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FOREWORD 

Since the invention of the transistor and later on the integrated circuit, 
microelectronics has proven to be crucial as driver for innovation and welfare in our 
society. Many applications would not exist without integrated electronics. The 
computer, the digital media revolution (e.g. CD, DVD, mp3), the wireless 
communications, the internet, etc. would not exist without the relentless scaling 
progress and resulting performance improvement and cost reduction realized by 
microelectronics. In the near future this progress will continue even further with 
electronics contributing to reducing our energy consumption, enabling ubiquitous 
wireless monitoring and data streaming, invading daily objects networked in the 
internet of things, and even entering the human body. 

In most of these applications the electronic systems interface with our physical world. 
Although the strength of electronics lies in the power of the digital compute engines 
that perform the signal and data processing, analog and mixed-signal circuits (or at 
higher frequencies RF circuits) are needed in the interfacing with the real-world 
signals. The current sub-100nm CMOS technologies even enable the integration of 
entire systems, including both the digital core and the analog interfaces, onto a single 
die (System on Chip) or into a single package (System in Package), offering even 
further cost and performance advantages. The inescapable use of analog circuits 
however poses some serious challenges. First of all, since the information is 
represented by continuous-valued signals, analog circuits are intrinsically vulnerable 
to all kinds of “interferences”, be it noise, process variability, crosstalk, etc. Secondly, 
the functionality and performance of analog circuits are a result of the complex 
interplay of many devices, the way how they are interconnected and their sizing and 
biasing. This makes the understanding of analog circuits and how they work quite 
complicated, and requires years from students and designers to develop the necessary 
insight and expertise. To assist them in this process, they mainly utilize the numerical 
circuit simulator SPICE (or any of its commercial implementations), which is indeed 
a great tool for design validation. 

Symbolic analysis techniques offer a complementary way to analyze analog 
integrated circuits. Since the results of symbolic analysis are analytic equations that 
explicitly describe the functionality (e.g. transfer function, impedance, pole/zero...) of 
the circuit as a symbolic expression of the design variables, it lends itself more for 
designers to gain insight into the behavior of the circuit. Questions like “how does the 
circuit actually work?”, “at what node is the dominant pole located?”, “what is the 
relation between the bias current and the gain-bandwidth?”, “what is the impact of 
device mismatch on the PSRR of this circuit”, “which transistor(s) actually is the 
dominant noise source?”, “which nonlinearity is creating the most third-order 
distortion?” etc. can be answered by means of symbolic analysis. Originally 
hampered by the exponential complexity of the symbolic analysis problem, 
approximation techniques that typically exploit designer intent or common design 
practice had to be developed to make the results interpretable for humans. Symbolic 
expressions are however also useful in many other applications that require the 
repeated evaluation of circuit characteristics for a wide range of parameter values, 
such as for example encountered in circuit optimization or in yield analysis. Not 
requiring interpretation by humans, a wide range of efficient algorithmic techniques 



iv 

has been developed in the past years to overcome the complexity issue and to make 
symbolic analysis tractable for circuits of practical size. 

This edited book provides an overview of the current state of the art in symbolic 
analysis. The editors have compiled chapters from the key contributors to the field of 
symbolic analysis. These chapters neatly describe the latest results in terms of 
algorithms as well as applications of symbolic analysis techniques for analog circuits. 
Recent algorithmic improvements highlight the potential of today’s symbolic analysis 
methods, both in terms of circuit complexity and of circuit characteristics that can be 
analyzed. The second part of the book presents the wide span of applications that 
utilize symbolic analysis, ranging from behavioral and performance modeling over 
design centering and fault diagnosis to automated design and system architectural 
exploration. These chapters clearly demonstrate the potential of symbolic analysis for 
analog circuits, in complement to or in combination with numerical simulation 
techniques. 

This combination of state of the art information about algorithms and applications 
makes this book highly recommended reading for everyone interested in using symbolic 
analysis towards electronic circuit design, be it to improve his/her insight in circuits or 
for any of the other applications. The many circuit examples used throughout the whole 
book nicely illustrate the capabilities, and both circuit designers and CAD professionals 
will benefit from this information. 

Please enjoy reading this book. 

Prof. Georges G.E. Gielen 

Katholieke Universiteit Leuven 
Belgium 
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PREFACE 

Symbolic analyzers have the potential to offer knowledge to sophomores as well as 
practitioners of analog circuit design. Actually, they are an essential complement to 
numerical simulators, since they provide insight into circuit behavior that numerical 
analyzers do not.  

Symbolic analysis of electronic circuits addresses the generation of symbolic 
expressions for the parameters that describe the performance of linear and nonlinear 
circuits in the three domains: DC, AC and time; some or all the circuit parameters can be 
kept as symbols. In particular, in AC analysis these expressions are generated as ratios 
of polynomials in the Laplace variable s, with, as coefficients, the sum of products of 
small signal elements of the design vector. Symbolic expressions for characteristics, 
such as voltage and current gain, input and output impedance etc. can be easily obtained. 
Furthermore, it is easy to acquire network characteristics such as sensitivity and noise. 

Due to the fact that these expressions remain valid during the change of component 
values (as long as models remain valid), designers can not only have an insight into 
the behavior of the network but also they can use the expressions to optimize the 
circuit’s performances. 

The first generation of symbolic analyzers was proposed in the late 60’s. Since then, 
these analyzers were promptly recognized as crucial tools to automatically generate 
the behavioral model of analog integrated circuits. Actually, many techniques and 
programs have been presented for the symbolic analysis of linear and even nonlinear 
lumped time invariant circuits. These proposed techniques can be classified into four 
major categories: 

• Matrix manipulation methods, 

• Graph based approaches: 

▪ Tree enumeration methods,  

▪ (Signal) flow-graphs, 

• Parameter extraction methods, 

• Interpolation approaches. 

This book presents details and exemplifies such famous techniques. This makes the 
book a good resource for circuit analysis. Thus, it is intended to students and 
researchers as well as for industry designers. 

For large (and medium) size circuits, computed analytical expressions become too 
large and their number of terms is so important that its manipulation and 
interpretation become impossible. The book puts also the stress on this problem and 
highlights some techniques adapted to approximate symbolic description of circuit 
characteristics. 

Moreover, industrial current R&D topics, recent developments and future trends in 
the field of symbolic analysis are highlighted. 

The outline of the book is as follows: 
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Chapter 1, an overview chapter, presents a survey of the state-of the art of symbolic 
analysis techniques for the design and the verification of analog integrated circuits. It 
highlights major developments in this field over the past several years and presents 
the outstanding problems for future research. 

Chapter 2 gives a description of the Modified Nodal Analysis method. Analysis 
procedures of circuits containing classical and modern circuit elements are described. 
These methods are explained clearly in a number of examples with a view to the 
matrix form which is appropriate for computer implementation.  

Chapter 3 describes the modeling of nullor-based active devices from the circuit 
level of abstraction: active devices (voltage-mode, current-mode and mixed-mode 
operations). Several examples using nullor-based models illustrate its use to calculate 
fully-symbolic small-signal characteristics of linear analog circuits as well as on the 
analysis of nonlinear circuits. 

Chapter 4 presents two approaches based on the state equations and on the semi-state 
equations, respectively-for the generation of the transfer functions of MIMO systems 
in symbolic/numeric-symbolic matrix form. The state variable approach is developed 
in two variants: one uses the circuit matrices A,B,C,D, and the other one directly uses 
the state equations in the frequency domain. The method based on semi-state 
equations is developed both in two matrix representation and in a single matrix 
representation. Illustrative examples are given. 

Chapter 5 details and exemplifies the flow-graph approach. It presents used 
approaches for the determination of the modified Coates flow-graphs. Symbolic 
sensitivity using this technique is briefly introduced. 

Chapter 6 introduces the two-graph method. It details the construction of the 
corresponding networks, and presents such analysis both the frequency and time 
domains. The chapter also focuses on partitioning techniques and on active RC-circuit 
synthesis using the two-graph method. 

Chapter 7 details approximation techniques in symbolic circuit analysis. It reviews 
from the first approximation techniques, only intended to improve the interpretability 
of symbolic results, to the most modern approximate symbolic analysis techniques 
based on the approximation of the network equations and the direct generation of the 
approximated symbolic results.  

Chapter 8 deals with the symbolic analysis by the determinant decision diagrams. It 
shows how DDD-based symbolic analysis enables the exact symbolic analysis of 
many analog circuits substantially larger than the previous methods and open new 
applications for symbolic analysis. This chapter also covers approximation methods 
based on DDD-based symbolic analysis. 

Chapter 9 deals with sensitivity computation based on the auxiliary circuits. Three 
procedures, for the sensitivity analysis using auxiliary circuits: the Bykhovsky Perkins 
Cruz’s method, the incremental-circuit approach and the adjoint-circuit approach, are 
presented. Advantages and drawbacks of these procedures are pointed out. Some 
illustrative examples are exposed. 

Chapter 10 focuses on symbolic noise analysis in analog circuits. The symbolic 
noise analysis of linear or linearized analog circuit at the transistor level of 
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abstraction is presented. A brief exposition on the signal path approach into analog 
circuits working in voltage-mode and current-mode is given. Computation of 
symbolic noise parameters of analog circuits is detailed. Two examples are 
introduced to illustrate the potentiality of the approach. 

Chapter 11 treats symbolic pole/zero analysis. It reviews some recently reported 
techniques purposely developed to generate approximate symbolic expressions for 
poles and zeros under given accuracy constraints. 

Chapter 12 focuses on the automatic nonlinear behavioral model generation using 
symbolic circuit analysis. It gives an overview of the symbolic/numerical algorithms for 
extraction of dominant behavior of linear systems, e.g. formulas for poles and zeros as 
well as algorithms for generating behavioral models from nonlinear differential-
algebraic systems of equations. Applications of analysis and modeling of mixed 
electrical and mechanical systems are also presented. 

Chapter 13 deals with nonlinear template-free symbolic performance models of 
design and process variation. It presents a method for generating performance models 
which need no prior specification of an equation template, and that handle strongly 
nonlinear circuits, statistical process variations, and a variety of analysis types. 

Chapter 14 is concerned with symbolic analysis techniques for analog circuit fault 
diagnosis and automatic design. It presents a symbolic approach to the design 
centering problem, and details testability and fault diagnosis of analog integrated 
circuits. In addition, it highlights modeling of power electronic devices based on 
symbolic techniques. 

Chapter 15 presents a brief description of CMOS ring VCOs, where particular 
emphasis for differential delay cell ring VCOs is given. Then, symbolic 
characterizations of the VCOs are detailed. The proposed approach relies on the 
resolution of the differential equations modeling each VCO delay cell. A working 
example for the case for a symmetric load ring VCO is presented, and obtained 
results are compared against those obtained with numerical simulation.  

Chapter 16 describes the use of symbolic methods applied to the automatic 
exploration and characterization of analog and mixed-signal systems topologies and 
architectures. Synthesis techniques based on algorithm-level, using an HDL 
description, and employing, both, a modified signal flow-graph approach and a 
pattern recognition technique are presented. 

Chapter 17 deals with application of symbolic circuit analysis for failure detection 
and optimization of industrial integrated circuits. It demonstrates how symbolic 
analysis and approximation allows analyzing industrial analog building blocks 
systems which were considered to be symbolically unsolvable before. Besides circuit 
failure analysis and modeling, a novel methodology that provides a new application-
specific compensation for achieving highest performance requirements, is given. The 
methodology is demonstrated on several industrial examples. 

Mourad Fakhfakh 
Esteban Tlelo-Cuautle 

Francisco V. Fernandez 
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CHAPTER 1 

Recent Development in Symbolic Analysis: An Overview 

Sheldon X.-D. Tan1,* and Esteban Tlelo-Cuautle2 

1Department of Electrical Engineering, University of California, Riverside, USA and 2Department of 
Electronics, INAOE, MEXICO 

Abstract: This chapter gives an overview of the state of the art on symbolic analysis 
techniques for modeling, synthesis, design and verification of analog integrated circuits. 
Symbolic analysis is to generate analytic expressions for circuit performances in terms of 
circuit component parameters and frequency variables. It complements very well the 
results from numerical analysis for analog circuit designs. Furthermore, symbolic 
analysis is very instrumental for circuit designers to gain insights into the circuit’s 
behavior for generating compact and behavioral models suitable for circuit sizing and 
synthesis. It is important towards the automatic analog synthesis and optimization. The 
chapter presents major developments in this field over the past several years and 
concludes with the outstanding problems for future research. 

Keywords: Symbolic nodal analysis, behavioral modeling, active device, nullor, simplification 
approaches, determinant decision diagram, sparse matrix, model order reduction, moment matching, 
balanced truncation. 

1. Introduction 

Symbolic analysis is a systematic approach to obtaining the knowledge of analog 
building blocks in an analytic form. It is an essential complement to numerical 
simulation. Research on symbolic analysis can be dated back to 19th century. 
Developments in this field gained real momentum in the 1950’s when electric 
computers were introduced and used in circuit analysis [1, 2]. As summarized in [2], 
the first general-purpose circuit analysis programs emerged in early 1960s, where the 
basic concepts behind computer-aided design and analysis of analog circuits to 
formulate network equations by matrix algebraic topological techniques, were 
developed [3]. The major works during that time were based on six formulation 
schemes [1, 2]: nodal, state variable, hybrid, tableau, signal flow, and ports. Among 
them, the nodal analysis method was adopted for the development of SPICE [4], 
which has been proven to be very popular from early 1970s. Methods developed from 
the 1950’s to the 1980’s can be basically categorized as [1, 2, 5, 9]: (1) Tree 
enumeration methods, (2) signal flow graph methods, (3) parameter extraction 
methods, (4) interpolation approaches, and (5) matrix-determinant methods. The 
details of these methods can be found in [1, 5, 6, 10].  

Various methods are proposed to solve the long-standing circuit-size problem. For 
instance, several methods have been accompanied with the development of three kinds 
of procedures to reduce or simplify the final symbolic expression, they are: 
Simplification Before the Generation (SBG), Simplification During Generation (SDG), 
and Simplification After Generation (SAG). Besides, symbolic model order reduction 
techniques become to be another kind of simplification very useful for VLSI circuits 
[7]. Furthermore, the strategies used in modern symbolic analyzers in general come in 
two categories: those based on hierarchical decompositions [11-13], and those based 
 
*Address correspondence to Sheldon X.-D. Tan: Department of Electrical Engineering, University of California, 
Riverside, USA; E-mail: stan@ee.ucr.edu 



4   Design of Analog Circuits through SA Tan and Tlelo-Cuautle 

 

on approximations [14-20]. It is interesting to add a hybrid approach between these 
two, based on hierarchical decomposition but that incorporates approximation 
throughout the hierarchy [21]. 

Hierarchical decompositions generate symbolic expressions in a nested form [11-13]. 
There are several methods such as topological analysis [12], network formulation 
[11], and determinant decision diagram based hierarchical analysis [13]. All these 
methods are based on the sequence-of-expressions concept to obtain transfer 
functions. Approximations discard insignificant terms based on the relative numerical 
magnitude of symbolic parameters and the frequency defined at some nominal design 
points or over some ranges. It can be performed before [22], during [14, 17] and after 
[5, 23] the generation of symbolic terms. 

The importance and increasing interest for symbolic analysis have been 
demonstrated by the success of modern symbolic analyzers such as ASAP [24], 
ISAAC [5], SCAPP [11], SYNAP [25] and RAINIER [17] and recent graph-based 
symbolic analyzer, SCAD3 [26] for analog integrated circuits. The developed 
symbolic analysis techniques have been used for analog circuit synthesis, 
optimization, reliability analysis, noise and distortion analysis, fault diagnosis, and 
design centering [8, 27]. Besides, symbolic approximation combined with 
numerical model order reduction techniques show promises for VLSI interconnects 
compact modeling [7, 28-30].  

From the development of ISAAC [31], many symbolic simulators have been 
developed [8]. In the following, we try to briefly survey some recent developments. 
We remark that symbolic analysis and the related field have a large body of literature. 
Some relevant publications that are not cited in this chapter will not diminish their 
contributions to this field. 

2. Symbolic Analysis for Analog Circuits 

2.1. Behavioral modeling for active devices 

Modeling is a preliminary work or construction that serves as a plan from which a 
final product can be made. Modeling at the transistor level of abstraction in the 
integrated circuit industry has roots in the primitives found in the popular SPICE 
simulator for integrated circuit design [1, 4]. Although the models have evolved to 
increased accuracy, improvements in speed of simulation have been small without 
going to higher levels of abstraction [6]. In the case of analog circuits, the ideal or 
most abstract behavior of the operational amplifier can be modeled by using the 
nullor element, which has shown its usefulness in circuit analysis, synthesis and 
design [32]. The suitability of the nullor to generate symbolic behavioral models is 
demonstrated in [33, 34], so that it can also be used to model any known and new 
active device element [35]. In Chapter 3 is introduced the modeling of active devices 
using nullors. 

Symbolic behavioral modeling also is quite useful to describe voltage-controlled 
oscillators [36], and switched-capacitor Sigma Delta modulators [37]. Modeling in 
time-domain has been introduced in [38] for analog circuits, and up to now, it seems 
to be an open research area in VLSI design [7, 28, 30]. Other modeling approaches 
have been introduced, namely: posynomial model generation [39], and pole-zero 
extraction [40], which are more amenable for amplifier circuit design and 
optimization. 
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2.2. Circuit formulation 

The formulation of the system of equations in analog circuits can be done by applying 
the well-known Modified Nodal Analysis (MNA) [1, 5-10]. However, when the non-
ideal effects can be neglected, the nullor becomes to be a good element to model the 
behavior of the circuit to formulate a compacted system of equations [41]. It can also 
be used to transform voltage-mode to current-mode circuits [42]. Using nullors [43, 
44], one is able to formulate the system of equations by applying only Nodal Analysis 
(NA) [45, 46], because all non-NA-compatible elements can be modeled by nullors to 
be NA-compatible ones [47, 48]. 

2.2.1. Nullor-based symbolic circuit analysis 

The nullor consists of a nullator and a norator [45]. The nullator is an element which 
does not allow current flow through it, and the voltage across its terminals is zero. 
The norator is an element for which an arbitrary voltage can exist across it and 
simultaneously an arbitrary current can flow through it. 

In the NA formulation, the four controlled sources, the active devices, and the 
independent voltage sources are transformed to be NA-compatibles, as shown in [47]. 

Let’s consider the active RC filter shown by Fig. 1, which has been transformed to its 
nullor equivalent circuit. It has 11 nodes. The MNA formulation generates one 
equation for each node plus one equation for each opamp, leading to a system of 
order 15. On the other hand, the NA formulation (using nullors) generates a system of 
order equal to the number of nodes, minus the number of nullors (nullator-norator 
pair), leading to a system of order 6, as shown by (1). The symbolic transfer function 
is given by (2). 

 

 

 

Figure 1: RC filter taken from page 955 of [49]. 
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For the OTA filter shown by Fig. 2, the formulation generates the system given by 
(3), while the symbolic expression is given by (4). 
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Figure 2: OTA filter taken from page 28 of [50]. 
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From the examples given above, it can be appreciated the usefulness of the nullor 
element to model the abstract behavior and to apply the NA formulation for analog 
circuits. For transistor circuits including parasitic, the nullor based NA is developed 
in [34, 45]. 

Other formulation approaches can be found in [1, 2, 5-10]. Currently, new 
formulation methods are oriented to hybrid nonlinear circuits [51], state equations [7, 
52], topological network [53], and to full custom circuits [54], which is oriented to 
compute delay models [28]. 
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2.3. Determinant decision diagrams 

One long-standing problem for symbolic analysis is the so-called circuit size 
problem: the number of symbolic terms generated can grow exponentially with the 
circuit size. This problem has been partially mitigated by a graph-based approach, 
called Determinant Decision Diagram (DDD) [55], where the symbolic terms are 
implicitly represented in a graph. Since the number of nodes in a graph is much 
smaller than the number of paths in a graph, DDDs can represent a huge number of 
symbolic terms from a determinant very efficiently and enable the exact symbolic 
analysis of much large analog circuits than all the existing approaches [7]. It has 
shown many advantages compared to conventional matrix-solution methods [1, 5-9, 
56]. DDD-based symbolic analysis was further improved by logic operation DDD 
construction approach [57], and hierarchical analysis method [13, 58-60], for 
handling very large analog circuits. DDD-based symbolic analysis technique still 
remains the most efficient analysis method. Symbolic model order reduction via 
hierarchical approach, also called general Y-Delta transformation, was developed in 
[7, 59, 60]. 

The DDD method exploits the sparsity of the matrices for large-circuits. For small 
circuits, as the ones described by (1) and (3), it also improves the calculation of 
symbolic expressions. Some methods using other decision diagrams have also been 
proposed. For instance, [54] presents a symbolic timing analysis using algebraic 
decision diagrams (ADDs) to estimate delay. It analyzes delay with simple series-
parallel reduction when possible and uses symbolic matrix techniques to handle 
complex circuit structures. In the time domain, the state variable method is adapted 
for efficient decomposition of large circuits [61]. The DDD method also shows 
advantages in regularity-based hierarchical symbolic analysis for large circuits [62]. 
In Chapter 8, a deeper description of the DDD is presented. 

2.4. Noise and distortion analysis 

Symbolic analysis has demonstrated its usefulness in computing second order effects 
such as noise and distortion. Some research has been presented in the area of 
integrated circuit design, as shown in [63-66]. The nature of the equations in noise 
analysis, allows applying DDDs [55] to improve the calculation of noise expressions. 
In Chapter 10, a symbolic noise analysis method for analog circuits is introduced. 

The distortion analysis can be performed by symbolic analysis as shown by [41], where 
it is presented for bipolar transistor circuits. Up to now, the distortion analysis is 
generally performed for weakly nonlinearities [67], because the difficulty to generate 
analytical expressions in hard-distortion analysis [68]. For example, the application of 
symbolic analysis is suitable for the Dynamic Range optimization of continuous-time 
Gm−C filters [69], and the distortion analysis in single-, two- and three-stage amplifiers 
[70]. Combinations of symbolic methods with numerical analysis for nonlinear circuits 
are presented in [71, 72], also for weakly nonlinear circuits [73]. 
 

2.5. Symbolic approximation approaches 

Approximation is to discard insignificant terms based on the relative numerical 
magnitude of symbolic parameters and the frequency defined at some nominal design 
points or over some ranges. It can be performed before [22], called Simplification 
Before The generation (SBG), during [14], called simplification during generation 
(SDG), and after [5, 23], called Simplification After Generation (SAG), the 
generation of symbolic terms [6]. 



8   Design of Analog Circuits through SA Tan and Tlelo-Cuautle 

 

Approximations after generation methods are the most reliable methods, but they 
require the expansion of product terms before approximations, and thus are limited to 
small analog circuits. Approximation during generation methods are based on the fact 
that product terms can be generated in a non-increasing order by finding the smallest 
weight spanning trees, by using matroid intersection algorithm or by finding the 
shortest paths in a graph. Approximations before generation method, removes circuit 
elements whose contributions to the transfer function containing them are negligible 
before product generation processes, and therefore it reduces the complexity of the 
final expanded expressions. For active transistor level circuits, the three approaches 
SBG, SDG and SAG, are useful to generate reduced analytical expressions [74]. 

The simplification approaches can be applied with the tree enumeration method, 
signal flow graph method, and matrix-determinant methods. Two recent symbolic 
approximation methods based on graph manipulations are presented in [75] and [76]. 
Also, reduction applied before generation has been used recently in [77-80]. In 
Chapter 7, a deeper description of some approximation techniques in symbolic circuit 
analysis is presented. 

2.6. Application to circuit synthesis 

The great variety of active devices used in analog signal processing applications [35], 
makes difficult the development of a canonical approach for circuit modeling and 
synthesis. However, it is possible to perform specific approaches, as the synthesis 
method shown in [81, 82], where it is introduced the generation, modeling, and 
analysis of current conveyor-based gyrators by performing symbolic operations. 

As presented in [33], the current conveyor is an active device having three kinds of 
generations, two kinds of polarity and it can have multiple outputs. All these types or 
topologies for current conveyors can be designed by using four kinds of unity-gain 
cells: voltage and current followers and voltage and current mirrors. These four cells 
can be modeled by using nullors, so that the synthesis of the nullors can lead to 
multiple circuits performing the same behavior. In this manner, the synthesis 
approach presented in [81, 82], employs mirror elements and nullors to expand the 
admittance matrix describing the behavior of the current conveyor-based gyrator 
which is going to be synthesized. At the end of the symbolic expansion of the 
admittance matrix, the generalized impedance converter can be realized with a wide 
range of active elements, mainly by virtue of using mirror elements. This approach 
enhances the preliminary work introduced in [83]. Other applications of symbolic 
analysis to circuit synthesis can be found in [84-87], and in Chapters 6 and 16. 
 

2.7. Miscellaneous applications 

Undoubtedly, symbolic analysis is a powerful method very suitable to help to almost 
all stages and levels in electronic design of integrated circuits and systems. During the 
last decade, many works have been presented as suitable approaches competing with 
the state-of-the-art. This subsection only lists few works. For instance, symbolic 
analysis has been applied in circuit optimization at the layout level of description 
[88]. At circuit level of description, symbolic analysis has been applied in the 
following areas: fault diagnosis [89], design centering [90], and circuit reliability 
[91], where the authors propose the use of binary decision diagrams and algebraic 
decision diagrams for nanoscale circuits. Sensitivity analysis is also an open research 
problem [92], which is very much needed in model order reduction methods [7, 29, 
30, 93], and in general, in the industrial analog IC design [94]. 
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3. Symbolic analysis and model order reduction 

A different approach for building compact models, especially for interconnects 
circuits modeled as RC/RLC circuits, is by means of Model Order Reduction (MOR) 
techniques [28, 95]. MOR is typically regarded as a purely numerical technique. 
However, MOR is actually a special symbolic analysis technique where the frequency 
variable is the only symbol kept. Actually, the increasing interests in parameterized or 
variational model order reduction methods, where one or more circuit parameters are 
kept as variables, make the distinctions between MOR and the traditional symbolic 
analysis to be blurred. Hence, the leveraging of the existing symbolic analysis 
techniques for variational MOR is attracting new research efforts. 

3.1. Krylov subspace based reduction 

The Krylov subspace method or moment-matching based approaches are popular 
MOR methods due to their efficiency and numerical robustness [96-102].  

The Asymptotic Waveform Evaluation (AWE) method [96] first introduces the 
explicit moment-matching technique for fast interconnect modeling (mainly delay 
calculation). But AWE suffers from numerical instability owing to explicit moment-
matching. To mitigate this problem, Krylov subspace based methods were proposed 
[97, 98], where implicit moment-matching is performed in a projection framework. 
Furthermore, to ensure the stability of the simulation process, PRIMA [99] was 
developed based on the Arnoldi process. PRIMA exploits the positive semi-
definiteness of matrices in MNA formulation so that passivity can be easily preserved 
via congruency transformation [103]. More recently, SPRIM [101] further exploits 
the block structure of RLC formulation such that, in addition to passivity, structure 
information inherent to RLC circuits can be also preserved. At the same time, second-
order moment-matching based approaches have been successfully developed, such as 
ENOR [100] to SAPOR [102]. 

3.2. Truncated balanced realization based reduction 

While suitable for reduction of large-scale circuits, these techniques do not 
necessarily generate models as compact as desired [104]. Therefore, another 
approach, Truncated Balanced Realization (TBR), or balanced truncation, which was 
developed in the control community [105-109], has been studied intensively for 
interconnect modeling [110-119]. Standard balanced truncation methods, however, 
are known to be too expensive for direct application to large integrated circuit 
problems, owing to the cubic cost of solving two Lyapunov equations. In addition, it 
takes considerable knowledge of control theory and numerical procedures to 
implement balanced truncation in a stable way [120, 121]. Especially for nonstandard 
systems, additive decompositions and special treatments are causally needed [112, 
122, 123]. To remedy this problem, several gramian approximation methods have 
been proposed [116, 118, 119, 124], where the approximated dominant subspace of a 
gramian can be obtained in a very efficient way. However, no rigorous error bounds 
exist for gramian approximation methods. The Single Gramian Approximation (SGA) 
technique (also called Poor Man’s TBR or PMTBR) [116] was first proposed to 
reduce the system by projecting onto the approximated dominant subspace of the 
controllability gramian. This method works well for RC circuits, which can be 
naturally formulated in a first-order form with matrices both symmetric and positive-
definite. However, for general RLCK (K is the coupling inductance) circuits, which 
models the on-chip global interconnects with fast signals, the first-order formulation 
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could be either symmetric or positive-definite, but not both. Therefore, preserving 
high accuracy and passivity cannot be achieved at the same time. There are several 
methods proposed to mitigate this problem. One of them, SBPOR [117], is based on 
the second-order formulation, which is both symmetric and positive-definite for 
RLCK interconnect circuits. In SBPOR, second-order gramians are defined based on 
a symmetric first-order realization. 

As a result, both second-order gramians, which are also the leading blocks of the 
gramians of first-order realization, become the same and can be simultaneously 
diagonalized by a congruence transformation. As a result, it achieves passivity 
without sacrificing accuracy (it still approximates both controllability and 
observability gramians). Further, a fast SBPOR method, called SOGA, was proposed 
[119]. It computes the approximate gramians of one second-order formation from 
SBPOR to make the algorithm more computationally efficient. 

3.3. Node elimination based reduction 

Another quite different approach to circuit complexity reduction is by means of local 
node elimination and realization [125-129]. These types of methods are more close to 
the traditional hierarchical symbolic analysis. The major advantage of these methods 
over projection-based methods is that the reduction can be done in a local manner and 
no overall solution of the entire circuit is required and reduced models can be easily 
realized using RLCM (M denotes mutual inductance) elements. This idea was first 
explored by selective node elimination for RC circuits [125, 126], where time-
constant analysis is used to select nodes for elimination. Node Reduction For 
Magnetic Coupling Interconnect (RLCM) circuits has recently become an active 
research area. Generalized Y-Delta transformation [128], RLCK circuit crunching 
[127], and branch merging [129] have been developed based on nodal analysis (NA), 
where inductance becomes susceptance in the admittance matrix. Since mutual 
inductance is coupled via branch currents, to perform nodal reduction, an equivalent 
6-susceptance NA model is introduced in [128] to reduce two coupling current 
variables and template matching via geometrical programming is used to realize the 
model order reduced admittances, but its accuracy depends heavily on the selection of 
templates and only 1-port realization has been reported. Meanwhile, RLCK circuit 
crunching and branch merging methods are first-order approximation based on the 
nodal time-constant analysis. A more general node-elimination algorithm based on 
the general s-domain hierarchical graph-based symbolic reduction technique [59, 60, 
104, 130] was proposed, which deal with circuits with large number of ports more 
efficiently than the projection based reduction techniques. But that papers still focus 
on projection based reduction techniques. 
 

3.4. Parameterized and variational reduction 

More order reduction with more variable parameters is important for variational or 
statistical modeling of analog and interconnect circuits due to process variations [131, 
132]. One way for the symbolic model order reduction is to treat all the devices with 
variable parameters as outside devices and their corresponding nodes become new 
terminals for the revised circuits and traditional MOR is performed on the netlist-
changed circuit [29]. However, this approach will lead to more terminals and make 
the sequential reduction process more difficult as existing MOR techniques are not 
efficient for reduction for networks with massive terminals [28]. 

Variational Model Order Reduction (MOR) considering process parameter variations 
is a new emerging field, and some early approaches have been proposed. Existing 
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approaches consist of perturbation-based methods [133], first-order and Gaussian-
only interconnect delay modeling method [134], multi-dimensional moment matching 
based methods [135, 136], interval analysis-based methods [137, 138], and variational 
subspace-based methods [139]. The perturbation based method [133] basically 
applies the perturbation theory to represent the matrix operations in an explicit 
variational form. This approach, however, only works for very small variations. 

Multi-dimensional moment matching methods [135, 136] treat the random variables 
as the complex frequency variables, which results in so-called multi-dimensional 
moments in terms of both random variables and frequency variables. Those methods, 
however, suffer the exponential growth of moment terms with respect to the number 
of variables. The interval-valued MOR method, rather than performing the 
calculations of model order reduction on real-valued scalars, uses intervals on each 
line to approximate each statistical variation range [140]. An interval-valued MOR 
method based on affine arithmetic model was proposed recently [137, 138], where the 
pole and residues in transfer functions become interval-valued. But this interval 
method still suffers over-estimation problems, especially for computation intensive 
numerical operations like projection-based model order reduction algorithms. 

Recently, statistical interconnect analysis methods using stochastic FEM method have 
been proposed for timing analysis [141-143]. As a result, we can convert a statistical 
problem into a deterministic one by using the Galerkin method. The orthogonal 
polynomial method can deal with different kinds of distributions (Gaussian, 
lognormal, uniform, etc.). However, existing approaches may result in very large 
augmented circuit matrices to solve after applying the Galerkin method. This problem 
is partially mitigated by using the explicit moment-matching method to compute 
delay distributions [142].  

Another recently proposed statistical MOR method is based on the variational 
subspace concept (also called varPMTBR method) [139]. The varPMTBR method 
treats other variables as the frequency variable. Unlike multi-dimensional moment 
matching methods, varPMTBR computes Gramians by random sampling in both 
frequency variable and random variable space. The main benefit of this method is that 
the number of samplings in building the variation subspace can be much cheaper than 
that of normal MC samplings. However, this method is far from mature and many 
problems remain to be solved. For instance, how to select the best sampling set to 
minimize the computing costs and reduce the errors in the reduced models still 
remains an open problem. 

4. Outstanding problems for symbolic analysis 

Although symbolic analysis is not a new topic, many outstanding problems are still 
open and needs further research efforts [6-8].  

In the following, we propose some potential problems: 

1. Combine the traditional symbolic analysis techniques with numerical model order 
reduction techniques for variational and statistical compact modeling for interconnect 
and analog circuits considering process variations. 

2. Although with the advent of DDDs, symbolic analysis capability has been 
significantly improved, but modern symbolic analyzers still can’t handle very large 
analog circuits. New approximation techniques and symbolic model order reduction 
techniques are required [6, 7]. 
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3. Compact modeling for general nonlinear circuits (weakly nonlinear and strong 
nonlinear) still remain an open problem. No systematic approaches yet to be proposed 
to solve this problem. Existing approach based on Volterra functions [144, 145] and 
piece-wise linear modeling approaches [72, 146] still can’t compete with mainstream 
table and fitting based models for numerical analysis. Novel innovation in these areas 
is strongly needed. Also, compact modeling is needed in the behavioral modeling of 
new active devices [35, 80]. 

4. The problem of huge symbolic expressions can be solved through the development 
of new SBG, SDG, SAG and symbolic model order reduction. For the SBG 
approaches: Before the formulation of the system of equations, one can explore on the 
use of the nullor to discriminate non-dominant terms [33, 34, 45], to formulate a 
compacted system of equations. Also, one can explore on the application of graph 
approaches to reduce the number of symbolic elements [75, 76]. For the SAG 
approaches, when the system of equations or the graph has been solved by DDD, 
Boolean logic operations or graph methods, the solution can generate very huge 
symbolic expressions, research in this area is still needed, for instance expressions 
have been reduced by applying symbolic comparisons [74]. 
 

Other outstanding problems for further research can be found in the following 
chapters. 
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Abstract: This chapter gives a description of the Modified Nodal Analysis (MNA) 
method. Analysis procedures of circuits containing classical and modern circuit elements 
are described. These methods are explained clearly in a number of examples with a view 
to the matrix form which is appropriate for computer implementation. 

Keywords: Nodal analysis, modified nodal analysis, modeling, admittance matrix, stamp, dead row 
method, V/I method, symbolic analysis, MATLAB, transistor, OpAmp, OTA, CFA, CCII. 

1. Introduction 

The up-to-date programs for the analysis and simulation of electronic circuits work, 
with only minor exceptions, on the basis of Modified Nodal Analysis (MNA) method 
[1]. The MNA is a universal tool for the analysis of circuits with general nonlinear 
elements and with current and voltage sources, with the possibility of computing both 
nodal voltages and currents flowing through selected branches. In view of the focus 
of this book on symbolic analysis, the following text is targeted at the analysis of 
linearized circuits. 

Since it is advisable to know the principle of the classical Nodal Analysis (NA) 
method prior to studying the MNA, this Chapter will first summarize the NA, and 
then its three modifications will be explained. The NA is sufficient to cope with 
circuits employing arbitrary two-terminal devices with well-defined conductances or 
admittances, arbitrary multi-terminal devices having the so-called conductance or 
admittance matrices (such as small-signal linearized transistor models described by y-
parameters, voltage-controlled current sources, etc.), and conventional current 
sources. The remaining circuits with elements lacking the conductance or admittance 
description, such as Operational Amplifiers (OpAmps), should be analyzed via the 
MNA rather than the NA approach.  

The first MNA modification, the so-called method of element stamps [1], is highly 
universal: it can be applied to circuits without any limitation as to the types of circuit 
element, providing values of nodal voltages as well as currents through arbitrary 
branches. Its certain drawback consists in rather a large number of equations which 
must be constructed and solved subsequently. This factor can be limiting for the 
symbolic analysis of circuit functions based on the determinant expansion, and also 
for the hand-and-paper computations. Understanding the idea of this method is useful 
for a better insight into the types of equations the simulation programs based on 
numerical algorithms work with [2-5]. For the hand-and-paper computations, this 
type of MNA is used only rarely, for instance when none of the versions described 
below is allowed due to improper type of circuit elements. A typical example is a 
circuit containing current conveyors. However, when the user has the possibility of 
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utilizing some shareware for symbolic analysis, for example SAPWIN [6] or SNAP 
[7], they will usually prefer it to the tedious computation.  

For the sake of making the symbolic analysis as well as hand-and-paper computations 
more effective, it is useful to reduce the number of circuit equations via a proper 
selection of the unknown variables which need to be obtained by the analysis. This 
concept, specified by the abbreviation CMNA (Compacted MNA) [8], is used, for 
example, in the ISAAC program [9]. The degree of reduction can be different. Two 
approaches will be described in this Chapter. The first one is the so-called method of 
the dead row [10, 11], representing a balanced trade-off between the number of 
circuit equations and the variety of circuit variables being computed. This method is 
suitable preferably for the analysis of circuits employing ideal voltage amplifiers, 
including OpAmps. Another modification, the so-called V/I method [5,10,11], 
provides a minimum number of equations, which can significantly increase the 
computational speed. It is particularly useful for circuits employing ideal OpAmps.  

In this Chapter, the analysis of the behavioral models of circuits employing various 
active elements (voltage- and current-feedback OpAmps, ideal voltage amplifiers, 
OTAs, current conveyors) is discussed. The MNA is explained via more examples in 
a simple manner, utilizing equations organized in a matrix form which is suitable for 
direct implementation in programs for circuit analysis. The methodology described 
can also be extended to cover analyses of circuits employing behavioral models of 
other active elements not mentioned here [12]. 

It is necessary to include here the following note, which concerns all the methods 
described below. The character of circuit quantities that figure in the equations 
depends on the type of the circuit being analyzed, and also on the state in which the 
analyzed circuit should occur. However, the structure of the equations will not depend 
on the above facts. For example, when solving linear resistive circuits without any 
accumulative elements, then voltages and currents can be considered as general 
waveforms, and the circuit elements are described by conductances. For the analysis 
of linear inertial circuits in the harmonic steady state, the admittance description of 
each element has been considered, with voltages and currents represented by complex 
phasors. The most general analysis uses the operator-based circuit model, where the 
circuit quantities are the Laplace transforms of their time-domain waveforms. The 
small-signal analysis of nonlinear circuits is characterized by AC components of the 
waveforms around the DC operating point, also in one of the above forms.  

For simplicity, the circuit quantities will be labeled by capital letters throughout the 
following text, as in the case of DC values, but with the knowledge of the above. 
When an accumulative element appears in the circuit schematics, we label it by its 
operator admittance or impedance, considering the circuit quantities to be the operator 
transforms of their waveforms. 

2. Conventional Nodal Analysis (NA) 

2.1. The principle of the method 

This method is not directly applicable to those circuits which contain sources with 
known voltages and unknown currents. If possible, these sources must be converted 
to equivalent current sources prior to writing the circuit equations. 

In many cases, we analyze a circuit which does not contain any model of the source, 
but some driving signal must be considered in order to compute a transfer function, 
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for example the voltage gain, the input impedance, or another circuit function which 
is a ratio of two circuit quantities. Then, with regard to the equivalent actions of the 
voltage and current sources, we can drive the circuit by the current source, which 
belongs to the “permitted” elements of the NA, even if the voltage source is used in 
the reality.  

The Nodal Analysis is based on the following procedure: 

1.  One of the circuit nodes is set out as the so-called reference node or common 
datum node. The number 0 or the symbol of the ground in computer simulation 
program is assigned to it. This is a reference node for defining the voltages of all 
the remaining nodes. These voltages are called nodal voltages, forming the set of 
unknown variables of the method, and the corresponding nodes are called 
independent nodes. For the sake of the simplicity of the algorithm for 
constructing the equations, it is recommended to direct all the nodal voltages 
towards the reference node.  

Note that the nodal voltages are the only unknown variables even if different circuit 
variables are the ultimate aim of the analysis. Every voltage and current in the circuit 
can be derived as a linear combination of nodal voltages. Whereas the simulation 
program always computes all the unknowns “simultaneously”, even if it is not 
necessary from the user’s point of view, only the required quantities can be computed 
by the hand-and-paper method. 

2.  Kirchhoff’s Current Law (KCL) is applied to each node other than the reference 
node as follows: 

the summation of currents entering the node from external current sources = 
the summation of currents leaving the node through the circuit branches. 

3. The above equations are solved, i.e. the nodal voltages are computed, and then the 
required quantities are calculated from them.  

However, it is important that the right-side currents from Item 2 should be derived, 
with the aid of Ohm’s law, as products of branch admittances/conductances and 
voltages, and the branch voltages as linear combinations of nodal voltages. As a 
result, only admittances/conductances and nodal voltages appear on the right-hand 
sides of the equations. The number of unknowns – nodal voltages – is the same as the 
number of equations, and it is equal to the number of nodes minus one (the reference 
node is not taken into account).  

2.2. Illustrative example 

The NA method will be explained on the example of the circuit from Fig. 1(a). The 
quantity to be analyzed is current Ix2. 

Let us first number the nodes. We select the reference node and assign the number 0 
to it. Note that the reference node can be chosen arbitrarily. It is mostly selected such 
that the computed voltage is directly equal to one of the nodal voltages. Also note that 
the node, at which resistor R3 is connected with the current source, is actually a 
reference node, and thus its number is 0. This fact is distinctly marked in the 
schematics in Figs. 1(a) and (b).  

After that, we point out the nodal voltages V1 and V2 in the schematics, see Fig. 1(a). 
They form a set of two unknowns, and two equations must be constructed for their 
computation, the equations of KCL for nodes 1 and 2, to be concrete. Since we are 
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calculating the current Ix2, only the nodal voltage V2 needs to be computed because 
the current IR3 can directly result from V2, and then Ix2 can be found as a difference of 
I and IR3. 
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Figure 1: Finding Ix2 via the Nodal Analysis (NA) method. 

 

According to Fig. 1 (b), the equations of KCL for nodes 1 and 2 are as follows: 

 : 21 RR III   (1) 

 : 4320 RRR III   (2) 

Note that the branch currents can be directed arbitrarily. When a chosen direction 
does not correspond to the reality, the computed value will finally differ by the sign. 
Indeed, it is useful to estimate the real direction of each current prior to constructing 
the circuit equations. 

We derive the right-side branch currents via the branch conductances (we use “G” 
symbols with the appropriate suffixes) and the branch voltages which depend on 
nodal voltages (see Fig. 1(b)): 

 : )( 21211 VVGVGI   (3) 

 : 2423212 )(0 VGVGVVG   (4) 

Equations can be arranged in the final form: 

 : 22121 )( VGVGGI   (5) 

 : 243212 )(0 VGGGVG   (6) 

Substituting the conductances in [mS], the left-side currents will appear in [mA]: 

 : 21 5.0
3

2
1 VV   (7) 

 : 21 5.15.00 VV   (8) 

The above equations have the roots: 

 [V1 V2] = [2 2/3] V (9) 

It follows from Fig. 1(b) that when V2 = 2/3 V, then IR3=1/3 mA and the current Ix2 
must be: 
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 mAmA
3

2
)

3

1
1(32  Rx III  (10) 

2.3. Rules for algorithmic constructing of the NA equations 

Let us generalize the observations from the above example which are important for 
algorithmic circuit analysis via the NA method.  

Equation (1) can be expressed in the matrix form: 

   V1 V2  

 I
=

G1+G2 -G2 V1

  -G2 G2+G3+G4 V2

The right-side square matrix is known as the conductance (or admittance) matrix. 
Note several rules which should be followed when constructing the matrix equation: 

 
1. Zeros do not need to be recorded. Empty cells are “normal” and their content is 

automatically regarded as “0”.  
2. It is useful to note at the headings of the columns of the conductance matrix the 

unknowns by which the matrix elements in the given columns are multiplied 
according to the rule about the matrix-vector multiplication. 

3. It is useful to note to the left of the vector of the exciting currents the numbers of 
nodes, corresponding to the KCL equations. 

 

Comparing the matrix equation with the original circuit schematics in Fig. 1, 
described by this equation, yields important rules. Utilizing them, the set of NA 
equations can be written directly from the schematics, i.e. without any side 
computations. 

Rule for constructing the left-side vector of exciting currents: 

 The i-th row contains an algebraic summation of currents flowing into i-th node 
from external current sources. 

Rule for constructing the square conductance (admittance) matrix: 

 The “i,i” diagonal element contains a summation of all conductances (or 
admittances) which are connected to node i. 

 The “i,j” (ij) element contains a negatively signed summation of all conductances 
(or admittances) which are connected directly between nodes i and j. 

A note should be added to the latter rule. The fundamental linear two-terminal 
devices of the R, L, and C types, connected between nodes i and j, are reciprocal in 
the sense that they behave identically both in “node i  node j“ and “node j  node 
i” directions, or, in other words, their admittances are identical in both cases. That is 
why the admittance matrices of circuits built up from such elements show a 
symmetry, i.e. the “i,j” and “j,i” elements are identical. This fact can speed-up the 
algorithmic construction of the NA equations. However, this feature does not hold 
when some asymmetric element, for instance diode, appears in the circuit.  

The above rules will be demonstrated on the example of rather a complicated circuit 
in Fig. 2. It is a passive 7th-order low-pass ladder filter with a cutoff frequency of 
1 kHz.  

(11)
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Four independent nodes are denoted in the schematics. The corresponding nodal 
voltages are V1 to V4. Applying the above rules yields the set of NA equations in the 
self-explanatory Fig. 2: 
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   V1 V2 V3 V4  
 I1  G1+s(C1+C2)+1/sL1 -sC2-1/sL1    V1

  = -sC2-1/spL1 s(C2+C3+C4)+1/sL1+1/sL2 -sC4-1/sL2   V2

    -sC4-1/sL2 s(C4+C5+C6)+1/sL2+1/sL3 -sC6-1/sL3  V3

     -sC6-1/sL3 G2+s(C6+C7)+1/sL3  V4

 

Figure 2: Demonstration of the algorithmic composition of NA equations of ladder filter. 

 

2.4. General structure of the conductance (admittance) matrix  

Let us return to the circuit in Fig. 1 (a). Fig. 3 demonstrates that a given resistive 
network can be fragmented into individual elements, and that the conductance matrix 
can be considered a summation of individual conductance matrices of these elements. 
To put it simply, the conductance matrix of a complicated circuit can be built-up step 
by step from the matrices of its elements. For example, we will be confronted with 
the general matrix of linearized model of the Bipolar Junction Transistor (BJT) in 
section 2.5. After mastering the principles of its stamping into the matrix of the 
circuit, we will be able to analyze arbitrary linearized circuits containing BJTs.  

Take notice of the sub-matrix in Fig. 3, which corresponds to the floating resistor R2. 
If we sum all its elements within an arbitrary row or column, we get zero. This is a 
property of the conductance (admittance) matrix of an arbitrary circuit if the reference 
node is placed out of this circuit. Such a matrix is then called complete conductance 
(admittance) matrix. If the reference node is additionally declared to be one of the 
internal nodes of the circuit, say node k, a corresponding new conductance matrix can 
be obtained from the complete matrix after omitting its k-th row and k-th column. 
This procedure can be used, for instance, for mutual conversions of transistor 
parameters in common emitter, base, and collector configurations.  
 

2.5. Matrix-based linearized model of the BJT 

A general view of the BJT as a linearized three-terminal device is given in Fig. 4.  

If the BJT is connected to the circuit in three nodes B, C, and E (base, collector, and 
emitter), it can be described by three equations of the NA method. The conductances 
(admittances) yBB … yEE in the corresponding matrix model the small-signal transfer 
parameters of the BJT.  
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Figure 3: Conductance (admittance) matrix as a summation of matrices of particular elements. 

B

C

E

V
V

V
B

C

E

IB

IC

IE

VB VC VE

B IB yBB yBC yBE VB

C IC = yCB yCC yCE VC

E IE yEB yEC yEE VE

 
Figure 4: BJT in a general connection, and a set of its linearized equations which correspond to the 
NA method.  

Fig. 5 shows how the set of equations will be modified after connecting the reference 
node to one of the nodes of the BJT. The common-emitter connection is given in Fig. 
5 (a). Since the emitter is grounded, the voltage VE is zero. Only two equations for 
nodes B and C are constructed. In the original set of equations, we scratch the 
equation for node E, and the voltage VE is not considered any more. The BJT is then 
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described by a “2x2” admittance matrix, and the matrix elements mean the y-
parameters of the BJT in common-emitter connection (suffix e; base as the input 
terminal is represented by suffix 1, collector – the output terminal, by suffix 2). These 
four y-parameters can be obtained either by measurement or by transformation from 
the known h-parameters. 
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Figure 5: Matrix descriptions of the BJT in common emitter (a), collector (b), and base (c) 
connections. 

The “3x3” admittance matrix is the complete admittance matrix of the transistor, thus 
the summation of the elements in an arbitrary row or column is zero. Knowing the 
four parameters yBB, yBC, yCB, and yCC (i.e. four y-parameters of the BJT in common-
emitter configuration), the remaining five parameters can be easily evaluated.  

Fig. 5(b) and 5(c) demonstrate the transistor description in common-collector and 
common-base connections. Only in circuits where all three BJT outlets are floating, 
will all the 9 transistor parameters figure in the final equations.  

2.6. Matrix description versus simplified common modeling of transistor 

Let us start from the equations for common-emitter connection in Fig. 6. Equations 
for other variants can be derived from them.  
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Figure 6: BJT modeling via controlled sources. 

These equations can be modeled via controlled sources. Neglecting the parameter yBC, 
which is justified at low frequencies for most transistors [13], the corresponding 
controlled source disappears from the equivalent schematics. Then we get a 
simplified BJT model, which is routinely used for simple computations. The 
parameter yCB means the BJT transconductance gm = IC/UBE. Matrix description 
from section 2.5 is more general and, for complex admittances, it also models the BJT 
behavior for high frequencies. The simplified description is its special case. 

For “typical“ values of input resistance, output resistance, and transconductance. 

 rBE ≈ 5 k, rCE ≈ 100 k, gm ≈ 200 mA/V (12) 

the “typical“ values of y-parameters are as follows: 

 yBB  200S, yCC  10S, yBC  0, yCB  0.2 S (13) 

 yBE  –200S, yCE  –0.2 S, yEB  –200.2 mS, yEC  –10S, yEE  200.2 mS (14) 

2.7. Example of modeling linearized BJT circuits via NA 

Let us analyze the linearized model of transistor amplifier in Fig. 7. Consider the BJT 
parameters (13), (14) at the given operating point. 

In the first step, the NA matrix equation is written such that the BJT is not considered 
in the circuit: 

 

   V1 V2 V3 V4   

 Ii  Gi+sC1 –sC1    V1 

  = –sC1 GB+sC1    V2 

     GC+sC2 –sC2  V3 

     –sC2 G2+sC2  V4 

 

Subsequently, we stamp the admittance matrix of the BJT into the total matrix. The 
most convenient way how to do it is as follows: we complete the symbols B and C 
into rows (on the left side) and columns (on the top) such that the numbers of rows 
and columns will correspond with the numbers of nodes where base and collector are 
connected (emitter does not appear here because it is connected to reference node 0, 
which has no representation in the matrix). Afterwards, we inscribe the individual 
admittances of the BJT in the appropriate cells of the matrix; the admittance suffixes 
must correspond to the indices of rows and columns. The result is: 
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Figure 7: Substitutive small-signal model of transistor amplifier. 

 

   V1 V2 B V3 C V4   

 Ii  Gi+sC1 –sC1    V1 

 B  = –sC1 GB+sC1+yBB yBC   V2 

 C    yCB GC+sC2+yCC –sC2  V3 

     –sC2 G2+sC2  V4 

 

The above equation can be used for various computations. After substituting the 
numerical values of parameters, it becomes the starting point for the calculation of 
nodal voltages, voltage transfers from the input to all nodes, and impedances, all of 
them for various frequencies of the input signal, depending on the value of the 
complex frequency s = j. One of the possible methods is described in section 2.9.  

The example in Fig. 8 illustrates a small subcircuit of the linearized model of 
integrated wideband amplifier RCA 3040. We will show that the above described 
procedure also works for circuits containing more transistors and even when the 
transistors are connected in an “atypical” way, for example with variously short-
circuited terminals.  
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Figure 8: Model of a part of RCA 3040 amplifier. 

 

Let us only describe how the admittance matrix is constructed. The admittance 
parameters of transistors T1 and T2 will be differentiated by superscripts 1 and 2. 

First, we construct the matrix of a circuit without BJTs: 

(16)
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 V1  V2  V3  

     

   GC   

     

Then the matrix of T1 will be stamped into it: 

 

 V1  V2  V3  B1 C1  

      

    GC

  B1 C1    y1
BB+ y1

BC +y1
CB + y1

CC  

 

Note that all four admittance parameters which follow from the combinations of 
symbols B1 and C1 at the matrix margins are inscribed in the “3, 3” element.  

Finally, the matrix of T2 is stamped into the total matrix of the circuit: 

 

 V1  B2 V2  C2 V3  B1 C1 E2 

  B2 y2
BB y2

BC y2
BE 

  C2 y2
CB GC + y2

CC y2
CE 

  B1 C1 E2 y2
EB y2

EC y1
BB+ y1

BC +y1
CB + y1

CC +y2
EE 

 

2.8. Analysis of circuits containing OTAs 

Since the OTA (Operational Transconductance Amplifier), with its schematic symbol 
shown in Fig. 9, behaves as a current source, controlled by the voltage between the 
input terminals, and because the output current is proportional to this voltage and to 
the transconductance gm, the OTA has its admittance matrix (see Fig. 9), and thus 
circuits containing this element can be solved without any problems by the classical 
NA method.  
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Figure 9: OTA and its matrix description by NA method. 

For illustration, we construct equations of the OTA-based filter (the so-called gmC 
filter) from Fig. 10.  

(17)

(18)

(19)
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Figure 10: An example of gmC filter. 

The capacitive susceptances and then the submatrices of both OTAs will be written in 
the “3x3“ admittance matrix: 

   V1 V2 V3   

 I1  sC2 –sC2   V1 

  = –sC2 sC2 +gm2 –gm2  V2 

   –gm1 gm1 sC1  V3 

The voltage transfer functions of this filter will be found in the next section, which is 
devoted to the computation of various circuit functions directly from the admittance 
matrix.  
 

2.9. The manner of computing the circuit functions from admittance matrix  

Constructing the NA equations is the first stage of the analysis. They must be solved 
subsequently. We will show a practicable method, which is based on the computation 
of circuit functions using the so-called signed minors of the admittance matrix.  

The method will be demonstrated on the example of the transistor circuit from  
Fig. 11. Consider the numerical values of y-parameters of both transistors according 
to (13), (14). 

Then admittance matrix (19) of the total circuit will be as follows: 

 

 V1  V2  V3  

  0.2  –0.2 

  200 0.222 –200 

  –200.2 –0.01 400.41 

 

All the admittances are given in millisiemens, and this matrix transforms voltages in 
volts into currents in milliampers. 

Assume that we find the circuit impedance between node 1 and the ground, and also 
the voltage gain V2/V1. We connect a current source I1 to the gate between node 1 and 
the reference node, we compute the voltage V1, caused by this current, and compute 
the input impedance as a ratio of voltage and current. Then we find V2, caused by the 
input excitation, and determine the gain as a ratio of V2 and V1. The lay-out is 
exemplified in Fig. 11.  

(20)
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Figure 11: Illustration of the method of computing voltage gain V2/V1. 

 

Note that we do not necessarily need the input voltage source in spite of the voltage 
gain computation.  

We use the Cramer rule for computing voltage V1 from the equation in Fig. 11: 

 

The voltage Vk, k = 1,2,3, is a ratio of two determinants. The admittance matrix 
determinant  is in the denominator. In the numerator, the determinant k appears, 
which is computed from a matrix formed from the admittance matrix by replacing the 
kth column by the vector on the left side of the equation. 

 

The result for V1 is as follows: 
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 (22) 

 

The proposition about the expansion of the determinant according to the first column 
was applied to the numerator. 

The symbol i:j, specifically 1:1 here, represents the so-called signed minor of the 
admittance matrix when eliminating i-th row and j-th column. Numerically, it is equal 
to the corresponding sub-determinant of the matrix, multiplied by the factor (-1)i+j. 

Evaluating the determinants yields the result: 

 

 11 775.9 IV  [V,mA] 775.9
1

1
1  

I

V
Z k  (23) 

The impedance (resistance) between nodes 1 and 0 is less than 10 k. 

Similarly, we compute the voltage V2 and the voltage transfer K = V2/V1. 
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The voltage transfer sought is  

 8.460
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In the following, let us explain the procedure for computing the output impedance 
between nodes 2 and 0 for the input gate open.  

In this case, the exciting current source I2 should be connected between nodes 2 and 
0. After evaluating the response V2, we could determine the impedance Z2. The layout 
is shown in Fig. 12 together with the modified left side of the equation.  
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Figure 12: Procedure of the output impedance computation. 

The voltage V2 in volts is now a function of the current I2 in milliampers: 
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and the output impedance (resistance) is: 

 505.4
2

2
2  

I

V
Z k  (27) 

On the basis of the above computation, we can state the following rules for 
calculating the circuit functions from the admittance matrix. 
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Let us consider a linear circuit with N nodes other than the reference node, and 
describe it by the “N x N” admittance matrix via the NA method. Using the signed 
minors of this matrix, we can find the following: 

The impedance between node k and the reference node: 

 



 kk
kZ :  (28) 

The voltage transfer from node i to node o: 

 
ii

oi

i

o

V

V
K

:

:




  (29) 

The nodal voltage Vk if the circuit is excited by a single current source Ii connected 
between node i and the reference node: 

 i
ki

k IV



 :  (30) 

In the above formulae, i,j is the signed minor of the admittance matrix when omitting 
i-th row and j-th column, and  is the determinant of the admittance matrix. These 
formulae are commonly used, enabling direct computations from the admittance 
matrix without the need to construct the set of equations.  

The admittance matrix of OTA-based filter was set up in section 2.8, see also Fig. 10. 
Let us determine the voltage transfers V2/V1 and V3/V1. 

The first transfer will be: 
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A small re-arrangement yields: 
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where 
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is the natural frequency of the filter, and  
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is its quality factor. 
 

It follows from the formulae that, among other things, the filter can be tuned, without 
violating the quality factor, via controlling synchronously the transconductances of both 
OTAs.  

When using the output voltage from node 3, the filter would be of the low-pass type: 
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3. Modified Nodal Analysis (MNA) 

An advantage of the NA method is that it can be easily implemented in computer 
programs for circuit analysis: the algorithm of constructing the set of equations 
directly from the circuit schematics is very simple. However, this method does not 
enable analyzing circuits containing voltage sources and other elements that lack the 
admittance matrix, such as transformers, various operational amplifiers, conveyors, 
and other modern active components.  

That is why the classical NA must undergo some modification which would preserve 
the advantage of simple algorithm but also enable an analysis of the circuit without 
the above limitations. Three approaches will be described below: from the most 
universal but computationally rather expensive, to a modification enabling a very 
effective analysis of a relatively limited class of circuits.  

3.1. The stamp method 

Each “problematic“ element is described by M additional equations, M  1. The 
number of unknown variables is also increased by M. Some of the equations of KCL 
are also modified. Then the matrix equation will be of a special structure: The 
original admittance matrix will be extended with rows and columns, whose elements 
are of different dimensions than “siemens”. This extension contains the so-called 
matrix-stamps of additional elements. The resulting matrix is then called the pseudo-
admittance matrix. 

The increased size of the set of equations need not be a problem for computer 
analysis based on the numerical principle. However, this is not the case of symbolic 
and hand-and-paper analyses.  

Consider a circuit described by equations of classical NA. A general two-terminal 
device, described by the Thévenin model according to Fig. 13, is additionally 
included between nodes a and b. This inclusion causes changes in the voltage and 
current relations in the circuit. The current Ix which modifies voltages and currents 
associated with nodes a and b will flow through this device; the original nodal 
voltages will be also modified.  

 

a b

aI bI

iV iZ
xI  

 

Figure 13: Inclusion of general two-terminal device, described by Thévenin model, into the circuit. 

The original equation, describing the current equilibrium at node a, must be 
completed on the right-hand side by a current Ix, flowing out of the node, and at node 
b by a current Ix with negative sign because it flows inside the node b. In addition, the 
nodal voltages Va and Vb are now tied by the following condition: 



Modified Nodal Analysis Design of Analog Circuits through SA   35 

 aibxi VVVIZ   (36) 

or 

 abxii VVIZV   (37) 

All the above modifications can be included in a new set of equations of MNA 
(Modified Nodal Analysis): 

   Va Vb  Ix   

a Ia    … +1  Va 

b Ib    … –1  Vb 

 . 

. 

=   . 

. 

   

 Vi  –1 1 … Zi Ix

The vector of unknown nodal voltages is extended by another quantity, current Ix. The 
number of equations is also incremented due to the above coupling condition between 
nodal voltages Va and Vb. The voltage Vi is included in the left-side vector of exciting 
quantities. The modification of KCL equations for nodes a and b is accomplished via 
recording the numerals +1 and –1 in the column “Ix“. 

The above procedure can give guidance how to analyze, via the MNA method, 
circuits containing e.g. voltage sources. The impedance Zi can also be zero, and then 
the voltage source will be ideal. The case when Vi = 0 and simultaneously Zi = 0 
models a short circuit between the nodes, and the MNA can compute the current 
flowing through this connection. This approach can be used, for example, for the 
analysis of circuits containing current-controlled sources.  

In cases when more elements without admittance description appear in the circuit, 
each of them is modeled by its matrix-stamp, and the size of the pseudo-admittance 
matrix is increasing.  

This method will be characterized in detail via several examples.  

 

3.1.1. Passive circuits containing independent current and voltage sources 

Let us analyze the circuit from Fig. 14 via the MNA method. In comparison with the 
circuit from Fig. 1(a), it is extended by voltage source V. What is sought is the 
current Ix flowing out of the voltage source. 

6

I

V
1R

2R 3R

4R

mA1

3 V

?xI

k

  



 2 k

2 k 2 k

 
Figure 14: The circuit under analysis. 

There are three independent nodes and one reference node in the circuit. We construct 
the equation of classical NA for each independent node. Then we add the coupling 

stamp  (38)
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condition between nodal voltages caused by the voltage source, namely that the nodal 
voltage V3 is a source voltage, and we modify the original equations by the influence 
of current Ix, the equation for node 3 to be concrete. The result is: 

 
   V1 V2 V3 Ix   
 I  G1+G2 –G2    V1 
   –G2 G2+G3+G4 –G3   V2 
 –I =  –G3 G3 1  V3 
 V    1   Ix

We set the numerical values; For simplicity, conductances in [mS] and currents in 
[mA]: 

 
   V1 V2 V3 Ix   
 1  2/3 –0.5    V1 
   –0.5 1.5 –0.5   V2 
 –1 =  –0.5 0.5 1  V3 
 3    1   Ix 

 

The analysis of the above set of equations gives the result Ix = 1.5 mA. 

 

3.1.2. Circuits employing ideal voltage-feedback OpAmps 

a

b
c

aI

bI

cI

OAI

 

Figure 15: Ideal voltage-feedback OpAmp. 

The ideal Voltage-Feedback operational Amplifier (VFA) in Fig. 15, included in a 
circuit and operating in the linear regime, will cause an equality of nodal voltages Va 
and Vb, and also a modification of current relations at node c: 

 

   Va Vb Vc  IOA   

a Ia     …   Va 

b Ib        Vb 

c Ic     … 1  Vc 

 . 

. 

=    . 

. 

   

   1 –1  …   IOA

The following equation is written in the additional bottom row: 

(40)

(41)

(39)
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 0 = 1.Va –1.Vb. (42) 

Naturally, the analysis result remains unchanged when both sides of this equation are 
multiplied by an arbitrary nonzero number. That is why, for example [–1 1] or 
possibly [15 –15] may be in the bottom row instead of [1 –1]. At this moment, we do 
not consider the impact of such modifications on the numerical precision of 
computation. 

Connecting one of the OpAmp inputs to the reference node results in that the 
corresponding nodal voltage does not appear in the set of equations, and only a single 
“1” will figure in the last row instead of the common couple [1 –1]. Such a case will 
be demonstrated in the following example.  

The numeral “1” in row c and column IOA represents the addition of current IOA to the 
total current balance of node c. 

For the next illustration, let us mention the inverting amplifier containing a T-cell in 
Fig. 16. It is necessary to find the voltage gain V4/V1. 

 

50 k

5 k

50 k

5 k
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Figure 16: Amplifier employing the T-cell.  

Suppose that the amplifier is excited into node 1. For simplicity, we select a current 
source. In the case of voltage source, one additional equation would be necessary. 
The MNA equations will be as follows: 

 
   V1 V2 V3 V4 IOA   
 I1  G1 -G1     V1 
   –G1 G1+G2 –G2    V2 
    –G2 G2+G3+G4 –G3   V3 
  =   –G3 G3 1  V4 
    1     IOA 

 

The numeral “1” in the additional row represents a simple formula V2 = 0. 

This example demonstrates the inefficiency of the given method for hand-and-paper 
analysis. In spite of the circuit simplicity, we have a set of 5 equations with 5 
unknowns. Nevertheless, the additional equation indicates that the unknown variable 
V2 can be excluded because it is zero. Basically, we are not interested in the current 
IOA either, and yet it appears on the vector of unknown variables.  

The computation yields: 

(43)
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3.1.3. Circuits employing ideal voltage amplifiers (IVA) 

The ideal voltage amplifier in Fig. 17 has the following features: 

 
 infinite input resistance, which yields zero input currents,  
 zero output resistance, thus the IVA output behaves as an ideal voltage source,  
 the output voltage is equal to the product of the gain A and the differential 

input voltage.  

The ideal voltage-feedback OpAmp is thus a special case of the IVA for the gain 
increasing to infinity. The unity-gain voltage buffer is another special case, which can 
be modeled via the IVA on the assumption of grounded inverting input and unity gain 
A.  

a

b
c

Iz

Ia

Ib

Ic

A

Va

Vb Vc = A(Va-Vb)

 

Figure 17: Ideal voltage amplifier. 

Stamping the IVA equations onto the set of MNA equations will be similar to the 
ideal OpAmp. The only difference consists in the matrix-stamp because the voltage 
coupling condition is now different: 

 0 = Vc –A.Va+A.Vb  (45) 

The final set of equations for the general circuit containing an IVA has the following 
structure: 

 

   Va Vb Vc  IZ   

a Ia     …   Va

b Ib        Vb 

c Ic     … 1  Vc

 . 

. 

=    . 

. 

   

   –A A 1 …   IZ 

Let us try to find the voltage gain of the amplifier in Fig. 18. The MNA leads to four 
equations: 

(46)
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   V1 V2 V3 IZ   
 I1       V1 
    G1 –G1 1  V2 
    –G1 G1+G2   V3 
   –A 1 A   IZ 
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Figure 18: A circuit containing one IVA.  

The required gain can be computed via signed minors: 
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Note that the gain would be exactly 2 for ideal OpAmp (if A). 

 

3.1.4. Circuits employing current conveyors CCII 

X

I

1
I

Y
Z

CCII+(-)
CCII+

CCII-

XI

YI

ZI

 

Figure 19: Positive and negative current conveyors CCII.  

Fig. 19 shows a model of ideal positive (negative) current conveyor CCII+(–). The 
current I serves as an additional unknown variable in the set of MNA equations. 
Inserting the conveyor into the circuit makes the voltages VX and VY equal (unity-gain 
buffer acting between the X and Y terminals), and the current relations at nodes X and 
Z will be also modified. 

(47)
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The matrix-stamp of the current conveyor is as follows:  

 

   VX VY VZ  I   

X IX     … –1  VX 

Y IY        VY 

Z IZ     … – (+)1  VZ 

 . 

. 

=    . 

. 

   

   1 –1  …   I 

The numeral “1” in row “Z“ and column “I“ has the sign – for the positive and + for 
the negative current conveyor. 

Let us find the current gain Iout/Iin of the “Sallen-Key“ current-mode filter in Fig. 20. 
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Figure 20: Active Sallen-Key 2nd order filter employing the current conveyor. 

We construct the set of MNA equations: 
 

   V1 V2 V3 I   
   G1+G2+sC2 –sC2 –G2   V1 
 Iin  –sC2 sC2  –1  V2 
   –G2  G2+sC1 1  V3 
    1    I 

We compute V1 and Iout: 
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(50)

(51)
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Note that the analyzed circuit is a low-pass 2nd order filter. The dependence of the 
natural frequency 0 and the quality factor Q on the parameters of passive 
components can be derived from the above formulae.  
 

3.1.5. Circuits employing current-feedback OpAmp (CFA) 

Since the Current-Feedback operational Amplifier (CFA) consists of a positive 
current conveyor CCII+ and a voltage buffer (see Fig. 21), the matrix-stamp of the 
CFA could be derived from the matrices of the two components. However, we can 
make use of the fact that the internal current I of the CCII is zero for ideal CFA (the 
transimpedance acting in parallel to the current source is infinity, thus the current 
cannot flow through it). As a simplification, we need not consider this unknown 
variable. However, we must take into account the output current of the terminal 
buffer instead.  
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Figure 21: Idealized model of the current-feedback OpAmp.  

 

The MNA equations of the CFA are below: 

   Va Vb Vc  Iout   

a Ia     …   Va 

b Ib        Vb 

c Ic     … 1  Vc 

 . 

. 

=    . 

. 

   

   1 –1  …   Iout

 

For illustration, the inverting amplifier from Fig. 22 will be analyzed. 

(52)
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Figure 22: Analyzed circuit employing the CFA.  

The MNA equations are now 
 

   V1 V2 V3 Iout   
 I1  G1 –G1    V1 
   –G1 G1+G2 –G2   V2 
    –G2 G2 1  V3 
    1    Iout 

The voltage gain is the same as for the similar circuit employing the classical voltage-
feedback amplifier: 

 10

001

1

0
010

10

0

1

2

2

1

22

221

2

211

1:1

3:1

1

3 















R

R

G

G

GG

GGG

G

GGG

V

V
 (54) 

Attentive reader might notice that the matrix-stamps of voltage- and current-feedback 
OpAmps are identical. Indeed, the ideal VFA and CFA behave identically in the 
linear regime because of their identical properties – zero differential voltages, zero 
input currents, zero output resistances, and infinite voltage gain. That is why the 
circuit principle is not violated when interchanging these ideal OpAmps in linear 
applications. However, the impact of real properties can be very different [14]. 

The stamp method is very general, as is obvious from the above illustrations. It 
enables the analysis of circuits without any fundamental limitations as to the type of 
internal elements. In addition, this method can be easily implemented in computer 
simulation programs.  

On the other hand, one should be also aware of several drawbacks. The increasing 
number of equations is uncomfortable, particularly for symbolic and hand-and-paper 
analyses. This increase is often “needless”. For example, the matrix-stamp of the 
OpAmp adds the output current as a new unknown variable even if it may not be the 
aim of the analysis. One additional equation is included, which states that two 
voltages at OpAmp inputs are equal. However, both these voltages are included in the 
vector of unknown quantities and they are computed as independent values. It is 
obvious that this method can be improved from the point of view of an economical 
construction of circuit equations.  

For the above reasons, other procedures were developed which can be more useful for 
the hand-and-paper and algorithmic symbolic analyses. Two of them are described in 
sections 3.2 and 3.3. 

(53)
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3.2. The dead row method 

In contrast to the method of stamps, the dead row method preserves the same number 
of equations as in the classical NA method, which is equal to the number of 
independent nodes. It is especially useful for the analysis of circuits containing ideal 
OpAmps and ideal voltage amplifiers. As shown in section 3.4, this method can be 
also used for the analysis of current conveyor applications.  

Let us consider the ideal OpAmp in Fig. 23. As shown in section 3.1, all the 
considerations, associated with this linear model, hold true for the VFA and also CFA 
types.  

a

b
c

aI

bI

cI

OAI

 
Figure 23: Ideal OpAmp of the VFA or CFA type. 

In sections 3.1.2 and 3.1.5, the following matrix-stamp was derived: 

   Va Vb Vc  IOA   

a Ia     …   Va 

b Ib        Vb 

c Ic     … 1  Vc 

 . 

. 

=    . 

. 

   

   1 –1 … IOA

Note that there is only one element – “1” – in the column “IOA“, namely in the row 
“c“. It means that this variable is used only in the equation for node c. In other words, 
the unknown variable IOA can be computed from this equation, and it is not necessary 
for computation in other equations.  

If IOA is not the aim of analysis, we need neither the equation in row “c“ nor the 
unknown IOA. To reduce the set of equations, we record in the matrix the additional 
row of the OpAmp stamp instead of the row “c“, and the variable IOA will be omitted 
from the vector of unknown variables. The result is: 

 
 

   Va Vb Vc    

a Ia     …  Va 

b Ib       Vb 

c 0 = 1 –1  …  Vc 

 . 

. 

    . 

. 

  

(55)

(56)
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The row “c“, called the dead row, is denoted by a special sign, for example by a dark 
circlet. In contrast to the remaining rows, it is not allowed to write down here any 
admittances according to the algorithm of classical MNA. The reason is simple – we 
cannot violate the voltage coupling condition, 0 =1.Va–1.Vb, which is the only one 
defined in the dead row.  

The same principle may be applied to constructing the equations in the case of ideal 
voltage amplifier, where only the type of coupling condition is different. The same 
procedure is useful for independent voltage sources. Let us generalize the above 
method for circuits employing OpAmps, IVA, and ideal voltage sources.  
 

Practical procedure for implementing the dead row method: 

1) Label the node numbers in the schematics. The reference node will be 
assigned the number 0.  

2) Find the number of independent nodes, i.e. the number of all nodes minus one. 
Sketch the frame of the matrix equation, fill in the right-side vector of nodal 
voltages, the left-side vector of exciting currents, and headings of rows and 
columns. 

3) Identify the index of the node to which the output of OpAmp, or IVA, or 
grounded ideal voltage source is connected. The corresponding row will be 
denoted the dead row. In the case of more such elements, each of them will be 
represented by its dead row. Exclude the case of interconnecting the outputs of 
ideal voltage amplifiers and sources.  

4) The voltage coupling condition, which corresponds to the amplifier or voltage 
source, is written in the dead row.  

5) Fill in the remaining elements of the matrix according to the classical 
algorithm known from the NA method. However, avoid all the elements from 
the dead rows.  

 

The above procedure is illustrated on the example of positive impedance converter 
from Fig. 24, where a formula for the input impedance is required.  
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Figure 24: Positive impedance converter.  
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 V1 V2 V3 V4 V5  
 Y1 –Y1     
   1  –1  OA2 
  –Y2 Y2+Y3 –Y3   
 1  –1    OA1 
    –Y4 Y4+Y5  

Dead row No. 2 (4) belongs to OpAmp OA2 (OA1).  

The input impedance can be computed from the pseudo-admittance matrix: 
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Note that the dead row method can lead to an effective analysis of circuits containing 
voltage amplifiers. The following section describes another, extra space-saving 
method, which is particularly useful for circuits employing ideal operational 
amplifiers. 

 

3.3. The V/I method 

This method is based on the so-called method of voltage and current graphs [5], or 
method of voltage and current coefficients [11]. One of its versions, optimized for 
practical computations, is described below. Every ideal OpAmp in the circuit will 
decrease the number of equations by one. This feature can significantly reduce the 
computation time.  

The principle is outlined in Fig. 25. Instead of all nodal voltages, only some of them 
will be included in the set of unknown variables. Concretely, only one of the input 
voltages of the OpAmp is considered (because they are equal) or none of them, when 
one of the inputs is grounded (such a voltage is then zero). The reduction of 
unknowns must be accompanied by the reduction of equations: the KCL equations are 
omitted for nodes which correspond to the OpAmp outputs. The explanation is 
simple. Such equations are omitted and they are not replaced by any dead rows, since 
the dead rows would contain equations where “the differential input voltage of the 
OpAmp is zero“. These equations are now directly substituted by reducing the 
identical voltages and by a procedure which can be summarized as follows: 

a

b
c

bV

zI

cI

bI

aI

ba VV 

cV  
Figure 25: Illustration of the V/I method. 

(57)
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1) Label the reference node and also the remaining nodes in the circuit 
schematics. Find the total number of equations, which equals the number of 
independent nodes (i.e. without counting the reference node) minus the 
number of OpAmps in the circuit. 

2) Sketch the frame of the matrix equation or, alternatively, only the frame of the 
admittance matrix. The rows will be labeled in ascending order by the node 
numbers, but omitting the nodes which correspond to the OpAmp outputs. 
The symbols of nodal voltages will be inscribed in the heads of columns. If 
some nodal voltages are equal, for example V2 and V3, due to connecting 
floating OpAmp inputs to them, write V2 = V3 in the head of the column. If 
some nodal voltage is zero as a consequence of the OpAmp “virtual ground”, 
this voltage does not appear in the equations at all.  

3) The matrix elements are filled in via the classical algorithm known from the 
NA approach, but all the combinations of the indices in rows and columns 
must now be taken into account.  

 

Consider once again the positive impedance converter from Fig. 24. This circuit has 5 
independent nodes, but it contains 2 OpAmps. That is why we construct only 5–2 = 3 
equations for nodes 1, 3, and 5 (the OpAmp outputs are connected to nodes 2 and 4). 
The unknown quantities will also be 3: V1 = V3 = V5, V2, V4. The above procedure 
yields a compact matrix 

 

 
 V1= V3= V5 V2 V4  
 Y1 –Y1   
 Y2+Y3 –Y2 –Y3  
 Y4+Y5  –Y4  

The input impedance is now computed more economically than by the dead row 
method: 
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The power of the V/I method is also illustrated in the following example of inverting 
amplifier employing a T-cell from Fig. 16. The unknown quantities are now V1, V3, 
and V4 (V2 is omitted because it is zero). Only KCL equations for nodes 1, 2, and 3 
are written (the OpAmp output is connected to node 4). The result is in the form 

 
 V1 V3 V4  
 G1    
 –G1 –G2   
  G2+G3+G4 –G3  

(59)

(61)
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We determine the voltage transfer from node 1 to node 4. A formal problem can 
appear when working with signed minors: The numbers of omitted rows and columns 
correspond with the node numbers, but not with the sequence numbers of rows and 
columns. We should be careful both when selecting the omitted rows and columns 
and when determining the signs of signed minors.  
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3.4. Analysis of circuits employing current conveyors in greater detail 

Second generation current conveyors (CCII) with their wide application potential in 
voltage-, current-, and mixed- mode analog signal processing belong to useful active 
elements. In the analysis of their application circuits, the choice between special 
programs for symbolic analysis and stamped-based MNA is not comfortable. The 
following text is devoted to those interested in a fast analysis of CCII-based circuits. 
Several hitherto unpublished procedures, based on the philosophy of the dead row 
and the V/I method will be explained here. 

Recall the matrix-stamp, which was derived in section 3.1.4 for positive and negative 
current conveyors CCII: 

 
   VX VY VZ  I   
X IX     … –1  VX 
Y IY        VY 
Z IZ     … – (+)1  VZ 
 . 

. 
=    . 

. 
   

   1 –1  …   I 

Recall that the sign in row “Z“ and column “I“ is minus for the positive and plus for 
the negative conveyor. 

The dead row method consisted in omitting the KCL equation for the output node of 
the amplifier in which an auxiliary current appeared, and this equation was replaced 
by a voltage coupling condition. However, this causes both a fundamental and a 
technical problem in the case of circuits containing current conveyors.  

The fundamental problem consists in the necessity of removing the output current of 
the conveyor from the set of unknown quantities. However, this current, particularly 
in current-mode applications, is a frequently computed quantity. On the other hand, 
such a current can be computed additionally from voltage relations.  

A technical problem also appears because current I now occurs in two equations, not 
only in the KCL equation for output node Z, but also in the equation for node X. This 
problem can be overcome by subtraction or addition of the equations for nodes Z and 
X in order to cancel the numeral “–1” in row X and column I. 

For the CCII+ conveyor, the equation for node Z will be subtracted from the equation 
for node X. For CCII-, these equations will be summed. The following intermediate 
result is obtained: 

(63)



48   Design of Analog Circuits through SA Biolek and Biolkova 

   VX VY VZ  I   
X, – (+)Z IX – (+)IZ     …   VX 
Y IY        VY 
Z IZ     … – (+)1  VZ 
 . 

. 
=    . 

. 
   

   1 –1  …   I 

The equation for node Z can be omitted together with the unknown I, and the 
auxiliary equation can be placed instead. The given row will have the status of dead 
row: 

   VX VY VZ    
X, – (+)Z IX – (+)IZ     …  VX 
Y IY       VY 
Z   1 –1  …  VZ 
 . 

. 
=    . 

. 
  

The above procedure can be generalized as follows: 
1) The current conveyor does not modify the number of equations and unknowns 

of the classical NA method, which is equal to the number of independent 
nodes. That is why we sketch the frame of matrix equation, fill in the vector of 
unknown nodal voltages and the vector of exciting currents, and inscribe the 
node indices and symbols of nodal voltages in the heads of rows and columns. 

2) Let us denote the row whose number is equal to the number of the Z-output 
node of CCII, as the dead row. We inscribe here the coupling condition that 
voltages at inputs X and Y are identical.  

3) In the left margin of row X we type the number of the Z-output node of CCII, 
and complete the information about the sign (depending on whether the 
conveyor is positive or negative). If this node is excited by an external current 
source, we add this current – with the corresponding sign – to the vector of 
exciting currents. 

4) The remaining part of the admittance matrix, except for the dead row, will be 
filled in according to the classical NA algorithm. However, we must consider 
all the combinations of the indices in row X, and if some index is accompanied 
by the “minus” sign, the corresponding admittance must be written with 
opposite sign.  

 

The procedure will be explained via the already analyzed current-mode filter from 
Fig. 20. Its current gain Iout/Iin = G1.U1/Iin was computed in section 3.1.4. The final set 
of equations is in the following form: 

 
   V1 V2 V3   
   G1+G2+sC2 –sC2 –G2  V1 
, Iin  –sC2–G2 sC2 G2+sC1  V2 
    1   V3 

The X-terminal of the negative CCII is connected to node 2 whereas the Z-terminal to 
node 3. That is why we add the number 3 on the left side of row 2. Row 3 is the dead 

(66)

(64)

(65)
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row, with inscribed equation “voltage of node 2 is zero“. The remaining elements of 
the matrix will be filled in according to the classical algorithm. The elements in row 2 
are added according to the following template: The element in column “V1“ is equal 
to “– admittance between nodes 2-1 – admittance between nodes 3-1”. The element in 
column “V2“ is equal to “+ admittance connected to node 2 – admittance between 
nodes 3-2”, etc.  

The required current gain will be computed from the set of equations: 

.
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The above example indicates that CCII-based circuits could be also analyzed via the 
V/I method. For example, it is needless to consider the unknown variable V2 because 
we know that it is zero. We save one unknown and one equation. Each current 
conveyor decreases the number of equations by one. 

 

Practical procedure for implementing the V/I method for circuits employing 
CCIIs: 

1) Label the reference node and enumerate the remaining nodes. Compute the 
total number of equations, which is equal to the number of independent 
(numbered) nodes minus the number of current conveyors.  

2) Sketch the frame of the matrix equation or, alternatively, only the frame of the 
admittance matrix. The rows will be labeled in ascending order by the node 
numbers, but omitting the nodes which correspond to the Z-outputs of CCII. 
The symbols of nodal voltages will be inscribed in the heads of columns. If 
some nodal voltages are equal, for example V2 and V3, due to connecting 
floating CCII inputs X and Y to them, we write V2 = V3 in the head of the 
column. If some nodal voltage is zero as a consequence of connecting the Y 
terminal to the reference node, this voltage does not appear in the equations. 

3) In the left margin of row X, type the number of the Z-output node of CCII, and 
complete the information about the sign (depending on whether the conveyor 
is positive or negative). If this node is excited by an external current source, 
add this current – with the corresponding sign – to the vector of exciting 
currents. 

4) The elements of the admittance matrix will be filled in according to the 
classical NA algorithm. However, one must consider all the combinations of 
the indices in the rows and columns, and if some index is accompanied by the 
“minus” sign, the corresponding admittance must be written with opposite 
sign. 

 

The equations of the filter from Fig. 20 would now be as follows: 
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   V1 V3   
  = G1+G2+sC2 –G2  V1 
, Iin  –sC2–G2 G2+sC1  V3 

The current gain computation is now very simple and thus we do not mention it here.  

Let us analyze a more complicated circuit, the CCII-based gyrator in Fig. 26. It is 
necessary to check that the input impedance Z1 is inversely proportional to the 
loading impedance Z. 

z
x

y




CCII-

z x
y

CCII+

 

Z

R2

R1

Z1

I1

 

Figure 26: Gyrator employing two current conveyors. 

The admittance matrix constructed in accordance with the above procedure is in the 
form: 

 
 V1 = V2 V3 = V4 
, –  –G2 
,  G1 Y 

The input impedance is: 

 
Z

RR

GG

Y

I

U
Z 21

21

1:1

1

1
1 




  (70) 

Note that this circuit contains two different current conveyors and that it has four 
nodes plus the reference node. The stamp method would lead to a set of six equations 
whereas the dead row method leads to four equations.  

 

3.5. Analysis of circuits with magnetic couplings 

Magnetic couplings are frequently modeled via circuits with mutual inductances or 
ideal transformers. In both cases, the symbolic or hand-and-paper analysis by the NA 
method is rather problematic. The circuits employing mutual inductances are more 
advantageously analyzed by the method of mesh currents. Simple circuits containing 
ideal transformers can be solved intuitively. The modified nodal analysis is a 
universal method, particularly for automated computer-aided numerical analysis of 
such circuits. 

Note from the theory that when the circuit contains magnetic couplings, it can be 
generally divided into m galvanically separated parts, m  1. Then the modified 
theorem of the number of independent nodes in the circuits holds: 

(68)

(69)
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 Number of independent nodes = number of nodes – m.  (71) 

Until this time, only compact circuits have been considered, with m = 1. This theorem 
is important for the practical implementation of the NA method, because it gives 
information about the number of equations and the number of unknown nodal 
voltages, and also about the possible way of selecting these voltages. The possibility 
(not necessarily utilized) of assigning more reference nodes appears: each separated 
part can have its own reference node. 

3.5.1. Circuits with coupled inductors 

The well-known model of two inductors with mutual inductance M is illustrated in 
Fig. 27. The reference node is considered in its most general position, i.e. outside the 
circuit element. The dots in the schematics denote the so-called beginnings of 
windings. They define the direction of voltage induced on the given inductor, which 
is caused by a current flowing through the other inductor. 

a

b

c

d

abV
cdV

aV

bV

cV

dV

aI

bI

cI

dI
1L 2L

M

1I 2I

 
Figure 27: Model of the circuit with mutual inductance M.  

Equations of the operator-type can be written for this circuit. After the substitution  
s = j, they can be also used for computations in the harmonic steady state: 

 211 sMIIsLVab   (72) 

 122 sMIIsLVcd   (73) 

The mutual inductance M is coupled with the self-inductances L1 and L2 by the 
relation: 

 21LLkM   (74) 

where k is the coupling coefficient, i.e. the number within the interval from 0 to 1.  

With regard to Fig. 27, equations (72) and (73) can be rewritten in the matrix form 

 
  Va Vb Vc Vd I1 I2   

aI  a     1   Va 

bI  b     –1   Vb 

cI  = c      1  Vc 

dI  d      –1  Vd 

  –1 1   sL1 sM  I1 
    –1 1 sM sL2  I2 

(75)
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Every magnetic coupling causes an increase in the number of equations by two, and 
also the same increase in the number of unknown quantities, namely the currents 
through the inductors. 

Consider the Campbell filter in Fig. 28(a). It is necessary to find the amplitude and 
the initial phase of the current through R2 at a frequency of 5 kHz. The initial phase of 
voltage V is zero. 

8

5

1I
2I

10 V/5 kHz

V

C 100 nF

1R

2R

M 5 mH

L 10 mH1  L 12 mH2 
?2 RI

1I
2I

C1R 2R

M

L1 L2
?2 RI

 



I

2 A /5 kHz(a) (b)  

Figure 28: (a) Campbell filter, (b) voltage-to-current source transformation as a step towards an 
economical utilization of MNA.  

 

The voltage source in Fig. 28(a) is transformed into the equivalent current source in 
Fig. 28(b), which reduces the number of independent nodes to three. The MNA 
equations are as follows: 

 
  V1 V2 V3 I1 I2   
I  G1   1   V1 
 =   G2   1  V2 
    jC –1 –1  V3 
  –1  1 jL1 jM  I1 
   –1 1 jM jL2  I2 

The current IR2 can be computed from the determinants: 

 III R 


 5:1
22  (77) 

A demonstration of computing the determinants via MATLAB is shown below, with 
the final result: 

 IR2 = 61.4  –90.6 mA (78) 

(76)
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Numerical analysis of (76) in MATLAB: 

 
R1=5;R2=8;L1=10e–3;L2=12e–3; 
M=5e–3;C=100e–9;I=2; defining the circuit parameters 
f=5000;om=2*pi*f; 
BC=j*om*C;XL1=j*om*L1;XL2=j*om*L2;XM=j*om*M; computing the reactances 
G1=1/R1;G2=1/R2; 
MATRIX=[G1 0 0 1 0; defining the pseudo-admittance matrix 
   0 G2 0 0 1; 
   0 0 BC –1 –1; 
   –1 0 1 XL1 XM; 
   0 –1 1 XM XL2]; 
deter=det(MATRIX); computing the determinant   
deter1=det(MATRIX(2:5,1:4)); computing the signed minor 1:5  
IR2= –I*deter1/deter; computing the current IR2 
abs(IR2) computing the magnitude of current IR2 
phase(IR2)*180/pi computing the initial phase of current IR2 
 

Note that the original circuit in Fig. 28(a) can be easily analyzed by hand via the 
mesh currents method, which would lead to only 2 equations. The MNA works with 5 
equations. It is obvious that the MNA cannot be recommended for a hand-and-paper 
analysis of such circuits.  

Let us add that there exists a possibility of specially arranging the MNA equations in 
order to solve circuits with mutual inductances more economically. Equations (72), 
(73) can be inverted, i.e. deriving currents I1 and I2 from voltages, and transferring 
these currents to the left side. Then we get admittance equations, containing the so-
called inverse inductances described by rather complicated formulae. The number of 
these equations will be the same as the number of independent nodes after including 
them in the MNA. Then the Campbell filter from Fig. 28(b) would be described by 
three equations. However, it is still more than with the method of mesh currents. 

3.5.2. Circuits containing ideal transformers 

Ideal transformer (IT) is a substantial idealization of the circuit with mutual inductors 
from Fig. 27. No stray magnetic flux (i.e. the magnetic coupling coefficient k = 1), no 
losses in magnetic circuit and windings, and a core with infinite magnetic 
conductivity are assumed. The last assumption implies that all inductances (L1, L2, 
and M) are infinite. The corresponding inductive reactances/susceptances are thus 
infinite/zero, which rules out direct utilization of classical methods of analysis – the 
NA method, and also the mesh current approach.  

As follows from Fig. 29, the IT is defined by the numbers of turns N1 and N2 of both 
coils, or by the turns ratio: 

 
1

2

N

N
n  . (79) 

The following elementary equations hold true for IT: 

Voltage transformation: 

 abcd VNVN 21   (80) 
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or 

 n
N

N

V

V

ab

cd 
1

2  (81) 

Current transformation: 

 02211  ININ  (82) 
or 

 
nN

N

I

I 1

2

1

1

2   (83) 

These equations can be generalized to hold also for the multi-winding transformer. 

With regard to Fig. 29, equations (80) - (83) can be rewritten in the matrix form: 

 
  Va Vb Vc Vd I1 I2   

aI  a     1   Va 

bI  b     –1   Vb 

cI  = c      1  Vc 

dI  d      –1  Vd 

  n –n –1 1    I1 
      1 n  I2 

Analogously to the coupling inductors, the two-winding ideal transformer increases 
the number of unknown variables of the MNA method by two.  
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Figure 29: Ideal transformer (IT).  

The example in Fig. 30 presents another generalization because this circuit contains a 
transformer with three windings. 
This circuit has 6 nodes and 3 separate parts, and the number of independent nodes is 
three, according to (71). They are denoted 1, 2, and 3 in Fig. 30, with the 
corresponding nodal voltages V1, V2, and V3. 

The following equations for the transformer hold true: 

01221
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 (86) 

0332211  INININ  (87) 

(84)
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'

''  
Figure 30: Circuit with ideal transformer. R1 = 10 , R2 = 8 , C = 20 F, IZ = 20 A/50 Hz, N1 = 1420 
turns, N2 = 150 turns, N3 = 80 turns.  

The set of equations of the circuit in Fig. 30 is in the form. 

 
  V1 V2 V3 I1 I2 I3   
Iz  G1   1    V1 
   sC   1   V2 
 =    G2   1  V3 
  –N2 N1      I1 
  –N3  N1     I2 
     N1 N2 N3  I3 

 

The Cramer rule yields all the unknown variables. The procedure is evident from the 
list of the MATLAB M-file below. The magnitudes of voltages and currents are as 
follows: 

 
V1 = 199.2 V 
V2 = 21.0 V 
V3 = 11.2 V 
I1 = 80.3 mA 
I2 = 132.2 mA 
I3 = 1.4 A. 

Numerical analysis of (88) in MATLAB: 

 
R1=10;R2=8;C=20e-6;N1=1420;N2=150;N3=80; defining the circuit parameters 
f=50;I=20; 
om=2*pi*f; 
matrix=[1/R1 0 0 1 0 0; defining the pseudo-admittance matrix 
    0 j*om*C 0 0 1 0; 
    0 0 1/R2 0 0 1; 
    –N2 N1 0 0 0 0; 
    –N3 0 N1 0 0 0; 
    0 0 0 N1 N2 N3]; 
deter=det(matrix); computing the determinant  
deter11=det(matrix(2:6,2:6)); computing the signed minor 1:1 
deter12=det(matrix(2:6,[1 3:6])); computing the signed minor 1:2 
deter13=det(matrix(2:6,[1 2 4:6])); computing the signed minor 1:3 

(88)
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deter14=det(matrix(2:6,[1:3 5:6])); computing the signed minor 1:4 
deter15=det(matrix(2:6,[1:4 6])); computing the signed minor 1:5 
deter16=det(matrix(2:6,[1:5])); computing the signed minor 1:6 
U1=abs(I*deter11/deter) computing the magnitude V1 
U2=abs(I*deter12/deter) computing the magnitude V2 
U3=abs(I*deter13/deter) computing the magnitude V3 
I1=abs(I*deter14/deter) computing the magnitude I1 
I2=abs(I*deter15/deter) computing the magnitude I2 
I3=abs(I*deter16/deter) computing the magnitude I3 

 

4. Demonstration of creating models of circuit components based on 
MNA for computer-aided symbolic analysis 

A concrete implementation of the stamp method of the MNA in the SNAP shareware 
[15] for symbolic analysis is described in this section. 

