations for RasPi Models A, B, A+, B+ and B
gen 2.



Many GPIO pins in the P1 and J8 connectors have multiple functions that
extend beyond simple digital input and/or output, as shown in the Figure 1-6
, which is for the B+, but the pin descriptions hold true for all the RasPi
models except for the Compute Module.





Figure 1-6  Raspberry Pi J8 Header (Model B+).

You should also note that the first 26 pins on the 40 pin J8 connector are
both physically and logically identical to those of the P1 26-pin connector.
This means that GPIO connectors designed for earlier RasPis may be used
with the 40-pin connector without any problems as long as the pin-out
numbers are followed, that is, 1 to 1, 2 to 2, and so on.

These multipin connectors will be the gateway through which the RasPis
will interface with real-world devices. As you are probably aware, software
drivers must be loaded that provide the logical interface between the control
program, operating system (OS), and GPIO pins. The particular type of
driver depends primarily on the programming language used to develop the
control program. I will be using the C, Python, and Java languages in this
book to develop control programs, so a separate set of drivers will be loaded
to accommodate each development environment.

I will not review all these pin functions at this time but will discuss them
when they are encountered while building a project. Incidentally, none of the
projects connect directly with the P1 pins but instead rely on the use of a Pi
Cobbler that is plugged into a solderless breadboard. Figure 1-7 shows the Pi
Cobbler adapter plugged into a solderless breadboard with the 26-conductor
ribbon cable plugged into a Model B P1 connector.



Figure 1-7  Pi Cobbler.

Both 26- and 40-pin Pi Cobblers are available from a variety of suppliers,
such as Adafruit Industries and MCM Electronics. You can purchase one



either fully assembled or as a kit, which you will have to assemble by
soldering a connector to the printed circuit board (PCB). This task, which is
not too difficult, allows you to practice your soldering skills. Just don’t add
too much solder to the connector pins because they are close together, and it
is easy to form a solder bridge that might be disastrous to the RasPi when
you connect the Pi Cobbler to it.

I prefer to use manufactured jumper wires, as shown in Figure 1-8 , when
connecting components on a solderless breadboard. These jumpers are very
sturdy and can be easily inserted into the breadboard without the bending or
crinkling that affects ordinary precut wires. Inexpensive jumper wire kits are
also typically available from the same Pi Cobbler suppliers.

Figure 1-8  Manufactured jumper wires.

Establishing a RasPi Development Station
There are several ways to set up a RasPi development station, each with its
own pros and cons. I will cover two approaches that will likely fulfill the
needs of most users.



Stand-Alone Setup

The first approach is what I call a stand-alone setup , where you connect a
keyboard, monitor, and mouse to the RasPi. You will also need a powered
USB hub and either a wireless WiFi adapter or an Ethernet patch cable that
you can plug directly into your router or network switch. Figure 1-9 is a
block diagram showing all the components needed for a stand-alone
workstation.



Figure 1-9  RasPi stand-alone workstation block diagram.

The RasPi has both composite and HDMI video outputs. Most readers
will elect to use the HDMI output because it provides a much superior video
display than the analog composite video output. You will need an HDMI-to-
VGA converter module in case your monitor does not have an HDMI input.



These converters are relatively inexpensive, with a typical module, available
from Adafruit, shown in Figure 1-10 .

Figure 1-10  HDMI-to-VGA converter module.

The RasPi power supply is also worth discussing. I used a “wall wart” 5-
V, 1-A supply, which is more than adequate for providing sufficient current
to the RasPi as long as you do not attempt to power any external USB
devices from the onboard USB ports. From my experience in using the
RasPi for more than three years, I have found the board to be a bit
“sensitive” to the quality and level of the 5-V supply. Strange and frustrating
events happen if the power supply droops to 4.75 V or less, which is only a 5
percent drop. Often, simply swapping the power supply clears up mysterious
and intermittent operational issues, which can lead to unproductive and hair-
tearing development sessions. In Figure 1-9 , I have included a note that
mentions that you can also power the RasPi directly from the hub using a
micro-USB/USB cable as long as the hub power supply is rated for a
minimum of 2.5 A. I have used the Pluggable series of powered hubs to do
this in the past, one of which is shown in Figure 1-11 .



Figure 1-11  Pluggable-powered USB hub.

Any USB keyboard and mouse combination, whether wired or wireless,
will suffice for user input. However, I did find the wireless Logitech K400
keyboard/mouse device to be a very handy and flexible combination. There
were no issues with the RasPi detecting this device and installing the proper
driver. The K400 is inexpensive and is shown in Figure 1-12 . I highly
recommend this keyboard/mouse unit.



Figure 1-12  Logitech K400 wireless keyboard/mouse unit.

I would like to mention the wireless WiFi adapter that I have used
successfully for a number of projects. It is the EDIMAX EW-7811Un and is
shown in Figure 1-13 . It is very inexpensive and seems to perform quite
well for the relatively low-bandwidth projects with which I have used it.

Figure 1-13  EDIMAX EW-7811Un USB WiFi adapter.



You should note that it is rated at a maximum of 150 Mps, which is
somewhat lower than other, more expensive brands. However, none of the
projects in this book requires very high bandwidth, so why spend the money
for performance you will not require.

Headless Setup

The second approach is not a gruesome RasPi decapitation, as the name
suggests, but rather a network-centric configuration to control a RasPi
remotely. For this approach, you will only need a networked RasPi and
another computer. It doesn’t matter if the RasPi is connected wired or
wirelessly to your network. All you really need is the Internet Protocol (IP)
address that your router assigns to the RasPi when it discovers it on initial
startup. Note that no keyboard, mouse, monitor, or powered hub is required
for this setup, just a RasPi, a power supply, and either an Ethernet cable or a
wireless WiFi adapter are needed. Figure 1-14 is a block diagram showing
all the headless components and their interconnections.



Figure 1-14  RasPi headless workstation block diagram.

The secret to the simplicity of the headless setup is the software running
both on the RasPi and on the computer used to communicate with the RasPi.
This software will be one of the items discussed in the following software
section.



The last hardware item that needs to be discussed is the SD card that
stores the software the RasPi needs to function. A standard 4-GB SD card is
the minimum required for RasPi operations, but I strongly suggest you use at
least an 8- or 16-B card so that you have enough space for all this book’s
projects without having to delete any one of them. It is fairly easy to add
software whose memory requirements can quickly add up to the point where
RasPi operations could be adversely affected. However, don’t be deterred if
you purchased a RasPi starter kit that came with a prebuilt image 4-GB SD
card. It will be sufficient for all this book’s projects, but you might have to
delete some early project files to ensure there is space for later projects.

SD cards are also rated for speed with a class number. Table 1-2 shows
the various classes and the associated minimum data transfer speeds.
TABLE 1-2 SD Card Class Designations

Using an SD card with a higher class number in the RasPi allows for
much better performance. Just be mindful that SD cards with high class
numbers are more expensive than ones with lower numbers, but the cost
differential seems to be getting smaller as time progresses. I strongly suggest
that you purchase at least a Class 4 or higher card; anything less and you will
be disappointed in how slow your RasPi responds.

Finally, don’t be worried about how to create an operational RasPi SD
card. I will show you in the software section how to download and store the
latest software image on a blank SD card. It really is quite easy, and you will
feel like an expert after a few downloads and stores.

Setting Up the RasPi Software



I will begin this section by assuming that you are starting out using a stand-
alone workstation with a blank SD card. Your first step is to set up the SD
card with a suitable OS image from which to boot the RasPi. Go to the
RPF’s download website at http://www.raspberrypi.org/ downloads and
download the file named NOOBS_v1_5_0.zip, which was current at the time
of this writing. I am sure that a later revision will be available when you visit
the site, which is okay. The name NOOBS is short for “New Out Of Box
Software” and is a recent revision to the way the RasPi images have been
traditionally made available by the RPF. This is a compressed file that
should be extracted directly to the SD card that must be inserted into the
computer that holds the downloaded NOOBS file. You must ensure that the
SD card is properly formatted before you extract or unzip the file. The
easiest way to format the SD card is to use the SD Card Association’s
formatting tool, SDFormatterv4.zip, which also may be downloaded from
the same RPF website mentioned earlier. Of course, the formatting tool also
must be extracted before use.

The freshly formatted and NOOBS-loaded SD card has been designed to
boot the RasPi into a clever menu that allows you to select one of four
operating systems. To boot the RasPi, first ensure that the workstation is set
up as shown in Figure 1-7 without the power supply attached to the RasPi
board. It is okay to power up the USB hub, provided that the hub is not
directly powering the RasPi.

Next, insert the NOOBS SD card into the RasPi, and then connect the
power supply to the RasPi. If everything has been done properly, you will
see the NOOBS menu selection displayed. The NOOBS revision menu
selection has eight choices that are detailed in Table 1-3 .
TABLE 1-3 Initial NOOBS Selection Menu

http://www.raspberrypi.org/






I strongly recommend you select the first menu item, which is to install
the latest Raspian distribution. The top menu Install button will become
active after you click on any selection. Simply click on Install to commence
the installation process.

A dialog box asking you to confirm that the pending install will delete
any existing data from the SD card will appear next. This is the last time you
can avoid the serious mistake of overwriting an SD card that you didn’t
intend to use. Click on OK assuming that everything is proper and that you
are indeed using the desired SD card.

Next, a series of screens will be displayed commencing with a Welcome
message that also contains a progress bar indicating how much of the
installation has been completed. The install will take a while depending on
the size of the distribution and the data transfer speed of the SD card you are
using. The initial installation portion will be complete when the Raspian
banner is displayed. My only comment on this screen is that it contains, in
part, this statement: “based on Linux and optimized for the Raspberry Pi.”
This is all true, but it really should have included an indication that it is
based on the Debian Linux distribution because there are significant
differences between Linux distributions, which can be seen from the
descriptions in Table 1-3 .

The next screen that appears in the installation sequence is very
important. Figure 1-15 shows both the username and password that you will
need when you attempt to run the Raspian OS on the RasPi. Every Raspian
distribution that is downloaded from the RPF website has the same username
and password. Obviously, this is not a very secure situation if you connect
the RasPi to the Internet. However, never fear, I will show you later on how
to change both the username and password to establish much better security
for your RasPi installation.



Figure 1-15  Default username and password screen.

You will next see the raspi-config introduction screen. The raspi-config
main menu is automatically shown the first time you boot up the Raspian
OS. Its purpose is to easily allow you to configure your OS to address your
needs and requirements. I will shortly discuss the raspi-config application in
detail.

The last display screen shown indicates that the Raspian OS has been
successfully installed. Notice near the bottom center of the screen is the
phrase, “For recovery mode, hold Shift.” What this means is that you can get



back to the NOOBS opening selection menu by holding down the
keyboard’s SHIFT key while powering up the RasPi. At this point, you can
reinstall an old OS or select a new one. This is very useful if and when you
corrupt your existing OS, which is likely to happen with all the
experimenting we will be doing. Now, you must be very aware that any data
files stored on the NOOBS SD card will be deleted when a reinstallation
happens. This is why it is very important to copy and store any and all data
files either to a network drive or to removable media such as a thumb drive.
Neglecting to do constant backups will cause you distress when you realize
that you have corrupted the OS and consequently lost all your data. Also
realize that any applications that you might have loaded above and beyond
the core Raspian installation will be lost. This is not a problem because you
can reload and reconfigure using the same procedures you followed to install
them initially. The data, however, are another story, and any data likely will
remain gone unless you have done the backups as suggested.

Clicking the OK button on this last screen will reboot the RasPi and
eventually bring you to a command-line prompt where you will enter the
username (pi) and the password (raspberry). The raspi-config menu screen
should now appear.

Table 1-4 shows all the raspi-menu selections arranged by menu number
along with descriptions and my recommendation as to what you should do
with a particular selection. I believe that you should initially follow my
recommendation. You can always change at a later time.
TABLE 1-4 raspi-config Menu and Recommendations



There are also seven Advanced Options menu selections that I discuss in
Table 1-5 .
TABLE 1-5 raspi-config Advanced Options Menu and Recommendations



Click on the Finish button after you have entered all the raspi-config
menu selections. You should be returned to the command line.

Next, enter the following command to check whether you have installed
the desktop graphical user interface (GUI) successfully:

You should see the Desktop screen appear, as shown in Figure 1-16 , if
the OS installed correctly.



Figure 1-16  Desktop GUI.

This screen is the LXDE Desktop, which is the default Raspian OS GUI
interface. For informational purposes only, LXDE is short for “Lightweight
X11 Desktop Environment” and is built on the X-Window System. X-
Windows has nothing to do with Microsoft Windows but instead is based on
a windows framework created at Massachusetts Institute of Technology
during the mid-1980s. X-Windows is independent of any particular OS,
which means that developers must create appropriate interface software for it
to function with a specific OS.



Clicking on the LXDE icon button located in the lower-left corner of the
screen pops up a menu with four choices:
 Shutdown

 Reboot

 Logout

 Cancel

Shutdown turns off the RasPi (as the name implies). Reboot causes the
RasPi to cycle through a complete restart and presents you with a command-
line login prompt after it is done. Logout stops the GUI and brings you right
back to a command-line prompt. No reboot or resetting is involved with this
command. The Cancel command brings you back to the GUI screen.

You will now have a complete Raspian OS up and running if you have
followed all the preceding steps successfully. Before proceeding to any more
advanced instructions, I would like to show you how to set up the RasPi
using a complete Raspian OS image that may be downloaded from the RPF’s
website.

How to Set Up the RaspPi OS Using an Image File

This section shows you how to set up a RasPi with a raw image file. This
was the only way you could create an operating OS prior to introduction of
the NOOBS software. It is important to understand this procedure because it
allows you to load any OS image and not be limited to the ones contained in
NOOBS.

The first step is to download the desired image file from the RPF’s
download website. This is the same site mentioned earlier where you
downloaded the NOOBS software. The image software is located further
down on the website listing from the NOOBS section. At the time of this
writing, the current Raspian image was listed as 2015-02-16-wheezy-
raspian.zip. It will need to be unzipped or extracted before being further
processed.

You cannot simply unzip the file onto an SD card. It won’t work because
the image must be transferred in a very specific manner for it to boot and
function properly as an OS. There is a free open-source program named



Win32DiskImager that you would use on a Windows computer to transfer
the unzipped image to a formatted SD card. This program is available from
the sourceforge site at
http://sourceforge.net/projects/win32diskimager/files/latest/download . The
program download is in a zipped format that must be extracted to a
convenient location prior to use. Figure 1-17 is a screen capture of the
Win32 Disk Imager program in action downloading the latest Raspian image
to a Class 10 SD card.

Figure 1-17  Win32 Disk Imager program executing.

Notice the more than 17 MB/s transfer rate shown in the figure. You will
quickly appreciate using high-speed SD cards because they allow read and
write operations to occur an average of two to three times faster than the
much more common Class 4 SD cards.

All you need to do next is put the newly imaged SD card into the
unpowered RasPi and apply power to start the boot process. This is what I
did, and I saw absolutely nothing on the monitor screen. This was certainly
discouraging because I was sure that I had done everything as described in
the RPF’s instructions. It turns out that this raw Raspian image caused the
RasPi to default to the analog video output instead of using the HDMI output
to which my monitor was attached. This was not the case with the NOOBS
installation, which apparently defaults to the HDMI video output. In any
case, it is fairly easy to remedy this situation. Figure 1-18 is a listing of all

http://sourceforge.net/projects/win32diskimager/files/latest/download


the files that are installed on the SD card after the Win32 Disk Imager
finishes executing. Note that this screen shot is from the laptop that I used to
create the SD card and not from the RasPi.

Figure 1-18  Raspian raw image file listing.

Shown in the list near the bottom is a file named config.txt, although the
.txt extension is not shown in the file name list because of my Windows
folder configuration. This file must be edited for the video display to appear
on the HDMI video output. Figure 1-19 shows this file’s content using the
Notepad editor.



Figure 1-19  Config.txt file contents.

You will need to uncomment the line

All you need to do to uncomment the line is to delete the # symbol from
the line’s beginning, then save the file, and exit Notepad. The SD card
should now be all set to display the boot sequence from the HDMI port.

Booting a raw image will bring you to the raspi-config screen, as was the
case for the NOOBS installation. All the recommendations made for that
installation hold true for this one, with the addition of expanding the file



system. The NOOBS installation does this automatically, but this is not the
case for this more manual install.

Updating and Upgrading the Raspian Image

The NOOBS software and raw-image OS should be updated and upgraded to
have the latest software revisions and patches in place. The update should be
done first by entering the following at the command-line prompt:

This will normally take several minutes depending on how out of date the
OS image was at install time versus the number of updates issued from the
OS image publication date. Incidentally, I want to explain this command a
bit further for those of you without much Linux command experience: sudo
instructs the OS to execute the commands that follow as if an administrator
issued them. Linux is constructed by privilege layers with the admin layer at
the top or having the least number of restrictions. I discuss this in much
further detail later in this chapter. apt-get update simply instructs the OS to
get the update.

At this point, you should have a fully functional and updated RaspPi
running the Raspian Linux distribution after completing either the NOOBS
or raw-image installation. This must be in place before proceeding with any
of the following RaspPi projects.

Headless Configuration

Unfortunately, it is one of those catch-22 situations (apologies to younger
readers who don’t know what this means—Google it!) where you need a
fully configured SD card to run a headless configuration. But you can’t
configure it without a stand-alone workstation, as described earlier, or a
preimaged SD card. My strong recommendation would be to but a
preimaged SD card if you already know beforehand that you want to run
headless.

A headless configuration was shown in Figure 1-13 , which indicated that
you only need to connect to a RasPi in a network using either an Ethernet
cable or a wireless WiFi adapter. The network router will automatically



provide an IP address to the RasPi using what is known as the Dynamic Host
Configuration Protocol (DHCP), which is normally the default setup in most
home or business wireless routers. What you need to do is attach another
computer to your network that runs a program that can connect to the RasPi
and remotely run it. For Windows computers, that program is called PuTTY
and is freely available for download at
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html .

PuTTY uses the SSH Protocol to communicate with the RasPi, and this
protocol must be enabled on the RasPi to allow the communication link to
function. You will need to determine the RasPi’s IP address to establish this
link. The following procedure is usually successful in determining the
RasPi’s IP address:
1. Open a browser session on the computer you wish to use to control the

RasPi.

2. Go to the admin IP address for the router that is the DHCP server for
your network. Often it is at 192.168.0.1.

3. Enter the username and password to get to the control webpage. These
are normally shown in the instructions that came with the router, but
they are also readily available by doing an Internet search for your
specific router model.

4. Click on Attached Devices or some similar menu selection that displays
the IP addresses of all devices attached to the network, whether through
wires or wireless.

5. Look for the entry labeled Raspberry Pi. This is the IP address you will
need for PuTTY.

It is a simple matter to connect to the RasPi through your computer once
you have the RasPi’s IP address. I will also show you another way to
determine or confirm the RasPi’s IP address a little later.

Start PuTTY, and enter the IP address in the Host Name (or IP Address)
text block. Leave all the other selections and text blocks alone. Figure 1-20
shows the initial PuTTY screen with my RasPi’s IP address entered into the
Host Name text block.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Figure 1-20  Initial PuTTY screen.

Your RasPi’s IP address likely will be different from the one I entered
into the Host Name block. Also check that the port number is set at 22,
which is the default for the SSH Protocol. You should see the RasPi’s
command-line opening screen after you click on the Open button located at
the bottom of the PuTTY opening screen. Figure 1-21 shows the RasPi login
screen being delivered to the remote computer from the RasPi via SSH.



Figure 1-21  Opening the RasPi login screen over the network.

Just enter the default username (pi) and the default password (raspberry),
and you will see the normal command-line prompt appear, as shown in
Figure 1-22 .



Figure 1-22  RasPi command-line prompt.

You will now be able to interact with the RasPi in exactly the same way
as if you were sitting in front of a stand-alone workstation. The one major
limitation with the SSH Protocol is that it is text only and you cannot open a
GUI desktop. This would be fine for most operations, but it would prevent
you from running any program with graphics, which, in my opinion, is a big
constraint. However, there is a great solution to this situation that I will
discuss in the next section.



Headless Operation with Graphics

Linux has a wonderful program suite named xrdp, which stands for “X11
Remote Desktop Protocol.” I first mentioned the X11 server in the earlier
discussion of the LDXE desktop GUI. This is the same server engine used in
this software suite. xrdp also contains a virtual networking connection
(VNC) server called tightvncserver that functions in a similar manner to
SSH except that it handles both text and graphics. Type the following
command to install xrdp on the RasPi:

This program suite takes only a few minutes to install and takes up about
11 MB of file space. You start the VNC server by entering the following at
the command line:

Every time you start the VNC server, you will use the following line:

where the lowercase x represents a number. The first time you start, the
number should be a 1 . You need to remember this number because it is an
important parameter when you run the Windows client on the remote
computer. Also, at the first startup, you will be prompted to enter a password
that can be up to eight characters in length. You will need to input this
password when you authenticate the remote computer with the RasPi. This is
all that is required on the RasPi or server side; it is now time to focus on the
Windows or client side.

You will need to download a free VNC suite from
http://tightvnc.com/download.php . This download includes both server and
client VNC packages, but only the client package is needed for this
configuration. The website has two Windows installers (.msi files), one for
32-bit machines and another for 64-bit machines. Select the appropriate one
for your computer, and install it.

Go into the Start menu, Program Files, and find the TightVNC folder.
Click on it, and then double-click on the TightVNC Viewer menu item. You

http://tightvnc.com/download.php


should see the screen shown in Figure 1-23 .

Figure 1-23  Opening screen for the TightVNC Viewer.

Enter your RasPi’s IP address in the Remote Host text box, as seen in the
figure. Also append a colon to the number that you saw when you started the
RasPi’s VNC server. In this case, I added :2 . Yours will be different. Then
click the Connect button next to the text box. If everything goes smoothly,
you should see the RasPi’s VNC server authentication dialog box appear,
which is shown in Figure 1-24 .



Figure 1-24  The Raspberry Pi VNC authentication dialog box.

Enter the password you created when you first configured the RasPi’s
VNC server. Click the OK button, and you should see the classic Raspian
LXDE GUI desktop, as shown in Figure 1-25 .



Figure 1-25  Raspian LXDE desktop served by the TightVNC connection.



There is absolutely no difference in using this desktop GUI versus
interacting with the stand-alone desktop GUI. I also launched a terminal
window, shown in Figure 1-26 , to demonstrate that everything responds as it
should, even though it is a remote desktop connection.



Figure 1-26  Launching a terminal window in the desktop.



This really is very cool technology when you consider what has taken
place. I am remotely controlling the GUI desktop of an extremely
inexpensive Linux computer using a completely separate Windows
computer, all with free, open-source software. I guess that it’s just the geek
in me surfacing to appreciate this setup. I hope you also appreciate it.

I will close this chapter with a discussion of Linux users, privileges, and
permissions because they will be important considerations on how all the
software is run for this book’s projects.

Linux Users, Privileges, and Permissions
Not all Linux users are created equal; one named root has administrative
powers that enable the root user to access all files and directories and to
perform any possible operation allowed within the Linux OS. Another name
for root is the super user , which pretty much describes the overarching
powers of this user. You will often need to act as root to perform certain
operations, such as opening kernel-level files and creating new files using a
text editor. Fortunately, there is an easy way for a regular user named pi to
act as root, and this is to invoke the sudo command. sudo is really an
application that is already included in the Wheezy Debian distribution
because it is used so often. For example, to create a new Python file named
test.py using the nano editor, you would enter

The Linux OS also has user privileges that date back to the original Unix
OS design principles that the OS should simultaneously support multiple
users and that these users would not interfere or somehow disrupt each other.
This is where the concept of permissions came into being. A permission may
be thought of as a right to interact with a file or directory, and remember that
almost everything in Linux is considered to be a file from the OS
perspective. There are three permission types assigned to every file:
 read : This allows a file’s contents to be accessed but not altered.

 write : This allows a file’s contents to be modified.

 execute : This permits a file to be run or executed. Of course, the file must
be in an executable format. For directories, this permission allows the user



to access the directories.

You may view a file’s permission by using the ls command with the -l
option. Figure 1-27 is an example of this command run on a file named
drawing.py located in the python_games subdirectory, which, in turn, is in
the RasPi home directory.

Figure 1-27  Displaying file permissions.

There can be different user groups, as you may see from the preceding
figure. For most of this book’s projects, you will create and run project
software as a user in a directory both named pi. You can definitely change
this by adding another user with the useradd command. For instance, to
create a new user named boxer, you would enter:

You also need to enter a password, which would be associated with the
user boxer:

To change to the new user, just enter the su command, which is short for
“switch user”:



You will then be prompted to enter the password you created for this new
user. Enter the following to check for the current user name:

This command results in the following being displayed:

Finally, if you wish to switch to root, simply enter the following without
any user name:

This should result in the following being displayed on the console screen:

Notice that the user is now shown as root, but the directory is still RasPi’s
home directory, which should be fine because most new programs or scripts
will be located in that directory.

Summary
This was an introductory chapter in which I discussed all the available
RaspPi models. This book’s projects use RasPi Models B, B+, A+, and B
gen 2. I showed you how to create bootable SD card images that you could
use in both stand-alone and headless configurations. The GPIO digital pin
connections also were discussed for all the RasPi models. The GPIO
connector is the primary means used to interface a RasPi with sensors and
actuators. The chapter concluded with a brief discussion of Linux users,
privileges, and permissions.



CHAPTER 2

Touchscreens

IN THIS CHAPTER , I WILL SHOW YOU how to install, connect, and program a
mini-sized touchscreen display to a RasPi Model B. I will also explain the SPI
bus and how you can use a Linux file to control a GPIO pin because both
these functionalities are required for this project.

PiTFT Touchscreens
A touchscreen in is just an ordinary LCD device that has an additional human-
interface device (HID) that allows users to touch the screen to further interact
with the RasPi in accordance with an underlying control/display program. I
will be using the 2.8-inch (diagonal) PiTFT, distributed by Adafruit Industries
and shown in Figure 2-1 .



Figure 2-1  Adafruit PiTFT Model 1601.

This touchscreen is very compact and is specifically designed to be
plugged into either a Model A or B RasPi. Incidentally, the figure shows the
touchscreen mounted on a Model B RasPi, which happens to be running the



classic Blender video Big Buck Bunny . I will demonstrate how to display this
video later on in this chapter.

Figure 2-2 shows a side view of the touchscreen mounted on a Model B
RasPi, where it is plugged directly into P1, which is the 26-pin GPIO
connector.

Figure 2-2  PiTFT mounted on a Model B RasPi.

I will now provide you with a bit of background on the touchscreen
technology now that I have shown you the actual touchscreen that will be used



for this chapter’s project.

Chapter 2 Parts List

Touchscreen Background
I will begin this discussion by giving credit to Steve Kolokowsky, of the
Cypress Semiconductor Corp., whose white-paper content I freely used in this
chapter. Incidentally, Planet Analog published Steve’s white paper entitled
“Touchscreens 101” in 2009. Touchscreens may be classified as either
resistive or capacitive. Their functions are identical, but how they achieve
their functionality is completely different. I will begin by describing the
resistive touchscreen because this is the type used in this project.

Resistive Touchscreens

Figure 2-3 shows a layer-view cutaway of a resistive touchscreen.



Figure 2-3  Cutaway view of a resistive touchscreen.

The touchscreen is made up of six layers, as you can see from the figure.
The top layer is a protective flexible, clear-plastic layer, which is the one you
press your fingertip or plastic stylus against. Immediately underneath the
plastic overlay is the ITO X -layer. ITO is an acronym for “indium-tin-oxide,”
which is a mildly conductive metal alloy. The ITO layer is extremely thin and
transparent. It can be thought of as a two-dimensional resistor that is used to
detect the X -axis touchpoint coordinate. I will discuss how this is
accomplished after I introduce the remaining layers. Next follows a layer of
nonconductive transparent dots that provide an air gap between the ITO X -
layer and the ITO Y -layer, which is located immediately under the dot layer.
The ITO Y -layer is made up of the same material as the X -layer, and it is
used to detect the Y -axis touchpoint coordinate. A thin glass layer lies directly
under the ITO Y -layer, and it provides a stable platform for all the layers
above it. Finally, a LCD display with a backlight is positioned under all the
layers just discussed. It should be noted that the LCD used in touchscreen



design should be very quiet from an electrical noise perspective so as to
minimize potential interference with the touchsensor elements.

Figure 2-4 is a block diagram illustrating all the interconnected
components necessary to detect the X -axis touch-coordinate point.



Figure 2-4  Block diagram of the X -axis touch-sensor layer.

There are three flexible metalized traces printed on the X -axis ITO layer;
two are vertical bus lines, and the third is a horizontal sense line. The left-
hand bus line has +5 VDC applied to it from the touchscreen controller chip.
The right-hand bus line is at ground or 0-VDC potential. These bus lines will
cause a distributed current flow across the ITO layer because the ITO alloy
acts more like a resistor than a perfect conductor.

The ITO layer will deform when a fingertip or a plastic stylus, as shown in
the figure, is pressed onto the outermost poly layer. This deformation causes a
slight disruption in current flow, which can be detected by the sense line as a
voltage between 0 and 5 V. The deformed ITO layer acts as a virtual
potentiometer in which the sense line is the virtual center tap, as shown in
Figure 2-5 .

Figure 2-5  Deformed ITO layer as a virtual potentiometer.

The sense line is connected to an analog-to-digital converter (ADC) within
the touchscreen controller, and the digital equivalent to the sensed voltage is
then sent to the RasPi for further processing. The ADC typically has either 10
or 12 bits of resolution depending on the size and resolution of the
touchscreen sensor. However, you do not have to be concerned with the actual
ADC bit resolution because that is already figured into the RasPi driver
software. Figure 2-6 is a block diagram showing all the interconnected
components necessary to detect the Y -axis touch coordinate point.



Figure 2-6  Y -axis touch sensor layer block diagram.

The Y -axis is essentially identical to the X -axis except that all the bus and
sense lines are oriented 90° to those of the X -axis. The touchscreen controller
will energize the Y -axis bus lines only milliseconds after completing the X -
axis coordinate read operation. Obviously, the touchpoint is the same for the Y



-axis as it is for the X -axis because the Y -axis ITO layer is directly under the
X -axis, separated by the insulating dot layer.

The touchscreen just described is also referred to as a four-wire
touchscreen , as the number refers to the interconnecting wires between the
ITO layers and the controller. Five- and eight-wire resistive touchscreens are
also available, as they offer improved accuracy and sensitivity. Those systems
are more complex and expensive than the unit we will be using, and the
improved qualities are not required for this project.

The resistive touchscreen has a few limitations that you should know
about. While not terribly limiting, they do impose some constraints regarding
how to properly use this type of touchscreen.

 The protective top poly screen is 20 to 25 percent opaque, which reduces the
overall LCD luminance. This might cause problems when the touchscreen is
used outdoors under a bright sun.

 The ITO layers can be a bit nonuniform, which leads to nonlinear resistance
within the layer. This translates to inaccurate coordinate position sensing.

 Resistance touchscreens often require more recalibrations than capacitive
touchscreens. This might be a nuisance if the touchscreen is remotely
deployed and development tools not readily available to accomplish the
recalibration.

I also should mention that both the X and Y digital coordinate values are
sent to the RasPi using the SPI Protocol, which I will describe following
discussion of the capacitive touchscreen. Although this project uses the
resistive version, I believe that it is important to understand how both the
resistive and capacitive touchscreens function and when to select one or the
other for use in a specific project.

Capacitive Touchscreens

You are probably quite familiar with capacitive touchscreens because they
are used universally in just about all modern smart phones and tablets. The
capacitive touchscreen functions in a somewhat similar fashion to the resistive
version, but it uses a somewhat different layer structure, as can be seen in
Figure 2-7 .



Figure 2-7  Cutaway view of a capacitive touchscreen.

This touchscreen uses a glass top layer, which provides 100 percent clarity.
The next layer is an ITO layer consisting of an array of closely spaced dots,
which are one part of the capacitive sensing scheme. Following this layer is a
pressure-sensitive adhesive (PSA) that closely couples the two ITO layers
while providing an insulator between them. The next layer consists of more
ITO dots, similar to the layer above. The two ITO layers make up a fine grid
of microcapacitors, with the PSA layer acting as a dielectric. The display LCD
is placed beneath the second ITO layer, completing the touchscreen assembly.

The essence of touch sensing is that when a fingertip or appropriate stylus
touches the top glass cover, it will slightly affect the capacitance of one or
more of the microcapacitors beneath the touchpoint. The touch effect is not
much, generally about a 4 to 5 percent change, but the touchscreen controller
can detect this small change in capacitance. The touchscreen controller also
uses individual wires to connect to each row and column of the
microcapacitor array, and it will poll or sense these wires to detect the
capacitors that have changed value as a result of the touch.

As you can imagine, this sensing scheme is quite stable and requires little
to no recalibration once it is set up. There is, however, one issue regarding
coordinate resolution, which you can see from Figure 2-8 . The problem is
that placing a fingertip on the top glass screen will affect more than one or
two microcapacitors, thus hindering accurate sensing of the desired
touchpoint.



Figure 2-8  Touching a capacitive screen.

The solution to this problem is to employ a technique known as projected
capacitive sensing . This technique uses all the changed values of the
microcapacitors in and around the touchpoint to determine the center of
gravity of the touchpoint by a process of interpolation. Note that no physical
changes were done to the ITO dots to implement this technique. It’s all
accomplished by software residing in the touchscreen controller.

NOTE
As of February 2015, Adafruit Industries offered a capacitive touchscreen for sale. It is Model 1983 and
is a little more expensive than the resistive model I am using for this project. All the software that I
describe in this chapter can be used on either type of touchscreen without any modifications as to the
type.

There are a few limitations or constraints that you should know before
using a capacitive touchscreen in a project. For example:



 Wearing a glove likely will not result in enough of a capacitance change to
be detected. You probably already know this if you tried to use a gloved
hand with your smart phone.

 Extreme weather also can affect these touchscreens. It is not that the screens
themselves are affected; rather, it’s just that people’s fingers cannot change
the capacitance at the touchpoint sufficiently owing to the environmental
conditions. In such a situation, it would be wise to use an appropriate stylus
designed to work with these touchscreens.

 Some people have a condition, colloquially known as “zombie fingers,” and
cannot reliably operate a capacitive touchscreen. Their only alternative is to
use a stylus.

I will next discuss how a resistive touchscreen interfaces with a RasPi
using the SPI Protocol. This interface is typical, but it is not mandatory for
connecting touchscreens to RasPi-type controllers.

PiTFT Touchscreen Interface

The touchscreen controller sends and receives data from a RasPi using the SPI
Protocol, which the RasPi supports in the Wheezy Linux distribution. SPI is a
bit-serial protocol, which I explain in the following sidebar if you wish to
understand it further. However, you can skip reading the sidebar without any
loss of continuity regarding this project.

The serial peripheral interface (SPI) is one of several bit-serial data
communication channels that the RasPi supports. It is a synchronous
serial data link that uses one master device and one or more slave
devices. A minimum of four data lines are used with SPI, and Table 2-1
shows the names associated with the master (RasPi) and slave (1601)
device. Figure 2-9 is a simplified block diagram showing the principal
components used in a SPI data link.
TABLE 2-1 SPI Data-Line Descriptions



Figure 2-9  Simplified block diagram of an SPI data link.

Usually, two shift registers are involved in the data link, as shown in
the figure. These registers may be hardware or software depending on
the devices involved. The RasPi and PiTFT both implement their shift
registers in software. The two shift registers form what is known as an
interchip circular buffer arrangement that is the heart of the SPI.
Data communication is initiated by the master by first selecting the
required slave. The RasPi selects the 1601 by bringing the SS line to a
low state or 0 VDC. During each clock cycle, the master sends a bit to
the slave, which reads it from the MOSI line. Concurrently, the slave



sends a bit to the master, which reads it from the MISO line. This
operation is known as full-duplex communication , that is,
simultaneous reading and writing between master and slave.
The clock frequency used depends primarily on the slave’s response
speed. The touchscreen controller in the PiTFT can run at 32 MHz,
which easily should be compatible with the RasPi’s computational
rate. The PiTFT clock speed may be adjusted if the display becomes
erratic or sputters. I show how this is done in the installation
instructions that follow.

The preceding sidebar completes the background on how touchscreens
function. It is now time to discuss how to install an Adafruit resistive
touchscreen with a Model B RasPi.

RasPi Touchscreen Installation
I have separated the installation process into four sections as follows:
1. Hardware installation

2. Software installation

3. Configuration

4. Calibration

Hardware Installation

The hardware installation is quite simple: simply plug the matching 26-
connector into the Model B RasPi. This is all that is needed if want the
touchscreen installation to be barebones as far as the physical setup. However,
I wanted it to be a bit fancier, so I elected to install the RasPi and PiTFT in a
custom case. The case I used was the PiBow case with a PiTFT extension
available from Adafruit Industries as Model 2779. Figure 2-10 shows the final
installation, and I believe that it really looks like a finished product instead of
an experimental project.



Figure 2-10  PiTFT with RasPi installed in a PiBow case.

One modification to the PiBow case is necessary if you wish to use the Pi
Cobbler with the RasPi/PiTFT combination. I have made this modification, as
you can clearly see in the figure. Figure 2-11 is a close-up of the modification
showing where the Pi Cobbler ribbon cable exits the PiBow case.



Figure 2-11  Pi Cobbler ribbon cable pass-through in the PiBow case.

The modification involves cutting off a piece of plastic from stack layer
four, as shown in Figure 2-12 , to allow room for the Pi Cobbler ribbon cable
to pass through the PiBow case.



Figure 2-12  Modification to PiBow stack layer four.

The Pi Cobbler ribbon cable then can be plugged into the 26-pin extension
socket as shown in Figure 2-13 . The ribbon also must be carefully folded
back to allow it to pass over the socket and out of the PiBow case.



Figure 2-13  Back view of the PiTFT.



You also should note how the flexible ribbon cable from the PiTFT display
is inserted into the touchscreen controller socket. Be very careful to carefully
align this cable with the socket because serious problems will result if it is not
inserted correctly into the socket. Figure 2-14 shows the PiBow stack
arranged up to and including stack layer four to help guide you with case
installation.



Figure 2-14  Partial PiBow case installation.

The Pi Cobbler cable should now easily fit in the new opening created by
cutting the plastic piece from the PiBow stack layer four. I would suggest that



you now complete the PiBow case installation by placing the remaining
stacking layers and fastening them with the long nylon screws and nuts. I
would also caution you that I had to slightly file the right-hand side tips of the
PiTFT printed circuit board (PCB) to provide clearance for the two nylon
screws. You may not have to modify them because I only had to file them
down about 1/32 of an inch, and manufacturing tolerances are such that yours
may fit as built.

Button Installation

This section concerns the optional installation of four 6-mm slim tactile
buttons on the PiTFT PCB, one of which is shown in Figure 2-15 . A package
of 20 of these buttons may be purchased from Adafruit (Part No. 1489).



Figure 2-15  Tactile switch.

The four buttons will need to be soldered into the PCB holes located at the
bottom of the touchscreen. These tactile buttons, when pressed, will ground
RasPi GPIO pins 18, 20, 22, and 23. Their functionality is uncommitted and
available for use in a program. The button connected to pin 23 may function
as a RasPi reset when the PiTFT software is loaded. You must choose this
feature during the PiTFT configuration process.

Completing the optional button installation finishes the physical
installation. It is now time to discuss software installation.



Software Installation

There are three approaches you can take when it comes to installing the driver
software that supports the PiTFT. The first is to use a prebuilt Wheezy image
that already includes all the PiTFT drivers as well as some testing software.
This image is available courtesy of Adafruit at http://adafruit-
download.s3.amazonaws.com/ 2015-02-16-raspbian-pitft28r_150312.zip. This
is a 3.28-GB image that also would need to be written onto an SD card using
the procedure detailed in Chapter 1 . The folks at Adafruit refer to this
approach as an “easy install,” which it is, and I would definitely recommend it
to my readers who are not comfortable with running scripts or compiling and
building code.

The second approach involves downloading and running a script or helper
file from the Adafruit learn website at https://learn.adafruit.com/adafruit-pitft-
28-inch-resistive-touchscreen-display-raspberry-pi/easy-install . The helper
file found on this site automates many process steps, including downloading
files and compiling and installing them onto an existing Wheezy distribution.
I would recommend this approach for several reasons. The first is that you
may already have a customized Linux distribution set up that you do not want
to discard. Another reason is that you will learn a lot about the PiTFT setup
and will be able to modify it to suit your specific needs, which is not possible
with a prebuilt image.

The third approach involves manually integrating a series of libraries and
support code into an existing Wheezy distribution. This involves essentially
following a manual series of steps that have been automated by the helper file
used in the second approach. I would recommend this approach only to those
experienced readers who are very comfortable compiling, building, and
installing Linux kernel code.

I will present the second approach because it is a good learning experience
yet not too overwhelming. This software installation generally follows the
second approach, where a helper file is used to install the necessary software.
For readers interested in this process, I will also present an example later on in
this chapter on how to compile and build a program.

Helper File Software Installation

http://adafruit-download.s3.amazonaws.com/
https://learn.adafruit.com/adafruit-pitft-28-inch-resistive-touchscreen-display-raspberry-pi/easy-install


This installation generally follows the Adafruit tutorial, as mentioned earlier. I
have arranged it in a step-by-step sequence, which you should follow to
ensure a successful completion. I will also be using a headless or Secure Shell
Protocol (SSH) link to the RasPi because it was easier for me to read the text
on a laptop screen rather than attempting to read the smaller text on the PiTFT
screen. You certainty may use the PiTFT screen if you’re comfortable with the
text size. It will not be possible to use both the PiTFT and the HDMI displays
simultaneously because of the framebuffer selection, which I will explain
later.
1. I will start by assuming that you have a fresh install of the latest Wheezy

Linux distribution. The latest is always available from
http://www.raspberrypi.org/downloads/ .

2. Update and upgrade the installed distribution.

3. Download and install the helper file. Be patient; the install can take up to
20 minutes.

4. Run the actual PiTFT configuration using the helper file.

5. At the end of the configuration process, you will be asked two questions.
The first is whether you want the PiTFT to be the console text screen. The
second will be whether you want the button connected to GPIO pin 23 to
act as a reset, as I mentioned earlier. Answer the questions to suit your
personal preferences. Figure 2-16 is a screenshot showing these questions.

http://www.raspberrypi.org/downloads/


Figure 2-16  PiTFT configuration questions.

6. All that’s left is to reboot the RasPi to have the PiTFT completely set up.

I will show you how to check the PiTFT installation in the following
calibration section.

