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Preface

Looking back, I realize there was actually never an exact moment when I said to myself

“I have had it with Physics — let me do Electronics now”! My near mid-life career change

was a rather gradual process. Faced with an exponentially declining interest in pi-mesons,

Lagrangian multipliers, quantum electrodynamics, and so on, my grades had started scraping

the bottom of the barrel. It didn’t help that I perceived my last bunch of professors to be

largely apathetic to students in general — it seemed that teaching just happened to be what

they needed to keep doing, to be eligible for research grants, which is what they really

enjoyed doing. And Physics itself, for all its initial undergraduate allure, had at the

post-graduate level, turned suddenly very mathematical and abstruse, contradicting my

inherent desire to be firmly embedded in reality (not virtual reality). Unfortunately, the

disenchantment reached a culmination only during my second Masters degree program, in

Chicago. Too late! So though I eventually did part company with Physics (as good friends,

I may add), there was a slight problem — I didn’t have a clue what to do next. I call that my

Problem Number 1.

Back in hot, bustling and dusty India, it took me several years to figure things out. But

finally, I did! The small bags of transistors, capacitors, resistors and inductors that I had

lately started tinkering with, held the answer to all my problems. And hope for the future.

This was my long-awaited lifeboat. I could now feel, touch, build and test whatever I did.

No deceptive sense of comfort lolling around in lush minefields of equations and algebraic

abstractions. This was the real world, the one that we live in every day.

Problem Number 2: I still didn’t know the ABCs (or the NPNs) of electronics. So I had to

teach myself very gradually, working days and often very late into the nights, barely

stopping only to ask the elderly local components dealer, daring questions like — what is

a transistor?! This act went on for a pretty long time — in fact I became the Rocky Horror

Midnight show — you got to see me mostly at midnight for several years in succession.

But it would have still been impossible if I had not met a few very remarkable men along the

way (see Acknowledgements). Finally, with all the help at my disposal (most of it mine),

I think I made it into the exciting world of electronics. And into power electronics.

Aha! I could start rolling down the shutters now. Or could I?
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The above chain of hair-raising events is the one and only reason this book ever got written

in the first place!

But wait! I have explained “how” this book got written, but did I explain why? Actually

I haven’t yet. Because that has something to do with the last major problem I faced. I call it

Problem Number 3 — encountering people who knowingly or unknowingly thwart the

growth of the engineering discipline that gives us growth. Now, I had personally been

through a rather life-changing process (of being rescued by Electronics). So perhaps it was

more natural for me to always think I owed Electronics my best, in return for favors received.

But I realize not everyone thinks along those lines, at least not all the time. Maybe they had

affluent fathers paying for their shiny EE degrees from MIT or Yale. But I didn’t have an

affluent father nor an EE degree. However, at some stage, we all have to realize that we share

the same forces of nature, and a common stake in its existence and further development. Our

destiny is eventually common, and therefore we have a common responsibility to uphold it

too. Anybody who has learnt enough about the immense mystical forces of nature realizes

that he or she has really learnt nothing at all. It will therefore be very surprising if they don’t

end up imbibing the sense of humility that Newton once expressed in the following

words:

“I know not what I may appear to the world, but to myself I seem to have been only like a boy

playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a

prettier shell, whilst the great ocean of truth lay all undiscovered before me.”

Power Electronics too, is just a small part of that infinitesimal part of the universe that we

have just begun to understand. There is much, much more, just waiting to be discovered.

Should we be the ones to encourage that onward natural process, or thwart it (even

momentarily) with our petty office-space personal agendas?

Finally, when I had seen too much and heard too much, I wrote the following paragraphs

somewhere on the web, in what is now a rather controversial opinion piece for some people

who obviously don’t understand the logic or the motivation for it (see last page of

Appendix 1)

‘Technology may never gain a foothold in a “king’s court,” where you are either rewarded

with largesse for being vehemently agreeable, or unceremoniously sentenced to the dark

dungeons for the rest of your life. Engineers like to speak out - but usually only when they were

sure of their facts and have incontrovertible data to back themselves up. They therefore

deserve and need a “peer environment,” where they are judged (primarily) by the respect

received from their peers — the king be damned (on occasion)!

It must be kept in mind that this can really bother the king sometimes! So managers who

supervise engineers, should be fairly competent at a technical level themselves and respect

data and facts equally. They can’t attempt to win a technical argument by throwing rank on
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their subordinates. Nor should they ever go around, God forbid, trying to subsequently shoot

the “emotional and/or disrespectful” engineer down (“that’ll teach him”). Surprisingly that

does happen more than we dare admit. Not only does the good engineer pay the price, but so

does technology in the long run.’

The only reason that this piece (based largely on the old wisdom of my dear long-time

mentor and former-former Boss Dr GT Murthy) turned controversial was I suspect, because

it had hit closer to home than even I had imagined. It is always amusing that whenever

someone has one-too-many skeletons in their closets, the very sound of a distant siren

triggers off their worst fears. I was told to stop talking about things I didn’t understand, and

stick to my (humble) circuits. I was also refused the normal official Author Encouragement

Program payment that I thought was due to me as per their guidelines — for this article and

even for my other popular power electronics book, which they had already used freely to

promote their products. Finally the best thing I did was to quit as soon as I could! Without

notice. Then surprise, surprise! Just after I resigned, they went and restructured exactly as

I had been preaching all along — by re-amalgamating their two erstwhile groups “Portable

Power” and “Power Management” into one, saying privately that there would be “more

sharing among the engineers finally”. My words exactly (read the article)! Weighing all these

events in mind, I found some peace knowing the net result of my article was that a few

better-designed, more peer-reviewed products would ultimately emerge from the very same

company in question (whether they cared to admit it or not). For sure, the winner wasn’t me,

certainly not some insecure small-minded manager in a hopelessly high position. It was

electronics that had had its day. And that was enough for me.

Till a while ago, I had naively thought large corporations, especially those showcasing

themselves in glitzy facilities headquartered in Silicon Valley, had woken up to the times and

become more professionally managed. To me that meant things like not allowing race-related

slurs to demoralize struggling engineers, not allowing chilling war-rhetoric indiscriminately

sent via company E-mail (making employees wary of their own supervisor’s basic sanity at

times), and simply, simply, just rewarding all efforts fairly and without discrimination. Too

much to ask! I wasn’t too sure anymore that the field of electronics, the one that I was trying

so hard to nurture, was getting even close to what it deserved. Sure, they had now started

declaring “record gross margins” and so on. But behind this benumbing onslaught of pure

PR, you have to remember that that their new-found exhilaration was a) borne mainly on the

shoulders of a new breed of extremely talented, friendly and pro-active engineers and

b) basically, they just stopped loss-making operations, in areas that were outside their “core

competence” (in reality: those business units that had been so badly managed from start to

finish, that even the engineers couldn’t make a difference anymore). Further, almost without

further thought, they kept laying-off several talented or promising engineers, some that

I knew personally — often because their own managers had screwed up so bad they needed

alibis to present before their equally bad supervisors, who needed alibis to present to
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theirs …. and so on. Of course the last man standing was apparently just too busy counting

the millions of dollars cash bonus he had just received for meeting the company’s

(short-term?) “targets”. End of story. Not a tear for those engineers that were walked out one

fine day a) without the slightest warning b) without even being given an opportunity to

present their side of the story — quite unlike even a normal court of law anywhere in the

world. I asked myself — what if Newton or Einstein had been similarly dogged by

incompetent dishonest supervisors? Would the world have been a better place today? And

come to think of it, how many potential Newtons and Einsteins had these companies already

banned into the hell of dark obscurity, and possibly premature retirement, while chanting that

their analog ICs were nature incarnate (“the sight and sound of information”)? We never

know the real casualty toll ever, do we?

As you can see, I can honestly say I have not found the solution to Problem Number 3 yet.

But I am still trying! And this book is an effort to do just that.

So now, it is time to tell you what exactly I have tried to achieve with this book. One unique

aspect about designing power supplies is that the “devil is in the details”. In other words,

I, as a technical writer, can either put in everything, including the supporting Math, and

come up with a book that (only) professionals would like. Or I could try making it very

simple and straightforward for the beginner. But then the chances are very high I would miss

out on the very essence of what power supply design is all about — the optimization, and

design trade-offs. To strike a meaningful compromise between simplicity and depth requires

a very carefully considered structure of presentation, one that I have really tried hard to

achieve in this book. For example, several books out there, try to give a step-by-step detailed

design procedure for DC-DC converters. However, they seem to routinely miss out on the

important fact that the input is rarely, if ever, a “single-point” input voltage level. It is

usually a “wide-range input” and we need to be very clear which converter stresses are at

their worst at the highest end of the input, and which ones at the lowest input end. We also

need to know which stresses we need to give priority to during a particular design step

within that procedure. Clearly, designing a good power supply is not a trivial task! In

Chapter 2 I have presented a universal design procedure for DC-DC converters that

hopefully fulfills the simultaneous demands of rigorous detail as well as simplicity.

So what did we do in Chapter 1? That to most readers is just an introduction that they can

readily skim over. Wrong! Let’s take a step (and page) back. This particular introduction

actually starts at the component level, not at the topology level as most other books do. The

hope is that now, even a beginner, can understand the mysteries of a capacitor and inductor,

then tie them up synergistically, to derive a switching converter topology. In fact, it will

become clear that all topologies evolve out of a basic understanding of how, in particular, the

inductor works. Here, advanced readers should beware. Because, while interviewing even
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senior engineers for applications engineer positions, I found that many of them are still quite

uncomfortable with the very concept of an inductor. Therefore, I think it is a good idea for

every reader, novice or advanced, to read the book in the order of chapters presented,

starting from the very first chapter. Just don’t be caught reading it (by your perception-driven

supervisor!). The temptation of jumping straight into an advanced chapter to “save time”

may just end up slowing things down even more in the long run (besides causing avoidable

bruising of self-confidence for some, along the way). Basic concepts always need to be

brought in at the right time, exemplified, and then firmed up to last a lifetime.

In Chapter 3 I have tried to start at a fairly basic level again, but then ramped up steeply to

provide one of the most detailed step-by-step procedures available for designing off-line

converters and their associated magnetics. This includes the dreaded Proximity Effect

analysis. I have broken up the basic procedure into two separate iterative strategies — one

for foil windings and another for round windings, because their respective optimization

procedures are really very different. There are also generous amounts of curves and plots

thrown in to quickly help the engineer visualize and design the magnetics optimally.

I have included a chapter devoted largely to switching losses in MOSFETs, since this topic

has become increasingly vital as switching frequencies are increased. But it has been

presented with some of the most carefully prepared and detailed graphics probably seen in

related literature — highlighting each phase of the turn-on and turn-off individually.

Common simplifying assumptions have also been made whenever appropriate, and the user

should thereafter have no trouble anymore practicing this rather poorly understood area of

power conversion. There is also some interesting parameterized graphical information

available that can come in handy either for an applications engineer selecting external

MOSFETs, or an IC designer trying to optimize the driver stages of the chip.

The chapter on loop stability is likewise presented from scratch to finish, with very detailed

accompanying graphics. My hope is that for the first time the reader will have easy access to

almost all the equations required for loop compensation. Now, even a novice, can very

quickly get very deep into this area (as I once did).

There are also seven chapters on EMI, starting from the very basics and moving up to a full

mathematical treatment. This is again a topic that has been almost studiously avoided in most

related literature, and yet is needed so badly today. It needs much more elaboration I thought.

To cap it all, there is an “interview-friendly” FAQ, several Mathcad files, and various design

spreadsheets thrown in.

As you can see, the book has been designed to try to live up to its name “A to Z”. Of course

that is never really going to be possible, least of all in an all-encompassing area such as

Power Conversion. But hey, I did give it a shot! The stage is now set. I hope you like
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this book, even if it is A to Z with some of the alphabets missing along the way, and go on to

make a small but noticeable difference, using it. Though I do strongly suggest you choose

where you attempt to do it, because that that makes a big difference in the long run — to

technology and to its committed practitioners: you the engineers. And of course, it is to you

that this book is solely dedicated.

—Sanjaya Maniktala
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C H A P T E R 1

The Principles of Switching Power Conversion

Introduction

Imagine we are at some busy “metro” terminus one evening at peak hour. Almost instantly,

thousands of commuters swarm the station trying to make their way home. Of course there is

no train big enough to carry all of them simultaneously. So, what do we do? Simple! We

split this sea of humanity into several trainloads — and move them out in rapid succession.

Many of these outbound passengers will later transfer to alternative forms of transport. So

for example, trainloads may turn into bus-loads or taxi-loads, and so on. But eventually, all

these “packets” will merge once again, and a throng will be seen, exiting at the destination.

Switching power conversion is remarkably similar to a mass transit system. The difference is

that instead of people, it is energy that gets transferred from one level to another. So we

draw energy continuously from an “input source,” chop this incoming stream into packets by

means of a ‘switch’ (a transistor), and then transfer it with the help of components (inductors

and capacitors), that are able to accommodate these energy packets and exchange them

among themselves as required. Finally, we make all these packets merge again, and thereby

get a smooth and steady flow of energy into the output.

So, in either of the cases above (energy or people), from the viewpoint of an observer, a

stream will be seen entering, and a similar one exiting. But at an intermediate stage, the

transference is accomplished by breaking up this stream into more manageable packets.

Looking more closely at the train station analogy, we also realize that to be able to transfer a

given number of passengers in a given time (note that in electrical engineering, energy

transferred in unit time is ‘power’) — either we need bigger trains with departure times

spaced relatively far apart OR several smaller trains leaving in rapid succession. Therefore,

it should come as no surprise, that in switching power conversion, we always try to switch at

high frequencies. The primary purpose for that is to reduce the size of the energy packets,

and thereby also the size of the components required to store and transport them.

Power supplies that use this principle are called ‘switching power supplies’ or ‘switching

power converters.’

‘Dc-dc converters’ are the basic building blocks of modern high-frequency switching power

supplies. As their name suggests, they ‘convert’ an available dc (direct current) input voltage

rail ‘VIN,’ to another more desirable or usable dc output voltage level ‘VO.’ ‘Ac-dc
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Figure 1-1: Typical Off-line Power Supply

converters’ (see Figure 1-1), also called ‘off-line power supplies,’ typically run off the mains

input (or ‘line input’). But they first rectify the incoming sinusoidal ac (alternating current)

voltage ‘VAC’ to a dc voltage level (often called the ‘HVDC’ rail, or ‘high voltage dc rail’)

— which then gets applied at the input of what is essentially just another dc-dc converter

stage (or derivative thereof). We thus see that power conversion is, in essence, almost always

a dc-dc voltage conversion process.

But it is also equally important to create a steady dc output voltage level, from what can

often be a widely varying and different dc input voltage level. Therefore, a ‘control circuit’ is

used in all power converters to constantly monitor and compare the output voltage against an

internal ‘reference voltage.’ Corrective action is taken if the output drifts from its set value.

This process is called ‘output regulation’ or simply ‘regulation.’ Hence the generic term

‘voltage regulator’ for supplies which can achieve this function, switching or otherwise.

In a practical implementation, ‘application conditions’ are considered to be the applied

input voltage VIN (also called the ‘line voltage’), the current being drawn from the output,
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that is, IO (the ‘load current’) and the set output voltage VO. Temperature is also an

application condition, but we will ignore it for now, since its effect on the system is usually

not so dramatic. Therefore, for a given output voltage, there are two specific application

conditions whose variations can cause the output voltage to be immediately impacted (were

it not for the control circuit). Maintaining the output voltage steady when VIN varies over its

stated operating range VINMIN to VINMAX (minimum input to maximum input), is called

‘line regulation.’ Whereas maintaining regulation when IO varies over its operating range

IOMIN to IOMAX (minimum to maximum load), is referred to as ‘load regulation.’ Of course,

nothing is ever “perfect,” so nor is the regulation. Therefore, despite the correction, there is a

small but measurable change in the output voltage, which we call “∆VO” here. Note that

mathematically, line regulation is expressed as “∆VO/VO × 100% (implicitly implying it

is over VINMIN to VINMAX).” Load regulation is similarly “∆VO/VO × 100%” (from IOMIN

to IOMAX).

However, the rate at which the output can be corrected by the power supply (under sudden

changes in line and load) is also important — since no physical process is “instantaneous”

either. So the property of any converter to provide quick regulation (correction) under

external disturbances is referred to as its ‘loop response.’ Clearly, the loop response is as

before, a combination of its ‘step-load response’ and its ‘line transient response.’

As we move on, we will first introduce the reader to some of the most basic terminology of

power conversion and its key concerns. Later, we will progress toward understanding the

behavior of the most vital component of power conversion — the inductor. It is this

component that even some relatively experienced power designers still have trouble with!

Clearly, real progress in any area cannot occur without a clear understanding of the

components and basic concepts involved. Therefore, only after understanding the inductor

well, will we go on to demonstrate that switching converters themselves are not all that

mysterious either — in fact they evolve quite naturally out of our newly acquired

understanding of the inductor.

Overview and Basic Terminology

Efficiency

Any regulator carries out the process of power conversion with an ‘efficiency,’ defined as

η =
PO

PIN

where PO is the ‘output power,’ equal to

PO = VO × IO
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and PIN is the ‘input power,’ equal to

PIN = VIN × IIN

Here, IIN is the average or dc current being drawn from the source.

Ideally we want η = 1, and that would represent a “perfect” conversion efficiency of 100%.

But in a real converter, that is with η < 1, the difference ‘PIN − PO’ is simply the wasted

power “Ploss,” or ‘dissipation’ (occurring within the converter itself). By simple manipulation

we get

Ploss = PIN − PO

Ploss =
PO

η
− PO

Ploss = PO ×
(

1 − η

η

)

This is the loss expressed in terms of the output power. In terms of the input power we

would similarly get

Ploss = PIN ×
(

1 − η
)

The loss manifests itself as heat in the converter, which in turn causes a certain measurable

‘temperature rise’ ∆T over the surrounding ‘room temperature’ (or ‘ambient temperature’).

Note that high temperatures affect the reliability of all systems — the rule-of-thumb being

that every 10◦C rise causes the failure rate to double. Therefore, part of our skill as designers

is to reduce this temperature rise, and thereby also achieve higher efficiencies.

Coming to the input current (drawn by the converter), for the hypothetical case of 100%

efficiency, we get

IIN_ideal = IO ×
(

VO

VIN

)

So, in a real converter, the input current increases from its “ideal” value by the factor 1/η.

IIN_measured =
1

η
× IIN_ideal

Therefore, if we can achieve a high efficiency, the current drawn from the input (keeping

application conditions unchanged) will decrease — but only up to a point. The input

current clearly cannot fall below the “brickwall” that is “IIN_ideal,” because this current is

6



The Principles of Switching Power Conversion

equal to PO/VIN — that is, related only to the ‘useful power’ PO, delivered by the power

supply, which we are assuming has not changed.

Further, since

VO × IO = VIN × IIN_ideal

by simple algebra, the dissipation in the power supply (energy lost per second as heat) can

also be written as

Ploss = VIN ×
(

IIN_measured − IIN_ideal

)

This form of the dissipation equation indicates a little more explicitly how additional energy

(more input current for a given input voltage) is pushed into the input terminals of the power

supply by the applied dc source — to compensate for the wasted energy inside the power

supply — even as the converter continues to provide the useful energy PO being constantly

demanded by the load.

A modern switching power supply’s efficiency can typically range from 65 to 95% — that

figure being considered attractive enough to have taken switchers to the level of interest they

arouse today, and their consequent wide application. Traditional regulators (like the ‘linear

regulator’) provide much poorer efficiencies — and that is the main reason why they are

slowly but surely getting replaced by switching regulators.

Linear Regulators

‘Linear regulators,’ equivalently called ‘series-pass regulators,’ or simply ‘series regulators,’

also produce a regulated dc output rail from an input rail. But they do this by placing a

transistor in series between the input and output. Further, this ‘series-pass transistor’

(or ‘pass-transistor’) is operated in the linear region of its voltage-current characteristics —

thus acting like a variable resistance of sorts. As shown in the uppermost schematic of

Figure 1-2, this transistor is made to literally “drop” (abandon) the unwanted or “excess”

voltage across itself.

The excess voltage is clearly just the difference ‘VIN − VO’ — and this term is commonly

called the ‘headroom’ of the linear regulator. We can see that the headroom needs to be a

positive number always, thus implying VO < VIN. Therefore, linear regulators are, in

principle, always ‘step-down’ in nature — that being their most obvious limitation.

In some applications (e.g. battery powered portable electronic equipment), we may want the

output rail to remain well-regulated even if the input voltage dips very low — say down to

within 0.6 V or less of the set output level VO. In such cases, the minimum possible

headroom (or ‘dropout’) achievable by the linear regulator stage may become an issue.
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Figure 1-2: Basic Types of Linear and Switching Regulators

No switch is perfect, and even if held fully conducting, it does have some voltage drop

across it. So the dropout is simply the minimum achievable ‘forward-drop’ across the switch.

Regulators which can continue to work (i.e. regulate their output), with VIN barely exceeding

VO, are called ‘low dropout’ regulators, or ‘LDOs.’ But note that there is really no precise

voltage drop at which a linear regulator “officially” becomes an LDO. So the term is

sometimes applied rather loosely to linear regulators in general. However, the rule-of thumb

is that a dropout of about 200 mV or lower qualifies as an LDO, whereas older devices

(conventional linear regulators) have a typical dropout voltage of around 2 V. There is also

an intermediate category, called ‘quasi-LDOs’ that have a dropout of about 1 V, that is,

somewhere in between the two.

Besides being step-down in principle, linear regulators have another limitation — poor

efficiency. Let us understand why that is so. The instantaneous power dissipated in any

device is by definition the cross-product V × I, where V is the instantaneous voltage drop

across it and I the instantaneous current through it. In the case of the series-pass transistor,

under steady application conditions, both V and I are actually constant with respect to

8



The Principles of Switching Power Conversion

time — V in this case being the headroom VIN − VO, and I the load current IO (since the

transistor is always in series with the load). So we see that the V × I dissipation term for

linear regulators can, under certain conditions, become a significant proportion of the useful

output power PO. And that simply spells “poor efficiency”! Further, if we stare hard at the

equations, we will realize there is also nothing we can do about it — how can we possibly

argue against something as basic as V × I? For example, if the input is 12 V, and the output

is 5 V, then at a load current of 100 mA, the dissipation in the regulator is necessarily

∆V × IO = (12 − 5) V × 100 mA = 700 mW. The useful (output) power is however

VO × IO = 5 V × 100 mA = 500 mW. Therefore, the efficiency is PO/PIN = 500/(700 +
500) = 41.6%. What can we do about that?!

On the positive side, linear regulators are very “quiet” — exhibiting none of the noise and

EMI (electromagnetic interference) that have unfortunately become a “signature” or

“trademark” of modern switching regulators. Switching regulators need filters — usually

both at the input and the output, to quell some of this noise, which can interfere with other

gadgets in the vicinity, possibly causing them to malfunction. Note that sometimes, the usual

input/output capacitors of the converter may themselves serve the purpose, especially when

we are dealing with ‘low-power’ (and ‘low-voltage’) applications. But in general, we may

require filter stages containing both inductors and capacitors. Sometimes these stages may

need to be cascaded to provide even greater noise attenuation.

Achieving High Efficiency through Switching

Why are switchers so much more efficient than “linears”?

As their name indicates, in a switching regulator, the series transistor is not held in a

perpetual partially conducting (and therefore dissipative) mode — but is instead switched

repetitively. So there are only two states possible — either the switch is held ‘ON’ (fully

conducting) or it is ‘OFF’ (fully non-conducting) — there is no “middle ground” (at least not

in principle). When the transistor is ON, there is (ideally) zero voltage across it (V = 0), and

when it is OFF we have zero current through it (I = 0). So it is clear that the cross-product

‘V × I’ is also zero for either of the two states. And that simply implies zero ‘switch

dissipation’ at all times. Of course this too represents an impractical or “ideal” case. Real

switches do dissipate. One reason for that they are never either fully ON nor fully OFF. Even

when they are supposedly ON, they have a small voltage drop across them, and when they

are supposedly “OFF,” a small current still flows through them. Further, no device switches

“instantly” either — there is a always definable period in which the device is transiting

between states. During this interval too, V × I is not zero, and some additional dissipation

occurs.

We may have noticed that in most introductory texts on switching power conversion, the

switch is shown as a mechanical device — with contacts that simply open (“switch OFF”)
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or close (“switch ON”). So a mechanical device comes very close to our definition of a

“perfect switch” — and that is the reason why it is often the vehicle of choice to present the

most basic principles of power conversion. But one obvious problem with actually using a

mechanical switch in any practical converter is that such switches can wear out and fail over

a relatively short period of time. So in practice, we always prefer to use a semiconductor

device (e.g. a transistor) as the switching element. As expected, that greatly enhances the life

and reliability of the converter. But the most important advantage is that since a

semiconductor switch has none of the mechanical “inertia” associated with a mechanical

device, it gives us the ability to switch repetitively between the ON and OFF states — and

do so very fast. We have already realized that that will lead to smaller components in

general.

We should be clear that the phrase “switching fast,” or “high switching speed,” has slightly

varying connotations, even within the area of switching power conversion. When it is

applied to the overall circuit, it refers to the frequency at which we are repeatedly switching

— ON OFF ON OFF and so on. This is the converter’s basic switching frequency ‘f’ (in Hz).

But when the same term is applied specifically to the switching element or device, it refers to

the time spent transiting between its two states (i.e. from ON to OFF and OFF to ON), and is

typically expressed in ‘ns’ (nanoseconds). Of course this transition interval is then rather

implicitly and intuitively being compared to the total ‘time period’ T (where T = 1/f ), and

therefore to the switching frequency — though we should be clear there is no direct

relationship between the transition time and the switching frequency.

We will learn shortly that the ability to crossover (i.e. transit) quickly between switching

states is in fact rather crucial. Yes, up to a point, the switching speed is almost completely

determined by how “strong” and effective we can make our external ‘drive circuit.’ But

ultimately, the speed becomes limited purely by the device and its technology — an “inertia”

of sorts at an electrical level.

Basic Types of Semiconductor Switches

Historically, most power supplies used the ‘bjt’ (bipolar junction transistor) shown in

Figure 1-2. It is admittedly a rather slow device by modern standards. But it is still relatively

cheap! In fact its ‘npn’ version is even cheaper, and therefore more popular than its ‘pnp’

version. Modern switching supplies prefer to use a ‘mosfet’ (metal oxide semiconductor field

effect transistor), often simply called a ‘fet’ (see Figure 1-2 again). This modern high-speed

switching device also comes in several “flavors” — the most commonly used ones being the

n-channel and p-channel types (both usually being the ‘enhancement mode’ variety). The

n-channel mosfet happens to be the favorite in terms of cost-effectiveness and performance,

for most applications. However, sometimes, p-channel devices may be preferred for various

reasons — mainly because they usually require simpler drive circuits.

10



The Principles of Switching Power Conversion

Despite the steady course of history in favor of mosfets in general, there still remain some

arguments for continuing to prefer bjts in certain applications. Some points to consider and

debate here are:

a) It is often said that it is easier to drive a mosfet than a bjt. In a bjt we do need a

large drive current (injected into its ‘base’ terminal) — to turn it ON. We also need

to keep injecting base current to keep it in that state. On the other hand, a mosfet

is considered easier to drive. In theory, we just have to apply a certain voltage at its

‘gate’ terminal to turn it ON, and also keep it that way. Therefore, a mosfet is called a

‘voltage-controlled’ device, whereas a bjt is considered a ‘current controlled’ device.

However, in reality, a modern mosfet needs a certain amount of gate current during

the time it is in transit (ON to OFF and OFF to ON). Further, to make it change state

fast, we may in fact need to push in (or pull) out a lot of current (typically 1 to 2 A).

b) The drive requirements of a bjt may actually turn out easier to implement in many

cases. The reason for that is, to turn an npn bjt ON for example, its gate has to be

taken only about 0.8 V above its emitter (and can even be tied directly to its collector

on occasion). Whereas, in an n-channel mosfet, its gate has to be taken several volts

higher than its source. Therefore, in certain types of dc-dc converters, when using an

n-channel mosfet, it can be shown that we need a ‘drive rail’ that is significantly higher

than the (available) input rail VIN. And how else can we hope to have such a rail

except by a circuit that can somehow manage to “push” or “pump” the input voltage

to a higher level? When thus implemented, such a rail is called the ‘bootstrap’ rail.

Note: The most obvious implementation of a ‘bootstrap circuit’ may just consist of a small

capacitor that gets charged by the input source (through a small signal diode) whenever the switch

turns OFF. Thereafter, when the switch turns ON, we know that certain voltage nodes in the power

supply suddenly “flip” whenever the switch changes state. But since the ‘bootstrap capacitor’

continues to hold on to its acquired voltage (and charge), it automatically pumps the bootstrap rail to

a level higher than the input rail, as desired. This rail then helps drive the mosfet properly under all

conditions.

c) The main advantage of bjts is that they are known to generate significantly less EMI

and ‘noise and ripple’ than mosfets. That ironically is a positive outcome of their

slower switching speed!

d) Bjts are also often better suited for high-current applications — because their ‘forward

drop’ (on-state voltage drop) is relatively constant, even for very high switch currents.

This leads to significantly lower ‘switch dissipation,’ more so when the switching

frequencies are not too high. On the contrary, in a mosfet, the forward drop is almost

proportional to the current passing through it — so its dissipation can become

significant at high loads. Luckily, since it also switches faster (lower transition

times), it usually more than makes up, and so in fact becomes much better in terms

of the overall loss — more so when operated at very high switching frequencies.
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Note: In an effort to combine the “best of both worlds,” a “combo” device called the ‘IGBT’

(insulated gate bipolar transistor) is also often used nowadays. It is driven like a mosfet

(voltage-controlled), but behaves like a bjt in other ways (the forward drop and switching

speed). It too is therefore suited mainly for low-frequency and high-current applications, but is

considered easier to drive than a bjt.

Semiconductor Switches Are Not “Perfect”

We mentioned that all semiconductor switches suffer losses. Despite their advantages, they

are certainly not the perfect or ideal switches we may have imagined them to be at first sight.

So for example, unlike a mechanical switch, in the case of a semiconductor device, we may

have to account for the small but measurable ‘leakage current’ flowing through it when it is

considered “fully OFF” (i.e. non-conducting). This gives us a dissipation term called the

‘leakage loss.’ This term is usually not very significant and can be ignored. However, there is

a small but significant voltage drop (‘forward drop’) across the semiconductor when it is

considered “fully ON” (i.e. conducting) — and that gives us a significant ‘conduction loss’

term. In addition, there is also a brief moment as we transition between the two switching

states, when the current and voltage in the switch need to slew up or down almost

simultaneously to their new respective levels. So, during this ‘transition time’ or ‘crossover

time,’ we neither have V = 0 nor I = 0 instantaneously, and therefore nor is V × I = 0. This

therefore leads to some additional dissipation, and is called the ‘crossover loss’ (or

sometimes just ‘switching loss’). Eventually, we need to learn to minimize all such loss

terms if we want to improve the efficiency of our power supply.

However, we must remember that power supply design is by its very nature full of design

tradeoffs and subtle compromises. For example, if we look around for a transistor with

a very low forward voltage drop, possibly with the intent of minimizing the conduction loss,

we usually end up with a device that also happens to transition more slowly — thus leading

to a higher crossover loss. There is also an overriding concern for cost that needs to be

constantly looked into, particularly in the commercial power supply arena. So, we should not

underestimate the importance of having an astute and seasoned engineer at the helm of affairs,

one who can really grapple with the finer details of power supply design. As a corollary,

neither can we probably ever hope to replace him or her (at least not entirely), by some smart

automatic test system, nor by any “expert design software” that we may have been dreaming of.

Achieving High Efficiency through the Use of Reactive Components

We have seen that one reason why switching regulators have such a high efficiency is

because they use a switch (rather than a transistor that “thinks” it is a resistor, as in an LDO).

Another root cause of the high efficiency of modern switching power supplies is their

effective use of both capacitors and inductors.
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Capacitors and inductors are categorized as ‘reactive’ components because they have the

unique ability of being able to store energy. However, that is why they cannot ever be made

to dissipate any energy either (at least not within themselves) — they just store any energy

“thrown at them”! On the other hand, we know that ‘resistive’ components dissipate energy,

but unfortunately, can’t store any!

A capacitor’s stored energy is called electrostatic, equal to 1
2 × C × V2 where C is the

‘capacitance’ (in Farads), and V the voltage across the capacitor. Whereas an inductor stores

magnetic energy, equal to 1
2 × L × I2, L being the ‘inductance’ (in Henries) and I the current

passing through it (at any given moment).

But we may well ask — despite the obvious efficiency concerns, do we really need reactive

components in principle? For example, we may have realized we don’t really need an input

or output capacitor for implementing a linear regulator — because the series-pass element is

all that is required to block any excess voltage. For switching regulators however, the

reasoning is rather different. This leads us to the general “logic of switching power

conversion” summarized below.

■ A transistor is needed to establish control on the output voltage, and thereby bring it

into regulation. The reason we switch it is as follows — dissipation in this control

element is related to the product of the voltage across the control device and the

current through it, that is V × I. So if we make either V or I zero (or very small),

we will get zero (or very small) dissipation. By switching constantly between ON

and OFF states, we can keep the switch dissipation down, but at the same time, by

controlling the ratio of the ON and OFF intervals, we can regulate the output, based

on average energy flow considerations.

■ But whenever we switch the transistor, we effectively disconnect the input from the

output (during either the ON or OFF state). However, the output (load) always

demands a continuous flow of energy. Therefore we need to introduce energy storage

elements somewhere inside the converter. In particular, we use output capacitors to

“hold” the voltage steady across the load during the above-mentioned input-to-output

“disconnect” interval.

■ But as soon as we put in a capacitor, we now also need to limit the inrush current

into it — all capacitors connected directly across a dc source, will exhibit this

uncontrolled inrush — and that can’t be good either for noise, EMI, or for efficiency.

Of course we could simply opt for a resistor to subdue this inrush, and that in fact

was the approach behind the early “bucket regulators” (Figure 1-2).

■ But unfortunately a resistor always dissipates — so what we may have saved in

terms of switch dissipation, may ultimately end up in the resistor! To maximize the

overall efficiency, we therefore need to use only reactive elements in the conversion
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process. Reactive elements can store energy but do not dissipate any (in principle).

Therefore, an inductor becomes our final choice (along with the capacitor), based on

its ability to non-dissipatively limit the (rate of rise) of current, as is desired for the

purpose of limiting the capacitor inrush current.

Some of the finer points in this summary will become clearer as we go on. We will also learn

that once the inductor has stored some energy, we just can’t wish this stored energy away

at the drop of a hat”. We need to do something about it! And that in fact gives us an actual

working converter down the road.

Early RC-based Switching Regulators

As indicated above, a possible way out of the “input-to-output disconnect” problem is to use

only an output capacitor. This can store some extra energy when the switch connects the load

to the input, and then provide this energy to the load when the switch disconnects the load.

But we still need to limit the capacitor charging current (‘inrush current’). And as indicated,

we could use a resistor. That was in fact the basic principle behind some early

linear-to-switcher “crossover products” like the ‘bucket regulator’ shown in Figure 1-2.

The bucket regulator uses a transistor driven like a switch (as in modern switching

regulators), a small series resistor to limit the current (not entirely unlike a linear regulator),

and an output capacitor (the “bucket”) to store and then provide energy when the switch is

OFF. Whenever the output voltage falls below a certain threshold, the switch turns ON, “tops

up” the bucket, and then turns OFF. Another version of the bucket regulator uses a cheap

low-frequency switch called an SCR (‘semiconductor controlled rectifier’) that works off the

secondary windings of a step-down transformer connected to an ac mains supply, as also

shown in Figure 1-2. Note that in this case, the resistance of the windings (usually) serves as

the (only) effective limiting resistance.

Note also that in either of these RC-based bucket regulator implementations, the switch

ultimately ends up being toggled repetitively at a certain rate — and in the process, a rather

crudely regulated stepped down output dc rail is created. By definition, that makes these

regulators switching regulators too!

But we realize that the very use of a resistor in any power conversion process always bodes

ill for efficiency. So, we may have just succeeded in shifting the dissipation away from the

transistor — into the resistor! If we really want to maximize overall efficiency, we need to

do away with any intervening resistance altogether.

So we attempt to use an inductor instead of a resistor for the purpose — we don’t really have

many other component choices left in our bag! In fact, if we manage to do that, we get our

first modern LC-based switching regulator — the ‘buck regulator’ (i.e. step-down converter),

as also presented in Figure 1-2.
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LC-based Switching Regulators

Though the detailed functioning of the modern buck regulator of Figure 1-2 will be

explained a little later, we note that besides the obvious replacement of R with an L, it looks

very similar to the bucket regulator — except for a “mysterious” diode. The basic principles

of power conversion will in fact become clear only when we realize the purpose of this diode.

This component goes by several names — ‘catch diode,’ ‘freewheeling diode,’ ‘commutation

diode,’ and ‘output diode,’ to name a few! But its basic purpose is always the same — a

purpose we will soon learn is intricately related to the behavior of the inductor itself.

Aside from the buck regulator, there are two other ways to implement the basic goal of

switching power conversion (using both inductors and capacitors). Each of these leads to a

distinct ‘topology.’ So besides the buck (step-down), we also have the ‘boost’ (step-up), and

the ‘buck-boost’ (step-up or step-down). We will see that though all these are based on the

same underlying principles, they are set up to look and behave quite differently. As a

prospective power supply designer, we really do need to learn and master each of them

almost on an individual basis. We must also keep in mind that in the process, our mental

picture will usually need a drastic change as we go from one topology to another.

Note: There are some other capacitor-based possibilities — in particular ‘charge pumps’ — also called

‘inductor-less switching regulators.’ These are usually restricted to rather low powers and produce output

rails that are rather crudely regulated multiples of the input rail. In this book, we are going to ignore these

types altogether.

Then there are also some other types of LC-based possibilities — in particular the ‘resonant topologies.’

Like conventional dc-dc converters, these also use both types of reactive components (L and C) along with a

switch. However, their basic principle of operation is very different. Without getting into their actual details,

we note that these topologies do not maintain a constant switching frequency, which is something we usually

rather strongly desire. From a practical standpoint, any switching topology with a variable switching

frequency, can lead to an unpredictable and varying EMI spectrum and noise signature. To mitigate these

effects, we may require rather complicated filters. For such reasons, resonant topologies have not really

found widespread acceptance in commercial designs, and so we too will largely ignore them from this

point on.

The Role of Parasitics

In using conventional LC-based switching regulators, we may have noticed that their

constituent inductors and capacitors do get fairly hot in most applications. But if, as we said,

these components are reactive, why at all are they getting hot? We need to know why,

because any source of heat impacts the overall efficiency! And efficiency is what modern

switching regulators are all about!

The heat arising from real-world reactive components can invariably be traced back to

dissipation occurring within the small ‘parasitic’ resistive elements, which always accompany

any such (reactive) component.
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For example, a real inductor has the basic property of inductance L, but it also has a certain

non-zero dc resistance (‘DCR’) term, mainly associated with the copper windings used.

Similarly, any real capacitor has a capacitance C, but it also has a small equivalent series

resistance (‘ESR’). Each of these terms produces ‘ohmic’ losses — that can all add up and

become fairly significant.