SNAP provides the symbolic analysis of linear circuits without any limitations as to 
the type of circuit elements. Simultaneously, it generates all the circuit functions 
which assume the computing of arbitrary voltages and currents in the circuit. That is 
why the mathematical models of circuit components are based on the general method 
of stamps, described in section 3.1. The models are saved in an auxiliary text file 
snap.cdl. 

For example, the resistor model is as follows (see Fig. 31): 

 
[R] model name 
2 number of nodes 
1 1 size of the parameter matrix 
0 number of additional circuit variables 
MAT starting point of the circuit matrix definition 
1  1  2  2     1 1 1 0 –1 definition of the circuit matrix 
 

 

 

 

 

 

 

Figure 31: Matrix-stamp of floating resistor in SNAP. 

 

The model definition has the following structure: 

[model name] 

number of nodes connecting the element with its surroundings 
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size of the matrix r (number of rows, number of columns) where all element 
parameters are given; for the resistor, only one parameter is considered 
(resistance R). 

number of additional circuit variables that are necessary for component modeling 
using the MNA; for the resistor, no additional variable is needed. 

MAT – special keyword, which defines the beginning of the definition of the matrix 
elements of MNA. 

Definition of the circuit matrix: 

The matrix elements are defined using a special convention – the so-called ”atom 
definition”. The general structure is as follows: 

a b c d k i j n m  

4 variables   

k i j n m  

define a matrix element – so-called atom, in accordance with the equation 

atom = (k*r[i,j]*s^(n))^m 

where, 

r[i,j] .. element parameter located in the i-th row and j-th column of parameter 
matrix r 

s .. Laplace operator 

n,m .. integers. 

 

For example, the inductor susceptance is 1/(sL). Consider a single parameter of the 
inductor – inductance, which is saved in the simple matrix of parameters r(1x1). Then 
the susceptance is defined in the following row: 

k i j n m …….  1 1 1 1 –1 

4 variables  

a b c d 

define the ”atom” location in the circuit matrix according to the following rules: 

“Atom” appears at the intersections of 
a-th row and b-th column, with the sign + 
c-th row and d-th column, with the sign + 
a-th row and d-th column, with the sign – 
c-th row and b-th column, with the sign – 

on the assumption that neither of the pair of row and column numbers is 
zero. 

In the opposite case, the ”atom” is not copied into the matrix. 

In the next example, the model of ideal operational amplifier (OpAmp) is shown in 
Fig. 32. Together with nodal voltages, one auxiliary circuit variable is used – OpAmp 
output current I. The ideal OpAmp does not require any circuit parameters, the 
parameter matrix r is thus empty. 
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Figure 32: Matrix-stamp of ideal OpAmp in SNAP. 

 
[OPA] 
4 
0 0 
1 
MAT 
–1 1 0 2   1 0 0 0 1 
3 –1 4 0   1 0 0 0 1 

The sign – preceding some of the row or column numbers in the MAT command 
represents the symbol of an additional row or column of the circuit matrix. For 
example, –1 refers to the additional row (or column) No.1. 

We recommend downloading the installation files of SNAP program from [15], 
looking into the file snap.cdl, and studying the technique of implementing the models 
of various circuit components. All the cases represent practical applications of the 
stamp MNA method. Through mastering this technique, you will be able to script 
your own models of arbitrary components. 
 

5. Conclusion 

The hand-and-paper analysis is particularly useful for checking computations in 
circuits with simple modeling of individual ideal components. Computer-aided 
analysis is recommended in all the other cases.  

The decision whether intuitive or algorithmic procedures should be used for the hand-
and paper analysis is, more or less, subjective. Somebody likes the intuitive approach, 
which is tailored for people who are used to solving problems "in their own original 
style", creatively utilizing the basic laws and principles of Electrical Engineering. 
Others prefer algorithmic methods, which always lead to a solution but usually at the 
cost of uncomfortable routine computation.  

As the third alternative, any analysis task can be resolved via a proper computer 
program. 

When we come to the conclusion that the intuitive procedures are beyond our 
abilities, or if we do not prefer them for any other reason, then we can consider the 
computer analysis or the hand-and-paper algorithmic analysis, described in this 
Chapter. Computer analysis becomes necessary in the case of large circuits or circuits 
containing some active elements with complicated models. An analysis of circuits 
with real parameters being modeled is a typical task for simulation programs. 
Programs for symbolic analysis with subsequent numerical analysis, for example 
SNAP, seem to be excellent tools for the analysis of s-domain circuit functions. 
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The choice of the type of MNA for hand-and-paper analysis is a trade-off between the 
comfort of constructing the set of circuit equations and its size, which determines the 
computational effort. The advantage of the method of stamps, widely used in most 
simulation programs, consists in the simple algorithm of writing the equations in the 
computer memory, but at the cost of a huge number of these equations. On the other 
hand, the V/I method provides a minimum number of equations but with a more 
complicated way of their composition. In addition, the efficiency of this method is 
high only for limited types of circuits. The dead row method can be a a good 
compromise, probably the best of all, for the analysis of circuits employing the finite-
gain voltage amplifiers. It has been shown that it can be also useful for circuits 
utilizing OpAmps and current conveyors. 

The circuits with magnetic couplings form a special group. The method of mesh 
currents can be useful here. However, it is not described in this Chapter because its 
algorithmization is not easy. Simple circuits containing ideal transformers can be 
sometimes solved intuitively only on the basis of transforming the relations between 
voltages and currents. Nevertheless, one possibility of analyzing such circuits via 
MNA is described in section 3.5. The number of equations is relatively high, which 
makes this method preferable in computer-aided analysis.  
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CHAPTER 3 

Modeling Active Devices with Nullors for Analog Signal Processing 

Carlos Sánchez-López* 

Autonomous University of Tlaxcala, México and IMSE-CNM, CSIC and University of Sevilla, Spain 

Abstract: This chapter describes the modeling of nullor-based active devices from the 
circuit level of abstraction. After a brief overview on the nullor concept and its 
properties, the modeling of active devices not only at the voltage-mode but also at the 
current-mode and the mixed-mode of operation from two-port and four-terminal network 
point of view is described in some detail. An important view that permeates the chapter 
is that the nullor-based models are not too complex and they can be introduced in CAD 
tools. Furthermore, parasitic elements can easily be added in order to predict their impact 
on the final response of the circuit. Several examples using nullor-based models 
illustrate its use to calculate fully-symbolic small-signal characteristics of linear or 
linearized analog circuits. 

Keywords: Symbolic analysis, nodal analysis, modified nodal analysis, nullor, pathological elements, 
operational amplifiers, current mirrors, analog signal processing, controlled sources, stamps. 

1. Introduction 

It is well known that the behavior of all the active devices has mainly been modeled 
with Voltage-Controlled Voltage Sources (VCVS), Voltage-Controlled Current 
Sources (VCCS), Current-Controlled Voltage Sources (CCVS) or Current-Controlled 
Current Source (CCCS), and they are often used in CAD tools, such as Hspice, where 
very accurate models for a large variety of active devices are provided [1-3]. These 
models are widely used to formulate the system of equations of analog networks by 
using several methods, such as: the Nodal Analysis (NA) method, the Modified Nodal 
Analysis (MNA) method1 or Tableau method. 

From the symbolic analysis techniques point of view, the NA has widely been used to 
describe networks and it is well known that only NA-compatible elements can 
directly be introduced into the admittance matrix by using the element stamp method. 
This disadvantage has been overcome by using the MNA method, in which additional 
columns and rows are incorporated into the admittance matrix and the non-NA 
compatible elements are readily included by using stamps [1-3]. However, a 
disadvantage on the use of controlled sources to model active devices is that the 
admittance matrix becomes large, since it depends on the number of node voltages 
and of the branch currents associated to the type of element contained in the circuit.  

On the one hand, the use of very accurate models represents a computational effort 
higher than by using compact models during circuit analysis. Also, as an analog 
designer deals with simplified analytical equations, then compact models are quite 
useful to enhance the modeling and simulation time during the design process. In this 
sense, the nullor element has demonstrated to be efficient to model the behavior of 
active devices [4-9]. Furthermore, in a nullor-based model, the parasitic elements  
 
*Address correspondence to Carlos Sánchez-López: Autonomous University of Tlaxcala, México and IMSE-
CNM, CSIC and University of Sevilla, Spain; E-mail: carlsanmx@yahoo.com.mx 
1See Chapter 2 for a detailed description on the NA method, the MNA method and its modifications. 
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can easily be added in order to predict their impact on the final response of the circuit. 
As a consequence, the main advantage of using nullors, is that one can describe a 
circuit with only two-terminal elements such as: resistors, capacitors, nullators, 
norators and independent current sources. Most important, is that all the controlled 
sources can be modeled by using nullors. Hence, the standard NA method can be used 
to formulate the system of equations, which models the behavior of a nullor-based 
equivalent circuit. Henceforth, the nullor is used herein to model the behavior of 
active devices, but taking into account that a circuit should be modeled in the simplest 
possible way, so that its impact on overall simulation accuracy must be tolerable. In 
this manner, this chapter describes the issues concerning the small-signal modeling of 
active devices by using nullors. 

2. Nullor Concept 

The nullator and norator are theoretical active devices that have been used in the 
analysis, design and synthesis of linear or linearized circuits [6-13]. Since Tellegen 
exposed the concept of ideal operational amplifier, the nullor concept was also 
introduced indirectly [5]. Later, Carlin, in 1964, made an attempt to use both nullators 
and norators as single active devices, but taking into account that they cannot be 
physically realizable [4]. Tellegen also explained that these singular elements can be 
considered only as mathematical concepts without a physical content. Again, Carlin 
proposed the combination of the nullator and the norator, which resulted in a useful 
physical device, the nullor [4, 5]. The nullor consists of a nullator and a norator, as 
shown in Fig. 1, and its behavior is distinguished by very special voltage-current 
relationships [10]. 

 
Figure 1: Nullor symbol. 

The input port of the nullor is modeled by the nullator which is characterized by two 
equations: 

,12 arbitraryVV      012  II  (1)

So, the nullator is simultaneously one open- and short-circuit. The output port of the 
nullor is modeled by the norator where both, the voltage and current can be assumed 
to have arbitrary values: 

,12 arbitraryVV      arbitraryII  12  (2)

The nullor is a two-port element and it is known as universal active element [10]. 
This concept means that the nullor along with capacitors and resistors can be used to 
design a maximum number of functions with the minimum number of active devices. 
That is, if a suitable set of linear and nonlinear passive elements is available, then no 
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active element other than nullors are needed to implement any linear or nonlinear 
circuit function. So, nullators, norators, resistances, along with capacitances can 
synthesize a complete set of linear or linearized equations. 

3. Nullor Equivalences 

Since its introduction, the nullor has been found useful in the analysis, modeling and 
synthesis of analog circuits. As a consequence, several papers have been reported in 
the literature on the use of methods or computational algorithms based on nullor-
elements for the synthesis and modeling of active devices [6-13]. Because any analog 
network can be modeled with nullators, norators and impedances, it is worth 
mentioning some equivalence between them, since they can be very useful in the 
synthesis and modeling process. Thus, the main equivalences of the combinations 
between nullators and norators for networks that contain nullors and impedances are 
shown in Fig. 2. For instance, in Fig. 2(a) a current flowing from node a, cannot flow 
from a to b, since the current through the nullator is zero, so that a series connection 
of the nullator and norator is equivalent to one open-circuit. In Fig. 2(b), the current 
can flow from a to b through the norator, also the voltage across a and b becomes 
zero from the property of the nullator, so that a parallel connection of the nullator and 
norator is equivalent to one short-circuit. The remaining connections have equivalents 
according to the nullator and norator iv characteristics. 

 
Figure 2: Nullator and norator equivalences. 

On the other hand, the nullor along with grounded resistors can be manipulated in 
order to obtain inverting properties, features that the nullator and the norator cannot 
model by themselves [14]. The main purpose of the introduction of inverting 
properties is that the behavior of some active devices involves inverting the voltage 
and current input-signals. In this sense, the Current-Mirror (CM) and the Voltage-
Mirror (VM), both as active devices, can perform this task and their behavior also 
should be modeled with the nullor. Thus, by manipulating the nullor along with 
grounded resistors, the behavior of a CM and a VM, both with ideal unity-gain can 
easily be obtained, as shown in Fig. 3 [14]. 
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                                              (a)                                                                (b) 
Figure 3: Nullor and grounded resistor-based VM (a) and CM (b). 

Therefore, by analyzing the equivalent circuits, one can see that the VM, shown in 
Fig. 3(a), is characterized by: 

,12 arbitraryVV      012  II  (3)

and the CM, shown in Fig. 3(b), is characterized by: 

,12 arbitraryVV      arbitraryII  12  (4)

So, the inverting behavior of the nullator and norator is achieved. In [15], the nullor-
based models of the VM and CM include parasitic elements. In the same manner as 
for the nullor, equivalences between the combinations of nullators, norators, CMs, 
VMs and impedances within an analog network can be obtained. Note, however, if 
the V1- or V2-terminal from Fig. 3(a) is grounded and by applying the equivalences 
shown in Fig. 2, the VM is reduced to a nullator. In the same manner, if any terminal 
in Fig. 3(b) is grounded and after by applying the equivalences shown in Fig. 2, then 
a norator is obtained. 

4. Nullor-Based Active Device Models 

In this section, the derivation of nullor-based active device models will be introduced. 
First, ideal models of active devices are derived and later on, parasitic elements are 
included in order to obtain a more complete model. Thus, these nullor-based models 
are the basis to achieve a fully-symbolic analysis of analog networks by applying the 
standard NA method.  

4.1. Independent voltage source and controlled sources 

An analog network is often composed of several two-terminal elements, namely: 
resistors, capacitors, inductors, independent voltage sources, independent current 
sources and the four basic controlled sources. By using the nullor element, the 
behavior of certain elements can be approximated by combining them in appropriate 
configurations [6, 7]. Thus, an independent voltage source can be modeled by using 
the nullor element as shown in Fig. 4. 

 
Figure 4: Nullor-based independent voltage source. 

The analysis of the independent voltage source is as follows: the current can only 
flow through the resistor, thus, the current is transformed to voltage and by 
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considering the two constraints of the nullator, the voltage is obtained in the output 
node. In the same way, the four controlled sources can ideally be modeled as shown 
in Fig. 5, and these models result by applying the properties and equivalences of the 
nullor shown in Fig. 2, in order to model the behavior of the initial circuit. 

 
Figure 5: Controlled sources, definitions and nullor-based models. 

4.2. Operational amplifiers 

Nowadays, there are a large variety of active devices that have been proposed in the 
literature for analog signal processing [16, 17]. All the active devices can be grouped 
in voltage-, current- and mixed-mode or according to the type of signal that can be 
processed in their input-output terminals. Without losing generality, a four-terminal 
analog circuit can be described as a two-port network under the condition ia=i´

a and 
ib=i´

b as shown in Fig. 6(a). Furthermore, if any circuit can be described as a two-port 
network, then the impedance levels at each port can ideally be considered as very 
high or very low. From the voltage-current relationships of the nullor, a floating 
nullator can model a node with high impedance, or a node with low-impedance if any 
terminal of the nullator is grounded [11, 12]. Contrarily, the norator can model both 
impedance levels: high or low depending of the signal to be measured. 

As a result, not only the impedance levels but also the gain-equations of the 
operational amplifiers should be considered in order to generate their nullor-based 
models. Thus, by applying the nullor properties, the behavior of some active devices 
that can process only a type of signal in their input-output terminals, such as: the 
Operational Amplifier (OpAmp), the Operational Transconductance Amplifier 
(OTA), the Operational Transresistance Amplifier (OTRA) and the Current 
Operational Amplifier (COA) can adequately be modeled as a two-port network. 
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On the other hand, when the behavior of an analog circuit is described by a four-
terminal network, as shown in Fig. 6(b), the impedance levels in the input-
terminals, Za and Zb, and in the output-terminals, Zc and Zd can be very high or very 
low. Hence, the behavior of some operational amplifiers cannot be modeled 
directly by using the two-port concept and they are better modeled as a four-
terminal network [10]. In this case, the nullor can also be used to model the 
behavior of operational amplifiers with features of a four-terminal network, but by 
considering the impedance level and the input-output signal associated to each 
terminal. Instead, if the impedance level in the two input-terminals is high and 
further, the impedance level for each output-terminal is high and low, then the two 
input-terminals can be modeled as one-port and the output port as two-terminals. 
For instance, the Operational Floating Amplifier (OFA) has two input-terminals 
with an impedance level high, which can be modeled as one-port. For the output 
terminals, the impedance levels are high and low in agreement to the kind of output 
signal, and are better modeled as two-terminals [18]. 

Likewise, for those operational amplifiers that only allow current-mode signals at 
their input-terminals, such as: the Floating Operational Transresistance Amplifier 
(FOTRA), the Current Feedback Operational Amplifier (CFOA), the Current 
Feedback Operational Transconductance Amplifier (CFB-OTA), COA and OTRA, it 
is necessary to invert the current signal at their negative terminals. Therefore, the 
nullor-based model of the CM, shown in Fig. 3(b), can be used. Maybe, one could 
contemplate the use of the CCCS or CCVS to model those operational amplifiers 
mentioned above. However, this is not feasible, since not only complex nullor-based 
models are obtained but also, the models shown in Fig. 5 have a serious disadvantage, 
since they are only considering one input-current, limiting their application to specific 
circuits, where the input-current is flowing in one direction. In this manner, the nine 
operational amplifiers along with their nullor-based models are shown in Fig. 7. One 
important observation is that into the nullor-based models, only grounded resistors are 
used, hence, they have only one entry in the NA matrix. 

4.3. Current conveyors 

The current conveyor is considered as a universal analog building block designed 
for voltage-, current- or mixed-mode signal processing [19-22]. A review of the 
state-of-the-art of current-mode circuits has been introduced in [23]. There are 
several families of current conveyors such as: inverting or non-inverting 
positive/negative-type first generation Current Conveyors (CCI+, CCI-, ICC+, 
ICCI-), inverting or non-inverting positive/negative-type second generation 
Current Conveyors (CCII+, CCII-, ICCII+, ICCII-), inverting or non-inverting 
positive/negative-type third generation Current Conveyors (CCIII+, CCIII-, 
ICCIII+, ICCIII-), all with a single or Multiple Outputs (MO) [13]. Among all the 
current conveyors, the inverting and non-inverting CCII±s are the most versatile 
and they have widely been used to design linear and nonlinear circuits [24]. 

In the same manner that operational amplifiers, nullor-based models of current 
conveyors can also be generated by considering the impedance levels associated to 
their input-output terminals and constitutive equations. For instance, let us consider 
the ICCII+ shown in Fig. 8(a) as a three-terminal active device, since the 
impedance levels at the input-output terminals are low and high, respectively. The 
operation of the ICCII+ is characterized by the following matrix form [24]: 
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  (a)                                                                (b) 

Figure 6: (a) Two-port network and (b) four-terminal network. 

 
Figure 7: Nullor-based operational amplifiers. 
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From (5), one can see that the equality Vx=Vy can be modeled with a VM, as shown 
in Fig. 3(a), and Iz=Ix can be modeled with a CM, as shown in Fig. 3(b). Besides, the 
impedance levels from the original circuit still hold. Thus, the nullor-based model of 
the ICCII+ is generated and shown in Fig. 8(b). The same methodology is used in 
order to generate the nullor-based models of the other current conveyors, as depicted 
in Figs. 9, 10 and 11. Here, it is worth mentioning that for a physical network, which 
is modeled with nullors, it should have the same number of nullators and norators, in 
order to satisfy the branch voltage-current relationships. 

 
                                                  (a)                                               (b) 

Figure 8: (a) ICCII+ symbol (b) nullor-based model. 

 

Figure 9: Nullor-based (MO) (I) CCI± models. 
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Figure 10: Nullor-based (MO) (I) CCII± models. 

 
Figure 11: Nullor-based (MO) (I) CCIII±. 

4.4. Other active devices 

In the literature other versatile active building blocks with features that involve 
differential signals have been reported, such as: the Current Differencing Unit (CDU), 
the Current Differencing Buffered Amplifier (CDBA), the Differential Voltage 
Current Conveyor (DVCCII), the Differential Current Voltage Conveyor (DCVC), 
the Fully-Differential Current Conveyor (FDCCII) and the Differential Difference 
Amplifier (DDA), among others. An excellent survey of well known and new active 



70   Design of Analog Circuits through SA Carlos Sánchez-López 

devices is given in [16]. Several applications based on using these actives devices 
have been introduced in the literature, where active devices are modeled with 
controlled sources [16]. On the other hand, to accomplish efficiently a fully-symbolic 
analysis of analog networks by applying only the standard NA method, it is necessary 
to be able to obtain suitable representations for such active devices by using nullor 
elements. Here we will show the generation of the nullor-based model of the DVCCII 
with double output, as shown in Fig. 12(a) [25]. The DVCCII is a five-terminal active 
device that is defined by the following matrix equation: 
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                                (a)                                                                (b) 

Figure 12: DVCCII with double output (a) symbol (b) nullor-based model equivalent. 

According to (6), the differential voltage given as: Vx=Vy1-Vy2, can be modeled by 
using nullor and grounded resistors. The reason on the use of grounded resistors is 
that along with nullators and norators are used to transform a current to voltage or 
vice-versa. Therefore, to achieve the behavior of a differential voltage, VMs or CMs 
can be employed and the high impedance levels at the input-terminal still hold. On 
the other hand, the current behavior from Ix to Iz±, is similar to a CCII with double 
output, as shown in Fig. 10(d). In this manner, the nullor-based model of the DVCCII 
with double output is shown in Fig. 12(b). 

4.5. Including parasitic elements in the nullor-based models 

All the nullor-based models introduced in the previous subsections have been 
generated taking into account the ideal behavior of the active devices. However, when 
active devices are designed physically, the input-output resistance and capacitance 
levels, gain, input offset voltage or current and the frequency response are all finite. 
Therefore, it is widely necessary to include these effects in the nullor-based models; 
as well one can know the real limitations of an analog network, when the active 
devices are used in applications of analog signal processing. Here, we will only show 
the inclusion of the finite parasitic impedances associated to the input-output 
terminals of an active device. With this choice, parasitic resistors and capacitors can 
easily be included in the input-output terminals of the nullor-based models shown in 
Figs. 7 to 12, but by considering the type of signal that can be processed in their 
terminals. For instance, a CFOA is characterized by Rx in the x-terminal, Ry and Cy in 
the y-terminal, Rz and Cz in the z-terminal (here, Rm is the parallel of Rz and Cz and it 
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also represents the dominant pole, i.e. the bandwidth). Therefore, one more realistic 
model can be achieved, as shown in Fig. 13. Note that a CM is used to invert the 
direction of the current-output instead the CFOA model shown in Fig. 7. The same 
methodology can be used to obtain more realistic models for the other active devices. 

 

Figure 13: Nullor-based model CFOA including parasitic elements. 

5. Formulation of the System of Equations 

In this section, we present a novel method to formulate the system of equations from 
analog circuits, where the nullor-based models of the active devices generated in the 
previous section are used [26, 27]. As mentioned already, any analog network is 
composed by resistors, capacitors, independent voltage or current sources, controlled 
sources and active devices. Later on, if each independent voltage source, controlled 
source and active device is modeled with nullors, the original analog network is 
transformed to a nullor equivalent circuit, which is composed by nullators, norators, 
admittances and independent current sources. As a consequence, the standard NA 
method can be used to formulate the system of equations, which is expressed as: 

VYJ n  (7)

where Yn represents the admittance matrix, J is the vector of current sources and V is 
the vector of voltage-variables. It is worth mentioning that the nullator and norator 
properties should be applied in order to reduce the size of the admittance matrix [26, 
27]. Indeed, the nodes of a nullator are related with the columns of the admittance 
matrix, thus, two columns in Yn must be added according to the nodes of a nullator 
connected into the circuit and a column should be deleted if any terminal of the 
nullator is grounded. In the same manner for the norators; a row of the admittance 
matrix is deleted if any terminal of a norator is grounded and two rows in Yn must be 
added according to the nodes of a norator connected in the circuit. This concept is 
illustrated in Fig. 14. 

 

Figure 14: Reduction of the admittance matrix by applying the nullator and norator properties. 
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On the one hand, the formulation method described above is very useful when the 
symbolic analysis of analog circuits is done by paper and pencil. On the other hand, 
the formulation method of the system of equations has been improved in order to be 
quickly included in symbolic analyzers, which is based on the manipulation of the 
relationships of the admittances, nullators and norators [26, 27]. The formulation 
method is described below: 

5.1. Data-structures of two-terminal elements 

All the elements of an analog network are stored into an Hspice-like netlist. Thus, 
each independent voltage source and active device should be modeled by their nullor-
based models, as shown in Fig. 4, 7 and 13. According to Fig. 15, the generation of 
data-structures for each two-terminal element is summarized in the following points: 

1. Obtain the nodes from the netlist and store into a set of nodes called Set-node. 
The nodes are ordered in ascending form. The node labeled by 0 is the 
reference node and it is not included into Set-node.  

2. Each active device is modeled with its nullor-based model and stored into a 
list of data-structures. 

 
Figure 15: Data-structures generation. 

 

5.2. Computing norator-nullator indexes 

The nullators and norators should be manipulated to generate two vectors, namely: P 
(norator vector) and O (nullator vector), as shown in Fig. 16. These vectors have the 
indexes associated to the columns and rows variables of the admittance matrix and 
they are also used to fill the J and V vectors of the system of equations. The procedure 
to compute the indexes is as follows: 



Modeling Active Devices with Nullors … Design of Analog Circuits through SA   73 

1. Read the pair of nodes of each norator and nullator.  

 If any node of a nullator or norator is equal to the reference node, skip to 
the next element. 

2. Compare the pair of nodes of a norator or nullator with each subset of nodes 
stored previously.  

 If the nodes match, include the pair of nodes into the corresponding subset, 
which is ordered in ascending form.  

 If the nodes are not match, a new subset of nodes is formed and ordered in 
ascending form, and must be included into the P or O vector, respectively. 

3. Compare each node of Set-node with the first node of each subset of nodes of 
the P and O vector.  

 If the nodes match, the subset of nodes of the P or O vector should be 
reordered according to the position of the node in Set-node.  

 If the nodes are not matching, include the node of Set-node into the P or O 
vector and placed in the same position as in Set-node. As a consequence, 
the final vectors are given as: O=[{O1},{O2},..{Ox}] and 
P=[{P1},{P2},..{Px}], where Ox ={a1,a2,..an} is a subset of nodes of the O 
vector and Px ={b1,b2,..bn} is a subset of nodes of the P vector and an along 
with bn are the nodes of the subsets. 

 
Figure 16: Nullator and norator indexes generation. 
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5.3. Building the nodal admittance matrix 

According to Fig. 17, the nodal admittance matrix is obtained by manipulating the 
admittances, nullators and norators data-structures as follows:  

1. Compare each node of Ox with the pair of nodes associated to admittances.  

 If the node from Ox match with any node of some floating admittances, 
include the pair of nodes along with the symbol of each admittance into a 
list called Col{Ox}=[(an,[node±,elemn])], where Ox represent the nodes of 
the j-th column, an represent the nodes of Ox, node± is the node not-
matching of the admittance and elemn is the name of the n-th admittance. 

 If the node from Ox match with the node of some grounded admittances, 
include the node along with the name of the admittance as: 
Col{Ox}=[(an,elemn)].  

These lists are very important, because each list Col{Ox} has only the elements of each 
column of the admittance matrix. In order to formulate the nodal admittance matrix, 
the nodes of the norator vector should be used to obtain the coefficients of the Yn 
matrix, where each Px represent the nodes of the i-th row. 

2. Compare each node of Px with the nodes of each list Col{Ox}.  

 If bn=an, all the admittances of Col{Ox} are added in Yi,j with positive sign.  

 If bn= node±, only the admittance associated to node± is added in Yi,j with 
negative sign. 

 
Figure 17: Diagram of flow to obtain the nodal admittance matrix. 
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5.4. Generating the V and J vectors 

In the nullator vector, the nodes of Ox are the nodes of the nullor equivalent circuit 
with the same potential. Therefore, each subset of nodes Ox, represent a nodal voltage 
in the admittance matrix. Thus, the voltage vector is obtained from the nullator vector 
and given as: 

 TOOO X
VVVV }{}{}{ ,...,

21
  (8)

In the norator vector, the nodes of Px represent an entry of a current source given as:  

 TxPPPJ ,..., 21  (9)

To fill (9), the nodes of Px must be compared with the nodes (k,l) of all the current 
sources: 

 If bx=k the current source is added in (9) with negative sign, according to the 
position of Px. 

 If bx=l the current source is added in (9) with positive sign, according to the 
position of Px. 

 
Hence, for any analog circuit where the active device is modeled with nullor, the 
nullor equivalent circuit has n nodes and m nullors, thus, the size of the admittance 
matrix is equal to [n-m]×[n-m]. In order to compute fully-symbolic small-signal 
characteristics of analog circuits, the solution of the nodal admittance matrix can be 
performed by applying Cramer’s rule or Determinant Decision Diagrams1 [28, 29], 
for instance. 

6. Illustrative Examples 

In this section, we present some examples on symbolic analysis of analog circuits, in 
order to show the usefulness of the proposed nullor-based models and the potentiality 
of the proposed symbolic formulation method. 

6.1. OTRA-based universal filter 

As a first example, let us consider the universal filter taken from [30], which is 
depicted in Fig. 18(a). Substituting the behavior of the OTRA and of the independent 
voltage source with their nullor-based models, as depicted in Figs. 4 and 7, it results 
in a nullor equivalent circuit, as shown in Fig. 18(b). 

From Fig. 18(b) one can see that the circuit is only composed by nullators, norators, 
capacitors, resistors and one independent current source. Hence, the standard NA 
method can be executed to formulate the system of equations, which is given by: 

                                                 

 
1 See Chapter 8 for a detailed description on Determinant Decision Diagrams. 
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(a) 

 
(b) 

Figure 18: (a) OTRAs-based universal filter (b) nullor equivalent circuit. 

To reduce the order of (10), the nullor properties are applied. Thus, from Fig. 18(b) and 
by using the nullator properties, the columns: 2, 3, 5 and 6 in (10) should be deleted. 
Also, the coefficients of some columns are added: 1 with 16, 4 with 10, 7 with 14, 8 with 
9, and 12 with 13. By applying the norator properties, all the rows labeled as: 1, 4 and 7 
should be deleted. In the same manner, some rows are added: 2 with 8, 3 with 9 and 10, 
5 with 11, 6 with 12 and 13. Therefore, the admittance matrix is reduced as: 
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By resolving (11) to VOut=V{7,14}, the fully-symbolic transfer function is given by: 
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Since the transresistance gain of the OTRA is finite, its effect along with the 
frequency limitations can be considered. Thus, a two-pole model for Rmi(s) is given 
as: 
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Where p1 and p2 are the angular frequencies of the first and second pole and Rm0 is 
the DC gain of the OTRA. For middle frequency applications, (13) can be expressed 
as: 
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For very high frequency applications, Rmi(s) can be expressed as: 
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where Cmi is the parasitic capacitance associated to the first pole. Thus, if (15) is 
considered, (12) is modified as: 
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For middle frequency applications: 
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Therefore, (12) can be approximated to: 
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Therefore, 0 and Q are given by: 
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For low frequency, Cm1, Cm2, p1 and p2 are insignificant, thus, 0 and Q can be 
approximated to: 
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6.2. Non-inverting band-pass, inverting and non-inverting low-pass filters using 
ICCII± 

As a second example, let us consider the non-inverting band-pass and low-pass filter 
using ICCII± as shown in Fig. 19(a) [24]. The independent voltage source is modeled 
according to Fig. 4 and each active device is modeled as shown in Fig. 8(b) and 
10(c), including their parasitic elements. Therefore, the equivalent circuit is illustrated 
in Fig. 19(b). For this example, the formulation method introduced in Section 5 
should be used. Thus, the nullators, norators, current sources, admittances and 
capacitances data-structures are given by Table 1. 

 
                                   (a)                                                                         (b) 

Figure 19: (a) ICCII±-based non-inverting band-pass and low-pass filter (b) nullor equivalent circuit. 
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The O and P vectors are calculated from Table 1 and given as: 

}]10{},11,9{},8,7{},6,5{},4,3{},2,1[{O  
}]12,11{},9,8{},7,6{},5,4{},10,3{},1[{P  

(22)
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Therefore, the V vector is obtained directly from the O vector. The J vector is filled 
by comparing the nodes of the current source with each node of the P vector. Both 
vectors are given as: 

TVVVVVVV ],,,,,[ }10{}11,9{}8,7{}6,5{}4,3{}2,1{ ,    T
inVJ ]0,0,0,0,0,[  (23)

Table 1: Data-Structures of Two-Terminal Elements 

Nullators Nodes Norators Nodes Admittances Nodes Current Source Nodes 

O1 1,2 P1 2,0 gs=1 1,0 Vin 0,1 

O2 3,4 P2 3,10 ga 2,3   

O3 5,6 P3 4,5 gc=1 4,0   

O4 7,8 P4 6,7 gd=1 5,0   

O5 9,11 P5 8,9 Ca 6,0   

O6 12,0 P6 11,12 gz2 6,0   

    gy1 6,0   

    ge=1 7,0   

    gf=1 8,0   

    gb 9,10   

    gh=1 11,0   

    gi=1 12,0   

    gz1 10,0   

    Cb 10,0   

 

Following the formulation method, the list Col{Ox} are given as: 
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Finally, by using the P vector, the system of equations is given by: 
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The non-inverting band-pass response is taken in the node 10. The inverting and non-
inverting low-pass responses are available in the nodes 6 and 3, respectively. In this 
manner, by solving (25) to V{10}, V{5,6} and V{3,4} the fully-symbolic transfer functions 
are computed as: 
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7. Conclusion 

In this chapter, the generation of nullor-based models, not only of operational 
amplifiers but also of normal and inverting first, second and third generation current 
conveyors with a single and multiple outputs along with active devices with features 
that involves differential voltage signals has been introduced. From two-port and 
four-terminal network point of view, all the proposed models have been generated by 
taking into account the impedance levels associated to the input-output terminals 
along with the gain-equations of the active devices. As one can see throughout the 
chapter, the nullor-based models are not complex and they can quickly be included 
into symbolic analyzers. Further, nullor-based active device models by including 
parasitic elements, has also been introduced. Furthermore, a novel method to 
formulate the system of equations in order to compute fully-symbolic small-signal 
characteristics of analog circuits by applying only standard NA has been presented. 
Thus, by using the relationships of nullators and norators and by manipulating their 
data-structures, the admittance matrix can quickly be constructed, avoiding waste of 
CPU-time and memory in the formulation process. Examples have been introduced to 
show the usefulness of the nullor-based models and the potentiality of the proposed 
formulation method 
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CHAPTER 4 

Generation of the Transfer Functions for MIMO Systems 

Mihai Iordache and Lucia Dumitriu* 

Electrical Engineering Department, Politehnica University of Bucharest, Romania  

Abstract: The main aim of the symbolic analysis is the generation of the symbolic 
expressions of the circuit functions and computation of their sensitivities, in order to 
evaluate the circuit characteristics and their variation in respect of the parameter values. 
Other important information for circuit designer is about the location of poles and zeros 
in the complex frequency plane, or about the eigenvalues of the state matrix, necessary 
to develop a qualitative analysis of the circuit. For multiple inputs (multiple excitations) 
and multiple outputs it is of interest to obtain the transfer functions involving the input-
output variables. In this case, the concepts of controllability and observability are of 
importance. 
In this chapter two approaches for transfer function generation both in Single-Input-
Single-Output (SISO) and in Multiple-Input-Multiple-Output (MIMO) systems are 
presented: one approach is based on the state equations and the other one on the semi-
state equations of the circuit. Two variants for the first approach and three variants for 
the second one are developed and compared on illustrative examples, pointing out the 
advantages.  

 
Keywords: Symbolic analysis, transfer functions, matrix transfer functions, MIMO systems, design of 
analog circuits, state variables, state equations, normal tree, nodal analysis, modified nodal equations, 
frequency domain analysis, time-domain analysis. 

1. Introduction 

Optimization techniques together with the automatic and interactive procedures have 
a great impact on the computational effort needed in the symbolic circuit analysis and 
allow increasing the analog circuit size we can handle. 
The methods used for the automatic generation in symbolic or numeric-symbolic 
form of the circuit functions (transfer impedance, driving-point impedance, transfer 
admittance, driving-point admittance, voltage gain and current gain) can be grouped 
in some classes: the determinant method [1-10], the signal – flow graph method [6], 
[11-15], the tree-enumeration method, [16-24], the parameter-extraction method [25], 
[26], the interpolation method [27-29], and the state variable method [12, 30-36]. 
Starting from the circuit function definition we shall develop two techniques for 
automatic generation of the transfer functions in symbolic or numeric-symbolic 
matrix form: one is based on state equations, and the other one - on semi-state 
equations [37, 38]. Both techniques allow the analysis of the circuits without any 
constraint regarding the type of circuit elements. Excess elements are also considered.  
For the linear passive circuits with zero initial conditions and one input port and one 
output port, the general definition of the circuit function (also called network or 
transfer function) is: 
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where L(mo)=Mo(s) and L(mi)=Mi(s) represent the Laplace transform of the output 
variable, and of the input signal, respectively. Taking into account the possible nature 
of mo and mi, four types of transfer functions can be defined: transfer impedance, 
transfer admittance, voltage gain, and current gain. According with the notations in 
Fig. 1, the definitions of the four transfer functions are: 
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Figure 1: The input/output of the two-port equivalent scheme for the network function definitions. 

In the case of an impulse signal δ(t),   1 )t(L , the transfer function coincides with 
the output variable. 
In order to define the driving-point impedance (admittance), the input/output ports are 
treated as in Fig. 2(a, b). 

 
Figure 2: The input/output of the two-port equivalent scheme for the definitions of the driving-point 
impedance (a) and admittance (b). 

 

The linear and time-invariant circuits under consideration can contain: all four types 
of linear controlled sources, resistors, inductors, capacitors, nullors (for ideal opamps 
operating in the linear mode), and any multiterminal or multiport circuit element 
having an equivalent scheme made up only by two-terminal elements and controlled 
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sources. The circuits can also have Multiple Inputs And Multiple Outputs (MIMO) 
[39]. Consider a linear circuit C, with pi input ports and po output ports. The pi input 
ports consist in pvi voltage ports, characterized by the voltages vk = ek, k = 1, …, pvi, 
and pci current ports, characterized by the currents ik = jk, k = 1, …, pci (pi = pvi + pci). 
In order to identify the output voltage (current) ports we can consider them as ideal 
independent current (voltage) sources having the currents (voltages) equal to zero. 
The transfer function matrix H(s) has (poxpi) dimension. 
The rows of the H(s) matrix correspond to the output variables and the columns to the 
input (excitation) signals.  

Remarks 

Computation of a transfer function in respect of a certain input signal implies that all 
the other input signals are zero. 

2. State Variable Approach  

2.1. Introduction 

The state variable approach is very attractive both for numeric and symbolic analysis 
[37, 39, 42], because of the following advantages: 

- The knowledge of the state variable values at time t0, and of the excitations 
applied at ,tt 0  is enough to determine the state of the system at any time 0tt  ; 

- After finding the state variable vector x(t), we can easy find the time domain 
response of the circuit both in numeric or symbolic form; 

- Finding the poles and zeros of a transfer function, in numeric or numeric-
symbolic form, for a linear circuit (or for a piecewise-linear circuit in the 
operating point), is reduced to finding eigenvalues of two real matrices; 

- The state variable approach can be extended without much difficulty to deal with 
nonlinear circuits in which the Laplace transform method does not apply; 

- The state space representation provides a convenient and compact way to model 
and analyze multiple-inputs multiple outputs systems either in numeric or in 
symbolic form. 

There are two methods to formulate the state equations of a circuit in normal-form: 
1. The hybrid method [12]; 
2. The topological method of the normal tree [12, 30, 33, 34, 40]. 
The first method involves a very large number of calculations and for this reason it is 
not used to set up the state equations in normal form.  
In this section the topological method of the normal tree, based on Kirchhoff’s laws 
and on the constitutive equations of the circuit elements, is developed. A general class 
of time-invariant analog circuits, including circuits with excess elements, can be 
handled by this procedure.  
We call circuits with excess elements of the first kind (with degenerations of the first 
kind) the circuits that contain [30, 34]: 
- Loops of capacitors (C-loops), and/or loops of capacitors and independent voltage 
sources (C-Ei loops), and/or loops of capacitors and controlled voltage sources (C-Ec 
loops) and/or loops of capacitors, independent voltage sources, and controlled voltage 
sources (C-Ei-Ec loops) – generic called C-E loops; 
- Cutsets of inductors (L cutsets), and/or cutsets of inductors and independent current 
sources (L-Ji cutsets), and/or cutsets of inductors and controlled current sources (L-Jc 
cutsets), and/or cutsets of inductors, independent current sources, and controlled 
current sources (L-Ji-Jc cutsets) – generic called L-J cutsets. 
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The system of linearly independent first-order differential equations obtained by 
processing the Kirchhoff’s laws and the constitutive equations in the form, 

)t,x(fx   (3)

is called state equation in normal form of the circuit. In (3) x is a set of n independent 

variables  t21 nx,...,x,xx  called state vector, whose components nxxx ,...,, 21  are 

state variables, and n is the complexity order of the circuit. 
One of the important problems in the state variable approach is the selection of state 
variables. Usually the inductor currents and the capacitor voltages are chosen as state 
variables. It is generally accepted that the number of state variables associated with a 
circuit is equal to the number of dynamic elements minus the number of excess 
elements of the first kind, [30, 34], so that the complexity order of the circuit is given 
by: 

JLEC
nnnnn lCL    (4)

If the state equation in normal-form exists, it can be expressed in the following form: 

BuAxx   (5)

for the circuits without excess elements, and also for the circuits with degenerations 
that do not contain Ei and/or Ji. The occurrence of such degenerations involves the 
following normal form of the state equation: 

uBBuAxx  1  (6)

In the above equations u is the input vector of m size (independent sources), x  is the 
state vector of n size, A, B, and B1 are real matrices of appropriate dimensions. It is 
important to note that: 
1. A, called the state matrix of the circuit, is always a square matrix of order n; its 
eigenvalues are all the natural frequencies of the circuit so their knowledge allows a 
complete qualitative analysis: stability and nature of the circuit response;  
2. B1 exists only if the independent sources connected to the input ports make with 
the circuit elements degenerations of the first kind. 
The loops of inductors and/or loops of inductors and independent and/or controlled 
voltage sources (L-E loops), and the cutsets of capacitors and/or cutsets of capacitors 
and independent and/or controlled current sources (C-J cutsets) are degenerates of the 
second kind and they decide dependencies among capacitor derivative voltages and 
inductor derivative currents. Each L-E loop (each C-J cutset) introduces an 
eigenvalue equal to zero. 
We have to point up some advantages of the state variable method: 

 The state equations in symbolic form improve the accuracy in the numerical 
calculations; 

 The order of a circuit is equal to the rank of the associated state matrix A in 
(5) and (6). For a non-singular matrix A, the order of the circuit is equal to the 
number of eigenvalues of A, or the number of natural frequencies of the 
circuit; 

 Knowing the eigenvalues of the state matrix allows a qualitative analysis even 
for the nonobservable and noncontrolable circuits (for this kind of circuits the 
set of the transfer function poles are included in the set of the state matrix 
eigenvalues, but are not coincident, because some poles disappear in the 
computing process);  
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 The natural frequencies of a circuit directly affect the stability behavior of the 
circuit. For (asymptotic) stability, all the natural frequencies must be in the 
left half of the complex s plane; 

 In the case of the linear time-invariant analog circuits, the state matrix in 
symbolic form can be farther used to obtain a simplified expression of any 
circuit function;  

 It’s easy to estimate an optimal time step in relation with the eigenvalues of 
the state-matrix. So, the smallest eigenvalue (largest time constant) allows 
estimating a total simulation time, and the largest eigenvalue (smallest time 
constant) facilitates the choice of the time step size;  

2.2. Assumptions on the class of analyzed circuits  

We assume that the analyzed circuits meet the following requirements [30]: 
1. Consistency assumptions 

a) There are not loops consisting only of independent and/or controlled voltage 
sources, called E loops; 

b) There are not cutsets made up only of independent and/or controlled current 
sources, called J cutsets; 

c) All nonlinear capacitors are voltage-controlled. That means that the charge q of 
each capacitor is a function of its voltage,  vqq

 ; 

d) All nonlinear inductors are current-controlled. That means that the flux  of 
each inductor is a function of its current,  i ˆ ; 

2. Normal tree assumptions 
a) A special tree called Normal Tree (NT) is chosen. The normal tree has to 

contain in this priority: all independent and controlled voltage sources, all 
nonlinear voltage-controlled resistors, as many capacitors as possible, as many 
controlling branches of the current-controlled voltage sources and of the 
current-controlled current sources as possible (these branches are considered as 
resistive branches having the resistances equal to zero), and as many resistors 
as possible. The normal tree will not contain independent or controlled current 
sources, and nonlinear current-controlled resistors; 

b) Any controlled source belonging to a C-E loop or to an L-J cutset can depend 
only on the voltage of a tree capacitor or on the current of a cotree inductor. 

Though most practical circuits do not violate these assumptions, regarding the last 
one, we can note that there are many circuits which, while do not meet it, they still 
have state equations in normal-form [30].  
In fact, even in those rare cases when a circuit violates one or more of the above 
assumptions, we could easily overcome the difficulty by introducing small parasites 
to the circuit. For example, a small resistance can be inserted in series with a 
capacitor or a voltage source belonging to a C-E loop to remove it. Similarly, a small 
conductance can be connected in parallel with an inductor or a current source 
belonging to an L-J cutset to eliminate it.  
 

2.3. Setting-up of the state equations in symbolic/numeric normal form 

Consider, in the general case, a nonlinear network containing both linear and 
nonlinear resistors, inductors, and capacitors, independent voltage and current 
sources, linear magnetic couplings, the four types of linear controlled sources, and 
any multiterminal circuit element having an equivalent scheme made up only of two-
terminal circuit elements and controlled sources. The magnetic couplings can be 
simulated by inductors and current derivative-controlled voltage sources [33, 34].  
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According with the above assumptions a normal tree is selected.  
The capacitors that are not included in the normal tree are called excess capacitors, 
and the inductors that are included in the normal tree are called excess inductors.  

A cutset associated to a tree-branch is a cutset made up of only one tree branch and 
many links, whose direction agrees with the tree branch direction.  
We built the fundamental cutset matrix D with the following rules: 
- arrange the links in the order: Cl (link capacitors), Rl (link resistors), Ll (link 
inductors), Jc (controlled current sources), Ji (independent current sources); 
- arrange the cutsets associated to the tree-branches in the order: Σ(Ei) (independent 
voltage sources), Σ(Ec) (controlled voltage sources), Σ(Ct) (tree capacitors), Σ(Rt) 
(tree resistors), Lt (tree inductors). 
We obtain [33, 34, 43, 44]: 
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where, for example, Ei (Jc) is the set of independent voltage (controlled current) 
sources, and  LLCC DD   represents the incidence submatrix of the link capacitors (link 
inductors) to the cutsets associated to the tree branch capacitors (inductors). The null 
submatrices    , LRLCRC DDD  , in (7) appear as a consequence of the above definition of 

the normal tree. 
With Kirchhoff’s laws we express the tree-branch currents in respect of the link 
currents, and the link voltages in respect of the tree-branch voltages as it follows: 

lt Dii   (8)

t
t

l vDv   (9)

Adding to the equation system (8), (9) the constitutive equations of the linear and of 
the nonlinear circuit elements (the nonlinear characteristics will be approximated by 
piecewise-linear continuous curves) a complete equation system will be obtained. 
Choosing as state variables the tree capacitor voltages  tCv and the cotree inductor 

currents Lli , the above system is solved by a program that implements the algorithm 

presented in [33, 36], and uses for manipulation of the symbolic expressions, the 
symbolic simulator Maple. The result of the computing process will be the state 
equations in symbolic/numeric normal (5) or (6) where: 

tt tttt
           









iiEtC JLl , ivuivx  (10)

are the state vector, and the vector of the input signals, respectively. 
The output vector y has the following expression: 

DuCxy   (11)
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Algorithm for symbolic generation of the state equations in normal form 

Step 1. A normal tree and its corresponding cotree are selected; 

Step 2. Expressing the currents of the current-controlled sources in respect of their 
controlling variables (according to the definition relations), and taking into account 
that tvCi CC d/d , the KCL is applied on the cutsets associated to the tree branch 

capacitors; 

Step 3. Expressing the voltages of the voltage-controlled sources in respect of their 
controlling variables, and taking into account that: ,RR iRv   tiLv LL d/d , the 
KVL is applied on the loops associated to the link capacitors; 

Step 4. Apply the KVL on the loops associated to the link inductors; 

Step 5. Apply the KCL on the cutsets associated to the tree branch inductors; 

Step 6. Write the KCL on the cutsets associated to the tree branch resistors; 

Step 7. Write the KVL on the loops associated to the link resistors;  

Step 8. Considering as independent variables the current vectors iRt and iRl, the 
equations from step 6 and 7 are solved; 
Step 9. The symbolic/numeric expressions obtained at the step 8 are introduced into 
the equations from the step 3 and 5. The equations generated in this way, together 
with the expressions from the step 8 are introduced into the equations from the steps 2 
and 4. Solving these equations in respect of the differentials of the state variables, the 
state equations in normal symbolic/numeric form are obtained. 

Example 1  

Let us consider the nonreciprocal electric circuit with excess elements shown in 
Fig. 3. The normal tree branches are drawn by bold lines, NT = {e1, C3, R2, L5}. This 
circuit has an excess element of the first kind (an L–J cutset,  765 ,, jLLJL  ), and 

an excess element of the second kind (an L-E loop, },,{ 651 LLel EL  ). This loop 

determines an eigenvalue equal to zero. The complexity order of the circuit is 
2112   JLCL nnnn . 

Hence, the structure of the state vector and of the input vector is: 

  t
63 LC i,vx ,  7ju  (12)

 

Figure 3: Circuit diagram. 
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Step 1. A normal tree and its corresponding cotree are selected:  5231 ,,, LRCeNT   

and  764 ,, jLRCT  .  

Step 2. Applying the KCL on the cutset associated to the tree capacitor C3, we obtain: 

  74
3

3 d

d
    

3
ji

t

v
C: C

C   (13)

Step 3. The circuit has not link capacitors. 

Step 4. The KVL applied on the loop associated to the link inductor L6 has the following 
structure:  
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Step 5. The KCL applied on the cutset associated to the tree branch inductor L5 has 
the form: 

  765    
5

jii: LLL   (15)

Step 6. The KCL applied on the cutset associated to the tree branch resistor (R2 = 0, 
that identifies the controlling current of e1) has the following structure:  

  42    
2

ii:R   (16)

Step 7. The KVL applied on the loop associated to the link resistor R4 has the form:  

  221344    
4

iRviR:l _CR   (17)

Step 8. Solving the equations from steps 6 and 7, we get the current of the tree branch 
resistor i2, and the link resistor current i4: 
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  (18)

Step 9. The state equation in normal form is: 
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 (19)

The state matrix in (19) has a zero column; consequently it has a null eigenvalue. The 
cause is the second kind degeneration },,{ 651 LLel EL  .  

Example 2 

 Let us consider the nonlinear circuit in Fig. 4. This is a circuit without excess 
elements, which contains two nonlinear resistors. The voltage-controlled resistor is 
represented by a parallel equivalent scheme (Fig. 16(a)), while the current-controlled 
resistor is modeled with a series equivalent scheme (Fig. 16(b)).  
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The complexity order of the circuit is nCt + nLl = 2 + 2 = 4, and the state variables are 
vC 2, vC 3, iL 4, and iL5. 

 
Figure 4: Circuit without excess elements. 

We can remark that one of the controlled sources (j10) has as controlling variable a 
state variable of the circuit (vC2). To formulate the state equations in symbolic form, 
the normal tree { 71232861 vdi G,b,C,C,e,e,e } is automatically generated and the 

symbolic state equations are obtained: 
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Example 3 

The circuit in Fig. 5 contains an excess element (an L-J cutset), so that the complexity 
order of the circuit is .2121 

 JLLC nnn  The controlling variables of the 

controlled sources are variables associated to resistors. 

 
Figure 5: Circuit with an excess element. 

 

According to the assumptions presented above, the program generates the normal tree 
introducing the inductor L3 in the tree branch set: 

NT={ 365112781 L,G,R,b,C,e,e,e vdi }. The state variables of the circuit are the voltage 

of the tree branch capacitor, and the current of the link inductor, {vC2, iL4}.  
The symbolic state equations obtained by the program have the form: 
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Example 4 

In Fig. 6 a nonreciprocal circuit with magnetic couplings is represented. The branches 
of the normal tree are drawn by bold lines – NT = {e1, C2, L3, L4, R7, b8, C10, R11, R12, 
e13}. This circuit has two excess inductors - L3 and L4 (there are two L cut sets), so the 
structure of the state vector and the input vector is: 

 

  t
65102 ,,, LLCC iivvx ,  13eu  (22)

 
The state equations in symbolic normal form are: 
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Figure 6: Circuit with magnetic couplings. 
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Example 5 

The essential quality of the state variable approach is its ability to yield all the natural 
frequencies of the circuit, which are the eigenvalues of the state matrix A. A good 
example is the A741 operational amplifier [45], shown in Fig. 7, whose (partially) 
symbolic state equations in normal form will be formulated, in order to extract the 
circuit state matrix. If the transistors are modeled as in Fig. 8, the small-signal 
equivalent circuit of the amplifier in open-loop configuration contains 26 nodes and 
140 primitive elements.  

The circuit was analyzed with SYSEG [34] by using a diakoptic approach [36] in the 
following steps:  

Step 1. Applying the decomposition technique. 
Step 2. Setting up the state equations in symbolic form of each subcircuit. 
Step 3. Aggregation of these equations to obtain the state equations in normal form of 
the entire circuit.  

In the case of the large-scale circuits, the full symbolic expressions being too large, 
the symbolic manipulator (in our case Maple) fails. This is why we solved for the 
equations of the entire circuit in partially-symbolic form, taking as symbols different 
parameters. The result covers 9 pages in 9 pt font. By extracting the state matrix of 
(24x24) size, in partially-symbolic form, and using appropriate approximation 
methods, we can get the dominant eigenvalues of the circuit. These are very 
important in computer aided design for stability analysis.  

The numeric computation of the 24 eigenvalues gives:  

Eigenvalues:=[ -41982289128.32411, -30212173475.16874, -15457407820.87884,  

-15865105030.38149, -10345252310.39025, -8441468555.58094, -2632995640.68324, 

-202065956.40661, -2158354872.80714+696171274.30908*I, -6476416.47260,  

-2158354872.80714-696171274.30908*I, -1256476779.39262, -962243603.16744,  

-875147990.25975, -626648837.11704, -385273800.27889,  

-41478072.27004 + 87013622.64242*I, -41478072.27004 - 87013622.64242*I,  

-235102888.68789, -255322896.51432, -204756738.00733, -45060097.86413,  

-2067.32751, -19.50929]. 

We retain the dominant eigenvalues -19.50929 and -2067.32751 the closest to the 
complex plane origin (Fig. 9). If the simulation is performed by SPICE simulator (that 
uses modified nodal analysis) the voltage gain is a rational function whose denominator 
is a polynomial of 23-th order. The poles of the transfer function have the same 
numerical values as the above eigenvalues except the second dominant value that was 
lost in the computation process by a pole-zero cancellation (actually the two values are 
closed). Consequently, excepting the case when the generated transfer function is in 
irreducible form, the complete information about the natural frequencies of a circuit can 
be obtained only by state variable approach. In other words the set of the transfer 
function poles is included in the set of the state matrix eigenvalues   λp  . 

Remarks 

1. Natural (called also critical or characteristic) frequencies are circuit parameters 
which dictate the characteristic dynamic behavior of the circuit, independently of the 
excitation at the input ports. They directly affect the stability behavior of the circuit. 
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2. Controllability provides that an input is available to bring the initial state to any 
desired state in a finite time. A network is completely controllable if all its natural 
frequencies are coupled to all the inputs of the network. 

3. A natural frequency that cannot be excited from an input, it is said to be non-
controllable at this input. Non-controllable natural frequencies may cause a state 
variable to be unstable, independently of the input excitation. 

4. Observability involves a relation between an output variable and the state vector, 
so that knowing an output trajectory provides enough information to predict the 
initial state of the system. A network is completely observable if all its natural 
frequencies are coupled to all the outputs of the network. 

5. A natural frequency uncoupled to an output is said to be non-observable at that 
output. If such a parameter exists, the network may seem stable at that output, 
although it is internally unstable. 

6. A completely controllable and completely observable network has the transfer 
function in irreducible form. Only for these networks the set of the poles is 
coincident with the set of the natural frequencies.  

7. Pole-zero cancellation is theoretically allowed (the expressions are equivalent) 
but practically dangerous because one lost information (there might be a signal 
that cannot be observed). 

8. Assume the pole that was cancelled out is unstable; if the system is not 
completely observable one cannot see the instability at the output. One of the 
natural frequencies doesn’t appear in the output expression, but it appears 
explicitly in one of the states (the system is not internally stable).  

9. It is not detectable if the pole-zero cancellation affects an unstable pole, that is 
why one should not cancel out any pole-zero pair of the transfer function before 
testing for stability. 

10. Because the eigenvalues of the state matrix are all the natural frequencies of the 
circuit, a pole-zero cancellation have to be analyzed from a state space 
perspective. 

 
Figure 7: The A741 operational amplifier.  
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Figure 8: AC model for bipolar transistors. 

 
Figure 9: Eigenvalue locations of A741 operational amplifier. 

2.4. Transfer function generation for MIMO systems 

2.4.1. Transfer function generation in matrix form 

The state equations in frequency domain (with null initial conditions) and the 
corresponding output equations, obtained by applying the Laplace transform to (6) 
and (11), have the following form:  
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 (25)

where the state vector  sX  is an n–vector of Laplace transforms of the state 

variables, the input vector  sU  is an m–vector of Laplace transforms of the input 

signals and the output vector  sY  is a p–vector of Laplace transforms of the output 
variables. The matrices A, B, B1, C and D, which are specific to the circuit, have nxn, 
nxm, nxm, pxn and pxm dimension respectively, and I is the unit matrix. Starting 
from the definition, the transfer function H(s), in matrix form, pxm, has the 
expression 
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s  (26)

The rows of the H(s) matrix correspond to the output variables and the columns to the 
input (excitation) signals. For example, the entry Hkj(s) corresponds to the output 
variable from the port k (Vk or Ik) and to the input signal (Ej or Jj) from the port j. 
The algorithm for automatic transfer function generation according with (26) consists 
in the following: 
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Step 1. Setting up the state equations in time domain (6) by automatic generation of 
the matrices A, B, B1; 
Step 2. Automatic generation of the matrices C and D; 
Step 3. Transform the state equations from the time domain in frequency domain 
(25), by applying Laplace transform; 
Step 4. Inverse the matrix )( AI-s  that contains as symbol the complex frequency s;  
Step 5. Compute the transfer function matrix H(s) by using (26). 

Remarks 

If the matrix that has to be inversed at the step 4 is too large, and/or when we want to 
keep also certain circuit parameters as symbols (for example in order to compute the 
transfer function sensitivities) it is more efficient to generate the transfer functions for 
MIMO systems according to the procedure presented further. 

2.4.2. Transfer function generation without matrix inversion 

The algorithm that avoids matrix inversion, suitable for symbolic analysis, involves 
the following steps: 
Step 1: Starting from the input file of the netlist type, the state equations in time 
domain (6) are generated; 
Step 2: Considering null initial conditions, the state equations in time domain are 
transformed in the frequency domain. These equations have a partial symbolic form 
containing as symbols the complex frequency, all the input signals, and also some 
circuit parameters, specified by the user; 
Step 3: The partial symbolic algebraic equations obtained in the previous step are 
solved in respect of the Laplace transforms of the state variables by a suitable 
program (for example Maple). In the case of the large-scale analog circuits we can 
use a reduction algorithm of the state equation number [41]. 
Step 4: The output variables are expressed in respect of the inputs and of the complex 
variable s using the second equation in (25); 
Step 5: Taking into account the definitions (2), the network functions are performed. 
Obviously, for the computation of a transfer function in respect of an input signal, all 
the other signals in the corresponding equation have to be zero.  

Example 6  

In Fig. 10 a universal filter is presented. Let us compute the transfer functions of the 
four filters. 

The output variable vector is 

( ) ( ) ( ) ( ) ( )[ ] t
11_1011_811_611_4= sVsVsVsVsY  (27)

and the input signal  

    sEsU _111  (28)

The vector of the four transfer functions is: 

 t
1111110111118111116111114 ,_,,_,,_,,_, AAAA)s( H  (29)

Computing the matrix of the transfer functions by using both of the above procedures 
we get the same expression H(s) = TF_ST_EQ: 
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Figure 10: Universal filter diagram. 

 

 

 

In Figs. 11 and 12, the frequency characteristics of the voltage gain magnitude for the 
High Pass Filter (HPF), and for the Band Pass Filter (BPF), respectively, are presented.  

The two curves obtained by the two procedures based on the state equations (with 
matrix inversion – ST_EQ1 and without matrix inversion – ST_EQ2) are coincident. 

(a) (b) 

Figure 11: Frequency characteristics of the voltage gain for HPF (a), and Bode characteristics of the 
voltage gain for HPF (b), by the state variable approach. 

 := TF_ST_EQ













 24980. 0.3667 s2 1.611 s

 s2 18330. s 0.2499 109


0.7332 107 s 18330.

 400. s2 0.7332 107 s 0.9996 1011

0.3666 1012

 400. s2 0.7332 107 s 0.9996 1011


 3.666 s2 2.220 s 0.9165 1010

 s2 18330. s 0.2499 109
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(a) (b) 

Figure 12: Frequency characteristics of the voltage gain for BPF (a), and Bode characteristics of the 
voltage gain for BPF (b), by the state variable approach. 

3. Semi - State Variable Approach  

3.1. Introduction 

The nodal approach in circuit analysis has two variants:  
 The first - using companion circuits (resistive discrete circuits associated with 

an integration implicit algorithm), that gets the dynamic circuit response by 
the analysis of a sequence of resistive circuits. In the Modified Nodal Analysis 
(MNA) the circuit matrix is obtained by augmentation of the nodal 
conductance (admittance) matrix corresponding to the non-NA-compatible 
circuit elements with additional rows and columns. 

 The second - using the circuit equations in dynamic behavior obtained by 
KCL and the constitutive equations of the circuit elements. The dynamic 
behavior description of the circuit by modified nodal equations is known as 
the semi-state variable method, and uses those variables which are most 
convenient from the point of view of the analysis results. 

The independent variables of both methods above are: 
 n  1 node voltages, that make up the voltage vector 1n-v ;  
 m branch currents, which can not be expressed in respect to the node voltages 

or to the first order derivatives of the node voltages and the circuit parameters, 
that make up the vector of controlling currents mi ; 

The vector mi  contains the currents of the independent voltage sources, the currents 
of voltage sources controlled both in current or in voltage, the controlling currents of 
the Current-Controlled Voltage Sources (CCVSs) and of the Current-Controlled 
Current Sources (CCCSs), the currents of the current-controlled nonlinear resistors, 
the currents of the current-controlled nonlinear inductors, and the linear inductor 
(magnetic coupled or not) currents. 
In dynamic behavior, the inductor (capacitor) equations contain current (voltage) 
derivatives. Consequently, the modified nodal equations must contain derivatives of 
the independent variables. Their general form is: 

     
   








tt

ttt

xLy

BuGxxW
t


 (30)
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where: 

  







 

m

nt
i

v
x 1  

 (31)

is the circuit independent variable vector, with initial condition  00 txx  ; 









 

m

n

t
t

i

v
x 1

d

d
)(  

 (32)

is the derivative of the independent variable vector; 
W and G are square matrices )1()1( mnmn  ; 









 

m

sc,n

e

i
u 1  

 (33)

is the input vector, with 1n,sci  - the vector of the short-circuit currents, and me  is the 

electromotive force (e.m.f.) vector of the ideal independent voltage sources, and of the 
sources resulted from the nonlinear characteristics of the nonlinear current-controlled 
elements which are piece-wise linearized. 
B and L are selector matrices, with entries (1, 0 or 1), and the superscript “t” denotes 
the transpose. 
In frequency domain and with zero initial conditions, (30) can be written as: 
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XLY

BUXWG
 

 (34)

For the case of nonlinear elements, the modified nodal equations of the circuit 
become: 

       
   







tt

ttttt

xLy

BuxFGxxxW
t

)()(
 

 (35)

where   txF  is a nonlinear function of x. 
If for the nonlinear inductors (nonlinear capacitors) the magnetic fluxes (electrical 
charges) are considered as independent variables, the matrix W is independent of x. 

Remarks 

The method can be applied to a large class of nonlinear circuits containing both 
linear and nonlinear non-monotonic resistors, inductors and capacitors, independent 
voltage and current sources, the four types of linear controlled sources, time-
variable resistors (as models for the switches) and any type of excess elements. It 
has a lot of advantages: 
 the semi-state equations are simply formulated from the netlist; 
 it does not impose restrictions to the nonlinear characteristics; 
 it does not require an associated discrete equivalent circuit which needs an 

additional computing effort, especially when the numeric integration is made with 
changeable time step; 

 the matrices W and G are sparse, consequently, they require just a little space of 
memory in a computer implementation; this compensates the disadvantage to 
operate with a large number of variables; 
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 by simply cancellation of the matrix W and by solving an algebraic system of 
equations, the DC analysis can be performed; this can be necessary for finding 
initial conditions of the dynamic behaviors; 

 the method can be applied for nonlinear and/or switching circuits; 
 for the nonlinear circuit analysis, the method has the great advantage that allows 

keeping as symbols only the parameters of the nonlinear elements; so the 
elements of W and G matrices, depending on the linear circuit elements, are 
computed only once, at the beginning of the iteration procedure. 

3.2. Contributions of several ideal circuit elements to the modified nodal 
equations in time-domain 

Linear inductor  

The constitutive equation in connection with the notations in Fig. 13 is: 

 

 

Figure 13: Linear inductor. 
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The linear inductor introduces as new independent variable the current iL. The 
contribution of this circuit element to the semi-state (time domain modified nodal) 
equations is: 
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 (37)

Linear capacitor  

The characteristic equation, using the notations in Fig. 14, is: 
The two curves obtained by the two procedures based on the state equations are 
coincident. 

 

Figure 14: Linear capacitor. 
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According with (38), the contribution of a linear capacitor to the time domain 
modified nodal equations is: 
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Magnetic coupled inductors 

The constitutive equations, in connection with the notations in Fig. 15, are: 
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Figure 15: Magnetic coupled inductors. 

The magnetic coupled linear inductors introduce as new independent variables the 
currents iL1 and iL2. The contributions of these circuit elements to the semi-state (time 
domain modified nodal) equations are: 
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  (41)

Voltage-controlled nonlinear resistor 

Approximating the characteristics of all voltage-controlled nonlinear resistors by 
piecewise-linear continuous curves, for an arbitrary segment k, we can write:  

           kjvvkGikjvkGvii RvRvRvdRvRvRvRvdRvRvRvRv  ˆ   (42)

According with (42), the contribution of a voltage-controlled nonlinear resistor to the 
time-domain modified nodal equations is: 
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Current-controlled nonlinear resistor 

Approximating the characteristics of all current-controlled nonlinear resistors by 
piecewise-linear continuous curves, for an arbitrary segment k, we can write:  

         keikRvvkeikRivv RiRidRiRiRiRiRidRiRiRiRi  ˆ  (44)

The current-controlled nonlinear resistor introduces as new independent variable the 
current iRi. Taking into account (44), the contribution of these circuit elements to the 
time-domain modified nodal equations can be expressed in matrix form as follows: 
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(45)

According with the above equations, each voltage-controlled (current-controlled) 
nonlinear resistor can be substituted, for the arbitrary segment k, by the equivalent 
circuit in Fig. 16(a, b). 

 
Figure 16: Equivalent circuits for piecewise-linear resistors: (a) –voltage-controlled resistor; (b) – 
current-controlled resistor. 

Ideal independent voltage source 

The constitutive equation of an ideal independent voltage source (Fig. 17) is: 

evvuE     (46) 

 
Figure 17: Ideal independent voltage source. 

The source current Ei  can not be expressed in respect of the node voltages v , v , 
and the e.m.f. e. For this reason it becomes independent variable.  
Taking into account (46), the contribution of this circuit element to the semi-state 
equations can be expressed in matrix form as: 
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Ideal independent current source 

The characteristic equation of the ideal independent current source, using the 
notations in Fig. 18, is: 

jiJ    (48) 

 

Figure 18: Ideal independent current source. 

The contribution of this circuit element to the semi-state equations is: 

    







































j

j

v

v

v

v

vvvv





 (49)

Current-controlled voltage source 

According with the notations in Fig. 19, the element equations are: 

0or    

0
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  (50) 

 
Figure 19: Current-controlled voltage source. 

The variables of a current-controlled voltage source are Cv , Cv , cv , cv , Ci  and ci , 

and the contribution to the equation matrices is: 
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 (51) 

Voltage-controlled current source 

The equations according to the notations in Fig. 20 are: 

 


CcCCcCCcCc

C

vGvGuGi

i 0
.  (52) 
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Figure 20: Voltage-controlled current source. 

 

The voltage–controlled current source is a NA-compatible element. Taking into 
account (52), the contribution of this circuit element to the semi-state equations can 
be expressed in matrix form as: 
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(53)

Note. The matrix entries replaced by points depend on other circuit elements (NA-
compatible circuit elements). 

Example 7 

The semi-state equation matrices (30) for the universal filter (Fig. 10) have the 
following structure: 

 

W := matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, C5, -C5, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -C5, 
C5, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, C8, -C8, 0, 0, 0, 0, 0, 0, 0], [0, 0, 
0, 0, 0, 0, -C8, C8, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0]]); 

G := matrix([[G1, -G1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0], [-G1, 
G1+G2+G12+G13, -G13, 0, 0, -G12, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -G13, 
G3+G7+G13, -G3, 0, 0, 0, -G7, 0, 0, 0, 0, 0, 0, 0], [0, 0, -G3, G3+G4+G11,  
-G4, 0, 0, 0, -G11, 0, 0, -1, 0, 0, 0], [0, 0, 0, -G4, G4+G15, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0], [0, -G12, 0, 0, 0, G6+G12, -G6, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0,  
-G6, G6+G17, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -G7, 0, 0, 0, 0, G7+G9, -G9, 0, 0, 0, 
0, -1, 0], [0, 0, 0, -G11, 0, 0, 0, -G9, G9+G10+G11+G19, -G10, 0, 0, 0, 0, 0], 
[0, 0, 0, 0, 0, 0, 0, 0, -G10, G10, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0], [0, A14_2_3, -A14_2_3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 
-A16_0_5, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -A18_0_7, -1, 0, 0, 0, 0, 
0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -A20_0_9, -1, 0, 0, 0, 0, 0]]); 

B:=matrix([[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [-1], [0], [0], [0], [0]]); 

Lt := matrix([[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 0, 0, 0, 0]]); 
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3.3. Transfer function generation in matrix form  

3.3.1. Transfer function generation in matrix form by one matrix inversion 

We recall (34) 
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and using the definition of the transfer function in matrix form, we get the following 
expression: 
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3.3.2. Transfer function generation in matrix form by two matrices inversion 

Multiplying both sides of the first equation in the system (34) by G1 (the matrix G 
being a nonsingular matrix), we can write: 
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where 

BGRWGP 11 ,    (56)

From (55), the network function H(s) takes the form:  

   
    RPIL

U

Y
H 1t  s

s

s
s  (57)

Because the expression (57) needs the inversion of two matrices, G and (I  sP), the 
formula (54) is more advantageous.  

3.3.3. Transfer function generation without matrix inversion 

A more efficient procedure to generate network functions in matrix form, based on 
the semi-state equations in frequency domain (34), consists in the following steps: 

Step 1: Starting from the input file of the netlist type (in which the circuit can contain 
multiple inputs) the semi-state equations in time-domain are generated; 
Step 2: Considering null initial conditions, the semi-state equations in time domain 
are transformed in the frequency domain (using Laplace transform); 
Step 3: The algebraic equations obtained in the previous step are solved in respect of 
the Laplace transforms of the state variables. In the case of large-scale analog circuits 
we can use the reduction algorithm of the semi-state equation number [41]; 
Step 4: The suitable output variables are expressed in respect of the inputs and of the 
complex variable s; 
Step 5: Taking into account the definitions, all network functions are performed. 
 

Remarks 

 For MIMO systems the most efficient procedure to generate the transfer functions 
is the procedure based on the direct solving, either of the state equations or of the 
semi-state equations, in the complex frequency domain, because these techniques 
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do not inverse any matrix. Because of this, they allow a large number of symbols 
that is, without doubt, a great advantage for the automatic design; 

 In general, the dimension of  AI s  matrix is much smaller than the 

dimensions of  GW s  and  PI s matrices, but it is less sparse. 

Example 8 

Applying the three above procedures (Transfer function matrix computed by the first 
semi-state procedure – TF_ss1 (§ 3.3.1), Transfer function matrix computed by the 
second semi-state procedure – TF_ss2 (§ 3.3.2), and Transfer function matrix 
computed by the third semi-state procedure – TF_ss3 (§ 3.3.3)) we have computed 
the transfer functions of the universal filter in Fig. 10. Because of the huge full 
symbolic expressions of the transfer functions, the numerical values of the circuit 
parameters were substituted to get the following condensed expressions in partially 
numeric matrix form:  

 

 

 

 
 

In Figs. 21 and 22 the frequency characteristics of the voltage gain magnitude for the 
High Pass Filter (HPF), and for the Band Pass Filter (BPF), respectively, are 
presented for comparison.  

 := TF_ss1













0.001375 ( ) 51. 404. s 800. s2

 0.7500 109 55000. s 3. s2


137.5 ( )101. 400. s

 0.7500 109 55000. s 3. s2

0.2750 1010

 0.7500 109 55000. s 3. s2


0.05500 ( ) 0.5000 1012 101. s 200. s2

 0.7500 109 55000. s 3. s2

 := TF_ss2














0.1000 10-24 ( )   0.4676 1024 0.3704 1025 s 0.7334 1025 s2 37. s3

 0.5000 109 36660. s 2. s2


0.1000 10-15 ( ) 400. s2 0.3667 1021 s 0.9260 1020

 0.5000 109 36660. s 2. s2

0.1000 10-21 ( ) 0.1000 1015 s2 0.6508 1019 s 0.1834 1032

 0.5000 109 36660. s 2. s2


0.2000 10-8 ( ) 0.9165 1019 0.1917 1012 s 0.3657 1010 s2

 0.5000 109 36660. s 2. s2

 := TF_ss3













0.8800 1018 ( )s 0.2550 ( )s 0.2500

 0.2400 1019 s2 0.4399 1023 s 0.5998 1027


0.1111 1023 0.4400 1023 s

 0.2400 1019 s2 0.4399 1023 s 0.5998 1027

0.2200 1028

 0.2400 1019 s2 0.4399 1023 s 0.5998 1027


 0.5500 1013 1111. s 2200. s2

 600. s2 0.1100 108 s 0.1500 1012
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(a) (b) 

Figure 21: Frequency characteristics of the voltage gain for HPF (a), and Bode characteristics of the 
voltage gain for HPF (b), by the semi-state approach. 

 

(a) (b) 

Figure 22: Frequency characteristics of the voltage gain for BPF (a), and Bode characteristics of the 
voltage gain for BPF (b), by the semi-state approach. 

 

Note: Taking as base the second procedure, we can denote that the computing time 
for the first procedure is four times bigger, while for the third procedure is twenty 
times smaller. 

 

Example 9 

Consider the tooth filter buffered on 60 Hz represented in Fig. 23, in which for the 
operational amplifiers the linear models are used. In order to verify the above 
procedures, both in state variable and in semi-state approaches, we consider two input 
ports (1_8 and 8_2) and one output port – 7_8, and generate the following transfer 
function matrix: 
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Figure 23: Tooth filter buffered on 60 Hz. 

According with the first procedure based on the state equations (26), the transfer 
function matrix has the following expression: 

 

Using the algorithm based on the state equation manipulation in frequency domain, 
we get: 

 

In the case of the procedures based on the semi-state equations, the circuit function 
matrix has the following structures: 

 

 

 

The frequency characteristics of the voltage-gain and of the transfer impedance, 
corresponding to these five procedures are plotted in Figs. 24, and 25, respectively. 

(a) (b) 

Figure 24: Frequency characteristics of the voltage gain 8,1_8,7A  (a), and Bode characteristics (b). 

 := TF_ST_EQ1 









1.000 ( )s 138.6 ( ) s2 1.139 s 136800.

( )s 132.9 ( ) s2 79.04 s 142800.

0.2128 108 s2

( )s 132.9 ( ) s2 79.04 s 142800.

 := TF_ST_EQ2 









0.9996 ( )s 138.7 ( ) s2 1.170 s 136800.

( )s 132.9 ( ) s2 78.90 s 142700.

0.04000 ( )  0.6400 107 s 0.1600 1010 0.5320 109 s2

( )s 132.9 ( ) s2 78.90 s 142700.

TF_ss1 := 











0.9999 ( )s 138.7184 ( ) s2 1.1542 s 136734.36

( )s 132.9879 ( ) s2 78.9378 s 142626.40

0.21276490 108 s2

( )s 132.9879 ( ) s2 78.9378 s 142626.40

 := TF_ss2










0.9999 ( )s 138.7184 ( ) s2 1.1540 s 136734.30

( )s 132.9879 ( ) s2 78.9379 s 142626.35

0.21276483 108 s2

( )s 132.9879 ( ) s2 78.9379 s 142626.35

 := TF_ss3










0.9999 ( )s 138.7184 ( ) s2 1.1542 s 136734.36

( )s 132.9879 ( ) s2 78.9378 s 142626.38

0.21276490 108 s2

( )s 132.9879 ( ) s2 78.9378 s 142626.38
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(a) (b)

Figure 25: Frequency characteristics of the transfer impedance 2887 ,_,Z  (a), and Bode characteristics 

(b). 

We can see that in the above figures the five curves overlap. 
The state matrix A of the circuit has the numeric expression (the full symbolic 
expression is too large to be retained): 

 

and the eigenvalues are: 

 

Example 10 

We want to study the active pass-band filter of the Butterworth type, shown in Fig. 
26(a). This filter is designed to extract the 500 Hz harmonic of a periodic signal.  
We intend to generate the network functions for two input ports (with e29 and j30), and 
the output ports 21_22 and 13_22. The network function matrix has the form: 

 := A












-105.43733 1014.3835 1383.7689

-60.633745 -60.633745 308.75161

-45.854785 -45.854785 -45.854785

 := Eigenvalues [ ], ,-39.468884 375.59110 I -39.468884 375.59110 I -132.98809
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Figure 26: (a) Active band pass filter of the Butterworth type; (b) Linear model for the opamps. 

 
   
   








sZsA

sZsA
s

22,2_22,1322,1_22,13

22,2_22,2122,1_22,21
H  (59)

The transfer functions were computed by three ways: the two procedures based on the 
state variables and the algorithm based on the semi-state equation manipulation in 
frequency domain. Because the computation of the inverse matrices from the 
equations (54) and (57), having as symbol the complex variable s, is very expensive, 
these procedures are not used. The frequency characteristics of the four transfer 
functions corresponding to the three procedures are plotted in Figs. 27 - 30. 

(a) (b) 

Figure 27: Frequency characteristics of the voltage gain 22,1_22,21A  (a), and Bode characteristics (b).  
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(a) 

 
(b)

Figure 28: Frequency characteristics of the transfer impedance 2,22_22,21Z  (a), and Bode 

characteristics (b).  

 
(a) (b) 

Figure 29: Frequency characteristics of the voltage gain 22,1_22,11A  (a), and Bode characteristics (b).  

(a) (b) 

Figure 30: Frequency characteristics of the transfer impedance 2,22_22,11Z  (a), and Bode 

characteristics (b).  
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CHAPTER 5 

Symbolic Analysis of Analog Circuits by Flow-Graphs 

Mourad Fakhfakh1,*, Irina Asenova2 and Mourad Loulou1 

1University of Sfax, Tunisia and 2Higher school of transport, Sofia, Bulgaria 

Abstract: This chapter details the use of Coates flow-graphs for the analysis of analog 
circuits. Basic concepts of the association of graphs to algebraic equations are presented. 
Solving the flow-graph by topological methods is detailed. Application to the 
computation of symbolic transfer functions of analog circuits is highlighted. In addition, 
application to the generation of flow-graph stamps for some circuits, such as, controlled 
sources, MOS transistors, current conveyors, is also presented, and some application 
examples for computing transfer function of current conveyor based filters are proposed. 
Further, first-order symbolic sensitivity analysis of nullor based networks is described. 
Generation of partial symbolic transfer functions, using modified Coates flow-graphs, is 
detailed. Examples illustrating the proposed method are presented. 

Keywords: Coates flow-graphs, modified coates flow-graphs, symbolic analysis, nullors, flow-graph 
stamps, symbolic sensitivity analysis, controlled sources, MOS transistors, current conveyors, 
DVCCII, FDCCII. 

1. Introduction 

Flow-graphs can be used as tools for the analysis, modeling and synthesis in network 
theory and in linear system theory.  

One important step completing every network analysis and synthesis procedure is the 
determination of the transfer functions and the sensitivity of the realized structure. It 
is well known that the analysis (including sensitivity determination) of the 
synthesized circuit can be implemented on the basis of a suitable flow-graph 
representation of the variable relationships. 

The modified Coates flow-graphs allow in an easy way the analysis of active 
networks by using nullor models of the active devices. Main advantages of symbolic 
analysis [1], and in particular the symbolic sensitivity analysis, are summarized as 
follows: 

 Repeated analysis is not needed and particular derivatives can be avoided, 

 Determination of transfer functions and first-order sensitivity for different 
frequencies can be performed, 

 Round-off errors are avoided, 

 Particular effects of the (circuit’s) parameters can be studied. 

 

The chapter comprises three main sections. Section 2 discusses the basic concepts of 
Coates flow-graphs. Their association with algebraic equations is given. This section  
 

*Address correspondence to Mourad Fakhfakh: University of Sfax, Tunisia; E-mail: 
mourad.fakhfakh@ieee.org 
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describes the flow-graph based method for generating the symbolic transfer functions 
of analog circuits. Section 3 gives application to the generation of flow-graph stamps 
for circuits, such as, controlled sources, MOS transistors, current conveyors. Further, 
some application examples for computing transfer functions of current conveyor 
based filters are proposed. Section 4 discusses determination of first-order symbolic 
sensitivity by using the nullor model and the modified Coates flow-graph. In order to 
reflect the nullator-norator pair influence on the network transfer functions, rules for 
transformations of flow-graphs are detailed. Generation of partial symbolic transfer 
functions, obtained using modified Coates flow-graphs, is presented. Op-Amp based 
applications are given. 

2. Basic Concepts of Coates Flow-Graphs 

The purpose of associating a graph to a set of linear algebraic equations is to solve it 
by a topological method. The first idea belongs to Mason [2]; He introduced the 
signal-flow-graphs. Then, in [3] Coates proposed representing the set of equations by 
a flow-graph that depends only on the algebraic structure of the set of equations. 

Expression (1) presents the general form of a matrix system of a set of linear 
equations. 

OBXA   (1)

)( ijaA , )( jxX   and )( ibB   represent the adjacency matrix, the variables’ 

vector and the input vector, respectively. 

The algebraic solution of (1) is generally obtained using the following expression: 




 i iji

j

b
x  (2)

The link between a determinant of a matrix and the associated graph is obtained by 
referring to expression (3). 

 


j
njnjjjnjj aaa .... 2211...21  (3)

Representing the aforementioned expression by a flow-graph (G) consists of 
associating vertices to the variables and linking these vertices by weighted edges. The 
weights correspond to the adjacency variables. Supplementary vertices are added to 
the graph to represent the sources. 

Fig. 1 illustrates the case of a matrix system (expression (4)) with three variables. 
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Coates proved that expression (2) can be evaluated in a topological way. For this 
purpose, it is useful to introduce the following definitions: 

 A one Factor (1F) is a Hamiltonian [4] directed sub-graph of (G). i.e. a 
traceable cycle that visits all the graph vertices exactly once and returns to the 
starting vertex, 

 A one Factorial connection (1FCij) from a vertex i to a vertex j is a spanning 
sub-graph of (G) that contains a directed path from i to j and a set of disjoint 
vertices of traceable directed cycles comprising all graph vertices, but those 
included in the i-j directed path. 

 
Figure 1: Flow-graph associated to the matrix system given in (4). 

Expressions (5) and (6) give the topological evaluation of the determinants of 
expression (2) [5]: 

)1()1(
1

11 Ff
F

EC F   (5)

)1()1(
1

11
ijFC

EC
ij FCf

ij

FC   (6)

EC1F and EC1FC represent the number of components, which have an even degree, in 
the 1F and 1FC, respectively. i.e. connected sub-graphs containing an even number of 
edges (notice that an isolated node is an even component). Function f performs the 
product of all transmittances of the 1F (1FCij). 

Cofactors ij  represent the minor obtained by eliminating the ith row and the jth 

column from matrix A. The number of 1F is equal to the permanent of the matrix 
associated to A, whereas the number of 1FCij equals the permanent of the minor 
obtained by eliminating the ith row and the jth column from A. 

 

In order to illustrate the proposed approach, let’s consider the matrix system (4).  

1Fs and 1FCs of the corresponding graph are presented in Figs. 2 and 3. 
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(a): 1F= (1)3a11a22a33 (b): 1F=(1)2a11(a23a32)

 

 

(c): 1F=(1)2(a13a31)a22 (d): 1F=(1)2(a12a21)a33 

 
 

(e): 1F= a12a23a31 (f): 1F= a13a32a21 

Figure 2: 1Fs of the graph presented in Fig. 1. 
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(a): 1FC03= (1)b1 a13 a22 (b): 1FC03=b1a12a23 

 
 

(c): 1FC03=(1)b2a23 a11 (d): 1FC03=b2a21a13 

 

 
(e): 1FC03=(1)b3 a21 a12 (f): 1FC03=b3a22a11 

Figure 3: 1FCs of the graph presented in Fig. 1 (for j=3). 
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In the following we present some application examples for computing symbolic 
transfer functions of analog circuits. 

3. Application Examples 

3.1. A passive filter 

Fig. 4 presents a passive filter whose flow-graph can be represented by the graph 
given in Fig. 5. The vertices are associated to the circuit’s nodes. Figs. 6 and 7 give 
expressions of 1F and 1FC14 of the flow-graph of Fig. 5. 

 
Figure 4: A passive (Cauer) filter. 

 
Figure 5: The flow-graph associated to the circuit of Fig. 4. 

 

Figure 6: The unique 1F of the graph of Fig. 5: 1FC14= )/1)(/1( 420 sLsLG . 
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(a):1F1=

)/1)(/1[()1( 21045
3 sLsCGsLG   

)]/1/1( 242 sCsLsL   

(b): 1F2=
2

245
2 )/1)(/1()1( sLsLG   

2

4 3

-1/L4s

-1/L4s

G0+sC1

+(1/L2s)V2

V4 V3

(c):1F3= )/1)(/1)(/1()1( 44210
2 sLsLsLsCG   

Figure 7: The 1FCs of the graph of Fig. 5. 

 

Accordingly, we have:  
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3.2. MOS circuits 

Flow-graph models for controlled circuits can be found in [6, 7]. For instance, Fig. 8 
presents the graph corresponding to a VCCS. 

g
1

2

3

4

g

-g

-g

 
(a): A VCCS (b): The associated flow-graph 

Figure 8: A voltage controlled current source. 
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Accordingly, a flow-graph model of a MOS transistor can be established, as it is 
presented in Fig. 9. 

Cgs, gds and gm are the gate to source capacitance, the conductance and the 
transconductance of a MOS transistor, respectively. Vertices 1, 2 and 3 correspond to 
the gate, the source and the drain of the MOS transistor, respectively. 

It is to be noticed that the complexity of the model can be adjusted by 
adding/removing parasitic components, such as the drain to source capacitance, the 
bulk vertex, etc. 

 
Figure 9: A flow-graph of a MOS transistor ((gm, gds, Cgs) model). 

Example 1 Fig. 10 presents a MOS amplifier. The equivalent flow-graph is presented 
in Fig. 11. It is to be noticed that the (Cgs, gds, gm) equivalent model is used for the 
MOS transistors. 

 
Figure 10: A MOS amplifier. 

 
Figure 11: The flow-graph of the circuit presented in Fig. 10 (considering the (gm, gds, Cgs) model). 
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It is easy to compute the 1F and the 1FC12 of the flow-graph of Fig. 11, they are 
given by expressions (8) and (9), respectively. 

1F= ))(/1( 213233 dsdsgsgsmds ggRsCsCgg   (8)

1FC12= )/1( 33321 RggsCsCg mdsgsgsm   (9)

Thus, the transfer function is: 

21

1

dsds

m

i

o

gg

g

U

U


  (10)

 

Example 2 Flow-graphs can be used for didactic purposes. The following example 
(Fig. 12) presents a MOS regulated cascode current mirror. It is easy, using flow-
graphs to compute parameters (conductance and transconductance) of the equivalent 
MOS transistor. Fig. 13 presents the corresponding flow-graph. In order to compute 
the equivalent transconductance, node 4 is grounded and we have iCCmeq UIg  . ICC 

is the shortcut current flowing through node 4. Expressions (11) and (12) present the 
1F and 1FC13 associated to the simplified graph (without node 4). 

 
Figure 12: Regulated cascode current mirror. 
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1 2
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-gdsC
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Figure 13: The flow-graph associated to the circuit of Fig. 12. 
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  )(1 dsdsCmCdsrmCmr ggggggF  (11)

dsrdsdsCmCmCmr

dsrm

gggggg

gg
FC

)(
1 13 


  (12)

Knowing that ICC is the drain current of transistor M, we have: 

31 VgVgI dsmCC   (13)

Finally, the equivalent transconductance is obtained, as given by expression (14). 

m
dsrdsdsCmCmCmr

mdsrdsCmCmCmrmCC g
gggggg

ggggggg

V

I






)(

)(

1

 (14)

In order to compute the equivalent conductance, node 1 is grounded and node 4 
becomes the input one.  

dsdsr ggF 1  (15)

)(1 34 dsCmCdsdsrmrmC ggggggFC   (16)

mrmC

dsCdsr

dsCmCdsdsrmrmC

dsCdsr

gg

gg

gggggg

gg

V

V





)(4

3  (17)

 

Expressions (15) and (16) present the corresponding 1F and 1FC34. Finally, the 
equivalent transconductance is given by expression (17). 

3.3. Current conveyor based circuits 

Biolek and Biolkova proposed in [6] a matrix stamp and Coates graph stamp of 
Thevenin model of reciprocal two port circuits. On the base of this model, a graph 
stamp for current conveyors was proposed [6]. Fig. 14 shows the Thevenin model of 
the two-port circuit and its flow-graph stamp. 

  
(a) (b)

Figure 14: (a) A two-port graph model, (b) Its graph stamp. 

 

Example 1 On the base of the basic circuit of Fig. 14(a) and its corresponding graph, 
a stamp for three-port Current Conveyors (CC) was established (Fig. 14(b)) [6]. Figs. 
15(a, b) present the CC block diagram and its corresponding graph stamp, 
respectively. Its terminal relations are given by expression (18), where ,  and  
define the type of the CC [8]. i.e. if =1, the CC is a first generation one. If =0, it is 
a second generation one. = 1 or +1 whether the CC is an inverting or a non-
inverting one [9]. Finally,  indicates if the CC is a positive (=+1) or a negative 
(= 1) one. 



Symbolic Analysis of Analog Circuits by Flow-Graphs Design of Analog Circuits through SA   125 


















































x

x

y

z

x

y

v

i

v

i

v

i

00

00

00





 (18)

 

  
(a) (b) 

Figure 15: (a) Block diagram of a CC, (b) its flow-graph. 

The circuit presented in Fig. 16(a) is a voltage-mode notch, low-pass and band-pass 
filter [10]. It is designed using four positive non-inverting second generation current 
conveyors (CCII+). In order to determine the transfer functions, the flow-graph of the 
filter was constructed. It is presented in Fig. 16(b).  

 

(a) 

 

(b) 

Figure 16: A multifunction voltage mode CCII+ based filter and the corresponding flow-graph. 
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Expressions (19), (20) and (21) present transfer functions Uo1/Ui, Uo2/Ui and Uo3/Ui, 
respectively. Obtained expressions are conforming to those presented in [10]. 

 

Example 2 A DVCCII is a five-port building block [11,12]. The DVCCII is defined 
by expression (22). Its block diagram and its flow-graph are presented in Figs. 17(a, 
b), respectively [13]. 
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(a) 

 
(b) 

Figure 17: (a) Block diagram of a DVCCII, (b) its flow-graph stamp. 
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A Multiple-Input Single-Output BP-LP second order filter designed using two 
DVCCII is presented in Fig. 18(a) [12]. The flow-graph corresponding to this filter is 
shown in Fig. 18(b). Applying the Coates’ technique allows computing both transfer 
functions: Uo/Ui1 and Uo/Ui2. Their expressions are given by (23) and (24), 
respectively. They are conforming to the expression given in [12]. 

 
(a) 

 
(b) 

Figure 18: (a) A multifunction DVCCII based filter, (b) its flow-graph. 
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Example 3 A FDCCII is an eight-port building block [14], which is defined by 
expression (25). Fig. 19(a) represents the FDCCII block diagram. The proposed flow-
graph stamp of the FDCCII is presented by Fig. 19(b) [13]. 
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(a) 

 

(b) 

Figure 19: (a) Block diagram of the FDCCII, (b) its flow-graph. 
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Fig. 20(a) presents a high-input and low-output impedance universal voltage mode 
filter designed using two FDCCIIs [12]. The corresponding flow-graph is presented 
by Fig. 20(b). The graph resolution gives the transfer functions given by expressions 
(26), (27), and (28). These expressions are conforming to those presented in [12]. 

 
(a) 

 
(b) 

Figure 20: An FDCCII based universal voltage mode filter and its flow-graph. 
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Finally, it is to be highlighted that the Coates flow-graph approach for computing 
symbolic transfer functions of analog circuits was implemented in MATLAB and 
CASCADES.1 software was proposed in [15]. Thanks to CASCADES.1, the user has 
only to draw his circuit’s schema and specifies the input and output nodes. The 
MATLAB program calls the netlist and automatically computes and returns the 
numerator, the denominator and the full symbolic transfer function. Further, 
CASCADES.1 allows modifying the complexity of the adopted equivalent models 
(for MOS transistors).  
 

4. Determination of First-Order Symbolic Sensitivity by Using the 
Nullor Model and the Modified Coates Flow-Graph  

One important step completing every network analysis and synthesis procedure is the 
determination of the sensitivity of the considered structure. Haigh et al. [16] proved a 
theorem that determinates the basis, consisting of passive elements and only one of 
which is a nullor. The latter is used as a universal active element for an equivalent 
representation of an active network [17-21]. On the other hand the analysis of a 
synthesized network can be implemented and simplified on the base of the modified 
Coates flow-graph [22], using some network partial transfer functions [23].  