Configuration

The good news for this step is that all the PiTFT configuration has already
been accomplished if you used the helper file approach. However, I will cover
some details about manually configuring this touchscreen because it will help
you to understand the process.

The PiTFT configuration process involves modifying an existing text file,
which will hold the device’s parameters. I would strongly suggest that you use
the already installed nano text editor because I have found it to be easy to use
and very convenient. Enter the following to start modifying this configuration
file:



Enter the following code after the last line in the existing config file:

After you enter all the code, press CTRL-O (^O) to save the modified file.
Then press CTRL-X (^X) to exit the nano editor.

There are few things that you should know regarding the PiTFT
parameters. In the last line, the parameter pitft.rotate=90 sets the view for
the PiTFT screen. There are four choices for the view prospective:

 0: Portrait with the screen bottom near the USB jacks

 90: Landscape with the screen bottom near the headphone jack

 180: Portrait with the screen top near the USB jacks

 270: Landscape with the screen top near the headphone jack

The parameter speed=32000000 sets the touchscreen clock rate. You might
need to adjust this downward to 16000000 if the screen starts appearing erratic
or jumpy.

Finally, the parameter fps=20 sets the number of frames shown per second.
The default value should be fine, but if you reset the clock rate, this parameter
might have to be lowered by a few frames per second.



The next section concerns calibration. Again, as with the configuration
section, all the required calibrations have already been done if you used the
helper file for the PiTFT installation.

Calibration

For a touchscreen, calibration is really about matching the logical coordinates
with the physical screen, where the LCD origin coordinates (0, 0) are located
at the appropriate screen corner and the maximum LCD coordinates (320,
240) are at the diagonally opposite corner. Once these are set, all the logical
touchpoints should linearly match the physical ones. This means that if you
touch the screen in precisely the center with a stylus, you should return the
midpoint LCD coordinates (160, 120). It is also important to realize that the
touchscreen controller returns absolute numbers based on the number of ADC
bits. The PiTFT uses a multichannel 12-bit ADC, which means that the
reported values will range from 0 to 4095. Remember from your high school
math that 12 bits can represent 4096 separate whole numbers or, more
precisely, 212 = 4096. Now the X -axis must be physically matched to the
LCD’s 320-pixel range, which means that the absolute value must be scaled or
reduced proportionally to match the 0- to 319-pixel range. The same is true
for the Y -axis, except that the scale factor matches the 0 to 4095 absolute
range with a 0- to 239-pixel range. Now let’s move on to starting the
calibration process.

udev Rule

The first step in this calibration process is to create an udev rule, which will
fix or persist a logical name for the PiTFT. The current Linux device manager
is named udev, and it uses text-based rules to manage all the devices
connected to the Linux computer on which it is installed. Enter the following
to use the nano editor to create a text file to hold the rule:

Next, enter the following into this file:



NOTE
I had to break this statement up to fit this book’s format. You should keep it all in one line when
you enter it.

After you save and exit the nano editor, you will need to remove and
reinstall the touchscreen driver in order for the new udev rule to take effect.
Enter the following to accomplish this:

You should next check to see if the driver installation and rule change were
effective. Enter the following:

This command results in an eventx being returned, where the x stands for a
number starting at 0. Figure 2-17 shows the result of running this command
on my RasPi.

Figure 2-17  Screenshot for the ls command executed on the touchscreen.

Your number may be different from 0 because the event number is assigned
based on the number of keyboards/mice and similar input devices that are
actively connected to the RasPi. You are now ready to install the touchscreen
library and test the software, which will allow you to both debug and calibrate
the touchscreen.



evtest and tslib

Enter the following command to install both the test software and the
supporting touchscreen library:

Next, run the evtest application by entering

You should now be viewing the initial evtest screen, which shows some
configuration information and is awaiting a touch event or input, as shown in
Figure 2-18 .



Figure 2-18  Initial evtest screenshot.

Next, use a plastic stylus to carefully and briefly touch the center point of
the touchscreen. You should see a series of events captured by the evtest
application, as shown in Figure 2-19 .





Figure 2-19  Touchpoint event screenshot.

Actually, 19 events were captured, from which I shortened the display to
10. Each event is time-stamped with the number of elapsed seconds from
1/1/1970. Of course, we are only interested in the time frame surrounding the
events, which lasted only 0.172861 second or approximately 173
milliseconds. Two principal event types are shown, 1 and 3. Event type 1 is
the BTN_TOUCH with a value of 1 to start and a value of 0 after the touch is
lifted. Event 3 has three subcodes, which report the absolute X - and Y -
coordinates as well as an absolute pressure reading. If you closely examine
Figure 2-19 , you will see that the X -coordinate values hover around 2300,
and the Y -coordinate values hover around 2050. This makes sense when you
consider that the absolute X and Y ranges are 0 to 4095. I touched the stylus
near the screen center, which resulted in having approximate center value
readings.

The origin point or coordinate values (0, 0) are at the upper left-hand
corner, and the maximum coordinate values of (4095, 4095) are at the lower
right-hand corner because the screen has been logically rotated 90°, as was
shown in the configuration section. Also recall that these absolute coordinate
values must be scaled to match the LCD pixel range, as I explained earlier.

The measurement of absolute pressure is a bit more complex because it
involves measuring the cross-layer resistance between the X -ITO and Y -ITO
layers. Suffice it to say that a higher reported number corresponds to higher
applied touchpoint pressure. It would depend on the specific application using
the touchscreen whether or not the pressure measurement was actually used.
However, I do believe that pressure measurements are used in the normal
internal operation of the touchscreen controller in order to achieve specific
functionalities.

Automagic Calibration Script

Adafruit has provided the following Python script to automatically run the
touchscreen calibration. You will need to enter the following:



NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

After you have downloaded the Python script, enter the following to run it:

Figure 2-20 shows the result of running this script on the touchscreen I
previously set up with my RasPi using the helper file.



Figure 2-20  Screenshot of the automatic calibration script results.

You will be presented with a question at the end of the script results asking
whether or not to update the current configuration. I answered yes because the



current configuration exactly matched the old configuration.

Manual Calibration

I will now discuss a manual calibration procedure that might come in handy
for readers who believe that the automatic calibration is not quite precise
enough for their use. You will need to have already downloaded and installed
both the tslib and libts-bin packages for the manual calibration to work. I
discussed how this was done in the evtest and tslib section.

Enter the following to start the manual calibration:

NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

Figure 2-21 shows the result of entering the preceding command.



Figure 2-21  Manual calibration screenshot.

You need to touch the center of the touchpoint shown in the figure. Four
more touchpoints will appear on the screen, each one at a time to be touched.
Figure 2-22 shows the result of the five touches and the set of new calibration
constants that will be used as a result of this manual calibration.



Figure 2-22  Manual calibration results.

You may run the following test to check on how well the new calibration
constants are working. Enter the following to initiate the test:

NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

Figure 2-23 shows what will appear on the touchscreen as a result of
running this command.



Figure 2-23  ts_test touchscreen display.

A corresponding coordinate display will also appear on the console screen.
However, the coordinates shown will be in terms of the LCD pixels and not
the absolute coordinates shown in previous figures. Apparently, the ts_test
program automatically scales the absolute coordinates before displaying them.

I next drew a short line from the displayed touchpoint to the left in order to
generate some sample coordinates. Figure 2-24 is a console screenshot, which
has been shortened, to show the results of the line drawn on the touchscreen.





Figure 2-24  Console display for a straight horizontal line drawn on the
touchscreen.

You may see from the figure that the X values increase from 160 to about
290, while the Y values remain reasonably constant around 120. These
numbers translate into a horizontal line drawn on the touchscreen from the
center to the right edge, which is exactly what I did. The pressure readings
average about 120, which corresponds to medium force applied to the stylus
used to draw the line. I also later tried drawing another line using more force
on the stylus and recorded pressure readings up to about 139. I later
determined that simply using a fingertip on the touchscreen could generate
readings up around 220. I can only conclude that the area of applied pressure
plays some role in determining the ultimate pressure reading. Based on my
findings, I would be a bit leery of relying on pressure readings to derive any
conclusions about any specific touchscreen event other than when it started
and stopped.

I did another check using the ts_test application in which I tapped both
the origin and maximum touchpoints on the touchscreen. Figure 2-25 shows
these two points as tiny white dots. I touched the Draw button on the screen to
show where I placed these two dots.



Figure 2-25  Max and min touchpoint test.

The console screen displayed the minimum point as (5, 5) and the
maximum point as (319, 237). These are very close to the expected values of
(0, 0) and (320, 240), respectively. If you examine the figure very closely, you
will see that the origin touchpoint was slightly down and away from the true
origin, which is the upper right-hand corner of the slightly lighter-colored
touchscreen region. The maximum touchpoint is almost dead centered on the
lower right-hand corner, which is reflected in the reported coordinate position.
Also notice that the touchscreen region precisely fills the complete LCD
display area. This may be due to the physical area needed by the sense lines,
or it could be an artifact of the manual calibration that I did just prior to this
test.

This last test completes my calibration discussion. I do want to make you
aware that the Adafruit PiTFT tutorial I referenced earlier contains several
more calibration techniques that you can do, especially if you are using the



touchscreen with X-Windows. I will next discuss the framebuffer, a term I
used earlier but deferred explaining what it is and how it is used in
conjunction with a touchscreen.

Framebuffer
It is important for you to understand the framebuffer concept because it affects
how the PiTFT functions with regard to the regular HDMI display. A
framebuffer (FB) may simply be defined as a place in dynamic memory that
contains one complete video frame to be displayed. Each location in an FB
contains 3 bytes whose values represent the RGB intensities for each
displayed pixel. Video frame sizes vary depending on the display device. The
underlying touchscreen LCD used in this project is 320 × 240 pixels in size
for a total of 76,800 pixels. This makes the total memory required for an FB to
be 230,400 bytes or 225 kB because each pixel uses 3 bytes.

The actual hardware implementation used in the RasPi is fairly complex
because it involves the central processing unit ( CPU), a graphical processing
unit (GPU), and a series of mailbox registers to control the flow of video data
between the two processors. I elected not to include a detailed discussion of
the hardware implementation because it would significantly add complexity to
this chapter with little reader benefit because you have no programmatic
control of internal FP operations. You can, however, use a nice little Adafruit
application to view the FB contents.

Framebuffer Image (FBI) Viewer

Enter the following to download and install the FBI application:

You will need a test image to check out this viewer application. Once
again, Adafruit comes to the rescue. Enter the following to download a test
image precisely sized for the touchscreen LCD:



NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

View it by entering

Figure 2-26 shows the image displayed on the touchscreen.



Figure 2-26  Adapiluv320x240.jpg displayed on the PiTFT.

Touchscreen Logical Name

Sharp-eyed readers may have noticed that I used the identifier fb1 in the
preceding command to display the downloaded image. This is the PiTFT



logical name , which is the identifier associated with the PiTFT touchscreen.
For all intents and purposes, it is the driver name, which the operating system
(OS) uses to send and receive data to/from the device. I had also used fp1
previously in the manual calibration command sequence. There is also another
FB device installed on the OS, and that is fb0 , which is the HDMI display.
You can only have one FB device active at a time, which is the reason I
mentioned much earlier in this chapter that the touchscreen and the HDMI
display could not be used simultaneously. You should also realize that the
composite output is the analog conversion of the HDMI display, so you cannot
“cheat” the system and try to run the touchscreen and get a composite output.
This is all the more reason to use a headless development station, from which
you get the best of both worlds, a working touchscreen and a large
development display.

Video Player

In this brief section I will show how to set up and run a video on the
touchscreen. This video player application nicely demonstrates the LCD
screen video capabilities, even though running a video player has nothing to
do with typical touchscreen operations.

The first step is downloading a video, which will be the source of the
demonstration. I would recommend the classic Big Buck Bunny video, which
has been sized for the PiTFT and may be downloaded from Adafruit using the
following command:

NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

Once the video is downloaded, you will need to download and install the
player application. Enter the following to install the mplayer application:

Then enter the following to run this video:



NOTE
The preceding must be entered on the same line. It was split to match this book’s format.

NOTE
I ran this without audio, but I am fairly certain that a music track accompanies the video. You
might try plugging an amplified speaker into the RasPi stereo jack to see whether the music plays.

At this point, I will conclude my touchscreen background discussion and
proceed to explain this chapter’s project.

Touchscreen Project
The demonstration screen project is quite simple: display a button on the
touchscreen that when clicked by either a stylus or fingertip will toggle a
light-emitting diode (LED) connected to one of the RasPi’s GPIO pins. While
the project goals are quite easy, getting to an actual implementation will
involve a bit of work.

The code for this project is written in the C language, which has been
around for a comparatively long time. Do not fear if you are skittish about
using C because I have provided step-by-step instructions on how to compile
and build the source code, and I have made the source code available on this
book’s companion website. Before jumping into the project code, I make a
brief diversion into the concept of Linux file input-output (I/O).

Linux File I/O

Some readers may already know that the Linux OS treats almost everything as
a file if you also consider a directory as a special file type. This means that I/O
commands can be directed to a file where it effectively interfaces to the
outside world. This is great news and can simplify programming to a great
extent. I will use a practical example to demonstrate how this file I/O
functions.



The PiTFT has four LEDs built in, which provide backlighting for the
display. As most of you know, a liquid crystal display (LCD) is essentially a
dark display without backlighting. I will demonstrate how to control the
touchscreen’s backlighting using file I/O.

You first need to ensure that the PiTFT is plugged into the 26-pin
connector. Next, enter the following command:

This command created a series of files and directories that will allow us to
control the backlights. Enter the next command to confirm that the master
directory was created:

You should see a display similar to Figure 2-27 .

Figure 2-27  ls command run on the /sys/class/gpio directory.

Just ensure that you have a directory with the number 508 in the title.
Given that the 508 directory exists, enter the following to create an output
type direction for this newly create GPIO control file (also be looking at the
touchscreen when you enter this command):



If all went as it should, the PiTFT should go dark because the backlighting
turned off. It turned off because the preceding command set the file direction
as an output, and a 0 was automatically sent to the corresponding GPIO pin.
Enter the following to turn the backlighting on again:

You will now see the touchscreen display because the backlighting is
turned on again. Note that nothing in these commands changed the content of
what is displayed; they only toggled the backlighting LEDs to allow you to
see or not see the touchscreen. You change the 1 to a 0 in the preceding
command to turn off the backlighting. Try experimenting with these
commands to convince yourself of their utility.

buttonExample

This project sets up a rectangular button on the touchscreen that will be used
to control a LED. The LED will simply be turned on or off, which is known as
toggling . The button color and text will also change reflecting the state of the
LED.

Hardware Setup

You will need a little hardware setup to run this project. I used a LED in series
with a 220-Ω resistor connected on a solderless breadboard. I also used a Pi
Cobbler to extend all the GPIO lines from the touchscreen. The complete
physical setup was shown earlier in Figure 2-10 . The wiring schematic is
shown in Figure 2-28 .





Figure 2-28  buttonExample schematic.

Software Setup

I will now show you the C program that creates a button on the touchscreen
that controls a LED. This program is an adaptation of an existing program
named buttonExample.c created by Mark Williams. The original, unaltered
version is available for download from GitHub at
https://github.com/mwilliams03/Pi-Touchscreen -
basic/blob/master/buttonExample.c . My modified version is as follows:

https://github.com/mwilliams03/Pi-Touchscreen-basic/blob/master/buttonExample.c
























I will not attempt to go through all the code because it is fairly extensive,
but I will point out that I generously sprinkled comments throughout the code
to help you understand what was happening in a particular code section or
module.

Here are the steps to compile, build, and run this program:
1. Download and install the wiringPi package found at wiringpi.com . Do not

use the GitHub version of wiringPi because it is not the version required
for this installation.

2. Download and install the zip file from Mark Williams’ GitHub site at
https://github.com/mwilliams03/Pi-Touchscreen-basic .

http://wiringpi.com/
https://github.com/mwilliams03/Pi-Touchscreen-basic


3. Extract all the files into a single directory. My directory was named Pi-
Touchscreen -basic-master. The following files should be in this directory:

a. README
b. buttonExample.c
c. font_8x8.c
d. framebuffer.c
e. main.c
f. touch.c
g. touch.h

4. Download the source code from the book’s companion website. It is
entitled buttonExample.c.

5. Replace the existing buttonExample.c with this version.

6. Compile it by running this command:

7. Build it by entering:

8. Install it by entering:

9. Run it by entering:

If all goes well, you should see the button displayed on the touchscreen, as
shown in Figure 2-29 .



Figure 2-29  Initial touchscreen with the buttonExample program running.

Now press the button on the touchscreen, and two things should happen.
First, the button should change to what is shown in Figure 2-30 .



Figure 2-30  Touchscreen after pressing the button.

Second, the LED should be on. If not, check that you used sudo in the
command; otherwise, the OS will not permit the file to be written. This is a
permissions issue, which I discussed in Chapter 1 . The other reason could be
that the LED is connected backwards.

A connected console screen also will show all the events as they are
happening, just as it was with earlier demonstrations. Figure 2-31 is a
snapshot of some button-pressing events for this application.



Figure 2-31  Event log for button presses.

This concludes my simple demonstration project. It obviously may be
extended to include additional buttons that can trigger other I/O events as well
as start or stop other processes. You can really dive deep into this area because
most readers will realize that most smart phones have a myriad of touchscreen
activities that trigger all sorts of events, e.g., “Hello Siri.”

One last item: I strongly recommend that you do not disassemble your
touchscreen project if you intend to do the software-defined radio (SDR)
project in Chapter 7 . The touchscreen PiTFT is used as is in that project, and



it would be a shame to have to rebuild it all if you want to explore the
wonderful world of SDR.

Summary
This was a chapter about touchscreens, and it concluded with a simple
demonstration of a single button that toggled a LED. I also dug deeply into
what makes a touchscreen function, pointing out the different types and their
pros and cons. Linux file I/O also was covered, and I demonstrated how to use
simple file I/O to control the touchscreen LCD.



CHAPTER 3

Arduino Coprocessor

IN THIS CHAPTER , I WILL SHOW YOU how to efficiently use an Arduino
coprocessor with the RasPi. I will also address the common question of why
a coprocessor is even necessary for a RasPi application. There is also a
demonstration project that amply illustrates how a coprocessor can allow a
project to run successfully on a RasPi, where it could not previously run the
project without incorporating it.

What Is a Coprocessor?
In the simplest sense, a coprocessor is just another computer that runs
concurrently with a RasPi and is somewhat controlled by the RasPi. The
Arduino coprocessor I will be using in this project essentially runs
autonomously from the RasPi and interacts with the RasPi only as necessary
to fulfill its project responsibilities. The Arduino has its own separate
dynamic and flash memory, GPIO, communications links, power regulator,
and processor clock source. The RasPi would be considered the main
processor, and the Arduino is the coprocessor, as shown in the block diagram
in Figure 3-1 .



Figure 3-1  Processor and coprocessor block diagram.

The key element that I want to point out in the figure is the comm link
shown connecting the two processors. This is how they interact with the
main processor, either initiating an action or responding to an event from the
coprocessor.

Chapter 3 Parts List



Communication Implementation Techniques
A number of implementation techniques can be used for the comm link, as
listed next and discussed separately:
 UART

 I2C

 SPI

 GPIO poll/respond

 GPIO interrupt

 Specialized with external hardware



UART Serial Protocol

Universal asynchronous receive transmit (UART) is also commonly referred
to as serial data transmission . It is a bit serial protocol that uses ASCII
characters for duplex or simultaneous two-way communication between two
devices. Figure 3-2 is a simplified block diagram of a generic UART comm
link.

Figure 3-2  UART block diagram.

The RasPi transmits data on pin TXD0 and receives on pin RXD0. There
is also no concept of a master or slave in this protocol because it is used
primarily for data communications as opposed to control, which is the focus
of both the SPI and I2C interfaces (discussed next).

There is an existing protocol specification (RS232) that controls the
physical, electrical, and logical configurations for this type of data-
transmission link. The RasPi and Arduino both use a modified approach to
UART transmissions in which two voltage levels, 0 and 3.3 V, are used,
which represent high and low bits or 1s or 0s, respectively. The RasPi then
sends a bit on the TX line, which is received on the RX line by the Arduino.
The opposite is true when the Arduino is sending to the RasPi.

UART’s are asynchronous , meaning that no clock pulses are required to
either initiate a data transmission or decode a received bit stream. The
synchronization happens when the transmitting side changes the normally
idle state voltage, which then creates a start pulse. Normally, eight pulses
follow and represent the ASCII character being sent, and finally, a stop pulse
is sent. All these pulses are collectively known as a frame . The number of



frames sent per second is termed the baud rate , which is a legacy name that
comes from the old days of teletypewriters. Common baud rates are 4800,
9600, and 115,200. There are many variations on how a frame is constituted
per the specifications, but what I have stated is today’s common practice
when interconnecting processors such as the RasPi and Arduino.

The ASCII characters sent and received then are used to create messages
between the two processors, which now constitute the formal
communications channel. The exact nature of the messages and how each
processor interacts are determined by the nature of the application.

I2C Serial Protocol

The next serial protocol is the interintegrated circuit interface or I2C
(pronounced “eye-two-cee” or “eye-squared-cee), which is a synchronous
serial data link. Figure 3-3 shows a block diagram of the I2C interface with
one master and one slave. This configuration is also known as a multidrop or
bus network .

Figure 3-3  I2C block diagram.

I2C supports more than one master as well as multiple slaves. This
protocol was created by the Philips Company in 1982 and is a very mature



technology, meaning that it is extremely reliable. Only two lines are used:
SCLK for the serial clock and SDA for serial data. Table 1-1 shows the
RasPi names for both the clock and data lines.
TABLE 3-1 I2C Signal Lines

SPI Serial Protocol

A block diagram of the serial peripheral interface (SPI) is shown in Figure
3-4 . The SPI interface (pronounced “spy” or “ess-pee-eye”) is a
synchronous serial data link. A clock signal is needed because it is
synchronous. It is also a full-duplex protocol, meaning that data can be sent
and received simultaneously from the host and slave. SPI is also referred to
as a synchronous serial interface (SSI) or four-wire serial bus .

Figure 3-4  SPI block diagram.

The four interconnecting signal lines between the SPI host and SPI slave
shown in Figure 3-4 are explained in Table 3-2 .
TABLE 3-2 SPI Signal Lines



GPIO Poll/Respond

This type of communication link uses two GPIO pins to transfer a signal bit
between the processors. I will use the hypothetical oven control system
shown in Figure 3-5 to help clarify this communications link example.



Figure 3-5  GPIO communications link.

This system controls the oven temperature for the world-famous French
pastry chef Jacque M., who demands an accuracy of ±0.5ºF for his oven
temperature preset. Measuring oven temperatures to this degree of precision
normally requires the use of an industrial resistance temperature detector
(RTD). RTDs use an absolute resistance measurement in ohms that relates to
a real temperature. The Arduino coprocessor shown in the figure is set up to
measure the RTD, which is part of a standardized circuit. It does this by
measuring the voltage across the RTD and then comparing this voltage with
a voltage drop across a precision resistor, which is also part of the
standardized circuit containing the RTD. These two voltage readings are
then used in a calculation made by the Arduino to derive a compensated
voltage that will be directly proportional to the RTD resistance. The
compensated voltage is then converted into a 10-bit binary number using the
Arduino’s ADC. However, this number now needs to be converted into an



actual temperature, which the Arduino does by using lookup table
calibration data, which are supplied by the RTD’s manufacturer.

The Arduino can be easily set to turn on a GPIO pin, which is set as an
output when the oven reaches the preset temperature that Jacque demands
for baking his exquisite pastries. This Arduino GPIO pin is also connected to
a RasPi GPIO pin, which is set as an input. The RasPi is programmed to
periodically check the status of the selected Arduino GPIO pin to see if it has
changed states. This periodic checking is also known as polling . When a
state change is detected by the RasPi, it could then branch to a different part
of its program, which could be Jacque’s kitchen automation application.

Having the Arduino continuously monitoring the RTD circuit as well as
making the resistance-to-temperature conversions relieves the RasPi of a
considerable workload burden—even more so when you consider that the
RasPi does not have a built-in ADC, which means that an external ADC
would have to be used in any case.

GPIO Interrupt

The GPIO interrupt is essentially the same as the GPIO poll/respond
technique except that the RasPi does not poll the selected GPIO input pin
looking for a state change. Instead, any state change, as described next, will
trigger a hardware interrupt. Every RasPi GPIO pin can accommodate
interrupts. An interrupt is an event that stops or “interrupts” the normal
programming flow and directs the RasPi to execute some special handler
program or code based upon the source of the interrupt. Interrupts maybe
triggered by the following state changes:
 HIGH level detected

 LOW level detected

 HIGH to LOW transition detected

 LOW to HIGH transition detected

Using these state changes will improve RasPi performance over polling,
but at the expense of adding a certain level of complexity to the software.

Specialized with External Hardware



This last communications link approach actually encompasses several
different technologies, including wired Ethernet and wireless. All such links
require additional hardware for the Arduino and RasPi, except for the
Ethernet, which is included on Model B RasPi’s. I have listed these
technologies in Table 3-3 , which also has entries for the required hardware
and software.
TABLE 3-3 Additional Communications Link Hardware

This chapter’s project will use a ZigBee communications link between a
portable Arduino sensor package and a Model B RasPi. As such, I felt that it
would be appropriate to provide some background on the ZigBee protocol in
general, as well as some specific discussion on the XBee implementation.

ZigBee Protocol

ZigBee is a highly capable networking protocol, which is also called a
personal area network (PAN) because its intended radiofrequency (RF)
range is about 100 m. ZigBee was designed to be compliant with the ISO
seven-layer network model. As such, its inherent design is based on proven
computer network concepts that are robust, efficient, and well understood by
most system designers. Figure 3-6 shows the ZigBee logical network stack
with the corresponding ISO layer number. All subsequent network software
developed for the ZigBee network follows this model.



Figure 3-6  ZigBee and the ISO network layers.

Data sent through the ZigBee network is in packets , similar to the
Ethernet format. Figure 3-7 shows how these packets are constituted initially
at Layer 2, or MAC, as it is referred to in the figure. These packets may be
modified subsequently at higher layers, as needed, to suit the real-time
network communication needs.



Figure 3-7  ZigBee packet formation.

There are four packet types that exist in ZigBee:
1. Beacon

2. Data

3. MAC command

4. ACK

Actual data packets are formed at the MAC, or Layer 2, level, where the
data are prepended with both the source and destination addresses. A



sequence number is also assigned to allow the receiver to determine the
correct sequence of received packets. It is relatively easy to receive out-of-
sequence packets in this type of network. Frame control bytes are also
appended for error checking, which is the reason why ACK packets are
required. ZigBee is a type of connection network, similar to Ethernet, that
has a very robust way of ensuring that packets get where they need to go.
ZigBee Layer 3 uses an acknowledgment packet (ACK).

The receiver performs a 16-bit cyclic redundancy check (CRC) to verify
that the packet was not corrupted during transmission. If a good CRC is
determined, the receiver then will transmit an ACK; this action allows the
transmitting XBee node to know that the data were received properly. The
packet is discarded if the CRC indicates that the packet was corrupted, and
no ACK is transmitted. The network should be configured such that the
transmitting node will resend up to a predetermined amount until either the
packet is received successfully or the resend limit is reached. The ZigBee
protocol provides self-healing capabilities if the path between the transmitter
and receiver has become unreliable or a complete network failure has
happened. Alternate paths will be established, if physically possible.

Layers 1 and 2 support the following standards:
 Star, mesh, and cluster-tree topologies

 Beaconed networks

 GTS for low latency

 Multiple power-saving modes (idle, doze, hibernate)

Layers 3 and 4 further refine the packets by identifying what the packet
type is, where it is going, and where it has been. They also set the data
payload and support the following:
 Point-to-point and star network configurations

 Proprietary networks

Layer 4 sets up the routing, thus ensuring that the packets are sent along
the correct paths to reach the desired nodes. This layer also ensures that:
 ZigBee 1.0 specifications are met.

 Support is provided for star, mesh, and tree networks.



There are also three ZigBee standards that primarily involve Layers 3 and
4:
1. Routing. Defines how messages are sent through ZigBee nodes. Also

referred to as “digi-peating.”

2. Ad hoc network. Creates a network automatically without any operator
involvement.

3. Self-healing mesh. Determines automatically whether a malfunctioning
node exists and reroutes messages, if physically possible.

Layer 5 is responsible for security, which is enforced by using the
Advanced Encryption Standard (AES) 128-bit security key.

XBee Implementation

XBee transceivers were selected to implement the ZigBee communications
link because they are small, lightweight, inexpensive, and totally compatible
with the Uno and RasPi boards. XBee is the brand name for a series of
digital RF transceivers manufactured by Digi International. Figure 3-8 shows
one of the XBee Pro transceivers that I used.



Figure 3-8  XBee Pro transceiver.

There are two rows of 10 pins on each side of the module. These pins are
spaced at 2 mm between each one, which is incompatible with the standard
0.1-inch spacing used on solderless breadboards. This means that a special
connector socket must be used with the XBee module to interconnect it with
the Uno. This special socket is part of an XBee Arduino shield, which is
shown in Figure 3-9 .



Figure 3-9  XBee Arduino shield.

This shield contains all the functionality needed to effectively interface
the Arduino Uno with an XBee module. The shield and accompanying



software make it very easy to create a useful RF communications link with
very little effort.

The XBee used with the RasPi is connected using a different XBee
interface board known as a SIP, which I purchased from the Parallax Corp.
Figure 3-10 shows one of these SIP boards mounted on a solderless
breadboard. Note that there are two rows of pins at the bottom of the board,
which are connected together. These parallel pin sets provide additional
physical support to the board when it is plugged into the breadboard.

Figure 3-10  Parallax XBee SIP adapter board.



The RasPi connects to the SIP board using both UART signal lines as
well as power and ground leads. Figure 3-11 shows a RasPi connected to a
SIP adapter board by a Pi Cobbler. The SIP adapter also has an XBee Pro
module mounted on it.





Figure 3-11  RasPi connected to an XBee module on a SIP adapter board.

Table 3-4 details the interconnections between the RasPi and SIP adapter.
TABLE 3-4 Interconnections Between the RasPi and XBee SIP Adapter

Next, I will examine the XBee hardware to show how this clever design
makes wireless transmission so easy.

XBee Hardware

All the electronics in the XBee hardware, except for the antenna, are
contained in a slim metal case located on the bottom of the module, as may
be seen in Figure 3-12 .



Figure 3-12  Close-up of the XBee electronics case.

If you look closely at the figure, you should see the bottom of the antenna
wire, which is located near the top-left corner of the case. While Digi
International is not too forthcoming regarding what makes up the electronic
contents of the case, I did determine that the earlier versions of the XBee Pro
transceivers used the Freescale Model MC13192 RF transceiver. This chip is
a hybrid type, meaning that it is made up of both analog and digital
components. The analog components make up the RF transmit-and-receive



circuits, while the digital components implement all the other chip functions.
It is a complex chip, which is the reason why the XBee module is so
versatile and able to automatically perform a remarkable number of
networking functions. Table 3-5 shows a select number of features and
specifications for the MC13192.
TABLE 3-5 Freescale MC13192 Features and Specifications



The XBee module implements a full network protocol suite, but from a
hardware perspective, this means that there also must be a microprocessor
present in the electronics case. From my research, I cannot determine which
type of microprocessor it is, but I am willing to make an educated guess that
it would be a Freescale chip, based on the reasonable assumption that the
MC13192 would be designed to be highly compatible with the company’s
own line of microprocessors. One other factor supporting my guess is that
Digi International has recently introduced a line of programmable XBee
modules named XBee Pro SB that use the 8-bit Freescale S08
microprocessor.

The XBee pins are detailed in a logical arrangement in Figure 3-13 for
your information. Just be aware that only four of the pins are needed for this
project, and they are shown with an asterisk next to the pin number.

Figure 3-13  Logical XBee pin-out diagram.



All the pin and function descriptions are shown in Table 3-6 .
TABLE 3-6 XBee Pin Descriptions and Functions





A considerable number of functions are available to you if needed, but
this project requires only the most minimal functions for simple and reliable
data transfers. Thankfully, the two XBee modules will automatically connect
and establish reliable communications when power is applied to them. A red
blinking LED on the XBee shield is your indication that a communications
link has been established. I will next discuss the Arduino IDE because it is a
prerequisite to running the Lidar software on the Arduino.

Arduino Board and Arduino IDE
I will start this section with a brief overview of the Arduino Uno
development board because I suspect that most readers will already be
familiar with it. If not, I would highly recommend reading Simon Monk’s
excellent book on programming Arduino boards, Programming Arduino:
Getting Started with Sketches (McGraw-Hill, ISBN 978-0071784221). The
word sketches in the book’s title refers to the name the Arduino Project gives
to programs written for Arduino development boards. I will discuss sketches
and other related programming elements in the software section, but first I
want to provide a brief tour of the Arduino hardware I will be using in this
project.

Arduino Uno Development Board

The Arduino Uno board I used is shown in Figure 3-14 . It is a revision (rev)
3 board, which is important to note because the pin sockets changed slightly
between the board revisions.



Figure 3-14  Arduino Uno rev 3 board.



You can quickly identify rev 3 boards because the reset button was
relocated from the center right-hand side on earlier versions to the upper left-
hand side on rev 3 boards. The key specifications of the Uno board are listed
in Table 3-7 .
TABLE 3-7 Arduino Uno Key Specifications

Don’t be concerned if you do not understand some of the specification
abbreviations in this table because I will explain them if they are needed for
the project. I would recommend looking at Atmel’s ATMEGA328P
datasheet if you want to learn more about the detailed microprocessor
specifications.

The single most important item to be mindful of regarding the Uno is that
it is a microcontroller board and not a fully operational computer such as a
RasPi. The significant difference is that the Uno has no capability of hosting
an operating system and cannot support any programming development
using only the board. It must be connected to an external computer to be
programmed. This does not make the Uno inferior to the RasPi; it is just



designed for a different approach for controlling embedded projects
compared to the RasPi.

The open-source Arduino Project may be accessed at http://arduino.cc ,
which is the homepage and contains many links to other pages that I know
you will find very informative. In fact, I would highly recommend that you
stop reading this book for a while and go to this site and become acquainted
with the Arduino concept because it will help you to comprehend the
software underlying Arduino boards.

Arduino Software

The key software that you need to program the Uno is an integrated
development environment (IDE). The IDE is available as a free download
from the Arduino website (provided earlier). The current IDE that I will be
using is the 1.05, which will likely change in the future because
improvements and upgrades are constantly being added by the very smart
folks who run and maintain the Arduino Project. One nice feature is that the
existing Arduino hardware will always run on the latest version of the IDE.
There is no planned or unplanned obsolescence in this arena.

I would recommend that you power-on your Uno and connect it to the
computer running the IDE using a standard USB cable. Almost any “wall
wart” power supply that uses a 2.1-mm outer barrel with a positive center
connector will work. Remember that the supply must be between 7 and 12
VDC. I used a surplus power supply that provides 7.5 V at 1.5 A, which is
more than ample for this project. Your computer should show a dialog box
indicating that a driver is being installed after the Uno is plugged into the
computer. Wait until the driver has been installed before starting the IDE.
Figure 3-15 is a screen shot of the Arduino v1.05 start screen on a Windows
laptop.

http://arduino.cc/


Figure 3-15  Arduino IDE startup screen.



The IDE automatically created a default sketch entitled sketch_jan31a,
which obviously contains the date that I ran the IDE program. You would
normally use this blank sketch to create a program and then rename it to
whatever suits your application. I will not be creating a sketch for this
demonstration but will instead load a prestored example to demonstrate the
classic LED blink program. There are many example programs that are
automatically loaded into the computer during the IDE download. The
program I opened was aptly named “Blink” and was loaded by following
this sequence:

Click progressively on File  Open  Examples  01.Basics  Blink 
 Blink

Figure 3-16 is a screen shot of the loaded Blink program, which appears
in its own window. Note that the original window for the sketch_jan31a is
still open in the background. This makes working on multiple programs very
easy and convenient because all you need to do is click in the desired
window to resume development in that program.



Figure 3-16  Blink code screen shot.



I show the Blink code next in order to point out some key program parts
for this introductory example. I will not normally list example program code
because such codes are easy to load and examine by yourself.



This sketch has two methods named setup and loop . The setup method
is always run first, followed by the loop method. The setup method
provides the logical name led to the LED attached to the Uno’s pin 13. It
also makes GPIO pin 13 an output.

The loop method is a forever loop that alternately turns on the LED for 1
second and then turns it off for 1 second. The digitalWrite method is the
means by which the Uno controls pin 13 and, ultimately, the LED.



You should note that I didn’t mention that any physical wiring was
required for this demonstration because the Uno board already has a yellow
LED permanently connected to pin 13. You can easily see this LED in
Figure 3-14 because it is labeled with an “L” and is located just to the left
and above the ARDUINO silkscreen name.

Clicking on the right-facing arrow in the toolbar shown in Figure 3-15
will cause the program to be compiled and uploaded to the Uno. The Blink
program will start immediately and continue indefinitely. You also might be
a bit confused because the LED probably was already blinking before you
uploaded the Blink program. That blinking was due to the default
“heartbeat” that runs when no program had been previously loaded. You can
prove to yourself that the Blink program functions as expected by changing
the delay time and observing that the new blink rate matches whatever you
entered. Simply enter new values for the delay time, say, 2000, which will
make the LED blink at a 2-second rate. Compile and upload the changed
program by pressing the right-facing arrow, and watch the LED slowly blink
every 2 seconds. This completes my brief introduction to the Arduino
hardware and software, which should provide you with sufficient knowledge
to continue building this chapter’s project.

The next part of this chapter starts the demonstration project. What’s
unique about this project is that it will be a large component in a later
chapter project concerning robotics. It is my intention to try to reuse chapter
projects in order to reduce component costs as well as improve the learning
process by providing some level of continuity from chapter to chapter.

Lidar Demonstration Project
In this chapter project, I will demonstrate how to use a RasPi with a light-
detection and ranging system (Lidar), which is also commonly referred to as
laser radar . Just as a point of interest, the term Lidar was coined in the
early 1960s as a portmanteau of the words light and radar . I will simply
refer to it as Lidar from this point on.

The Lidar sensor system in this will project will be directly controlled by
an Arduino. The Arduino also will be acting as a coprocessor for the RasPi.
In addition, the Arduino and RasPi will use two XBee modules as a wireless



communications link. The block diagram for this system is shown in Figure
3-17 .

Figure 3-17  Lidar project block diagram.

The main objective of this project is to demonstrate the effectiveness of
an Arduino coprocessor. There is also a side objective of showing that the
Lidar sensor itself also contains a signal-processing system, which means
that the Lidar is acting as coprocessor to the Arduino, while the Arduino is
simultaneously acting as a coprocessor to the RasPi. Two levels of
coprocessing are at play in this system, which is really not unusual when so-
called smart sensors are used in a system. There are at least two additional
coprocessors involved when you really analyze all the components that make
up the project. These two additional coprocessors are the XBee controllers in
the XBee modules, which constitute the wireless communications link.
These XBee controllers should be considered “transparent” to the user
because they are not specifically programmed by the user, and their
operation is normally considered autonomous and automatic.

I will discuss the Lidar sensor next to provide you with a good
background for this interesting technology.

Lidar Technology

The Lidar sensor system used in this project is the LIDAR-Lite model
manufactured by PulsedLight LLC and is shown in Figure 3-18 .



Figure 3-18  PulsedLight LIDAR-Lite sensor system.

Lidar has been in existence for quite a while, with the first systems
deployed in the early 1960s. These systems are used in a wide variety of
applications, including but not limited to:
 High-resolution map making

 Archeology



 Geology

 Seismology

 Forestry

 Atmospheric sensing

 Airborne altimeters

 Contour mapping

One of the more interesting Lidar deployments was Apollo 15’s lunar
surface mapping exercise in the early 1970s.

Main Lidar Components

Three principal components go into a Lidar system such as the one I will be
using for this project:
1. Laser emitter. This is the device that emits, or sends out, a light pulse,

which subsequently is reflected from a target and detected by a photo
detector (discussed later). Lidar lasers may operate in ultraviolet (UV),
visible, and near-infrared (near-IR) wavelengths depending on the
specific use of the sensor. The LIDAR-Lite model uses a near-IR light
wavelength on the order of 905 nm, which is not in the visible spectrum
but still could be harmful if viewed head-on. The laser is Class 1,
meaning that it must not be operated outside its approved enclosure and
should not be viewed directly while operating. Lidar lasers also may be
high, medium, or low power, again depending on their intended use.
This project laser is classified as low power, even though it has over 1 W
of peak power. The brief pulse time is the reason it is in the low-power
category.

2. Scanning and optics. Scanning for a Lidar is a combination of panning
and tilting. By far the most common scanning technique is to mount the
Lidar emitter and receiver on a platform, which can be swept or panned
about in a specific angular region. The angle of the panning servo can be
measured so that the sensor controller “knows” the angular displacement
from the center, or 0° forward bearing. Tilting is where another servo
tilts or displaces the sensor platform from the normal or level plane plus
or minus a certain number of degrees, usually within the range of ±20°.
The Lidar used in this initial project is in a fixed position and will



neither pan nor tilt. The optics refers to using a lens with the laser and
photo detector to alter the focus and field of view of both devices, thus
improving overall effectiveness. Typically, optics are quite simple,
consisting of a tube with a lens attached near the end of the tube. This
project Lidar has these tubes, as may be seen in Figure 3-18 . The optics
help to increase the distance-measurement range of this system to about
40 m with a remarkable resolution of about 2.5 cm or about 1 inch.

3. Photo detector and signal-processing electronics. The receiver uses a
sensitive photo detector, which normally is a photodiode tuned to the
same wavelength as the laser emitter. The photo detector is critical in
any Lidar system. Not being able to reliably detect reflected laser light
pulses would render any Lidar sensor useless. The laser pulses are also
encoded in such a manner as to minimize to the maximum extent
possible any effects of ambient sunlight. The controller within the Lidar
does all the encoding and decoding of the light pulse as well as some
sophisticated signal processing, which I discuss in further detail later.

NOTE
The LIDAR-Lite photo detector is located 2.5 cm from the lens at the top of the light receiver
tube. This means that you will need to add 2.5 cm to any calibrated distance measurements with
respect to the tube end.

Figure 3-19 shows a LIDAR-Lite system block diagram to help explain
some of the sophisticated signal processing, which continually operates to
allow this Lidar to function with remarkable range and accuracy. This
diagram is excerpted from an earlier user’s PDF manual, which is no longer
readily available because the PulsedLight website now uses a hyperlinked
reference manual.





Figure 3-19  LIDAR-Lite system block diagram.