As indicated previously, a real-world semiconductor switch can also be considered as having

a parasitic resistance “strapped” across it. This parallel resistor in effect “models” the

leakage current path, and thus the ‘leakage loss’ term. Similarly, the forward drop across the

device can also, in a sense, be thought of as a series parasitic resistance — leading to a

conduction loss term.

But any real-world component also comes along with various reactive parasitics. For

example an inductor can have a significant parasitic capacitance across its terminals —

associated with electrostatic effects between the layers of its windings. A capacitor can also

have an equivalent series inductance (‘ESL’) — coming from the small inductances

associated with its leads, foil, and terminations. Similarly, a mosfet also has various

parasitics — for example the “unseen” capacitances present between each of its terminals

(within the package). In fact, these mosfet parasitics play a major part in determining the

limits of its switching speed (transition times).

In terms of dissipation, we understand that reactive parasitics certainly cannot dissipate heat

— at least not within the parasitic element itself. But more often than not, these reactive

parasitics do manage to “dump” their stored energy (at specific moments during the switching

cycle) into a nearby resistive element — thus increasing the overall losses indirectly.

Therefore we see that to improve efficiency, we generally need to go about minimizing all

such parasitics — resistive or reactive. We should not forget they are the very reason we are

not getting 100% efficiency from our converter in the first place. Of course, we have to learn

to be able to do this optimization to within reasonable and cost-effective bounds, as dictated

by market compulsions and similar constraints.

But we should also bear in mind that nothing is so straightforward in power! So these

parasitic elements should not be considered entirely “useless” either. In fact they do play a

rather helpful and stabilizing role on occasion.

■ For example, if we short the outputs of a dc-dc converter, we know it is unable to

regulate, however hard it tries. In this ‘fault condition’ (‘open-loop’), the momentary

‘overload current’ within the circuit can be “tamed” (or mitigated) a great deal by the

very presence of certain identifiably “friendly” parasitics.

■ We will also learn that the so-called ‘voltage-mode control’ switching regulators

actually rely on the ESR of the output capacitor for ensuring ‘loop stability’ — even

under normal operation. As indicated previously, loop stability refers to the ability of
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a power supply to regulate its output quickly, when faced with sudden changes in

line and load, without undue oscillations or ringing.

Certain other parasitics however may just prove to be a nuisance and some others a sheer

bane. But their actual roles too may keep shifting, depending upon the prevailing conditions

in the converter. For example

■ A certain parasitic inductance may be quite helpful during the turn-on transition of

the switch — by acting to limit any current spike trying to pass through the switch.

But it can be harmful due to the high voltage spike it creates across the switch at

turn-off (as it tries to release its stored magnetic energy).

■ On the other hand, a parasitic capacitance present across the switch for example,

can be helpful at turn-off — but unhelpful at turn-on, as it tries to dump its stored

electrostatic energy inside the switch.

Note: We will find that during turn-off, the parasitic capacitance mentioned above helps limit or

‘clamp’ any potentially destructive voltage spikes appearing across the switch, by absorbing the

energy residing in that spike. It also helps decrease the crossover loss by slowing down the rising

ramp of voltage, and thereby reducing the V-I “overlap” (between the transiting V and I waveforms

of the switch). However at turn-on, the same parasitic capacitance now has to discharge whatever

energy it acquired during the preceding turn-off transition — and that leads to a current spike

inside the switch. Note that this spike is externally “invisible” — apparent only by the

higher-than-expected switch dissipation, and the resulting higher-than-expected temperature.

Therefore, generally speaking, all parasitics constitute a somewhat “double-edged sword,”

one that we just can’t afford to overlook for very long in practical power supply design.

However, as we too will do in some of our discussions that follow, sometimes we can

consciously and selectively decide to ignore some of these second-order influences initially,

just to build up basic concepts in power first. Because the truth is if we don’t do that, we just

run the risk of feeling quite overwhelmed, too early in the game!

Switching at High Frequencies

In attempting to generally reduce parasitics and their associated losses, we may notice that

these are often dependent on various external factors — temperature for one. Some losses

increase with temperature — for example the conduction loss in a mosfet. And some may

decrease — for example the conduction loss in a bjt (when operated with low currents).

Another example of the latter type is the ESR-related loss of a typical aluminum electrolytic

capacitor, which also decreases with temperature. On the other hand, some losses may have

rather “strange” shapes. For example, we could have an inverted “bell-shaped” curve —

representing an optimum operating point somewhere between the two extremes. This is what

the ‘core loss’ term of many modern ‘ferrite’ materials (used for inductor cores) looks like —

it is at its minimum at around 80 to 90◦C, increasing on either side.
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From an overall perspective, it is hard to predict how all these variations with respect to

temperature add up — and how the efficiency of the power supply is thereby affected by

changes in temperature.

Coming to the dependency of parasitics and related loss terms on frequency, we do find a

somewhat clearer trend. In fact it is rather rare to find any loss term that decreases at higher

frequencies (though a notable exception to this is the loss in an aluminum electrolytic

capacitor — because its ESR decreases with frequency). Some of the loss terms are

virtually independent of frequency (e.g. conduction loss). And the remaining losses actually

increase almost proportionally to the switching frequency — for example, the crossover loss.

So in general, we realize that lowering, not increasing, the switching frequency would almost

invariably help improve efficiency.

There are other frequency-related issues too, besides efficiency. For example, we know that

switching power supplies are inherently noisy, and generate a lot of EMI. By going to higher

switching frequencies, we may just be making matters worse. We can mentally visualize that

even the small connecting wires and ‘printed circuit board’ (PCB) traces become very

effective antennas at high frequencies, and will likely spew out radiated EMI in every

direction.

This therefore begs the question: why at all are we face to face with a modern trend of

ever-increasing switching frequencies? Why should we not decrease the switching

frequency?

The first motivation toward higher switching frequencies was to simply take “the action”

beyond audible human hearing range. Reactive components are prone to creating sound

pressure waves for various reasons. So, the early LC-based switching power supplies

switched at around 15–20 kHz, and were therefore barely audible, if at all.

The next impetus toward even higher switching frequencies came with the realization that

the bulkiest component of a power supply, that is, the inductor, could be almost

proportionately reduced in size if the switching frequency was increased (everybody does

seem to want smaller products, after all!). Therefore, successive generations of power

converters moved upward in almost arbitrary steps, typically 20 kHz, 50 kHz, 70 kHz,

100 kHz, 150 kHz, 250 kHz, 300 kHz, 500 kHz, 1 MHz, 2 MHz, and often even higher

today. This actually helped simultaneously reduce the size of the conducted EMI and

input/output filtering components — including the capacitors! High switching frequencies

can also almost proportionately enhance the loop response of a power supply.

Therefore, we realize that the only thing holding us back at any moment of time from going

to even higher frequencies are the “switching losses.” This term is in fact rather broad —-

encompassing all the losses that occur at the moment when we actually switch the transistor

(i.e. from ON to OFF and/or OFF to ON). Clearly, the crossover loss mentioned earlier is
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just one of several possible switching loss terms. Note that it is easy to visualize why such

losses are (usually) exactly proportional to the switching frequency — since energy is lost

only whenever we actually switch — therefore, the greater the number of times we do that

(in a second), the more energy is lost (dissipation).

Finally, we also do need to learn how to manage whatever dissipation is still remaining in

the power supply. This is called ‘thermal management,’ and that is one of the most important

goals in any good power supply design. Let us look at that now.

Reliability, Life, and Thermal Management

Thermal management basically just means trying to get the heat out from the power supply

and into the surroundings — thereby lowering the local temperatures at various points

inside it. The most basic and obvious reason for doing this is to keep all the components to

within their maximum rated operating temperatures. But in fact, that is rarely enough. We

always strive to reduce the temperatures even further, and every couple of degrees Celsius

(◦C) may well be worth fighting for.

The reliability ‘R’ of a power supply at any given moment of time is defined as R(t) = e−λt.

So at time t = 0 (start of operational life), the reliability is considered to be at its maximum

value of 1. Thereafter it decreases exponentially as time elapses. ‘λ‘ is the failure rate of a

power supply, that is, the number of supplies failing over a specified period of time. Another

commonly used term is ‘MTBF,’ or mean time between failures. This is the reciprocal of the

overall failure rate, that is, λ = 1/MTBF. A typical commercial power supply will have an

MTBF of between 100,000 hours to 500,000 hours — assuming it is being operated at a

fairly typical and benign ‘ambient temperature’ of around 25◦C.

Looking now at the variation of failure rate with respect to temperature, we come across the

well-known rule-of-thumb — failure rate doubles every 10◦C rise in temperature. If we apply

this admittedly loose rule-of-thumb to each and every component used in the power supply,

we see it must also hold for the entire power supply too — since the overall failure rate of

the power supply is simply the sum of the failure rates of each component comprising it

(λ = λ1 + λ2 + λ3 + . . . .). All this clearly gives us a good reason to try and reduce

temperatures of all the components even further.

But aside from failure rate, which clearly applies to every component used in a power

supply, there are also certain ‘lifetime’ considerations that apply to specific components. The

‘life’ of a component is stated to be the duration it can work for continuously, without

degrading beyond certain specified limits. At the end of this ‘useful life,’ it is considered to

have become a ‘wearout failure’ — or simply put — it is “worn-out.” Note that this need not

imply the component has failed “catastrophically” — more often than not, it may be just

“out of spec.” The latter phrase simply means the component no longer provides the
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expected performance — as specified by the limits published in the electrical tables of its

datasheet.

Note: Of course a datasheet can always be “massaged” to make the part look good in one way or

another — and that is the origin of a rather shady but widespread industry practice called “specmanship.”

A good designer will therefore keep in mind that not all vendors’ datasheets are equal — even for what may

seem to be the same or equivalent part number at first sight.

As designers, it is important that we not only do our best to extend the ‘useful life’ of any

such component, but also account upfront for its slow degradation over time. In effect, that

implies that the power supply may initially perform better than its minimum specifications.

Ultimately however, the worn-out component, especially if it is present at a critical location,

could cause the entire power supply to “go out of spec,” and even fail catastrophically.

Luckily, most of the components used in a power supply have no meaningful or definable

lifetime — at least not within the usual 5 to 10 years of useful life expected from most

electronic products. We therefore usually don’t, for example, talk in terms of an inductor or

transistor “degrading” (over a period of time) — though of course either of these

components can certainly fail at any given moment, even under normal operation, as

evidenced by their non-zero failure rates.

Note: Lifetime issues related to the materials used in the construction of a component can affect the life of

the component indirectly. For example, if a semiconductor device is operated well beyond its usual maximum

rating of 150◦C, its plastic package can exhibit wearout or degradation — even though nothing happens to

the semiconductor itself up to a much higher temperature. Subsequently, over a period of time, this degraded

package can cause the junction to get severely affected by environmental factors, causing the device to fail

catastrophically — usually taking the power supply (and system) with it too! In a similar manner, inductors

made of a ‘powdered iron’ type of core material are also known to degrade under extended periods of high

temperatures — and this can produce not only a failed inductor, but a failed power supply too.

A common example of lifetime considerations in a commercial power supply design comes

from its use of aluminum electrolytic capacitors. Despite their great affordability and

respectable performance in many applications, such capacitors are a victim of wearout due to

the steady evaporation of their enclosed electrolyte over time. Extensive calculations are

needed to predict their internal temperature (‘core temperature’) and thereby estimate the

true rate of evaporation and thereby extend the capacitor’s useful life. The rule

recommended for doing this life calculation is — the useful life of an aluminum electrolytic

capacitor halves every 10◦C rise in temperature. We can see that this relatively hard-and-fast

rule is uncannily similar to the rule-of-thumb of failure rate. But that again is just a

coincidence, since life and failure rate are really two different issues altogether.

In either case, we can now clearly see that the way to extend life and improve reliability is

to lower the temperatures of all the components in a power supply and also the ambient

temperature inside the enclosure of the power supply. This may also call out for a

better-ventilated enclosure (more air vents), more exposed copper on the PCB (printed
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circuit board), or say, even a built-in fan to push the hot air out. Though in the latter case,

we now have to start worrying about both the failure rate and life of the fan itself!

Stress Derating

Temperature can ultimately be viewed as a ‘thermal stress’ — one that causes an increase in

failure rate (and life if applicable). But how severe a stress really is, must naturally be

judged relative to the ‘ratings’ of the device. For example, most semiconductors are rated for

a ‘maximum junction temperature’ of 150◦C. Therefore, keeping the junction no higher than

105◦C in a given application represents a stress reduction factor, or alternately — a

‘temperature derating’ factor equal to 105/150 = 70%.

In general, ‘stress derating’ is the established technique used by good designers to diminish

internal stresses and thereby reduce the failure rate. Besides temperature, the failure rate

(and life) of any component can also depend on the applied electrical stresses — voltage and

current. For example, a typical ‘voltage derating’ of 80% as applied to semiconductors

means that the worst-case operating voltage across the component never exceeds 80% of the

maximum specified voltage rating of the device. Similarly, we can usually apply a typical

‘current derating’ of 70–80% to most semiconductors.

The practice of derating also implies that we need to select our components judiciously

during the design phase itself — with well-considered and built-in operating margins. And

though, as we know, some loss terms decrease with temperature, contemplating raising the

temperatures just to achieve better efficiency or performance is clearly not the preferred

direction, because of the obvious impact on system reliability.

A good designer eventually learns to weigh reliability and life concerns against cost,

performance, size, and so on.

Advances in Technology

But despite the best efforts of many a good power supply designer, certain sought after

improvements may still have remained merely on our annual Christmas wish list! Luckily,

there have been significant accompanying advances in the technology of the components

available, to help enact our goals. For example, the burning desire to reduce resistive losses

and simultaneously make designs suitable for high frequency operation has ushered in

significant improvements in terms of a whole new generation of high-frequency, low-ESR

ceramic and other specialty capacitors. We also have diodes with very low forward voltage

drops and ‘ultra-fast recovery,’ much faster switches like the mosfet, and several new

low-loss ferrite material types for making the transformers and inductors.

Note: ‘Recovery’ refers to the ability of a diode to quickly change from a conducting state to a

non-conducting (i.e. ‘blocking’) state as soon as the voltage across it reverses. Diodes which do this well are
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called ‘ultrafast diodes.’ Note that the ‘Schottky diode’ is preferred in certain applications, because of its low

forward drop (∼0.5 V). In principle, it is also supposed to have zero recovery time. But unfortunately, it also

has a comparatively higher parasitic ‘body capacitance’ (across itself), that in some ways tends to mimic

conventional recovery phenomena. Note that it also has a higher leakage current and is typically limited to

blocking voltages of less than 100 V.

However we observe that the actual topologies used in power conversion have not really

changed significantly over the years. We still have just three basic topologies: the buck, the

boost, and the buck-boost. Admittedly, there have been significant improvements like ‘ZVS’

(zero voltage switching), ‘current-fed converters,’ and ‘composite topologies’ like the ‘Cuk

converter’ and the ‘SEPIC’ (single ended primary inductance converter), but all these are

perhaps best viewed as icing on a three-layer cake. The basic building blocks (or topologies)

of power conversion have themselves proven to be quite fundamental. And that is borne out

by the fact that they have stood the test of time and remained virtually unchallenged

to date.

So, finally, we can get on with the task of really getting to understand these topologies well.

We will soon realize that the best way to do so is via the route that takes us past that rather

enigmatic component — the inductor. And that’s where we begin our journey now. . .

Understanding the Inductor

Capacitors/Inductors and Voltage/Current

In power conversion, we may have noticed that we always talk rather instinctively of voltage

rails. That is why we also have dc-dc voltage converters forming the subject of this book.

But why not current rails, or current converters for example?

We should realize that the world we live in, keenly interact with, and are thus comfortable

with, is ultimately one of voltage, not current. So for example, every electrical gadget or

appliance we use runs off a specified voltage source, the currents drawn from which being

largely ours to determine. So for example, we may have 110 V-ac or 115 V-ac ‘mains input’

available in many countries. Many other places may have 220 V-ac or 240 V-ac. So if for

example, an electric room heater is connected to the ‘mains outlet,’ it would draw a very

large current (∼10–20 amperes), but the line voltage itself would hardly change in the

process. Similarly, a clock radio would typically draw only a few hundred milliamperes of

current, the line voltage again remaining fixed. That is by definition a voltage source. On the

other hand, imagine for a moment that we had a 20 A current source outlet available in our

wall. By definition, this would try to push out 20 A, come what may — even adjusting the

voltage if necessary to bring that about. So, even if don’t connect any appliance to it,

it would still attempt to arc over, just to keep 20 A flowing. No wonder we hate current

sources!
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We may have also observed that capacitors have a rather more direct relationship with

voltage, rather than current. So C = Q/V, where C is the capacitance, Q is the charge on

either plate of the capacitor, and V is the voltage across it. This gives capacitors a somewhat

imperceptible, but natural association with our more “comfortable” world of voltages.

It’s perhaps no wonder we tend to understand their behavior so readily.

Unfortunately, capacitors are not the only power-handling component in a switching power

supply! Let us now take a closer look at the main circuit blocks and components of a typical

off-line power supply as shown in Figure 1-1. Knowing what we now know about capacitors

and their natural relationship to voltage, we are not surprised to find there are capacitors

present at both the input and output ends of the supply. But we also find an inductor (or

‘choke’) — in fact a rather bulky one at that too! We will learn that this behaves like a

current source, and therefore, quite naturally, we don’t relate too well to it! However, to gain

mastery in the field of power conversion, we need to understand both the key components

involved in the process: capacitors and inductors.

Coming in from a more seemingly natural world of voltages and capacitances, it may require

a certain degree of mental re-adjustment to understand inductors well enough. Sure, most

power supply engineers, novice or experienced, are able to faithfully reproduce the buck

converter duty cycle equation for example (i.e. the relationship between input and output

voltage). Perhaps they can even derive it too on a good day! But scratch the surface, and we

can surprisingly often find a noticeable lack of “feel” for inductors. We would do well to

recognize this early on and remedy it. With that intention, we are going to start at the very

basics. . . .

The Inductor and Capacitor Charging/Discharging Circuits

Let’s start by a simple question, one that is sometimes asked of a prospective power supply

hire (read “nervous interviewee”). This is shown in Figure 1-3.

Note that here we are using a mechanical switch for the sake of simplicity, thus also

assuming it has none of the parasitics we talked about earlier. At time t = 0, we close the

switch (ON), and thus apply the dc voltage supply (VIN) across the capacitor (C) through the

small series limiting resistor (R). What happens?

Most people get this right. The capacitor voltage increases according to the well-known

exponential curve VIN × (1 − e−t/τ), with a ‘time constant’ of τ = RC. The capacitor current,

on the other hand, starts from a high initial value of VIN/R and then decays exponentially

according to (VIN/R) × e−t/τ. Yes, if we wait “a very long time,” the capacitor would get

charged up almost fully to the applied voltage VIN, and the current would correspondingly

fall (almost) to zero. Let us now open the switch (OFF), though not necessarily having

waited a very long time. In doing so we are essentially attempting to force the current to
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Figure 1-3: Basic Charging/Discharging Circuits for

Capacitor and Inductor

zero (that is what a series switch is always supposed to do). What happens? The capacitor

remains charged to whatever voltage it had already reached, and its current goes down

immediately to zero (if not already there).

Now let us repeat the same experiment, but with the capacitor replaced by an inductor (L), as

also shown in Figure 1-3. Interviewees usually get the “charging” part (switch-closed phase)

of this question right too. They are quick to point out that the current in the inductor behaves

just as the voltage across the capacitor did during the charging phase. And the voltage across

the inductor decays exponentially, just as the capacitor current did. They also seem to know

that the time constant here is τ = L/R, not RC.

This is actually quite encouraging, as it seems we have, after all, heard of the ‘duality

principle.’ In simple terms this principle says that a capacitor can be considered as an inverse

(or ‘mirror’) of an inductor, because the voltage-current equations of the two devices can be

transformed into one another by exchanging the voltage and current terms. So, in essence,

capacitors are analogous to inductors, and voltage to current.

But wait! Why are we even interested in this exotic-sounding new principle? Don’t we have

enough on our hands already? Well, it so happens, that by using the duality principle we can

often derive a lot of clues about any L-based circuit from a C-based circuit, and vice versa —

right off the bat — without having to plunge headlong into a web of hopelessly non-intuitive

equations. So in fact, we would do well to try and use the duality principle to our advantage

if possible.
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With the duality principle in mind, let us attempt to open the switch in the inductor circuit

and try to predict the outcome. What happens? No! Unfortunately, things don’t remain

almost “unchanged” as they did for a capacitor. In fact, the behavior of the inductor during

the off-phase is really no replica of the off-phase of the capacitor circuit.

So does that mean we need to jettison our precious duality principle altogether? Actually we

don’t. The problem here is that the two circuits in Figure 1-3, despite being deceptively

similar, are really not duals of each other. And for that reason, we really can’t use them to

derive any clues either. A little later, we will construct proper dual circuits. But for now we

may have already started to suspect that we really don’t understand inductors as well as we

thought, nor in fact the duality principle we were perhaps counting on to do so.

The Law of Conservation of Energy

If a nervous interviewee hazards the guess that the current in the inductor simply “goes to

zero immediately” on opening the switch, a gentle reminder of what we all learnt in high

school is probably due. The stored energy in a capacitor is CV2/2, and so there is really no

problem opening the switch in the capacitor circuit — the capacitor just continues to hold its

stored energy (and voltage). But in an inductor, the stored energy is LI2/2. Therefore, if we

speculate that the current in the inductor circuit is at some finite value before the switch is

opened and zero immediately afterward, the question arises: to where did all the stored

inductor energy suddenly disappear? Hint: we have all heard of the law of conservation of

energy — energy can change its form, but it just cannot be wished away!

Yes, sometimes a particularly intrepid interviewee will suggest that the inductor current

“decays exponentially to zero” on opening the switch. So the question arises — where is the

current in the inductor flowing to and from? We always need a closed galvanic path for

current to flow (from Kirchhoff’s laws)!

But, wait! Do we even fully understand the charging phase of the inductor well enough?

Now this is getting really troubling! Let’s find out for ourselves!

The Charging Phase and the Concept of Induced Voltage

From an intuitive viewpoint, most engineers are quite comfortable with the mental picture

they have acquired over time of a capacitor being charged — the accumulated charge keeps

trying to repel any charge trying to climb aboard the capacitor plates, till finally a balance is

reached and the incoming charge (current) gets reduced to near-zero. This picture is also

intuitively reassuring, because at the back of our minds, we realize it corresponds closely

with our understanding of real-life situations — like that of an over-crowded bus during rush

hour, where the number of commuters that manage to get on board at a stop depends on the
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capacity of the bus (double-decker or otherwise), and also on the sheer desperation of the

commuters (the applied voltage).

But coming to the inductor charging circuit (i.e. switch closed), we can’t seem to connect

this too readily to any of our immediate real-life experiences. Our basic question here is —

why does the charging current in the inductor circuit actually increase with time. Or

equivalently, what prevents the current from being high to start with? We know there is no

mutually repelling “charge” here, as in the case of the capacitor. So why?

We can also ask an even more basic question — why is there any voltage even present across

the inductor? We always accept a voltage across a resistor without argument — because we

know Ohm’s law (V = I × R) all too well. But an inductor has (almost) no resistance — it is

basically just a length of solid conducting copper wire (wound on a certain core). So how

does it manage to “hold-off” any voltage across it? In fact, we are comfortable about the fact

that a capacitor can hold voltage across it. But for the inductor — we are not very clear!

Further, if what we have learnt in school is true — that electric field by definition is the

voltage gradient dV/dx (“x” being the distance), we are now faced with having to explain

a mysterious electric field somewhere inside the inductor! Where did that come from?

It turns out, that according to Lenz and/or Faraday, the current takes time to build up in an

inductor only because of ‘induced voltage.’ This voltage, by definition, opposes any external

effort to change the existing flux (or current) in an inductor. So if the current is fixed, yes,

there is no voltage present across the inductor — it then behaves just as a piece of

conducting wire. But the moment we try to change the current, we get an induced voltage

across it. By definition, the voltage measured across an inductor at any moment (whether the

switch is open or closed, as in Figure 1-3) is the ‘induced voltage.’

Note: We also observe that the analogy between a capacitor/inductor and voltage/current, as invoked by the

duality principle, doesn’t stop right there! For example, it was considered equally puzzling at some point in

history, how at all any current was apparently managing to flow through a capacitor — when the applied

voltage across it was changed. Keeping in mind that a capacitor is basically two metal plates with an

interposing (non-conducting) insulator, it seemed contrary to the very understanding of what an “insulator”

was supposed to be. This phenomenon was ultimately explained in terms of a ‘displacement current,’ that

flows (or rather seems to flow) through the plates of the capacitor, when the voltage changes. In fact, this

current is completely analogous to the concept of ‘induced voltage’ — introduced much later to explain the

fact that a voltage was being observed across an inductor, when the current through it was changing.

So let us now try to figure out exactly how the induced voltage behaves when the switch is

closed. Looking at the inductor charging phase in Figure 1-3, the inductor current is initially

zero. Thereafter, by closing the switch, we are attempting to cause a sudden change in the

current. The induced voltage now steps in to try to keep the current down to its initial value

(zero). So we apply ‘Kirchhoff’s voltage law’ to the closed loop in question. Therefore,

at the moment the switch closes, the induced voltage must be exactly equal to the applied

voltage, since the voltage drop across the series resistance R is initially zero (by Ohm’s law).
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As time progresses, we can think intuitively in terms of the applied voltage “winning.” This

causes the current to rise up progressively. But that also causes the voltage drop across R to

increase, and so the induced voltage must fall by the same amount (to remain faithful to

Kirchhoff’s voltage law). That tells us exactly what the induced voltage (voltage across

inductor) is during the entire switch-closed phase.

Why does the applied voltage “win”? For a moment, let’s suppose it didn’t. That would mean

the applied voltage and the induced voltage have managed to completely counter-balance

each other — and the current would then remain at zero. However, that cannot be, because

zero rate of change in current implies no induced voltage either! In other words, the very

existence of induced voltage depends on the fact that current changes, and it must change.

We also observe rather thankfully, that all the laws of nature bear each other out. There is no

contradiction whichever way we look at the situation. For example, even though the current

in the inductor is subsequently higher, its rate of change is less, and therefore, so is the

induced voltage (on the basis of Faraday’s/Lenz’s law). And this “allows” for the additional

drop appearing across the resistor, as per Kirchhoff’s voltage law!

But we still don’t know how the induced voltage behaves when the switch turns OFF! To

unravel this part of the puzzle, we actually need some more analysis.

The Effect of the Series Resistance on the Time Constant

Let us ask — what are the final levels at the end of the charging phase in Figure 1-3 —

that is, of the current in the inductor and the voltage across the capacitor. This requires us

to focus on the exact role being played by R. Intuitively we expect that for the capacitor

circuit, increasing the R will increase the charging time constant τ. This is borne out by the

equation τ = RC too, and is what happens in reality too. But for the inductor charging

circuit, we are again up against another seemingly counter-intuitive behavior — increasing

R actually decreases the charging time constant. That is in fact indicated by τ = L/R too.

Let us attempt to explain all this. Looking at Figure 1-4 which shows the inductor charging

current, we can see that the R = 1 Ω current curve does indeed rise faster than the R = 2 Ω

curve (as intuitively expected). But the final value of the R = 1 Ω curve is twice as high.

Since by definition, the time constant is “the time to get to 63% of the final value,” therefore

the R = 1 Ω curve has a larger time constant, despite the fact that it did rise much faster

from the get-go. So that explains the inductor current waveforms.

But looking at the inductor voltage waveforms in Figure 1-5, we see there is still some

explaining to do. Note that for a decaying exponential curve, the time constant is defined as

the time it takes to get to 37% of the initial value. So in this case we see that though the

initial values of all the curves are the same, yet for example, the R = 1 Ω curve has a slower

decay (larger time constant) than the R = 2 Ω curve! There is actually no mystery involved
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Figure 1-4: Inductor Current during Charging Phase for

Different R (in ohms), for an Applied Input of 10 V

Figure 1-5: Inductor Voltage during Charging Phase for

Different R (in ohms), for an Applied Input of 10 V

here, since we already know what the current is doing during this time (Figure 1-4), and

therefore the voltage curves follow automatically from Kirchhoff’s laws.

The conclusion is that if, in general, we ever make the mistake of looking only at an inductor

voltage waveform, we may find ourselves continually baffled by an inductor! For an

inductor, we should always try to see what the current in it is trying to do. That is why, as we
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just found out, the voltage during the off-time is determined entirely by the current. The

voltage just follows the dictates of the current, not the other way around. In fact, in

Chapter 5, we will see how this particular behavioral aspect of an inductor determines the

exact shape of the voltage and current waveforms during a switch transition, and thereby

determines the crossover (transition) loss too.

The Inductor Charging Circuit with R = 0, and the “Inductor Equation”

What happens if R is made to decrease to zero?

From Figure 1-5 we can correctly guess that the only reason that the voltage across the

inductor during the on-time changes at all from its initial value VIN is the presence of R!

So if R is 0, we can expect that the voltage across the inductor never changes during the

on-time! The induced voltage must then be equal to the applied dc voltage. That is not

strange at all — if we look at it from the point of view of Kirchhoff’s voltage law, there

is no voltage drop present across the resistor — simply because there is no resistor! So in

this case, all the applied voltage appears across the inductor. And we know it can “hold-off”

this applied voltage, provided the current in it is changing. Alternatively, if any voltage is

present across an inductor, the current through it must be changing!

So now, as suggested by the low-R curves of Figure 1-4 and Figure 1-5, we expect that the

inductor current will keep ramping up with a constant slope during the on-time. Eventually,

it will reach an infinite value (in theory). In fact, this can be mathematically proven to

ourselves by differentiating the inductor charging current equation with respect to time, and

then putting R = 0 as follows

I(t) =
VIN

R

(

1 − e−tR/
L

)

dI(t)

dt
=

VIN

R

(

R

L
e−tR/

L

)

dI(t)

dt

∣

∣

∣

∣

R = 0

=
VIN

L

So we see that when the inductor is connected directly across a voltage source VIN, the slope

of the line representing the inductor current is constant, and equal to VIN/L (the current

rising constantly).

Note that in the above derivation, the voltage across the inductor happened to be equal to

VIN, because R was 0. But in general, if we call “V” the voltage actually present across the

inductor (at any given moment), I being the current through it, we get the general
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“inductor equation”

dI

dt
=

V

L
(inductor equation)

This equation applies to an ideal inductor (R = 0), in any circuit, under any condition.

For example, it not only applies to the “charging” phase of the inductor, but also its

“discharging” phase!

Note: When working with the inductor equation, for simplicity, we usually plug in only the magnitudes of

all the quantities involved (though we do mentally keep track of what is really happening — i.e. current

rising or falling).

The Duality Principle

We now know how the voltage and current (rather its rate of change), are mutually related in

an inductor, during both the charging and discharging phases. Let us use this information,

along with a more complete statement of the duality principle, to finally understand what

really happens when we try to interrupt the current in an inductor.

The principle of duality concerns the transformation between two apparently different circuits,

which have similar properties when current and voltage are interchanged. Duality

transformations are applicable to planar circuits only, and involve a topological conversion:

capacitor and inductor interchange, resistance and conductance interchange, and voltage

source and current source interchange.

We can thus spot our “mistakes” in Figure 1-3. First, we were using an input voltage source

applied to both circuits — whereas we should have used a current source for the “other”

circuit. Second, we used a series switch in both the circuits. We note that the primary

function of a series switch is only to interrupt the flow of current — not to change the

voltage (though that may happen as a result). So if we really want to create proper mirror

(dual) circuits, then forcing the current to zero in the inductor is the dual of forcing the

voltage across the capacitor to zero. And to implement that, we obviously need to place a

switch in parallel to the capacitor (not in series with it). With these changes in mind,

we have finally created true dual circuits as shown in Figure 1-6 (both are actually equally

impractical in reality!).

The “Capacitor Equation”

To analyze what happens in Figure 1-6 we must first learn the “capacitor equation” —

analogous to the “inductor equation” derived previously. If the duality principle is correct,
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both the following two equations must be valid

V = L
dI

dt
(inductor equation)

I = C
dV

dt
(capacitor equation)

Further, if we are dealing with “straight-line segments” (constant V for an inductor and

constant I for a capacitor), we can write the above equations in terms of the corresponding

increments or decrements during the given time segment.

V = L
∆I

∆t
(inductor equation for constant voltage)

I = C
∆V

∆t
(capacitor equation for constant current)

It is interesting to observe that the duality principle is actually helping us understand how the

capacitor behaves when being charged (or discharged) by a current source! We can guess

that the voltage across the capacitor will then ramp up in a straight line — to near infinite
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values — just as the inductor current does with an applied voltage source. And in both cases,

the final values reached (of the voltage across the capacitor and the current through the

inductor) are dictated only by various parasitics that we have not considered here — mainly

the ESR of the capacitor and the DCR of the inductor respectively.

The Inductor Discharge Phase

We now analyze the mirror circuits of Figure 1-6 in more detail.

We know intuitively (and also from the capacitor equation) what happens to a capacitor

when we attempt to suddenly discharge it (by means of the parallel switch). Therefore, we

can now easily guess what happens when we suddenly try to “discharge” the inductor (i.e.

force its current to zero by means of the series switch).

We know that if a “short” is applied across any capacitor terminals, we get an extremely

high current surge for a brief moment — during which time the capacitor discharges, and the

voltage across it ramps down steeply to zero. So we can correctly infer that if we try to

interrupt the current through an inductor, we will get a very high voltage across it — with the

current simultaneously ramping down steeply to zero. So the mystery of the inductor

“discharge” phase is solved — with the help of the duality principle!

But we still don’t know exactly what the actual magnitude of the voltage spike appearing

across the switch/inductor is. That is simple — as we said previously, during the off-time,

the voltage will take on any value to force current continuity. So a brief arc will appear

across the contacts as we try to pull them apart (see Figure 1-6). If the contacts are separated

by a greater distance, the voltage will increase automatically to maintain the spark. And

during this time, the current will ramp down steeply. The arcing will last for as long as there

is any remaining inductor stored energy — that is, till the current completely ramps down to

zero. The rate of fall of current is simply V/L, from the inductor equation. So eventually,

all the stored energy in the inductor is completely dissipated in the resulting flash of heat and

light, and the current returns to zero simultaneously. At this moment, the induced voltage

collapses to zero too, its purpose complete. This is in fact the basic principle behind the

automotive spark plug, and the camera flash too (occurring in a more controlled fashion).

But wait — we have stated above that the rate of fall of current in the inductor circuit was

“V/L.” What is V? V is the voltage across the inductor, not the voltage across the contacts.

In the following sections, we will learn that the voltage across an inductor (almost always)

reverses when we try to interrupt its current. If that is true, then by Kirchhoff’s voltage law,

since the algebraic sum of all the voltage drops in any closed circuit must add up to zero, the

voltage across the contacts will be equal to the sum of the magnitudes of the induced voltage

and the applied dc rail — however, the sign of the voltage across the contacts (i.e. its

direction) will necessarily be opposite to the other voltages (see the gray triangles in the
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lower schematic of Figure 1-6 ). Therefore, we conclude that the magnitude of the voltage

spike across the inductor is equal to the magnitude of the voltage across the contacts, minus

the magnitude of the input dc voltage.

Finally, we know everything about the puzzling inductor discharge phase!

Flyback Energy and Freewheeling Current

The energy that “must get out” of the inductor when we try to open the switch is called the

‘flyback’ energy. The current that continues to force its way through is called the

‘freewheeling’ current. Note that this not only sounds, but in fact is, very similar to another

real-world situation — that of a mechanical spinning wheel, or a ‘flywheel.’ In fact,

understanding the flywheel can help greatly in gaining an intuitive insight into the behavior

of an inductor.

Just as the inductor has stored energy related to the current flowing through it, the flywheel

stores energy related to its spinning action. And neither of these energy terms can be wished

away in an instant. In the case of the flywheel, we can apply “brakes” to dissipate its

rotational energy (as heat in the brake linings) — and we know this will produce a

progressive reduction in the spinning. Further, if the brakes are applied more emphatically,

the time that will elapse till the spinning stops entirely gets proportionately decreased. That is

very similar to an inductor — with the induced voltage (during the off-time) playing the part

of the “brakes” and the current being akin to the spinning. So, the induced voltage causes a

progressive reduction in the current. If we have a higher induced voltage, this will cause a

steeper fall in the current. In fact, that is also indicated by the inductor equation V = LdI/dt!

However, we have also learned something more fundamental about the behavior of an

inductor, as described next.

Current Must Be Continuous, Its Slope Need Not Be

The key word in the previous section was progressive. From a completely

mathematical/geometrical point of view now, we should understand that any curve

representing inductor current cannot be discontinuous (no sudden jumps allowed) — because

that will in effect cause energy to be discontinuous, which we know is impossible. But we

can certainly cause the slope of the current (i.e. its dI/dt) to have “jumps.” So we can, for

example, change the slope of current (dI/dt) in an instant — from one representing a rising

ramp (increasing stored energy), to one representing a falling ramp (opposite sign, i.e.

decreasing energy). However, the current itself must always be continuous. This is shown in

Figure 1-7, under the choices marked “possible.”

Note that there are two options in the figure that are “possible.” Both are so, simply because

they do not violate any known physical laws. However, one of these choices is considered
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Need Not Be.

“unacceptable,” because of the huge spike — which we know can damage the switch. The

other choice, marked “acceptable,” is in fact what really happens in any switching converter

topology, as we will soon see.

The Voltage Reversal Phenomenon

We mentioned there is a voltage reversal across the switch, when we try to interrupt its

current. Let us try to understand this better now.
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An intuitive (but not necessarily rigorous) way to visualize it is shown in Figure 1-8. Here

we note that when the switch is closed (upper schematic), the current is shown leaving the

positive terminal of the applied dc voltage source — that being the normal convention for

describing the direction of current flow. During this on-time, the upper end of the inductor

gets set to a higher voltage than its lower end. Subsequently, when the switch opens, the

input dc source gets disconnected from the inductor. But we have just learnt that the current

demands to keep flowing (at least for a while) — in the same direction as previously flowing.

So during the switch off-time, we can mentally visualize the inductor as becoming a sort of

“voltage source,” forcing the current to keep flowing. For that reason, we have placed an

imaginary (gray) voltage source (battery symbol) across the inductor in the lower half of the

figure — its polarity in accordance with the convention that current must leave by the

positive terminal of any voltage source. Thus we can see that this causes the lower end of

the inductor to now be at a higher voltage than its upper end. Clearly, voltage reversal has

occurred — simply by the need to maintain current continuity.

The phenomena of voltage reversal can be traced back to the fact that induced voltage

always opposes any change (in current). However, in fact, voltage reversal does not

always occur. For example, voltage reversal does not occur during the initial startup

(‘power-up’) phase of a boost converter. That is because the primary requirement is only

that the inductor current somehow needs to keep flowing — voltage takes a backseat.

So hypothetically, if a circuit is wired in a certain way, and the conditions are “right,” it is

certainly possible that voltage reversal won’t occur, so long as current continuity can still be

maintained.

However, we must be clear that if and when a converter reaches a ‘steady state,’ voltage

reversal will necessarily occur at every switch transition.

For that we now have to understand what a “steady state” is.
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A Steady State in Power Conversion, and the Different Operating Modes

A steady state is, as the name indicates — stable. So it is in essence the opposite of a

runaway or unstable condition. But we can easily visualize that we will in fact get an

unstable condition if at the end of every cycle, we don’t return to the current we started the

cycle with — because then, every successive cycle, we will accumulate a net increase or

decrease of current, and the situation will keep changing forever (in theory).