References [23, 24] describe a symbolic method of determination of the first-order 
transfer function sensitivity in electrical networks. Their equivalent nullor circuits 
present a starting point for the sensitivity analysis. It is based on some 
transformations of the modified Coates flow-graph in order to reflect the nullator-
norator pair influence in the network.  

This method of sensitivity determination of linear networks is applied. Compared 
with other methods [25], its main advantages are:  

• A simple way of obtaining of an equivalent nullor circuit, representing all active 
elements;  

• Repeated analysis are not necessary to be performed. 

The sequence of presentation of the proposed method is: 

1. Generation of an equivalent nullor representation of the active network, 

2. Modification of the flow-graph by taking into account effects of nullors, 

3. Determination of the first-order symbolic transfer function sensitivity with 
respect to a transmission coefficient in the flow-graph. 

 

4.1. Determination of first-order symbolic transfer function sensitivity with 
respect to a passive element  

4.1.1.  An equivalent nullor network 

According to [16] an equivalent nullor network N is formed. Let us assume that there 
are m+n+1 nodes and R  nullors in N. In accordance with the algorithm described in 
[24], nodes, numbered from 1 to m represent network sources, nodes from m+1 to 
m+n are inner nodes (all or some of them can be considered as output nodes), and the 
m+n+1th node is the common node for the nullor network. Thus: 

RNNnn efef   (29)
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where fn , en ,  fN  and eN  are the number of the nullators connected between inner 

nodes, the number of grounded nullators, the number of the norators connected 
between inner nodes, and the number of grounded norators, respectively. 

The sequence of the nodes in the nullor network is determined as follows: 

•  incoming(sources) nodes -  1,..., m, 

•  outgoing nodes -   nmm  ...,,1 , are as follows: 

- p nodes, connected to edges of passive elements, 

- eN  nodes, connected to the ground by means of a norator, 

- 2 fN   nodes, connected to fN  norators, 

- frN  nodes, connected to a norator that is situated between two nodes, one of 

them is connected to a nullator, 

- 
fn  nodes (that is one of the two nodes) connected with the nullators,  

•  ef nnR   nodes that are removed, as follows: 

- fn  nodes, corresponding to the second node, connected to a nullator, 

- en  nodes, connected to grounded nullators. 

Accordingly, an equivalent nullor network N is composed that is presented by an 
initial modified Coates flow-graph.    

4.1.2. Rules for modification of the initial flow- graph  

In order to reflect the nullator-norator pair influence on the network transfer 
functions, some transformations of the modified Coates flow-graph are performed 
according to the algorithm described in [24]. From the notes made in Section 4.1.1., it 
can be seen that R vertices are removed from the initial flow-graph. They correspond 
to the number of nullators in the nullor network. 

Rule 1: When a node k in the nullor network N, shown in Fig. 21(a), is connected to 
the common node by a norator, all incoming edges kiY , including the self-loop kkY , in 

vertex k in the corresponding flow-graph presented in Fig. 21(b), are removed, i.e. 
0kiY  and 0kkY . The equivalent flow-graph is shown in Fig. 21(c). 

             

 

(a)     (b)     (c) 

Figure 21: Rule 1 of modification of the initial flow-graph. 
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Rule 2: When a node k in the nullor network N shown in Fig. 22(a), is connected with 
the common node by a nullator, all outgoing edges  ikY , including the self-loop kkY , 

in vertex k in the corresponding flow-graph presented in Fig. 22(b), are removed, i.e. 
0ikY  and 0kkY . The equivalent flow-graph is shown in Fig. 22(c). 

           
(a)     (b)     (c) 

Figure 22: Rule 2 of modification of the initial flow-graph. 

Rule 3: When a nullator is connected between a pair of nodes k and l in the nullor 
network N (see Fig. 23(a)) all outgoing edges from vertex k in the corresponding 
flow-graph presented in Fig. 23(b), are removed and the originals of the edges kkY  

and ikY  are moved toward vertex l. The equivalent flow-graph is shown in Fig. 23(c). 

                 
(a)     (b)     (c) 

Figure 23: Rule 3 of modification of the initial flow-graph. 

Rule 4: When a norator is connected between a pair of nodes k and l in the nullor 
network N, shown in Fig. 24(a), the ends of all incoming edges kiY  into vertex k, 

including the self-loop kkY , in the corresponding flow-graph presented in Fig. 24(b), 

are moved to vertex l, for kl  . The equivalent flow-graph is shown in Fig. 24(c). 

                       
(a)     (b)     (c) 

Figure 24: Rule 4 of modification of the initial flow-graph. 
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Rule 5: Control for all il  vertices, corresponding to ef nnR   nodes in the nullor 

network, respectively to R vertices in the flow-graph. These vertices are the  1n  th 

and  2n  nd vertex shown in Fig. 25(a). Each outgoing vertex has to have at least 
one incoming and one outgoing edge, and in this case, the vertex is a determined one. 
This requirement is not performed for the  1n th vertex in Fig. 25(a). Then il

th 

vertex has to be united to the undetermined outgoing vertex, if it is available. At both 
cases, the ends of the incoming edges into the il

th vertex, are moved toward the 

undetermined outgoing  1n th vertex or the next determined outgoing n th vertex 
(see Fig. 25(b)).  

 
(a) 

 
(b) 

Figure 25: Rule 5 of modification of the initial flow-graph. 
 

4.1.3. Determination of first-order symbolic transfer function sensitivity with 
respect to a parameter  sY  of a passive element 

We suppose that the voltage transfer function  sTkq  is under consideration. From a 

practical point of view it is necessary to find first-order transfer function sensitivity 

 
 sT

sY
kqS  with respect to the value of some passive network element  sY . 
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 (30)

where      sYsasY jiji   is an element of the matrix Y(s) reduced according to 

Chapter 3, Section 6; and  sa ji  contains other network parameters, for nmi  ,...,1

; nmmj  ,...,1 . 
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According to [23] the derivative    sYsT jikq   is given as follows: 

       sTsTsYsT kjiqjikq   (31)

The partial transfer functions  sTiq  and  sTkj  can be obtained by the modified 

Coates flow-graph MCG . For this reason, three sub-graphs follow, they are illustrated 
in Section 4.2.: 

• MC
0G  is obtained from MCG  due to the removal of all outgoing edges from the 

vertex-source, 

• MC
k1G , for nk ...,,2 , is obtained from MCG  due to the removal of all outgoing 

edges, including the self-loop in the vertex k with a signal  sVk  and moving the 

vertex-source into the vertex k. As a result 0jkY , 0kkY  and the originals of the 

outgoing edges from the vertex-source are moved toward the vertex k, 

• MC
kjG  is obtained from MC

0G  by removing all outgoing edges, including the self-loop 

from vertex k, as well as by removing all incoming edges including the self-loop, 
from vertex j and must be added an edge 1jkY . 

Thus the transfer function  sTkq  is: 
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where Q  is the separation of loops of MC
kqG , 

K  - the separation of loops of MC
0G , 

QN  - the number of the loops in the Qth  separation of loops of MC
kqG , 

KN - the number of the loops in the Kth separation of loops of MC
0G , 

R - the number of the one factors in MC
kqG , 

L - the number of the one factors in  MC
0G , 

QP -the product of the loop transmission coefficients in Qth separation of loops of 
MC
kqG , 

KP - the product of the loop transmission coefficients in Kth separation of loops of 
MC
0G . 

Once the nullor network is established, a modification of the modified Coates flow-
graph is done by the rules described in Section 4.1.2. A computer program 
“HoneySen” was proposed in [23]. It was developed using the modified Coates flow-
graph theory. It automatically generates symbolic transfer functions and first-order 
symbolic transfer function sensitivity with respect to a passive element. 
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4.2. Application examples 

Example 1 A second-order low-pass filter is shown in Fig. 26. The problem consist 
of determining the voltage transfer function       13 UUsUsUsT io   and its 

sensitivity with respect to 2G . 

 
Figure 26: Second-order low-pass filter. 

According to Chapter 3, Section 4 and Section 4.1.1., an equivalent nullor network N, 
which is shown in Fig. 27, is composed. An initial form of the modified Coates flow-
graph for the passive part of the network is given in Fig. 28. By applying the 
sequence of modifications, which were detailed in Section 4.1.2. (see Fig. 29), the 
modified Coates flow-graph is obtained. It is presented in Fig. 30. 

 
Figure 27: Equivalent nullor network. 

 
Figure 28: Initial modified Coates flow-graph. 

   
       (a)                  (b) 

Figure 29: Modification of the initial flow-graph. 
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Figure 30: Modified Coates flow-graph 
MCG . 

Then taking into account (30) and (32), the sensitivity 31
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The partial transfer functions 31T , 21T , 32T  and 33T  are obtained by modified Coates 

flow-graph MCG , using sub-graphs MCG31 , MCG21 , MCG32 , MCG33 , and MCG0 , respectively. 

 Sub-graph MCG0  that is shown in Fig. 31(a), is obtained from MCG  by removing all 

outgoing edges from the vertex-source. Figs. 31(b, c) show the sub-graph’s 1Fs. 

 

             
     (a)        (b)          (c) 

Figure 31: Sub-graph 
MCG0 and its 1Fs.  

 

Thus 2L , 21 N , 12 N  and 
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  (34)

 Sub-graph MCG31 , which is shown in Fig. 32(a), is obtained from MCG  by removing 

all outgoing edges, including the self-loop in vertex 3 with a signal  sV3 , and by 

moving the vertex-source into vertex 3. Fig. 32(b) shows the sub-graph’s 1F. 
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(a)     (b) 

Figure 32: Sub-graph 
MCG31  and its 1F. 

Then, for 1R and 11 N  we obtain: 
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Taking into account (32), the transfer function  sT31  is expressed as follows: 
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 (36)

 Sub-graph MCG21  that is shown in Fig. 33(a), is obtained from MCG  by removing all 

outgoing edges, including the self-loop in vertex 2 with a signal  sV2 , and moving 
the vertex-source into vertex 2. Fig. 33(b) shows the sub-graph’s 1F. 

    
(a)     (b) 

Figure 33: Sub-graph MCG21  and its 1F. 

For 1R  and 21 N , and taking into account (32), the transfer function  sT21  can 
be expressed as follows: 

      2121
2

21
1

11 sCGsCGPQ

NR

Q

Q




 (37)

 
 

    3221321

2121

1

1
21

1

1

GGsCsCGGG

sCG

P

P

sT
L

K
K

N

R

Q
Q

N

K

Q



















 (38)



136   Design of Analog Circuits through SA Fakhfakh et al. 

 Sub-graph MCG32 , which is presented in Fig. 34(a), is obtained from MC
0G  by 

removing all outgoing edges, including the self-loop, from vertex 3, as well as by 
removing all incoming edges, including the self-loop, from the vertex 2. An edge 

123 Y  must be added. Fig. 34(b) gives the sub-graph’s 1F. 

   
(a)     (b) 

Figure 34: Sub-graph 
MCG32  and its 1F.          

Consequently, the transfer function  sT32  can be expressed as follows: 
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 (40)

 Sub-graph MCG33 , which is shown in Fig. 35(a), is obtained from MC
0G  by removing 

all outgoing and incoming edges, including the self-loop, from vertex 3. A n edge 
133 Y  has to be added. Fig. 35(b) gives the sub-graph’s 1F. 

   
(a)     (b) 

Figure 35: Sub-graph 
MCG33  and its 1F. 

The number of the loops in this one factor is 21 N , then we have: 
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The transfer function  sT33  is expressed as follows: 
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According to (33) the sensitivity of the transfer function is obtained. It is given by 
(43). 
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The symbolic results for the first-order transfer function sensitivity with respect to 2G  

obtained by the proposed method are the same compared with the method suggested 
in [19]. Due to the proposed method, additional information for parameter influence 
upon transmission coefficients and results for the transfer functions is obtained, 
namely: 

• all elements where the considered parameter participates are: 

Y[2][2] = G1+G2+G3+sC1 ; Y[3][2] = G2 

• according to the algorithm described in [24], all transfer functions below and their 
products  (T21  T32) ; (T21  T33) are obtained. 

T31 = (G2 G1)/ ((((G1+G2+G3+sC1) sC2))(G2 G3)) 

T21 = ((G1 sC2)((G4+sC) G3))/ ((((G1+G2+G3+sC1) sC2)) (G2 G3)) 

T32 = ((G2))/ ((((G1+G2+G3+sC1) sC2))(G2 G3)) 

T33 = (((G1+G2+G3+sC1)))/ ((((G1+G2+G3+sC1) sC2)) (G2 G3)) 

• the first-order transfer function sensitivity with respect to 2G  is  

S = (G2 / (G2 G1 (((G1+G2+G3+sC1) sC2))(G2 G3)))  (((G1 sC2) (-(G2)))  

((G1 sC2) (((G1+G2+G3+sC1))))) 
 

Example 2 An impedance converter is shown in Fig. 36. The problem consists of 
determining the voltage transfer function       13 UUsUsUsT io   and its 

sensitivity with respect to sC .  

 
Figure 36: Impedance converter. 

In accordance with Chapter 3, Section 4, and Section 4.1.1. an equivalent nullor 
network N is established. It is given in Fig. 37. 
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Figure 37: Equivalent nullor network. 

An initial form of the modified Coates flow-graph for the passive part of the network 
is constructed. It is shown in Fig. 38. Nodes, corresponding to vertices in the original 
flow-graph that are removed, have numbers 4 and 5. After performing the sequence 
of modifications that were detailed in Section 4.1.2. (which are shown in Fig. 39), the 
modified Coates flow-graph is obtained. It is presented in Fig. 40. 

 
Figure 38: Initial modified Coates flow-graph. 

              

(a)      (b) 

Figure 39: Modification of the initial flow-graph. 

 

Figure 40: Modified Coates flow-graph MCG . 

Taking into account (30) and (32), the sensitivity of the transfer function is expressed 
as follows: 
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The partial transfer functions 31T , 21T , 32T  and 11T  are obtained by the modified 

Coates flow-graph MCG , using MCG31 , MCG21 , MCG32 , MCG11 , and MCG0 , respectively. 

 Sub-graph MCG0  that is shown in Fig. 41(a), is obtained from MCG  by removing all 

outgoing edges from the vertex-source. Fig. 41(b) gives the sub-graph’s 1F.  

               

 
      (a)          (b) 
 

Figure 41: Sub-graph 
MCG0 and its 1F. 

Then 1L , 21 N  and 
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 (45)

 Sub-graph MCG31 , which is shown in Fig. 42(a), is obtained from MCG  by removing 

all outgoing edges, including the self-loop in vertex 3 with a signal  sV3 , and 

moving the vertex-source into vertex 3. Figs. 42(b, c) give the sub-graph’s 1Fs. 

                   
           (a)                                                (b)                                                  (c) 

Figure 42: Sub-graph 
MCG31  and its 1Fs. 

Then 2R , 21 N , 12 N  and 
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Taking into account (32), the transfer function  sT31  is expressed as follows: 
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 Sub-graph MCG21  that is shown in Fig. 43(a), is obtained from MCG  by removing all 

outgoing edges, including the self-loop in vertex 2 with a signal  sV2 , and moving 
the vertex-source to vertex 2. Fig. 43(b) gives the sub-graph’s 1F. 
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(a)      (b) 

Figure 43: Sub-graph MCG21  and its 1F. 

Then, for 1R  and 21 N  we obtain,  
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Taking into account (32), the transfer function  sT21  is: 
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  (49)

 Sub-graph MCG32 , which is shown in Fig. 44(a), is obtained from MC
0G  by removing 

all outgoing edges, including the self-loop, from the vertex 3, as well as by removing 
all incoming edges, including the self-loop, from the vertex 2. An edge 123 Y  is 

added. Fig. 44(b) gives the sub-graph’s 1F. 

     
(a)                                           (b) 

 

Figure 44: Sub-graph 
MCG32  and its 1F. 

The product of loop transmission coefficients and the transfer function 32T  are given 

by expressions (50) and (51), respectively: 
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 (51)

 Sub-graph MCG11 , which is shown in Fig. 45(a), is obtained from MCG  by removing 

all outgoing and incoming edges, including the self-loop, from vertex 1. An edge 
111 Y  is added. Fig. 45(b) gives the sub-graph’s 1F. 
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(a)       (b) 

Figure 45: Sub-graph MCG11 and its 1F. 

For 1R , 3N , the expression follows  

        sCGGsCPQ

NR

Q

Q

33
3

11
1

111 


 (52)

Then, the transfer function 11T  and the sensitivity 31T
sCS  of the transfer function 31T  

with respect to the parameter sC are expressed as follow:   
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Finally, the symbolic result for the first-order transfer function sensitivity with respect 
to sC  is: 

S = (sC / (((sC (G2+G3)))+(G2 (G4+sC)) sC G3)) 

((sC G3 (G2))( ((G4+sC) G3) (G2))). 

 

Example 3 A second-order high-pass filter is shown in Fig. 46. The problem consists 
of determining the voltage transfer function       13 UUsUsUsT io   and its 

sensitivity with respect to 2sC . 

 
Figure 46: Second-order high-pass filter. 
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According to Chapter 3, Section 4, and Section 4.1.1. an equivalent nullor network N, 
which is shown in Fig. 47, is constructed. An initial form of the modified Coates flow 
graph for the passive part of the network is shown in Fig. 48. 

 

 

Figure 47: Equivalent nullor network. 

 
Figure 48: Initial modified Coates flow-graph. 

By applying the sequence of modification given in Section 4.1.2., and shown in 
Fig. 49, the modified Coates flow-graph is obtained. It is presented in Fig. 50. 

          
(a)      (b) 

Figure 49: Modification of the initial flow-graph. 

 
Figure 50: Modified Coates flow-graph. 



Symbolic Analysis of Analog Circuits by Flow-Graphs Design of Analog Circuits through SA   143 

Then, taking into account (30) and (32) the sensitivity of the transfer function is 
expressed as follows: 
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The partial transfer functions 31T , 21T  and 33T  are obtained by the modified Coates 

flow-graph MCG , using sub-graphs MCG31 , MCG21 , MCG33 , and MCG0 , respectively: 

 Sub-graph MCG0 , which is shown in Fig. 51(a), is obtained from MCG  by removing 

all outgoing edges from the vertex-source. Figs. 51(b, c) give the sub-graph’s 1Fs. 

                          
             (a)                        (b)             (c) 
 

Figure 51: Sub-graph 
MCG0 and its 1Fs.  

Thus 2L , 21 N , 12 N  and 
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  (56)

 Sub-graph MCG31 , which is shown in Fig. 52(a), is obtained from MCG  by removing 

all outgoing edges, including the self-loop in vertex 3 with a signal  sV3 , and 

moving the vertex-source into vertex 3. Fig. 52(b) presents the sub-graph’s 1F. 

                                    
(a)     (b) 

Figure 52: Sub-graph 
MCG31  and its 1F. 

Thus, 1R , 11 N .Taking into account (32), the transfer function  sT31  is 

expressed as follows: 
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 Sub-graph MCG21 , which is shown in Fig. 53(a), is obtained from MCG  by removing 

all outgoing edges, including the self-loop in vertex 2 with a signal  sV2 , and 
moving the vertex-source to vertex 2. Fig. 53(b) presents the sub-graph’s 1F. 

                         
(a)      (b) 

Figure 53: Sub-graph MCG21  and its 1F. 

The product of the loop transmission coefficients in this separation of loops 1,21R is: 
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Taking into account (32), the transfer function  sT21  is expressed as follows: 
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 Sub-graph MCG33  that is presented in Fig. 54(a), is obtained from MK
0G  by removing 

all outgoing and incoming edges, including the self-loop, from vertex 3. An edge 
133 Y  is added. Fig. 54(b) gives the sub-graph’s 1F. 

     
(a)     (b) 

Figure 54: Sub-graph 
MCG33  and its 1F. 

For 1R  and 21 N  the transfer function  sT33  is: 
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Finally, according to (33) the sensitivity 31

2

T
sCS  of the transfer function  sT31  with 

respect to the parameter 2sC  is: 
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CHAPTER 6 

Analysis and Synthesis of Electronic Circuits by the Two-Graph 
Method  

Marian Pierzchała1,* and Benedykt Rodanski2 

1Institute of Telecommunication, Teleinformatics and Acoustics, Wrocław University of Technology, 
Wrocław, Poland and 2School of Electrical, Mechanical and Mechatronic Systems, Faculty of 
Engineering and Information Technology, University of Technology, Sydney (UTS), Sydney, Australia 

Abstract: The general two-graph framework of a fully symbolic and semi-symbolic 
analysis environment for linear, time-invariant circuits is presented. A classical two-
graph approach for RLC-gm circuits as well as its extension for circuits containing non-
admittance elements is discussed. A brief introduction to approximate symbolic analysis, 
using the two-graph method, is included. In this chapter we also present a method of 
synthesis of active RC circuits on the basis of the two-graph method. The nullor 
approach is used to synthesize the RC network which has the voltage and the current 
graphs equivalent to the two-graph of the prototype LC network. 

Keywords: Symbolic analysis, two-graph method, symbolic network functions, synthesis of  RC 
active circuits, circuits with nullors, current conveyors,  floating nullors, RC active filters with losses, 
loop matrix, cutest matrix, product matrix. 

1. Introduction 

This chapter has four main parts. In the first part (Sections 2-4), we consider the 
connected, linear, time-invariant networks with immittances, independent and 
controlled sources. The main purpose of this part is to introduce some basic concepts 
of graph theory, as applied to circuit analysis and to present a classical two-graph 
approach to obtaining fully symbolic expressions for relationships between selected 
output and input variables (voltages and currents). The two-graph method was first 
introduced as an effective tool to obtain symbolic determinant of the Node 
Admittance Matrix (NAM) of an active circuit [1]. It was therefore suitable for a 
limited class of circuits, namely the RLC-gm circuits. The modified nodal analysis [2] 
removed this limitation, allowing analysis of circuits containing other circuit 
elements, such as all controlled sources, transformers, ideal op amps, etc. The two-
graph method can also be modified to include the non-admittance components. The 
price we have to pay for this convenience is the increase of circuit complexity. 

All fully symbolic exact analysis methods suffer from the complexity problem: the 
number of terms in the formula grows exponentially or superexponentially, O(nn), 
with the circuit size. One solution to this serious problem is to obtain an approximate 
expression with only the most significant terms present. The two-graph method is 
very suitable for this task, because it allows the generation of terms in decreasing 
order of magnitude [3]. Section 5 gives a brief introduction to this application of the 
two graph method. (There are other approaches to approximate symbolic analysis. A 
good review of existing literature can be found in [4]). 

Often we are interested in finding the contribution of only a few components to the 
overall circuit response. The semi-symbolic analysis results in a formula with mixed  
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symbolic and numeric terms. The two-graph method is also very effective here. In 
Section 6 we present one such application that allows calculation of numerical 
coefficients at any symbol combination in a single step [5].  

The fourth part of this chapter (Section 7) shows the viability of the two-graph method 
to synthesize the active RC filters on the basis of the prototype LC filter structures [6]. 
The use of the Four Terminal Floating Nullor (FTFN) facilitates a transformation 
process from the passive LC filter structure to the architecture of the active RC circuits. 

2. Fundamentals of Network Topology 

Network topology deals with those properties of lumped networks which are related 
to the interconnection of branches only. It is one of many subfields in graph theory. In 
this section, which is mainly based on [7], we shall present those concept and 
theorems which are essential to symbolic network analysis and synthesis of electronic 
circuits by the two-graph method. Readers already familiar with fundamentals of 
network topology may omit this section. 

2.1. Directed and undirected graphs 

A complete description of any lumped network must contain the following 
information: 

 1. How the branches are connected. 
 2. The reference directions for branch currents and voltages. 
 3. The branch voltage-current relationships. 

One natural and simple way to depict items 1 and 2 is to draw a directed graph Gd 
associated with the given network N, according to the following rules: Replace each 
network node by a graph node, or vertex. Replace each network branch by a line 
segment, called the graph branch or the edge. Each edge has an arrow in the same 
direction as the assumed positive current through the corresponding network branch. 
This arrow also serves as the branch voltage reference: the positive voltage terminal 
is assumed to be the tail of the arrow. With such a unified reference scheme for both 
voltages and currents, the directed graph Gd contains complete information about 
items 1 and 2 above. 

There are situations where the reference directions of the currents and voltages are of 
no consequence (for example, topological formulae for RLC network functions). 
Then all the arrows in Gd may be removed. The resultant simpler graph is called the 
undirected graph associated with the network N, and is denoted by Gn. 

Fig. 1(a) shows a network N; its associated directed graph Gd is shown in Fig. 1(b). 

 
Figure 1: An electrical network (a) and its associated directed graph (b).  The fundamental loops and 
cutsets, associated with the spanning tree (L1,R2,R3), are marked on the graph. 
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The following are some basic concepts in graph theory, defined in terms of an 
undirected graph. 

Definition 1: Path. A set of branches b1,b2,…,bm in Gn is called a path between two 
nodes Vj and Vk if the branches can be ordered such that: 
 

 1. Consecutive branches bi and bi+1 have a common endpoint; 
 2. No node is the endpoint of more than two branches in the set; 
 3. Vi is the end point of exactly one branch in the set, and so is Vk. 

For example, branches (L1,R2,C5) in Fig. 1(b) form a path between nodes 1 and 2. 

Definition 2: Connected graph. An undirected graph Gn is said to be connected if 
there exists a path between any two nodes of the graph. A network N or a directed 
graph Gd is said to be connected if the associated undirected graph Gn is connected. 

Definition 3: Loop (Circuit). A subgraph Gs of a graph Gn, is called a loop if (1) Gs 
is connected and (2) every node of Gs has exactly two branches of Gs incident to it. 

For example, branches (C4,C5,I6) in Fig. 1(b) form a loop, and so the branches 
(L1,R2,C4,C5). 

Definition 4: Spanning Tree. A sub-graph Gs of a graph Gn is called a spanning tree 
if: 
 1. Gs is connected; 
 2. Gs has no loops; 
 3. Gs contains all nodes of Gn. 

In a connected graph with n nodes, each spanning tree has n–1 branches. For 
example, branches (L1,R2,R3) in Fig. 1(b) form a spanning tree and so do branches 
(R2,C5,I6). In this chapter we will only be concerned with spanning trees, so for 
simplicity, we will often use the term ‘tree’ in the remainder. 

The edges that belong to a tree T are called tree branches, and the remaining edges 
are called links or chords. All links of a given tree T form what is called a cotree with 
respect to T. 

Definition 5: Cutset. A set of branches of a connected graph Gs is said to be a cutset 
if: 

 1. The removal of the set of branches (but not their endpoints) results in a graph 
that is not connected; 

 2. After the removal of the set of branches, the restoration of any one branch will 
result in a connected graph. 

For example, branches (L1,C4,I6) in Fig. 1(b) form a cutset, and so do branches 
(R2,R3,C4,I6). 

2.2. Matrices associated with a directed graph 

Out of many possible topological matrices that can be defined for a graph, we will 
introduce only most important ones that will be used in this chapter. 

2.2.1. Incidence matrix 

Let Gd be a connected, directed graph with n nodes and b branches. An nxb matrix 
Aa = [aij] is said to be the complete (or augmented) incidence matrix of Gd if its 
entries are defined as follows: 
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aij = 1 if branch j is incident to node i and the arrow is pointing away from node i, 
aij = –1 if branch j is incident to node i and the arrow is pointing toward node i, 
aij = 0 if branch j is not incident to node i. 

For example, the directed graph Gd in Fig. 1(b) has the complete incidence matrix: 
 

Aa L1 R2 R3 C4 C5 I6 

1 1 0 0 1 0 –1 

2 0 0 –1 –1 1 0 

3 –1 1 1 0 0 0 

0 0 –1 0 0 –1 1 

 

Since elements of every column of Aa add up to zero, any one row of the augmented 
incidence matrix may be deleted without loss of information. A matrix obtained from 
Aa by deleting an arbitrary row is denoted by A and simply called the incidence 
matrix. 

For a chosen spanning tree T the incidence matrix can be partitioned as A = [AT AC], 
where columns of AT correspond to the tree branches and columns of AC correspond 
to the cotree branches. The matrix AT is unimodular (i.e., its determinant is equal to 
±1). 

For example, if we choose branches L1, R2 and R3 to form the tree in the graph of Fig. 
1(b) and delete row 0 from Aa, then matrix AT will be 

 

AT
L1 R2 R3 

1 1 0 0 

2 0 0 –1 

3 –1 1 1 

 

Its determinant is |AT| = 1. 

2.2.2. Fundamental loop matrix 

Let Gd be a connected, directed graph with n nodes and b branches. Let T be a 
spanning tree in Gd. Each link of the cotree forms a loop with the unique path through 
the tree, called the fundamental loop for that link with respect to the chosen tree T. 
The orientation of the fundamental loop is chosen to coincide with that of the link and 
is indicated by an arrow. There are  = (b – n + 1) fundamental loops. 

A matrix Bf = [bij] of order xb, whose entries are defined as follows: 

bij = 1 if loop i contains branch j and the directions agree, 
bij = –1 if loop i contains branch j and the directions oppose, 
bij = 0 if loop i does not contain branch j, 

is called the fundamental loop matrix. 

For example, if T is chosen to consist of branches (L1,R2,R3) in Fig. 1(b), the 
fundamental loop matrix is: 
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Bf L1 R2 R3 C4 C5 I6 

1 –1 0 –1 1 0 0

2 0 –1 1 0 1 0 

3 1 1 0 0 0 1 

 
From the way the matrix Bf is constructed, it follows that any fundamental loop 
matrix can be partitioned as Bf = [BT  1], where the columns of BT correspond to the 
tree branches, and the identity matrix of order , 1, corresponds to the links.  

2.2.3. Fundamental cutset matrix 

Consider the connected, directed graph Gd. Let T be a spanning tree in Gd. Each 
branch of T together with some (possibly none) links in the associated cotree form a 
cutset, called the fundamental cutset, for that tree branch, with respect to the chosen 
tree T. The reference arrow for the cutset is chosen to agree with the tree branch. For 
a connected graph with n nodes, there are n–1 tree branches, and hence there are 
 = n – 1 fundamental cutsets for each chosen tree T. 

 

We define the fundamental cutset matrix to be an xb matrix Qf = [qij] whose entries 
are defined as follows: 

qij = 1 if branch j is in the cutset i, and their directions agree, 
qij = –1 if branch j is in  the cutset i, and their directions oppose, 
qij = 0 if branch j is not in the cutset i. 

For example, if T in Fig. 1(b) is chosen to consist of branches (L1,R2,R3), then the 
fundamental cutset matrix is 

Qf
L1 R2 R3 C4 C5 I6 

1 1 0 0 1 0 –1 

2 0 1 0 0 1 –1

3 0 0 1 1 –1 0 

 
From the way the matrix is Qf defined, it follows that it can be partitioned as 
Qf = [1  QC], where the columns of the identity matrix of order , 1, correspond to 
the tree branches and the columns of QC correspond to the cotree (links). 

3. Network Functions of a Closed System 

3.1. Network functions in the frequency domain  

The main purpose of symbolic analysis in the frequency domain is to obtain 
analytical expressions for relationships between selected output and input variables 
(voltages and currents). These relationships, called s-expanded network functions, are 
expressed as ratios of polynomials (rational functions) in the complex frequency 
variable s 
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Each coefficient (ni, dj) may be either numerical, mixed numerical and symbolic 
(semi-symbolic) or fully symbolic in terms of circuit elements. In this chapter we 
are concerned only with the fully symbolic and semi-symbolic s-expanded network 
functions. 

To motivate our discussion let us first introduce a problem, solution to which can be 
elegantly accomplished by the two-graph method. Suppose we want to find symbolic 
expressions for a voltage transmittance, Tv = v2/v1, an input impedance, Zin = v1/i1, and 
a transresistance, RT = v2/i1, of a circuit shown in Fig. 2. 

 

 

 

Figure 2: A circuit whose network functions are to be calculated. 

Assume that the circuit can be described by the Node Admittance Matrix (NAM) or 
the Modified Node Admittance Matrix (MNAM), Yn. Applying nodal analysis, we 
can write the following equation: 
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Now, using Cramer’s rule, we can calculate voltages v1 and v2 as: 

 1 11 1 12
1 2,

I I
v v

 
 

 
 (3) 

where: Δ=det(Yn), 
 Δij is the cofactor, corresponding to the element yij of Yn. 

 

The required network functions can now be expressed as: 
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The task of calculating symbolic expressions for Δ, Δ11 and Δ12 can be significantly 
simplified by the use of the following technique, sometimes called the circuit 
augmentation. 

3.2. Application of a closed system 

Replace the independent current source I1 by the Voltage-Controlled Current Source 
(VCCS), ĝm, controlled by the output voltage v2 and having internal admittance ŷ, 
thus forming a closed system, as shown in Fig. 3. It is important to note that symbols 
ĝm and ŷ must be unique. 
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Figure 3: The closed system (augmented circuit) obtained from the circuit in Fig. 2. 

The NAM of the augmented circuit can be written as: 

 

 
11 12 1

21 22 2

1 2

nm

n
n

n n nn

y y g y y

y y y

y y y

  
 
   
 
  

Y




   


 (5) 

Calculating the determinant of (5), using Laplace expansion along the first row of 
 ,nY  we obtain: 

     
11 11 11 12 12 12 1 1 11 12n nm my y g y y y g                   (6) 

So, by calculating a single determinant and collecting the terms with the unique 
symbols ĝm and ŷ we have obtained both required cofactors and the determinant of the 
original circuit matrix. 

Symbolic determinant of an arbitrary matrix may be calculated by Laplace expansion 
[8]. This approach will produce many cancelling terms if applied to the NAM. It is 
now universally recognized that the most effective way to obtain a symbolic 
expression for a NAM’s determinant is to use the two-graph method. 

4. The Two-Graph Method 

4.1. Classical two-graph method 

The method was originally introduced for circuits containing only passive elements 
and voltage-controlled current sources [1]. In this approach, for a lumped, linear, 
time-invariant circuit, two graphs are constructed: the voltage graph, GV, and the 
current graph, GI. Both graphs have the same number of vertices and edges, but (for 
active circuits) have different topology. Each vertex corresponds to a circuit node; 
each edge is labeled with an admittance term, corresponding to a circuit element. 
Assuming that the circuit is described by the node admittance matrix, the determinant 
of this matrix can be calculated as the sum of signed admittance products of all 
common spanning trees of GV and GI. (A common spanning tree is a set of edges that 
form spanning trees in both GV and GI.) It is important to note that no cancelling 
terms are generated by this approach. The sign of each product term can be 
determined by either a topological method or numerically, by calculating the product 
of the determinants of the AT matrices corresponding to the common spanning tree. If 
the closed system is formed, as described in Section 3, symbolic network functions 
can be obtained by appropriate sorting of the terms of NAM’s determinant. 

If the circuit contains only capacitors and (trans)conductances, the automation of the 
term generation process is very straightforward. The main loop generates all spanning 
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trees [9] in one of the two graphs, say GI. Each tree of GI is then checked if it is also a 
spanning tree of GV. If yes, we have a common spanning tree, which is placed in an 
appropriate ‘bin’, depending on the presence of the unique symbol ĝm or ŷ 
(application of the sorting scheme (6)) and, if required, the number of capacitive 
branches (sorting on the powers of s). 

If there are inductors in the circuit, each product of the common tree admittances 
must be multiplied by the impedance product of all inductors, and the resulting new 
product term must be simplified if necessary. The same process is applied if there are 
resistors in the circuit that must be represented in the formula by their resistance R 
rather than by their conductance G. 

Example 1 

Suppose we want to find an expression for the voltage transmittance Tv = v2/v1 for the 
circuit in Fig. 1(a). First, we apply the circuit augmentation technique, described in 
section 3.2, replacing the independent current source I6 by a VCCS ĝmv2 in parallel 
with the admittance ŷ. Next, we construct the current and voltage graphs of the 
augmented circuit, as shown in Fig. 4. The edges must be labeled with the admittance 
terms, thus we have: Y1=1/Z1=1/sL1, Y2=1/R2=G2, Y3=1/R3=G3, Y4=sC4, Y5=sC5. 

 
Figure 4: The current graph GI (a) and the voltage graph GV (b) of the closed system, obtained from 
the circuit in Fig. 1(a). 

There are 20 common spanning trees in the graphs of Fig. 4. The closed system 
determinant (6) for this circuit is 
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So, according to (4), we obtain the required voltage transmittance as 
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Now, if we wish to write the above network function as a ratio of two polynomials in 
s (1), the admittance symbols Yk in (8) must be replaced by their s-expanded 
equivalents and the terms sorted on powers of s. First, however, since the circuit 
contains the inductor L1, we must multiply each term of the numerator and 
denominator by Z1=sL1 and remove the products Y1Z1 (because they are equal to one). 
Finally, sorting on powers of s, we obtain the voltage transmittance in the fully 
s-expanded form as 
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The classical two-graph method, described above, cannot handle the non-admittance 
elements like the remaining three types of controlled sources, ideal transformers, etc. 
Fortunately, a simple modification will allow all types of circuit components to be 
included. This modification will be presented in the following section. 

4.2. Modification of the two-graph method to include the non-admittance 
elements 

It is well known that every circuit component that does not have an admittance 
representation (or we do not wish it to appear as an admittance in the formula) can be 
modeled by a circuit that contains only admittances and voltage-controlled current 
sources [7, 10]. Consider, for example, a current-controlled current source (CCCS), 
shown in Fig. 5(a). It can be modeled by a circuit containing three VCCS’s, as shown 
in Fig. 5(b). This model of a CCCS has its representation in the current and voltage 
graphs, the so called two-graph ‘stamp’, shown in Fig. 5(c). Note that an additional 
circuit node, n+1, and two new branches were created, increasing the circuit 
complexity. 

 

 
 

Figure 5: A current-controlled current source (a), its model (b) and the corresponding two-graph 
representation (c). 

In Fig. 5(b) the two coupled VCCSs with their transconductances equal to one form a 
well known circuit component, called the unity gyrator. The unity gyrator(s) can be 
used to model all other circuit elements, including controlled sources, transformers, 
etc. This technique can also be used to model any impedance Z by an equivalent 
admittance Y. So, all non-admittance elements can be represented by their two-graph 
stamps [11]. Some of these stamps are shown in Table 1. 

Two special elements are also included in Table 1: nullator and norator. A nullator is 
defined as having its voltage and current simultaneously equal to zero. A norator has 
an arbitrary voltage and current. These elements belong to the class of singular 
elements [12] and are useful in modeling the ideal behavior of real circuit components 
(an op amp, for example). These elements will be used in Section 7. 
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One question remains: how to treat the unity transconductances symbolically?  Being 
equal to one siemens, they do not contribute (numerically) to a product of spanning 
tree admittances, so they can be removed from each product term as soon as a 
common tree is generated that contain edges corresponding to those 
transconductances. The only exception is a common tree consisting solely of such 
unity transconductances. In these cases the tree admittance product is represented by 
the symbol ‘1’. 

Table 1: Modified Two-Graph Element Stamps for Some Circuit Elements. 

Element Symbol Current Graph Voltage Graph 

Admittance 

G, sC, Y  

Impedance 

R, sL, Z 
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In computer implementation of this extension to the two-graph method it is not 
necessary to label the unity VCCS’s in any special way, other than flag them for 
subsequent removal. For clarity of presentation, however, the labels ‘1aX’, ‘1bX’ are 
used here, where ‘X’ is replaced by the label of the modeled component. 

Example 2 

To illustrate usefulness of the modified two-graph method, consider the following 
simple example. Fig. 6(a) shows an augmented small-signal, mid-band equivalent 
circuit of a BJT common-emitter amplifier. It is required to find the symbolic 
expression for the voltage transfer function, Tv  v2/v1, of this circuit. The symbolic 
expression should only use the element symbols as they appear on the diagram. 

 
Figure 6: Circuit with resistors and CCCS (a) and its modified current (b) and voltage (c) graphs. 

Of course, for such an elementary circuit the required transfer function can be 

calculated by inspection as 
1

C
v

e

R
T

r




 


. Note that three circuit components: RC, re 

and the CCCS βib, could not be directly handled by the classical two-graph approach. 

Using the element stamps from Table 1, the current and voltage graphs are 
constructed, as shown in Fig. 6(b, c), respectively. These graphs have only six 
common trees, which are listed in Fig. 7 with appropriate signs: 

-, ĝm, RC, β, 1are, 1bβ, 1bre 
+, ŷ, re, β, 1aRC, 1bβ, 1bRC 
+, ŷ, re, 1aβ, 1aRC, 1bβ, 1bRC 
+, GB, re, β, 1aRC, 1bβ, 1bRC 
+, GB, re, 1aβ, 1aRC, 1bβ, 1bRC 
+, 1aβ, 1aRC, 1are, 1bβ, 1bRC, 1bre 

Figure 7: All common spanning trees, with signs, of the two graphs in Fig. 6. 
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After removing terms 1aX and 1bX from the common trees and sorting the product 
terms with respect to the unique symbols ŷ and ĝm, we can write the determinant of 
the MNAM of the augmented circuit as 

 11 12
ˆ ˆ ˆ ˆ ˆ1 ( )m B e B e e e m Cy g G r G r y r r g R                (10) 

Now, the required transfer function can be obtained as a ratio of two cofactors: 

 2 12

1 11 1
C C

v
e e e

R Rv
T

v r r r

 
 


   
  

  (11) 

It can be easily confirmed that other transfer functions, namely: 

 11 12( 1)
,

1 ( 1) 1 ( 1)
e C

in T
B e B e

r R
Z R

G r G r

 
 
  

   
     

 (12) 

are also calculated correctly using the proposed modification of the two-graph 
method. 

The major advantages of the two-graph method are: (i) there are no term 
cancellations, (ii) all types of circuit components can be handled and (iii) efficient 
techniques exist to generate common spanning trees in decreasing order of 
magnitude. The last point is of great importance to the approximate symbolic analysis 
of large analog circuits, where only a relatively small number of common spanning 
trees with significant contribution to the solution need to be generated. An outline of 
this application will be presented in the next section.  

5. Application of the Two-Graph Method to Symbolic Approximation  

All symbolic analysis methods that have a goal of generating the fully s-expanded 
form of (1) suffer from the well known complexity problem: the exponential, O(an), 
or superexponential, O(nn), growth of the number of terms with the circuit size. It has 
been suggested that such exact symbolic analysis of a randomly chosen circuit is 
infeasible if the sum of the number of nodes and the number of branches is greater 
than 40 [4]. 

One solution to the complexity problem is to generate an approximate transfer 
function with only the most significant terms. The two-graph method is very suitable 
for this task because there are efficient techniques for generating the spanning trees in 
decreasing order of their weights [13]. (The weight of a tree is defined as a sum of 
weights of its branches. Since we want to compare the products of admittances, a 
natural way of dealing with the problem is to make the weight of each branch equal to 
the logarithm of the magnitude of its corresponding admittance.) 

The process starts with generation of the maximum tree, i.e., the tree with the largest 
weight. A simple algorithm of Kruskal [14] or Prim [15] can be employed. Once the 
maximum tree is known, each of its branches is exchanged with all suitable links (this 
is called the T-exchange; a valid T-exchange must produce another spanning tree). 
This generates a list of trees that is guaranteed to contain the next largest tree. The T-
exchange process is then repeated for the second largest tree, producing the third 
largest tree, and so on. The procedure is stopped when the simplified transfer function 
approximates the exact function to the required accuracy [3]. Of course, the exact 
transfer function must be calculated numerically beforehand. The above approach can 
be used only to approximate the transfer function as a whole for a fixed frequency 
s = jω. 
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Example 3 

To illustrate the process of computer generation of simplified symbolic expressions, 
consider a DC small-signal (augmented) equivalent circuit of a feedback amplifier, 
shown in Fig. 8(a). We want to obtain approximate (to better than 1%) expressions 
for its voltage transmittance and input resistance. Readers would recognize the circuit 
to be an inverting amplifier with an imperfect op amp, having finite open-loop gain µ, 
finite differential input resistance Rd and non-zero output resistance Ro. Using element 
stamps from Table 1, the current and voltage graphs of the augmented circuit are 
constructed; they are shown in Fig. 8(b, c). The branch weight is the logarithm of the 
element’s (trans)conductance. 

 
Figure 8: A DC small-signal model of an amplifier with an imperfect op amp (a) and its associated 
current (b) and voltage (c) graphs. 

There are 17 common spanning trees in GI and GV (the total number of trees in GI is 
68). The trees, with their weights (converted back to the product of conductances) and 
signs, are listed in Fig. 9 in decreasing order of weights. 

T0 → 10-2, -, ĝm, µ, G1, Go, 1aµ T10 → 10-9,  +, ŷ, Gd, GL, 1aµ, 1bµ 
T1 → 10-3, +, ŷ, µ, Gf, Go, 1aµ T11 → 10-11, +, ŷ, Gd, Gf, 1aµ, 1bµ 
T2 → 10-6, +, ŷ, G1, Go, 1aµ, 1bµ T12 → 10-11, +, G1, Gf, Go, 1aµ, 1bµ 
T3 → 10-7, +, ŷ, G1, GL, 1aµ, 1bµ T13 → 10-12, +, G1, Gd, Go, 1aµ, 1bµ 
T4 → 10-7, +, ŷ, Gf, Go, 1aµ, 1bµ T14 → 10-12, +, G1, Gf, GL, 1aµ, 1bµ 
T5 → 10-7, +, µ, G1, Gf, Go, 1aµ T15 → 10-13, +, G1, Gd, GL, 1aµ, 1bµ 
T6 → 10-8, +, ŷ, Gd, Go, 1aµ, 1bµ T16 → 10-15, +, G1, Gd, Gf, 1aµ, 1bµ 
T7 → 10-8, +, ŷ, Gf, GL, 1aµ, 1bµ 
T8 → 10-9, +, ĝm, G1, Gf, 1aµ, 1bµ  
T9 → 10-9, +, ŷ, G1, Gf, 1aµ, 1bµ 

Figure 9: All common spanning trees, with weights and signs, of the two graphs in Fig. 8. 

The required symbolic expression for the network functions are formulated by 
successively adding terms to the numerator and the denominator as they are generated 
in decreasing order of magnitude. After the first three steps we notice that no more 
significant contributions to the voltage transmittance expression can be made as the 
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weight of T2 is already three orders of magnitude smaller than the weight of T1. So, 
the approximate voltage transmittance formula can now be obtained as 

 1 o
v

G G
T

 




1f o oG G G G  
1 1

1

fo

f o f

RG G G

G G G R





      (13) 

The approximate expression for the input resistance will be obtained after nine steps, 
when the weights of generated trees are 100 times smaller than the first term in the 
denominator of the formula. So, the approximate input resistance of the amplifier is 
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 (14) 

As expected, the approximate expressions are exactly the ones used by every 
electronics engineer. They have been derived, however, by a completely automatic 
process.                

The two-graph tree enumeration approach can be also used to approximate the 
coefficients at individual powers of s. To obtain the approximate coefficient at sk, the 
trees with exactly k capacitors must be generated in decreasing order of weights [16]. 
This can be accomplished by the use of matroid intersection algorithms [17].  Again, 
the numerical values of the coefficients must be calculated beforehand. For relatively 
small circuits a simple numerical interpolation technique can be employed [10]. For 
large circuits, with many tens of capacitors, an adaptive interpolation technique was 
developed [18].  

6. Two-Graph Method Applied to Parameter Extraction Using 
Hybrid Equation  

In Sections 4 and 5 we have shown how the two-graph method can be applied to 
symbolic calculation of the determinant of a (modified) node admittance matrix.  
The two-graph method has also other interesting applications. In this section we 
will show how it can be used to formulate and solve the hybrid (tableau) equation to 
obtain semisymbolic expressions for network functions (this process is also called 
parameter extraction) [5]. For simplicity of presentation we will consider only the 
RLC-gm circuits. As shown in section 4.2, the method can be extended to other 
circuit components. 

As before, a network will be represented topologically by two linear graphs: the 
voltage graph GV and the current graph GI. We choose a common spanning tree 
containing only impedance elements (R, sL). All admittance elements (G, gm, sC) are 
in the cotree. The hybrid system of equations for such network, with respect to the 
chosen tree T, is 

 

T T

T C

C T

C C

   
   
    
   
      

I 0 Z 0 v

B I 0 0 v
Hx 0

0 0 I Q i

0 Y 0 I i

 (15) 
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The first and the last rows of (15) consist of the v-i relationships for the tree (T) and 
the cotree (C) elements; the second and third rows consist of the fundamental loop 
and the fundamental cutset equations for GV and GI, respectively. BT is the 
fundamental loop matrix in GV and QC is the fundamental cutset matrix in GI. The 
matrices ZT and YC are diagonal; I is an identity matrix of an appropriate order.  

Let the circuit have n nodes and b branches and contain k symbolic components 
S S

1( , , )kY Y  in the co-tree branches (links) and l symbolic components S S
1( , , )lZ Z  

in the tree branches; we define w = b–n–k+1, t = n–l–1.  Diagonal matrices YC and 
ZT can be partitioned as follows: 

 
S S
C T

C TN N
C T

,
   

    
  

Y 0 Z 0
Y Z

0 Y 0 Z
 (16) 

where superscript S denotes immitances of symbolic components and superscript N 
denotes immitances of components given numerically. 

Matrices BT and QC can also be partitioned as follows: 

 11 12 11 12
T C

21 22 21 22

,
   

    
   

B B Q Q
B Q

B B Q Q
 (17) 

Rows of B11 and B12 correspond to symbolic cotree branches (in GV) and their 
columns correspond to symbolic and numeric tree branches, respectively. Rows of 
B21 and B22 correspond to numeric cotree branches. Rows of Q11 and Q12 correspond 
to symbolic tree branches (in GI) and their columns correspond to symbolic and 
numeric co-tree branches, respectively. Rows of Q21 and Q22 correspond to numeric 
tree branches. The submatrices are therefore of the following order: B11: kl, B22: 
wt, Q11: lk, Q22: tw. 

Let Sx = {1, 2, ..., x}. For a given matrix F of order ab let F(Iu, Jv) be the submatrix 
of F consisting of the rows and columns indexed by the integers in the sets Iu, Jv, 
respectively.  The sets Iu = {i1, i2, ..., iu} and Jv = {j1, j2, ..., jv} are subsets of Sa and 
Sb, respectively.  Let us also introduce the following notation: 

 

 1 2diag ;

0 for {1,2, , }

1 for { 1, 2, , }

c
d d

x

e e e c d
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x c c d
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 (18) 

 

The determinant of the system matrix H in Eq. (24.18), when some parameters take 
fixed numerical values, is: 

 

1 2 1 2

1 2 1 2

S S S S S S

S S S S S S

det (α ) (β )

(α β )

v u
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v j j j u i i i

v u

v u j j j i i i

u v

a b Z Z Z c Y Y Y
J I

d Z Z Z Y Y Y
I J

  



 



H  

 
 (19) 

where the summations are taken over all possible symbol combinations v (symbolic 
tree elements) and u (symbolic cotree elements), and the numerical coefficients are 
given by: 
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(20) 

 

 

 

 
 

In the above equations, 0 represents a zero matrix of an appropriate order and the 
submatrices N

ijB and N
ijQ  are defined as: 

 
N N N N
21 C 21 22 C 22

N N N N
21 T 21 22 T 22

( , ) ( , ) ,

( , ) ( , ) ,

w v w v

t u t u

I J I J

J I J I

 

 

B Y B B Y B

Q Z Q Q Z Q
 (21) 

where the submatrix B21(Iw,Jv) is obtained from the submatrix B21 by including all of 
its rows and only columns corresponding to a particular combination (v) of symbolic 
tree elements; submatrix Q21(Jt,Iu) is obtained from the submatrix Q21 by including all 
its rows and only columns corresponding to a particular combination (u) of symbolic 
co-tree elements. 

Application of (19) and (20) for a circuit with m symbolic parameters requires, 
theoretically, the calculation of 2m determinants.  Not all of these determinants may 
need to be calculated due to the following property of the determinants in (20).  If a 
set of symbolic tree elements (v) forms a cutset in GI (symbolic tree cut-set), then the 
corresponding coefficients b(v) and d(vu) in (19) equal to zero. Likewise, if the set 
of symbolic cotree elements (u) forms a loop in GV (symbolic co-tree loop), the 
corresponding coefficients c(u) and d(vu) in (19) equal to zero. 

Once the determinant det(H) is obtained from (19), the sorting scheme, identical to 
that described in p.3.2, is applied and the required network function(s) can be 
calculated using (4) and (6). 

The main feature of this approach is the fact that each coefficient at a valid symbol 
combination is obtained directly by calculating a single, easily formulated 
determinant (a polynomial in s, in general case).  The method was implemented in a 
computer program UTSSNAP. The following example illustrates this technique of 
parameter extraction. 

Example 4 

In the circuit in Fig. 10(a) only two components, R1 and gm, are given symbolically.  
We want to find the input impedance Zin in a semi-symbolic form using the parameter 
extraction method based on the two graph tableau formulation. 

Since we want only to calculate the input impedance, the circuit augmentation can be 
limited to the admittance ŷ. The voltage and current graphs of the augmented circuit 
are shown in Fig. 10(b).  The common spanning tree chosen is T = {R1, R2, R3} with 
one symbolic element.  For this circuit we have: n = 4, b = 7, k = 2, l = 1, w = 2 and 
t = 2. 
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Figure 10: An augmented circuit with some resistances given numerical values in ohms (a) and its 
current (b) and voltage (c) graphs.  

The matrices YC, ZT, QC and BT, can now be determined as: 
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Using (21) we can calculate matrices N N
22 22andB Q : 

 

N
22

N
22

0.1 0 1 1 0.1 0.1

0 10 1 0 10 0

0.2 0 1 1 0.2 0.2

0 0.5 1 0 0.5 0

      
      
     

        
      
     

B

Q  (23)
 

Now, applying (20), the coefficient a in (19) is calculated as: 

 

1 0 0.1 0.1 0.2 0.2
det
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det 3.17

2 3

a
       

             
 

  
 

 (24) 

Since there is only one symbolic tree element, namely R1, we have: v = {R1} and the 
associated sets: Jv = {1}, Iw = {1,2}.  Using (21) we calculate: 

 N
21 21

0.1 0 1 0.1
( , ) ( , )

0 10 1 10w v Cn w vI J I J
      

             
B Y B  (25) 

The coefficient b(R1) can be now obtained from: 

1 2 

3 

R1

R3

R7 

gmV13

R6ŷ 

+

– 

V13 

1 2

3

0

1 2 

3 

0 

R2

R1

R7

gm

R6

R3

ŷ

R2

R1

gm 

ŷ 

R3

R7

R6

(a) 

GI GV

(b) (c) 

0.2 

0.1 

0.5 

10.0

R2



164   Design of Analog Circuits through SA Pierzchała and Rodanski 

 

1

0 0 0 1 1
0.1 0.1 0.1

( ) det 0 1 0 0.2 0.2
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10.1 10.1 0.1

det 2.02 3.02 0.02 10.6
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b R

      
                       

 
     
  

 (26) 

Other numerical coefficients in (19) are calculated in similar way: 

 1 1 1ˆ ˆ ˆ ˆ( ) 1.51, ( ) 0, ( ) 0, ( ) 8.12, ( ) 1.05, ( ) 0.51m m m mc y c g c yg d R y d R g d R yg       

Adding all terms, sorting according to (6) and applying (4) finally results in: 

 1 1

1 1

1.51 8.12 0.51

3.17 10.6 1.05
m

in
m

R R g
Z

R R g

 


 
 (27) 

Matrices in (20) may contain terms dependent on the complex frequency s. 
Determinants of such matrices are polynomials in s as long as all matrix elements are 
of the form: a =  + s.  An interpolation method may be used to calculate the 
coefficients of those polynomials [10, 18]. 

7. Synthesis of Electronic Circuits by the Two-Graph Method 

7.1. Introduction 

The discovery of new active RC circuits has been accomplished by using a variety of 
techniques. These include proposing a particular circuit topology, analyzing it and 
matching coefficients (e.g. [19, 20]), applying a transformation to a known circuit 
(e.g. [6, 21, 22]), computer generation of all possible topologies [23] and 
transformation from symbolic transfer function to the active RC circuit by admittance 
matrix expression [24]. However, in many practical situations engineers prefer to use 
the prototype LC filter structure as a basis of the active RC filter synthesis. Thus, in 
this section we present a method of synthesis of the active RC circuits on the basis of 
the prototype LC networks. 

Our method makes prior assumption about circuit topology of the prototype LC 
filters: they should have the structure of RT,LT,CC circuits (i.e., containing resistors 
and inductors which can be placed only in tree branches, RT,LT, and capacitors which 
can be placed only in cotree branches, CC). This restriction allows us to describe the 
circuit by the hybrid equation (15). The matrix H in (15) has only ones on the main 
diagonal, so its determinant will have one term equal to 1. Since all the terms of the 
determinant must have the same dimension, it follows that all other terms must be 
dimensionless. This means that they must be the products of equal number of 
impedances and admittances. It is convenient to think of such products as the 
products of admittance-impedance pairs. The topological matrices BT and QC in (15) 
determine how the elements are paired, which pairs can appear in the product term, 
and what is the sign of each term [25].  

For such network we calculate the topological matrices BT and QC and the symbolic 
transmittance in s-expanded form. Then we build the equivalent topological matrices 
without inductive elements. These new matrices form the basis to derive a circuit with 
resistors, capacitors, nullators and norators which has the same or approximate (for 
simpler circuits) network function as the prototype LC circuit. 
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7.2. Transformation of LC filters to active RC circuits   

7.2.1. Replacing the topological matrices of the prototype LC filter by the 
topological matrices of an RC circuit 

The networks to be considered are connected, linear, time-invariant LC filters modeled 
with RT,LT,CC elements. The topological matrices for such networks can be partitioned 
as shown in Table 2 (for notational convenience in the remainder of this section we 
will use matrix /

C C T Q  (–QC transposed) rather than matrix QC itself). 

Table 2: Partitioning of Topological Matrices for the Prototype LC Filters. 

 T LC
B  sLT RT   C LC

T  sLT RT 

sCC 
C TC ,LB  

C TC ,RB  sCC
C TC ,LT

C TC ,RT

The form of individual product pairs, obtained from the topological matrices in Table 
2, is determined by the symbolic product of their respective row and column labels. 
The pairs may have one of the two forms: s2CxLx or sCxRy. In order for a pair to be a 
valid symbol combination in a transfer formula, the corresponding entries in the 
topological matrices must be both equal to ±1. 

Each quadratic term s2CxLy may be replicated by in an appropriate configuration of 
two capacitors and two resistors Cx1,Cx2,Ry1,Ry2 in an equivalent RC circuit. Tables 3 
and 4 show the structure of relevant topological sub-matrices for the prototype LC 
circuit and the equivalent RC circuit.  

Table 3: Topological Sub-Matrices Related to Quadratic Terms in the Prototype LC Filter. 

  
C TC ,L LC

B  sLy   
C TC ,L LC

T  sLy  

 sCx 1  sCx 1  

Table 4: Topological Sub-Matrices Related to Quadratic Terms in the Equivalent RC Circuit. 

 
C TC ,R RC

B  Ry1 Ry2   
C TC ,R RC

T  Ry1 Ry2 

sCx1 1 0  sCx1 0 1 
sCx2 0 1  sCx2 –1 0 

This configuration of capacitors and resistors will create only a quadratic term 
(s2Cx1Cx2Ry1Ry2) in the transfer function, just like the inductor Ly and the capacitor 
Cx (s

2LyCx). Single terms of the form sCxRy are not valid in the topology implied by 
matrices in Table 4, since for every possible combination of sCxRy there is one zero 
element in either  T RC

B  or  C RCT . 

There are other combinations of RC elements which give raise to quadratic terms. 
Altogether we have 16 such possibilities, but only three give different solutions. 
The two remaining combinations have the forms shown in Tables 5 and 6. 

Table 5: Second Combination of RC Elements, Generating Quadratic Terms. 

 
C TC ,R RC

B  Ry1 Ry2   
C TC ,R RC

T  Ry1 Ry2 

sCx1 1 0  sCx1 0 –1 
sCx2 0 1  sCx2 1 0 
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Table 6: Third Combination of RC Elements, Generating Quadratic Terms. 

 
RCC TC ,RB  Ry1 Ry2   

C TC ,R RC
T  Ry1 Ry2 

sCx1 –1 0  sCx1 0 1 
sCx2 0 1  sCx2 –1 0 

Example 5 

Consider the following prototype low-pass LC filter: 

 
Figure 11: The prototype low-pass LC filter. 

The topological matrices  T LC
B  and  C LCT  of this circuit have the following form: 

 

 T LC
B  sL   C LC

T  sL 

sC 1  sC 1 

The voltage transfer function of the filter in Fig. 11 is: 

 LC 2

1
( )

1
out

in

V
T s

V s LC
 


 (28) 

If we built an equivalent RC circuit with the first combination of resistors and 
capacitors (Table 7), we obtain the following matrices: 

 

 T RC
B  R1 R2   C RC

T  R1 R2 

sC1 1 0  sC1 0 1 
sC2 0 1  sC2 –1 0 

For these matrices we have an equivalent network function: 

 RC 2
1 2 1 2

1
( )

1
out

in

V
T s

V s C C R R
 


 (29) 

If C1C2R1R2 = LC, then the transfer functions TLC(s) and TRC(s) are identical. 

7.2.2. Construction of an equivalent RC circuit with switches 

We have shown that the terms of the form a2s
2 in the transfer function of the 

prototype LC filters may be replaced by terms of the form ā2s
2 in the transfer 

function of the RC circuit. The question now is how to construct an active RC 
circuit starting from the topological matrices of the LC filter. 

The derivation of the RC circuit with switches consists of two stages starting from 

the original topological sub-matrices  
C TC ,L LC

B and  
C TC ,L LC

T : 

1. Each pair of the corresponding non-zero elements of the sub-matrices 

 
C TC ,L LC

B and  
C TC ,L LC

T
 
(Table 3) should be replaced by one of the three 

possible (2×2) sub-matrices, shown in Tables 4-6. 

C

VoutVin
L
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2. Each of the two capacitors Cx1, Cx2 and two resistors Ry1,Ry2 are connected to 
the original circuit with switches. These switches have different positions for 
the voltage (GV) and the current (GI) graphs, such as to realize the topological 
matrices  T LC

B  and  C LCT  of the prototype LC circuit. 

Example 6 

Consider again the low-pass LC filter from Fig. 11. If we want to obtain an RC 
circuit with the topological matrices  T RC

B  and  C RCT given in the Example 5, the 

circuit should be constructed as shown in Fig. 12(a). Two other circuits, realizing 
the topological matrices in Tables 5 and 6, are shown in Fig. 12(b) and Fig 12(c), 
respectively. 

 

 

 

Figure 12: The equivalent circuits to the low-pass LC filter prototype from Fig. 11, realizing 
topological matrices in Table 4 (a), Table 5 (b) and Table 6 (c). 

7.2.3. Construction of an equivalent RC circuit with nullors 

There are elements which can work as switches in the above circuits. Examining the 
two-graph stamps for the nullator and norator, given in Table 1, we see that they 
have exactly the required representations in the voltage and current graphs. The 
nullator can be considered to be a switch which is in the open-circuit position in the 
current graph and in the short-circuit position in the voltage graph. Similarly, the 
norator can be considered to be a switch which is in the short-circuit position the 
current graph and in the open-circuit position in the voltage graph. 

For example, if the switches in the circuit in Fig. 12(a) are replaced with nullators 
and norators, we obtain the circuit shown in Fig. 13(a). 

A nullator and a norator must appear as a pair which has been given the name 
nullor. Because nullors can be used to represent a variety of different active 
elements such as BJT, FET, op-amp, current conveyor, voltage follower, current 
follower, operational transconductance amplifier (OTA), etc. [26], they provide a 
unified framework for analysis and synthesis of active network. A nullor 
approximation with both input and output ports floating is called a Four Terminal 
Floating Nullor (FTFN) [27]. A schematic symbol of the FTFN is shown in Fig. 
13(b). 

R1 R2

C2 

C1 

Vin 

+

–
Vout 

GI GV 

GV GI 

GV 
GI

GI GV

GV
GI

Vin

Vout

+

–

R1 R2

C2

C1

GI
GV 

GV 
GI

Vin

Vout 
+ 

– 

R1 R2

C2 

C1 

(a) (b) (c)

GI GV GI GV
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Figure 13: The circuit from Fig. 12(a) with the switches replaced by nullators and norators (a). 
A nullator-norator pair can be approximated by the Four Terminal Floating Nullor (b). 

The RC circuit with the FTFNs, equivalent to the prototype LC low-pass filter is 
shown in Fig. 14. 

 
Figure 14: The circuit from Fig. 13(a) with the nullator-norator pairs replaced by the FTFNs. 

7.2.4. Simplification of structures of active-RC circuits with nullors 

A method has been described that leads to the topology of an active RC circuit, 
starting from the prototype LC filter structure. It is clear from the examples that the 
synthesis process gives a transfer function fully equivalent to that of the prototype LC 
filter. However, the structure of the active RC circuits may be complicated by the 
presence of many switches. If we want to obtain simpler topologies, we must accept 
some additional terms in the transfer function of the equivalent RC circuit. A switch 
is eliminated if we allow a capacitor to be connected to the same vertices in GI and 
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GV. This results in an additional ±1 appearing in the relevant sub-matrices of  T RC
B  

and  C RCT . Table 7 shows a modification that will result in elimination of switches 

connecting Cx1 to the circuit.. 

Table 7: Modified Topological Sub-Matrices of the RC Circuit. 

 C ,RC T RC
B  Ry1 Ry2   C ,RC T RC

T  Ry1 Ry2 

sCx1 1 1  sCx1 1 1 
sCx2 0 1  sCx2 –1 0 

 

This new configuration of the capacitors and resistors leads to a term of the form 
as2+bs (s2Cx1Cx2Ry1Ry2+sCx1Ry1+sCx1Ry2) in the denominator of the transfer 
function. Thus, the resulting transmittance will only be an approximation of the 
prototype. 

Example 7 

Once again, consider the low-pass filter in Fig. 11. If we build an equivalent RC 
circuit with the resistor-capacitor combinations in Table 7, its topological matrices 
will have the form: 

 T RC
B R1 R2   C RC

T R1 R2 

sC1 1 1  sC1 1 1 
sC2 0 1  sC2 –1 0 

From these matrices we obtain the network function of the equivalent circuit: 

 RC 2
1 2 1 2 1 1 2

1
( )

( ) 1
out

in

V
T s

V s C C R R sC R R
 

  
 (30) 

This network function is no longer identical with the prototype as it contains an 
additional term sC1(R1+R2). However, the circuit is simpler, as shown in Fig. 15(a). 
A realization of the modified RC filter, with the switch replaced by a FTFN is 
shown in Fig. 15(b). 

 

Figure 15: Modified RC filter with a single switch (a) and its realization with the FTFN (b). 

The additional term in (30) has a simple circuit interpretation. It represents losses in 
the inductor, as shown in Fig. 16. Expression (31) gives the transfer function of this 
lossy LC filter. Expressions (30) and (31) are equivalent if LC = C1C2R1R2 and 
r = R1+R2. 

R1 R2

C2

C1
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GI GV
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R1 R2

C2

C1

Vin Vout

(b)

+
FTFN
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C

VoutVin
L r

 
Figure 16: The low-pass LC filter with losses. 

 LC 2

1
( )

1
out

in

V
T s

V s CL sCr
 

 
 (31) 

If (30) is to be a good approximation of the prototype transfer function (28), then we 
need C1(R1+R2) << C1C2R1R2. This implies that either C2 or R1R2 are very large. Such 
solutions may not be practical as large capacitances and resistances are expensive (in 
terms of the ‘real estate’ on the IC chip). 

This disadvantage may be removed by using another form of the topological sub-

matrices  
C TC ,L RC

B and  
C TC ,L RC

T , shown in Table 8. Circuit topology implied by 

these matrices will lead to a transfer formula containing only a single valid pair: 
sCx1Ry2. 

Table 8: Alternative Topological Sub-Matrices of the RC Circuit. 
 

 C ,RC T RC
B  Ry1 Ry2   C ,RC T RC

T  Ry1 Ry2 

sCx1 1 1  sCx1 0 1 
sCx2 0 1  sCx2 –1 0 

Example 8 

If we build an equivalent RC circuit with the alternative combination of resistors 
and capacitors (Table 8), we obtain the following topological matrices for the 
modified RC circuit: 

 V
T RC

B  R1 R2   I
C RC

T  R1 R2 

sC1 1 1  sC1 0 1 
sC2 0 1  sC2 –1 0 

 
Figure 17: The equivalent RC filter with losses and its realization with the FTFNs. 
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For these matrices we obtain the following network function, approximating the 
prototype low-pass LC filter: 

 RC 2
1 2 1 2 1 2

1
( )

1
out

in

V
T s

V s C C R R sC R
 

 
 (32) 

In this case we have an additional term sC1R2 in the network function. However, the 
circuit configuration is simpler (Fig. 17) and we can independently design the 
equivalent inductor’s value L by choosing the product C2R1 and the losses by 
choosing the value of R2. 

8. Conclusion 

The two-graph method has been largely used in symbolic analysis of linear, time-
invariant circuits. The method is very suitable for such analysis, since, intrinsically, 
no cancelling terms are generated. Term generation is based on enumeration of the 
common spanning trees in the two graphs, describing the circuit topology. 
Originally, the two-graph method was developed for an important but limited class 
of RLC-gm networks. This limitation can be removed by introducing circuit 
modifications, similar to the ones used in the modified nodal analysis. However, 
there is a price we have to pay for the ability to analyze a wider class of networks: 
the modifications usually increase the circuit complexity. 

All analysis methods that attempt to generate an exact fully symbolic single formula for 
a network function suffer from the complexity problem. The number of terms in the 
expression grows exponentially, O(an), or superexponentially O(nn), with the circuit 
size. One solution to the complexity problem is to relax the requirement that the formula 
must be exact and include only those terms that significantly contribute to the final 
result. The two-graph method is very well suited to this task because algorithms exist 
that allow the common spanning trees to be generated in decreasing order of magnitude. 

Often we are interested in finding the contribution of only a few components to the 
overall circuit response. If those components are left as symbols and all the others are 
replaced by their numerical values, the resulting formula will have mixed symbolic 
and numeric terms. Such expression is called semi-symbolic, and the process of its 
formulation is known as parameter extraction. The two-graph method is also very 
effective in parameter extraction. In this chapter we have presented one such 
application that allows calculation of numerical coefficients at each symbol 
combination in a single step and with no matrix inversion. 

The two-graph method can also be used in network synthesis. We have described an 
application of the two-graph method to synthesize active RC filters on the basis of the 
prototype LC filter structures. The use of the Four Terminal Floating Nullor (FTFN) 
allows an easy transformation from the LC filter structure to the architecture of the 
RC circuit. The number of available choices is quite manageable. Thus, the method 
provides a tool for circuit innovation. 
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CHAPTER 7 

Approximation Techniques in Symbolic Circuit Analysis 

Francisco V. Fernández1,*, Carlos Sánchez-López2, Rafael Castro-López3 and 
Elisenda Roca-Moreno3 
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CSIC and University of Sevilla, Spain, and University of Tlaxcala, México and 3IMSE-CNM, CSIC and 
University of Sevilla 

Abstract: Symbolic circuit analysis suffers from the exponential growth of expression 
complexity with circuit size. Therefore, either if the symbolic expressions are used for 
gaining insight into circuit operation or for repetitive computer-based evaluations, 
simplification becomes mandatory. This chapter reviews the different existing 
techniques for symbolic expression simplification, classifying them into three categories 
according to the step at which the simplification is performed: on the circuit equations, 
during the solution of the circuit equations or after the circuit equations have been 
solved. Pros and cons of each approach are discussed. 

Keywords: Approximated symbolic analysis, approximation techniques, simplification before 
generation, graph reduction, matrix reduction, simplification after generation, simplification during 
generation, approximation error, symbolic term generation, two-graph method, matroid intersection, 
determinant decision diagram. 

1. Introduction 

Symbolic analysis refers to circuit analysis in which all or part of the circuit 
parameters are kept as symbols. Symbolic analysis tools have been typically restricted 
to linear models, therefore limiting their application to linear(ized) or weakly non-
linear analysis. 

In this chapter we will concentrate on small-signal frequency domain analysis. We 
can distinguish between fully symbolic analysis and semi-symbolic analysis. In the 
former case, all component parameters and the complex frequency variable are 
maintained as symbols. In the latter, some or all component parameters are given 
numerical values and the rest are maintained as symbols. Our discussion will focus on 
fully symbolic analysis, since, from the perspective of this chapter, semi-symbolic 
analysis is considered a particular case of the former. 

The analysis of an amplifier like that in Fig. 1 provides a symbolic expression of the 
voltage gain with 21 terms: 

1 2 1 2 3 1 2 1 3 2 1 1 1 3 2

1 2 1 2 3 1 1 1 2 3 2 1 2 3 2 1 1 3 2 1 1

( ) ( ) ( )
( , )

( )( ) ( )( )( ) ( )

m m L L m L

m m L m L L

g g r r R R R R R R R r g r R R R r
H s

g g r r R R R g r R R R r R R R R r R r R r r R

    

       

    


        
x  (1) 

Although this expression is relatively simple, the operation as a feedback amplifier 
can be better understood if we consider that the first term in numerator and 
denominator is much larger than the other ones, and if they are neglected, the 
approximated voltage gain becomes an expression so much easier to interpret: 

*Address correspondence to Francisco V. Fernández: Dept. Electronics and Electromagnetism, University of 
Sevilla and IMSE-CNM, CSIC; E-mail: pacov@imse-cnm.csic.es 
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Figure 1: (a) Feedback amplifier; (b) BJT small-signal model. 
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H s
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Moreover, in case that this expression is to be used in some kind of computer 
application that requires repetitive evaluations, this can be done much more 
efficiently. 

However, fully symbolic circuit analysis suffers from the exponential growth of 
expression complexity with circuit size. As Section 4 will show, the number of terms 
in the symbolic expression grows to about 104 terms for a Miller two-stage amplifier 
with 7 transistors and to more than 1010 terms for an opamp with about 20 transistors. 
This expression complexity not only hampers its interpretation or repetitive 
evaluation but it can even make their generation computationally impossible. 
Therefore, the introduction of simplification techniques in symbolic circuit analysis 
becomes mandatory. 

Considering the step of the analysis process at which the simplification is performed 
we will distinguish three types of techniques: 

1.  Simplification Before Generation (SBG) techniques. The simplification is 
performed at the circuit model, graph or matrix level, directly on the graph or 
matrix representing the circuit equations. The goal is to obtain a simplified 
graph or matrix that can be solved much more efficiently and that yields 
much simpler symbolic results with a controlled error. 

2.  Simplification During Generation (SDG) techniques. The simplification is 
applied during the solution process of the circuit equations. The goal is to 
produce only the most significant part of the symbolic expression, without 
wasting time in generating symbolic terms with little influence on the final 
results. 

3.  Simplification After Generation (SAG) techniques. The simplification is 
performed directly on the symbolic solution. Therefore, it requires the 
previous circuit analysis and solution of the circuit equations. 

Following this classification of techniques, the three remaining sections in this 
chapter are devoted to them.  
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2. Simplification After Generation Techniques 

As stated above, simplification after generation techniques are applied on the 
symbolic network functions, once the circuit has been symbolically analyzed. In case 
these techniques are combined with other simplification (SBG and/or SDG) 
techniques, they would be the last ones to be applied, but they were the first ones that 
chronologically appeared, and for this reason, they will be discussed first. 

SAG techniques are typically applied on network functions in expanded format: 

1

1

( )

( , )
( )

m
j

j
j

n
i

i
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s f

H s
s g










x

x
x

 (3) 

where the coefficients of the different powers of the complex frequency are sums-of-
products of symbolic circuit parameters: 

 1 2, , ,T
Qx x x x  (4) 

Reported simplification criteria consider simplification at the full frequency range, 
i.e., the simplification is performed for each coefficient of the complex frequency in 
numerator and denominator of (3). Let us denote: 

1

( ) ( )
T

k kl
l

h h


 x x  (5) 

as any coefficient ( )if x  or ( )jg x  in (3). The simplification is usually performed by 

heuristically pruning the insignificant terms in each coefficient ( )kh x  of the complex 

frequency variable in (3) so that an approximate polynomial, ( )kAh x , is found for 

each coefficient. This approximate polynomial fits the original one within a user-
specified maximum error parameter M  inside a given region R of the symbolic 

parameter space:  

( ) ( )
max

( )
k kA

M
k

h h

h
R






x x

x
x

 (6) 

Most of the reported approaches perform this fitting only at a single point of the 
parameter space ox , commonly called the nominal or design point. 

The simplification criterion in [1] looks for the largest magnitude term for each 
coefficient ( )kh ox and multiplies it by a user-defined maximum error o , that defines 

a discrimination threshold. Then, all the terms are taken one by one and those whose 
magnitude is below the calculated threshold are eliminated. In other words, any term 
is eliminated from (5) if it fulfills the following condition: 
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1 2( ) max( ( ) , ( ) , , ( ) )kl o k k kTh h h h  o o o ox x x x  (7) 

Its main drawback is the lack of control on the accumulated error for each 
coefficient—the accumulated value of the deleted terms can represent either a small 
or large part of the total magnitude of each coefficient. Consequently, coefficient 
errors will probably differ considerably for different coefficients, and large magnitude 
and phase errors and large pole/zero displacements can be thus expected. 

More elaborated criteria require the previous sorting of terms in ( )kh x  according to 

their magnitude at the nominal point ox . One possibility is to eliminate the P smallest 

magnitude terms, P being the largest integer for which the accumulated error is below 

M [2-4]: 
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Mutually canceling terms do not contribute to (8) because they are added with their 
respective signs. However, such terms may become significant when the simplified 
formula is evaluated at points other than ox . Hence, although this criterion gives very 

accurate results at ox , the resulting error at other points may be well beyond M . This 

happens, for instance, when mismatches among nominally matched devices are taken 
into account. Such mismatches have a strong influence on characteristics that rely 
largely on cancellations, such as the common-mode rejection ratio and the power-
supply rejection ratio. In these cases, large insight is gained if explicit mismatch 
parameters are introduced.  

One solution to avoid elimination of mutually canceling terms is to modify (8) as 
follows: 
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Neglected terms that are of the same order of magnitude as the last one remaining in 
the simplified expression are recovered and kept in this expression [5]. 

In the previous criteria, if the same error M  were exactly obtained for all numerator 

and denominator coefficients in (3), the simplified expression would become 
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where there is no change in magnitude or phase and neither zero nor pole 
displacement. However, expression simplification is a discrete process and, hence, the 
actual errors are different for each coefficient: 

0 0 1 1

0 0 1 1

(1 ) ( ) (1 ) ( ) (1 ) ( )
( , )

(1 ) ( ) (1 ) ( ) (1 ) ( )

m
M n M n Mmn m

n
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 (11) 

This may lead to significant root displacements in circuits where the roots are very 
sensitive to coefficient variations.  

Different solutions have been proposed to overcome these problems. A trivial strategy 
adds a numerical fitting factor to each simplified coefficient such that the numerical 
evaluation of the pruned coefficients at the nominal point is made equal to the 
original ones [4]. This approach has been implemented in different symbolic 
analyzers and guarantees accuracy at the nominal point, but it does not imply any 
improvement for points other than nominal. 

Another possibility is to monitor the magnitude of each term within each ( )kh x  in (3), 

to avoid eliminating those whose magnitude is greater than the denominator in (9) [2]. 
Another approach is to use an adaptive M  scheme: term-pruning is performed step by 

step and the pole/zero displacements are monitored at each step so that simplifications 
can be stopped when such displacements are beyond a user-specified safety margin [3]. 
Unfortunately, even though this guarantees a low error at the nominal point, it does not 
ensure good results for different points of the parameter space. 

All these criteria have assumed that the frequency remains a symbol. If the system 
function has to be approximated for a single value of the frequency, of , then it must 

be evaluated for 2 os j f . The problem then reduces to approximating the real and 

imaginary parts of numerator and denominator and, hence, conceptually it is no 
different from the approximation of individual coefficients of the network function. 

Expression approximation for a bound frequency range using a nominal value 
approach is not easy. One possibility is to perform the approximation for different 
frequency points within the given range and include in the final expression every term 
that is present at least in the simplified expression at one frequency point. Full 
accuracy, however, is not guaranteed with this approach. Increasing the number of 
sample frequency points diminishes the likelihood of errors but also diminishes the 
speed of the algorithm. Sections 3 and 4 will discuss a possible solution to this 
problem. Although the techniques discussed there can also be directly applied, they 
will not be discussed here as they have been reported for SBG and SDG approaches. 

All previous algorithms perform the approximation at a nominal point and there is no 
guarantee that the accuracy is high enough at other design points. Parameter 
variations in practical circuits are usually restricted to bounded regions of the 
parameter space. One possibility to extend the validity range of the simplified 
expressions is the repetitive application of any previous criteria to each point (a 
sufficiently fine grid should be defined) inside the bounded region. However, because 
dimensions of the parameter spaces of practical circuits are usually very large, this 
approach is computationally intractable in practice. 



178   Design of Analog Circuits through SA Fernández et al. 

A solution was reported in [6]. It is based on the use of ranges of variation [7], i.e. it 
assumes that each symbol (device model variable, product of variables, or sum of 
products) may take any value inside a given range of variation: 

 ,i iL iHy y y  (12) 

where iLy and iHy are real numbers and iL iHy y . 

In this approach, the P least significant terms of each coefficient ( )kh x  are eliminated 

as long as the following condition is satisfied: 
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where  ,L HS S  represents the range of the sum of all terms in coefficient ( )kh x ,  

 ,cL cHA A represents the range of the sum of all terms to be pruned and,  U and 

 L are the upper and lower range operators, that return the upper and lower limit of 

the included range, respectively. 

To apply this definition, operators among ranges have to be defined: 

  Product of ranges. Given the multiplication of two symbolic factors, iy  and 

jy , the range of their product is: 

min( , , , ),max( , , , )i j iL jL iL jH iH jL iH jH iL jL iL jH iH jL iH jHy y y y y y y y y y y y y y y y y y     (14) 

  Addition of ranges. For a given sum of two symbols, iy  and jy , the range of 

the sum is computed by adding the corresponding bounds of the addends: 

,i j iL jL iH jHy y y y y y       (15) 

  Modulus of ranges. For a given symbolic parameter, product of symbols, or 
sum of products for which a range  ,iL iHy y  is defined or calculated, the 

modulus of ranges operator yields another range, defined from the previous 
one by taking the modulus of the extremes in an appropriate order: 

 , min( , ),max( , )iL iH iL iH iL iHy y y y y y     (16) 

  Reciprocal of a range. For a given symbol iy  whose range does not include 

zero, its reciprocal is defined as 

1 1 1
,

i iH iLy y y

 
  
 

 (17) 
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The major drawback of the variation range technique is that excessively conservative 
results can be obtained, due to two reasons: 

  Some circuit parameters are correlated with each other. If each one is 
assigned a range, range operators ignore the correlations, and this yields 
overestimation of the real range. 

   Direct substitution of the symbolic parameters with their ranges and the real 
arithmetic operators with their corresponding interval arithmetic operators 
yield the so-called natural interval extension of the symbolic polynomials. Its 
main drawback is that the width of the range may be considerably larger than 
the real one, because each range bounds may be calculated with the upper 
range bound of one symbolic parameter at a polynomial term and the lower 
bound at another. This problem is partially avoided by using other interval 
extensions, like the mean value interval extension of a function [7] ( )f x : 

1

( ) ( ) ( )( )
n

MV i i i
i

F f D F X m


  X m X  (18) 

where capital letters denote interval extension, the set  2, , ,1 nm m mm =  is 

the vector of mean values of the variables ix , and ( )iD F   is the interval 

extension of the function derivative with respect to the i-th variable. This 
interval extension can be computed using the natural interval extension of the 
derivatives, or recursively calculated using (18). 

The approximation based on ranges of variation becomes especially interesting in 
case of matching devices. Matching devices are those elements designed to have 
identical nominal values, e.g. differential pairs and current mirrors. Due to process 
variations mismatches occur between such elements. In some performance 
characteristics device mismatch plays a dominant role and, therefore, introducing 
explicit mismatch parameters becomes extremely convenient, e.g., given two matched 
transistors, 1M and 2M , their transconductance is symbolically represented as: 

1 2m m m m m mg g g g g g       (19) 

In nominal value approaches [2, 3] mismatch parameters, e.g. mg , are handled like 

any other symbolic parameters, i.e., a numerical value equal to the maximum 
mismatch value is assigned to such mismatch parameter for approximation purposes. 
However, this does not correspond to the basic philosophy of a mismatch parameter, 
as there is no mismatch value that can be assimilated to a nominal value, and even the 
sign is unknown.  But the concept of a mismatch parameter, i.e., a parameter that can 
take any value between a minimum and maximum values fits perfectly with the range 
of variation philosophy. 

3. Simplification Before Generation Techniques 

In this kind of techniques, approximations are performed directly on the network 
equations, either in the form of a matrix, a graph, or the small-signal equivalent 
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circuit itself, which are all mainly determined by the solution technique for the 
network equations that will be applied afterwards. 

The complexity reduction of the network equations has a tremendous impact on the 
complexity of the symbolic results. Therefore, the degree of interpretability introduced 
is significantly improved. Besides, the computation time and memory requirements of 
the subsequent SDG/SAG algorithms are considerably reduced due to the exponential 
relationship between circuit complexity and the number of terms to be generated. 

The basic goals of a simplification before generation approach are: 

  The simplified system of equations must model the circuit behavior correctly 
within the error constraints in the specified frequency range.  

  The system of equations resulting after the simplification step should be the 
simplest possible. 

To this end two elements are needed: 

  An ordering mechanism for the contribution of the different graph 
branches/nodes or matrix entries appearing in the graph/matrix that represents 
the system of equations.  

  A stopping criterion to decide the number of devices/nodes or matrix entries 
that can be affected by the simplification without exceeding the error 
specifications within the defined frequency range. 

According to the form of circuit model or equations in which SBG is applied, the next 
three subsections will deal with matrix-based, graph-based and circuit-based 
approaches respectively. In Section 3.4 pros and cons of these approaches are 
discussed and their error control mechanisms are introduced in Section 3.5. 

3.1. Matrix-based approaches 

A simplification before generation technique at the matrix level was introduced in [8-
10]. This technique builds the circuit equations through the indefinite nodal admittance 
matrix: 

 I Y V  (20) 

The network function can be expressed as the ratio of two cofactors (a first-order one 
and a second-order one) of this matrix. As a first step, device parameters are 
eliminated from each cofactor of the nodal admittance matrix if the error induced in 
the cofactor is below a given error threshold. The error induced in one matrix 
determinant by a modification ,i jm  of the value at the location ( , )i j  is: 

,( ) ( 1)i j
i j ijm     M M  (21) 

Matrix M in (21) is the appropriate cofactor of the nodal admittance matrix, 
according to the numerator or denominator of the network function, and ijM is the 

minor, obtained by deleting the i-th row and the j-th column of M . 
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As each circuit element is mapped into four positions on the nodal admittance matrix, 
parameter elimination can be performed at one, two, or all four positions. 

Concurrently with the device parameter elimination, this technique tries to reduce 
determinant dimension by factoring out rows and columns with only one nonzero 
entry and performs row and column operations to reduce the number of symbols or 
nonzero entries. These heuristics do not alter the value of the determinant and are not 
approximations in fact. However, they are valuable as they partially palliate the 
cancellation problem of determinant-based approaches. 

Capacitors must also be included in the nodal admittance matrix for high-frequency 
analysis. Then, applied approximations are only valid in a limited frequency range. 
Three scanning frequencies are considered per decade, used to evaluate the influence 
of elimination of the corresponding capacitor parameter. One element is eliminated at 
four, two, or one location, only if the induced error in the determinant is smaller than 
an error bound for all scanning frequencies. 

This approach separately controls the error in the determinants that correspond to the 
numerator and the denominator of the network function but not in the network 
function itself. If we consider a generic matrix formulation: 

A x = b  (22) 

a simple solution would be to calculate the effect on the elements of interest in vector 
x  when any matrix entry is removed. This involves a numerical matrix inversion for 
each removal that is tried. 

A nice solution to avoid such repetitive calculation of inverse matrices is to apply the 
Sherman-Morrison formula that allows calculating the numerical influence in the 
system output when a matrix entry ,i ja  is modified by a value ,i ja  [11]: 

*
, , ,i j i j i ja a a    (23) 

The perturbation on the k-th element of vector x  can be calculated as [11]: 

( 1)
1
,( 1)1
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   A b  (24) 

where ( 1)
jia  is the matrix entry at position (j,i) of matrix 1A and 1

,j

A  is the j-th row of 

1A . 

According to these perturbation values, a ranking list is generated where each symbol 
of the matrix is ordered depending on their numerical influence on a requested 
component (network variable) [11]. Then, starting with the least significant 
parameter, eliminations are performed while the error keeps below a given threshold. 
A heuristic to decide if the influence list has to be recalculated is used to avoid a 
direct re-calculation after each symbol elimination (which would mean a large waste 
of computational time). It also controls that the matrix that will result after the term 
elimination is not singular. 
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3.2. Graph-based approaches 

The simplification before generation methodology in [12] is performed using the two-
graph approach and has been implemented in two steps. In the first step, the voltage 
graph and the current graph are built for both the numerator and the denominator of 
the network function. Each device contribution (represented in the form of an 
admittance y ) to the numerator, ( , )c y N , and denominator, ( , )c y D , are calculated, as 
well as each device complementary contribution,  ( , )c y N and ( , )c y D : 

( ;  ) ( ; )
( , ) ( , )

( ;  ) ( ; )
( , ) ( , )

yN y N y
c y N c y N

N N
yD y D y

c y D c y D
D D

 

 

 (25) 

where ( ;  )N y  and ( ;  )D y  correspond to the sum of product terms in N and D   that 
contain the admittance y , and ( ; )N y  and ( ; )D y  to the sum of product terms in N
and D ,  that do not contain y . 

This step is performed for a set of frequency samples. Devices with small values of 
( , )c y N  or ( , )c y D  for all frequency samples are weakly contributing devices and are 

candidates for deletion in the corresponding graphs.  Devices with large values of 
( , )c y N  or ( , )c y D  for all frequency samples are strongly contributing devices and are 

candidates for contraction of its terminal nodes in the corresponding graphs.  When 
any deletion or contraction is performed, all the remaining contributions are re-
calculated, and if they change significantly with respect to the original value, the 
deletion/contraction operation of that element is cancelled.  

Then, the graphs are further simplified simultaneously. The dual contraction error, 
( ; )ce y H , and the dual deletion error, ( ; )de y H , of ( )H s  with respect to the device y  

are defined as [12]: 

( ;  ) ( ; )
( ;  ) ( ; )

( ; ) ( ; )c d

N y N N y N
D y D D y D

e y H e y H
N N
D D

 
   (26) 

Those elements with low error value can be deleted/contracted from both the 
numerator and the denominator without affecting the network function value too 
much. Again, before definitively performing any operation (deletion or contraction) 
the remaining dual errors are analysed to avoid any operation that causes a large 
variation on other contributions.  

Due to the separate simplification performed on the numerator and the denominator in 
the first step, it may happen that some devices are eliminated in the numerator 
(denominator) and still appear at the denominator (numerator). As a result of this, it 
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will be impossible to build a simplified circuit out of the results. Also, the 
simplification procedure is performed on a set of discrete frequency samples; this 
means that the accuracy is only guaranteed at those frequency values. 

A technique based on a signal flow graph approach was introduced in [13, 14]. This 
flow graph is composed of voltage nodes (that represent the voltage of the nodes in 
the circuit) and current nodes (that represent the voltage of the nodes in the circuit 
multiplied by the sum of all the self-admittances attached to them). Then, the 
simplification is performed on this network graph by the application of the following 
set of operations, called network model transformations [13, 14]: 

 Removal of signal path: deletion of an incoming meta-edge (set of all parallel 
branches between two nodes) of a summing vertex. 

 Open-loop root removal: deletion of a meta-edge not belonging to a signal 
path. 

 Vertex-pair contraction: short the voltage vertices and current vertices 
associated to two nodes. 

 Subgraph substitution: replacement of a part of the graph by other different 
graph without altering the connectivity of the network graph. 

An important point of the analysis of a linear network, N , is related to the 
calculation of the network graph complexity: 

( ) fol sum fwp fblC N n n n n    (27) 

where foln  is the number of open-loop roots,  sumn  is the number of summing points, fwpn  

is the number of forward paths and fbln  is the number of feedback loops in the graph. 

For each of the four operations described above, taking into account the performance 
parameters, ( , )ip N X , a ranking function is defined: 

1
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p j
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 (28) 

being X  the design point, jT  the j-th network model transformation, and  

( , ) ( ) ( ( ))p j jQ N T C N C T N  (29) 

the transformation quality factor, that measures the difference between the 
complexity of the original network model to the one after one simplification step j ,  

  is a tuning factor and, 

( , , ) ( , ) ( , )p jE N T X P N X P N X   (30) 



184   Design of Analog Circuits through SA Fernández et al. 

is the model performance error, that is the weighted norm of the performance deviation 
vector. This model performance error has to be measured in a set of frequency points that 
cover the frequency range defined by the user. According to the ranking value defined in 
(28), the simplification operations are performed until the specified errors are fulfilled. 

Like the previous algorithm, the simplification is performed on a finite number of 
frequency samples. No SDG algorithm has been defined for this methodology, and it 
is not clear that a methodology of this kind is feasible for this type of graphs.  

3.3. Circuit-based approaches 

The approach in [15] performs the approximation on the network under analysis 
directly at the circuit level. It replaces those elements whose contribution 
(appropriately measured) to the network function is small, by a zero-admittance 
(element removal) or zero-impedance element (contraction of terminal nodes). 

A first question is to decide if node contractions must be prioritized over branch 
removals or vice versa. After the SBG process, the resulting simplified graph must be 
solved, commonly by the application of an SDG process. The most efficient SDG 
algorithms reported are based on the matroid theory (see Section 4) and their 
computational complexity grows much faster with the number of circuit nodes than 
with the number of graph branches. Therefore, node contractions are prioritized in the 
proposed algorithm. The following steps summarize the algorithm operation: 

a)  Compute the contribution to the network function of the contraction of the 
terminal nodes of each device individually and build a sorted list. 

b)  Pick the least significant contraction from the list and compute the error. 

c)  If the maximum error has not been exceeded, perform the node contraction, 
remove all devices connected between that pair of nodes, reorder the 
contraction list and go to step (b); otherwise continue with the next step. 

d)  Compute the contribution to the network function of the removal of each 
branch individually and build a sorted list. 

e)  Pick the least significant branch removal from the list and compute the error. 

f)  If the maximum error has not been exceeded, perform the branch removal, 
reorder the removal list and go to step (d); otherwise end the algorithm. 

However, the experience with a large number of circuits shows that the order in 
which nodes are contracted or branches are removed keeps basically the same as the 
order in which they appear in the contraction/removal sorted list built at steps (a) and 
(c). As a consequence of this, the time required to perform the simplification can be 
highly decreased by eliminating the reordering of such lists in steps (c) and (f), 
without losing accuracy control. 

3.4. Comparison of SBG approaches 

As stated above, matrix-based approaches are able to perform elimination of matrix 
entries at one, two or four positions. Elimination at four positions is equivalent to 
branch deletion in graph-based and circuit-based approaches. Elimination at one or 
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two positions may provide some extra simplification. However, it decreases the 
insight on the simplified results since the simplified matrix does not correspond to a 
circuit with less devices and/or nodes.  