You will see two transmitters in the figure, with one connected to the
laser emitter and the other to a LED that is located next to the photo detector
or optical receiver, as labeled in the figure. The LED creates a reference
signal, which is required for processing, along with the actual received
signal from the target. These two signals are both conditioned by filters and
then digitally sampled before being sent into a correlation processor. Without
getting too technical, I will explain that this specialized processor performs a
cross-correlation between the reference and received signals to extract any
time delay detected when the reference signal was applied to the receiver
and a reflected version of it that might be present in the actual signal. One
way to think of this process is to imagine a natural cavern that produces
great echoes. Now, it would get very confusing if there were a bunch of
people in the cavern with you, each one yelling something to test the echoes.
But you are pretty clever, so you shout “Yahoo” and wait for that to return,
ignoring every other audible signal. The time delay in seconds between you
shouting and hearing your specific “Yahoo” call is related to the twice the
distance between you and the reflecting cavern wall. Cross-correlation is
something akin to this hypothetical cavern echo example, where the “Yahoo”
call represents the reference signal, and the correlation processor
distinguishes the received signal just as your brain distinguishes your call
from all the other calls and noises present in the cavern.

There is also a block in the figure labeled, in part, “User Interface I2C,”
which is the interface logic between the Lidar and the Arduino. The Arduino
supports the I2C bit-serial protocol, which I discussed earlier in this chapter.
It takes only a few wires to interconnect the Lidar with the Arduino, which I
will shortly demonstrate. At this point, I have completed the Lidar
background discussion, so it’s time to proceed to building the real project.

Building the Lidar Project

I have elected to present the project in three parts to ensure that it is clear
how to interconnect all the components as well as set up and test the
software:
1. Lidar and Arduino



2. XBee wireless communications link

3. RasPi application

Table 3-7 lists all the parts and components needed to build this project. I
chose to use a RasPi Model B+ because it is more than capable of running
the desired hardware and software. The RasPi is also set up as a stand-alone
workstation just to ease the development process. You can optionally use a
headless configuration if that meets your needs.
TABLE 3-7 Project Parts and Components



An Arduino Uno rev 3 was selected because it is an extremely popular
and low-cost board. You can easily change the boards to whichever ones you
happen to have with few modifications to the build instructions and likely no
modifications to the software.

Lidar and Arduino

Connecting the Arduino to the Lidar module will be the first item that needs
to be done. Figure 3-20 is a Fritzing diagram showing how to interconnect
these two devices using a solderless breadboard.



Figure 3-20  Interconnection diagram for the Arduino and Lidar module.

The interconnection is relatively simple, involving only four wires, as
shown in Figure 3-20 . The LIDAR-Lite uses the I2C bus to communicate



with the Arduino, which is implemented using two wires, one for data
(SDA) and the other for the clock (SCL). Just be careful about how you
connect the two wires to the Arduino because they are not labeled on the
Arduino board. You won’t damage anything if you transpose the
connections, but the LIDAR-Lite will not be able to communicate with the
Arduino. Figure 3-21 shows the physical setup of the LIADAR-Lite with the
Arduino, with a solderless breadboard used for the interconnections.





Figure 3-21  Physical setup of the LIDAR-Lite with an Arduino.

NOTE
The pretinned wires that are part of the LIDAR-Lite cable assembly are too narrow to fit
snuggly into the Arduino pin sockets. Using a solderless breadboard along with jumper wires
eliminates any potential connection issues.

You will now need to install a required software library to enable the I2C
protocol.

Arduino Software

You will first need to go to the PulsedLight GitHub website at
https://github.com/PulsedLight3D/LIDARLite_StateMachine to download
and install both the “Arduino I2C Master Library” from DSS Circuits and
the demo program named “LIDARLite_StateMachine.” The I2C library is a
required dependency of the demo program. The demo program is listed next
along with two changes that I found were needed to make it work properly
with my setup. These changes are near the end of the listing and are
indicated with a bold arrow (  ) pointing to the change followed by a brief
explanation of the change.

https://github.com/PulsedLight3D/LIDARLite_StateMachine




















This program is heavily commented, including a discussion on all the
operating commands, which I will not repeat. I will simply say that I found it
very easy to use this program with both the Arduino and the RasPi.

All you need to do to run this program is open it in the Arduino IDE and
click on the right-facing arrow icon located on the menu bar. This will cause
the program to be compiled and uploaded into the Arduino. The initial
program load is shown in Figure 3-22 .





Figure 3-22  Initial load for the LIDARLite_StateMachine program.

Next, click on the magnifying glass icon in the upper right-hand corner of
the IDE to open the serial monitor screen. You will need to check that the
baud rate is set to 9600 in the lower right-hand corner text box. Next enter
'm' in the send text box, and you should start seeing distance readings in
centimeters on the monitor. They will continually scroll by at a fast pace.
Figure 3-23 shows a snapshot of these distance readings on the serial
monitor screen.



Figure 3-23  Distance readings on the Arduino serial monitor.

It is now time to install the RasPi program, which will also be used to
display LIDAR-Lite measurements.

RasPi Software



I used a GUI terminal program named CuteCom to display the LIDAR-Lite
measurements. Enter the following to install CuteCom:

You will need to run the X-Windows server once CuteCom is installed.
Simply enter startx to see the desktop. The CuteCom application is located
in the “Other” folder, which becomes visible when you click on the icon in
the lower left-hand corner of the desktop. Figure 3-24 shows the CuteCom
opening screen with the following settings:



Figure 3-24  CuteCom opening screen.



You will also need to modify one file on the RasPi in order for the serial
data to flow to the /dev/ttyAMA0 logical device. Comment out the line:

which is in the file /etc/inittab. I used the nano editor to make this change,
which consists of placing a number symbol (# ) in front of the line, as shown
in Figure 3-25 .



Figure 3-25  Comment out the ttyAMA0 preset configuration.

The RasPi now should be ready to use the XBee communications link.

Demonstration Project
In this demonstration project, the RasPi is connected to an XBee module
using the SIP adapter, as discussed earlier in this chapter. The Arduino board
has an XBee shield attached with an Xbee module mounted on the shield.
The LIDAR-Lite is connected to the Arduino board and Xbee shield board
as shown in Figure 3-26 .



Figure 3-26  Arduino and Xbee shield connected to the LIDAR-Lite.

Running the demonstration consists of powering on the Arduino system
and then running the CuteCom application on the RasPi, as I earlier



discussed. Next, enter 'm' in the CuteCom input text box. You will likely see
the following response: "Did not recognize the command" in the
CuteCom receive text box. Just reenter the 'm' again, and you should start
seeing the distance readings scroll through the receive text screen. Figure 3-
27 shows these measurements as they are streamed from the Lidar/Arduino
subsystem via the XBee link.

Figure 3-27  Distance readings scrolling on the RasPi CuteCom application.

You should note that no additional setup or configuration commands are
needed to start the XBee communications link. The two XBee modules will



automatically discover each other and set up a “transparent” serial data link,
as I discussed during the earlier discussion regarding the XBee modules.

This last demonstration completes the main purpose of this chapter’s
project, which was to show how an Arduino coprocessor could be used
effectively with a RasPi. It is also entirely possible to use a specialized
application to process the Lidar data in lieu of using the CuteCom program
to display the received measurements. Before completing this project, I want
to show how to make the Arduino-Lidar system a self-contained, portable
package.

Portable Arduino–LIDAR-Lite System

I put the Arduino board with the XBee shield attached into a small plastic
case. The LIDAR-Lite was mounted on the case face in an effort to make the
system highly portable and easy to deploy. This system was also powered by
a five-AA battery pack. This portable system is shown in Figure 3-28 .



Figure 3-28  Portable Arduino–LIDAR-Lite system.

I also mounted this package on a camera tripod, which made it very easy
to place it anywhere that remote distance measurements are required. This
tripod arrangement is shown in Figure 3-29 .





Figure 3-29  Portable package mounted on a tripod.

The system has a RF range in excess of 100 m, which means that the
RasPi workstation can be located quite a distance from the portable,
unattended Lidar unit. This feature could be used to trigger the RasPi to take
some action if an object came within a preset distance from the LIDAR-Lite.

This concludes the RasPi coprocessor demonstration project. This is but
one of many similar applications that can take advantage of using a
coprocessor along with the main RasPi processor.

Summary
This chapter demonstrated how a coprocessor can effectively increase a
RasPi’s usefulness as well as lessening its real-time computational load. A
detailed discussion of all the RasPi serial data communications protocols
was included because this is a key element for two processors to function
together in an effective manner. The XBee wireless protocol also was
discussed in depth because this was the selected wireless communications
link between the Arduino coprocessor and the RasPi, which was running the
terminal program. Finally, a good in-depth presentation was done for the
LIDAR-Lite, which is a laser-based range-determination system that was
connected directly to the Arduino coprocessor.



CHAPTER 4

RGB LED Matrix Display

IN THIS CHAPTER , I WILL SHOW YOU how to build a project that is certain to
wow your family, friends, and coworkers. I will be using RGB LED matrix
displays driven by a RasPi 2 to display both text and graphics. The displays
also will scroll, which will add some animation to enhance the interests of
people viewing the display.

32 × 64 RGB LED Matrix
The first matrix I will demonstrate is a 32 × 64 LED unit, which is shown in
Figure 4-1 .



Figure 4-1  32 × 64 RGB LED matrix.

There are 2048 separate RGB LED modules shown in the figure. I used
the word module to highlight the fact that each one contains a red, green, and
blue LED. Consequently, there are really 6144 separate LEDs mounted in
the matrix. Each of these LEDs must be individually controlled, which
means that there is a large computational task facing the RasPi to control
such an array. Also note that I have used both the words array and matrix to
describe the display. There is no real linguistic distinction between the two
words, and most developers use both when describing these displays.

I would like to point out several terms that are also used in describing this
matrix. A row is a single horizontal line and a column is a single vertical
column of LEDs. Therefore, the matrix shown in the figure has 32 rows and



64 columns. Typically, the number of rows is stated first in the matrix
description, followed by the number of columns. The rows are numbered
starting with 0 going to 31, while the column numbering ranges from 0 to
63. This numbering scheme is very consistent with the way conventional
numeric matrices are labeled, making it easier for developers to write
programs using standard notation.

Chapter 4 Parts List

The reverse side of the 32 × 64 matrix is shown in Figure 4-2 .



Figure 4-2  Reverse side of the 32 × 64 RGB LED matrix.

There are 46 integrated circuits (ICs) in the figure. The 24 driver ICs are
dedicated to directly controlling the LEDs, and the other 22 ICs are used to
drive the addressing lines that determine which LEDs are actually displayed
for a specific display instruction. The drivers and the address logic must



function together in a very efficient manner to be able to handle all 6144
LEDs that I mentioned earlier.

You should also notice a power connector located in the board middle;
this is the means by which a 5-V power supply is connected to the matrix.
This board came with a preassembled power cable, which is shown in Figure
4-3 .

Figure 4-3  Preassembled RGB LED matrix power cable.

The power requirements for this board depend on the content being
displayed at any moment. If it were even possible to turn on all 6144 LEDs
simultaneously, it would require about 122 A, which assumes that each LED
uses 20 mA. This is over 610 W of power. Fortunately, in reality, only a
fraction of the LEDs is activated at any given moment, which means that the



current draw is more in the range of 2 to 4 A. I will explain in detail which
LEDs are active in the following section on how the matrix works.

How the RGB LED Matrix Works
Let me start this discussion by stating there really isn’t a lot of technical
information readily available regarding this type of display. As far as I can
determine, these displays are actually sourced from digital signage
manufacturers, who primarily make large-scale commercial displays from
these modules. The modules made available through maker community
distributors such as Adafruit or MCM Electronics are likely production
overages from signage manufacturers looking to optimize sales for their
production runs. All this means is that there is no strong incentive for the
original equipment manufacturers to provide technical support for these
modules because they are considered a secondary market. But this didn’t
deter the smart folks at Adafruit, who reverse engineered these modules to
help makers understand how they function and how to program
microcontrollers to drive them effectively. The following discussion is based
largely on this Adafruit effort.

First, consider that a 32-row display is split into two sections, with the
first section consisting of rows 0 to 15 and the second consisting of rows 16
to 31. Next, pair the first line in each section to be displayed simultaneously.
This means that rows 0 and 16 are followed by rows 1 and 17 and so forth
until rows 15 and 31 are activated. Then the process restarts with rows 0 and
16. Using row pairs in this fashion is referred to as interleaving and is very
effective in minimizing power requirements and at the same time producing
a pleasing display with little or no flicker or visual artifacts.

Now each row has 64 RGB LEDs, meaning that there are 192 separate
LEDs to be turned on or off in each row. Two rows being active at a time
translates to a maximum of 384 LEDs that could be on at any instant. This
would mean that a maximum current draw of 7.680 A would be needed for
this unlikely situation, assuming 20 mA per LED. Of course, the peak
current flow is only for a very short time because the row pairs are rapidly
scanned during the course of a full-matrix display output. The real current
draw is typically 2 to 4 A, which is provided by a robust 5-V power supply
with a rating of at least 6 to 10 A. Of course, the RasPi by itself cannot



power this display and must use an external power supply. A bit later I will
show how the external power supply will power both the display and the
RasPi.

Each driver IC mentioned earlier has 16 constant-current outputs, with 12
ICs controlling one row. This means that 192 digital outputs are available to
control a single row, which exactly matches the LED count previously
specified. This board has 24 driver ICs, which means that two rows can be
output simultaneously, which also meets the interleave display requirement.

There are four row address lines labeled A, B, C, and D, which select one
of the 16 row pairs to be displayed. Once the row address is set, 192 bits are
clocked out from the RasPi representing each of the column LED positions
in the array. The row data are then latched, and the driver ICs are enabled,
turning on or off the entire row of LEDs connected to the driver IC. The
address is then incremented, and the process is repeated until all the row
pairs have been output. This addressing and outputting repeat rapidly at least
20 times per second to produce a flicker-free display.

The only significant downside to this simple display interface is that the
LEDs are either fully on or off, which prevents full-color presentation. The
display must be rewritten very quickly to allow for more than the default
eight colors to be displayed. This approach establishes what I would classify
as a quasi–pulse-width-modulation (PWM) scheme, but it will allow for
much fuller color rendition as well as for smoother animations on the
display. The PWM approach requires a very fast processing timing, which
will push the RasPi to its operational limits.

The next item I want to discuss is the interface connection that is used
with these displays. This is called the HUB75.

HUB75 Connection

Figure 4-4 shows the HUB75 input connector for the 32 × 64 RGB LED
matrix board.



Figure 4-4  HUB75 input connector.

These displays have both an input and an output connector, allowing them
to be daisy-chained so that much larger displays can be formed. This is a
design feature that I suppose is the result of the use of these displays in
commercial signage applications. In any case, Figure 4-4 shows that a keyed
2- × 8-pin IDC connector is used for the interconnections. Table 4-1 details
the various pin connections involved with the HUB75 connection scheme.
Refer to Figure 4-4 to see the physical placement for each pin.
TABLE 4-1 HUB75 Pin Connections





Note that some of the available matrix displays use 0-based labeling,
meaning that the RGB lines are labeled R0, G0, B0, R1, G1, and B1. It
makes no difference regarding programming or actual operations but simply
adds a bit of nonstandardization for the HUB75 specification.

You also should be aware that the HUB75 input and/or output connectors
are not guaranteed to be identified as such on these boards. I have found that
the output connector is consistently identified with both the word output and
a right-facing arrow next to the connector. Also, the output connector seems
to be located on the right side of the PCB, but I don’t think this is a standard.

This concludes my brief discussion on how a RGB matrix works, and it is
time to show you the RasPi interface board.

RasPi Interface Board
I used an Adafruit RGB Matrix HAT + RTC for Raspberry Pi Minikit,
product ID 2345, as the interface between a RasPi 2 Model B and the 32 ×
64 RGB LED matrix. This kit made it very easy to interface the RasPi to the
display, especially when you consider that the driver software was designed
specifically to be compatible with this kit. Figure 4-5 shows a front view of a
completed kit.





Figure 4-5  Front view of the Adafruit interface board.

The Adafruit website contains comprehensive instructions on how to
assemble the board. It really is quite easy because only a few components
need to be soldered, although I did find soldering the 40-pin RasPi GPIO
socket a bit tedious. Just take your time, and you will easily be able to build
the kit.

The board also has a real-time clock (RTC) onboard, which the company
added because it added the PCB space according to its write-up. I didn’t use
this RTC initially, but it does offer some advantages for keeping track of
time, especially if you do not have the RasPi connected to the Internet.
Figure 4-6 shows the back of the board, which is clean except for the 40-pin
GPIO connector that plugs into the RasPi.





Figure 4-6  Back view of the Adafruit interface board.

I do want to mention that this board complies with the Raspberry Pi
Foundation’s HAT specification. HAT is short for “Hardware attached on
top.” It is a recent approach taken by the folks at the Raspberry Pi
Foundation to help standardize the form factor and software interface for
current and future RasPi add-on boards, which use the 40-pin GPIO
connector. The following is taken from the foundation’s website regarding
the HAT specification:

In a nutshell a HAT is a rectangular board (65 × 56 mm) that has four mounting holes in the (nicely
rounded) corners that align with the mounting holes on the B+, has a 40-W GPIO header and
supports the special autoconfiguration system that allows automatic GPIO setup and driver setup.
The automatic configuration is achieved using two dedicated pins (ID_SD and ID_SC) on the 40-
W B+ GPIO header that are reserved for an I2C EEPROM. The EEPROM holds the board
manufacturer information, GPIO setup and a thing called a “device tree” fragment—basically a
description of the attached hardware that allows Linux to automatically load the required drivers.

What we are not doing with HATs is forcing people to adopt our specification. But you can only
call something a HAT if it follows the spec.

The RasPi 2 Model B used in this project is also completely compatible
with the HAT specification. Table 4-2 details the interconnections between
the RasPi GPIO pins and the HUB75 connector mounted on the interface
board.
TABLE 4-2 RasPi GPIO to HUB75 Connections



Of course, the ground leads are also connected between the RasPi and
HUB75, but these do not have to be identified separately. Simply use any
one of the multiple ground points on the HAT board as a reference.
Additionally, if you closely inspect Figure 4-5 , you will see that all the
connections specified in Table 4-2 have been brought out to labeled PCB
holes. In fact, all 40 pins from the GPIO connector have been brought out,
even ones that are not involved with the HUB75 interconnection. This makes
it quite convenient to add additional connections if a project needs access to
these additional pins.

The HAT board also contains level-shifter ICs, which adapt the 3.3-V
GPIO RasPi outputs to the 5-V inputs required by the RGB LED display.



There is also a 2.1-mm barrel connector on the board, where you may plug
in an external 5-V power supply as well as a pair of screw terminals where
the matrix power cable assembly can be attached. Figure 4-7 shows the
interface board with the various power and data cables connected to it.



Figure 4-7  Interface board with power and data cables connected.

Note that the interface board will power the RasPi, eliminating the need
for a separate power supply dedicated to the RasPi. Just ensure that you use
a supply with a sufficient current rating to handle both the display and the
RasPi, as I discussed earlier.

This section concludes the hardware discussion. It is now time to take on
the software.

Software to Drive the RGB LED Matrix
The maker community is quite fortunate to have very smart individuals
involved who create open-source software to make all sorts of projects
feasible. We all are indebted to Henner Zeller, who created a comprehensive
C language library that runs on the RasPi and will drive the RGB LED
matrix. I strongly recommend that you set up the RasPi with the HAT
interface board before loading any software. You can use either the stand-
alone or headless configuration, as I mentioned in Chapter 1 . I chose to use
a stand-alone configuration because it fit my workstation, and all the
components were readily available. Just connect the HAT interface board to
the RasPi and the RGB LED matrix to the HAT using the IDC cable that
came with the display. Don’t forget to attach the power leads from the
display to the HAT or you will not see anything. I also used a 5-V, 10-A
external power supply that I purchased from Adafruit.

I would also strongly suggest that you update and upgrade your RasPi
before attempting to run the matrix software. You must be connected to the
Internet before starting the updating and upgrading. Enter these commands
in the order shown:

Mr. Zeller has put the C/C++ RGB LED matrix library on GitHub, where
it may be downloaded by entering:



You will next need to unzip the archive by entering:

Next, change to the subdirectory containing the code by entering:

You will now need to compile the code by entering:

This is all that’s needed to try testing the RasPi with the RGB LED
matrix.

If you are anxious to see whether the display works and you have a 32 ×
64 matrix attached, enter the following command:

If everything has been set up and configured properly, you should see the
runtext.ppm image scroll across the screen for 1 minute. Figure 4-8 shows a
snapshot of a portion of this scrolling message, which contains both text and
graphics.



Figure 4-8  Runtext.ppm scrolling message.

Incidentally, I will explain what a ppm file is and how to use it with this
software in a later section.

Entering sudo ./led-matrix by itself will show a help screen to inform
you of the available options that may be used with this program. I have
duplicated this help information here with some additional explanations to
assist you in understanding this program and getting the most utility from it:

Options:



 -r <rows> . Display rows: 16 for 16 × 32, 32 for 32 × 32; default is 32.

 -c <chained> . Daisy-chained boards; default is 1.

 -g . Do a gamma correction (experimental).

 -l . Don’t do luminance correction (CIE1931).

 -L . “Large” display composed of 4 times 32 × 32.

 -p <pwm-bits> . Bits used for PWM; values between 1 and 11.

 -P <parallel> . For Plus-models or RasPi 2: parallel chains: 1–3; default
is 1.

 -d . Run as daemon. Use this when starting /etc/init.d but also when
running without a terminal (e.g., cron).

 -D <demo-number>. Always needs to be set with a number as follows:

0. A rotating square
1. Forward scrolling an image (-m <scroll-ms> )
2. Backward scrolling an image (-m <scroll-ms> )
3. Test image: a square
4. Pulsing color
5. Grayscale block
6. Abelian sandpile model (-m <time-step-ms> )
7. Conway’s game of life (-m <time-step-ms>)
8. Langton’s ant (-m <time-step-ms> )
9. Volume bars (-m <time-step-ms> )

 -t <seconds> . Run for the specified number of seconds and then exit. If
neither -d nor -t is supplied, the program will wait for the ENTER key to be
pressed.

To run the actual demos, you need to run this as root so that the GPIO
pins can be accessed.

You should now be able to interpret the initial test command:



as follows:
 sudo . Run the program at the root level, that is, maximum administrative
privileges.

 ./ . Program is in the current directory.

 led-matrix . Program name.

 -d . Run as a daemon; allows for other processes to be started, that is,
nonblocking.

 -c 2 . A daisy-chain of two 32 × 32 matrices.

 -t 60 . Run for 60 seconds.

 -D 1 . Forward scroll the image specified by the following parameter.

 runtext.ppm . The image to be displayed; must be in the same directory as
the program.

There is another ppm file in the master directory named runtext16.ppm,
which, as the name implies, has 16-pixel-high characters and figures in lieu
of the 32-pixel-high characters contained in runtext.ppm. I displayed this file
by entering the following command:

Figure 4-9 shows the result of this command.



Figure 4-9  Runtext16.ppm scrolling message.

As you can readily see, the text and figures are half the size of the
previous message generated by the runtext.ppm file. Also, the message only
scrolls on the top half of the display, leaving the bottom half blank.

The next sections explore the images resulting from running some of the
preprogrammed demo programs. I will first show you the command
followed by the resulting display.

Rotating Square

Type in the following command to run demo number 1. Figure 4-10 shows
the resulting image.



Figure 4-10  Rotating square.

Square Test

Type in the following command to run demo number 3. Figure 4-11 shows
the resulting image.



Figure 4-11  Square test.

Pulsing Color

Type in the following command to run demo number 4. Figure 4-12 shows
the resulting image.



Figure 4-12  Pulsing color.

Conway’s Game of Life

Type in the following command to run demo number 7. Figure 4-13 is a
composite image with the left-hand side showing the cellular automatons in
progress and the right-hand side showing the final or equilibrium state. The
entire life cycle takes about 25 seconds to progress from an initial to an
equilibrium state.



Figure 4-13  Conway’s game of life showing in-progress and equilibrium
states.

Volume Bars

Type in the following command to run demo number 9. Figure 4-14 shows
the resulting image.



Figure 4-14  Volume bars.

I will now show you two other interesting demo programs that you might
want to try included within Zeller’s package.

Minimal-Example Demonstration Program

There are two executable files in the master directory that I want to
demonstrate. The first is named minimal-example, and it “paints a filled-in
circle in a 32 × 32 matrix using a spiral pattern.” When I ran the program, I
saw two circles because I used a 32 × 64 matrix. You can run the program by
entering:



Figure 4-15 shows a screen capture near the end of the circle painting.

Figure 4-15  Minimal-example program display.

I have also included the code listing for this program to show how
compact it is and to provide you with an example of the underlying C/C++
code.







For readers who are not familiar with C/C++ programming, I will simply
point out that this program relies on three libraries—GPIO, RGBMatrix, and
Canvas—that are contained in the name-space called rgb_matrix. The
program makes calls to a variety of methods within these libraries to draw
the pixel pattern according to the DrawOnCanvas(Canvas * canvas) method,
which is defined in this program. Note that a key object called a canvas is
the logical container for all the pixels displayed.

Text-Example Demonstration Program

The second executable program in the master directory is named text-
example. You can use this program to directly display any text that you
desire as long as it remains within the pixel dimensions of the array, that is,
32 × 64 in my case. The text-example program also uses similar options as
the led-matrix program, so it is fairly simple to run. The only new option to
be aware of is that you need to specify a font file. All the fonts used by this
program are stored in a master subdirectory named fonts . The following text
was entered manually and displayed using a 4 × 6 font. This meant that 16
characters could be displayed in one row and 5 rows could be displayed on
one screen. The 16 characters are the result of each character’s width of 4
pixels divided into the row length of 64 pixels. The number of text rows is
the result of each character’s height of 6 pixels divided into the total matrix
height of 32 pixels. Obviously, the remaining 2 pixels are discarded.
Hello World!
0123456789012345
Some sample text
Symbols #@$%&+
Fifth and last row

Entering the following runs the text-example program:

Figure 4-16 shows the result of executing the command and typing in all
the text. You should note that the characters are very bright because the



default character color is brilliant yellow.

Figure 4-16  Text-example program result.

All the available font files are listed in Table 4-3 .
TABLE 4-3 Font Files

You will rapidly run out of matrix space if you use the large fonts. I am
guessing that they are applicable only on large, chained arrays where there is
plenty of “real estate” to display such large text characters; this is likely a
legacy of their signage origins. Figure 4-17 shows you what I mean when I
used the 10x20.bdf font in the following command:



Figure 4-17  10 × 20 font example.

The text-example program clears the display when either the ENTER key is
pressed without any text entered or the text lines fill up the display and it
“wraps around.” You will need to press the CTRL-C (^C) key combination to
exit the program.

Using a -C option along with the desired RGB values also may change
the color and intensity of the display. I entered the following command to
display some text with a pale pink color:

Figure 4-18 shows the result of this command.



Figure 4-18  Changed color text display.

If you compare Figure 4-18 with earlier text displays, it should be
apparent that the figure’s pixels are not nearly as bright as the other
examples, although it is hard to standardize the intensity of photographs that
appear in this book. You can take my word that this display is much dimmer
than previous ones.

Earlier in this chapter I mentioned that I would cover the topic of ppm
files, which allow you to display your own creative artwork. Let’s see what
is involved with these graphic files.

ppm Files

ppm is short for “portable pixel map.” It is an image-format scheme that is
part of a larger set of similar imaging formats known as Netpbm . Netpbm is
the most recent version of an original graphics format known as portable



bitmap format (PBM), which was created by Jef Poskanzer in the 1980s. Jef
developed PBM to allow monochrome images to be transferred by e-mail
using plain ASCII text. PBM and all its descendants are human readable but
are also very memory inefficient compared with pure binary image formats
such as png or jpeg. I conducted the following test to determine the
comparative sizes of a ppm file and a jpeg file that had the same content.

ppm to jpeg File Size Test

I first loaded the runtext.ppm file into the GNU Image Manipulation
Program (GIMP) that I loaded into my MacBook Pro. Figure 4-19 shows the
converted image of all the ASCII text contained in the ppm file.

Figure 4-19  Runtext.ppm as imaged by GIMP.

I then used GIMP’s export function to save runtext.ppm as a jpeg file,
which I named runtext.jpeg. Figure 4-20 is an image captured from the
MacBook’s Preview application.

Figure 4-20  Runtext.jpeg as imaged by the MacBook Preview app.



You can easily see that the images in Figures 4-19 and 4-20 are identical.
I next listed the sizes of both files that were stored on the MacBook

desktop. Figure 4-21 is a snippet from the desktop file list.

Figure 4-21  File size listing.

The ppm file is about 48 kB in size, while the jpeg file is about 15 kB.
This result convincingly demonstrates that the jpeg file is over three times as
efficient in storing images as the ppm format. However, the led-matrix
program cannot work with jpegs but must use the ppm format. In conducting
this test, I only wanted to make you aware of the significant memory
constraints that are inherent in using the ppm file format. I will show how to
display a png or jpeg file directly in a later section, where I discuss how to
use Python with this matrix.

I will also show you how to create your own ppm files using GIMP, but
first I need to discuss the ppm file format.

ppm File Format

The ppm file format is relatively standardized using a few components, as
listed next. Remember that the file is completely made of ASCII characters,
which makes it easy to read directly. The components are listed in the order
they appear in the file.
1. A magic number. For the files I use, it will be P6. The reason that it is

called a magic number is that it has no relevance other than probably
being a legacy artifact from the old days of pbm (see earlier).

2. Pixel width.

3. Pixel height.

4. Maximum color value. This number is 255 or 0xFF for R, G, or B. Note
that it can be up to 65,535 for other ppm variants.



5. Image date in the form of ASCII triplets representing individual RGB
pixel values.

Note that each of these components needs to be separated by some form
of whitespace. This whitespace character is simply the carriage return (CR or
0x0A) for the ppm files I use. Figure 4-22 is the beginning portion of the
runtext.ppm file, which shows these components.

Figure 4-22  Beginning of runtext.ppm file.

This screenshot was taken from a Hex editor display because that makes
the most sense when trying to view the image data. Notice that there is a line
near the list beginning that starts with a # symbol. This shows that a
comment follows, which is inserted for human consumption but is ignored
by the matrix display program. As you may readily see from the listing, the
width of the image in pixel units is 500; the height is 32 pixels, and the
maximum value is 255.



I will next demonstrate how easy it is to create your own ppm file and
display it on the matrix.

Creating a ppm File

You will need to install the GIMP application to create your own ppm file.
Enter the following command to download and install GIMP:

You will have a choice regarding how to create a ppm file once you have
installed GIMP. You can create a new image using the tools available in
GIMP, or you can convert a preexisting image file. I actually tried both
approaches to see what was involved in each approach. My first attempt was
to use an existing gif file and convert it to a ppm file, which I detail next.

Converting an Existing Image File to ppm

I chose to use a cloud image named cloud.gif. This image is available from
this book’s website, where all the software shown in this book is also made
available for download. Figure 4-23 shows the gif image that I used to create
the converted ppm file.

Figure 4-23  Cloud gif image.

Follow these steps to create the equivalent ppm file from this gif image:
1. Start GIMP, and open the cloud.gif file: File  Open  cloud.gif.

2. Start the export process: File  Export.

3. Enter a name with a .ppm extension: Name  cloud.ppm.

4. Export the file: Click on the Export button.

5. Select Raw for Data formatting: Select the Raw button on the export
image as a pnb dialog.



6. Finish the export process: Click on the dialog’s Export button.

You should next display the ppm file by entering the following command:

Figure 4-24 shows the result of this command. There is a nice animation
that takes place when this file is scrolled with the cloud repeatedly
displayed.

Figure 4-24  Cloud.ppm display.

The next section demonstrates how to create a very simple image and
display it.

Creating an Original ppm File

The file I created for this demonstration was extremely simple and very
boring, consisting of a single black filled-in circle displayed on a white
background. I intentionally chose this image to create a ppm file because it
would be easy to discern between the circle and the background in the data
listing. Figure 4-25 shows the ppm image as displayed on the RGB LED
matrix by entering the following command:



Figure 4-25  Original ppm image.

The following text is an excerpt from a test1.ppm Hex listing that shows
both the header data and the beginning of the top of the black circle. This
transition is evident because the Hex data change from 0xFFs to 0x00, which
reflects the change from white to black.
P6
# CREATOR: GIMP PNM Filter Version 1.1
64 32
255
•
•
•
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
•
•

I confirmed that this section of data precisely matches the seven black
pixels located at the top of the black circle, as shown in Figure 4-25 . I doubt
that you will be able to ascertain this from the figure as reproduced in this
book, but I do have the original digital image, which I was able to enlarge so
as to be able to count the pixels. I also determined that the top row was 7
pixels long by counting 21 zero bytes and then dividing that by 3, given that
3 bytes are assigned to each pixel.

The next section explores how to use the Python language with the matrix
display.

Using Python with the RGB LED Matrix Display
I will start this discussion by stating that an RGB LED matrix display
program written in Python will run slower and less efficiently than a
comparable C/C++ program. Having said that, I will also point out that
Python is an easier language than C/C++ in which to create your own
programs or modify someone else’s program. I will be using Henner’s
Python library along with his test program named matrixtest.py to
demonstrate basic matrix operations such as clearing a display, filling one
with a solid color, and displaying individual pixels. The Python library is
named rgbmatrix.so, where the so extension is short for “shareable object.”
This library must be in the same directory as the calling program,
matrixtest.py. What you probably don’t realize is that the rgbmatrix.so
library is in reality a collection of C functions with appropriate “hooks” to
allow the C functions to operate seamlessly with a Python script. The Python
program matrixtest.py is listed with comments so that you can see how it
functions.







Enter the following to run this Python program:

You should observe red, green, and blue screens flash for 1 second each,
followed by a checkerboard pattern that stays on the matrix screen for 10
seconds. Figure 4-26 shows this last pattern.

Figure 4-26  Checkerboard pattern display.

There is one more Python program that I wish to discuss. It is named
matrixtest2.py and uses the Python Imaging Library (PIL) to directly display
images using common formats such as gif, png, and jpeg.





Figure 4-27 shows a snapshot of the cloud gif scrolling past on the matrix
screen.



Figure 4-27  Cloud gif animation snapshot.

This cloud is the same one as shown in Figure 4-24 , but that one was in a
ppm format. You can try all sorts of imaging experiments using this program
as a beginner’s programming template. I believe that you will find this
approach to be a pleasant compromise between a more complex and efficient
C/C++ program and a much less complex but slightly less efficient Python
program.

This last program concludes my discussion on this interesting topic of an
RGB LED matrix controlled by a RasPi.

Summary
The chapter started by showing what a 32 × 64 RGB LED matrix display is
and how it works. The HUB75 connection protocol was discussed next,
along with the HAT RasPi interface board. I proceeded to demonstrate H.
Zeller’s C/C++ RGB LED matrix library, which includes many great
programs that allow you to display both text and graphics on a matrix
display. In addition, a number of demos were shown that may be quickly and
easily run. I finished the chapter with a demonstration of two Python



programs that you can easily modify to suit your own purposes to display
text and/or graphics.



CHAPTER 5

Raspberry Pi Supercomputer
Cluster

IN THIS CHAPTER , I WILL SHOW YOU how to build your very own
supercomputer with eight Model B+ RasPis. However, in all honesty, this
project really isn’t about building a “true” supercomputer but more about
how to assemble a computer cluster and have it function efficiently to
process computations in a distributed manner. If you are looking to solve
problems really fast, I would suggest using an Intel Core i7 6-Core PC. It
will be orders of magnitudes faster than this RasPi cluster. However, if you
are looking to become familiar with how networked or distributed computers
work, then this is the chapter for you.

I begin this chapter with a brief background discussion on what makes up
a real supercomputer and the intended purposes of such computers. This
should help to place the RasPi cluster in an appropriate perspective.

Brief Supercomputer Discussion and History
I will start this section by stating that supercomputers and parallel computing
have forever been connected, and it is hard to discuss one without involving
the other. Parallel computing , as the name implies, means that two or more
computing processes are being executed simultaneously. Of course, now I
need to define what is meant by a process because that term is used quite
frequently in both parallel computing and supercomputing. In strict
computer science terms, a process is any instance of a program that is



executing or running on a computer. In addition, all processes are composed
of one or more threads.

Chapter 5 Parts List
Sometimes processes are confused with processors, which are the hardware
that runs the programs. Just remember, processes are software, while
processors are tangible hardware.

It will be important to keep this distinction in mind during later
discussions because it will help to clarify what is happening with the RasPi
cluster when running some parallel computations. I will also discuss threads
in a later section.

Supercomputers first appeared in the computer industry in the 1960s,
usually consisting of a few processors coupled together using a shared-
memory architecture. The concept of several to many processors sharing a
common memory is referred to as a centralized structure . The other
supercomputer architecture is known as a distributed architecture , where
there are separate processors with their own dedicated memories but



interconnected using some type of communications system. Figure 5-1
shows two conceptual block diagrams illustrating both these architectures.

Figure 5-1  Centralized and distributed supercomputer architecture block
diagrams.



The RasPi cluster used in this chapter’s project has a distributed
architecture, which most favorably conforms to the RasPi design.

Problem Types Suitable for Parallel Computing

Generally speaking, any problem that can be compartmentalized is suitable
for a parallel computer environment. Compartmentalization , in this context,
means that a problem may be solved in “chunks” that are not interdependent.
This allows multiple processors to function in an independent manner,
working on portions of a problem that eventually will be combined in some
fashion for an ultimate problem solution. Breaking a problem into actionable
chunks has been the cornerstone of parallel computing for many years. This
type of problem analysis is not an easy task and has been the subject of
much research for many decades.

Historically, the following problem areas have been conducive to
solutions using parallel computing:
 Machine learning

 Modeling

 Medical research

 Quantum mechanics

 Weather forecasting

 Oil/gas exploration

One of the more impressive examples of distributed computing in
medical research is the folding@home project. The following project
description was excerpted from the folding@home website:

Proteins are biology’s workhorses—its “nanomachines.” Proteins help your body break down food
into energy, regulate your moods, and fight disease. Before proteins can carry out these important
functions, they assemble themselves, or “fold.” While protein folding is critical and fundamental to
virtually all of biology, much of the process remains a mystery.

When proteins do not fold correctly (misfolding), there can be serious health consequences,
including many well-known diseases, such as Alzheimer’s, mad cow (BSE), CJD, ALS, AIDS,
Huntington’s, and Parkinson’s disease, as well as many cancers.

This project is essentially a distributed supercomputer architecture in
which the computing nodes are home PCs. Each one of the 138,000 PCs
involved with the folding@home project works on a chunk of a huge protein



database as distributed by a web-based central server. The client portion of
the program is designed only to be functional during PC idle time and is
guaranteed to have no impact on normal PC operations. The data are sent
back to the central server after they have been processed on the PC. A new
chunk of unprocessed data is subsequently transmitted back to the PC.

The SETI@home project is another popular web-based distributed
computing project that has been devoted to the search for extraterrestrial
intelligence. In this case, home PCs compute what are known as fast Fourier
transforms (FFTs) on chunks of raw data sent to them by a central server. It
turns out that FFTs are well suited to parallel computations because each
data chunk is independent of other similar chunks. SETI@home has over 3
million PCs involved in its computing project, making it one of the world’s
largest distributed computer systems.

Supercomputer Attributes

The most common descriptor or attribute concerning a supercomputer is
gigaFLOPS (GFLOPS), or billion (giga) floating point operations per
second. To put this attribute into a meaningful context, the latest Intel Core
i7-5775R Quad-Core CPU chip with a 3.8-GHz clock rate is rated at 120 to
150 GFLOPS. Put in another way, the RasPi 2 Model B quad core has an
approximate GFLOPS rating of 0.093 while operating at its standard 1-GHz
clock rate. I would also caution that GFLOPS is just a relative performance
indicator and does not necessarily represent real-world performance.

Modern supercomputers are now routinely rated using petaFLOPS, where
peta equals a million times giga. China now boasts operating the Tianhe-2
(translated as “Sky River 2” or, more loosely, as “Milky Way 2”)
supercomputer, which is rated at 33.86 petaFLOPS. Meanwhile, it has been
widely speculated that the United States National Security Agency (NSA)
has its own supercomputers that operate well beyond 33 petaFLOPS but
have not made this rating public for reasons of national security. China has
also recently announced its intent to develop and deploy a 100-petaFLOPS
supercomputer. Such a machine would have a serious impact on the ability
of 256-bit Advanced Encryption Standard (AES) encryption algorithms to
keep data safely encrypted.



The world’s most powerful distributed supercomputer is reported to be
the Bitcoin network with an incredible 287-exaFLOPS attribute, where exa =
1000 times peta. Thus the Bitcoin network would be rated at an insane
287,000 petaFLOPS. Now, this network is totally decentralized and cannot
be repurposed to solve any problem other than its own Bitcoin application,
so the world’s secret spy agencies have nothing to fear from Bitcoin
operations.

There are several other methods to rate supercomputers that involve
standard types of tests and operations that are used routinely in the
computing industry. These other methods are not relevant to this discussion
and will not be pursued further. Now I will discuss the RasPi cluster.

RasPi Cluster
I chose to build an eight-node RasPi cluster using the Model B+ for each
node. You do not need to use eight nodes to replicate this project but can use
as few as two RasPis to satisfactorily demonstrate the project software.
Using four RasPis is probably a reasonable compromise between cost and
utility for readers who wish to complete this project but minimize their total
outlay for project components. Table 5-1 is the bill of materials for this
project as I built it, but it can be greatly reduced, as just mentioned.
TABLE 5-1 Project Bill of Material for an Eight-Node RasPi Cluster



Figure 5-2 shows a block diagram illustrating how all these components
are interconnected.





Figure 5-2  Eight-node RasPi cluster block diagram.

The connections are very straightforward, and no soldering is involved in
this project. Everything is plug-and-play with regard to setting up the
physical components, which should go together very quickly. I decided to
use two USB hubs to power the RasPis, assigning each one to power four
RasPis. The particular hubs I used are rated with a 2.5-A overall current
capacity, which means that over 600 mA is available to power each RasPi;
this is more than adequate for these models considering that I will not be
using WiFi adapters with them. You can also use individual power supplies
with the RasPis if that’s what you have available, and such an arrangement
should not affect cluster operations. Both 1- and 2-ft micro-USB to type B
cables were used to interconnect the RasPis with the USB hubs to reduce
cable clutter. Likewise, I used both 1- and 2-ft Ethernet patch cables to
connect the RasPis with the switch. Note that it doesn’t matter which switch
ports you use to connect the RasPis because the network router will
automatically assign IP addresses, assuming that you have DHCP enabled on
your home router. You will also need a long Ethernet patch cable to connect
between your home network and the switch, as shown in Figure 5-2 .