From V = L∆I/∆t, it is clear that if the current is ramping up for a positive (i.e. applied)

voltage, the current must ramp down if the voltage reverses. So the following equations must

apply (magnitudes only)

VON = L
∆ION

∆tON

VOFF = L
∆IOFF

∆tOFF

Here the subscript “ON” refers to the switch being closed, and “OFF” refers to the switch

being open. VON and VOFF are the respective voltages across the inductor during the

durations ∆tON and ∆tOFF. Note that very often, ∆tON is written simply as “tON,” the switch

on-time. And similarly, ∆tOFF is simply “tOFF,” the switch off-time.

Now suppose we are able to create a circuit in which the amount the current ramps up by in

the on-time (∆ION) is exactly equal to the amount the current ramps down by during the

off-time (∆IOFF). If that happens, we would have reached a steady state. Now we could

repeat the same sequence an innumerable amount of times, and get the same result each and

every time. In other words, every “switching cycle” would then be an exact replica of the

previous cycle. Further, we could also perhaps get our circuit to deliver a steady stream of

(identical) energy packets continuously to an output capacitor and load. If we could do that,

by definition, we would have created a power converter!

Achieving a steady state is luckily not as hard as it may sound. Nature automatically tries to

help every natural process move towards a stable state (without “user intervention”). So in

our case, all we need to do on our part is to provide a circuit that allows these conditions to

develop naturally (over several cycles). And if we have created the right conditions, a steady

state will ultimately result. Further, this would be self-sustaining thereafter. Such a circuit

would then be called a switching “topology”!

Conversely, any valid topology must be able to reach a state described by the following key

equation ∆ION = ∆IOFF ≡ ∆I. If it can’t get this to happen, it is not a topology. Therefore,

this simple current increment/decrement equation forms the litmus test for validating any

new switching topology.
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Note that the inductor equation, and thereby the definition of ‘steady state,’ refers only to the

increase/decrease in current — it says nothing about the actual (absolute) value of the

current at the start (and end) of every cycle. So there are in fact several possibilities. We

could have a steady state in which the current returns to zero every cycle, and this is called

a ‘discontinuous conduction mode’ (DCM). However, if the current stays pegged at some

non-zero value throughout, we will have ‘continuous conduction mode’ (CCM). The latter

mode is the most common mode of operation encountered in power conversion. In

Figure 1-9 we have graphically shown these operating modes (all in steady state). We also

have some other modes that we will talk about very soon. Note that in the figure, the

“square” waveform is the voltage across the inductor, and the slowly ramping waveform is

the inductor current. Let us make some related observations:

a) We see that the voltage across the inductor always reverses at every switching event

(as expected in steady state).

b) We note that since the inductor equation relates voltage to the slope of the current,

not to the actual current, therefore, for a given VON and VOFF, several current

waveforms are possible (all having the same dI/dt for corresponding segments).

Each of these possibilities has a name — CCM, DCM, BCM (boundary conduction

mode, also called critical conduction mode), and so on. Which of these operating

modes actually occurs depends on the specific circuit (i.e. the topology) and also the

application conditions (how much output power we are demanding and what the

input and output voltages are).

c) The inductor voltages, VON and VOFF shown in the figure, are related to the

application conditions VIN and/or VO. Their exact relationship will become known a

little later, and we will also learn that it depends on the specific topology.

d) A key question is — what is the exact relationship between the average inductor

current and the load current? We will soon see that that too depends on the specific

topology. However, in all cases, the average inductor current (“IAVG” or “IL”) is

proportional to the load current (“IO”). So if for example IO is 2 A and IAVG is 10 A,

then if IO is decreased to 1 A, IAVG will fall to 5 A. Therefore on decreasing the

load current, we can get IAVG to decrease, as indicated in Figure 1-9.

e) Typically, we transit automatically from CCM to DCM, just by reducing the load

current of the converter. But note that we will necessarily have to pass through

BCM along the way.

f) “BCM” is just that — a ‘boundary conduction mode’ — situated exactly between

CCM and DCM. It is therefore a purely philosophical question to ask whether BCM

should be viewed as CCM or DCM (at their respective extremes) — it really doesn’t

matter.
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Figure 1-9: Different Operating Modes of Switching Regulators

g) Note that in all the cases shown in Figure 1-9, with the exception of DCM, the

average inductor current IAVG is just the geometrical center of the ramp part of the

current waveform. In DCM however, we have an additional interval in which there

is no current passing for a while. So, to find the average value of the inductor

current, a rather more detailed calculation is required. In fact that is the primary

reason why DCM equations turn out looking so complicated — to the point that

many engineers seem to rather instinctively ignore DCM altogether, despite some

advantages of operating a converter in DCM instead of CCM.
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Note: Expectedly, all DCM equations lead to exactly the same numerical results as the CCM

equations — when the converter is in BCM. Practically speaking, we can freely pick and choose

whether to use the CCM equations, or the more formidable looking DCM equations, for

evaluating a converter in BCM. Of course, there is no reason why we would ever want to struggle

through complicated equations, when we can use much simpler equations to get the same results!

h) What really is the average inductor current “IAVG” as shown in Figure 1-9? A nice

way to understand this parameter is through the “car analogy.” Suppose we press the

gas pedal of a car. The car responds by increasing its speed. In an analogous

fashion, when we apply a voltage across an inductor (the on-time voltage “VON”),

the current ramps up. Subsequently, suppose we press on the brakes of the car. The

car will then respond by decreasing its speed. Similarly, when the applied voltage is

removed from the inductor, voltage reversal occurs, and an induced voltage (the

“brakes”) appears across the inductor, “VOFF.” Since it is in the opposite direction

as VON, it causes the current to ramp down. So now, if we press the gas pedal

(VON), followed by the brakes (VOFF), in quick succession, and with the right

timing, we could still make the car continue to move forward despite the constant

lurching. It would then have a certain average speed — depending on the ratio of

the gas pedal duration and the subsequent braking duration. In power conversion,

this “lurching” is analogous to the ‘current ripple’ ∆I = ∆ION = ∆IOFF. And quite

similarly, we have an ‘average inductor current’ IAVG too, as shown in Figure 1-9.

However, we do understand that in a power converter, the output capacitor

eventually absorbs (or smoothens) this “lurching,” and thus manages to deliver a

steady dc current to the load as desired.

i) Some control ICs manage to maintain the converter in BCM mode under all

application conditions. Examples of these are certain types of ‘hysteretic controllers’

and self-oscillating types called ‘ringing choke converters’ (RCCs). However, we

know that the current ramps down at a rate V/L. And since V depends on the

input/output voltages, the time to get to zero current depends on the specific

application conditions. Therefore, in any BCM implementation, we always lose the

advantage of fixed switching frequency operation.

j) Most conventional topologies are nowadays labeled ‘non-synchronous’ — to

distinguish them from more recent ‘synchronous’ topologies. In the former, a diode

is always present (the catch diode), that prevents the inductor current from reversing

direction, any time during the switching cycle. That is why, on reducing output

power and/or increasing input voltage, we automatically transit from CCM to DCM.

However, in synchronous topologies, the catch diode is either supplanted or

completely replaced by a ‘low-drop’ mosfet across it. So whenever the diode is

supposed to conduct, we force this extra mosfet into conduction for that duration.

Since the drop across this mosfet is much lower than across a diode, not only do we
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manage to significantly reduce the conduction loss in the freewheeling path,

but we can also now allow reverse inductor current — that is, current moving

instantaneously away from the load. However note that the average inductor current

could still be positive — see Figure 1-9. Further, with negative currents now being

“allowed,” we no longer get DCM on reducing output power, but rather enter

FPWM/FCCM as described in the figure.

Note: It is fortunate that almost all the standard CCM design equations (for non-synchronous

topologies) apply equally to FCCM. So from the viewpoint of a harried designer, one of the

“advantages” of using synchronous topologies is that the complicated DCM equations are a thing

of the past! Though there are some new complications and nuances of synchronous topologies that

we need to understand eventually.

The Voltseconds Law, Inductor Rest, and Converter Duty Cycle

There is another way to describe a steady state, by bringing in the inductor equation

V = L∆I/∆t.

We know that during a steady state ∆ION = ∆IOFF ≡ ∆I. So what we are also saying is that

In steady state, the product of the voltage applied across the inductor, multiplied by the

duration we apply it for (i.e. the on-time), must be equal to the voltage that appears across the

inductor during the off-time, multiplied by the duration that lasts for.

Therefore we get

VON × t ON = VOFF × t OFF

The product of the voltage, and the time for which it appears across the inductor, is called

the ‘voltseconds’ across the inductor. So equivalently, what we are also saying is that

If we have an inductor in a steady state, the voltseconds present across it during the on-time

(i.e. current ramp-up phase) must be exactly equal in magnitude, though opposite in sign, to

the voltseconds present across it during the off-time (i.e. during the current ramp-down phase).

That also means that if we plot the inductor voltage versus time, the area under the voltage

curve during the on-time must be equal to the area under the voltage curve during the off-time.

But we also know that voltage reversal always occurs in steady state. So clearly, these two

areas must have the opposite sign. See the vertically and horizontally hatched segments in

Figure 1-9.

Therefore, we can also say that the net area under the voltage curve of an inductor must be

equal to zero (in any switching cycle under steady state operation).

Note that since the typical times involved in modern switching power conversion are so

small, “voltseconds” turns out to be a very small number. Therefore, to make numbers more

40



The Principles of Switching Power Conversion

manageable, we usually prefer to talk in terms of ‘Et’ or the ‘voltµseconds.’ Et is clearly just

the voltage applied across the inductor multiplied by the time in microseconds (not seconds).

Further, we know that typical inductance values used in power conversion are also better

expressed in terms of “µH” (microhenries), not H. So from V = LdI/dt we can write

∆ION =
VON × tON

L
=

VON × tON_µH

LµH
=

Et

LµH

or simply

∆I =
Et

L
(steady state, L in µH)

Note: If in any given equation Et and L appear together, it should be generally assumed that L is in µH.

Similarly, if we are using voltseconds, that would usually imply L is in H (unless otherwise indicated).

Another term often used in power, one that tells us that we have managed to return to the

same inductor current (and energy) that we started off with, is called inductor ‘reset.’ Reset

occurs at the very moment when the equality ∆IOFF = ∆ION is established. Of course, we

could also have a non-repetitive (or ‘single-shot’) event, where the current starts at zero and

then returns to zero — and that too would be inductor “reset.”

The corollary is that in a repetitive switching scenario (steady state), an inductor must be

able to reset every cycle. Reversing the argument — any circuit configuration that makes

inductor reset an impossibility, is not a viable switching topology.

When we switch repetitively at a switching frequency “f,” the ‘time period’ (T) is equal

to 1/f. We can also define the ‘duty cycle’ (D) of a power converter as the ratio of the

on-time of the switch to the time period. So

D =
tON

T
(duty cycle definition)

Note that we can also write this as

D =
tON

tON + (T − tON)
(duty cycle definition)

At this point we should be very clear how we are defining “tOFF” in particular. While

applying the voltseconds law, we had implicitly assumed that tOFF was the time for which the

induced voltage VOFF lasts, not necessarily the time for which the switch is OFF

(i.e. T − tON). In DCM they are not the same (see Figure 1-9)! Only in CCM do we get

tOFF = T − tON (duty cycle in CCM)
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and therefore

D =
tON

tON + tOFF
(duty cycle in CCM)

If working in DCM, we should stick to the more general definition of duty cycle given

initially.

Using and Protecting Semiconductor Switches

We realize that all topologies exist only because they can achieve a steady state. In an

“experimental” topology in which we can’t make ∆ION = ∆IOFF happen, the inductor may

see a net increase of current every cycle, and this can eventually escalate to a very large,

almost uncontrolled value of current in just a few cycles. The name given to this progressive

ramping-up (or down) of current (or inductor energy), one that is ultimately limited only by

parasitics like the ESR and DCR, is called ‘staircasing.’ The switch will also turn ON into

the same current, and can thus be destroyed — that is if the induced voltage spike hasn’t

already done so (which can happen, if the situation is anything similar to the “unacceptable”

plots shown in Figure 1-7!).

Note: The very use of the inductor equation V = LdI/dt actually implies we are ignoring its parasitic

resistance, DCR. The inductor equation is an idealization, applying only to a “perfect” inductor. That is why

we had to put R = 0 when we derived it previously.

In an actual power supply, the “mechanical switch” is replaced with a modern semiconductor

device (like the mosfet) — largely because then the switching action can be implemented

reliably and also at a very high repetition rate. But semiconductor devices have certain

electrical ratings that we need to be well aware of.

Every semiconductor device has an ‘absolute maximum voltage rating’ that, unlike any

typical mechanical relay, cannot be exceeded even momentarily — without possibly causing

its immediate destruction. So most mosfets do not allow any “latitude” whatsoever, in terms

of their voltage ratings.

Note: There are some ‘avalanche-rated’ mosfets available, which can internally ‘clamp’ the excess voltage

appearing across them to some extent. In doing so, they are basically dissipating the excess energy

associated with the voltage spike, within their internal clamp. Therefore, they can survive a certain amount

of excess voltage (and energy), but only for a short duration (since the device heats up quickly).

There is also a maximum semiconductor device ‘current rating,’ but that is usually more

long-term in nature, dictated by the comparatively slower process of internal heat build-up

inside the device. So hypothetically speaking, we could perhaps exceed the current rating

somewhat, though only for a short time. Of course we don’t want to run a device constantly

in this excess-current condition. However, under ‘abnormal conditions,’ like an “overload”

on the output of the converter (or the extreme case of a shorted output), we may judiciously
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allow for a certain amount of “abuse” with regard to the current rating — but certainly not

with the voltage rating!

In a practical implementation, we have to design the converter, select the switch, and then

lay it all out on a printed circuit board (PCB) with great care — to ensure in particular that

there is no voltage spike that can “kill” the switch (nor any other semiconductor devices

present on the board). Occasionally, we may therefore need to add an external ‘snubber’ or

‘clamp’ across the switch, so as to truncate any remnant spikes to within the voltage ratings

of the switch.

To protect the switch (and converter) from excess currents, a ‘current limit’ is usually

required. In this case, the current in the inductor, or in the switch, is sensed, and then

compared against a set threshold. If and when that is momentarily exceeded, the control

circuitry forces the switch to turn OFF immediately for the remainder of the switching cycle,

so as to protect itself. In the next cycle, no “memory” is usually retained of what may have

happened in the preceding cycle. Therefore, every switching cycle is started “afresh,” with

the current being continuously monitored to ensure it is at a “safe” level. If not, protective

action is again initiated, and can be repeated every cycle for several cycles if necessary, until

the “overcurrent” condition ceases.

Note: One of the best-known examples of the perils of “previous-cycle memory” in implementing

current limit occurs in the popular “Simple Switcher®” family of parts (at www.national.com). In the

“third generation” LM267x family, the control circuit rather surprisingly reduces the duty cycle to about

45% for several cycles after any single current limit event. It then tries to progressively allow the duty

cycle to increase over several successive cycles back to its required value. But this causes severe output

‘foldback’ and consequent inability to regulate up to full rated load, particularly in applications that require

a duty cycle greater than 50%. This condition is further exacerbated with large output capacitances, because

the higher currents required to charge the output capacitor after the removal of an abnormal condition

(e.g. output short), can lead to another current limit event (and consequent foldback for several cycles

again) — before the duty cycle has been able to return to its desired value. In effect the converter goes

into a continuous “motorboating” condition on removal of the output short, and so the output never

recovers. This is rather obliquely “revealed” only deep within the product datasheets (liability cover?).

With the introduction to power conversion now complete, we turn our attention to how

switching topologies develop naturally out of the behavior of an inductor.

Evolution of Switching Topologies

Controlling the Induced Voltage Spike by Diversion through a Diode

We realize that our “problem” with using an inductor is two-fold: either we are going to end

up with near-infinite induced voltage spikes, as shown in Figure 1-6 and Figure 1-7, or if

we do somehow manage to control the induced voltage to some finite level, the equation

V = LdI/dt tells us we could very well end up with near-infinite currents (staircasing).
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And further, coming to think of it, our basic purpose is still not close to being fulfilled — we

still don’t know how to derive any useful power from our circuit!

Luckily, all the above problems can be solved in one stroke! And in doing so, we will arrive

at our very first ‘switching topology.’ Let’s now see how that comes about.

We recollect from Figure 1-6 that the spike of induced voltage at switch turn-off occurs only

because the current (previously flowing in the inductor) was still demanding a path along

which to flow — and somehow unknowingly, we had failed to provide any. Therefore nature,

in search of the “weakest link,” found this in the switch itself — and produced an arc across

it, to try and move the current across anyway.

But suppose we consciously provide a “diversionary path”? Then there would be no problem

turning the switch OFF and stopping the inductor current flowing through the switch —

because it could continue to flow via this alternate route. The inductor would then no longer

“complain” in the form of a dangerous voltage spike. Thereafter, perhaps we can even

re-route the current back into the switch when it turns ON again. Finally, we can perhaps

even repeat the ON-OFF-ON-OFF process indefinitely, at a certain switching frequency.

In Figure 1-10 we have created such an alternate path. We will see that the way the diode is

pointed, this path can come into play automatically, and only when the switch turns OFF.
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Figure 1-10: Providing a “Diversion” for the Inductor Current through a Diode
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Just to make things clearer, we have used some sample numbers in Figure 1-10. We have

taken the applied input voltage to be 12 V and assumed a typical Schottky diode forward

drop of 0.5 V. Note that we are assuming a “perfect” switch here (no forward drop), for the

sake of simplicity. We make the following observations:

■ When the switch is ON (closed), the voltage at the upper end of the inductor L is at

12 V and the lower end is at 0 V (‘ground’). So the diode is reverse-biased and does

not conduct. Energy is then being built up in the inductor by the applied dc voltage

source.

The magnitude of the voltage applied across the inductor during the on-time of the

switch (i.e. ‘VON ’) is equal to 12 V.

■ When the switch turns OFF (open), an alternate path is available for the inductor

current to flow — through the diode. And we can be sure that “nature” (in our case

the “induced voltage”) will attempt to exploit this path — by forcing the diode to

conduct. But for that, the diode must get ‘forward-biased,’ that is, its anode must get

to a voltage 0.5 V higher than the cathode. But the anode is being held at ground

(0 V rail). Therefore, the cathode must fall to −0.5 V.

The magnitude of the voltage applied across the inductor during the off-time of the

switch (i.e. ‘VOFF’) is equal to 0.5 V.

■ Note that the induced voltage during the switch off-time has had its polarity reversed.

■ The rate of rise of the current (in the inductor and switch) during the on-time is equal

to VON/L. And during the off-time, the current ramps down (much more slowly), at a

rate of VOFF/L (in the inductor and diode).

■ Yes, if we wait long enough the inductor current will finally ramp down to zero

(inductor ‘reset’). But if we don’t wait, and turn the switch back ON again, the

current will again start to ramp up (staircasing), as shown in Figure 1-10.

■ Note that both the switch and diode currents have a “choppy” waveform — since

one takes over where the other left off. This is in fact always true for any switching

power converter (or topology).

Summarizing: We see that having provided a diversionary path for the current, the inductor

isn’t ‘complaining’ anymore, and there is no uncontrolled induced voltage spike anymore.

But we certainly have now ended up with a possible problem of escalating currents. And

come to think of it, neither do we have a useful output rail yet, which is what we are

basically looking to do finally. In fact, all that we are accomplishing in Figure 1-10 is

dissipating some of the stored energy built-up in the inductor during the on-time, within the

diode during the off-time.
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Achieving a Steady State and Deriving Useful Energy

We realize, that to prevent staircasing, we need to somehow induce voltseconds balance. Yes,

as mentioned, we could perhaps wait long enough before turning the switch ON again. But

that still won’t give us a useful output rail.

To finally solve all our problems in one go, let us take a hint from our “natural world of

voltages.” Since we realize we are looking for an output dc voltage rail, isn’t it natural to use

a capacitor somewhere in the circuit of Figure 1-10? Let us therefore now interpose a

capacitor in series with the diode, as shown in Figure 1-11. If we do that, the diode

(freewheeling) current would charge the capacitor up — and hopefully the capacitor voltage

would eventually reach a steady level ‘VO’! Further, since that would increase the voltage

drop appearing across the inductor during the off-time (VOFF), it would increase the rate at

which the inductor current can ramp down — which we recognize was the basic problem

with the circuit in Figure 1-10. So we are finally seeing light at the end of the tunnel — by

making VOFF comparable to VON, we are hoping to achieve voltseconds balance expressed

by VON × tON = VOFF × tOFF.

In Figure 1-11 the current escalates initially, but then after several cycles, automatically

levels out, in what is clearly a steady state. That is because every cycle the capacitor charges

up, it progressively increases the slope of the down-ramp, eventually allowing the converter

to settle down naturally into the basic condition ∆ION = ∆IOFF ≡ ∆I. And once that is

achieved, it is self-sustaining!

We also have a useful rail now — available across the output capacitor, from which we can

draw some stored energy. So we have shown a dc current passing through to the load by the

dashed arrows in Figure 1-11.

In fact, this is our very first switching topology — the buck-boost topology.

Note: Under the abnormal condition of an output short for example, Figure 1-11 effectively reduces to

Figure 1-10! Therefore, to protect the converter under such conditions, a current limit is required.

The Buck-boost Converter

To understand Figure 1-11 better, we are actually going to work backward from here. So let

us assume we have achieved a steady state — and therefore the output capacitor too has

reached a steady value of say, 5 V. Let us now find the conditions needed to make that a

reality.

In Figure 1-11 the slope of the rising ramp is unchanged every cycle, being equal to VIN/L.

The slope of the falling ramp is initially VD/L, where “VD” is the drop across the diode. So

from the inductor equation, initially ∆ION > ∆IOFF. Thus the current starts to staircase. But

the magnitude of the slope of the falling ramp, and therefore ∆IOFF, keeps getting larger and
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Figure 1-11: Evolution of the Buck-boost Topology

larger as the capacitor charges up. Eventually we will reach a steady state defined by

∆IOFF = ∆ION. At that moment, the voltseconds law applies.

VON × tON = VOFF × tOFF

Using the numbers of the example, we get

12 × tON = 5.5 × tOFF
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We see that a 5 V output is possible only if we have been switching with a constant ratio

between the switch ON and switch OFF time, as given by

tOFF

tON
=

12

5.5
= 2.18

So to get the voltseconds to balance out for this case (5 V output and a 12 V input), we have

to make the off-time 2.18 times larger than the on-time. Why so? Simply because the voltage

during the on-time (across the inductor) is larger by exactly the same proportion: 12 V during

the on-time as compared to 5.5 V during the off-time. Check: 12/5.5 = 2.18.

The duty cycle (assuming CCM) is therefore equal to

D =
tON

tON + tOFF
=

1

1 + tOFF
tON

=
1

1 + 2.18
= 0.314

Now, had we taken a semiconductor switch instead of a mechanical one, we would have had

a non-zero forward voltage drop, of say “VSW.” This forward drop effectively just subtracts

from the applied dc input during the on-time. So, had we done the above calculations

symbolically, we would get

VON = VIN − VSW (Buck-boost)

and

VOFF = VO + VD (Buck-boost)

Then, from the voltseconds law

tOFF

tON
=

VIN − VSW

VO + VD
(Buck-boost)

We thus get the duty cycle

D =
VO + VD

VIN − VSW + VO + VD
(Buck-boost)

If the switch and diode drops are small as compared to the input and output rails, we can

simply write

D ≈
VO

VIN + VO
(Buck-boost)
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We can also write the relationship between the input and output as follows

VO = VIN ×
D

1 − D
(Buck-boost)

Note that some other easily derivable, and convenient relationships to remember are

tON

tOFF
=

D

1 − D
(any topology)

tON =
D

f
(any topology)

tOFF =
1 − D

f
≡

D′

f
(any topology)

where we have defined D′ = 1 − D as the ‘duty cycle of the diode,’ since the diode is

conducting for the remainder of the switching cycle duration (in CCM).

Ground-referencing Our Circuits

We need to clearly establish what is referred to as the ‘ground’ rail in any dc-dc switching

topology. We know that there are two rails by which we apply the dc input voltage (current

goes in from one and returns from the other). Similarly, there are also two output rails. But

all practical topologies generally have one rail that is common to both the input and the

output. It is this common rail, that by convention, is called the system ‘ground’ in dc-dc

converter applications.

However, there is yet another convention in place — the ground is also considered to be

“0 V” (zero volts).

The Buck-boost Configurations

In Figure 1-12 the common (ground) rails have been highlighted in bold gray background.

We now realize that the buck-boost we presented in Figure 1-11 is actually a ‘positive

(input) to negative (output)’ buck-boost. There is another possibility, as shown in the lower

half of Figure 1-12. We have re-labeled its ground in accordance with the normal

convention. Therefore this is a ‘negative to positive buck-boost.’

For either configuration, we see that whatever polarity is present at the input, it gets reversed

at the output. Therefore, the buck-boost is often simply called an ‘inverting’ topology (though

we should keep in mind that that allows for two different configurations).
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Topology

The Switching Node

Very simply put — the “point of detour” for the inductor current, that is, between the switch

and the diode, is called the ‘switching node.’ Current coming into this node from the

inductor, can go either into the diode or the switch, depending upon the state of the switch.

Every dc-dc switching topology has this node (without it we would get the huge voltage

spike we talked about!).

Since the current at this node needs to alternate between the diode and the switch, it needs to

alternately force the diode to change state too (i.e. reverse-biased when the switch turns ON

and forward-biased when the switch is OFF). So, the voltage at this node must necessarily be

‘swinging.’ An oscilloscope probe connected here (with its ground clip connected to the

power supply ground, i.e. 0 V), will always see a voltage waveform with “square edges.”

This is in fact very similar to the voltage across the inductor, except that it is dc level-shifted

by a certain amount, depending on the topology.
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On a practical level, while designing the PCB (printed circuit board), we have to be

cautious in not putting too much copper at the switching node. Otherwise it becomes an

effective electric-field antenna, spewing radiated radio frequency interference all around.

The output cables can thereafter pick up the radiated noise and transmit it directly to the load.

Analyzing the Buck-boost

In Figure 1-13 we have drawn a line ‘IL’ through the geometric center of the ramp portion of

the steady-state inductor current waveform. This is defined as the average inductor current.

The switch current also has an average value of IL during the interval tON. Similarly the

average of the diode current is also IL, during tOFF. However, the switch and diode currents

when averaged over the entire cycle (i.e. over both the ON and OFF durations) are by simple
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mathematics their respective weighted averages.

ISW_AVG = IL ×
tON

T
= IL × D (Buck-boost)

ID_AVG = IL ×
tOFF

T
= IL × D′ = IL ×

(

1 − D
)

(Buck-boost)

where D′ is the duty cycle of the diode, that is, 1 − D. It is also easy to visualize that for this

particular topology, the average input current is equal to the average switch current. Further,

as we will see below, the average diode current is equal to the load current. This is what

makes the buck-boost topology quite different from the buck topology.

Properties of the Buck-boost

We now make some observations based on Figure 1-11, Figure 1-12, and Figure 1-13

■ For example, a “positive to negative” buck-boost can convert 12 V to −5 V (step

down) or 12 V to −15 V (step up). A “negative to positive” buck-boost can convert

say −12 V to 5 V or 5 V to 15 V, and so on. The magnitude of the output voltage

can thus be either smaller or larger (or equal to) the magnitude of the input voltage.

■ When the switch is ON, energy is delivered only into the inductor by the input dc

source (via the switch), and none of it passes through to the output.

■ When the switch is OFF, only the stored energy of the inductor is pushed into the

output (through the diode), and none comes directly from the input dc source.

■ The above two observations make the buck-boost topology the only “pure flyback”

topology around, in the sense that all the energy transferred from the input to the

output, must have been previously stored in the inductor. No other topology shares

this unique property.

■ The current coming from the input capacitor (dc source) is “choppy,” that is,

pulsating. That is because, this current, combined with the steady dc current (IIN)

coming in from the dc source, basically forms the switch current waveform (which

we know is always choppy for any topology) (see Figure 1-9).

■ Similarly, the current into the output capacitor is also choppy, because combined

with the steady dc current into the load (IOUT), it forms the diode current (which we

know is always choppy for any topology) (see Figure 1-9).

■ We know that heat dissipation is proportional to the square of the RMS current. And

since choppy waveforms have high RMS values, the efficiency of a buck-boost is not

very good. Also, there is generally a relatively high level of noise and ripple across
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the board. Therefore, the buck-boost may also demand much better filtering at its

input, and often at its output too.

■ Though current enters the output capacitor to charge it up when the switch turns ON,

and leaves it to go into the load when the switch is OFF, the average capacitor

current is always zero. In fact, any capacitor in ‘steady state’ must, by definition,

have zero average current passing through it — otherwise it would keep charging or

discharging until it too reaches a steady state, just like the inductor current.

Since the average current from the output capacitor is zero, therefore, for the

buck-boost, the average diode current must be equal to the load current (where else

can the current come from?). Therefore

ID_AVG = IO = IL ×
(

1 − D
)

So,

IL =
IO

1 − D
(Buck-boost)

This is the relationship between the average inductor current and the load current. Note

that in Figure 1-13, in the embedded table, we have asked for an inductor rated for

1.2 × IO/(1 − D). The factor “1.2” comes from the fact, that by typical design criteria, the

peak of the inductor current waveform is about 20% higher than its average. So we need to

look for an inductor rated at least for a current of 1.2 × IL.

Why Three Basic Topologies Only?

There are certainly several ways to set up circuits using an inductor, which provide a

“freewheeling path” too, for the inductor current. But some of these are usually disqualified

simply because the input and output do not share a common rail, and thus there is no proper

ground reference available for the converter and the rest of the system. Two examples of

such “working-but-unacceptable” converters are the buck-boost configurations shown in

Figure 1-14. Compare these with Figure 1-12 to see what the problem is! However, note that

if these were “front-end converters,” the system ground could be established starting at the

output of this converter itself, and may thus be acceptable.

Of the remaining ways, several are just “configurations” of a basic topology (like the two

configurations in Figure 1-12). Among the basic topologies, we actually have just three —

the buck, the boost, and the buck-boost. Why only three? That is because of the way the

inductor is connected. Note that with proper ground-referencing in place, there are only three

distinct rails possible — the input, the output, and the (common) ground. So if one end of

the inductor is connected to the ground, it becomes a buck-boost! On the other hand, if it is
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Figure 1-14: Improperly Referenced Buck-boost Configurations

connected to the input, it becomes a boost. And if connected to the output, it becomes a

buck. See Figure 1-15.

The Boost Topology

In Figure 1-16 we have presented the schematic of the boost topology. The direct and the

freewheeling paths are indicated therein. In Figure 1-17, we have the corresponding analysis,

including the key waveforms.

We now make some observations

■ For example, a “positive to positive” boost can convert 12 V to 50 V. A “negative to

negative” boost would be able to convert say −12 V to −50 V. The magnitude of the

output voltage must therefore always be larger than the magnitude of the input

voltage. So a boost converter only steps-up, and also does not change the polarity.
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Figure 1-15: Three Basic Topologies
Possible Only

IN OUT

OUT
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BUCK-BOOST
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BOOST
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■ When the switch is ON, energy is delivered only into the inductor by the input dc

source (via the switch), and none of it passes through to the output.

■ When the switch is OFF, the stored energy of the inductor is pushed into the output

(through the diode). But some of it also comes from the input dc source.

■ The current coming from the input capacitor (dc source) is “smooth,” since it is in

series with the inductor (which prevents sudden jumps in current).

■ However, the current into the output capacitor is “choppy,” because combined with

the steady dc current into the load (IOUT), it forms the diode current (which we know

is always choppy for any topology) (see Figure 1-9).
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■ Since the average current from the output capacitor is zero, therefore, for the boost,

the average diode current must be equal to the load current (where else can the

current come from?). Therefore

ID_AVG = IO = IL ×
(

1 − D
)

So,

IL =
IO

1 − D
(Boost)

This is the relationship between the average inductor current and the load current. Note

that in Figure 1-17, in the embedded table, we have asked for an inductor rated for

1.2 × IO/(1 − D). The factor “1.2” comes from the fact, that by typical design criteria, the

peak of the inductor current waveform is about 20% higher than its average. So we need to

look for an inductor rated at least for a current of 1.2 × IL.

Let us analyze the boost topology in terms of the voltseconds in steady state. We have

VON = VIN − VSW (Boost)
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and

VOFF = VO + VD − VIN (Boost)

So, from the voltseconds law

tOFF

tON
=

VIN − VSW

VO + VD − VIN
(Boost)

Performing some algebra on this to eliminate tOFF

tOFF

tON
+ 1 =

VIN − VSW

VO + VD − VIN
+ 1
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tOFF + tON

tON
=

VIN − VSW + VO + VD − VIN

VO + VD − VIN

Finally, the ‘duty cycle’ of the converter D, which is defined as

D =
tON

T
(any topology)

is the reciprocal of the preceding equation. So

D =
VO + VD − VIN

VO + VD − VSW
(Boost)

We have thus derived the classical dc transfer function of a boost converter.

If the switch and diode drops are small as compared to the input and output rails, we can just

write

D ≈
VO − VIN

VO
(Boost)

We can also write the relationship between the input and output as follows

VO = VIN ×
1

1 − D
(Boost)

The Buck Topology

In Figure 1-16 we had also presented the schematic of the buck topology. The direct and the

freewheeling paths are indicated therein. In Figure 1-18, we have the corresponding analysis,

including the key waveforms.

We now make some observations

■ For example, a “positive to positive” buck can convert 12 V to 5 V. A “negative to

negative” buck would be able to convert say −12 V to −5 V. The magnitude of the

output voltage must therefore always be smaller than the magnitude of the input

voltage. So a buck converter only steps-down, and also does not change the polarity.

■ When the switch is ON, energy is delivered to the inductor by the input dc source

(via the switch). But some of it also passes through to the output.

■ When the switch is OFF, the stored energy of the inductor is pushed into the output

(through the diode). And none of it now comes from the input dc source.

■ The current coming from the input capacitor (dc source) is “choppy.” That is

because, this current, combined with the steady dc current (IIN) coming in from the
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IL

−VD

VIN −VSW

Average Inductor Current is IL
Average Switch Current is IL × D

Average Diode Current is IL × (1−D)

Average Input Current equals Average Switch Current

Average Output Current is equal to average Diode Current

IL = IO

Note:
IL is the average Inductor Current
IO is the average Load Current

Minimum Switch Rating

Minimum Diode Rating

Minimum Inductor Rating

VIN

VIN

IO D

IO (1−D)

1.2 IOVIN 
VIN

VO
D =

VO, VIN magnitudes only

Figure 1-18: Analyzing the Buck

dc source, basically forms the switch current waveform (which we know is always

choppy for any topology).

■ However, the current into the output capacitor is “smooth,” because it is in series

with the inductor (which prevents sudden jumps in current).

■ Since the average current from the output capacitor is zero, therefore, for the buck,

the average inductor current must be equal to the load current (where else can the

current come from?). Therefore

IL = IO (Buck)

This is the relationship between the average inductor current and the load current. Note that

in Figure 1-18, in the embedded table, we have asked for an inductor rated for 1.2 × IO.

The factor “1.2” comes from the fact, that by typical design criteria, the peak of the inductor
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current waveform is about 20% higher than its average. So we need to look for an inductor

rated at least for a current of 1.2 × IL.

Let us analyze the buck topology in terms of the voltseconds in steady state. We have

VON = VIN − VSW − VO (Buck)

and

VOFF = VO − (−VD) = VO + VD (Buck)

As before, using the voltseconds law and simplifying, we get the ‘duty cycle’ of the converter

D =
VO + VD

VIN + VD − VSW
(Buck)

We have thus derived the classical dc transfer function of a buck converter. If the switch and

diode drops are small as compared to the input and output rails, we can just write

D ≈
VO

VIN
(Buck)

We can also write the relationship between the input and output as follows

VO = VIN × D (Buck)

Advanced Converter Design

This should serve as an introduction to understanding and designing switching power

converters. More details and worked examples can be found in the next chapter (titled

“DC-DC Converter Design and Magnetics”). The reader can also at this point briefly scan

Chapter 4 for some finer nuances of design. A full design table is also available in

Appendix 2 for future reference.
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C H A P T E R 2

DC-DC Converter Design and Magnetics

The reader is strongly advised to read Chapter 1 before attempting this chapter.

The magnetic components of any switching power supply are an integral part of its topology.

The design and/or selection of the magnetics can affect the selection and cost of all the other

associated power components, besides dictating the overall performance and size of the

converter itself. Therefore, we really should not try to design a converter, without looking

closely at its magnetics, and vice versa. With that in mind, in this chapter, we will be

introducing the basic concepts of magnetics — in parallel with a formal dc-dc converter

design procedure.

Note that in the area of dc-dc converters, we have only a single magnetic component to

consider — its inductor. Further, in this particular area of power conversion, it is customary

to just pick an off-the-shelf inductor for most applications. Of course there cannot possibly

be enough “standard” inductors going around to cover all possible application scenarios. But

the good news is that, given a certain inductor, and knowing its performance under a stated

set of conditions, we can easily calculate how it will perform under our specific application

conditions. And thereby, we can either validate or invalidate our initial selection. It may take

more than one iteration or attempt, but moving in this direction, we can almost always find a

standard inductor that fits our application.

In the next chapter we will take up “off-line” power supply design. Such converters usually

work off an ac (mains) input that ranges from 90 to 270 Volts. To protect users from the high

voltage, these converters almost invariably use an isolating transformer — in addition to

or in place of the inductor. But though these topologies are really just derivatives of standard

dc-dc topologies, in terms of their magnetics, they are quite different. For example, we

encounter significant (non-negligible) high-frequency effects within the transformer — like

skin depth and proximity effects — the analysis of which can be quite challenging.

In addition, we find that there are definitely not enough general-purpose (off-the-shelf) parts

going around, that can meet all possible permutations and combinations of requirements,

as can arise in off-line applications. So in these applications, we usually always end up

having to custom-design the magnetics. And as mentioned, this is not a mean task. But by

trying to first understand dc-dc converter design, and the selection of off-the-shelf inductors,

we are in a much better position to tackle off-line power supplies. We can thereby build up

basic concepts and skills, while garnering a much-needed “feel” for magnetics.
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Off-line converters and dc-dc converters are also relatively quite different in terms of some

rather implicit (often completely unstated) differences in basic design strategy — like the

issue relating to the size of the magnetics vis-à-vis the current limit of the converter, as we

will soon learn. With regard to their similarities, we should remember that both can have a

wide-input voltage range, not a single-value input voltage, as is often assumed in related

literature. Having a wide-input raises the following question — what voltage point within the

prescribed input range is the “worst-case” (or maximum) for a given stress parameter? Note

that in selecting a power component we often need to consider the worst-case stress it is

going to endure in our application. And then, provided that that particular stress parameter

happens to be a relevant and decisive factor in its selection, we usually add an additional

amount of safety margin, for the sake of reliability. However, the problem is that different

stress parameters do not attain their worst-case values at the same input voltage point. We

therefore realize that the design of a wide-input converter is necessarily going to be “tricky.”

For sure, designing a functional switching converter may be considered “easy,” but

designing it well certainly isn’t.