The branch contraction operation in graph-based and circuit-based approaches does 
not have a correspondence on matrix-based approaches. Therefore the complexity of 
the results after the SBG step may differ between the different techniques from circuit 
to circuit. 

A very important drawback of matrix-based approaches is that the SBG step must 
usually be followed by a SDG step. The most efficient SDG algorithms reported are 
based on the two-graph approach (see Section 4), which is obviously not applicable to 
the results of a matrix-based SBG techniques but it can be applied to the other two 
categories of techniques.  

The circuit-based techniques may yield slightly more complex results as no separate 
deletion/contraction operations in numerator and denominator are performed. 
However, it exhibits two advantages: first, no graph or matrix for the circuit has to be 
built and second, during the simplification process, a direct correspondence with the 
nodes and devices of the original circuit is kept. 

3.5. Error control 

In all SBG approaches above, an error control mechanism exists that decides when no 
more matrix entries can be eliminated, no more nodes can be contracted, or no more 
branches can be deleted. 

The approaches in [8-14] perform the evaluation of the contributions to the network 
function of the elimination of matrix entries or the successive node contractions and 
branch removals at a set of frequency samples within the range being considered. 
However this solution may yield simplified matrices/graphs/circuits that do not fulfil 
the error specification at some frequency points outside this initial selected set. 
Besides, a dense sampling, at least in the neighbourhood of the poles and zeros of the 
system will be necessary because of the significant variations of the network function 
around these points. Therefore, there are two drawbacks of error control methods 
based on frequency sampling: 

1) The correctness (error specs are met in the complete frequency range) of the 
resulting simplified circuits cannot be guaranteed.  

2) A dense spectrum of sampled points decreases the possibility of error excess but 
increases noticeably the computational cost of the algorithm. 

As an illustrative example let us consider the integrator in Fig. 2. Simplification 
before generation is applied to this circuit with a magnitude and phase error 
specification of 5H dB    and 5ºH    in the frequency range 

1 100Hz f MHz  . The magnitude and phase errors are evaluated at a small set of 
frequency samples. Fig. 3 shows the resulting magnitude and phase errors. Dashed 
lines represent the magnitude and phase error specifications. The solid triangles 
represent some of the frequency samples. As can be seen, error specifications are met 
at the frequency samples but are considerably exceeded at other frequency values. 
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Increasing the number of frequency samples can palliate the problem, but the 
appropriate number of frequency samples is not known a priori and the computation 
time grows linearly with the number of samples. 

 

Figure 2: Miller integrator. 

 

Figure 3: Magnitude and phase errors. 

To solve the problems of sampling-based approaches, an interval analysis approach is 
proposed in [16, 17]. Let us denote ( )exH s  the network function of the complete 

circuit with only the complex frequency s  as symbolic parameter, and ( )apH s  the 

analogous network function of a simplified circuit in which the appropriate node 
contraction(s) and/or device removal(s) have been performed during the application 
of the SBG algorithm. The magnitude and phase errors are given by: 
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where  

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

ap apr api
ap

ap apr api

ex exr exi
ex

ex exr exi

N j N j jN j
H j

D j D j jD j

N j N j jN j
H j

D j D j jD j

  


  

  
  


 




 



 (32) 

Therefore, the evaluation of the maximum magnitude and phase errors requires: 

 A technique to obtain the network functions ( )exH s  and ( )apH s  of (usually 

large) analog circuits with only the complex frequency as symbolic variable. 

 An efficient technique to obtain the maxima of the functions in (31) when   
varies within a given range. 

The first requirement can be solved very efficiently by using the numerical 
interpolation technique [18]. One major problem in polynomial interpolation applied 
to analog integrated circuits is the dramatic effect of round-off errors, due to the finite 
precision arithmetics of computers. An efficient adaptive scaling solution to solve this 
problem is proposed in [19]. 

A trivial solution to the second requirement is to use a set of frequency samples but 
the same drawbacks exposed in Section 3.5.1 will also appear here. A possible 
solution is the application of the Newton-Raphson method to find the zeros of the 
derivatives of (31). However, since the frequency ranges required for symbolic 
analysis vary over a wide range the search can be slow, some zeros may be skipped or 
convergence may fail. 

A possible solution to this issue is to resort to the interval analysis techniques that 
were introduced in Section 2. H  and H  in (31) are functions in   that can take 

any value within the frequency interval  ,L U  . The problem can be solved if 

accurate estimates of the lower and upper bounds of  H  and H when the 

frequency varies in this range can be calculated. As stated in Section 2, the natural 
interval extension usually overestimates the range of this function [7]. To avoid this, 
the natural interval extension is not applied to (31) but to the derivatives of (31). 
Although, the estimates of the derivatives are also very conservative, the zero 
inclusion in the resulting interval extension is enough to delimit frequency sub-ranges 
in which the maximum magnitude and phase errors occur. Then, the exact frequency 
points for which the maximum magnitude or phase errors occur in those frequency 
sub-ranges are easily calculated by means of the Newton-Raphson method. 

This error evaluation technique has been applied to the SBG techniques in Section 
3.3. Initially a very small set of frequency samples is selected. For this set of values, 
the simplification process described in Section 3.3 is performed. Then, the error 
evaluation technique in this Section is applied to find any possible violation of error 
constraints within the full frequency range of interest. If the errors are fulfilled, the 
procedure stops. Otherwise, the frequency point where the magnitude/phase error 
exhibits its maximum value is added to the initial set of frequency points and one 
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additional SBG step is performed on it. Each node contraction and branch removal is 
performed only if the error specifications are met at all frequency points of the set. 
This process is iteratively applied until the required accuracy is ensured for the 
complete frequency range defined by the user. 

4. Simplification During Generation Techniques 

Simplification During Generation (SDG) techniques start from some formulation of 
the network equations of a circuit in the form of a graph or matrix (e.g. voltage and 
current graphs, directed graphs, etc.) and solve them by directly generating the most 
simplified expression that fulfils some error criteria. Simplification During 
Generation approaches have two main advantages: first, the analysis is faster, as no 
time is wasted generating terms that would be neglected if a SAG technique with 
analogous error specifications were applied on the exact symbolic results. Second, its 
smaller memory consumption enables the analysis of much larger circuits without 
exhausting the computer resources.  

Typically, SDG algorithms generate symbolic terms in decreasing order of magnitude 
until the number of terms is enough to model the behavior of the circuit with a given 
accuracy. Two tasks are involved in this problem: (a) a term generator, i.e., an 
algorithm that can generate symbolic terms in decreasing order of magnitude, 
according to their influence on the circuit behavior; and (b) an error control 
mechanism, that can determine when the generated symbolic expression fulfils the 
error specifications. 

4.1. Term generation 

4.1.1.  Two-graph approach 

The first reliable algorithms capable of efficiently generating terms in decreasing 
order of magnitude for large circuits were reported in [20-23]. All these algorithms 
are based on the two-graph method. This method uses two graphs: a voltage graph 
and a current graph. Given the small-signal model of a circuit, they can be easily 
built. Each circuit node corresponds to an equivalent node in the voltage and current 
graphs. Each passive device corresponds to one branch between the graphs nodes that 
correspond to its terminal nodes. For voltage-controlled current sources, the voltage 
graph is constructed with the controlled branch and the current graph with the 
controlling branch. Fig. 4 shows a sample circuit and the corresponding voltage and 
current graphs. All other types of controlled sources are converted to the 
interconnection of passive elements and voltage-controlled current sources, as 
illustrated in Fig. 5 [24]. For convenience, inductors are usually replaced by the 
interconnection of capacitors and voltage-controlled current sources. Each branch is 
assigned the admittance (or transadmittance) of the corresponding circuit element.  

The computation of the most significant terms for each power of the frequency ks , in 
the numerator and denominator of the network function, can be expressed as the 
following graph problem:  “Given the voltage and the current graphs of a circuit with 
n nodes and b branches, enumerate subsets of branches in decreasing order of 
magnitude that:  

(1) constitute a spanning tree in the voltage graph VG; 
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(2) constitute a spanning tree in the current graph CG; 

(3) contain k  capacitance branches and ( 1)n k   (trans)conductance branches.” 

A valid symbolic term is given by the product of all branch admittances included in 
each common spanning tree of the voltage and current graphs. The sign of the term is 
determined separately, using the topological information of both graphs [25]. 
Although the sign of each term is difficult to obtain by hand-made calculations, it can 
be very efficiently calculated with a negligible computational time. 
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Figure 4: A simple circuit and its corresponding voltage and current graphs. 

 

Figure 5: Equivalent circuits for (a) voltage-controlled voltage sources (VCVS), (b) current-controlled 
current sources (CCCS) and (c) current-controlled voltage sources (CCVS). 
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The procedure behind the methodologies in [12, 20-23, 26, 27] is the following: first, 
select one of the graphs, generate spanning trees with k capacitance branches in 
decreasing order of magnitude in that graph; then, for each tree, check if it is also a 
spanning tree in the current graph. The generation of spanning trees in decreasing 
order follows the algorithm in [28], originally proposed for graphs with a single type 
of branches but extensible to graphs with two types of branches [26].  

4.1.2.  Matroid intersection approach 

The term generation problem can be also formulated in terms of the matroid theory 
[29]. A matroid ( , )M E  is a structure in which E  is a finite set of elements and 
is a family of subsets of E , which satisfy some axioms [29]. A subset I in   is an 
independent set of the matroid ( , )M E  . A maximal independent set is a base of 
the matroid. A matroid ( , )M E   is the graphic matroid of graph G if E  is the set 
of branches of G and a subset I E  is in   if and only if I  is a cycle-free subset of 
branches. In a connected graph, a base of its graphic matroid corresponds to a 
spanning tree. 

Let   be a partition that separates E  into m  disjoint blocks 1, , mB B , and let 

 ( 1, , )id i m   be m  non-negative integers. Then, ( , )M E   is a partition matroid 

if   is the family of subsets I  that satisfy ( 1, , )i iI B d i m    . 

The term generation implies the ranked (in decreasing order of weight) enumeration 
of bases that are common to three matroids [29], commonly known as a weighted 
three-matroid intersection problem. For instance, the three matroids involved in the 
formulation of the tree enumeration problem in the two-graph method described 
above are: two graphic matroids associated to the voltage and current graphs where 
each spanning tree is a base of the matroid, and a partition matroid where each set of 

1n   branches with k  capacitances is a base of the matroid. 

The formulation of the term generation problem in terms of matroid theory was first 
proposed in [30], only for the two-graph method. Later on, a formulation and 
comparison, among the two-graph method, the directed-tree enumeration method, the 
Coates flow graph method, the Laplace determinant expansion and the parameter 
extraction method of Sannuti and Puri was introduced in [31, 32].  

The intersection of three matroids is considered to be, in general, a NP-hard (as hard 
as any non-deterministic polynomial time) problem. If a problem can be formulated 
as a weighted 2-matroid intersection problem, then a polynomial time algorithm 
exists, being that of Camerini and Hamacher [33] one of the most efficient ones. 
Moreover, the efficiency can be further improved by exploiting specific properties of 
the matroids under consideration. 

The analysis in [31, 32] is extremely interesting to select the optimum formulation 
method when the matroid intersection theory is applied. This is illustrated in Table 1 
for the examples depicted in Fig. 6 [31, 32]. Four different circuits have been 
analyzed using the different analysis methods. The second and third rows show the 
number of nodes and devices (after replacement of semiconductor devices by small-
signal models) in those circuits. This gives a clear idea of the problem complexity. 
The fourth row shows the total number of spanning trees in the voltage graph for each 



Approximation Techniques in Symbolic Circuit Analysis Design of Analog Circuits through SA   191 

case. The fifth row shows the number of spanning trees in the current graph 
(normalized to the values in row three). Then, the sixth row shows a lower bound on 
the number of common spanning trees to both graphs. Finally, the remaining rows 
show (also normalized to the results in row three) the calculation of the number of 
terms generated with the different approaches.  

Table 1: Number of Terms with Different Analysis Techniques for the Circuits of Fig. 6. 

 Fig. 6(a) Fig. 6(b) Fig. 6(c) Fig. 6(d) 

# nodes  4 5 9 16 

# circuit elements 8 16 31 70 

# spanning trees in GV 36 346 3.55·105 2.96·1011 

# spanning trees in GI 1 2.13 1.01 2.20 

lower bound on # common spanning 

trees 

0.667 0.694 0.553 0.222 

exact # different terms 0.722 0.694 0.553  

# terms with directed-tree 

enumeration 

2.08 1.43 1.18 11.9 

# terms with signal flow graph 1.92 4.17   

# terms with Coates flow graph  / 

Laplace determinant expansion 

2.85 1.20 6.23 5.197 

# terms with parameter extraction of 

Sannuti & Puri 

1.22 8.62 195 2.55·107 

Assuming that an algorithm with the same efficiency is available to enumerate bases 
in the matroid intersection problem corresponding to each of the methods in Table 1, 
it can be concluded that the number of bases in the two-graph method is smaller than 
in the other methods. This means that many bases are generated in other methods that 
do not correspond to a valid symbolic term in the final symbolic expressions. This 
ratio tends to increase when the circuit complexity increases. It is also interesting that 
the number of bases in the voltage graph is smaller than in the current graph. 

Moreover, not only the number of bases is smaller, but algorithms that exploit the 
specific circumstances involved in the problem and achieve a better efficiency than 
the standard algorithm in [33] have been reported for the two-graph approach. 

Therefore, the two-graph method is the best formulation method for an SDG 
implementation. As the enumeration of common spanning trees for a given 
coefficient of the network function is a 3-matroid intersection problem and the 
matroid intersection algorithm in [33] is a 2-matroid intersection algorithm, three 
possibilities arise: 

a)  Intersect the voltage graphic matroid and the partition matroid and for each 
enumerated base check if it is also a base in the current graphic matroid. By 
exploiting specific features of the two matroids involved, the computational 
complexity of this procedure can be considerably lowered. This approach has 
been implemented in [27, 30].  
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Figure 6: (a) Simple network, (b) CMOS Miller OTA, (c) BiCMOS Miller OTA and (d) BiCMOS 
fully differential OTA. 

This approach has in its efficiency for large circuits its main drawback. This is 
due to the fact that only a part of the spanning trees generated (common to VG 
and the partition matroid) will be spanning trees of the current graph. What is 
more, as the size of the circuit increases, the number of non-valid terms grows 
fast. Therefore, when the generation process is started, a lot of resources are 
wasted in the generation of terms that will not be valid spanning trees of the CG. 

b)  Intersect the current graphic matroid and the partition matroid and for each 
enumerated base check if it is also a base in the voltage graphic matroid. This 
is the dual approach to the previous one. However, as demonstrated with the 
examples in Table 1, the number of bases is larger in the current graph, and, 
therefore, this alternative is disadvantageous with respect to the previous one 
and will not be paid any more attention. 
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c)  Intersect the two graphic matroids and, for each enumerated base, check if it 
contains the desired number of capacitances. Common spanning trees of the 
voltage and current graphs in decreasing order of tree admittance product are 
generated using for instance the algorithm in [33]. The computational complexity 
is larger than in the first approach above but, in this case, no time is wasted in 
generating spanning trees of one of these graphs which, afterwards, are not 
spanning trees in the other graph. However, no control is provided on the branch 
type (frequency-dependent or non-frequency dependent elements), and, hence, 
the weight of capacitor admittances must be evaluated at a fixed frequency.  

The advantage of this method is that all the generated terms are valid. 
However, there exists an important drawback: many terms can be generated 
more than once (when they are generated at several frequency samples) and 
this means a loss of efficiency. A definitive answer on the advantages with 
respect to the first approach above (intersection of voltage graphic matroid 
and partition matroid) depends on the number of frequency samples, but this 
is related to the error control methodology that is discussed in section 4.2. 

4.1.3. Determinant decision diagram (DDD)-based approach 

In this section, we describe another approach that is based on the Determinant Decision 
Diagram (DDD) concept [34, 35]. DDDs are compact graphs that have been used to 
represent matrix determinants and they are constructed for the Laplace expansion 
method. Each coefficient of the admittance matrix is considered as one distinct symbol 
and each of them is represented into DDDs as a non-terminal vertex along with its sign 
and labeled as ai (a to g in Fig. 7) [34]. Further, a DDD has two terminal vertices, 
namely: 0-terminal vertex and 1-terminal vertex, and one starting vertex, called root 
vertex. Each non-terminal vertex has two edges: 1-edge (solid arrow) and 0-edge 
(dashed arrow), and a path from the root vertex to the 1-terminal is called 1-path, as 
depicted in Fig. 7. 

 

 

Figure 7: DDD of the matrix A. 
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In order to build the DDD from the matrix A, all coefficients must be sorted in 
descending form, for instance: a c b d f e g      . A heuristic method of 
vertex sorting is given in [34]. Then, each vertex represents a determinant matrix D 
defined recursively as: 

1. 1D  , if the vertex is pointing out to the 1-terminal. 

2. 0D  , if the vertex is pointing out to the 0-terminal. 

3. 
ii aaii DDasaD  )( , for each non-terminal vertex. Here 

iaD and 
iaD  are the 

determinants of the vertices that point out to the 1-edge and 0-edge, 
respectively. The sign of each vertex ai in any 1-path is defined as: 

  ))()(())()(()( vcxcsignvrxrsignvs  (33) 

where ( )r x  and ( )c x  are the indexes of the row and column associated to each 
coefficient of matrix A. The sign function is defined as: 









01

01
)(

ufor

ufor
usign  (34) 

For the case that v has an edge pointing to the 1-terminal vertex, then ( ) 1s v  . For 
instance, let us consider the vertex c with its indexes given by: ( ) 2r v   and ( ) 1c v  . 
The indexes of the following vertex in the 1-edge, labeled as b are given by: ( ) 1r x   
and ( ) 2c x  . By applying (33) and (34), the negative sign of the vertex c is obtained. 
On the other hand, a 1-path in a DDD is defined as a path from root vertex to the 1-
terminal, considering all symbolic terms along with the sign of the vertices that 
originate all the 1-edges. Each 1-path represents a product of terms represented by a 
1-edge whereas the addition operation is represented by a 0-edge. For instance, one 
can see that there are three product terms in Fig. 7, given by: -adg, -aef, and  -bcg; 
they are the product terms of the determinant of the matrix A. 

Despite the fact that the determinant of a matrix can efficiently be represented by 
DDDs, it is still necessary, however, to expand each vertex in the DDD, because each 
coefficient in the admittance matrix is often an s polynomial composed with different 
symbols. In [35], the generation of symbolic transfer functions in the form of 
polynomials, as shown by (3), has been introduced. This approach called s-expanded 
DDDs is based upon multiple-root DDDs in order to represent the determinant and its 
cofactors. Let us substitute each coefficient of the matrix A, shown in Fig. 7, by an s 
polynomial. Thus, the matrix A is rewritten as shown in Fig. 8.  

Therefore, each vertex of the DDD, shown in Fig. 7, must first be sorted, expanded 
and, then, the s-variables extracted [35]. Thus, each power of s becomes a root of the 
multiple-root DDDs, as shown in Fig. 8. This technique expands all s polynomials of 
the original determinant in a DDD and therefore, symbolic transfer functions can be 
generated by finding all the 1-paths for each s-root. 

As has been reported in [35], a disadvantage of DDDs and s-expanded DDDs 
methods, that are based on the Laplace expansion method, is that the original matrix 
suffers from term cancellations. Thus, for each vertex generated in the s-expanded  
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Figure 8: S-expanded DDD of the matrix A. 

DDDs method, cancelling terms are indirectly introduced. In order to improve the 
generation of dominant terms, cancelling terms should be removed. From the 
admittance matrix A, one can see that there are patterns related with cancelling terms, 
as shown in Fig. 9. 
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Figure 9: Patterns that generate cancelling terms in the admittance matrix. 

An efficient algorithm to remove the patterns shown in Fig. 9 has been introduced in 
[36]. In this manner, the s-expanded DDD shown in Fig. 8 can be reduced as depicted 
in Fig. 10. 

 

Figure 10: S-expanded multiroot DDD without cancelling terms. 

In order to generate only the dominant terms by using DDDs, several algorithms 
based on Dynamic Programming (DP) have been proposed [37, 39]. The main idea is 
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to compute partial dominant terms for each DDD vertex pointing to a 1-edge. Let us 
suppose that there are n vertices in a path, from root vertex to the 1-terminal. Each 
vertex is composed of an s polynomial; therefore, each coefficient is first checked in 
order to avoid generating terms more than twice. If it does not exist, then the largest 
term is computed and stored in a term-list by visiting all the DDD vertices linked to 
0-edge, where its numerical value also is computed. 

However, the method described above is not applicable to s-expanded DDDs, because 
there are vertices with incoming 1-edges and 0-edges. It is worth mentioning that it is 
necessary to duplicate some vertices in order to apply the method described above, as 
has been described in [37-39]. To solve this drawback, another DP-based algorithm 
has also been proposed in [39]. This algorithm is based on finding the shortest path in 
edge-weighted DDDs graphs by using the following edge weight: 

1. 0-edge with weight 0. 

2. 1-edge with weight=-log|ai| 

Here |ai| is the numerical value of the DDD vertex ai of the 1-edge. As a consequence 
the total weight of a path is given as: 

 )log(...)log()log( 21 iaaaw   (35) 

Once a shortest path has been found in a DDD, it is subtracted in a similar form as s-
variables [35] and, then, the next shortest path is searched. A disadvantage of this 
approach is that one needs to visit each vertex in a DDD graph for each shortest path. 
In response to this drawback, a reverse DDD graph-based new algorithm has also 
been introduced in [39]. Basically, the root vertex, the two terminal vertices and all 
edges along with their directions in a normal DDD graph are reversed. Therefore, the 
two terminal vertices are now the root vertices and the root vertex in DDDs becomes 
the new terminal vertex. In the same way as normal DDD graphs, 1-paths and path 
weights are defined for reverse DDD graphs. Thus, the dominant terms correspond to 
the shortest paths in the corresponding reverse DDD graph and they are extracted in 
the same way as s-variables [35]. Finally, after the first shortest path has been found, 
the next shortest path can be found by only visiting the newly added vertices created 
by the subtraction operation. From the DP algorithms described above, we can 
conclude that the latter algorithm is more efficient in order to generate dominant 
terms based on DDDs, since it can be applied to any topology of a circuit, which can 
be represented by a normal DDD or s-expanded DDD graphs. 

4.2. Error control  

Term generation must be accompanied by an appropriate error control methodology. 
Moreover, the error control methodology determines to a certain extent the 
appropriate term generation approach among the alternatives discussed above. 

4.2.1.  Coefficient-based approach 

The basic error control methodology is a simple extension of the methods used in 
simplification after generation techniques discussed in Section 2. Approaches in [20-
23, 26, 27] generate the P most significant terms in (3) for each network function 
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coefficient, ( )kh x , until the sum of the generated terms represents a given fraction of 

the total magnitude of the coefficient: 

1

( ) ( ) ( )
P

k o kl o k k o
l

h h h


 x x x  (36) 

where ( )kh   represents any coefficient from the network function numerator or 

denominator, ox  represents a design point of the circuit parameters and k  is a 

threshold error.  

As shown in (36), the total magnitude of each circuit coefficient, ( )k oh x , must be 

known a priori. The same numerical interpolation technique used in the second SBG 
error control mechanism in Section 3.5 can be applied here. 

This error control methodology is naturally associated to the first term generation 
methodology. If each coefficient in the network function were generated with the 
same threshold error, there would be no magnitude and phase deviations. However, 
even if the same error threshold were specified for each coefficient, the real error 
would be different for each one due to the discrete characteristic of the simplification 
process. As that real error is unpredictable a priori, the same happens for the 
magnitude and phase deviations, which may become really large. 

A possible solution is to use (31) to back-propagate magnitude and phase errors 
specified by the user to individual errors of the network function coefficients. 
However, such back-propagation is extremely conservative and many more terms 
than those strictly necessary to meet the magnitude and phase error constraints are 
generated. 

4.2.2. Sensitivity-based approach 

This procedure starts with the elimination of unimportant coefficients [40]. This 
elimination is performed according to a ranking function that orders the contributions 
of the coefficients and eliminates those having the lowest contribution while the error 
constraints are met. To avoid the generation of too many terms in the remaining 
coefficients, only a part of the total error allowed by the user is applied in this step.  

In a second step, the largest term of each of the remaining coefficients is generated 
and added to the final symbolic expression. Then, having queued the following 
largest terms of each coefficient, a sensitivity analysis allows deciding which 
coefficient is contributing the most to the circuit behavior. The largest term of this 
coefficient is added to the symbolic expression and the error constraints are checked. 
If the specifications are fulfilled, the term generation is finished; otherwise, the 
sensitivity analysis is again used to add a new term to the final symbolic expression. 
This procedure is repeated until the error specifications given by the user are met. 

Using this methodology, the generated symbolic expression will be more compact 
than in the previous case. However, as in the first approach, to control the accuracy of 
the results, a dense set of frequency samples is needed to compare the evaluation of 
the generated expression to the exact circuit behavior. Then, the accuracy is not 
guaranteed between each pair of frequency samples. 
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For the generation of terms in decreasing order of magnitude within each coefficient 
two possibilities arise: 

 Use the intersection of the voltage graphic matroid and the partition matroid. 
If this approach is used, the generated terms have to be checked to see if they 
are also valid spanning trees of the current graph. Unfortunately, for circuits 
with many voltage-controlled current sources (i.e. those circuits composed of 
transistors), the number of terms that are valid for the intersection problem but 
are not spanning trees of the current graph grows exponentially with the 
circuit size. Therefore, a lot of terms will be needed to generate a valid term 
for the symbolic expression. 

 Use of the intersection of the two graphic matroids. In this case, the enumeration 
of bases is more costly but it is guaranteed that all the generated ones are valid. 
Bases can be generated only at single frequency values. In the approach in [41, 
42], the sensitivity analysis is used to find the frequency at which each 
coefficient dominates the circuit behavior. At this frequency value, the generated 
terms in decreasing order of magnitude are expected to belong to the desired 
coefficient. However, except for low-order coefficients, these frequency values 
are usually too close, so terms belonging to adjacent coefficients are generated in 
the process. Of course, all the terms that do not belong to the desired coefficient 
have to be neglected. This, again, imposes an extra overhead on the number of 
generated terms to obtain a valid set of spanning trees. 

4.2.3.  Sampling-based approach 

In [43], a set of frequency samples belonging to the frequency range of interest is used. 
For each of these samples, the matroid intersection algorithm involving the two graphic 
matroids, is executed, until the error criteria at such frequency value is fulfilled 
according to a relative threshold defined by the user. Joining together all the generated 
terms at all the frequency samples provides a symbolic expression valid at such samples. 

A major disadvantage of this approach is that, pasting together all the terms generated 
at each frequency sample implies that the final symbolic expression will have more 
terms than those strictly necessary to meet the error constraints. And, the larger the 
number of frequency samples, the larger the number of extra (unnecessary) terms. 

Also, the accuracy is not guaranteed between each pair of frequency samples. This 
will be guaranteed only in case that an infinite number of frequency samples are used; 
but this is obviously impossible. The possibility of violating the error constraints 
decreases (although never reaching zero) if the number of frequency samples is 
increased, but this also implies higher CPU time and more conservative results. 

Another approach that palliates the problems of previous approaches is reported in [44]. 
To ensure that valid terms are always generated without needing a large number of 
frequency samples, thus, ensuring that the resulting symbolic expression is as compact 
as possible, this methodology proceeds as follows. For one frequency sample, and 
within the range defined by the user, the term generation based on the intersection of the 
two graphic matroids is executed until the errors at that frequency are within the 
specifications. By doing so, it is only guaranteed that the generated expression fulfils the 
error constraints in the selected frequency value. Thus, we need some mechanism to find 
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out if, within the frequency range, there are some frequency values in which error 
constraints are exceeded. This test is performed by the following maximum error 
detection algorithm. The difference between the magnitude and phase behaviors of the 
original circuit and those of the evaluation of the generated expression is calculated. 
Then, the maximum for the magnitude and phase errors are obtained by using the same 
methodology than in Section 3.5 and if any of these two errors are beyond the 
specifications, the frequency value at which the maximum of the errors is achieved is 
added to the existing set of frequency samples. 

This procedure is performed iteratively until the error specifications are met in the 
complete frequency range defined by the user. A small number of iterations are 
usually enough. 

This algorithm allows the fast generation of symbolic expressions with full accuracy. 
However, the accumulation of different frequency sampling points may result in a 
symbolic expression whose complexity is larger than strictly needed. This is because, 
as a consequence of the generation of symbolic terms in an additional frequency point, 
some terms already generated at other frequency may become obsolete. Note that this 
problem has already been drastically minimized by using a small number of frequency 
samples. However, to ensure that the complexity of the results is minimal, a post-
processing step after the simplification process is applied. All the symbolic terms, 
generated at the different frequency samples, are queued according to their weight 
within each coefficient. Then, taking into account the contribution of the different 
coefficients in the network function to the circuit behavior, symbolic terms are 
iteratively neglected, starting with those having the smallest weight, while the error 
specifications are not exceeded.  

5. Conclusion 

The exponential growth of symbolic analysis results with the circuit size demands the 
application of approximated analysis techniques. Historically, simplification after 
generation techniques, i.e., techniques that approximate the symbolic expressions once 
they have been generated, were the first ones to appear. They palliated the 
interpretation problem but the limitation on the analyzable circuit size still remained. 
This has been solved by the introduction of simplification before generation techniques, 
which simplify the system of circuit equations, and simplification during generation 
techniques, which directly generate simplified symbolic expressions. Most efficient 
analysis techniques are based on the two-graph method, which more recently have been 
modeled as matroid intersection problems, and on determinant decision diagrams. 
Approximated analysis techniques must include a suitable error control mechanism, 
which decides the appropriate approximate symbolic results for a given accuracy.  
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CHAPTER 8 

Symbolic Analysis by Determinant Decision Diagrams and 
Applications 

Sheldon X.-D. Tan* 

Department of Electrical Engineering, University of California, Riverside, USA  

Abstract: Symbolic analysis traditionally suffers circuit size problems as the number of 
symbolic terms generated can grow exponentially with the circuit size. This problem has 
been partially mitigated by a graph-based approach, called Determinant Decision 
Diagram (DDDs) [1], where the symbolic terms are implicitly represented in a graph, 
which has been inspired by the success of Binary Decision Diagram (BDDs) [2] as an 
enabling technology for industrial use of symbolic analysis and formal verification in 
digital logic design. DDD-based symbolic analysis enables the exact symbolic analysis 
of many analog circuits substantially larger than the previous methods and open new 
applications for symbolic analysis. DDD-based symbolic analysis still remains the most 
efficient symbolic analysis technique. This chapter will present basic concept of DDDs, 
the most efficient DDD construction method based on logic operation, s-expanded 
DDDs for generating s-expanded polynomials and transfer functions. We will also show 
how DDDs and s-expanded DDDs can be used for constructing simplified symbolic 
expressions. 

Keywords: Symbolic analysis, determinant decision diagrams, analog circuits, modeling, simulation 
and analysis, binary decision diagrams, compact modeling. 

1. Exact Symbolic Analysis by Determinant Decision Diagrams 

It is well known that the primary difficulty in exact symbolic analysis is the 
exponential growth of the number of product terms with the size of circuits. In this 
chapter, we introduce a graph-based symbolic analysis approach, which partially 
mitigate the long-standing circuit-size problem for exact symbolic analysis. The 
graph based approach is based on the two observations on symbolic analysis of a 
large analog circuit: (a) the circuit matrix is sparse and (b) a symbolic expression 
often shares many sub-expressions. Under the assumption that all the matrix elements 
are distinct, each product term can be viewed as a subset of all the symbolic 
parameters.  

Determinant decision diagrams (DDDs) were introduced to represent determinants 
symbolically [1]. DDDs are essentially Zero-suppressed Binary Decision Diagrams 
(ZBDDs) — introduced originally for representing sparse subset systems [3]. A 
ZBDD is a variant of a Binary Decision Diagram (BDD) introduced by Akers [4] and 
popularized by Bryant [2]. BDDs have brought a great success to the formal 
verification and testing for combinational and sequential digital circuits [2, 5]. DDD 
representation has several advantages over both the expanded and arbitrarily nested 
forms of a symbolic expression. First, similar to the nested form, our representation is 
compact for a large class of analog circuits. A ladder-structured network can be 
represented by a diagram where the number of vertices in the diagram (called its size) 
is equal to the number of symbolic parameters.  

As indicated by [1], the typical size of DDD is dramatically smaller than that of  
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product terms. For instance, 5.71× 1020 terms can be represented by a diagram with 
398 vertices [1]. Second, similar to the expanded form, our representation is 
canonical, i.e., every determinant has a unique representation, and is amenable to 
symbolic manipulations. 

2. DDD Representation of Symbolic Determinant 

In this section, we formally introduce determinant decision diagrams to represent a 
symbolic matrix determinant. DDDs are actually canonical representations of matrix 
determinants, similar to BDDs for representing binary functions and ZBDDs for 
representing subset systems.  

A key observation is that the circuit matrix is sparse and that many times, a symbolic 
expression may share many sub-expressions. For example, consider the following 
determinant 
 

  det(M) = 

0 0
0

0
0 0

ℎ  = adgj - adhi - aefj - bcgj + cbih                        (1) 

 

We note that sub-terms ad, gj, and hi appear in several product terms, and each 
product term involves a subset (four) out of ten symbolic parameters. Therefore, we 
view each symbolic product term as a subset, and use a zero-suppressed binary 
decision diagram (ZBDD) [3], to represent the subset system composed of all the 
subsets each corresponding to a product term. Fig. 1 illustrates the corresponding  
 

 

 

Figure 1: A ZBDD representing { adgj,  adhi, aefj, bcgj, cbih} under ordering a > c > b > d > f > e > 
g > i > h > j. (Copyright © 2000, Re-printed with permission from [1]) 
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ZBDD representing all the subsets involved in det(M) under ordering a > c > b > d > 
f > e > g > i > h > j. It can be seen that sub-terms ad, gj, and ih have been shared in 
the ZBDD representation. 

Following directly from the properties of ZBDDs, we have the following 
observations. First, given a fixed order of symbolic parameters, all the subsets in a 
symbolic determinant can be represented uniquely by a ZBDD. Second, every 1-path 
(1-path is a path from the root to the 1 terminal) in the ZBDD corresponds to a 
product term, and the number of 1-edges (1-edge is the true edge in the original BDD) 
in any 1-path is n. The total number of 1-paths is equal to the number of product 
terms in a symbolic determinant.  

We can view the resulting ZBDD as a graphical representation of the recursive 
application of the determinant expansion with the expansion order a, c, b, d, f, e, g, i, 
h, j. Each vertex is labeled with the matrix entry with respect to which the 
determinant is expanded, and it represents all the subsets contained in the 
corresponding sub-matrix determinant. The 1-edge points to the vertex representing 
all the subsets contained in the COFACTOR operation (defined later) of the current 
expansion, and 0-edge points to the vertex representing all the subsets contained in 
the REMAINDER operation (defined later). 

      

To embed the signs of the product terms of a symbolic determinant into its 
corresponding ZBDD we associate each vertex v with a sign, s(v), defined as follows: 
1. Let P(v) be the set of ZBDD vertices that originate the 1-edges in any 1-path 

rooted at v, then                                                                                                                                        

s(v) = ∏     sign(r(x) - r(v)) sign(c(x) - c(v)),         (2) 

 

where r(x) and c(x) refer to the absolute row and column indices of vertex x in the  
original matrix, and u is an integer so that 

 

1, 0
1, 0 

 

2. If v has an edge pointing to the 1-terminal vertex, then s(v) = +1. 

 

This is called the sign rule. For example, in Fig. 2, shown beside each vertex are the 
row and column indices of that vertex in the original matrix, as well as the sign of that 
vertex obtained by using the sign rule above. For the sign rule, we have the following 
result: 

Theorem 1 The sign of a DDD vertex v, s(v), is uniquely determined by (2), and the 
product of all the signs in a path is exactly the sign of the corresponding product 
term. 

For example, consider the 1-path acbgih in Fig. 2. The vertices that originate all the 
1-edges are c, b, i, h, their corresponding signs are −, +, − and +, respectively. Their 
product is +. This is the sign of the symbolic product term cbih.  
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Figure 2: A signed ZBDD for representing symbolic terms. (Copyright © 2000, Re-printed with 
permission from [1]) 

 

With ZBDD and the sign rule as two foundations, we are now ready to introduce 
formally our representation of a symbolic determinant. Let A be an n × n sparse 
matrix with a set of distinct m symbolic parameters {a1,..., am}, where 1 ≤ m ≤ n2. 
Each symbolic parameter ai is associated with a unique pair r(ai) and c(ai), which 
denote, respectively, the row index and column index of ai. A determinant decision 
diagram is a signed, rooted, directed acyclic graph with two terminal vertices, namely 
the 0-terminal vertex and the 1-terminal vertex. Each non-terminal vertex ai is 
associated with a sign, s(ai), determined by the sign rule defined by (2). It has two 
outgoing edges, called 1-edge and 0-edge, pointing, respectively, to Dai and D i. A 
determinant decision graph having root vertex ai denotes a matrix determinant D 
defined recursively as      

1. If ai is the 1-terminal vertex, then D = 1. 
2. If ai is the 0-terminal vertex, then D = 0. 
3. If ai is a nonterminal vertex, then D = ai s(ai) Dai + D i.  

Here s(ai)Dai is the COFACTOR of D with respect to ai , D ai is the minor of D with 
respect to ai, D i is the REMAINDER of D with respect to ai, and operations are 
algebraic multiplications and additions. For example, Fig. 3 shows the DDD 
representation of det(M) under ordering a > c > b > d > f > e > g > i > h >j. 

To enforce the uniqueness and compactness of the DDD representation, the three 
rules of ZBDDs, namely, zero-suppression, ordered, and shared are adopted. This 
leads to DDDs having the following properties: 
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Figure 3: A determinant decision diagram for matrix M.  (Copyright © 2000, Re-printed with 
permission from [1]) 

 

     • Every 1-path from the root corresponds to a product term in the fully expanded 
symbolic expression. It contains exactly n 1-edges. The number of 1-paths is equal to 
the number of product terms. 

     • For any determinant D, there is a unique DDD representation under a given 
vertex ordering. 

We use |DDD| to denote the size of a DDD, i.e., the number of vertices in the DDD.  

     A key problem in many decision diagram applications is how to select a vertex 
ordering, since the size of the resulting decision diagram strongly depends on the 
chosen ordering. A efficient DDD vertex ordering heuristic has been developed, 
which can lead to the optimal vertex ordering for a class of circuit matrices, called 
band matrices [1, 6]. 

 

3. Manipulation of Determinant Decision Diagrams 

In this section, we show that, using determinant decision diagrams, algorithms needed 
for symbolic analysis and its applications can be performed with the time complexity 
proportional to the size of the diagrams being manipulated, not the number of 1-paths 
in the diagrams, i.e., product terms in the symbolic expressions. Hence, as long as the 
determinants of interest can be represented by reasonably small graphs, our 
algorithms are quite efficient.  

A basic set of operations on matrix determinants is summarized in Table 1. Most 
operations are simple extensions of subset operations introduced by Minato on 
ZBDDs [3]. These few basic operations can be used directly and/or combined to 
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perform a wide variety of operations needed for symbolic analysis. In this section, we 
first describe these operations, and then use an example to illustrate the main ideas of 
these operations and how they can be applied to compute network function 
sensitivities—a key operation needed in optimization and testability analysis. We also 
show that the generation of significant product terms can be cast as the k-shortest path 
problem in a DDD and solved elegantly in time O(k · |DDD|). 

3.1. Implementation of basic operation  

We summarize the implementation of these operations in Fig. 4. For the clarity of the 
description, the steps for computing the signs associated with DDD vertices, using the 
sign rule defined in Section 2, are not shown.  

As the basis of implementation, we employ two techniques originally developed by 
Brace, Rudell and Bryant for efficiently implementing decision diagrams [7]. First, a 
basic procedure GETVERTEX (top,D1,D0) is to generate (or copy) a vertex for a symbol 
top and two sub-graphs D1 and D0. In the procedure, a hash table is used to keep each 
vertex unique, and vertex elimination and sharing are managed mainly by 
GETVERTEX. With GETVERTEX, all the operations for DDDs we need are described in 
Fig. 4. Second, similar to conventional BDDs, we use a cache to remember the results 
of recent operations, and refer to the cache for every recursive call. In this way, we 
can avoid duplicate executions for equivalent sub-graphs. This enables us to execute 
these operations in a time linearly proportional to the size of a graph. 

Evaluation: Given a determinant decision diagram pointed to by D and a set of 
numerical values for all the symbolic parameters, EVALUATE(D) computes the 
numerical value of the corresponding matrix determinant. EVALUATE(D) naturally 
exploits sub-expression sharing in a symbolic expression, and has time complexity 
linear in the size of the diagram. 

Cofactor and Derivative: COFACTOR(D,p) is to compute the COFACTOR of a 
symbolic determinant D represented by a DDD with respect to symbolic parameter p. 
It is exactly the derivative of D with respect to p. COFACTOR is perhaps the most 
important operation in symbolic analysis of analog circuits. For example, the network 
functions can be obtained by first computing some COFACTORs, and then 
combining these COFACTORs according to some rules (Cramer’s rule). 

 

Table 1: Summary of Basic Operations 

 

Determinant operation Result Subset operations 

VERTEXONE()  return 1  Base() 

VERTEXZERO()  return 0  Empty() 

COFACTOR(D,s) return the COFACTOR of D wrt 
s 

Subset1(D,s) 

REMAINDER(D,s) return the REMAINDER of D 
wrt s 

Subset0(D,s) 

MULTIPLY(D,s) return s × D  Change(D,s) 

SUBTRACT(D,P) return D – P Diff(D, P) 

UNION(D,P) return D +P Union(D,P) 

EVALUATE(D) return the numerical value of D -- 
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COFACTOR(D, s) 
1      if (D.top < s) return VERTEXZERO() 
2      if (D.top = s) return D1 
3      if (D.top > s) return GETVERTEX (D.top, 
        COFACTOR(D0, s), COFACTOR(D1, s)) 
 
REMAINDER(D, s) 
1      if (D.top < s) return D 
2      if (D.top = s) return D0 

3      if (D.top > s) return GETVERTEX (D.top,  
REMAINDER(D0, s), REMAINDER(D1, s))  
 

MULTIPLY(D, s) 
1      if (D.top < s) return GETVERTEX(s, 0,D) 
2      if (D.top = s) return GETVERTEX(s,D1,D0) 
3      if (D.top > s) return GETVERTEX(D.top, 
        MULTIPLY(D0, s), MULTIPLY(D1, s)) 
 
SUBTRACT(D, P) 
1      if (D = 0) return VERTEXZERO() 
2      if (P = 0) return D 
3      if (D = P) return VERTEXZERO() 
4      if (D.top > P.top) return GETVERTEX(D.top, SUBTRACT(D0, P), D1) 
5      if (D.top < P.top) return SUBTRACT(D, P0) 
6      if (D.top = P.top) 
        return GETVERTEX(D.top, SUBTRACT(D0, P0), SUBTRACT(D1, 
P1)) 
 
UNION(D, P) 
1      if (D = 0) return P 
2      if (P = 0) return D 
3      if (D = P) return P 
4      if (D.top > P.top) return GETVERTEX(D.top, UNION(D0, P),D1) 
5      if (D.top < P.top) return GETVERTEX(P.top, UNION(D, P0), P1) 
6      if (D.top = P.top) 
        return GETVERTEX(D.top,UNION(D0, P0), UNION(D1, P1)) 
 
EVALUATE(D) 
1      if (D = 0) return 0 
2      if (D = 1) return 1 
3      return EVALUATE(D0) + s(D) * D.top * EVALUATE(D1) 

 

Figure 4: Implementation of basic operations for symbolic analysis (Copyright © 2000, Re-printed 
with permission from [1]) 

4. DDD Construction by Logic Operations 

One important problem for DDD-based symbolic analysis is to generate the DDD 
graphs for a given determinant. One simple way to construct the DDD is by means of 
Laplace expansion and building the DDD graphs by means of basic DDD operations 
shown in Table 1 as done in [1, 6]. However, such explicit and sequential generation 
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method can lead to exponential construction time even the final DDD sizes do not 
grow exponentially [8].  

In this section, we look at the generation side of the symbolic analysis problem. We 
present a novel approach to generating all the symbolic expressions implicitly and 
simultaneously. The new approach is inspired by the symbolic approach to pointer 
analysis for compilation optimization [9] where logic functions are used to construct 
the symbolic invocation graphs. The main idea of the new approach is that the 
symbolic expression generation is viewed as a logic circuit synthesis process, and we 
design a logic circuit that can detect whether or not a symbolic term is a valid product 
term from a determinant. The logic circuit, which is essentially a Boolean function, 
can be represented by binary decision diagrams (BDDs). BDDs are then trivially 
transformed into zero-suppressed binary decision diagrams (ZBDDs), which are 
essentially a DDD representation of the determinant.  

The most important advantage of the new approach over existing ones is that the time 
complexity is no longer tied to the number of product terms but depends on the 
implicit representation of designed logic during the entire construction process. This 
makes the symbolic analysis problem much more tractable as sizes of BDD/DDD 
graphs typically grow very slowly with circuit sizes given a good variable ordering. 
The new symbolic analysis method shows an inherent relationship between circuit 
simulation and logic synthesis for the first time. 

4.1. Terms-detecting logic for a determinant 

The DDD graph is introduced to represent a determinant. It essentially represents all 
the product terms in the determinant. In a DDD graph, each product term corresponds 
to a 1-path from the root vertex to the 1-terminal. If we view a DDD graph as a BDD 
graph, where each symbol in a product term takes true Boolean value, all the other 
symbols take false Boolean value, then the DDD essentially represents the logic that 
detects if a given symbolic term is a product term in the determinant, as a valid 
product term always corresponds to an 1-path, and thus satisfies the logic.       

This motivates us to generate the DDD graph by constructing a logic circuit which is 
able to detect if a given product term is a valid one from the determinant. This turns 
out to be an easy design problem. Indeed, from the definition of determinant [10], we 
can design a logic to check whether the rows and columns of all the elements in a 
symbolic term cover every row and column of the matrix exactly once.  

Fig. 5 shows a portion of the logic schematic for checking whether a given product 
term is valid from an n×n matrix. We simply compare the row/column index of each 
nonzero element in this product term with the index of each row/column and examine 
if each row/column index appears exactly once. 

The logic in Fig. 5 checks for row 1 (encoded as 001 since 3 bit binary coding is used in 
this example). a11, a21...ann are the elements in the product term to be checked, 001, 
010..., b2b1b0 are the binary codes for all row indices in the matrix. T1 is true only when 
one of its inputs is true, ensuring that exactly one nonzero element is in row 1. 
Comparators C1 to CN compare the row index of each nonzero element with the row 
index of row 1. (N is the total number of nonzero elements in the matrix). The AND gate 
in the last stage makes sure that all the row indices of the matrix are present in the 
product term. The resulted Boolean function for the row index legality check is frow.  

We can do the same for the column index legality check where each nonzero element 
is compared with the column index of each column. The resulting logic function for 
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column index legality check is fcol. Since both row and column legality conditions 
must be satisfied to make a valid product term, the final logic is the conjuncture (AND 
operation) of two logic functions: 

 

fdet = frow   fcol = frow fcol         (3) 

 

where  operation is the logic AND operation. We may also write the frow   fcol as 
frow fcol in the sequel. The resulting logic fdet is the Boolean logic we are looking for. 

 

Figure 5: The logic circuit for detecting a valid product term from a determinant. (Copyright © 2006, 
Re-printed with permission from [22]) 

 

4.2. Logic operation based DDD construction algorithm 

In this section, we show that the logic circuit shown in Fig. 5 can be further 
simplified and the DDD construction can be performed efficiently by a number of 
simple logic operations. 

4.2.1. Efficient BDD construction for the determinant detecting logic  

For the determinant detecting logic circuit in Fig. 5, we observe that if the nonzero 
element aij is not in row 1, then the comparison result will always be 0 (i.e. Ci is 
always 0). On the other hand, if the aij is in row 1, the Ci will be aij where aij is a 
Boolean variable. Suppose that row 1 has three nonzero elements a11, a12 and a13 then 
we have 

 

T1 =a11 12 13 + 11a12 13 + 11 12a13        (4) 

 

where”+” is the OR operation. As a result, we conclude that each nonzero element in 
a row i will generate a product term for each row’s uniqueness checking function Ti. 
In the product term of each nonzero element, the corresponding nonzero element will 
take true Boolean value while the rest nonzero elements in the same row will take 
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false Boolean value. So every nonzero element in a determinant will generate one 
product term for constructing frow. 

For a n × n matrix, the row legality checking function frow becomes:  

 

frow = T1   T2...   Tn            (5) 

We do the same for generating the column legality check function fcol where every 
nonzero element generates one product term also for fcol. We can directly build those 
product terms from a determinant by inspection, which simplifies the BDD 
construction considerably. Theoretically, we have 

 

Theorem 2 A product term is a valid one product term of a given matrix determinant 
det(A) if and only if (after the product term is transformed into a Boolean 
expression), it satisfies the Boolean function fdet (A)= (frow    fcol). frow and  fcol are 
defined above for determinant det(A). 

 

In the following, we illustrate such construction using a simple 2 × 2 determinant 
det(A2x2) as shown below: 

 

det(A2x2)  = 
0

 = a11 a12 

 

Determinant det(A2x2)  only has one product term a11a22. We now show how this 
product term can be generated by using the aforementioned logic circuit. First, we 
construct row legality check Boolean function frow. For row 1, we have Tr,1 = a11. For 
row 2, we have Tr,2 = a21 22. As a result, frow becomes 

frow = Tr,1  Tr,2 =  a11(a21 22 + 21a22) 

 

Then we construct column legality check Boolean function fcol. For column 1, we 
have a11 and Tc,1 = a11 21 + a11a21. For the column 2, we have Tc,2 = a22. As a result, 
fcol becomes 

 

fcol = Tc,1  Tc,2 = a22(a11 21 + a11a21) 

 

The final BDD representing all the product terms from det(A2×2) is 

 

 f det(A2x2) = frow   fcol 

   = (a11(a21 22 + 21a22)) ( a22(a11 21 + a11a21)) 

   = a11a22 21. 

Boolean expression a11a22 21 actually is exactly the BDD representation of the valid 
product term a11a22 as 21 will be suppressed when the BDD graph is transformed 
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into the ZBDD graph (DDD). Note that the sign of each node in the DDD will be 
computed when the DDD is constructed from the corresponding BDD. 

4.2.2. New construction algorithm 

In this subsection, we outline the new BDD construction algorithm for the 
determinant detecting logic shown in Fig. 5. For a nonzero element aij at row i, let 
Pr(aik) designate the product term where aik takes true Boolean value while the rest 
nonzero elements in row i take false Boolean value, ail, l ≠ k. The same is true for 
product term Pc(ajk) for a nonzero element akj in a column j. Then the BDD 
construction algorithm is given in Fig. 6. 

 

BDDCONSTRUCTBYLOGIC (A) { 

For each row i in matrix A 

Tr,i = ∑  Pr (aik) 

frow = frow   Tr,i ; 

For each column j in matrix A 

Tc,j = ∑  Pr (aik) ; 

fcol = fcol  Tc,j ; 

fdet(A) = frow  fcol ; 

return fdet(A ); 

} 

 

Figure 6: BDD construction algorithm for the determinant detecting logic. (Copyright © 2006, Re-
printed with permission from [22]) 

 

It can be seen that the BDD construction boils down to a number of AND operations. 
We just AND all Tx,i from every row and column. Once the BDD is constructed, the 
DDD is obtained by suppressing all the vertices with their 1-edge pointing the 0-
terminal. This can be done trivially by one traversal of the BDD graph. 

4.3. Logic synthesis perspective 

Although the DDD construction process can be simplified into a sequence of simple 
logic operations, we stress that the main idea of the new method is still based on the 
logic synthesis concept: we generate the desired symbolic expression in terms of 
DDD graphs (for a determinant, its COFACTOR) by constructing proper logic 
circuits. So we need to first design the circuits as shown in Fig. 5. Once those logic 
circuits are designed, we can represent such circuits in terms of BDDs. In this section, 
we mainly show that such a transformation process can be further simplified into a 
number of simple Boolean operations for the construction of DDDs. 
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4.4. Time complexity analysis 

The time complexity of the proposed method can roughly be related to the general 
time complexity of BDD operations, which are proportional to the sizes of the 
resulting BDD graphs of two operations. But the sizes of the BDD graph highly 
depends on the variable ordering, which in the best case has linear time complexity 
and in the worst case (parity functions) will still have exponential growth with the 
size of the number of Boolean variables (circuit sizes in our case). But many practical 
circuits have very small BDD sizes compared to the number of their minimum 
product terms, which makes BDD methods very useful for many logic synthesis and 
verification applications. In our BDD/DDD based symbolic analysis, we see the 
similar time complexity. But from the symbolic analysis perspective, such time 
complexity is significant as the time complexity is no longer related to the number of 
product terms any more. Instead it depends on the size of BDDs representing the 
product terms at all the time. 

5. s-Expanded Determinant Decision Diagrams 

For many symbolic analysis applications, DDD representation is still inadequate. 
These applications commonly require symbolic expressions to be represented in the 
so-called fully expanded form in s or in the s-expanded form. For an n × n circuit 
matrix A(s) with its entries being the linear function in the complex frequency s, its 
determinant, det(A(s)), can be written into an s-expanded polynomial of degree n: 

 

 det(A(s)) = ans
n + an−1s

n−1+, ...,+a0          (6) 

 

As a result, the same linear(ized) circuit transfer function H(s) can be written in the 
following s-expanded form: 
 

∑ , ,…  
 ∑ , , …

 , 

 

where fi(p1, p2, … , pm) and gj(p1, p2, …, pm) are symbolic polynomials that do not 
contain the complex variable s. Despite the usefulness of s-expanded symbolic 
expressions, no efficient derivation method exists. The difficulty is still rooted in the 
huge number of s-expanded product terms that are far beyond the capabilities of 
symbolic analyzers using traditional methods. Although the numerical interpolation 
method can generate s-expanded expressions, only the complex frequency s is kept as 
a symbol. This method also suffers the numerical problem due to the ill-conditioned 
equations for solving for numerical coefficients, and thus has limited applications. 

We present an efficient algorithm of constructing an s-expanded DDD from an 
original DDD. If the maximum number of admittance parameters in an entry of a 
circuit matrix is bounded (true for most practical analog circuits), we prove that both 
the size of the resulting s-expanded DDD and the time complexity of the construction 
algorithm is O(m|D|), where m is the highest power of s in the s-expanded polynomial 
of the determinant of the circuit matrix and |D| is the size of the original DDD D 
representing the determinant. Experimental results indicate that the number of DDD 
vertices used can be many orders-of-magnitudes less than that of product terms 
represented by the DDDs. 
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With s-expanded expressions, approximation on symbolic transfer functions can be 
performed very efficiently. In addition, symbolic poles and zeros partial symbolic 
analysis and symbolic circuit-level noise analysis and modeling method can be 
performed [6, 11]. 

5.1. s-Expanded symbolic representation 

In this section, we introduce the concept of s-expanded determinant decision 
diagrams. Instead of presenting the concept in a formal way, we illustrate it through a 
circuit example. 

 

 
Figure 7: An example circuit. (Copyright © 2001, Re-printed with permission from [12]) 

 

Consider a simple circuit given in Fig. 7. By using the nodal formulation, its circuit 
matrix can be written as 
 

 

 
   

  
1 1 1

0

1 1 1 1

0
1 1

  

 

In modified nodal analysis formulation, the admittance of each circuit or lumped 
circuit parameter, pi, arrives in the circuit matrix in one of three forms—gi, cis and 
1/(l1s)—for the admittance of resistances and capacitances and inductances, 
respectively. To construct DDDs, we need to associate a label with each entry of a 
circuit matrix. We call this procedure labeling scheme.  

     Instead of labeling one symbol for each matrix entry, we label each admittance 
parameter in the entries of the circuit matrix when deriving the s-expanded DDDs. 
Depending on how the circuit parameters are labeled, an s-expanded DDD comes in 
two forms:  

1. In the first labeling scheme, all the circuit parameters in an entry of circuit matrix 
are first lumped together according to their admittance type, and each lumped 
admittance parameter is then represented by a unique symbol.  

2. In the second labeling scheme, we label each admittance of the circuit parameters 
by a unique symbol.  

Obviously the second labeling scheme will generate more product terms than the first. 
The selection of labeling schemes depends on the applications of symbolic analysis. 
In this chapter, we present both labeling schemes along with their implementations. 
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By the first labeling scheme, we can rewrite the circuit matrix of the example circuit 
as follows: 

   0

0 ℎ   
 

 

where a = , b = C1 , c = d = , e = ,  f = C2, g = h = , i =  and j 

= C3. 

By using the second labeling scheme, the circuit matrix can be rewritten as follows: 

 

   0
ℎ

0   
, 

 

where a = , b = f =  , d = e = , g = k = ,   i = j = , i = , c = C1, h = C2 , 

l = C3. 

We first consider the original DDD representation shown in Fig. 8 of the circuit 
matrix. Each DDD vertex is labeled using the first labeling scheme.  

 
Figure 8: Complex DDD for a matrix determinant. (adapted from [21]) 

 

By the definition of DDDs, each 1-path in a DDD corresponds to a product term in 
the determinant that the DDD represents. In this example, there are three 1-paths, and 
thus three product terms: 
 

(a + sb)(e + fs)(i + js), 
           (a + sb)(−h)(g), 
             (−d)(c)(i + js). 
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We now consider how to expand a symbolic expression into an s-expanded one and 
represent the expanded product terms by a new DDD structure. Expanding the three 
product terms, we have 
 

(a + sb)(e + fs)(i + js) →       

 

(a + sb)(−h)(g) → 
ℎ
ℎ    , 

 

  (−d)(c)(i + js) →      . 

 
We can easily represent these product terms using a multi-rooted DDD structure as 
shown in Fig. 9. The new DDD has four roots and each DDD root represents a 
symbolic expression of a coefficient of a particular power of s. Each DDD seen from 
a root is called a coefficient DDD, and the resulting multi- rooted DDD is called an s-
expanded DDD. The original DDD is referred to as the complex DDD as complex 
frequency variable s appears in some vertices throughout the rest of the chapter. Such 
a representation exploits the sharing among different coefficients in a polynomial in 
addition to that explored by complex DDDs. In Fig. 9, 18 non-terminal vertices are 
used. In comparison, without exploiting the sharing and the sparsity, 108 (= 12×9, 
#product-terms × #symbols) vertices would be used. 

 
Figure 9: An s-expanded DDD by the first labeling scheme. (Copyright © 2001, Re-printed with 
permission from [12]) 

Note that each vertex in a complex DDD may be mapped into several vertices, ai, i = 
1, ...,m, in the resulting s-expanded DDD. We say that a contains ai and denote this 
relationship by ai  a. As a result, a product term, p, in a complex DDD will generate 
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a number of product terms, pi, i = 1, ..., l, in the resulting s-expanded DDD. Similarly, 
we say p contains pi and denotes this relationship by pi  p. If we further define the 
row and the column indices of a vertex ai in a coefficient DDD as that of a, ai  a, 
respectively, we have the following result: 

 

Theorem 3 A coefficient DDD represents the sum of all the s-expanded product 
terms of particular power of s in the s-expanded polynomial of a determinant. 

 

Theorem 3 implies that an s-expanded DDD shares the same properties as a complex 
DDD, although it does not represent a determinant, instead only those terms that have 
the same powers of s in a determinant. All the manipulations of complex DDDs 
mentioned in the section 2 therefore can be applied to s-expanded DDDs.  

Under a fixed vertex ordering of all vertices representing admittance parameters in a 
circuit matrix, the representation of the circuit-matrix determinant by an s-expanded 
DDD is also canonical. The canonical property in an s-expanded DDD ensures that 
the maximum sharing among all its coefficients is attained, and the size of the 
resulting s-expanded DDD is a minimum under a vertex ordering. 

If we adopt the second labeling scheme, the same three product terms in the complex 
DDD of the example circuit will be expanded into 23 product terms in different 
powers of s: 

 (a +b+cs)(f+g+hs)(k +ls) → 

 

     
  ℎ
ℎ

ℎ

       

ℎ
ℎ
ℎ  

 

(a+b + cs)(−j)(i) →    , 

 

  (−e)(d)(k + ls) →        . 

 
The resulting s-expanded DDD is depicted in Fig. 10. It is easy to see that the second 
labeling scheme results in more vertices than the first one. The resulting s-expanded 
DDD has the same properties as the previous one (using the first labeling scheme), but 
it will be more suited for the DDD-based approximation to be presented in section 6. 

 

5.2. Construction of s-expanded DDDs 

An s-expanded DDD can be constructed from a complex DDD by one depth- first 
search of the complex DDD. The procedure is very efficient with the time complexity 
linear in the size of the resulting s-expanded DDD.  

For convenience, we first present the construction algorithm using the first labeling 
scheme. Let D be a complex DDD vertex, with its 1-edge pointing to D1 and its 0-
edge pointing to D0. Let D.g, D.c and D.l denote, respectively, the admittance of the 
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conductance, capacitance and inductance in the circuit. An s-expanded DDD, P, is a 
list of coefficient DDDs with P[i] denoting the coefficient DDD of power si and i  
[−n, n]. Then, we introduce the following four basic operations: 

     • COEFFUNION(P1, P2) computes the UNION of two s-expanded DDDs, P1 and 
P2. 

     • COEFFMULPLTY(P,D.x) computes the product of s-expanded DDD P and 
coefficient in DDD vertex D.x.     

     • P *s increments the power of s in s-expanded DDD P. 

     • P/s decrements the powers of s in s-expanded DDD P. 

 

 
Figure 10: An s-expanded DDD by the second labeling scheme. (Copyright © 2004, Re-printed with 
permission from [21]) 

 

Algorithm COEFFCONST described in Fig. 11 takes a complex DDD vertex and 
creates its corresponding coefficient DDDs. The implementations of COEFFUNION 
and COEFFMULPLTY are also shown in Fig. 12 in terms of the basic DDD 
operations MULTIPLY and UNION, whose implementations can be found in Fig. 4 
in section 3. 

As in all other DDD operations [1], we cache the result of COEFFCONST(D), and in 
case D is encountered again, and its result will be used directly. In the second labeling 
scheme, we use D.xi to represent the ith admittance parameter in a complex DDD 
vertex D. D.xi can be a resistive admittance, a capacitive admittance or an inductive 
admittance. The function type(D.xi) will return res, cap and ind for the three 
admittance types, respectively. The COEFFCONST using the second labeling scheme 
is expressed in Fig. 13. 
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Consider a n × n circuit matrix. A complex DDD Dr with its size denoted by |Dr| is 
used to represent the determinant of the circuit matrix. Let n be the size of the 
determinant Dr represents. The maximum number of the circuit admittance 
parameters in an entry of a circuit matrix is k. Then, we have the following result for 
the s-expanded DDD derived from Dr by COEFFCONST for both labeling schemes 
[12]: 
 

            COEFFCONST(D) 

1      if ( D = 0 or D = 1) 

2      return NULL 

3      L0 = COEFFCONST(D0) 

4      L1 = COEFFCONST(D1) 

5      if (D.g ≠ 0) 

6           Pg = COEFFMULPLTY(L1,D.g) 

7      if (D.c ≠ 0) 

8           Pc = COEFFMULPLTY(L1 * s,D.c) 

9           Presult = COEFFUNION(Pc, Pg) 

10    if (D.l ≠ 0) 

11         Pl = COEFFMULPLTY(L1/s,D.l) 

12         Presult = COEFFUNION(Pl, Presult) 

13    return COEFFUNION(Presult, L0) 

 

Figure 11: The s-expanded DDD construction with the first labeling scheme. 

 
Theorem 4 The time complexity of COEFFCONST(Dr) and the number of vertices 
(size) of the resulting s-expanded DDD are O(kn|Dr|). 
 
Proof. Function COEFFCONST(Dr) performs a depth-first search on Dr, so it will 
visit each DDD vertex just once, and COEFFCONST will be called just |Dr| times. 
 

COEFFUNION(P1, P2) 
1      for i = −n to n do 
2           P[i] = UNION(P1[i], P2[i]) 

3      return P 

COEFFMULPLTY(P,D.x) 

1      for i = −n to n do 

2           P[i] = MULTIPLY(P[i],D.x) 

3      return P 

 

Figure 12: The basic DDD construction algorithms 
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            COEFFCONST(D) 

1      if ( D = 0 or D = 1) 

2      return NULL 

3      L0 = COEFFCONST(D0) 

4      L1 = COEFFCONST(D1) 

5      Presult = NULL 

6      for i = 1 to k do  

7            if (type (D.xi) ≠ res) 

8                Pg = COEFFMULPLTY(L1, D. xi) 

9                Presult = COEFFUNION(Pg, Presult)       

10          if (type (D.xi) ≠ cap) 

11                Pc = COEFFMULPLTY(L1 * s, D. xi) 

12                Presult = COEFFUNION(Pc, Presult)       

13          if (type (D.xi) ≠ ind) 

14               Pl = COEFFMULPLTY(L1/s,D.xi) 

15               Presult = COEFFUNION(Pl, Presult) 

16    return COEFFUNION(Presult, L0) 

 

Figure 13: The s-expanded DDD construction with the second labeling scheme. 

 
6. DDD-Based Symbolic Approximation 

Deriving interpretable symbolic small-signal characteristics of analog integrated 
circuits by approximation can build the circuit behavioral models and gain intuitive 
insights into the circuit behavior. In this section, we present one efficient algorithm 
for obtaining approximate symbolic expressions based on DDD representation of 
symbolic expressions. We show that a dominant term of a determinant can be found 
by searching shortest paths in the DDD graphs in a linear time in terms of the DDD 
graph size. Finding the k dominant product terms can be obtained by an incremental k 
shortest path search algorithm. 

Before we generate the dominant terms, one problem we need to consider is symbolic 
cancellation. Symbolic canceling terms arise from the use of the MNA formulation in 
analog circuits. For instance, consider the s-expanded DDD shown in Fig. 9. Since g 
= k = 1/R3 and i = j = − 1/R3, term agks0 cancels term −ajis0 in the coefficient DDD of 
s0. Our experiments show that 70-90% terms are canceling terms. Clearly it is 
inefficient to generate the 70%-90% terms that will not show up in the final 
expressions de-cancellation. It will be shown in [13] that fundamentally symbolic 
cancellation is caused by the sub-matrix reduction or variable/node reduction. MNA 
formulation is obtained by reducing all the branch current and branch voltage 
variables from the sparse tableau formulation, which is cancellation-free [14]. Such a 
reduction will lead to the symbolic cancellation [15]. More detailed treatment of this 
issue is covered in [6, 11]. 
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It turns out that symbolic canceling terms can be efficiently removed during [6] or 
after the s-expanded DDD construction [12]. In the following, we assume we start 
with the cancellation-free DDDs. 

6.1. Finding dominant terms by incremental k-shortest path algorithm 

In the following, we present an efficient algorithm for finding k dominant terms. The 
algorithm does not require DDDs to satisfy certain graph theoretical property required 
by the dynamic programming based method [17, 18] and thus can be applicable to 
any DDD graph. 

The shortest path (SP) algorithm is based on the observation that the most significant 
term in coefficient DDDs can be transformed into the SP in edge-weighted DDD 
graphs by introducing the following edge weight in a DDD: 

 

     • 0-edge costs 0 

     • 1-edge costs −log|ai|, and |ai| denotes the numerical value of the DDD vertex ai 
that originates the corresponding 1-edge.     

 

The weight of a path in a coefficient DDD is defined to be the total weights of the 
edges along the path from the root to the 1-terminal. As a result, given a path, say 
abcdef, their path weight is 

 
− (log |a| + log |b| + log |c| + log |d| + log |e| + log |f|).     (7) 

 

If |abcdef| is the value of the largest term, the value of −log|abcdef| will be the 
smallest, which actually is (7).  

The shortest (weighted) path in a coefficient DDD, which is a DAG (direct acyclic 
graph), can be found by depth-first search in time O(V + E), where V is the number of 
DDD vertices and E is number of edges [19]. So it is O(V ) in DDDs. Once we find 
the shortest path from a DDD, we can subtract it from the DDD using SUBTRACT() 
operation [1], and then we can find the next shortest path in the resulting DDD. 

We can further speed up the process of finding the dominant paths. After every vertex 
has been visited once (i.e. after the first dominant term is found), the new algorithm is 
based on the observation that not all the vertices are needed to be visited, after the 
DDD graph is modified due to the subtraction of a dominant term from the graph. The 
new algorithm avoid applying the shortest path search algorithm to the DDD graph 
directly every time, which requires visiting every vertex in a DDD graph to find the 
dominant term as required by the shortest path search algorithm [19]. We show that 
only the newly added DDD vertices are needed to be relaxed and the number of 
newly added DDD vertices is bounded by the depth of a DDD graph. 

In the sequel, we first introduce the concept of reverse DDD graphs. As shown in Fig. 
10, a DDD graph is a direct graph with two terminal vertices and one root vertex. 
Remember that the 1-path in a DDD graph is defined from the root vertex to the 1-
terminal. Now we define a new type of DDD graphs, called reverse DDD graphs, 
where all the edges have their directions reversed and the root of the new graph are 1-
terminal and 0-terminal vertices and new terminal vertex becomes the root vertex of 



223   Design of Analog Circuits through SA Sheldon X.-D. Tan 

the original DDD graph. The reverse DDD graph for the DDD graph in Fig. 8 is 
shown in Fig. 14. For the clarification, the root vertex and terminal vertices are still 
referred to as those in the original DDD graphs. 

With the concept of the reverse DDD graph, we further define 1-path and path weight 
in a reverse DDD graph.  

 
Figure 14: A reverse DDD. (Copyright © 2004, Re-printed with permission from [21]) 

 
Definition 1 A 1-path in a reverse DDD is defined as a path from the 1- terminal to 
root vertex (A in our example) including all symbolic symbols and signs of the 
vertices that the 1-edges point to along the 1-path. 
 
Definition 2 The weight of a path in a DDD is defined to be the total weights of the 
edges along the path where each 0-edge costs 0 and each 1-edge costs −log|ai|, and 
|ai| denotes the numerical value of the DDD vertex ai that the corresponding 1-edge 
points to. 
 
We then have the following result. 
 
Lemma 1 The most significant product (dominant) term in a symbolic determinant D 
corresponds to the minimum cost (shortest) path in the corresponding reverse DDD 
between the 1-terminal and the root vertex. 
 

The shortest path in a reverse s-expanded DDD, which is still a DAG and thus, can be 
found in O(|DDD|) time as the normal DDD graph does. 

Following the same strategy in [16], after we find the shortest path from a DDD, we 
can subtract it from the DDD using SUBTRACT() DDD operation, and then we can 
find the next shortest path in the resulting DDD. We have the following result: 

 

Lemma 2 In a reverse DDD graph, after all the vertices have been visited (after 
finding the first shortest path), the next shortest path can be found by only visiting 
newly added vertices created by the Subtraction operation. 
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Fig. 15 illustrates the incremental k-shortest path. The figure in the left-hand side 
shows the consecutive k-shortest path algorithm to find the shortest path. Every time 
when a new DDD graph is created which is rooted at D′, we have to visit the whole 
graph to find the shortest path. The figure shown in the right-hand side is the new 
incremental k-shortest path algorithm where we only need to visit all the newly 
created DDD nodes (in the upper left triangle) to be able to find the shortest path. As 
shortest paths are found from the source to all the nodes in a graph, the shortest paths, 
shown in dashed lines, in the existing sub-graphs can be reused in the new DDD 
graph. 

It turns out that finding the shortest path from 1-terminal to the new vertices can be 
done very efficiently when those new vertices get created. The shortest path searching 
can virtually take no time during the subtraction operation. Suppose that every vertex 
in reverse DDD graph D has a shortest path from 1-terminal to it (be visited once). 
Then the new algorithm for searching the next dominant term is given in Fig. 16. 

 

 
Figure 15: Incremental k-shortest path algorithm. (Copyright © 2004, Re-printed with permission 
from [21]) 

 

In GETNEXTSHORTESTPATH(D), EXTRAPATH(D) obtains the found shortest 
path from D and returns the path in a single DDD graph form. This is done by simply 
traversing from the root vertex to 1-terminal. Each vertex will remember its 
immediate parent who is on the shortest path to the vertex in a fully relaxed graph 
(relaxation concept will be explained soon). Once the shortest path is found, we 
subtract it from the existing DDD graph and relax the newly created DDD vertices 
(line 15-17) at same time to find the shortest paths from 1-terminal to those vertices, 
which is performed in the modified function SUBTRACT(D,P), now called 
SUBTRACTANDRELAX(D, P). 

In function SUBTRACTANDRELAX(D, P), RELAX(P, Q) performs the relaxation 
operation, an operation that checks if a path from a vertex’s parent is the shortest path 
seen so far and remember the parent if it is, for vertices P and Q where P is the 
immediate parent of Q in the reverse DDD graph. The ration relaxation is shown in 
Fig. 17. Here, d(x) is the shortest path value seen so far or vertex x; w(P,Q) is the 
weight of the edge from P to Q, which actually is the circuit parameter value that Q 
represents in the reverse DDD graph. 
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GetNextShortestPath(D) 

1      if (D = 0) 

2           return 0 

3      P = EXTRAPATH(D) 

4      if (P exists and P not equal to 1) 

5           D = SUBTRACTANDRELAX(D, P) 

6       return P 

 

SUBTRACTANDRELAX(D, P) 

01     if (D = 0) 

02          return 0 

03     if (P = 0) 

04          return D 

05     if (D = P) 

06          return 0 

07     if (D.top > P.top) 

08          V = GETVERTEX(D.top, D.child1, 

                      SUBTRACTANDRELAX(D.child0, P)) 

09     if (D.top < P.top) 

10          V = SUBTRACTANDRELAX(D, P.child0) 

11     if (D.top = P.top) 

12          T1 = SUBTRACTANDRELAX(D.child1, P.child1)) 

13          T0 = SUBTRACTANDRELAX(D.child0, P.child0) 

14          V = GETVERTEX(D.top, T1, T0) 

15     if (V not equal to D) 

16          RELAX(V.child1, V ) 

17          RELAX(V.child0, V ) 

18     return V 

Figure 16: Incremental k-shortest path based dominant term generation algorithm. (Copyright © 2004, 
Re-printed with permission from [21]) 

 

RELAX(P, Q) 

1      if d(Q) > d(P) + w(P,Q) 

2        d(Q) = d(P) + w(P,Q) 

3        parent(Q) = P 

Figure 17: The RELAX() operation. (Copyright © 2004, Re-printed with permission from [21]) 
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Line parent(Q) = P remembers the parent of Q in the shortest path from the 1-
terminal to Q. In the reverse DDD graph, each vertex has only two incoming edges 
(from its two children in the normal DDD graph), so the relaxation with its two 
parents in lines 16 and 17 are sufficient for the relaxation of vertex V. Moreover, the 
relaxation for V happens after all its parents have been RELAXed due to the DFS-
type traversal in SUBTRACTANDRELAX(). This is consistent with the ordering 
requirement of the shortest path search algorithm. Therefore by repeatedly invoking 
function GETNEXTSHORTESTPATH(D), we can find all the dominant terms in a 
decreasing order. 

Let n be the number of vertices in a path from 1-terminal to the root vertex, i.e. the 
depth of the DDD graph, given the fact that D is a DDD graph and P is a path in the 
DDD form, then we have the following theorem: 

 

Theorem 5 The number of new DDD vertices created in function 
SUBTRACTANDRELAX(D, P) is bounded by n and the time complexity of the 
function is O(n).  

 

We then have the following result for incremental k-SP based algorithm: 
 

Theorem 6 The time complexity of the incremental k-SP algorithm for finding k 
shortest paths is 

O(|DDD| + n(k − 1)),     (2.9) 

where n is the depth of the DDD graph. 

 

Notice that both DP based algorithm and incremental k-SP based algorithm have time 
complexity O(|DDD|) to find a dominant term, where |DDD| is the size of a DDD 
graph. After the first dominant term, however, both algorithms show better time 
complexities for generating next dominant terms, that is O(n). But in contrast to DP 
based algorithm, the actual running time of the incremental k-SP based algorithm 
does not depend on the topology of a circuit. 

Notice that the new incremental k-shortest path generation algorithm can be 
performed on any DDD graph, including cancellation-free s-expanded DDD. We note 
that the variant of DDD used by Verhaegen and Gielen in [17, 18] does not satisfy the 
canonical property due to vertex duplication. As a result, except for the first shortest 
path, remaining dominant paths cannot easily be generated by using the shortest path 
algorithm as the found shortest path is hard to be SUBTRACTED (if possible at all) 
as most DDD graph operations are not valid for a non-canonical DDD graph. 

Following the same strategy in [15], our approach also handles numerical 
cancellation. Since numerical canceling terms are extracted one after another, they 
can be eliminated by examining two consecutive terms. 
 

7. Conclusion 

In this chapter, we briefly review the determinant decision diagram (DDD) concepts 
and its application for symbolic analysis and generating the dominant symbolic terms 
for analog behavioral modeling. We start with the basic concept of a DDD, its main 
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properties and manipulative operations for symbolic analysis. Then we introduce an 
efficient DDD construction algorithm by logic synthesis and operation. We then 
present s-expanded DDDs to represent s-expanded polynomials and s-domain transfer 
functions. Finally we give a shortest-path- searching based algorithm for finding k 
dominant symbolic terms for symbolic approximations. The new algorithm has a 
linear time complexity in terms of DDD graphs and can find k dominant terms very 
efficiently. 

This chapter covers all the basic essence about DDD-based symbolic analysis. We do 
not include many proof details and numerical results. Interesting readers can refer to 
more detailed treatment of DDD graphs and application in [6, 11]. 
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CHAPTER 9 

Sensitivity Computation Based on Auxiliary Circuits 

Lucia Dumitriu* and Mihai Iordache 

Electrical Engineering Department, Politehnica University of Bucharest, Romania 

Abstract: Some aspects deriving from the circuit element manufacturing, the 
environmental conditions (temperature, humidity, radiation) and also the normal aging, 
can alter the circuit operation performance by changing the element parameter values. 
That is why the design of such systems has to take into account the effect of the element 
parameter variations on the circuit performance. A precise measure of this effect is done 
by the sensitivity function that can be performed for the magnitude of the transfer 
function, for the natural frequencies of the circuit, for the quality factor etc. Knowledge 
of the circuit sensitivity can be used as a basis for comparing different electronic circuits. 
It helps the circuit designer in selecting the proper circuit for a specified application. The 
chapter presents the most popular definitions of the sensitivity and develops three 
methods to compute these important elements for CAD of electric circuits. Illustrative 
examples are presented and important remarks are done.  

Keywords: Symbolic analysis, circuit analysis, computer aided design, sensitivity, sensitivity analysis, 
sensitivity computation, auxiliary circuit, incremental circuit, adjoint circuit, Bykhovski method. 

1. Introduction 

Consider a linear circuit having the performance denoted by P, and the parameter 
vector  nk xxx ...,... ,1x ,  xPP  . At a small variation kx  of the parameter xk, the 

Taylor series of P around the nominal value xk0 is: 
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Definition 1. 
The most used definition of the circuit performance sensitivity, evaluated as the 
circuit transfer function (P =H), with respect to the parameter xk, at small changes in 

the parameter value, denoted by H
xk

S , is defined as: 
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Definition 2. 
The relative sensitivity (or normalized sensitivity) definition of the transfer function 
H, with respect to the parameter xk, at small changes in the parameter value, is 
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When the excitations are sinusoidal signals, the circuit transfer function  jH  can 
be expressed as: 
 
*Address correspondence to Lucia Dumitriu: Electrical Engineering Department, Politehnica University of 
Bucharest, Romania; E-mail: lucia.dumitriu@gmail.com 
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          jAjjHjHejHjH j )(lnlnor        (4) 

where:     jHA ln  is the magnitude, and    jHarg  is the phase of the 

signal. 

The sensitivities of the magnitude and of the phase, respectively, in respect of the 
parameter xk are defined as: 
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and  
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The relative sensitivity of the transfer function (4) in respect of the parameter xk can 
be written as: 
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By computing the sensitivity of the circuit performance in respect of any circuit 
parameter, the critical circuit elements will be found. These are the elements whose 
small variations in the parameter values cause important changes in the circuit 
performance. The circuit sensitivities in respect of these parameters are very high. 
Identification of the critical/noncritical circuit elements allows building a simplified 
circuit model that increases the analysis efficiency. In the reduced model the 
noncritical elements will be removed fulfilling an imposed error criterion for the 
transfer function [1]. 

An optimal design, made with efficient tools, has to include a sensitivity analysis that 
gives to the designer the opportunity to select between two circuits that with smaller 
sensitivities (meaning smaller costs) while keeping the circuit performance in the 
desired range.  

The unavoidable dispersion of the parameter values in the industrial execution 
implies knowing the circuit performance in a given range of values, called the 
tolerance domain. The tolerance defines a domain of the possible values around the 
nominal value that a parameter can take, without significant alteration of the circuit 
performance. The sensitivity study facilitates developing the tolerance analysis. The 
objective of the circuit design is to produce a circuit with reasonable sensitivities and 
tolerances. It’s important to remark that small sensitivities allow a relaxation of the 
tolerance constraints, resulting in cost reduction.  

The above sensitivities are defined in respect of a single parameter. Actually, many 
parameters change simultaneously, so that the first order approximation of the 
transfer function relative change is: 
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(8) 

If the incremental changes  kxln  of the circuit parameters are expressed by the 

vector: 
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       t
21 ln,...,ln,ln nxxx y  (9) 

and the set of gradients    kxH ln/ln   by the vector, 
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HH /  can be expressed as: 

yG 
 t

H

H
  (11) 

In this way, the multiparameter sensitivity can be defined [2, 3] as  

GS mp   (12) 

When the number of parameters is large, computing the multiparameter sensitivity 
becomes a very difficult and time consuming task. Therefore, it is very important to 
apply the appropriate approach for each specified problem.  
There are three classes of methods for the computation of multiparameter sensitivity:  
1. Methods based on feedback theory or the bilinear theorem - for linear circuits; 
2. Direct methods, by which the first-order derivatives of interest (and any desired 
higher-order derivatives) are computed directly from the circuit matrix (usually nodal 
admittance matrix); 
3. Indirect methods, requiring an auxiliary circuit associated with the circuit under 
consideration. 

In the following sections we shall develop three methods for sensitivity calculation, 
based on auxiliary circuits. 

Note. As it results from the transfer function definitions (see Chapter 4, definitions 
(2)) computing the partial derivatives of a transfer function (sensitivity evaluation) is 
equivalent to calculation of the voltage or current derivatives [4]. That is why the next 
proofs will be made in terms of the incremental currents and incremental voltages of 
the circuit at small changes of the circuit parameters.  

2. The Incremental Circuit Applied to Sensitivity Analysis 

Considering a part of a linear circuit C, we wish to evaluate the changes in the branch 
currents and voltages due to small changes in branch parameters- 
resistances/conductances (impedances/admittances) and parameters associated to the 
controlled sources. To this end we shall build a perturbed circuit Cp, whose branch 
parameters are changed with slight amounts, while the excitations are unperturbed. 
The two circuits C and Cp have the same topology. For simplicity reasons we shall 
consider a resistive circuit CR (Fig. 1(a)). 
When the resistance Rk takes the value kk RR  , the branch currents and voltages 

will be also modified. If we consider the incidence reduced matrix A and the 
fundamental loop matrix B, the Kirchhoff’s laws for the two circuits take the form:  

0AI ,  0BV  (13)

for the original circuit CR, and 

  0 IIA ,     0 VVB  (14)
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for the perturbed circuit Cp (Fig. 1(b)). 

From (13) and (14) it results: 

0IA ;    0VB , (15)

meaning that I and V could be the branch currents and voltages of a circuit Ci 
called the incremental circuit, that has the same topology as CR and Cp but specific 
branch characteristics, as in Fig. 1(c). 

 
Figure 1: Generation of the incremental circuit. 

These characteristics will be identified as follows. 

The branch having the resistance Rk from the circuit CR, satisfies the equation  

kkk IRV   (16)

In the perturbed circuit Cp, the same branch satisfies the equation: 

   kkkkkkkkkkkkkk IRRIIRIRIIRRVV   (17)

Taking into account (16), from (17) it results: 

kkkkkkk IRRIIRV   (18)

Because the changes are infinitesimally small, we can neglect the second-order term, 
so that (18) becomes: 

kkkkk RIIRV   (19)
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Equation (19) suggests an equivalent branch consisting in an Rk in series with a 
current-controlled voltage source kk RI  as in Fig. 1(c), and on the first row and the 

second column in Fig. 2. The controlling current Ik belongs to the original circuit CR. 

Because the independent sources in CR are unperturbed, 0J  and 0E , 
suggesting that in the incremental circuit Ci the current source have to be replaced by 
an open circuit, while the voltage source by a short circuit.  

Element in the original circuit C  Element in the incremental circuit Ci  

 
 

 
 

  
 

  

 

 

 

 

 
 

 

 

 

 

Figure 2: cont… 
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Figure 2: Representation of the elements in the original and in the incremental circuit. 

In Fig. 2 the incremental circuits for the passive circuit elements, independent sources 
and all the four type of controlled sources are presented.  

Usefulness of the incremental circuit for the sensitivity computation will be illustrated 
later. 

Example 1 

Consider the nonreciprocal resistive circuit in Fig. 3(a). We want to compute the 
partial derivatives of the currents 54321  and ,,, IIIII  in respect of  5321 R,R,R,R  and
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4,1 A . We want also to compute the sensitivity 1,4/ AGi  . In order to solve the 

problem, the following algorithm will be applied:  

Step 1. The original circuit CR is analyzed. The results are given in Fig. 3(a); 

Step 2. Taking into account the rules in Fig. 2, the incremental circuit is built (Fig. 
3(b)). Because the controlling currents of the current-controlled voltage sources in 
series with the resistances R1, R2, R3, and R5, (according with Fig. 2) are known from 
the step 1, these sources become independent sources.  

 

Figure 3: The original circuit (a) and the incremental one (b). 

Note. We can see that the two circuits CR and Ci differ only in the location and the 
values of the independent sources. 

Step 3. The incremental circuit Ci is analyzed by hand and the following results are 
obtained:  

14532 3

1

30

1

10

1

30

1
,i ARRRI   

11 10

1
RI   

14522 3

1

30

1

30

1
,ARRI   (20)

1433 5

1
,ARI   
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145324 3

4

30

1

5

1

30

1
,ARRRI  . 

14525 3

1

30

1

30

1
,ARRI   

If the SYAMNM program [5] is applied, the above results are found: 

rez1_ex1_Ci:={dE4 = 0., dI1 = -.1000*dR1,  

dI2 = -.3334e-1*dR5-.3334e-1*dR2+.3334*dA4_1,  

dI3 = -1.000*dA4_1+.2000*dR3, dI5 = -.3333e-1*dR5-.3333e-1*dR2+ 

+.3333*dA4_1, dI4 = 1.3333*dA4_1-.3333e-1*dR2-.2000*dR3-.3333e-1*dR5,  

dIi = dI7 = -.3333e-1*dR5-.3333e-1*dR2+0.3333*dA4_1-.1000*dR3, dU1 = 0., 

dU2 = -.6666*dR5+.3333*dR2+6.666*dA4_1, dU3 = -10.*dA4_1, dU4 = 0., 

dU5 = 3.333*dA4_1+.6666*dR5-.3333*dR2, dU6 = -10.*dA4_1, dU7 = 0.}; 

Note. Increasing the analysis efficiency can be obtained by solving the incremental 
circuit together with the original one. This can be done connecting the two circuits by 
the reference node as in Fig. 4. 

 
Figure 4: Connection of the original circuit with the incremental one. 

In this case the controlling currents of the current-controlled voltage sources from Ci 
belong to the original circuit. 

Using the program, the following results are obtained: 

rez1_ex1-Complete:={dE10 = dR2, dE12 = 0., dE13 = 10.*dA4_1,  

dE14 = -2.*dR3, dE17 = dR5, E4 = 20., dE8 = dR1, I1 = 1., 

- dI2 = I10 = .3333e-1*dR5+.3333e-1*dR2- .3333*dA4_1,  
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dI4 = I12 = -.3333e-1*dR5-.3333e-1*dR2+1.333*dA4_1-.2000*dR3, 

dI4 = I13 = -.3333e-1*dR5-.3333e-1*dR2+1.333*dA4_1-.2000*dR3,  

- dI3 = I14 = 1.000*dA4_1-.2000*dR3, dI3 = I15 = -1.000*dA4_1+.2000*dR3,  

dI5 = I16 = -.3333e-1*dR5-.3333e-1*dR2+.3333*dA4_1,  

- dI5 = I17 = .3333e-1*dR5+ .3333e-1*dR2-.3333*dA4_1, I2=1., I3= -2., I4= 3., I5 = 1., I6 = 2.,  

dIi =I7= -.3333e-1*dR5-.3333e-1*dR2+.3333*dA4_1-.1000*dR3,  

- dI1 = I8 = .1000*dR1, dI1 = I9 = -.1000*dR1, U1 = 10., dU10 = -1.*dR2,  

dU11 = -.6667*dR5- .6667*dR2+6.667*dA4_1, dU12 = 0.,  

dU13 = -10.*dA4_1, dU14 = 2.*dR3, dU15 = -10.00*dA4_1+2.000*dR3,  

dU16 = -.3333*dR5-.3333*dR2+3.333*dA4_1, dU17 = -1.*dR5, U2 = 20.,  

U3 = -20., U4 = -20., U5 = 10., U6 = -10., dU7 = 0., dU8 = -1.*dR1, dU9 = -1.*dR1}. 

These results are identical with the above ones. 
 

Step 4. From the above equations we can compute the sensitivities in respect of 
different parameters at small changes of their values (  5321 R,R,R,R  and 

0 14  ,A ), that actually are the coefficients of the parameters increments: 
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Another way to compute the sensitivity 14,i A/G   is by symbolic generation. 

Performing the simulation we obtain the expression: 

 

 521

111452
4141 RRR

RRARR
G _
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  (22)

This expression allows the sensitivity computation based on the definition. The 
conductance sensitivity in respect to the voltage gain is: 

30

1

1020

11

521_4

4,1_4,14,1_4,1

1_4













RRA

G
S

G
A  (23)

identical with the last equation from the system (21), obtained by using the 
incremental circuit. 
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Example 2 

Consider the circuit in Fig. 5, and small changes of the parameter values. 

 
Figure 5: Nonreciprocal RLC circuit: the original circuit (a), and the incremental circuit (b). 

The vectors of the branch currents and branch voltages for the original circuit C (Fig. 
5(a)) have the following structure: 

  t
54321 ,,,,, ib IJIIIII , and   t

54321 ,,,,, ib VVVVVVV , respectively. 

Running the SYAMNM program, we get for these circuit variables the values: 

Ib:=  

Vb:=  

Using these results, we get for the incremental variations of the branch currents 

  t
54321 ,,,,_ JIIIIidb  II  in the incremental circuit Ci (Fig. 5(b)), the 

following solution:  













0.1000

100. s
( )s 1031. ( )s 96970.


0.1000 s ( )s 1000.

( )s 1031. ( )s 96970.

100. s
( )s 1031. ( )s 96970.

0.1000 s2

( )s 1031. ( )s 96970.

0.1000 ( )s 1042. ( )s 95960.
( )s 1031. ( )s 96970.













1.

s2

( )s 1031. ( )s 96970.


100000. s 0.1000 10 9

( )s 1031. ( )s 96970.

2000. s
( )s 1031. ( )s 96970.


100000. s 0.1000 10 9

( )s 1031. ( )s 96970.

-1.
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The incremental variation of the input current dIi = dI6 has the expression: 
 

Because the input voltage Ei = 1.0 V, the coefficients of the terms dR1, dL2, dC3, dR4 
and dG5_2 from the above expression represent the sensitivities of the input 
admittance Y1,4_1,4 in respect of the parameters R1, L2, C3, R4 and G5_2, respectively.  

If the two circuits are analyzed together (Fig. 6), the independent sources from Ci 
become controlled sources, their controlling currents belonging to the original circuit. 
The solution given by SYAMNM program contains the same expressions for the 
variables of interest as in the case of independent solution of the two circuits.  

 
Figure 6: The two circuits connected to be solved together. 

 := dI_i













0.01000dR1

   
1.s ( )0.10001014 s 0.10001017 dC3

( )s 1031.2 ( )s 96970.2
1.s ( ) 0.10001010 s 10000.s2 dL2

( )s 1031.2 ( )s 96970.2
10000.s2 dR4

( )s 1031.2 ( )s 96970.2
0.1000109 dG5_2s2

( )s 1031.2 ( )s 96970.2

  
s ( ) 0.10001011 s2 0.20001014 s 0.10001017 dC3

( )s 1031.2 ( )s 96970.2
30000.s3 dL2

( )s 1031.2 ( )s 96970.2
s ( )10.00s2 10000.s dR4

( )s 1031.2 ( )s 96970.2
s ( ) 1.000s3 2000.s2 dG5_2

( )s 1031.2 ( )s 96970.2

   
1.s ( )0.10001014 s 0.10001017 dC3

( )s 1031.2 ( )s 96970.2
1.s ( ) 0.10001010 s 10000.s2 dL2

( )s 1031.2 ( )s 96970.2
10000.s2 dR4

( )s 1031.2 ( )s 96970.2
0.1000109 dG5_2s2

( )s 1031.2 ( )s 96970.2

   
1.s2 ( )0.10001011 s 0.10001014 dC3

( )s 1031.2 ( )s 96970.2
1.s2 ( ) 20000.s 0.10001010 dL2

( )s 1031.2 ( )s 96970.2
10.s3 dR4

( )s 1031.2 ( )s 96970.2
1.s2 ( )  1.s2 1999.s 0.9998108 dG5_2

( )s 1031.2 ( )s 96970.2

dIi
1. ( )0.10001014 s2 0.10001017 s dC3

( )s 1031. 2 ( )s 96970.2

1. ( ) 0.10001010 s2 10000.s3 dL2

( )s 1031. 2 ( )s 96970.2
  := 

1. ( )    1960.s3 0.10001015 0.01000s4 0.9804108 s2 0.19601012 s dR1

( )s 1031. 2 ( )s 96970.2

10000.s2 dR4

( )s 1031. 2 ( )s 96970.2

0.1000109 dG5_2s2

( )s 1031. 2 ( )s 96970.2
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Remarks 

From Fig. 2 and from the above examples we can observe that the topology of the 
incremental circuit is much more complicated than of the original circuit. This 
increases the computational effort. 

3. The Adjoint Circuit used for Sensitivity Analysis 

The method for sensitivity analysis presented later is based on an auxiliary circuit 
with the same topology as the original one, which means they have the same 
incidence matrix. 

It is well known that Kirchhoff’s Current Law (KCL), respectively Kirchhoff’s 
voltage law (KVL), are algebraic constraints on branch voltages, respectively branch 
currents, originating from the branch interconnection, while they are independent of 
the branch characteristics.  

If we write KCL as 0Ai  and KVL as nvAv t , the expression of the total 

instantaneous power delivered to the circuit by the terminals of its branches is: 

   0 AivivAiv tttt
nn  (24)

For any lumped circuit, (24) can be written in the form: 

0 viiv tt  (25)

called Tellegen’s theorem.  

The expression (25) is valid also for two circuits with the same topology or for the 
same circuit in two different operation behaviors, but in these cases the physical 
meaning of ”total instantaneous power delivered to the circuit” is lost.  