Internet connectivity is useful but not essential for cluster operation after
the initial setup. I will discuss the software setup in detail in a later section,
but you should know that I initially used a stand-alone configuration for the
first RasPi, which is considered the master. I discussed both stand-alone and
headless configurations in Chapter 1 , which you might want to review if
you are a bit fuzzy on my terminology.

Building the somewhat elaborate stand will take the most time. The
cluster stand build instructions are presented in the website build drawings
for readers who desire to make one. Readers who just want to temporarily
experiment with this project and then dismantle it can also easily set up the
components on a tabletop without any stand. I chose to build a stand for
presentation purposes because it is somewhat impressive, and I use it when I
go to book sale events and Maker Faires. Figure 5-3 is an oblique front view
of a fully assembled eight-node cluster.



Figure 5-3  Oblique view of the eight-node RasPi cluster.



If you examine this figure closely, you may see where the two inner
polycarbonate sheets have been cut out at the top to accommodate a 5-inch
square fan. I planned on using a fan to cool all the RasPis, but I found out
that they operated without generating any heat, so the fan was unnecessary.
However, feel free to add a fan for purely aesthetic reasons. Figure 5-4
clearly shows how all the Ethernet patch cables are connected between the
eight RasPis and the switch.





Figure 5-4  Front view of the eight-node RasPi cluster.

None of these RasPis needs to be physically identified with its logical
number, that is, Pi01, Pi02, etc., because the cluster software takes care of
assigning identities, and all the nodes are identical RasPis. It is quite possible
to hook up a LED to a GPIO pin on each RasPi and then remotely activate it
to identify specific nodes, if desired. I do briefly discuss how to do this in
the software section, which follows.

RasPi Cluster Software
As you can imagine, cluster software strongly depends on how the
individual nodes communicate with each other. There are several existing
schemes that implement cluster communications, and each has advantages
and disadvantages. I will be using a standard protocol named the Message
Passing Interface (MPI) for the RasPi cluster. It is robust and relatively
simple to implement and operate. It also supports Python programming,
which I feel is a huge bonus for my readers because that language is fairly
simple to use but also quite powerful in the sense that significant problem
domains can be modeled and solved using this cluster. I believe a basic
background discussion on MPI will help you to understand how it works and
how best to use it.

MPI Basics

I will start the discussion by stating that MPI is a definition of an interface,
not an actual implementation. This means that there can be a variety of ways
that developers can create the software that does the actual communication
and message processing. The implementation I use in this project is named
MPICH2 and is programmed using the C language. Three definitions are
used in the interface, and you must be familiar with them before proceeding.
One of these is the term process , which I earlier defined. The others are
 Communicator. This is a group of processes that have the ability to
communicate with each other.



 Rank. This is a unique identifier assigned to each process that constitutes a
communicator.

Communication has both send and receive operations. A given process
uses another process’s rank to send it a message. The sending process also
may send an optional tag to help identify a specific message. The receiving
process may acknowledge the message and then handle it appropriately. This
type of operation is known as point-to-point communication .

Sometimes it may be necessary for one process to be able to
communicate with all the other processes that make up the communicator. In
this case, MPI provides a collective communication operation . This
operation type is also known as a broadcast message . Parallel computing
using MPI typically uses a combination of point-to-point and collective
communications to implement a problem solution.

I will use the following C program named mpi_hello_world.c to explain
the fundamental components of any MPI program whether written in C or
another language such as Python. My intent in showing this listing is to use
it as a template and not to actually compile and execute it:





The first step in creating a C language MPI program is to include the MPI
header file mpi.h, which contains all the constants and method signatures
required for successful program compilation.

The MPI environment then must be initialized with the statement

All global and local variables are initialized when this method is called. A
communicator is also constructed that contains all the processes that were
spawned, and a unique rank is assigned to each process. Note that the two
arguments shown in the method parentheses are optional and may be
replaced by appropriate null or nil values.

The next statement returns the communicator size:

The integer variable world_size has its value changed after this method
call finishes. The constant MPI_COM_WORLD is defined in mpi.h and sets the
appropriate integer value for this method. The value of world_size is a
whole number that represents the number of processes contained in the
communicator.

The next method determines the rank of a process involved with the
communicator:

The integer variable world_rank has its value changed after this method
call finishes. The value of world_rank is a whole number representing the
unique value of a process in the communicator. Process ranks start at 0 and



progress incrementally to encompass all the processes contained in the
communicator.

The next MPI method used in this program returns the preassigned
process name:

The process name is typically not required in most MPI programs but
does come in handy for Hello World–type demonstrations. I will also show
later that the RasPi hostname is also the process name for this cluster
configuration.

The last MPI method closes out the MPI environment in an orderly
manner:

It is always a good idea to terminate a program in a consistent way, ensuring
that all data are transferred as required and any allocated memory is
released.

This concludes the template introduction. I will next discuss how Python
may be used with MPI.

Python and MPI

The package used to implement Python within the MPI environment is
called MPI for Python , with a shorter descriptive name of MPI4PY . This
package uses an object-oriented approach to establish message passing
largely on C/C++ MPI implementation. Technically, MPI4PY translates the
standard C/C++ MPI-2 bindings into Python-compatible code. This means
that if you are familiar C/C++ code, you should have little to no problem
handling the Python interface. However, I do not assume that readers are
familiar with C/C++, so I will take it slow and try to be clear and precise
with regard to the Python code.

Pickling



The odd name of this section refers to the process of converting a Python
object from its normal state to a serialized state suitable for being sent as a
MPI message. After all, MPI is concerned primarily with communications
between nodes, and it wouldn’t make much sense not to be able to send and
receive Python objects or data primitives between processes. After a pickle
is sent, it must be unpickled by the receiving process, otherwise known as
deserialization .

The pickle object itself is constructed using pure Python. There is a
variant called cPickle that uses C code for speed reasons because the pure
Python version is much slower. It really doesn’t matter which version is used
in RasPi MPI4PY because the system clocks are fairly slow, and the
transmission speed of Python objects should not materially affect overall
operations.

Marshaling operations are also available in MPI4PY, which allows a
developer to explicitly serialize or pickle selected Python objects. I will not
be demonstrating any marshaling because it is a bit advanced for most
readers and will not have any significant impact on any of the cluster
programs demonstrated in this chapter. Just keep in mind that pickling and
depickling are ongoing at any time Python programs are executing, and they
do have some minor impact on execution speeds.

This concludes the background discussions on MPI and MPI4PY. It is
now time to show how to set up the software.

Software Setup
I started the initial software setup by using one of the Model B+ Raspis in a
stand-alone configuration and connected to the Internet. I found that I had
problems in the setup using the headless configuration, especially in the file
write permissions area. Just go back to Chapter 1 and review how to create a
stand-alone configuration. I will also assume that you have downloaded and
set up the latest Raspien image on the RasPi. Again, just review all the steps
on how to do this in Chapter 1 . You will also need to follow this
configuration guidance (as shown in Table 5-2 ) as you go through the raspi-
config program.
TABLE 5-2 Raspi-config Guidance



Once last important item is to write down the IP address that appears just
before the login screen prompt. You will need this for headless configuration
setup.

The following MPI setup is presented in a step-by-step order. You should
closely follow these steps as specified, and everything will go smoothly:
 1. Always update and upgrade before proceeding. This ensures that the

local repository database is in synch with the Internet databases and that
all the latest packages are actually installed on the RasPi.

 2. Create a directory to hold the latest MPI package.



 3. Change into the new directory.

 4. Download the latest MPI package. It was version 3.1 at the time this was
written.

a. wget (http://www.mpich.org/static/downloads/3.1/mpich-3.1.tar.gz )
 5. Unzip the download.

 6. Create a new directory in the home directory.

 7. Create a new directory in the one that was just created.

 8. Create a new directory in the pi directory.

 9. Change into this last directory.

10. Download and install the gfortran package.

11. Start the MPI configuration. Be patient; this step takes about 20 minutes.
The following command is on one line:

12. Compile the MPI package. Be very patient. This step takes over 2 hours
to complete.

13. Finish the installation. This step takes about 8 minutes.

http://www.mpich.org/static/downloads/3.1/mpich-3.1.tar.gz


14. Change directories to the next higher level.

15. Add the following line to the .bashrc configuration file using the nano
editor. Add it right after the last line, which should be fi .

16. Reboot the RasPi so that all the new configuration settings can take
effect.

17. Enter this command to check whether the MPI installation and
configuration were successful. You should see Pi01 returned as the
hostname.

The next part of the software configuration is the MPI4PY installation.
You must carefully follow all the steps. I will point out any potential
problems so that you may avoid those nasty issues.
 1. You need to first download and install Python’s developer package.

 2. Now download the MPI4PY package.
a. wget (https://mpi4py.googlecode.com/files/mpi4py-1.3.1.tar.gz )

 3. Unzip the package.

 4. Change directories.

 5. Build the package. Important: Do not use sudo with this command or an
error will result. This command takes about 17 minutes to complete.

https://mpi4py.googlecode.com/files/mpi4py-1.3.1.tar.gz


 6. Install the package. Note that you will need to use sudo with this
command.

 7. Next, set up the path link by entering this command:

 8. Test the MPI4PY installation by entering the following:

Figure 5-5 shows the result of successful execution of this test command.

Figure 5-5  Successful MPI4PY test.

This test command ran a Python Hello World program on a single RasPi
but with five separate processes spawned. These five processes were
commanded to be started by the number 5 immediately entered after the -n
option in the command line. You may have noticed in the figure that there
was no particular sequence for these processes to complete. I have
repeatedly run the command and have seen all sorts of random completion



sequences. This demonstrates that MPI has no inherent synchronization
mechanism built into the code.

If you change the number 5 to 1, the program will always display the
following:

The 0 in the display refers to the world_rank variable, while the 1 is the
world_size variable or total number of processes in the communicator.
Running the mpiexec program with one process is equivalent to running the
same program in the normal manner on the RasPi, that is, one process as one
thread with no message passing needed or even possible.

I show the helloworld.py program listing to indicate how Python handles
the same key MPI components listed in the C template.



As you can see, Python looks somewhat similar to the C version, but I
think that it’s a lot simpler and easier to understand. For instance, the size
variable, which holds the total number of processes in the communicator, is
assigned by the statement:

The MPI object is constructed from the earlier import statement, which
automatically links all the MPI4PY objects, one of which is COMM_WORLD ,
the communicator. Calling the Get_size() method with the COMM_WORLD
object returns the total number of communicator processes.

The processor name is returned by the Get_processor_name() method
called with the MPI object. You do not need either the size or the rank to



obtain the name string. In this case, the processor name and the hostname are
the same.

It will take you a bit of time to understand that the mpiexec program
spawns or creates a set number of identical processes, as specified by the -n
option in the command line. These processes must be identical because only
one program is specified to be used in this situation, which is helloworld.py.
This program is also situated in the demo directory, which is why the demo/
path had to be prefixed to the filename. Later on in this chapter I will
demonstrate a situation in which different program actions can be taken for a
mpiexec command because separate and distinct nodes are involved.

I will next discuss how to clone the SD card such that you will not have
to repeat all the preceding build, install, and configure steps. This next
section will save you a lot of time.

Cloning the SD Card

It is a fairly simple process to copy or clone the SD card that you carefully
prepared in the preceding section. All that’s required is to run the Win32
Disk Imager program and insert the SD card into the PC. Next, enter a name
for your image into the Image File text box. It can be any valid name as long
as it has an .img extension. I chose raspi_cluster.img, as you can see in
Figure 5-6 .



Figure 5-6  Cloning a SD card.

Next, click on the Read button, assuming that the SD card is in the
current slot. In the figure, the card slot is show as the D: drive. The Win32
Disk Imager program is pretty good at figuring out where the correct SD
card is inserted. Then sit back and relax because the read operation can take
a bit of time, mainly due to SD card memory size and rating. A 16-GB Class
10 card took about 15 minutes to completely read all the data. Much of it is
empty, but the program has no way of knowing what is blank or empty data
storage versus real data.

You’re ready to create a clone after the image file is created. All you need
to do is take out the SD card you just read and put in its place a fresh card
with the same memory capacity as the one that you used to create the image
file. The name of the image file still should be in the text box. If not,
navigate to where the imager program stored the new image file. This will
vary depending on where you last accessed an image file. In my case, the
default directory was the Downloads folder. In any case, simply click on the
Write button when you have the image file selected, and put a fresh SD card
into the PC slot. The write process will take some time, as was the case with
the read operation. Repeat the write process for as many remaining RasPis as
you will use in the cluster. Don’t be concerned that the hostname is the same
for all these images. I will shortly show you how to change that as the cluster
is finally set up.

Cluster Software Setup

You will be ready to set up all the cluster nodes once all the SD cards have
been created. You should disconnect the stand-alone configuration at this
point and insert an SD into each of the cluster RasPis. Of course, ensure that
no power is applied to any RasPi as you do this. Once done, power-on all the
RasPis, and get ready to use a headless configuration to continue the setup.
Again, review Chapter 1 to refresh your memory on how to connect to a
RasPi in a headless configuration.

Your home network router will assign an IP address to every RasPi that it
can reach via the wired Ethernet LAN. This is done through a process known
as the Dynamic Host Configuration Protocol ( DHCP), which should be



automatic and not require any user intervention. You already know the IP
address of the stand-alone RasPi you used for the initial setup. The simplest
way to find out all the remaining RasPi IP addresses is to log onto the router.
The router login varies with different brands, but a little research should
reveal the correct address. My address for a Netgear router was 192.168.1.1.
The user and default passwords should already be provided in the instruction
manual or may be readily determined using an Internet search. Once you
have logged on, you should click on the attached devices. You likely will see
a Refresh button on the page, which you should click. You might have to
refresh several times to see all the RasPis. The addresses that appear will
vary depending on the router being used and its configuration. In my case,
the lowest IP address I saw with a hostname of Pi01 was 192.168.1.26,
which was also the stand-alone RasPi. The next was 192.168.1.28, and so
forth. Your IP addresses likely will differ from mine, but that’s fine. All you
need to do is write the IP addresses down. You do not need to physically
associate any RasPi with any IP address. The MPI software is completely
indifferent to physical nodes versus logical IP addresses. The only situation
where it would be important to physically associate a node with an address
would be the case where you are reading a sensor from a node or controlling
some type of actuator from the same or another node.

There is another way to determine all the remaining RasPis’ IP addresses
in case you cannot access your home router’s attached devices table. SSH
into your first RasPi using the IP address you wrote down when you first
started the MPI software install. You will now need to install the nmap utility.
nmap is short for “network mapper,” and it is a very handy application for
both network discovery and security analysis. I will only be using it to
discover the remaining RasPi nodes. Enter the following command to install
the nmap utility:

You will be ready to discover the remaining nodes after nmap is installed.
Enter this next command to run a scan for these nodes:

You will likely have to change the starting IP address to suit your own
network. Most likely the change will be the following:



Figure 5-7 shows the result of the nmap scan.



Figure 5-7  nmap scan results.



You can clearly see all the RasPi nodes discovered in the scan. The
Raspberry Pi Foundation tags positively identify them. I would recommend
that you write all these IP addresses on a piece of paper because you will
shortly need them for the next step in the cluster software setup.

Assigning Unique Hostnames

At this point in the setup, all the nodes have the same hostname, which is
Pi01. This is a direct result of cloning the initial SD card. Believe it or not,
you could leave them all with the same name because the IP addresses are
the ones used by MPI to distinguish between the nodes. However, I would
strongly recommend that you change the names as that helps you to clearly
identify what each particular node is doing in the mpi environment. You may
select any node to SSH into in order to change the hostname. The most
logical approach is simply to use the next highest IP address and use that one
as Pi02. In my case, this was 192.168.1.28 because 192.168.1.26 was the
original, Pi01. You will then need to run the raspi-config utility after you log
in. Figure 5-8 shows the raspi-config hostname dialog screen, which is found
in the Advanced Options selection A2.

Figure 5-8  Advanced Options selection to change hostname.



In this figure, I had already changed the name, which is the reason you
can see the correct name in the box as well as at the top of the screenshot.
You now need to repeat the hostname change for all the remaining RasPi
nodes. I would also jot down the host name next to the IP address on the list
that you already created. Note that some homes will occasionally reassign IP
addresses to their attached devices, so it would be wise to occasionally check
the recorded IP list against the real-world assignments. It will make no
difference as far as the hostname assignment goes except that you would
need to update your list. It does make a big difference with regard to the
machinefile, which I discuss in the next section.

Machinefile and Keygen

You will need to create what is known as a machinefile to have MPI access
to any additional nodes other than the run it is currently running. The
machinefile is simply a text file containing a list of all the node IP addresses,
as shown in Figure 5-9 for my cluster.

Figure 5-9  Machinefile.

The machinefile also must be present in the same directory where the
mpiexec program will be run. However, you will get an error if you attempt
to run mpiexec with the machinefile without first creating a series of security
keys using a keygen procedure.



This next series of steps creates a series of crypto security keys that are
required to be installed before proper MPI operations can commence. I
would strongly recommend that you follow these steps precisely in sequence
or you likely will not have a successful installation. I will be using my
assigned IP address and corresponding hostnames, so you likely have to
adjust your commands to suit your own IP addresses.
 1. SSH into Pi01 from your PC or Mac:

 2. Enter the user name and password:

 3. Create a RSA key:

 4. Press the ENTER key three times to accept the default selections.
 5. Change to the home directory:

 6. Change to the hidden SSH directory:

 7. Copy the RSA data to a file named Pi01:

 8. SSH into Pi02 from Pi01:

 9. Enter the user name and password:

10. Create an RSA key:



11. Press the ENTER key three times to accept the default selections.

12. Change to the hidden SSH directory:

13. Copy the RSA data to a file named Pi02:

14. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

15. Pipe the contents of Pi01 into a file named authorized_keys:

16. Exit from the current command:

17. SSH into Pi03 from Pi02:

18. Enter the user name and password:

19. Create an RSA key:

20. Press the ENTER key three times to accept the default selections.

21. Change to the hidden SSH directory:



22. Copy the RSA data to a file named Pi03:

23. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

24. Pipe the contents of Pi01 into a file named authorized_keys:

25. Exit from the current command:

26. SSH into Pi04 from Pi03:

27. Enter the user name and password:

28. Create an RSA key:

29. Press the ENTER key three times to accept the default selections.

30. Change to the hidden SSH directory:

31. Copy the RSA data to a file named Pi04:



32. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

33. Pipe the contents of Pi01 into a file named authorized_keys:

34. Exit from the current command:

35. SSH into Pi05 from Pi04:

36. Enter the user name and password:

37. Create an RSA key:

38. Press the ENTER key three times to accept the default selections.

39. Change to the hidden SSH directory:

40. Copy the RSA data to a file named Pi05:

41. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

42. Pipe the contents of Pi01 into a file named authorized_keys:



43. Exit from the current command:

44. SSH into Pi06 from Pi05:

45. Enter the user name and password:

46. Create an RSA key:

47. Press the ENTER key three times to accept the default selections.

48. Change to the hidden SSH directory:

49. Copy the RSA data to a file named Pi06:

50. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

51. Pipe the contents of Pi01 into a file named authorized_keys:

52. Exit from the current command.



53. SSH into Pi07 from Pi06:

54. Enter the user name and password:

55. Create an RSA key:

56. Press the ENTER key three times to accept the default selections.

57. Change to the hidden SSH directory:

58. Copy the RSA data to a file named Pi07:

59. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

60. Pipe the contents of Pi01 into a file named authorized_keys:

61. Exit from the current command:

62. SSH into Pi08 from Pi07:

63. Enter the user name and password:



64. Create an RSA key:

65. Press the ENTER key three times to accept the default selections.

66. Change to the hidden SSH directory:

67. Copy the RSA data to a file named Pi08:

68. Securely copy the file Pi01 from the Pi01 node. Do not forget the single
period at the end of the command line.

69. Pipe the contents of Pi01 into a file named authorized_keys:

70. Exit from the current command:

You now need to link all the keys by following these steps:
 1. SSH into Pi01:

 2. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

 3. Pipe the file into the authorized_keys file:



 4. SSH into Pi02:

 5. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

  6. Pipe the file into the authorized_keys file:

 7. SSH into Pi03:

 8. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

 9. Pipe the file into the authorized_keys file:

10. SSH into Pi04:

11. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

12. Pipe the file into the authorized_keys file:

13. SSH into Pi05:



14. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

15. Pipe the file into the authorized_keys file:

16. SSH into Pi06:

17. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

18. Pipe the file into the authorized_keys file.

19. SSH into Pi07:

20. Enter the following secure copy command. Don’t forget the period at the
end of the command line.

21. Pipe the file into the authorized_keys file:

At this point, you should take a rest from all the preceding intensive setup
commands.

The bad news: if your router decides to reassign the IP addresses that
you used to authorize the RasPis, you will need to go through all the
preceding steps and regenerate all new crypto (RSA) codes, create
new machinefile and authorized_keys files, and finally relink



everything. I realize that this is a huge pain, but it can only be
avoided by assigning static IP addresses to the RasPis or creating an
entirely new subnet, which will create new issues and problems,
especially with your existing network. I choose to stay with the DHCP
approach and deal with the occasional reassignments. The choice is
entirely up to you.

I would recommend you do the following test to check whether all the
preceding configurations were entered correctly. Enter the following while in
Pi01’s mpi4py-1.3.1 directory:

You should see a display as shown in Figure 5-10 .

Figure 5-10  Hello World results from eight separate nodes.

Congratulations, you are now in possession of a true multiprocessing
parallel computer system. However, the real fun is just beginning. It is time
to progress from the relatively simple Hello World–type programs to
something that is more meaningful and useful. Let’s calculate the value pi.



Pi Calculations
As most readers know, pi is the ratio between a circle’s circumference and its
diameter. It is also a transcendental number . Technically, a transcendental
number is a real number that is not the solution of any single-variable
polynomial equation with all integer coefficients. Practically, transcendental
means literally “never ending,” so it is always an approximation, sometimes
to an amazing degree. Figure 5-11 is an output from the WolframAlpha
application showing pi to 1950 decimal points.



Figure 5-11  Pi to 1950 decimal points.



There are a variety of ways to approximate pi’s value, some quite rough
and others quite precise. Some of these methods are listed as follows:
 Graphical. Wrap a string taut around a jar lid, and then measure its length.
Next, measure the jar lid’s diameter and divide that into the string length.
The result is a rough approximation for pi.

 Infinite-series calculations. There are a few different series in this
category.

• Gregory Leibniz: Pi = (4/1) − (4/3) + (4/5) − (4/7) + (4/9) − (4/11) + . . .

• Nilakantha: Pi = 3 + 4/(2 × 3 × 4) − 4/(4 × 5 × 6) + 4/(6 × 7 × 8) − 4/(8
× 9 × 10) + . . .

• Simulations: There are several ways to numerically simulate pi’s value.

 Dartboard. Consider a dartboard contained in a square whose sides are
exactly the circle’s diameter, as shown in Figure 5-12 . Now imagine
throwing darts at the board in a completely random manner. Most darts
will land in the circle, but some will land in one of the four shaded
areas outside the circle but still in the square box. If you then count up
the number of darts that landed in the box but not in the circle and
divide that by the total number of darts thrown, you should
approximate pi’s value. Of course, increasing the number of darts
thrown increases the overall approximation accuracy.

 Buffon’s needle problem. In this simulation, there will be small
“needles” thrown across a rectangle filled with parallel lines. The lines
are separated by distance t , as shown in Figure 5-13 , excerpted from
Wikipedia. The needle’s length, as shown in the figure, is l , which
must be set equal to t for this simulation to function properly. Then you
randomly toss these needles onto the playing field and count the
number of needles that cross any line. Divide this number into the total
number thrown, and you again approximate pi. Increasing the number
of needles thrown increases the accuracy of the pi estimation, as was
the case for the dartboard simulation.

 Trigonometric. Several trigonometric algorithms can be used to calculate
pi. A common one is the arcsine(x ) function, with the variable x
constrained to be a value between +1 and −1.

Pi = 2 × {arcsin[sqrt(1 − x 2 ) + abs(arcsin)]}



Figure 5-12  Dartboard.

Figure 5-13  Buffon’s needle playing field.



I will next show you how to calculate pi using the RasPi cluster now that
you have had a brief introduction to some of the popular approaches to this
endeavor.

Calculating Pi Using the RasPi Cluster

A directory named compute-pi was created for you when you installed the
MPI4PY package. This directory is located in the demo directory, which, in
turn, is located in the mpi4py-1.3.1 directory. The compute-pi directory has
three Python programs that calculate pi in three different ways:
 cpi-cco.py. Computes pi using collective communications operations.

 cpi-dpm.py. Computes pi using dynamic process management.

 cpi-rma.py. Computes pi using remote memory access.

I will only run the cpi-cco.py program because it is adequate to
demonstrate cluster operations. You should try the other pi computation
programs if they interest you.

cpi-cco.py

I will start executing this program using only one RasPi, namely, Pi01. SSH
into Pi01 and cd down to the mpi4py-1.3.1 directory. Enter the following
command to create one process for the pi calculation:

Enter 10000 when prompted for the number of intervals. Figure 5-14
shows the result of this command.

Figure 5-14  One-process Pi01 cpi-cco.py pi calculation.



Enter a 0 for the number of intervals to quit the program. Next, enter the
following command to create eight processes on Pi01 to collectively
calculate pi:

Figure 5-15 shows the result of this command.

Figure 5-15  Eight-process Pi01 cpi-cco.py pi calculation.

This last command took a little longer to run, and the results were a bit
more accurate compared with the single-process calculation. Next, enter the
following command to use all the RasPis in the computation:

Figure 5-16 shows the result of this command.

Figure 5-16  Eight-processes distributed to Pi01 through Pi08 cpi-cco.py pi
calculation.

The results are identical to the eight processes as run on a single RasPi. If
you think about it for a moment, this result should not surprise you because
exactly the same number of computations are being done in both cases



except that in the first case one RasPi is doing all the work, whereas for the
second case, the computations are distributed among eight RasPis. Although
it is hard to confirm with 10,000 intervals, I did note that the single-RasPi
case did take longer than all eight RasPis working together. I next increased
the intervals from 10,000 to 1 million to try to measure the actual time for
each situation. The results were precisely as I expected:

One RasPi = 112 seconds

Eight RasPis = 14 seconds

112/14 = 8, or an 8 times speedup

Figure 5-17 shows the actual pi calculations for each case. The results are
identical, as may be seen in the figure.

Figure 5-17  Eight- versus single-RasPi Pi calculation.

I do wish to mention that this program uses parallel computations
employing collective communications operations (CCOs), and it really
makes no difference from a logical viewpoint whether all the processes are
executed on one processor or on multiple processors. It does make a huge
difference from a speed-of-execution viewpoint, as I just demonstrated.
Error Analysis I was curious to determine whether there was a relationship
between the number of intervals used in the pi computations and the reported
error. I therefore conducted a series of tests in which the number of intervals
was increased by 10 times starting at 10 and going to 10 million. Table 5-3
shows the result of this experiment.
TABLE 5-3 Reported Error vs. Number of Intervals



I wanted to plot these because it is a nice way to spot relationships, but I
realized that the obvious disparity in the size of the table numbers would not
lend itself to being plotted on a linear scale. Looking at the numbers, I
realized that I could take the log to the base 10 for each of them and plot
those numbers in a reasonable manner. Figure 5-18 shows the log-log chart
for the intervals versus errors.



Figure 5-18  Interval versus error chart.

Looking at the chart reveals that there is almost a perfect linearity
between the log of the number of intervals used versus the log of the
reported error. What this all means is that if you use 10 times the number of
intervals for a given trial, you will reduce the error 100 times. The chart also
reveals that the relationship tends to flatten a bit after 1 million intervals,
which means that the error improvement will decrease somewhat. In any
case, this RasPi cluster computation for pi is very accurate, provided that
you use at least a half-million intervals.

To this point, I have only run identical programs on the cluster RasPis.
While this meets the main purpose for cluster operations, it is possible to run
a program in which each node can have different functions depending on its
rank. I will demonstrate this functionality in the next section.

Unique Functions for Cluster Operations



I will demonstrate this type of functionality by creating a program named
uniqueFunctions.py , where nodes can do distinct things depending on
their rank within the communicator. However, don’t get too excited because
the functions will only be simple arithmetic operations to demonstrate the
concept. The program is as follows:





I first manually loaded the code into Pi01 using the nano editor. The code
was then run on Pi01 by entering the following command:

Figure 5-19 shows the result of running this program.



Figure 5-19  uniqueFunctions.py program results.

You can clearly see that each process handles its function according to its
assigned rank. The if statements conditionally test the process rank and will
run the indented code below the if statement when there is a match to the
preassigned rank. For instance, the process of rank 5 will display the cubes
for the a and b variables.



The next step is to load the program into the MPI4PY directory for all the
remaining RasPis. The easiest way to do this is to use the scp command. For
example, to load the program into Pi02, use the following command:

To speed up this copy operation, you can press the up arrow to recall the
last command and just change the appropriate digit or digits in the IP address
for the next RasPi node.

Enter this command to run the program after all the remaining RasPi
nodes have been loaded with the program:

Figure 5-20 shows the result of running the uniqueFunctions.py program
on all eight RasPi nodes in the cluster.



Figure 5-20  Cluster uniqueFunctions.py program results.

You can easily see that each node has a unique rank, which also equates
to a specific arithmetic function with regard to the a and b variables.

At this point, I will change topics to demonstrate some basic MPI
operations, including point-to-point and collective communications.



Basic MPI Operations
It would be helpful to understand some of the basic MPI operations if you
would like to write your own programs. I will cover some point-to-point and
collective operations using Python. I also acknowledge Lisandro Dalcin’s
fine tutorial, “MPI for Python,” from which the following programs were
derived.

Point-to-Point Communications

Point-to-point communication, as the name implies, is the direct sending and
receiving of messages between two processes. As I have demonstrated
previously, both processes may be running on a single node or on multiple
nodes. I will demonstrate both the single- and multiple-node cases in this
section. I have listed a simple Python program next that is named p2p.py :

There is an MPI communicator object created named comm , by which the
basic send and receive methods can be called. Within the process with a rank
equal to zero, I created a dictionary list with two key-value pairs. The first
key is a , with a value equal to 7, and the second key is b , with a value equal
to 3.14. This dictionary is then sent in total to the process with a rank equal



to 1. Note that there is an additional optional identifier named tag with a
value of 11 that is also sent to the receiving process. I mentioned earlier that
while tags are optional, they do help to sort out messages, especially if a
process receives multiple messages from other processes.

The else-if statement (elif ) will take effect for the process with rank
equal to 1. The sent data are received within this conditional code block.
Note that the source of the data is identified by its process rank along with
the optional tag. The values for both dictionary list items are displayed next.

This program demonstrates basic send and receive operations permitted
between two processes. I would like to point out that the data type being sent
did not have to be identified beforehand. Python handled that chore very
nicely using dynamic type casting. In other words, you can send a dictionary
list, a numerical array, data primitives, string arrays, and so on, and Python
will automatically handle the data appropriately. This is part of the pickling
operation I discussed earlier.

While in the mpi4py-1.3.1 directory, enter the following to run p2p.py on
a single RasPi node:

Figure 5-21 shows the result of executing p2p.py on one RasPi.

Figure 5-21  p2p.py program display from a single node.

You will need to copy p2p.py into all the remaining RasPi nodes to run
the program on the cluster. Use the following command to securely copy
p2p.py from Pi01 to Pi02:



Just repeat this command, changing the IP address, to finish copying the
file to all the remaining RasPi nodes, just as you did with the earlier
example. Once all the files are in place, you can run p2p.py on the cluster by
entering:

Figure 5-22 shows the result of executing p2p.py on the cluster.

Figure 5-22  p2p.py program display from the cluster.

This completes my brief introduction to MPI point-to-point
communications. There is much more to this topic, and I would recommend
Dalcin’s tutorial as a good starting point to delve deeper into this topic.

The next basic MPI operation concerns collective communications, where
one process sends messages to more than one process.

Collective Communications

It is often necessary for a process to send data to multiple processes in a
single operation. This is known in MPI terms as collective communications
and sometimes as broadcast communications when all communicator
processes are involved. As I mentioned in the point-to-point discussion, all
the involved processes may be running on a single node or multiple nodes. I
will demonstrate collective communications for both the single- and



multiple-node cases in this section. I have listed a simple Python program
next that is named collComm.py. Enter the following to run collComm.py on
a single RasPi node:

Figure 5-23 shows the result of executing p2p.py on one RasPi.

Figure 5-23  collComm.py program display from a single node.

You will need to copy collComm.py into all of the remaining RasPi nodes
in order to run the program on the cluster. Use the following command to
securely copy collComm.py from Pi01 to Pi02:

Just repeat this command, changing the IP address, to finish copying the
file to all the remaining RasPi nodes, just as you did with the point-to-point
example. Once all the files are in place, you can run collComm.py on the
cluster by entering:

Figure 5-24 shows the result of executing collComm.py on the cluster.



Figure 5-24  collComm.py program display from the cluster.

Surprise! I bet you were expecting to see a similar display to what was
shown in Figure 5-23 instead of the jumbled mess shown in this figure. At
this point, I think most readers will have figured out what happened. The
Python print command is nonblocking , meaning that instances from the
print command emanating from different processes can “jump” into the
output character stream going to the display, resulting in the confused
display. I must also confess that I did see this to a much smaller degree in the
single-node case, but I simply repeated issuing the command many times
over until I got the nice display shown in Figure 5-23 . Thoughtful readers
also might ask why there was no “confusion” in the uniqueFunctions.py
program, which also had multiple output statements in the program. The
answer is simple: I used the standard output write function in that program,
which is blocking , meaning that each output statement must be completed
before another is started. Blocking slows things down, but it does have a
distinct advantage in this case where there are nonsynchronized output
commands vying for a single display terminal.

This completes my brief introduction to MPI collective communications.
There is a good deal more to this topic, and I would once again recommend
Dalcin’s tutorial as a good resource for a more in-depth study of collective
communications. The next section describes an interesting way to monitor
the network traffic ongoing in the cluster.

Monitoring Cluster Network Traffic
This section describes an application that will allow you to monitor on a
real-time basis what is going on with all the packets “flying” around in the
cluster. The application is named iptraf, and you only need to load on one



RasPi. I would recommend using Pi01 because it is considered the master.
Enter the following command to download and install iptraf:

You will need administrative privileges to run it, so enter

I also opened a second terminal window in order to copy SSH into Pi01
to be able to run the cluster version of the uniqueFunctions.py program. This
program generated some cluster activity, which was shown in the iptraf
window. Figure 5-25 shows both the iptraf GUI window as well as the
uniqueFunctions.py program display screen.

Figure 5-25  iptraf and uniqueFunctions.py screen displays.

There are many options that may be set with this application to refine its
monitoring. I found it quite interesting to just look at all the different TCP



packet activity ongoing within and outside the cluster. It is also easy to spot
problems such as loose or broken network connections. Many other network
monitoring applications are available, but I have found iptrap to be fairly
simple to use as well as being highly configurable.

This last section closes out this chapter on building and using a RasPi
cluster.

Summary
This chapter began with a brief history of supercomputers and a review of
terms commonly used in this technology. I next showed you how to
physically build an eight-node RasPi cluster, including how to make an
optional display stand. A general discussion of cluster software followed that
focused on the Message Passing Interface (MPI) Standard. I followed this
with detailed, step-by-step instructions on how to install both MPI and
Python for MPI. I showed you how to clone a SD card, which greatly
reduced the software installation time on the remaining cluster RasPis. All
the RasPis were also set up with the necessary security files required for
networked operations.

Hello World programs were run on a single RasPi, as well as on the
whole cluster. I followed this demonstration with one that computed pi both
on a single RasPi and on the whole cluster. I showed you how individual
RasPis can run separate functions instead of exactly the same operations,
which can provide utility for cluster computations. I also demonstrated some
basic MPI operations for readers interested in distributed programming.

The chapter concluded with a brief demonstration on how to monitor
network traffic using the iptrap application.



CHAPTER 6

RasPi-to-RasPi Communications
Using MQTT

THE FOCUS OF THE CHAPTER, as the title suggests, is direct computer-to-
computer communications or, as it is more commonly referred to, machine-
to-machine (M2M) communications. There is no human intervention in this
type of system because all the computers or machines, as they are
generically termed, are set up to communicate with each other using an
established protocol. I will be using two RasPis, one as a data source or
publisher client and the other as a data sink or subscriber client. The data
source RasPi system also will use a single TMP36 temperature sensor to
continuously generate temperature data for this project. I will also be using
Python for the publisher system and Java for the subscriber system. Using
two languages helps to point out the heterogeneous nature of the Meassage
Queuing Telemetry Transport (MQTT) Protocol, which allows for different
systems to interact seamlessly. In this case, the hardware platforms will be
the same, but the computer language software will differ.

Before I start the detailed discussion, I would like to acknowledge a fine
blog article entitled, “Using Eclipse Paho’s MQTT on BeagleBone Black
and Raspberry Pi,” which was written by a highly talented developer named
D. J. Walker-Morgan. His article is great and is available at the Eclipse.org’s
talkingsmall blog at www.eclipse.org/paho/articles/talkingsmall/ . I highly
recommend you read it when have an opportunity to do so.

Paho and Eclipse.org

http://www.eclipse.org/paho/articles/talkingsmall/
http://eclipse.org/


Paho is an open-source project sponsored by the Eclipse.org Foundation.
This project is dedicated to providing scalable client implementations for
both open and standard messaging protocols. The Paho Project is designed to
provide an exciting infrastructure in support of new M2M and Internet-of-
Things (IoT) applications. The home website is located at
www.eclipse.org/paho/ . At the heart of the Paho Project is a lightweight
publish/subscribe message protocol named MQTT, which I describe in the
next section.

Chapter 6 Parts List

MQTT

MQTT is the current name for this protocol, although it was originally
named Message Queuing Telemetry Transport. I guess the project managers
felt that the original name was a mouthful or it could be that there are no
actual queues used in the protocol. In any case, it is now simply called
MQTT.

MQTT is over 10 years old, having been created originally by the IBM
Pervasive Software Group in conjunction with Arcom, which is now called
Eurotech. IBM still supports MQTT, and the current version 3.1
specifications are available in pdf form from the IBM developerWorks
website at www.ibm.com/develpoperworks/webservices/library/ws-
mqtt/index.html .

MQTT is technically known as a middleware application , as can be seen
in the block diagram for this project in Figure 6-1 . It is important to realize

http://eclipse.org/
http://www.eclipse.org/paho/
http://www.ibm.com/develpoperworks/webservices/library/ws-mqtt/index.html


that both publishers and subscribers are treated as client applications in this
configuration type.

There is a block named MQTT Broker located between the publisher
client and the subscriber client blocks. This broker may be thought of as a
message dispatcher that ensures that the MQTT messages are properly sent
from the client publishers to the correct client subscribers. In this way,
subscriber clients do not have to constantly monitor all the network traffic
looking for messages that are addressed to them. The broker takes over that
function, and it also serves as an acknowledgment intermediary, which I
explain in the section concerning quality of service.

Figure 6-1  Project block diagram.

Table 6-1 lists some of the salient features of MQTT that make it so
popular as a messaging protocol.
TABLE 6-1 MQTT Features

These features make MQTT very popular for M2M applications,
including weather monitoring, stock ticker, smart power grid meters, and
even Facebook messaging. It is also a very popular way for cellular services
to implement message alerts.



Quality of Service (QoS)

QoS refers to the level assurance that MQTT provides regarding message
delivery. There are three QoS levels:
 Level 0. This is also known as “fire and forget.” At this level, the publisher
sends off messages, and there is no attempt to acknowledge their reception
by the broker on behalf of the publisher. It is obviously the quickest
message-delivery method, but it is also the least reliable.

 Level 1. This is also known as “at least one.” Here messages are sent and
resent until the broker receives one acknowledgment from the subscriber.
It does provide some assurance that the message did get through to its
intended recipient. Level 1 is typically set as the default QoS for a MQTT
messaging system.

 Level 2. This is also known as “exactly one.” At this level, messages
undergo a two-stage process in which there is a definitive acknowledgment
between the broker and subscriber ensuring that one and only one message
copy was delivered. This QoS level is the slowest among the three levels
owing to the additional processing overhead required to establish a high
reliability level.

Wills

No, this section has nothing to do with legal probate but instead focuses on
what happens when a client abnormally loses its connection with the broker.
A will is a both a set of instructions and a prescribed message that is stored
by the broker and will only be acted on if the connection between the broker
and a client is unexpectedly broken. Basically, it is a dialog that states, “If
you (the broker) cannot connect to me and I (the client) haven’t cleanly
disconnected, then carry out the preset instructions and also send out the
stored message on my behalf.” The will concept is implemented in Python
by a setWill method and in Java by an object of the
MqttConnectionsOptions class.

Using wills in MQTT improves both system robustness and reliability
and ensures that messages either will be delivered or an error message will
be created and distributed describing what went wrong.



Reconnecting

Connections will be broken, and MQTT has the inherent ability to reconnect
using two system elements. The first is a logical flag known as the clean flag
, which is set at a 1 (high value) for every fresh or new connection. The
clean flag informs the client and broker that they must start the messaging
process from the beginning because it represents a new connection.
However, if the clean flag becomes false or 0 (low value), a second element
comes into play. This is called the client ID , and we will see that it plays a
key part in establishing an original connection when the test code is
discussed. For now, let’s assume that it had already been set to some String
value when the connection broke. Now, assume that the connection is
restored, as might happen when a client briefly loses power. MQTT will
attempt to restore the connection to the same precise state because it
recognizes that it still has same client ID String stored in its record structure,
which existed for this particular connection when it first became
disconnected. Note that various MQTT libraries, whether they be Python or
Java, have different implementations for storing client IDs and messages so
that the connections can be recovered without any message loss.

It is now time to demonstrate a temperature-monitoring application that
uses MQTT to distribute single-valued data points between one publisher
and one client.

RasPi MQTT Publisher-Client System
Before I demonstrate the temperature-monitoring program, I first need to
describe the temperature-monitoring sensor, the analog-to-digital converter
(ADC) chip, and the serial peripheral bus. All three are required for the
RasPi to be able to generate the temperature data.

TMP36 Temperature Sensor

The basic temperature sensor I will use in this project is an Analog Devices
Model TMP36, shown in Figure 6-2 . It is housed in a standard TO-92
plastic form factor that is also common to most transistors. The TMP36 is far
more complex than a simple transistor in that in contains circuits to both



sense ambient temperature and convert that temperature to an analog
voltage. The functional block diagram is shown in Figure 6-3 .