Toward the end of this chapter, we will finally present the detailed dc-dc converter

design procedure. But to account for a wide-input range, we will proceed in two distinct

steps:

■ A “general inductor design procedure,” for choosing and validating an off-the-shelf

inductor for our application. We will see that depending on the topology at hand, this

is to be carried out at a certain, specified voltage end — one that we will identify as

being the “worst-case” from the viewpoint of the inductor.

■ Then we will consider the other power components. We will point out which

particular stress parameters are important in each case, and also the input voltage

at which they reach their maximum, and how to ultimately select the component.

Note that, although the design procedure may be seen to specifically address only the buck

topology, the accompanying annotations clearly indicate how a particular step or equation

may need to change if the procedure were being carried out for a boost or a buck-boost

topology.

DC Transfer Functions

When the switch turns ON, the current ramps up in the inductor according to the inductor

equation VON = L × ∆ION/tON. The current increment during the on-time is ∆ION =
(VON × tON)/L. When the switch turns OFF, the inductor equation VOFF = L × ∆ION/tOFF

leads to a current decrement ∆IOFF = (VOFF × tOFF)/L.
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Table 2-1: Derivation of dc transfer functions of the three topologies

Applying Voltseconds Law and D = tON/(tON + tOFF)

Steps VON × tON = VOFF × tOFF

tON

tOFF
=

VOFF

VON

tON

tON + tOFF
=

VOFF

VOFF + VON

Therefore,

D =
VOFF

VON + VOFF (duty cycle equation for all topologies)

Buck Boost Buck-Boost

VON VIN − VO VIN VIN

VOFF VO VO − VIN VO

DC Transfer

Functions D =
VO

VIN
D =

VO − VIN

VO
D =

VO

VIN + VO

The current increment ∆ION must be equal to the decrement ∆IOFF, so that the current

at the end of the switching cycle returns to the exact value it had at the start of the cycle —

otherwise we wouldn’t be in a repeatable (steady) state. Using this argument, we can derive

the input-output (dc) transfer functions of the three topologies, as shown in Table 2-1. It is

interesting to note that the reason the transfer functions turn out different in each of the three

cases can be traced back to the fact that the expressions for VON and VOFF are different.

Other than that, the derivation and its underlying principles remain the same for all

topologies.

The DC Level and the “Swing” of the Inductor Current Waveform

From V = LdI/dt, we get ∆I = V∆t/L. So the “swinging” component of the inductor

current “∆I” is completely determined by the applied voltseconds and the inductance.

Voltseconds is the applied voltage multiplied by the time that it is applied for. To calculate it,

we can either use VON times tON (where tON = D/f ), or VOFF times tOFF (where

tOFF = (1 − D)/f ) — and we will get the same result (for that is how D gets defined in the

first place!). But note also, that if we apply 10 V across a given inductor for 2 µs, we will

get the same current swing ∆I, if we apply say, 20 V for 1 µs, or 5 V for 4 µs, and so on.

So, for a given inductor, either talking about the voltseconds or about ∆I is effectively one

and the same thing.
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Table 2-2: How varying the inductance, frequency, load current, and duty cycle influence �I
and IDC

Action:

L ↑ (increasing) IO ↑ (increasing) D ↑ (increasing) f ↑ (increasing)

Buck Boost Buck-

Boost

Buck Boost Buck-

Boost

Buck Boost Buck-

Boost

Buck Boost Buck-

Boost

Response: � I= ? ↓ ↓ ↓ × × × ↓ ↑ ↓∗ ↓ ↓ ↓ ↓
IDC =? × × × ↑(=) ↑ ↑ × ↑ ↑ × × ×

↑↓ indicates it increases and decreases over the range

* maximum at D = 0.5

‘×’indicates no change

↑ (=) indicates — IDC is increasing and is equal to IO

What does the voltseconds depend on? It depends on the input/output voltages (duty cycle)

and the switching frequency. Therefore, only by changing L, f, or D can we affect ∆I.

Nothing else! See Table 2-2. In particular, changing the load current IO does nothing to ∆I.

IO is therefore, in effect, an altogether independent influence on the inductor current

waveform. But what part of the inductor current does it specifically influence/determine?

We will see that IO is proportional to the average inductor current.

The inductor current waveform is considered to have another (independent) component

besides its swing ∆I — this is the dc (average) level “IDC,” defined as the level around

which the swing ∆I takes place symmetrically — that is, ∆I/2 above it, and ∆I/2 below it.

See Figure 2-1. Geometrically speaking, this is the “center of the ramp.” It is sometimes also

called the “platform” or “pedestal” of the inductor current. The important point to note is

that IDC is based only on energy flow requirements — that is, the need to maintain an

average rate of energy flow consistent with the input/output voltages and desired output

power. So if the “application conditions,” that is, the output power and the input/output

voltages, do not change, there is in fact nothing we can do to alter this dc level — in that

sense, IDC is rather “stubborn” (see Figure 2-1). In particular

■ Changing the inductance L doesn’t affect IDC.

■ Changing the frequency f doesn’t affect IDC.

■ Changing the duty cycle D does affect IDC — for the boost and buck-boost.

To understand the last bullet above, we should note the following equations that we will

derive a little later

IDC = IO (buck)
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time

Changing Inductance

does not change IDC

(D constant) 
IDC

IDC
Changing Frequency

does not change IDC

(D constant)

current

current

current

voltage

voltage
time

Figure 2-1: If D and IO Are Fixed, IDC Cannot Change

IDC =
IO

1 − D
(boost and buck-boost)

The intuitive reason why the above relations are different is that in a buck, the output is in

series with the inductor (from the standpoint of the dc currents — the output capacitor

contributing nothing to the dc current distribution), and therefore the average inductor

current must at all times be equal to the load current. Whereas, in a boost and buck-boost,

the output is likewise in series with the diode, and so the average diode current is equal to

the load current.

Therefore, if we keep the load current constant, and change only the input/output voltages

(duty cycle), we can affect IDC — in all cases except for the buck. In fact, the only way to

change the dc inductor current level for a buck is to change the load current. Nothing else

will work!

In the buck, IDC and IO are equal. But in the boost and buck-boost, IDC depends also on the

duty cycle. That makes the design/selection of magnetics for these two topologies rather

different from a buck. For example, if the duty cycle is 0.5, their average inductor current is

twice the load current. Therefore, using a 5 A inductor for a 5A load current may be a recipe

for disaster.
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One thing we can be sure of is that in the boost and buck-boost, IDC is always greater than

the load current. We may be able to cause this dc level to fall and even approach the load

current value if we reduce the duty cycle close to 0 (i.e. a very small difference between the

input and output voltages). But then, on increasing the duty cycle toward 1, the dc level of

the inductor current will climb steeply. It is important we recognize this clearly and early on.

Another thing we can conclude with certainty is that in all the topologies, the dc level of the

inductor current is proportional to the load current. So doubling the load current for example

(keeping everything else the same), doubles the dc level of the inductor current (whatever it

was to start with). So in a boost with a duty cycle of 0.5 for example, if we have a 5 A load,

then the IDC is 10 A. And if IO is increased to 10 A, IDC will become 20 A.

Summarizing, changing the input/output voltages (duty cycle) does affect the dc level of the

inductor current for the boost and the buck-boost. But changing D affects the swing ∆I in all

three topologies, because it changes the duration of the applied voltage and thereby changes

the voltseconds.

■ Changing the duty cycle affects IDC for the boost and the buck-boost.

■ Changing the duty cycle affects ∆I for all topologies.

Note: The off-line forward converter transformer is probably the only known exception to the above logic.

We will learn that if we for example double the duty cycle (i.e double tON), then almost coincidentally, VON

halves, and therefore the voltseconds does not change (and nor does ∆I). In effect, ∆I is then independent

of duty cycle.

Based on the discussions above, and also the detailed design equations, we have summarized

these “variations” in Table 2-2. This table should hopefully help the reader eventually

develop a more intuitive and analytical “feel” for converter and magnetics design, one which

can come in handy at a later stage. We will continue to discuss certain aspects of this table,

in more detail, a little later.

Defining the AC, DC, and Peak Currents

In Figure 2-2, we see how the ac, dc, peak-to-peak, and peak values of the inductor current

waveform are defined. In particular we note that the ac value of the current waveform is

defined as

IAC =
∆I

2

We should also note from Figure 2-2 that IL ≡ IDC. Therefore, sometimes in our discussions

that follow, we may refer to the dc level of the inductor current as “IDC,” and sometimes as

the average inductor current “IL,” but they are actually synonymous. In particular we
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Boost,
Buck-Boost

IL = IO

1 − D
IOIL =

Buck

IPP

IPK

Example:

Buck  If load current is 1A IL is 1A.
So if r=0.4 peak-to-peak current (‘∆I’) is 0.4A and the peak current is
1.2A

Boost/Buck-Boost   If load current is 1A D=0.5 IL is 2A.
So if r=0.4, peak-to-peak current (‘∆I’) is 0.8A and the peak current is
2.4A

IL × r

+
2

r
1IL × IDC + IAC

2 × IAC

IAC
IAC

IL ≡ IDC

IPK
IPP ≡ ∆I

2 × IAC

All Topologies:

IDCIL

∆I
r ≡=

IL is the same as IDC = Average Inductor Current

Figure 2-2: The AC, DC, Peak, and Peak-to-Peak Currents, and the Current Ripple Ratio ‘r’

Defined

should not get confused by the subscript “L” in “IL.” The “L” stands for inductor, not load.

The load current is always designated as “IO.” Of course, we do realize that IL = IO for a

buck, but that is just happenstance.

In Figure 2-2 we have also defined another key parameter called ‘r,’ or the ‘current ripple

ratio.’ This connects the two independent current components IDC and ∆I. We will explore

this particular parameter in much greater detail a little later. Here, it suffices to mention that

r needs to be set to an “optimum” value in any converter — usually around 0.3 to 0.5,

irrespective of the specific application conditions, the switching frequency, and even the

topology itself. That therefore becomes a universal design rule-of-thumb. We will also learn

that the choice of r affects the current stresses and dissipation in all the power components,

and thereby impacts their selection. Therefore, setting r should be the first step when

commencing any power converter design.

The dc level of the inductor current (largely) determines the I2R losses in the copper

windings (‘copper loss’). However, the final temperature of the inductor is also affected by

another term — the ‘core loss’ — that occurs inside the magnetic material (core) of the

inductor. Core loss is, to a first approximation, determined only by the ac (swinging)
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component of the inductor current (∆I), and is therefore virtually independent of the dc level

(IDC or “dc bias”).

We must pay the closest attention to the peak current. Note that in any converter, the terms

‘peak inductor current’, ‘peak switch current’ and ‘peak diode’ current are all synonymous.

Therefore, in general, we just refer to all of them as simply the ‘peak current’ IPK where

IPK = IDC + IAC

The peak current is in fact the most critical current component of all — because it is not just

a source of long-term heat buildup and consequent temperature rise, but a potential cause of

immediate destruction of the switch. We will show later that the inductor current is

instantaneously proportional to the magnetic field inside the core. So at the exact moment

when the current reaches its peak value, so does this field. We also know that real-world

inductors can ‘saturate’ (start losing their inductance) if the field inside them exceeds a

certain “safe” level — that value being dependent on the actual material used for the core

(not on the geometry, or number of turns or even the air-gap, for example). Once saturation

occurs, we may get an almost uncontrolled surge of current passing through the switch —

because, the ability to limit current (which is one of the reasons the inductor is used in

switching power supplies in the first place), depends on the inductor behaving like one.

Therefore, losing inductance is certainly not going to help! In fact, we usually cannot afford

to allow the inductor to ‘saturate’ even momentarily. And for this reason, we need to monitor

the peak current closely (usually on a cycle-by-cycle basis). As indicated, the peak is the

likeliest point of the inductor current waveform where saturation can start to occur.

Note: A slight amount of core saturation may turn out to be acceptable on occasion, especially if it occurs

only under temporary conditions, like power-up for example. This will be discussed in more detail later.

Understanding the AC, DC and Peak Currents

We have seen that the ac component (IAC = ∆I/2) is derivable from the voltseconds law.

From the basic inductor equation V = LdI/dt, we get

2 × IAC = ∆I =
voltseconds

inductance

So the current swing IPP ≡ ∆I, can be intuitively visualized as “voltseconds per unit

inductance”. If the applied voltseconds doubles, so does the current swing (and ac

component). And if the inductance doubles, the swing (and ac component) is halved.

Let us now consider the dc level again. Note that any capacitor has zero average (dc) current

through it in steady-state, so all capacitors can be considered to be missing altogether when
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calculating dc current distributions. Therefore, for a buck, since energy flows into the output

during both the on-time and off-time, and via the inductor, therefore the average inductor

current must always be equal to the load current. So

IL = IO (buck)

On the other hand, in both the boost and the buck-boost, energy flows into the output only

during the off-time, and via the diode. Therefore, in this case, the average diode current must

be equal to the load current. Note that the diode current has an average value equal to IL

when it is conducting (see the dashed line passing through the center of the down-ramp in the

upper half of Figure 2-3). If we calculate the average of this diode current over the entire

switching cycle, we need to weight it by its duty cycle, that is, 1 − D. Therefore, calling ‘ID’

the average diode current, we get

ID = IL ×
(

1 − D
)

≡ IO

IO

IO

Average diode current
is IL × (1 − D) = IO

Average inductor
current is IL = IO

IL = IO/(1 − D)

IL = IO

At VINMAX, the ac component
decreases, dc component
decreases even more, and so
peak current decreases

VINMAX corresponds to DMIN

VINMIN corresponds to DMAX

VINMAX corresponds to DMIN

VINMIN corresponds to DMAX

At VINMAX, the ac component
increases, dc component remains
the same, and so peak current
increases

Buck-Boost

Buck

VINMIN

VINMAX

Current

Current

time

time

Figure 2-3: Visualizing the AC and DC Components of the Inductor Current as Input Voltage

Varies
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solving

IL =
IO

1 − D
(boost and buck-boost)

Note also, that for any topology, a high duty cycle corresponds to a low input voltage, and a

low duty cycle is equivalent to a high input. So increasing D amounts to decreasing the input

voltage (its magnitude) in all cases. Therefore, in a boost or buck-boost, if the difference

between the input and output voltages is large, we get the highest dc inductor current.

Finally, with the dc and ac components known, we can calculate the peak current using

IPK = IAC + IDC ≡
∆I

2
+ IL

Defining the “Worst-case” Input Voltage

So far, we have been implicitly assuming a fixed input voltage. In reality, in most practical

applications, the input voltage is a certain range, say from ‘VINMIN’ to ‘VINMAX’. We

therefore also need to know how the ac, dc, and peak current components change as we vary

the input voltage. Most importantly, we need to know at what specific voltage within this

range we get the maximum peak current. As mentioned, the peak is critical from the

standpoint of ensuring there is no inductor saturation. Therefore, defining the “worst-case”

voltage (for inductor design) as the point of the input voltage range where the peak current is

at its maximum, we need to design/select our inductor at this particular point always. This is

in fact the underlying basis of the “general inductor design procedure” that we will be

presenting soon.

We will now try to understand where and why we get the highest peak currents for each

topology. In Figure 2-3, we have drawn various inductor current waveforms to help us better

visualize what really happens as the input is varied. We have chosen two topologies here, the

buck and the buck-boost, for which we display two waveforms each, corresponding to two

different input voltages. Finally, in Figure 2-4 we have plotted out the ac, dc, and peak

values. Note that these plots are based on the actual design equations, which are also

presented within the same figure. While interpreting the plots, we should again keep in mind

that for all topologies, a high D corresponds to a low input. The following analysis will also

explain certain cells of the previously provided Table 2-2, where the variations of ∆I and

IDC, with respect to D, were summarized.

a) For the buck, the situation can be analyzed as follows:

■ As the input increases, the duty cycle decreases in an effort to maintain

regulation. But the slope of the down-ramp ∆I/tOFF cannot change, because it
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Figure 2-4: Plotting How the AC, DC, and Peak Currents Change with Duty Cycle

is equal to VOFF/L, that is, VO/L, and we are assuming VO is fixed. But now,

since tOFF has increased, but the slope ∆I/tOFF has not changed, the only

possibility is that ∆I must have increased (proportionally). So we conclude

— that the ac component of the buck inductor current actually increases as the

input increases (even though the duty cycle decreased in the process).

■ On the other hand, the center of the ramp IL is fixed at IO, so we know the dc

level does not change.

■ So finally, since the peak current is the sum of the ac and dc components, we

realize it also increases at high input voltages (see relevant plot in Figure 2-4).

Therefore, for a buck, it is always preferable to start the inductor design at VINMAX

(i.e. at DMIN).

b) For the buck-boost, the situation can be analyzed as follows:

■ As the input increases, the duty cycle decreases. But the slope of the

down-ramp ∆I/tOFF cannot change, because it is equal to VOFF/L, that is,

VO/L, and VO is fixed (same situation as for the buck). But since tOFF has

increased, ∆I must also increase to keep the slope ∆I/tOFF unchanged. So we

see that the ac component (∆I/2) increases as the input increases (duty cycle
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decreasing). Note that up till this point, the analysis is the same as for the buck

— traced back to the fact that in both these topologies VOFF = VO.

■ But now coming to the dc level IL of the buck-boost, we will find it must

change for this topology (though it remained fixed for the buck). Note that the

shaded portion of the waveform in the upper half of Figure 2-3 represents the

diode current. The average value of this during the off-time is the square

dashed line passing through its center, that is, IL. So the average diode

current, calculated over the entire switching cycle, is IL × (1 − D). And we

know this must equal the load current IO. So, as the input increases and duty

cycle decreases, the term (1 − D) increases. So the only way IL × (1 − D) can

remain constant at the value IO is if IL decreases correspondingly. We

therefore realize that the dc level decreases as the input increases (duty cycle

decreasing).

■ Further, since the peak current is the sum of the ac and dc components, it also

decreases at high input voltages (see relevant plot in Figure 2-4).

Therefore, for a buck-boost, we should always start the inductor design at VINMIN (i.e. at

DMAX).

c) For the boost, the situation is a little trickier to understand. On the face of it, it is

quite similar to the buck-boost, but there is a notable difference — and that is the

reason why we did not even try to include it in Figure 2-3.

■ Once again, as the input increases, the duty cycle decreases. But the difference

here is that the slope of the down-ramp ∆I/tOFF must decrease — because it

is equal to VOFF/L, that is, (VO − VIN)/L (magnitudes only) — and we know

that VO − VIN is decreasing. Further, the required decrease in the slope ∆I/tOFF

can come about in two ways — either from an increase in tOFF (which is

already occurring as the duty cycle decreases), or from a decrease in ∆I. But

in fact, ∆I may actually increase rather than decrease (as we increase the

input). For example, if tOFF is increasing more the increase in ∆I — then

∆I/tOFF will still decrease as required. And in practice, that is what actually

does happen in the case of the boost. With some detailed math, we can show

that ∆I increases as D approaches 0.5, but decreases on either side (see

Table 2-2 and Figure 2-4).

■ It is therefore also clear that in either case above, the increase/decrease in the

ac level does not dominate, and therefore, the peak current ends up being

dictated only by the dc component. But we already know that the dc level of a

boost changes in exactly the same way as for the buck-boost (discussed above)

— it decreases as the input increases (duty cycle decreasing).
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■ So we conclude that the peak current for the boost also decreases at high input

voltages (see relevant plot in Figure 2-4).

Therefore, for a boost, we should always start the inductor design at VINMIN (i.e. at DMAX).

The Current Ripple Ratio ‘r’

In Figure 2-2 we first introduced the most basic, yet far-reaching design parameter of the

power supply itself — its current ripple ratio ‘r.’ This is a geometrical ratio that compares

and connects the ac value of the inductor current to its associated dc value. So

r =
∆I

IL
≡ 2 ×

IAC

IDC

Here we have used ∆I = 2 × IAC, as defined earlier in Figure 2-2. Once r is set by the

designer (at maximum load current and worst-case input), almost everything else is

pre-ordained — like the currents in the input and output capacitors, the ‘RMS’ (root mean

square) current in the switch, and so on. Therefore, the choice of r affects component

selection and cost, and it must be understood clearly, and picked carefully.

Note that the ratio r is defined for CCM (continuous conduction mode) operation only. Its

valid range is from 0 to 2. When r is 0, ∆I must be 0, and the inductor equation then implies

a very large (infinite) inductance. Clearly, r = 0 is not a practical value! If r equals 2, the

converter is operating at the boundary of continuous and discontinuous conduction modes

(boundary conduction mode or ‘BCM’). See Figure 2-5. In this so-called boundary (or

“critical”) conduction mode, IAC = IDC by definition. Note that readers can refer back to

Chapter 1, in which CCM, DCM, and BCM were all initially introduced and explained.

Note that an exception to the “valid” range of r from 0 to 2 occurs in ‘forced CCM’ mode,

discussed in more detail later.

Relating r to the Inductance

We know that current swing is voltseconds per unit inductance. So we can also write

∆I = Et/LµH (any topology)

Here ‘Et’ is defined as the (magnitude of the) voltµseconds across the inductor (either during

the on-time or off-time — both being necessarily equal in steady state), and LµH is the

inductance in µH. The reason for defining Et is that this number is simply easier to

75



Chapter 2
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Forced continuous conduction mode
IAC is greater than IDC

IAC is equal to IDC

negative current,
negative slope

negative current,
positive slope

Figure 2-5: BCM and Forced CCM Operating Modes

manipulate than voltseconds because of the very small time intervals involved in modern

power conversion.

Therefore, the current ripple ratio is

r =
∆I

IL
=

Et

LµHIL
(any topology)

Note also that from now on, whenever L is paired up with Et in any given equation, we will

drop the subscript of L, that is, “µH.” It will then be “understood” that L is in µH.

Finally, we have the following key relationships between r and L

r =
Et
(

L × IL

) ≡
VON × D
(

L × IL

)

× f
≡

VOFF ×
(

1 − D
)

(

L × IL

)

× f
(any topology)

Incidentally, the preceding equation, that is, the one involving VOFF, assumes CCM, because

it assumes that tOFF (the time for which VOFF is applied) is equal to the full available

off-time (1 − D)/f .
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Conversely, L as a function of r is

L =
VON × D

r × IL × f
(any topology)

In subsequent sections we will often use the following easy-to-remember form of the

previous equations. We are going to nickname this the “L × I” equation (or rule)

L × IL =
Et

r
(any topology)

But perhaps we are still wondering — why do we even need to talk in terms of r — why not

talk directly in terms of L? We do realize from the above equations that L and r are related.

However, the “desirable” value of inductance depends on the specific application conditions,

the switching frequency, and even the topology. So it is just not possible to give a general

design rule for picking L. But there is in fact such a general design rule-of-thumb for

selecting r — one that applies almost universally. We mentioned that it should be around

0.3 to 0.5 in all cases. And that is why it makes sense to calculate L by first setting the value

of r. Of course, once we pick r, L gets automatically determined — but only for a given set

of application conditions and switching frequency.

The Optimum Value of r

It can be shown that, in terms of overall stresses in a converter and size, r ≈ 0.4 represents

an “optimum” of sorts. We will now try to understand why this is so, and later we will try to

point out exceptions to this reasoning.

The size of an inductor can be thought of as being virtually proportional to its

energy-handling capability (the effect of air-gap on size will be studied later). So for

example, we probably already know intuitively that we need bigger cores to handle higher

powers. The energy-handling capability of the selected core must, at a bare minimum, match

the energy we need to store in it in our application — that is, 1
2 × L × IPK

2. Otherwise the

inductor will saturate.

In Figure 2-6, we have plotted the energy, E = 1
2 × L × IPK

2, as a function of r. We see that

it has a “knee” at around 0.4. This tells us that if we try to reduce r much lower than 0.4, we

will certainly need a very large inductor. On the other hand, if we increase r, there isn’t

much greater reduction in the size of the inductor. In fact, we will see that beyond r ∼ 0.4,

we enter a region of diminishing returns.
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Figure 2-6: How Varying the Current Ripple Ratio r Affects All the Components

In Figure 2-6, we have also plotted the capacitor RMS currents for a buck converter. We see

that if r is increased beyond 0.4, the currents will increase significantly. This will lead to

increased heat generation inside the capacitors (and other related components too).

Eventually, we may be forced to pick a capacitor with a lower ESR and/or lower case-to-air

thermal resistance (more expensive/bigger).

Note: The RMS value of the current through any component is the current component responsible for the

heat developed in it — via the equation P = IRMS
2 × R, where P is the dissipation, and R is the series

resistance term associated with the particular component (e.g. the DCR of an inductor, or the ESR of a

capacitor). However, it can be shown that the switch, diode, and inductor RMS current values are not very

“shape-dependent.” Therefore, the heat developed in them does not depend much on r, but mainly on the

average value of the current. On the other hand, the RMS of the capacitor current waveforms can increase

significantly, if r is increased. So capacitor currents are very “shape-dependent,” and therefore depend

strongly on r. The reason for that is fairly obvious — any capacitor in a steady state has zero average (dc)

current through it. So since a capacitor effectively subtracts out the dc level of the accompanying current

waveform, we are left with a capacitor current waveform that has a large “ramp portion” built-in into it.

Therefore, changing r changes this ramp portion, thereby impacting the capacitor current greatly.

Note that in Figure 2-6, though we have used the buck topology as an example, the energy

curve in particular is exactly the same for any topology. The capacitor current curves though,

may not be identical to those of the buck, but are similar, and so the conclusions above still

apply.
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Therefore, in general, a current ripple ratio of around 0.4 is a good design target for any

topology, any application, and any switching frequency.

Later, we will discuss some reasons/considerations for not adhering to this r ∼ 0.4

rule-of-thumb (under certain conditions).

Do We Mean Inductor? Or Inductance?

Note that in the previous section, we said nothing explicitly about what the inductance

was — we just talked about the size of the inductor. We know that in theory, we can put

almost any number of turns on a given core, and get almost any inductance. So inductance

and size of inductor are not necessarily related. However, we will now see that in power

conversion they often do turn out to be so, though rather indirectly.

Looking at Figure 2-6, we can see that a smaller r will require a higher energy-handling

capability, and thus a larger inductor. Let us now formally go through all the possible ways

of reducing r.

Since we are assuming our application conditions are fixed, the load current and input/output

voltages are also fixed. Therefore, IDC is fixed too. The only way we can cause r to decrease

under these circumstances is to make ∆I smaller. However, ∆I is

∆I =
voltseconds

inductance
(V-s/H)

But we know the applied voltseconds is fixed too (input and output voltages being fixed). So

the only way to decrease r (for a given set of application conditions) is to increase the

inductance. We can therefore conclude that if we choose a high inductance, we will

invariably require a bigger inductor. It is therefore no surprise that when power supply

designers instinctively ask for a “large inductance,” they might well mean a “large inductor.”

Therefore the designer is cautioned against being too “ripple-phobic” in their designs.

A certain amount of ripple is certainly “healthy.”

However, we must not forget that if, for example, we increase the load current (i.e. a change

in application conditions), we will clearly need to move to a larger inductor (with greater

energy-handling capability). But simultaneously, we will need to decrease the inductance.

That’s because IDC will increase, and so to keep to the “optimum” value of r, we will need

to increase ∆I in the same proportion as the increase in IDC. And to do this, we have to

decrease, rather than increase, L.

Therefore the general statement that a “large inductance is equivalent to a large inductor”

only applies to a given application.
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How Inductance and Inductor Size Depend on Frequency

The following discussion applies to all the topologies.

If keeping everything else fixed (including D) we double the frequency, the voltseconds will

halve, because the durations tON and tOFF have halved. But since ∆I is “voltseconds per unit

inductance,” this too will halve. Further, since IDC has not changed, r = ∆I/IDC will also

halve. So if we started off with r = 0.4, we now have r = 0.2.

If we want to return the converter to the optimum value of r = 0.4, we will now need to

somehow double the ∆I we were left with at the end of the last step. The way to do that is to

halve the inductance.

■ Therefore, we can generally state that inductance is inversely proportional to

frequency.

Finally, having restored r to 0.4, the peak will still be 20% higher than the dc level. But the

dc level has not changed. So the peak value is also unchanged (since r hasn’t changed either,

eventually). However, the energy-handling requirement (size of inductor) is 1
2 × L × IPK

2.

So since L has halved, and IPK is unchanged, the required size of the inductor has halved.

■ Therefore, we can generally state that the size of the inductor is inversely proportional

to frequency.

■ Note also that the required current rating of the inductor is independent of the

frequency (since peak is unchanged).

How Inductance and Inductor Size Depend on Load Current

For all topologies, if we double the load current (keeping input/output voltages and D fixed),

r will tend to halve since ∆I has not changed but IDC has doubled. Therefore to restore r to

its optimum value of 0.4, we need to get ∆I to double too. But we know that ∆I is simply

“voltseconds per unit inductance,” and in this case the voltseconds has not changed. So the

only way to get ∆I to double is to halve the inductance.

■ Therefore, we can generally state that inductance is inversely proportional to the load

current.

What about the size? Since we doubled the load current, but still kept r at 0.4, the peak

current IDC(1 + r/2) has also doubled. But the inductance has halved. So the energy-handling

requirement (size of inductor), 1
2 × L × IPK

2, will double.

■ Therefore, we can generally state that the size of the inductor is proportional to the

load current.
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How Vendors Specify the Current Rating of an Off-the-shelf Inductor and
How to Select It

The “energy-handling capability” of an inductor, 1/2 × LI2, is one way of picking the size of

the inductor. But most vendors do not provide this number upfront. However, they do

provide one or more “current ratings.” And if we interpret these current rating(s) correctly,

that serves the purpose too.

The current rating may be expressed by the vendor either as a maximum rated IDC, or a

maximum rated IRMS, or/and a maximum ISAT. The first two are usually considered

synonymous, since the RMS and dc values of a typical inductor current waveform are almost

equal (we had indicated previously that the RMS of the inductor current is not very

“shape-dependent”). So the dc/RMS rating of an inductor is by defintion basically the direct

current we can pass through it, such that we get a specified temperature rise (typically 40 to

55◦C depending on the vendor). The last rating, that is, the ISAT, is the maximum current we

can pass, just before the core starts saturating. At that point, the inductor is considered close

to the useful limit of its energy-storing capability.

We will also find that many, if not most, vendors have chosen the wire gauge in such a

manner that the IDC and ISAT ratings of any inductor are also virtually the same. And by

doing this, they can publish one (single) current rating — for example, “the inductor is rated

for 5 A.” Basically, having determined the ISAT of the inductor, the vendor has then

consciously tweaked the wire gauge (at the saturation current level), so as to also get the

specified temperature rise too.

The rationale for wanting to set IDC = ISAT is as follows — suppose the inductor had a dc

rating of 3 A and an ISAT of 5 A. The 5-A rating is then likely to be superfluous, because

users would probably never select this inductor for an application that required more than

3 A anyway. Therefore, the excessive ISAT rating in this case essentially amounts to an

unnecessarily over-sized core. Of course, if we do find an inductor with different IDC and

ISAT ratings, it is also possible the vendor may have (unsuccessfully) tried to exploit the

larger size of the chosen core (by increasing the wire thickness), but the stumbling block was

that the selected core geometry was somehow not conducive to doing so — maybe it just did

not have enough window space for accommodating the thicker windings.

In general, an inductor with a “single” current rating is usually the most optimum/

cost-effective too.

However, in some rare off-the-shelf inductors, we may even find ISAT stated to be less than

IDC. But what use is that? We can’t operate beyond ISAT in any case! So the only advantage,

if any, that can be gleaned from such an inductor is that the temperature rise in a real

application will be less than the maximum specified. Automotive applications?
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In general, for most practical purposes, the current rating of the inductor that we need to

consider is the lowest rating of all the published current ratings. We can usually simply ignore

all the rest.

There are some subtle considerations and exceptions to the argument for always preferring

an inductor with IDC ≈ ISAT. For example, under transient/temporary conditions, the

momentary current may exceed the normal steady operating current by a wide margin. So for

example, suppose we are we using a switcher with an internally fixed current limit ‘ICLIM’ of

5 A — in a 3-A application. Then under startup (or sudden line/load steps), the current is

very likely to hit the limiting value of 5 A for several cycles in succession as the control

circuitry struggles to bring up the output rail into regulation. We will discuss this issue in

greater detail below — in particular, whether this is even a concern to start with! However,

assuming for now that it is, it then seems that it may actually make sense to use an inductor

rated for 3-A continuous current, with an ISAT rating of 5 A (provided such an inductor is

freely available, and cheap). Of course, alternatively, we could just pick a standard “5 A

inductor” (for the 3-A application), and thereby we would certainly avoid inductor saturation

under all conditions (and the consequent likelihood of switch destruction). But we realize

that in doing so, our inductor may be considered slightly over-designed from the viewpoint

of its copper/temperature-rise — the wire being unnecessarily thicker. However, we should

keep in mind that larger cores certainly affect cost, but a little more copper rarely does!

What Is the Inductor Current Rating We Need to Consider for a
Given Application?

Whenever we start-up, or subject the converter to sudden line/load transients, the current no

longer stays at the steady value it has under normal operation (i.e. when delivering the

required maximum rated load current). For example, if we suddenly short the output the

control circuitry in an effort to regulate the output may momentarily expand the duty cycle

to the highest permissible value (as set by the controller). We then are no longer in steady

state, and so under the increased on-time voltseconds, the current ramps up progressively,

and can reach the set current limit.

But then, the inductor would probably be saturating! For example, if we are using a 5-A

fixed current limit buck switcher IC for a 3-A application, we have probably picked an

inductor rated for only around 3 A. But when we short the output, the current momentarily

hits the current limit (which may be around 5.3 A for a “5-A buck switcher”).

So the question is — should we select an inductor with a rating based on the current limit

threshold (that it may encounter under severe transients), or simply on the basis of the

maximum continuous normal operating current (under steady state operation in our
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application)? In fact, this question is not as philosophical as it may seem — it virtually

separates standard industry off-line design procedures from those of dc-dc converters. To

answer it effectively, a lot of factors may need to be considered, often on an individual or

case-by-case basis. Let us address some of these concerns next.

Luckily, in most low-voltage applications, a certain amount of core saturation doesn’t cause

any problem. The reason for that is that if in the above example, the switch is rated for 5 A,

and the current limiting circuit in the IC is known to act fast enough to prevent the current

from ever rising beyond 5 A, then even if the inductor has started saturating as it gets to 5 A,

there is no cause for concern — after all, if the switch doesn’t break, we don’t have a

problem! And since the current doesn’t exceed 5 A, the switch cannot break. So in this case,

we could certainly pick a cost-effective “3 A inductor” for our application, knowing well in

advance that it would saturate somewhat under various non-steady conditions. Of course we

don’t want to operate a switching converter constantly (under its rated maximum load

conditions) with a saturating inductor — we just “allow” it to do so under abnormal and

temporary conditions, so long as we are sure that the switch can never be damaged.

However, the above logic begs another key question to be answered — what exactly

constitutes “fast enough” — that is, which factors affect our ability to turn the switch OFF

fast enough to protect it from the consequences of a saturating inductor? Since this

consideration may eventually end up dictating the size and cost of the inductor, it is

important to understand this response-time issue well.

a) All current limit circuitry takes some finite time to respond. There are inherent

(internal) “propagation delays” as we move the overcurrent signal through the

internal comparators of the IC, its op-amps, level-shifters, driver, and so on to the

IC pin driving the switch.

b) If we are using a controller IC (as opposed to an ‘integrated switcher,’ i.e. with an

internal switch), the switch will necessarily be at a certain physical distance from its

driver (which is usually inside the IC). In that case, the parasitic inductances of the

intervening PCB traces (roughly 20 nH per inch of trace) will resist any sudden

change in current, thereby creating an additional delay before the turn-off command

issued by the IC actually reaches the gate/base of the switch.

c) Theoretically speaking, even if the current limiting circuitry had responded

immediately to the overcurrent condition, and if the intervening traces had truly

negligible inductance, the switch may still take a little time before it really turns

itself OFF. During this delay, if the inductor is saturating, it will not be able to

effectively prevent or limit the current spike that can be pushed through the

transistor by the applied input dc source — well beyond the “safe” current limit

threshold.
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Bipolar junction transistors (bjts) are inherently slow, as compared to more modern

devices like mosfets. But large mosfets (e.g. high-current, high-voltage devices) also

produce delays because of their higher internal parasitic gate resistance and

inductance and significant inter-electrode parasitic capacitances (that demand to be

either discharged or charged as the case may be, before they allow the switch to

change its state). Matters can get worse if we parallel several such mosfets together,

as say for a very high-current application.

d) Many controllers and ICs incorporate an internal “blanking time” — during which

they deliberately “do not look” at the current waveform. The basic purpose is to

avoid false triggering of the current limit circuitry by the noise generated at the

turn-on transition. But this delay time could prove fatal to the switch, especially if

the inductor has already started saturating, because the current limit circuitry won’t

even “know” if there is any overcurrent condition during this blanking interval.

Further, in current-mode control ICs, the ramp to the PWM (pulse-width modulator)

comparator stage is usually derived from the (noisy) switch current. So the blanking

time is typically set even higher — typically about 100 ns for low-voltage

applications and up to 300 ns for off-line applications.

e) Integrated high-frequency switchers (i.e. with the mosfet or bjt switch contained in

the same package as the control and driver) are usually the best-protected and most

reliable, because the intervening inductances are minimized. Also, the blanking

times can be set more accurately and optimally, since there is not going to be much

variation in terms of different switches with widely varying characteristics.

Therefore, integrated switchers can usually survive momentarily saturating inductors

with almost no problem —unless the input voltage is very high (typically above

40–60 V), and plus, the inductor is sized very small.

f) If the input voltage is high, the rate of rise of the saturating inductor current ramp

can become very large (“steep”). This follows from the basic equation V = LdI/dt.

Here, if L → 0, since V is fixed, the dI/dt must increase dramatically (see Figure

2-7). So now, even a small delay can prove fatal because a large ∆I can take place

during a very small interval. The current can therefore overshoot the set current

limit threshold by a very large amount, thereby endangering the switch. That is why,

especially when we come to off-line applications, it is actually customary to select a

core large enough to avoid saturation at the current limit threshold. And that usually

gives enough time for the current limit circuitry to act — before the slope of the

current has gone completely out of control.

Note however, that the copper windings still only need to be proportioned to handle

the continuous current (i.e. based on the maximum operating load).
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Figure 2-7: How Higher Voltages Combined with Inherent Response-time

Delays Can Cause Overstress in the Switch When the Inductor Starts

Saturating

In effect, what we are therefore always implicitly doing in off-line applications is

setting the ISAT of the transformer higher than its IDC rating. That is clearly not what

we usually do in low-voltage dc-dc converter design.

g) Generally speaking, in most low-voltage applications (i.e. VIN typically less than

about 40 V), the inductors are selected based only on the maximum operating

load current. The current limit is therefore, in effect, virtually ignored! This is the

usual industry practice for dc-dc converter design, though it is probably not clearly

spelled out in this way most of the time. But luckily, it seems to have

worked!

The Spread and Tolerance of the Current Limit

Any specification, including the current limit, either set by the user or fixed internally in the

IC, will have a certain inherent tolerance band — that includes spreads over process

variations and over temperature. All these variations are combined together inside the

electrical tables of the datasheet of the device, under its “MIN” and “MAX” limits. In a

practical converter design, a good designer learns to pay heed to such spreads.
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But let us first summarize the general procedure for selecting the inductance for a

switching power converter. Then we will look at the practical issues concerning

spreads/tolerance.