For two circuits, C and Ĉ , with the same topology, (25) becomes: 

0 viivviiv tttt ˆˆˆˆ  (26)

If we consider the perturbed circuit Cp whose branch voltages and currents satisfy the 
equations: 
 

iii

vvv





p

p
 (27)

adapting (26) for C and Cp we get: 

0
0





iv

vi
t

t

ˆ

ˆ
 (28)

equivalent to: 

0 ivvi tt ˆˆ  (29)

Note. The above equations are valid not only in instantaneous values but also in 
Laplace transforms or phasors of currents and voltages. 

To use the above theory for sensitivity analysis, the adjoint circuit of the original one 
has to be considered [2, 4, 6-13].  
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Definition 

Two linear time-invariant circuits C and Ĉ are said to be adjoint circuits of each other 
if the following conditions are satisfied: 

1. Both circuits have the same topology, i.e. AA ˆ . For the controlled sources we 
consider: 

- the controlling voltage is that across an open-circuit branch (modeled in both circuits 
by an ideal independent current source having the current magnitude equal to zero); 

- the controlling current is that through a short-circuit branch (modeled in both 
circuits by an ideal independent voltage source having the electromotive force (e.m.f.) 
equal to zero). 

2. If the two sets of branches can be described by impedances, then the corresponding 
matrices satisfy the equality: 

 bb ZZ ˆt   (30)

or, if the admittances exist, then: 

 bb YY ˆt   (31)

Using a hybrid description of the branches [2,4,14-16] by means of hybrid matrices 

Hb and bĤ  respectively, we have: 
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and 
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(33)

where Vb1 and 1
ˆ
bV ( 2bI  and 2

ˆ
bI ) are the independent voltage (current) controlled 

variables in the two adjoint circuits, while 1bI and 1
ˆ

bI  (Vb2 and 2
ˆ
bV ) are the 

complementary variables.  

The condition for C and Ĉ to be adjoint circuits of each other is: 





















t
22

t
12

t
21

t
11

2221

1211

ˆˆ

ˆˆ

bb

bb

bb

bb

ZB

AY

ZA

BY
 (34)

3. The independent sources in the two circuits have the same nature (voltage or 
current sources) but they need not have the same values. 

The above definition suggests the rules to build the adjoint circuit Ĉ  of a given circuit 
C as they are presented in Fig. 7. 

In general in applications it is convenient to extract all independent sources to the ports 
so that a multiport remains with internal branches having (vb, ib). The ports, representing 
the independent sources and the output variables including the voltages of the open-
circuit ports and the currents of the short-circuit ports, are characterized by (vp, ip).  
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Representation in the original circuit C Representation in the adjoint circuit Ĉ  

  

 

 

 
 

 
 

  

  

Figure 7:  Representation of the elements in the original and in the adjoint circuit. 

 Note. An open-circuit port can be modeled by an ideal independent voltage source with 
null e.m.f. while a short-circuit port can be modeled by an ideal independent current 

source with null current. In this way the connection graphs of C and Ĉ  are identical.  
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With the above partition, the total number of the circuit branches is bt = b + p.  

Using the Laplace transforms of the voltages and currents associated to the circuits C, 

Cp and Ĉ , for small changes of the parameters, Eq. (29) becomes: 

  0ˆˆ
1




tb

k
kkkk IVVI  (35)

The incremental changes can be made both in the internal branches and in the port 
variables. Identifying the contributions of the internal branches (b), independent 
voltage sources - including those that model the short-circuit ports (pe), and 
independent current sources - including those that model the open-circuit ports (pj), 

je ppp  , (35) becomes: 

      0ˆˆˆˆˆˆ
111

 


je p

j
jjjj

p

e
eeee

b

k
kkkk IVVIIVVIIVVI  (36)

In general, in order to compute the circuit function sensitivities, the variable of 
interest is the voltage variation at an open-circuit output port or the current variation 
through a short-circuit output port (see the definition of circuit functions in Chapter 
4), arising from small changes in one or more parameters.     

To this end an equation will be deduced from (36) having in the left side a single 
variable – the voltage or the current of interest, and in the right side - the terms 
associated with the parameters that change the values. In formulation of such an 
equation, the branch from C, corresponding to an open-circuit port or to a short-circuit 

one, has to be represented in Ĉ  as in Fig. 8. 

 
Figure 8: Correspondence between an open-circuit port (a) or a short-circuit port (b) from C and the 

branches from Ĉ . 

When the parameters associated to the independent sources are unchangeable, an 
ideal independent voltage (current) source from C corresponds to a short-circuit (an 

open-circuit) in Ĉ , as in Fig. 9. 

If we are interested in the voltage variation of an open-circuit port, (V0 in Fig. 8(a)), 
as a result of changes in all the circuit parameters, then from (36), taking into account 
the conventions in Figs. 8 and 9, we get: 



244   Design of Analog Circuits through SA Dumitriu and Iordache 

     



je p
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jj
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e
eeee
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kk IVVIIVVIV

111
0

ˆˆˆˆ  (37)

When the current variation of a short-circuit port (Isc in Fig. 8(b)) is of interest, (36) 
becomes: 

     



je p

j
jj

p

e
eeee

b

k
kksc IVVIIVVII

111

ˆˆˆˆ  (38)

 

 
Figure 9: Correspondence between the independent voltage and current sources from C and the 

branches from Ĉ . 

When the independent source from the original circuit is equal to the unity, the 
voltage V0 (the current Isc) represents a circuit function. 

For the sensitivity computation, all the terms in the right side of (37) and (38) are 
equal to zero, except for the terms associated to the parameters which change their 
values. These parameters can be the voltage Ve (the current Ij) of an independent 
source, R, L, C, one parameter of a controlled source, temperature etc. 
 
For example in the case of Ve or Ij variation, the expressions of the voltage variation 
of an open-circuit port are: 

  e
e

eee I
V

V
VVSVIV ˆ,              ˆ 0

00 



  
 

(39)

respectively 

  j
j

jjj V
I

V
IVSIVV ˆ,           ˆ 0

00 



  
 

(40)

Applying (35) for each circuit element, the results presented in Table 1 are obtained. 

Some situations can be discussed: 

a) When branch impedance matrices of C and Ĉ  exist, they satisfy (30) and the 
following relations are valid for the internal branches:  

bbb

bbb

ˆˆˆ IZV

IZV




 (41)
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b) When the open-circuit impedance matrices of the two multiport exist, we can write 
to the ports 

pp

pp

IZV

IZV

ˆˆˆ
0

0




 (42)

Writing (26) in Laplace transforms we get  

0 IVVI tt ˆˆ  (43)

and taking into account the partition in internal branches and ports we rewrite as 

ppppbbbb IVVIIVVI tttt ˆˆˆˆ   (44)

Substituting (41) and (42) in (43) we find that  

t
00

ˆ ZZ   (45)

c) If the short-circuit admittance matrices of the two multiport exist, in the same way 
we can find  

tˆ
scsc YY   (46)

We can evaluate the effect of small changes of the bZ  matrix entries on the currents 

and voltages. Taking into account that  

  bbbbbbb IZIZIZV   (47)

  pppp IZIZIZV  000  (48)

and the relations between the matrices of the original circuit and those of the adjoint 
one, applying the adapted form of (44) for δVb (δVp) and δIb (δIp) we get  

bbbpp IZIIZI  t
0

t ˆˆ  (49)

Note. In a similar way we can deduce the equation 

bbbpscp VYVVYV  tt ˆˆ  (50)

Equations (49) and (50) are used for sensitivity computation. 

In the particular case of the one-port, the matrix Z0 (Ysc) becomes Zii (Yii) and (49) 
((50)) takes the form 

bbbpiip
ˆˆ IZIIZI  tt  (51)

respectively 

bbbpiip
ˆˆ VYVVYV  tt  (52)

In general Zb and Yb are not symmetric matrices. 

Note. By a suitable choice of the excitations in C and Ĉ , in the left side of (49) and 
(51) ((50) and (52)) we can have a single term δZkj or δYkj, respectively. 
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Table 1: Contribution of the Circuit Elements to (35). 

Element type Description in C Description in Ĉ   ˆ ˆI V V I   

R V = RI ˆ ˆV RI  ÎI R  

G I = GV ˆ ˆI GV  V̂V G  

Z V = ZI ˆ ˆV ZI  ÎI Z  

Y I = YV ˆ ˆI YV  V̂V Y  

C I j CV  ˆ ˆI j CV  ˆj VV C   

L V j LI  ˆ ˆV j LI  ˆj II L   

Ec(VC) 
_

0

c c C C

C

V A V

I





 _

ˆ ˆ

ˆ 0

C c C c

c

I A I

V

  



 

_ĉ C c CI V A  

Jc(VC) 
_

0

c c C C

C

I Y V

I





 _

ˆ ˆ

ˆ 0

C c C c

c

I Y V

I

 



 

_ĉ C c CV V Y  

Jc(IC) 
_

0

c c C C

C

I B I

V





 _

ˆ ˆ

ˆ 0

C c C c

c

V B V

I

  



 

_ĉ C c CV I B  

Ec(IC) 
_

0

c c C C

C

V Z I

V





 _

ˆ ˆ

ˆ 0

C c C c

c

V Z I

V

 



 

_ĉ C c CI I Z  

Ideal transformer 
2 1

1 2

V nV

I nI


  

 2 1

1 2

ˆ ˆ

ˆ ˆ

V nV

I nI

 


 
 

 2 1 1 2
ˆ ˆI V V I n  

For example, in the particular case of a circuit with four ports, if the excitations in the 
two adjoint circuits have the values: 
 

 t0,0,1,0ˆ pI  (53)

respectively 

 t0,1,0,0pI  (54)

then (49) becomes 

bbbZ IZI  t
23

ˆ  (55)

In order to apply (55), and calculate the partial derivatives of Z23 in respect of all the 
entries of Zb, two analyses have to be performed: the analysis of C to obtain the 

branch currents Ib, and the analysis of Ĉ to obtain the vector bÎ . 

Remarks 

1. If the partial derivatives  xx sc  //0 YZ  are known, the partial derivatives of 

voltages (currents)  x/x/ pp  IV   in respect with any parameter can be 

identified. 

2. When the voltage (current) whose partial derivatives are of interest is not a port 
variable, a new port will be created, namely: for each voltage of interest a current port 
(by connection of an ideal independent current source with null current) and for each 
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current of interest - a voltage port (by connection of an ideal independent voltage 
source with null e.m.f.)  

Example 3  

Consider the resistive circuit represented in Fig. 10(a). Let us compute by adjoint 
circuit method the input conductance sensitivities in respect of all circuit parameters 

654321  and        _iiiiiiiiii G/GG/G,G/G,G/G,G/G  .    

 

Figure 10: The original circuit (a), the multiport (b), and the adjoint circuit (c). 

The original circuit is that represented in Fig. 10(a). In order to identify the 
controlling port of the controlled source 66_55 VGJ  , the original circuit is 

completed with a current source A06 J  as in Fig. 10(b). The ideal independent 

voltage source Ep= Ei =1V is introduced in order to define the input conductance Gii. 

The adjoint circuit Ĉ is built in accordance with the Table 1. 

Running the program, we get for the branch voltage vector in C and in Ĉ , 
respectively, the following values: 
 

   tt
654321 1 ,7/2 ,7/2 ,7/6 ,7/3 ,1,,,,,  VVVVVVbV  (56)
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and 

   tt

654321 1 ,7/1 ,7/1 ,7/4 ,7/2 ,1ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ  VVVVVVbV  (57)

The branch conductance matrix Gb of the circuit C is: 
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(58)

The small change matrix will be: 
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(59)

By substituting (56), (57) and (59) in (52) we get: 
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1
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111
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iiG  

 

 

 

(60)

Taking into account that the changes of δGb entries are infinity small, from (60) the 
following sensitivities are obtained: 

 

meaning that 

7/1/  and  49/2/

,49/24/     ,49/6/    ,1/

6_54

321




GGGG

GGGGGG

iiii

iiiiii
 

 

(61)

Example 4  

Consider the nonreciprocal RLC circuit in Fig. 11(a). The adjoint circuit is presented 
in Fig. 11(b). 

 := S_Gii [ ], , , ,1.0 0.1225 0.49 -0.04060 0.1429
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Figure 11: Nonreciprocal RLC circuit. 

Running the program for Ep=1 V, Vb=[V1, V2, V3, V4, V5, V6]
t and 

  t
654321

ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ VVVVVVb V  have the following expressions: 

Vb :=  

 

    

 

 

(62) 

and  

 

 

   
(63) 

respectively. 

The branch admittance matrix Y for the circuit C is: 













1.

s2

( )s 1031. ( )s 96970.


 0.1000 109 100000. s
( )s 1031. ( )s 96970.

2000. s
( )s 1031. ( )s 96970.


 0.1000 109 100000. s
( )s 1031. ( )s 96970.

s2

( )s 1031. ( )s 96970.

Vb_adjt := 

1.
s ( )s 100000.

( )s 1031. ( )s 96970.
0.1000109

( )s 1031. ( )s 96970.
2000.s

( )s 1031. ( )s 96970.


 , , , ,

0.1000109

( )s 1031. ( )s 96970.
s ( )s 100000.

( )s 1031. ( )s 96970.
,
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1

2
6

3

4

5 _ 6

0 0 0 0 0 0.1 0 0 0 0 0
1 10 0 0 0 0 0 0 0 0 0

0.01
0 0 10 0 0 00 0 0 0 0
0 0 0 0.05 0 00 0 0 0 0
0 0 0 0 0 0.10 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

b
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sL s
ssC
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G
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(64)

hence, the perturbed admittance matrix will be : 
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(65)

Substituting (62)-(65) in (52) we get: 
 

 

 

(66)

 

Taking into account that the changes of δYb entries are infinity small, from (66) the 
following sensitivities are obtained: 
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(67)

d) The above procedure for sensitivity calculation is based on the following 
properties of the two multiport obtained by extracting all the independent sources to 
the ports, namely:     

dYin := 

1. dG1
10000.( )s 100000. dL2s2

( )s 1031. 2 ( )s 96970. 2

0.1000109 s dC3( ) 0.1000109 100000.s

( )s 1031. 2 ( )s 96970. 2
 




0.4000 107 s2 dG4

( )s 1031. 2 ( )s 96970. 2

0.1000 109 dG5_6 s2

( )s 1031. 2 ( )s 96970. 2
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 The internal branch impedance matrix (internal branch admittance matrix) of 

the two multiport C and Ĉ , Zb , respectively bẐ , (Yb, respectively bŶ ), exists; 

 The open-circuit impedance matrix (the short-circuit admittance matrices) of the 

two multiport C and Ĉ , Z0, respectively 0Ẑ , (Ysc, respectively scŶ ), exists. 

When the above conditions are not satisfied, the internal branches of the two 

multiports C and Ĉ , can be characterized by hybrid matrices Hb, respectively bĤ as in 

(32), respectively (33). For the two multiports C and Ĉ , taking into account that the 
ports contain both independent voltage and current sources ( JEp  ), the 

equations in hybrid matrix formulation (with H respectively Ĥ matrix) are: 
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where VE and EV̂ ,  IJ and JÎ  are independent variables in the two adjoint circuits, 

while IE and EÎ  (currents of the voltage sources), VJ and JV̂  (voltages of the current 

sources) are the complementary variables. 

Between the hybrid matrices of the adjoint circuits the next relation is valid [3]: 
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 (70)

Adapting (44) to small changes of the parameter values, we obtain: 

ppppbbbb IVVIIVVI  tttt ˆˆˆˆ  (71)

Using the port variable partition, a relation between the changes in H due to the 
changes in Hb can be derived: 
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Note. Developing (71) and taking into account that the independent sources are 
unchangeable, so that 0 EV  and 0 JI , we obtain (72). 

Equation (72) is used for the computation of partial derivatives of interest by the 
following algorithm: 

Step 1: Analyzing the circuit C in order to obtain the vectors Vb1 and Ib2; 

Step 2: Selecting the excitations for the adjoint circuit Ĉ , such that one side of (72) 
yields only one term that could be the derivative of an output voltage or current: δVo, 

δIo or δHkj, perform the analysis of Ĉ  to obtain 1bV̂ ( t
1

ˆ
bV ) and 2bÎ ( t

2
ˆ
bI ). 

Step 3: Evaluating the right side of (72) either directly, by multiplying the matrices or 
simply by using the Table 1, the partial derivatives of interest are obtained. 
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Example 5  

Consider the circuit in Fig. 12. The multiport and the adjoint circuit are presented in 
Fig. 13(a, b). We want to compute 

ppEJJE AA  in order to evaluate the voltage 

gain in respect of the circuit parameters. 

 
Figure 12: The nonreciprocal RLC. 

We can see in (72) that to compute only  AJE, the excitations have to be:  

VE = E9 = 1 V, IJ = J10 = 0 and EV̂  = 9Ê  = 0 V, JÎ  = 10Ĵ  = 1 A. 

Step 1: Running the SYAMNM program for the circuit in Fig. 13(a) we obtain: 

Ib:=  Vb:=  

where  

Ib= [I1, I2, I3, I4, I5, J6, J7, J8]
t  and Vb = [V1, V2, V3, V4, V5, V6, V7, V8]

t. 

Step 2: If the circuit in Fig. 13(b) is analysed, the results are:   













0.3333( ) 0.3000s2 200.s 0.9999107

( )s 100300. ( )s 332.2

0.1000s2

( )s 100300. ( )s 332.2


0.3333( )0.1000108 200.s

( )s 100300. ( )s 332.2


0.3333( )0.1000108 200.s

( )s 100300. ( )s 332.2


0.1000s2

( )s 100300. ( )s 332.2

0.3333( ) 0.3000s2 200.s 0.9999107

( )s 100300. ( )s 332.2

0.

0.













0.3333 ( ) 3. s2 2000. s 0.9999 108

( )s 100300. ( )s 332.2

100000. s
( )s 100300. ( )s 332.2

0.


0.6667 s ( )50000. s

( )s 100300. ( )s 332.2


2.000 s2

( )s 100300. ( )s 332.2


2.000 s2

( )s 100300. ( )s 332.2


0.6667 s ( )50000. s

( )s 100300. ( )s 332.2

0.3333 ( ) 3. s2 2000. s 0.9999 108

( )s 100300. ( )s 332.2
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bÎ :=  bV̂ :=  

where  

 t87654321
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ JJJIIIIIb I  and  t87654321

ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ VVVVVVVVb V . 

 
Figure 13: The multiport (a) and the adjoint circuit (b). 














0.3333( )0.2000109 600000.s

( )s 100300. ( )s 332.2

2.000( )s 333.3 s
( )s 100300. ( )s 332.2

666.7s
( )s 100300. ( )s 332.2

2000.s
( )s 100300. ( )s 332.2

1.000( )s 99670. ( )s 334.5
( )s 100300. ( )s 332.2

0.


1333.s

( )s 100300. ( )s 332.2

2.000( )s 99670. ( )s 334.5
( )s 100300. ( )s 332.2














0.3333( )0.20001010 0.6000107 s

( )s 100300. ( )s 332.2

0.3333( )0.20001010 0.6000107 s
( )s 100300. ( )s 332.2

0.

20.00s2

( )s 100300. ( )s 332.2

20.00( )s 99670. ( )s 334.5
( )s 100300. ( )s 332.2

20.00( )s 99670. ( )s 334.5
( )s 100300. ( )s 332.2

20.00s2

( )s 100300. ( )s 332.2


0.3333( )0.20001010 0.6000107 s

( )s 100300. ( )s 332.2
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Step 3: Evaluating the right side of (72) by using the relations from Table 1, the 
following expression is obtained: 

8_6685554447_337222111
ˆˆˆˆˆˆ GVVRIILIsIAIVCVsVRIIAJE  . 

Using this expression and the values computed in steps 1 and 2, we get: 
 

 

The partial derivatives of the voltage gain A3,4_1,5 in respect of the circuit parameters 
are the coefficients of the derivatives of these parameters in the above expression. 

To verify the accuracy of the results obtained by the adjoint circuit method, we 
generate the voltage gain in symbolic form [17,18]. 

 

and derivate this expression in respect of the circuit parameters: R1, C2, A3_7, L4, 
R5, G6_8. After numeric substitution, we obtain the results presented in Table 2. 

Table 2: Sensitivity of the Voltage Gain. 

Results Obtained by the Adjoint Circuit Method Results Obtained by Symbolic Analysis 

Example 6  

To illustrate the generality of the adjoint circuit method we consider the linear circuit 
represented in Fig. 14, containing all the four type of controlled sources. The 
multiport and the adjoint circuit built in accordance with Table 1 are done in Fig. 
15(a, b). We want to compute the partial derivatives of  AJE in respect of the circuit 
parameters. 

By examinating (72) we see that in order to compute only  AJE we have to choose the 
following combinations: VE =E15 =1 V, IJ = J13= 0 A and VE =E15= 0 V, IJ =J13= -1 A. 

dAEJ
0.1111( ) 0.3000s2 200.s 0.9999107 ( )0.2000109 600000.s dR1

( )s 100300.2 ( )s 332.2 2
 := 

33330.s2 ( )0.20001010 0.6000107 s dC2

( )s 100300.2 ( )s 332.2 2

444.5s2 ( )50000. s dA3_7

( )s 100300.2 ( )s 332.2 2
 

666.6s2 ( )0.1000108 200.s dL4

( )s 100300. 2 ( )s 332.2 2

0.1000( )s 99670. ( )s 334.5 s2 dR5

( )s 100300. 2 ( )s 332.2 2
 

6.666( )s 99670. ( )s 334.5 ( ) 3. s2 2000.s 0.9999108 dG6_8

( )s 100300. 2 ( )s 332.2 2


 := A3_4_1_5 
( ) ( )L4 G6_8C2 R1 A3_7 L4 G6_8C2 R1 s2 G6_8R1 1. R5

   ( )L4 C2 R1 A3_7 L4 C2 R1 s2 ( ) C2 R5 R1 L4 A3_7 L4 s R5 1. G6_8R5 R1 R1














20000.( )s 333.4 ( ) s2 666.6s 0.3332108

( )s 100300. 2 ( )s 332.2 2


0.20001012 ( )s 333.3 s2

( )s 100300. 2 ( )s 332.2 2


444.5s2 ( )50000. s

( )s 100300. 2 ( )s 332.2 2


133300.s2 ( )50010. s

( )s 100300. 2 ( )s 332.2 2


0.1000( )s 99670. ( )s 334.5 s2

( )s 100300. 2 ( )s 332.2 2


20.00( )s 334.3 ( )s 99650. ( ) s2 666.6s 0.3335108

( )s 100300. 2 ( )s 332.2 2














20000.( )s 333.3 ( ) s2 666.6s 0.3333108

( )s 100300. 2 ( )s 332.2 2


0.20001012 ( )s 333.3 s2

( )s 100300. 2 ( )s 332.2 2


444.4s2 ( )50000. s

( )s 100300. 2 ( )s 332.2 2


133300.s2 ( )50000. s

( )s 100300. 2 ( )s 332.2 2


0.1000( )s 99670. ( )s 334.5 s2

( )s 100300. 2 ( )s 332.2 2


20.00( )s 99670. ( )s 334.5 ( ) s2 666.6s 0.3333108

( )s 100300. 2 ( )s 332.2 2
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Figure 14: The original circuit. 

Step 1: Running the SYAMNM program for the circuit in Fig. 15(a) we get: 

   14121110987654321
t IIIJJJIIIIIJIbI  

 

   14121110987654321
t VVVVVVEVEEEVVbV  

 

 

Figure 15: The multiport (a) and the adjoint circuit (b). 

Step 2: Running the SYAMNM program for the circuit in Fig. 15(b) we get: 

  14121110987654321
t ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ IIIJJJIIIIIJIbI  







, , , , , , , , , , , ,0. 

0.004000s
4000. s


0.004000s

4000. s


0.004000s
4000. s

0.001500s
4000. s

0.002500s
4000. s


0.001500s

4000. s
0.

0.003000s
4000. s

0.
0.001500s

4000. s
0.004000s

4000. s
0.004500s

4000. s







0. 1. 0.

1.500s
4000. s

0.
2.500s

4000. s
5.s
4000. s

2.500s
4000. s


4.500s

4000. s
3.s
4000. s

3.s
4000. s

4000.
4000. s

4.500s
4000. s
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  14121110987654321
t ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ VVVVVVEVEEEVVbV  

 

Step 3. Evaluating the right side of (72) by using the relations in Table 1, we get: 

.ˆˆˆˆ

ˆˆˆˆˆ

14141412121211111110_9910

8_7786665_4453_232111

RIICVsVRIIGVV

AIVRIIRIIBIVLIsIAJE




 

Using the values computed in the steps 1 and 2, it results: 

 

The partial derivatives of the voltage gain A4,6_1,9 in respect of the circuit parameters 
are the coefficients of the derivatives of these parameters in the above expression. 

In order to verify the results obtained by the adjoint circuit method, we first generate 
in symbolic form the voltage gain A4,6_1,9 = AJE   

 
 

Deriving that expression in respect of the circuit parameters in Fig. 14: L1, B2_3, 
R4_5, R6, A7_8, G9_10, R11, C12, R14, and substituting the numeric nominal 
values, we obtain the same results as we present in Table 3.  

Remarks. 

From the point of view of the computation effort, the incremental circuit method for 
sensitivity computation is less efficient than the adjoint circuit method, because of the 
complexity of the incremental circuit as we can see comparing the Fig. 2 and the Fig. 
7. Anyway, the incremental circuit method has the following advantages:   

1) Using the ideal independent voltage and current sources bb RI  , respectively 

bb GV   we can better understand the effects of changes in branch resistances and 

conductances; 

2) The values of branch voltages and currents of the incremental circuit bb VI   and , 

obtained by the incremental circuit analysis are, often used in applications. 

4. Sensitivity Analysis by Bykhovski Method 

Developed by Bykhovski [2] and described in detail by Perkins and Cruz [8, 9], this 
is also a method for sensitivity computation by auxiliary circuits. It will be presented 
later. 


3.s
4000. s

0.
3.s
4000. s

3.s
4000. s

3000.
4000. s

3000.
4000. s

1000. s
4000. s


2.( )1000. s

4000. s
0.

1000. s
4000. s


1.( )s 2000.

4000. s


3.s
4000. s



 , , , , , , , , , , , ,


1.( )1000. s

4000. s





0.03000s2

4000. s
0.03000s2

4000. s


0.03000s2

4000. s
0.

3000.s
4000. s

0.3000107

4000. s
0.

0.3000107

4000. s
1000.( )1000. s

4000. s


2000.( )s 2000.
4000. s



 , , , , , , , , , ,


2000.( )s 2000.

4000. s


0.3000107

4000. s


1000.( )1000. s
4000. s

, ,




dAJE
0.0001200s3 dB2_3

( )4000. s 2

0.004500s2 dR4_5

( )4000. s 2

7.500s dR6

( )4000. s 2

2.500( )1000. s s dA7_8

( )4000. s 2

0.001500( )s 2000. s dR11

( )4000. s 2

0.12001011 s dC12

( )4000. s 2
     := 

0.004500( )1000. s s dR14

( )4000. s 2


AJE s C12( )A7_8 1. R6R11 1.L1C12R14 1.L1C12A7_8R6 L1B2_3C12R11 L1B2_3C12R14 1.L1C12R6    (/( := 

1.L1C12G9_10R11R14 1.L1C12R11 L1G9_10B2_3C12R11R14 L1A7_8B2_3C12R6 L1B2_3C12R6     ) s2

( )   C12R4_5R6 C12R4_5A7_8R6 1.C12R6R14 1.G9_10C12R6R11R14 1.C12R6R11 s 1.A7_8R6 1.G9_10R11R14 1.R6   

1.R14 1.R11  )
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Table 3: Sensitivity by the Two Methods. 

Results Obtained by the Adjoint Circuit Method. Results Obtained by Symbolic Analysis. 

  

Kirchhoff’s laws in complex variables or in complex frequency domain have the form, 

 

KCL:  0IA ;     KVL:  0VB  (73)

respectively  
 

KCL:  0)(sAI ;      KVL:  0)(sBV  (74)

The partial derivatives in respect of the parameter x, of (73) and (74) are: 

 

KCL:  0



x

I
A ;    KVL:  0




x

V
B  (75)

Respectively 
 

KCL:  0



x

s)(I
A ;    KVL:  0




x

s)(V
B  (76)

 

The only entries that are zero in the above expressions are those corresponding to the 
ideal independent voltage, respectively current sources, which are unchangeable. 
Equations (76) can be associated to an auxiliary circuit Ca which has the same 
connection graph as the original circuit C, but in which the independent sources are 
made passive (the voltage sources by short-circuits and the current sources by open-
circuits) and the branch voltages and currents are the derivatives xvk  / , 

respectively xik  / , bk ,1 . The auxiliary circuit built in this way is called the 

sensitivity circuit. 













0.

0.0001200 s 3

( )4000. s 2

0.004500 s 2

( )4000. s 2

7.500 s

( )4000. s 2

2.500 ( )1000. s s

( )4000. s 2


3000. ( )1000. s s

( )4000. s 2


0.001500 s ( )s 2000.

( )4000. s 2

0.1200 10 11 s

( )4000. s 2


0.004500 ( )1000. s s

( )4000. s 2













0

0.0001200 s3

( )4000. s 2

0.004500 s2

( )4000. s 2

7.500 s

( )4000. s 2

2.500 ( )1000. s s

( )4000. s 2


3000. ( )1000. s s

( )4000. s 2


0.001500 s ( )s 2000.

( )4000. s 2

0.1200 1011 s

( )4000. s 2


0.004500 ( )1000. s s

( )4000. s 2
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Consider an RLC linear circuit containing nR resistors, nC capacitors, nL inductors, all 
the four type of controlled sources, and independent voltage and current sources. 

The constitutive equations in dynamic behavior for the passive circuit elements take 
the form: 

 

L

L

pL

C

C

jC

RRkR

np
t

i
Lu

nj
t

u
Ci

nkiRu

p

p

j

j

kk

,1     ,
d

d

,1    ,
d

d

,1    ,







 (77)

If we want to compute the sensitivities in respect of the resistance Rk, then the passive 
element equations, have in the auxiliary circuit, the form: 

 

















































k

L

p
k

L

k

C

j
k

C

k

R
kR

k

R

R

i

t
L

R

u

R

u

t
C

R

i

R

i
Ri

R

u ppjjk

k

k

d

d
     ,

d

d
     ,  (78)

 

The equations corresponding to small changes in circuit parameters and the branch 
representation in the auxiliary circuit are done in Fig. 16. 

Example 7  

Consider the nonreciprocal linear circuit in Fig. 17(a), and the auxiliary (sensitivity) 
circuit in Fig. 17(b), built according to the Fig.16 for the computation of the 
sensitivities in respect to C2. Because the auxiliary circuit contains controlled sources 
whose controlling variables are located in the original circuit, the two circuits are 
analyzed together (having the reference node in common). 

 

The independent voltage sources e7 = e15 = 1 V and the independent current sources  
j6 = j14 = 0 A are introduced in order to compute directly the voltage gain A3,7_1,7 = 
V6(s)/1.0 = V6(s). 

 

The branch current vector and the branch voltage vector of the whole circuit have the 
following structures: 

 t151413121110987654321 ,,,,,,,,,,,,,, IJIJIJIIIJIJIIIb I ,  

 t151413121110987654321 ,,,,,,,,,,,,,, VVVVVVVVVVVVVVVb V . 

 

Voltage V14 represents the sensitivity of V6 (and of the voltage gain A3,7_1,7) in respect 
of the parameter C2. Performing the analysis of the whole circuit connected by the 
node 7, we get: 
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Characteristic equation  Characteristic equation in the 
sensitivity circuit 

Branch structure in the sensitivity circuit 

Resistor Rk: 

kk RkR iRu   

k

R
k

R
k

R

R

i
R

i
R

u

k

k

k










1

 

 

Capacitor Ck: 

t

u
Ci k

k

C
kC d

d
  




















k

C
k

C
kk

C

C

u

t
C

i
CC

i

k

k

k

d

d

1

 

 

Inductor Lk: 

t

i
Lu k

k

L
kL d

d
  




















k

L
k

L
kk

L

L

i

t
L

u
LL

u

k

k

k

d

d

1

 

 

 Cc ie : 

CC_ccc iReu   

Cc

C
CcC

Cc

c

Cc

c

R

i
Ri

R

e

R

u

_
_

__

1













 

 

 Cc uj : 

CC_ccc uGji   

Cc

C
CcC

Cc

c

Cc

c

G

u
Gu

G

j

G

i

_
_

__

1













 

 Cc ue : 

CC_ccc uAeu   

Cc

C
CcC

Cc

c

Cc

c

A

u
Au

A

e

A

u

_
_

__

1













 

 

 Cc ij : 

CC_ccc iBji   
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C
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c
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c
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i
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B
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B

i

_
_
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Figure 16: Element representation in the auxiliary circuit. 
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Figure 17: The multiport (a) and the sensitivity circuit (b) connected to a common node. 

 

Identifying the voltage V14 in the above Vb vector we take out 

 := Ib













0.001 ( )s 66162.859 ( )s 503.80733
( )s 66155.067 ( )s 1511.6000

0.001 ( )s 66666.667 s
( )s 66155.067 ( )s 1511.6000

100000.00
( )s 66155.067 ( )s 1511.6000

66666.667
( )s 66155.067 ( )s 1511.6000

33333.333
( )s 66155.067 ( )s 1511.6000

0.

0.001 ( )s 66162.859 ( )s 503.80733
( )s 66155.067 ( )s 1511.6000

0.10000000 10 7 ( )s 66666.667 2 s

( )s 66155.067 2 ( )s 1511.6000 2


1000.0000 ( )s 66666.667 2 s2

( )s 66155.067 2 ( )s 1511.6000 2

1000.0000 ( )s 66666.667 s
( )s 66155.067 ( )s 1511.6000


0.1 10 12 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2


0.66666667 10 11 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2


0.33333333 10 11 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2

0.

0.10000000 10 7 ( )s 66666.667 2 s

( )s 66155.067 2 ( )s 1511.6000 2

 := Vb













1.0 ( )s 66162.859 ( )s 503.80733
( )s 66155.067 ( )s 1511.6000

0.33333333 ( )0.20000000 10 9 3000. s
( )s 66155.067 ( )s 1511.6000

1000.0000 s
( )s 66155.067 ( )s 1511.6000


1000.0000 s

( )s 66155.067 ( )s 1511.6000

0.66666667 10 8

( )s 66155.067 ( )s 1511.6000

0.66666667 10 8

( )s 66155.067 ( )s 1511.6000

-1.

0.1 10 10 ( )s 66666.667 2 s

( )s 66155.067 2 ( )s 1511.6000 2


0.1 10 10 ( )s 66666.667 2 s

( )s 66155.067 2 ( )s 1511.6000 2


0.1 10 10 ( )s 66666.667 2 s

( )s 66155.067 2 ( )s 1511.6000 2


0.1 10 10 ( )s 66666.667 s2

( )s 66155.067 2 ( )s 1511.6000 2

0.1 10 10 ( )s 66666.667 s2

( )s 66155.067 2 ( )s 1511.6000 2


0.66666667 10 14 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2


0.66666667 10 14 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2

0.
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2

7,1_7,3

2

6
14 C

A

C

V
V









 =  (79)

In order to verify this result, the voltage gain in symbolic form was obtained by 

SYAMNM program and the sensitivity 7173

2

,_,A
CS was obtained as: 

 

 (80)

Substituting the parameter values in (80) the same value as in (79) is obtained: 

 

 (81)

Example 8  

Consider the universal filter in Chapter 4 shown in Fig. 10. The four opamps are 
considered linear, with the input resistance  6102iR  and the voltage gain 

5102 A . In accordance with Fig. 16, the auxiliary circuit corresponding to the 
sensitivity computation in respect of the capacitor C5, is built (see Fig. 18). 

 

Because the controlling variables of the controlled sources in the auxiliary circuit 
belong to the original one, the two circuits are analysed together, being connected by 
the datum node.  

 

The independent voltage sources e21 = 1 V and e47 = 0 V, and the independent current 
sources  j22 = j23 = j24 = j25 = j48 = j49 = j50 = j51 = 0 A are introduced in order to 
directly compute the voltage gains of the four type of filter: A4,11_1,21 = V22(s)/1.0 = 
V22(s), A6,11_1,21 = V23(s)/1.0 = V23(s), A8,21_1,21 = V24(s)/1.0 = V24(s), A10,21_1,21 = 
V25(s)/1.0 = V25(s), and their sensitivities in respect of the capacitor C5: SA4,21_1,21_C5 
= U48(s); SA6,21_1,21_ C5 = U49(s); SA8,21_1,21_ C5 = U50(s) and SA10,17_1,21_C5 = U51(s). 

Running SYAMNM program we get: 

 

  

 

 

Remarks 

The high order derivatives can also be computed by Bykhovski – Perkins – Cruz 
method. To this end high order sensitivity circuits will be attached to those of low 
order. The method can be extended to sensitivity computation of the nonlinear analog 
circuits. The major drawback of the method consists in limitation of sensitivity 
computation in respect to only one parameter. 


0.66666667 1014 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2

 := SV6_C2 
R5 ( )( )L3G4_5R1R5 L3R1 s2 s R1R5

( )  ( )L3C2G4_5R1R5 C2L3R1 s2 ( ) C2R1R5 L3 G4_5L3R5 s R5 R1
2

 := SA3_7_1_7_C2 
0.66666667 10 14 ( )s 66666.667 s

( )s 66155.067 2 ( )s 1511.6000 2

 := SA_HPF_C5
0.6722 1013 ( )s 13640. ( )s 0.2525 s

( ) s2 18330. s 0.2499 109
2

 := SA_LPF_C5 
0.9164 1018 ( )s 0.2525 s

( ) s2 18330. s 0.2499 109
2

 := SA_PBF_C5
0.1833 1014 s ( ) s2 0.5048 s 0.06375

( ) s2 18330. s 0.2499 109
2  := SA_RBF_C5

0.9164 1019 ( )s 0.2525 s

( ) s2 18330. s 0.2499 109
2
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Figure 18: Universal filter. 
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CHAPTER 10 

Symbolic Noise Analysis in Analog Circuits 

Carlos Sánchez-López* 

Autonomous University of Tlaxcala, México and IMSE-CNM, CSIC and University of Sevilla, Spain 

Abstract: An approach to the symbolic noise analysis on linear or linearized analog 
circuits at the transistor level of abstraction is presented. A brief exposition on the 
signal-path approach into analog circuits working in voltage-mode and current-mode, 
which are modeled with nullors, is given. Therefore, symbolic noise parameters, such as:

2
,outnV , 

2
,innV , NFv, 

2
,outnI , 

2
,innI  and NFi of analog circuits are computed, where all the 

noise sources associated to MOS transistors and passive elements are assumed to be 
uncorrelated. Two examples are introduced to illustrate the potentiality of the approach 
proposed. The first example is a voltage-mode analog circuit, where the signal-path is 
approached by using the nullator concept and its properties. On the contrary, in the 
second example, a current-mode analog circuit is considered where the signal-path is 
approached by using the norator concept along with its properties. 

Keywords: Symbolic nodal analysis, noise, noise figure, nullor, thermal noise, shot noise, flicker 
noise, power spectral density, amplifers, current mirrors. 

1. Introduction 

Nowadays, the need of using portable electronic systems which are operated by 
batteries, has been a main motivation of that sub-micron technologies to become 
developed and used to design modern analog circuits. However, as active devices are 
scaled down, the transistor dimensions are very small, so that second-order effects, 
such as: noise, distortion, body-effect, channel length modulation among others, 
before considered of minimal importance, become very important into the design of a 
modern electronic circuit [1]-[3]. Among all these effects, noise analysis is very 
important, since it imposes a lower limit of input signal amplitude that can be 
processed through the analog circuit. Noise analysis can be carried out by using a 
numeric simulator, such as Hspice [12]. However, it does not show what circuit 
elements are noisier, since numeric simulators basically serve to verify the circuit 
performance and a lot of numerical simulations should be executed to understand and 
predict the small-signal characteristics and the noise behavior. 

In this chapter, we will focus on fully-symbolic noise analysis of analog circuits at the 
transistor level of abstraction. With this choice, we briefly review the noise concept 
and its classification on the different types of noise, along with the noise sources of 
resistors and MOS Transistors (MOSTs). Because the behavior of a MOST can be 
modeled with the nullor, the original analog circuit can be transformed to fully-
connected nullor equivalent circuit. Therefore, there are paths allowing the signal to 
be processed from the input node to the output node. We then approach the Signal-
Path (SP) into nullor circuits by applying the nullator and norator properties. Later on, 
only noise sources of MOSTs and resistors connected to the SP are introduced in the 
system of equations. In order to compute fully-symbolic noise parameters, the  
 
*Address correspondence to Carlos Sánchez-López: Autonomous University of Tlaxcala, México and IMSE-
CNM, CSIC and University of Sevilla, Spain; E-mail: carlsanmx@yahoo.com.mx 
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formulation method of the system of equations introduced in Chapter 3 is used. Some 
examples are given to show the effectiveness of the proposed approach. 

2. Noise Models 

Noise, considered of second importance in the past, becomes significant as 
technologies are scaled down to deep sub-micron [3]-[6]. Indeed, small dimensions of 
transistors as well as supply voltages reduction, together with the need of higher 
performances, make that modern circuits become more sensitive to noise [1]-[6]. 
Basically, noise is defined as any signal with random amplitude in function of the 
time. This means that the exact amplitude at any instant of time cannot be predicted, 
although the past values are known [7],[8]. Further, the noise is interference unrelated 
to the signal of interest and it can be characterized by a Power Spectral Density 
(PSD), which shows as the power of a random signal can be carried over one unitary 
bandwidth, around of a frequency. Noise is caused by the small current and voltage 
fluctuations, which are generated within passive elements and active devices. Further, 
the behavior of noise in analog circuits is very important because it represents a lower 
limit to the size of electrical signal that can be amplified by a circuit without 
significant deterioration in the signal quality [1],[2],[7]. Although there are several 
types of noise sources in electrical circuits, here, we discuss only three important 
noise sources: thermal noise, shot noise and flicker noise. 
 

2.1. Thermal noise 

Thermal noise also known as Johnson or Nyquist noise is due to the thermal 
excitation of charge carriers in a conductor. The Brownian type random motion of 
electrons produces noise that has a white spectral density, since it is unaffected by the 
presence or absence of direct current and it is proportional to the absolute temperature 
[7],[8]. As shown in Fig. 1, the thermal noise of a resistor may be modeled as a 
current source in parallel with the resistor and the mean square value of the noise 
current source is given by: 
 

fkTGI thn  42
,  (1)

where G is the conductance, k is the Boltzman’s constant (1.38×10-23 JK-1), T is the 
absolute temperature in Kelvin and f is the noise bandwidth. 

 

 
Figure 1: Thermal noise representation in a resistor with a current source. 

Also, noise can be modeled by a series voltage source, as shown in Fig. 2, where the 
mean square value is given by: 
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fkTRV thn  42
,  (2)

where R is the resistance. 

 

 

Figure 2: Thermal noise representation in a resistor with a voltage source. 

2.2. Flicker noise  

Flicker noise or just 1/f noise is associated with contact and surface irregularities in 
semiconductors; hence, it can be found in all the active devices as well as in discrete 
passive elements [5],[6],[9]-[11]. Flicker noise is caused by contamination and 
defects in the silicon lattice structure. The PSD of the flicker noise is given by: 

 

b

a
fn

f

I
K

f

I
1

2
/1, 


 (3)

where I is a direct current that flows into the device, K1 is a constant for a particular 
device, a is a constant in the range: 0.2 to 2, and b is a constant of value around unity. 

 

2.3. Shot noise 

Shot noise normally occurs when there is a potential barrier. The P-N junction diode 
is an example. Shot noise is produced when the electrons and holes randomly cross 
the potential barrier [7]-[10]. The PSD of the shot noise is given by: 

 

DC
shotn qI
f

I
2

2
, 


 (4)

where q=1.6×10-19 C is the electron charge and IDC is the direct current. Shot noise is 
constant as a function of the frequency and it does no change with the temperature. 
Thermal and shot noise sources are called white noise, because they have a constant 
magnitude of power over the frequency [7]-[10]. 

 

2.4. Noise sources in MOS transistors 

An analog integrated circuit is always composed by active devices and passive 
elements. In particular, resistors, Bipolar Junction Transistors (BJTs) and MOSTs are 
all noisy devices and each of them has several noise sources associated. For the case 
of a MOST, it is modeled with four noise current sources [4],[9],[10],[12]. Two of 
them represent the thermal noise associated with the parasitic drain and source series 
resistances. The other two are modeled as current sources from drain to source, which 
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represents the thermal noise and flicker noise, respectively. All the noise sources are 
characterized in strong inversion by their PSD [9],[10]. The contribution of shot noise 
in MOSTs is very small and it becomes more important when MOSTs are working in 
weak inversion, whereas the thermal and flicker noise are present in all operating 
regions, and the flicker noise source becomes negligible at high frequencies [11]. The 
noise models for resistors, junction diodes, BJTs and MOSTs are shown in Fig. 3. In 
the same manner, Fig. 4 shows the noise model of MOSTs implemented in the 
numeric simulator Hspice, according to the level of simulation and technology 
dependence [12]. It is worth mentioning that either noise voltage or current sources 
have not an exact polarity because their value will be squared anyway. 

 

Figure 3: Element noise models. 
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Figure 4: Noise models in Hspice for MOSTs. 

3. Equivalent Input Noise Sources 

From the circuit theory point of view, an electric network can be treated as a noisy 
linear two-port network or a noisy linear four-terminal network for small-signal 
applications [8]. Fig. 5(a) represents a noisy linear voltage-mode circuit modeled as a 
two-port network. All the noise sources in an electric circuit can be replaced by an 

equivalent input-referred noise voltage source 2
,innV  and an equivalent input-referred 

noise current source 2
,innI , as shown in Fig. 5(b) [1],[2],[7],[8]. 

 
                                              (a)                                                                (b) 
Figure 5: (a) Noisy linear or linearized circuit (b) input-referred noise sources. 

To compute the total output noise density given by 
2
,outnV , the input in Fig. 5(a) must 

be short-circuited, taking into account the noise source of the source resistor. All the 
noise sources are considered as uncorrelated; therefore, the total noise contribution 
due to each noise source should be computed at the output port by applying the 
superposition principle and given by: 

2
,

1

2
,

2
, outj

k

j
jnoutn TFQV 



  (5)
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where 2
, jnQ  is the j-th noise voltage or current source and TFj,out is the transfer 

function from this noise source to the output of the circuit. In order to compute 2
,innV , 

(5) has to be divided by the square of the transfer function. Henceforth, for circuits 
working in voltage-mode, the input-referred noise voltage source is given as: 

 

2

2
,2

,
v

outn
inn A

V
V   (6)

where Av is the voltage gain. On the other hand, to compute the input-referred noise 
current source, the input port must be open, thus, the total output noise is given in 

terms of 2
,innI , which flows through the input impedance Zin: 

222
,

2
, vininnoutn AZIV   (7)

By combining (6) and (7), it follows that: 

 

2

2
,2

,
in

inn
inn Z

V
I   (8)

The approximation of (6) and (8) are underlying the assumption that the analog 
circuit is driving a finite source resistance Rs, and finite input impedance. Note that if 

Rs=0, 2
,innI  flows through 2

,innV and has not effect at the output, hence, the noise 

contribution is solely from 2
,innV , but if Rs=, 2

,innV has not effect and the output noise 

is due only to 2
,innI . On the other hand, for finite values of Rs, both input-referred 

noise sources contribute to the equivalent input noise of the circuit. Also, 2
,innV and 

2
,innI are strongly correlated, because they are dependent of the same noise sources. 

However, in many practical circuits, the correlation is small and may be neglected 
[7]. As a consequence, for voltage-mode circuits, often Rs is low and Zin is high, 
hence, the main input noise source is given by (6). 

The methodology described above can also be applied to current-mode circuits. Thus, 

to compute 2
,outnI  with reference to Fig. 6(a), the input-port must be an open-circuit 

and the output-port must be a short-circuit, as depicted in Fig. 6(a), where the noise 
contribution due to the source resistance is again considered. Therefore, the total 
output noise density is given by: 

2
,

1

2
,

2
, outj

k

j
jnoutn TFQI 



  (9)

The input-referred noise current source is given by: 

 

2

2
,2

,
i

outn
inn A

I
I   (10)
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                                              (a)                                                                (b) 
Figure 6: (a) Noise sources in current-mode circuits, (b) input-referred noise sources. 

where Ai is the current gain. The input-referred noise voltage source can be obtained 

by short circuiting the input in order to find the output noise. Here, Zin and 2
,innV are in 

series and a Norton equivalent circuit can be used for these two-terminal element. 

Therefore, 2
,outnI  can be approximated to: 

 

2
2

2
,2

, i
in

inn
outn A

Z

V
I   (11)

From (10) and (11), it follows that: 

 

22
,

2
, ininninn ZIV   (12)

Both equations given by (10) and (12) are valid for any finite source resistance and 
finite input impedance, as mentioned above for voltage-mode circuits and shown in 
Fig. 6(b). The input impedance levels at current-mode circuits are often designed to 
achieve low impedance levels, whereas the impedance level of the source resistance 
is always high. Therefore, the main input noise source is given by (10). Further, if the 

total output noise voltage is computed instead of the total output noise current, 2
,outnI  

can be computed by considering (5) and the output impedance Zout: 

 

2

2
,2

,
out

outn
outn Z

V
I   (13)

All the equations, from (5) to (13) are very useful to compute noise parameters 
related with the design of electronic circuits. Furthermore, they can be used within a 
fully-symbolic noise analysis method in order to compute the total noise density and 
the input-referred noise sources of analog circuits. 

 

4. Noise Factor and Noise Figure 

The output total noise densities along with the gain of an electronic system are the 
most important factors in order to describe the noise figure. Noise Figure (NF) is a 
measure of degradation of the Signal to Noise Ratio (SNR), caused by all the 
components in the SP of electronic circuits. The most commonly accepted definition 
for NF is given by: 
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KTout

in

SNR

SNR
NF




300

 (14)

 
with SNRin and SNRout defined as the SNR measured at the input and output terminals, 
respectively [7]. Alternatively, NF can be defined in terms of dB units and given by: 

KTout

in
db SNR

SNR
NF












300

log10  (15)

 

Note, however, that (14) is sometimes referred as noise factor, in order to distinguish 
(15) from (14). Here, the NF term is used throughout the chapter. Also, SNR is a term 
for the average power ratio between a signal and noise, therefore, the signal and noise 
powers must be measured at the same terminals of a circuit and within the same 
bandwidth, as shown in Fig. 7. Furthermore, the noise and the signal are often 
measured across the same impedance. As a consequence, the SNR can be computed 
by using square amplitude ratio and (14) can be rearranged to obtain the NF equation 
for circuits working in voltage-mode. A similar analysis is carried out for current-
mode circuits, where the NF equation becomes: 
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Rsnv

outn
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NF  ,   2
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2
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outn
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I
NF   (16)

 

 

Figure 7: Approximation of the NF in two-port networks. 

 

5. Nullor-Based MOST Noise Model 

The behavior of BJTs and MOSTs are modeled traditionally with a voltage-controlled 
current source. On the other hand, controlled sources can also be modeled with 
nullators and norators, as shown in Fig. 5 of Chapter 3. In this manner, by using this 
nullor-based model and applying the nullor properties, the ideal behavior of BJTs or 
MOSTs can be achieved. In the same manner as in Chapter 3, not only parasitic 
elements but also noise sources can easily be added, as shown in Fig. 8 and 9, 
respectively [13]. 
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                                              (a)                                                                (b) 
Figure 8: Nullor-based model of a MOST as: (a) three-terminal active device, (b) four-terminal active 
device. 

 
                                              (a)                                                                (b) 

 
Figure 9: Nullor-based noise model of a MOST as: (a) three-terminal active device (b) four-terminal 
active device. 
 

6. Signal-Path Approximation in Analog Circuits 

In the previous sections, we briefly review the noise concept, its classification and 
some types of noise presents in active and passive elements. Also, the equations of 
NF for voltage- and current-mode circuits along with the nullor-based models of 
MOSTs were presented. In this section, the SP approximation in analog circuits is 
discussed in order to find the most important noise sources, which contributes with 
higher noise levels in the total output noise.  

Symbolic analysis techniques have been proposed in the literature in order to obtain 
fully-symbolic small-signal characteristics. However, it is well known that for large 
circuits, the generated symbolic equation grows exponentially with the size of the 
circuit. In response to this problem, simplification techniques have been introduced in 
order to approximate the dominant symbolic terms, see for instance, Chapter 7. On 
the other hand, analog circuits at the transistor level of abstraction can be transformed 
to nullor equivalent circuits by using the nullor-based model of MOSTs shown in Fig. 
8. As a consequence, the equivalent circuit is fully-connected, so that there are paths 
allowing the signal to be processed from the input to the output terminal. Indeed, SP 
is defined as a trajectory or trajectories where the signal travels through a circuit, 
from the input node to the output node but non-touching bias or reference nodes. A 
SP-node is one through which the signal passes. 
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6.1. Signal-path in voltage-mode circuits 

From the equivalences of nullators and admittances given in Chapter 3, the voltage 
across an admittance connected between two nullators is the same as if the admittance 
were connected alone. In this manner, the SP can be approached by the following 
steps [14]: 

 

1. Model each MOST and signal voltage source with their nullor-based models, 
as shown in Fig. 9 (the nullor-based model of the signal voltage source is 
given in Chapter 3). Besides, do not include the noise sources and the output 
conductance of a MOST connected as diode. 

2. Find composed pairs of nullator-transconductance having the following 
structure: [Oxgmx,node-,node-,node+]. Here, the first term is the label of the 
pair, the second term is the negative node of Ox, the third term is the negative 
node of the transconductance and the fourth term is the positive node of the 
norator associated, which should be momentarily eliminated. 

3. The pair of nodes of each two-terminal element must be compared with the 
input node. If the input node is equal to any node of the element, the other 
node of the element is the new node to compare. 

4. Eliminate all two-terminal elements that are not connected to the SP. 

5. If the first node of a composed pair is equal to the reference node and by 
applying the rule (c) from Fig. 5, in Chapter 3, the second node of the 
composed pair is a virtual ground. Therefore, all elements connected to this 
node are eliminated along with the node, since the voltage across in the 
nullator is zero. 

6. Save the number of nodes into the SP. 

7. Since the nullor is composed by a nullator and norator pair, the norator 
elements will be included with their corresponding nullator. 

 

As an example, let us consider the analog circuit shown in Fig. 10(a). The SP can be 
approached following the steps described above. Thus, the nullor equivalent circuit is 
shown in Fig. 10(b). Later on, the trasconductance and nullator element of each 
MOST are joined in order to obtain nullator-transconductance pairs, as shown in Fig. 
11(a). The step 3 is executed on this simplified circuit; therefore, the SP-nodes are 
obtained as: 1, 2, 3, 4, 5, 7, 8, 9, 10, 14 and 15. All two-terminal elements that are not 
connected to any SP-node should be deleted. Now, by applying the step 5, one can 
see that the node 3 is a virtual ground, since it is a node with low impedance and 
should be eliminated. The number of SP-nodes is 9 and finally, the reduced circuit is 
shown in Fig. 11(b), where the nullator elements have been added. 

6.2. Signal-path in current-mode circuits 

For the case of current-mode circuits, the norator properties should be used in order to 
approximate the SP [15]. According to the norator definition, the current that enters 
and leaves its positive and negative nodes is the same. As a consequence any arbitrary 
amount of current can be supplied to an element connected between two norators. 
Basically, the SP approach in current-mode circuits is a modification of the SP 
approach in voltage-mode circuits, which can be explained in the following steps: 
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(a) 

 

(b) 
Figure 10: (a) OTA-Miller circuit (b) nullor equivalent circuit. 

 

1. Model each MOST with its nullor-based model, as shown in Fig. 9. It is well 
known that the maximum current flows by those elements with low 
impedance and since the numerical value of gmx of a MOST is higher than the 
numerical value of g0x, then does not include the output conductance. 

2. Find composed pairs of norator-transconductance elements. For this new pair, 
the associated nodes to norators, nullators and transconductances are included as 
follows: [Pxgmx,node-,node-,node+]. The first term is the label of the pair, the 
second term is the positive node of Px, the third term is the negative node of the 
transconductance and finally, the negative node Ox. Here, nullator elements 
should be momentarily eliminated since the current through it is zero. 

3. Starting from the input node, compare it with the pair of nodes of all two-
terminal elements. If the input node is equal to any node of the pair of nodes 
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associated to a two-terminal element, then the other node of the element is the 
new node to compare, except the reference node. 

4. If there is more than one new node, these new nodes are considered as root-
nodes and they should be saved in other data-structure, since some of these 
root-nodes leads to the output-node. 

5. Eliminate those root-nodes that have not the output node. 

6. Eliminate all two-terminal elements that are not connected in SP-nodes. 

7. Save the number of SP-nodes. 

 

(a) 

 
(b) 

Figure 11: (a) Simplified nullor equivalent circuit (b) reduced nullor circuit. 

In order to show the usefulness of the proposed approximation, let us consider the 
CCII+ shown in Fig. 12(a) [16]. By applying the step 1, the nullor equivalent circuit 
is shown in Fig. 12(b). Norator-transconductance pairs are obtained by applying the 
step 2, thus, the SP can be find by applying the steps 3 and 4 in the equivalent circuit 
shown in Fig. 13(a). Finally the simplified nullor circuit is achieved by applying the 
step 5 and 6, as shown in Fig. 13(b), where the SP-nodes are given by: 6, 7, 8, 9, 10, 
11, 15, 16, 18, 20, 23, 24, 26 and 27.  
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(a) 

 

(b) 
Figure 12: (a) CCII+ (b) nullor equivalent circuit. 
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                                                 (a)                                                                (b) 
Figure 13: (a) Simplified nullor equivalent circuit (b) reduced nullor circuit. 

7. Symbolic Noise Analysis Method 

Before introducing the symbolic noise analysis method, we show the noise analysis of 
the common-source MOS feedback amplifier circuit taken from [1], which is shown 
in Fig. 14 along with its noise sources. For this example, the ideal behavior of Ip is 
assumed; therefore, its noise contribution is insignificant. 

 

Figure 14: Feedback amplifier with noise sources. 

According to (5), the individual contribution from each noise source to the output 
should be computed. The output noise source due to the noise voltage of the source 
resistance is given as: 

22
,

2
1, vRnoutn AVV

s
  (17)
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The noise current of M2 flows through of Rs, generating output noise given by: 

222
,

2
2, 2 vSMnoutn ARIV   (18)

The noise current due to RD and M1 is multiplied by the output resistance and given 
by: 

  22
,

2
,

2
3, 2 outRnMnoutn RIIV

D
  (19)

The voltage gain Av, and the output resistance Rout, are computed by using the nullor-
based models shown in Fig 8 and the formulation method of the system of equations 
introduced in Chapter 3: 
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Because noise sources are assumed to be uncorrelated, every term in (20) must be 
squared. Therefore, by using (5), the total output noise density is given by: 
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7.1. Noise analysis in voltage-mode circuits 

One of the attractive aspects on the use of nullors is that not only nullor-based models 
but also noise current sources are used to model the behavior of MOSTs. Therefore, 
the total output noise can also be computed by using algebraic symbolic analysis 
methods. The proposed noise analysis method can be summarized in the following 
steps: 
 

1. Find the SP by applying the method given in subsection 6.1. 

2. Include the noise current source of each resistor and MOST. The signal 
voltage source must be short-circuited. 

3. Formulate the system of equations by using the proposed method in Chapter 
3, but now all transconductances and resistors should be squared. 

 

Let us consider one more time the analog circuit shown in Fig. 14. The noise analysis 
is as follows: 

 
Step 1. The nullor equivalent circuit from Fig. 14 is shown in Fig. 15. Easily, it can 
be observed that the SP includes the following elements: Rs, O1, gM1, O2, gM2, RD, 
along with SP-nodes given by: 1, 2, 3, 4 and the signal voltage source has been short-
circuited, as shown in Fig. 15. Besides, for this single example, the output 
conductance associated to M1 and M2 are not taken into account. 
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Figure 15: Nullor equivalent circuit from Fig. 14. 

Step 2. The incorporation of the noise sources of resistors and MOSTs is shown in 
Fig. 15. 
 

Step 3. The formulation of the system of equations is given by: 
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Therefore, the total noise output density is obtained to 2
4,2

2
, VV outn   and given as: 
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Comparing (21) with (23) one can see that both equations represent the same total 
output noise density. On the other hand, to compute the input-referred noise sources 
and NFv, (16), (20) and (23) should be applied. 
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Considering the noise model for each element shown in Fig. 3 and 4 with NLEV=0, 
the fully-symbolic expression of NFv is given by: 
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  (28)

Here, only the contribution of thermal noise is presented and the equation including 
both flicker and thermal noise is given in [17]. On the other hand, the symbolic noise 
analysis of the OTA Miller circuit shown in Fig. 10(a) is given in [18], where all the 
noise sources into the circuit have been considered. 

7.2. Noise analysis in current-mode circuits 

In the same manner as in subsection 7.1, the total output noise to current-mode 
circuits can also be computed by using algebraic symbolic analysis methods. The 
proposed noise analysis method can be summarized in the following steps [19]: 

1. Find the SP by applying the method given in subsection 6.2. 

2. Include the noise current source of each resistor and MOST. The signal 
current source must be an open-circuit. 

3. Formulate the system of equations by using the proposed method in Chapter 
3, with all magnitudes of transconductances and resistors squared. 

For this case, we use the circuit shown in Fig. 13(b). Following the described above 
method, the noise sources associated to resistors and MOST are included in the 
reduced nullor circuit, as shown in Fig. 16. 

 
 

Figure 16: Reduced nullor circuit including noise sources. 
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After, formulating the system of equations by applying the formulation method 
introduced in Chapter 3, it is obtained as: 
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The solution of (29) is carried out by applying Cramer’s rule to 2
10

2
, VV outn  and

22
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 Loutnoutn RVI , where the following equalities are assumed: 
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Thus, the total output noise density is given as: 

 

22
2

2
3,

2

22
2

2
,

2

22
2

2
9,

2

22
2

2
7,

2

22
2

2
2,

22
2

2

22
2

2
,

22
2

2

22
2

2
3,

22
2

2

22
2

2
2,

2

22
2

2
,

22
2

2

22
2

2
9,

22
2

2

22
2

2
7,

22
2

2
2
,

1

2

111

4

1

4

1

1

2

111

6

1

4

SM

MnL

SM

RLnL

SM

MnL

SM

MnL

SM

MnSML

SM

RsnSML

SM

MnSML

SM

MnL

SM

RLnSML

SM

MnSML

SM

MnSML
outn

Rg

IR

Rg

IR

Rg

IR

Rg

IR

Rg

IRgR

Rg

IRgR

Rg

IRgR

Rg

IR

Rg

IRgR

Rg

IRgR

Rg

IRgR
V


































 (31)

 

22
2

2
3,

22
2

2
,

22
2

2
9,

22
2

2
7,

22
2

2
2,

22
2

22
2

2
,

22
2

22
2

2
3,

22
2

22
2

2
2,

22
2

2
,

22
2

22
2

2
9,

22
2

22
2

2
7,

22
22

,

1

2

111

4

1

4

1

1

2

111

6

1

4

SM

Mn

SM

RLn

SM

Mn

SM

Mn

SM

MnSM

SM

RsnSM

SM

MnSM

SM

Mn

SM

RLnSM

SM

MnSM

SM

MnSM
outn

Rg

I

Rg

I

Rg

I

Rg

I

Rg

IRg

Rg

IRg

Rg

IRg

Rg

I

Rg

IRg

Rg

IRg

Rg

IRg
I


































 (32)

In order to compute the input-referred noise sources and NFi, (16) and (32) should be 
used. 
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where the current gain is given by: 
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Finally, if only the contribution of thermal noise is considered, then (35) can be 
simplified as: 
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A comparison between (31) and Hspice is shown in Fig. 17, where the contribution of 
flicker noise has been included. It is worthy mentioning that the symbolic noise 
parameters have been computed in function of noise current sources, which are 
associated to resistors and MOSTs. Therefore, these noise current sources can be 
substitute by their noise models depending of the operation region of MOSTs and 
technology used [20]. Furthermore, once that input-referred noise sources have been 
computed, the following step is to accomplish a symbolic noise analysis at the circuit 
level of abstraction, as shown in [21]. 
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Figure 17: Numerical comparisons (Hspice solid-line, Symbolic dashed-line). 

8. Conclusion 

In this chapter, we basically present two fully-symbolic noise analysis methods of 
analog circuits, not only for voltage-mode circuits but also for current-mode circuits. 
As one can see throughout the chapter, the symbolic noise analysis methods are based 
on the SP approximation of analog circuits at the transistor level of abstraction. 
Further, the nullor-based model of a MOST as a three- or four-terminal active device 
has been introduced, including parasitic elements and noise sources. To avoid the 
high computation costs associated with the formulation of the system equations, the 
formulation method described in the Chapter 3 has been used. As a consequence, it 
was demonstrated that the total output noise density, the input-referred noise sources 
and noise figure can quickly be computed. Finally, we discuss some examples in 
order to show the usefulness of the proposed methods. 
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CHAPTER 11 

Symbolic Pole/Zero Analysis 

Francisco V. Fernández1,*, Carlos Sánchez-López2, Rafael Castro-López3 and 
Elisenda Roca-Moreno3 

1Dept. Electronics and Electromagnetism, University of Sevilla and IMSE-CNM, CSIC; 2IMSE-CNM, 
CSIC and University of Sevilla, Spain, and University of Tlaxcala, México and 3IMSE-CNM, CSIC and 
University of Sevilla 

Abstract: Extraction of pole/zero expressions as a function of circuit parameters has 
traditionally been an essential tool for designers. In this Chapter, the main specific 
techniques for symbolic pole/zero extraction are described and their pros and cons are 
discussed. The application of the different techniques is illustrated with experimental 
results on practical circuits. 

Keywords: Poles and zeros, symbolic pole-zero extraction, root splitting, error control, simplification 
after generation, generalized eigenvalue problem, Haley's modification-decomposition, standard 
eigenvalue problem, time-constant matrix, simplification before generation, simplification during 
generation, QR algorithm, QZ algorithm. 

1. Introduction 

Symbolic analysis tools automate the analysis, usually of linear (or linearized) 
circuits, in which all or part of the circuit parameters are kept in symbolic form. The 
output is usually in the form of a network function in the complex frequency variable: 
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 (1) 

In addition to the network functions, e.g. magnitude or phase of the voltage gain of an 
amplifier, poles and zeros provide extremely valuable design knowledge. A direct 
extraction of symbolic poles and zeros from previously calculated network functions 
like (1) usually yields poor results. The first reason is that only second-order 
polynomials can be considered. Although analytical solutions for third-order and 
fourth-order polynomials exist, they are impractical in a symbolic analysis context. 
On the other hand, as Chapter 7 illustrates, the network function complexity grows 
exponentially with the circuit size. Therefore, the calculation of symbolic poles and 
zeros inherits this problem; and it even worsens as a number of operations between 
network function coefficients has to be performed. 

Therefore, the application of approximated extraction techniques together with the 
application of approximation techniques to the generation of symbolic expressions 
becomes mandatory. In this chapter, main reported techniques are discussed. In 
Section 2, the classical root splitting technique for approximated root extraction is  
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introduced. This technique is combined together with simplification after generation 
techniques for reduction of expression complexity. As the plain application of 
simplification after generation techniques still limits dramatically the circuit size that 
can be analyzed, extraction techniques that make use of simplification before 
generation techniques (approximation of the network equations before they are 
symbolically solved) are discussed in Section 3. A more mature technique is 
introduced in Section 4, that uses the time-constant approach, enabling the 
introduction of simplification before and during generation techniques 1. 

2. Classical Root Splitting Technique 

Analytical calculation of poles and zeros from the symbolic numerator and 
denominator polynomials in (1) is theoretically limited to fourth-order polynomials, 
but practical use in the symbolic analysis context is limited to second-order 
polynomials. This implies that symbolic pole-zero extraction would be impossible 
except for the simplest circuits. To avoid this, common approximations performed in 
manual analysis like the root splitting technique were the first techniques applied for 
symbolic pole/zero extraction. 

If we assume that the n roots of the denominator in (1) are real, then the denominator 
can be written as: 
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From the comparison with (1), it follows that: 
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 (3) 

Under the assumption that the first pole is at a much lower frequency than the rest of 
poles: 

1 2 , , np p p   (4) 

the first equation in (3) can be approximated as: 

                                                 

1 See Chapter 7 for a detailed discussion of simplification before, during and after generation 
techniques.  
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and therefore: 
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Under the assumption that the second pole is at a much lower frequency than higher 
order poles, the same procedure can also be applied resulting in: 
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The same procedure can be applied iteratively for higher order poles. A similar 
procedure can also be applied if two complex poles (or two close real poles) are at a 
sufficiently lower frequency than other poles: 

1 2 1 3and , , np p p p p    (8) 

Then, the pair of real or complex conjugate poles can be extracted from a second-
order polynomial: 

2
0 1 2( )D s g g s g s    (9) 

An analogous mechanism can be followed for the zeros of (1). 

This technique was first implemented in [1, 2]. Since the complexity of symbolic 
network functions grows exponentially with the circuit size, the root splitting 
technique is not able to produce symbolic expressions of reasonable size for practical 
circuits by itself. Therefore, it must be applied on approximated functions, obtained 
from the application of Simplification After Generation (SAG) techniques2. In these 
techniques, the exact symbolic network function is first generated and, afterwards, the 
least significant terms are pruned while some error criterion is met. For instance, 
given any network function coefficient in (1), formulated as a sum-of-product of 
symbolic parameters: 
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the approaches in [2, 3] eliminate the P least significant terms while the following 
condition is satisfied: 

                                                 

2 Refer to Chapter 7 for a detailed description of these techniques. 
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where  is a user-defined accuracy margin and ox  is the point of the design parameter 

space selected for the evaluation of the approximation error. 

If the poles and zeros are to be extracted from the simplified network function, and in 
order to keep the root positions unchanged, the same error threshold   can be applied 
for each coefficient of the network function. However, this may lead to important 
errors in pole and zero locations due to the very nature of the simplification process. 
This process consists in eliminating individual symbolic terms of each coefficient 
and, therefore, the estimated coefficient value varies at discrete steps. Then, the real 
error in each polynomial coefficient will be different and this may yield very 
significant shifts of root locations. To avoid this problem, the approach in [1] 
eliminates the least significant terms in each coefficient incrementally. A small value 
of   is used initially and it is increased by   in each iteration. At each iteration, 
poles and zeros are monitored. It the root shifts are larger than a predefined value, 
symbolic approximation is stopped. A possible problem is that roots cannot be easily 
traced when discrete approximations are applied, e.g. elimination of certain terms 
may yield unexpected root shifts with difficult correlation with the previous location. 

As an example of application let us consider the cascode amplifier in Fig. 1(a) where the 
small-signal model in Fig. 1(b) is used for the MOS transistors3. The application of the 
technique in [1] provides symbolic expressions for the first two poles and the first zero: 

 

Figure 1: (a) Active feedforward compensated cascode amplifier and (b) small-signal MOS transistor 
model. 

                                                 

3 The experimental results shown in this chapter are intended for illustrative purposes and coarse 
comparison. Accurate comparison is infeasible as the implementations of most approaches are not 
freely or commercially available and we are restricted to the results available in the literature. In many 
cases, the different approaches have been tested on different circuits. Even in those cases that have 
been tested on the same circuit, the results may not be comparable as they may be influenced by the 
extraction technique itself, by the nominal value of the symbolic parameters (around which the 
simplification is performed) and by the configuration settings of each approach. In most cases, a 
complete information has not been disclosed. 
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 (12) 

Valuable information can be extracted from (12), like the value of the capacitor pzC

that cancels the pole-zero pair: 

1 1 1 2pz db gd l gdC C C C C     (13) 

A posterior technique tried to reduce the error in the pole-zero locations by applying 
one or more Newton-Raphson iterations on the locations predicted by the root 
splitting technique [4]. A pole/zero at the nth iteration of the Newton-Raphson 
algorithm is given by: 
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This involves the symbolic computation of the quotient of a polynomial (numerator or 
denominator of the network function evaluated at the symbolic solution of the root 
obtained in the previous iteration) and its derivative with respect to the complex 
frequency variable s. In general, the price to pay is a significant increase of the 
complexity of the symbolic expressions, making the interpretability of the symbolic 
results more difficult. 

The major problems of the root splitting technique applied to symbolic pole/zero 
extraction are: 

a)  The extraction technique shares the limitations of simplification after 
generation techniques. Remind from Chapter 7 that simplification after 
generation techniques require the previous generation of the exact network 
function. The exponential growth of expression complexity with the circuit 
size limits the maximum analyzable circuit size to a few tens of elements 
(circuit elements after semiconductor devices have been replaced by their 
small-signal models). 

b)  The approximation may yield significant pole/zero errors. Techniques that 
avoid this, like [1], may lead to significant increase of expression complexity 
as the simplification may be stopped prematurely. 

3. SBG-Based Techniques 

Another group of techniques are based on the application of Simplification Before 
Generation (SBG) techniques on a matrix formulation of the network equations. For 
generic linear circuits the Modified Nodal Analysis formulation offers a suitable 
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procedure to build a set of linear equations in the Laplace domain. Besides, this 
method allows a clear splitting between the static and dynamic components of the 
circuit, that is, 

s MNAY G C  (15) 

where the matrix G  contains the static elements (e.g., conductances, controlled 
sources) and the matrix C  contains the dynamic elements (capacitors and inductors). 
To ease the subsequent formulation and implementation, inductors are considered in 
impedance form [5]. 

Poles are defined as those complex values that lead to the following set of 
homogeneous equations: 

s( ) 0G C x =  (16) 

or equivalently: 

sGx = Cx  (17) 

Solution of (17) corresponds to the well-known generalized eigenvalue problem. The 
usual mechanism for the numerical solution of (17) is the QZ algorithm [6]. This 
algorithm can be used for the numerical calculation of poles and zeros but its iterative 
nature prevents its use for symbolic pole/zero extraction. 

To overcome the circuit size limitations of symbolic pole/zero extraction 
methodologies based on simplification after generation techniques, new approaches 
have been reported in [7]-[9] whose distinctive feature is the introduction of 
simplification before generation techniques. 

The approach in [7] is based on a simplification before generation technique reported 
in [10]. The key step is the elimination of device parameters from the cofactors of the 
nodal matrix if the error induced is below a given error margin. The error is evaluated 
at a few samples (usually three points per decade) of the frequency range of interest. 
The frequency range has to be selected to isolate a small cluster of poles or zeros, 
resembling the classical root splitting technique. Then, the determinant dimension is 
tried to be reduced by factoring out rows and columns with a single symbol or non-
zero entry and performing row and column operations that reduce the number of 
symbols or non-zero entries. Determinant expansion is performed trying to keep a 
factorized form that can ease extraction of poles and zeros although it is not clear how 
the factorization can be performed systematically to yield the appropriate form for 
pole/zero extraction. 

The application of this technique to the Miller op amp in Fig. 2 in the frequency 
range from dc to 1KHz allows to obtain the following expression for the first pole [7]: 
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The subsequent application to the frequency range which goes from 7MHz to 70MHz 
provides an easy factorization of three symbolic poles [7]: 
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Figure 2: (a) Two-stage CMOS Miller opamp and (b) small-signal MOS transistor model. 

However, pole 3p  is not a valid pole as it cancels with an analogous zero at the 

numerator [7]. This is probably due to the fact that the evaluation of the errors 
introduced by device parameter elimination is performed in the corresponding 
cofactor and not in the complete network function. 

On the other hand, there is no clear procedure to select the frequency range and the 
number of samples that provides the right expression for easier root factorization. 
Small root shifts may produce very significant magnitude/phase errors depending on 
the root location in the complex frequency plane, therefore stopping the simplification 
process much before than needed, hence, yielding very complex symbolic 
expressions. On the contrary, important root displacements may keep undetected by 
magnitude/phase error criteria if the number of samples is not appropriate. The 
problem is palliated by increasing the number of samples at the price of additional 
computation time. 

The approach in [8] also performs a simplification before generation technique and 
tries to avoid the problems of simplification techniques based on magnitude/phase 
error control. In this case, a single root is selected a priori and the errors induced by 
parameter eliminations are not evaluated in the cofactors but in the root itself. This 
could be calculated by the application of the QZ algorithm. However, this algorithm 
presents two drawbacks in this application. First, although we are interested in a 
single root, the algorithm calculates the complete root spectrum. And second, the 
computational cost of the algorithm is relatively high, making inefficient its 
application for each device parameter elimination that is tried. To avoid this problem, 
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[8] uses the sensitivity of the root to each device parameter, assuming that the 
sensitivity is directly related to the root shift caused by cancelling that device 
parameter. This becomes a weakness of this approach as a small local sensitivity is 
not a guarantee for a small large-change sensitivity represented by the device 
parameter elimination. 

Once all device parameters with limited impact on pole/zero locations have been 
eliminated, the determinant is expanded and a polynomial in the complex frequency 
is obtained. Simplification-after-generation techniques are applied in the coefficients 
of this polynomial. Hopefully, the polynomial degree is low enough for symbolic 
extraction of the root. Again additional simplification after generation is tried in the 
resulting symbolic expression. 

Another approach based on simplification before generation techniques to extract 
poles and zeros was reported in [9]. As the previous one it is based on the 
approximation of the matrices in (16) for a selected eigenvalue by ranking the 
eigenvalue shifts induced by different device parameter eliminations and performing 
the least significant device prunings while some error criterion in the eigenvalue shift 
is met. The eigenvalue shift is obtained from a linear prediction formula derived from 
a Taylor series approximation of the generalized eigenvalue problem, similar to the 
sensitivity analysis above, yielding a ranking of candidate parameter eliminations. 

To solve the problem of underestimation of real errors due to significantly bigger 
large-change sensitivity, this approach estimates pole-zero shifts for each parameter 
elimination that is performed. For the same reasons above, error tracking by the 
application of the QZ algorithm is not efficient enough. Therefore, an error tracking 
by iterative eigenvalue improvement process is applied. If the eigenvalue shift 
induced by a device parameter elimination is small, we can assume that the nominal 
value of the eigenvalue is a good initial guess for an iterative calculation process that 
converges to the perturbed eigenvalue. If the method fails to converge, we can 
assume that the eigenvalue shift is too large.  

Like in previous methods that monitor pole/zero shifts there is a risk of a bad 
identification of an eigenvalue with its perturbed counterpart. To avoid this, a very 
significant improvement is introduced in [9], where a Modal Assurance Criterion 
(MAC) is defined, that measures the correlation of two eigenvectors and that is given 
as [9]: 

2*

*
* *

( , )
( )( )

H

H H
MAC 

u u
u u

u u u u
 (20) 

where u is the eigenvector corresponding to the selected eigenvalue of the original 
system in (16) and *u is the eigenvector of the perturbed system. 

If a perturbed eigenvector corresponds to the original one, they must be closely 
correlated and therefore, the modal assurance criterion must be close to 1. By the 
contrary, if the modal assurance criterion is much smaller, it means that the 
eigenvectors do not correspond and the approximation is not valid, even if they are 
numerically very close. 
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Figure 3: (a) A741 operational amplifier and (b) small-signal bipolar transistor model. 

The determinant of the matrix resulting after the simplification before generation 
technique is expanded. Hopefully again, a low-order polynomial is obtained from 
which the desired root can be extracted. Simplification after generation techniques 
can be applied for further formula simplification. Robust simplification during 
generation techniques like those reviewed in Chapter 7, are not in general applicable 
as they cannot be applied on matrix formulations. 

As illustrative examples, several experimental results have been reported with this 
approach, like the first two poles of the uA741 operational amplifier in Fig. 3. 

By applying simplification before generation techniques based on magnitude/phase 
error control the first pole is obtained: 
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However, the second pole cannot be obtained with this technique due to the existence 
of a close zero. However, the approach in [9] allows obtaining a symbolic expression 
for the second pole: 
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The two-stage amplifier in Fig. 4 is used as a second example. An error bound of 5% 
in pole-zero shifts allows to obtain symbolic expressions for the first two poles and 
the first zero: 
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Figure 4: Two-stage Miller amplifier. 

4. The Time-Constant Approach 

4.1. Haley’s modification-decomposition method 

To arrive at a solution for the symbolic pole-zero extraction, [11] proposes an 
approach inspired on Haley’s modification-decomposition method [12, 13]. Haley’s 
modification-decomposition method starts by premultiplying (17) by -1G : 

-1sx = G Cx  (24) 

Assuming that the circuit contains M capacitors, matrix C  can be expressed as: 

T dC = C  (25) 

where dC  is the following diagonal matrix: 
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dC  (26) 
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And the capacitor incidence matrix   is given by: 

 1 2 M  q q q  (27) 

where the vector kq corresponding to the k-th capacitor connected between nodes i 

and j: 

 0 1 1 0
T

k

i j

   q
 (28) 

By premultiplying (24) by T and replacing (25) it yields: 

-1T T Ts    dx = G C x  (29) 

By redefining its components: 

-1

T

T


 

M

d

x = x

R = G

T = RC

 (30) 

Eq. (29) becomes: 

sM Mx = Tx  (31) 

By performing the following variable change: 

1

s
 =  (32) 

(31) becomes: 

( ) 1 0MT x  (33) 

This is called a modification of matrix G  and its effect is the transformation of an N-
dimensional generalized eigenvalue problem into an M-dimensional standard 
eigenvalue problem, whose eigenvalue spectrum can be related to that of the 
generalized eigenvalue problem by using (32). 

As reported in [12], an important advantage of this transformation is that the 
numerical calculation of the roots can be performed by using the QR algorithm, faster 
and more stable than the QZ algorithm. 

However, the biggest advantage of this formulation in the symbolic context, as will 
be shown in the following, is the simple structure of the matrix T  that provides 
valuable physical insight on the dynamic circuit behavior. Moreover, each entry of 
the matrix T  can be symbolically calculated very efficiently, being the only approach 
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that allows introducing both simplification before and during generation techniques, 
enabling the highest accuracy with the smallest expression complexity. 

4.2. The time-constant matrix 

Let us consider the structure of matrix T  in (30). The element located in row   and 
column   is given by: 

1TT C   
 q G q  (34) 

In this equation we can identify a vector 

1


y G q  (35) 

that represents the nodal voltages when the resistive part of the circuit is excited by a 
single source placed at the port defined by capacitor C . Then, the linear combination 

T
q y  (36) 

represents the voltage across the port defined by capacitor C . Therefore, the matrix 

element can be interpreted as the transresistance from port  to port  multiplied by 
capacitor C  and matrix T  becomes: 

11 1 12 2 1

21 1 22 2 2

1 1 2 2
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T  (37) 

It becomes clear now why matrix T  is known as the time-constant matrix (or RC-
matrix). Its elements are RC products that can be computed directly from the circuit. 

Valuable information can be obtained from this matrix. For instance, classical hand 
analysis techniques formulate the poles of circuits as the inverse of the capacitance at 
each circuit node multiplied by the impedance seen at that node. Matrix T  gives a 
more precise definition and the conditions under which it is valid. A pole can be 
considered to be associated to one node if the (trans)resistances of the other ports to 
that port are negligible. 

4.3. Approximate root equations 

The sum of products of the eigenvalues of matrix T are related to its k-th trace by: 

1 2
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 (38) 

where the k-th trace of matrix T is defined as: 
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Let us consider the equations relating eigenvalues to the first two traces: 
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If the first two poles are sufficiently separated, i.e., the following two conditions are 
satisfied: 
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the following set of equations can be approximated 
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 (42) 

If these two poles are close or constitute a complex conjugate pair, the following 
expression is easily obtained for the poles: 

1 2
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However, if the two poles are splitted enough i.e. 1 2  , a further approximation 

can be applied and the following expressions for 1p  and 2p  are obtained: 
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The same approach can be applied recursively to higher frequency poles. Let us 
assume one port with a large time constant. This means that this pole remains 
practically uncharged for high-frequency signals, that is, it behaves like a short-
circuit. Therefore, the circuit resulting after the contraction of the capacitor associated 
to the port with the highest time-constant will have approximately the same higher 
frequency poles that the original one. This transformation yields a shift towards zero 
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of the dominant pole whereas the remaining ones are kept in approximately the same 
locations. Therefore, once the contraction has been performed, the same extraction 
procedure can be applied to higher frequency poles. 

4.4. Symbolic calculation of RC factors 

Equations (43) and (44) approximate the pole positions as a function of the first two 
traces, given as: 
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Then, approximate expressions for these two traces are obtained in several steps. 
First, a simplification before generation step is applied for the circuit capacitors, by 
eliminating the capacitors that have an influence in 1T  and 2T  such that their impact 

on each pole position is below an error threshold. The effect of this simplification 
before generation step is that the number of addends in (45) is significantly reduced 
and only a reduced number of (trans)resistances has to be calculated. 

In a second step, a circuit is considered for the calculation of each (trans)resistance in 
(45). Each of these circuits is a purely resistive circuit obtained from that resulting 
from the previous step by removing all capacitors and applying the appropriate 
excitation source for each (trans)resistance. For illustration’s sake, Fig. 5 shows the 
transformations on the original circuit for the calculation of the transresistances of a 
circuit with two capacitors: C  and C . These resistive circuits can still be relatively 

complex and therefore also suffer from the exponential growth of symbolic results 
with the circuit size. Therefore, first a simplification before generation technique is 
applied. For reasons that will become clear below, the SBG technique works at the 
circuit level, by contracting nodes and eliminating devices whose contribution to the 
pole position is negligible. A separate circuit is considered for each (trans)resistance, 
so that the simplest circuit for each of them can be obtained. 

 

Figure 5: Illustrating circuit transformation for calculation of (trans)resistances. 
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Then, a simplification during generation technique is applied to get the dominant 
terms of each (trans)resistance. The simplification during generation technique 
applied is based on the two-graph approach and is able to generate symbolic terms in 
decreasing order of magnitude one-by-one. Initially, the dominant term of each 
(trans)resistance is generated and queued. The dominant term of each trace is 
considered and that with the largest influence on the pole or poles considered is 
selected for the symbolic pole expression. The following term for the (trans)resistance 
that supplied the selected symbolic term is then generated. 

If the errors specs are not met, the next term in the list has to be added to 1T  or to 2T . 

At each iteration two ratios are used to decide if the next term in 1T  or that in 2T  

should be collected. Assuming that F terms have already been added into 1T  and G 

terms into 2T , the two ratios are: 
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 (46) 

These equations represent the ratios between the terms added to 1T  and 2T  up to that 

iteration and the exact values given by the equations in (45). The next term in the 
trace with the smallest ratio is added and the errors specs checked again. The 
generation procedure continues until the error specs are met. 

4.5. Extraction of zeros 

The modification-decomposition method can also be applied to the zero extraction 
problem by performing some modifications on the time-constants matrix, leading to a 
modified time-constants matrix, from which the numerical zero spectrum can be 
computed by means of the QR algorithm. However, unlike the time-constants matrix, 
although the elements of the modified time-constants matrix are dimensionally RC 
products, they cannot be easily interpreted in terms of circuit (trans)resistances and 
capacitors. Therefore, the approximated formulas cannot be directly applied. 

A solution arises from the application of feedback systems theory. Let us consider the 
system in Fig. 6, where ( )H s corresponds to the transfer function of the system whose 
zeros are to be obtained. The transfer function of the complete feedback system is: 

( )
( )

( ) ( )fb

k D s
H s

D s k N s




 
 (47) 

If k  , then (47) becomes: 
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( )
( )

( )fb

D s
H s

N s
  (48) 

Therefore, the poles of the feedback system correspond to the zeros of the original 
one. 

 

Figure 6: Block diagram. 

Dealing with the poles of this feedback system is not a complex task. The forward 
gain k  does not depend on the complex frequency variable. Therefore, it contributes 
to the different (trans)resistances of the matrix T . As stated above, simplification 
before and during generation techniques are applied to the different (trans)resistances. 
Simplification before generation techniques are applied normally but the element 
corresponding to the forward gain k  is preserved as the application of k   
prevents its elimination. The simplification during generation technique used is based 
on the enumeration of common spanning trees in the two-graph approach in 
decreasing order of magnitude. Applying k   reduces to imposing that the 
element corresponding to k  must belong to the spanning tree 4. 

4.6. Experimental results 

As an application example let us consider the uA741 operational amplifier in Fig. 4. 
The approach above provides the following expressions for the first two poles and the 
first zero: 

1 3 1 4 3 4
1

1 4 16 17 13 17 16 17

1 3 1 4
2

11 22 24 1 3 1 4 3 4

10 5 6 4
1

11 10 4 5 6 5 6 1 2 22 24

( )( )

( )

[(1 )( ( )]( )

m m m m m m

c m m m m o B o

m m m m

m m m m m m

m m m

m m m m m

g g g g g g
p

C g g g g r r r r

g g g g
p

R C C g g g g g g

g g g R
z

R g R g g g g R R C C

 

 

 

 
 


 

  


 

    

 (49) 

If we now consider the BiCMOS operational amplifier in Fig. 7, the approach 
provides symbolic expressions for the four poles: 

                                                 

4 Refer to Chapter 7 for detailed descriptions of simplification before and during generation 
techniques. 
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kInput
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Figure 7: (a) BiCMOS operational amplifier; (b) bipolar transistor model; and (c) MOS transistor 
model. 
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5. Conclusion 

Poles and zeros include essential information for circuit design. Therefore, the 
extraction of symbolic expressions for poles and zeros has attracted the attention of 
symbolic analysis researchers. First reported techniques imitated the usual techniques 
applied for hand analysis: elimination of unimportant terms in symbolic network 
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functions (considered simplification after generation techniques in the classification 
used in this chapter), application of root splitting techniques and extraction of roots of 
low-order symbolic polynomials. These techniques also inherited the exponential 
growth of symbolic results with the circuit size. Therefore, more recent analysis 
techniques have incorporated simplification before and during generation techniques. 
An essential component of the symbolic pole/zero extraction technique is the error 
control mechanism. Some techniques have used the same approximation techniques 
used for symbolic network equations, based on the control of magnitude and phase 
errors. However, a well-controlled magnitude and phase error does not necessarily 
imply accurate symbolic pole-zero solutions. Therefore, more recent techniques have 
focused on the development of analysis techniques together with error control 
mechanisms specifically devoted to guarantee the desired accuracy on symbolic 
pole/zero expressions. 
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CHAPTER 12 

Automatic Nonlinear Behavioral Model Generation Using Symbolic 
Circuit Analysis 

Ralf Sommer*, Eckhard Hennig, Gregor Nitsche, Jochen Broz and Peter Schwarz  

Ilmenau University of Technology and Institute for Microelectronic and Mechatronic Systems GmbH, 
Germany 

Abstract: The aim of symbolic analysis that has its origin in the design of analog 
circuits is the extraction of dominant system behavior by automated derivation of 
approximated symbolic formulas. Since exact symbolic analysis will yield exceptionally 
complex expressions even for rather small systems a class of symbolic approximation 
techniques has been developed that allow a reduction of the complexity of symbolic 
equations and their later solution by means of mixed symbolic and numerical strategies. 
Hence, it becomes possible to reduce the underlying nonlinear Differential-Algebraic 
systems of Equations (DAE systems) of component-based networks and systems to a 
behavioral description of a predefined accuracy. So it is a major advantage of the 
approach that the model simplification is performed by an automatic error control and 
that the simplified models are physically interpretable again. The contribution will give 
an overview of the symbolic tool Analog Insydes algorithms for extraction of dominant 
behavior of linear systems, as well as algorithms for generating behavioral models from 
nonlinear DAEs. Moreover, the underlying methodology has been extended to the 
application of analysis and modeling in non-electrical domains (e.g. gas-pipeline nets) 
and for multi-physical (e.g. mixed electrical and mechanical) systems. For the latter a 
library was developed in cooperation with the Fraunhofer IIS/EAS for symbolic models 
of micro-mechanical elements that can be connected to networks including electrical 
components as well. 

Keywords: behavioral modeling, automated  behavioral model generation, symbolic analysis, 
nonlinear symbolic circuit equation, DAE system (differential algebraic equations), MNA (modified 
nodal analysis), STA (sparse tableau analysis), lumped element representation, symbolic 
approximation, model reduction, term cancellation, term ranking,  multi-physical system, 
heterogeneous system, conservative system, electrical system, mechatronic system, micromechanical 
acceleration sensor, Analog Insydes. 

1. Introduction 

With the decreasing structural size going along with expanding complexity of technical 
systems there is an emerging demand for new design methods and modeling support. 
This becomes even more important because of the increasing heterogeneity of technical 
systems. In particular, for the design of mechatronic systems this leads to the following 
problem: There are established tools for the design of the mechanical or electrical parts 
like FEM (Finite Element Method) [1], multi-body or circuit simulators, but those are 
usually specialized on their physical domain. Therefore, consideration of interactions 
between mechanical and electrical components is extraordinarily laborious. These 
interactions often have to be taken into account because the assembly of independently 
optimized subcomponents usually does not lead to an optimal system. On the other 
side, considering coupling effects results in new challenges in many aspects, which  
 
*Address correspondence to Ralf Sommer: Ilmenau University of Technology and Institute for Microelectronic 
and Mechatronic Systems GmbH, Germany; E-mail: ralf.sommer@imms.de 
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lead from the need of designers competence in multiple disciplines (electrical and 
electronic as well as mechanical engineering, physics and mathematics) up to the high 
complexity of mathematical models which demand the employment of adapted 
simulation tools. 

Such software has to be capable of dealing with the multi-physical aspects of such 
systems. There are several suitable modeling languages like VHDL-AMS [2] or 
Modelica [3] and corresponding simulators like Virtuoso® AMS Designer, 
AdvanceMSTM or DymolaTM available. They allow for a modularized modeling of the 
complete system or parts of it with arbitrary accuracy. But the modeling process of 
heterogeneous systems is very time consuming and, moreover, the resulting 
mathematical models become very complex even for comparatively small systems, 
raising numerical problems with respect to robustness, efficiency, and stability. 

Today the simulation of industrial-sized systems lies beyond the limits of this 
approach. In order to reduce the numerical effort, model reduction techniques become 
more and more important. In this article, we present a modeling approach, which is 
based on symbolic methods and can be adapted to multi-physical systems due to its 
general mathematical principle. This includes an automatic generation of behavioral 
models including model reduction for electrical as well as for mechatronic 
components and a combination of both. Such generated models allow an interactive 
processing and a more efficient simulation of the overall system, thanks to their 
reduced complexity. This may even enable application of optimization and control 
methods. 

2. Bottom-Up Behavioral Modeling Using Analog Insydes 

Automatic bottom-up model generation by symbolic analysis of circuit netlists and/or 
equations allows deriving accurate behavioral models. The model generation process 
in this contribution is based on the symbolic analysis tool Analog Insydes [4, 5]. This 
powerful tool offers functionality to automatically set up circuit equations for a circuit 
from its netlist and to use them as foundation for behavioral model generation. 
Furthermore, an additional input for DAE (differential algebraic equation) systems 
could be implemented to handle systems modeled by behavioral descriptions instead 
of circuit netlists and to support modeling of multi-physical systems. Fig. 1 visualizes 
an exemplary process as it would be performed in bottom-up model generation. 

Whereas the number of the circuit equations is increasing proportional to the circuit's 
number of nodes, their complexity is again amplified by the complexity of the applied 
device models. Therefore, the achieved equation sets are often extremely complex - 
impossible to be set up by hand. Model reduction methods can be applied to reduce 
the complexity of the equations by term reduction techniques [6-9] as it will be 
described in section 4.3. Another benefit of this symbolic approximation technique is 
to ensure a user-specified accuracy - hence, this is one of the very few modeling 
methods that allow satisfying a predefined accuracy. 