Figure 6-2  Analog Devices Model TMP36 temperature sensor.

Figure 6-3  Model TMP36 functional block diagram.

The TMP36 only has three leads, which are shown in a bottom view in
Figure 6-4 .

Figure 6-4  TMP36 bottom view showing external leads.



Table 6-2 provides details concerning these three leads, including
important limitations.
TABLE 6-2 TMP36 Pin Details

The voltage representing the temperature depends on the TMP36 supply
voltage, which must be considered when converting the Vout voltage to the
equivalent real-world temperature. I account for this in the software that
converts the Vout voltage to an actual temperature. Figure 6-5 is a graph of
the Vout voltage versus temperature using a 3-V supply voltage.



Figure 6-5  Graph of Vout voltage versus temperature for a +VS = 3 V.

The actual temperature-measurement range for the TMP36 is –40 to
+125°C, with a typical accuracy of ±2°C and a 0.5°C linearity. All in all,
these are not too shabby specifications considering that the cost of the
TMP36 is typically less than US$2. The TMP36 range, accuracy, and
linearity are well suited for a home temperature-monitoring system.

Analog-to-Digital Conversion

The RasPi does not contain any means by which analog signals may be
processed, as most readers already know. This means that some type of
analog-to-digital converter (ADC) must be used before the RasPi can deal
with the temperature signals.



I used a Microchip Model MCP3008, which is described in the Microchip
datasheet as a 10-bit SAR ADC with SPI data output. This means that the
MCP3008 uses a Successive Approximation Register (SAR) technique to
create a 10-bit digital result that in turn is outputted in a serial data stream
using the Serial Peripheral Interface (SPI) Protocol, which is discussed after
the sidebar. The very inexpensive MCP3008 ADC chip has impressive
specifications despite its very low cost. Figure 6-6 shows the package form
and pin-out for this chip.

Figure 6-6  MCP3008 package form and pin-out.

The MCP3008 chip as used in this project is in a dual-in-line package
(DIP), which means that either a custom printed circuit board (PCB) or a
solderless breadboard must be used to interface it with the RasPi. I discuss
how to connect the RasPi to the MCP3008 after the sidebar. I encourage you
to read the sidebar if you are interested in how the MCP3008 accomplishes
the ADC process.

Inner Workings of the MCP3008 ADC
I will refer to the MCP3008 functional block diagram shown in
Figure 6-7 throughout this discussion. The analog signal is first
selected from one of eight channels that may be connected to the
input channel multiplexer. Using one channel at a time is called



operating in a single-ended mode . The MCP3008 channels can be
paired to operate in a differential mode if desired. A single
configuration bit named SGL/DIFF selects single-ended or
differential operating modes. Single-ended is the mode used in this
project.

Figure 6-7  MCP3008 functional block diagram.

The selected channel is than routed to a sample and hold circuit
that is one input to a comparator. The other input to the comparator
is from a digital-to-analog converter (DAC) that receives its input
from a 10-bit SAR.



Basically, the SAR starts at 0 and rapidly increments to a
maximum of 1023, which is the largest number that can be
represented with 10 bits. Now each increment increases the voltage
appearing at the DAC’s comparator input. The comparator will
trigger when the DAC voltage precisely equals the sampled voltage,
and this will stop the SAR from incrementing. The digital number
that exists on the SAR at the moment the comparator “trips” is the
ADC value. This number is then outputted, one bit at a time, through
the SPI circuit (discussed next). All this takes place between sample
intervals. The actual voltage represented by the ADC value is a
function of the reference voltage VREF connected to the MCP3008.
In our case, VREF is 3.3 V; therefore, each bit represents 3.3/1024 or
approximately 3.223 mV. For example, an ADC value of 500 would
represent an actual voltage of 1.612 V, which was computed by
multiplying 0.003223 by 500.

Serial Peripheral Interface

The SPI is one of several data communication channels that the RasPi
supports. It is a synchronous serial data link that uses one master device and
one or more slave devices. A minimum of four data lines are used with SPI,
and Table 6-3 shows the names associated with the master (RasPi) and slave
(MCP3008) devices.
TABLE 6-3 SPI Data-Line Descriptions



Figure 6-8 is a simplified block diagram showing the principal
components used in an SPI data link.

Figure 6-8  SPI simplified block diagram.

Usually two shift registers are involved in the data link, as shown in the
figure. These registers may be hardware or software depending on the
devices involved. The RasPi implements its shift register in software, while
the MCP3008 has a hardware shift register. In either case, the two shift
registers form what is known as an interchip circular buffer arrangement
that is the heart of the SPI.

Data communications are initiated by the master by first selecting the
required slave. The RasPi selects the MCP3008 by bringing the SS line to a
low state or 0 VDC. During each clock cycle, the master sends a bit to the
slave, which reads it from the MOSI line. Concurrently, the slave sends a bit
to the master, which reads it from the MISO line. This operation is known as
full-duplex communication , that is, simultaneous reading and writing
between master and slave.

The clock frequency used depends primarily on the slave’s response
speed. The MCP3008 can easily handle bit rates of up to 3.6 MHz if
powered at 5 V. Because we are using 3.3 V, the maximum rate is a bit less



at approximately 2 MHz. This is still very fast and will process the RasPi
input without losing any data.

The first clock pulse received by the MCP3008 with its CS held low and
Din high constitutes the start bit . The SGL/DIFF bit follows next and then 3
bits that represent the selected channel(s). After these 5 bits have been
received, the MCP3008 will sample the analog voltage during the next clock
cycle.

The MCP3008 then outputs what is known as a low null bit that is
disregarded by the RasPi. The following 10 bits, each sent on a clock cycle,
are the ADC value with the most significant bit (MSB) sent first down to the
least significant bit (LSB) sent last. The RasPi will then put the MCP3008
CS pin high, ending the ADC process.

Connecting and Testing the MCP3008 with the RasPi

The MCP3008 is connected to the RasPi using the Pi Cobbler prototype tool
along with a solderless breadboard. The Pi Cobbler is available from a
variety of sources, but it must be assembled, which will require some
soldering. Instructions are available on the Adafruit website that show you,
step-by-step, how to assembly the Pi Cobbler. Soldering is a fun activity,
provided that you have the right equipment and skill. I recently acquired a
comparatively inexpensive digitally controlled soldering workstation, which
is shown in Figure 6-9 . It may be set to precise temperatures that enable
very nice solder joints to be made with ease and repeatability.





Figure 6-9  Digital soldering station.

Of course, the station is only as effective as the soldering iron that
connects to it. Figure 6-10 shows the very sharply pointed soldering iron that
came with the soldering station. The sharp point allows for some very
closely spaced solder joints to be made while avoiding those troublesome
solder bridges. I also used a 60/40 rosin-core solder, which I found to be
very effective.

Figure 6-10  Sharp-pointed soldering iron.

Initial Test

Initial testing involves both creating a hardware circuit and establishing the
proper Python software environment. The circuit and software setups are
based in large part on the excellent tutorial available from Matt Hawkins’
blog (http://www.raspberrypi-spy.co.uk/tag/tmp36/ ), in which he discusses
both the MCP3008 and the TMP36 sensor as well as the Python software.

Hardware Setup

I will first discuss the hardware circuit because it is relatively
straightforward. Figure 6-11 shows the test schematic for the Pi Cobbler,
MCP3008, and TMP36. I connected the TMP36 Vout lead to the MCP3008
Channel 0 input, which is pin 1.

http://www.raspberrypi-spy.co.uk/tag/tmp36/


Figure 6-11  Test schematic.

The actual physical setup is shown in Figure 6-12 . On the left side of the
breadboard you can see the TMP36 sensor connected with three jumper
wires to the breadboard. Incidentally, I find using commercial jumper wires
very useful and more reliable than using homemade jumpers constructed
from hookup wire. There is almost nothing more frustrating than to find that
a poor wiring connection due to a broken jumper wire was responsible for a
nonfunctioning circuit. Besides, a set of jumper wires is quite inexpensive
and lends a professional look to your project.

The hardware setup should proceed very quickly, and the next portion of
the test concerns the software.





Figure 6-12  Physical test setup.

Software Setup

The SPI hardware circuits that are part of the RasPi must be enabled before
executing any code that relies on those circuits. Initially, you should check to
determine whether the native SPI device is available. Enter the following,
and check to see whether there is a spi_bcm2708 in the list that is displayed:

If there is, skip the next procedure; otherwise, edit the raspi-blacklist.conf
as follows:
1. Enter

a. sudo nano /etc/modprobe.d/raspi-blacklist.conf .

b. Add the number symbol (# ) in front of the line blacklist spi-bcm2708
.

c. Press CTRL-O to save and CTRL-X to exit the nano editor.

2. Enter

a. sudo nano /boot/config.txt .

b. Add this line to the bottom of the file: dtparam=spi=on .

c. Press CTRL-O to save and CTRL-X to exit the nano editor.

3. Reboot the RasPi by entering sudo reboot .

Try the lsmod command again, and you should see the spi-bcm2708
device listed.

You now need to load the Python libraries that will allow programs to be
run by the SPI circuits you just enabled. First, install the Python
development libraries by entering

After this install finishes, you need to create a special directory in which
to locate and run the SPI Python programs. From the Home directory, which
should be at /home/pi , enter the following:



Next, change into the newly created directory:

Now download a Python script that will automatically create the
necessary SPI development environment:

Next, download an additional file that is required before the setup can
begin:

Now run the script and create the SPI development environment by
entering:

The following test program displays a continuous stream of temperature
values generated by the TMP36 sensor. The program is named
TMPSensor.py and is available for download on this book’s companion
website. The code follows the MCP3008 ADC configuration guidelines and
SPI protocols, as discussed earlier.









Run this program by entering:

Figure 6-13 is a screen shot of a portion of the program output with the
TMP36 sensor measuring ambient room temperature.



Figure 6-13  Initial test results.

Adding MQTT Features to the Application

You first need to load the appropriate MQTT client implementation library
before adding the messaging features into the application. Please follow
these steps to load the Python library that will be used in this project. Also
note that I will be using the Debian commands in all the following
instructions.
1. The Raspian Linux distribution must first be updated to ensure that all

dependencies will be located in the appropriate repositories. Enter



2. Download the source code from GitHub using this command:

NOTE
If you have difficulty in doing a direct git clone, you may also go to
http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.python.git/ and
download one of the following compressed files:

org.eclipse.paho.mqtt.python-1.0.zip
org.eclipse.paho.mqtt.python-1.0.tar.gz
org.eclipse.paho.mqtt.python-1.0.tar.bz2

3. Use the extraction application that matches the compressed file extension
you downloaded, that is, WinZip or 7Zip for the zip file. The same
source directory should be created after extraction as was used for the
clone operation.

4. Change into the source directory:

5. Compile the source code using a build script already available in the
directory:

6. Install all the compiled files:

The Python MQTT client should now be ready to be added to the
TMPSensor.py program. However, I will first cover some basic concepts that
you should have clear in your mind before going on to the complete
application.

http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.python.git/


The publisher client must establish a logical connection to the broker
before any messages can be passed. This is done with the following
statements: import paho.mqtt.client as mqtt sets up a client reference
named mqtt ; mqttc = mqtt . Client() instantiates an MQTT client object
named mqttc ; and mqttc.connect("m2m.eclipse.org", 1883, 60) goes
out to the Internet and connects with an MQTT broker at the website
m2m.eclipse.org on port 1883. The 60 refers to a 60-second ping, which is a
keep-alive , meaning it is sent when no other activity is happening on the
connection. mqttc.loop_start() starts a separate execution thread that
handles incoming messages from the broker.

The following two statements contain references to what are known as
topics and subtopics :

In these statements, "raspiexample123" refers to a root topic created on
the broker, which also contains the subtopics "tmp36" , "v" , and "f" . Real-
time millivolt data are stored in the "v" subtopic, while real-time Fahrenheit
temperature data are stored in the "f" subtopic. I will shortly demonstrate
how to retrieve these real-time data from the broker. But first you should
enter the following modified TMPSensor.py program, which I named
mqttTMPSensor.py to reflect the new messaging capabilities:









The program is run by entering:

You should see exactly the same terminal display that was shown when
the TMPSensor.py program was run in the earlier test, except that I added
the word mqtt to the end of each display line to help me distinguish between
the two program outputs. Figure 6-14 is a terminal screen shot for this
program.



Figure 6-14  Terminal screen shot showing the mqttTMPSensor.py program
output.

The data in the mqttTMPSensor.py program are also being sent to the
broker located at m2m.eclipse.org and listening on port 1883. I believe that
some discussion at this point regarding the broker website would be helpful
for your overall understanding of the role that the MQTT broker plays in this
messaging scheme.

MQTT Brokers

The web server located at m2m.eclipse.org is a public sandbox hosted by the
Eclipse Foundation as part of its open-source IoT project. This web server’s

http://m2m.eclipse.org/
http://m2m.eclipse.org/


software itself is based on the Mosquito Project created and maintained by
Roger Light, a highly talented UK developer. The sandbox server allows free
public access to an actual MQTT broker where developers may test their
software. There are no restrictions at this site, and just as in an African
waterhole, all are welcome to use it, but beware of any predators that might
be lurking nearby. This metaphor means that your data, which are being sent
to the broker, can be accessed by anyone who is also concurrently on the
site. This usually is not a problem because most developers are typically
well behaved.

There are a number of other freely available MQTT brokers beside
m2m.eclipse.org. Table 6-4 lists all the brokers that were reported as
available at the time of this writing. All offer standard MQTT broker
support, while some provide additional services such as SSL, a dashboard, or
an HTTP bridge, as noted in the “Remarks” column.
TABLE 6-4 Public MQTT Brokers



The HTTP bridge is one of the features in the m2m.eclipse.org broker
that will allow us to check whether the mqttTMPSensor application data are
actually being received by the broker. To use the HTTP bridge, first, ensure
that the mqttTMPSensor publisher client is running, and then, using a
browser either on the RasPi or another computer, go to this website:
http://eclipse.mqttbridge.com/raspiexample123/tmp/f . Once in the website,
you should see only a single number such as 70, which represents a
temperature reading taken from the TMP36 sensor. Figure 6-15 is a screen
shot of the HTTP bridge website while I was running the mqttTMPSensor
application.

Figure 6-15  HTTP bridge screen shot for the f subtopic.

You may have noticed that the order in which the HTTP bridge URL was
constructed specifies the root topic and all the branch subtopics leading to
the desired one to be displayed, as detailed in Figure 6-16 .

Figure 6-16  HTTP bridge URL with topics.

Going to the website
http://eclipse.mqttbridge.com/raspiexample123/tmp36/f will allow you to
retrieve the temperature data because the final subtopic is f , which matches
the published subtopic descriptor. You should examine the publish statement
in the mqttTMPSensor.py code listing to confirm this fact.

http://m2m.eclipse.org/
http://eclipse.mqttbridge.com/raspiexample123/tmp/f
http://eclipse.mqttbridge.com/raspiexample123/tmp36/f


It is time to examine the RasPi client now that the publisher client is fully
operational.

RasPi Subscriber Client
The MQTT subscriber client will be implemented in Java rather than
Python, which emphasizes the MQTT platform agnostic approach. You
should first ensure that Oracle’s Java JDK is already installed on the RasPi.
It should be if you are using a Wheezy distribution from September 13, 2013
or later. Enter the following at the command line prompt:

Figure 6-17 is the result of this command line query as to the Java version
installed on the RasPi. Your version may very well be different because
upgraded Java versions are likely to be included in the Wheezy distribution
with time.

Figure 6-17  Java version query.

Using a callback method is key to how the MQTT subscriber client
functions. A callback method is one that is triggered by an event , which is
the arrival of a message at the broker for this situation. Callback methods are
specified in the MQTTCallback interface, which is implemented by this
subscriber client class named PahoMqttSubscribe. The following statement
shows the class declaration along with the interface implementation:



The client class also requires a supporting library, which is in the form of
a Java archive file named mqtt-client-0.4.0.jar. This jar file will need to be
downloaded from the Eclipse.org website. Instructions on how to download
it will be discussed in another section. This statement is the import for the
MQTT client library:

An empty client constructor and a reference to the client are created by
these statements:

The following main method contains only one method call in this
minimal demo project. This method call also incorporates an instantiation of
the PahoMqttSubscribe class.

The doDemo() method call made in the main method is where the
application forever loop is located. The first action that happens when this
method is first entered is an instantiation of the client object, which is
directed to the desired broker website. A connect command follows the
instantiation:

http://eclipse.org/


Notice that one of the arguments in the instantiation statement sets up a
unique client ID. All clients connecting to a broker require a unique ID,
which is typically constructed from metadata elements that the broker can
discern from the initial TCP connection.

The next step in the doDemo method is to establish the callback method,
which I mentioned previously. This method will be called when a message to
which the client is subscribed is received by the broker:

The client must next inform the broker which topic it desires to subscribe
to:

Additional actions are normally added after the subscribe statement. In
this minimal demo, there is only a forever loop containing a 1-second sleep
statement. The sleep statement is contained by try/catch statements, which
are needed for this execution sequence. Obviously, real-time control
application statements also would be placed here as desired.



The remaining item that is missing in this class definition is the actual
callback method. This method is named messageArrived , and it takes two
arguments, a String for the topic and an MqttMessage type representing the
subtopic value. The MqttMessage type value is also known as the payload .
The only action that the callback method will perform in this demo is to print
the topic and the payload.

A pro-forma action is also required for this class definition to be complete
and able to be compiled. Because the PahoMqttSubscribe class implements
the MqttCallback interface, it is required to provide an implementation for
all the methods specified by the interface. One method, messageArrived has
already been implemented. There are two other methods that must be
implemented. These are shown next as empty or null implementations.



The Java MQTT API does contain applications that will provide real
implementations for the preceding callback methods. They are not needed in
this demo, but you should know that they are available.

All this code is shown next as a complete class definition named
PahoMqttSubscribe .java. You should use the nano editor to enter it or
download it from this book’s companion website.





Do not compile the code at this point because it will not work owing to
the missing jar file. Please use the following steps to download the jar,
compile the source file, and execute the class file:
1. Enter the following while in a RasPi terminal window:

2. Ensure that the jar file is in the same directory as the class source file
PahoMqttSubscribe.java. Enter the following to compile the source file:

3. Note that the -cp option in the command signifies the class path to use to
find the required library file, which is mqtt-client-0.4.0.jar for this case.
In addition, the library file also must be located in the current file, which
also holds the source file, because there is no directory prefixed to the
library file. You will shortly see a case where multiple libraries are
involved, which will require an expanded class path specification.

4. Ensure that the RasPi publisher is running the mqttTMPSensor.py
program. Also check that you are using the m2m.eclipse. org broker.
Enter the following command to execute the class file:

NOTE



Don’t forget to enter the semicolon and period that follow the .jar
extension. The program will not run unless you have those in the
command.

Figure 6-18 is a screen shot taken from the RasPi terminal window
showing the data streaming from the MQTT broker.

Figure 6-18  RasPi subscriber client terminal screen shot.

This last step completes the initial M2M demonstration project. To recap,
I showed you how to first set up a RasPi Model B+ as a publisher client,
which streamed temperature data to a MQTT broker. The RasPi was running
a Python program for this function. I next showed you how to set up a RasPi
2 Model B as a subscriber client using a Java program. This subscriber RasPi



was connected to the same MQTT broker as the publisher RasPi and thus
was able to receive the data messages from that RasPi via the broker. This
was made possible by a MQTT callback method named messageArrived .
The next part of this M2M demonstration project is to expand the subscriber
client Java class such that it can undertake some automatic actions based on
the received data messages.

MQTT Two-Phase Thermostat
The two-phase thermostat in this section’s title refers to a unit that can either
start heating or start cooling depending on the measured temperature in the
monitored space. In this section, I will show you how to establish two
setpoints that will cause cooling, heating, or no action based on the received
MQTT temperature data. The PahoMqttSubscribe Java class will be
modified to incorporate this new controller application. I also renamed the
class as PahoMqttSubscribe1 to distinguish it from the original,
noncontroller version. Another major change to the original class that’s
needed is to incorporate GPIO to control LEDs that will indicate the
thermostat’s state. In the next section, I will show how to install the Pi4J
library that will enable GPIO control using Java.

Pi4J Library

The Raspberry Pi development community is quite fortunate to have a
talented developer named Robert Savage who freely made available a fairly
complete Java class library that implements GPIO functionality. This library
includes both high-level application-type classes and many low-level driver
classes. The library is named Pi4J and is available for download at
www.pi4j.com . The download and installation of this library on your RasPi
are crucial to the success of this project. Please follow this procedure to set
up your RasPi to control the GPIO pins using Java:
1. The first step is to download the Pi4J library. I found that the simplest

way to do this was to first download the SNAPSHOT release named
pi4j-1.1-SNAPSHOT.deb onto my laptop from the website
https://code.google.com/p/pi4j/downloads/list . You can then copy it into
the RasPi’s home directory using a thumb drive and the RasPi’s File

http://www.pi4j.com/
https://code.google.com/p/pi4j/downloads/list


Manager application or use the scp utility and transfer it directly from
the laptop.

2. Once it is in the Home Directory, enter the following command to install
this SNAPSHOT into the appropriate locations on the RasPi:

NOTE
dpkg is a package manager application designed to unpack and install
Debian-formatted packages, that is, software packages with a .deb file
extension.

3. After the installation is completed, a new directory (pi4j) will have been
created with two new subdirectories (lib and examples) within it as
follows:

a. /opt/pi4j/lib

b. /opt/pi4j/examples

The preceding step completed the Pi4J installation, but you should
proceed with the next few steps to create all the needed class files and be
ready to run the example program, which will, in turn, confirm that the
library functions as expected and is usable for program development.

Change into the examples subdirectory by entering the following:
cd /opt/pi4j/examples

Once in the directory, enter the following, which automatically builds all
the class files from the existing downloaded source files:

There were 34 example source files in the download that I made. That
number is subject to change as the developers who control the website add
and subtract depending on comments received from the active Pi4J
community.

The ./build command causes a script to run that iterates through all the
example source code files to produce corresponding class files. The actual



compile command is shown next, and you must use it to compile your own
source file:

It is very important that you pay attention to all the symbols and
whitespace in this command because leaving anything out or misaligning
will cause the compile to fail, as I found out much to my frustration.

Enter the following to execute or run a class file:

I would strongly suggest that you try to compile and run one of the
example programs named BlinkGpioExample.java that are near the top of
the example directory file list. But first, I do need to explain how the GPIO
pins are identified within this program because this will have a direct impact
on how you connect the LEDs when using the PahoMqttSubscribe1
program. The Pi4J library is based in large part on another RasPi framework
known as WiringPi. WiringPi is a great programming tool, but unfortunately,
it added its own way of identifying the GPIO pins, which, as many readers
will know, is already a bit confusing because there are two other ways of
identifying the same pins. The two ways are the approach taken by
Broadcom, the chip manufacturer, and the Raspberry Pi Foundation’s
labeling. Incidentally, the manufacturer is usually identified using the initials
bcm . To help you clarify this confusion, I have included Figure 6-19 , which
is a good reference for the different GPIO pin labels.



Figure 6-19  GPIO pin cross-reference.



This figure relates to both the Model B’s 26-pin P1 connector and the
Model B+’s 40-pin J8 GPIO connector because the first 26 pins on the
Model B identically match the Model B+’s pins. The shaded area on the 40-
pin connector identifies this overlap.

The following code snippet was excerpted from the BlinkGpioExample
program to show you a specific instance of this pin labeling:

Don’t worry, I am not going through this code but will focus only on the
two pin labels shown in the code, namely, GPIO_01 and GPIO_03 . If you
refer to Figure 6-19 , you will see the entries GPIO_GEN0 and GPIO_GEN3
are on the same lines as GPIO17 and GPIO22, respectively. GPIO_GEN0 is
GPIO_01 and GPIO_GEN3 is GPIO_03 . They are also connected to physical
pin numbers 11 and 15, respectively. I realize that this is all as clear as mud,
but I can assure you that as you continue to work with the RasPi, the pin
labeling will become second nature. Just be careful when connecting devices
to the RasPi.

Figure 6-20 shows a physical setup in which I connected a LED with a
series with a 220-Ω resistor to pin 15 or GPIO03. Note that I used two
female jumper wires to make the connections between the GPIO03 and
ground pins. I could have used a Pi Cobbler, but sometimes it is just as easy
to “do it quick and dirty.”





Figure 6-20  LED with a series resistor connected to GPIO_03 .

This LED connection allowed me to check that the BlinkGpioExample
program functioned as expected. You will see some print statements appear
on the terminal screen when the program runs, but it is always comforting to
see an actual LED blink.

You will first need to compile the BlinkGpioExample program by
entering the following:

This will create a class file name BlinkGpioExample.class in the current
directory.

Next, enter this to run the class file:

Note that you should not enter the .class extension in the class file name
because that will cause an error.

The next section shows the modifications I made to the
PahoMqttSubscribe file to incorporate the control functions.

Modified Subscriber Client File with Added Control Functions

The modified Java class is now named PahoMqttSubscribe1 and is listed
next:









The changes to the original Java class have been enclosed in boxes to
help you identify the new additions.

I have really only added some new functionality to the messageArrived
method in which the payload value is compared with two preset values to
determine which GPIO pins are set to a high value. The logic is simple: if
the payload value is higher than 80, turn on GPIO_01 , which theoretically
could be connected to a relay module controlling an air conditioner for
cooling purposes. If the payload value is lower than 60, turn on GPIO_03 ,
which likewise is theoretically connected to a relay module controlling a
heater. Of course, if the temperature is between 60 and 80, do nothing
because this is the desired comfort zone. The setpoints of 60 and 80 are
purely arbitrary, but I did need some concrete values to test the system.

Enter the following command to compile the PahoMqttSubscribe1
source file:

Enter this command to run this class file:

Again, play particular attention to the colon and period that are part of
this command.

You are now ready to test this thermostat application.

Two-Phase Thermostat Test

I changed the earlier circuit connected to the publisher client RasPi to
facilitate this two-phase thermostat test. The TMP36 sensor was replaced
with a 10-kΩ potentiometer connected between 3.3 V and ground. The
potentiometer tap was connected to the ADC channel 1, as can be seen in the
schematic in Figure 6-21 . I used the simple LED circuit I showed you



earlier and alternately attached it to GPIO_01 and GPIO_03 , as shown in the
figure.



Figure 6-21  Two-phase thermostat test schematic.

Replacing the sensor in this way allowed me to quickly change the input
voltage such that I could set it at 0.77 V to simulate 81°F or 0.65 V to
simulate 59°F, where either temperature will trigger a state change. If you
examine the code listing, you will see that I added some println statements
in the control logic that allowed me to display the GPIO control states on the
subscriber client RasPis terminal window. Figure 6-22 shows the system
terminal display while in operation and the state changes as I set the
potentiometer to a voltage simulating 81°F. Incidentally, I used a volt-
ohmmeter (VOM) to measure the voltage going into channel 1 of the ADC. I
also changed the measurement interval to 5 seconds to give myself enough
time to change the simulated temperature without the intentionally changed
temperatures scrolling off screen. The LED connected to GPIO_01 also
switched on to show that it was entering the cooling state.



Figure 6-22  Two-phase thermostat terminal display for 81°F.

Figure 6-23 shows another system terminal display where I set the
potentiometer to a voltage simulating 58°F. The LED connected to GPIO_03
also switched on to show that it was entering the heating state.



Figure 6-23  Two-phase thermostat terminal display for 58°F.



This last figure concludes this M2M demonstration project in which there
were only computers “talking” to computers without any human
intervention. This was a simple example of two computers communicating
with each other using the standardized messaging MQTT protocol. There
was also an intermediate message broker involved, which received data
messages from a publisher client and then passed them on to a subscriber
client. Many clients can subscribe to a broker, but only the messages they are
interested in are sent to them. They show their interest by subscribing to a
specific set of topics and subtopics.

This messaging project is only one of many M2M projects that have been
developed to date. It is an exciting area that promises to have many new and
interesting projects available for developers and experimenters now and in
the not too distant future.

Summary
The overall concept of machine-to-machine (M2M) communications was
introduced initially along with a standardized message protocol named
MQTT. I explained that I would use a simple temperature sensor connected
to one RasPi programmed with Python to send data to another RasPi
programmed with Java via a MQTT broker. The first part of the
demonstration had the RasPi displaying only the temperature data sent to it
without any messaging taking place. In the second part of the demonstration,
I had a subscriber RasPi execute some control action based on a received
data value.



CHAPTER 7

Software-Defined Radio

SOFTWARE-DEFINED RADIO (SDR) is a relatively new technology but one that
many people use daily but are not aware of. SDR is a key component of most
modern cell phones. If SDR did not exist, then the same would likely be true
of cell phones and a lot more technology on which modern societies depend.
This chapter’s purpose is to make you aware of the basic SDR functions
through some fun experimental projects using a RasPi and a few inexpensive
SDR parts. However, before I launch into the projects, I believe a brief
background discussion on how SDR functions should enrich your
experience.

Basic Radio Concepts
Most readers are already likely familiar with these basic concepts, but a
quick review never hurts. All radio communications rely on a carrier wave,
which is typically a constant-frequency, constant-amplitude electromagnetic
radiofrequency (RF) wave (shown graphically in Figure 7-1 ).

The waveform shown in the figure is also called a continuous wave (CW),
and it “carries” information via a process known as modulation . Technically,
the CW carrier can transmit information alone simply by being switched on
and off in a predefined manner representing the information or data. This
operational mode is commonly known as Morse code or the more familiar
“dit-dahs” associated with amateur radio operations.



Figure 7-1  Radio carrier wave.

Chapter 7 Parts List

Three very common modulation techniques are used in RF
communications:

 Amplitude modulation (AM). This modulation method changes the
amplitude of the RF carrier in direct correspondence to the data being



transmitted.

 Frequency modulation (FM). This modulation method changes the
instantaneous frequency of the RF carrier in direct correspondence to the
data being transmitted.

 Phase modulation (PM). This modulation method changes the
instantaneous phase of the RF carrier in direct correspondence to the data
being transmitted.

There are many other modulation schemes in current use, but almost all
are some combination of the basic modulation schemes just detailed. FM will
be used for this chapter’s projects because FM is the scheme used by the data
transmitters being monitored. Figure 7-2 shows a carrier wave that was
frequency modulated by two digital pulses.

Figure 7-2  Digital pulse FM waveform.

The waveform modulation is apparent in the figure by the close spacing of
the peaks and troughs of the CW carrier, while the digital pulses are in their
high state. This change in frequency is called deviation and is directly
proportional to the amplitude of the data signal. For digital signals, the
deviation typically will be 0 Hz for the low portion and approximately 5000
to 10,000 Hz for the high portion. This type of FM is two-state modulation,
with either a 0- or 10-kHz deviation appearing in the waveform. I will not be
discussing how to implement digital FM transmission because this chapter’s
project is focused only on receiving and decoding radio waves using SDR
techniques.



Heterodyning and Demodulation

The process of receiving and retrieving data sent by digital radio involves
two techniques known as heterodyning and demodulation . Heterodyning
involves the use of a radio tuner whose purpose is to convert the very high-
frequency (VHF) radio wave to a much lower-frequency wave known as an
intermediate frequency (IF). This IF is then sent to the demodulator.
Demodulation is the precise counterpart to modulation, which encoded the
original transmitted RF wave. As such, you would require an FM
demodulator to decode the received FM radio wave.

In an analog FM receiver, an initial RF mixer is used to initially translate
the VHF radio waves to a much lower IF, usually about 10.7 MHz for
consumer FM radio. You may have heard of super-het radios, which are
simply radios containing multiple heterodyne stages used to increase receiver
selectivity. Figure 7-3 shows a block diagram of a typical analog FM receiver
RF front end.

Figure 7-3  Analog FM receiver RF front-end block diagram.

The LO shown in the figure is short for “local oscillator,” whose purpose
is to generate a RF signal precisely equal to the carrier frequency. The mixer
shown in the figure generates sum and difference frequencies when the
received RF signal is “mixed” with the LO frequency. Only the difference
frequency is used because it contains the useful data signal. The RF amplifier
shown in the figure amplifies the relatively weak RF signal coming from the
antenna before it is put into the mixer. This greatly improves the signal-to-
noise ratio, which is effectively the radio’s dynamic range. A wide dynamic



range enables the radio to handle both strong and weak signals efficiently.
You will shortly see that SDR dongles also have RF amplifiers, but they are
termed low-noise amplifiers (LNAs).

The IF from the tuner is next sent to the demodulator. This signal contains
a replica of the original data in the form of two analog signals: the I and Q
waves, as shown in Figure 7-4 , which is a simplified block diagram of an
analog demodulator.

Figure 7-4  Block diagram of an analog demodulator generating I and Q
waves.

The I wave is an in-phase replica of the original data, while the Q wave is
a quadrature or 90° out-of-phase replica of the same signal. Both I and Q
waveforms are needed by the SDR to complete the demodulation process and
re-create the original data.

While the classic demodulation circuit is still widely used in modern
radios, SDR typically employs another circuit that is highly effective and is a
good match to meet SDR requirements. This circuit is called the Tayloe
detector and is shown in the block diagram in Figure 7-5 .



Figure 7-5  Block diagram of a Tayloe detector.

I will not provide a detailed description of the operation of a Tayloe
detector other than to say that the incoming IF signal is sampled and “held”
for a very brief time such that the I and Q signals can be extracted from the
received waveform. The switching or commutation speed denoted as Fc in
the figure is set as one-quarter of the sampling frequency Fs . Fs , in turn, is
set at the IF, which is typically at or below 10 MHz for SDR dongles. The
switching and sampling actions are accomplished in a single digital
demodulator chip, which I discuss in a later section.

The next section details how the SDR uses the I and Q signals to re-create
the original data signal.

Signal Reconstruction Using I and Q Waveforms

The next step in the SDR processing sequence is to convert the I and Q
waveforms into their digital representations. This is accomplished by using



two 8-bit analog-to-digital converters (ADCs), as shown in Figure 7-6 .

Figure 7-6  SDR digital signal-processing block diagram.

The two newly digitized waveforms are then sent serially over a USB
connection to a computer, which is running the actual SDR program. The
digitization and conversion of the I and Q data streams are also done in the
same chip described in the preceding section.

The blocks shown in the figure’s computer-designated area represent
logical processing modules and not any actual hardware. This virtualization
of hardware is the essential feature of SDR, which makes it so versatile. The
abbreviations in the figure are detailed as follows:

 ADC : analog-to-digital converter

 FFT : fast Fourier transform

 IFFT : inverse fast Fourier transform

 FIR : finite-impulse filter



 F s : sampling frequency

I will not discuss how this block diagram functions because it is not
critical to implementing the project. I will say that the logical blocks will
change according to the type of signal being processed. This diagram is
suitable for digital, narrow-band FM demodulation, while a completely
different diagram might be used for single-sideband voice demodulation.
Such a difference only requires changes in the program code but no changes
as far as the I and Q signals are concerned.

In addition, the associated data displays are completely software
dependent, which again makes it so easy to accommodate the various types
of radio signals to be handled by the SDR system. This chapter’s project will
use a simple console display to show the received text messages. Other
displays can and usually are far more sophisticated. I refer readers to
investigate Flex Radio’s PowerSDR software to see an excellent example of
a professional SDR control and display program. It is freely available and has
a demo mode by which you can run it without attached hardware.

The demodulated signal line shown at the far right in Figure 7-6 can be
linked to more software modules to further process the received signal. In our
case, the demodulated signal will be decoded to reveal the text messages
contained in the original radio signal. Other SDR systems might have actual
voice, which would require a digital-to-analog converter (DAC) to change
the digital signal back into its original analog form suitable to be heard.

At this point, it is time to discuss the project because I believe that I have
provided you with a sufficient background in SDR technology to understand
what happens when you actually run it.

SDR Dongle
The key piece of hardware required for this SDR project is actually a digital
TV tuner device, affectionately termed an SDR dongle . Figure 7-7 shows the
SDR dongle used in this project.



Figure 7-7  SDR dongle.

How the dongle TV tuner became an inexpensive SDR is a bit of a
serendipitous story. Back in 2010, a fellow named Eric Fry was
experimenting with this dongle type using a packet sniffer, hoping to get a
digital TV broadcast data stream (DAB+) working with a Linux application.
He confirmed that the I and Q signals generated by the dongle were suitable
for not only DAB+ but also for the more general VHF signals not necessarily
related to TV broadcasts. Eric and Antii Palosaari confirmed that the Realtek
2832U chip contained in the TV tuner dongle was perfectly capable of
creating a wide range of I and Q signals suitable for use in SDR applications.
Things progressed rapidly from that point, thanks to many smart and clever
open-source developers. Today, quite a few SDR programs are available,
including one made specifically for the RasPi, which I will use in this
project.

Returning to Figure 7-7 , you will notice that there is a small antenna
connector located on the side. This is a U.FL micro coaxial connector, which
is designed to be used with the small, collapsible stick antenna that is
normally supplied with the dongle when you buy the package. Figure 7-8
shows this antenna with its cable connector.



Figure 7-8  Collapsible stick antenna.



Now the small stick antenna might be fine when used in a strong signal
area, but I found it to be a very poor performer where I live, in a somewhat
rural area. I therefore purchased a U.FL-to-BNC adapter, which allowed me
to connect an excellent outdoor VHF antenna to the dongle. Figure 7-9 shows
this adapter, which I highly recommend along with an outdoor antenna
because it will help to turn your SDR dongle into a viable receiver.

Figure 7-9  U.FL-to-BNC adapter.

All SDR dongles have two main components: the tuner chip and the
demodulation chip. All SDR dongles use the Realtek RTL2832U
demodulation chip, which leaves the tuner chip as the principal difference



between dongles. Some are better than others depending on your specific
requirements. Table 7-1 lists all the available tuner dongles at the time of this
writing along with their covered frequency bands.
TABLE 7-1 SDR Tuners

Table 7-2 is list of all the available dongles along with their tuner.
TABLE 7-2 Available SDR Dongles





NOTE
Data for Tables 7-1 and 7-2 were obtained from the Osmocom.org
website.

The vendor ID (VID) and product ID (PID) are also listed in Table 7-2 to
help verify the dongle in use. Both the VID and PID are enumerated when
the USB connection is made and may be read from the display console when
the appropriate command is issued. I plugged the generic SDR dongle I
purchased into my MacBook Pro and issued this command in a terminal
window:

Figure 7-10 is portion of the resulting display concerning the dongle.

Figure 7-10  USB enumeration for a generic SDR dongle.

The VID was 0x0bda, confirming it was a Realtek chip, and the PID was
0x2832, confirming that it was also a genuine RTL2832U. I had purchased a
generic SDR dongle package on eBay, and I had previously determined that
it had a Rafael Micro R820T tuner. I will also demonstrate how to determine
the VID and PID using the RasPi when I discuss software installation.

A good antenna, an SDR dongle, and a RasPi are all the hardware needed
to build your own SDR receiver. Of course, installing the proper software
also will go a long way toward ensuring that you have a great SDR

http://osmocom.org/


experience. The next section shows you how to install a great software
package named rtl-sdr, which will allow you to monitor some status data sent
from commercial aircraft.

rtl-sdr and GNU Radio Software Installation
To start, I will show how to install the rtl-sdr software package. It has
essentially all that is needed to get the SDR dongle up and running. After
completing the rtl-sdr installation, I will show how to install the GNU Radio
software package, which contains some enhanced packages that provide
additional functionality to the SDR experience. You should install rtl-sdr first
because it has some important configuration steps that are needed to ensure
that the SDR dongle works properly with the RasPi.

rtl-sdr Software Package Installation

Please carefully follow all the following steps in order to install the rtl-sdr
software library. Note that you may have already completed some of these
steps from an earlier project, but that’s okay. The RasPi will simply report
that the particular software package is already installed and no action was
accomplished. You also will need the RasPi connected to the Internet to
download the required software libraries.
 1. sudo apt-get update

 2. sudo apt-get install git-core

 3. sudo apt-get install git

 4. sudo apt-get install cmake

 5. sudo apt-get install libusb-1.0-0-dev

 6. git clone git://git.osmocom.org/rtl-sdr.git

 7. cd rtl-sdr

 8. mkdir build

 9. cd build

10. cmake ../-DINSTALL_UDEV_RULES=ON



11. make

12. sudo make install

13. sudo ldconfig

14. cd ~

15. sudo cp ./rtl-sdr/rtl-sdr.rules /etc/udev/rules.d/

You will next need to create a new configuration file to deactivate the TV
DVB driver that was installed by default when the rtl-sdr package was
loaded. Technically, this is known as a Dump1090 failure , but the fix is
relatively easy. Follow these steps:
1. cd /etc/modprobe.d

2. sudo nano no-rtl.cong # (Create a new file using a nano named no-
rtl.conf.)

3. Add these lines to the new file:

4. Save and close nano.

Next, plug the SDR dongle into the RasPi, and enter the following
command to check the USB enumeration:

This command displays the following regarding the SDR dongle:

This result confirms that the RasPi successfully enumerated the dongle
and that the VID and PID matched what was expected. You now need to
create a new rule that will allow non-root users to access the dongle. You do
this by creating a new rules file using the nano editor:



1. sudo nano /etc/udev/rules.d/20.rtlsdr.rules

2. Add this line into the file:

3. Save file and exit nano editor.

4. sudo reboot

After the reboot completes, enter this next command to determine whether
the rtl-sdr installation was successful:

You should see what is shown in Figure 7-11 if you had a good
installation.



Figure 7-11  Successful rtl-sdr installation test.

Note that no antenna is needed for this test because it only checks whether
samples are being sent from the dongle to the RasPi. The next test will
require an antenna because you will try to tune to a local FM station. You
probably can use the small stick antenna for this test because most likely you
will have available a very strong signal from a local FM station. The
following is the command I entered to conduct this test. Obviously, the FM
station frequency you enter will differ unless you happen to live in my
neighborhood.



NOTE
The FM frequency I used was 97.5. Change this to suit your
requirement, but keep the e6 suffix because it represents a million. All
the other command elements should be unchanged.

After I entered this command, I immediately heard the local FM station
audio coming from my monitor’s speakers because the RasPi was connected
using an HDMI cable to the monitor. If you do not have this arrangement,
then you should use the RasPi’s headphone jack to listen to the audio output.
Enter the following command to ensure that the audio is being directed to the
headphone jack:

The last test I conducted was really more of a proof-of-performance
check. This test involves trying to determine the maximum sample rate that
could be set before any data packets are dropped or lost. This next command
sets the sample rate at 3.2 × 106 samples per second, which is above the
maximum sample rate that most SDR dongles can effectively handle:

Figure 7-12 shows that packets were being consistently lost, which would
result in poor to nil data reception.