The normal procedure is to determine the inductance by requiring that the current ripple

ratio is about 0.4 — because we know that that represents an optimum of sorts for the entire

converter. But there may be another possible limitation when dealing with switcher ICs,

especially those with internally set (fixed) current limits — if our normal operating peak

currents are close to the set current limit of the device (i.e. we are operating close to the

maximum current capability of the switcher IC), we need to ensure that the inductance is

large enough not to cause the calculated operating peak current (within any given cycle) to

exceed the current limit — otherwise foldback will obviously occur at the current limit

threshold, and so the desired maximum output power cannot be guaranteed.

For example, if we have a “5-A buck switcher IC,” being operated at 5-A load, with an r of

0.4, then the normal operating peak current is 5 × (1 + 0.4/2) = 5 × 1.2 = 6 A. So ideally,

we would want the current limit of the device to be at least 6 A. Unfortunately, when we

come to such integrated switchers, that much of “margin” is rarely available —

manufacturers always like to “bolster” the advertised ratings of their parts to be close to the

maximum stress limits. So yes, if this particular part was declared to be a “4-A IC” instead

of a “5-A IC,” we would have been just fine. But as things stand, manufacturers usually pay

scant regard as to what may constitute an optimum rating for the device, in relationship to its

associated components and the overall design strategy. Therefore, for example, a certain

commercial “5-A switcher IC” may have a published (set) current limit of only 5.3 A. But on

analysis, we see that that that allows only 0.3 A above, and 0.3 A below, the average level of

5 A. Therefore, the maximum allowed ∆I at 5 A load is only 0.6 A. And the maximum r is

0.6/5 = 0.12 (when operated at a load current of 5 A). We can see that that is clearly much

less than the optimum r of 0.4. And no doubt, this lowered r will adversely impact the size

of the inductor (and converter).

Now we take up the issue of the spread in current limit. So ICLIM is actually two limits —

ICLIM_MIN and ICLIM_MAX (i.e. the MIN and MAX of the current limit respectively). The

question is — which of these limits should we consider for designing the inductor?

■ To guarantee output power, we need to look at the MIN of the current limit only. In

most low-voltage dc-dc converter applications, the MIN limit is the only threshold

that really counts — we can usually completely ignore the MAX (and of course the

TYP value). The basic criterion for guaranteeing output power is — we must ensure

that the calculated normal operating peak current in our application is always less

than the MIN value of the current limit. Of course, if we are not operating close to

the current limit of the device, this condition will be met without any struggle, and

so we can then just focus on setting r to about 0.4.
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■ But like all components, inductors also have a typical tolerance — usually about

±10%. So if we are operating very close to the limits of the device, and thereby r is

being effectively dictated by the MIN of the current limit (rather than by its optimum

or desirable value), then the (nominal) value of inductance we ultimately choose

should be about 10% higher than the calculated value. That will guarantee output

power unconditionally — under all possible variations in current limit and

inductance.

■ Note that ideally, we would also like to leave at least 20% additional margin

(headroom) between the peak current of our application and the MIN of the current

limit. This is usually necessary for getting a quick response (correction) to a sudden

increase in load. So in general, if we somehow manage to curtail the ability of the

converter to respond quickly (for example, by not providing sufficient headroom in

the current limit and/or maximum duty cycle), the inductor will not be able to ramp

up current quickly enough to meet the sudden increase in energy demand. Therefore,

the output will droop rather severely for several cycles, before it eventually

recovers.

But unfortunately, once again, when dealing with fixed current limit (integrated) switchers,

we will find that this “nice-to-have transient headroom” may be a luxury we just can’t afford

— because in most cases, the MIN current limit is set only slightly higher than the declared

“rating” of the device. So in fact even a 20% headroom may not be available! And further,

even assuming it is, this may demand a very large (impractical) inductance. And we know

that that by itself is fairly counterproductive — a large inductance takes even more time for

its current to ramp up, and that thereby effectively slows down the transient (loop) response

— incidentally, just opposite to what we were hoping to derive here! Therefore, in general,

we almost always end up ignoring this 20% or so step-response headroom/margin

completely, especially when dealing with integrated switcher ICs.

As for the MAX of the current limit, whenever we deem that inductor saturation is of real

concern to us (as in high-voltage applications), we must look at the MAX of the current limit

to decide upon the size of the inductor — that being the worst-case in terms of peak current

under overloads, inductor energy storage, and its possible saturation.

Therefore in general, in high-voltage dc-dc (or off-line) applications, the MIN of the current

limit may sometimes need to be considered when selecting inductance (as when operating

close to current limit), but the MAX of the current limit will certainly always be used to

determine the size of the inductor.

As a corollary, manufacturers of (low-voltage) dc-dc converter ICs actually need not (and

probably justifiably do not) struggle too hard to minimize the spreads and tolerances of

current limit (provided of course the MIN of the current limit is at least set high enough not
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to intrude on the declared power-handling capability of the IC). And for low-voltage dc-dc

converter applications, the current limit is typically ignored altogether — the final selection

of inductor current rating (and size) is simply based on the cycle-by-cycle peak inductor

current under normal (steady) operation (i.e. the maximum load of the application, at the

worst-case input voltage end).

On the other hand, manufacturers of off-line switcher ICs do need to maintain a tight

tolerance on the current limit. In their case, the maximum power-handling capability of their

particular device is in effect dependent only on the ‘MIN’ (minimum limit) of the current

limit specification, whereas, the transformer size is determined entirely by the ‘MAX’ of the

current limit specification. So in this case, a “loose” current limit specification effectively

amounts to requiring bigger components (transformer) for the same maximum power-

handling capability.

Note: Some makers of off-line integrated switcher ICs (e.g. the “Topswitch” from Power Integrations) often

tout their “precise” current limit — thus suggesting that we get the best power-to-size ratio (i.e. converter

power density) when using their products. However, we should remember that in most cases, their product

families have a discrete set of fixed current limits. And that is a problem! For example, we may have devices

available with current limits in steps of 2 A, 3 A, 4 A, and so on. So yes, we may indeed get a higher power

density when operating at the maximum rated output power of a particular IC. But when operating at a power

level between available current limits, we are not going to get an optimum solution. For example, in an

application where the peak current is 2.2 A, then we would need to select the 3 A current limit part, and we

will need to design our magnetics to avoid core saturation at 3 A. So in effect, we have a very imprecise

current limit now! The best solution is to look for a part (integrated switcher or controller plus mosfet

solution) where we can precisely set the current limit externally, depending upon our application.

With all these subtle considerations in mind, a designer can hopefully pick a more

appropriate inductor current rating for his or her application. Clearly, there are no hard and

fast rules. Engineering judgment needs to be applied as usual, and perhaps some further

bench-testing may also be needed to validate the final choice of inductor.

In the worked examples that follow, the general approach and design procedure will become

clearer.

Worked Example (1)

A boost converter has an input range of 12 V to 15 V, a regulated output of 24 V, and a

maximum load current of 2 A. What would be a reasonable goal for its inductance, if the

switching frequency is a) 100 kHz, b) 200 kHz, and c) 1 MHz? What is the peak current in each

case? And what is the energy-handling requirement?

The first thing we have to remember is that for this topology (as for the buck-boost), the

worst-case is the lowest end of the input range, since that corresponds to the highest duty

cycle and thus the highest average current IL = IO/(1 − D). So for all practical purposes,
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we can completely disregard VINMAX here — in fact it was a red herring to start with,

for this particular analysis!

From Table 2-1, the duty cycle is

D =
VO − VIN

VO
=

24 − 12

24
= 0.5

Therefore

IL =
IO

1 − D
=

2

1 − 0.5
= 4 Amperes

Let us target a current ripple ratio of 0.4. So

IPK = IL

(

1 +
r

2

)

= 4 ×
(

1 +
0.4

2

)

= 4.8 Amperes

■ We should remember that r = 0.4 always implies that the peak is 20% higher than the

average. So we realize that in effect, the peak current does not depend on the

frequency. The inductor must be able to handle this above peak current without

saturating. So in this example, we would be fine just picking an inductor rated for

4.8 A (or more), irrespective of frequency. In fact we had previously learned in the

section “How Inductance and Inductor Size Depend on Frequency” that the required

current rating of an inductor is independent of the frequency (since the peak is

unchanged). However, the size does change with frequency, because size is

1/2 × L × IPK
2, and L changes as follows.

To calculate the inductance corresponding to the chosen value of r, we can use the following

equation (presented previously). We also note from Table 2-1 that VON = VIN for the boost.

Therefore for f = 100 kHz

L =
VON × D

r × IL × f
=

12 × 0.5

0.4 × 4 × 100 × 103
⇒ 37.5 µH

For f = 200 kHz, we would get half of this, that is, 18.75 µH. And for f = 1 MHz, we get

3.75 µH. We clearly see that high frequencies lead to smaller inductances.

We have previously observed that for a given application, small inductances invariably lead

to small inductors. Therefore we conclude that on increasing the switching frequency, we will

get smaller-sized inductors too. And that is the basic reason for hiking up switching

frequencies in general.
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The energy-handling requirement, if desired, can be explicitly calculated in each case, by

using E = 1
2 × L × IPK

2.

So far, we have been generally targeting r = 0.4 as an optimum value. Let us now

understand all the reasons why this may not be a good choice on occasion.

Current Limit Considerations in Setting r

We had indicated previously that the current limit may be too low to allow r from being set

to its optimum. Now we will also include the impact of the spread in the current limit.

So for example, in Table 2-3 we have the published specifications for the current limit of an

integrated “5-A” switcher, the LM2679. To be able to guarantee the specified power output

(or load current in this case) unconditionally, we need to guarantee that the peak current in

our application never reaches even the lower limit (“MIN”) of the published current limit

specification. So in fact, in Table 2-3, we need to disregard all the numbers except for the

‘MIN’ value — given as 5.3 A.

Now, if we are trying to get 5 A out of our converter with an r of 0.4, the estimated peak

current will be 1.2 × 5 = 6 A. Clearly, as mentioned earlier, we are not going to get there with

the LM2679! Unless we lower the value of r (increase inductance). Maximum value of r is

IPK = IO ×
(

1 +
r

2

)

≤ ICLIM_MIN

Solving, with IO = 5 A, and ICLIM_MIN = 5.3 A, we get

r ≤ 2

(

ICLIM_MIN

IO
− 1

)

= 2

(

5.3

5
− 1

)

= 0.12

We can see from Figure 2-6, that this calls for an energy-handling capability (size of inductor)

almost 3× the optimum!

Actually, it turns out this part is just specified inappropriately. This part is in reality one with

an adjustable current limit. And so we could have probably adjusted the current limit adjust

Table 2-3: Published current limit specs for the LM2679

Conditions TYP MIN MAX Units

Current RCLIM = 5.6 kΩ Room Temperature 6.3 5.5 7.6 A

Limit ‘ICLIM’ Full Operating 5.3 8.1

Temperature Range
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resistor quoted in the electrical tables to allow for a “better” value of current limit, and

thereby a better value of r (at maximum rated load). But unfortunately, that is not clarified in

the tables.

We should always remember that the minimum and maximum limits of the electrical tables

are the only parts of a datasheet really guaranteed by any vendor (certainly not the typical

values!). So as a matter of fact, any other information in a datasheet just amounts to

general design “guidance” — and that includes any ‘typical performance curves’ provided.

A prudent designer would never second-guess the vendor — in this case as to whether the

current limit resistor can indeed be adjusted to give us a smaller inductor, or not. Therefore,

as it stands, if we are using the LM2679 for a 5-A load current application, we do need an

inductor three times larger than the optimum. Note that if the current limit can indeed be

adjusted higher, the vendor should have picked the appropriate value for the current limit

adjust resistor in the “conditions” column of the electrical table (and stated the limits

accordingly).

Note also that when we talk of a “5 A buck IC,” that implies the part is supposed to deliver

5-A load current. The current limit of course needs to be set (and stated) correctly for the

rated load, as discussed above. However, we should be very clear that when we are talking

of boost or buck-boost switcher ICs, a “5 A” part for example, does not give us a 5-A

load current. That is because the dc inductor current is not equal to IO, but IO/(1 − D) for

these topologies. So a “5-A” rating in this case only refers to the current limit of the device.

What load current we can derive from a “non-buck” IC depends on our specific application

— in particular on the DMAX (duty cycle at VINMIN). For example, if the desired load current

is 5 A, and the (maximum) duty cycle in our application is 0.5, then the average inductor

current is actually IO/(1 − D) = 10 A. Further, with an r of 0.4, the peak would be 20%

higher, that is, 1.2 × 10 = 12 A. So, for an optimum case, we would need to actually look

for a device whose minimum current limit is 12 A or more in this case. At the bare minimum,

we need a device with a current limit higher than 10 A, just to guarantee output power.

Continuous Conduction Mode Considerations in Fixing r

As discussed previously, under various conditions, we may enter discontinuous conduction

mode (DCM). From Figure 2-5 we can see that just as DCM starts to occur, the current

ripple ratio is 2. However we can pose the question in the following manner — what if we

have set the current ripple ratio to a certain value r ′ (i.e. the current ripple ratio at the

maximum load current, IO_MAX). And then we decrease the load current slowly — at what

load does the converter enter DCM?

By simple geometry it can be shown that the transition to DCM will occur at r ′/2 times the

maximum load. For example suppose we set r ′ to 0.4 at 3 A load, the converter will

transition into DCM at (0.4/2) × 3 = 0.6 A.
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But designers know that when DCM is entered, a lot of things within the converter change

suddenly! The duty cycle, for one, will now starting pinching off toward zero as we decrease

the load current further. In addition, the loop response of the converter (its ability to correct

quickly for disturbances in line and load) also usually gets degraded in DCM. The noise and

EMI profile can change suddenly too, and so on. Of course there are some advantages of

operating in DCM too, but let us for now assume that for various reasons, the designer

wishes to avoid DCM altogether, if possible.

Maintaining the converter in CCM, down to the minimum load of our application, enforces a

certain maximum value for r ′. For example, if the minimum load is IO_MIN = 0.5 A, then to

maintain the converter in CCM at 0.5 A, the set current ripple ratio (r ′ at 3 A) needs to be

lowered. Back calculating, we get the required condition for this

IO ×
r′

2
= IO_MIN

So

r′ =
2 × IO_MIN

IO_MAX

In our case we get

r′ =
2 × 0.5

3
= 0.333

We therefore need to set the current ripple ratio to less than 0.333 at maximum load, to

ensure CCM at IO_MIN.

Note that generally speaking, we can make the converter operate in boundary conduction

mode (BCM), or in full DCM, in three ways — a) by decreasing the load, b) choosing a

small inductance, or c) increasing the input voltage.

We realize that decreasing the load will proportionally decrease IDC to virtually any value,

and so the condition r ≥ 2 (BCM to DCM) will certainly occur sooner or later — below a

certain load current. Similarly, decreasing L will necessarily increase ∆I, and so at some

point we can expect the ratio ∆I/IDC (i.e. r) to try and become greater than 2 (implying

DCM).

However, as far as the third method of entering DCM mentioned above, we should realize

that solely increasing the input voltage just might not do the trick! DCM or BCM can only

happen under an input (line) variation, provided the load current is simultaneously below

a certain value to start with (the value being dependent on L).

92



DC-DC Converter Design and Magnetics

It is instructive to study the three topologies separately in this regard. Note that the general

equation for r is

r =
VON × D

IL × L × f
(any topology, any mode)

Applying the voltseconds law in CCM (or BCM), we also get

r =
VOFF × (1 − D)

IL × L × f
(any topology, CCM or BCM only)

a) From the plots of r in Figure 2-4, we see that both the buck and the buck-boost

have the highest value of r when D approaches zero, i.e. at maximum input voltage.

For these topologies, the equation for r (derivable from the more general equation

for r just given immediately above) is

r =
VO

IO × L × f
(1 − D) (Buck)

r =
VO

IO × L × f
(1 − D)2 (Buck-Boost)

So putting r = 2 and D = 0 (i.e. highest input voltage plus BCM), we get the

limiting condition

IO =
1

2
×

VO

L × f
(Buck and Buck-Boost)

Therefore, for these two topologies, if IO is greater than the above limiting value,

we will always remain in CCM, no matter how high we increase the input voltage.

b) Coming to the boost, the situation is not so obvious. From Figure 2-4, we see that

r peaks at D = 0.33 (corresponding to the input being exactly two-thirds of the

output). So the boost is most likely to enter DCM at D = 0.33 — not say, at D = 0 or

D = 1. We can derive the following (exact) equation for r

r =
VO

IO × L × f
D × (1 − D)2 (Boost)

93



Chapter 2

So putting D = 0.33, and r = 2 in this equation, we get the following limiting

condition

IO =
2

27
×

VO

Lf
(Boost)

Therefore, for the boost topology, if IO is greater than this value, we will always

remain in CCM, no matter how high we increase the input voltage.

Note that, if we do manage to enter DCM, the most likely input point for this to

happen is an input of 0.67 times the output. In other words, if we are not in DCM

at this particular input voltage, we can be sure we will be in CCM throughout the

entire input range (whatever it may be).

Setting r to Values Higher Than 0.4 When Using Low-ESR Capacitors

Nowadays, with improvements in capacitor technology, we are seeing a new generation of

very ‘low-ESR’ capacitors — like monolithic multilayer ceramic capacitors (‘MLCs’ or

‘MLCCs’), polymer capacitors, and so on. Due to their extremely low ESRs, these capacitors

usually have very high ripple (RMS) current ratings. Therefore, the required size of such

capacitors in any application is no longer dictated by their ripple current handling capability.

In addition, these capacitors also have almost no ageing characteristics (or lifetime issues)

that we need to account for beforehand in the design (as we customarily do for electrolytic

capacitors — that can “dry out” over time). Further, due to their very high dielectric

constant, these new capacitors have also become very small in size. So in fact nowadays,

increasing r may not necessarily cause a noticeable increase in the space occupied by the

capacitors (or size of converter). On the other hand, increasing r may still lead to a relatively

significant reduction in size of the inductor.

Summing up, with modern capacitors to the rescue, it may start making perfect sense to

increase r from its traditional “optimum” of 0.4, to say around 0.6 to 1 on occasion

(provided other considerations do not restrict this). If we do so, Figure 2-6 tells us, we can

still get an additional 30 to 50% reduction in the size of the inductor. And that is certainly

not insignificant, provided of course that that advantage is not offset by having to use larger

capacitors in the bargain!

Setting r to Avoid Device “Eccentricities”

Surprisingly, device eccentricities may on occasion play a part in defining the limits of r too.

For example in Figure 2-8 we have presented the current limit plot of an integrated

high-voltage flyback switcher IC called the “Topswitch®.” On it we have superimposed

a typical switch current waveform, just to make things a little clearer.
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Figure 2-8: The ‘Initial Current Limit’ of the Topswitch®

We see that surprisingly, the current limit of this device is time-dependent for about 1.5 µs

after the turn-on transition — something we don’t intuitively ever expect. This ‘initial

current limit’ of the device occurs just as its internal current limit comparator starts to come

out of its (valid) ‘leading edge blanking’ time. As mentioned, during this blanking time the

IC is just “not looking” at the current at all to avoid spurious triggering on the noise edge of

the turn-on transition. But the problem is that once the current limit circuit gets down to

monitoring the switch current again, it takes a certain time for the current limit threshold to

settle down — and during this time it can be triggered at only about 75% of the supposed

current limit!

Looking at the switch (or inductor) current waveform, we know that the current at the

moment the switch turns ON is always less than the average value by the amount ∆I/2.

In other words this trough (valley) current ‘ITR’ is related to r according to the equation

ITR = IL ×
(

1 −
r

2

)

We realize that to avoid hitting the initial current limit of the device, we need to ensure that

the trough falls below 0.75 × ICLIM. So

ITR = IL ×
(

1 −
r

2

)

≤ 0.75 × ICLIM
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Now, we are assuming the power supply is at maximum load in this analysis. Therefore, the

peak current is set equal to the current limit ICLIM

IPK = IL ×
(

1 +
r

2

)

= ICLIM

Therefore equating the two equations above, we get the limiting condition for r

(

1 −
r

2

)

≤ 0.75 ×
(

1 +
r

2

)

or

r ≥ 0.286

Since r in any case is typically set to about 0.4, we should normally have no trouble with this

“initial current limit” issue. However, note that on finer examination of the electrical tables

of the datasheet, this 0.75 × factor is specified only at 25◦C. Unfortunately, very few power

devices stay at 25◦C for long! So, the bottom line is that, we, as designers, do not really

know the value of the current limit as the device heats up. Yes, we can certainly make an

educated guess, possibly leave an additional safety margin when fixing r, and certainly, we

may face no problem whatsoever. But the truth is we are on our own now — the vendor has

not provided the requisite data (in the form of guaranteed limits within the electrical tables).

Setting r to Avoid Subharmonic Oscillations

Looking at Figure 2-9, we see that in any converter, the output voltage is first compared

against an internal reference voltage. Then, the difference between the two (the ‘error’) is

filtered, amplified, and inverted by an ‘error amplifier,’ the output of which (the ‘control

Figure 2-9: The Pulse Width Modulator Section of a Power Converter
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voltage’) is fed to one of the two inputs of a ‘pulse width modulator’ (PWM) comparator. On

the other input of this PWM comparator, a ramp is applied, and this produces the switching

pulses. So for example, if the error at the output increases, the control voltage will decrease,

and the duty cycle will thus decrease in an effort to reduce the output voltage. That is how

regulation usually works.

In voltage mode control, the ramp applied to the PWM comparator is derived from an

internal (fixed) clock. However in current mode control, it is derived from the inductor

current (or switch current). And the latter leads to a rather odd situation where even a slight

disturbance in the inductor current waveform can become worse in the next cycle (see upper

half of Figure 2-10).

Eventually, the converter may lapse into a strange “one pulse wide, one pulse narrow”

switching waveform. This represents an operating mode that is definitely not “legitimate” or
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Figure 2-10: Subharmonic Instability in Current Mode Control, and Avoiding It By

Slope Compensation

97



Chapter 2

desirable for several reasons — in particular, the output voltage ripple is now much higher,

and the loop response is severely degraded.

To get the disturbance to decrease every cycle and eventually die out, it can be shown that

we need to do one of two things. Actually, both methods effectively amount to mixing

a little voltage-mode control into current-mode control. So

a) Either we add a small fixed (clock-derived) voltage ramp to the sensed voltage ramp

(derived from the inductor/switch)

b) Or we subtract the same fixed voltage ramp from the control voltage (output of error

amplifier)

As we can see from Figure 2-11, both are equivalent. That is in fact not surprising at all,

considering that both the ramp and the control voltage go to the pins of a comparator. So if

we compare a signal A + B with a signal C, that is exactly equivalent to comparing A to

C − B. And in both cases, equality at the input pins is established when A + B = C.

This technique is called ‘slope compensation,’ and is the most recognized way of quenching

the alternate wide and narrow pulsing (or ‘subharmonic instability’) associated with

current-mode control (see lower half of Figure 2-10).

It can be shown that to avoid subharmonic instability, we need to ensure that the amount of

slope compensation (expressed in A/s) is equal to half the slope of the falling inductor

current ramp, or more. Note that in principle, subharmonic instability can occur only if D

is (close to or) greater than 50%. So slope compensation can be applied either over the full

duty cycle range, or just for D ≥ 0.5 as shown in Figure 2-10. Note that subharmonic

instability can also occur only if we are operating in continuous conduction mode (CCM).

So one way of avoiding it altogether is to operate in DCM.

If the amount of slope compensation is fixed by the controller, then as designers, we need to

personally ensure that the slope of the falling inductor current ramp is equal to twice the

slope compensation — or less (note that we are talking in terms of the magnitudes of the

slopes only). This will in effect dictate a certain minimum value of inductance. And in terms

of r, this tells us that we could have a situation where we may need to set r to less than the

optimum of 0.4 — for example if the control IC has an inadequate amount of built-in slope

compensation.

As a result of more detailed modeling of current-mode control, optimum relationships for the

minimum inductance required (to avoid subharmonic instability) have been generated as

follows

L ≥
D − 0.34

slopecomp
× VIN µH (buck)
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Figure 2-11: Adding a Fixed Ramp to the Sensed Signal, or Modifying

the Control Voltage, Are Equivalent Methods of Slope Compensation

in Current-mode Control

L ≥
D − 0.34

slopecomp
× VO µH (boost)

L ≥
D − 0.34

slopecomp
×
(

VIN + VO

)

µH (buck-boost)

where the slope compensation is in A/µs.

Note that for all these topologies, we have to do the preceding calculation at the maximum

input voltage point at which the duty cycle is greater than 50%, AND we are also

simultaneously in CCM.

More details on subharmonic instability and slope compensation can be found in Chapter 7.
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Quick-selection of Inductors Using “L × I” and “Load Scaling” Rules

Finally, having decided upon the value of r based on all the considerations outlined so far,

we first present a quick method of picking an inductor for a given application. After that we

will proceed to a more detailed analysis and worked example.

As mentioned previously, from the inductor equation V = LdI/dt, we can derive another

useful relationship that we are calling the “L × I” equation

(

L × IL

)

=
Et

r
(any topology)

Symbolically

L × I = voltseconds/
current ripple ratio (any topology)

So if we know the voltseconds (from our application conditions), and have a target value

for r, we can calculate “L × I.” Then knowing I, we can calculate L.

Note that L × I can be visualized as a sort of inductance “per” ampere — except that the

relationship is inverse — that is, if we increase the current, we need to decrease the

inductance (by the same amount). So for example, if we get an inductance of 100 µH for a

2-A application, then for a 1 A application, the inductance must be 200 µH, and for a 4-A

application, the inductance would be 50 µH, and so on.

Note that because the L × I equation doesn’t depend on topology, switching frequency, or on

the specific input/output voltages, we can graph it out universally, as in Figure 2-12. That

helps quickly pick an inductance for any application. Let us now exemplify the L × I

graphical selection method for each topology.

Worked Examples (2, 3, and 4)

Buck: Suppose we have an input of 15–20 V, an output of 5 V, and a maximum load current

of 5 A. What is the recommended inductance if the switching frequency is 200 kHz?

a) We need to start the inductor design at VINMAX (20 V) for a buck.

b) The duty cycle from Table 2-1 is VO/VIN = 5/20 = 0.25.

c) The time period is 1/f = 1/200 kHz = 5 µs.

d) The off-time tOFF is (1 − D) × T = (1 − 0.25) × 5 = 3.75 µs.

e) The voltseconds (calculated using the off-time) is VO × tOFF = 5 × 3.75 = 18.75 µs.
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Figure 2-12: The “L × I” Curves for Quick Selection

of Inductance

f) From Figure 2-12, with r = 0.4, and Et =18.75 µs, we get L × I = 45 µHA.

g) For a 5 A load, IL = Io = 5 A.

h) Therefore, we need L = 45/5 = 9 µH.

i) The inductor must be rated for at least (1 + r/2) × IL = 1.2 × 5 = 6 A.

Summarizing, we need a 9 µH/6 A inductor (or closest available).

Boost: Suppose we have an input of 5 to 10 V, an output of 25 V, and a maximum load current

of 2 A. What is the recommended inductance if the switching frequency is 200 kHz?

a) We need to start the inductor design at VINMIN (5 V) for a boost.

b) The duty cycle from Table 2-1 is (VO − VIN)/VO = (25 − 5)/25 = 0.8.

c) The time period is 1/f = 1/200 kHz = 5 µs.

d) The on-time tON, is D × T = 0.8 × 5 = 4 µs.

d) The voltseconds (calculated using the on-time) is VIN × tON = 5 × 4 = 20 µs.

e) From Figure 2-12, with r = 0.4, and Et = 20 µs, we get L × I = 47 µHA.

f) For a 2 A load, IL = Io/(1 − D) = 2/(1 − 0.8) = 10 A.
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g) Therefore, we need L = 47/10 = 4.7 µH.

h) The inductor must be rated for at least (1 + r/2) × IL = 1.2 × 10 = 12 A.

Summarizing, we need a 4.7 µH/12 A inductor (or closest available).

Buck-boost: Suppose we have an input of 5 to 10 V, an output of –25 V output, and a maximum

load current of 2 A. What is the recommended inductance if the switching frequency is

200 kHz?

a) We need to start the inductor design at VINMIN (5 V) for a buck-boost.

b) The duty cycle from Table 2-1 is VO/(VIN + VO) = 25/(5 + 25) = 0.833.

c) The time period is 1/f = 1/200 kHz = 5 µs.

d) The on-time tON is D × T = 0.833 × 5 = 4.17 µs.

e) The voltseconds (calculated using the on-time) is VIN × tON = 5 × 4.17 = 20.83 µs.

f) From Figure 2-12, with r = 0.4, and Et = 20.83 µs, we get L × I = 52 µHA.

g) For a 2 A load, IL = Io/(1 − D) = 2/(1 − 0.833) = 12 A.

h) Therefore, we need L = 52/12 = 4.3 µH.

i) The inductor must be rated for at least (1 + r/2) × IL = 1.2 × 12 = 14.4 A.

Summarizing, we need a 4.3 µH/14.4 A inductor (or closest available).

The Current Ripple Ratio r in Forced Continuous Conduction Mode (‘FCCM’)

Finally, before we move on to magnetic fields, we make some closing remarks on designing

with forced continuous conduction mode (‘FCCM’).

We had said previously, that by definition, r is defined only for CCM, and therefore cannot

exceed 2 (since that marks the boundary between CCM and DCM). However in synchronous

regulators (with diode replaced or supplanted by a low-drop mosfet across it), we actually

never enter DCM (unless the IC is deliberately designed to mimic that mode on demand). So

now, on decreasing the load, we actually continue to remain in CCM. That is because for

DCM to ever occur, the inductor current must be forced to stay at least for some part of the

switching cycle at zero. And to get that to happen, we need to have a reverse-biased diode

that prevents the inductor current from “going the other way.” But in synchronous regulators,

the mosfet across the diode allows reverse-conduction even if the diode is reverse-biased, so

we do not get DCM.

The CCM-type mode that replaces the DCM mode in synchronous regulators is distinguished

from the usual (normal) CCM mode, by calling it the ‘forced continuous conduction mode’

(FCCM). The main switch is usually identified as the top (or “high-side”) mosfet, whereas
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the mosfet across the diode is called the bottom (or “low-side”) mosfet. Further, in FCCM,

r is legitimately allowed to exceed 2 (see Figure 2-5).

We can visualize FCCM as starting to occur when the load current is decreased sufficiently

to cause part of the inductor current waveform to become “submerged” below ground — that

is, with parts of it having a negative value (inductor current flowing momentarily away from

the load). But note that as long as we are still drawing some load current out of the output

terminals of the converter, the average value of the waveform, IDC (center of ramp), is still

positive — that is, going towards the load — on an average. Further, because IDC is always

proportional to the load current, it can be made to decrease all the way down to zero while

still maintaining CCM. Since the swing in current, ∆I, depends only on the input and output

voltages, which we have assumed have not changed, the ratio r = ∆I/IL not only exceeds 2,

but can in fact become extremely large.

All the basic design equations we can write for the RMS, dc, ac, or peak currents in the

input/output capacitors and the switch, when operating in conventional CCM, apply to the

converter in FCCM too (though there may be some additional losses, as for example when

the current flows through the body diode of the top mosfet). This, despite the fact that r can

now exceed 2. In other words, the CCM equations do not get invalidated in FCCM.

However, a specific computational problem can arise in some cases, because if r is infinite

(zero load current), we can get a singularity — a “0” in the denominator. At first sight, that

seems to make the CCM equations (presented the way we have been doing), unusable. But

one trick we can employ to avoid the singularity is to assume a few milliamperes of

minimum load, however small. Alternatively, we can substitute r = ∆I/IDC back into the

equations, and we will then see that IDC cancels out (does not appear in the denominator

anywhere). Either way, the equations of CCM (see Appendix 2), apply to FCCM too.

Basic Magnetic Definitions

Having understood basic concepts like voltseconds, current components, worst-case voltage,

and also how to do an initial (quick) selection of an off-the-shelf inductor, we will now try

to go inside the magnetic component, so as to learn what happens in terms of the magnetic

fields present inside its core. We will then use this information to do a more complete

validation of a selected off-the-shelf inductor. Then we will find the remaining (worst-case)

stresses of the converter.

At the outset, we should note that in magnetics, there are several different systems of units

in use. This can become very confusing, since even the basic equations look different

depending on the system in use. It is therefore a wise policy to stick to one system of units

all the way through — converting to a different system, if required, only at the very end,

that is, only at the level of numerical results (not at the level of the equations).
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Further, unless otherwise stated, the reader can safely assume we are using the meter-

kilogram-seconds system of units — that is, ‘MKS’ system, also called the ‘SI’ system (for

System International).

Here are the basic definitions:

■ H-field: Also called ‘field strength,’ ‘field intensity,’ ‘magnetizing force,’ ‘applied

field,’ and so on. Its units are A/m.

■ B-field: Also called ‘flux density’ or ‘magnetic induction.’ Units of B are tesla (‘T’)

or webers per square meter (Wb/m2).

■ Flux: This is the integral of B over a given surface area. That is,

φ =
∫

S

BdS Wb

If B is constant over the surface, we get the more common form φ = BA where A is

the area of the surface.

Note: The integral of B over a closed surface is zero since flux lines do not start or end at any

given point but are continuous.

■ B is related to H at any given point by the equation B = µH where µ is the

permeability of the material. Note that later we will use the symbol µ for ‘relative

permeability,’ that is, the ratio of the permeability of the material to that of air. So in

MKS units we should actually preferably write B = µcH, where µc is the

permeability of the core (magnetic material). By definition, µc = µµ0.

■ The permeability of air, denoted by µ0, is equal to 4π × 10−7 Henries/m in MKS

units. In CGS units it is equal to 1. That is why in CGS units µc = µ, where µ is also

automatically the relative permeability of the material (though units are different).

■ Faraday’s law of induction (also called Lenz’s law) relates the induced voltage V that

is developed across the ends of a coil (N turns), to the (time varying) B-field passing

through it. So

V = N
dφ

dt
= NA

dB

dt

■ The “inertia” of a coil to a change in flux through it due to a time varying current

through it is its ‘inductance’ L, defined as

L =
Nφ

I
Henries
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■ Since it can be shown that the flux is proportional to the number of turns N, the

inductance L is proportional to the square of the number of turns. This

proportionality constant is called the ‘inductance index’ and is denoted by ‘AL.’ It is

usually expressed as nH/turns2 (though sometimes it is considered to be mH/1000

turns2, both being numerically the same). So

L = AL × N2 × 10−9 Henries

■ When H is integrated over a closed loop, we get the current enclosed by the loop

∮

Hdl = I Amperes

where the integration symbol above reflects the fact that it is being performed over

a closed loop. This is also called ‘Ampere’s circuital law.’

■ Combining Lenz’s law with the inductor equation V = LdI/dt, we get

V = N
dφ

dt
= NA

dB

dt
= L

dI

dt

■ From this we get the two key equations used in power conversion

∆B =
L∆I

NA
(“voltage independent equation”)

∆B =
V∆t

NA
(“voltage dependent equation”)

The first equation can be written symbolically as

B =
LI

NA
(voltage independent equation)

And the latter equation can be written in a more “power-conversion-friendly” form

as follows

BAC =
VON D

2 × NAf
(voltage dependent equation)

For most inductors used in power conversion, if we reduce the current to zero, the field inside

the core also goes to zero. Therefore, an implicit assumption of complete linearity is also

usually made — that is, B and I are considered proportional to each other as shown in

Figure 2-13 (unless of course the core starts saturating, at which point, all bets are off!). The

voltage independent equation can then be expressed as any of the equations shown in the

figure — in other words, this proportionality applies to the peak values of current and field,
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time

time
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BPP BPKBAC BDC

IPP IPKBDC IDC
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∆B

NA

L

I

B

NA

L

=

====≡

Current ∆I

∆I

B

I

B-field

B ∝ I
Proportionality Constant is:

NA

L

(symbolically)

Figure 2-13: B and I Can Be Usually Considered to Be

Proportional to Each Other

their average values, their ac values, their dc values, and so on. The constant of

proportionality is equal to

L

NA
(Proportionality constant linking B and I)

where N is the number of turns and A the actual geometrical cross-sectional area of the core

(its center limb usually, or simply the ‘effective area’ Ae given in the datasheet of the core).

Worked Example (5) — When Not to Increase the Number of Turns

Note that the voltage-independent equation is useful if for example we want to do a quick

check to see if our core may be saturating. Suppose we are custom-designing our inductor.

We have wound 40 turns on a core with an area of A = 2 cm2. Its measured inductance
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is 200 µH, and the peak inductor current in our given application is 10 A. Then the peak flux

density can be calculated as follows

BPK =
L

NA
IPK =

200 × 10−6

40 ×
2

104

= 0.25 teslas

Note that we have converted the area to m2 in the above equation, because we are using the

MKS version of the equation.

For most ferrites, an operating flux density of 0.25 T is acceptable, since the saturation flux

density is typically around 0.3 T.

Based on the B and I linearity, we can also linearly extrapolate and thus conclude that the

peak current in our application should under no condition be allowed to exceed

(0.3/0.25) × 10 = 12 A, because at 12 A, the field will be 0.3 T, and the core will then start

to saturate.

But note that nor should the number of turns be increased any further (at 12 A). Looking

at the BPK equation above, it seems at first sight that increasing the number of turns will

reduce the B-field. However, inductance increases as N2 (from the AL equation given

previously), so the numerator will increase much faster than the denominator. Therefore, in

reality, the B-field will increase, rather than decrease if we increase the number of turns, and

we know we can’t afford to exceed 0.3 T.

In other words — we usually tend to instinctively rely on the current-limiting properties of

an inductor. And in general, increasing the inductance will certainly help increase the

inductance and therefore help limit the current. However, if we are already close to the

energy-storage limits of the material of the core, we have to be very careful — a few extra

turns could take us “over the edge” (saturation), and then in fact, the inductance will start

collapsing rather than increasing.

We should also not forget our basic premise of inductors in power conversion — for a given

application, a large inductance does usually end up requiring a large inductor! So, increasing

the number of turns, without increasing the size, may naturally turn out to be a recipe for

disaster.

The “Field Ripple Ratio”

Since I and B are proportional to each other, and r happens to be a ratio, we realize that r

must apply equally to the field components as it does to the current components. So, in that

sense, r can be looked at as a “field ripple ratio” too. We can therefore extend the definition
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of r as follows

r = 2
IAC

IDC
= 2

BAC

BDC

Therefore, r can also be used to relate the peak, ac, and dc values of both the current and

field according to the equations

BDC =
2 × BPK

r + 2
or IDC =

2 × IPK

r + 2

BAC =
r × BPK

r + 2
or IAC =

r × IPK

r + 2

We can relate the peak to the swing too as follows:

BPK =
r + 2

2 × r
× ∆B or IPK =

r + 2

2 × r
× ∆I

The latter form will in fact be used later by us in the worked example that will follow.

The Voltage Dependent Equation in Terms of Voltseconds (MKS units)

When discussing the current swing ∆I, we related it to the voltseconds. Now we can do the

same for the B-field

∆B =
L × ∆I

N × A
=

Et

N × A
teslas

So as for current, the voltseconds in our application also determines the swing of the

magnetic field — though not its dc level.

CGS Units

We may personally prefer to use the more broadly accepted MKS units, but we have to deal

with the ground reality of the situation — that certain vendors (especially North American

ones) still use ‘CGS’ (centimeter-gram-seconds) units. Since we would certainly be

evaluating and looking at their datasheets too, we will need to use the conversions in

Table 2-4.