As the equations' complexity decreases but the resulting error grows with the degree 
of model reduction, it is up to the user to find a suitable trade-off between size, 
interpretability and accuracy of the model. Experiments show that for reasonable 
error margins of 5 to 10% the complexity can be reduced by a factor of 10 to 100, 
resulting in a good speed-up of simulation. 

Finally, the behavioral model can be generated from DAEs using Analog Insydes' 
model export function, which supports model creation for almost every behavioral 
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simulator by the inclusion of several AHDLs (analog hardware description languages) 
- e.g. VHDL-AMS, Verilog-A, MAST. 

Figure 1: Bottom-up modeling process. 

3. Symbolic Equation Formulation of Nonlinear Dynamic Circuits 
and Systems 

In this section an outline of circuit theory [10, 11] will be given in order to introduce 
into the automatic derivation of linear and nonlinear circuit and system equations, 
which is the basis for automated generation of behavioral models and model order 
reduction. Electrical but also multi-physical systems have in common that they consist 
of a finite number of components or elements that are linked together by connecting 
multiports. Each component can be modeled by the mathematical relations of its 
corresponding physical branch quantities. These quantities can be divided into 2 
classes, namely through and across quantities. Effort or across quantities are quantities 
that are measured between two points within the system or with reference to a 
predefined reference value. Flow or through quantities represent forces or 
charge/material transport through a component or along connections between them, 
which may be made visible only by opening the link. The product of the 
corresponding through and across quantities has the dimension of power (Table 1). 

Table 1: Corresponding through and across quantities in different energy domains. 

Energy Domain Through Quantity   Across Quantity   Power P [W] 

Electrical 
Current 

 i A  

Voltage 

 u V  
P = ui  

Mechanical 
(translational) 

Force 

 F N  

Velocity 

 v m/ s  
P  Fv  

Mechanical 
(rotational) 

Torque 

 Nm  

Angular Velocity 

 rad / s  
P     

Hydraulic 
Flow Rate 

3J m / s    

Pressure 
2p N / m    

P  pJ  

Thermal 
Entropy Flux 

 S J / Ks  

Temperature Difference 

 T K  
P  S T   
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For practical reasons in mechanical and thermal systems often alternative through and 
across quantities are used, which products do not directly yield power as shown in 
Table 2. 

Exploiting the analogies to electronic circuits any kind of through and across 
quantities can be handled similar to currents and voltages in the context of network 
analysis. As systems have to be considered in three spatial dimensions x, y and z for 
some physical domains (e.g. mechanics) such through and across quantities have to 
be vector-type (Table 3) in contrast to the one-dimensional descriptions of Table 1. 

Table 2: Alternative through and across quantities for mechanical systems. 

Energy Domain Through Quantity   Across Quantity   Power P [W] 

Mechanical 
(translational) 

Force 

 F N  

Displacement 

 m  
P  F d / dt   

Mechanical 
(rotational) 

Torque 

 Nm  

Angle 

 rad  
P   d / dt    

A key for setting up equations of any system having through and across quantities are 
the cutset law for through and the mesh law for across quantities, in electrical domain 
Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL). These laws are 
characteristic for conservative systems meaning that there is no dissipation of energy 
so that the total energy remains constant. These characteristics are independent of the 
circuits' element relations and can be rooted to some interesting properties of the 
underlying graphs and their incidence matrices (e.g. proof of Tellegen's theorem). 
This will be motivated and briefly described in the next sections.  

To process spatially distributed mechanical systems with the following network- 
oriented modeling approach of electrical systems, a discretized system consideration 
is necessary. This can be obtained from a manual or automatical discretization 
method like FEM [1], FDM (Finite Differences Method) or BEM (Boundary 
Elements Method) or from multibody modeling with only discrete, lumped elements 
(e.g. beams, plates and membranes) (Fig. 2). 

Table 3: Vector-type through and across variables. 

Domain Through Variables Across Variables 

Electronics Current i  Voltage i  

Mechanics 

Force 

 x y z F ,  F ,FF  

Displacement 

 x y z ,  ,     

Torque 

 x y z ,  ,     

Rotation 

 x y  z  ,  ,       

Hydraulics Mass Flow J  Pressure p  

Because of the generic branch-oriented description of network elements and the 
topological description of the connecting network via incidence matrices, the 
connections of discrete, lumped components correspond for different domains, so that 
the following approach can be applied to different domains (e.g. electrical, 
mechanical) and multi-domain modeling (e.g. mechatronics). 
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Figure 2: Handling of generic distributed (multi-domain) systems as generalized Kirchhoff networks. 

3.1. Element relations 

The precondition of the following annotations is the consideration of lumped 
networks or systems only. Here, element relations of arbitrary algebraic or 
Differential Mathematical Relations (DAE) without restriction to only one dimension 
are allowed, i.e. generic n-port elements. As a simple example of an electrical one-
port relation a diode – with its element relation written in voltages and currents as 
well as in through and across variables – is shown in Fig. 3. 

  
  tu/V

Si I e 1 0     

 

  t/V
S e 1 0    

Figure 3: Single-/one-port (-branch) element: Diode. 

For the quantity representation a branch oriented description is used as it is illustrated 
in Figs. 3 and 4, facilitating the use of vector-type through and across quantities. 
Elements with dimensional dependent (multi-dimensional) quantities can be 
represented as n-port or n-pole that are mathematically equivalent. In this contribution 
we will refer to the n-port representation (left side in Fig. 4). 
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Figure 4: General n-port element with general relation between through ( ) and across ( ) 

quantities (left) and corresponding n-pole representation (right). 

Likewise, non-electrical elements of other domains can be modeled in a similar way. 
Considering a mechanical beam element (Fig. 5), the connection points (pins) “1” and 
“2” to the neighboring elements have to be defined. At each pin, the mechanical 
quantities have to be considered in all spatial directions x, y and z. So the beam 
element’s through quantities are 3-dimensional forces F and torques  instead of 
one-dimensional currents, and its across quantities are 3-dimensional displacements v 
and rotations  instead of one-dimensional voltages (Fig. 5).  
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Figure 5: Beam quantities for a lumped, mechanical beam element. 

Thus, the beam element can be considered as a multi-branch or multi-port element 
using scalar quantities for each spatial direction as well as an equivalent single-branch 
element using vector-type quantities (Fig. 6). 

Single-Branch- / Vector-Type-Representation 

 

Multi-Branch- / Scalar-Type-Representation 
 
t  -  translational pins (for F,  ) 
r  -  rotational pins (for  ,  ) 

Figure 6: Branch definition for a lumped, mechanical beam element. 
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In general, the beam is mathematically described by Partial Differential Equations 
(PDEs). Only for small extension in length direction, the beam may be approximately 
considered as a lumped element, as typical in Finite Element Analysis. Its dynamic 
behavior, i.e. the relations of through and across quantities, is then specified in the 
form of Ordinary Differential Equations (ODEs) in vector or scalar form. In the case 
of a linear beam element - which behaves linearly as a spring (Hooke’s Law) 
concerning small flexures and torsions only - the equation’s structure is: 

  T T T T       M D K  (1)

where M is the mass matrix, D the damping matrix, and K the stiffness matrix of the 
finite elements. Furthermore, the vectors   of the through variables (forces F and 
torques  ) and the corresponding vector   of the across quantities (displacements   
and torsions  ) in the pins “1” and “2” are: 

  TT T
x1 y1 z1 x2 y2 z2 x1 y1 z1 x2 y2 z2(F ,F ,F ,F ,F ,F ,M ,M ,M ,M ,M ,M )  F  (2)

  TT T
x1 y1 z1 x2 y2 z2 x1 y1 z1 x2 y2 z2( , , , , , , , , , , , )               

 
(3)

Due to the vector property the port behavior of an element with two pins (e.g. a beam 
element) is, therefore, described by a system of 12 equations. These equations 
describe the lumped beam element behavior in a local reference system strictly 
connected to the individual beam element. In a “network” with many beam elements 
having different spatial coordinates and directions, the quantities (node variables) of 
the global reference system have to be transformed into the different individual local 
quantities using the orthogonal transformation matrices T and T-1 yielding: 

  T 1 T 1 T 1 T         T MT T DT T KT  (4)

Thereby the mechanical law of the continuity of the displacements in the nodes 
corresponds to Kirchhoff’s voltage law and the principle of d’Alembert corresponds to 
Kirchhoff’s current equations.  

To handle spatially distributed systems in a similar way, they have to be partitioned 
into a discrete number of lumped basic elements, which can be described by ODEs 
(Fig. 5). According to numerical experiments, often the separation into 4 or 6 
elements already leads to satisfying accurate multi-body models [12]. Fig. 7 
illustrates this procedure by the example of a “long” mechanical beam (to be 
described by PDEs) which is split into a chain of “small” basic beam elements, 
corresponding to a network of basic beam models (each of them is described by 
ODEs). 

   

 

Figure 7: Partitioning of a mechanical beam into a multi-body network model with basic beam 
elements.  

w

b

h
x

y

z

a b
1 12 2
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Kirchhoff’s voltage and current laws are valid also for the interconnection points of 
two adjacent beam elements. In the case of two connected beam segments a and b 
whose “left” and “right” sides are denoted by the indices “1“ and “2” (see also Fig. 5) 
the following equations hold: 

 a b a b a b
x1 x2 y1 y2 z1 z2

a b a b a b
x1 x2 y1 y2 z1 z2

a b a b a b
x1 x2 y1 y2 z1 z2

a b a b a b
x1 x2 y1 y2 z1 z2

, ,

F F 0, F F 0, F F 0

, ,

0, 0, 0

        
     

        
           

 (5)

Although the resulting DAE system is comparatively large it is well suitable for the 
application of symbolic analysis because the quite small number of coefficients which 
equal not zero depend only on a few material properties – e.g. the density , the 
elastic modulus E and the Young’s modulus G – and geometric dimensions, as the 
width w, the breadth b and the height h (Fig. 8). 

Figure 8: Geometrical dimensions and material properties of a beam element. 

As another example Fig. 9 sketches a motor as a two-port element on the left, with 
current and torque as through quantities and voltage and angular velocity as across 
quantities. The corresponding n-port and the resulting linear DAE system of the 
element relations are shown on the right side. Note that for a detailed consideration 
the mechanical through and across quantities 2  and 2  are vector-type quantities 

again. 

 

 

1 1i  , 2 2   

1 1u  , 2 2   
 

2 M 1 2 2      K D J 0  

1 M 2 1 1R L 0      K   

Figure 9: A motor as two-port element and its element relations. 

The idealized relations between electrical and mechanical quantities of the motor are: 

 
1 M 2u ,K   2 M 1iK  (6)

Taking into account the electrical resistance R and the inductance L as well as the 
mechanical-rotational parameters damping D and inertia J, the element relations are: 

 1
1 1 M 2

di
u Ri L

dt
  K      and    2

2 2 M 1idt
  

d
M D J K


  (7)
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Although the introduced considerations of system elements mainly focus on the 
systems’ operation regions regarding only the linear behavior and components’ 
parameters (“small signal behavior”), the extension to nonlinear behavior and 
geometrical nonlinearities is possible.  

3.2. Connecting graph and network topology 

In addition to the elements the topology of the circuit has to be described representing 
all connections between the system’s components as a graph. Because of the 
generality of the basic principles of cutset law and mesh law for all domains of 
conservative systems and because of the consistently branch-oriented description of 
all through and across relations the following generalized network analysis 
methodology can be applied. Hence, the system of analysis equations can be set up in 
the same manner for electrical, mechanical, hydraulical or thermal systems.  

In Fig. 10 the connecting network (red) links the n ports of the components to form a 
conservative system. This connecting network can easily be abstracted to a 
mathematical graph structure, consisting only of the connected nodes k  and the 

elements’ branches kb  (  k 1,..., n ), weighted by through ( k ) and across ( k ) 

quantities (Fig. 11). 

 
Figure 10: Connecting network between 6 components. 

 
Figure 11: Connecting network in branch-/node-representation. 

3.2.1. Graph 

A graph ( , , )     is defined as a set   of N  vertices k  (nodes) that are 

connected by a set   of E  edges kb  (branches). The way the graph is connected is 
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given by the directed incidence mapping :  . Vertices connected by an 
edge are said to be adjacent. An example of a graph with its sets of vertices, edges 
and incidence mapping is given in Fig. 12.  
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, ,
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Figure 12: Example graph  with 6 branches, 4 nodes and incidence mapping. 

3.2.2. Path, loops, components 

To obtain a topological circuit description, we need to formulate nodal and loop 
equations. Given a lumped network graph, a loop l  is any closed connected path 

1 1 2 2 1p { , b , , b , , }        
 
among the graph’s nodes and branches for which each 

included branch is traversed only once and each node encountered connects exactly 
two included branches. In Fig. 12 an example for three loops  is given as well 

as the set of branches forming the loop with an incidence mapping describing the 
orientation of the loop with respect to the orientation of the branches (Fig. 13). 

( ) ( ) ( )
1 1 2 3

( ) ( ) ( )
2 3 4 5

( ) ( ) ( )
3 1 4 6

l b ,b ,b

l b ,b ,b

l b ,b ,b

  

  

  







 

Figure 13: Example of loops in a graph  . The (+) or (-) specify the direction of the incidence. 

To define nodal and loop incidence matrices and to take a closer look at their rank, 
the definitions of a connected graph and its components are needed: A lumped 
network graph is said to be connected if there exists at least one path P  among its 
branches (disregarding the branches' orientations) between any pair of network nodes. 
A subgraph is a subset of the original set of graph branches along with their 
corresponding nodes. A maximally connected subgraph of a non-connected graph   
is called a component C  of   (Fig. 14). 

 
Figure 14: Example of a graph   consisting of 3 components C1, C2 and C3 . 
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3.3. Nodal and loop incidence matrix 

With the definitions of the previous section we can now formulate the cutset law for 
through and the mesh law for across quantities, in electrical domain Kirchhoff's 
current law and Kirchhoff's voltage law, which are illustrated in Fig. 15. 

 
E

k k
k 1

0


    
E

k k
k 1

0


    

k [ 1,0, 1]     according to the incidence k(b ) of branch kb  with the node/loop. 

Figure 15: Formulation of nodal equations for through and loop equations for across quantities. 

Setting up the cutset law for each independent node p  ( p C   , where  is the 

number of the graph’s components) yields a homogeneous matrix equation: 

 
p,k p,k

k

0     Aφ 0  (8)

with A as nodal incidence matrix and T
1 E( , ... , )  φ  as vector of the through 

quantities. Accordingly the mesh equations can be formulated for each independent 
loop ql  in a similar way, i.e.:  

 
q,k q,k

k

0     Bδ 0  (9)

with B as loop incidence matrix and T
1 E( , ... , )  δ  as vector of the across quantities. 

An example of a graph's nodal and loop incidence matrices is given in Fig. 16. 

Combining the cutset law / nodal equations (electrical: Kirchhoff's Current Law = 
KCL) and the mesh law / loop equations (electrical: Kirchhoff's voltage law = KVL) 
in a single matrix equation yields: 

 



   
    

   
aT

A 0 φ
0

0 B δ
 

(10)

or written in a more compact form as a homogeneous system of linear equations: 

 Ta 0  (11)

Solving (11) yields a kernel  2 Eker    T a 0Ta  whose dimension 

dim( ) def( ) 2       T  equals the number of branches   and whose 
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solution is  2span( )      S a a Sa  with E2 E E ,     S a . This raises the 

interesting questions, if it is easily possible to find the kernel and, furthermore, if 
there is an interpretation for the result, especially for the vector a ? 

1 1 0 0 0 1

1 0 1 1 0 0

0 1 1 0 1 0
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Figure 16: Example for formulation of nodal equations for through quantities and loop equations for 
across quantities using nodal and loop incidence matrices. 

Definition: Exactness 

A pair  ,  A A  of matrices n k k m,   A A  is called exact if and only if: 

  A A 0 and rank( ) rank( ) k A A  (12)

Theorem: The pair  T,A B  of incidence matrices is exact, i.e.  

 T A B 0 and Trank( ) rank( )  A B  (13)

Hence, the rows of the nodal incidence matrix are orthogonal to the columns of the 
loop incidence matrix and vice versa. 

Proof: The proof of the exactness of  T,A B  is not very complicated, because there 
are only four non-trivial cases (Fig. 17) of corresponding entries in the matrices A  
and B , but the resulting product equals zero in all of those cases. 

Using the exactness of  T,A B  the general solution for the cutset (13) and mesh 

equations (24) – i.e. KCL and KVL equations – can be written as linear combination 
of the columns of the transposed incidence matrix of the opposite equation system: 

 T ,φ B j 1   j  (14)

 T ,δ A v 1v  (15)

v1

v4

v2 v3
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l3
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Node………Voltage 
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Figure 17: Proof of exactness condition for nodal and transposed loop incidence matrix based on 4 
non-trivial cases. 

Hence, the kernel of A  is formed by the column vectors of TB  and vice versa the 
kernel of B  is formed by the column vectors of TA . The resulting full general 
solution of the cutset and mesh law is represented in Formula (16): 

 
 



T T

T T

'

      
            

                  
             

aT S

A 0 φ A 0 A 0 jB j B 0
0

0 B δ 0 B 0 B vA v 0 A
 

(16)

It is interesting that there is also a technical interpretation of that result. As each branch 
voltage fulfilling KVL can be expressed by a linear combination of those columns of the 
transposed nodal incidence matrix A , which belong to the incident nodes of the referring 
branch, the linear factor has to be of dimension voltage. Combining the “node” with a 
“voltage” yields a “node voltage” or a “node potential”, and indeed: assigning a potential 
to each node every branch voltage can be expressed by a difference of the node voltages 
of the respective branch that is connecting them. An example is given in Fig. 18. 
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Figure 18: Interpretation of the kernel of KVL as node voltages or node potentials. 
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Loop………Current 

A similar interpretation can be found for the general solution of KCL (13) illustrated 
in Fig. 19: As each column of TB  solves KCL, hence, the general solution is formed 
by a linear combination of all columns of TB . As B is of no physical dimension and 
the general solution yields the branch currents the linear factors can be identified as 
“currents“ assigned to each respective “loop”, i.e. “loop currents” or “mesh 
currents”. In summary: if all loop currents are known, each branch current can be 
expressed by a linear combination of loop currents, and the loop currents themselves 
fulfill KCL. 
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Figure 19: Interpretation of the kernel of KCL as loop currents or mesh currents. 

As a consequence circuit analysis and equation formulation can be significantly 
reduced if either node voltages or loop currents are used as variables, i.e. KVL can be 
saved by using node voltages, and KCL by using loop currents only. 

In the following section nodal (NA) and Modified Nodal Analysis (MNA) will be 
introduced that allow for an easy automated equation setup using node voltages and 
some selected currents as variables only. 

3.4. General modified nodal analysis (MNA) 

To derive a general approach for MNA we will separate the element relation vector 
into two parts, the first (upper one) that can be explicitly solved for through quantities 
(currents), and the second (lower part) for those relations that cannot be explicitly 
solved for certain through quantities (29). 

 
1 2 1

2 2

( , )
( , )

( , )

 
   

 

f φ δ φ
f φ δ 0 0

f φ δ
 (17)

The first part is denoted by 1 1 2φ f (φ ,δ) , meaning that the element relations 1f  are 

functions of the across variables δ  (later expressed in node potentials) and a subset of 
through quantities 2φ  (denoted by index "2") that can be explicitly solved for the 

subset of through quantities 1φ  (denoted by index "1"). The implicit functions 2f  of 

the second part denote the element relations of all those elements that cannot be 
explicitly solved for a through quantity, thus it is an implicit function of the across 
variables   (later expressed in node potentials) and the remaining through quantities 

2φ  (since all others are already included in 1f ). 

As a consequence the circuit or system can be divided into two parts, i.e. each branch 
can be classified belonging to part one ("1") or part two ("2"), and hence branches, 
quantities and the nodal incidence matrix can also be structured in the same manner: 
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As KCL (8) is still valid for the overall network, the following holds:  
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With (17) and (19) as well as (15) we obtain: 
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Although Error! Reference source not found. may look complicated, MNA 
equation setup can be done very efficiently in an automated way by an element-wise 
processing from a netlist. Taking a closer look at 
Error! Reference source not found. two cases can be identified, illustrated in Fig. 
20. 
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Figure 20: Element-wise setup of MNA equations. 

If an element belongs to the first class of element relations, i.e. explicitly solvable for 
a through quantity, case “1” can be applied yielding the following MNA contribution:  
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As it could be easily seen this is just the value of the through quantity (current) at the 
respective connected node according to the direction of the branch. For an element 
with index  belonging to the second class “2”, i.e. its element relation is not 
explicitly solvable for the through quantity, an additional equation (23) as well as the 
variable of the through quantity (22) has to be added to the MNA equations:  
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2 2
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 (23)

For the respective node equations the contributions of the through quantities are 
added and as the through quantity has been introduced as new variable to the system 
an additional equation has to be provided, including just the implicit element relation 
of the respective element.  

For linear element relations generic element patterns can be derived that leave the 
MNA-typical stamps in (20) yielding a linear matrix equation system [see Chapter 2] 
In the next section an example for setting up the equations of a nonlinear dynamic 
circuit is given. 

3.4.1. Example: MNA equations of a common emitter amplifier 

Fig. 21 shows a circuit of a simple common emitter amplifier. The related element 
relations are given in Fig. 22. To keep the equations not too complicated the BJT 
transistor is modeled by an ideal BE-diode and a linear current-controlled current 
source. 

 
Figure 21: Circuit of a simple CE-amplifier. 
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Figure 22: Element relations for the elements of the CE-amplifier circuit. 

Fig. 23 then displays the graph of the circuit already separated according to element 
relations. There are 3 branches having a non-admittance representation, i.e. belonging 
to class “2”, hence the MNA equation system will have 3 more additional equations 
than the number of nodes. 
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Figure 23: Graph of CE-amplifier with 6   nodes and 8   branches, whereas 2E 3  branches 

are class “2” branches (left) and corresponding partitioned nodal incidence matrix (right). 

The following Equations show the element-relation vectors of the amplifier for class 
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Finally, Fig. 24 contains the complete MNA system of equations with class “1“ and 
class “2” relations highlighted as in Fig. 20. 
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Figure 24: Complete MNA system of equations with highlighted class “1”  and class “2” relations and 
order of the branch elements with respect to the branch enumeration on the left. 

3.5. Automatic equation setup by symbolic analysis tool Analog Insydes 

Now it will be outlined how the equations of the Common Emitter (CE) amplifier 
circuit will be automatically set up by Analog Insydes. The first step is to generate a 
netlist of the circuit which can be automatically done from schematics’ entries, e.g. 
Cadence DFII or PSpice Schematics editor. The generation of the Analog Insydes 
netlist is either done by a special netlister (Cadence DFII) or by Analog Insydes‘ 
ReadNetlist command. It should be noted that for later symbolic approximation, 
the netlist should contain also numerical information about operating points as well as 
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model-card parameters. That‘s why Analog Insydes’ netlister or netlist parsers also 
read in numerical simulation data like operating point information. Fig. 25 again 
shows the circuit of the CE amplifier with node potentials marked. Note that for the 
current-controlled current source an additional short-circuit branch is needed to sense 
the controlling current. Hence, an additional node has been inserted so that the 
sensing branch connects node “2“ and “3”. 

Figure 25: Equivalent circuit of a simple CE-amplifier prepared for Analog Insydes. 

Fig. 26 displays the Analog Insydes netlist containing all information about the 
circuit, its elements, their symbols and values as well as the subcircuit definition for 
the diode. The way this subcircuit is defined will be explained in the following 
section on behavioral device models. 

 
Figure 26: Analog Insydes' netlist of the simple CE-amplifier. 

3.6. Behavioral device models in Analog Insydes 

Due to its origin Analog Insydes comes with a pre-defined device model library for 
analog electronic components. All device model implementations make use of the 
standard Analog Insydes modeling language in terms of a behavioral model 
description. This approach allows the modeling of nearly arbitrary element 
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characteristics by directly specifying the corresponding device equations, which in 
general may be a nonlinear DAE system. For this the Analog Insydes model definition 
is based on the port branch concept that was already introduced in Section 3.1.  

Consider that in Fig. 3 the anode and cathode pins of a diode are modeled as two 
connectors denoted by the identifiers “A“ and “C”. At those ports (network nodes) 
different components can be interconnected. For the diode the current-voltage relation 

between those nodes is given by the device equation  D TV /V
D SI I e 1 0    for the 

branch voltage and the branch current , where  denotes the saturation current 

and  the thermal voltage. 

Behavioral models can then be defined based on the port branches, where each unique 
pair of port identifiers (port1, port2) introduces a port branch between the 
model ports port1 and port2 with a positive reference direction from port1 to 
port2. The associated port variables in the behavioral model equations can be 
referred by means of special keywords, which are Voltage[port1, port2] and 
Current[port1, port2] for the electronic domain. For the diode the Analog 
Insydes format for the device equation (Fig. 26 bottom part of the netlist) reads as: 

 Current[A,C]  TVoltage[A,C]/V
D S=I +I e -1  (26) 

An alternative concept to the port branch concept could be the currents into the ports 
and the port voltages approach (as outlined in Fig. 4 on the right side), but this 
method is not well suited for other analysis methods than MNA. Due to the fact that 
Analog Insydes supports different analysis methods the introduced port branch 
concept has been implemented instead. 

3.7. Automated nonlinear time domain equation setup in MNA formulation 

From the netlist of Fig. 26 the circuit equations can be set up directly. Fig. 27 shows 
the generated system of MNA equations which form a DAE system. The system is a 
Mathematica [13] list containing 3 entries: equations, vector of variables, and the 
design points that contain numerical values of all parameters of the equations. 

 
Figure 27: System of MNA equations of the simple CE-amplifier generated by Analog Insydes. 

Fig. 28 illustrates the relation between linear and nonlinear parts of the overall MNA 
system. The whole linear part of the circuit can be set up using matrix fill-in patterns. 
For the diode its current is introduced in the matrix, which means an additional 
column (here the last column of the matrix related to D1I ) but no additional row. 
Hence, the nonlinear element relation of the diode is added to the equations so that 
finally the same number of variables and equations is obtained. 
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Figure 28: Illustration of the partitioning of the complete MNA system of the CE-amplifier into linear 
(top) and nonlinear (bottom) equations. 

3.8. Example for a multiplier circuit using full SPICE-BJT models 

Symbolic DAE systems of real-world circuits using fully simulator compatible device 
models (e.g. full Gummel-Poon BJT model) become rather large as motivated in Fig. 29. 

 
Figure 29: Impressions of a nonlinear DAE system for a 6-transistor multiplier circuit using full 
Gummel-Poon BJT models. 
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From this example, which is still rather small, it becomes obvious that the equations 
have to be simplified or approximated before they can be practically used e.g. as 
behavioral model. The next section will introduce symbolic approximation strategies for 
DAE systems and illustrate how reduced or simplified sets of equations can be generated 
that keep user defined accuracy compared to the original unsimplified equations. 

4. Symbolic Approximation Strategies 

4.1. Introduction 

Practical application of symbolic analysis would have been rather limited without the 
application of symbolic approximation techniques. Indeed these techniques hold the key 
in modern symbolic circuit analysis. The concept “symbolic approximation” describes a 
whole class of mixed symbolic/numeric procedures for the completely automatic 
simplification of symbolic expressions using numerical evaluations and simulations to 
determine the approximation error. This is different from manual simplifications that are 
mainly based on qualitative considerations (e.g. 1 2R R ) instead of quantitative ones. 

Automated symbolic approximation may yield more compact formulas satisfying a user-
predefined error bound. Lots of research has been done and reported in this area 
resulting in three different categories of approximation strategies: Simplification After 
Generation (SAG) [14, 15], Simplification During Generation (SDG) [6, 16, 17] and 
Simplification Before Generation (SBG) [18-21].  

One of the central prerequisites of the symbolic analysis flow presented in the next 
section was the development and implementation of efficient symbolic approximation 
algorithms, which impose no restrictions on the formulation of circuit equations, 
neither linear nor nonlinear, or on the set of circuit elements that may be used.  

Equation-based approximation procedures own all these requested properties since 
they are already applied on the level of circuit equations before the solution is 
determined (SBG). The basic principle of equation-based approximation is to follow 
the methodology of a circuit designer who introduces his simplifications already 
when formulating equations. Thus the complexity of the problem and the 
mathematical effort to process and solve the system is reduced substantially. 

4.2. Flow of equation-based approximation 

Before going into more details the underlying principle of equation-based 
approximation is presented. Fig. 30 shows a general flow of the introduced algorithm. 

Figure 30: Flow of equation-based approximation. 
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Equation-based approximation starts with the system of symbolic linear or nonlinear 
equations and a list of corresponding numerical reference values describing specific 
design points. Based on those numerical reference values the system of symbolic 
equations is evaluated and numerically solved for the variable(s) of interest; e.g. the 
output voltage of a circuit. This may be done on linearized equations in the frequency 
domain (similar to the AC analysis of a circuit simulator like SPICE); on the static 
system of the nonlinear equations (DC or DC-transfer characteristics); or on the 
complete set of non-linear, dynamic DAEs in the time domain (transient analysis). In 
summary, the same analyses as those of numerical simulators can be performed. Then 
the corresponding results are compared to the output of the simulator in order to 
determine that all equations are correct and the symbolic model reduction can be 
performed next. 

Starting with this full ranked system F of verified symbolic equations describing the 
system behavior the user chooses one or more numerical reference solutions if  ac-

cording to his interests as well as an appropriate error bound  . Then the algorithm 
iteratively applies symbolic simplifications to the system and solves this simplified 
system numerically, whereas the model reduction consists of a sequence of different 
simplification steps (e.g. the deletion of entire expressions in a sum term), which are 

described below. Subsequently, the obtained solutions if
  are compared to the 

previously numerically computed reference solutions using an appropriate error 
norm: i i if f    . Thus, if some simplifications exceed the error bound, i.e. 

 imin    , the simplification is undone, otherwise it is accepted. These iteration 

steps are repeated until no more simplifications are possible without violating the 
error bound. Finally, the simplified symbolic system iF  is returned. 

The order in which to simplify terms from the equation system is one of the crucial points: 
It is quite clear that those terms should be simplified first which have only a minor 
influence on the output behavior. Terms with large influence should not be removed at all. 
To achieve a maximum number of simplifications and to avoid unnecessary modifications 
an optimized order, the so called ranking is computed by a ranking algorithm predicting 
the influence on the error a modification step will cause. These ranking algorithms play a 
key role within the model-reduction process and depend on the circuit characteristics of 
interest. For example, in linear analysis magnitude, phase as well as pole and zero 
locations are of interest while in nonlinear analysis DC transfer, transient behavior, 
distortion, etc. are to be captured by the approximated system. 

For linear systems a term ranking can be efficiently generated by application of the 
Sherman-Morrison formula [21-23], which allows calculating the deviation of one or 
more components of the solution vector with respect to perturbations within the 
system matrix. Another ranking criterion for linear systems is the calculation of 
eigenvalue sensitivities with respect to terms or entries in the system matrix [24]. 

In the nonlinear case ranking is much more difficult (more detailed descriptions can 
be found in [25, 26]). One of the methods is to perform only a single Newton step 
either in one point or on a set of points of the transient response starting from the 
original (reference) solution. The ranking of all possible simplification steps is 
computed by iteratively applying each simplification step to the original system and 
carrying out one single Newton step starting from the reference solution. The 
corresponding Newton deviations (corrections) derived from the first Newton steps 
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are employed for setting up the ranking order that gives an estimation if the 
corresponding simplification step is convenient or not.  

According to the obtained ranking the equation-based approximation procedure iteratively 
applies single simplification steps and passes the manipulated system to the error checking 
routine, which calculates the accumulated numerical error of the simplification and 
compares it with the given error bound. In contrast to the results of the ranking - which 
only considers the error, a single simplification step causes on the original system - the 
accumulated error is the overall error when more simplification steps have been carried 
out according to the ranking list. If the error bound, i.e. the accumulated error, is exceeded 
the last simplification step is undone and the algorithm terminates returning the 
approximated system. Otherwise the next simplification is carried out according to the 
ranking list, followed by the error checking procedure as described before. 

In order to reduce the computational effort caused by the error checking routine some 
simplification steps can often be combined to a cluster of simplifications having the 
same order of magnitude in the ranking. By this a whole cluster of simplifications can 
be applied at once in contrast to applying each of the simplifications separately. 

4.3. Simplification strategies for nonlinear DAE systems 

Currently, the following different simplification strategies are applied: 

Algebraic Simplification, i.e. variable elimination or decoupling of independent 
blocks by exact algebraic transformations [27], e.g.: 

 
1 1 2

2 2 3

3 1 2 3

x y y

x y y

x x x y

 
 

  

       3 1x y  (27) 

Branch Simplification, i.e. the deletion of those branches of piecewise-defined 
functions, which are not relevant during the simulation [27], e.g.: 

  
2

1 2 2

1 2
1

x x if x 1
y x 1

x 1 x else
2


  



       1 1 2y x x x   

for 2x 1  during the whole reference simulation 

(28) 

Switch Simplification, i.e. the consideration or neglection of terms, which are 
implemented suitably with respect to specific physical effects which may be taken 
into account (switch parameter ) or neglected (switch parameter ) [28] 
depending on use case parameters or simulation precision, e.g.: 

 
 1 2Mx s f x s x            Mx f x  

with the switches 1s 1 , 2s 0  for turning on/off certain physical effects 
(29) 

Term Substitution, i.e. replacement of terms by their numerical mean value obtained 
during the reference simulation [26], e.g.: 

 
  3 1 2x R x f x          3 1x R x 1.23   

for  2f x 1.23  
(30) 

s 1 s 0
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Term Deletion, i.e. the removement of terms from the system of equations [26], e.g.: 

 
3 1 2x R R    1 2x f x         3 1 1x R x  

for 2 1R R  and 2 1f (x ) x  
(31) 

Within these definitions the item term describes all symbolic expressions that appear 
as summands in the equations and which can consist of expressions themselves again 
(term-in-term or hierarchical term deletion).  

The application of algebraic and branch simplification methods do not influence the 
numeric solution of the DAE system, whereas switch simplification, term 
substitution, and term deletion are approximations, which lead to errors or deviations 
from the original solution. However, all simplifications can influence the numerical 
stability of the system of equations. For this reason dedicated methods have been 
developed [27] to monitor the numerical stability during the simplification process. 
The stability and other analytical properties of numerical DAE systems depend 
essentially on the differential index (see e.g. [29]). DAEs with an index zero or one 
can be solved easily with standard ODE methods. However, higher index problems 
(i.e., DAEs with an index larger than one) constitute serious problems to the 
numerical solvers. It has been observed that the symbolic simplification of a DAE 
system may increase the system’s index. As a consequence an index observer has 
been integrated into the simplification algorithm in order to make sure that the index 
is not increased by the simplification procedure. 

 The overall duration of approximation and behavioral model generation depends 
strongly on the equations’ complexity as well as on the type and properties of 
simulations that have to be performed (AC, DC, transient). While the nonlinear 
dynamic approximation (DC and transient error criterion) of a 8 transistor operational 
amplifier (Fig. 31: 73 equations, 350 terms, 94 parameters) to a simplified system 
(Fig. 34: 6 equations, 24 terms, 21 parameters) takes about 13 minutes, computation 
time may increase to several hours for larger circuits, e.g. a  operational 
amplifier (26 transistors). On the other hand, linear symbolic approximation (transfer 
functions, poles and zeros) is performed in interactive computation time: For 
industrial-sized analog circuits, e.g. for up to 50 transistors, approximation times are a 
few minutes or less. 

Example 

In the following example it will be demonstrated that for real-world circuits the 
reduction can be enormous even without losing too much accuracy. Fig. 31 shows an 
8 transistor operational amplifier circuit. The task is to derive a behavioral model 
having a DC as well as a transient specification, i.e. that the DC error between 
original circuit and generated behavioral model should not exceed 0.25V for an large 
signal input range from -1V to 1V, and that the transient error for a square-wave 
signal should not exceed 1V (norm or maximum norm), see Fig. 32. 

 

A741
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Op-Amp: 

- 8 Bipolar-
Transistors 

- 7 independent 
Sources 

- 5 Resistors 

- 1 Capacitor 

 

Figure 31: Operational amplifier circuit to demonstrate automated behavioral model generation. 

DC-transfer specification 

- error bound: DC 0.25V   

- error function: DCE


   

Transient-transfer specification 

- error bound: Tran 1.0V   

- error function: TranE


   

Figure 32: User-defined error specification for model generation: DC (left) and transient (right) error 
functions (input: continuous line, red; output: dashed line, blue; error bound: gray). 

Setting up the equations of the full circuit – i.e. the SPICE simulator equivalent DAE 
system – yields 73 equations with 350 terms in 94 parameters. This complexity is 
illustrated in Fig. 33. The full printout would fill pages. 
 

Original system: 73 equations, 350 terms, and 94 parameters. 

Figure 33: Illustration of the original DAE system of the op-amp circuit. 
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After application of the different simplification steps (workflow according Fig. 30 
algebraic compression, branch simplification, algebraic compression, term deletion, 
algebraic compression) the DAE system displayed in Fig. 34 is obtained. 

Symbolic Approximation: 73 6 equations, 350 24 terms and 94 21 parameters 

Figure 34: Approximation result: simplified DAE system generated by Analog Insydes. 

Taking a look at the comparison of simulation results in Fig. 35 it becomes obvious how 
powerful symbolic approximation is and that such dramatic simplifications can never be 
obtained by a manual procedure. Moreover, this result shows that - at least for well-
designed circuits - a significant reduction can be performed without losing too much 
accuracy. For more critical circuits with more interaction between the elements and with 
larger influence of parasitics the remaining equations will be more complex due to more 
coupling and higher sensitivity with respect to the involved terms and components. 

Figure 35: Comparison of the results, showing the original (continuous red line), the approximated 
system (dashed blue line) and the related error boundaries (gray). 

4.4. Transfer of the methodology 

Because of the general mathematical approach of the model processing procedures 
the methods originally developed for analog circuits can be transferred to the other 
application fields as well. Analog Insydes’ capabilities for automatic generation of 
symbolic equations and their approximation can be applied to any system that is 
described as generalized Kirchhoff networks (i.e. by generalized Kirchhoff 
equations). Thanks to the analogies to electronic circuits (Section 3) all through and 
across quantities can be interpreted as “currents” and “voltages” without any changes 
of the program code. Thus, only some extensions of the model libraries were 
necessary to adapt the methods of automated equation setup and symbolic 
approximation to the analysis of other domains systems as e.g. hydraulics (e.g. gas-
pipeline nets [30]) and mechatronics (e.g. acceleration sensor [31]).  

For the handling of mechanical and mechatronical systems the Fraunhofer Institutes 
ITWM and IIS/EAS developed an Analog Insydes library, which contains linear and 
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some nonlinear beam elements as well as different force and displacements sources, 
providing symbolic models of micromechanical elements according to the introduced 
modeling approach for mechanical system elements (see Section 3.1). 

4.5. Behavioral device models of generic multi-domain multi-port/-branch elements 

To adapt this concept to generic multi-domain systems, the so far scalar-type 
electrical ports of Analog Insydes have been extended to the more general case of 
multidimensional vector-type through and across quantities. Considering each 
dimension of each related pair of quantities as a separate branch, a simple 3-
dimensional mechanical component with two ports has already six accompanying 
model branches (e.g. see beam element in Fig. 6). To reduce failure and effort in 
Analog Insydes the vector-type description of multidimensional quantities is 
implemented.   

Within an Analog Insydes netlist description this is achieved by adding a 
NetlistAttributes section, a new language object that is valid for the whole 
netlist object within which it has been defined. Thus simply the dimension of a 
corresponding netlist node has to be defined using the NodeDimensions keyword. 
The appropriate syntax for this is as follows: 

NetlistAttributes[ 

   NodeDimensions -> {<node1> -> 6, ..., Default -> 1}, 

   NodePositions -> {<node1> -> {<x1>, <y1>, <z1>}, ...} 

] 

Here <node1> denotes the name of the mechanical node and {<x1>, <y1>, 
<z1>} is the corresponding numerical coordinate vector, respectively. The 
coordinate information specified by the NodePositions keyword is used for the 
automatic computation of the geometrical parameters of the mechanical component 
and with the Default -> 1 setting all remaining nodes in the netlist description 
can be defined as being of scalar type without stating them explicitly, which is very 
useful when having multi-physics applications. This new language construct is used 
in the following examples. 

 

5. Application Example for a Mechatronic System  

As an example for a multi-physical system we consider an acceleration sensor [32] 
consisting of mechanical and electrical parts (Fig. 36). The sensor contains three 
parallel conducting plates, which form two serial capacities 1C  and 2C . The central 

plate is versatile and can be moved out of its balanced position (central if A BR R ) 

resulting in a Hooke's force with constant K . In case of acceleration, the central plate 
is forced to leave its central position resulting in changes of the capacities between 
the electrical connectors E1/ E0  and E2 / E0 . This yields a potential drop outV  for 

the central plate with respect to its potential in the idle state. 
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Figure 36: Acceleration sensor with simple circuitry. 

This acceleration sensor has one mechanical and three electrical ports (the center that 
is connected to mass potential and each plate). The mechanical port has the vector 
variables displacement u  and force F . Besides the accelerating external force F  
internal forces are acting on the system, resulting from electrostatics, Hooke's law, 
and damping, described by: 

 
2 2
1 2

int
0

Q Q
F Kx Dx

2A


  


  (32)

Where 1Q  and 2Q  are the charges of the plates 1E  and 2E , A  is the plate area,  0  

the dielectric constant, and D  the damping constant. Acting along the axial direction 
of e  the force results in an acceleration of the central plate whose mass is dynm : 

  dyn dynF m x e u     (33)

Here,  x  is the local displacement of the central plate from the idle position and u  the 
global displacement of the acceleration sensor. Thus the forces acting on the static mass 

statm  are the external force F  and the internal force intF e  yielding the equation of motion:  

 int statF F e m u    (34)

For the capacities the charges 1Q  and 2Q  depend on the node voltages 0V , 1V  and 

2V  at the electrical connection ports 0E , 1E and 2E : 

  1 1 1 0Q C V V   2 2 2 0Q C V V   (35)

where the capacitances 1C  and 2C  depend on the plate distances (idle distance 0d ): 

 1
0

A
C

d x
 

 2
0

A
C

d x
 


 (36)

The branch currents from 1E  to 0E  and 2E  to 0E  are given by: 

  k,0 ki Q ,   k 1, 2   (37)

Because of using six-dimensional port variables (3 for the displacements and 3 for the 
rotation angles), we add trivial angular equations with moment of inertia   and torqueM: 

  k kM ,   k 1, 2,3     (38)
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Figure 37: Multi-physics netlist including acceleration sensor. 

Changes of the orientation of the sensor are not considered in this example. The 
above equations are implemented as an Analog Insydes model called 
AccelerationSensor. 

Fig. 37 shows its usage within the netlist description for the system of Fig. 36. The 
acceleration sensor as is oriented in  0,1, 0  direction. Its connections are specified 

by <node> -> <port> mappings. On the one hand the electrical ports E0, E1 
and E2 are connected to the circuit at nodes e0, e1 and e2; on the other hand the 
mechanical port M is connected to the point mass and the accelerating force at node m.  

At this node a time-dependent force acts towards  0, 1, 0 , accelerating the system 

starting at t 10 ms . The corresponding numerical values for all model parameters are 
listed in Fig. 38. All component parameters are instantiated by the postfix $<comp> 
where <comp> specifies the corresponding component name as given in the netlist. For 
all values which are not set within the netlist, default values are used instead. 

 
Figure 38: Numerical values for all system parameters (given in SI units). 

Circuit[

Netlist[

{V0, {1, 0}, Symbolic → V0, Value → 1},
{RA, {1, 2}, Symbolic → RA, Value → 1},
{RB, {2, 0}, Symbolic → RB, Value → 1},

{R1, {1, e1}, Symbolic → R1, Value → 1.×108},

{R2, {0, e2}, Symbolic → R2, Value → 1.×108},

{out, {2, e0}, Value → 0, Type → OpenCircuit},

{as, {m → M, e0 → E0, e1 → E1, e2 → E2},
Model → AccelerationSensor, DIRECTION → {0, 1., 0}},
{mass, {m → M}, Model → Mass, M → 0.1},
{force, {m → A}, Model → Source,
FORCE → {0, If[t > 0.01, −1, 0], 0}, MOMENT → {0, 0, 0}},

NetlistAttributes[
NodeDimensions → {m → 6, Default → 1},
NodePositions → {m → {0, 0, 0}}
]

]

V0 → 1 DAMP$as → 0.0485322

RA → 1 D0$as → 1
125000

RB → 1 THETA$as → 0.0001

R1 → 1.×108 E1$as → 0

R2 → 1.×108 E2$as → 1.
M$mass → 0.1 E3$as → 0

THETA$mass → 1. F1$force → 0

AREA$as → 6.25× 10−6 F2$force → If@t > 0.01, −1, 0D

EPS0$as → 8.85419× 10−12 F3$force → 0
K$as → 60.086 M1$force → 0

MSTAT$as → 0.001927 M2$force → 0

MDYN$as → 9.8× 10−6 M3$force → 0
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Figure 39: Automatically generated DAE system. 

i$V0[t] + v$1[t]

R1
+ v$1[t]

RA
- v$2[t]

RA
- v$e1[t]

R1
== 0

- v$1[t]

RA
+ v$2[t]

RA
+ v$2[t]

RB
== 0

-i$E1E0$as[t] - i$E2E0$as[t] == 0

i$E1E0$as[t] - v$1[t]

R1
+ v$e1[t]

R1
== 0

i$E2E0$as[t] + v$e2[t]

R2
== 0

f$M$10$as[t] + f$M$10$mass[t] + f$A$10$force[t] == 0
f$A$20$force[t] + f$M$20$mass[t] + f$M$20$as[t] == 0
f$M$30$mass[t] + f$A$30$force[t] + f$M$30$as[t] == 0
f$M$40$mass[t] + f$A$40$force[t] + f$M$40$as[t] == 0
f$M$50$as[t] + f$A$50$force[t] + f$M$50$mass[t] == 0
f$M$60$as[t] + f$M$60$mass[t] + f$A$60$force[t] == 0
-V0 + v$1[t] == 0
-v$2[t] + v$e0[t] + v$out[t] == 0
-f$M$10$mass[t] - M$mass u$m$1’’[t] == 0
-f$M$20$mass[t] - M$mass u$m$2’’[t] == 0
-f$M$30$mass[t] - M$mass u$m$3’’[t] == 0
-f$M$40$mass[t] - THETA$mass u$m$4’’[t] == 0
-f$M$50$mass[t] - THETA$mass u$m$5’’[t] == 0
-f$M$60$mass[t] - THETA$mass u$m$6’’[t] == 0

c1$as[t] - AREA$as EPS0$as

D0$as-x$as[t]
== 0

c2$as[t] - AREA$as EPS0$as

D0$as+x$as[t]
== 0

q1$as[t] + c1$as[t] v$e0[t] - c1$as[t] v$e1[t] == 0
q2$as[t] + c2$as[t] v$e0[t] - c2$as[t] v$e2[t] == 0

0 == fint$as[t] + - q1$as[t]2

2 AREA$as EPS0$as
+ q2$as[t]2

2 AREA$as EPS0$as
+ K$as x$as[t] +

+DAMP$as x$as’[t]

i$E1E0$as[t] - q1$as’[t] == 0
i$E2E0$as[t] - q2$as’[t] == 0

0 == -fint$as[t] + E1$as MDYN$as u$m$1’’[t] + E3$as MDYN$as u$m$3’’[t] +
+ MDYN$as x$as’’[t] + E2$as MDYN$as u$m$2’’[t]

f$M$10$as[t] + E1$as fint$as[t] + MSTAT$as u$m$1’’[t] == 0
f$M$20$as[t] + E2$as fint$as[t] + MSTAT$as u$m$2’’[t] == 0
f$M$30$as[t] + E3$as fint$as[t] + MSTAT$as u$m$3’’[t] == 0
f$M$40$as[t] + THETA$as u$m$4’’[t] == 0
f$M$50$as[t] + THETA$as u$m$5’’[t] == 0
f$M$60$as[t] + THETA$as u$m$6’’[t] == 0
f$A$10$force[t] - F1$force == 0
-F2$force + f$A$20$force[t] == 0
f$A$30$force[t] - F3$force == 0
f$A$40$force[t] - M1$force == 0
f$A$50$force[t] - M2$force == 0
f$A$60$force[t] - M3$force == 0
u$m$1[0] == 0
u$m$2[0] == 0
u$m$3[0] == 0
u$m$4[0] == 0
u$m$5[0] == 0
u$m$6[0] == 0
u$m$1’[0] == 0
u$m$2’[0] == 0
u$m$3’[0] == 0
u$m$4’[0] == 0
u$m$5’[0] == 0
u$m$6’[0] == 0
q1$as[0] == 0
q2$as[0] == 0
x$as[0] == 0
x$as’[0] == 0
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This notation is also used for the DAE system shown in Fig. 39, which has been 
generated automatically from the netlist description. It consists of 39 equations for 39 
variables that are named, using a similar convention: e.g. the local displacement x  of 
the central plate of as is named x$as[t] and the third component of the 
displacement in node M is denoted by u$m$3[t]. Additionally, there are 16 initial 
conditions for the 14 mechanical variables (location and rotation angle, velocity and 
angular speed, displacement and velocity of the central plate) as well as the charges 
on plates E1 and E2.  

To perform the approximation as described in Section 4.2, the output variable outV  

has been chosen as variable of interest and the maximum approximation error has 
been set to 20 mV (20%). For these settings, the highlighted expressions have been 
identified to be not mandatory relevant for the dynamics of outV . Furthermore, 

automated exact algebraic manipulation finally leads to the reduced DAE system 
shown in Fig. 40, which consists of nothing but five equations only. Note, that the 
reduction to the y direction (only displacement variable u$m$2 is left) and the 
removal of all rotational degrees of freedom has been done in a completely automatic 
way. Additional approximations, e.g. removal of the expression (MDYN$as 
x$as´´[t]) in the dynamics of the central plate, have also been applied 
automatically. Here, “MDYN$as x$as´´[t]” is an expression in Mathematica 
syntax. It is the product of the model parameter MDYN$as (dynamic mass of 
acceleration sensor as) times the second derivative of the variable x$as[t] 
(displacement x  of the central plate of the acceleration sensor as). 

Finally, Fig. 41 illustrates a comparison of outV  for the original and the simplified 

DAE systems, considering the acceleration of the point mass by a force, starting at 
t 10 ms . In the reduced model, the systems acceleration only depends on the point 
mass M$mass, neglecting the mass of the sensor (MSTAT$as + MDYN$as), which 
is less than two percent of the point mass. This finally results in the slightly increased 
absolute value for the stationary voltage outV . The different dynamic behavior close 

to t 10 ms  is mainly due to neglecting the inertia of the central plate. 

 

 
Figure 40: Simplified DAE system. 

F2$force == M$mass u$m$2''[t]

q1$as[t] == AREA$as EPS0$as (RA V0+(RA+RB) (v$out[t]+R1 q2$as'[t]))

(RA+RB) (D0$as-x$as[t])

q2$as[t] == AREA$as EPS0$as (-RB V0+(RA+RB) (v$out[t]-R2 q2$as'[t]))

(RA+RB) (D0$as+x$as[t])

q1$as'[t] + q2$as'[t] == 0
K$as x$as[t] + DAMP$as x$as'[t]+ E2$as MDYN$as u$m$2''[t] == 0
u$m$2[0] == 0
u$m$2'[0] == 0
q1$as[0] == 0
q2$as[0] == 0
x$as[0] == 0
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Figure 41: Comparison of original (solid red line) and simplified model (dashed blue line). 

6. Approximation Example for a Mechanical System 

The mechanical model used in the previous section is just a very simple model, 
considering the basic principles of an acceleration sensor. Now we will discuss a more 
detailed model for the mechanical parts, described as the appropriate composition of 
basic beam elements to form a network-type model. One aim is to derive a symbolic 
expression yielding the force constant in the static case as a function of the material 
properties and geometric parameters. Fig. 42 shows a sketch of the structure for a typical 
micromechanical acceleration sensor (e.g. [12, 33]). The displacement u  in node C3 
can be considered as a function of the acceleration force F . 

With these assumptions it is sufficient to consider the dark gray parts only. The other 
parts are important to model the full dynamic behavior, especially to calculate the 
eigenfrequencies. The corresponding model to analyze the behavior consists of 14 
beam elements (three different kinds), two anchors and a force F  acting at node C3 
in y direction. The material properties ( , E and F ) and width w  are the same for 
all beam elements. The length and height of the two central beam elements (C3 to C4 
type) are Bl  and Bh  whereas the height and length of the other beam elements are Ah  

and A1l  (C1 to R1 type) and A2l  (R1 to R2 type). This system can be described by a 

netlist, utilizing the beam element model described in Section 3.1. 

Figure 42: Micromechanical acceleration sensor. 
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To derive an approximated symbolic expression for the force-displacement relation in 
C3 the low-frequency behavior is used and further simplified to the static case. 
Vibrational analysis in the mechanical domain corresponds to AC analysis or small-
signal analysis in the electronic domain, for which the necessary functionality is 
already implemented within Analog Insydes, so that all following steps are already 
automated: 

- Equation Setup: 

The full transient model of the system is created, resulting in a DAE system 
describing the dynamics of the 264 variables in the general case, whereof 78 
variables occur in their second-order time derivative. 

- Algebraic Simplification: 

Using variable elimination and the removal of independent blocks, the system 
can be reduced to a DAE system in 39 variables, whereof all variables occur in 
their second-order time derivative. 

- Laplace Transformation: 

In our application example, the initial DAE system is linear in its variables. 
This results in a linear system of equations with the Laplace frequency  as an 
additional parameter. Analog Insydes allows to automatically deriving small-
signal equations from the large-signal DAE system. 

- Define Analysis Task: 

For the original system, the transfer function  is computed numerically 
and the result is shown in Fig. 43. As we are mainly interested in the low-
frequency behavior below 2 kHz and in the static transfer characteristic, we 
choose a maximum error of 10% for u  at s 2 if   where f 10Hz . 

 
Figure 43: Comparison of original (solid red line) and simplified model (dashed green line). 

- Symbolic Approximation and Symbolic Solution: 

Insignificant terms within the symbolic matrix of the equation system are 
automatically identified and removed. Independent blocks of the remaining 

s

H(s)
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equation system are eliminated. This leads to a system of only 10 symbolic 
linear equations. The numerical validation for this approximation in 
comparison to the original model is shown in Fig. 44. Of course, for the high-
frequency behavior the approximation is not valid, because only the low-
frequency behavior has been taken into account within the error-checking of 
the approximation step. This simplified system can be solved symbolically: 

 
3
A1 A1 A2
3
A A1 A2

l l 2l
u F

Eh w 2l l





 (39)

- Numerical Validation: 

Fig. 44 shows a numerical validation of the approximated expression for the 
static transfer characteristic in comparison to the numerical solution of the 
original model with respect to material and geometrical parameters. The 
corresponding parameters have been varied over a range of 10% to 1000% of 
the nominal value: 

 

A1

A2

2 2

B

22μm l 2.2mm
1.2μm l 120μm

mN N
13 E 1.3

μm μm
5μm h 500μm

 
 

 

 

 (40)

The figure shows the excellent correspondence between the approximated 
formula and the results obtained from the original model. This holds for 
variations of geometrical parameters like A1l  and A2l  as well as for material 

properties like the elastic modulus E. Additionally, parameters with minor 
influence on the displacement (e.g. Bh ) do not appear within the approximate 

formula.  

 
Figure 44: Validation of the approximation - original model (solid red line) and approximation 
(dashed green line). 
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7. Conclusion 

In this Chapter a general modeling approach for different domains as well as multi-
physical systems is presented. Its fundamentals are the generic approaches of: a 
branch-oriented modeling of system components; a branch-oriented topology 
description based on the principles of network analysis; and the application of 
symbolic methods. Those have already been successfully applied to electronic 
systems, and corresponding modeling tools are available. In order to transfer the 
methodology to other domains and multi-physical systems, vector-valued variables 
and adapted device models for basic system components have been developed and 
implemented. The capabilities of this new approach have been demonstrated on 
applications for the modeling and analysis of mixed electronic and mechanical 
systems. 
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CHAPTER 13 

Nonlinear Template-Free Symbolic Performance Modeling for 
Design and Process Variation Analysis of Analog Circuits 

Trent McConaghy1,* and Georges G.E. Gielen2 

1Solido Design Automation Inc., Canada (formerly with Katholieke Universiteit Leuven, Belgium) and 
2Katholieke Universiteit Leuven, Belgium  

Abstract: This chapter presents the CAFFEINE tool, which is a method for generating 
symbolic performance models of electronic circuits without any prior specification of an 
equation template.  CAFFEINE uses SPICE simulation data, allowing it to handle 
strongly nonlinear circuits, statistical process variations, and a variety of analysis types. 
CAFFEINE expressions are canonical form functions: product-of-sum layers alternate 
with sum-of-product layers, as defined by a context-free grammar. Besides the attribute 
of interpretability, CAFFEINE models demonstrate lower prediction error than several 
state-of-the-art regression techniques including posynomials, projection-based quadratic 
models, boosted neural networks, piecewise polynomials / splines, kriging, and support 
vector machines. In addition, CAFFEINE is also useful in variation-aware modeling, 
behavioral modeling, and tradeoff modeling. 

Keywords: Symbolic analysis, symbolic modeling, template-free modeling, performance modeling, 
CAFFEINE, canonical form function, SPICE accuracy, interpretability, integrated circuits, grammar, 
genetic programming, evolutionary algorithm, posynomial, regression, whitebox modeling, blackbox 
modeling, response surface modeling, template extraction. 

1. Introduction 

Both symbolic analysis and symbolic modeling aim to derive human-interpretable 
expressions of analog circuit behavior [1].  Symbolic analysis extracts the expressions 
via topological analysis of the circuit, whereas symbolic modeling extracts the 
expressions by using SPICE simulation data.  These expressions have the same 
applications: knowledge acquisition and educational / training purposes, analytic 
model generation for automated circuit sizing, design space exploration, repetitive 
formula evaluation including statistical analysis, analog fault diagnosis and testability 
analysis, and analog behavioral model generation [2].  In particular, a tool that can 
help a designer improve his understanding of a circuit is highly valuable, because it 
leads to better decision-making in circuit sizing, layout, verification, and topology 
design, regardless of the degree of automation.  Therefore, approaches to generate 
symbolic expressions are of great interest.  

Historically, symbolic analysis came first, starting with ISAAC [3] and followed by 
several other techniques; see chapter 1 in this book for a review.  Until recently, the 
main weakness was their limitation to linear and weakly nonlinear circuits.  This was 
overcome via piecewise-linear/polynomial modeling approaches (e.g. [4, 5]), but at 
the cost of interpretability. 

Leveraging SPICE simulations in modeling is promising because simulators readily 
handle nonlinear circuits, environmental effects (e.g. temperature, power supply 
voltage, loads), manufacturing effects, different technologies, new effects (e.g.  
 
*Address correspondence to Trent McConaghy: Solido Design Automation Inc., Canada (formerly with 
Katholieke Universiteit Leuven, Belgium); E-mail: gtrent@gmail.com 
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proximity, electromigration, packaging), and more.  From simulation data, a model 
y=f(x) is constructed, where y is typically a performance metric, x includes design, 
process, or environmental variables, and f is an approximation of the SPICE mapping.  
Models used include linear models, posynomials, polynomials, splines, neural 
networks, support vector machines, Latent Variable Regression (LVR), and kriging 
(see refs. in [6]).  However, such models either follow an overly restrictive functional 
template which limits their applicability, or they are opaque and thus provide no 
insight to the designer.  Less opaque flows exist, such as visualizing CART trees [7]; 
nonlinear sensitivity analysis [7]; or plotting the mapping from LVR affine transform 
w1*x to the output y=f1(w1*x) [8].  While useful, these approaches do not give the 
functional relations that symbolic models provide. 

The aim of symbolic modeling as defined in this chapter is to use simulation data to 
generate interpretable mathematical expressions for circuit applications, typically 
relating the circuit performances to the design variables.  Symbolic modeling has 
similar goals to symbolic analysis, but a different core approach to solving the 
problem.  In [9] posynomial-based symbolic models are constructed. The main 
problem is that the models are constrained to a predefined template, which restricts 
the functional form.  Also, the models have dozens of terms, limiting their 
interpretability for designers.  Finally, the approach assumes posynomials can fit the 
data; in analog circuits there is no guarantee of this.  There have also been advances 
in quadratic modeling [10], but polynomials also have a restrictive structure. 

This chapter describes CAFFEINE, which generates symbolic models having more 
open-ended functional forms (i.e. without a pre-defined template), for arbitrary 
nonlinear circuits and circuit characteristics, and at the same time ensuring that the 
models are interpretable. Fig. 1 shows a target flow that reflects these goals.   
CAFFEINE treats the task as a search problem in the space of possible functional 
form trees.  An appropriate search algorithm is then Genetic Programming (GP) [11].  
Within GP search, a grammar [12] constrains the generated functions to those that are 
human-interpretable.  CAFFEINE stands for Canonical Functional Form Expressions 
in Evolution [6, 13].  

 

Figure 1: Template-free symbolic modeling flow. 

Some features of CAFFEINE include: 

 To our knowledge, it is the only tool for template-free symbolic modeling; 

DOE or Circuit Optimization

Template-Free Symbolic Modeling

Circuit Sim. Data: 
(Design Point, Perf.) Pairs

Functional 
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 Because it uses SPICE data, it can model any nonlinear circuit, under any analysis 
(e.g. ac, dc, transient, noise), any performance characteristic (e.g. power 
consumption, slew rate, even yield and Cpk), and inputs controllable or 
uncontrollable variables (e.g. design variables, process variables, environmental 
variables, parasitic variables); 

 It returns models that are compact and understandable, yet with good accuracy.  
In fact, it returns a set of possible models that trade off accuracy and complexity 
by using multi-objective search [14].  

This chapter is organized as follows.  Section 2 presents the problem formulation.  
Section 3 presents background on genetic programming.  Section 4 introduces the 
heart of CAFFEINE: canonical form functions.  Section 5 describes the reference 
search algorithm, which uses multi-objective genetic programming and a grammar to 
constrain to canonical form functions.  Section 6 gives some experimental results.  
Section 7 describes other applications of CAFFEINE.  Section 8 concludes. 

2. Problem Formulation 

The symbolic performance modeling problem that we address has the flow of Fig. 1.  
Its inputs and outputs are as follows: 

Given: 

 X and y: A set of {xj, yj}, j=1..N data samples where xj is a Nd-dimensional 
design point j and yj is a corresponding circuit performance value measured 
from SPICE simulation of that design.  Design of Experiments (DOE) [15] or 
circuit optimization can be used to generate the data samples. 

 No model template. 

Determine: 

 A set of symbolic models M that provide the Pareto-optimal tradeoff between 
minimizing model complexity f1 and minimizing future model prediction error 
f2. 

The formulation used is a constrained optimization problem: 













 mts
xmyLEf

mcomplexityf
M

yx

..
))(,(

)(
min

,2

1
 (1)

where   is the space of template-free symbolic models.  The algorithm will traverse 
 to return a Pareto-optimal set M = {m1, m2, …, 

MNm }.  Each model m maps an Nd-

dimensional input x to a scalar circuit performance approximation ŷ , i.e. ŷ =m(x).  
Complexity is some measure that differentiates the degrees of freedom between 
different models (see (5)).  Ex,yL is the expected loss for a given m over future 
predictions in the distribution pdf(x), where L is the squared-error loss function [16]:  

2/)))(())(,( 2xmyxmyL   (2)

Section 5.1 describes how an approximation for L() is computed.  By definition, no 
model in the Pareto-optimal set M dominates any other model.  A model ma 
“dominates” another model mb if {fj(ma)   fj(mb)} j, and {fj(ma)   fj(mb)} j.  In our 
case, j = {1, 2}.  That is, to be Pareto-optimal, a model must be at least as good as any 
other model on both objectives, and better than any model in one objective. 
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3. Background: Genetic Programming 

Genetic Programming (GP) [11] is an evolutionary algorithm, with the distinguishing 
characteristic that GP individuals (points in the design space) are trees.   Since a 
symbolic model is a function and can be represented as a tree, the search for the 
above models can be accomplished by GP search.  

The functional form of results from canonical GP is completely unrestricted.  While 
this sounds promising compared to the restrictions of fixed-template regression, it 
actually goes a little too far: an unrestricted form is almost always difficult to analyze.  
GP-evolved functions can be notoriously complex and un-interpretable.  For example, 
[11] showed functions so bloated [17] that they take up a full page of dense text. A 
recent paper complains: “[GP-evolved] expressions can get, as we have seen, quite 
complex, and it is often extremely difficult to understand them without a fair bit of 
interaction with a tool such as Mathematica” [18].   

We can see for ourselves.  Using a dataset from section 6, canonical GP evolution 
returned the following expression1: 

- 1.40 * ( vsg1 + max( vsg5, max( max( max( vsg5, max( 
vsg3 + vgs2, min( vsg3, abs( 1/vds2 ) ) ) - log10(vsd5) 
), min( ib2, abs( sqrt( abs(id1) ) ) ) ) - log10(vsd5), 
max( id2, min( vsg3, abs( sqrt( abs( log10(id2) ) ) ) ) ) 
+ log10(vsd5) ) - min( vsg3, abs( sqrt( abs(id1) ) ) ) - 
log10(vsd5) ) ) 

Improvements in interpretability are clearly needed. The next section presents 
CAFFEINE to handle this issue. 

4. CAFFEINE Canonical form Functions  

The design of CAFFEINE follows two guidelines: 1) ensure maximum 
expressiveness per node, and 2) make all candidate functions directly interpretable.   

Fig. 2 shows the general structure of a CAFFEINE function. It alternates between 
levels of sum-of-product expressions and product-of-sum expressions. Each sum-of-
product expression is a weighted linear add of an overall offset term plus weighted 
basis functions. A basis function is a combination of product terms, where each 
product term is a polynomial/rational, zero or more nonlinear operators, and zero or 
more unity operators. Each product term acts as a “gate” to the next sum-of-products 
layer. 

Fig. 3 left shows an example function and its corresponding tree.  In the “7.1/x3” part 
of the function, the 7.1 is the tree's top left “w0” and the “1/x3” is its neighboring 
“poly/rat'l of vars”.  The “1.8” corresponds to top “w1”, and the “x1” is the its 
neighboring “poly/rat'l of vars”.  The function's “log” corresponds to “nonlinear 
func”, which in the tree holds the “weighted linear add” term “

3
2
21 /*4.1/0.89.1 xxx  ”.  That term itself breaks down: function's the “-1.9” is 

the tree's lower “woffset”; “8.0/x1” corresponds to the tree's lower left “w0” * “poly/rat'l 
of vars”; and “1.4*x2

2/x3” corresponds to the tree's lower right “w1” * “poly/rat'l of 

                                                 

 
1 The expression font and style are presented like [11]. 
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vars”.  Note how CAFFEINE places coefficients only where they are needed, and 
nowhere else.   

 
Figure 2: CAFFEINE evolves functions of this canonical form.  While it can go deeper indefinitely, it 
is typically only as deep as shown in order to retain human interpretability. 

Fig. 3 right gives an example which has unity functions for product terms.  Note how 
there is no nonlinear function that gates one layer of linear adds to the next -- this is 
how CAFFEINE supports a product-of-sums formulation. 

 

 
Figure 3: Top: Example of a function in text form, and its corresponding CAFFEINE tree form.  
Bottom: Example where CAFFEINE product terms include unity functions. 

Typical usage of CAFFEINE would restrict the number of product term layers to just 
one or two (like in Fig. 2), therefore ensuring that there is not an excessive 
compounding of nonlinear components such as log(sin(exp(x))).  There can also be a 
limit on the maximum number of basis functions.  Due to the use of a canonical form, 
all evolved functions are immediately interpretable, with no symbolic manipulation 
needed. 
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5. CAFFEINE Search Algorithm 

This section describes the search algorithm used on CAFFEINE functions.  
CAFFEINE search uses multi-objective grammatically-constrained Genetic 
Programming (GP).  The multi-objective aspect means it returns a set of models 
which trade off between error and complexity.  The grammatically-constrained aspect 
means it follows the canonical functional forms described in the previous section.   

In CAFFEINE, the overall expression is a linear function of NB basis functions Bi; 
i={1,2,…, NB }: 
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A CAFFEINE individual m has one GP tree to define each basis function: m = {B1, 
B2, …, 

BNB }. The linear coefficients 1 BNa  are determined on-the-fly using linear 

regression on the least-squares cost function (2).  

5.1. Multi-objective approach  

CAFFEINE can use any competent multi-objective evolutionary algorithm; in our 
experiments we use NSGA-II [14].  NSGA-II returns a set of individuals that, 
collectively, trade off model error and complexity.  Error and complexity are the 
objectives f1 and f2 in (1). The error (expected loss Ex,yL) is approximated by the 
“training error” tr , which is the normalized root mean squared error of individual m 

on the training data: 
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where Ntr is the number of training samples; ytr,i is sample i of training outputs ytr, 
);(ˆ ,, mFy itritr x  using (3); and xtr,i is sample i of training inputs Xtr.  Note that the y-

values are scaled by y, not ytr.  test  has a similar formula, except the Ntr training 

points {ytr, Xtr} are replaced by the Ntest testing points {ytest, Xtest}. 

The model complexity is measured from the number of basis functions, the number of 
nodes in each tree, and the exponents of “variable combos” (VCs or vc), according to: 
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where wb is a constant to give a minimum cost to each basis function, nnodes(j)  is the 
number of tree nodes of basis function j, and nvc(j) is the number of VCs of basis 
function j, with cost: 
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The approach accomplishes simplification during generation [19] by maintaining 
evolutionary pressure towards lower complexity.  The user avoids an a priori 
decision on error or complexity because the algorithm generates a set of models that 
provide tradeoffs of alternatives, rather than producing just one model. 
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Note that specific parameter settings for the algorithm are given in the experiments 
(section 6). 

5.2. Grammar implementation of canonical form functions 

In GP, a means of constraining search is via a grammar, as in [12]. Tree-based 
evolutionary operators such as crossover and mutation must respect the derivation 
rules of the grammar.  The CAFFEINE grammar, shown in Table 1, is explicitly 
designed to create separate layers of linear and nonlinear functions and to place 
coefficients and variables carefully, in adherence with Fig. 2. 

Table 1: CAFFEINE Grammar. 

REPVC →  VC | REPVC * REPOP | REPOP 

REPOP → REPOP * REPOP | OP_1ARG ( W + REPADD ) | OP_2ARG ( 2ARGS )  

          | ... 3OP, 4OP etc 

2ARGS → W + REPADD , MAYBEW | MAYBEW , W + REPADD 

MAYBEW → W | W + REPADD 

REPADD → W * REPVC | REPADD + REPADD 

OP_2ARG → DIVIDE  | POW | MAX | ... 

OP_1ARG → INV | LOG10 | ... 

First, we describe the notation of Table 1.  The nonterminal symbols are in bold-case; 
terminal symbols are not.  Each line (or two) shows the possible expressions that a 
nonterminal symbol on the left can map (→) into.  The possible expressions, i.e. 
“derivation rules” are separated by the OR operator “|”. 

We now explain how the grammar implements canonical form functions. REP is short 
for “repeating”, such as “repeating operators” REPOP and “repeating variable 
combo” REPVC, which are explained further.  The start symbol is REPVC, which 
expands into one basis function (remember that an individual has several root-level 
basis functions).  Note the strong distinction among operators.  The root is a product 
of variables (REPVC) and / or nonlinear functions (REPOP).  Within each nonlinear 
function is REPADD, the weighted sum of next-level basis functions. 

A VC is a “variable combo”, intended to maintain a compact representation of 
polynomials / rationals.  Its expansion could have been implemented directly within 
the grammar; though in our baseline system we store a vector holding an integer 
value per design variable as the variable's exponent.  An example vector is [1,0,-2,1], 
which means x1*x4/x3

2, and according to (6) has cost 4|1||-2||0||1|  .  This 
approach guarantees compactness and allows for special operators on the vector. 

In determining coefficient values, we distinguish between linear and nonlinear 
coefficients.  As described, a CAFFEINE individual is a set of basis functions which 
are linearly added.  Each basis function is a tree of grammatical derivations.  Linear 
coefficients are found by evaluating each tree across all input samples to get a matrix 
of basis function outputs, then to apply least-squares regression with that matrix and 
the target output vector to find the optimal linear weights. 

With each nonlinear coefficient W in the tree (i.e. ones that are not found via linear 
regression), a real value will accompany it, taking a value in the range 

B]*2 B,*[-2  .  During interpretation of the tree the value is transformed into 
B]B,1e-[1e[0.0]eB]-B,-1[-1e  .   B is user-set; see section 6.1. 
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POW(a,b) is ab.  When the symbol 2ARGS expands to include MAYBEW, either the 
base or the exponent (but not both) can be constants. 

5.3. High-level CAFFEINE algorithm 

Table 2 gives the algorithm (ExtractSymbolicCaffeineModels). It takes in the training 
inputs X and training outputs y.  It will output a Pareto-optimal set of models, M.  
Line 1 initializes M, the current set of parents P, and the current set of children Q, all 
to empty sets  .  Lines 2-3 loop across the population size Npop to randomly draw 
each individual Pi from the space of possible canonical form functions .  Line 4 
begins the evolutionary algorithm’s (EA’s) generational loop of lines 5 and 6.  The 
loop stops when the target number of generations, Ngen,max, is hit.  Line 5 does the 
main EA work, which here is a single generation of the NSGA-II multi-objective EA 
(see [14] for details).  Line 6 updates the external archive of Pareto-optimal 
individuals, M, by nondominated-filtering on the existing M with the recently updated 
parents P and children Q.  Line 7 concludes the routine, by returning the Pareto-
optimal symbolic models, M. 

Table 2: Procedure ExtractSymbolicCaffeineModels. 

    Inputs: X, y  

    Outputs: M 

    1.  M = ; P = ; Q =   

    2.  for i = 1..Npop:  

    3.     Pi = random draw from  

    4.  for Ngen = 1.. Ngen,max:  

    5.     {P,Q} = OneNsgaiiGeneration(P,Q) 

    6.     M = nondominatedFilter(M P Q) 

    7.  return M 

5.4. Evolutionary search operators 

We now describe how trees are randomly generated, and explain the search operators 
on the trees.  The search operators are grouped by the aspect of search representation 
that they concern: grammar, real-valued coefficient, Variable Combos (VCs), and 
basis functions. 

Random generation of trees and subtrees from a given symbol involves merely 
randomly picking one of the derivations of one of the symbols, and recursing the 
(sub)tree until terminal symbols are encountered (subject to tree depth limits).   

Grammatical restrictions on the trees lead to a natural grammar-obeying crossover 
operator and mutation operator, as described by Whigham [12].  Whigham-style 
crossover works as follows: it randomly picks a node on the first parent, then 
randomly picks a node on the second parent with the constraint that it must be the 
same grammatical symbol (e.g. REPOP) as the first node, and finally swaps the 
subtrees corresponding to each node.  Whigham-style mutation involves randomly 
picking a node, then replacing its subtree with a randomly-generated subtree (as in the 
generation of initial trees).   

Real-valued coefficients are mutated according to a Cauchy distribution [20], which 
cleanly combines aggressive local tuning with the occasional large change.   





Nonlinear Template-Free Symbolic Performance Models… Design of Analog Circuits through SA   351 

VCs have the operators: one-point crossover, and randomly adding or subtracting to 
an exponent value.   

Each individual has a list of basis functions, which also leads to special operators: 
creating a new individual by randomly choosing >0 basis functions from each of 2 
parents; deleting a random basis function; adding a randomly generated tree as a basis 
function; copying a subtree from one individual to make a new basis function for 
another. 

6. Experimental Results 

This section describes the application of CAFFEINE to building symbolic models for 
analog circuits that map design variables to performances, for problems with up to 13 
input variables.  It shows the actual symbolic models generated, measured error 
versus complexity tradeoffs, how prediction error and complexity compare to 
posynomials, and how prediction error compares to other state-of-the-art (blackbox) 
regression approaches. 

6.1. Experimental setup 

Unary operators allowed are: sqrt(x), log10(x), 1/x, x2, sin(x), cos(x), tan(x), max(0,x), 
min(0,x), 2x, and 10x, where x is an expression.  Binary operators allowed are x1 + x2, 
x1*x2, max(x1, x2), min(x1, x2), x1^x2, and x1/x2.  Conditional operators include 
(testExpr, condExpr, exprIfLessThanCond, elseExpr) and  (testExpr, 0,  
exprIfLessThanCond,  elseExpr).  Any input variable could have an exponent in the 
range {… -2, -1, 1, 2, …}. While real-valued exponents could have been used, that 
would have harmed interpretability. 

The circuit being modeled in this example is a high-speed CMOS Operational 
Transconductance Amplifier (OTA) as shown in Fig. 4.  The goal is to discover 
expressions for the following 6 performance characteristics: the low-frequency gain 
(ALF), unity-gain frequency (FU), Phase Margin (PM), input-referred offset voltage 
(Voffset), and the positive and negative slew rate (SRp, SRn).   To allow a direct 
comparison to the posynomial approach [9], an almost-identical problem setup was 
used, as well as identical simulation data.  The only difference is that, because scaling 
makes the model less interpretable, neither the inputs nor the outputs were scaled.  
The one exception is that FU is log-scaled so that the mean-squared error calculations 
and linear learning are not wrongly biased towards high-magnitude samples of FU. 
The technology is 0.7 m CMOS. The supply voltage is 5V. Vth,nom is 0.76V and -
0.75V for the NMOS and PMOS devices, respectively. The load capacitance is 10 pF. 

Good training data is essential to the methodology.  The choice of design variables 
and sampling methodology determines the extent to which the designer can make 
inferences about the physical basis, and what regions of design space the model is 
valid in.  We used an operating-point driven formulation [21], where currents and 
transistor gate drive voltages comprise design variables (13 variables in our case).  
Device sizings could have been used as design variables instead; it all depends on 
designer preference.  Full orthogonal-hypercube Design-Of-Experiments (DOE) [15] 
sampling of design points was used, with scaled dx=0.1 (where dx is % change in 
variable value from the center value) to have 243 samples. The simulation time for 
one sample was about 1 s, or 4 min for all samples; this is fully dependent on the 
circuit, analyses, and experimental design method being used.  These samples, 
otherwise unfiltered, were used as training data inputs.  Testing data inputs were also 
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sampled with full orthogonal-hypercube DOE and 243 samples, but with dx =0.03.  
Thus, in this experiment we are creating a somewhat localized model; one could just 
as readily model a broader design space, but this allows us to compare the results to 
[9]. 

 
Figure 4: CMOS high-speed OTA used to illustrate the performance modeling in CAFFEINE. 

The run settings were: NB = maximum number of basis functions = 15 (any larger is 
definitely non-interpretable), Npop = population size = 200 (like NSGA-II's default), 
Ngen,max = 5000 generations (more than enough time to converge), maximum tree 
depth = 8 (so that each basis function has exactly one layer of nonlinear operators), 
and W coefficients range [-1e+10, -1e-10] [0.0] [1e-10, 1e+10] (i.e. B=10; 
therefore coefficients can cover 20 orders of magnitude, both positive and negative).   
All operators had equal probability (a reliable setting), except parameter mutation was 
5x more likely (to encourage tuning of a compact function). The complexity measure 
settings were wb = 10, wvc = 0.25.  That is, the cost of adding a basis function is 
relatively high compared to the cost of adding another variable combo. 

One run was done for each performance goal, for 6 runs total.  The Python-based  
implementation took approximately 10 minutes per run. We would expect a C-based 
implementation to be up to 10x faster yet. 

We calculate the normalized mean-squared error on the training data tr  and on the 

separate testing data test  as described in (4).  These are standard measurements of 

model quality in regression literature.  The testing error test  is ultimately the more 

important measure, because it measures the model's ability to generalize to unseen 
data. These measures are identical to two of the three posynomial “quality of fit” 
measures in [9]: its measure “worst-case quality” qwc is the training error tr , and its 

measure “typical case quality” qtc is test   (as long as the constant c in the 

denominator is set to zero, which [9] did.) 

6.2. Results: whitebox models and tradeoffs 

Let us first examine some symbolic models generated by CAFFEINE.  We ask: 
“which symbolic models have <10% training and testing error, with the lowest 
complexity?” Table 3  shows those functions.   (Note that FU has been converted to 
its true form by putting the generated function to the power of 10).  We see that each 
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function has up to four basis functions, not including the constant.  For Voffset a 
constant was sufficient to keep the error within 10%.  We see that a rational 
functional form was favored heavily; at these target errors only one nonlinear 
function, ln(), appears (for ALF).  The ln() indicates that the order of magnitude of 
some input variables is meaningful.   

Table 3: CAFFEINE-Generated Symbolic Models which Have <10% Training and Testing 
Error. 

Perf. Expression 

ALF  -10.3 + 7.08e-5 / id1                                                                                                  
+ 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3)                                                       
+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2)) 

fu 10(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1) 
PM 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2
voffset - 2.00e-3 
SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1 
SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1 

One can examine the equations in more detail to gain an understanding of how design 
variables in the topology affect performance.  For example, ALF is inversely 
proportional to idl, the current at the OTA's differential pair.  Or, SRp is solely 
dependent on idl and id2 and the ratio idl/id2.  Or, within the design region sampled, the 
nonlinear coupling among the design variables is quite weak, typically only as ratios 
for variables of the same transistor. Or, that each expression only contains a 
(sometimes small) subset of design variables.  Or, that transistor pairs M1 and M2 are 
the only devices affecting five of the six performances (within 10% error). 

We now examine the CAFFEINE-generated tradeoffs between training error tr  

(q_wc) and complexity, which Fig. 5 illustrates.  All models in the tradeoff of training 
error vs. complexity are shown: as complexity increases, the training error decreases. 
For each performance instance, CAFFEINE generates a tradeoff of about 50 different 
models.  As expected, a zero-complexity model (i.e. a constant) has the highest 
training error of 10-25%.  The highest-complexity models have the lowest training 
error, of 1-3%. 

We can also examine the curves relating complexity to the number of basis functions.  
Recall that complexity is a function of both the number of basis functions, and the 
complexity of each tree within each basis function.  In the curves, we see that the 
number of basis functions usually increases with the complexity.  However, 
sometimes the complexity increases by having larger trees within existing basis 
functions, rather than adding more basis functions.  This can be seen in the curves: as 
complexity increases, the number of bases temporarily levels off, or even decreases. 

The testing error, test , is also shown as q_tc in Fig. 5.  We see that unlike the training 

error, it is not monotonically decreasing as complexity rises.  This means that some 
less complex models are more predictive than more complex ones.  However, we can 
prune the models down to the ones that give a tradeoff between testing error and 
complexity, as shown in Fig. 6. These are the most interesting and useful. 

It is notable that the testing error is lower than the training error in almost all cases.  
This sounds promising, but such behavior is rare in the regression literature, and 
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made us question what was happening.  It turns out that there is a valid reason: recall 
that the training data is from extreme points of the sampling hypercube (scaled 
dx=0.10), and the testing data is internal to the hypercube (dx=0.03).  This testing 
data tests the interpolation ability.  Thus, models that really are predictive should be 
able to interpolate well, even at the cost of a perfect fit to the extreme points.  In any 
case, validly having the testing error lower than the training error demonstrates the 
strength of the CAFFEINE approach. 

 
Figure 5: Plots of models' training error, testing error, and number of bases vs. the complexity for each 
performance goal for the OTA of Figure 4.  Every (diamond, triangle, square) triplet corresponds to a 
symbolic model at a given complexity. 

One may improve the understanding of the basic dependencies in a circuit in another 
fashion: by examining expressions of varying complexity for a single performance 
characteristic.  Low-complexity models will show the macro-effects; alterations to get 
improved error show how the model is refined to handle second-order effects. Table 
4 shows models generated for the Phase Margin (PM) for decreasing training and 
testing error.  A constant of 90.2, while giving 15% training error, had only 4% test 
error.  For better prediction, CAFFEINE injected two more basis functions; one basis 



Nonlinear Template-Free Symbolic Performance Models… Design of Analog Circuits through SA   355 

being the current into the differential pair id1, the other basis, id2/ vds2, being the ratio 
of the current to the drain-source voltage of M2; i.e. M2's small-signal output 
conductance (1/rout2).  The next model turns the input current term into a ratio id1/ vgs1;  
i.e. M1's transconductance, inverted (1/gm1). Interestingly, and reassuringly, almost all 
ratios use the same transistor in the numerator and denominator. 

Table 4: CAFFEINE-Generated Models of the Phase Margin (PM) of the OTA of Fig. 4, in 
Order of Decreasing Error and Increasing Complexity. 

Test 
error 
(%) 

Train 
error 
(%) 

PM Expression 

3.98 15.4 90.2 
3.71 10.6 90.5 + 186.6 * id1    + 22.1 * id2 / vds2   

3.68 10 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 
3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2 
3.31 8 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2  - 1.14 / vsg1  
3.2 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2  - 1.00 / (vsg1*vsg3)  
2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 – 1.14 / vsg1  

+ 0.04 * vsg3 / vsd5 
2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 

* vsg1 / vsd5 -2.72e-7 / (vds2*vsd5*id1) +  7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / 
vsg3              - 3.75e-6 / id2 - 5.52e-6 / id1 

Such analyses demonstrate the core aim of CAFFEINE symbolic modeling: gaining 
insight into the design-performance relationship of the circuit under analysis. 

 
Figure 6: Every (diamond, triangle) tuple is a symbolic model for the low-frequency gain ALF like 
Figure 5, except filtered to only keep models on the tradeoff of testing error vs. complexity. 

6.3. Results: comparison to state-of-the-art blackbox regression approaches 

While other modeling techniques may produce models that are opaque (and therefore 
not interpretable), it is still instructive to see how well CAFFEINE compares to them 
in terms of prediction ability.  So, on the 6 problems already described in section 6.1, 
we tested the following regression techniques: a constant, linear models with least-
squares fit, full quadratic models with least-squares fit,  projection-based quadratic 
models (PROBE) [10], posynomial models [9], feedforward neural networks (FFNN) 
[22],  boosting the FFNNs, multivariate adaptive regression splines (MARS) (i.e. 
piecewise polynomial with stepwise construction) [23],  least-squares support vector 
machines (LS-SVM) [24], and kriging [25].  

Fig. 7 shows the resulting test errors for the 6 performances (originally from [27]). 
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On this data set CAFFEINE has the lowest average prediction error.  MARS and kriging 
have the next-best performance.  The FFNN, boosted FFNN, SVM, and linear model 
perform similarly.  The quadratic and posynomial approaches perform the worst. 

 
Figure 7: Comparison of prediction ability of CAFFEINE to state-of-the-art modeling techniques [27]. 

The results on different regressors inform us about the nature of the data and models.  
Progressing across the spectrum of polynomial complexity -- from the simplest linear 
models to posynomials to projection-based quadratic to full quadratic -- the prediction 
error continually worsens.  It turns out that the polynomials even capture the training 
error poorly; for example the projection-based quadratic had a training error of about 
10% for each performance.  Since the prediction error became lower the more 
constrained the polynomial model was, this indicates that where the models do 
attempt to use the added flexibility to predict better, it backfires.  In general, this is 
indicative that a polynomial functional template is not appropriate for circuit 
performance mappings, even for this relatively simple OTA circuit. 

CAFFEINE only selects input variables that really matter.  It is biased towards the 
axes of the input variables rather than being affine-invariant.  That is, CAFFEINE 
expressions and search operators work on one or a few input variables at a time, as 
opposed to using all variables in a weighted sum.  MARS did similarly, because its 
stepwise-forward nature makes it also biased towards the axes and is selective of 
input variables.  While CAFFEINE had the best or near-best prediction error on 5 of 
the 6 performance goals, MARS had the best or near-best on 3.  The other approaches 
loose prediction performance because they have different biases. 

CAFFEINE has been extended to scale to higher-dimensional problems, via gradient-
directed regularization to simultaneously prune basis functions and set coefficients for 
the remaining basis functions [6], a pre-evolution step to filter single-variable 
expressions [6], always considering all linear basis functions [6], and latent variables 
[29].  For details, we refer the reader to the cited references. 
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7. Other Applications  

This section briefly describes other problem types that the CAFFEINE tool has been 
applied to: variation-aware modeling, behavioral modeling, and analytical tradeoff 
modeling. 

CAFFEINE was applied to statistical modeling, to give insight into the mapping from 
design variables to process capability (Cpk) [26] for the 50-device circuit of Fig. 8.  It 
followed the same methodology as performance modeling, except the Cpk is 
computed from SPICE simulation data having both local and global process 
variations. Table 5 shows the extracted CAFFEINE equation, which has 6.3% testing 
error. Note that the technology variations are embedded in the numerical coefficients 
of the model -- Cpk is not a function of these process parameters, only their aggregate 
effect on the design variables.  We see that just 5 variables are needed to get 6.3% test 
error: Cc, wdp2, wdp1, wmt4, wmt1.  The variables comprise one compensation capacitor 
and four widths, and no lengths nor multipliers.  There are significant nonlinear 
interactions among the variables.  An increase to wmt4 will increase Cpk, as will a 
decrease to wmt1.  Cpk is quite dependent on the square root of Cc.  Cpk can also be 
increased by increasing wdp2 (big effect) or increasing wdp1 (much smaller effect). 

Table 5: CAFFEINE-Generated Equation of Cpk for 50-Device Circuit of Fig. 8. 

     Cpk = + 1231.4 + 4.21*106 * wmt4
2 / wmt1 - 0.0012 / CC  

                - 9.39*108 * wdp2
2 * 1dpw  * min(0.104, 6.60*107 - 76.9 / CC ) 

                + 1.21*1012 / min(-4.96*106, 1010 - 2.48*105 / ( 2dpw  * Cc)) 

An alternative to modeling process variation is for CAFFEINE to directly map 
process variables to performance.  This approach was taken in [29], for problems 
having up to 340 process variables.  Latent variable regression was used to aid 
scalability.  Table 6 is an example result for the bandwidth of the opamp circuit. 

Table 6: CAFFEINE-Generated Equation of the BW as a Function of the Process Variables for 
the Circuit of Fig. 4. 

       BW =1.184e+6 + 0.871*106  * t1 * ) t* 5.214 max(0, 1
+ 0.213*106  * t1 

       where t1 = 1.338*106  + 6.683*103  * DP1.M2TOX + (40 other linear terms)  

 
Figure 8: 50-transistor amplifier circuit. 
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CAFFEINE has also been used to extract behavioral models [28].  Despite much 
progress in automated behavioral modeling, manual design of models remains 
popular because humans can leverage their insights and vouch for the final model. 
CAFFEINE bridges manual and automated design by offering behavioral model 
“suggestions” to guide the modeling expert.  

In [7] CAFFEINE has been used to extract whitebox models relating performance-
tradeoff objectives for an amplifier.  The input data set contained 1576 Pareto-optimal 
points in five objectives.  One objective (gain bandwidth GBW) was set as the target 
output, and the other four became model input variables.  Table 7 shows the extracted 
model, having 4.1% training error. 

Table 7: CAFFEINE-Generated Equation of BW as a Function of Other Performances. 

     GBW = 4.48 + 24.9 / LFA  - (8.60*106) / (ALF 2 * SR ) 
 

8. Conclusion 

This chapter has presented CAFFEINE, a tool to generate interpretable symbolic 
models of nonlinear analog circuit performances as a function of the circuit's design 
variables, without a priori requiring a model template.  The keys to CAFFEINE are: a 
flow using SPICE simulation data, multi-objective GP search to extract template-free 
functions from the simulation data, and canonical-form constraints on the functions 
for interpretability (via a grammar).  Visual inspection of the models demonstrates 
their interpretability.  The CAFFEINE models also have lower average prediction 
error than several modern regression techniques.  CAFFEINE has also been applied 
to variation-aware modeling, behavioral modeling, and tradeoff modeling.   
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CHAPTER 14 

Symbolic Analysis Techniques for Fault Diagnosis and Automatic 
Design of Analog Circuits 
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Abstract: This chapter is concerned with symbolic analysis techniques for fault 
diagnosis and automatic design of analog circuits. After a first paragraph describing a 
software tool for the symbolic analysis developed by the authors, it details testability and 
fault diagnosis of analog circuits and presents a symbolic approach to the design 
centering problem. In addition, it highlights modeling of power electronic circuits based 
on symbolic techniques. 

 
Keywords: Analog circuits, Circuit simulation, Symbolic Simulation CAD, Testability, Ambiguity 
groups, Circuit faults, Electrical fault detection, Design centering, Design optimization, Yield 
optimization, Acceptability region, DC-DC power converters, Power converter modeling. 

1. Introduction 

During the last few years, symbolic analysis has been used as a useful tool to help the 
circuit designer during a wide variety of applications. Along the book, most of the 
main applications that make use of symbolic analysis in a more or less massive way 
are illustrated. This chapter treats the application of symbolic techniques to 
parametric fault diagnosis and to design centering of analog circuits, as well as the 
use of symbolic analysis as an operative help for the designer of DC/DC power 
converters. Furthermore in the chapter a symbolic simulation program developed by 
the authors during recent years is described: it constitutes the basic part of the 
software packages implementing the procedures developed for above-mentioned 
applications. 

The Chapter is organized through three parts: the first one (Section 2) is an 
introduction to the program SAPWIN, developed by the authors; the second one 
presents the use of symbolic approach in two of the main tasks of analog circuit 
design: the fault diagnosis (Section 3) and the design centering (Section 4); finally the 
Section 5 contains an explanation, provided with examples, of the potential of 
symbolic analysis for DC/DC converter design.  

 

2. The Symbolic Simulation Program SAPWIN 

At present, few technical PC programs are available to perform the symbolic 
simulation of the electronic circuits. Moreover, several of the most famous general 
purpose commercial or open-source mathematical software packages do include 
symbolic computation capabilities. However they are usually neither easy to learn nor 
agile to use, moreover they are not optimized for the symbolic calculation of large 
systems and finally they do not have a standalone working capabilities. For these 
reasons, during the last few years the authors of this chapter have developed an 
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autonomous package for the symbolic simulation of the analog circuits, named 
SAPWIN [1-4] and at the present time arrived to the version 3.0 for Windows. The 
program is composed by two parts: a symbolic calculator engine and a schematic 
editor with graphical postprocessor.  