Figure 7-12  Maximum sample data rate test output.

I next reran the test using lower and lower sample rates until packets were
no longer being dropped. I determined that a sample rate of 2.76 × 106 was
the maximum that could be used with no data being dropped or lost. This
sample rate is probably very typical for commodity SDR dongles and more
than adequate to meet all rtl-sdr software package requirements.

At this point, you are ready to install the GNU Radio package, which will
enable the SDR dongle to receive a great variety of signals.

GNU Radio Software Package Installation



The GNU Radio software package is not contained in the current Debian
Wheezy release but instead is a part of a testing release named jessie .
Fortunately, it is easy to access the jessie packages from Wheezy simply by
adding the jessie repository to the Wheezy sources list. You do this by using
the nano editor and following these steps:
1. sudo nano /etc/apt/sources.list

2. Add this line into the file:

3. Save the file and exit the nano editor.

4. sudo apt-get update

You will now need to download and install the GNU Radio runtime and
development software packages. Please be patient because it does take a
while to complete this 351-MB installation. Enter the following command to
start the install:

After the install finishes, you still have one more package to install, which
contains some higher-level GNU Radio applications. Enter this command:

Please notice that the great folks at Osmocom created these applications to
enhance the SDR experience. In fact, enter the following command to see
one of these applications run:

Figure 7-13 shows a screenshot from the RasPi while this application was
running.



Figure 7-13  osmocom_fft screenshot.

This application runs a fast Fourier transform (FFT) on the sampled data
streaming from the SDR dongle. FFTs transform time-sampled data into their
equivalent frequency-domain data points. The figure shows a region of these



frequency data points or spectrum centered at 895 MHz with a split
bandwidth of ±125 kHz or 250 kHz of total bandwidth. This is a relatively
narrow bandwidth when you consider that the carrier frequency is 895 MHz.
Using such a narrow bandwidth allows for some very close scrutiny of the
RF wave, but more important, it provides excellent selectivity, which helps to
“pull” true data signals from the noise.

I have included the following sidebar for readers who wish to learn a bit
more about FFTs. Feel free to skip it and just realize that time and frequency
data are two sides of the same coin. You can’t have one without the other.

A classic sine waveform signal is shown in Figure 7-14 , where the
vertical axis is amplitude measured in voltage and the horizontal axis
is time in milliseconds (ms). The period of this signal, or time between
positive peaks, is shown in the figure as 1 ms. This period
measurement means that the signal repeats itself 1000 times per
second. The inverse of the period is called the sine wave’s frequency ,
which in this case would be equal to 1000 Hz. Hertz (Hz) used to be
known as cycles per second (cps), but I think that it is far better to use
the Hz suffix. This frequency is plotted in Figure 7-15 using a
horizontal scale of hertz, while the vertical axis is in decibels (dB)
referenced to 1 V, which is typical for frequency spectrum plots.



Figure 7-14  Sine wave time plot.

Figure 7-15  Sine wave frequency plot.



The famous mathematician Jean-Baptiste Joseph Fourier
discovered many years ago that any arbitrary continuous
mathematical waveform could be represented by an infinite series of
sine waves. Of course, if the initial waveform was only at a single
frequency, then obviously only one sine wave would be necessary, as
shown in Figure 7-15 . However, if you were to represent a perfect
square waveform using sine waves, then you indeed would need an
infinite number of sine waves to accomplish that feat. Figure 7-16 is a
replica of a spectrum analyzer plot for a 1-kHz square wave showing
the initial sine waves needed in this series up to 20 kHz.

Figure 7-16  Square wave spectrum.

The 1-kHz square wave spectrum starts with a 1-kHz sine wave
and then an additional 3-kHz sine wave, 5-kHz sine wave, and so on.
Note that all the sine wave frequencies beyond the first one are at odd
harmonics of the initial sine wave, which is also known as the
fundamental harmonic . In addition, the amplitudes of all the odd
harmonics decrease as their frequency increases. Spectrum displays
are very useful and can provide much information about a signal that
is not obvious from viewing a time-based display of that signal.



The data stream coming from the SDR dongle is in the form of
digital numbers representing sampled values of the analog waveform.
Figure 7-17 shows how these samples relate to the original waveform.

Figure 7-17  Sampled sine wave.

The problem now is how to convert these digitized samples into a
matching digitized Fourier transform. The answer lies in the use of an
algorithm known as the discrete Fourier transform (DFT). Through a
series of trigonometric multiplications and summations, a sampled
time series can be converted into its DFT. However, an inherent
problems arises with the DFT in that it is computationally very
expensive, meaning that it takes a long time to do a single transform
given any reasonably sized sample set. The number of operations is
approximately N 2 , where N is the size of the sample set. For a
relatively small sample set of 1000, this would mean that it would take
approximately 1 million operations just to compute one DFT. Of
course, with larger sets, the increase in time would grow exponentially
larger. This was an unattractive option even with extremely fast
computers.

The solution to the roadblock arose in the mid-1960s with the
creation of the fast Fourier transform (FFT). Two brilliant IBM
scientists named Cooley and Tukey published a paper showing the



world how to compute a DFT using a clever scheme that reduced the
number of mathematical operations from N 2 to N × log2(N ). This
last notation should be read “N times the log of N to the base 2.” For
example, the number of operations for a 1024 sized data set goes from
slightly over 1 million for the DFT to 10,240 for the FFT, a reduction
of almost 100 to 1. Real-time FFT computations thus were made
possible. Today, every application that converts sampled time data to
frequency data uses the FFT. Amazingly, IBM never patented or
protected this intellectual property and graciously made it available
to everyone for the promotion of science and technology.

Receiving Aviation Data Signals
The SDR dongle is well suited to receiving aviation data signals, of which
there are plenty constantly being broadcast. This next section describes how
to monitor Mode-S transponders.

Monitor Mode-S Transponders

An aircraft Mode-S transponder consists of a radio system that transmits a
data packet when it receives an incoming radar ping from an air traffic
control (ATC) facility. It is important to realize that receiving these data
packets will in no way harm or affect any aircraft operations.

Much of the following was based on a blog from Andrew Beck describing
the gr-air-modes software package, which allows the SDR dongle to receive
Mode-S airborne data signals. Enter the following command to start building
this software:

The source code has to be downloaded next by entering this command:



The next steps in this process involve building and installing the source
code. Follow these steps to complete the software installation:
1. cd gr-air-modes

2. mkdir build

3. cd build

4. cmake ../

5. make

6. sudo make install

7. sudo ldconfig

The application is now run by entering the following command:

Figure 7-18 shows an output from this program. There are only a few
entries because the location where I ran the program was a poor reception
area for these types of signals.



Figure 7-18  Example output from the modes_rx application.

Mode-S signals are not the only interesting aviation data packets that may
be monitored using an SDR dongle. The next section describes another
airborne data type that you may be interested in checking out and was also
involved with an incident that made the worldwide news.

Monitoring ACARS

Have you ever wondered as you gazed at contrails high in the deep blue sky
where those airplanes were coming from or going to? The Aircraft
Communications Addressing and Reporting System (ACARS) is your
answer. It is a digital data-link system for the transmission of short messages
between aircraft and ground stations via airband radio or satellite. The
ACARS Protocol was created and deployed in 1978 and follows the Telex



format. It was designed by Aeronautical Radio, Inc. (ARINC) to promote
safe and efficient airline operations. ACARS includes both Airline
Operational Control (AOC) and ATC digital messages with an average
message volume split of 80 percent for AOC and 20 percent for ATC. Table
7-3 shows the variety of information sent through ACARS.
TABLE 7-3 ACARS Message Types

As you can see from the table, a great deal of information is constantly
being exchanged between an aircraft and appropriate ground stations. The
ACARS system is autonomous in operation and cannot be shut down by the
pilots. This fact played a key role in the search for the Malaysia Airlines
MH380 that disappeared several years ago over the southern Indian Ocean.
For unknown reasons, all the pilot-controlled communications with the
ground ceased as the aircraft deviated from its preplanned flight path.
However, ACARS continued to broadcast from the plane for several hours
until it suddenly stopped. ACARS transmissions to satellites provided
valuable tracking data to forensic engineers, which allowed them to provide
searchers with probable locations to begin searching for the aircraft.

Downloading and Installing a Multichannel ACARS Decoder



This procedure presumes that you already have downloaded and installed the
rtl-sdr software package, as described earlier in this chapter. The ACARS
package depends on having rtl-sdr available and in working order. Please
follow these next steps in the order presented. Note that the version I
downloaded was 3.1, but this might change when you download it because
upgrades are constantly being done to this software. I would check the
website http://sourceforge.net/projects/acarsdec/ to determine the current
version. Then substitute that version number for 3.1 wherever it appears in
these procedural steps:
 1. cd ~

 2. mkdir acars

 3. cd acars

 4. wget
http://sourceforge.net/projects/acarsdec/files/latest/downloa
d -O acarsdec-3.1.tar.gz

 5. tar xvfz acarsdec-3.1.tar.gz

 6. cd acarsdec-3.1

 7. sudo apt-get install libsndfile1-dev

 8. sudo apt-get install libasound2-dev

 9. sudo apt-get install librtlsdr

10. sudo ldconfig

11. make

I have also included Figure 7-19 , which is a screenshot of the acarsdec
help page to explain the options that are available when you run this
application.

http://sourceforge.net/projects/acarsdec/
http://sourceforge.net/projects/acarsdec/files/latest/download


Figure 7-19  acarsdec help screen.

Notice that the -p option is a frequency correction, which is in parts per
million. Correcting the receiver frequency should allow the tuner in the
dongle to promptly lock onto the desired ACARS frequency. The next
section details a calibration procedure to determining the appropriate
frequency correction value.

Using the Kalibrate Application

Let me start by stating that the program used to determine the calibration
value is actually named Kalibrate . This program uses any nearby cellular
GSM base station as a frequency reference. In the United States, the AT&T



cellular network uses GSM, which should mean that a base station will likely
be able to be heard by the dongle. I believe that GSM is also widely used in
Europe and likely as well in other parts of the world.

Please follow these steps to install and configure the Kalibrate program:
 1. mkdir ~/kal

 2. cd ~/kal

 3. sudo apt-get install libtool autoconf automake libfftw3-dev

 4. git clone https://github.com/asdil12/kalibrate-rtl.git

 5. cd kalibrate-rtl

 6. git checkout arm_memory

 7. ./bootstrap

 8. ./configure

 9. make

10. sudo make install

Please be patient because some of these steps do take some time to
complete.

Enter this next command to determine any local GSM channels that can
be received:

Figure 7-20 shows the result of my initial GSM frequency search. Your
results will be different depending on the local GSM base station
configuration.

https://github.com/asdil12/kalibrate-rtl.git


Figure 7-20  Initial GSM frequency search.

As you may clearly see, I received only two GSM channels owing to the
poor RF reception in my location. But that’s okay because some data
regarding frequency correction is much better than none.

You will next need to have kal compute the frequency offset. Select two of
the channels with the largest power values and separately enter their channel
numbers into kal to do an offset computation. Use the following command
template:

Figure 7-21 shows the result of one of these frequency-offset
computations for one of my two GSM channels.



Figure 7-21  kal frequency-offset computation.

The average absolute error shown in the figure is –32 ppm, so the correct
offset would be +32 ppm because you are correcting for the error in absolute
frequency. I would strongly suggest that you rerun the offset computations
several times and then average all the resulting offset corrections to arrive at
a representative value for the true dongle frequency correction. I reran the
offset computations three times for each channel and found that the values
returned were very close. My final average offset correction was +29.9,
which was rounded to the nearest whole integer, or +30.

You should next try to run the acarsdec program using the computed
frequency correction as I did in the sample-run section.

Before you can properly run the acarsdec program, you will need to know
the ACARS frequencies that are in use for your region in order to monitor
these data. Table 7-4 is a current ACARS frequency list.
TABLE 7-4 ACARS Frequency List





CAUTION
The acarsdec program is a multichannel receiving program, meaning
that it is capable of simultaneously receiving up to four separate ACARS
radio channels. However, because of a sampling constraint, there cannot
be more than 625-kHz bandwidth separating the highest and lowest
channels. This means that monitoring 131.550 and 131.025 is
permissible, but trying to monitor 131.550 and 129.125 is not and will
generate the error shown in Figure 7-22 .

Figure 7-22  acarsdec frequency-separation error.

The program will still appear to be operating, but it will not display any
results.

Sample ACARS Results

I entered the following command to run the multichannel ACARS decoder
application at my home. Note that I used two of the frequencies from Table
7-4 that were appropriate for my region and within 625 kHz of each other.

Figure 7-23 shows a sample of the ACARS messages received after I
entered the preceding command.

This figure is a composite of some of the messages I received while I
monitored the ACARS for approximately 1 hour. I do wish to further explain
two messages that appear at the start of the figure because it will highlight
why ACARS is so interesting. These two messages were sent 6 seconds apart
from an aircraft that was flying over my home. The messages themselves do
not contain anything of substance other than the aircraft registration and
flight ID, which in this case were N822NW and NW0065, respectively. A
quick Google search revealed that N822NW was an Airbus 242t A330-300



registered to Delta Airlines, which also meant that the flight ID referred to
Delta Flight 0065 because NW is Delta’s company designator. I next made a
quick check on Flight Aware’s website (www.flightaware.com ) and entered
Delta 65 as the flight number. Figure 7-24 shows the actual track of this
aircraft, and you can see that it was over my home state of New Hampshire
when I queried its status on the Flight Aware website.

Figure 7-24  Delta flight 65’s Flight Aware track.

http://www.flightaware.com/




Figure 7-23  ACARS messages received at my home.

Figure 7-25 shows much more information regarding the point of origin
and destination for this flight.



Figure 7-25  Flight itinerary for Delta flight 65.

Finally, I was interested in the aircraft itself. It turns out that this Airbus
A330-300 is the newest addition to Delta’s fleet and is used primarily for
long-range trips such as this nonstop from Italy to Washington, DC. The 242t
in the model descriptor refers to the gross weight, which is 242 metric tons,
where 1 metric ton is equal to 1000 kg. Translated, this means that this type
of aircraft carries almost 300 passengers. I believe Delta is replacing its 747
aircraft with this new type because it is so much more fuel efficient while
carrying the same approximate payload of passengers and baggage. Figure 7-
26 shows the aircraft that flew over my home that day.

Figure 7-26  Airbus 242t A330-300, Delta N822NW.

I was also curious as to how the ACARS monitoring would function at a
commercial airport, so I traveled to my closest airport, which was at
Manchester, NH (KMHT is the IAOC designator). I needed to make my
system completely portable, so I used a battery-operated 7-inch HDMI



monitor for the display and ran the RasPi, SDR dongle, keyboard, and mouse
using an external cell phone battery eliminator, which I discuss in a later
section. Figure 7-27 shows a composite of some of the ACARS messages I
monitored while being parked about a half mile from the airport. I only used
the stubby antenna with this system, and it worked perfectly because the
signals were quite strong.





Figure 7-27  ACARS messages received at KMHT.

Several messages in this figure refer to an aircraft with registration
N339NG, but no flight ID is shown. A quick check on Google for this
registration number revealed that it was a United Express Dash8-400 twin
turbo-prop commuter airliner that just happened to be passing overhead
coming from Liberty Airport in Newark, NJ, and going to Portland, ME
(KPWM). The messages associated with this flight contained some ATC
content consisting of the current weather conditions at KPWM. These types
of messages are known as METARS and are used extensively in aviation
worldwide. In this case, I decode the METAR in the following sidebar for
your information and to help you decipher any similar messages that you
might monitor.



The next section changes the pace a bit. I will show you how to build and
use a portable spectrum analyzer.



Spectrum Analyzer
This section is based on a great tutorial by Tony DiCola that is available from
learn.adafruit.com . In this SDR project, I used a dongle, a RasPi, and a
PiTFT touchscreen display, which is the same one that was used in the
Chapter 2 project. I mentioned back in Chapter 2 not to dismantle the project
if you intended to complete this project. I will refer you back to the Chapter 2
discussion on how to install the PiTFT on a RasPi and use a custom case if
you are so inclined. No other hardware installation is necessary because the
SDR dongle simply plugs into one of the RasPi USB ports. Figure 7-28
shows the PiTFT mounted in the PiBow case along with the SDR dongle
plugged into one of the RasPi’s USB ports. I also used a USB extension
adapter, which allowed me to plug additional USB cables into the RasPi’s
ports, which might otherwise be blocked by the dongle.

http://learn.adafruit.com/


Figure 7-28  Spectrum analyzer assembly.



The RasPi also was connected to the Internet with an Ethernet patch cable.
The whole assembly was powered by a wall-wart cube, which I highly
recommended during the software installation. Later on in this section I
discuss how to make this project completely portable, which includes making
it battery powered.

The next section discusses the software installation, which is the key to a
successful project.

Software Installation

This project requires a fresh rtl-sdr installation in order to properly configure
the RasPi with the PiTFT. I would not suggest trying to overlay this project’s
software with the previous rtl-sdr software because this software package
uses Python and some other modules not found in the previous package. Just
start with a fresh Wheezy distribution and you should be fine.

NOTE
I used an SSH connection from my MacBook Pro to the RasPi to
accomplish all the following steps.

Please follow these steps to start the installation and configuration:
 1. sudo apt-get update

 2. sudo apt-get install cmake build-essential python-pip libusb-
1.0-0-dev python-numpy git

 3. cd ~

 4. git clone git://git.osmocom.org/rtl-sdr.git

 5. cd rtl-sdr

 6. mkdir build

 7. cd build

 8. cmake ../ -DINSTALL_UDEV_RULES=ON -DDETACH_KERNEL_DRIVER=ON

 9. make

10. sudo make install



11. sudo ldconfig

12. sudo pip install pyrtlsdr

The preceding steps have downloaded, built, and installed all the
dependencies required for the source code. The next steps are to download
and run the application named freqshow . Follow these three steps to do this:
1. cd ~

2. git clone https://github.com/adafruit/freqshow.git

3. cd freqshow

All that is needed now is to run the program. Plug in the SDR dongle with
an antenna attached and ensure that you are in the freqshow folder. Enter the
following command:

Figure 7-29 shows the PiTFT screen in the instantaneous frequency
spectrum display mode.

https://github.com/adafruit/freqshow.git


Figure 7-29  PiTFT screen displaying an instantaneous frequency spectrum.

The 97.5-MHz peak is the very strong radio signal from a local FM
station. The 51-dB level shown on the left of the display indicates that it is
indeed a very intense signal.

Touching the Switch mode button will change the screen display from the
instaneous frequency to a waterfall display. This display is shown in Figure
7-30 for the same 97.5-MHz FM radio station signal.

Figure 7-30  Waterfall display.

The waterfall display plots the signal intensity versus time, with the latest
traces starting at the bottom and scrolling to the top. The traces are color-
coded, with blue being a weak signal and red being the strongest. The 97.5-
MHz signal in the center of the waterfall is quite red, indicating that it is the
most intense signal shown within this particular spectrum bandwidth. Many
experienced radio operators feel that the waterfall display is by far the best



way to detect weak signals that are embedded in a noisy spectrum. The
characteristic line is easy to discern. while a small peak that is bobbing
around in an instantaneous display is almost impossible to detect.

Setting the center frequency is simply a matter of touching the Config
button in the top left-hand corner. Once you do this, the screen shown in
Figure 7-31 appears.

Figure 7-31  Config input screen.

Touch the Clear button to remove the existing entry, and then touch the
buttons for the new center frequency. Figure 7-32 shows the entry for a 315-
MHz center frequency. You must click the Accept button to enter the new
frequency into the program.



Figure 7-32  New center frequency entered.

I chose the 315-MHz center frequency to see if I could monitor the
transmissions from a small RF key fob that I had used in a previous
experiment. Sure enough, the analyzer detects the transmission, as shown in
Figure 7-33 . I did have to fiddle with the camera shutter and the key fob to
capture the instant the data packet was sent.



Figure 7-33  315-MHz key fob transmission.

My last test used a hand-held amateur radio transmitter set to the 2-m
band at a frequency of 145.000 MHz. Please do not try this unless you are a
licensed amateur radio operator, as am I. Figure 7-34 shows that the carrier
wave was precisely at 145 MHz, as I expected.



Figure 7-34  145.000-MHz CW transmission from an amateur radio
transceiver.

In the next section, I will show you how to make this analyzer completely
portable and boot right up into the freqshow program.

Making the Spectrum Analyzer Portable

It would certainly be advantageous to make the spectrum analyzer
completely portable, meaning that it would be self-contained and battery
powered. It would also need to be booted directly into the analyzer control
program because it is not practical to carry around a keyboard to manually
enter the login information. It turns out that it is relatively easy to do both
these tasks.

The RasPi and PiTFT are already in a PiBow case, as described in Chapter
2 and shown in Figure 7-29 . No more physical modifications are required
with regard to the physical case. The battery-operation part was also very
easy in that I used an external cell phone power pack, as shown in Figure 7-
35 .



Figure 7-35  External power pack.



This particular power pack is rated at 5600 mAh, which should power the
analyzer for at least 5 hours, assuming an average current draw of
approximately 1 A.

Having the RasPi boot directly into the Python program named
freqshow.py does require a series of modifications to several files. All the
changes are noted next. Just carefully follow the steps and you should be
fine.

NOTE
I used the nano editor to make all these changes.

1. The file /etc/inittab needs to modified as follows: comment out the line
that starts with:

and replace it with:

2. Add this line to the bottom of the file /etc/profile:

3. Make these two additions/changes to the freqshow.py code:

a. Add this line to the very top of the program:

b. Change the line:



to

4. Do a reboot:

Now you can try the auto login by disconnecting and reconnecting the
RasPi power supply. I know that it is probably not the best way to reboot, but
it is the only way I know of to reboot with the RasPi, which lacks any proper
reset or power-switch circuitry. The PiTFT should now display the
instantaneous frequency spectrum, as shown in earlier figures.

Figure 7-36 shows the complete kit for the portable spectrum analyzer,
including the battery and antenna. There is also a waterfall display shown on
the PiTFT receiving two local FM stations.



Figure 7-36  Complete portable spectrum analyzer kit.

This last section concludes my experiments with this portable spectrum
analyzer. I will say that it was very easy to use and had a remarkably clear
display. It certainly would be useful in many situations where you might need



to determine the properties of unknown RF transmissions. Commercial units
with similar characteristics cost many hundreds of dollars. This project cost
less than US$100 and had the additional advantage of being an educational
experience.

Summary
I began this chapter with a brief review of some fundamental radiofrequency
(RF) concepts because they should help you to understand the important
ideas behind software-defined radio (SDR). I and Q signals were discussed
next because they are key components in creating a functioning SDR system.
SDR simply will not work without I and Q signals. The next section
discussed the low-cost SDR dongles that are readily available along with
their constraints and limitations. However, having a US$10 to US$20 SDR
dongle available to experiment with is really quite a remarkable bargain.

The key rtl-sdr library was next discussed. I showed you how to receive
and listen to an FM station using an application contained in the library. The
GNU Radio software package was installed next because it is a prerequisite
to monitoring many different types of aviation data signals, including Mode-
S transponders and ACARS data packets. I went into several in-depth
demonstrations of how to monitor and decode ACARS transmissions. I
believe that you find this to be a very interesting subject once you start
monitoring these aviation signals.

The chapter concluded with another demonstration project of a portable
spectrum analyzer based on using the PiTFT-RasPi combination discussed in
Chapter 2 . This project used the SDR dongle to receive and display small
sections of spectrum ranging from 24 MHz up to 1766 MHz.



CHAPTER 8

BrickPi Python Robot

IN THIS CHAPTER, I WILL BE showing you how to build a robotic car out of
Lego building blocks with control provided by a RasPi. Using a Lego EV3
Mindstorms kit is normally the way such a project would be done with a
control module nicknamed the “brick.”

BrickPi
Figure 8-1 shows a current EV3 control module, which is powered by six
AA batteries contained within the case.



Figure 8-1  EV3 brick.

Instead of the EV3 brick, I will be using a BrickPi controller, which is a
RasPi coupled with a special I/O board to control the Lego robotic car. I will
also refer to the robotic car as the CastorBot . I made the controller
substitution for the obvious reason that this project is in a book concerning
RasPi control. However, another important reason was to demonstrate how
an object-oriented language such as Python can be used to program this
robot instead of the drag-and-drop graphical programming environment
normally used with Mindstorms. I do wish to point out the drag-and-drop
programming is perfectly fine for most users, but the Python approach
allows for much more flexibility and utility in creating control programs for
the CasterBot.

Figure 8-2 shows a BrickPi with a RasPi already mounted in its
enclosure.



Figure 8-2  BrickPi.



It is necessary to delve into how Mindstorms sensors and motors are
controlled in order to understand how the BrickPi functions. I will first
examine the sensor ports.

Chapter 8 Parts List

Sensor Ports

All Mindstorms sensors are controlled by using commands sent over the I2C
bus. This bus was first introduced in Chapter 3 , where it was used to
establish a data communications link between the Arduino coprocessor and
the Lidar module. In this project, the I2C Protocol will be used to create
direct communications links between the RasPi and the Mindstorms sensors.
You might want to go back to Chapter 3 and refresh yourself on how the I2C
functions, but it is not really essential to build this project because the single
sensor used in this project is pluggable and will play after the software is
loaded. Table 8-1 , which is courtesy of Wikipedia, shows the makeup of the
connector used to interconnect all Mindstorms sensors with the BrickPi I/O
board. All the electrical contacts are clearly identified in Figure 8-2 for your
reference.
TABLE 8-1 Mindstorms Sensor Connector-Pin Layout



You may have noticed that the I2C signal lines also have a corresponding
RS-485 designation shown in the “Function” column. The reason for this is
that an RS-485 serial link can communicate over much longer distances, up
to 1 km, while an I2C is restricted to much closer distances, typically on the
order of tens of meters. The RS-485 and I2C are very different from one
another. The I2C is synchronous , meaning that it requires a clock signal to
function, while RS-485 is asynchronous , relying instead on start and stop
bits to form a data frame or packet. As far as I can determine, all the
Mindstorms kits use an I2C for communications, but it is nice to know that
the Mindstorms brick designers planned for optional longer-range
communications.

You should also note that while the sensor/motor connector looks
somewhat similar to an ordinary RJ11 telephone jack, it is not the same. For
instance, the latching device is offset to the left as you look at the
Mindstorms connector, with the pins facing down. The RJ11 has its latching
device in the center top. Additionally, the pin spacing is slightly different,
with the RJ11 spaced at 0.60 mm between pins and the Mindstorms spacing
at 0.70 mm between pins. The bottom line in all this is that you should not
try to jam a RJ11 connector into a Mindstorms jack; it will not work and
likely will cause serious damage if you attempt to apply power. Lego
Mindstorms, as well as a few other suppliers, have these connectors
available for purchase if you want to build your own.



I will next discuss the Mindstorms motor ports, now that you have had a
good introduction to the sensor ports.

Motor Ports

Mindstorms motor ports use the same connector as used with the sensor
ports, but the pin designations differ significantly, and they do not use I2C as
a communication protocol.

CAUTION
It is important to ensure that only motors are plugged into the motor
jacks and only sensors into the sensor jacks. There is a potential for
sensor electrical damage if you inadvertently plug a sensor into a motor
jack because motor supply voltage may be present on pins 1 and 2,
which might harm the sensor.

Table 8-2 shows the makeup of the connector used to interconnect
Mindstorms motors with the BrickPi I/O board.
TABLE 8-2 Mindstorms Motor Connector-Pin Layout



The MOTOR 1 and MOTOR 2 lines refer to the power supply for a single
motor. Placing the positive power supply lead on MOTOR 1 and the
negative lead on MOTOR 2 will cause the motor to rotate in a certain
direction. Reversing the polarity will cause the motor to rotate in the
opposite direction. The motor supply lines are connected to the AtMega
pulse-width modulation (PWM) lines with an inline driver chip, which I
further explain in the next section.

It is now time to examine the BrickPi’s specialized I/O board in more
detail because it is the reason why a RasPi can function as a substitute
controller for the Lego brick.

BrickPi Specialized I/O Board

The block diagram in Figure 8-3 shows how the specialized I/O board
functions. Incidentally, from now on I will refer to this board simply as the
I/O board because you already know what I am talking about.





Figure 8-3  Block diagram for the I/O board.

This block diagram is based on a schematic provided by the BrickPi
manufacturer, Dexter Industries. One AtMega328 processer is shown in the
figure, and it provides the I2C control signals for sensors S1, S2, and S5.
The control signals for motors A and B are also provided by this chip in
conjunction with a PWM driver chip. The I/O board also contains another
identical AtMega328 processor that controls sensor ports S3 and S4 as well
as motor ports C and D. These processors may be considered as
coprocessors, as discussed in Chapter 2 , because their primary functions are
to process and manipulate data that otherwise would require the RasPi to
handle. Without these coprocessors, it is highly likely that the RasPi would
not be capable of processing all the data constantly flowing from the sensors
and motors and thus be unable to control the robot as required. The data
generated from the motors are encoder pulses, which come from quadrature
encoders mounted in each of the motors. Hundreds of pulses are generated
for every revolution of the motor shaft, and every pulse must be counted to
track the motor’s operation accurately.

Each AtMega328 controls the speed and rotation direction of two motors
by sending low-level digital signals to a TI SN754410NE driver chip, which,
in turn, converts these signals into high-level PWM pulses capable of driving
the motors directly.

The sensor ports are configured in a parallel multidrop arrangement with
external pull-up resistors to ensure that the I2C bus functions properly. The
sensor input lines also are connected to the AtMega328 analog-to-converter
(ADC) lines so that any compatible sensors with analog voltage outputs,
such as a light-intensity sensor, also may be handled.

Of course, all the uncommitted RasPi GPIO pins are also available via the
26-pin header extension on the BrickPi board, as shown in Figure 8-4 .



Figure 8-4  GPIO extension pins.

Another Python library named python-rpi.gpio enables I/O for these
GPIO pins. I will demonstrate how to use one of the RasPi GPIO pins to
control one of the BrickPi’s LEDs in a later section.

At this point, I would recommend that you label all the sensor and motor
ports, as shown in Figure 8-5 . This will help you to identify the proper jacks
to use when connecting the motors and sensors.



Figure 8-5  I/O board with labeled ports.



This concludes my introduction to the BrickPi. It is now time to introduce
the robotic car and show you how to build it.

The CasterBot
The CasterBot shown in Figure 8-6 was built from the components
contained in Lego EV3 Kit Number 31313. It is entirely possible to
customize and build the CasterBot from other Lego kits, and I would urge
you to do so, especially if you already have some components from other
kits. The build plan and bill of material (BOM) are based on the 31313 kit,
and you should use it as a template to follow and modify as needed to suit
your situation. Of course, you will need motors and a sensor compatible with
the Mindstorms connectors, which are either the NXT or EV3 models.





Figure 8-6  The CasterBot.

The build diagram, BOM, and build plan for the CasterBot are all on this
book’s companion website. All the instructions are quite detailed, and they
should allow you to build the CasterBot without any problems. The only
parts missing from the BOM are the BrickPi and four connector pegs used to
mount the BrickPi to the two 13M Lego beams mounted on top of the
CasterBot. In addition, you will need three small flexible cables to connect
the two motors and the ultrasonic sensor to the BrickPi. The cable
connections are as follows facing the CasterBot:
 Left motor connects to motor port B.

 Right motor connects to motor port C.

 Ultrasonic sensor connects to sensor port S1.

The CasterBot battery supply now warrants some additional discussion in
the next section.

CasterBot Power Supply

The CasterBot has a substantial current draw when operating with two
motors. I measured the average current drain to be approximately 0.5 A,
which would quickly drain a six-pack of AA batteries, which typically
powers the Lego brick. I chose instead to use a three-cell (3S) lithium ion
polymer (LiPo) battery, which provides approximately 12 V when fully
charged. Figure 8-7 shows the LiPo battery used in this project.



Figure 8-7  3S LiPo battery.



Also shown in the figure is a battery condition monitor attached to the
LiPo’s balancer connection. This device is very inexpensive and is well
worth purchasing because it can indicate when the LiPo is nearing its
discharged state. You do not want to discharge this particular LiPo battery
below 10.2 V because it becomes quite difficult for the automatic charger to
function correctly with a battery in this state.

This battery is also rated at 2200 mAh, which means that it should
provide an operational time of about 2 hours for the CasterBot before it
reaches its minimum voltage, as I described earlier, and needs a recharge.
The operational time also may be shortened somewhat if the CasterBot is
operated at maximum speed for an extended period of time.

CAUTION
This battery must be recharged using an approved LiPo charger.
Attempting to use a charger designed only for nickel-cadmium (NiCad)
or lead-acid batteries potentially could cause a mishap that might
involve an exploding battery or even one that catches fire.

Some readers also may know that Mindstorms motors are usually
operated with 9 V and may wonder if 12 V would possibly overload them.
You may be assured that 12 V will not harm them but simply cause them to
rotate about 25 percent faster than with a 9-V supply. The BrickPi board also
has a voltage regulator, which can easily handle the 12 V to supply regulated
5 V to the RasPi as well as to its own processors.

Figure 8-8 shows a bottom-side view of a CasterBot with the battery
installed in a cradle that was designed especially to hold a battery of this
particular size.



Figure 8-8  LiPo battery installed in a CasterBot.



I used gold-plated pins and sockets to connect the battery to the wires
leading to the BrickPi’s power connector. This power connector comes with
the BrickPi and has a 9-V battery clip attached. I cut this clip off and
soldered the loose ends to two wires with the pin connectors already
attached. The battery side likewise had two pin jacks soldered onto its wires.
Be sure that you maintain the battery polarity, that is, positive to positive, or
red, leads and negative to negative, or black, leads. Figure 8-9 shows a
close-up of the battery connection configuration.

Figure 8-9  Battery connections.



The battery pins and jacks I used are readily available from most hobby
stores because they are commonly used in radio-controlled (R/C) aircraft and
cars. I also chose not to include a battery switch; I simply unplug the
positive lead when I need to turn the CasterBot off.

WiFi Dongle

You also will need to install a WiFi dongle to enable the CasterBot’s
untethered movement. While it is possible to use a long USB cable to control
the CasterBot from a laptop, it is not an optimal solution. A small WiFi
dongle, as shown in Figure 8-10 , will allow the bot to be completely
portable while still maintaining a wireless connection to the laptop using
SSH.

Figure 8-10  WiFi dongle.



The WiFi dongle has a maximum range of 100 m, which should be more
than adequate for all CasterBot movements.

You should also realize that you will need to do an initial setup on the
BrickPi’s RasPi using a normal workstation configuration, as described in
Chapter 1 . However, you first need to download and install a specially
modified Wheezy Linux distribution, which is discussed in the next section.

Software Installation and Configuration
The following instructions are based on an introductory tutorial available
from the Dexter Industries website (www.dexterindustries.com ). Please
follow these next steps in order to successfully install the software required
to program and control the CasterBot:
 1. Download the Wheezy distribution created for the BrickPi at

http://sourceforge.net/projects/dexterindustriesraspbianflavor/ .

 2. Unzip the download into an image file using WinZip or 7Zip.

 3. Write the image to an SD card using the Win32DiskImager program.

 4. Plug the SD card into the RasPi, which is set up in a stand-alone
configuration with the WiFi dongle plugged in.

 5. Power-on the RasPi, and enter the regular user name/password.

 6. Run the raspi-config program by entering sudo rasp-config .

 7. Expand the file system.

 8. Set the appropriate location and time zone.

 9. Check that SSH is enabled in the Advanced Options.

10. Close out of the rasp-config app, and start the GUI desktop by entering
startx .

11. Click on the WiFi config icon, and scan for your access point.

12. Select your access point, enter the appropriate passphrase, and then click
on Connect. Close the app.

13. Click on Accessories, and click on LX Terminal.

http://www.dexterindustries.com/
http://sourceforge.net/projects/dexterindustriesraspbianflavor/


14. Enter ifconfig , and write down the IP address that was assigned by the
access point. Close the Terminal window.

15. Close the desktop by clicking on the Reboot selection.

Next, connect to the RasPi using an SSH connection from your laptop
with the IP address from step 10 and using an appropriate program suitable
for the laptop, that is, PuTTY for a Windows machine and Terminal for a
Mac. Figure 8-11 shows the Terminal screen for my initial login to the RasPi
from my MacBook.

Figure 8-11  Initial RasPi SSH login on a MacBook Pro.



Now you are ready to run the following program, which will allow you to
remote control the CasterBot. The program is named simplebot_speed.py
and is located in the following directory:

You should change into this directory and enter the following to run the
program:

Following are the single-letter commands that you may enter to instruct
the CasterBot to perform various movements:

You will also need to press the ENTER key after typing a command to send
it to the CasterBot. The source code for this program is listed next with
annotations to assist you in understanding the various functions.









I will use this program as a base for additional functions, which will
include an obstacle-avoidance algorithm. However, I will briefly discuss the
ultrasonic sensor in the next section before adding the obstacle-avoidance
functionality.

Ultrasonic Sensor

Figure 8-12 is a close-up of the ultrasonic sensor that is used to detect
obstacles in the path of the CasterBot.

Figure 8-12  Ultrasonic sensor.

This particular sensor comes from an NXT Lego kit, but it is completely
compatible with the BrickPi. The EV3 series also has a similar sensor, which
may be used without any modifications to the software.

The ultrasonic sensor contains an embedded microprocessor as part of the
encapsulated sensor hardware. This processor controls the ultrasonic
transmitter and receiver transducers that physically measure distance by
bouncing discrete sound wave pulses off objects and timing how long the
sound takes to transit. The distance is easily calculated because the speed of
sound in air is relatively constant. This is very similar to how bats navigate
in caves and attics. Figure 8-13 is the sensor’s block diagram, which shows
how it functions.



Figure 8-13  Ultrasonic sensor block diagram.

The sensor uses an embedded processor, which off-loads any additional
computational tasks from a RasPi in a similar fashion to the way the AtMega
coprocessors function on the BrickPi. The sensor’s processor measures
sound pulse times to a resolution as fine as 1 ms, which a RasPi could not
handle without introducing some timing errors.

The ultrasonic sensor measures distances from 3 to 250 cm with an
accuracy of approximately ±2 cm. Distance measurements also depend on
the size and texture of the object that reflects the sound pulses. A wall
provides excellent reflections, while a stuffed teddy bear would be more
problematic.

The ultrasonic sensor requires a few statements to integrate into a Python
program. The first one associates the sensor with a specified port:



The next statement commands the BrickPi to update all sensor and motor
data:

The final statement retrieves the most current ultrasonic distance
measurement and assigns it to the variable dest :

The issue now is to create software, which will be activated if an obstacle
is detected within a preset threshold in the Casterbot’s path. I discuss this
software in the next section.

Obstacle-Avoidance Algorithm

Creating obstacle-avoidance software is an interesting exercise that
involves thinking through all the various scenarios that the CasterBot may
encounter in its travels from a start to a finish point. I had to severely
constrain the types of obstacles to use because it would be literally
impossible to account for all possible obstacle types. I chose to use a small
cardboard box because it would be easy to place in the CasterBot’s intended
path, and if it were struck, it should not cause any damage to the robot. The
obstacle-clearance software should be reasonably modifiable to
accommodate other types of objects once this initial program is shown to be
effective.



I don’t believe that there is a formal procedure that will create an optimal
obstacle-avoidance algorithm. I have found that using a two-dimensional
playing field with the start and stopping points as well as the obstacle in
place helped me to visualize how the robot might maneuver between the
start and stopping points while avoiding the obstacle. Figure 8-14 is a
diagram of an example playing field with start point A and finish point B.

Figure 8-14  Obstacle playing field diagram.

An obstacle detection point is shown as a numbered triangle. The
CasterBot path is shown as a dotted line with the X predefined incremental
path length. Table 8-3 is a pseudocode listing that describes the CasterBot
behavior as it starts on a straight-line path from A to B and encounters the
obstacle placed near point number 1. Note that I deliberately used only one
obstacle in the direct path between A and B to simplify the example. Even
so, the code to implement the avoidance behavior rapidly becomes complex.
TABLE 8-3 Pseudocode for a CasterBot Obstacle-Avoidance Algorithm



All the steps to avoid an obstacle are contained in the method named
obstacleAvoid() . This method is called when the ultrasonic sensor senses
an obstacle within a threshold distance, which in this case is set at 25 cm.
The whole process of tracking the bot is called dead reckoning and presumes
that all 90° turns are perfect and that all transversed incremental distances
are the same. In reality, this can never be the case because the bot tires will
slip and motors do not instantly start and stop, meaning that the incremental
distances traveled will not quite match the values commanded. The net effect
of all these issues is that the bot should arrive at a finish circle, where the
circle diameter is proportional to the cumulative error in the bot’s path.

It also would be convenient to have an indicator on the BrickPi to show
when the obstacle-avoidance algorithm is activated. This is easily
accomplished because the BrickPi has two LEDs installed on the board edge
that can be individually controlled by using a Python GPIO library named



python-rpi.gpio. You will need to install the library on the RasPi by using
this command:

You will need to import the library by using this command:

The mode must next be set, followed by setting the GPIO that is
connected to the LED as an output:

The 12 used in the setup method actually refers to RasPi GPIO pin 18 .
The other BrickPi LED is designated as 13 but really refers to RasPi GPIO
pin 27 . The pin numbering complies with the WiringPi designations that I
discussed in Chapter 6 . The python-rpi.gpio library is based, in large part,
on the WiringPi library. I recommend that you review Figure 6-19 , which
clearly illustrates the relationships between the WiringPi and RasPi GPIO
pin labels.

Turning on the LED is accomplished using this statement:

Of course, all you need to do is change True to False to turn off the LED.
I added the ultrasonic sensor, obstacle-avoidance algorithm, and indicator

control to the preceding program and renamed it obstacleAvoid.py . I also
modified the original program to remove the movement commands because
they were unnecessary for this particular situation. The program is listed
next and is also available on this book’s companion website.











In the next section, I discuss how the obstacle-avoidance algorithm
worked, pointing out the successes and where some improvements should be
made.

Obstacle-Avoidance Demonstration

Figure 8-15 shows the CasterBot setup on the real obstacle course. The
total distance between the start and stop points is 120 cm, or approximately 5
ft, so you need a moderate-sized area to set up the course.





Figure 8-15  Obstacle course.

I also set up an SSH session between the CastorBot and my MacBook Pro
to initiate the program and start the robot on its path. Run the program by
entering:

You will be prompted to enter the direct path length between the start and
finish points in centimeters. This path length is divided by 10 to create the
number of X increments that the bot uses to transverse the path. The program
will display the number of path increments left to be completed and will halt
when it completes the last increment.