In particular, we should remember that the saturation flux density BSAT, which is around

0.3 T (300 mT) for most ferrites, is 3000 gauss (‘G’) in CGS units. Also note that

permeability of a material in MKS units needs to be divided by 4π × 10−7 to get the

permeability in CGS units. The reason for that is that permeability of air is set to 1 in CGS

units, but in MKS units it is (numerically) equal to 4π × 10−7.
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Table 2-4: Magnetic systems of units and their conversions

CGS units MKS Units Conversions

Magnetic Flux Line (or Maxwell) Weber 1 Weber = 106 Lines

Flux Density (B) Gauss Tesla (or Wb/m2) 1 Tesla = 104 Gauss

Magnetomotive

force

Gilbert Ampere-turn 1 Gilbert = 0.796 Ampere-turn

Magnetizing

Force Field (H)

Oersted Ampere-turn/meter 1 Oersted = 1000/4π =
79.577 Ampere/meter

Permeability Gauss/Oersted Weber/m-Ampere-turn µMKS = µCGS × (4π × 10−7)

The Voltage Dependent Equation in Terms of Voltseconds (CGS units)

It is also therefore helpful to know how to write the voltage dependent equation, (expressed

in terms of Et), in CGS units instead.

So, converting A in m2 to A in cm2, we get from the previous equation

∆B =
100 × Et

N × A
gauss (A in cm2)

Core Loss

The core loss depends on various factors — the flux swing ∆B, the (switching) frequency f,

and the temperature (though we usually ignore this latter dependency for most estimates).

Note however, that when vendors of magnetic materials express the dependency of core

loss on a certain “B,” what they are really talking about is ∆B/2, that is, BAC. This

happens to be the usual industry convention, but it is often quite confusing to power supply

designers. In fact, there is more confusion caused by the fact that “B” may be expressed by

the vendor, either in terms of gauss or in teslas. In fact, the dissipation also (due to the core

loss) may be expressed either as mW or as W.

First let us look at the general form of core loss.

Core Loss = (Core Loss per unit volume) × Volume where ‘core loss per unit volume’ is

expressed generally as

constant t1 × Bconstant t2 × f constant t3

In Table 2-5 we have indicated the three main systems of units in use for describing the core

loss per unit volume, and also provided the rules for converting between them. Note we are

using ‘Ve’ (effective volume) here — this can usually be considered to be simply the actual

physical volume of the core, or we can just look it up in the datasheet of the core.
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Table 2-5: The different systems in use for describing core loss (and their
conversions)

Constant exponent of B exponent of f B f Ve Units

System A Cc Cb Cf Tesla Hz cm3 W/cm3

=
C × 104×p

103
= p = d

System B C p d Gauss Hz cm3 mW/cm3

=
Cc × 103

104×Cb
= Cb = Cf

System C Kp n m Gauss Hz cm3 W/cm3

=
C

103
= p = d

In Table 2-6 we have provided values for the constants in the core loss equation in one of

these systems of units, besides some other operating limits. The reader is however advised to

confirm these values from the respective vendors.

Worked Example (6) — Characterizing an Off-the-shelf Inductor in
a Specific Application

Now we will present the “general inductor design procedure” we have been talking about.

We will be considering a wide-input voltage range here. The procedure is to be carried out at

the “worst-case input voltage end” with respect to the peak current. The basic purpose is to

ensure that we are avoiding inductor saturation under normal operation. So for the buck, we

will work at VINMAX, since that is the point at which the peak current is at its maximum. For

a boost or a buck-boost, we need to conduct this procedure at VINMIN, not VINMAX, since

that is the worst-case input voltage end with regard to the peak current, for these

topologies.

The procedure will be illustrated by means of a step-by-step worked example. Though it is

carried out for a buck, throughout the calculation, we will indicate precisely how the

procedure and equations may need to change, were this a boost or a buck-boost. So for

example, to the right of any equation presented below, we have indicated in brackets, which

topology it is valid for.

A buck converter has an input of 18–24 V, an output of 12 V, and a maximum load of 1 A. We

desire a current ripple ratio of 0.3 (at maximum load). We assume VSW = 1.5 V, VD = 0.5 V,

and f = 150,000 Hz. An off-the-shelf inductor is to be selected and characterized for this

application.
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Table 2-6: Typical core loss coefficients of common materials

Material Grade C p (Bp) d (f d) µ ≈ BSAT ≈ fMAX

(Vendor) (gauss) (MHz)

Powdered Iron 8 4.3E−10 2.41 1.13 35 12500 100

(Micrometals) 18 6.4E−10 2.27 1.18 55 10300 10

26 7E−10 2.03 1.36 75 13800 0.5

52 9.1E−10 2.11 1.26 75 14000 1

Ferrite F 1.8E−14 2.57 1.62 3000 3000 1.3

(Magnetics Inc) K 2.2E−18 3.1 2 1500 3000 2

P 2.9E−17 2.7 2.06 2500 3000 1.2

R 1.1E−16 2.63 1.98 2300 3000 1.5

Ferrite 3C81 6.8E−14 2.5 1.6 2700 3600 0.2

(Ferroxcube) 3F3 1.3E−16 2.5 2 2000 3700 0.5

3F4 1.4E−14 2.7 1.5 900 3500 2

Ferrite (TDK) PC40 4.5E−14 2.5 1.55 2300 3900 1

PC50 1.2E−17 3.1 1.9 1400 3800 2

Ferrite (Fair-Rite) 77 1.7E−12 2.3 1.5 2000 3700 1

Note: (a)E−(b) is the same as (a)×10−(b)

As mentioned, all the steps involved in the “general inductor design procedure” below are

being carried out at a certain “VIN” — which is the maximum input voltage for a buck, and

minimum input voltage for a boost or a buck-boost.

Estimating Requirements

For a buck regulator, the duty cycle is (now including the switch and diode forward drops)

D =
VO + VD

VIN − VSW + VD
(buck)

So

D =
12 + 0.5

24 − 1.5 + 0.5
= 0.543

(For boost, use D =
VO − VIN + VD

VO − VSW + VD
, for buck-boost, use D =

VO + VD

VIN + VO − VSW + VD
).

The switch on-time is therefore

tON =
D

f
⇒

0.543

150000
⇒ 3.62 µs (any topology)

tON = 3.62 µs
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The voltage across the inductor when the switch is ON is

VON = VIN − VSW − VO = 24 − 1.5 − 12 = 10.5 V (buck)

(For boost and buck-boost, use VON = VIN − VSW).

So the voltsµseconds is

Et = VON × tON = 10.5 × 3.62 = 38.0 Vµs (any topology)

Using the “L × I” equation

(

L × IL

)

=
Et

r
(any topology)

we get

(

L × IL

)

=
38

0.3
= 127 µH-A

But the average inductor current is

IL = IO (buck)

(For a boost and buck-boost, use IL =
IO

1 − D
).

Therefore

L =
(

L × IL

)

IL
≡
(

L × IO

)

IO
=

127

1
= 127 µH (any topology)

The peak current will be 15% higher than IL for r = 0.3. This follows from

IPK =
(

1 +
r

2

)

× IL = 1.15 × 1 = 1.15 A (any topology)

We now pick a promising off-the-shelf inductor — the PO150 from Pulse Engineering. Its

inductance is 137 µH, which is close to our requirement of 127 µH, and it is rated for a

continuous dc of 0.99 A, which is very close to our requirement of 1 A. Its datasheet is

reproduced in Table 2-7. Note that the other conditions mentioned by the vendor do not

match our application (but that is not unexpected — what are the chances of an off-the-shelf

inductor that precisely matches a given application?). Nevertheless we can perform a full

analysis, and thus either validate, or invalidate our choice of component.
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Table 2-7: Specifications of a selected inductor (the PO150)

IDC (A) LDC (µH) Et (Vµs) DCR (m�) Et100 (Vµs)

0.99 137 59.4 387 10.12

■ The inductor is such that 380 mW dissipation corresponds to 50◦C rise in

temperature.

■ The core loss equation for the core is 6.11 × 10−18 × B2.7 × f 2.04 mW where f is

in Hz and B is in gauss.

■ Et100 is the Vµsecs at which “B” is 100 gauss.

■ “B” is BAC, i.e. ∆B/2.

■ Rated frequency of operation is 250 kHz.

Current Ripple Ratio

We use the “L × I” rule

(

L × IL

)

=
Et

r
(any topology)

So

r =
Et

L × IL
(any topology)

The inductor has been designed by its vendor, for an r of

r =
59.4

137 × 0.99
= 0.438

In our application we will get

r =
38

137 × 1
= 0.277

This is very close to (and less than) our target of r = 0.3, and is therefore acceptable.

Peak Current

The inductor has been designed for a peak current of

IPK =
(

1 +
r

2

)

× IL =
(

1 +
0.438

2

)

× 0.99 = 1.21 A (any topology)
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In our application we will get

IPK =
(

1 +
r

2

)

× IL =
(

1 +
0.277

2

)

× 1 = 1.14 A (any topology)

The peak current in our application is considered “safe,” being less than what the inductor

was originally designed for. Therefore, we can safely assume that the peak B-field of our

application also must be within the design limits of the inductor. However it is instructive to

confirm that directly, as we will do next.

Note that the frequency has not even entered the picture directly so far, since voltµseconds is

all that really matters to an inductor. Different applications, with the same dc level of

current, and the same voltseconds, are essentially the same application from the viewpoint

of the inductor. It just “doesn’t care” for example, what topology this is, or what is the duty

cycle. It doesn’t even care about the frequency directly (though the exception to this is the

core loss term, because that depends not only on the voltseconds, i.e. the current swing, but

on the frequency too). However, we will also see that the core loss term is much smaller

anyway, compared to the copper loss. So for all practical purposes, if the rated voltseconds

of a given inductor (current swing), and its dc current rating correspond to the voltseconds

and dc current of our application, we are almost certainly going to be fine right off-the-bat.

However, even if the rated voltseconds and dc level are quite different, as long as the peak

flux density is close to or less than the rated value, we are OK from the saturation point of

view. That’s a good start, and we can then proceed to do a full validation analysis — of the

temperature rise and so on under our specific application conditions.

Flux Density

The vendor provides the following information (see Table 2-7):

Et100 = 10.12 Vµs

This means that the voltµseconds that produces a BAC of 100 gauss is 10.12. Since

BAC = ∆B/2, the corresponding ∆B is 200 gauss (for every 10.12 Vµs).

We had previously presented the following relationship between ∆B and Et:

∆B =
100 × Et

N × A
gauss (any topology)

Since ∆B and Et are proportional to each other (for a given inductor), we can conclude that

the inductor has been designed for a flux density swing of

∆B =
Et

Et100
× 200 =

59.4

10.12
× 200 = 1174 gauss (any topology)
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and a peak flux density of

BPK =
r + 2

2 × r
× ∆B =

0.438 + 2

2 × 0.438
× 1174 = 3267 gauss (any topology)

In our application this will give us a swing of

∆B =
Et

Et100
× 200 =

38

10.12
× 200 = 751 gauss (any topology)

and a peak of

BPK =
r + 2

2 × r
× ∆B =

0.277 + 2

2 × 0.277
× 751 = 3087 gauss (any topology)

We see that the peak field in our application is within the design limits of the inductor, as

expected, so we need not worry about core saturation. This is a basic qualification the

inductor must pass before we can proceed with the rest of the analysis.

Note that the proportionality constant connecting B and I is

L

NA
=

BPK

IPK
=

3087

1.14
= 2708 gauss/A (any topology)

Note: If we break open the inductor and measure the number of turns, and also estimate/measure the

cross-sectional area of the central limb of its core, we can verify this number.

Copper Loss

From the equations contained in Figure 2-14, we can calculate the RMS of the inductor

current waveform. The inductor was designed for an RMS squared of

IRMS
2 =

∆I2

12
+ IDC

2 = IDC
2

(

1 +
r2

12

)

= 0.992

(

1 +
0.4382

12

)

= 0.996 A2 (any topology)

and a copper loss of

PCU = IRMS
2 × DCR = 0.996 × 387 = 385 mW (any topology)

Whereas in our application we will get

IRMS
2 = IL

2

(

1 +
r2

12

)

= 12

(

1 +
0.2772

12

)

= 1.006 A2 (any topology)
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Figure 2-14: RMS Value of an Inductor Current Waveform

and a copper loss of

PCU = IRMS
2 × DCR = 1.006 × 387 = 389 mW (any topology)

Core Loss

Note that the vendor has already factored in the volume of the core and thus provided the

following overall equation for the core loss of the inductor:

PCORE = 6.11 × 10−18 × B2.7 × f 2.04 mW (any topology)

where f is in Hz and B is in gauss. Note that “B” is ∆B/2 here as per convention.

So the core loss that the inductor was originally designed for is

PCORE = 6.11 × 10−18 ×
(

1174

2

)2.7

×
(

250 × 103
)2.04

= 18.8 mW

Whereas in our application

PCORE = 6.11 × 10−18 ×
(

751

2

)2.7

×
(

150 × 103
)2.04

= 2 mW
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In general, we will find that in most ferrite-based off-the-shelf inductors, the designed core

loss is only 5 to 10% of the total inductor loss (copper-plus-core loss). However, if the

inductor uses a ‘powdered iron’ core, this number may rise to about 20 to 30%.

Note: Powdered iron cores tend to saturate more “softly” than ferrites, and that usually enhances their

ability to withstand severe abnormal currents without leading to immediate switch destruction. On the other

hand, powdered iron cores may have “lifetime” issues caused by slow degradation of the organic binder that

holds their iron particles together. The vendor must be consulted about this possibility, and the steps

necessary to avoid a premature end to our converter!

Temperature Rise

The vendor has stated that the inductor is such that 380 mW dissipation corresponds to 50◦C

rise in temperature. In effect this tells us that the thermal resistance of the core ‘Rth’ is

Rth =
∆T

W
=

50

0.38
= 131.6◦C/W (any topology)

The inductor was originally designed for a total loss of

P = PCORE + PCU = 385 + 18.8 = 403.8 mW (any topology)

This would have given a temperature rise of

∆T = Rth × P = 131.6 × 0.404 = 53◦C (any topology)

In our application

P = PCORE + PCU = 389 + 2 = 391 mW

This will give a temperature rise of

∆T = Rth × P = 131.6 × 0.391 = 51◦C

Provided we accept this temperature rise in our application (that will depend on our maximum

operating ambient temperature), we can validate the chosen inductor. We have already

confirmed it does not saturate in our application, and further, the current ripple ratio it

provides is acceptable too.

This completes the general inductor design procedure.
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Calculating the “Other” Worst-case Stresses

Having validated our choice of inductor, we can look a little more closely at the important

issue of how the wide-input range impacts the other key parameters and stresses in our

proposed converter. This also helps in correctly selecting the other power components.

Worst-case Core Loss

In the above so-called “general inductor design procedure,” we have actually been working

at VINMAX for a buck, and at VINMIN for a boost or buck-boost. The reason was that the

inductor sees the highest peak current, at this voltage end, so we have to “insure” the

magnetics design at this particular point. But this point may not be the worst-case point for

the other stresses in the power supply, and we need to start understanding that clearly now.

Let us first focus on the inductor itself. The point at which we are doing the inductor design

will usually always give us the worst-case temperature rise too. But that is because the IDC

component of the inductor current is the dominant term. If for any reason, we are interested in

knowing what the maximum core loss component of the total loss is, we should realize,

looking back at Figure 2-4, that though the dc level may be going up, the ac component (on

which the core loss term depends) may be decreasing (or even having an odd-shaped profile,

as for the boost).

From Figure 2-4, we see that IAC increases at high input voltages for both the buck and the

buck-boost. For a buck, the general inductor design calculation above was carried out at

VINMAX and that just happens to be the point at which the core loss is a maximum too.

Therefore, calculating the core loss at VINMAX as we did in the previous example does

coincidentally also give us the worst-case core loss.

However, if we were doing the calculation for a buck-boost, our general inductor design

calculation would be being carried out at VINMIN. But the core loss is a maximum at

VINMAX. Similarly, for a boost, we would also be carrying out the general inductor design

calculation at VINMIN. But the worst-case core loss for this topology occurs at D = 0.5

(see IAC curve for boost in Figure 2-4). From the duty cycle equation of the boost, D = 0.5

corresponds to an input voltage equal to half the output.

Note: If for the boost, the input range of the given application does not include the D = 0.5 point, we need

to identify which voltage end of the range provides a duty cycle closest to D = 0.5. And we need to then do

the worst-case core loss calculation at that end (if so desired).

Generally, the core loss term, being such a small component of the total loss, is of no great

concern to us, so we won’t even bother to do a numerical calculation here. But the general

procedure to handle such cases will become apparent as we study the other worst-case loss

terms of the converter below.
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But first let us now start annotating (or subscripting) some of the terms derived so far, just

for gaining clarity in the discussion to follow. We should be clear that

■ For a buck: The general inductor design procedure was carried out at VINMAX, that

is, DMIN. So for example, the r we have set to 0.3–0.4 (and possibly re-calculated

with the selected inductor) is actually ‘r DMIN’ to be precise. Similarly, the

voltseconds, Et, we have calculated so far is actually ‘EtDMIN.’

■ For a boost and buck-boost: If a similar general inductor design procedure were

carried for these topologies, it would be done at VINMIN, that is, DMAX. So for

example, the r we would have set to 0.3–0.4 (and possibly re-calculated with the

selected inductor) would actually be ‘r DMAX.’ Similarly, the voltseconds, Et, we

would have calculated so far is actually ‘EtDMAX.’

We need to keep these distinctions in mind, otherwise the following discussion can become

confusing to no end!

Worst-case Diode Dissipation

The general equation for the average diode current is

ID = IL × (1 − D) (any topology)

or equivalently

ID = IO × (1 − D) (buck)

ID = IO (boost and buck-boost)

This leads to a diode dissipation of

PD = VD × ID = VD × IO ×
(

1 − D
)

(buck)

PD = VD × ID = VD × IO (boost and buck-boost)

For the buck, as the input voltage is raised, the duty cycle falls, and because the average

inductor current IL remains fixed at IO, the average diode current increases. That means we

get the worst-case diode current (and dissipation) at VINMAX for a buck. So we can just use

the numbers we already have derived from carrying out the general inductor design procedure

(at VINMAX).

For the boost and the buck-boost, as the input is raised, D decreases, but the average

inductor current also falls, thereby keeping ID always fixed at IO. (We should remember that

the boost and the buck-boost are unique in the sense that all the output current must pass
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through the diode when it conducts, so ID must necessarily be equal to IO at all times). That

means the diode dissipation is independent of input voltage for these topologies. So we can,

if we want, just use the numbers we already have derived from carrying out the general

inductor design procedure (at VINMIN).

Finally, for the ongoing buck converter design example, the calculation is as follows:

PD = VD × IO × (1 − DMIN) = 0.5 × 1 × (1 − 0.543) = 0.23 W (buck)

Note that the general diode selection procedure is as follows:

The rule-of-thumb is to pick a diode with a current rating at least equal to, but preferably at

least twice the worst-case average diode current given below (for low losses, since the diode

forward drop decreases substantially if its current rating is increased):

■ For a buck — maximum diode current is IO×(1 − DMIN).

■ For a boost — maximum diode current is IO.

■ For a buck-boost — maximum diode current is IO.

Its voltage rating is usually picked to be at least 20% higher (∼ “80% derating” — i.e. safety

margin) than the worst-case diode voltage given below:

■ For a buck — maximum diode voltage is VINMAX.

■ For a boost — maximum diode voltage is VO.

■ For a buck-boost — maximum diode voltage is VO + VINMAX.

Worst-case Switch Dissipation

For all topologies the average input current (and therefore switch current) must increase as

the input voltage decreases, so as to continue to satisfy the basic power requirement

expressed by PIN = IIN × VIN = PO/η (where η is the efficiency, assumed fixed). Therefore,

the switch RMS current is a maximum at VINMIN (i.e. DMAX) for all topologies.

For the boost and buck-boost, the general inductor design procedure is at DMAX in any case.

So we can directly use the numbers derived from that, to find the switch RMS current using

the equation below:

IRMS_SW = IL_DMAX ×

√

DMAX ×
(

1 +
rDMAX

2

12

)

(any topology)
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where ILDMAX and rDMAX are, respectively, the average inductor current and current ripple

ratio at DMAX (i.e. at VINMIN). DMAX can be calculated using

DMAX =
VO − VINMIN + VD

VO − VSW + VD
(boost)

DMAX =
VO + VD

VINMIN + VO − VSW + VD
(buck-boost)

and we should remember that

IL_DMAX =
IO

1 − DMAX
(boost and buck-boost)

For the buck, the general inductor design procedure is at DMIN. So we cannot directly use the

numbers derived from that to find the switch RMS current (by the previously given

equation). We need to calculate rDMAX, but we only know rDMIN so far. Let us proceed with

the required steps.

rDMAX =
EtDMAX

L × IL
(any topology)

In other words, if we know the voltseconds at VINMIN, we will know the corresponding

current ripple ratio rDMAX for the chosen inductor. But first we have to calculate

DMAX:

DMAX =
VO + VD

VINMIN − VSW + VD
=

12 + 0.5

18 − 1.5 + 0.5
= 0.735 (buck)

The switch on-time is therefore

t ON_DMAX =
DMAX

f
⇒

0.735 × 106

150,000
= 4.9 µs (any topology)

The voltage across the inductor when the switch is ON is

VON_DMAX = VINMIN − VSW − VO = 18 − 1.5 − 12 = 4.5 V (buck)

So the voltsµseconds is

Et DMAX = VON_DMAX × t ON_DMAX = 4.5 × 4.9 = 22 Vµs (any topology)
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Therefore

rDMAX =
EtDMAX

L × IO
=

22

137 × 1
= 0.16 (buck)

Finally, we are in a position to calculate the switch dissipation

IRMS_SW = IO ×

√

DMAX ×
(

1 +
rDMAX

2

12

)

= 1 ×

√

0.735 ×
(

1 +
0.162

12

)

= 0.86 A (buck)

If for example, if the drain-to-source resistance is 0.5 Ω, the dissipation in the mosfet is

PSW = IRMS_SW
2 × RDS = 0.862 × 0.5 = 0.37 W (any topology)

Note that the general switch selection procedure is as follows:

The rule-of-thumb is to pick a switch with a current rating at least equal to, but preferably at

least twice the worst-case RMS switch current calculated above (for low losses, since the

switch forward drop will decrease substantially if its current rating is increased)

Its voltage rating is usually picked to be at least 20% higher (∼ “80% derating” — i.e. safety

margin) than the worst-case switch voltage given below

■ For a buck — maximum switch voltage is VINMAX.

■ For a boost — maximum switch voltage is VO.

■ For a buck-boost — maximum switch voltage is VO + VINMAX.

Worst-case Output Capacitor Dissipation

Coincidentally, the worst-case output capacitor RMS current for all three topologies occurs at

the same point at which the general inductor design procedure for each of them is carried out.

In other words, this point is VINMAX for the buck, and VINMIN for the boost and buck-boost.

So we should have no trouble, directly using the numbers derived from the general inductor

design procedure, to find the worst-case RMS current of the output capacitor, using the

equations below.

For the buck, we get

IRMS_OUT = IO ×
rDMIN√

12
= 1 ×

0.277
√

12
= 0.08 A (buck)
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So for example, if the ESR of the output capacitor is 10 Ω, we get the dissipation

PSW = IRMS_OUT
2 × ESR = 0.082 × 10 = 0.064 W (any topology)

For the boost and the buck-boost, we need to use

IRMS_OUT = IO ×

√

√

√

√

√

DMAX +
rDMAX

2

12
1 − DDMAX

(boost and buck-boost)

Note that the general output capacitor selection procedure is as follows:

The rule-of-thumb is to pick an output capacitor with a ripple current rating equal to or

greater than the worst-case RMS capacitor current calculated above. Its voltage rating is

usually picked to be at least 20 to 50% higher than what it will see in the application (i.e. VO

for all topologies). The output voltage ripple of the converter is also usually a concern. The

total peak to peak output voltage ripple produced by the output capacitor is equal to its ESR

multiplied by the worst-case peak to peak output current given below (ignoring the ESL of

the capacitor)

■ For a buck — peak to peak capacitor current is IO × rDMIN. This is the same point at

which the general inductor design procedure would have been carried out, and so

rDMIN is already known.

■ For a boost — peak to peak capacitor current is IO × (1 + rDMAX/2)/(1 − DMAX).

This is the same point at which the general inductor design procedure would have

been carried out for this topology, so rDMAX and DMAX are already known.

■ For a buck-boost — peak to peak capacitor current is IO × (1 + rDMAX/2)/

(1 − DMAX). This is the same point at which the general inductor design procedure

would have been carried out for this topology, so rDMAX and DMAX are already

known.

Worst-case Input Capacitor Dissipation

For the buck-boost, things are much simpler, since the worst-case input capacitor RMS

current occurs at DMAX, which is also the point at which we carry out the general inductor

design procedure. So all the numbers available from that procedure can be used directly in

the equation below

IRMS_IN = IL_DMAX ×

√

DMAX ×
(

1 − DMAX +
rDMAX

2

12

)

(buck-boost)
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For the buck and the boost, the worst-case input RMS capacitor current occurs at D = 0.5.

So we have to calculate ‘r50,’ that is, the current ripple ratio at D = 50% (or whatever

voltage within the specified input range of our application range is closest to this point).

Let us do the numerical calculation for the buck, and the procedure will become clearer.

The input voltage at which D = 50% occurs for the buck is

VIN_50 = 2 × VO + VSW + VD = 2 × 12 + 1.5 + 0.5 = 26 V (buck)

(For the boost use VIN_50 =
VO + VSW + VD

2
≈

VO

2
).

We see that our input range does not include this point. But the closest to it is VINMAX.

However, coincidentally, this is already the point at which the general inductor design

procedure was carried out. So we can use all the numbers derived from that procedure to

calculate the input capacitor RMS current, using the equation below

IRMS_IN = IO ×

√

D ×
(

1 − D +
r2

12

)

= 1 ×

√

0.543 ×
(

1 − 0.543 +
0.2772

12

)

(buck)

(For the boost use IRMS_IN =
IO

1 − D
×

r
√

12
).

So finally

IRMS_IN = 0.502 A

Note: If for our worked buck example, the input range was not 18–24 V but say 30–45 V, then the general

inductor design procedure would clearly be carried out at 45 V. However, the input capacitor current would

be a maximum at 30 V. So we can use the above equation for the RMS current, but we would now need to

use rDMIN and DMAX. Therefore, knowing only rDMAX so far, we would need to calculate rDMIN by the

same procedure presented earlier — that is, by recalculating the voltseconds, and so on.

Note that the general input capacitor selection procedure is as follows:

The rule-of-thumb is to pick an output capacitor with a ripple current rating equal to or

greater than the worst-case RMS capacitor current calculated above. Its voltage rating is

usually picked to be at least 20 to 50% higher than what it will see in the application

(i.e. VIN_MAX for all topologies). The input voltage ripple of the converter is also usually a

concern because a small part of it does get transmitted to the output. There can also be EMI

considerations involved. In addition, every control IC has a certain (usually unspecified)

amount of input noise and ripple rejection, and it may misbehave if the ripple is too much.

Typically, the input ripple needs to be kept down to less than ±5% to ±10% of the input
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voltage. The total peak to peak input voltage ripple produced by the input capacitor is equal

to its ESR multiplied by the worst-case peak to peak input current given below (ignoring the

ESL of the capacitor):

■ For a buck — peak to peak capacitor current is IO × (1 + rDMIN/2). This is the same

point at which the general inductor design procedure would have been carried out,

and so rDMIN is already known.

■ For a buck-boost — peak to peak capacitor current is IO × (1 + rDMAX/2)/

(1 − DMAX). This is the same point at which the general inductor design procedure

would have been carried out for this topology, so rDMAX and DMAX are already

known.

■ For a boost — peak to peak capacitor current at the worst-case point for this

parameter (i.e. D = 0.5) is equal to 2 × IO × r50 where

r50 =
VIN_50

4 × f × L × IO
and VIN_50 =

VO + VSW + VD

2
≈

VO

2

Note that if the input range does not include the D = 0.5 point, we need to look for the input

voltage end closest to D = 0.5. Then we can use the general equation for the peak to peak

input capacitor current

IPK_PK =
IO × r

1 − D

where r and D correspond to this particular worst-case input voltage end. To find r we

can use

r =
VO − VSW + VD

IO × L × f
× D × (1 − D)2

where L is in H, and f is in Hz.

That completes the converter and magnetics design procedure. Next we will move on to off-line

converters.
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Off-line Converter Design and Magnetics

Off-line converters are derivatives of standard dc-dc converter topologies. For example, the

flyback topology, popular for low-power applications (typically <100 W), is really a

buck-boost, with its usual single-winding inductor replaced by an inductor with multiple

windings. Similarly, the forward converter, popular for medium to high powers, is a

buck-derived topology, with the usual inductor (“choke”) supplemented by a transformer.

The flyback inductor actually behaves both as an inductor and a transformer. It stores

magnetic energy as any inductor would, but it also provides “mains isolation” (mandated for

safety reasons), just like any transformer would. In the forward converter, the energy storage

function is fulfilled by the choke, whereas its transformer provides the necessary mains

isolation.

Because of the similarities between dc-dc converters and off-line converters, most of the

spadework for this chapter is in fact contained in the preceding chapter (“DC-DC Converter

Design and Magnetics”). The basic magnetic definitions have also been presented therein.

Therefore, the reader should read that chapter before attempting this one.

Note that in both the flyback and the forward converters, the transformer, besides providing

the necessary mains isolation, also provides another very important function — that of a

fixed-ratio down-conversion step, determined by the “turns ratio” of the transformer. The

turns ratio is the number of turns of the input (“primary”) winding, divided by the number of

turns of the output (“secondary”) winding. The question arises — why do we even feel the

need for a transformer-based step-down conversion stage, when in principle, a switching

converter should by itself have been able to up-convert or down-convert at will? The reason

will become obvious if we carry out a sample calculation — we will then find that without

any additional “help,” the converter would require impractically low values of duty cycle —

to down-convert from such a high input voltage to such a low output. Note that the

worst-case ac mains input (somewhere in the world) can be as high as 270 V. So when this

ac voltage is rectified by a conventional bridge-rectifier stage, it becomes a dc rail of almost√
2 × 270 = 382 V, which is fed to the input of the switching converter stage that follows.

But the corresponding output voltage can be very low (5 V, 3.3 V, or 1.8 V, and so on),

so the required dc transfer ratio (conversion ratio) is extremely hard to meet, given the

minimum on-time limitations of any typical converter, especially when switching at high

frequencies. Therefore, in both the flyback and forward converters, we can intuitively think

of the transformer as performing a rather coarse fixed-ratio step-down of the input to a more
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amenable (lower) value, from which point onwards the converter does the rest (including the

regulation function).

Flyback Converter Magnetics

Polarity of Windings in a Transformer

In Figure 3-1, the turns ratio is n = nP/nS, where nP is the number of turns of the primary

winding, and nS is the number of turns of the secondary winding.

+

+

−VINR = − VIN/n

VIN

VIN + VZ

VIN + VOR

1 − D

VOR = nVO

ILR = IL / n

VIN

ILR

IL

VZ

CIN

CO

IO

VO

VOR

ILR = IOR
1 − D

IL = IO

VO VO

n = nP/nS

0

X

X

nP nS

Current in winding

Voltage at switching node 

PRIMARY SIDE SECONDARY SIDE

0

Figure 3-1: Voltage and Currents in a Flyback
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We have also placed a dot on one end of each of the windings. All dotted ends of a

transformer are considered to be mutually “equivalent.” All non-dotted ends are also

obviously mutually equivalent. That means that when the voltage on a given dotted end goes

“high” (to whatever value), so does the voltage on the dotted ends of all other windings.

That happens because all windings share the same magnetic core, despite the fact that they

are not physically (galvanically) connected to each other. Similarly, all the dotted ends also

go “low” at the same time. Clearly, the dots are only an indication of relative polarity.

Therefore, in any given schematic, we can always swap the dotted and non-dotted ends of

the transformer, without changing the schematic in the slightest way.

In the flyback, the polarity of the windings is deliberately arranged such that when the

primary winding conducts, the secondary winding is not allowed to do so. So when the

switch conducts, the dotted end at the drain of the mosfet in Figure 3-1 goes low. And

therefore, the anode of the output diode also goes low, thereby reverse-biasing the diode.

We should recall that the basic purpose of a buck-boost (which this in fact also is) is

to allow incoming energy from the source during the switch on-time to build up in the

inductor (only), and then later, during the off-time, to “collect” all this energy (and no

more) at the output. Note that this is the unique property that distinguishes the buck-boost

(and the flyback) from the buck and the boost. For example, in a buck, energy from the

input source gets delivered to the inductor and the output (during the on-time). Whereas,

in a boost, stored energy from the inductor and the input source gets delivered to the

output (during the off-time). Only in a buck-boost do we have complete separation

between the energy storage and the collection process, during the on-time and the

off-time. So, now we understand why the flyback is considered to be just a buck-boost

derivative.

We know that every dc-dc topology has a so-called “switching node.” This node represents

the point of diversion of the inductor current — from its main path (i.e. in which the

inductor receives energy from the input) to its freewheeling path (i.e. in which the inductor

provides stored energy to the output). So clearly, the switching node is necessarily the node

common to the switch, the inductor, and the diode. Further, we will find that the voltage at

this node is always “swinging” — because that is what is required to get the diode to

alternately forward and reverse-bias, as the switch toggles. But looking at Figure 3-1, we see

that with a transformer replacing the traditional dc-dc inductor, there are now, in effect, two

“switching nodes” — one on each side of the transformer, as indicated by the “X” markings

in Figure 3-1 — one “X” is at the drain of the mosfet, and the other “X” is at the anode of

the output diode. These two nodes are clearly “equivalent” because of the dots, as explained

above. And since at both these nodes, the voltage is swinging, therefore both are considered

to be “switching nodes” (of the transformer-based topology). Note that if we had, say, three

windings (e.g. an additional output winding), we would have had three (equivalent)

switching nodes.
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Transformer Action in a Flyback, and Its Duty Cycle

Classic “transformer action” implies that the voltages across the windings of the transformer,

and the currents through each of them, scale according to the turns ratio, as described in

Figure 3-1. But it is perhaps not immediately apparent why the flyback inductor exhibits

transformer action.

When the switch turns ON, a voltage VIN (the rectified ac input) gets impressed across the

primary winding of the transformer. And at the same time, a voltage equal to VINR = VIN/n

(“R” for reflected) gets impressed across the secondary winding (in a direction that causes

the output diode to get reverse-biased). Therefore, there is no current in the secondary

winding when the primary winding is conducting.

Let us calculate what VINR is. This voltage translation across the isolation boundary follows

from the induced voltage equation applied to each winding

VP = −nP
dφ

dt
and VS = −nS

dφ

dt

Note that both windings enclose the same magnetic core, so the flux φ is the same for both,

and so is the rate of change of flux dφ/dt for each winding. Therefore

VS = −nS ×
(

VP

−nP

)

or

VS = nS ×
(

VIN

nP

)

=
VIN

n
≡ VINR

Also,

VP

nP
=

VS

nS

VP

VS
= n

This above equation represents classic “transformer action” with respect to the voltages

involved. But we also learn from the preceding equation that the Volts/turn for any winding

(at any given instant) is the same for all the windings present on a given magnetic core —

and this is what eventually leads to the observed voltage scaling.

Note also that voltage scaling in any transformer occurs irrespective of whether a given

winding is passing current or not. That is because, whether a given winding is contributing to
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the net flux φ present in the core or not, each winding encloses this entire flux, and so the

basic equation V = −N × dφ/dt applies to all windings, and so does voltage scaling.

We know that energy is built up in the transformer during the on-time. When the switch

turns OFF, this stored energy (and its associated current) needs to flyback/freewheel. We also

know that the voltages will automatically try to adjust themselves in any possible way, so as

to make that happen. So we can safely assume the diode will somehow conduct during the

switch off-time. Now, assuming we have reached a “steady state,” the voltage on the output

capacitor has stabilized at some fixed value VO. Therefore, the voltage at the secondary-side

switching node gets clamped at VO (ignoring the diode drop). Further, since one end of the

secondary winding is tied to ground, the voltage across this winding is now equal to VO. By

transformer action, this reflects a voltage across the primary winding, equal to VOR =VO×n.

But the switch is OFF during this time. Therefore, under normal circumstances, the voltage

at the primary-side switching node would have settled at VIN. However, now this reflected

output voltage VOR , coming through the transformer, adds to that. Therefore, the voltage at

the primary-side switching node eventually goes up to VIN + VOR (for now, we are ignoring

the turn-off spike encircled in Figure 3-1).

Note: During the on-time, the primary side is the one determining the voltages across all the windings. And

during the off-time, it is the secondary winding that gets to “call the shots”!

We can calculate duty cycle from the most basic equation (from voltseconds law)

D =
VOFF

VOFF + VIN

We have the option of performing this calculation, either on the primary winding, or the

secondary winding. Either way, we get the same result, as shown in Table 3-1.

Table 3-1: Derivation of dc transfer function of flyback

Primary Winding Secondary Winding

VON VIN VINR ≡ VIN/n

VOFF VOR ≡ VO × n VO

DC Transfer

Function
D = VOFF

VON+VOFF

D = VOR

VIN+VOR
D = VO

VINR+VO

D = nVO

VIN+nVO
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We should be always very clear that transformer action applies only to the voltages across

windings. And “voltage across” is not necessarily “voltage at”! To measure the voltage at a

given point, we have to consider what the reference level (i.e. “ground” by definition) is,

with respect to which its voltage needs to be measured, or stated. In fact, the reference level

(i.e. by definition, “ground”) is called the “primary ground” on the primary side and the

“secondary ground” on the secondary side. Note that these are indicated by different ground

symbols in Figure 3-1.

To find out the (absolute) voltage at the swinging end of any winding, we can use the

following level-shifting rule:

To get the absolute value of the voltage at the swinging end of any winding, we must add to the

voltage across the winding, the dc voltage present at its “non-swinging” end.

So, for example, to get the voltage at the drain of the mosfet (swinging end of primary

winding), we need to add VIN (voltage at other end of winding), to the voltage waveform

that represents the voltage across the primary winding. That is how we got the voltage

waveforms shown in Figure 3-1.

Coming to the question of how currents actually reflect from one side of the transformer to

the other, it must be pointed out that even though the final current scaling equations of a

flyback transformer are exactly the same as in the case of an actual transformer, this is not

strictly “classic transformer action.” The difference from a conventional transformer is, that

in the flyback, the primary and secondary windings do not conduct at the same time. So in

fact, it is a mystery why their currents are related to each other at all!

The current scaling that occurs in a flyback actually follows from energy considerations. The

energy in a core is in general written as

E =
1

2
LI2

We know the windings of our flyback conduct at different times, but the energy associated

with each of the current flows must be equal to the energy in the core, and must therefore be

equal to each other (we are ignoring the ramp portion of the current here for simplicity).