2.1. Computational algorithms of SAPWIN  

SAPWIN for Windows has now arrived to the version 3.0. It is completely coded in 
C++ language. Besides the natural evolution of the graphical interface that followed 
the increasing potentialities of PC platforms and compilers, significant changes have 
been made in the simulation engine routines. The ancestor of the program was a 
module written in LISP and C (at the beginning of ’90 years) and called “SAPEC” 
(Symbolic Analysis Program for Electrical Circuits) which was able to calculate the 
transfer function of small circuits in the Laplace domain, using a permutation 
algorithm and with a very simple graphical interface (directly working in DOS). 
Subsequently, the first versions (1.0 and then 1.2) of SAPWIN [1] have been 
developed by introducing a completely new graphical interface devoted to Windows 
and substituting the permutation algorithm with another one based on a Laplace 
matrix-based recursive method, that drastically increased the speed of the analysis 
and the scale of analyzable circuits. Moreover approximation basic capabilities were 
introduced and several other features. The programming language became the C++ 
for all the modules. In the new millennium the program was rewritten another time, 
arriving to the version 3.0, still written in C++, with a further improvement of the 
graphical interface and with a new algorithm used for the symbolic analysis of the 
circuits. In the following a brief outline of the used algorithm and the way it works 
with input data are given. The description of the circuit is given by means of a 
SPICE-like netlist or directly within schematic editor of the program, which then 
provides to translate the scheme into an ASCII netlist. The present SAPWIN 
simulation engine is based on a two-graph method enhanced by authors, endowed 
with robustness and speed in comparison with matrix recursive techniques used in the 
former versions of the program. The starting point is a Two-graph Tree Enumeration 
method for the analysis of circuits containing only components with admittance 
representation and transconductances, shortly indicated as RCgm circuits. After the 
construction of the voltage and current graphs GV and GI [5], the procedure can be 
implemented in one algorithm, in the following steps: 

 a two-terminal component results in one branch situated between the same 
two nodes in both GV and GI; 

 a transconductance (gm) results in one branch situated between control nodes 
in GV and one branch situated between controlled nodes in GI; in both 
branches the weight of branch is given by transconductance value; 

 the common trees can be determined by using, for instance, the efficient MRT 
algorithm [5]; 

 the determinant of the admittance matrix can be determined by the formula: 

  
2
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where:  

Yict = admittances situated over the i-th common tree; 
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i = ±1 = (det m{Ai})(det m{Av}), with m{Ai} and m{Av} are the minors of 
the incidence matrices relating to considered trees; 

 the network functions related to each pair of ports of the circuit can be 
determined using the formulas: 

 

in a generic circuit with n nodes, where the input is assumed to be between 
nodes 1 and 0 and the output is assumed to be between nodes 2 and 0 and 
furthermore:  

 is the determinant of the nodal admittance matrix; 

ij is the ij-th cofactor of . 

 

Figure 1: Circuit modified to obtain 11 , 12 and . 

A simple way for obtaining 11 , 12 and  is given by considering a slightly different 
circuit with respect to the original one, containing and extra admittance y’ and a 
voltage controlled current source g’m·V2 (Fig. 1), and calculating the determinant of 
the admittance matrix for this new circuit:  

’ =  + y’ 11 + g’m 12 

In this way all the network functions can be evaluated. 

The presence of non-transconductance controlled sources can be solved by 
introducing nullator and norator concepts. Nullator and norator are a couple of two-
terminal ideal components. Working together they form a two-port component called 
“nullor”, that represents a suitable model for an ideal operational amplifier. Relations 
of these components are in Fig. 2. See also the Chapter 3 of this same book for them 
and a more extended treatment. 

 

Figure 2: Norator and nullator symbols. 

These two ideal components are easily manageable, taking into account that for the 
nullator the two terminal nodes do collapse in only one in GV and for the norator the 
two terminal nodes do collapse in only one in GI; this would create problem in tree 
enumeration, but it can be overcome leaving the nodes separated, but forcing the 
correspondent branch to belong to the tree (i.e. the nullator branch on GV and norator 
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branch on GI) [6]. Finally the equivalent circuits in Fig. 3 can be used to model all the 
non-transconductance generators using nullor concept. 

 

Figure 3: Equivalent circuits for non-transconductance controlled generators. 

By implementing this algorithm SAPWIN program is able to handle any kind and 
size of circuit.  

2.2. Program main capabilities 

In Fig. 4 a general screenshot of the program SAPWIN is given. It includes in a 
single main window the possibility of drawing one or more circuit schematics, 
simulating the circuit(s), viewing and evaluating the results, eventually changing 
parameter values also after elaboration. The output can be evaluated also in the 
phasor domain. In the next sub-sections a more detailed description of the various 
program commands are given. 

 
Figure 4: Main screen of SAPWIN program. 
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2.2.1. Schematic entry 

The schematic entry, that is clearly visible also in Fig. 4, can be drawn over an 
initially blank table, in the same way of several other recent schematic editors of 
analog or digital circuits. All the standard two-terminal or two-port elements can be 
taken from a component list positioned on the left of the editor window. The available 
devices are the two-terminal passive fundamental ones: resistor (both in resistance R 
or conductance G representation), inductor L, capacitor C; the independent ideal  
voltage and current sources; the four type of controlled sources: the voltage 
dependent sources, controlled in voltage VCVS (associated symbol E) and in current 
CCVS (associated symbol Y) and the current dependent sources, controlled in voltage 
VCCS (associated symbol H) and in current CCCS (associated symbol F). The 
passive two-port are the ideal transformer and the mutual inductance. The active two-
ports are the ideal operational amplifier, the MOSFET and the BJT. The inclusion of 
a transistor device entails the expansion of the component into the equivalent circuit; 
in BJT case the equivalent circuit can be a hybrid parameter model or a -model 
(Giacoletto equivalent); in MOSFET case the equivalent circuit is the gm-model with 
the eventual presence of parasitic capacitances (selectable in the initial mask). The 
connection among the elements should be completed by means of the “wire” tool, 
which simulate an equipotential path (an ideal conductor wire). It is essential to 
underline that, when a wire crosses another wire, the editor will put a new connection 
(a new node) in the intersection point if and only if the two wires are orthogonal, 
otherwise, if between the two lines there is not a right angle, that point is considered a 
wire-bridge (and no new node is added). This difference is shown in Fig. 5.  

 
Figure 5: Schematics of two similar circuits. In the left one the wires are orthogonal and connected in 
the red node [1], in the right one the wires are crossing in a not right angle and they generate two 
distinct nodes [1] and [3]. 

The schematic of the circuit must be provided with at least one ground connection 
(multiple ground connections can be inserted, yielding equipotential the nodes which 
are connected to). The circuit under simulation must also include one output probe in 
order to set up the simulation. The output can be a voltage probe attached to a pin (the 
voltage will be calculated with respect to the ground “reference” node) or a current 
probe along a wire (in this case an appropriate space must be left to position the 
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current probe). The schematic can be saved in a file with a name chosen by the user 
and extension .sch. 

In the same editor it is possible to create and save sub-circuit schemes (sometimes 
called "user defined models"). A sub-circuit is a two-port element that includes a 
group of components. It can be re-used several times without redrawing the whole 
group. A sub-circuit can be drawn just as a full circuit, taking into account of the 
following differences: 

 it cannot contain independent sources, output current, other subcircuits; 

 the accessible terminals of the subcircuits are obtained by placing output 
voltages; 

 the number assigned to each terminal is the order in which they have been 
drawn; 

 the side in which each terminal will appear in the block that will represent the 
subcircuit depends on the orientation of the placed terminal (o— left side, 

—o  right side,  top side,  bottom side).  

The numbers assigned to terminals can be checked and they are shown in green. Each 
component of a subcircuit can be made symbolic or not, editing the component 
properties. The symbolic components will appear in the symbolic network functions 
suffixed by the subcircuit name, for example: a symbolic resistor Ra of the subcircuit 
X5 will appear in the symbolic network function as Ra_X5. 

In designing regular circuits, the available sub-circuits are reported in a list under the 
component buttons. 

2.2.2. Circuit simulation 

When the circuit to simulate has been drawn, the simulation can start. Before starting, 
it is eventually possible to check the number and the position of the nodes with the 
command button situated in the trace bar of the schematic editor. In this way it is also 
possible to check if the connection points are just those we want to be, and if the 
number of nodes is the expected one. When the schematic of the circuit is saved (or 
the first time that simulation is launched) the program generates also the netlist of the 
circuit to be analyzed and it saves such netlist in a file with the same name of 
schematic and extension .crc. This is a SPICE-like netlist that contains the following 
items: 

 The first row is the name of the circuit schematic (including the path). 

 Each row (starting from the second one) represents a component. The format 
is “Sname n1 n2 n3 n4 v s”, where: 

o Sname is the name of the component; S is the symbol related to the 
specific two-terminal or two-port element (R for resistor, C for 
capacitor, etc.) and name is the suffix which identifies the given 
component (it can be composed of letters, numbers and underscore 
sign, for example R1, Cg1, L_sa, etc.). If the list is generated from the 
schematic editor, it coincides with the name inserted in the schematic 
dialog box. 
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o n1 n2 n3 n4 are the four (at the most) integer values that identify the 
nodes where the component is connected. If it is a two terminal 
component only n1 and n2 are present. If the two terminal component 
is a voltage source, then n1 identifies the positive polarity; if the two 
terminal component is a current source, then n1 identifies the outgoing 
current point; if the element is a two-port element, then n1 and n2 are 
the output port nodes and n3 and n4 are the input port nodes; but now 
the current convention is opposite with respect to one-port case, i.e. the 
first of the two terminals is relative to the entering current. For the 
operational amplifier element, which in the schematic has only 3 
terminal pins, the n4 node is always put equal to 0 (ground node).  

o v is the decimal number which represents the nominal value of the 
component. It is not present for operational amplifier case.  

o s is a boolean number (0 or 1) which is equal to 0 if the component is 
symbolic, 1 if it is included as a numeric value into the calculation. 

 The list must include the following command lines: 

o .OUT n or .IOUT n1 n2. The first one indicates to the simulator that 
the output variable is the voltage on the node n. The second one 
indicates to the simulator that the output variable is the current that 
flows from the node n1 toward the node n2. 

o .END establishes the end of the netlist read by the simulator.  

An example of a simple circuit and its netlist are given in Fig. 6. The generated netlist 
is passed to the program module SAPEC.exe, which elaborates it in order to start the 
simulation, which runs as described in the previous section.  

 
Figure 6: A circuit schematic and the relating netlist. 

 

During this phase a window appears to report some information about the circuit and 
about the simulation progress, as shown in Fig. 7.  
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Figure 7: Simulation window. 

2.2.3. Approximation capabilities 

On the other hand it should be observed that symbolic analysis of a circuit, also for 
medium sized system, does result in a very large output expression, that could be 
unmanageable or hardly readable. In order to improve the manageability of generated 
functions, approximation methods can be used. SAPWIN is able to approximate the 
output functions, choosing a given error over a range of frequencies and evaluating it 
after the generation with an efficient approximation after generation method. This 
feature will be anyway improved in the future works. 

2.2.4. Output files 

The simulation generates two different output files. The first one is an internally used 
output file, with the same filename of the circuit and .fdt file extension. This is a 
binary file that contains the final expression in form of binary coded structures, each 
one representing one term of numerator and denominator. The data stored in the files 
are: 

 the total number of structures; 
 for each structure: 

o degree of the expression 
o numerical part of the expression 
o number of symbolic components 
o group of strings (one for each symbolic component) terminated by a 

'\0' character 

This file can be easily and quickly accessed by program functions in order to extract 
in any moment the requested data. 

The second output file is an ASCII text file, with the same filename of the circuit and 
.txt file extension. It contains the resulting expression of the simulation in the Laplace 
domain, reported as a list of terms, each one positioned on a different row in 
increasing power of s, for numerator and denominator, as in the following : 

 

(  - EAo C1 R2 Roi + C1 R2 Roi + C1 R2 R3) s 

(  - EAo C2 C1 R2 R3 Roi + C2 C1 R2 R3 Roi) s^2 

------------------------------------------------------------------------------ 

(  - EAo R2 Roi - EAo R1 Roi + R2 Roi + R2 R3 + R1 Roi + R1 R3) 

(  - EAo C1 R1 R2 Roi + C1 R1 R2 Roi + C1 R1 R2 R3 - EAo C2 R1 R2 Roi + C2 R2 R3 Roi 
+ C2 R1 R3 Roi + C2 R1 R2 Roi + C2 R1 R2 R3) s 

(  - EAo C2 C1 R1 R2 R3 Roi + C2 C1 R1 R2 R3 Roi) s^2 

The output format can be easily parsed for further re-elaborations [7]. 
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2.3. SAPWIN output presentation 

As soon as the simulation ends, an output window is open and the symbolic 
expression is presented. At the right side of the output window the list of parameters 
with values is present. On the top of right side the end time for the time response and 
the frequency interval for the frequency response can be inserted (they are visible in 
Fig. 8). The resulting expression can be viewed both in symbolic or in numerical 
form (in this last case the values are those assigned in the schematic editor and now 
appearing in the parameter edit boxes). 

2.3.1. Graphical tools 

The output of the simulation engine can be elaborated also in a graphical way, to 
obtain seven different diagrams: 

 Magnitude response: it is the diagram of the module of the network function, 
drawn in relation to the frequency (or angular frequency). Linear or logarithmic 
scale can be used (in the last case it is usually called “Gain”); 

 Loss: just the inverse of gain (in some test or simulation it is more significant); 

 Phase response: it is the diagram of the phase (in degrees) of the network 
function, drawn in relation to the frequency (or angular frequency); 

 Time Delay: it is the time delay of the response; 

 Poles/zeroes: it shows the poles and the zeroes of the network function in the 
complex plane; 

 Step response: it is the step response of the circuit; 

 Impulse response: it is the impulse response of the circuit. 

 
Figure 8: Window containing the diagrams of the gain and impulsive response of an active circuit 
parameterized with respect to one capacitive component.   
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Algorithms for poles/zeroes calculation and for the inversion of the network function 
to obtain step and impulse response can be found in [8]. 

When a diagram is visualized in the window, it is also possible to add an X-Y cursor 
to evaluate the numerical values on the diagram.  

2.3.2. Phasor calculation 

The result of simulation is given in the Laplace domain. It is also possible to evaluate 
it as a phasor at a given frequency (or angular frequency). The phasor of the response 
is shown both in real and imaginary part and in amplitude and phase, at the frequency 
selected in the right side window. For this kind of output, in the list of component 
values it is possible to specify complex values for the symbolic independent sources, 
in the form of amplitude and phase (in degrees), by using the letter ‘P’ between the 
amplitude and the phase; for instance, to assign to an independent voltage source a 
value of 100V in amplitude and 45° in phase, the right form is: “100 P 45”. The 
feature is particularly useful for circuits whit multiple inputs. To utilize this 
opportunity, the independent sources must be put in symbolic form in the schematic 
editor, by editing such components before starting the analysis. 

 

3. Symbolic Approach to the Fault Diagnosis Problem  

This section deals with fault diagnosis of analog circuits, the first of the three 
application fields of symbolic analysis considered in this chapter.  

The symbolic approach can be very useful for developing efficient methodologies of 
parametric fault diagnosis. A parametric (soft) fault is a fault that can be described as 
a parameter variation and does not influence the circuit topology. The parametric 
fault diagnosis can be viewed as a problem in which, given a circuit structure and 
some I/O relations, the component values have to be determined. In other words, it 
can be considered as a parameter identification problem. Actually, it is usually 
sufficient to determine which parameters are faulty, i.e. which parameters are out of 
tolerance, without determining the values of all the components. In any case, the 
symbolic approach is a natural choice in this kind of problems, because a I/O relation, 
in which the component values are the unknowns, is properly represented in symbolic 
form. 
The I/O relations used in parametric fault diagnosis are constituted by a set of 
equations nonlinear with respect to the unknown component values. These equations 
are related to a set of measurements carried out on specific points of the circuit, called 
test points. The test point selection is a non trivial operation, because not all the 
possible test points can be easily accessed. For example, it is usually very difficult to 
measure currents without breaking connections. In other words, the test point 
selection must take into account practical measurement problems strictly tied with the 
used technology and with the application field of the circuit. So, in order to perform a 
good test point selection, it is necessary to have a quantitative index for comparing 
the different possible choices. The testability measure concept meets this requirement. 
Following what above stated, fault diagnosis can be split into two different steps: 
testability analysis and fault location. The testability analysis consists in the testability 
evaluation and in the ambiguity group determination, the fault location consists in the 
determination of the faulty components. In the following, these two steps are 
considered for analog, linear, time-invariant circuits, highlighting the advantages of 
symbolic analysis. 
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3.1. Testability and ambiguity groups 
 

Testability concept is strictly tied to that of network-element-value-solvability, which 
was first introduced by Berkowitz [9]. Successively, a very useful testability measure 
was introduced by Saeks et al. [10-13]. Other definitions have been presented in 
subsequent years (see, e.g., [14-16]), and, then, there is not a universal definition of 
analog testability. However, the Saeks’ definition has been the most widely used [17-
20], because it provides a well-defined quantitative measure of testability. In fact, 
once a test point set has been selected, by representing the circuit under test through a 
set of equations nonlinear with respect to the component parameters, this testability 
definition gives a measure of solvability of these equations and indicates the 
ambiguity resulting from an attempt to solve such equations in a neighborhood of 
almost any failure. Therefore, this testability measure allows to know a priori if a 
unique solution of the fault diagnosis problem exists. Furthermore, if this solution 
does not exist, it gives a quantitative measure of how far we are from it, i.e., how 
many components cannot be diagnosed with the given test point set. 

When testability is low, an important concept is that of ambiguity group. An 
ambiguity group is, essentially, a group of components where, in case of fault, it is 
not possible to uniquely identify the faulty one. A canonical ambiguity group is a 
“minimal” ambiguity group, i.e., a group that does not contain, within it, ambiguity 
groups of lower order. The canonical ambiguity groups give information about the 
solvability of the fault diagnosis problem with respect to each component, in case of 
bounded number of faults (k-fault hypothesis) [21]. 

Summarizing, once a set of test points has been selected, independently of the method 
effectively used in the fault location phase, the testability measure gives a theoretical 
and rigorous upper limit to the degree of solvability of fault diagnosis problem at a 
global level, while the ambiguity group determination gives the solvability degree at a 
component level. If these important concepts are not properly taken into account, the 
quality of the obtained results is severely limited [22]. So, testability analysis is 
essential to both the designer, who must know which test points  to make accessible, 
and the test engineer, who must know how many and what parameters can be 
uniquely isolated by the planned tests. 

The first algorithms for evaluating testability measure as previously defined were 
developed by using a numerical approach [23, 24]. However these methods were 
suitable only for networks of moderate size, because of the inevitable round off errors 
introduced by numerical algorithms, which render the obtained testability only an 
estimate. This limitation has been overcome with the introduction of the symbolic 
approach [25-30] through an efficient manipulation of algebraic expressions [31-33]. 
Using testability evaluation algorithms it is not difficult to realize procedures for 
canonical ambiguity group determination [29, 30, 34]. In the following an efficient 
technique for testability evaluation [34, 35] is reported. It permits also an easy 
determination of the ambiguity groups. 

Referring to parametric fault diagnosis, the testability measure T is given by the 
maximum number of linearly independent columns of the Jacobian matrix associated 
with the fault diagnosis equations. The solution of these equations can be split in two 
phases. In the first phase, starting from the measurements carried out on the selected 
test points at different frequencies, the coefficients of the fault diagnosis equations are 
evaluated [35]. In the second phase, the circuit parameter values are obtained by 
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solving the nonlinear system constituted by the equations expressing the previously 
determined coefficients as functions of the circuit parameters. In this way, by 
considering the K fault diagnosis equations: 
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the following nonlinear system has to be solved: 

1

1

(1)(1)
(1) (1)0
0

( )( )
( ) ( )0
0

0 1
0 1

( )( )

( ) ( )

( )( )

( ) ( )

( ) ( )

( ) ( )

K

K

n
n

m m

KK
nK K

n
m m

m
m

m m

aa
A A

b b

aa
A A

b b

b b
B B

b b





 






 



 


pp

p p

pp

p p

p p

p p









                                              (2) 

where  tRppp ,...,, 21p is the vector of the potentially faulty parameters, Ai(l) and Bj 

(i=0,...,nl, j=0,...,m1) are the coefficients of the fault diagnosis equations in (1) 
which have been calculated in the previous phase. The Jacobian matrix BC of this 
system can be considered as the testability matrix: 
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Independently of the used fault location method, the testability value T = rankBC 
gives information on the solvability degree of the problem, as explained below: 
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 if T = R (R is the number of unknown elements), the parameter values can be 
theoretically uniquely determined starting from a set of measurements carried out 
on the test points; 

 if T < R, a locally unique solution can be determined only if RT components are 
considered not faulty. 

Generally T is not maximum and the hypothesis of a bounded number k of faulty elements 
is made (k-fault hypothesis), where kT. Then, the testability gives the solvability degree 
of the fault diagnosis problem and, consequently, the maximum possible k. 
 
The matrix BC gives other information besides the global solvability degree of the fault 
diagnosis problem. In fact, by observing that each column is relevant to a specific 
parameter of the circuit and by considering the linearly dependent columns of BC, other 
information can be obtained. For example, if a column is linearly dependent with respect 
to another one, this means that a variation of the corresponding parameter provides a 
variation on the fault equation coefficients indistinguishable with respect to that produced 
by the variation of the parameter corresponding to the other column. This means that the 
two parameters are not testable and they constitute an ambiguity group of the second 
order. By extending this reasoning to groups of linearly dependent columns of BC, 
ambiguity groups of higher order can be found. In the case of low testability and k-fault 
hypothesis, whatever fault location method is used, it is necessary to be able to select as 
potentially faulty parameters a set of elements that represents as best as possible all the 
circuit components. To this end, the determination of both the canonical ambiguity 
groups and surely testable group is of fundamental importance. As reported in [21], a set 
of k parameters constitutes a canonical ambiguity group of order k if the corresponding k 
columns of the testability matrix BC are linearly dependent and every sub-set of this 
group of columns is constituted by linearly independent columns, while a set of n 
parameters, whose corresponding columns in the testability matrix BC do not belong to 
any ambiguity group, constitutes a surely testable group of order n. 
 
In order to understand the importance of canonical ambiguity groups and surely 
testable group, consider the Sallen-Key band-pass filter, shown in Fig. 9, where Vo is 
the test point. The program SYFAD (SYmbolic FAult Diagnosis) [34, 35], based on 
the software package SAPWIN, is able to yield both testability and canonical 
ambiguity groups. In Fig.10 the program results are shown. As it can be seen, there 
are two canonical ambiguity groups without elements in common. The first group is 
of the second order and, then, it is not possible to select a set of components giving a 
unique solution. The surely testable group is constituted by G1 and C1. As the 
testability is equal to three, we can take into account at most a 3-fault hypothesis, i.e., 
a possible solution can be obtained if only three component values are considered as 
unknowns. The elements to be selected as representative of the circuit components 
are the surely testable group components and only another component belonging to 
one of the two canonical ambiguity groups. This group of components is defined 
testable. Suppose, for example, a single fault case. Independently of the used fault 
location method, if the obtained solution gives as faulty element C1 or G1, the fault 
can be localized with certainty, because both C1 and G1 belong to the surely testable 
group. If a component belonging to the second order canonical ambiguity group is 
localized as potentially faulty element, it is only possible to know that there is a fault 
in this ambiguity group, but it cannot be exactly located, because there is not a unique 
solution. Instead, if a component belonging to the third order ambiguity group is 
located as faulty element, there is a unique solution, and then the fault can be located 
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with certainty. In other words, a fault in a component of this group can be 
counterbalanced only by simultaneous faults on all the other components of the same 
group. However, by the hypothesis of single fault, this situation cannot occur. 

 
Figure 9: Sallen-Key band-pass filter. 

 

 

 

 

 

 

 

 

Figure 10: Program results for the circuit in Fig. 9. 
 
From the example, it is possible to understand that a testable group is a group of 
potentially faulty components giving solution to the problem of fault location. It 
permits to confine the presence of faults to well-defined groups of components [21]. 
A testable group is easily obtainable through a combinatorial procedure, starting from 
the canonical ambiguity group knowledge. 
 
One  of the first algorithms for ambiguity group determination has been presented in 
[20]. In [34, 35] a combinatorial method, based on a symbolic approach, has been 
implemented in the program SYFAD. In the procedure a classical total pivot method is 
used on BC and its submatrices. Successively, another efficient numerical procedure for 
ambiguity group determination, based on the QR factorization of the testability matrix, 
has been proposed in [36, 37]. Nevertheless, this last method, even if not combinatorial, 
results very complex in the search of canonical ambiguity groups. Furthermore, although 
the QR decomposition approach presents several interesting features, it suffers from 
problems related to round-off errors, specially if the matrix is rank deficient, so that the 
numerical rank obtained is, often, only an estimate of the effective rank. These 
numerical problems are mostly overcome by the use of the Singular-Value 
Decomposition (SVD), which allows to obtain the effective numerical rank of the 
matrix, taking into account round-off errors [38]. So, by exploiting the great numerical 
robustness of the SVD, an accurate evaluation of testability value and an efficient 
procedure for canonical ambiguity group determination can be obtained [29]. The 
program TAGA (Testability and Ambiguity Group Analysis), based on the software 
package SAPWIN, yields testability and canonical ambiguity groups exploiting the SVD 

Testability value: 3 

Total number of components: 7 

 

Canonical ambiguity groups: 

G5 G4 

C2 G2 G3 
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[29]. It is important to remark that the availability of network functions in symbolic form 
strongly reduces the computational effort in the determination of the BC matrix entries, 
because they can be simply led back to derivatives of sums of products. The testability 
and ambiguity group determination can be performed by assigning arbitrary values to 
the components, because testability does not depend on component values [11]. 

3.2. Fault location  

Analog fault diagnosis procedures [17, 39, 40] are usually classified in two basic 
groups: Simulation Before Test (SBT) techniques and Simulation After Test (SAT) 
techniques. The SBT techniques are based on generated off line fault dictionaries. 
Usually, SBT is suitable for single catastrophic fault location because of the very 
large dictionary size in multiple soft fault situations. The SAT approaches are suitable 
to diagnose parametric faults (i.e. deviations of parameter values from a given 
tolerance). In these methods, starting from the measurements carried out on the 
selected test points, the network parameters are estimated and compared to those of 
the fault-free network for identifying the fault. The use of symbolic methods is 
particularly suited for SAT techniques and, in particular, for those based on parameter 
identification. This is due to the fact that SAT approaches need more computational 
time than SBT approaches. Using a symbolic approach, noteworthy advantages can 
be reached, not only in computational terms, but also because it automatically 
includes the testability analysis in the fault diagnosis procedure. 
 

Symbolic techniques are used in parametric fault diagnosis methods based on frequency 
domain measurements and on the k-fault hypothesis. The fault location techniques can 
be substantially split in two groups: techniques based on a bilinear decomposition of the 
fault equations and techniques based on a Newton-Raphson approach. The techniques 
based on a bilinear decomposition of the fault equations [41-44] are usually suitable for 
single and double fault cases, because they become excessively complex for a greater 
fault hypothesis. However, this is not a so big limitation, since, in practical circuits, the 
single fault case is the most frequent, the double fault case is less frequent and the case 
of all faulty components is almost impossible. The Newton-Raphson based techniques 
are generally suitable for any possible fault hypothesis, as, for example, it happens for 
the technique reported in [35]. In this technique the fault diagnosis equations are 
expressed as in (1) and the parameter evaluation is led back to the solution of the 
nonlinear system (2), whose testability matrix is reported in (3). By indicating with R the 
total number of circuit parameters, with k the number of potentially faulty parameters 
and with T the testability value (T ≤ R and k ≤ T), the fundamental steps of the fault 
diagnosis procedure can be so summarized: 
 

1. evaluation of T; 
2. determination of all the possible combinations of k testable parameters; 
3. application of the Newton-Raphson method to each testable group of k parameters. 
 

A group of k elements is testable if the related columns of BC are linearly 
independent. To know if a group of k elements is testable, the submatrix of BC 
constituted by the columns related to the selected parameters must be triangularized. 
If the chosen k elements are testable, the first k rows of the matrix represent the 
independent equations. So, a nonlinear system with k-equations and k-unknowns is 
obtained. It can be solved with the classical Newton-Raphson method, by assigning 
the nominal values to the other Rk parameters. As well known, in the Newton-
Raphson method it is necessary to evaluate the Jacobian matrix that, in this case, is a 
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submatrix of the testability matrix BC. To assure convergence to the Newton-Raphson 
procedure, the starting point has to be chosen close enough to the solution. The way 
to solve this and other problems, such as the effect of components tolerance, is shown 
in [35]. Each solution obtained with the Newton-Raphson method gives a possible set 
of faulty components. Multiple solutions can exist, due to the system nonlinearity and 
to the fact that the system is solved with respect to any possible group of k testable 
components, each one indicating a different possible fault situation, i.e. a different out 
of tolerance parameter group. Also this problem can be overcome by using a 
procedure of reduction of the solutions [35]. In the automation of the fault diagnosis 
procedure, implemented in the software program SYFAD, the availability of the 
network functions in completely symbolic form permits to simplify not only the 
testability analysis, but also the repeated solution of the system with different 
combinations of potentially faulty parameters. In fact, the Jacobian matrices, relevant 
to the application of the Newton-Raphson method to each testable component 
combination, are simply submatrices of the testability matrix. 
 
The symbolic approach gives noteworthy advantages not only in the phases of 
testability analysis and solution of the fault diagnosis equations, but also in the search 
of the best measurements frequencies. In fact, this choice influences the fault 
location, because the solution of the fault diagnosis equations is perturbed by 
measurement errors and component tolerances. The choice of a suitable set of 
measurement frequencies allows to minimize the effect of these perturbations. The 
use of symbolic techniques can result very useful in solving this problem. In [45-48] 
some procedures for selecting the set of frequencies which leads to a good location of 
parametric faults in analog linear circuits are reported.  
 

A detailed overview on the procedures of fault location based on the use of symbolic 
techniques is reported in [49], where additional information on testability analysis and 
on the test frequency selection is given. [49] presents also a brief discussion on the 
application of symbolic techniques to nonlinear analog circuits. Furthermore, a fault 
diagnosis technique applicable to nonlinear analog circuits is summarized [50, 51]. 

Finally, it is important to remark that the most important results achieved at today in 
the application of the symbolic techniques to fault diagnosis are relevant to the 
testability analysis, where the symbolic approach gives excellent results. For what 
concerns the phase of fault location, the symbolic approach is not the only possible 
one [52-54]; for example, good results have been obtained also by using neural 
networks or genetic algorithms. However, being testability analysis the initial step in 
the analog fault diagnosis, necessary for any kind of fault location procedure, the 
symbolic approach is indeed very useful and can give a noteworthy contribution for 
reducing the gap between analog and digital fields. 

4. Symbolic Approach to the Design Centering Problem  

One of the aims of analog design is to determine a circuit topology and the 
component parameter values so to maximize the manufacturing yield. For this reason, 
the nominal values of the circuit parameters are selected in such a way to ensure that 
the behavior of the circuit remains within specifications with the greatest probability. 
This phase of analog design is that of design centering.  

The problem of design centering attempts to ensure that, under circuit parameter 
value changes, the circuit response remains within the performance specifications for 
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the whole range of environmental conditions, maximizing the probability that the 
specifications are met after the parametric variations due to the manufacturing 
process and aging effects. In other terms, the design centering consists in assigning a 
set of values to the circuit parameters to maximize tolerances on parameters or to 
maximize the yield for an assumed statistical distribution [55-58]. 

4.1. Problem outline 

Consider a n-dimensional point ne  that represents n independent system parameters 
(as circuit component values, MOSFET channel length and width, threshold voltage, 
etc.) and the set of design specifications, written in a standard manner [59]: 
 

    , 0 1,2, ,k kf k K   c e c e  (4) 
 

where  , 1, 2,kf k K  is a set of discretized continuous variables such as time, 

frequency, temperature, etc. Selection of the values of K and fk is realized by the 
designer, so conservative overspecification makes some of the constraints (4) never 
active. The acceptability region A (or feasible region) in the space n  is  defined as 
the set of points e such that 
 

   : 0 1,2,k k K  A = e c e  (5) 

The points in A are named feasible points. The design center is the point x A that 
maximizes the yield production [60]. Fig. 11 shows the correlation between 
constraints, acceptability region and design center. 

The problem of design centering is a task of the tolerance design and has been 
traditionally faced in two main ways: the geometrical approach and the statistical 
approach, even if several methods exist that hybridize these approaches [61, 62]. In the 
geometrical approach, the feasible region is approximated by a known geometrical 
body, such a polytope or an ellipsoid, then the center of this body, even if 
approximated, is taken to be the design center. This method has the disadvantages that:  
 

i) there are some limitations associated with the types of geometric bodies used 
to approximate the feasible region; 

ii) the design center could be highly dependent on the exact probability 
distributions of the variables and would change according to these 
distributions; 

iii) the hypothesis of convex feasible region is not always verified [63].  
 

 

Figure 11: Illustration of the correlation between constrains and acceptability region and design center. 
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However, in the statistical approach, the overall performances of the solution space 
are estimated by simulating the circuit behavior for a sample of feasible points. The 
larger the sample, the more accurate the estimation will be. This method has the 
disadvantage of being computationally expensive when the targeted yield is high [64], 
but it gives a perfect accuracy if every point in the space is sampled. 

 

4.2. The geometrical approaches 

4.2.1. The simplicial approximation 

This method is based on explicitly approximating the boundary, R , of the feasible 
region, R, of an n-parameter design space by a polyhedron made up of n-dimensional 
simplices, and begins by determining any 1m n  points p1, p2,..., pm on the 
boundary R  [65]. After finding the polyhedron, it is possible to inscribe the largest 
hypersphere. The center of the largest hypersphere is the design center. Fig. 12 shows 
the procedure for two dimensions and four iterations. This method of approximation 
is necessary since R  is generally known only in terms of nonlinear inequality 
constraints which express acceptable circuit performance in terms of voltage and 
current which depend implicitly upon the design parameters. An improvement of this 
method was developed in [66, 67] using quadratic approximation and was more 
suitable and successful than simplicial, but a unique quadratic approximation requires 
too many base points and thus too many circuits simulations. 

4.2.2. The ellipsoidal method 

This method is based on inscribing the largest possible ellipsoid into the constraint 
region. This is done in such a way that the end-points of the ellipsoid axes do not 
violate the constraints. It proceeds by generating a sequence of ellipsoids, each 
smaller than the last, until the procedure converges. The ellipsoid center provides the 
nominal design point. Similar to other methods, this procedure assumes that an initial 
feasible point is provided by the designer. Fig. 13(a) shows the ellipsoid method in a 
two dimensional problem. 

4.2.3. Convexity-based approaches 

In this case, the feasible region is initially approximated by a polytope, then it is 
possible to use the properties of polytope to inscribe the largest ellipsoid, or to 
formulate the design centering problem as a convex programming problem to use a 
convex programming algorithm to find the solution [63]. Fig. 13(b) shows the 
polytope approximation for a convexity-based method.  
 

 

(a)       (b) 

Figure 12: The simplicial approximation: (a) the initial polyhedron; (b) resulting polyhedron after four 
iterations. 
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(a)       (b)  

Figure 13: a) The ellipsoidal method. b) The convexity-based method. 

4.3. The statistical approaches 

The statistical approaches are based on the statistical methods of yield optimization. 
The objective of the yield optimization is to find a vector of designable parameters 
p=popt, such that Y(popt) is maximized. In Fig. 14 is reported the interpretation of 
yield maximization for a discrete circuit with two parameters, where px,nom are the 
nominal values of parameter design and px,opt are the parameters values that maximize 
the yield. 

 
Figure 14: Graphical interpretation of yield maximization. 

The statistical methods can be classified in two main groups: large-sample methods 
and small-sample methods. The large-sample methods calculate the expectation 
function from a large numbers of samples in the parameters space. On the other hand, 
the small-sample methods use just a few samples of the expectation function for any 
given point in the parameter space, but combining an averaging procedure to 
calculate the average of the expectation function or its gradient over a certain number 
of steps. The majority of yield optimization methods belongs to the large-sample 
groups. 

4.4. The use of symbolic analysis in design centering 
 

In any case, the design centering problem starts from the approximation of the 
acceptability region, otherwise we need to verify if a point p in the parameter space is 
feasible or not, and this requires several circuit simulations by means of circuit 
simulator software. The use of symbolic analysis technique can give noteworthy 
advantages with respect to the numerical techniques in all the applications that require 
the repetition of a high number of simulations performed on the same circuit 
topology. In design centering problem they can be advantageously applied in both 
statistical and geometrical approaches [68-70].  
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Consider the problem of designing a linear, time-invariant circuit with k design 
parameters and h constraints. The circuit is represented by a network function F(s, p) 
in the s domain, which, generally, is a transfer function. For the sake of simplicity, 
consider only constraints referred to the amplitude response of the circuit as follows: 

 ,i iF j K p  for i=1h                                                  (6) 

where p=[p1, p2, … pk] is a point in the parameter space. A generic  ,F j p can be 

expressed as: 

          
         

1 0

1 0
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                                  (7) 

where the coefficients of numerator and denominator can be considered as a sum of 
products (SOP) of the circuit parameters and the degree of this expression, with 
respect to a single parameter, is always equal to one. Then it is possible to write the 
expression (7) in bilinear form with respect to the q-th parameter as: 
 

     
   

, q
q
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A j p B j
F j p
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                                             (8) 

where the polynomials A, B, C and D depend only on the frequency, having fixed the 
numerical value for all the other parameters. Equation (8) can be expressed as a 
function of the real and imaginary parts of A, B, C and D as: 
 

         
       

, r i q r q i
q

r i q r q i

A j jA j p B j jp B j
F j p

C j jC j p D j jp D j

   


   
  


  

 (9) 

 

where the subscripts r and i of the polynomials A, B, C and D indicate the real and 
imaginary parts of the corresponding polynomials. At this point it is possible to solve 
the h inequalities in (6) with respect to the q-th parameter, when the other parameters 
have a fixed numerical value. Using the expression (9), the generic j-th inequality in 
(6) can be expressed in the following way: 

r i q r q i j r i q r q iA jA p B jp B K C jC p D jp D      
                  (10) 

that is: 

       2 2 2 2

r q r i q i j r q r i q iA p B A p B K C p D C p D                  (11) 
 

where Ar=Ar(jj), Ai=Ai(jj), Br=Br(jj), Bi=Bi(jj), Cr=Cr(jj), Ci=Ci(jj), 
Dr=Dr(jj), and Di=Di(jj). Considering the square form of the expression (11), after 
easy calculations, the following inequality can be obtained: 
 

2 0j q j q ja p b p c                                                     (12) 

where: 
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                           (13) 

In case of constrains defined as  ,j jF j K p , it is again easy to verify that: 

* 2 * * 0j q j q ja p b p c                                                                (14) 
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where aj
*=aj, bj

*=bj, cj
*=cj. For each constraint, a range of values for the 

parameter pq can be derived by the expression (12) (and/or the expression (14)), once 
the values of Ar, Ai, Br, Bi, Cr, Ci, Dr and Di have been evaluated for each frequency of 
interest. This operation can be easily performed as follows, if the symbolic form of 
the polynomials A, B, C and  D is available. Once the parameter unknown pq has been 
chosen, and the frequency j and all the other parameter values have been fixed, the 
numerator and the denominator of the expression (9) are evaluated for pq=1 and for 
pq=0, bringing to the following equations: 
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Now the numerical values of Ar, Ai, Br, Bi, Cr, Ci, Dr and Di are the following: 
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This procedure, when applied to each parameter pq and to each frequency j, allows 
to determine the range of values satisfying the constraints for each circuit parameter 
at a time. 

Starting from the previous theoretical considerations, the acceptability region can be 
represented through the determination of two-dimensional (2D) sections relevant to 
couples of parameters. The algorithm for determining a 2D section is explained in 
detail in [70]. In the algorithm a couple of parameters px and py is chosen and the 
shape of the acceptability region is investigated as a 2D cross-section relevant to 
these two parameters. Only px and py vary, while all the other parameters are fixed at 
their nominal value in p’. For the parameter px a range of values relevant to a fixed 
percentage of its nominal value px’ is considered. This range is divided in Np samples. 
The percentage and Np can be chosen by the user as a trade-off between accuracy of 
results and computational speed. 

A pseudo 3D representation of the acceptability region can be simply obtained with 
the same procedure, performed through the superposition of the two-dimensional 
sections relevant to prefixed variations of a third parameter. Of course the procedure 
is applicable to the case of more than three variable parameters, but, obviously, it is 
not possible to plot the obtained region. For this reason the algorithm has been 
considered only for the cases of two and three dimensions. However, to extend the 
procedure to the case of a generic dimension M3, it is sufficient to modify the 
algorithm by inserting M1 nested loop as in pseudo 3D representation. 
 

It is important to note that, by exploiting symbolic simulation techniques, the circuit 
is simulated only once for determining the symbolic transfer function. During the 
procedure, only evaluations of the symbolic transfer function are required. For what 
concerns the algorithm complexity, in the 2D case, for each value of px, it is 
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necessary to solve a second degree equation and the number of values of px is Nph. 
In the 3D case, the second degree equation has to be solved for Np

2h times, while, 
for a generic MD (M-Dimensional) case, the second degree equation has to be solved 
for Np

M1h times. Finally, it is worth to point out that here only the constraints 
referred to the amplitude response have been considered, because this kind of 
constraint is the most commonly used. Of course, other kinds of constraints can be 
considered, as the phase or the delay response, and the extension to this kind of 
responses is straightforward.  

4.5. Application examples 

The procedure described in the previous section has been implemented in the 
programs DESCEN (DESign CENtering) [68] and SAR (Symbolic Acceptability 
Region) [69]. The programs acquire the symbolic transfer function from the program 
SAPWIN [2, 3], starting from a schematic entry of the circuit under consideration.  

DESCEN allows to use both the geometrical and statistical approaches for searching 
the design center. Furthermore it allows to perform a yield estimation by using Monte 
Carlo analysis. The statistical approach consists in the implementation of the well-
known center of gravity method (Gravity method), using the symbolic approach in 
Monte Carlo analysis. The verification of the constraints for each set of parameter 
values is performed by replacing numerical values in the symbolic transfer function 
without simulating the circuit for each set of parameter values. 

As first example we consider the active tunable filter shown in Fig.15(a). Using the 
constraints as reported in Fig.15(b) and the initial feasible point in [62], we obtain the 
results reported in Table 1, for 1% and 1.5% tolerances. For example, considering 
ideal the operational amplifier, the final values for R1, R3, C1 and C2, with 1.5% 
component tolerance, are [12527.8Ω, 184.34Ω, 0.72727µF, 0.73035µF] with the 
Gravity method and [12489.8Ω, 181.2Ω, 0.7321µF, 0.73621µF] with the Volume 
method. In Table 1 are reported, for the sake of comparison, also the results in [62] 
relevant to the Largest Hessian Ellipsoid (LHE) method and the Convex 
Programming (CP) method. 

 
(a) (b) 

Figure 15: (a) Active tunable filter. (b) Required specifications. 
 

Table 1: Yield Estimation for the Circuit in Fig. 15. 

Component Tolerances 
(%) 

Yield (%) 
LHE CP Gravity (time) Volume (time) 

1 68.0 66.8 67.4 (107.13 s) 67.8 ( 6.32 s) 
1.5 46.6 45.2 45.2 (112.06 s) 46.8 ( 8.40 s) 

The second program, SAR, is able to determine the acceptability region of analog 
linear circuits. From the File menu of the program SAR, we can load the symbolic 



Symbolic Analysis Techniques for Analog Circuit Fault Diagnosis… Design of Analog Circuits through SA   383 

form of the transfer function from the .fdt file generated by SAPWIN. In the 
constraint window we can insert the required specifications of the circuit under 
analysis. With the button Graf we obtain a first view of the acceptability region 
related to two circuit parameters, as shown, for example, in Fig. 16(a). Now, we can 
choose the parameters and the constraints which are used to plot the acceptability 
region, using the Graf button as refresh. 
 

In case of a circuit with three or more parameters it is possible to plot also the 3D 
shape of the acceptability region, by selecting the wanted parameters. In Fig. 16(b) an 
example of 3D plot is reported. The same circuit of previous example, shown in Fig. 
15(a) is considered as example. The transfer function is given by: 

2

2 2

g

V
F

V
                         (17) 

The required specifications for the filter are shown in Fig. 15(b). The response of the 
filter is evaluated at the nominal parameter values: {Rg=50Ω, R1=12.46 kΩ, 
R2=26.5Ω, R3=184.3998Ω, C1=C2=0.72855 µF}. Starting from the nominal values 
and using the algorithm in [70], it is possible to obtain a 2D section of the 
acceptability region. In Fig. 16(a), a section of the acceptability region, relevant to 
the parameters C1 and C2, is shown. Generally, as also in the case of Fig.16, the 
sections are obtained in a very short time on today's computers. The shaded area 
indicates the 2D section of the acceptability region relevant to the couple of 
parameters C1 and C2. The program allows also to represent the contribution of a 
single constraint to the feasible region. In Fig. 16(b) an example of 3D plot is 
reported. 
 

     
(a)      (b) 

Figure 16 : Screenshots of SAR program: (a) 2D; (b) 3D. 

5. Symbolic Analysis of PWM dc-dc Converters Considering True-
Rms Parasitic Resistances 

Pulse-Width Modulated (PWM) dc-dc power converters are circuits based on a 
controlled switch and a diode cyclically switching and driving the entire converter 
circuit through several topological configurations composed of linear reactive and 
resistive components, connected to a dc voltage source. There are two configurations 
for Continuous Conduction Mode (CCM) and three configurations for Discontinuous 
Conduction Mode (DCM). Often these circuit are used with a feedback circuit to 
regulate the output voltage. The design of this circuit is not trivial because PWM 
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converters actually are time variant circuits, and their s-domain representations 
require some model to be utilized. 

The purpose of this section is to present a computer analysis of dc-dc PWM 
converters based on a small-signal model where parasitic resistances of the converter 
components are considered. By using a computer aided symbolic analysis, the 
influence of each single parasitic resistance on the converter operation is easily 
studied and, therefore, an accurate parametric analysis of the converter is performed.  

A computer aided analysis allows for an automatic determination of the number of 
poles and zeros of the system and their values, the root loci and an automatic 
derivation of the four transfer functions describing the converter frequency domain 
behaviors, and plotting of related Bode plots. 

5.1. The assumptions of the averaged model of switching cells  

The model of the switching cell is developed under the following assumptions: 

1. The transistor output capacitance and the diode capacitance are neglected, 
therefore switching losses are neglected; 

2. The switch in the on state is modeled by a linear resistance rDS and in the off 
state by an infinite resistance; 

3. The diode in the on state is modeled by a linear battery VF and a linear 
forward resistance rF. The diode in the  off state is modeled by an infinite 
resistance; 

4. Passive components are considered linear, time-invariant, and frequency 
independent; 

5. The output capacitance of the input voltage source is zero for both dc and ac 
components. 

5.2. Averaged model and linearization of the CCM switching cell equivalent 
circuit 

Fig. 17(a) shows the “switching cell” comprised of a controlled switch S and a diode 
DS and its connection to the inductor L. This sub-circuit is the “core” part of a dc-dc 
switching converter. As shown in Fig. 17(b), the combination of the controlled switch 
S and diode DS acts as a device diverting the inductor current iL through the switch 
when ON and through the diode when S is OFF. 
 
Several averaged circuit models of the switching cells can be derived [71]. If it is 
assumed that these quantities vary at low frequencies, i.e., below fs/2, [72], the dc and 
ac components of the diode current and switch-to-inductor voltage drop are: 

   1D LI D I  (18) 

   1SL SDV D V  (19) 

    1d L Li D i I d  (20) 
and 

    1sl sd SDv D v V d  (21) 
respectively. The equivalent circuit corresponding to expressions (18)-(21) is the dc 
and the small-signal ac model of the switching sub-circuits. The derived ac equivalent 
circuit and that used as sub-circuits in computer simulation are shown in Fig. 19(a) 
and Fig. 19(b), respectively.  
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The derived equivalent circuit is the small-signal ac model of the ideal switching cell 
(AC-ISC) shown in Fig. 17(a) which is also the sub-circuit utilized for the computer 
analysis of dc-dc and it is constituted by: 

 

Figure 17: Switching cell of a dc-dc PWM converter: (a) switching cell composed of the diode and 
controlled switch; (b) switching cell composed of ideal switches. 

- voltage-controlled voltage source E1D - voltage source implementing 

  ' 1sl sdv D v with its positive and negative control nodes connected to ISC nodes 
S, node 1 in Fig. 19(b) and D, node 3 in Fig. 19(b), respectively; 

- voltage-controlled voltage source ESD - voltage source implementing  "
sl SDv V d . 

The negative control node is ground connected and the positive one is the external 
accessible node 4, which is the node where an independent voltage source is 
connected; 
- current-controlled current source F1D, - source implementing   ' 1d Li D i . 
Actually, the ac component of the inductor current  flows through this source control 
branch (node 2 of the circuit shown in Fig. 19(b)); 

- voltage-controlled current source HIL - source implementing  "
d Li I d . The 

control nodes are the same utilized for voltage source ESD. 

The expressions for IL and VSD are given in Table 2 for most common PWM dc-dc 
converters. 
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Figure 18: Waveforms of inductor, switch, and diode currents and inductor voltage in a dc-dc PWM 
converter operated in CCM. 

 
Table 2 : Parameters of Controlled Sources for dc-dc Converter ac-model. 

Converter Type 
LI  SDV  

Buck 
OI     1 1I DSave Fave L F I DSave Fave O FV r D r D I V V r D r D I V                
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D
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D
V r D r D I V V r r I V

D
               

 

Buck-Boost 
1

OI

D
  1

1I O DSave Fave L F I O DSave Fave O F

D
V V r D r D I V V V r r I V

D
               

 

Flyback 
 1

OI

D
  1

22 1
DSave T aveI

O Fave T ave O F

r rV D
V r r I V

n Dn

       
 

 

5.3. Averaging parasitic resistances of the CCM switching cell 

From plots shown in Fig. 18, the expression of the rms values of the inductor, switch, 
and diode currents are derived. The expression of the power losses in these 
component equivalent resistances are PS  rDS ISrms

2 , PL  rL ILrms
2  and PD  rF IDrms

2 . If 
these losses are calculated in the averaged circuit of Fig. 19, the expression of these 
losses as functions of the averaged resistances are PS  rDSaveIS

2 , PL  rLaveIL
2  and 

PD  rFaveID
2 .  

Therefore, the averaged resistance are expressed as: 
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When the converter is operated in CCM with  I IL , that is   VO(1D) 12LfIL  1 , 

(22), (23), and (24) simplify as  rLave  rL ,  rDSave  rDS D  and 
  
rFave  rF 1 D . 

The equivalent resistances are considered in a Real Switching Cell (RSC) model 
where the averaged resistances are series connected to related components, that is 
rLave is series connected to the inductor, rDSave series connected to the switch, and rDave 
series connected to the diode, as shown in Fig. 20. 
Note that this sub-circuit remains the same for all the three more common non-
insulated dc-dc converter topologies (buck, boost, and buck-boost).  
 

 
(a) 

 
(b) 

Figure 19: Equivalent circuit for the ac model of the switching cell of a dc−dc PWM converter: (a) 
equivalent circuit; (b) sub-circuit utilized in computer simulations. 

 
Only parasitic component values which are external to the ISC are different between 
equivalent circuit of insulated converter and those related to their corresponding non-
insulated circuits (i.e., forward and buck converter). Therefore, the switching cell sub-
circuit can also be usefully utilized for flyback and all the buck-derived dc-dc 
converters.   
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Actually, the switching-cell sub-circuits yields to a unified approach to the frequency 
domain analysis of the dc-dc PWM converter circuits. 
 

5.4. Averaged model and linearization of the DCM switching cell equivalent 
circuit 

Detailed derivation of the expressions given in this paragraph are in [73]. By 
considering both the dc and small-signal ac components of switch current S S si I i  , 
duty cycle Td D d  , and switch voltage SL SL slv V v  , we have: 
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The small-signal ac model of the switching sub-circuit is shown in Fig. 21(b).  

5.5. Averaging parasitic resistances of the DCM switching cell 

From plots shown in Fig. 22, the expression of the rms values of the inductor, switch, 
and diode currents are derived so that the expression for the inductor equivalent series 
resistance is:  

     
                      

1

1 1 1

4 1 4 1
3 3 1 1 1SL SL LD

LD LD SL

DS F
Lav DSav Fav L DS F LV V V

V V V

rD rD
r r r r r r r r
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Figure 20: AC model of the Real Switching Cell (RSC). 
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Figure 21 : Model  of the switching cell of a dc-dc PWM converter: (a) dc model; (b) small-signal 
model. 
 
The power loss due to the diode threshold voltage VF is: 
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1
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which leads to the equivalent averaged voltage source connected in series with 
inductor L: 
 

 
1

1

1

1
1 1LD

SL

F F
Fav F FVD

D V

D V V
V V V

D D
    

  
 

 

Figure 22 : Waveforms of inductor, switch, and diode currents and inductor voltage in a dc-dc PWM 
converter operated in DCM. 

5.6. Applications examples 

Models shown in previous section are useful for the frequency domain analysis of 
PWM dc-dc converters. Detailed information on frequency domain behaviors of these 
converters are given by four functions as follows. 
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The control-to-output transfer function is: 

  

Tp(s) 
vO(s)

d(s)
vi0

  

The input-to-output voltage transfer function is: 

  

Mv(s) 
vO(s)

vi(s)
d0

  

The output impedance is: 

  

Zo(s) 
vo(s)

io(s) d0
vi0

  

The input impedance is: 

  

Zi(s) 
vi(s)

ii(s)
d0

  

These functions highly depend on parasitic components. When these components are 
considered,  the expression of these functions become cumbersome as shown in the 
following example. Computer programs such as SAPWIN which can automatically 
derive these expressions become useful when parasitics are considered and/or cannot 
be neglected. 

5.6.1. PWM boost converter DCM operated 

A circuit of a PWM boost converter is shown in Fig. 23(a, b and c) show the 
converter equivalent dc and ac circuits, respectively, where rC is the Equivalent Series 
Resistance (ESR) of the filter capacitor.  

 
Figure 23: DC-DC PWM boost converter:  (a) converter circuit; (b) dc equivalent circuit; 
(c) small-signal model. 
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Small-signal model 

The small-signal model parameters for the boost converter are : 
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Small-signal transfer functions 
 
The control-to-output transfer function for the boost converter is: 
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 2
1 2 0, 1 1 1p p        

The transfer function Tp may have a zero in the RHP. Thus, the boost converter may 
become a non-minimal system, in which case it is more difficult to achieve stable 
operation and good dynamic performance. 
 

The input-to-output voltage transfer function is: 
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The input impedance is given by: 
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At s = 0: 
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5.6.2. CCM operated converter feedback loop design examples 
 

A PWM buck dc-dc with a switching frequency fs=100 kHz, a dc input voltage 
VI =12.5 V, a 5 W output power and a nominal output voltage VO  = 5 V is considered 
as example. The converter nominal duty cycle is D=0.4 and the load resistance R=5 
. The converter inductance is L=150 H and the output capacitance is C=50 F. The 
parasitic components of the converter equivalent circuit are rL=100 m, rDS=100 m, 
rF=30 m, rC=100 m. 
 
Fig. 24 shows the equivalent circuits of a PWM buck converter based on the RSC 
switching cell model. Fig. 25 shows the block diagram of a dc-dc PWM converter 
with KFM = PWM controller transfer function:  

  
K

FM


d(s)

v
c
(s)


1

V
CM
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where VCM is the maximum value of the voltage saw-tooth waveform generated by 
the PWM controller; A(s) is the compensating network transfer function and depends 
on the feedback loop. 

 
(a) 

 
(b) 

Figure 24: Averaged-circuit models of the PWM buck converter: (a) dc equivalent circuit; (b) small 
signal circuit. 

 
Figure 25: Block diagram of a PWM linearized dc-dc converter. 

 
The output voltage vo is measured, using a sensor with gain KR. The sensor circuit is a 
voltage divider, comprised of precision resistor. The sensor output KRvo is compared 
with a reference voltage vr. The objective is to make KRvo equal to vr, so that vo 
accurately follows vr regardless of disturbances or component variations in the 
compensator, PWM, gate driver or converter power stage. The error signal ve 
obtained by the difference between KRvo and vr is usually nonzero but nonetheless 
small.  

The open loop equivalent circuit simulated by SAPWIN is shown  in Fig. 26(a, b) 
shows the feedback network resulting in A(s). 
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(a) 

 

(b) 

Figure 26 : (a) Open loop equivalent circuit. (b) Feedback network sub-circuit X2 cmp_buck. 
 
Typically, the procedure for controller design refers to the “loop gain”:  

      /ol R p MT s K A s T s V   
The first zero of the compensating network is placed between 0 to ½ of converter 
resonance frequency fCC = 1/2 (LC)1/2 . Therefore we have:  

1 700 HzZf  .  
The second zero frequency is chosen between fZ1 and fCC: 

2 1200 HzZf  .  
The first pole is placed at zero frequency; the second one is placed at the 
cross-frequency of the filter capacitor: 

2

1
31830 Hz

2P ESR
C

f f
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The third pole frequency is placed at fs/2 to reduce the output voltage ripple due to the 
switching: 

3 50000 Hz
2
S

P

f
f     

3 50000 Hz
2
S

P

f
f     

The open loop bandwidth is chosen inside the interval 1/10 fS and 1/5 fS trying to get 
the highest possible value for Tp(s) cross-over frequency. In this example it has been 
chosen: 

20000 HzCOf  .  
From these frequency values the components of the circuit shown in Fig. 26(b) are 
calculated as follows: 
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Figure 27 : Loop gain transfer function Bode plots Tol : (a) magnitude; (b) phase. 
 

As shown in Fig. 27, these component values yields to a phase margin 57m    and a 
bandwidth 3900 HzwB  . 
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CHAPTER 15 

Symbolic Characterization of VCOs and its Application to 
Optimization Based Design 

M. Helena Fino* and Fernando V. Coito 

Instituto de Telecomunicações, Lisboa Portugal, FCT/UNL, Portugal 

Abstract: This chapter addresses the application of symbolic techniques on the 
characterization of ring Voltage Controlled Oscillators (VCO). The symbolic 
characterization of the VCOs comprises both the frequency-control voltage response and 
a simplified formula for evaluating the phase-noise in the oscillator. Two methodologies 
are shown for generating the frequency-control voltage response. The first one is based 
on the evaluation of the delay introduced by each VCO delay cell. In the second an 
approximate expression for the equivalent resistance of each VCO delay cell load is 
considered, and used for deriving the VCO model. The adoption of the proposed 
methodologies to submicron transistor sizes is illustrated. The application of the VCO 
characterization into an optimization based design is described.  

Keywords: Ring VCO, VCO model, symbolic characterization, optimization-based design, deep-
submicron VCO characterization, semi-symbolic methodology, phase-noise characterization, Maneatis 
delay cell, equivalent resistance, phase-noise minimization. 

1. Introduction 

The rapidly growing demand for lower cost and higher bandwidth as well as 
functionality of RF transceivers has motivated higher levels of integration of wireless 
communications systems operating at higher frequencies [1, 2] . Among the wireless 
transceiver building blocks Voltage Controlled Oscillators (VCOs) are a major 
concern for designers since they are responsible for the purity of the signal generated. 
Ring-VCOs are known for being easily integrated in standard CMOS technologies. 
They also show a wide tuning range and if implemented with a small number of 
stages they occupy less area than LC-VCOS. LC-VCOs on the other hand, show 
much better phase-noise behavior. This has motivated the development of research 
work regarding the design of low phase-noise ring-VCOs. 

In spite of the widespread use both in communication circuits and in microprocessors, 
ring VCOs are usually designed empirically. Traditionally the design of a VCO starts 
with the choice of the number of stages for a desired oscillation frequency. Then a 
refinement of the results is performed through iterative simulations. This approach, 
however, is a time consuming prohibitive process because transient circuit 
simulations must be run long enough before steady state is attained. With the aim of 
increasing efficiency in the design process, accurate models for the evaluation of the 
delay introduced by each stage have been proposed in the literature [3, 4]. 

The necessity for designing low phase-noise ring-oscillators has motivated the 
adoption of design methodologies where not only frequency-control voltage is a 
major concern, but the minimization of the phase noise must also be accounted for. 
Nowadays, numerical simulators also offer the possibility for simulating time jitter or 
phase noise in the oscillation. Yet, the use of a numerical simulator, although 
producing accurate results, does not give the designer a qualitative insight into which 
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parameters should be altered in order to improve the circuit behavior. A symbolic 
approach for the characterization of both frequency-control voltage and phase-noise 
must be adopted as a way of offering designers qualitative insight into the key design 
parameters, so that ring oscillators may be designed first time right without guess 
work and lengthy simulations [4]. 

In this chapter a brief description of CMOS ring VCOs will be presented, where 
particular emphasis for differential delay cell ring VCOs will be given. Then the 
symbolic characterization of the VCOs will be presented. The approach proposed 
relies on the resolution of the differential equations modeling each VCO delay cell. 
For the characterization of the phase noise/jitter the methodology proposed in [5] will 
be considered. A working example considering a symmetric load ring VCO [6] will 
be presented, and results obtained will be compared against those from numerical 
simulation. The symbolic characterization of the VCO will be used for integrating a 
phase-noise-aware optimization-based design procedure. A final example guiding the 
integration of the symbolic characterization into an optimization based design 
procedure will be presented. In the last section conclusions are offered. 
 

2. Voltage Controlled Ring Oscillators 

For the implementation of ring VCOs structures consisting of N inverters or delay 
cells with the output fed to the input are usually used. These oscillators are known for 
generating precise delays due to their inherently high delay linearity, i.e., considering 
that all buffer stages are identical, the relationship between a buffer delay and the 
period of the signal generated is set by the number of stages [1].  

2.1. Ring VCO frequency-voltage response 

For the sake of modeling we start by considering each delay cell consisting of a 
negative conductance, -Gm, driving an RC load as illustrated in Fig. 1. 

 
Figure 1: Ring oscillator structure. 

For this case, the transfer function of each delay stage is given by 
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yielding to the N-stage ring oscillator closed-loop transfer function in 
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that can be rewritten as: 
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According to linear system theory and Barckhausen criteria, the frequency of 
oscillation, osc , is given by: 
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that can be written as 
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where a minimum gain per stage, Gm R  is needed 

 secGm R
N
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Another approach for calculating the frequency of oscillation of ring oscillators 
considers 
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2osc
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so we may conclude, from (6) and (7) that the delay introduced by each delay cell 
may be given by 

 
 
 tan

delay
Nt RC

N






 

(9) 

 

We should note, that the second term in (9), is approximately unity for 7N  , 
yielding to  

 delayt RC  (10) 

which is usually used saturated ring oscillators. 
 

2.2. Phase noise in ring VCOs 

Ideally an oscillator will exhibit a frequency spectrum consisting of a single impulse 
at the frequency of oscillation. Yet, due to noise causing variations in the phase of the 
output signal, the waveform of a real oscillator can be written as 
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  coso o nv A t t      (11) 

where  n t is the phase noise of the oscillator. 

The characterization of phase noise in ring oscillators has been carefully presented in 
[7]. However, for the sake of simplicity, we will follow the approach presented in [4], 
where the oscillator is considered as a linear system. This assumption leads to quite 
accurate results for ring oscillators with a small number of delay stages (typically up 
to five stages), since the output signal is approximately sinusoidal. For those 
oscillators with a larger number of delay stages, results obtained are less accurate.  

 

 

 

 

 

Figure 2: Feedback model for the ring oscillator. 

Considering the feedback model of the ring oscillator as illustrated in Fig. 2, where 
( )inN j and ( )outN j are the input and output noise signals, respectively, we obtain 
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Using the truncated Taylor series expansion of ( )H j given by 
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where 0 is the frequency of oscillation and imposing 0( ) 1H j   in (12) the noise 

power will be given by 
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Considering the expression for ( )H j in (2) we obtain 
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Using Gm given by (7),we obtain 
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yielding 

( )outN j  ( )inN j  
+ ( )H j  
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For the evaluation of the input noise signal, input current noise sources are added to 
each oscillator delay stage, as illustrated in Fig. 3. 

 
Figure 3: Ring oscillator with input current noise. 

In this case the input noise signal is given by  
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and  

 
2

2 2

2

( )
1 tan

osc
in n

R
N j i

N

 





   
 

 (19) 

Considering that each of the N delay stages contributes with one the input current 
noise, we obtain 
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Finally, if we consider as in [4] 
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The total output noise is 
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Therefore, the phase noise will be equal to 
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or 
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For the particular case of a three stage oscillator we obtain 

  
2

2

8 3

9
osc

osc osc

kT
PN

v C


 

     
 (25) 

 

3. Symbolic VCO Frequency-Voltage Response 

 

In this section ring VCOs comprising differential gain stages with symmetric loads as 
illustrated in Fig. 4 will be considered [6].  

The analytical expression for evaluating the delay introduced by each stage may be 
obtained considering the large signal behavior of the differential inverting stage. In 
this delay cell the current Ibias is regulated such that the output voltage swing is 
equal to the control voltage, CV .  For the sake of simplicity, we will assume that the 

current through the delay cell switches instantly from the left to the right branch after 
the differential input voltage,  In InV V  , changes polarity. The voltage 1V , across 

capacitor 1C , starts at 0V and approaches CV , while the voltage 2V ,across capacitor 2C , 

starts at cV  and approaches 0V. The next delay cell will start switching 

when 221 CVVV  . The delay time is then given by the time spent for charging the 

capacitance to 2CV  [3]. 

 
Figure 4: One of N-delay stage VCO. 
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This time may be evaluated considering the symmetric load cell represented in Fig.5.  

 
Figure 5: Symmetric load for the VCO differential delay stage. 

For evaluating the delay time for charging for the capacitor to 2CV , we must solve  

 biasCsl IVVI
dt

dV
C  ),(  (26) 

where slI represents the sum of the load transistors currents. According to the different 

MOSFET transistor operating regions two major cases must be considered, as 
illustrated in Table 1  
 

Table 1: Symmetric Load MOSFET Operating Regions. 

 Operating Regions M2 M1 

 

VtVc 2  

VtVcVds 0  Triode Off 

VtVdsVtVc   Saturation Off 

VcVdsVt   Saturation Saturation 

 

VtVc 2  

VtVds 0  Triode Off 

VtVcVdsVt   Triode Saturation 

VcVdsVtVc   Saturation Saturation 

In this chapter we will address the case for VtVc 2 , where two regions must be 

considered. In region I while tVV  , transistor M1 is off and transistor M2 is in triode, and 

(25) becomes 
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   (27) 

With initial conditions given by  

   00 V  (28) 

A second region must be considered for tVV  , where transistor M1 starts conducting 

while transistor M2 is in triode. Here, (26) becomes 
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  (29) 

With initial conditions given by  

   tVV 0  (30) 
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 The overall delay time will be given by the addition of the time, t1, for V  to reach tV  

in region I, with the time, t2, for V to reach 2cV , in region II. 

In the next sub-sections, results obtained with the Matlab symbolic toolbox will be 
presented. In the first case, symbolic expressions for evaluating the delay introduced 
by each symmetric-load delay element are obtained. Then, an approximate expression 
for characterizing the symmetric load equivalent resistor is presented. This result will 
be used for obtaining an approximate symbolic characterization of the VCO 
frequency versus control voltage response. Finally, limitations of the proposed 
methodologies on the characterization of VCOs using sub-micron technologies are 
pointed out and solutions proposed. 

 

3.1. Symbolic characterization of the symmetric load delay cell   

The generation of the symbolic solution of the equations leading to the evaluation of 
the delay time of each VCO stage has been implemented with the Matlab symbolic 
toolbox. In Fig.6 a caption of the code for evaluating the overall delay time for the 
symmetric load capacitor attaining voltage 2cV is represented.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Matlab code for delay time evaluation. 

 

The results obtained with Matlab are,  

 
 1

2atan
2 2

C t

C t

C t

V V

V VC
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 (31) 

and   

function varargout=calcdelay(X) 
 
syms v Beta Vc Vt ibias ils itot 
 % region 1- M1 off and M2 triode 
ils=Beta*((Vc-Vt)*v-0.5*v^2); 
ibias=Beta*(Vc-Vt)^2; 
dv1m=strcat('Dv+',char(ils),'=',char(ibias)); 
v1m=simple((dsolve(dv1m,'v(0)=0.0'))); 
xlm=v1m-Vt; 
t1m=simple(C*solve(xlm,'t')); 
pretty(t1m) 
%region 2 -M1 saturated M2 in Triode 
ils=simple(Beta*((Vc-Vt)*v-
0.5*v^2)+0.5*Beta*(v-Vt)^2) 
ibias=B*(Vc-Vt)^2; 
dv2m=strcat('Dv+',char(ils),'=',char(ibias)); 
v2m=simple((dsolve(dv2m,'v(0)=Vt'))); 
x2m=v2m-Vc/2; 
t2m=simple(C*solve(x2m,'t')); 
pretty(t2m) 
tdelay=simple((t1m+t2m)); 
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Leading to the overall delay time given by  
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(33) 

This equation may be integrated into (8) for obtaining the frequency-to-control 
voltage symbolic characterization of the VCO. 

Yet, this approach, although producing accurate results, is much too complex for 
offering the designer qualitative insight into which are the key parameters responsible 
for the VCO frequency response. With the aim of obtaining a more intuitive 
characterization of the VCO frequency response a second approach may be used 
where an approximate symbolic expression is obtained. 

 

3.2. Deriving an approximate symbolic characterization of the VCO  

Having in mind the general VCO structure represented in Fig.1, a simplified 
frequency to voltage expression may be obtained, based on the generation of an 
approximate expression for the equivalent resistance of the delay cell symmetric load. 

An approximate expression for the equivalent resistance of the symmetric load may 
be obtained if we consider the voltage-to-current relation of the symmetric load 
represented in Fig. 7.  

 

Figure 7: Current versus voltage of a symmetric- load. 

In the same figure, a dashed line represents an approximate behavior of the voltage-
to-current relation which leads to an equivalent resistance given by the ratio between 
the control voltage and the maximum current, i.e, 

 
 e 2

R q

c t

Vc

V V
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Using Matlab symbolic toolbox for solving (26) with  
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  (35) 

the approximate expression for evaluating the delay introduced by each symmetric 
load delay element becomes 
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A more intuitive result may be obtained by considering (34) and (6) yielding the 
approximate frequency-control voltage equation 
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That for the particular cases where 7N  , (37) can be simplified to 
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osc
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f
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This is the same expression which is proposed in [3] for evaluating the frequency of 
oscillation for a given control voltage. 

 

3.3. VCO characterization in deep-submicron technologies 

As we have mentioned, the symbolic characterization proposed in the previous 
section relies thoroughly on the DC characterization of the MOSFET transistors 
comprising the symmetric loads of the VCO delay stages. Unfortunately, as the sizes 
of MOSFET transistors scale down, the quadratic model is no longer applicable, for 
new physical effects such as the velocity saturation and mobility degradation, among 
others, must be accounted for. To overcome the inaccuracy of Shockley’s MOSFET 
model when applied to submicron circuits, Sakurai’s Npower model was proposed 
[8]. This model has been successfully used in the derivation of analytical expressions 
for evaluating delay and power dissipation in submicron CMOS gates [9, 10]. The 
main points to be taken into account for our work are: 

   n

Dsat eff GS tI B W L V V   (39) 

  1D Dsat DS DS DsatI I V V V      (40) 

where Leff is the effective transistor length. As we may easily conclude from (39) the 
dependency of DI  on GSV  is no longer quadratic. The power is n (usually ranging 

from 1.5 to 1.8, depending on the technology) as stated in (39). This has severe 
implications on the methodology proposed in the previous section.  In this case, the 
differential equation modeling the charging process of the capacitances will have to 
deal with equations for modeling the currents according to Npower model. Since the 
MOSFET currents depend on the control voltage with a non-integer power, the 
symbolic solution of the equations is no longer easily obtained. In this case only a 
semi-symbolic solution can be obtained.  
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As an example a caption of the code for evaluating the delay time, t1, for the 
symmetric load capacitor to charge to voltage Vt, is represented in Fig.8 where 
transistors with 4665.5efLW , and the model parameters in Table 2, were 

considered. 

Figure 8: Matlab code for delay time evaluation with Npower model. 

 

Table 2: Npower Model Parameters. 

Parameters Typical Case 

Vdd 1.8 

B 21.276e-6 

n 1.60 

K . 828 

m .770 

 .053 

Vth .462 

A delay time of s10-3.25e1 t  was obtained for 6.1n . In the case of 0.2n  (quadratic 
model of the MOS transistor), a delay time of delay time of s010-3.45e1 t is 
computed, against a delay of  s010-3.38e1 t  obtained with the symbolic approach in 
Section 3. The minimal difference between the two values may be due to the fact that 

function x=numsoldelay ()         
global Vdd B Vc n Vt C K m lambda 
W=5; 
L=.4665; 
B=21.276e-6*W/L; 
Vt=0.462; 
Vc=1.2; 
C=0.75*5e-15*(5*0.5+50*0.66) 
K=.828; 
m=.770; 
Vdd=1.8; 
lambda=0.053 
n=2%1.6; 
[t,y]=ode45(@getI1,[0 .4e],[0.0], .. 
    odeset('reltol',1e-12)); 
td=interp1(y,t,Vth) 
end 
  
function z=getI1(t,V) 
global Vdd  B  Vc n Vth C K m lambda 
Ils=B*((Vc-Vt)^n)*(1+lambda*V); 
vdsat=K*(Vc-Vt)^m; 
rat=V/vdsat; 
Ibias=2*B*((Vc-Vt)^n)*(1+lambda*V); 
if rat<1 
    Ils=Ils*(2-rat)*rat; 
end 
z=(-Ils+Ibias)/C;  
end 



410   Design of Analog Circuits through SA Fino and Coito 

in the symbolic solution we did not consider the variation of the drain current, DI , 

with the drain to source to voltage, DSV . 

On what concerns the approximate characterization of the VCO, the expression for 
the equivalent symmetric-load resistance becomes 
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Leading to the frequency versus control voltage given by 
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In Fig. 9 a comparison between the frequency response of a 7-stage VCO, obtained 
with (42) and results from simulation with electrical simulator Hspice are represented. 

 
Figure 9: Frequency to control voltage response of a 7-delay stage VCO. 

From the results represented we may conclude on the high accuracy of the results 
obtained with the symbolic approximate expression derived.  

4. Optimization Based VCO Design 

The main requirements for integrated VCO design include the center frequency, the 
tuning range, the power supply voltage, power consumption and phase-noise 
specifications [11]. 

The design of VCOs usually starts with the choice of the number of stages for a 
desired oscillation frequency. Then a refinement of the results is performed through 
iterative simulations. Since transient simulations must be run this approach has severe 
limitation concerning the efficiency of the methodology. To overcome this problem, 
accurate models for the evaluation of the delay introduced by each stage have been 
proposed in the literature [3, 4]. These models may be integrated in optimization 
environments, but the process is still not efficient since the search for solutions does 
not take into account qualitative knowledge regarding the VCO key elements 
responsible for required characteristics. So a huge number of intermediate design 
solutions are generated which are discarded.  
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By using the symbolic characterization of the VCO, a methodology may be defined 
where a prioritization of the design may be used and constraints on components sizes 
may be imposed, preventing the generation of unsatisfactory intermediate solutions 
and thus increasing the efficiency of the design process. 

 

4.1. Working example 

A working example will be used for illustrating the use of the qualitative knowledge 
acquired from the symbolic characterization of ring VCOs in a more efficient 
optimization based design methodology. In this example the design of a ring VCO 
working with a central frequency of 1.0 GHz and showing a phase-noise of 

100dBc Hz at a 1 MHz offset is envisaged.  For the implementation of this ring 
VCO a technology with a supply voltage of 1.8V will be chosen. 

If we consider a control voltage of 1.0V for a frequency of 1 GHz, than the output 
voltage will be 0.35Vrms.  Since the phase-noise characterization has been derived 
considering a linear oscillator, we will choose a three-stage VCO topology. In this 
case, using (25) we obtain 
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8 410 3 2 10
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   (43) 

Yielding, for a phase noise of 100 dBc , i.e., 1010  

 80C fF  (44) 

For transistor sizing, an optimization methodology may be employed where (42) is 
used for obtaining the symmetric load transistor sizes. Here a minimum value for 
transistor length of 1.5 times the minimum allowed for the technology chosen should 
be imposed. Concerning the differential pair transistor sizes (switches) constraints 
must be imposed so that the condition for oscillation is guaranteed, i.e., using (7) and 
(41),  
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load load eff load c Th o c

c
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V

  
 
 
 

 (45) 

Once transistor sizes are obtained, the equivalent Capacitance may be obtained with 

  loadloadswitchswitchoxeff LWLWCC  5.0  (46) 

Should this Capacitance value be smaller than the minimum allowed, an external 
capacitor is added to each delay cell. 

5. Conclusion 

In this paper a symbolic approach for the characterization of Ring VCOs was 
introduced. This characterization entails information regarding not only the 
evaluation of the frequency of oscillation of a ring VCO, but an approximate 
analytical expression for evaluating the VCO phase-noise.  In the work presented the 
analytical characterization of the frequency of oscillation is obtained based on the 
delay introduced by each VCO delay element. Two approaches have been shown, for 
the automatic generation of the symbolic characterization of the delay introduced by 
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each VCO element. In the first approach an exact formula is obtained while in the last 
approach an approximate, yet simple and accurate expression is obtained.  However, 
both results obtained show severe inaccuracy when submicron technologies are used. 
To overcome this problem a semi-symbolic methodology is proposed, showing quite 
accurate results. Finally, the use of the symbolic characterization for the development 
of an optimization based methodology for designing ring VCOs is illustrated.  
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CHAPTER 16 

AMS Synthesis Using Symbolic Methods 

Mauro Santos and Nuno Horta* 

Instituto Superior, Técnico, Instituto de Telecomunicações, Lisbon, Portugal 

Abstract: This chapter addresses the problem of automatically generating data converter 
topologies, from algorithm descriptions to behavior building blocks, using a symbolic 
synthesis methodology. The discussed approach consists of an algorithm-driven 
methodology, which employs a combination of symbolic signal flow graph techniques, 
to generate canonical representations for data converter algorithm descriptions, together 
with pattern recognition techniques, to determine the appropriate functional building 
blocks for the data converter topology. The methodology is illustrated by working 
examples where VERILOG-AMS descriptions are considered at the input stage, for 
algorithm specification, and at the output stage, for topology description, in both cases 
the CADENCE® IC Design Environment is used for validation purposes. 

Keywords: Symbolic synthesis, algorithm-driven methodology, data converters, topology generation, 
algorithm descriptions, signal flow graphs, canonical representations, pattern recognition, behavior 
building blocks, functional building blocks, VERILOG-AMS. 

1. Introduction 

The advances in Very Large Scale Integration (VLSI) technologies combined with 
the market demand lead, more and more, to the integration of complete signal 
processing systems in a single chip and, also, to the spreading of Application Specific 
Integrated Circuits (ASICs). This conducts, naturally, to an increasing interest on the 
development of Computer Aided Design (CAD) and Design Automation (DA) tools 
to support integrated circuit (IC) design and, specially, the design of integrated data 
conversion systems due to their broad range of applications [1, 2]. 

In the later 80's, the first tools to approach the synthesis of data converters made it by 
implementing an architecture-constrained methodology, together with the use of 
standard cells to generate a semi-custom layout [3-5]. This approach applies only to 
very specific cases due to its high dependence on lower level circuitry. In the early 
90's, the evolution of lower level tools together with the more systematic application 
of hierarchical concepts led to an increased flexibility of design automation by 
specifying the converter at the topological level and using lower level tools to 
generate the appropriate sub-blocks [6-13]. Meanwhile, several analog design 
automation tools were developed using the most promising computation techniques to 
explore and optimize analog IC design [14-42]. Despite, the evolution higher level 
CAD systems are still limited by the lack of formal synthesis techniques available for 
analog and mixed-signal design. 

This chapter discusses a synthesis methodology, based on symbolic methods, which 
implements a general synthesis approach covering a wide range of data converters 
requirements (linear and non-linear). Particularly, a methodology for the automatic 
synthesis of data conversion systems from the algorithm description to the functional  
 
*Address correspondence to Nuno Horta: Instituto Superior Técnico, Instituto de Telecomunicações, Lisbon, 
Portugal; E-mail: nuno.horta@lx.it.pt 
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topology definition and sub-blocks specification is presented. The implemented 
symbolic approach employs Signal Flow Graph (SFG) descriptions together with 
pattern recognition techniques to allow the synthesis process to move to higher levels 
of abstraction, thus providing a computer-based framework for the systematic and 
uniform treatment of new conversion algorithms and/or new implementation 
topologies.  

2. Symbolic Synthesis Proposed Approach: Overview 

The described approach, illustrated in Fig. 1, was implemented on a C/PROLOG 
environment incorporating a sequence of symbolic and numerical transformations in 
order to map the data converter algorithms into feasible electrical topologies. The 
implemented methodology consists of three different phases, along three hierarchical 
levels, with specific interfaces for simulation within CADENCE ® IC Design 
Environment [43]. The first phase is decomposed into two parts. First, the acquisition 
of the system requirements, i.e., the desired algorithm description, made with 
VERILOG-AMS [44], and the performance specs. Then, the validation of the 
algorithm description is carried out by simulation. Next, an equivalent description is 
achieved through the interpretation, in PROLOG, of the algorithm description 
primitives, in VERILOG-AMS, which are translated into SFG substructures, 
generating a file with extension gra. After that, another symbolic task is performed, in 
PROLOG, for the simplification and partitioning of the previously achieved graph, 
originating a file with extension sag including the graph in a canonical form. The 
second phase consists of the functional topology generation. In this phase, a library of 
functional blocks is described in terms of SFG structures, in order, to allow the 
topology generation process to act as a pattern recognition task over the graph, in 
PROLOG, and originating the file with extension top containing the topology 
description. The topology validation is performed through simulation using functional 
block models described in VERILOG-AMS.  

 
Figure 1: AMS synthesis approach. 
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The third phase consists of the electrical topology generation, i.e., electrical sub-
blocks selection, and sub-block specs generation. In this phase, although the topology 
generation follows a similar process to the previous phase, the generation of the specs 
for the sub-blocks was implemented using both PROLOG and C. Here, another 
library was developed to aid the task of identifying electrical structures. In this case, 
the generated topologies are described in a file with extension ele, which is used as an 
entry for the sub-blocks specs generation task. These specs are obtained through the 
application of design rules over the generated topology and produce a file with 
extension siz, which includes the requirements for each of the sub-blocks. Finally, 
validation is carried out by electrical simulation. The achieved sub-block 
requirements are, then, submitted to lower level synthesis tools. In this chapter only 
symbolic processing phases, respectively, phase 1 and phase 2, are discussed. 

3. HDL Model for Algorithm Descriptions 

In order to describe data conversion algorithms for automatic synthesis it is 
mandatory to use a description language which supports both functional descriptions 
and the appropriate interaction between analog and digital signals. For this purpose 
VERILOG-AMS together with CADENCE ® IC Design Environment were chosen to 
allow both a faster prototyping and a validation mechanism. The next paragraphs 
present the model structure and the subset of language primitives considered for 
implementing data converter algorithm descriptions. 

3.1. Model structure 

The algorithm description consists of a sequence of logically independent conversion 
time steps comprising the relevant mixed analog-digital signal operations associated 
with the conversion process. This is encapsulated into a functional model whose 
structure, illustrated in Fig. 2, includes three main parts, namely the model 
identification, the model declaration and the model function.  

 
Figure 2: The main parts of the algorithm description structure are (a) model identification, (b) model 
declaration, (c) model function. 

The model identification part in Fig. 2(a) represents the header of the functional 
model and includes the model name and the external interface pins. The model 
declaration part in Fig. 2(b) declares the type of each variable used to describe the 
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model inputs/outputs (external pins) and the different conversion steps. The variables 
are classified either as input and output, if they correspond to external pins, or as 
integer when they are used exclusively for describing the algorithm. A clear 
distinction between analog, state and digital signals is ensured by using real, integer 
and reg variable data types for classifying both the interface and the internal 
variables. Finally, the model function part in Fig. 2(c) describes the algorithm 
function by using a subset of statements which are similar to the ones used in most 
structured programming languages. The algorithm description is carried-out in the 
time domain and driven by the events occurring at each conversion cycle. 
 

3.2. Language primitives 

A subset of the language primitives is used to describe efficiently the operations and 
conditions between the analog and/or digital signals usually needed in conversion 
algorithms. The construct if-else allows the implementation of two fundamental types 
of conditions, the equality and the inequality, presented in Table 1. The equality is 
related to digital expressions, due to the nature of digital signals that have a well 
defined set of values, whereas the inequalities are associated with analog signals. 
Therefore, on the one hand, the digital conditions are applied to the state 
identification, encoders description and any other condition with only integer or logic 
variables while, on the other hand, the analog conditions determine whether a signal 
passed a specific threshold value corresponding to a change on the digital code or any 
other condition involving real variables.  In summary, these conditions are mainly 
used to describe the A/D and D/A signal interfaces. The primitives/operators “<+” 
and “=” allow the description of signal processing both at the analog and digital 
levels, by executing operations over real and logic variables, respectively, as 
described in Table 1. The formats of other useful primitives used to define the 
operation steps or time slots, such as, while, @, for, are similar to the ones presented 
above. Examples of algorithm descriptions will be presented in section 5 when 
discussing the HDL to SFG translation. 

Table 1: Description Primitives and Assumptions. 

Description\Signal Analog Digital 
Declaration Real Logic 

 
Attribution 

 

Linear 

 

Non-Linear 

 

Condition 
 

Event Control 
 

 

as, ai, aj - analog signals; ds, d1, dn - digital signals 
ki - real coefficient 

4. SFG Representation 

In this section the proposed SFG representation is discussed, first, by reviewing the 
classic SFG approach and, then, by introducing a modified SFG representation to 
accommodate both analog and digital signals in a canonical form. 
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4.1. Signal flow graphs - traditional approach 

The algorithm description requires the coexistence of analog and digital signals. The 
desired representation is attained by merging the traditional definitions and concepts, 
from the graph theory, with definitions and concepts developed for the specific case 
of mixed analog-digital systems. In the next subsections, a brief introduction to the 
traditional graph theory [45] is given and the most relevant definitions and concepts 
are presented as a foundation for understanding the developed modified SFG 
approach, which will be discussed in section 4.2. 

4.1.1. Definitions and concepts 

A SFG consists of a set of interconnected branches. The branch is an oriented line 
segment, as illustrated in Fig. 3, and the basic element for SFGs representations. The 
branch orientation, expressed by its arrow, indicates the signal flow direction. The 
branch terminals, designated by nodes, indicate the signal input and output, and are 
the linking points with other branches. The branch coefficient, designated by gain, 
indicates the output to input ratio. 

 
Figure 3:  SFG basic element. 

In order to clearly illustrate the concepts in discussion, a graph, G, presented in Fig. 
4, is used as reference. In this case, the graph is composed by nine linked branches 
based on four nodes. Therefore, the flowing signal is affected both by the chosen 
links and the nine existing coefficients. 

 
Figure 4: A signal flow graph. 

Next, some of the more useful definitions for the SFG analysis are presented:  
• subgraph: is a graph, Gi, composed by a subset of branches from the original 

graph, G. 
• input node: is a node where at least one branch has the origin, but where no 

branch ends. These nodes are usually referred as sources, e.g. VIN. 
• output node: is a node where at least one branch ends, but where no branch has 

its origin. These nodes are usually referred as sinks. 
• incoming branch: is the term given to the branch relatively to the node where it 

ends, e.g. branches A, B and C relatively to node V1. 
• outgoing branch: is the term given to the branch relatively to the node where it 

has the origin, e.g. branches B and I relatively to node V2. 
• node degree: is the total number of incoming and outgoing branches to a 

specific node, e.g. node V1 has a degree of 5 in the original graph. 
• path: is a subgraph with nodes of degree 2 with exception of the extremes 

having degree 1. The nodes sequences VIN V1 V2 V3 and V1 V3 V2 are examples 
of paths, respectively, from VIN to V3 and from V1 to V2. 

• forward path: is a path where the nodes appear in a sequence from the input to 
the output or other node in analysis, e.g. VIN V1 V2.  

• backward path: is a path where the nodes appear in a sequence from the output 
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or other node in analysis to the input, e.g. V3 V2 V1.  
• closed path: is a path where the final node is identical to the initial node, e.g. V1 

V2 V3 V1.  
• feedback path: is the set of branches that compose a closed path. 
• forward node: is a node that appears in a forward path. 
• feedback node: is a node that appears in a feedback path. 
• forward branch: is a branch that appears in a forward path. 
• feedback branch: is a branch that appears in a feedback path. 
• forward graph: is a graph composed only by forward branches. 
• feedback graph: is a graph with at least one feedback node. 

 

4.1.2. Signal flow graphs algebra 

In the SFGs there are two implicit operations. The signal weighted sum, achieved by 
the convergence of several branches into a node and, the product of the signal by a 
coefficient, the gain, as illustrated on Table 2. 

Table 2: SFG's Elementary Operations. 

Operation Graph Expression 
 

Sum  

Product 
 

 
, i=1, 2,..., n 

The described operations allow the definition of elementary transformations, 
illustrated in Table 3, which are extremely useful for SFG manipulation. The first 
four transformations are derived directly from the algebraic operations properties, 
e.g., the serial association, the parallel association, the backward factorization and 
forward factorization, while the last two are achieved by algebraic manipulations, 
e.g., the self-loop and the star-mesh. 

Table 3: SFG's Elementary Transformations. 

Transfor. Original Graph Resulting Graph Transfor. Original Graph Resulting Graph 
 

Serial 
  

 
Factorization I

 
Parallel 

 

 
Self-Loop 

 
Factorization I 

 

 
Star-Mesh 

4.1.3. Description and analysis of equations systems by SFGs 

In this subsection, the use of SFGs to solve symbolically a system of equations is 
described, in order to illustrate their potential, and to prepare the introduction of new 
concepts related to the simultaneous processing of analog and digital signals. 

The graph description of an equations system in not unique, i.e., on the representation 
of each elementary term by branches, the use of different description strategies lead to 
different, but equivalent, graphs structures [45]. In the present case, the equations 
system representation will follow the Mason's SFG approach [46-47], as well as, the 
general formulation for the obtaining the solutions. 
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The SFG description of a three equations system, following the Mason's approach, is 
illustrated in Fig 5. The equations system described in the canonical form AX = B, is 
rewritten so that each variable is expressed in terms of the others. Then, each equation 
is translated into a SFG. Finally, the superposition of the achieved graphs corresponds 
to the complete graph representing the three equations system. 

 
Figure 5: The SFG of a three equations system, following the Mason's approach. 

The equivalence between the graph and the equations system means the possibility of 
achieving the system's solution by applying successively the elementary 
transformations until the graph is reduced to a single branch, between the input and 
each output, where the input node corresponds to the input signal VIN, the output 
nodes correspond to variables being determined and the branch coefficient is the 
output to input ratio. The process of successive reduction of the graph is extremely 
laborious for graphs with a large number of branches, and so, limiting the 
applicability. 

In order to solve this problem there are several solutions. Here, the Mason's rule is 
outlined as a general formulation to determine the gain between any two points in a 
SFG. The general expression for the gain, between any to graph nodes, is: 

    G 
1


Gk

k
 k      (1) 

 where 

 • Gk: represents the gain of the kth forward path. 
 • ∆: designates the graph determinant and is given by  

     1 Pm1
m
  Pm2

m
  Pm3

m
 ...     (2) 

 • Pmr: corresponds to the product of mth combination of r disjointed closed 
paths. 
 • ∆k: is designated by cofactor of the forward path and corresponds to the 
value of ∆ for the subgraph not touching on the forward path. 

Next, as an example, the gain V3/VIN is determined. The evaluation starts by the 
identification of all the forward paths, between VIN and V3, and the disjoint feedback 
paths between them and located in the subgraph not touching the forward path, as 
presented on Table 4.  
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Table 4: Forward Paths and Disjointed Feedback Paths. 

Forward Paths and Feedback 
Paths  

Gain Gk Cofactor  
∆k 

Forward Paths and Feedback 
Paths  

Gain Gk Cofactor  
∆k 

 

 G1 = G

 

∆1 = 1 -

BE 

 

G4 = 
AH 

 

∆4 = 1

 

 

 G2 = DI

 

∆2 = 1 

 

G5 = 
AEI 

 

∆5 = 1 

 

G3 =
BDH 

 

∆3 = 1 

  

After that, the evaluation continues by determining the gain of each forward path, Gk, 
and the gains of the feedback paths, having in mind the cofactors, ∆k. In this case, the 
gain expression has the following numerator: 

  Gk
k
 k  G1 1 P11  G2  G3  G4  G5    (3) 

this is, 

  Gk
k
 k  G 1 BE   DI  BDH  AH  AEI     (4) 

The second phase on determining the gain expression refers to the evaluation of graph 
determinant, ∆, i.e, the expression denominator. Therefore, the disjointed feedback 
paths must be successively determined. In this case, only one path appears during 
each iteration, as presented on Table 5.  

Table 5: Sets of Disjointed Feedback Paths. 

Disjointed Feedback Paths Gain Disjointed Feedback Paths Gain 

 

 

P11 = BE 

 

P41 = BFH 

 

P21 = FI 

 

P51 = CEI 

 

 

P31 = CH 

  

The appearance of various paths simultaneously would have implied the inclusion of 
another sum in the determinant expression. So, in this case the denominator is given 
by  

     1 P11  P21  P31  P41  P51    (5) 

this is, 

     1 BE  FI CH  BFH CEI     (6) 
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Finally, the expression of the gain is achieved and is given by  

  G 
V3

V IN


G 1 BE  DI  BDH  AH  AEI

1 BE FI CH BFH CEI 
   (7) 

In the case of multiple inputs it is required the application of the Superposition 
Principle because the Mason's rule only relates the output to one entry. Another 
formulation for the gain evaluation problem is the Coates's Rule [48] which allows 
the direct determination of the relation even with multiple inputs. However, Coates's 
SFG approach is not based in a cause-effect relation, as the Mason's do, and so, the 
understanding is not straightforward. Considering, the aim of having a clear 
phenomena description to allow a simplification on the synthesis process 
implementation, the Mason's approach was chosen. 

4.2. Signal flow graph - mixed representation 

In the previous section, the fundamental concepts and properties associated to the 
SFGs were analyzed. The use of these techniques is specially suitable for the analysis 
of analog circuits. However, the representation of mixed analog-digital systems, as 
the data converters, requires an extension of the concepts and properties previously 
discussed. So, a new description is now mandatory to allow, on one hand, the 
coexistence of analog and digital signals in the graph and, on the other hand, a clear 
distinction between the branches where each signal class flow, in order to achieve the 
generation of two partitions and, therefore, the use of separate synthesis methods to 
each other. In the next subsections, the developed SFG description, is presented. 

4.2.1. Definitions and concepts 

In the new domain, analog and digital signals, the basic element for the SFG 
representation, the branch, must be redefined. In the classic approach, there is only 
one type of signal, and so, only one type of branch. However, now, two types of 
signal appear and simultaneously the need to generate signal partitions, so, three 
classes of branches were defined to cover the new signal flow alternatives, 
respectively, analog, digital and hybrid branches, as described on Table 6. 

Table 6: Classes of Defined Branches for the Modified Signal Flow Graph Representation. 

Class Analog Branches Digital Branches Hybrid Branches 
 

DESCRIPTIO

N  

The analog branches class is composed by the branches through which an analog 
signal flows and where the coefficient is real, and so, it may result in an 
amplification, attenuation or maintenance of the signal, as the classic approach. The 
digital branches class is composed by the branches through which a digital signal 
flows and where the coefficient is of logic type. The inclusion of a coefficient of the 
logic type in a branch introduces a new concept on this type of representation. This 
concept consists on the dynamic changing of the graph structure as a function of this 
coefficients, this means, when they assume the logic value '1' the signal flow is 
allowed and when they assume the logic value '0' the signal flow is blocked. As an 
example, the graphs corresponding to the basic logic functions (AND, OR, NOT), as 
well as, the resulting subgraphs due to dynamic changes on the coefficients or logic 
conditions, are presented on Table 7.  
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Table 7: Basic Logic Functions Described with Digital Branches. 