I initially observed that the 90° turns were more like 120° turns because
the timing was off a bit. I subsequently reduced the time spent in a turn to
about 0.8 second, which corrected the overturning problem. I also noticed
that the playing surface on which I ran the CasterBot seriously affected its
performance. Running on a carpet would slow the bot down, which then
would cause the turns to be much less than 90° and subsequently cause the
obstacle avoidance to fail. In addition, the bot would not complete the
commanded path length because completing the total path depends on time
duration, not actual distance traveled. I tried to use the motor encoder pulses
to overcome this timing problem, but that led to a whole series of
programming issues with the BrickPi library. After much struggling with the
library, I decided that it was just more practical to select a proper playing
surface, such as a wood floor, than trying to adapt the library software.

This last demonstration concludes this chapter on how to build and
operate a BrickPi-controlled robotic car.

Summary
I began this chapter with a brief introduction to the BrickPi, which is a

substitute controller for an EV3 Lego Mindstorms brick control module.
Using a BrickPi in place of the regular Mindstorms brick allows you to
program in whatever Raspian-compatible language you choose instead of



being restricted to the Mindstorms drag-and-drop environment. I chose to
use Python as the language to control a robotic car, named the CasterBot.

I next discussed how you could build this car out of Lego components
using a complete set of referenced instructions. A LiPo battery also was
recommended as a power source because the BrickPi and Mindstorms
motors consume quite a bit of power.

A simple Python program was next shown that allowed a user to remotely
control the car using an SSH connection on a laptop. The car could be
commanded to go forward, backward, turn right or left, and stop. It also
could be sped up or slowed down, all by using single-character commands
from the laptop.

An ultrasonic sensor was discussed next in regard to its internal operation
and how it would be used to avoid obstacles when the car was operated
autonomously. I developed a program that drove the car in a straight line
between two points but could maneuver around an obstacle it detected in its
path.

The chapter concluded with my observations on how well the bot
performed on the obstacle course and where improvements could be made.



CHAPTER 9

Python-Controlled Robotic Arm

IN THIS CHAPTER, I WILL SHOW YOU how to build two robotic arms, each with
its own features and capabilities. You can choose to build one or both
depending on your desires and your interest in this topic. However, I will
begin the chapter with a reasonably detailed discussion on how robotic arms
are defined and designed because that will help you to establish a useful
comprehension of this interesting topic.

Background for Robotic Arms
Robotic arms are used extensively in many industrial applications in
manufacturing operations. Knowing the basic principles underlying how these
arms work will assist you in evaluating when it is appropriate to use this type
of robot. Figure 9-1 shows an advanced Denso robotic arm that has 6 degrees
of freedom (DOFs), enabling it to perform many intricate operations.



Figure 9-1  Advanced Denso robotic arm.

Chapter 9 Parts List



Understanding robotic arms requires you to know the basic terms and
definitions used in this field. The following terms and definitions were
sourced from the Society of Robotics website (www.roboticssociety.org ).

Degrees of Freedom
Degrees of freedom (DOF) refer to the ability of an arm joint to move in a
particular motion. Normally, 1 DOF relates directly to one joint. Therefore, a
3-DOF arm will require three joints. Each joint normally requires one motor
and one embedded encoder. Figure 9-2 shows how joints perform 6 DOFs in a
robotic arm.

http://www.roboticssociety.org/


Figure 9-2  6-DOF robotic arm.

Joint motion also may have translation , which is a straight-line or
rectilinear motion. The type of motion involved depends on the type of arm
attached to the joint.

Free-Body Diagram



A free-body diagram (FBD) is often used with the Denavit-Hartenberg (DH)
Convention to depict joint motion in both translation and rotation. Figure 9-3
shows a Denso 4-DOF robotic arm with a DH overlay.

Figure 9-3  Free-body robotic arm with DH joint designations.

Please note that links are also shown on the FBD. Link lengths are
important in that they form a moment arm, which will have a significant effect
on motor loading and performance. Also, joints may have multiple DOFs with
essentially zero-length links. Consider your shoulder as an example: it has a
multiple range of movement without noticeable links. The human shoulder
could be described as a joint with a 3-DOF motion range.

Robot designers often create industrial arm systems use the DH
Convention along with FBDs. Such systems typically involve significant
forces and are intended for heavy-duty industrial applications. This chapter’s
project has no such requirement and thus will not require a DH analysis.

Workspace



Workspace is the volume of space circumscribed by the robot arm’s maximum
range of motion. Figure 9-4 shows the workspace for the robot in Figure 9-3 .

Figure 9-4  Workspace volume.

Workspace volume typically is closely controlled and posted because
personnel entering anywhere in this space could be struck and seriously
injured by an operating robotic arm. It is also important to ensure that a
robotic arm can extend to all points that need to be reached for the particular
manufacturing operation that is being automated. It wouldn’t make much
sense to have a painting robotic arm that couldn’t quite completely apply paint
to the product being manufactured. Ensuring adequate coverage and reach is
the responsibility of the project manager in charge of installation of the
robotic system.

Robotic Arm Classifications
There are also three broad categories for classifying robotic arms.



SCARA

A selectively compliant articulated robot arm (SCARA) is a type of robotic
arm that has a very wide range of rotary joint motion. There is a maximum of
620° of joint rotation for the SCARA-compliant robotic arm shown in Figure
9-5 . This wide range of motion is quite remarkable when you consider that
typical robotic arm joint motion is 180° or less.

Figure 9-5  SCARA robotic arm.

R-Theta

The radial-theta angle (R-Theta ) robotic arm is a more traditional design
with more limited joint rotary motion than a SCARA type. The R-Theta also
has a linear (radial) placement parameter. Any required linear motion for the
end-effector position is automatically computed by the robot controller and is
translated to appropriate joint rotary motion. Figure 9-6 illustrates an R-Theta
robotic arm.



Figure 9-6  R-Theta robotic arm.

X-Y-Z Coordinate (Cartesian Coordinate)

The end-effector position for the X-Y-Z coordinate (Cartesian Coordinate)
robotic arm is specified as a set of x , y , and z coordinate positions. The robot
controller automatically translates an x-y-z coordinate pair to appropriate joint
motion to move the end-effector to the desired position. Figure 9-7 shows a
two-dimensional x-y coordinate robot arm. The z direction would be into or
out of the plane of the page.



Figure 9-7  X-Y-Z Coordinate robotic arm.

Linear-to-Rotary Translation

Linear motion was mentioned several times in the preceding descriptions of
the various robotic arms. A question you might ask yourself is how linear
motion can be accomplished when only rotary joints are being used? The
answer is quite simple, and Figure 9-8 shows how it is done.



Figure 9-8  Rotary-to-linear motion conversion.

Suppose that you want to have point T1 travel straight down for a given
distance. Imagine commanding a motor at joint J2 to rotate counterclockwise
(CCW) for some angular rotation. Point T1 also will move, but it will move in
a slight curvilinear direction owing to the angular motion of J2. To counteract
this curving motion, joint J1 must be rotated in a clockwise (CW) direction for
some angular rotation. The exact CCW rotation for J2 and CW for J1 are
computed on a real-time basis by the robotic controller integrated into the
arm. The mathematics involved consists of purely trigonometric functions and
is a bit tedious—something ideal for a computer to handle.



Arm Positioning

Positioning a robotic arm effector to perform whatever action it has to do,
such as welding an auto body seam or painting a body panel, is critical to the
overall success of the robot. The process of positioning is called training , and
it may be accomplished in several ways. One common way is to manually
position the effector and then press a button to record the spatial location as x ,
y , and z coordinates. Figure 9-9 shows a typical control pendant used to
manually position a robotic arm as well as record the incremental positions.
The complete path is eventually recorded as a series of points that are then
used by the arm controller to smoothly control the robotic arm in its
autonomous operation.

Figure 9-9  Teaching pendent.

The robot programmer also will use the controller to make small
adjustments to refine the path and to modify the speed of the effector for both
safety and product quality assurance. It is very important to have the correct
effector speed as a weld is being placed or paint is applied. The robotic arms



used in this chapter do not use teaching pendants because such devices are
used only in expensive industrial robotic arms.

This completes the introductory discussion. It is now time to show you this
chapter’s robotic arms.

SainSmart Robotic Arms
I decided to use two robotic arms to demonstrate the concepts presented in
this chapter. Both are distributed by SainSmart, with one being a 3-DOF
system with a gripper mechanism and the other a 6-DOF system without a
gripper. I chose these two systems to allow you the opportunity to experiment
with an actual robotic arm, but one that you could afford. The 3-DOF arm
costs about one-fourth as much as the 6-DOF arm. Obviously, the 6-DOF arm
offers more flexibility in positioning, but the fundamental concepts underlying
these arms are the same. I strongly recommend that you purchase the 3-DOF
system and play around with it to see whether your results warrant the
additional expense of purchasing the 6-DOF arm. I discuss each of these arms
in the next two sections.

Sainsmart 3-DOF Robotic Arm

Figure 9-10 shows the simpler of the two SainSmart robotic arms I chose as
project demonstrators. It is a 3-DOF arm with a gripper assembly, which
accounts for one of the DOFs. SainSmart calls its DOFs axes , but they are
synonymous.



Figure 9-10  3-DOF SainSmart 3-Axis Robotic Arm.

The precise name of this robotic arm is the SainSmart DIY 3-Axis Servos
Control Palletizing Robot Arm Model for Arduino UNO MEGA2560, Item #
20-014-305. Some of the key technical specifications are listed in Table 9-1 .
TABLE 9-1 SainSmart 3-Axis Robotic Arm Key Technical Specifications



Figure 9-11 shows the rotary-motion range for each joint as well as the
total volumetric workspace for the arm.



Figure 9-11  SainSmart 3-DOF arm joint rotary range of motion and
volumetric workspace diagram.

It was a bit surprising to see that there was a fairly large volume of 9692
cm3 (0.009692 m3) swept through 120° by the arm when fully extended. This
really doesn’t present a safety hazard because the robotic arm is made of
acrylonitrile butadiene styrene (ABS), rotates fairly slowly, and uses low
forces for both joint and segment motion.

This SainSmart arm uses MG995 servos to operate the two rotary joints
and gripper mechanism. These servos are limited to ±60° range of motion for



a total range of 120°. These servos are fairly fast and use metal gears for
reliable operation. They also use standard servo control signals, which will be
discussed in the software section.

SainSmart 6-DOF Robotic Arm

Figure 9-12 shows the SainSmart 6-DOF robotic arm. It is not equipped with
a gripper mechanism, as is the 3-DOF arm.



Figure 9-12  6-DOF SainSmart robotic arm.

This arm has more than twice the number of joints as the 3-DOF arm and
thus is much more flexible in positioning within its workspace. The arm can
lean, which is not possible with the 3-DOF arm, whose main vertical segment



is fixed in a single vertical plane. The precise name of this robotic arm is the
SainSmart DIY 6-Axis Servos Control Palletizing Robot Arm Model for
Arduino UNO MEGA2560, Item # 20-014-304-US-KS. Some of the key
technical specifications are listed in Table 9-2 .
TABLE 9-2 SainSmart 6-Axis Robotic Arm Key Technical Specifications

The volumetric workspace is substantially more than that of the 3-DOF
arm. I estimated the volume to be approximately 49,748 cm3. It is very
difficult to compute the workspace volume because of the many joints in the
arm, which means that arm positioning is quite variable. I settled on using a
volume that is one-sixth of a sphere with a 414-mm radius. This is very much
an overestimate, but it is better to be conservative than compromise this
important safety criterion.

In the next section, I discuss a servo control board, which is an essential
component between the RasPi and the robotic arms.

Servo Control Interface Board

I used the Adafruit 16-Channel PWM/Servo HAT for Raspberry Pi, Minikit #
2327, as a servo control interface board connected between the RasPi and the



robotic arm. This control board is shown in Figure 9-13 mounted on a RasPi
Model B+.

Figure 9-13  16-Channel PWM/Servo HAT board.

Each of the three robotic arm servos plugs directly into one of the three pin
terminal strips mounted on the board. A power supply rated to handle all the



attached servos also must be plugged into the control board. I used a 5-V, 4-A
supply, which should be more than adequate to power all the servos for either
of the robotic arms used in this chapter’s projects.

One distinct advantage of using this particular interface board is its ability
to control up to 16 channels of PWM/servo. The RasPi only has two built-in
PWM channels, which is quite limiting and would not be sufficient to control
either one of the two robotic arms used in this chapter. The interface board
makes use of an I2C-controlled PWM controller chip to drive the onboard 16
channels. It is even possible to connect up to 62 additional interface boards in
a parallel multidrop I2C network to control an astounding 992 PWM/servo
channels. What is even more impressive is that the RasPi’s computational
requirement is minimal and totally independent of the number of servos being
controlled. Each interface board continually controls the servos plugged into it
based on the last I2C commands sent to the board by the RasPi. The RasPi
does not have to continually refresh any digital servo control signals, which
minimizes its computational burden and frees up the RasPi to handle other
important real-time tasks.

At this point in the discussion, I would like to offer you an opportunity to
gain some knowledge regarding how the servos function in this robotic arm. I
do this in the form of the following sidebar, which is purely optional and will
not matter for successful project completion if you choose to skip reading it.

Figure 9-14 is a somewhat transparent view of the inner workings of a
standard analog radio-controlled (R/C) servo motor.



Figure 9-14  Inner view of a standard R/C servo motor.

I would like to point out five components in this figure:
 Brushed electric motor (left side).

 Gear set (just below the case top).

 Servo horn (attached to a shaft protruding above the case top).

 Feedback potentiometer (at the bottom end of the same shaft with
the horn).

 Control PCB (b ottom on the case to the motor’s right).



The electric motor is just an inexpensive ordinary motor that
probably runs at approximately 12,000 rpm unloaded. It typically
operates in the 2.5- to 5-VDC range and likely uses less than 200 mA
even when fully loaded. The servo torque advantage results from the
motor spinning the gear set such that the resulting speed is reduced
significantly, producing a very large torque increase compared with
the motor’s ungeared rating. A typical motor used in this servo class
might have a 0.1 oz-inch torque rating, while the servo output torque
could be about 42 oz-inches, which is a 420 times increase in torque
production. Of course, the speed would be reduced by the same
proportional amount going from 12,000 rpm to about 30 rpm. This
slow speed is still sufficiently fast to move the servo shaft to meet
normal R/C requirements.

The feedback potentiometer attached to the bottom of the output
shaft is a key element in positioning the shaft in accordance with the
pulses being received by the servo electronic control board. You may
clearly see the feedback potentiometer in Figure 9-15 , which is
another image of a disassembled servo.



Figure 9-15  Disassembled servo showing the feedback potentiometer.

I will discuss the potentiometer’s function further during the
control board discussion. The electronics board is the heart of the
servo and controls how the servo functions. I will describe an analog
control version because that is by far the most popular type used in
low-cost servo motors. Figure 9-16 shows a Hitec control board that is
in place for its Model HS-311, which is a very common and inexpensive
analog servo.

Figure 9-16  Hitec HS-311 electronics board.

The main chip is labeled HT7002, which is a Hitec private model
number as well as I could determine. I believe that this chip functions
the same as a commercially available chip manufactured by Mitsubishi
with Model # M51660L. I will use the M51660L as the basis of my
discussion because it is used in a number of other manufacturers’
servo motors and is representative of any chip used in this situation.
The Mitsubishi chip is called a Servo Motor Controller for Radio
Control, and its pin configuration is shown in Figure 9-17 .



Figure 9-17  Mitsubishi M51660L pin configuration.

Don’t be put off by the different physical configuration between the
HT7002 in Figure 9-16 and the chip outline in Figure 9-17 because it is
often the case that identical chip dies are placed in different physical



packages for any number of reasons. The M51660L block diagram
shown in Figure 9-18 illustrates the key functional circuits
incorporated into this chip.

Figure 9-18  M51660L block diagram.

Next, I will provide an analysis that will go hand in hand with the
demonstration circuit in Figure 9-19 that was provided in the
manufacturer’s datasheet (as were the preceding two figures).



Figure 9-19  Demonstration M51660L schematic.

This analysis should help you to understand how an analog servo
functions and why there are certain limitations inherent in its design:
1. The start of a positive pulse appearing on the input line (pin 5)

turns on the R-S flip-flop and also starts the one-shot multivibrator
running.

2. The R-S flip-flop works in conjunction with the one-shot
multivibrator to form a linear one-shot or monostable
multivibrator circuit whose on time is proportional to the voltage
appearing from the tap on the feedback potentiometer and the
charging voltage from the timing capacitor attached to pin 2.

3. The control logic starts comparing the input pulse to the pulse being
generated by the one-shot multivibrator.



4. This ongoing comparison results in a new pulse called the error
pulse that is than fed to the pulse stretcher and deadband and
trigger circuits.

5. The pulse stretcher output ultimately drives the motor control
circuit that works in combination with the directional control
inputs that originate from the R-S flip-flop. The trigger circuits
enable the PNP transistor driver gates for a time period directly
proportional to the error pulse.

6. The PNP transistor drive gate outputs are pins 4 and 12, which
control two external PNP power transistors that can provide over
200 mA to power the motor. The M51660L chip can only provide
up to 20 mA without using these external transistors. This is too
little current flow to power the motor in the servo. The
corresponding current sinks (return paths) for the external
transistors are pins 6 and 10.

7. The 560-kΩ resistor (R f ) connected between pin 2 and the junction
of one of the motor leads and pin 6 feeds the motor’s back
electromotive force (EMF) voltage into the one-shot multivibrator.
Back EMF is created within the motor stator winding when the
motor is coasting or when no power pulses are being applied to the
motor. This additional voltage input results in a servo damping
effect , meaning that it moderates or lessens any servo overshoot or
in-place dithering.
This analysis, while a bit lengthy and detailed, was provided to give

you an understanding of the complexity of what is constantly
happening within the servo case. This knowledge should help you to
determine what might be happening if one of your servos starts
operating in an erratic manner.

The word deadband was mentioned in step 4, and it is worth some
more explanation. Deadband used in this context refers to a slight
voltage change in the control input, which should not elicit an output.
This is a deliberate design feature: basically, you do not want the servo
to react to any slight input changes. Using a deadband improves servo
life and makes it less jittery during normal operations. The deadband
is fixed in the demonstration circuit by a 1-kΩ resistor connected
between pins 9 and 11. This resistor forms another feedback loop
between the pulse stretcher input and output.



The last servo parameter I will discuss is the pulse stretcher gain,
which largely controls the error pulse length. This gain in the
demonstration circuit is set by the values of the capacitor from pin 11
to ground and the resistor connected between pins 11 and 13. This gain
would also be referred to as the proportional gain (Kp ) in closed-loop
control theory. It is important to have the gain set to what is sometimes
jokingly called the “Goldie Locks region”—not too high nor too low,
but just right. Too much gain makes the servo much too sensitive and
possibly could lead to unstable oscillations. Too little gain makes it too
insensitive with a very poor time response. Sometimes experimenters
will tweak the resistor and capacitor values in an effort to squeeze out
a bit more performance from a servo, but I believe that the
manufacturers already have set the component values for a good
compromise between performance and stability.

Servo Control Pulses

Understanding how digital pulses control an analog servo is the key to
knowing how to program it. A series of pulses on the servo signal line with
widths of 1.5 ms and a frequency of 50 Hz will cause the servo to remain
stationary at its center rotation point. Figure 9-20 illustrates this pulse train.

Figure 9-20  50-Hz, 1.5-ms pulse train.

A 50-Hz frequency is commonly used for these kinds of analog servos, and
the pulse amplitude is typically 5 V. The servo will rotate to its full CW
rotation position when the pulse width is increased to 2.0 ms. Similarly, the
servo will rotate to its full CCW rotation position when the pulse width is



decreased to 1.0 ms. Consequently, changing the pulse width from 1.0 to 2.0
ms will cause the servo to move its shaft through its entire range of motion.
You also should note that the pulse widths do vary with different servos. In
some very inexpensive servos, the range can be from 0.5 to 2.4 ms, while in
some pricier ones the range is 0.9 to 2.1 ms. My recommendation is that you
check the technical specifications for the servo you will use in your
application and adjust the pulse widths appropriately. I would recommend
using the website www.servodatabase.com to retrieve the data on your
particular servo.

The software controlling the servo is required to generate the pulse width
corresponding to the commanded position for the servo rotation angle. I will
examine this requirement in further detail in the next section, which discusses
the software.

Robotic Arm Software
The servo interface control board is controlled by a RasPi using the I2C bus,
as was mentioned in my introduction to the interface board. The Wheezy
Raspian Linux distribution must be configured to use the I2C bus. The
configuration starts with enabling I2C using the raspi-config application.
Enter the following to start this config process:

Select the Advanced Options and then select the Enable I2C option. Next
enter

You next have to install the Python library, which allows you to program
the I2C bus. Follow these two steps to install and configure the required
software:
1. sudo apt-get install python-smbus

2. sudo apt-get install i2c-tools

Using the nano editor, add these two lines to the file /etc/modules:

http://www.servodatabase.com/


Use the nano editor to see whether the file /etc/modprobe.d/raspi-
blacklist.conf has the following line, and if so, comment it out by placing a
number symbol (# ) at the front of the line:

Using the nano editor, add these two lines to the file /boot/config.txt:

Then:

Check for all installed I2C devices by entering:

or:

(for very early RasPi models).
Figure 9-21 shows the result of the i2cdetect command, which I ran on

the RasPi with the 16-channel PWM/Servo HAT module installed.



Figure 9-21  i2cdetect command result.

The 0x40 address shown comes from the PCA9685 chip on the HAT board.
This means that the RasPi is in proper communication with the HAT board
using the I2C bus and ready to be programmed, as discussed in the next
section.

Initial Test Program

I created a very simple test program named ServoTest.py that exercises a
standard Hitec HS-311 servo connected to channel 0 on the HAT board.
Figure 9-22 shows the test setup with the servo being powered from a supply
connected to the 2.1-mm barrel connector on the HAT board.



Figure 9-22  Initial servo test setup.



The commented ServoTest.py program is listed next and is also available
from this book’s companion website.





Please note that I set the PWM frequency to 100 Hz versus the normal 50
Hz I mentioned in my servo discussion. This was done purely for convenience
sake to ease the pulse-length calculations. The increased frequency has
absolutely no effect on the servo’s performance.

I observed that when I ran the program, the servo smoothly rotated
between the 0, 180, and 90° positions without any issues. This test confirmed
that the RasPi/HAT board was properly configured and ready to handle the
robotic arms. Satisfied that I could successfully control a servo, I started the
next task of creating a program designed to control all the servos in a robotic
arm. It is now time to discuss the software that I created to control the robotic
arms.

Robotic Arm Software

I decided to take a measured approach to developing the robotic arm control
software and first try it out with a stand-alone servo as I did with the initial
test. In this way, I could resolve any problems that appeared without damaging
an expensive robotic arm. I also chose to use a graphical user interface (GUI)
for the robotic arm program because such a program naturally lends itself to
the way a user would interact with the arm. The GUI was created using the
Tkinter library, which is part of the normal Python distributions, including
versions 2.7 and 3.0. The arm program also must be run in the X Windows
environment because it is a GUI and requires X Windows to correctly display
the GUI window and widgets.

3-DOF Robotic Arm Servo Control Program

The first arm control program named 3DOF_Robot_Arm.py was created for
the 3-DOF arm because that arm uses only three servos, and naturally, such a
program would be easier to develop and test. The listing is shown next with a
heavy dose of comments included within the code. The source code is also
available on this book’s companion website.







The program is started by first going to the directory, which contains both
the 3DOF_Robot_Arm.py and the Adafruit_PWM_Servo_Driver library. You



will get an error if you attempt to run the arm program without the library
being present in the same directory. The command to cd into the directory
containing the 3DOF_Robot_Arm.py and the Adafruit driver library from the
home directory is shown next:

Once in the directory, enter these two commands to start X Windows and
run the arm program:

Figure 9-23 is a screenshot of the GUI showing the three labeled slider
controls.

Figure 9-23  Robot_Arm program GUI.



Changing the slider position on each of the slider GUI widgets changes the
digital pulse width being sent to the HAT servo channel corresponding to the
slider widget being changed. The pulse width is 1.0 ms when the slider is at
the –60 position and is 2.0 ms when the slider is at the +60 position. The pulse
width is 1.5 ms when the slider is at 0, or midway between –60 and +60.

Before running this program with the arm, you must ensure that all the
servo leads from the arm have been labeled properly. I identified the lead
connections by running the program and then connecting one lead at a time to
channel 0. I then moved the slider for the gripper and observed which servo
moved. This procedure quickly identified the leads, and I used a label maker
to tag the leads. This procedure is not really critical for the 3-DOF robotic arm
because the servo leads are easy to identify by visually inspecting the arm.
However, the 6-DOF arm has its leads woven all through the structure,
making physical lead identification impossible. Besides, identifying the leads
using the program also checks the physical connections early in the testing
phase and will quickly identify any electrical connection issues. Once all the
leads are labeled, you should connect them to the HAT board, as shown in
Table 9-3 .
TABLE 9-3 3-DOF Servo Lead Connections

Figure 9-24 shows all the servo leads connected to the HAT board, which,
in turn, is mounted on a RasPi.



Figure 9-24  3-DOF servo leads connected to HAT board.

Testing the 3-DOF Robotic Arm



You must clamp the robotic arm to a tabletop before using it. I used a small
bar clamp to secure the arm to my worktable. I then tested the 3-DOF robotic
arm by running a common industrial robot operation known as pick-and-place
. This operation requires the arm to pick up an object and transport it to a
different location all within the robot’s volumetric workspace. I used a small
wooden block as the transported object. The pick-and-place operation is
detailed in the following step sequence:
 1. Place the object to be picked up within the reach of the 3-DOF arm.

 2. Ensure that the gripper is open and the elbow is rotated to clear the top of
the object.

 3. Rotate the base such that the gripper opening is centered on the object.

 4. Rotate the elbow until the gripper is at the midpoint of the object.

 5. Close the gripper to the point where it securely holds the object.

 6. Rotate the elbow to lift the object above the mount plane.

 7. Rotate the base until it is at the drop-off location.

 8. Rotate the elbow until the object rests on the mount surface.

 9. Open the gripper to free the object.

10. Rotate the elbow until the gripper is clear of the object.

11. Repeat steps 1 to 10 for additional objects to be moved.

Conveyers also could be required to both deliver objects to be picked as
well as to whisk away the objects placed (dropped off). Of course, in a real-
world scenario, the robotic arm would be controlled by a real-time program
without human intervention. There also would be sensors in place to signal
when the object to be picked up was properly arranged and also to signal
when the object was dropped off. Development of these real-time programs is
normally the topic of robotics courses, where all the ramifications of robotic
arm control can be explored.

Figure 9-25 shows the 3-DOF robotic arm with an object in its gripper
midway between the pick-and-place locations.



Figure 9-25  3-DOF robotic arm in a pick-and-place configuration.

It took me about 20 seconds to manually complete the pick-and-place
operation. I would estimate that an automated pick-and-place likely would
take no more than 2 seconds, which is a 10 times improvement over manual
mode.



Now it is time to examine the 6-DOF arm. I will try a slightly different
operational approach with this arm because it significantly more flexible in its
positioning owing to the 6 DOFs.

6-DOF Robotic Arm Servo Control Program

The control program for the 6-DOF arm is named 6DOF_Robot_Arm.py and
is listed next. I have not included all the same comments as were in the 3 DOF
program because they are all identical. Essentially, the 6-DOF program is
simply an extension of the 3-DOF program with three servo control channels
added to accommodate the extra DOFs.









Mounting the RasPi/HAT on the 6-DOF Robotic Arm

A microcontroller mounting plate is included on this arm because of the large
number of servo leads, which potentially could limit the base rotation of the



arm. This mounting plate comes with four standoffs placed to support an
Arduino Mega 2560 board. I removed these standoffs and drilled three holes
to accommodate a RasPi 2 Model B. I also reused one of the existing holes, as
shown in Figure 9-26 .

Figure 9-26  Hole placement for a RasPi on the 6-DOF robotic arm mount
plate.

I next mounted the RasPi onto the four repositioned standoffs. I would also
recommend that you defer connecting the HAT to the RasPi until you
complete the servo lead identification procedure.



You must next ensure that all the servo leads from the arm have been
labeled properly. Please use the procedure that I detailed in the preceding
section to label all the leads. Once all the leads are labeled, you should
connect them to the HAT board, as detailed in Table 9-4 .
TABLE 9-4 6-DOF Servo Lead Connections

Connect the whole assembly to the RasPi once all the servo leads are
connected to the HAT board. You are now almost ready to test this arm. The
arm must be attached to a secure base or platform before operating it because
it will fall over if it is extended beyond its stable center of gravity (CG). I will
show you the base I used in the next section.

Robotic Arm Base

The platform I used was a solid block of aluminum measuring 6 × 12 × 1.5
inches. I drilled and tapped out four mounting holes in the block that matched
the mounting holes already drilled in the robotic arm’s mounting plate. The
aluminum block weighs a bit over 9 pounds, which is more than adequate to
provide a stable platform for the arm. Figure 9-27 shows the 6-DOF robotic
arm mounted on the platform.





Figure 9-27  Aluminum mounting platform with arm attached.

You do not need to use an aluminum block as I did, but you will need some
sort of support. A medium-sized piece of ¾-inch plywood also would serve
nicely for a mounting platform. I would recommend a piece at least 18 inches
on a side to provide sufficient stability for the arm.

You also can clamp the robotic arm to a table in the same manner as I did
for the 3-DOF robotic arm test. All that matters is that you secure the arm
before proceeding with the initial testing, as I discuss in the next section.

Testing the 6-DOF Robotic Arm

The initial test for this arm starts by running the program. The program must
be in the same directory I showed you in the 3-DOF arm discussion because it
uses the exact same Adafruit library. Enter the following:

Figure 9-28 is a screenshot of the GUI showing the six labeled slider
controls.



Figure 9-28  6-DOF_Robot_Arm program GUI.

I tested all the servos on the arm by moving the slider controls starting
from the top to the bottom. The corresponding servo should move throughout
its total range of motion. Just be careful to slowly move each slider because
there is some mass to the arm, which, in turn, can create a significant force on
the arm’s structure if moved rapidly. Remember that Newton’s second law, F
= MA , still applies, and moving the slider rapidly creates a large acceleration
A .

It is time to explore an interesting application for this 6-DOF robotic arm
once you are satisfied that the arm operates as expected. Because the arm does
not have a gripper, I decided to pursue a generalized Cartesian Coordinate
positioning application based on the concept discussed earlier in this chapter.
Please review the very brief section “X-Y-Z Coordinate (Cartesian
Coordinate)” to refresh your memory before proceeding to the next section.



6-DOF X-Y-Z Coordinate (Cartesian Coordinate) Application

First, be forewarned that there is a bit of math in this section. However, it
mostly concerns trigonometric functions, which I assume most of my readers
(except for the younger ones) have been exposed to at some point in their
educational experience. The primary purpose of this X-Y-Z Coordinate
application (referred to from this point on as the app ) is to translate a given
coordinate located in the 6-DOF arm’s volumetric workspace into servo angle
commands for the base, shoulder, and elbow joints. You will see that just
changing these three joint angles will position the fingers at any point in the
volume corresponding to the given x , y , and z coordinates. Figure 9-29 is a
vector diagram illustrating this configuration.

Figure 9-29  Vector diagram.



The given coordinate is shown in the diagram as a point located at x 0 , y 0 ,
and z 0 , which are points on the respective x , y , and z axes. The vector from
the point of origin (0, 0, 0) is labeled c, and its length is determined by this
formula:

c 2 = x 02 + y 02 + z 02

The angle θ shown on the diagram is the angle of the vector c projected
onto the x-y plane and the x axis. This angle would be used to rotate the base
such that the robotic arm points precisely in the direction of the given
coordinate point. Determining the angles for both the shoulder and elbow
joints is more complex but still doable. Figure 9-30 is a simplified diagram
representing both the shoulder and forearm segments. The shoulder segment is
labeled a and the forearm b .

Figure 9-30  Free-body diagram showing the shoulder, forearm, and vector
segments.

I used the law of cosines to compute the angles A , B , and C shown in
Figure 9-30 . The basic formula is

c 2 = a 2 + b 2 − 2 × a × b × cos(C )



The values of segments a and b came from a SainSmart website diagram,
shown in Figure 9-31 . The shoulder segment is 12 cm, and the forearm
segment is 15.5 cm.

Figure 9-31  Segment lengths for a and b.



This next equation computes the C angle, which is part of an elbow joint
servo angle:

cos(C ) = (a 2 + b 2 − c 2 )/(2 × a × b )

I used this next formula to compute the B angle, which is part of the
shoulder joint:

cos(B ) = (a 2 − b 2 + c 2 )/(2 × a × c )

Of course, all the angle computations are done in radians and must be
converted back into degrees using the relationship that 2π radians is
equivalent to 360°.

There is one more angle that must be accounted for, and this is the angle β
between the vector and the x-y plane. Looking at Figure 9-30 , it is
straightforward to determine that this angle is computed as follows:

sin–1 (β) = z 0 /c

I incorporated all the mathematics I just went through into a function
named coordinateTransform() and added it to the 6-DOF_Robot_Arm.py
program. I then rewrote 6-DOF_Robot_Arm.py to query the user for the x , y ,
and z coordinates in centimeters. I also removed all the sliders because the
purpose of this new app is to implement arm positioning based on coordinate
inputs.

Once the x , y , and z coordinates are input, you will need to press the
Reposition button to cause the arm to move. I did this as a safety feature
because the robot will quickly reposition itself to the desired coordinate
position in its workspace. I also limited the coordinate entries to be within the
range of 4 to 24 cm such that the servos would stop moving before reaching
their mechanical limits.

CAUTION
Be very careful because the robotic arm will swing quite rapidly if you
enter new coordinates that are widely separated from its resting position.
Keep small children, pets, and limbs away from the robotic arm while
you run this program.

The changed program 6-DOF_Robot_Arm.py was renamed
XYZ_Robot_Arm.py and is available on this book’s website and also listed



next:











You should run the program in the same directory as all the other arm
control programs. Enter the following to run this program:

Figure 9-32 is a screenshot of the program running with a set of x , y , and z
coordinates entered. The arm started to reposition immediately after I clicked
the Reposition button.

Figure 9-32  Screenshot of the XYZ_Robot_Arm program running.

You also may notice that I had the debugging print statements displayed
because they helped me immensely to correctly modify the program such that
it functioned as I wanted it to. I also included 1-second delays so that the
individual segment positioning could be observed separately. You can easily
remove them if you want all the segments and base to move together.

Before concluding this section, I want to mention some constraints and
limitations within this program. The arm positioning can only be
approximated because the point of origin I used in the geometric calculations
differs from the real robotic arm. By this, I mean that the pivot where the
shoulder segment rotates at the base is displaced approximately 4.5 cm from
the vertical base rotation axis. This displacement will cause a constant error in



the resulting angle calculations owing to the z -axis offset. I chose to leave the
error in place because the robotic arm was designed for an educational/fun
experience and not for a precision setup. There is also another slight deviation
in that there is a small offset between the shoulder and elbow pivot points,
again introducing some error in the angle calculations. Readers are
encouraged to modify the program to reduce or eliminate these errors or
simply use the program as is.

I have listed below several improvements and enhancements to this
program that interested readers may explore further:
1. Incorporate a file I/O operation where a series of coordinates may be read

in and the robotic arm would be continuously repositioned in accordance
with the coordinates stored in the file.

2. Attach a felt-tipped pen to the end effector (fingers), and draw text and
figures on a white sheet using only x and y coordinates to move the
effector.

3. Attach a video camera to the end effector and feed the video stream to an
image-processing program capable of recognizing simple objects, such as
a ball or block. These programs usually have center-of-gravity capture
algorithm that can provide control signals to the robotic arm to keep the
observed object centered in the frame of the video stream.

Presenting these enhancements and improvements to the 6-DOF robotic
arm concludes this section and the chapter.

Summary
The chapter began with a comprehensive introduction to robotic arms that
explained the concepts and methodologies used in designing these devices.
Two robotic arms were next introduced, and they were used as demonstrators
to show how robotic arms actually function.

I next discussed how servos function as they are key components of all
robotic arms. Software was discussed next, and I showed you how to
configure a RasPi to control a robotic arm using the I2C bus. I also went
through an initial test using a stand-alone servo to test the software installation
and configuration process.



I next demonstrated a relatively simple 3-DOF arm used in a pick-and-
place application that was programmed using Python. A 6-DOF arm was used
next to demonstrate how a much more complex robotic arm worked. I wrote
two Python programs to control this arm. The first simply allowed you to
control each of the six servos using a GUI widget. The second program
allowed you to enter x , y , and z coordinates and have the robotic arm
reposition its end effector to the corresponding point in its volumetric
workspace.

The chapter concluded with my presenting a few recommendations for
future enhancements and improvements to the 6-DOF robotic arm.



CHAPTER 10

Gigapixel Camera System

IN THIS CHAPTER, I WILL SHOW YOU how to build two digital camera systems
capable of composing gigapixel photographs. I will not be building digital
cameras with billion-plus pixel resolution because only a few of those exist
today, and they are prohibitively expensive. Instead, I will use moderate cost
digital cameras, each with millions of pixel resolution, and then take multiple
photographs of a subject and use post-processing techniques to form a final
gigapixel image. The multiple-image approach is really the only practical
way to capture huge-resolution photographs using consumer-grade digital
cameras.

The first system will use a small, relatively inexpensive point-and-shoot
digital camera mounted on an inexpensive pan-and-tilt servomechanism. The
second system will use a more expensive digital single-lens reflex camera
(DSLR) mounted on a “prosumer”-grade pan-and-tilt mechanism. I took this
two-system approach to accommodate readers who would like to experiment
with this technology but do not have the resources to invest in the expensive
photographic equipment that would be needed to build the second system.

Chapter 10 Parts List
No cameras or tripod components are listed. Please refer to the text regarding
suitable cameras/tripods to use for these projects.



I will start the chapter by discussing two post-processing techniques, both
of which allow a gigapixel image to be composed.

Stack and Stitch
Stacking and stitching are both required for image post-processing, which
allows the gigapixel camera system to be implemented. I will discuss
stacking first, followed by the stitching process.

Stacking

The stacking in the section title refers to a technique more formally called
focus stacking but also known as image stacking . It is necessary to review
some fundamental photography basics to understand what focus stacking



encompasses. Figure 10-1 is a diagram showing a simple camera lens and
sensor that helps to illustrate the key concept of how a camera focuses.

Figure 10-1  Diagram of camera focus system.

In this figure, the lens has been set either manually or automatically to
converge the majority of incoming light rays reflecting off the subject object
onto the plane of the sensor. However, some light rays reflecting off objects
that are separate from the subject object will converge before or after the
sensor plane and are said to be out of focus . This loss of focus is also
referred to as loss of sharpness and is the result of an optical principle called
diffraction . Diffraction is a fundamental physics principle and cannot be
overcome simply by using a better lens. However, using focus stacking can
mitigate it.

The distance between the optical center of the lens and the sensor plane is
known as the focal length . This attribute does not affect the lens focus
directly but is related more to image size. An iris also can be seen in the
figure situated just in front of the lens, and it controls the amount of light
passing through the lens. The opening in the iris is referred to as the aperture



, and it also plays an important role in determining the image focus. Figure
10-2 shows an iris set to various aperture settings known as f-stops . The f-
stop is defined as the ratio between the lens diameter and the open-aperture
diameter.

Figure 10-2  Aperture settings.

This figure should convey the concept that a smaller aperture setting
means that a greater depth of field exists, and hence objects being
photographed will tend to remain in focus on the sensor plane. The
underlying optical physics determining why this happens is complex and
really does not need to be discussed. Simply accept the fact that smaller
apertures mean greater depth of field for an image. Of course, there is a
distinct disadvantage to using small apertures in that less light strikes the
image sensor, and there is a good chance that the image will be
underexposed depending on the total intensity of light reflecting off the
object to be photographed. The main way photographers overcome this issue
is to increase the time during which the shutter remains open, exposing light
from the lens onto the sensor. This then leads to the issue of image blurriness
owing to camera shake, especially if the camera is hand held. Use of a tripod
normally mitigates this situation quite well, which is why you see
professional photographers using tripods during night shots.

Figure 10-3 is an excellent representation of how focus, aperture, and
depth of field are related. This image is courtesy of Dave Shaker and is
available as part of his “The Camera Lens” blog at www.thatfish.com .

http://www.thatfish.com/


Figure 10-3  Camera focus, aperture, and depth-of-field relationships.
(www.thatfish.com )

I also wanted to mention that the issue of depth of field becomes very
problematic when you attempt to take extreme close-up photographs. This
type of image taking is known as macrophotography , and it has greatly
benefited from the focus-stacking technique.

The type of lens being used also plays a role in this whole
interrelationship of focus, aperture, and depth of field. You are likely to have

http://www.thatfish.com/


a small zoom lens if you are using a modern point-and-shoot camera such as
a Canon SX160 IS, as shown in Figure 10-4 .

Figure 10-4  Canon SX160 IS point-and-shoot camera.

This is the camera I used for the point-and-shoot part of this chapter’s
project. It has a 5.0- to 80-mm zoom lens permanently attached, as shown in
the figure. This lens is well suited for wide-angle to long-range shots because
it incorporates a 16× optical zoom in the lens. Some point-and-shoot cameras
do not have a telescopic capability but instead rely on electronic processing
to achieve telescopic range. Electronic image magnification usually has less
quality than a quality optical telescopic lens. But this is an acceptable
tradeoff that most point-and-shoot camera users readily accept for the
convenience of using a compact camera at a good price point. In the second



portion of this chapter project, I do use a DSLR, which accepts a wide range
of lens, including wide-angle and telescopic lenses.

So far, I have presented a brief background on how a camera focuses on a
subject object and the related issue of why out-of-focus objects are also
typically seen in the frame of view. It is now time to discuss how focus
stacking overcomes this problem.

How Focus Stacking Works

Probably the best way to explain how focus stacking works is to show you
an example. This example is pretty simple, consisting of a photograph of a
tie set against a dark background. I took three photographs of the tie, with
the focus points being set at the front, middle, and back, as shown in Figures
10-5 , 10-6 , and 10-7 , respectively. Note that these three figures were
cropped and the colors adjusted for publication in this book. The unaltered
original images were used as inputs to the focus-stacking application.



Figure 10-5  Near focus.



Figure 10-6  Middle focus.



Figure 10-7  Far focus.

You should be able to see how only one area of the tie is in focus in each
image. These three images were next used as inputs to Zerene Systems,



focus-stacking software, ZereneStacker. Figure 10-8 is a screen shot of the
ZereneStacker application running on my MacBook Pro.



Figure 10-8  Zerene focus-stacking application.