Therefore,

E =
1

2
LPIP

2 =
1

2
LSIS

2

where LP is the inductance measured across the primary winding — with the secondary

winding floating (no current), and LS the inductance measured across the secondary

winding — with the primary winding floating. But we also know that

L = N2 × AL × 10−9 Henry
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where AL is the inductance index, defined previously. Therefore in our case we get

LP = nP
2 × AL × 10−9

LS = nS
2 × AL × 10−9

Substituting in the energy equation, we get the well-known current scaling equations

nPIP = nSIS

or

IP

IS
=

1

n

We see that analogous to the Volts/turns rule, the ampere-turns also need to be preserved at

all times. In fact, the core itself doesn’t really “care” which particular winding is passing

current at any given moment, so long as there is no sudden change in the net ampere-turns of

the transformer. This becomes the “transformer-version” of the basic rule we learned in

Chapter 1 — that the current through an inductor cannot change discontinuously. Now we

see that the ampere-turns of a transformer cannot change discontinuously.

Summarizing, transformer action works as follows — when reflecting a voltage from primary

to secondary side, we need to divide by the turns ratio. When going from the secondary to the

primary side, we need to multiply by the turns ratio. The rule reverses for currents — so we

multiply by the turns ratio when going from primary to secondary, and divide in the opposite

direction.

The Equivalent Buck-boost Models

Because of the many similarities, and also because of the way voltages scale in the

transformer, it becomes very convenient (most of the time) to study the flyback as an

equivalent dc-dc (inductor-based) buck-boost. In other words, we separate out the coarse

fixed-ratio step-down ratio and incorporate it into equivalent (reflected) voltages and

currents. We thereby manage to reduce the flyback transformer into a simple energy-storage

medium, just like any conventional dc-dc buck-boost inductor. In other words, for most

practical purposes, the transformer goes “out of the picture.” The advantage is that almost all

the equations and design procedure we can write for a conventional buck-boost now apply to

this equivalent buck-boost model. One exception to this is the leakage inductance issue (and

everything related to it — the clamp, the loss in efficiency due to it, the turn-off voltage

spike on the switch, and so on). We will discuss this exception later. But other than that,
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all other parameters — like the capacitor, diode, and switch currents for example, can be

more readily visualized and calculated if we use this dc-dc model approach.

The equivalent dc-dc model is created essentially by reflecting the voltages and currents

across the isolation boundary of the transformer to one side. But again, as in the case of the

duty cycle calculation (see Table 3-1), we have two options here — we can either reflect

everything to the primary side, or everything to the secondary side. We thus get the two

equivalent buck-boost models as shown in Figure 3-2. We can use the primary-side

equivalent model to calculate all the voltages and currents on the primary side of the original

flyback and the secondary-side equivalent model for calculating all the currents and voltages

on the secondary side of the original flyback.
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Figure 3-2: The Equivalent Buck-Boost Models of the Flyback

136



Off-line Converter Design and Magnetics

We know that voltages and currents reflect across the boundary by getting either multiplied

or divided by the turns ratio. In fact, the ‘reflected output voltage,’ VOR , is one of the most

important parameters of a flyback, as we will see. As the name indicates, VOR is effectively

the output voltage as seen by the primary side. In fact, if we compare the switch waveform

of the flyback in Figure 3-1 with that of a buck-boost, we will realize that to the switch, it

seems as if the output voltage is really VOR.

As an example, suppose we have a 50 W converter with an output of 5 V at 10 A, and a

turns ratio of 20. The VOR is therefore 5 × 20 = 100 V. Now, if we change the set output to

say 10 V and reduce the turns ratio to 10, the VOR is still 100 V. We will find that none of

the primary-side voltage waveforms change in the process (assuming efficiency doesn’t

change). Further, if we have also kept the output power constant in the process, that is,

by changing the load to 5 A for an output at 10 V, all the currents on the primary side will

also be unaffected. Therefore, the switch will never know the difference. In other words, the

switch virtually “thinks” that it is a simple dc-dc buck-boost — delivering an output voltage

of VOR at a load current of IOR .

As mentioned, the only difference between a transformer-based flyback that “thinks” it is

providing an output of VOR at the rate of IOR, and an inductor-based version that really is

providing an output of VOR at the rate of IOR, is the ‘leakage inductance’ of the flyback

transformer. This is that part of the primary side inductance that is not coupled to the

secondary side and therefore cannot partake in the transfer of useful energy from the input to

the output. We can confirm from Figure 3-1, that the only portion of the primary-side

(switch) voltage waveform that “doesn’t make it” to the secondary side is the spike occurring

just after the turn-off transition. This spike comes from the uncoupled leakage inductance,

as we will soon see.

Note that in the equivalent buck-boost models, the reactive component values also get

reflected — though as the square of the turns ratio. We can understand this fact easily from

energy considerations. For example, the output capacitor CO in the original flyback was

charged up to a value of VO. So its stored energy was 1/2 COVO
2. In the primary-side

buck-boost model, the output of the converter is VOR, that is, VO × n. Therefore, to keep the

energy stored in this capacitor invariant (in the dc-dc model, as in the flyback), the output

capacitance must get reflected to the primary side according to CO/n2. Note also from

Figure 3-2 how the inductance reflects. This is consistent with the fact that L ∝ N2.

The Current Ripple Ratio for the Flyback

Looking at the equivalent buck-boost models in Figure 3-2, the center of the ramp on the

secondary side (average inductor current, “IL”) must be equal to IO/(1 − D), as for a

buck-boost (because the average diode current must equal the load current). This

secondary-side “inductor” current gets reflected to the primary side, and so the center of the

primary-side inductor current ramp is “ILR ,” where ILR = IL/n. Equivalently, it is
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equal to IOR/(1 − D), where IOR is the reflected load current, that is, IOR = IO/n. Similarly,

the current swings on the primary and secondary sides are also related, via scaling (turns

ratio n). Therefore, we see that the ratio of the swing to the center of the ramp is identical on

both sides (primary- and secondary-side dc-dc models). We are thus in a position to define a

current ripple ratio r for the flyback topology too — just as we did for a dc-dc converter. We

just need to visualize r in a slightly different manner this time — in terms of the center of

the ramp (switch or diode), rather than the dc inductor level (because there is no inductor

present really). And as for dc-dc converters, we should normally try to set it to around 0.4.

The value of r for a flyback is the same for either the primary and secondary dc-dc equivalent

models.

The Leakage Inductance

The leakage inductance can be thought of as a parasitic inductance in series with the

primary-side inductance of the transformer. So just at the moment the switch turns OFF, the

current flowing through both these inductances is “IPKP,” that is, the peak current on the

primary side. However, when the switch turns OFF, the energy in the primary inductance has

an available freewheeling path (through the output diode), but the leakage inductance energy

has nowhere to go. So it expectedly “complains” in the form of a huge voltage spike (see

Figure 3-1). This spike (or a scaled version of it) is not seen on the secondary side, simply

because this is not a coupled inductance, like the primary inductance.

If we don’t make any effort to collect this energy, the induced spike can be very large,

causing switch destruction. Since we certainly can’t get this energy to transfer to the

secondary side, we have just two options — either we can try to recover it and cycle it back

into the input capacitor, or we can simply burn it (dissipation). The latter approach is

usually preferred for the sake of simplicity. It is commonly accomplished by means of a

straightforward ‘zener diode clamp,’ as shown in Figure 3-1. Of course the zener voltage

must be chosen according to the maximum voltage the switch can tolerate. Note that for

several reasons, in particular that of efficiency, it is usually considered preferable to connect

this zener across the primary winding (via a blocking diode in series with it). The alternative

is to connect it from the switching node to primary ground.

We can ask — where does the leakage inductance really reside? Most of it is inside the

primary winding of the transformer, though some of it lies in the PCB trace sections and

transformer terminations, especially with those associated with the secondary winding, as we

will see below.

Zener Clamp Dissipation

If we burn the energy in the leakage, it is important to know how this affects the efficiency. It

is sometimes intuitively felt the energy dissipated every cycle is just 1/2 × LLKPIPK
2, where
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IPK is the peak switch current, and LLKP is the primary-side leakage. That certainly is the

energy residing in the leakage inductance (at the moment the switch turns OFF), but it is not

the entire energy that eventually gets dissipated in the zener clamp on account of the leakage.

The primary winding is in series with the leakage, so during the small interval that the

leakage inductance is trying, in effect, to reset, by freewheeling into the zener, the primary

winding is forced to follow suit and continue to provide this series current. Though the

primary winding is certainly trying (and managing partly) to freewheel into the secondary

side, a part of its energy also gets diverted into the zener clamp — until the leakage

inductance achieves full reset (zero clamp current). In other words, some energy from the

primary inductance gets literally “snatched away” by the series leakage inductance, and

this also finds its way into the zener, along with the energy residing in the leakage itself.

A detailed calculation reveals that the zener dissipation actually is

PZ =
1

2
× LLK × IPK

2 ×
VZ

VZ − VOR
W

So the energy in the leakage 1/2 × LLK × IPK
2 gets multiplied by the term VZ/(VZ − VOR)

(this additional term from the primary inductance).

Note that if the zener voltage is too close to the chosen VOR, the dissipation in the clamp

goes up steeply. VOR therefore always needs to be picked with great care. That simply means

that the turns ratio has to be chosen carefully!

Secondary-side Leakages also Affect the Primary Side

Why did we use the symbol “LLK” in the dissipation equation above? Why didn’t we

identify it as the primary-side leakage (“LLKP”)? The reason is that LLK represents the

overall leakage inductance as seen by the switch. So, it is partly LLKP — but it also is

influenced by the secondary-side leakage inductance. This is a little hard to visualize, since

by definition, the secondary-side leakage inductance is not supposed to be coupled to the

primary side (and vice versa). So how could it be affecting anything on the primary side?

The reason is that just as the primary-side leakage prevents the primary-side current from

freewheeling into the output immediately (and thereby causes an increase in the zener

dissipation), any secondary-side inductance also prevents the freewheeling path from

becoming available immediately (following switch turn-off). Basically, the secondary-side

inductance insists that we (“politely” and) slowly build up the current through it —

respecting the fact that it is an inductance after all! However, until the current in the bona

fide freewheeling path can build up to the required level, the primary-side current still needs

to freewheel somewhere (because the switch is turning OFF)! The path the inductor current

therefore seeks out is the one containing the zener clamp (being the only path available).

The zener can therefore see significant dissipation, even assuming zero primary-side leakage.
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In brief, the secondary-side leakage has created much the same effect as a primary-side

leakage.

When both primary- and secondary-side leakages are present, we can find the effective

primary-side leakage (as seen by the switch and zener clamp) as

LLK = LLKP + n2LLKS

So, like any other reactive element, the secondary-side leakage also reflects onto the primary

side according to the square of the turns ratio, where it adds up in series with any

primary-side leakage present.

For a given VOR , if the output voltage is “low” (for example 5 V or 3.3 V), the turns ratio is

much greater. Therefore, if the chosen VOR is very high, the reflected secondary-side leakage

can become even greater than any primary-side leakage. This can become quite devastating

from the efficiency standpoint.

Measuring the Effective Primary-side Leakage Inductance

The best way to know what LLK really is, is by measuring it! Commonly, a leakage

inductance measurement is done by shorting the secondary winding pins and then measuring

the inductance across the ends of the (open) primary winding. By shorting, we virtually

cancel out all coupled inductance. And so what we measure is just the primary-side leakage

inductance in this case.

However, the best method to measure leakage is actually an in-circuit measurement — so

that we include the secondary-side PCB traces in the measurement. The recommended

procedure is as follows.

On the given application board, a thick piece of copper foil (or a thick section of braided

copper strands), with as short a length as possible, is placed directly across the diode solder

pads on the PCB. A similar piece of conductor is placed across the output capacitor solder

pads. Then, if we measure the inductance across the (open) primary winding pins, we will

measure the effective leakage inductance LLK (not just LLKP).

We will find that the contribution from the secondary-sides traces can in fact make LLK

several times larger than LLKP. LLKP can of course be measured, if desired, by placing a

thick conductor across the secondary pins of the transformer.

The PCB used in the above procedure can be just a bare board with no components mounted

on it, other than the transformer. Or it can even be a fully assembled board (though

sometimes, we may need to cut the trace connecting the drain of the mosfet to the

transformer).
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If we want to mathematically estimate the inductance of the secondary-side traces, the

rule-of-thumb we can use is 20 nH per inch. But here, we need to include the full electrical

path of the high-frequency output current — starting from one end of the secondary winding,

returning to its other end, through the diode and output capacitor(s). We will be surprised to

calculate or measure, that even an inch or two of trace length can dramatically decrease the

efficiency by 5 to 10% in low output voltage applications.

Worked Example (7) — Designing the Flyback Transformer

A 74 W universal input (90 VAC to 270 VAC) flyback is to be designed for an output of 5 V @

10 A and 12 V @ 2 A. Design a suitable transformer for it, assuming a switching frequency of

150 kHz. Also, try to use a cost-effective 600 V-rated mosfet.

Fixing the VOR and VZ

At maximum input voltage, the rectified dc to the converter is

VINMAX =
√

2 × VACMAX =
√

2 × 270 = 382 V

With a 600 V mosfet, we must leave at least 30 V safety margin when at VINMAX. So in our

case, we do not want to exceed 570 V on the drain. But from Figure 3-1, the voltage on the

drain is VIN + VZ. Therefore

VIN + VZ = 382 + VZ ≤ 570

VZ ≤ 570 − 382 = 188 V

We pick a standard 180 V zener.

Note that if we plot the zener dissipation equation presented earlier, as a function of

VZ/VOR , we will discover that in all cases, we get a “knee” in the dissipation curve at

around VZ / VOR = 1.4. So here too, we pick this value as an optimum ratio that we would

like to target. Therefore

VOR =
VZ

1.4
= 0.7 × VZ = 0.71 × 180 = 128 V

Turns Ratio

Assuming the 5 V output diode has a forward drop of 0.6 V, the turns ratio is

n =
VOR

VO + VD
=

128

5.6
= 22.86
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Note that the 12 V output may sometimes be regulated by a post-linear-regulator. In that

case, we may have to make the transformer provide an output 3 to 5 V higher (than the final

expected 12 V) — to provide the necessary “headroom” for the linear regulator to operate

properly. This additional headroom not only caters to the dropout limits of the linear

regulator, but in general also helps achieve a regulated 12 V under all load conditions.

However, there are also some clever cross-regulation techniques available that allow us to

omit the 12 V linear regulator, particularly if the regulation requirements of the 12 V rail are

not too “tight,” and also if there is some minimum load assured on the outputs. In our

example, we are assuming there is no 12 V post regulator present. Therefore, the required

turns ratio for the 12 V output is 128/(12 + 1) = 9.85, where we have assumed the diode

drop is 1 V in this case.

Maximum Duty Cycle (Theoretical)

Having verified the selection of VZ and VOR at highest input, now we need to get back to the

lowest input voltage, because we know from the previous discussions about the buck-boost

(see the “general inductor design procedure” in the previous chapter) that VINMIN is the

worst-case point we need to consider for a buck-boost inductor/transformer design.

The minimum rectified dc voltage to the converter is

VINMIN =
√

2 × VACMIN =
√

2 × 90 = 127 V

We are ignoring the voltage ripple on the input terminals of the converter, and therefore we

will take this as the dc input to the converter stage. So the duty cycle at minimum input

voltage is

D =
VOR

VOR + VINMIN
=

128

128 + 127
= 0.5 ( flyback)

This is clearly a “theoretical” estimate — implying 100% efficiency. We will in fact ignore

this value ultimately, as we will be estimating D more accurately by another trick.

Note however, that this is the operating DMAX.When we “power down” our converter for

example, the duty cycle will actually increase further in an effort to maintain regulation

(unless current limit and/or duty cycle limit is encountered along the way). Then depending

upon the number of missing ac cycles for which we may need to ensure regulation (the

‘holdup time’ specification), we will need to select a suitable input capacitance and also the

maximum duty cycle limit, DLIM, of our controller. Typically, DLIM is set around 70%, and

the capacitance is selected on the basis of the 3 µF/W rule-of-thumb. For example, for our

74 W supply with an estimated 70% efficiency at low line, we will draw an input power of

74/0.7 = 106 W. Therefore we should use a 106 × 3 = 318 µF (standard value 330 µF)
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input capacitor. However, note that the ripple current rating of this capacitor (and its life

expectancy) must be verified.

Effective Load Current on Primary and Secondary Sides

Let us lump all the 74 W output power into an equivalent single output of 5 V. So the load

current for a 5 V output is

IO =
74

5
≈ 15 A

On the primary side, the switch “thinks” its output is VOR and the load current is IOR, where

IOR =
IO

n
=

15

22.86
= 0.656 A

Duty Cycle

The actual duty cycle is important because a slight increase in it (from the theoretical 100%

efficiency value) may lead to a significant increase in the operating peak current and the

corresponding magnetic fields.

The input power is

PIN =
PO

Efficiency
=

74

0.7
= 105.7 W

The average input current is therefore

IIN =
PIN

VIN
=

105.7

127
= 0.832 A

The average input current tells us what the actual duty cycle ‘D’ is, because IIN/D is also the

center of the primary-side current ramp, and must equal ILR , that is,

IIN

D
=

IOR

1 − D

solving,

D =
IIN

IIN + IOR
=

0.832

0.832 + 0.656
= 0.559

We thus have a more accurate estimate of duty cycle.
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Actual Center of Primary and Secondary Current Ramps

The center of the secondary-side current ramp (lumped)

IL =
IO

1 − D
=

15

1 − 0.559
= 34.01 A

The center of the primary-side current ramp is

ILR =
IL

n
=

34.01

22.86
= 1.488 A

Peak Switch Current

Knowing ILR, we know the peak current for our selected current ripple ratio

IPK =
(

1 +
r

2

)

× ILR = 1.25 × 1.488 = 1.86 A

We may need to set the current limit of the controller, for example, based on this estimate.

Voltseconds

We have at VINMIN

VON = VIN = 127 V

The on-time is

tON =
D

f
=

0.559

150 × 103
⇒ 3.727 µs

So the voltsµseconds is

Et = VON × tON = 127 × 3.727 = 473 Vµs

Primary-side Inductance

Note that when we come to designing off-line transformers, for various reasons like reducing

high-frequency copper loss, reducing size of transformer, and so on, it is more common to

set r at around 0.5. So the primary-side inductance must then be (from the “L× I” rule)

LP =
1

ILR
×

Et

r
=

473

1.488 × 0.5
= 636 µH
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Selecting the Core

Unlike made-to-order or off-the-shelf inductors, when designing our own magnetic

components, we should not forget that adding an air gap dramatically improves the energy

storage capability of a core. Without the air gap, the core could saturate even with very little

stored energy.

Of course, we still need to maintain the desired L, corresponding to the desired r! So if we

add too much of a gap, we will also need to add many more turns — thus increasing the

copper loss in the windings. At one point, we will also run out of window space to

accommodate these windings. So a practical compromise must be made here, one that the

following equation actually takes into account (applicable to ferrites in general, for any

topology):

Ve = 0.7 ×
(

2 + r
)2

r
×

PIN

f
cm3

where f is in kHz.

In our case we get

Ve = 0.7 ×
(

2.5
)2

0.5
×

105.7

150
= 6.17 cm3

We start looking for a core of this volume (or higher). We find a candidate in the EI-30.

Its effective length and area are given in its datasheet as

Ae = 1.11 cm2

le = 5.8 cm

So its volume is

Ve = Ae × le = 5.8 × 1.11 = 6.438 cm3

which is a little larger than we need, but close enough.

Number of Turns

The voltage dependent equation

B =
LI

NA
tesla

connects B to L. However we also know that a statement about r is equivalent to a statement

about L — for a given frequency (the “L× I equation”). So combining these equations, and
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also connecting the swing in the B-field to its peak (through r), we get a very useful form of

the voltage dependent equation, in terms of r (expressed in MKS units):

N =
(

1 +
2

r

)

×
VON × D

2 × BPK × Ae × f
(voltage dependent equation, any topology)

So even with no information about the permeability of the material, air gap, and so on, we

already know the number of turns required on a core with area Ae that will produce a certain

B-field. We also know that with or without an air gap, the B-field should not exceed 0.3 T for

most ferrites. So solving the equation for N (N is nP here, number of primary turns),

nP =
(

1 +
2

0.5

)

×
127 × 0.559

2 × 0.3 × 1.11 × 10−4 × 150 × 103
= 35.5 Turns

We will have to verify that this can be accommodated in the window of the core — along

with the bobbin, tape insulation, margin tape, secondary windings, sleeving, and so on.

Usually, that is no problem for a flyback.

Note that if we want to reduce N, the only possible ways are — to allow for a larger r, or

decrease the duty cycle (i.e. pick a lower VOR), or allow for a higher B (new material!?), or

increase the area of the core — the latter, hopefully, without increasing the volume, because

that would amount to over-design. But certainly, just playing with the permeability and air

gap is not going to help!

The number of secondary turns (5 V output) is

nS =
nP

n
=

35.5

22.86
= 1.55 Turns

But we want an integral number of turns. Further, approximating this to one full turn is not a

good idea since there will be more leakage. We therefore prefer to set

nS = 2 Turns

So, with the same turns ratio (i.e. VOR unchanged)

nP = nS × n = 2 × 22.86 ≈ 46 Turns

The number of turns for the 12 V output is obtained by the scaling rule

nS_AUX =
12 + 1

5 + 0.6
× 2 = 4.64 ≈ 5 Turns

where we have assumed the 5 V diode has a drop of 0.6 V and the 12 V diode has a

drop of 1 V.
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Actual B-field

So now we can use the voltage dependent equation again, to solve for B

BPK =
(

1 +
2

r

)

×
VON × D

2 × nP × Ae × f
teslas

But in fact we don’t have to use this equation anymore! We realize that BPK is inversely

proportional to the number of turns. So if, with a calculated 35.5 turns, we had a peak field

of 0.3 T, then with 46 turns we will have (keeping L and r unchanged!)

BPK =
35.5

46
× 0.3 = 0.2315 T

The swing is related to the peak by

∆B ≡ 2 × BAC =
2r

r + 2
× BPK =

1

2.5
× 0.2315 = 0.0926 T

Note that in CGS units, the peak is now 2315 gauss, and the ac component is half the swing,

that is, 463 gauss (since r = 0.5).

Note: If we start with a B-field target of 0.3 T, we are likely to reach a lesser B-field after rounding up the

secondary turns to the nearest higher integer, as we did above. That of course is not only expected, but

acceptable. However note that on power-up or power-down, for example, the B-field will increase further,

as the converter tries to continue regulating. That is why we need to set the maximum duty cycle limit and/or

current limit accurately, or the switch can be destroyed due to inductor/transformer saturation. Cost-effective

flyback designs with fast-acting current limit and fast switches (especially those with an integrated mosfet)

generally allow for a peak B-field of up to 0.42 T, so long as the operating field is 0.3 T or less.

Air Gap

Finally, we need to consider the permeability of the material! L is related to permeability by

the equation

L =
1

z
×
(

µµ0Ae

le

)

× N2 H

Here z is the ‘gap factor’

z =
le + µlg

le

Note that z can range from 1 (no gap) to virtually any value. A z of 10, for example,

increases the energy-handling capability of an ungapped core set by a factor of 10 (its AL

value falls by the same factor, and so does its effective permeability — µe = µµ0/z). So

large gaps certainly help, but since we are still interested in maintaining L to a certain value
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based on our choice of r, we will have to increase the number of turns substantially. As

mentioned, at some point, we just may not be able to accommodate these windings in the

available window, and further, the copper loss will also increase greatly. So z in the range of

10 to 20 is a good compromise for gapped transformers made out of ferrite material. Let us

see what it comes out to be, based on our requirements

z =
1

L
×
(

µµ0Ae

le

)

× N2 =
1

636 × 10−6
×
(

2000 × 4π × 10−7 × 1.11 × 10−4

5.8 × 10−2

)

× 462

So,

z = 16

Finally, solving for the length of air gap,

z = 16 = 2 =
5.8 +
(

2000
)

lg

5.8
⇒ lg = 0.435 mm

Note: In general, if we use a center-gapped transformer, the total gap in the center must be equal to the

above calculated value, whether each center limb has been ground or not. But if spacers are being inserted

on both side limbs (say on an EE or EI type of core), the thickness of the spacer on each outer limb must be

half of the above-calculated value, because the total air gap is then as desired.

Selecting the Wire Gauge and Foil Thickness

In an inductor, the current undulates relatively smoothly. However, in a transformer, the

current in one winding stops completely, to let the other winding take over. Yes, the core

doesn’t care (and doesn’t even know) which of its windings is passing current at a given

moment, as long as the ampere-turns is maintained — because only the net ampere-turns

determine the field (and energy) inside the core. But as far as the windings themselves are

concerned, the current is now pulsed — with sharp edges, and therefore with significant

high-frequency content. Because of this, ‘skin depth’ considerations are necessary for

choosing the appropriate wire thickness of the windings of a flyback transformer.

Note: We had ignored this for dc-dc inductors, but in high-frequency dc-dc designs too (or with high r), we

may need to apply these concepts there too.

At high frequencies, the electric fields between the electrons become strong enough to cause

them to repel each other rather decisively, and thereby cause the current to crowd on the

exterior (surface) of the conductor (see exponential curve in Figure 3-3). This crowding

worsens with frequency as per
√

f . There is thus the possibility that though we may be using

thick wire in an effort to reduce the copper loss, a good part of the cross-section of the wire

(its “innards”) just may not be available to the current. The resistance presented to the

current flow is inversely proportional to the area through which the current is flowing, or is
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Figure 3-3: Skin Depth and AC Resistance Explained

able to flow. So this current crowding causes an increase in the effective resistance of the

copper (as compared to its dc value). The resistance now presented to the current is called

the ‘ac resistance’ (see lower half of Figure 3-3). This is a function of frequency, because so

is the skin depth. Instead of thus wasting precious space inside the transformer and losing

efficiency too, we must try to use more optimum diameters of wire — in which the

cross-sectional area is better-utilized. Thereafter, if we need to pass more current than the

chosen cross-sectional area can handle, we need to parallel several such strands.

So how much current can a given wire strand handle? That depends purely on the heat

buildup and the need to keep the overall transformer with an acceptable temperature rise.

For this a good guideline/rule-of-thumb for the current density of flyback transformers

is 400 circular mils (‘cmils’) per ampere, and that is our goal too in the analysis that follows.
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Note: Expressing “current density” in the North American way of cmils/A needs a little getting used to.

It is actually area per unit ampere, not ampere per unit area (as we would normally expect a “current

density” to be)! So a higher cmils/A value actually is a lower current density (and vice versa) — and will

produce a lower temperature rise.

We define the skin depth ‘δ’ as the distance from the surface of a conductor at which the

current density falls to 1/e times the value at the surface. Note that the current density at the

surface is the same as the value it would have had all through the copper, were there no

high-frequency effects. As a good approximation to the exponential curve, we can also

imagine the current density remaining unchanged from the value at the surface, until the skin

depth is reached, falling abruptly to zero thereafter. This follows from an interesting property

of the exponential curve that the area under it from 0 to ∞ is equal to the area of a rectangle

passing through its 1/e point (see Figure 3-3).

Therefore, when using round wires, if we choose the diameter as twice the skin depth, no

point inside the conductor will be more than one skin depth away from the surface. So no

part of the conductor is unutilized. In that case, we can consider this wire as having an ac

resistance equal to its dc resistance — there is no need to continue to account for

high-frequency effects so long as the wire thickness is chosen in this manner.

If we use copper foil, its thickness too needs to be about twice the skin depth.

In Figure 3-4 we have a simple nomogram for selecting the wire gauge and thickness. The

upper half of this is based on the current carrying capability as per the usual requirement of

400 cmil/A. But the readings can obviously be linearly scaled for any other desired current

density. The vertical grid on the nomogram represents wire gauges. An example based on a

switching frequency of 70 kHz is presented within the figure. In a similar manner, for our

previous worked example, we see that for 150 kHz operation, we should use AWG 27. But

its current carrying capacity is only 0.5 A at 400 cmils/A (and only 0.25 A at a lower current

density of 800 cmils/A!). Therefore, since the center of the primary current ramp was

iterated and estimated to be 1.488 A, we need three strands of AWG 27 (twisted together) to

give a combined current capability of 1.5 A (which is slightly better than what we need).

Coming to the secondary side of the worked example, we remember we had lumped all the

current as a 5 V equivalent load of 15 A. But in reality it is only 10 A, two-thirds of that.

So the center of its current ramp, which we had calculated was about 34 A, is actually

(2/3) × 34 = 22.7 A. The balance of this, that is, 34 − 22.7 = 11.3 A, reflects as (5.6/13) ×
11.3 = 4.87 A into the 12 V winding. So the center of the 12 V output’s current ramp is

4.87 A. We can choose the 12 V winding arrangement using the same arguments we present

below for the 5 V winding.

For the 5 V winding, we can consider using copper foil, since we have only two turns, and

we need a high current capability. The center of the 5 V secondary-side current ramp
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Figure 3-4: Nomogram for Selecting Wires and Foils Thicknesses, Based on Skin Depth

Considerations
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is about 23 A. The appropriate thickness (2δ) at this frequency is found by projecting

downward along the AWG 27 vertical line. We get about 14 mils thickness. But we still

don’t know if the current through it will follow our guideline of 400 cmil/A, since it is a foil.

We need to check this out further.

One circular mil (‘cmil’) is equal to 0.7854 square mils. Therefore 400 cmils is 400 ×
0.7854 = 314 sq. mils (note π/4 = 0.7854). So for 23 A we need 23 × 314 = 7222 sq.mils.

But the thickness of the foil is 14 mils. Therefore we need the copper foil to be 7222/14 =
515 mils wide, that is, about half an inch. Looking at a bobbin for the EI-30 in Figure 3-5,

we see it can accommodate a foil 530 mils wide. So this is just about acceptable. Note that if

the available width is insufficient, we would need to look for another core altogether — one

with a “longer” (stretched out) profile. Cores like that are available as American “EER”

cores. Or we can again consider using several paralleled strands of round wire. The problem

is that a bunch of 46 twisted strands (of AWG 27) is going to be bulky, difficult to wind, and

will also increase the leakage inductance. So we may like to use say 11 or 12 strands of

AWG 27 twisted together into one bunch, and then take four of these bunches (all electrically

in parallel), laid out side by side to form one layer of the transformer. For a two-turns

secondary, therefore, we would wind two layers of this.

Forward Converter Magnetics

The procedure presented in this section applies explicitly to the single-switch forward

converter. However, the general procedure remains unchanged for the two-switch forward

converter as well.

13.5
mm

25.4 mm = inch = 1000 mils

13.5 mm = 530 mils

If foil is 14 mils thick, its cross sectional area is
14 × 530 = 7420 sq.mils

If it is carrying 23A, the current density is
7420/23 = 323 sq.mils/A.

i.e. 323 × (4/π) = 411 cmils/A           (slightly better than 400 cmils/A)

Foil windings
EI-30

BOBBIN

Figure 3-5: Checking to See if a 23 A Foil Can Be

Accommodated on an EI-30 Bobbin

152



Off-line Converter Design and Magnetics

Duty Cycle

The duty cycle of a forward converter is

VO = VIN × D ×
nS

nP

Comparing this with the duty cycle of a buck, we see that the only difference is the term

nS/nP. As mentioned, this is the coarse fixed-ratio step-down function available due to

transformer action. We can therefore visualize that the input voltage VIN gets reflected to the

secondary side. This reflected voltage VINR = VIN/n (where n = nP/nS) gets impressed at the

secondary-side switching node. From there on, we have in effect a simple dc-dc buck stage,

with an input voltage of VINR and an output of VO (see Figure 3-6). Therefore the design of

the forward converter’s choke is not going to be covered here, as it is designed using the

same procedure as that of any buck inductor. However, the forward converter’s transformer

is another story altogether!

Note: Regarding choke design, we should keep in mind that for high-current inductors, as would be found

in a typical forward converter, the calculated wire gauge may be too thick (and stiff) for winding easily over

the core/bobbin. In that case, several thinner wire gauges may be twisted together to make the winding more

flexible and easier to handle in production. Further, since choke and inductor design has usually little to do

n=nP/nS

VIN

tON tON

tOFF

2VIN

D

VIN

IOR

IO
n

IOR =

IO

VO

nP

nP ns

−VINR

VINR

VIN

n
VINR =

VINR

VOtON

Diode

Sec. winding

Inductor

Magnetization current
component

Switch and Pri.winding

Tertiary winding

=
tON + tOFF

=

Figure 3-6: The single-ended Forward Converter
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with high-frequency skin depth considerations, we can choose strands of almost any practical diameter,

so long as we have enough net copper cross-sectional area to keep the temperature rise to within about

40 to 50◦C.

Unlike a flyback transformer, the forward converter’s secondary winding conducts at the

same time as the primary winding. This leads to an almost complete flux cancellation inside

the core. But there is one component of the primary current waveform which remains the

same, irrespective of the load. This is the magnetization current component — shown in gray

on the left side of Figure 3-6. At zero load, this is the entire current through the primary

winding and switch (assuming duty cycle remains fixed). As soon as we try to draw some

load current, the secondary winding current increases, and so does the primary winding

current. Each current increases proportionally to the load current, and so their increments too

are mutually proportional — the proportionality constant being the turns ratio. But more

significantly, they are of opposite sign — that is, looking at Figure 3-6, we see that the

current enters the dotted end of the transformer on the primary side, and on the secondary

side, it leaves by the dotted end at the same time. Therefore, the net flux in the core of the

transformer remains unchanged from the zero load condition (assuming D is fixed) —

because the core just never “sees” any change in the net ampere-turns flowing through its

windings. All conditions inside the core, i.e. the flux, the magnetic fields, the energy stored,

and even the core loss, are only dependent on the magnetization current. Of course the

windings themselves have a different story to tell — they bear the entire brunt, not only of

the actual load current, but the sharp edges and consequent high-frequency content of the

pulsed current waveforms.

The magnetization current component is not coupled by transformer action to the secondary.

In that sense, it is like a “parallel leakage inductance.” We need to subtract this component

from the total switch current, and only then will we find that the primary and secondary

currents scale according to the turns ratio. In other words, the magnetization current does

not scale — it stays confined to the primary side.

But in fact, the magnetization current is the only current component that is storing any

energy in the transformer. So in that sense, it is like the flyback transformer! But, if we are

to achieve a steady state, even the transformer needs to be “reset” every cycle (along with

the output choke). But unfortunately, the magnetization energy is effectively “uncoupled,”

simply because of the output diode direction, and so we can’t transfer it over to the

secondary side. If we don’t do anything about this energy, it will certainly destroy the switch

by a spike similar to the leakage in a flyback. We don’t want to burn it either, for efficiency

reasons. Therefore, the usual solution is to use a ‘tertiary winding’ (or “energy recovery

winding”), connected as shown in Figure 3-6. Note that this winding is in flyback

configuration with respect to the primary winding. It conducts only when the switch turns

OFF, and thereby freewheels the magnetization energy back into the input capacitor. There is

some loss associated with this “circulating” energy term, because of the diode drop and
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resistance of the tertiary winding. Note however, that any bona-fide leakage inductance

energy also gets recycled back into the input by the tertiary winding. So we don’t need an

additional clamp for it.

For various subtle reasons, like being able to ensure the transformer resets predictably under

all conditions, and also for various production-related reasons, the number of turns of the

tertiary winding is usually kept exactly the same as the primary winding. Therefore by

transformer action, the voltage at the primary-side switching node (drain of the mosfet) must

rise to 2 × VIN when the switch turns OFF. Therefore, in a universal-input off-line

single-ended (i.e. single-switch) forward converter, we need a switch rated for at least 800 V.

As soon as the transformer is reset (i.e. the current in the tertiary winding returns to zero), the

drain voltage suddenly drops to VIN — that is, no voltage is then present across the primary

winding — and therefore there is no voltage across the secondary winding either. The catch

diode of the output stage (i.e. the diode connected to the secondary ground in Figure 3-6)

then freewheels the energy contained in the choke. Note that there is actually some ringing

on the drain of the mosfet for a while, around an average level of VIN, just after transformer

reset occurs. This is attributable to various undocumented parasitics (not displayed in the

figure). The ringing however does contribute significantly to the radiated EMI.

Note that even prior to transformer reset, the secondary winding has not been conducting for

a while — simply because the output diode (i.e. the one connected to swinging end of the

secondary winding) has been reverse-biased during the time the tertiary winding was

conducting.

Note also that the duty cycle of such a forward converter can under no circumstances ever

be allowed to exceed 50%. The reason for that is we have to unconditionally ensure

that transformer reset will always occur, every cycle. Since we have no direct control on

the transformer current waveforms, we have to just leave enough time for the current in the

tertiary winding to ramp down to zero on its own. In other words, we have to allow

voltseconds balance to occur naturally in the transformer. However, because the number of

turns in the tertiary winding is equal to the primary turns, the voltage across the tertiary

winding is equal to VIN when the switch is ON, and is also equal to VIN (opposite direction)

when the switch is OFF. Reset will therefore occur when tOFF becomes equal to tON. So, if

the duty cycle exceeds 50%, tON would certainly always exceed tOFF, and therefore

transformer reset would never be able to occur. That would eventually destroy the switch.

Therefore, just to allow tOFF to be large enough, the duty cycle must always be kept to less

than 50%.

We realize that the forward converter transformer is always in DCM (its choke is usually in

CCM, with an r of 0.4). Further, since the flux in the transformer remains unchanged for all

loads, we can logically deduce that no part of the energy flowing through it into the output

must be being stored in the transformer. So the question really is — what does the
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power-handling capability of a forward converter transformer depend on? We intuitively

realize that we can’t use any size transformer for any output wattage! So what governs the

size? We will soon see that it is determined simply by how much copper we can squeeze into

the available ‘window area’ of the core (and more importantly, how well we can utilize this

available area), without getting the transformer too hot.

Worst-case Input Voltage End

The most basic question in design invariably is — what input voltage represents the

worst-case point at which we need to start the design of the magnetics (from the viewpoint

of core saturation)? For the forward converter choke, this should be obvious — as for any

buck converter, we need to set its current ripple ratio at around 0.4 at VINMAX. But coming

to the transformer, we need some analysis before we can make a proper conclusion.

Note that the transformer of a forward converter is in discontinuous mode (DCM), but the

duty cycle is determined by the choke, which is in CCM. Therefore, the duty cycle of the

transformer also gets “slaved” at the CCM duty cycle of D = VO/VINR, despite the fact that

it is in DCM. This rather coincidental CCM + DCM interplay leads to an interesting

observation — the voltseconds across the forward converter transformer is a constant,

irrespective of the input voltage. The following calculation makes that clear, by the fact that

VIN cancels out completely:

Et = VIN ×
D

f
= VIN ×

VO

VINR × f
= VIN ×

VO × n

VIN × f
=

VO × n

f

So in fact, the swing ‘∆’ of the current or the field is the same at high input or at low input,

or in fact at any input (as long as the choke is in CCM). Since the transformer is in DCM,

its peak is equal to its swing, and so the peak too does not depend on VIN. Of course, the

peak switch current ISW_PK is the sum of the peak of the magnetization current IM_PK , and

the peak of the secondary-side current waveform reflected onto the primary side that is,

ISW_PK = IM_PK +
1

n

[

IO

(

1 +
r

2

)]

So although the current limit of the switch must be set high enough to accommodate ISW_PK

at VINMAX (since that is where the maximum peak of the reflected output current component

occurs), as far as the transformer core is concerned, the peak current (and corresponding

field) is just IM_PK, which does not depend on VIN! This is indeed an interesting situation.