Condition Graph  "and" Graph "or"  Graph "not" 
 

d2    d1 

 
0    0 

 
0    1 

"1"

"0"

d1

d2n

desligado

"0" "1"

d2n

d1

s/ sinal
"1"

 

 
1    0 

"0"

d2

d1n

"0"
s/ sinal "0"

"1"

d1n

d2 "1"

desligado

 

 
1    1 

The class of hybrid branches is composed by branches where analog and digital data 
are presented simultaneously, and so, consists on the interface between the other two 
classes, this means, the interface between analog and digital signals, as included in 
the algorithmic data converter descriptions. However, only some combinations of 
analog and digital data in the branch make sense in this approach. In the case of a 
D/A interface, it is represented by a branch with an analog signal at the input and 
output, and a coefficient representing a logic condition defined by digital signals, e.g., 
x1 equal x2. In the case of a A/D interface, it is represented by a branch with an 
analog coefficient, an analog signal at the input and a digital signal at the output. 
Here, the output node, although digital, represents the value of an analog condition, 
e.g., x1 greater than x2. Moreover, this node results naturally, from the convergence of 
several hybrid branches. The logic conditions in the hybrid branches are interpreted in 
the same way as the digital conditions described above. In Fig. 6, a graph composed, 
simultaneously, by analog and hybrid branches is presented, in order to illustrate the 
dynamic changes as function of the digital conditions on hybrid branches. In this 
example, the analog signals vref, vgnd e vx5, the analog coefficients ki and the digital 
conditions bi were considered. 

 
(a)    (b)          (c)  

Figure 6: Analog signal flow graph with logic conditions: (a) Non instantiated structure and 
representation of the functions: (b) vx5 = (k1+k2)*vref + (k3+k4)*vgnd and (c) vx5 = (k2+k3)*vref + 
(k1+k4)*vgnd. 
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4.2.2. SFGs simplifying rules 

The achieved graph from the direct transformation of the algorithm description is not 
minimized due to the translation mechanisms and, also, to description redundancies. 
So, it is mandatory to simplify the graph, which is obtained by applying a 
simplification process. The simplifying rules, as exemplified on Table 8, are based on 
the generation of equivalent subgraphs with a lower number of branches and were 
derived based on the properties of the mixed signal SFGs. 

The rule 1 refers to the elimination of the analog branches with a null entry, i.e., the 
branches which reproduce the action of the product absorbing element and the output 
behaves as the sum neutral element. The rule 2 refers to the elimination of branches 
with unitary coefficient, and so, the output and input signals are equal. The rule 3 
refers to the serial association of two complementary branches. The rule 4 refers to 
the parallel association of two branches and its replacement by a branch with unitary 
coefficient, which is removed or not depending on adjacent branches. The rules 5 
and 6 refer to the parallel and serial association of branches with real coefficients. 
The rules 7 and 8 refer to the application of the left or right factorization property, 
depending if the common node of branches having identical coefficients is the output 
or the input. 

Table 8: SFG Simplifying Rules. 

Rule Activation Structure Resulting Structure 

1) Absorbing 

Element 

  

2) Neutral Element 

3) Complementary I  

4) Complementary II  

5) Associative I 

6) Associative II  

7) Factorization I 

8) Factorization II 

In Fig. 7, the simplification process is exemplified through the transformation of an 
original graph structure, representing a sequence of conditional attributions into a 
compacted graph structure, preserving the canonical form of representation (input-
condition-coefficient-...-condition-coefficient-output). The application of simplifying 
rules does not follow a pre-established order, though, allows the multi-solution 
search. 
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Figure 7: Simplification of a graph originated by a succession of conditional attributions, (a) Original graph, 
(b) after applying rule 2, (c) after applying rule 4, (d) after applying rule 2 and (e) after applying rule 7. 

4.2.3. SFGs partitions 

The need to decompose the synthesis process in two subprocesses, one for the analog 
part and other for the digital part, implies the division of the graph corresponding to a 
data conversion algorithm into two partitions. Based on the branch classes, previously 
described, the following partitions were defined: 

(1) ANALOG PARTITION: The set of all branches with an analog signal flowing in, 
which is the same of saying, all analog branches and the hybrid branches with 
an analog signal flowing in.  

 (2) DIGITAL PARTITION: The set of all branches with a digital signal flowing in, 
which is the same of saying, all digital branches and the hybrid branches with 
an digital signal flowing in.  

In conclusion, a set of new SFG concepts were here introduced allowing the 
processing of mixed signal descriptions and specially data conversion algorithms 
descriptions.  

5. Algorithm Description to SFG Mapping 

Once established the principles of signal flow through mixed analog-digital SFGs, 
follows the translation of the VERILOG-AMS algorithm description into a SFG, 
having in mind the achievement of an equivalent representation in a canonical form. 
The translation is performed into three phases, the first consists in a transformation of 
the algorithm description into an expanded graph, the second corresponds to the 
graph simplification and the third consists on the graph partitioning. 

5.1. Translation of the algorithm description into an expanded SFG 

In the implemented approach, the translation of the functional description, 
representing the algorithm, into a SFG is performed primitive by primitive, in a 
sequential manner, and so each primitive originates a subgraph of the mixed signal 
type. The generation of each of these subgraphs is executed based on a set of 
interpretation rules applied to the functional description primitives. These rules were 
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derived from the SFG properties presented in the previous sections. In the functional 
description, as analyzed in the previous section, there are two different types of 
functions implemented by the primitives, respectively, the attributions and the 
conditions. Next, the representation, in terms of SFG, for each of these functions 
separately and for the cases where they appear together is described in Table 9.  

Finally, in the case of a series of conditions affecting attributions, e.g. if-if-… or 
when-if-else…, etc., the attributions are preceded by a unique branch corresponding to 
the conjunction of those conditions. 

Table 9: Attributions Described by SFGs. 

Operation ID  Syntax Signal Flow Graph 

Analog Attribution 

 
 

Digital Attribution 
 

 

 

Analog Condition 

 

 

 

Digital Condition 

 

 

 

Conditioned Analog Attribution 

  

 

Conditioned Digital 

Attribution  

 
 

5.2. Example of a SFG generation 

The SFG generation is exemplified for an algorithm description of multi-step 
conversion. In this case, a two-step conversion with two bits per step was considered, 
once it allows the generation of subgraphs covering a large part of the modified SFG 
structures, without generating a too complex graph.  

In Fig. 8, the algorithm description is presented with some of the subgraphs generated 
during the translation process, this illustrates the variety of graph structures involved. 
Thus, the translation starts with a subgraph corresponding to a digital condition, 
which allows the differentiation between two conversion states. The first conversion 
state starts with the sampling of the input signal, described by the attribution of the 
input value to a real variable. This description originates a subgraph composed by an 
analog branch with unitary coefficient, representing the attribution, and a hybrid 
branch due to the digital condition affecting the attribution. In the sequence of the  
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fmodel adc_2step2(vin, vref, vgnd, clk, b1,   b2,   b3,   b4); 
   declare input vin, vref, vgnd: real; 
   declare input clk: logic; 
   declare output   b1   b2   b3   b4: logic; 
   declare state estado: integer; 
   declare state vxresampl, vx1, vx2, vx3: real; 
   declare state d1, d2, d3, d4, d5, d6: logic; 
   initialize estado to 0;; 
   functional 
      when clk rises 
         if estado = 0 then 
            make vx1 = vin 
            if vx1 > 0.75 * vref + 0.25 * vgnd  then 
               make d6 = 1 
            else 
               make d6 = 0 
            endif 
            if vx1 > 0.50 * vref + 0.50 * vgnd then 
               make d5 = 1 
            else 
               make d5 = 0 
            endif 
            if vx1 > 0.25 * vref + 0.75 * vgnd then 
               make d4 = 1 
            else 
               make d4 = 0 
            endif 
            make b4 = d5 
            make b3 = (d4 AND d5 AND d6 ) OR (d4 AND (NOT d5) AND (NOT d6)) 
            make estado = 1 
         else 
            make vx1 = vx1 
            if b4 = 1 then 
               make vx2 = vref * 0.5 
            else 
               make vx2 = vgnd * 0.5 
            endif 
            if b3 = 1 then 
               make vx3 = vx2 + vref * 0.25 
            else 
               make vx3 = vx2 + vgnd * 0.25 
            endif 
            make vxresampl = 4 * vx1 - 4 * vx3 
            if vxresampl > 0.75 * vref + 0.25 * vgnd then 
               make d3 = 1 
            else 
               make d3 = 0 
            endif 
            if vxresampl > 0.50 * vref + 0.50 * vgnd then 
               make d2 = 1 
            else 
               make d2 = 0 
            endif 
            if vxresampl > 0.25 * vref + 0.75 * vgnd then 
               make d1 = 1 
            else 
               make d1 = 0 
            endif 
            make b2 = d2 
            make b1 = (d1 AND d2 AND d3 ) OR (d1 AND (NOT d2) AND (NOT d3)) 
            make estado = 0 
         endif; 
   endfunctional 
endmodel
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Figure 8:  Example of the graph generation based on an algorithm description. 

sampling, appears the first condition described based on analog signals, an analog 
condition, which still depends on the previous digital condition. The index associated 
to the conditions is determined based on the identification of different conditional 
regions. The next subgraph refers to a digital attribution where is outlined the 
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identification of different conditional regions. The four subgraphs described above 
illustrate the fundamental types of attributions and conditions in this kind of 
descriptions, however, the generation of other subgraphs are presented to allow the 
comprehension of the final structure.  

The next subgraphs refer to the generation of bit b3 resulting from the transformation 
of the thermometer scale, and represented by the signals d6, d5 and d4, into natural 
binary code. The second conversion state starts with the description of the input hold, 
which is performed if the condition l1n is true, and so, the inclusion of an hybrid 
branch to show this dependency. Next, a digital condition illustrates the effect of the 
results achieved on the first conversion step. The following structure presents a 
typical case of a D/A interface description, where an analog signal value, vx2, depends 
on digital conditions, l7 e l7n. Then, another D/A structure is illustrated, having a 
common node with the previous one. Finally, the subgraph corresponding to the 
generation of the residual signal to be converted in the second phase is presented. 

The complete graph associated to the algorithm description results from the 
interconnection of all determined subgraphs during the interpretation process. The 
analog partition is presented in Fig. 9(a), where the previous determined subgraphs 
can be observed. The complete graph is here presented, for simplicity, with less 
redundant branches then is actually generated, as can be verified in Table 10. In Fig. 
9(b), the final graph obtained after the simplifying process is shown, this constitutes 
the base for the functional topology generation to be discussed in the next section. 

 

 
Figure 9: Analog partition from a SFG achieved for a two-step data conversion algorithm description, 
respectively, (a) before and (b) after simplification. 
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5.3. Performance analysis for the algorithm to SFG mapping 
 

The generation and simplification of the SFG corresponds to the first of the three 
phases implemented by the synthesis process. The performance analysis of this phase, 
is made using three common algorithms and a fourth obtained by a mixed of the first 
two. So, on one hand, the parallel, the successive approximation and the two-step 
algorithm were considered, on the other hand, a successive approximation algorithm 
with m bits per step, was used. In Table 10, the results obtained are presented, 
particularly, the original and simplified graph size. 

The achieved results show that, although, in the more adverse case the SFG is too 
large to be analyzed by hand, its size does not prevent the automatic processing. 
More, it shows the capability to process new algorithms, which means an enlargement 
of the design domain when compared to the traditional synthesis tools for this kind of 
systems.  

In Table 11, the SFGs achieved for the referred algorithms, are presented. In all these 
cases, the identification of the coefficient values and the location of the hybrid 
branches, allows the observation of some isolated functionalities that will be 
automatically recognized during the functional topology generation, as will be 
described in the next section. 

 

Table 10: Performance Analysis for SFGs Generation and Simplification. 

Algorithm 
Characterization 

SFG 
Generation 

SFG after 
Simplification

Algorithm 
Characterization

SFG 
Generation 

SFG after 
Simplification

Type N. Bits No. Branches No. Branches Type N. Bits No. Branches No. Branches 
Successive 

Approximation
4 56 16 Two-Step 2+2 96 38 
8 112 28 4+4 388 140 
12 168 40 5+5 754 271 
16 224 52 6+6 1472 530 

Parallel 2 37 16 S.A.  
and Parallel 

2+2 127 38 
4 169 64 2+2+2+2 239 62 
6 697 256 4+4 347 110 
8 2809 1024 4+4+4+4 571 158 

 

Table 11: SFGs for Different Conversion Algorithms. 

Algorithm SFG Simplified 
Succe. Approx. 4 bit: 
k1=0.0625; k2=1;  
k3=-1; k4=0.125; 
k5=0.25; k6=0.5. 

 
Parallel 2 bit: 
k1=k2=k3=-1; 
k4=k5=k6=1; 
k7=k12=0.75; 
k8=k10=0.25; 
k9=k11=0.5. 
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Table 11: SFGs for Different Conversion Algorithms (cont). 

Algorithm SFG Simplified 
Two-Step - 2+2 bit: 
k1=k2=k3=k4=k5=k6=-
1;  
k7=k8=k9=k14=k15= 
=k16=1; k10=k17=k24= 
=k28=0.75; k11=k13= 
=k18=k22=k26=0.25; 
k12=4; k19=-4; k20= 
=k21=k23=k25=k27=0.5
. 

S.A. & Parallel 2+2 bit: 
k1=k2=k3=-1; 
k4=k5=0.065; 
k6=k9=k12=1; 
k7=k14=0.75; 
k8=k13=k16=k19=0.25; 
k10=k11=k17=k20=1; 
k15=k18=0.125. 

 

 

6. SFG to Topology Mapping 

6.1. Topology generation - analog partition 

The topology consists of a set of functional blocks connected in order to describe the 
conversion algorithm. Therefore, the topology generation corresponds to the 
identification of those blocks in the modified SFG description associated to the 
algorithm description. In the following subsections, the developed methodology for 
the topology generation is discussed. 

6.1.1. Methodology definition 

The selected functional blocks identification method is based on symbolic processing. 
This choice was taken since the objective is to identify functional structures, whose 
configuration may change, during the algorithm execution and according to the 
coefficients values. Thus, it is possible to identify similar structures even if 
parameterized with different values, which will be needed only during the sizing task. 

In order to implement the functional block identification process, two main 
alternatives occur, on one hand, the symbolic expressions recognition and, on the 
other hand, the pattern recognition. The first choice consists of employing symbolic 
techniques to extract an expression from the graph description, this is, usually, used 
when the goal is to determine the relation between the signals in two well defined 
nodes of a circuit. However, in the present case, the application of this technique is 
not limited to the generation of an expression, which relates just two signals in a 
circuit, here, a set of expressions must be generated, for all nodes combinations, in 
order to perform the comparison with the expressions of each functional block. The 
existence of blocks with multiple outputs and/or inputs and the large complexity of 
graphs lead to a combinatory explosion in the search, with obvious problems in terms 
of time consumption, thus, the first choice was abandoned. The second choice 
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consists of applying pattern recognition techniques to the identification of subgraphs 
associated to functional blocks, therefore, eliminating the need to generate 
expressions, once, it just has to analyze the type of branch and its connectivity. In this 
case, the complexity of the search process is reduced but the functional blocks 
patterns, in terms of SFGs, must be included in the library, which is done only once. 
For these reasons, the pattern recognition approach was implemented following the 
methodology described by the flowchart of Fig. 10. 

The methodology is composed by three main phases, respectively, the selection of the 
functional block from the library, the pattern search for the selected block and graph 
reduction after the pattern recognition. The first phase implies the development of a 
functional block library with the corresponding SFG description for each block. So, 
the quantity and quality of functional blocks described in library will condition the 
topology generation process. Next, the pattern search for the selected functional block 
is executed. Finally, in the case of success on the previous step, the space search must 
be reduced, i.e., the graph reduced, to simplify the search process for the next 
functional blocks. A detailed discussion of these phases is presented in the next 
sections.  

 
Figure 10: Methodology for the functional topology generation. 

 

6.1.2. Functional block library 

The phase corresponding to the functional block selection is based on a functional 
block library. The design of the library starts by identifying the functional blocks 
needed and, usually, used in the data conversion topologies. The description of these 
functional blocks is done in a generic base, as exemplified on Table 12. Then, 
together with the generic description of the functional block, each library entry must 



AMS Synthesis Using Symbolic Methods Design of Analog Circuits through SA   431 

include the SFG corresponding to the functional block, i.e., its pattern, to support the 
search on the algorithm graph. The pattern for each block is determined through the 
translation of the block function in terms of SFG, according to the rules described 
previously. Therefore, each entry of the library is composed by both the functional 
blocks and the corresponding graph described generically. 

During the topology generation process the functional blocks are selected for the 
search task in a sequential way. The selection is restarted, by the first element, always 
that a block is identified on the graph, and fails when it arrives to the end of the 
library list without occurring any pattern identification. 

In the implemented system, the functional blocks library behaves as an open module 
allowing its permanent updating. 

Table 12: Functional Blocks and the Corresponding Pattern in Terms of SFGs. 

Functional Block Description Functional Block Graph Pattern 
Sampling and Hold- Analog 
output, vout, samples the analog 
input, vin, in the time instants 
associated by the condition l1 and 
holds the signal in the other 
instants. 

 

Multiple Adder (not Amplified; not 
inverted) - Analog output signal 
corresponding to the sum of the 
input signals, vin_i, weighted by the 
real coefficients ki ]0,1[. 

 

 
Multiple Adder Digitally 
Controlled (not Amplified; not 
inverted)  - Analog output signal 
corresponding to the sum of the 
input signals, vref_1 and vref_2, 
weighted by the coefficients ki ]0,1[ 
and bi {0,1}. 

 

 
Single Reference Multiple Divider 
(Digitally Controlled) - Analog 
output signals corresponding to the 
entry weighted by the coefficients  
ki ]0,1[. 
Double Reference Multiple Divider 
(Digitally Controlled) - Analog 
output signals corresponding to the 
imputes sum weighted by the real 
coefficients  ki ]0,1[ and with 
k1i+k2i = 1. 
Difference Amplifier (Digitally 
Controlled) - Analog output signal 
corresponding to the input 
difference amplified by the factor  
ki > 1.   
Multiple Comparator (Digitally 
Controlled) - Digital Outputs 
resulting from the comparison 
between two analog signals 
weighted by the real coefficients  
ki ]0,1[. 

 

 

6.1.3. Functional block identification in the SFG 

The functional block identification consists of the search of the corresponding 
subgraph on the graph describing the algorithm. The pattern recognition process is 
performed by a sequence of steps, and not only one step, due to the generic 
description in the library. Thus, although the identification process is more complex, 

S & H
Vin Vout

Vin Vout
l1

l1n

Multiple Adder

Vin_1

Vin_n
Vout

Vin_1

Vin_n

Vin_2

Vin_n-1

k1

k2

kn-1

kn

Vout...
...

Multiple Adder 

Digitally Controlled 

Vref+

Vref-
Vout

vref
+

vref
-

vo

bm,bm-1,...,b1

bmn,b(m-1)n,...,b1n

km,km-1,...,k1

..

...
.

..

.

Multiple Divider  

Single Reference
Vref_1

Vout_1

Vout_n ..
.

..

.
Vref_1 Vout_1

Vout_n
k1n

k11l1

Multiple Divider 

Double Reference

Vref_1

Vref_2

Vout_1

Vout_n ..
.

..

. ..
.

Vref_1

Vref_2

Vout_1

Vout_n

k1n

k11

l1

l1

k2n

k21

Difference 

Amplifier

Vin_1

Vin_2
Vout

Vin_1

Vin_2
Voutl1

l1

-k1

k1

Multiple 

Comparator

Vin
Vref_1

Vref_n

L1

Ln

Vin

Vref_1

kin1

k1 L1

Vref_n
Ln

kinn

kn

..

.

..

.

l1



432   Design of Analog Circuits through SA Santos and Horta 

the number of library elements is lower, avoiding, on one hand, the need to describe 
the same block for different dimensions and, on the other hand, the use of basic 
structures originating topologies with a higher number of blocks. In both cases the 
number of iterations would have been obviously larger. The sequence of pattern 
recognition steps, consists of, first, the identification of particular pattern 
substructures and, then, in the identification of the substructures with variable 
dimensions. In order to minimize the number of blocks composing the topology the 
search is oriented to first select the larger blocks. In Fig. 11, the process of 
recognizing the pattern of a functional block on the graph of the two-step conversion 
algorithm is described. In this case, the searched pattern corresponds to the functional 
block labeled as multiple comparator. The first step, refers to a search of a particular 
substructure, a simple comparison which is composed by two analog branches with 
analog coefficients and converging both, branches, in a digital node. On the presented 
graph there are six structures with the referred characteristics, e.g. (k4,k14), (k5,k15), 
(k6,k16), (k1,k7), (k2,k8) and (k3,k9), and without having any special reason to prefer 
one of them, the option is for the first pair in the solution list. The second step, 
consists of determining the maximum dimension for the functional block being 
identified. That is obtained by searching for other branches with the same 
characteristics of the previous ones and, that also, have a node in common between 
them and the first pair. In the present case, the pairs (k5,k15) and (k6,k16) verify the 
desired characteristics, and so, the functional block has a maximum dimension of 
three structures. The identification of the three blocks of simple comparison or one 
block of multiple comparison is equally correct in functional terms, however, leads to 
more compact topologies and a faster process associated to the topology generation 
by reducing the numbers of iterations. Finally, on third step the existence of digital 
conditions affecting the block is verified. 

The multiple solution search through the block selection by different orders may 
allow the generation of different topologies for the same algorithm, but it also leads to 
the appearance of similar solutions achieved by different selection orders, which is 
undesirable. For this reason, after the identification of each functional block, the set 
of partial solutions are compared, in order to eliminate the equivalent ones, as 
illustrated in Fig. 12. Finally, the implemented system allows the activation or not of 
the multiple solution generation process. 

 
Figure 11: Pattern identification process. 
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Figure 12: Effect of eliminating the redundant solutions. 

6.1.4. Residual graph generation 

The recognition of a pattern on the algorithm graph adds a functional block to the 
topology and, consequently, obligates to a reduction on the search space, the graph, as 
illustrated in Fig. 13, to allow further functional blocks identification. 

 
Figure 13: Residual graph determination by removing the identified pattern. 

However, the residual graph is not obtained just by removing the branches 
corresponding to the identified pattern from the graph. The elimination of the 
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describing the algorithm and not to the pattern, but converging on it, and so affecting 
the forward part of the pattern, or diverging from it, and so depending from the 
backward part of the graph. Therefore, the pattern internal nodes where some other 
branches converge or diverge are, here, referred as by critical nodes. In Fig. 14(a) the 
reduction process relative to a pattern having a critical node of convergence is 
illustrated. In this case, in order to preserve the context, while removing the pattern, a 
copy of the forward part of the pattern must be added, as well as, a set of additional 
nodes and branches to generate sum points. In Fig. 14(b) the reduction process 
relative to a pattern having a critical node of divergence is illustrated. In this case, the 
context is preserved by adding a copy of the backward part of the graph. 

 
Figure 14: Residual graph generation with critical nodes of (a) convergence and (b) divergence. 
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In the working example, illustrated in Fig. 11, if the functional block identification 
was performed with priority to blocks of the smallest dimension, the identified block 
would have been a single comparator, e.g. (k4, k14), with a critical node of 
divergence. In this case, the critical node of divergence would have implied 
maintenance of the backward part of the graph, as illustrated in Fig. 15. 

 
Figure 15: Residual graph generation in the case of a critical node of divergence. 

Therefore, to deal with the graph reduction problem, in a generic way, all the possible 
combinations must be analyzed. On Table 13, the different alternatives are 
summarized, as well as, the corresponding transformations. 

Table 13: Graph Reduction Alternatives. 

Critical  Node Type: Graph Reduction Type:
none complete elimination of the identified pattern 
only convergence elimination of the pattern backward part and introduction of sum structures  
only divergence elimination of the pattern forward part 
divergence node prior to the 
convergence nodes 

elimination of the branches between the critical nodes and introduction of sum 
structures  

convergence node prior to 
the divergence nodes 

no reduction 

The presented analysis may, now, be synthesized with following set of graph 
reduction rules: 

• Rule 1: in the case of various critical nodes of convergence, the forward 
substructure of the pattern to the first critical nodes is maintained and sum 
structures are introduced. 

• Rule 2: in the case of various critical nodes of divergence, the backward 
substructure of the pattern to the last critical nodes is maintained. 

• Rule 3: in the case of the simultaneous existence of critical nodes of 
convergence and divergence, there is a reduction, only, if the most distant 
critical node of divergence, from the input, is closer than the nearest critical node 
of convergence. 

 

6.1.5. Example of a functional topology generation 

As an example of topology generation, for the analog partition, the two-step 
conversion algorithm was selected. On Table 14, the successive iterations leading to 
the functional topology are described. In each iteration, first, the most complex 
functional block not yet considered is selected, then, the SFG pattern for the block is 
determined, after, the pattern is searched in the graph structure, finally, the graph is 
reduced and the process is repeated until no residual graph exists, i.e., the topology is 
completely generated. The present example, is initiated with the selection of the 
highest priority block, i.e. the reference divider block. The existence of two subgraphs  
 

l8
l9

l1n

l1n

k17, k25, k26

k18, k27, k28

             k15, k16

k5

k6

lm7

vx3

lm10

k20

k13

lm8

lm9

vref

vgnd

vx1

l1n

vin
l1

l2
l3

l4

k10, k21, k22 l1

l1

k11, k23, k24

k7, k8, k9

k1

k2

k3

k19
k12

vxresampl

vref

vgnd



AMS Synthesis Using Symbolic Methods Design of Analog Circuits through SA   435 

 
T

A
B

L
E

 5
.3

: F
U

N
C

T
IO

N
A

L
 T

O
P

O
L

O
G

Y
 A

U
T

O
M

A
T

IC
 G

E
N

E
R

A
T

IO
N

 -
 P

A
R

T
 I

. 

S
te

p
s 

1 
e 

2
S

te
p

s 
3 

e 
4

Y
e

s

F
un

ct
io

na
l T

op
ol

og
y

Y
e

s

N
o

Y
e

s

N
o

R
es

id
ua

l G
ra

ph
 

G
en

er
at

io
n 

P
at

te
rn

 F
ou

nd
?

N
u

ll
 R

es
id

ua
l 

G
ra

ph
?

 B
lo

ck
  

S
el

ec
te

d
?

P
at

te
rn

 R
ec

og
ni

ti
on

 

S
FG

 P
at

te
rn

 S
el

ec
ti

on

F
un

ct
io

na
l B

lo
ck

 S
el

ec
tio

n 

S
FG

 A
na

lo
g 

Pa
rt

it
io

n

A
ct

io
n

M
et

ho
d

ol
og

y

V
in

V
re

f_
1

k
in

1

k
1

L
1

V
re

f_
n

L
n

k
in

n

k
n

...

...

l1
M

u
lt

ip
le

 

C
o

m
p

a
ra

to
r

V
in

V
re

f_
1

V
re

f_
n

L
1 L
2

... ...
...

V
re

f_
1

V
re

f_
2

V
o

ut
_

1

V
o

ut
_

n

k
1nk

11

l1l1

k
2n

k
21

D
o

ub
le

 R
ef

er
en

ce
 

M
u

lt
ip

le
 D

iv
id

er

V
re

f_
1

V
re

f_
2

V
o

ut
_

1

V
o

ut
_

n

V
re

f
+

V
re

f-

(L
2,

L
3,

L
4

)
(L

9,
L

10
,L

11
)

V
re

f+

V
re

f
-

4 
bi

ts

R
ef

.
D

iv
. 

M
u

lt
.

C
m

p
. 

R
ef

.
D

iv
. 

M
u

lt
.

C
m

p
. 

D
S

P

V
re

f
+

V
re

f-

V
re

f+

V
re

f
-

4 
bi

ts

R
ef

. 
D

iv
. 

R
ef

.
D

iv
. 

D
S

P

l 9 l 10 l 11

l 1n l 1
n

k 17
, k

25
, k

26

k 18
, k

27
, k

28

k 14
, k

15
, k

16

k 4 k 5 k 6

l m
7

v x3

l m
10

k 20 k 13

l m
8

l m
9

v x1

l 1n

v in
l 1

l 2 l 3 l 4

k 10
, k

21
, k

22
l 1 l 1

k 11
, k

23
, k

24

k 7
, k

8
, k

9

k 1 k 2 k 3

k 1
9

k 12

v xr
es

am
p

l

v re
f+

v r
ef

-

v re
f+

v re
f-

v re
f+

v r
ef

-

l 9 l 10 l 11

k 1
4

, k
15

, k
16

k 4 k 5 k 6

l m
7

v x3

l m
10

k 20 k 13

l m
8

l m
9

v x1

l 1n

v in
l 1

l 2 l 3 l 4k 7
, k

8
, k

9

k 1 k 2 k 3

k 1
9

k 12

v x
re

sa
m

p
l

l 9 l 10 l 11

k 14
, k

15
, k

16

k 4 k 5 k 6

l m
7

v x3

l m
10

k 20

k 13

l m
8

l m
9

v x1

l 1n

v in
l 1

l 2 l 3 l 4k 7, k
8

, k
9

k 1 k 2 k 3

k 19
k 12

v xr
es

am
p

l

v re
f+

v re
f-

l m
7

v x3

l m
10

k 20

k 13

l m
8

l m
9

v x1

l 1n

v in
l 1

k 19
k 12

v xr
es

am
p

l

v re
f+

v r
ef

-

S E L E C T
 

I O
 

N I D E N T I F I C A T I O N R E D U Ç T I O N F U N C I O N A L
  T



436   Design of Analog Circuits through SA Santos and Horta 

S
te

p
 5

 
T

A
B

L
E

 5
.4

: F
U

N
C

T
IO

N
A

L
 T

O
P

O
L

O
G

Y
 A

U
T

O
M

A
T

IC
 G

E
N

E
R

A
T

IO
N

 - 
P

A
R

T
 II

. 

V
re

f+

V
re

f-
V

re
f+

V
re

f-

(L
2

,L
3

,L
4)

(L
9

,L
1

0
,L

11
)

V
re

f+

V
re

f-

4 
bi

ts

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

M
A

C
D

2-
bi

ts 2 
b

it
s

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

D
SP

M
u

lt
ip

le
 A

d
d

er
 

D
ig

it
. C

o
n

tr
ol

.

V
re

f_
1

V
re

f_
2

V
o

ut
v

re
f_

1

v
re

f_
2

v o
ut

b m
,b

m
-1

,.
..,

b
1

b
m

n
,b

(m
-1

)n
,..

.,b
1nk

m
,k

m
-1

,..
.,k

1

...
...

...

v x3

v x
1

l 1
n

v in
l 1

k 1
9

k 1
2

v x
re

s
am

p
l

l m
7

v x
3

l m
1

0

k 2
0

k 1
3

l m
8

l m
9

v x
1

l 1
n

v in
l 1

k 1
9

k 1
2

v xr
e

sa
m

p
l

(L
9

,L
1

0
,L

11
)

S
te

p
 6

V
re

f+

V
re

f-

V
re

f+

V
re

f-

(L
2

,L
3

,L
4)

V
re

f+

V
re

f-

D
if

fe
r

en
ce

 

A
m

p
li

fi
er

V
in

_
1

V
in

_2
V

o
u

t

V
in

_1

V
in

_
2

V
ou

t
l1l1

-k
1k
1

D
if

. 
A

m
pl

.
+

4 
bi

ts

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

M
A

C
D

2-
bi

ts 2 
b

it
s

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

D
SP

v x
1

l 1
n

v in
l 1

v x3

v x
1

l 1
n

v in
l 1

k 1
9

k 1
2

v x
re

s
am

p
l

(L
9

,L
1

0
,L

11
)

S
te

p
 7

S
am

p
le

 &
 H

o
ld

V
in

V
o

ut

V
in

V
o

u
t

l1

l1
n

V
in

S
&

H
D

if
. 

A
m

pl
.

+

4 
bi

ts

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

M
A

C
D

2-
bi

ts 2 
b

it
s

R
e

f.
D

iv
. 

M
u

lt
.

C
m

p
. 

V
re

f+

V
re

f-
V

re
f+

V
re

f-

(L
2

,L
3

,L
4)

V
re

f+

V
re

f-

D
SP

v x
1

l 1
n

v in
l 1

v re
f+

v re
f-

 



AMS Synthesis Using Symbolic Methods Design of Analog Circuits through SA   437 

corresponding to this type of block, allow, immediately, the identification, on the first 
two steps, of two functional blocks belonging to the topology. Afterwards, the block 
with higher priority from the remaining ones is selected, i.e. the multiple comparator 
block. Alike the previous case, two other occurrences of the selected block are again 
detected and, so, in the third and fourth steps another two blocks are identified.  

Then, at the end of the fourth step the topology being generated has already four 
blocks and their connections defined according to the algorithm description 
represented by SFGs. In the last three steps other three blocks are identified, namely, 
the multiple adder, the difference amplifier and the sample and hold blocks, allowing, 
this way, the complete graph reduction and, consequently, topology generation.  

The achieved topology, in this example, allows the verification of the perfect 
matching between the fully automatically generated topology and the typical topology  
for this converter, which proofs the applicability of the developed methodology. 

Table 15: Functional Topologies Generated for Different Conversion Algorithms. 

Algorithm Functional Topology 
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6.1.6. Performance analysis for topology generation 

The topologies generated based on the SFG descriptions are presented in Table 15. In 
these descriptions, there is, always, a set of parameters associated to each block. 
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These parameters consist both on the digital conditions and on the analog 
coefficients, which will constrain the generation of the electrical topology and the 
sub-block specifications, which is out of scope for this chapter. 

The test results, in Table 16, were obtained for several data converter resolutions 
showing that although the graph increases the number of blocks remain constant on 
each case. This means that despite the increase in resolution the number of identifying 
steps is identical and, therefore, the process of generating the topology is easily 
scalable. 

 

6.2. Topology validation - simulation 

The correct topology simulation validates the synthesis process by confirming the 
suitability of the selected functional blocks and their interconnections. In the next 
sections the selected functional blocks are described, in VERILOG-AMS, as well as, 
the way the simulation is automatically prepared for the CADENCE ® IC Design 
Environment. 

Table 16: Effect of the Functional Selection Order in the Synthesis. 

Algorithm/Graph Characterization Topology Generation 

Algorithm Resolution No. Branches No. Blocks 

Successive Approximation 4 16 3 

 8 28 3 

 12 40 3 

 16 52 3 

Parallel 2 16 3 

 4 64 3 

 6 256 3 

 8 1024 3 

Two-Step  2+2 38 7 

 4+4 140 7 

 5+5 271 7 

 6+6 530 7 

Succ. Appro. & Parallel 2+2 38 5 

 2+2+2+2 62 5 

 4+4 110 5 

 4+4+4+4 158 5 

 

6.2.1. Functional blocks modeling 

The topology validation by functional simulation implies the development of models 
to represent all the blocks described in the library. Thus, maintaining the philosophy 
of one tool one simulator. The models whose general structure is described on Fig. 
16, are characterized by the description of mathematical relations between inputs and 
outputs. 
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module  modelname( p1, ..., pn); 
     input|output|inout pin p1, ..., pn; 
     electrical|voltage|current pin p1, ..., pn; 
     parameter real k1 = val_k1;   
     ... 
     parameter real kn = val_kn; 
     real s1, ..., sn; 
     analog begin 
          @(initial_step) begin 
          (*  initialization  *) 
          end 
          if (analysis(“dc”|”ac”|”tran”|”noise”) begin 
          (*  atributions  *) 
          end 
          else begin 
          (*  atributions *)          
          end 
          (*  atributions *)     
     end 
endmodule 

Figure 16: Description structure for a functional block. 

In the implemented system the models for the various functional blocks are generated 
automatically, with the sizing and connections determined during the topology 
generation, to allow their immediate use by the simulator. Next, some of the models 
generated for the last functional topology, illustrated in Table 15, are presented.  

In this example, a low resolution was intentionally chosen to simplify the analysis, 
however, the discussion is also valid for other resolution values. The analysis of the 
topology allows the identification of four distinct analog blocks, namely, the sample 
and hold, the double reference multiple divider, the multiple comparator and the 
multiple adder digitally controlled. On Fig. 17, the sample and hold block is 
described. By a simple analysis the equivalence between this model and the graph 
presented on Table 12, on one hand, the interface between the model and outside 
world is made with four signals, respectively, the output, the input and the two 
control conditions, on the other hand, the body of the model describes the relation 
between output and input as a function of the conditions. 

 
module snh_fm(out, in, ind1, ind1n); 
    input in, ind1, ind1n; 
    output out; 
    electrical out, in, ind1, ind1n; 
    real last_value; 
     
    analog begin 
        if( V(ind1) > 2.5 )  
            last_value = V(in);        
        V(out) <+ last_value; 
    end 
endmodule 

Figure 17: S&H functional block description. 
 

module mdvr4_fm(out1, out2, out3, vref, vgnd); 
    input vref, vgnd; 
    output out1, out2, out3; 
    electrical out1, out2, out3, vref, vgnd; 
    parameter real k1 = 2.5e-1, k2 = 7.5e-1, k3 = 5e-1, 
                   k4 = 5e-1, k5 = 7.5e-1, k6 = 2.5e-1; 
     
    analog begin 
        V(out1) <+ k1 * V(vref) + k2 * V(vgnd); 
        V(out2) <+ k3 * V(vref) + k4 * V(vgnd); 
        V(out3) <+ k5 * V(vref) + k6 * V(vgnd); 
    end 
endmodule 

Figure 18: Double reference multiple divider functional block description. 
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On Fig. 18, the double reference multiple divider is described, in this case, and in the 
remaining ones, the description is dependent on the specified resolution. This is 
outlined by the interface elements, once the number of outputs depends on the 
resolution, and the entries are always two, corresponding to the upper and lower limit 
of the outputs. The relation between inputs and outputs, i.e. the analog coefficients of 
the corresponding graph, is expressed by the real parameters associated to the model 
and the attributions made on the model body. 

On Fig. 19, the multiple comparator block is described, with the three outputs 
corresponding to the two bit codification in each conversion step. In this case, the 
choice was for an output between 0 and 5 volt, but, other values may be specified 
through the synthesis system. 
 

module mcmp3_fm(out1, out2, out3, inpc, inn1, inn2, inn3); 
    input inpc, inn1, inn2, inn3; 
    output out1, out2, out3; 
    electrical out1, out2, out3, inpc, inn1, inn2, inn3; 
    parameter real k1 = 1, k2 = -1, k3 = -1, k4 = -1; 
     
    analog begin 
        if ( V(inpc) * k1 + V(inn1) * k2 > 0 )  
            V(out1) <+ 5;         
        else  
            V(out1) <+ 0; 
        if ( V(inpc) * k1 + V(inn2) * k3 > 0 )  
            V(out2) <+ 5; 
        else  
            V(out2) <+ 0; 
        if ( V(inpc) * k1 + V(inn3) * k4 > 0 )  
            V(out3) <+ 5; 
        else  
            V(out3) <+ 0; 
    end 
endmodule 

Figure 19: Multiple comparator functional block description. 

module maddc4_fm(out, vref, vgnd, ind1, ind2, ind3, ind4, ind1n); 
    input vref, vgnd, ind1, ind2, ind3, ind4, ind1n; 
    output out; 
    electrical out, vref, vgnd, ind1, ind2, ind3, ind4, ind1n; 
    parameter real k1 = 5e-1, k2 = 2.5e-1, k3 = 1.25e-1, k4 = 6.25e-2; 
    real s1, s2, s3, s4, s5; 
     
    analog begin 
        if ( V(ind1) > 2.5 )  
            s1 = 1; 
        else  
            s1 = 0; 
        if ( V(ind2) > 2.5 )  
            s2 = 1; 
        else  
            s2 = 0; 
        if ( V(ind3) > 2.5 )  
            s3 = 1; 
        else  
            s3 = 0; 
        if ( V(ind4) > 2.5 )  
            s4 = 1; 
        else  
            s4 = 0; 
        if ( V(ind1n) > 2.5 )  
            s5 = 1; 
        else  
            s5 = 0; 
        V(out) <+ V(vref) * s1 * k1 +V(vref) * s2 * k2 +V(vref) * s3 * k3 +V(vref) * s4 * k4 +V(vgnd) * s5; 
    end 
endmodule 

Figure 20: Digitally controlled multiple adder functional block description. 



AMS Synthesis Using Symbolic Methods Design of Analog Circuits through SA   441 

The digitally controlled multiple adder block, described on Fig. 20, corresponds to 
the sum of the reference values, weighted by the analog coefficients and controlled by 
the digital conditions. In the generated topology, two of these structures were 
included corresponding, respectively, to the generation of the upper and lower voltage 
limits, allowing, this way, to establish the range in which the values are generated by 
the double reference multiple divider.   
 

6.2.2. Topology simulation 

The simulation file is generated after determining the models and requires only the 
netlist, which is obtained based on the generated topology. In Fig. 21, the 
corresponding schematic is illustrated. This is composed by the analog blocks 
identified during the SFG to topology translation task. 

 
Figure 21: Spectre functional topology schematic. 

Figure 22: Spectre functional topology simulation. 



442   Design of Analog Circuits through SA Santos and Horta 

The previous description allows the direct simulation and the confirmation of the 
synthesis correctness by comparing the achieved results with the direct algorithm 
simulation. In Fig. 22, the functional simulation results are illustrated. In this case, 
just some of the more relevant signals were presented, although, a larger list was 
specified in the netlist.  
 

 
7. Conclusion 

The algorithm-driven methodology developed for the synthesis and characterization 
of data converter systems, using extensively symbolic methods, allows the automatic 
exploration of a broad range of conversion algorithms without implying a previous 
description of the system topology as in the traditional approaches. Although still 
limited at lower level by a required interface with other tools, the generality of this 
approach opens future opportunities to other classes of mixed-signal systems. 
Moreover, the high-level of specifications and the flexibility of input descriptions 
show that the expansion to analogue filters synthesis, specified either on the 
frequency domain or on the time domain, is perfectly feasible with such a 
methodology. 
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CHAPTER 17 

Application of Symbolic Circuit Analysis for Failure Detection and 
Optimization of Industrial Integrated Circuits 

Ralf Sommer1,*, Dominik Krauße1, Eric Schäfer1 and Eckhard Hennig2 

1Ilmenau University of Technology, Germany and 2Institute for Microelectronic and Mechatronic 
Systems GmbH, Germany 

Abstract: The contribution deals with application of symbolic circuit analysis for failure 
detection and optimization of industrial integrated circuits. It demonstrates how 
symbolic analysis and approximation allows analyzing industrial analog building blocks 
systems, which were considered to be symbolically unsolvable before. Besides circuit 
failure analysis and modeling, a novel methodology that provides a new application-
specific compensation for achieving highest performance requirements, is given. The 
methodology is demonstrated on several industrial examples. 

Keywords: Symbolic circuit analysis, circuit failure detection, optimization of industrial integrated 
circuits, symbolic approximation, frequency behavior, circuit compensation, generalized eigenvalue 
problem, approximate eigenvalue extraction, poles and zeroes of transfer factions, model order 
reduction, SBG (simplification before generation), term ranking, eigenvalue sensitivity,  Modal 
Assurance Criterion (MAC), MNA (Modified Nodal Analysis), STA (Sparse Tableau Analysis), small-
signal equivalent circuits, BSIM small signal model,  industrial CMOS operational amplifier, Analog 
Insydes, frequency compensation, Nyquist criterion, automated topology modification, direct 
compensation, compensation network, Analog Insydes. 

1. Symbolic Analysis in Industrial IC Design 

Analog circuit designers are continuously facing the challenge to squeeze as much 
performance out of their circuits as the underlying semiconductor technology permits. 
Pushing a circuit topology to its technological limits requires extensive knowledge of 
previous designs and deep insight into both the intended functional behavior of the 
device under construction and the parasitic effects that degrade its performance. At 
this point computer-aided symbolic analysis can fill a crucial gap in the design 
process for analog circuits: while traditional numerical circuit simulators fall short in 
providing qualitative insight into the functional interdependencies between circuit 
parameters and behavioral characteristics, a symbolic analyzer is capable of deriving 
such generic knowledge in the form of mathematical expressions automatically from 
a formal circuit description (netlist) [16, 19]. In this context the most important 
application area for symbolic analysis is design knowledge acquisition by computer-
aided analytical modeling of unwanted circuit behavior observed in numerical 
simulations, for example, resonance effects and instability due to parasitic poles [2, 3] 
or poor power-supply rejection performance (see Section 1.1.). 
The preceding statement entails some essential requirements symbolic analysis tools 
must meet to be useful in industry: 
 

• With the exception of purely educational purposes, the benefit of using a 
symbolic analyzer in a stand-alone fashion is virtually zero. Symbolic analysis 
becomes interesting only when applied with the intention to complement – and not 
to replace! – numerical simulation. Thus, in an industrial CAD environment, a  
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symbolic analyzer must work in tight conjunction with the numerical tools 
designers use to simulate their circuits. To guarantee consistency of results, the 
symbolic analyzer must be able to access and process the same data supplied to and 
generated by the numerical simulators. This requires interfaces for importing 
circuit schematics, netlists, device model parameter sets, operating-point data, 
small-signal parameter values, and simulated waveforms directly from the analog 
circuit simulation environment [7]. 

•  Accurate analytical modeling of simulated effects requires that the symbolic analyzer 
provides exactly the same semiconductor device models as implemented in the 
numerical simulator. However, today’s device models are very complex, such as in 
the case of BSIM3 (Fig. 1), and their structure is often based entirely on 
mathematical considerations instead of the underlying geometrical properties of the 
device. As this makes interpretation of the resulting expressions more difficult, a 
symbolic analysis tool should also provide a set of calibrated simpler device models, 
e.g. the SPICE 5-capacitance MOSFET AC equivalent circuit, which may be used in 
place of the more complicated ones when better interpretability of results is required. 

•  Due to the extreme complexity of symbolic computation, successful application of 
symbolic analysis requires a high level of control over the trade-off between 
modeling accuracy and simplicity. Consequently, a symbolic analyzer must allow 
the user to add own device models or modify existing ones whenever the problem 
under investigation demands that particular effects, such as device parasitics, be 
modeled with special care. 

 

Figure 1: BSIM3 small-signal equivalent circuit. 

In the past decade, many symbolic analysis tools have been implemented with 
emphasis on algorithmic developments [1], but little effort was spent on embedding 
the systems tightly into industrial circuit simulation environments and offering open 
device modeling concepts. In addition, experience shows that providing these 
necessary features is still not sufficient to ensure acceptance of a symbolic analysis 
tool. Circuit designers are reluctant to use a program whose sole purpose is to read in 
a circuit description and produce a symbolic transfer function; and the fact that 
engineers do use general-purpose software with symbolic computation capabilities 
indicates that the design of symbolic analysis tools has often been approached from 
the wrong direction: 

•  Circuit designers employ symbolic computation tools to manipulate, solve, and 
graph mathematical equations quickly and without human error. In this context, 
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computing symbolic transfer functions of analog circuits is only one particular task 
from a wide variety of modeling problems. A symbolic analyzer should help the 
designer to perform the circuit modeling tasks more efficiently in a computing 
environment which he can use to solve other engineering problems as well. Thus, 
instead of adding some mathematical and graphical postprocessing functionality to 
a stand-alone tool, a symbolic analysis program should be implemented as an 
extension of a widely used general-purpose problem-solving environment, such as 
Matlab or Mathematica [6, 36]. 

The above point is equally important as the previous requirements because the benefit 
of automated symbolic analysis becomes apparent to designers only if these 
techniques can be used in direct conjunction with the vast mathematical, numerical, 
and graphical processing and programming capabilities offered by the above-
mentioned technical computing packages. As a consequence, symbolic analysis tools 
which do not adhere to this principle have little prospects of success in industry. 

1.1. Analysis and redesign of a CMOS operational amplifier 

In this section we present a typical example for the use of Analog Insydes [4] in 
industrial circuit design. Consider the CMOS opamp schematic displayed in Fig 2. 
When operated as an inverting amplifier (Fig. 3), the circuit exhibits the AC power-
supply signal feedthrough (PSF) characteristic shown in Fig. 4. At a frequency of 1 
kHz, the simulation yields an unexpectedly large PSF value of more than 60 dB  
while some rough manual calculations done by the designer had predicted this figure 
to be better than 80 dB . To find the reasons for the discrepancy and improve power-
supply rejection, Analog Insydes was used to analyze the behavior of the circuit 
symbolically. 

 
Figure 2:CMOS operational amplifier. 

 

Figure 3: Top-level circuit schematic. 
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Figure 4: AC power-supply signal feedthrough (simulation: solid line) with Symbolic analysis result 
(dashed). 

After importing all circuit data into Analog Insydes, the analysis procedure begins by 
setting up a system of circuit equations in symbolic form. Using the full BSIM3 AC 
equivalent circuit for all MOSFET devices (Fig. 1), a 43  43  system of modified 
nodal equations is thus obtained. Solving the equations symbolically for the transfer 
function from VDD to the output node would result in a huge expression with more 
than 2710 terms. Therefore, Analog Insydes’ symbolic approximation algorithms are 
employed to approximate the PSF behavior at low frequencies. 

With an error bound of 10% at = 1 kHzf , we obtain the following surprisingly 
simple description of the amplifier’s PSF characteristic within only a few seconds of 
CPU time. 

  MM1A$XI0 ggb$MM1B$XI0 gsoutbyVD b$MM1A$D ggb$ XI0 2 DDV C R s VC C       (1) 

Taking into account device matching, this expression is further reduced to 

 outbyVDD ggb1 gsb1 2 DD( 2 )V C C R s V       (2) 

where Cggb1 and Cgsb1 denote the gate transcapacitances (Fig. 1) of the input devices 
M1A and M1B (Fig. 2). The approximated expression agrees well with the numerical 
simulation in the frequency range of interest (Fig. 4). 

Equation (2) indicates that the high PSF is caused by capacitive coupling through the 
bulk connection of the input pair, whose area had been made extremely large to 
reduce mismatch sensitivity and noise. In manual calculations, the designer had 
neglected the bulk capacitances because he believed them to be insignificant. As a 
result, an a-priori oversimplification of the problem prevented him from discovering 
the true reason for the unwanted circuit behavior. 

With the knowledge gained from (2), the Power-Supply Rejection (PSR) can be 
improved by placing the p-type input devices together in a separate floating well (Fig. 
5), thus eliminating the direct capacitive link between bulk and VDD. As shown in Fig. 
6, this modification improves PSR by more than 40 dB at 1 kHzf  . It is interesting 
to note that the designer had deliberately decided against using a separate well in the 
initial design to prevent degradation of some performances such as slew rate. 

 

Figure 5: Modified input pair with floating well (well-substrate capacitance modeled through D0). 
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Figure 6: PSF, original vs. modified circuit. 

1.2. Symbolic analysis of a CMOS folded-cascode operational amplifier 

In Fig. 7 an industrial CMOS folded-cascode operational amplifier (180nm 
technology) is shown, and Fig. 8 displays the frequency response of the opamp’s 
open-loop differential-mode voltage gain. The Bode diagram shows a peak near 
10 MHz, caused by a parasitic complex pole pair located close to the imaginary axis 
(Fig. 9). The analysis task can now be formulated as follows: Extract an 
approximated symbolic formula for the parasitic pole pair in order to determine the 
circuit elements which have dominant influence on the peak. Then try to find suitable 
circuit modifications for compensating the amplifier’s frequency response [13]. 

 

Figure 7: CMOS folded-cascode operational amplifier. 

 

Figure 8: Open-loop gain of the folded-cascode opamp. 
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To illustrate the complexity of the problem, after model expansion, the netlist 
contains 321 primitive components, leading to a 29  29  system of modified nodal 
equations. Note that the SPICE Level 3 AC model (Fig. 7) has been used instead of 
the BSIM3 AC model. The differential-mode voltage transfer function has 19 poles 
and 19 zeros (Fig. 9). In fully expanded symbolic form, it would contain more than 

195  10  product terms. To solve the problem and to find out the reason for the peak 
the pole pair at 7( 2.1 8.3j) 10s      has to be extracted symbolically. The results as 
well as a solution to the problem will be illustrated in Section 2.4.3. 

 

Figure 9: Pole/zero distribution of the original circuit. 

1.3. Summary 

Most of industrial circuit problems can be rooted back to dynamic behavior. Many 
problems are related to frequency compensation in conjunction with stability issues. 
Hence, symbolic extraction of poles and zeroes holds one of the keys for application 
of symbolic analysis in industrial integrated circuit design. 

In the following sections symbolic extraction of formulas for poles and zeroes will be 
presented. First an extraction methodology based on Simplification Before 
Generation (SBG) using a magnitude error criterion will be introduced. Due to 
restrictions of that method to extract compensated pole-zero pairs, which are not 
visible in the Bode diagram, an eigenvalue sensitivity ranking is developed. This 
allows SBG to focus on the extraction of a particular eigenvalue independently of its 
dominance in the frequency response. The extracted formulas will then be used to 
find appropriate frequency compensations of the circuits under investigation by 
variation of those circuit parameters that cause those poles to move in such a direction 
that stability is ensured, and the frequency response does not show peaking effects 
having a maximum of bandwidth. Finally, an automated topology modification 
method is developed that introduces additional elements in the circuit in order to 
optimize frequency behavior. Combined with eigenvalue sensitivity calculations this 
method allows to find new and unknown variants of compensation networks. 
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2. Symbolic Pole/Zero Extraction 

2.1. Introduction 

Symbolic calculation of poles and zeros plays an important role in design-oriented 
analysis of analog circuits, in particular in the analysis of feedback amplifiers. As the 
numerator and denominator polynomials of transfer functions are generally 
irreducible and have degrees much larger than two, it is rarely possible to find 
mathematically exact expressions for the poles and zeros of an electronic circuit [15, 
23]. Consequently, approximations must be introduced to extract at least the 
technically relevant eigenvalues in analytical form. 

2.2. Pole/zero analysis by simplification before generation 

In the past several approaches to pole/zero analysis were published that exploit the 
order reduction effect of SBG methods. The common principle behind these 
approaches is to find low-order approximations of transfer functions by simplifying 
systems of circuit equations or determinants with respect to limited frequency 
intervals. If the frequency response in an interval f  is characterized by a single real 
pole or a pair of complex conjugate poles, it is possible to compute local first or 
second-order approximations of a transfer function from which poles and zeros can be 
extracted in symbolic form. Fig. 10 shows a local approximation of a three-pole 
transfer function ( )H s  with respect to the frequency interval f . Since the 
characteristics of the frequency response in this interval are determined exclusively 
by the pole 2p , the approximation is a transfer function of order 1, which can be 
solved analytically for 2p . 

 
Figure 10: Local approximation (dashed line) of a three-pole transfer. 

2.2.1. Matrix-based SBG methods for pole/zero extraction 

Matrix-based SBG algorithms for pole/zero analysis were developed by Hsu and 
Sechen, and by Dröge. Hsu and Sechen use their sifting approach to compute local 
approximations in the neighborhood of corners in the frequency response [25]. If the 
degrees of the resulting numerator or denominator polynomials are less than three, 
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then their roots are calculated symbolically. This procedure is applied separately for 
each frequency interval of interest. 

In addition to the SBG component, Dröge’s three-step approximation method [18, 
26], also comprises two Simplification After Generation (SAG) steps [27]. A 
graphical illustration of the algorithm is shown in Fig. 11. In the first step, the 
algorithm approximates the coefficient matrix of a system of circuit equations 

 ( )  = s T x b  (3) 

by discarding terms which have small influence on a selected pole or zero. Expanding 
the determinant of the approximated matrix then yields a reduced-order characteristic 
polynomial *( , )P sp , where p  denotes the vector of symbolic parameters. In the 
second step, further insignificant terms are removed from the coefficients of *P . 
Finally, the roots of the simplified polynomial are calculated symbolically and 
postprocessed by another SAG step to remove any remaining insignificant 
contributions. 

Approximation of a coefficient matrix T  is driven by a term ranking strategy 
computed on the basis of root displacements. These displacements are found by 
evaluating T  with the design-point values 0p , expanding the determinant to give a 
polynomial *

0( , )P sp  with numerical coefficients, and solving *P  numerically for its 
roots. This process is very time-consuming as it needs to be repeated for each matrix 
entry. Therefore, an error estimator based on sensitivities of poles and zeros is 
provided as a faster though somewhat less reliable alternative to numerical root 
finding. 

 

Figure 11: Three-step approximation method. 

Both the sifting approach and the three-step approximation method were reported to 
compare favorably with the pole splitting and zero-value time constant methods in 
terms of both expression complexity and accuracy. Yet, neither Hsu and Sechen nor 
Dröge address the potential problem of incorrect eigenvalue pairing that will be 
discussed in Section 2.3.  

2.2.2. Pole/zero extraction by matrix approximation 

In [28] Sommer et al. discuss a matrix approximation algorithm that uses the large-
change influence of matrix entries on the magnitude of a transfer function in one or 
several design points as term ranking and error control criterion. It is apparent that 
this algorithm can be applied to pole/zero analysis in a similar fashion as the sifting 
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approach because both methods are capable of computing local reduced-order 
approximations.  

As illustrated in Fig. 14 for the case of a common-emitter amplifier (Fig. 12), using 
the simple BJT small signal model shown in Fig. 13, a pole or zero can be captured 
by a suitable choice of two or more design points placed to the left and right of a 
corner in the magnitude response of a circuit [29]. Here, approximating the system of 
sparse tableau equations reduces the number of terms in the expanded voltage transfer 
function of the amplifier from 140 to 9 and the polynomial order of the system from 
four to two. 

 

Figure 12: Common-emitter amplifier. 

 

Figure 13: Simple BJT small-signal model. 
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The low-frequency poles and zeros are found immediately from this simplified 
expression. 
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Similarly, by placing design points (DP) as shown in Fig. 14b, we obtain a high-
frequency approximation of the voltage transfer function. 
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Equation (8) yields approximate symbolic expressions for the pole/zero pair that 
characterizes the frequency response near and beyond the upper end of the passband.  
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(a) 

 

(b) 

Figure 14: (a) Low-frequency approximation and exact voltage transfer function of the common-
emitter amplifier, (b) high-frequency approximation of the common-emitter. 
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The design-point values of all poles and zeros before and after approximation are 
listed in Table 1. 
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Table 1: Poles and Zeros of Common-Emitter Amplifier. 

Pole/ 
Zero 

Exact  
Value 

Matrix 
Approximation 

Nominal 
Error 

Pole 
Splitting 

z1, z2 0.000 0.000 0 0 
z3 1.918108 2.000108 4.3% 2.8% 

z4 –6.948109 N/A N/A 2.8% 

p1 –2.035101 –2.128101 4.6% 5.1% 

p2 –3.774102 –3.628102 3.9% 5.4% 

p3 –9.509107 –9.091107 4.4% 1.4% 

p4 –6.757109 N/A N/A 1.4% 

Despite being very compact, the approximate expressions are accurate to within 5% 
of the true numerical values. For comparison, the right-most column lists the nominal 
errors of pole/zero estimates obtained by applying the pole splitting method to the 
exact symbolic transfer function. Although the resulting expressions would be much 
larger, there is little if any gain in accuracy. 

Table 1 also reveals a weakness of this matrix approximation approach. Since the 
degrees of the numerator and denominator polynomials of the exact transfer function 
are both four, the amplifier has four poles and four zeros. Yet, only three poles and 
three zeros were found symbolically because the pole/zero pair 4 4,  p z  is spaced very 
closely and thus leaves no visible corners in the frequency response which can be 
captured. It follows that matrix approximation driven by the magnitude-error criterion 
allows extracting poles and zeros only if their effect is clearly observable in a Bode 
diagram. 

On the other hand, when this is the case, matrix approximation constitutes an efficient 
approach to symbolic pole/zero analysis of large circuits. With the development 
version of Analog Insydes [29], the following formula for the low-frequency open-
loop voltage gain of the µA741 amplifier (Fig. 15) can be computed from a 350 350  
system of sparse tableau equations in less than 20 CPU seconds. The µA741 amplifier 
has a total of 22 zeros and 23 poles, but as the simplified transfer function (11) is only 
of order 1, we can easily solve its denominator for the dominant pole. 
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The nominal value of (12) is 1 0( )  19.13p  p  whereas an exact calculation gives 

1 19.51p   . Hence, the nominal approximation error is N 1.9%  . 
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(a) 
 

 
(b) 

 
(c) 

Figure 15: (a) Schematic of the operational amplifier µA741, (b) Small-signal transistor model for the 

µA741 opamp, (b) open-loop gain of the µA741 amplifier (solid line: SPICE, dashed line: 

approximated symbolic expression). 

By contrast, the opamp’s second pole 2p  is compensated by a zero 1z . We have 
6

2 6.48 10p     and 6
1 6.49 10z    , which corresponds to the frequencies of 

1.031 MHz and 1.033 MHz marked in Fig. 15. It is apparent from the Bode plot that 
neither 2p  nor 1z  can be extracted by matrix approximation in the same manner as 
the dominant pole 1p  because the slope of the magnitude response is nearly constant 
in the neighborhood of   1 MHzf  .  

2.2.3. Limitations of the magnitude error criterion 

Apart from the above restriction regarding observability, the magnitude-error 
criterion has several further limitations if used in connection with pole/zero analysis. 
As even small pole displacements due to matrix approximation may have a large 
impact on the frequency response of a system, it is often difficult to select sampling 
points and error bounds such that the error in the approximated pole can be controlled 

Q1 Q2

Q3 Q4

Q5 Q6

Q7

Q8Q9

Q10Q11

Q12

Q131
Q132

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q222 Q221

Q23

Q24
R1 R2R3

R4

R5

R6

R7

R8R9

R10

R11

R12 R13

C1

V+ V–

+VCC

–VEE

Vout

C

EE

B

rBE

CBC

CBE
rO

gmvBE

vBE

10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

-40
-20

0
20
40
60
80

100
120

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

 

 

exact
approximated

10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8
-180

-150

-120

-90

-60

-30

0

Frequency in Hz

Ph
as

e 
in

 d
eg

p1

DP1
DP2

p2

z1



Application of Symbolic Circuit Analysis for Failure Detection… Design of Analog Circuits through SA   457 

reliably by monitoring magnitude errors on the imaginary axis or elsewhere in the 
complex plane. This problem becomes the more obvious the closer a pole is located 
to the imaginary axis. 

The difficulties that arise when using the magnitude-error criterion are illustrated in 
Fig. 16 [20]. Assume that we wish to find approximate symbolic expressions for the 
complex conjugate pair of poles 1p  and 1p  on the condition that we accept a 
relatively large deviation of the resonance frequency but allow only a small error in 
the height of the resonance peak of the transfer function. This implies a large 
admissible error in the imaginary parts of 1p and 1p . However, the real parts must be 
computed with higher accuracy to prevent the poles from moving closer to the 
imaginary axis.  

Now assume that a shift of the nominal values of the poles parallel to the imaginary 
axis to the new positions *

1p  and *
1p  is acceptable. If we specified two sampling 

points to the left and right of the resonance peak as shown in Fig. 16, then the 
approximation algorithm would stop long before the maximum error in the imaginary 
parts is reached because a minor shift of the peak would result in excess magnitude 
error in DP2. On the contrary, an unwanted shift of the poles toward the imaginary 
axis would remain undetected under the same conditions (Fig. 16). 

Finally, Fig. 16 illustrates the case when a global magnitude error causes the 
approximation algorithm to terminate prematurely although multiplying a transfer 
function by a constant factor does not change its poles and zeros. This effect can be 
observed in the case of the µA741 amplifier.  

 
Figure 16: (a) Effect of pole displacement along imaginary axis, (b) effect of pole displacement 
towards imaginary axis, and (c) effect of global magnitude error. 

Here, the symbolic expression for 1p  in (12) is accurate to within 2%  whereas the 
magnitude errors in the two sampling points are much higher, namely about 
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The problem in Fig. 16 could be solved by placing additional sampling points on top 
of the resonance peak and in its neighborhood. Still, the other cases cannot be handled 
satisfactorily by the same approach because a tight magnitude error envelope only 
leads to incomplete utilization of the error margins specified for the poles. This is 
undesirable because the complexity of the resulting symbolic expressions would be 
higher than necessary for the given error bounds. 

2.3. Pole/zero analysis by approximate eigenvalue computation 

For improved control of the approximation error and better utilization of error 
margins it is necessary to use ranking and error tracking criteria which estimate and 
monitor the shifts of relevant poles and zeros directly. In this section we identify 
approximate pole/zero analysis with the simplification of a generalized eigenvalue 
problem and derive a ranking formula for the terms in a symbolic matrix pencil. 
Then, a new SBG algorithm for pole/zero analysis is formulated on the basis of this 
ranking approach [12, 38]. 

2.3.1. The generalized eigenvalue problem 

From a theoretical point of view, an ideal starting point for matrix approximation with 
respect to poles and zeros would be the state-space representation of a linear dynamic 
system, ( - )  = 0sI A x , where A  and x  denote the state matrix and the vector of 
independent state variables, respectively, and I  is an identity matrix of proper 
dimension. Indeed, some approaches have been reported that simplify symbolic state 
equations of electrical circuits using Gershgorin’s theory for error estimation [30]. 

However, except in special cases such as RLC ladders or grids in which the 
independent state variables can be determined by a simple tree search, state equations 
cannot be set up directly from a network graph. Instead, they have to be computed 
from other circuit analysis formulations, e.g. nodal analysis, by elimination of 
dependent variables. Note that the state matrix of a linear circuit constitutes an n-port 
transfer function and that each matrix entry is given by the DC small-signal transfer 
function between a port current or voltage and the time derivative of the same or 
another state variable. Calculating the elements of a state matrix symbolically thus 
entails the computational complexity we seek to avoid in the first place. Therefore, it 
is generally impossible to obtain the state-space representation of a large circuit in 
symbolic form. 

To compute poles and zeros1 efficiently by means of matrix-based SBG, it is essential 
to approximate a system of equations before any symbolic computations are 
performed. Therefore, we rewrite a system of linear circuit equations (3) into the form 
of a Generalized Eigenvalue Problem (GEP) [31]. 

  ( )s s     T x A B x 0  (13) 

Note that the above decomposition requires the coefficient matrix of a system of 
circuit equations to be a linear function of the Laplace frequency s . Hence, if 
modified nodal analysis is applied to circuits containing inductors or 

                                                 

 
1Since zeros can be determined by solving a subproblem of the GEP (10), all further considerations 
are, without loss of generality, restricted to the computation of poles.  
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transimpedances, the matrix fill-in pattern for impedances must be used for these 
elements to avoid negative powers of s . 

To illustrate the representation of any linear circuit as GEP in Fig. 17 an example 
circuit and its MNA equations are shown. Subsequently the MNA matrix can be 
separated into a static and a dynamic part. 
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Figure 17: (a) Example circuit to illustrate system equations, (b) corresponding MNA equations of 
example circuit, and (c) MNA matrix restructured as GEP. 

Definition 1 

Let n nA,B   and  . The family of matrices A B  is called a matrix pencil, 
denoted by ( , )A B . 

 

The poles of any transfer function computed from (3) are given by the roots of the 
characteristic polynomial  

  ( ) det ( ) det( )D s s s  T A B  (14) 
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To solve the polynomial symbolically for a particular root ks , its degree is must be 
less than three2; yet, in general, we have  deg ( ) 3D s  . Now, the roots of ( )D s  are 
identical to the solutions is of the generalized eigenvalue problem (13). Thus, we seek 
to compute a reduced-order characteristic polynomial by approximating the matrix 
pencil ( , )A B  with respect to the eigenvalue of interest k . By discarding all terms in 
A  and B  which have negligible influence on k , we hope to obtain a first or second-
order approximation of expression (16) that allows computing k  analytically. 

2.3.2. Derivation of eigenvalue sensitivity 

To obtain a ranking for the term removal in the matrix pencil a sensitivity information 
of each parameter with respect to the eigenvalue to be extracted would increase the 
efficiency of the approximation algorithm very much - comparable for the application 
of the Shermann-Morrison formula to determine the influence of each matrix entry 
with respect to magnitude of a selected output variable by only one matrix inversion. 

The task is to derive the eigenvalue sensitivities / ip  of each parameter 
( , )ip  A B  on the solution   on the corresponding GEP (17), (18) [9]. 

 ( ) A B u 0  (15) 

 H ( ) v A B 0  (16) 

where Hv  denotes the Hermitian conjugate of the left eigenvector v . 

A nonzero entry in A  or B  consists of a single term or a sum of terms, for example 
1

1 L Q1   -  G R gm , 2 L  C C  or CM21  ß . Each single term or part of a sum shall be 
referred to as a (device) parameter. Assume that A  and B  contain a total of m 
parameters 1,  ...,  mp p  . Hence, the eigenvalues and eigenvectors are functions of 
a device parameter vector T

1: ( ,  ...,  ) n
mp p p  , i.e. ( ), ( ), ( )  p u = u p v = v p . 

Differentiating (17) with respect to an arbitrary parameter ip  yields 

 
( )

( )
i i i i ip p p p p

  
      

           

A B u A B u
u Bu A B 0 . (17) 

Obviously, the first derivatives of A  and B  exist with respect to all ip  and are given 
by / i ip  A A  and / i ip  B B  and are easily to be determined since they contain 
elements only in linear form so that the derivative will have only 1 and 1  on the 
position of the parameter or term as defined above. 

However, although   and u  are generally differentiable, there may be some sets of 
parameter  values  n

0 p    for  which  / ip    and  / ip u   do  not  exist [9]. 
Therefore, we assume that 0p  is chosen appropriately as to ensure existence of all 
derivatives. 

Premultiplying (19) by the corresponding left eigenvector Hv  gives 

 H H H ( )
i i i ip p p p

 
    

         

A B u
v u v Bu v A B 0 . (18) 

                                                 

 
2Although the roots of polynomials with a degree up to four can be found analytically the resulting 
expressions are usually very complex and uninterpretable if the degree is greater than two. 
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Because H ( ) 0 v A B , we obtain the following expression for the sensitivity 
/ ip   of the eigenvalue   with respect to a change in the value of the parameter ip

. 

   1H H

i i ip p p

 
    

     

A B
v Bu v u  (19) 

Note that H 0v Bu  for     [33]. 

To determine a ranking of all matrix entries (21) is applied to each term in A and B. 
Table 2 shows an example for such a ranking. 

Table 2: Example for a Term Ranking Using Eigenvalue Sensitivity Formula (16). 

Rank Matrix Row Col ip  /   

1 B  1 1 1C  301.55 10  

2 A  6 6 11/ R  302.71 10  

3 A  6 6 C1 / R  281.23 10  

…      

27 B  3 3 2C  0.0205858  

28 B  3 5 2C  0.0218158  

…      

Once the ranking is determined term removal starts with the terms according the ranking 
list. Since the ranking only reflects the influence on the eigenvalue shift of the individual 
term, the deletion of more than one term in the order of the ranking will have to be 
tracked by recalculation of the eigenvalues. When approximating a system of circuit 
equations with respect to a single pole or zero, only one eigenpair ( , ) u  of the 
corresponding GEP needs to be tracked numerically. Approximation errors can thus be 
calculated more efficiently with an iterative GEP solver than with the QZ algorithm, 
which always computes the entire spectrum of the GEP [37]. Moreover, if the error 
induced by eliminating a parameter from ( , )A B  is small, an iterative method should 
converge to the corresponding eigenpair * *( , ) u  of the perturbed GEP very rapidly if 
the design-point value 0 0( , ) u  of the original eigenpair is supplied as initial guess. 
Conversely, if the method fails to converge, then the eigenvalue shift is too large. In 
both cases a small number of iterations should be enough to either correct the eigenpair 
or recognize that a perturbation is inadmissible. A suitable method for this purpose is the 
Jacobi Orthogonal Correction Method (JOCM) [5, 11]. 

2.3.3. The eigenvalue pairing problem 

 

Figure 18: The eigenvalue pairing problem. 
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A central task of the SBG algorithm is to determine whether eliminating a particular 
parameter ip  is admissible for a given error bound max . Assume that 1 1( , ) u  is an 
eigenpair of (17) where 1  denotes the eigenvalue we wish to extract, and that * *,k k u  
is an eigenpair of the perturbed GEP 

     A B u 0  (20) 

obtained by setting a parameter ( , )ip  A B  to zero. If (22) is a valid approximation 
of the original GEP with respect to 1 , and if * *( , )k k u  and 1 1( , ) u  are corresponding 
eigenpairs, we have 

 1 maxerror( , )  k         (21) 

However, condition (23) alone is not sufficient to ensure that *
k  is indeed identical to 

the element *
1  of the spectrum of * *( , )A B which corresponds to 1 . In fact, *

k may 
just be some other eigenvalue of the perturbed pencil that has incidentally moved to a 
position close to 1  while *

1  has been shifted far away from its original position 1 . 
This situation is illustrated in Fig. 18, where *

3  could be falsely associated with 1  
because the trajectory of 3( )ip  ends near 1 as ip  approaches zero. It follows that a 
simple error measure based only on distances between eigenvalues does not constitute 
a reliable criterion for determining whether a parameter may be discarded. 

False pairing of eigenvalues can be avoided by applying the Modal Assurance 
Criterion (MAC), which constitutes a measure for the correlation of two eigenvectors 
[10]. The MAC between two eigenvectors u  and *u  is defined as  

 

2H

H H
MAC( , ) :

( )( )




 
u u

u u
u u u u

. (22) 

The value of the MAC ranges from 0 to 1. A value of 1 means that the vectors are 
multiples of each other; a value of 0 means that they are orthogonal. For 
corresponding eigenpairs * *( , )k k u  and 1 1( , ) u , 1u  and *

ku  should be closely 
correlated; hence, *

1MAC( , )ku u must be very close to 1. Otherwise *
k  cannot be 

considered a valid approximation of 1  even if (23) holds. 

To ensure that an eigenvalue *
k  of the approximated GEP is a valid approximation of 

the original eigenvalue 1 , the error criterion for accepting a device parameter 
elimination must be augmented as follows: 

 1 max minerror( , ) MAC( , )k k m     u u , (23) 

where minm  denotes a real number close to 1. Following in Section 2.3.4., it will be 
shown that the MAC can be integrated easily into the error control process when used in 
combination with an iterative GEP solver. The complete algorithm is outlined in Fig. 19. 

2.3.4. Pole/zero extraction algorithm with fast error tracking 

The input parameter   denotes a rough numerical estimate of the eigenvalue of 
interest and is used only to select the correct element 0  from the spectrum of 

0 0( , )A B . The error bound max  does not necessarily have to be a single real number. 
In the case of a complex eigenvalue \   , max may also represent a pair of two 
separate error bounds ( , )r i  , one for the real part of   and one for the imaginary 
part. Alternatively, it could be supplied as an application-specific function that uses 

max as a control parameter. 
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The value of the control parameter maxr  must be selected very carefully depending on 
the numerical condition of 0A  and 0 0 B . If the maximum residual norm is too large, 
then the error tracking procedure will signal convergence even if ( , ) y  is not 
remotely a solution of * *

0 0( , )A B . On the contrary, the procedure may fail to converge 
to a valid eigenpair as a result of numerical inaccuracies if maxr  is chosen too small. 
Typical values of  maxr used to obtain the results discussed in were of the order 810  to 

1010  for the common-emitter amplifier and 810  to 1610  for the larger examples. 

 

 
Figure 19: Flowchart of pole/zero extraction algorithm with iterative error tracking. 

The MAC acceptance threshold minm  is less critical because the value of the MAC 
usually remains either very close to 1 or tends to decrease rapidly and significantly if 
the Jacobi corrections diverge. Therefore, a default value of min 0.98m   generally 
constitutes an appropriate choice. Similarly, the maximum number of iterations maxi  
is an uncritical parameter. In most cases, convergence is obtained within two or less 
iterations if a perturbation causes an acceptable error. Thus max  3 ... 6i   commonly 
suffices to distinguish non-convergent sequences of iterates from convergent ones. 
Larger values only increase the computation time spent on the non-convergent cases 
and rarely lead to better results. 

After a parameter ranking has been computed by means of, the approximation loop by 
default selects those parameters ip  as candidates for removal whose estimated 
influence || ||  is less than the fraction max  of the magnitude of the nominal 
eigenvalue 0|| || , i.e. 0p   i max( ) . The ip  from the list of candidates are then 
removed from the matrix pencil * *( , )A B  one by one. Before calling the error tracking 
function, we first check if the pencil has become singular and undo the most recent 
perturbation if this is the case. 

Although the eigenvalue of interest may not be affected by singularity, the situation 
where * *det( ) 0s A B  must be avoided for obvious reasons. Most singularity 
effects have structural reasons, that is when discarding a parameter leads to a zero 
row or column. These cases can be identified quite easily by keeping track of the 

r

input: symbolic matrix equation Tx = b, design point p0, estimate of
eigenvalue λ , error bound εmax , control parameters rmax , mmin , imax

decompose T into (A ,B ) and set A 0 = A (p0), B 0 = B (p0)
compute spectrum S and eigenvectors of (A 0,B 0) by QZ algorithm
select λ 0 ∈ S nearest to λ and take corresponding eigenvectors v0, u 0

enumerate parameters in (A ,B )
compute parameter ranking R using Eq.(14)
set (A ∗,B ∗ ) = ( A ,B ), λ ∗ = λ 0, u∗ = u0

for all parameters {pi ∈ R | ∆ λ pi < εmax λ 0 }
remove {pi from (A ∗,B ∗) and set (A ∗

0,B ∗
0) = ( A ∗(p0),B ∗(p0))

if det( A ∗ + sB ∗) ≡ 0 then
put pi back into (A ∗,B ∗)
continue (go back to start of for loop)

{ϑ, y , r , n } = JacobiCorrection(A ∗
0,B ∗

0, λ ∗, u∗, u0, v0, rmax , mmin , imax )
(n = i ∧ > rmax ) ∨ MAC( y , u0) < mmin

∨εN(ϑ, λ 0) > εmax ?yes no

put pi back into (A ∗,B ∗) update eigenpair (λ ∗, u∗) = ( ϑ, y )
compute symbolic determinant D(s ) = det( A ∗ + sB ∗)
if deg(D( s ) ≤ 2) then compute and return symbolic root(s) of D(s ) = 0
simplify symbolic root expressions (optional)
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number of nonzero entries in each row and column of * *sA B . On the contrary, 
mathematically reliable detection of non-structural singularity cannot be 
accomplished without computing * *det( ) 0s A B  symbolically. As this approach is 
clearly impractical, we perform a rough numerical quasi-singularity check by LU 
decomposition of 0 0s A B  for some s  that is not an eigenvalue of the pencil. 

Following the singularity check, the error tracking procedure is called to compute the 
true shift of the eigenpair  , u . If the algorithm converges within maxi  iterations, 
and if both the MAC and the error specifications are respectively satisfied for *u  and

* , the perturbation is accepted. Otherwise, the parameter ip  is put back into the 
matrix pencil. Then, the procedure is repeated for the next parameter. 

As soon as all parameters have been processed, the determinant of the approximated 
matrix s   T A B  is computed symbolically. Provided that all other eigenvalues 
of ( , )A B  are located sufficiently far apart from  , the polynomial degree of det( )T  
can be expected to be one if   is real or two if   is complex. If this is true, the 
polynomial can be solved symbolically for its roots. In an optional postprocessing 
step, the resulting root expressions may be simplified further as shown in Fig. 11.  

2.4. Examples 

2.4.1. Analysis and compensation of a CMOS differential amplifier 

As a concluding example, consider the CMOS differential amplifier shown in Fig. 20 
[14], Problem 12.10. Some symbolic analysis results for poles and zeroes are 
presented in Chapter 11 (“Symbolic pole/zero analysis”). Suppose now that the 
dimensions of 9M  are not chosen appropriately to cancel the zero in the right half 
plane introduced by the Miller capacitance CC ; for example, assume that 

9/ ( )  50µ/8µW L M  . Thus, under the given loading conditions, the small-signal 
transfer function from v  to outv  has three dominant eigenvalues (two poles and one 
zero) whose numerical values are listed in Table 3. In the following we extract these 
eigenvalues symbolically and use the results to compensate the amplifier. 

 

Figure 20: CMOS differential amplifier. 

Table 3: Dominant Poles and Zeros of the CMOS Operational Amplifier. 

P/Z Original Approximated Error Bound Nominal Error 

1z  5% 1.6% 

1p  5% 4.8% 

2p   
5% 2.0% 

10% 7.8% 
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Using the MOS transistor model in Fig. 21 leads to a 14 14  system of modified 
nodal equations with six finite generalized eigenvalues (poles). With an error bound 
of max 5%  , the approximation algorithm computes the following symbolic 
expressions for 1p  and 2p  from the MNA matrix. 

 DS,M2 DS,M4 DS,M6 DS,M7
1

L DS,M2 DS,M4 C m,M6

( )( )

( )

g g g g
p

C g g C g

 
 

 
 (24) 
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 (25) 

A further simplification of 2p  can be achieved with a less restrictive error 
specification. With max 10%  , we obtain 

 m,M6
2

L

g
p

C
  . (26) 

The right half-plane zero is calculated as 

 
C

DS,M9 m,M6
1

DS,M9 m,M6( )

G g
z

C G g



. (27) 

 
Figure 21: MOS transistor AC model. 

 

Figure 22: CMOS differential amplifier in unity-gain feedback configuration. 

Equation (30) shows that the zero can be cancelled, or at least moved to sufficiently 
high frequencies, by adjusting 9/ ( )W L M  such that DS,M9 m,M6G g . Now assume that  

9/ ( )W L M has been dimensioned accordingly and that the amplifier is operated in 
unity-gain feedback configuration with an increased load capacitance of L  = 50pFC  
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as shown in Fig. 22. In this configuration, the circuit has a dominant complex 
conjugate pair of poles 1/2p  which causes a resonance peak in the frequency response 
near   1 MHzf   (Fig. 24): 

 6 6
1/2 0.998 10 j5.911 10p       (28) 

Although a single approximation run suffices to reduce the determinant of the MNA 
matrix to a second-order polynomial with only six terms, we apply the algorithm a 
second time after matrix compression to obtain a more interpretable expression for 1p
. The nominal value of the approximated pole pair is 

6 6
1/2,0 0.810 10 j6.262 10p      . 

 
2

m,M2 m,M6 L DS,M9 C m,M2 m,M6m,M2 m,M6
1 2

L DS,M9 C L DS,M9

(-4 )
   

2 2

g g C G C g gg g
p p

C G C C G


     (29) 

 
Figure 23: Frequency compensation by moving the poles beyond the line of critical damping. 

To compensate the unity-gain follower, the poles must be moved into the 90°  sector 
delimited by the line of critical damping shown in Fig. 23. This can be accomplished 
either by shifting the poles away from the imaginary axis (Fig. 23(a)), or by shifting 
the poles along the imaginary axis towards lower frequencies, thereby reducing 
bandwidth (Fig. 23(b)). 

For the given load LC , (29) suggests trying alternative (a) by decreasing DS,M9G  and 
increasing m,M6g . In order to attain critical damping, we seek to multiply the real parts 
of the poles by a factor of about 10, for instance, by doubling m,M6g  and dividing 

DS,M9G  by 5. These modifications can be achieved by doubling the widths of 6M  and 

7M , and by increasing the length of 9M  to 50 µm . A comparison of the frequency 
responses before and after compensation as computed by SPICE is shown in Fig. 24. 
Note that compensation according to Fig. 24(a) increases the bandwidth of the circuit 
from 1.4 MHz to 3.5 MHz at the expense of increasing the quiescent power 
consumption from 693 µW to 941 µW. Moreover, the chip area of the modified 
circuit is slightly larger. 

Equation (32) also indicates that the unity-gain follower can be compensated 
according to Fig. 24(b). Since the pole pair is complex, it follows that the argument 
of the right-most square root function in the numerator must be negative:  

 2
L DS,M9 C m,M2 m,M64 0C G C g g    (30) 

Hence, the imaginary part of 1p  can be reduced by increasing the value of the 
capacitance CC , which constitutes the classical approach to frequency compensation. 

Re
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A numerical pole/zero analysis yields that a capacitance C 75 pFC   is required to 
obtain critical damping. The SPICE simulations displayed in Fig. 25 confirm this 
result. However, apart from the reduction of bandwidth from 1.4 MHz to 270 kHz, 
this alternative is practically infeasible because the value of the compensation 
capacitance is unreasonably large for integrated-circuit fabrication. On the other hand, 
a (theoretical) advantage of this approach is a higher load independence. For 
alternative (b), LC  may assume any value from zero to 50 pF after compensation, 
whereas alternative (a) does not permit to vary the load by more than 10 pF in either 
direction without causing significant ripple in the frequency response. Still, this 
example shows that computer-aided symbolic circuit analysis can help to find 
alternative solutions to circuit design problems that may have advantages over 
conventional approaches in special applications. 

 

Figure 24: Frequency response before (solid line) and after compensation (dashed line). 

 

Figure 25: Frequency responses for CC = 5 pF (solid line) and CC = 75 pF (dashed line). 
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2.4.2. Instability and frequency compensation problem of CMOS folded-cascode 
operational amplifier 

In the first step of the analysis procedure, the netlist is read into the symbolic analysis 
tool including all necessary model, operating-point, and small-signal parameters. For 
better interpretability of the resulting symbolic expressions, the MOS devices were 
modeled using the SPICE Level 3 AC model (Fig. 2) instead of the BSIM3 AC 
model. 

After model expansion, the netlist contains 321 primitive components, leading to a 
29 29  system of modified nodal equations. The differential-mode voltage transfer 
function has 19 poles and 19 zeros (Fig. 9). In fully expanded symbolic form, it 
would contain more than 195 10  product terms. To extract the pole pair at 

7( 2.1 8.3j) 10s      symbolically, the algorithm outlined in the next sections has 
been applied yielding the following symbolic formula: 

 
 2 2

gs$MP15 m$MN6 gs$MP15 C0 L m$MN6 C0 L m$MP15C0 L m$MN6

C0 L C0 L gs$MP15

( ) 4( )

2 2

C g C C C g C C gC C g

C C C C C


 
 . (31) 

The extracted formula reveals that for a given load LC , compensation capacitance 

C0C , and fixed operating points, the value of the gate-source capacitance of the 
device MP15 should be increased in order to decrease the value of the imaginary parts 
of the pole pair; this can be achieved by adding a shunt capacitor between the gate 
and source terminals of MP15. 

Fig. 27 shows a root locus plot of the amplifier calculated from the original 
(unsimplified) system of equations as GS,MP15C  is swept from 1 pF to 10 pF. The plot 
shows that the above conclusion drawn from the approximated symbolic pole 
expression is valid. 

 
Figure 26: CMOS folded-cascode operational amplifier with compensation capacitor derived from 

symbolic analysis. 

3. Frequency Compensation by Automated Topology Modification 

3.1. Introduction and classical approach 

Frequency compensation of feedback amplifier circuits is usually achieved by 
adjusting the open-loop frequency response such that the phase-margin criterion is 
fulfilled, e.g. by shifting the dominant pole to lower frequencies.  
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The open-loop design method is a universal approach to compensating general-
purpose operational amplifiers (op-amps). As a result, amplifier bandwidth may be 
reduced more than necessary because some extra safety margin must be provided. 
Furthermore, for the design of stable high-performance circuits with respect to gain 
and bandwidth, the conventional means of feedback theory are limited: parasitic 
effects of several groups of transistors form internal feedback loops, even in open-
loop configuration. As a result, the open-loop approach may no longer be applicable. 
Thus, it is often insufficient to check stability with the phase-margin criterion only. 
On the other hand, direct analysis and design of closed-loop systems is more difficult 
because their transfer functions are harder to derive and often involve complex poles 
and zeros. 

 
Figure 27: Root locus analysis of the voltage transfer function as CGS,MP15 is swept from 1 pF to 10 pF. 

In feedback configuration, open-loop real valued poles often turn into complex pole 
pairs causing ringing in the circuit’s transient response. In addition, internal local 
loops in the circuit topology often lead to clusters of several pole-pairs such that the 
frequency response is no longer determined by a simple dominant pole configuration. 

As illustrated in the previous sections the aim of direct frequency compensation is to 
change the locations of poles and zeros of the circuit’s transfer function in feedback 
configuration such that maximum bandwidth is obtained. The strategy outlined before 
was based on generating approximated formulas for poles and zeros by symbolic 
circuit analysis. These formulas express the poles and zeros as functions of dominant 
parameters. It can be concluded from manual interpretation of these formulas which 
parameters have to be modified in order to move the eigenvalue of interest into the 
desired direction. Most of the terms contained in the extracted formulas are transistor 
small-signal parameters. Hence, eigenvalues can be moved by changing the operating 
point. However, this is often inconvenient because all AC parameters are coupled. As 
a consequence, it is normally not possible to change just one single small-signal 
parameter at a time. Moreover, changing an operating point of one transistor will 
influence the entire DC configuration of the circuit. To avoid this, modifications were 
restricted to adding external capacitances in parallel to small-signal device 
capacitances. Although this methodology was limited to the amplification of already 
existing circuit parameters, it introduced the concept of topology modification. This 
motivated a generalization to a systematic exploration of topological circuit 
modifications that do not change the DC conditions. 
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3.2. Approach to systematic circuit topology modification 

The idea of amplifying already existing small-signal parameters by adding elements 
to the respected nodes can be generalized in the following manner: New branches are 
inserted to the circuit by connecting each pair of nodes with a capacitor or a series of 
a resistor and a capacitor. This prevents the operating points to change due to the 
inserted elements. For a circuit with n independent nodes 

 
( 1)

2

n n
N

 
  (32) 

additional capacitances are inserted. The idea is illustrated in Fig. 28. 
 

 

Figure 28: Illustrating example for automatically inserted branches (not all combinations shown). 

In the second step, root locus plots are generated for each inserted capacitance. Then 
those capacitances are automatically selected that allow the poles and zeros to be 
shifted such that the frequency response is improved with respect to peaking, 
bandwidth, etc. 
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Figure 29: Example for derivate of MNA pattern for a capacitance Ck in the B matrix of matrix pencil 

(A,B). 

To obtain the eigenvalue sensitivity of a capacitance, (21) in Section 2.3.2 is used 
according to Fig. 29. On the left side in Fig. 29 the pattern of a capacitance in (13) is 
shown in modified nodal analysis formulation. In contrast to the definition of a 
parameter in Section 2.3.2 a parameter kp  refers to a complete capacitance and not 

only to a single element of an MNA pattern. The derivative of B(p) with respect to 
one parameter pk = Ck is given by the right part of Fig. 29, where   denotes the 
Kronecker product. All other entries are 0 since they do not depend on pk. It follows 
that for the calculation of eigenvalue sensitivities with respect to the inserted 
capacitances at the nominal point C(p = 0) only the connectivity information for each 
capacitance is necessary. No further assumptions about absolute or relative numerical 
relationships among the capacitance values are required. In this context, “positive 
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influence” is defined as shifting a complex eigenvalue in such a way that 
ringing/peaking is decreased (Figs. 30 and 31) [21]. 

 

 

Figure 30: Association between Pole-Zero Map, Transient Response and Bode Plot 

This means that the absolute value of the real part has to be larger than the imaginary 
part (gray area depicted in Fig. 31) in the left half plane (stable region). It should be 
noted that there are often various possibilities for selecting and modifying 
capacitances such that a desired effect in the frequency response is obtained. This is 
caused by sets of capacitances that have similar influence on the eigenvalues of 
interest. 

 

Figure 31: Illustrating example for definition of influence on relevant poles. 

In the next step the introduced capacitances have to be sized. This is done by the 
numerical sizing and optimization tool WiCkeD [39]. Fig. 33 shows the complete 
flow of the automated frequency compensation based on topology modification. 
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Figure 32: Flowchart of the automated compensation approach. 

3.3. Example of an industrial application 

The presented approach has been successfully applied to a transimpedance amplifier 
(TIA, Fig. 33) used in an industrial Optoelectronic Integrated Circuit (OEIC) design. 

 

Figure 33: Schematic of high-performance transimpedance amplifier without compensation. 
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These classes of amplifiers have to provide high bandwidth and slew rate, low offset, 
and low peaking in the closed-loop frequency response. To determine the 
characteristics of the TIA, the testbench in Fig. 34 was used. 

The challenge is to get a very fast circuit by introducing complex pole pairs. We 
allow for some overshoot in the transient response to improve the slope of the output 
signal. 

 

Figure 34: Top-Level of the TIA. 

To obtain good matching of the input transistors, BJTs are used in the first stage. 
Base current cancellation is applied to improve the offset. Due to the low supply 
voltage of 5 V, controlling op-amps (OP1, OP2 in Fig. 33) are used to ensure that Q1-
Q4 do not leave the active region. In Fig. 35 the transient response of the TIA (Fig. 
33) is shown. As a ringing can be observed the circuit has to be compensated next.  

 

Figure 35: Transient response of uncompensated TIA. 

After application of the step 0 4 in Fig. 32 the 9 capacitances displayed in Fig. 36 
have been selected out of originally more than 600 between each pair of nodes. These 
are now transferred to Cadence Virtuoso Schematic Editor.  
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Figure 36: TIA with new capacitances inserted after eigenvalue sensitivity calculation. 

The next steps include nominal sizing and yield optimization that are performed by 
WiCkeD. 

In summary, we obtain the results shown in Table 4 for the capacitances and the 
performances in Table 5. 

 

Table 4: Sized and Optimized Capacitances. 

Capacitance C1 C2 C3 C4 C5 C6 C7 C8 
Value 393 fF 0 87 fF 385 fF 0 424 fF 0 0 

 

Table 5: Performances of TIA without Compensation in Comparison with the Results After 

Application of the Compensation Algorithm. 

Performance 
3 dB-

Bandwidth 
Peaking 

Slewrate 
Rising 

Slewrate 
Falling 

without 
compensation 

471 MHz 16.6 dB 213 V/µs 1600 V/µs 

WiCkeD 
optimized 

525 MHz 0.98 dB 202 V/µs 537 V/µs 

 

Fig. 37 illustrates the final transient response, Fig. 38 comparison of poles and zeroes 
before and after compensation of the TIA, and Fig. 39 displays the frequency 
responses before and after compensation. It should be noted that the 3dB-bandwidth 
of the compensated TIA is even larger than for the uncompensated circuit. Moreover, 
as the circuit is yield optimized the final yield is 99.95%. 

INN

INP

IB_10U

INP

VTAIL!

VSS

VSS

psubs!

INP

VTAIL!

VSS

VDD

OUT

VSS

-
+

-
+

C
2

C
7

C
6

C
5

C
8

C
1

C
3

C
4

C
9

OP
1

OP
2

Q1 Q2

Q3 Q4

M5 M6

M9 M10 M11 M12

Q7

M14

M15
M13

M8



Application of Symbolic Circuit Analysis for Failure Detection… Design of Analog Circuits through SA   475 

 
Figure 37: Transient response of compensated TIA. 

 
Figure 38: Comparison of poles and zeroes before and after compensation. 

 
Figure 39: Comparison of frequency response before and after compensation. 
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4. Conclusion 

It has been shown that a lot of industrial circuit design problems can be rooted back to 
dynamic behavior. Symbolic analysis, especially the symbolic extraction of poles and 
zeroes allows the designer to identify those circuit elements that are responsible for the 
related frequency behavior. The interpretation of the obtained formulas may then help 
to modify the elements in such a way, that the circuit gets stable, a larger bandwidth or 
less ringing. One of the key issues here is to investigate and adapt the circuit in its 
actual feedback and load configuration. This direct compensation method often yields 
much more performance of the circuit compared to classical compensation approaches 
from feedback theory that try to increase open-loop phase- and gain-margin. Finally, 
direct circuit compensation has been extended with an automated topology 
modification that introduces new elements to the circuit. As these modifications 
should not change the operating point new branches consisting of capacitances are 
inserted, which allow for changing the location of poles and zeroes in such a way that 
a maximum of frequency performance is obtained. Using eigenvalue sensitivity 
calculations to find the appropriate topology modifications combined with numerical 
optimization techniques this method allows to find new and unknown variants of 
compensation networks for high-performance amplifier IC designs. 
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