You can generate an output image using PMax or DMap methods. PMax
uses a pyramid method , which is very good at finding and retaining details
in an image. It is good at processing images containing matrix-like structures
such as hair mats and crisscrossed bristles. It also avoids creating halos,
which can mask details and is common in other focus-stacking applications.

DMap uses a depth-map method , which tends to retain more of the
original image’s smoothness and colors. It does not retain as much detail as
the PMax method.

Zerene Systems recommends processing stacked images using both
methods and selecting the best result. Often, selecting the best output image
and then retouching it will yield the best results. Figure 10-9 shows the final
tie output image, which I cropped and retouched for optimal intensity level,
contrast, and color.



Figure 10-9  Focused-stacked tie image.

Of course, the actual algorithms that Zerene uses to focus stack images
are proprietary and not public information, as likely are all other similar



algorithms. It really doesn’t matter whether you know how the program
functions other than to know how to use it effectively. Some readers may
know that Adobe’s Photoshop also includes a photo merge function , which
is Adobe’s term for focus stacking. I chose not to use Photoshop because it
requires many more steps than the ZereneStacker to process input images. In
addition, a focus-stacking application is optimized for that particular process
as opposed to Photoshop, which has to perform a multitude of different and
often unrelated image-processing functions.

Stitching is the next part of this project’s image postprocessing, which I
discuss in the following section.

Stitching

Stitching is the imaging process of seamlessly joining adjacent photographs
such that they form one panoramic view. Sometimes panoramic photographs
are simply referred to as panos , which I will do from now on for brevity’s
sake. Specialized pano image-processing applications are available as well as
functions contained in Photoshop that can perform image stitching. I chose
to use an easy pano specialized program named Panoweaver v9.1 Standard
Edition to create my project panos using similar reasoning as to why I chose
a specialized stacking software over the Photoshop merge image function.

Taking Some Sample Pictures

For best results, I took a series of images with a digital camera mounted on a
tripod. The camera was leveled on the tripod, and I overlapped each image
by 40 to 50 percent with the preceding one. Also, I set the camera to take
moderate-resolution images to minimize the postprocessing time. Figures 10-
10 , 10-11 , and 10-12 are three photographs of a local converted textile mill
building that I used as inputs to the stitching application.



Figure 10-10  Left.



Figure 10-11  Center.

Figure 10-12  Right.

These three images were next input to the image-stitching software.
Figure 10-13 is a screenshot of the Panoweaver application running on my
MacBook Pro.



Figure 10-13  Panoweaver image-stitching application.

You generate an output image by first importing the source images. The
panoramic stitch function will not even appear on the ribbon menu bar
without the source images being selected. You will next need to select the
type of pano desired from one of the radio-button selections appearing on the
right-hand side of the application. I list these selections next with a few brief
comments about each one.

 Spherical. This is the default selection and was the one I used.

 Cubic. There is very little perceived difference between this and spherical
selection.



 Cylindrical. The mill roofline was convex with a “bowed out” appearance.

 Littleplanet. Extremely concave; not recommended except for a special
effect.

The generated pano has an uneven border because of the image
manipulations necessary to create the pano. I cropped and slightly retouched
the pano image using Photoshop to achieve a pleasing image, which is
shown in Figure 10-14 .

Figure 10-14  Mill building pano.

A lot of information is available regarding the stitching algorithms, which
was not the case for the stacking algorithms. However, the algorithms are
quite complex, and not much can be gained in a book of this type by going
through them.



At this point, I have covered the entire pertinent image postprocessing
that needs to be done to achieve the goals of a gigapixel camera system. It is
time to discuss in some detail the point-and-shoot camera, which is the
critical part of the first gigapixel camera system.

Point-and-Shoot Camera

I used a Canon SX160 IS, as mentioned earlier, for the point-and-shoot
camera. This is a nice little camera with a decent 16-MB sensor and a good-
quality 5.0- to 80-mm zoom lens attached. The camera is not very expensive,
and I saved quite a bit by purchasing a refurbished unit. There are many
other Canon cameras similar to the one I used, but if you do substitute one,
then you must ensure that the selected camera will accept the Canon Hack
Development Kit (CHDK) firmware, which is discussed later. This firmware
change is needed to make the camera suitable to accept RasPi commands for
shutter activation. There are no other required modifications to the camera
other than the firmware change. Note that even changing the original
firmware will not impair normal camera operations because the CHDK
firmware is easily bypassed to place the camera in its normal operating
condition.

You should be aware that the CHDK cannot control the camera focus
operation. It thus will be impossible to implement automated focus stacking
using the CHDK firmware. In fact, most modern point-and-shoot cameras do
not have any provision for manual lens focus. However, automatic image
capture for the stitching operation will be possible because remote shutter
activation is possible with this Canon camera.

The Canon camera also has a ¼-20 tripod mount on the bottom of its case,
which is used to mount the camera to the pan-and-tilt servomechanism,
which I discuss next.

Pan-and-Tilt Servomechanism

Figure 10-15 shows the inexpensive pan-and-tilt servomechanism I used,
which is controlled by the RasPi in conjunction with the 16-channel
PWM/Servo HAT board I introduced in Chapter 9 .



Figure 10-15  Pan-and-tilt servomechanism.

This mechanism has 2 DOFs and will allow the camera to be tilted in
excess of 120°. The same is true of the panning servo. In reality, I expected
to do very few tilt adjustments but to heavily use the panning to create the



pano. This is why I made the tilt operation manual but automated the
panning.

You also should note that this pan-and-tilt mechanism handles the
lightweight point-and-shoot camera just fine but will not be able to move the
much heavier and massive DSLR camera, which is the reason I separated the
project into two parts.

You will need to remove the C-bracket from the top of the tilt servo and
drill out the center hole to provide clearance for the ¼-20 screw that secures
the camera to the C-bracket. Figure 10-16 shows this bracket with the center
hole enlarged using a ¼-inch drill bit.

Figure 10-16  C-bracket with mounting hole drilled out.

I do wish to point out that these inexpensive pan-and-tilt mechanisms are
a commodity product built in China by various suppliers. Other units may
not have the same mounting hole as this one does, so you will have to be
flexible and adapt the mounting arrangement to suit what you have in hand.
However, I strongly recommend that you attach the camera to the C-bracket
while it is not attached to the servo. It will be impossible to install the
mounting screw once the C-bracket is reattached to the servo. Figure 10-17



shows the complete assembly of the camera attached to the pan-and-tilt
mechanism.



Figure 10-17  Pan-and-tilt servomechanism with camera mounted.



Note that I also attached the mechanism to a temporary Lexan stand for
testing purposes. You don’t have to do this as long as you secure the bottom
servo so that the whole assembly does not fall over. I eventually removed the
stand and attached the bottom servo to a tripod mount adapter, which I
describe later in this chapter.

You also must ensure that the servo cables are free and clear of any pinch
points and obviously not in the way of the lens. This will be easy to do once
the RasPi has been mounted on the tripod adapter along with the battery
supply. Again, all this will be discussed a bit later.

Now it is time to discuss the CHDK firmware, which must be installed on
the camera to automate the pano process.

CHDK Firmware

The Canon Hack Development Kit (CHDK) is a unique software application
that runs on microprocessors contained in Canon point-and-shoot cameras.
CHDK software makes no permanent changes to the camera, which means
that the original Canon firmware can be restored, if desired.

CHDK allows control over many camera features, some of which are
detailed in Table 10-1 .
TABLE 10-1 CHDK Features



I do wish to make one item very clear, and that is that the CHDK
firmware strictly uses digital pulses to control the camera. It does not use
digital text sent over the USB data lines for camera control. This means that
camera control is created by both counting the number of pulses and the
durations of those pulses. Of course, all the appropriate pulses and durations
will be done for you using the RasPi.

A key component for controlling the camera is to modify a USB cable
such that it can transfer digital pulses from the RasPi to the camera. This is
the topic of the next section.

USB Control Cable

You will need to modify an existing USB cable that has a mini-A socket as
shown in Figure 10-18 .

Figure 10-18  Mini-A USB socket.

The mini-A socket matches the point-and-shoot camera I used, but if you
substituted a different Canon camera, just ensure that you match the cable to
the existing USB socket. You next need to cut off the standard USB
connector and strip back the cable insulation about 1.5 inches to expose the



enclosed wires. The good news is that only two wires will be used for the
connections, and these are shown in Figure 10-19 .

Figure 10-19  Two USB control wires.

Typically, the two wires are colored red and black, with the red one
connected to pin 1 and the black one connected to pin 4. Note that it is not
guaranteed that all USB cable manufacturers follow this color-coding
convention, so you might have to use a volt-ohm meter (VOM) to confirm
the wire-to-pin connections. You also should tin the wire ends to strengthen
them a bit so that they can be easily soldered onto the HAT board. By tin , I
mean to apply a little solder to the wire ends. Just be careful because the
wires are very small gauge and easily damaged by overheating.

I next set up for an initial test using the same RasPi that was used to
control the pan-and-tilt mechanism. You cannot use a Pi Cobbler for the USB
cable connections because the servo HAT covers all 40 GPIO pins. Instead,
you will need to solder the black USB wire to an open ground point and the
red wire to the pin labeled pin 4 on the HAT board. Figure 10-20 shows these
wires soldered to the HAT board.



Figure 10-20  USB wires attached to HAT board.

I wrote a simple Python test program that checked out the USB cable
connection and ensured that the camera could be controlled by the RasPi.
This program is a modified version of the 3-DOF robotic arm program I used



in Chapter 9 . There are only two sliders in this GUI, one for the pan and the
other for the tilt. I also included a GUI button that may be clicked to take a
picture. The program is named PnS_Camera1.py and is available on this
book’s companion website. It is listed next with comments.







You must be in X Windows to run this program, as was the case for the
robotic arm programs. You also must be in the same directory, which I
specified in Chapter 9 , which contain all the robotic arm programs. This
program uses the same Adafruit PWM/Servo library as was used in the
robotic arm programs.

The PWM/Servo HAT board must be attached to the RasPi with a
connected 5-V servo power supply, as it was set up with the robotic arm
tests. In this case, the pan servo is connected to channel 0, and the tilt servo
is connected to channel 1.

Enter the following commands to run the camera program:

Figure 10-21 is a screenshot of this program running on a RasPi.



Figure 10-21  PnS_Camera1 program GUI.

You should be able to easily tilt and pan the camera using the sliders. Just
be careful because the camera is sufficiently heavy to the point of causing
the stand to tip over if it is tilted too far forward or backward.

The next step in completing the point-and-shoot camera system is to build
a tripod adapter to hold all the components, including a hefty battery supply
for the RasPi and the servomechanism.

Building the Tripod Adapter

I will start this section by stating that my design is not the only way to build
a frame that will safely hold all the components and yet allow you to mount
them on a sturdy tripod for the picture taking. After some experimenting, I
settled on an O-frame structure made out of ⅛- × 1.5-inch aluminum flat
stock, which allowed me to mount all the items without too much difficulty
in machining yet was strong enough and light enough to be mounted on a
normal camera tripod. I used a typical tripod connect adapter called a shoe
plate that matched my Vanguard tripod. These adapters are inexpensive and



are really the only proper way to mount devices on tripods. Just be sure that
you purchase a matching adapter that fits your tripod because they come in
several sizes.

The shoe plate then was mounted to the bottom of the O-frame using a
¼-20 machine screw, thumbscrew, and washer to spread the load out onto the
frame. Figure 10-22 shows the O-frame with the shoe plate attached.

Figure 10-22  O-frame with shoe plate attached.

I next had to fashion a small L-bracket, which I attached between the
existing bottom servo C-frame and the top portion of the aluminum O-frame.
This bracket also serves as the connecting plate between the ends of the O-
frame. I found this to be the most convenient way to join the O-frame ends
unless you happen to have an aluminum welding rig. Figure 10-23 shows
this small L-frame, which I made of a strip of aluminum flat stock.



Figure 10-23  Aluminum L-frame holds the servos to the top of the steel C-
frame.

The RasPi-HAT combination is attached to the vertical portion of the C-
frame using an inexpensive plastic case designed for a Model B+. I first
attached the case using 4-40 machine screws/nuts and then inserted the RasPi
into the case. Just be sure that there is sufficient slack in the servo wires
connecting to the HAT board. Figure 10-24 shows the completed assembly
mounted on a tripod.





Figure 10-24  Complete point-and-shoot tripod adapter.

Notice that I simply placed two battery packs on the bottom portion of the
O-frame. One pack consists of four AA batteries, which power the servos.
The other is a commercial cell phone battery extender, which powers the
RasPi. Both these packs should provide sufficient capacity for a least one
photographic expedition. This arrangement allows you to carry along some
fresh AA batteries as well as an extra cell phone battery extender. Having the
battery packs resting freely on the tripod adapter makes swapping them a
simple task.

The only task left is to create a program that not only modifies the one I
already showed you but also automates the panning and picture-taking
functions. It will also be started by a real push button because you do not
want to have to use a monitor, keyboard, and mouse to access the RasPi.

Automating the Point-and-Shoot Gigapixel Camera System

The changes required to automate the existing point-and-shoot program are
extensive. I first removed all the GUI components because they are no longer
required for this self-contained program. I next added a forever loop, which,
when activated by a user pressing a push button, will cause the camera to pan
from left to right in 30° increments, pausing 5 seconds after each motion.
The shutter then would be activated after a 2-second delay to allow any
vibrations caused by the camera motion to subside. Figure 10-25 shows the
schematic for the push-button connection. I recommend that it be wired
directly to the HAT board. Any normally open push button can be used. Just
don’t forget to add the 10-kΩ resistor; otherwise, you will be shorting the
3.3-V supply to ground, which would not be a good thing!



Figure 10-25  Push-button connection.

I mounted the push button on an L-shaped piece of Lexan for easy access
on the tripod adapter. Figure 10-26 is a dimensioned sketch of this Lexan
piece. Note that I used a hot-air gun to soften the Lexan, which allowed me
to bend it into an L shape.



Figure 10-26  Push-button mounting bracket sketch.

Figure 10-27 shows the push button mounted on the Lexan and connected
to the RasPi.



Figure 10-27  Mounted push button connected to the RasPi.

Tilt control was not enabled because you want the camera to be a steady
horizontal plane as it is panned. It is easy to gently adjust the tilt angle
because no power is being applied to the tilt servo. Simply leave the tilt
angle alone once you have adjusted the camera to the desired plane.

The program also was configured to autostart after the power was applied
to the RasPi. I explain how to configure the RasPi for an autostart
configuration after the program listing.

This program finally ensures that the camera always starts the picture-
taking process facing to the left. I renamed the program PnS_Automate.py ,



and it is listed next. As always, it is also available on this book’s companion
website.







The program is stopped by disconnecting the power to the RasPi. I realize
that this is not the preferred method to end a program, but it should not cause
any data disruptions because no configuration data are being saved, and it is
much easier than adding a dedicated on/off button. However, I would have
definitely added an on/off button if this was to be a commercial product.

Configure Program for an Autostart



Be sure that you have installed the push button and resistor before doing this
configuration. Otherwise, you will not know if the program is actually
running. You will next need to make the following changes to the inittab file:

 sudo nano /etc/inittab

 Comment out the following line:

 Note that the line may appear like this in more recent versions of the
Wheezy distro:

 Add this line after the line just commented out:

 Save the file, and exit the nano editor.

Next, edit the profile file:
 sudo nano /etc/profile

 Add the following line to the file (do not add any line returns):

 Save the file, and exit the nano editor.

You should be ready to test the autostart configuration. Just turn on the
camera, and connect the servo power supply to the HAT board and the 5-V
power supply to the RasPi. You then will need to wait about 45 seconds for



the initial boot sequence to finish. Then press the push button, and the
camera should move to the left, if not already there, and take a picture. The
camera will move again after several seconds and take another picture and
continue this sequence three more times. Once at the far right, it will take the
final picture and then reposition itself to the far left, ready for another
picture-taking sequence. Remember that only one image-capture sequence is
needed because there is no way to change the focus on this camera, and no
focus stacking can be accomplished.

Creating the actual pano image was discussed in a previous section. All
you need to do is to put the camera’s SD card into the computer hosting the
Panoweaver program and drag and drop the images into the application. It is
very easy, and the results are well worth the effort. The only disadvantage to
this whole process is that you will need a printer capable of handling large
formats if you wish to print the final pano, and that is an expensive purchase.

This last test completes the point-and-shoot portion of the gigapixel
camera project. At this point, I will go on to discuss the DSLR pano project.

DSLR Camera
I used a Canon 70D DSLR as the camera for this portion of this chapter’s
project. It is an excellent camera that, when used with an appropriate lens, is
fully capable of taking pictures of excellent quality. I also used a Tamron 24
to 70-mm f/2.8 zoom lens with the camera because it is has a good focal-
length range for the pano, and its optical quality is outstanding. The other
point of using this lens is that it is not too heavy of a lens, which minimizes
any overloading of the pan-and-tilt servo-mechanism. Figure 10-28 shows
the 70D with the Tamron lens attached.



Figure 10-28  Canon 70D camera with a Tamron 24- to 70-mm lens.

DSLR Pan-and-Tilt Servomechanism

The DSLR camera and lens assembly is far too heavy to be used with the
same pan-and-tilt servo assembly employed in the point-and-shoot camera
project. Instead, I used a heavy-duty unit purchased from ServoCity.com ,
which is shown in Figure 10-29 .

http://servocity.com/


Figure 10-29  Heavy-duty DSLR pan-and-tilt servo mechanism.

The servos used in this mechanism are Hitec Model HS-785HBs, which
are 3.5-full-turn winch-style servos. These servos rotate 3.5 turns for a total
1260° range of motion compared with the typical servo range of 120 or 180°.
Winch servos are so named because they are used in R/C sailboats to
remotely raise and lower model sails. For this pan-and-tilt configuration, the
servo turns a small gear, which is, in turn, connected to a much larger gear,
as you can readily see in the figure. This arrangement allows the servo to
reduce its extended range of motion to match the range appropriate for the
pan-and-tilt operation. In addition, the gear ratio provides a significant
increase in available torque to easily handle the heavy DSLR-lens
combination.



The DSLR is easily mounted to the integral platform on the pan-and-tilt
mechanism using a standard ¼-20 tripod mounting screw, which is widely
available at camera shops, or you can use a shallow head ¼-20 machine
screw, if available. I also added a tripod shoe plate to the bottom of the
mechanism, which allowed me to use my Vanguard tripod, just as I did with
the point-and-shoot arrangement. Figure 10-30 shows the DSLR mounted on
the pan-and-tilt mechanism.

Figure 10-30  DSLR on the pan-and-tilt mechanism mounting plate.

The next part of this chapter introduces the gphoto2 software package that
I used to control image capture for the DSLR.

gphoto2

Unlike the point-and-shoot camera, the DSLR used for this part of the pano
project is controlled using digital command sequences sent through the USB
cable from the RasPi. A software package named gphoto2 accomplishes this



in a very efficient manner and is able to control a substantial number of the
DSLR functions using programmed command sequences. Of course, I will
still be using a Python program to control the pan-and-tilt servos because
that part of the project is not accommodated by the gphoto2 software. In fact,
as you will shortly see, the actual gphoto2 command sequences, which are
needed to create the pano, are embedded into the Python program. But first I
need to show you how to install and configure the gphoto2 software package.

The RasPi must be connected to the Internet for this procedure to work.
Follow these steps to install and configure the gphoto2 software:
1. sudo apt-get update

2. sudo wget raw.github.com/gonzalo/gphoto2-
updater/master/gphoto2-updater.sh

3. sudo chmod 755 gphoto2-updater.sh

4. sudo ./gphoto2-updater.sh (Be patient; this step takes about 35
minutes on a RasPi 2 and 1 hour and 7 minutes on a RasPi B+.)

You will next need to perform the following steps to ensure that the
camera mounts properly:
1. sudo rm /usr/share/dbus-

1/services/org.gtk.Private.GPhoto2VolumeMonitorservice

2. sudo rm /usr/share/gvfs/mounts/gphoto2.mount

3. sudo rm /usr/share/gvfs/remote-volume-
monitors/gphoto2.monitor

4. sudo rm /usr/lib/gvfs/gvfs-gphoto2-volume-monitor

Reboot after completing the preceding steps:

Initial Test of gphoto2 with DSLR

You will need to connect the DSLR to the RasPi using an appropriate USB
cable. The Canon 70D uses a regular mini-A socket, as was shown in Figure
10-18 . Enter the following command once the camera and RasPi are
connected and both are turned on:



The camera should proceed to take a picture and subsequently download
it into the RasPi. The downloaded picture will be in the same directory from
which the preceding command was issued. The downloaded picture also
would be named Capt0000.jpg , assuming that the camera’s default setting
was to take jpeg images.

Having successfully taken a picture and downloaded it into the RasPi
verifies that gphoto2 is working properly and ready for the next steps in this
project. These next steps are to create and run a program that will manually
control the pan-and-tilt servos and then take and download a picture.

Manual Control Program

This manual control program is a modified version of the PnS_Camera1.py
program I used with the point-and-shoot camera. However, that program
required the CHDK firmware be installed on the camera, which is not the
case for the DSLR camera. The gphoto2 software takes care of all the low-
level interactions between the camera and the RasPi control program, which
makes the camera interface quite easy to program. I named the program
DSLR_Camera.py and list it next. It is also available on this book’s companion
website. You also should note that I added RasPi pin 18 as an input in this
code, but it is not used until the next version, which automates the process.







As with all the other similar programs, you must be in X Windows to run
this program. Also, be sure that you are in the same directory that contains
the Adafruit PWM/Servo library.

I used the same PWM/Servo HAT board that was used with the point-and-
shoot system and connected the pan servo to channel 0 and the tilt servo to
channel 1. You must also ensure that the 5-V supply connected to the HAT
board is capable of providing a minimum of 2 A (peak) because these servos
use more current than the point-and-shoot servos.

Be sure that you are in the proper directory, and then enter the following
to run this program:

Figure 10-31 shows the resulting GUI display after starting this program.



Figure 10-31  DSLR_Camera GUI.

I clicked the button and repositioned the servo slider controls to confirm
that the camera and servos responded as they should.

Image-Processing Sequence

All image captures are stored on the RasPi SD card instead of the camera,
which I believe will simplify the postprocessing workflow. You can easily
change this feature by making the following edit to the program: change

to



All the images will now be stored on the camera once you change the
capture command. Also notice that the images are all automatically named
using the date and time to the second when the picture was taken. This
ensures that all the image files are unique, and you should be readily able to
determine the sequence of when they were taken.

The DLSR focus cannot be programmed using gphoto2 for image capture.
It is possible to use gphoto2 to change the focus while in the live view mode,
which is the situation where the camera mirror is locked-up and the camera’s
viewfinder cannot be consequently used. Unfortunately, the mirror must be
unlocked and the camera in a non–live view mode in order to take a picture.
This means that you will need to take a series of pictures using different
focus points to have the input images to do both focus stacking and stitching.

I would suggest that you start the whole process by manually focusing at
a nearby point and taking an automated panning sequence. Next, readjust the
focus point to a middle area between close-by and distant objects and repeat
the automated panning sequence. Finally, focus at infinity, and do one more
automated panning sequence. You will need to review all the images and
select the ones that first will be focus stacked and then stitch all the
processed stacked images together. All this means is that a total of 12 images
will be processed, three each for stacking and then four for stitching,
assuming that there are four pan positions. This is not too much work
considering how easy it is to use the stack and stitch applications.

I will next discuss how I mounted the RasPi along with the activation
push button to the heavy-duty pan-and-tilt mechanism.

Mounting the RasPi to the Pan-and-Tilt Mechanism

I mounted the RasPi and the activation push button on a piece of clear
Lexan, which is, in turn, mounted on the pan-and-tilt mechanism. Figure 10-
32 is a sketch of this mounting plate. You can use material other than Lexan
if that is what you have available. Just be sure that it is sufficiently sturdy to
support the RasPi and any battery packs hanging from it.



Figure 10-32  RasPi mounting plate.

The push button is also mounted on an L-shaped piece of Lexan, as was
the case for the point-and-shoot system. Figure 10-26 is a sketch of the push-
button L-shaped mounting bracket. Fortunately, the rotating base leg is
approximately 2.5 inches above the mounting base, which allows plenty of



room for the RasPi and push button to be positioned without interfering with
leg motion.

The RasPi is attached to the mounting plate with a simple L-shaped
bracket, as shown in Figure 10-33 . The clear plastic case I used has a slot in
the long wall opposite the wall with the HDMI cutout, which is a convenient
feature to hold a small 4-40 machine screw.

Figure 10-33  RasPi mounting bracket.

Figure 10-34 shows the complete assembly with camera, RasPi, and
supporting battery packs mounted on my Vanguard tripod.





Figure 10-34  Complete DSLR assembly mounted on tripod.

This whole assembly is heavy, and I would caution anyone against trying
to carry all of it as a single package. The assembly also seems to have a
stable center of gravity (CG), meaning that it should not tip over once set up
on a firm tripod, which is, in turn, set on level ground.

The camera, when secured to the pan-and-tilt mounting plate, will swing
down unless the tilt servo is powered on. However, I did not want to
continually power this servo because the camera and lens combination puts a
considerable bending load on the servo. I found that it started to get warm if
I left it powered on with the camera in place. Because there is no need for an
automated tilt operation, I configured a simple stop plate, which I made out
of a piece of Lexan. Figure 10-35 is a sketch of this stop plate.



Figure 10-35  Lexan stop plate.

The plate was held in place by a ¼-20 machine screw secured with a wing
nut. The machine screw went through one of the camera mounting plate
slots, as you can see in Figure 10-36 .



Figure 10-36  Stop plate attached to the camera mounting plate.

This arrangement may not be elegant, but it is effective, and it literally
saves the tilt servo from overheating and perhaps failing.

Automating the DSLR Gigapixel Camera System

At this point, I will show you the automation program, which functions
almost identically to the point-and-shoot version. The only difference is that
the gphoto2 application is used to capture an image instead of a digital pulse
from one of the RasPi GPIO pins. There are no GUI features in this program,
but there is a check for the user pressing the activation button, which is
identical in function to the one used for the point-and-shoot system. The
program is named DSLR_Automate.py and is available on the companion
website.









I did find that when I initially ran the program, the RasPi didn’t connect
or discover the DSLR. This is simply remedied by turning the camera off and
then on again. My research on this problem seems to indicate that it is a
known issue with the gphoto2 USB implementation. Other than that
problem, everything went smoothly with the first test of this program. I also
kept the RasPi connected in a workstation configuration because I knew that



I had to adjust the servo angle parameters to match the pan requirements for
that servo. The numbers in the program listing reflect the correct angles for
the initial and subsequent pan positions. Figure 10-37 is a screenshot of the
RasPi terminal display for a series of pictures.

Figure 10-37  Terminal display after several pan operations completed.

If you examine the date/time stamp on the image files, you should notice
that it takes about 16 seconds to pan, take a picture, download it to the RasPi,
and finally delete the image from the camera itself. You should plan on
taking about a minute to progress through a single panning operation.

It is now time to configure the autostart after confirming that the pan
operation works properly and the camera takes the pictures as commanded. I



will follow the exact same procedure I laid out for the point-and-shoot
system.

Configure Program for an Autostart

Just follow the exact procedure I described in the point-and-shoot section,
except that the following line should be put in the profile file:

You should be all ready for the field once you have completed the
changes and rebooted the RasPi.

I have finally included Figure 10-38 , which is a pano image showing the
impressive capabilities of this system after all the individual images have
been stacked and stitched. The book’s monochrome presentation really
doesn’t do it justice, which is why I have asked that a full-color image be put
in this book’s companion website. Please take a look at it to get an
appreciation of this gigapixel camera system.

Figure 10-38  Sample stacked and stitched pano image.



Summary
This chapter’s project demonstrated how to build two variations of a camera
system that is capable of creating a panoramic (pano) image composed of
multiple images. One variation was designed for a point-and-shoot type of
camera and the other for a digital single-lens reflex (DSLR) camera. The
beginning portions of this chapter concerned the stack and stitch
postprocessing software that is used to create the ultimate pano. I used
specialty software in lieu of a do-all application such as Photoshop because I
found that the special-purpose applications were both easier to use and more
efficient than the general-purpose application.

The next sections concerned how to assemble and program the point-and-
shoot system. I noted that my design required the use of a Canon camera
because CHDK firmware needed to be installed in the camera to enable
remote shutter activation. The RasPi was used to control the pan and image-
capture operations to generate the required number of images for the pano
generation. I demonstrated both manual control and fully automated
programs for this system.

The concluding chapter sections basically repeating the same point-and-
shoot discussions except that they were changed to handle the DSLR camera
and its requirements. The two biggest changes were use of a very heavy-duty
pan-and-tilt mechanism capable of moving the DSLR and use of the gphoto2
application to control the camera image capture. I demonstrated the use of
both manual and fully automated control programs for this DSLR system, as
I had done for the point-and-shoot system.



CHAPTER 11

Nighttime Garden Monitor

IN THIS CHAPTER, I WILL SHOW YOU how to build a video surveillance system
capable of operating in the dark. I will show you a solution to a common
aggravating situation that many home gardeners have encountered, namely,
nighttime marauders. It is unsettling to look at the remains of your well-kept
garden after some critter has ravaged it during the evening hours. Use of this
system will enable you to literally see in the dark and allow you to identify
the miscreants and take appropriate actions to prevent any further nighttime
raids. Let’s begin with the device that allows this wondrous ability to see in
the dark.

Pi Noir Camera
The Pi Noir camera is sensitive to nonvisible light, which in this case is light
in the infrared (IR) spectrum. It turns out that the Pi Noir camera is just a
regular RasPi camera with its IR-blocking filter removed. This means that
the Noir camera can operate in regular lighting conditions, but it could have
artifacts introduced into a daytime image because of the normally filtered IR
light waves being displayed. This situation is not a concern in this project
because the Pi Noir camera will be operated only at night with an IR
illuminator module as a light source.

Chapter 11 Parts List



Figure 11-1 shows the Pi Noir camera mounted in a holder specifically
designed for it. The stand itself is mounted on a magnet, which I used to
facilitate quick repositioning of the camera.



Figure 11-1  Pi Noir camera mounted on a stand.

Table 11-1 lists some key specifications for the Pi Noir camera.
TABLE 11-1 Key Technical Pi Noir Camera Specifications



Installing the Camera
The following installation and configuration steps are based on the steps
provided by the Raspberry Foundation.

NOTE
The camera can be easily damaged by static electricity. Before removing
the camera from its antistatic bag, ensure that you have discharged any
static electricity buildup by touching a grounded object such as a water
faucet.

Figure 11-2 is a close-up of the camera serial interface (CSI) flex socket,
which is located directly behind the RJ45 Ethernet connector.



Figure 11-2  CSI connector.



You first need to gently pull up on the black plastic clamp, which is
designed to hold the flex cable in place. Next, insert the camera’s flex cable
with the silver finger connectors pointing away from the Ethernet connector.
Finally, gently push down on the black plastic clamp to secure the cable.
Ensure that the cable is aligned properly and not skewed or the camera will
not function. Figure 11-3 shows a properly inserted and secured cable for
your reference.

The camera may come with a small piece of translucent blue plastic film
covering the lens. This is only present to protect the lens and needs to be
removed by gently peeling it off.

This camera must be set up with appropriate drivers before it can be used,
which is the topic of the next section.

Installing and Configuring the Camera Driver
Software
It is relatively easy to set up the basic software that will enable the camera to
be used with the RasPi. You will need to have the RasPi connected to the
Internet to be successful with this procedure. Please follow these four steps
in the order presented:
1. sudo apt-get update

2. sudo apt-get upgrade (Be patient; this could take a long time.)

3. sudo raspi-config (Navigate to Camera and select Enable.)

4. Select Finish, and reboot.

The next section describes some basic camera operation commands that
will allow you to test the camera and confirm that it is operating properly.



Figure 11-3  Properly seated flex cable.



Initial Camera Tests

The Pi camera software supports two primary operational modes: still
photographs or videos. The two applications implementing these modes are
 raspistill. Captures still images.

 raspivid. Captures videos in one of several available video formats.

Both these applications have options that you can use to configure the
output to suit your requirements. To view the possible options for raspivid or
raspistill, enter the following:

I summarize the key options next with some examples:
 -o or --output specifies the output filename.

 -t or --timeout specifies the amount of time that the preview will be
displayed in milliseconds. The default is 5000, or 5 seconds.

 -d or --demo runs a demo mode, which will cycle through all the available
image effects.

Example Commands

 Capture an image in jpeg format:

 Capture a 5-second video in h264 format:

 Capture a 30-second video in h264 format:

 Capture a 20-second video in h264 format while in the demo mode (type q
to exit the demo mode):



You will next need to download an application to convert the h264 format
to mp4, which, in turn, can be viewed using the mplayer application. Follow
these next steps to download and install the converter and viewer
applications:
 sudo apt-get update

 sudo apt-get install gpac

 sudo apt-get install mplayer

Enter the following commands to test the Pi Noir camera using X
Windows:
 startx

 Open a lxTerminal window and type in

 Use the File Manager application to find and open the test image with the
image application.

 Examine the image to confirm that the Pi Noir still capture operates
properly. Recall that a daytime image may contain IR artifacts.

 Next, enter this command in the terminal window to check the video
capability:

 Use the MP4Box app part of the gpac package to convert the video to mp4
format.

 Use the mplayer application to view the video.

It is time to work on the physical monitoring system now that the basic
video software has been installed and confirmed to function properly.



Physical Monitoring System
The first step in any reasonable system design is to articulate the
requirements that the system must meet or fulfill to be deemed acceptable.
After some consideration, I set the following system requirements for this
nighttime monitoring system:
 Video surveillance using an infrared illuminator

 Video recording automatically initiated

 Survey a 10 × 10 ft area

 Weather resistant

 Battery operated (temporary installation)

 Raspberry Pi used as the primary controller

Figure 11-4 shows a conceptual diagram for this monitoring system with
all its main components.

Figure 11-4  Conceptual system diagram.



The following sections explain each of the main system components.

Laser Trip Assembly

I also elected to use the Ramsey Electronics’ Laser Trip Sensor Kit, Model
LTS1, to act as the intruder detector. This kit is relatively inexpensive and
includes both a laser pen (pointer) and a light detector. The detector requires
assembly, and Figure 11-5 shows both items mounted on a small piece of 2.5
× 6 inch Lexan.





Figure 11-5  Laser pen and light-detector module.

There are two assemblies, not counting the 12-V power supply, that make
up this sensor module. The first is the red laser pointer that acts as the light
source, and the second is the light sensor that consists of a phototransistor
with some associated analog signal-processing circuitry. The laser pointer is
a very common low-power device that is typically battery powered. In this
case, there are no batteries because it is powered by 4.3 V supplied by the
detector board. The laser pointer’s power is delivered via a pair of small
alligator clips, visible in the figure.

The light detector’s sensor is a phototransistor, which is normally encased
in an ambient light-blocking tube at the front of the assembly, which I
removed in Figure 11-5 . The phototransistor, which looks like a normal
LED, is really a transistor with only the collector and emitter leads
externally connected. It will transition into a conducting state when the laser
light strikes the base-emitter region. The black tube light shield, which I
made out of black duct tape, helps to prevent any false triggers when in
place.

The module also has a relay with contacts that are normally closed when
light is not being detected and will open when the laser light strikes the
phototransistor. This will mean that the Python program will need to detect a
low-to-high transition. I explain this in more detail in the software section.
There is also a red LED on the detector board that will illuminate when the
relay is energized. This feature is very handy when you are trying to align
the laser beam with the detector.

IR Illuminator

Another key component is the IR illuminator, which is required in order for
the Pi Noir camera to capture any video in the darkness. The illuminator I
used was a very inexpensive unit that I purchased online. It is powered by 12
V and has four IR LEDs installed in it, as may be seen in Figure 11-6 .



Figure 11-6  IR illuminator.

This unit provides ample IR illumination for the target 10 × 10 plot that I
set forth in the systems requirement. The illuminator does need an external
relay circuit to provide an effective interface between the RasPi’s 3.3-V
GPIO output and the 12 V needed for the illuminator module. Figure 11-7 is
a schematic of this simple circuit, which easily enables this interface.



Figure 11-7  Relay interface schematic.

Note that I happened to have a 5-V reed relay in my collection of surplus
parts, which made the circuit quite simple to design and build. You should be
able to find a similar relay online, but if not, you certainly could use an opto-
isolator chip to accomplish the same function as the relay.

Pi Noir Camera

This was introduced at the start of this chapter, and its function will not
be further discussed.

12- and 5-V Power Supplies

I used the same external cell phone battery supply that I used in Chapter 10
’s project to power the RasPi. It will provide sufficient power for at least one
evening’s monitoring, if not more.

A sealed lead-acid battery, as shown in Figure 11-8 , provided the 12 V
for the illuminator. This powers both the IR illuminator and the laser trip
assembly, which includes both the laser pointer and the photodetector
module.



Figure 11-8  12-V sealed lead-acid battery.

This battery is rated at over 9000 mAh, which is more than adequate to
last for several monitoring sessions before being depleted. You certainly
could use two alternating-current (AC) main-powered supplies if you do not
want to constantly be recharging the system batteries. This would necessitate
running an AC extension cord to wherever the system is located, but you are
free of the battery-charging requirement, especially if you wanted to make it
a permanent installation instead of a temporary setup.

Mounting All the System Components
I designed a simple mounting assembly that has three acrylic mounting
plates attached to a short piece of 2 × 4, which, in turn, is attached to a
wooden mounting plate. Figure 11-9 is a dimensioned drawing of this
mounting assembly.



Figure 11-9  Mounting assembly drawing.

A complete mounting assembly without any attached components is
shown in Figure 11-10 .





Figure 11-10  Complete mounting assembly.

The three mounting plates from top to bottom are designed to hold the IR
illuminator, Pi Noir camera, and RasPi–laser trip assembly, respectively.
Figure 11-11 shows all the components mounted in the mounting assembly.
Notice that the 12-V battery is simply placed on the bottom wooden support
plate. It is fairly heavy and helps stabilize the overall assembly.





Figure 11-11  Mounting assembly with all system components attached.

I also sized the main 2 × 4 support to allow for a top wooden cover such
that sheet Plexiglas or Lexan can be used to enclose the entire assembly to
help weatherproof the system. Figure 11-12 shows this weatherproofed
system.

Figure 11-12  Weatherproofed system enclosure.



Setting Up the Trip Beam
I elected to simply set up the laser beam such that it was perpendicular to the
likely path that any nocturnal animal would take to enter the monitored area.
I recognized that it would not necessarily capture all entries, but for the sake
of simplicity, I chose this limited approach. You could try to use multiple
mirrors to extend the beam around the plot’s perimeter, but I found this to be
very tricky to set up, and the laser beam became much weaker with each
reflection.

Figure 11-13 shows how the laser beam was set up in my indoor study
area using one 16- × 16-inch mirror to reflect the beam back to the
photodetector.

Figure 11-13  Test setup.



I purchased an inexpensive 16- × 16-inch mirror that has a ½-inch-thick
plastic frame that neatly fits into ½-inch channels that are cut into vertical
wood supports. Figure 11-14 is a build diagram for this mirror holder, and
Figure 11-15 shows the complete mirror assembly.



Figure 11-14  Mirror holder.



Note that I applied polyurethane to all the wood pieces in the assembly to
help protect it from the weather because it may be placed outdoors.

This last assembly completes the physical build, which means that it’s
time for the software installation and configuration.



Figure 11-15  Complete mirror assembly.

Software Installation and Configuration
You should first complete the Pi Noir camera driver installation and run the
initial tests, as I discussed in an earlier section. It is time to enter the control
program, once you are certain that the camera functions as expected. I
created the control program using Python because this language makes any
modifications quite easy to accomplish. The program requirements are fairly
simple and are listed next:
 Autostart when the RasPi is powered on.

 Continuously check for a relay activation from the photodetector module.

 Turn on the IR illuminator once the relay is activated.

 Start recording video for 60 seconds after illuminator is turned on.

 Ensure that videos are uniquely named.

 After 60 seconds has elapsed, turn the IR illuminator off.

 Reset and wait for the next activation.

The complete program is named nv1.py and is listed next. It is also
available from this book’s companion website. I have provided ample
comments within the program to help you understand how it functions.





The autostart feature is done in exactly the same manner as described in
Chapter 10 . The next section details how to set up the autostart.



Configure the Program for an Autostart

You will first need to make the following changes to the inittab file:
 sudo nano /etc/inittab

 Comment out the following line:

 Note that the line may appear as follows in more recent versions of the
Wheezy distro:

 Add this line after the line just commented out:

 Save the file, and exit the nano editor.

Next, edit the profile file.
 sudo nano /etc/profile

 Add the following line to the file:

 Save the file, and exit the nano editor.

You should be ready to test the autostart configuration simply by
powering on the RasPi and checking whether a video is recorded when the
laser beam is interrupted. The easiest way to see if the video is present is to
SSH into the RasPi and check whether a video named vid1.h264 is present in
the home directory /home/pi. If so, everything worked as planned, and you
are ready to deploy this system. Just note that each time the system is



rebooted, any existing videos will be automatically written over, starting
with vid1.h264.

Sample from a Capture Video
Figure 11-16 is a screen capture from a capture video in which I used a giant
fake spider as the intruder in the monitored space. Note that there is
absolutely no visible illumination source used in this video, just the IR
illuminator.

Figure 11-16  Sample screenshot from a capture video.

I created the screenshot by first transferring all the captured videos from
the RasPi home directory to a Windows computer. I next used a free
application named VLC from www.videolan.org that played one of the h264
video files from which I generated the screenshot.

This last section completes this chapter’s project. On a final note, it
should be readily apparent that this system could easily be incorporated into

http://www.videolan.org/


a regular security surveillance system with some minor modifications to the
control program. The major change would be the need to have the RasPi
send an alert signal on intruder detection. This could be done in different
ways, including changing the state of a GPIO pin or sending a text message
via WiFi.

Summary
This chapter was focused on building a nighttime surveillance system. Its
purpose was to detect and make a video recording of any nocturnal animal
visitor to a monitored garden plot. Of course, the system may be easily
extended to any nighttime surveillance application, including home and
business security.

The Pi Noir camera was the primary means to capture the video in the
subject area. The Pi Noir needs IR light waves to illuminate the area to be
videoed. A compact IR illuminator provided the IR, which was fully capable
of illuminating the target area. A laser trip assembly was used to signal the
RasPi to commence video capture when an intruder interrupted the laser
beam covering an approach path to the monitored site. A uniquely identified
video recording was then started and stored on the RasPi’s SD card, which
could be viewed at a later date. I also discussed how to install a viewer
application that would display the h264 encoded video.
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