Note also, that as far as the choke is concerned, the peak inductor current is no longer equal

to the (reflected) peak switch current (as in a dc-dc buck topology), though the peak diode

current still is. Yes, if we subtract the magnetization current from the switch current, and

then scale (reflect) it to the secondary side according to the turns ratio, then the peak of that

waveform will be equal to the peak inductor current.
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So effectively IM has the property of input voltage rejection. We can intuitively understand

this in the following way — as the input increases, it tries to increase the slope of the

transformer current ramp and thereby get ∆I to increase. However, the output choke, sensing

a higher VINR, decreases its duty cycle, and therefore also that of the transformer, and in

effect tries to thereby reduce the current swing in the transformer. Coincidentally, these two

opposing forces virtually counterbalance each other perfectly, and so there is no net change

in the resultant current swing in the transformer.

As a corollary, the core loss in the transformer is independent of the input voltage. The

copper loss, on the other hand, is always worse at low inputs (except for the dc-dc buck) —

simply because the average input current has to increase so as to continue to satisfy the basic

power requirement PIN = VIN × IIN = PO.

Though we can pick any specific input voltage point for assuring ourselves that the core does

not saturate anywhere within its input range, since the copper loss is at its worst at VINMIN,

we conclude that the worst-case for a forward converter transformer is at VINMIN. For the

choke, it is still VINMAX.

Window Utilization

Looking at a typical winding arrangement on an ‘ETD-34’ core and bobbin in Figure 3-7, we

see that the plastic bobbin occupies a certain part of the space provided by the core — thus

reducing the available window ‘Wa’ from 171 mm2 to 127.5 mm2 — that is, by 74.5%.

Further, if we include the 4 mm “margin tape” that needs to be typically provided on either

side (to satisfy international safety norms regarding clearance and ‘creepage’ requirements

between primary and secondary sides), we are left with an available window of only

78.7 mm2 — that’s a total reduction of 78.7/171 = 46%. In addition to this, looking at the

left side of Figure 3-8, we see that for any given wire, only 78.5% of the square area it

“physically occupies” (or will occupy in the transformer) is actually conducting (copper). So

in all, this leads to a total reduction of the available window space by 0.46 × 0.785 = 36%.

We realize some more space will also be lost to interlayer insulation (and any EMI screens

if present), and so on. Therefore, finally, we estimate that perhaps only 30 to 35% of the

available core window area will actually be occupied by copper. That is the reason why we

need to introduce a ‘window utilization factor’ K (later we will set it to an estimated value

of 0.3). So

K =
N × ACU

Wa

and

N =
K × Wa

ACU
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Figure 3-7: An ETD-34 Bobbin Analyzed

Figure 3-8: The Area Physically Occupied by a Round Wire,

and a “Square Wire” of the Same Conducting

Cross-sectional Area as a Round Wire
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Here ACU is the cross-sectional area of one copper wire, and Wa is the entire window area of

the core (note that for EE, EI types of cores this is only the area of one of its two windows!).

Relating Core Size to Its Power Throughput

We remember that the original form of the voltage dependent equation is

∆B =
VIN × tON

N × A
teslas

Substituting for N, the number of primary turns, we get

∆B =
VIN × tON × ACU

K × Wa × A
teslas

Performing some manipulations,

∆B =
VIN × IIN × tON × ACU

IIN × K × Wa × A
=

PIN × (D/f ) × ACU

IIN × K × Wa × A
=

PIN × (D/f ) × ACU

ISW × D × K × Wa × A

∆B =
PIN

(ISW/ACU) × K × f × Wa × A
=

PIN
(

JA/m2

)

× K × f × AP

where JA/m2 is the current density in A/m2, and ‘AP’ is called the ‘area product’

(AP = Ae × Wa). Let us now convert into CGS units for greater convenience. We get

∆B =
PIN

(

JA/cm2

)

× K × f × AP
× 108 gauss

where AP is also in cm2 now. Finally, converting the current density into cmils/A by using

Jcmils/A =
197,353

JA/cm2

we get

∆B =
PIN × Jcmils/A

197,353 × K × f × AP
× 108 gauss

Solving for the area product

AP =
506.7 × PIN × Jcmils/A

K × f × ∆B
cm4
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Let us do some substitutions here. Assuming a typical current density of 600 cmil/A,

utilization factor K of 0.3, ∆B equal to 1500 gauss, we get the following fundamental

core-selection criterion:

AP = 675.6 ×
PIN

f
cm4

Note: In a typical forward converter, it is customary to set the swing in the B-field of the transformer at

∆B ≈ 0.15 teslas. This helps reduce core loss, and usually also leaves enough safety margin for avoiding

hitting BSAT under say power-up condition at high line. Note that in a flyback, the core loss tends to be

much less, because ∆I is a fraction of the total current (40% typically). But since the transformer of a

forward converter is always in DCM, therefore the swing in B is now more significant — equal to its peak

value, i.e. BPK = ∆B. So, if we set the peak field at 3000 gauss, ∆B would be 3000 gauss too, roughly

twice that of a flyback set to the same peak. That is why we must reduce the peak field in a forward

converter to about 1500 gauss.

Worked Example (8) — Designing the Forward Transformer

We are building a 200 kHz forward converter for an ac input range of 90 to 270 Volts. The

output is 5 V at 50 A, and the estimated efficiency is 83%. Design its transformer.

Input Power

We have

PIN =
PO

Efficiency
=

5 × 50

0.83
≈ 300 Watts

Selection of Core

We use the criterion calculated previously:

AP = 675.6 ×
PIN

f
= 675.6 ×

300

2 × 105
= 1.0134 cm4

The area product of the ETD –34 shown in Figure 3-7 is

AP = W

[

25.6−11.1
2

]

× 23.6 × 97.1

104
= 1.66 cm4

This is in theory, probably a little larger than required. Bu it is the closest standard size in

this range. Later we will see it is in fact just about adequate.

160



Off-line Converter Design and Magnetics

Skin Depth

The skin depth is

δ =
66.1 ×

[

1 + 0.0042
(

T − 20
)]

√
f

mm

where f is in Hz and T is the temperature of the windings in ◦C. Therefore assuming a final

temperature of T = 80◦C (40◦C rise over a maximum ambient of 40◦C), we get at 200 kHz

δ =
66.1 ×

[

1 + 0.0042 ×
(

60
)]

√
2 × 105

= 0.185 mm

Thermal Resistance

An empirical formula for EE-EI-ETD-EC types of cores is

Rth = 53 × V−0.54
e

◦C/W

where Ve is in cm3. Therefore since Ve = 7.64 cm3, for the ETD-34

Rth = 53 × 7.64−0.54 = 17.67◦C/W

Maximum B-field

For a 40◦C estimated rise in temperature, the maximum allowed dissipation is

P ≡ PCU + PCORE =
deg C

Rth
=

40

17.67
= 2.26 Watts

Let’s divide this loss equally into copper and core losses (typical first-cut assumption). So

PCU = 1.13
Watts

PCORE = 1.13

Therefore, the allowed core loss per unit volume is

core loss

volume
=

1.13

7.64
⇒ 148 mW/cm3

Using “System B” of Table 2-5 we get

core loss

volume
= C × Bp × f d
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where B is in gauss and f in Hz. Therefore solving for B

B =
[

core loss

volume
×

1

C × f d

]1/P

If we are using the ferrite grade “3C85” (from Ferroxcube), we see from Table 2-6 that

p = 2.2 and d = 1.8 and C = 2.2 × 10−14. Therefore

B =
[

148 ×
1

2.2 × 10−14 × 21.8 × 105 × 1.8

]1/2.2

= 720 gauss

We note that the “B” referred to here is actually, by convention, BAC. So, we get the total

allowed swing as

∆B = 2 × B = 2 × 720 = 1440 gauss

Voltµseconds

Earlier, we had presented the following form of the voltage dependent equation

∆B =
100 × Et

Z × A
gauss

where A is the effective area in cm3. The duty cycle of a typical forward converter is set to

about 0.35 at low line so as to meet the typical 20 ms holdup time requirement, without

requiring an inordinately-sized input capacitor. The rectified input at low line is

90 × 2 = 127 V. The applied voltseconds is therefore (at any line voltage)

Et = VIN ×
D

f
= 127 ×

0.35

2 × 105
= 222.25 Vµs

Number of Turns

Since ∆B = 1440 gauss, we solve the following equation for N

∆B =
100 × Et

Z × A
gauss

nP =
100 × Et

∆B × A
=

100 × 222.25

1440 × 0.97
= 15.9 turns

Note that this says nothing about the required inductance. We need these many number of

turns, irrespective of the (primary) inductance. Yes, changing the inductance will affect the
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peak magnetization and the switch current, because it changes the proportionality constant

connecting B and I. However, B still remains fixed, independent of the inductance!

Assuming a 0.6 V forward drop across the diode, the required turns ratio is

n =
nP

nS
=

VIN

VINR
=

VIN
(

VO+VD
D

) =
127 × 0.35

5 + 0.6
= 7.935

Therefore, the number of secondary turns is

nS =
15.9

7.935
= 2.003 turns

Note that this could have turned out to be significantly different from an integer. In that case,

we would round it off to the nearest (higher) integer, and then recalculate the primary turns,

the new flux density swing, and the core loss — similar to what we did for the flyback. But

at the moment, we can simply use

n = 8 (turns ratio)

nP = 16

nS = 2
turns

Secondary Foil Thickness and Losses

The concept of skin depth presented earlier actually represents a single wire standing freely

in space. For simplicity, we just ignored the fact that the field from the nearby windings may

be affecting the current distribution significantly. In reality even the annular area we were

hoping was fully available for the high frequency current, is not. Every winding has an

associated field, and when this impinges on nearby windings, the charge distribution

changes, and eddy currents are created (with their own fields). This is called the ‘proximity

effect.’ It can greatly increase the ac resistance and thus the copper losses in the transformer.

The first thing we need to do to improve the situation is have opposing flux lines cancel each

other. In a forward converter, that is in fact something that tends to happen automatically,

because the secondary windings pass current at the same time as the primary, and in the

opposite direction. However, even that can prove totally inadequate, especially at the higher

power levels that a forward converter is more commonly associated with. So a further

reduction in these proximity losses is achieved by interleaving as shown in Figure 3-9.

Basically, by splitting the sections, and trying to get primary and secondary layers adjacent

to each other as much as possible, we can increase cancellation of local adjoining fields.

In effect, we are trying to prevent the ampere-turns from cumulating as we go from one layer

to the next. Note that the ampere-turns are proportional to the local fields that are causing the
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Note: If nS = 6 turns (1 layer), we would get

p = 1/2 for this layer, by interleaving in the

manner shown 

p=2
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p=1

p=2
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p=4

p=2

layers per
portion

Current going IN+

INTERLEAVED
NON-

INTERLEAVED

Current coming OUT

Example:

nP=12 turns, nS=12 turns

Figure 3-9: How Proximity Losses Are Reduced by Interleaving

proximity losses. However, it is impractical to interleave too much — because we will

need several more layers of primary-to-secondary insulation, more terminations, and also

more EMI screens at every interface (if required) — all of which will add up to higher cost

and eventually lead to possibly higher, rather than lower, leakage. Therefore, most

medium-power off-line supplies just split the primary into two sections, one on either side of

a single-section secondary.

The other way to reduce losses is to decrease the thickness of the conductor. But there are

several ways we can do this. If, for example, we take a winding made up of single-strand

wire, and split the wire into several paralleled finer strands in such a way that the overall dc

resistance does not change in the process, we will find that the ac resistance goes up first

before it reduces. On the other hand, if we take a foil winding, and decrease its thickness,

the ac resistance falls before it rises again.

In Figure 3-9, we have also defined ‘p,’ the layers per portion. Note how p gets reassigned

when we interleave.

But how do we go about actually estimating the losses? Dowell reduced a very complex

multidimensional problem into a simpler, one-dimensional one. Based on his analysis, we

can show that there is an optimum thickness for each layer. Expectedly, this turns out to be

much less than 2 × δ, where δ is the skin depth defined earlier.

Note: In the flyback, we had ignored the proximity effect for the sake of simplicity. But in any case, since

the primary and secondary windings do not conduct at the same time, interleaving won’t help. But

interleaving is still carried out in the flyback, in a manner similar to the forward converter. However, the

purpose then is to increase coupling between primary and secondary, and thereby reduce the leakage
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Figure 3-10: Finding the Lowest AC Resistance, as the Thickness of a Foil Is

Varied

inductance. However, this also increases the capacitive coupling — unless grounded screens are placed at

the primary-secondary interface. Screens are in general helpful in reducing high-frequency noise from

coupling into the output, and suppressing common-mode conducted EMI. But they also increase the leakage

inductance, which is of great concern particularly in the flyback. Note also that screens must be very thin,

or they will develop very high eddy current losses of their own. Further, the ends of a primary-secondary

screen should not be connected together, or they will constitute a shorted turn for the transformer.

In Figure 3-10, we have plotted out Dowell’s equations in a form applicable to a square

current waveform (unidirectional) in a transformer with foil windings. Note that the original

Dowell curves actually plot FR versus X. But we have plotted FR/X versus X, where

FR =
RAC

RDC
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and

X =
h

δ

h being the thickness of the foil. The reason why we have not plotted FR versus X is that FR

is only the ratio of the ac to dc resistance. It is not FR, but RAC that we are really interested in

minimizing. So the “optimum RAC” point need not necessarily be the point of the lowest FR .

Let us try to understand this for a stand-alone foil (similar to what we did in Figure 3-3).

If we slowly increase the thickness of the foil, once the foil thickness exceeds 2δ, the ac

resistance won’t change any further, since the cross-sectional area available for the

high-frequency current remains confined to δ on each side of the foil. But the dc resistance

continues to decrease as per 1/h — and as a result FR will increase. So the relationship

between RAC and FR is not necessarily obvious. Therefore, since FR = RAC/RDC, with

RDC ∝ 1/h, we get RAC ∝ FR/h. And this is what we really need to minimize (for a foil).

Further, since we always like to write any frequency-dependent dimension in reference to

the skin depth, we have plotted not FR/h, but FR/X, versus X, in Figure 3-10.

Note that in Figure 3-10, the p = 1 and p = 0.5 curves do not really have an “optimum.” For

these, the FR/X (ac resistance) can be made even smaller as we increase X (thickness). FR

will in fact become much greater than 1. However, we see that for p = 1 for example, no

significant reduction in ac resistance occurs if X exceeds about 2, that is, thickness of foil

equal to twice the skin depth. We can make it thicker if we want, but only for marginal

improvement in the secondary winding losses. Further, in the process, we may also take

away available area for the primary windings (and any other secondary windings), and that

can lead to higher overall losses. Though we are also cautioned not to fill up all “available

space” with copper, especially when we come to (round) wire windings. That can be shown,

not only to increase FR , but RAC too.

Now let us apply what we have learned to our ongoing numerical example. We start by

taking a copper foil wound twice on the ETD-34 bobbin — to form the 5 V secondary

winding. Since this is interleaved with respect to the primary, only one turn “belongs” to

each split section. So the layers per portion for the secondary is p = 1. We will calculate the

losses, and if acceptable, we will stay with the resulting arrangement.

We can start with a reasonable current density (about 400 cmils/A should suffice here).

We use

h =
IO × Jcmils/A × 102

width × 197,353
mm

where h is the foil thickness in mm, IO is the load current (50 A in our example), and ‘width’

is the width available for the copper strip (20.9 mm for the ETD-34).
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Alternatively, we can directly consult Figure 3-10 and pick an X of 2.5 for an estimated

FR/X of 1.4. Thus

h = X × δ = 2.5 × 0.185 = 0.4625 mm

The mean length per turn (‘MLT’) of the ETD-34 is 61.26 mm (see Figure 3-7 ), the (“hot”)

resistivity of copper (‘ρ’) is 2.3 × 10−5 ohms-mm, so we get the resistance of the secondary

winding in ohms as

RAC_S =
(

FR

X

)

×
ρ × MLT × nS

width × δ
=
(

1.4
)

×
2.3 × 10−5 × 61.26 × 2

20.9 × 0.185
= 1.02 × 10−3

Note that since FR/X is set to 1.4, the corresponding FR is

FR = 1.4 ×
h

δ
= 1.4 ×

0.4625

0.185
= 3.5

This is fairly high, but as explained, it is actually helpful here, because RAC goes down.

Now, the current in the secondary looks like a typical switch waveform, with its center equal

to the load current (50 A), and a certain current ripple ratio set by the output choke. Its RMS

value is

IRMS_S = IO ×

√

D ×
(

1 +
r2

12

)

A

However, we do not yet know what the current ripple ratio of the choke, r, is at 90 VAC. The

r has probably been set to 0.4 at VINMAX , not at VINMIN . Nevertheless, it is easy to work out

the new r as follows. The duty cycle is inversely proportional to input voltage. Therefore,

if D is 0.35 at 270 VAC, then at 90 VAC it is 0.35/3 = 0.117. Further, r varies as per (1−D)

for a buck stage. Therefore the value of r at 90 VAC is

r =
1 − 0.35

1 − 0.117
× 0.4 = 0.294

So the RMS current in the secondary winding is

IRMS_S = IO ×

√

D ×
(

1 +
r2

12

)

= 50 ×

√

0.35 ×
(

1 +
0.2942

12

)

= 29.69 A

The heat dissipated in the secondary windings is finally

PS = IRMS_S
2 × RAC_S = 29.692 × 1.02 × 10−3 = 0.899 W
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If the losses are not acceptable, we may need to look for a bobbin that will allow a wider

width of foil. Or we can consider paralleling several thinner foils to increase p. For example,

if we take four paralleled (thinner) foils in parallel (each insulated from the others), we will

get four effective layers for the secondary, and the layers per portion will then become 2.

Primary Winding and Losses

For the secondary, we have finally chosen copper foil of thickness 0.4625 mm (i.e. 0.4625×
39.37 = 18 mil). Let us assume each foil is covered on both sides by a 2 mil thick mylar

tape. Since 1 mil is 0.0254 mm, we have effectively added 4 × 0.0254 mm to the foil

thickness. In addition there will be three layers of tape between each of the two

primary-secondary boundaries. So in all, the thickness occupied by the secondary and the

insulation, hS, is

hS = (ns × h) + (nS × 4 × 0.0254) + (12 × 0.0254) mm

or

hS = nS ×
(

h + 0.102
)

+ 0.305 mm

So in our case

hS = 2 ×
(

0.4625 + 0.102
)

+ 0.305 = 1.434 mm

The ETD-34 has an available height inside the bobbin of 6.1 mm. That now leaves

6.1 − 1.434 = 4.67 mm. Therefore each section of the split primary has an available winding

height of 2.3 mm only. We should ultimately check that we can accommodate the primary

winding we decide on, within this space.

Note that for the primary, the available width is only 12.9 mm (since there is 4 mm margin

tape on each side — for the secondary, since we have a foil with tape wrapped over it, we do

not need the margin tape). We need to find how best to accommodate eight turns into this

available area, with minimum losses.

Note: It is not mandatory to use a particular thickness of insulating tape, provided it is safety-approved to

withstand a specified voltage. We can, for example, use 1 mil approved tape or even 1/2 mil, if it suits our

production, helps lower the cost, and/or improves performance in some way.

Let us first understand the basic concept for winding wires here. For a stand-alone wire, as

in Figure 3-3, as we increase the diameter of the wire, the cross-sectional area available for

the high-frequency current is (π × d) × δ. And since resistance is inversely proportional to

cross-sectional area, we get RAC ∝ 1/d. Similarly, RDC ∝ 1/d2. So FR ∝ d. Therefore,

RAC ∝ 1/FR . This actually means that a higher FR (bigger diameter) will decrease the ac

resistance! That is not surprising, because the annulus available for the high-frequency
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current does increase if the diameter increases. However, this is not the way to go when

dealing with “non-stand-alone” wire. Because, by increasing the diameter, we will inevitably

move on to higher number of layers, and Dowell’s equations then tell us that the losses will

increase, not decrease.

On the top left side of Figure 3-11, we have Dowell’s original curves, which show how FR

varies with respect to X (i.e. h/δ). The parameter for each curve is layers per portion (i.e. p).

Note that Dowell’s curves talk in terms of foils only. They don’t care about the actual

number of turns in the primary or secondary (i.e. from the electrical point of view), but only

the effective layers per portion (from the field point of view). So, when we consider a layer of

round wires of diameter ‘d,’ we need to convert this into an equivalent foil. Looking back at

the right side of Figure 3-8, we see that that this amounts to replacing a wire of diameter d

with a foil slightly thinner (i.e. with the same amount of copper, but in a square shape).

Alternatively, if we want to get a foil of X = 4 for example, we need to start with a wire of

Figure 3-11: Understanding the process of “Subdivision” — Keeping the DC Resistance

Unchanged, and How the Equivalent Foil Transformation Process Takes Place
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diameter 1/0.886 = 1.13timesX. Finally, as indicated, all these copper squares then merge

(from the field point of view), to give an equivalent layer of foil.

In Figure 3-11, we are also conducting a certain “experiment” — as an alternative way of

laying out wires optimally. Suppose we have several round wires laid out side by side with a

diameter 1.13 × 4δ. Suppose also, that this constitutes one layer per portion in a given

winding arrangement. This is therefore equivalent to a single-layer foil of thickness 4δ, that

is, X = 4. Now using Dowell’s curves, the FR is about 4 (points marked “A” in Figure 3-11).

Suppose we then divide each strand into four strands, where each strand has a diameter half

the original. Therefore, the cross-sectional area occupied by copper remains the same because

A = 4 ×
π ×
(

d

2

)2

4
=

π × d2

4

However, the equivalent foil thickness is now half of what it was — 2δ (i.e. X = 2). And we

also now have two layers per portion from Dowell’s standpoint. Consulting Dowell’s curves,

we get an FR of about 5 now (marked “B”). Since we are keeping RDC fixed in the process,

RAC ∝ FR . Therefore now, decreasing FR is a sure way to go, to decrease RAC. So an FR of

5 is decidedly worse than an FR of 4. We now go ahead and subdivide once more, in a

similar manner. So we then get four layers per portion, each with X = 1, and FR has gone

down to about 2.6 (points marked “C”). We subdivide once more, and we get eight layers

per portion, with X = 0.5. This gives us an FR of about 1.5 (marked “D”). This is an

acceptable value for FR .

Note that all these steps have been collected and plotted out in Figure 3-11 on the right side,

with the horizontal axis being the number of successive subdivision steps (in each step we

subdivided each wire into four of the same dc resistance). These steps are being called

“sub” (for subdivision step), where sub goes from 0 (no subdivision) to 1 (1 subdivision),

2 (2 subdivisions), and so on. We then also realize that with each step, X and p change as per

X →
X

2sub

p → p × 2sub

For example, after four subdivision steps, the foil thickness will drop by a factor of 16, and

the number of layers will increase by the same factor. We can then look at Dowell’s curves

to find out the new FR .

However, there are a few problems with directly applying Dowell’s curves to switching

power regulators. For one, the original curves only talked about the ratio of the thickness to

the skin depth — and we know skin depth depends on frequency. So implicitly, Dowell’s

curves provide the FR for a sine wave. Further, Dowell’s curves do not assume the current
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has any dc value. So engineers, who adapted Dowell’s curves to power conversion, would

usually first break up the current waveform into its ac and dc components, apply the FR

obtained from the curves to the ac component only, compute the dc loss separately (with

FR = 1), and then sum as follows:

P = IDC
2 × RDC + IAC

2 × RDC × FR

However, in our case, we have preferred to follow the more recent approach of using the

actual (unidirectional) current waveform, splitting it into Fourier components, and summing

to get the effective FR . The losses are expressed in terms of the thickness of the foil as

compared to the δ at the fundamental frequency (first harmonic). We also include the dc

component in computing this effective FR . That is the reason, when calculating the secondary

winding losses, we were able to use the simple equation

P = IRMS
2 × RAC ≡ IRMS

2 × (FR × RDC)

In that case, the FR was actually the effective FR (computed for a square wave with dc level

included), though not explicitly stated. However, note that the graphs in Figure 3-11 are still

based on the original sine-wave approach, and the purpose here was only to demonstrate the

subdivision technique through the original curves.

But in Figure 3-12, we have finally modified Dowell’s original sine-wave curves. Fourier

analysis has been carried out while constructing these curves, and so the designer can apply

them directly to the typical (unidirectional) current waveforms of power conversion. We will

now use these curves to do the calculations for the primary winding of our ongoing

numerical example.

But one question may still be puzzling the reader — why are we not using the previous

FR/X curves (see Figure 3-10) that we used for the secondary? The reason is the situation is

different now. The curves in Figure 3-10 are Dowell’s curves for a square wave, except that

on the vertical axis we have used FR/X, not FR . That is useful only when we are varying h

and seeing when we got the lowest RAC. But for the primary windings, we are going to fix

the height of the windings in each step of the iterations that follow. We will be using the

subdivision technique in each iteration, and therefore keep the dc resistance constant. So now

the minimum RAC (for a given iteration step) will be achieved at the minimum FR, not at the

minimum FR/X.

The subdivision method was originally presented in Figure 3-11, except that now we will use

the modified curves in Figure 3-12.
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Figure 3-12: Dowell’s Curves Modified for Square Current Waveforms, and the Corresponding FR

Curves for the Subdivision Method

First Iteration:

Let us plan to try and fit eight turns on one layer. Lesser number of layers will usually be

better. We remember that we have 12.9 mm available width on the bobbin. So if we stack

eight turns side by side (no gap between them) we will require each of these eight round

wires to have a diameter of

d =
width

turns per layer
=

12.9

8
= 1.6125 mm

We can check that the available height of 2.3 mm is big enough to accommodate this

diameter of wire. The penetration ratio X is (using the equivalent foil transformation)

X =
0.886 × d

δ
=

0.886 × 1.6125

0.185
= 7.723

The p is equal to 1. From either of the graphs in Figure 3-12, we can see that the FR will be

about 10 in this case (marked “A”). Further, from the graph on the left side, we can see that

we need to subdivide the “X = 7.7” curve (imagine it close to the X = 8 curve) seven times

to get the FR below 2. That would give strands of diameter

d →
d

2sub
=

1.6125

27
= 0.0125 mm
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The corresponding AWG can be calculated by rounding off

AWG = 18.154 − 20 log(d)

So we get

AWG = 18.154 − 20 log(0.0125) ⇒ 56 AWG

But this is an extremely thin wire, and may not even be available! Generally, from a

production standpoint, we should not use anything thinner than 45 AWG (0.046 mm).

Second Iteration:

The problem with the first iteration is that we started with a very thick wire, with a very

high FR . So this demanded several subdivisions to get the FR to fall below 2. But what if we

start off with a wire of lesser diameter than 1.6125 mm? We would then need to introduce

some wire-to-wire spacing so we can spread the eight turns evenly across the bobbin.

However, that would be wasteful! We should remember that if a layer is already assigned

and present, we might as well use it to our full advantage to lower the dc resistance — the

problem only starts when we indiscriminately increase the number of layers. Therefore in

our case, let us try paralleling two thinner wires to make up the primary. We still want to

keep to one layer (without spacing). That means we will now have 16 wires placed side by

side in one layer. We then define a ‘bundle’ as the number of wires paralleled to make the

primary winding (we will be subdividing each of these further). So in our case

bundle = 2

The diameter we are starting off with is

d =
width

turns per layer
=

12.9

16
= 0.806 mm

The penetration ratio X is

X =
0.886 × d

δ
=

0.886 × 0.806

0.185
= 3.86

The p is still equal to 1. From both the graphs in Figure 3-12, we can see that the FR will be

about 5.3 in this case (marked “B”). Further, from the graph on the left side, we can see that

we need to subdivide five times to get the FR below 2. That would give strands of diameter

d →
d

2sub
=

0.806

25
= 0.025 mm

This is still thinner than the practical AWG limit of 0.046 mm.
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Third Iteration:

So we now parallel three wires to make up the primary. That means we will have 24 wires

side by side in one layer.

bundle = 3

The diameter we are starting off with is

d =
width

turns per layer
=

12.9

24
= 0.538 mm

The penetration ratio X is

X =
0.886 × d

δ
=

0.886 × 0.538

0.185
= 2.58

The p is still equal to 1. From both the graphs in Figure 3-12, we can see that the FR will be

about 3.7 in this case (marked “C”). Further, from the graph on the left side, we can see that

we need to subdivide four times to get the FR below 2. That would give strands of diameter

d →
d

2sub
=

0.538

24
= 0.034 mm

But this is still too thin!

Fourth Iteration:

Let us now parallel four wires to start with. We will have 32 wires in one layer.

bundle = 4

The diameter we are starting off with is

d =
width

turns per layer
=

12.9

32
= 0.403 mm

The penetration ratio X is

X =
0.886 × d

δ
=

0.886 × 0.403

0.185
= 1.93

The p is still equal to 1. From both the graphs in Figure 3-12, we can see that the FR will be

about 2.8 in this case (marked “D”). Further, from the graph on the left side, we can see that
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we need to subdivide three times to get the FR below 2. That would give strands of diameter

d →
d

2sub
=

0.403

23
= 0.05 mm

This corresponds to AWG 44, and would be of acceptable thickness.

Note that by the process of subdivision, the number of layers per portion has gone up as

p → p × 2sub

So with three subdivisions we have

p → p × 2sub = 1 × 23 = 8 (layers per portion)

that is, eight layers. The penetration ratio has similarly now become

X →
X

2sub
=

1.93

23
= 0.241

The FR is now about 1.8 as can also be confirmed from the graph on the right side of

Figure 3-12 (for X = 0.241, p = 8).

The number of strands each original “bundle” has been divided into is

strands = 4sub = 43 = 64

So finally, the primary winding consists of four bundles in parallel, each bundle consisting of

64 strands, side by side in one layer, with an FR of about 1.8.

We can continue the process if we want to get a slightly lower FR . But at some point we will

find the FR will start to go up again. For our purpose, we will take an FR of less than 2 as

acceptable to proceed with the loss estimates.

Note that further tweaking will always be required since when we bunch wires together to

form a bundle, they will “stack” in a certain manner that will affect the dimensions from what

we have assumed. Further, the diameter of the wire we used was for bare wire, and is slightly

less than the coated diameter. Note that in general, if after winding several layers evenly, we

are left with a few turns that seem to need another layer to complete, we are better off reducing

the primary number of turns and sticking to the existing completed layers, because even a few

turns extra will count as a new layer from the field point of view, and increase proximity losses.

We can now calculate the losses for the two primary sections combined, since they can be

considered to be identical and with the same FR . The ac resistance in ohms of the entire
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primary winding is

RAC_P =
(

FR

)

×
ρ×MLT×nP

π×
d2

4
×bundles×strands

=
(

1.8
)

×
2.3×10−5×61.26×16

π×
(0.05)2

4
×4×64

=0.08 ohms

So the loss is

PP = IRMS_P
2×RAC_P =

(

IRMS_S

n

)2

×RAC_P =
(

29.69

8

)2

× 0.08=1.102 Watts

Had we gone further and divided the primary into five bundles and then subdivided three

times, we would get eight layers with 64 strands of 0.04 mm diameter wire per bundle, and

an FRof 1.65 — which seems better than the 1.8 we got in the last step. But since the wires

are so thin to start with, the dc resistance now goes up, and the dissipation will rise to 1.26 W.

Total Transformer Losses

The total dissipation in the transformer is therefore

P=PCORE +PCU =PCORE +PP +PS =1.13+1.102+0.899=3.131 W

The estimated temperature rise

degC=Rth×P=17.67×3.145=55.3◦C

What we are seeing is a typical practical situation! The temperature rise is 15◦C higher than

we were expecting! However, 55◦C is perhaps still acceptable (even from the standpoint of

getting safety approvals without special transformer materials). Admittedly, there is room for

more optimization. However, the next time we do the process, we must note that the core

loss is only a third the total loss, not half, as we had initially assumed.

Note also that methods in related literature may predict a smaller temperature rise. But the

fact is that these are usually based on the sine-wave versions of Dowell’s equations, and we

know that will typically underestimate the losses significantly.
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C H A P T E R 4

The Topology FAQ

This section serves to highlight and summarize the gamut of key topology-related design

issues that should be kept in mind when actually designing converters (or when appearing

for a job interview!).

Questions and Answers

Question 1: For a given input voltage, what output voltages can we get in principle, using

only basic inductor-based topologies (buck, boost, and buck-boost)?

Answer: The buck is a step-down topology (VO < VIN), the boost only steps-up (VO > VIN),

and the buck-boost can be used to either step-up or step-down (VO < VIN, VO > VIN). Note

that here we are referring only to the magnitudes of the input and output voltages involved.

So we should keep in mind that the buck-boost also inverts the polarity of the input

voltage.

Question 2: What is the difference between a topology and a configuration?

Answer: We know that, for example, a ‘down-conversion’ of 15 V input to a 5 V output

is possible using a buck topology. But what we are referring to here is actually a

“positive-to-positive” buck configuration, or simply, a “positive buck.” If we want to convert

−15 V to −5 V, we need a “negative-to-negative” buck configuration, or simply, a “negative

buck.” We see that a topology is itself fundamental (e.g. the buck) — but it can be

implemented in more than one way, and these constitute its configurations.

Note that in the down-conversion of −15 V to −5 V, we use a buck (step-down) topology,

even though mathematically speaking, −5 V is actually a higher voltage than −15 V!

Therefore, only magnitudes are taken into account in deciding what the nature of a power

conversion topology is.

Similarly, a conversion of say 15 V to 30 V would require a “positive boost,” whereas,

−15 V to −30 V would need a “negative boost.” These are the two configurations of a boost

topology.
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For a buck-boost, we need to always mentally keep track of the fact that it inverts the

polarity (see next question).

Question 3: What is an “inverting” configuration?

Answer: The buck-boost is a little different. Although it has the great advantage of being

able to up-convert or down-convert on demand, it also always ends up inverting the sign of

the output with respect to the input. That is why it is often simply referred to as an “inverting

topology.” So for example, a “positive-to-negative” buck-boost would be required if we want

to convert 15 V to −5 V or say to −30 V. Similarly, a “negative-to-positive” buck-boost

would be able to handle −15 V to 5 V or to 30 V. Note that a buck-boost cannot do 15 V to

5 V for example, nor can it do −15 V to −5 V. The convenience of up- or down-conversion

(on demand) is thus achieved only at the expense of a polarity inversion — the conventional

(inductor-based) buck-boost topology is useful only if we either desire, or are willing to

accept, this inversion.

Question 4: Why is it that only the buck-boost gives an inverted output? Or conversely,

why can’t the buck-boost ever not-invert?

Answer: In all topologies, there is a voltage reversal across the inductor when the switch

turns OFF. So the voltage at one end of the inductor “flips” with respect to its other end.

Further, when the switch turns OFF, the voltage present at the swinging end of the inductor

(i.e. the switching node) always gets “passed on” to the output, because the diode is then

conducting. But in the case of the buck-boost, the “quiet end” of its inductor is connected to

the ground reference (no other topology has this). Therefore, the voltage reversal that takes

place at its other end (swinging end) is also a voltage reversal with respect to ground.

And since this is the voltage that ultimately gets transmitted to the output (which is also

referenced to ground), it is virtually “seen” at the output.

Of course the output rail continues to stay inverted even when the switch turns ON, because

the diode then stops conducting, and there is an output capacitor present, that holds the

output voltage steady at the level it acquired during the switch off-time.

Question 5: Why do we always get only up-conversion from a boost converter?

Answer: Inductor voltage reversal during a switch transition occurs in all dc-dc switching

topologies — it just does not necessarily lead to an output reversal. But in fact, inductor

voltage reversal is responsible for the fact that in a buck, the input voltage is always

stepped-down whereas in a boost, it is stepped-up. It all depends on where the “quiet” end of

the inductor connects to. In the boost, the “quiet” end connects to the input rail (in the buck,

to the output rail). Therefore, since the swinging end of the boost inductor is connected to

ground during the switch on-time, it then flips with respect to the input rail during the switch

off-time, gets connected to the output through the conducting diode, and thereby we get a

boosted output voltage.
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Question 6: What is really “ground” for a dc-dc converter?

Answer: In a dc-dc converter there are two input rails and two output rails. But one of these

rails is common to both the input and output. This rail is the (power) “ground”. The input

and output voltages are measured with respect to this reference rail, and that gives them their

respective magnitudes and polarity.

Question 7: What is “ground” for the control IC?

Answer: The reference rail, around which most of the internal circuitry of the IC is built,

is its local (IC) ground. This rail comes out of the package as the ground pin(s) of the IC.

Usually, this is connected on the PCB directly to the power ground. However, there are

exceptions, particularly when an IC meant primarily for a certain topology (or configuration)

is rather unconventionally configured to behave as another topology altogether (or just a

different configuration). Then the IC ground may in fact differ from the power ground.

Question 8: What is “system” ground?

Answer: This is the reference rail for the entire system. So in fact, all on-board dc-dc

converters present in the system usually need to have their respective (power) grounds tied

firmly to this system ground. The system ground in turn usually connects to the metal

enclosure, and from there on to the “earth (safety) ground” (i.e. into the mains wiring).

Question 9: Why are negative-to-negative dc-dc configurations rarely used?

Answer: The voltages applied to and/or received from on-board dc-dc converters are

referenced by the rest of the system to the common shared system ground. By modern

convention, all voltages are usually expected to be positive with respect to the system

ground. Therefore, all on-board dc-dc converters also need to comply with the same

convention. And that makes them necessarily positive-to-positive converters.

Question 10: Why are inverting dc-dc converters rarely used?

Answer: We usually cannot afford to let any given on-board converter attempt to “redefine”

the ground in the middle of a system. However, inverting regulators can on occasion be

used, especially if the converter happens to be a “front-end” converter. In this case, since the

system effectively starts at the output terminals of this converter, we maybe able to “define”

the ground at this point. In that case, the relative polarity between the input and output of the

converter may become a “don’t care” situation.

Question 11: Can a buck regulator be used to convert a 15 V input to 14.5 V output?

Answer: Maybe, maybe not! Technically, this is a step-down conversion, since VO < VIN.

Therefore, in principle, a buck regulator should have worked. However in practice there are

some limitations regarding how close we can set the output of a converter in relation to

the input.
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Even if the switch of a buck regulator is turned fully ON (say in an all-out effort to produce

the required output), there will still be some remaining forward-drop across the switch, VSW,

and this would effectively subtract from the applied input VIN. Note that in this fully ON

state, the switcher is basically functioning just like an LDO, and so the concerns expressed

in Chapter 1 regarding the minimum achievable headroom of an LDO apply to the switcher

too, in this state. As an example — if the switch drop VSW is 1 V, then we certainly can’t get

anything higher than 14 V output from an input of 15 V.

The second consideration is that even if, for simplicity, we assume zero forward voltage

drops across both the switch and the diode, we still may not be able to deliver the required

output voltage — because of maximum duty cycle limitations. So for example, in our case,

what we need is a (theoretical) duty cycle of VO/VIN = 14.5 V/15 V = 0.97, that is, 97%.

However, most buck ICs in the market are not designed to guarantee such a high duty cycle.

They usually come with an internally set maximum duty cycle limit (‘DMAX’), typically

around 90 to 95%. And if that is so, D = 97% would be clearly out of their capability.

A good power supply designer also always pays heed to the tolerance or spread of the

published characteristics of a device. This spread is usually expressed as a range with a

specified “min” (minimum), a “max” (maximum), and a “typ” (typical, or nominal). For

example, suppose a particular IC has a published maximum duty cycle range of 94 to 98%,

we cannot guarantee that all production devices would be able to deliver a regulated

14.5 V — simply because not all of them are guaranteed to be able to provide a duty cycle

of 97%. Some parts may manage 97%, but a few others won’t go much beyond a duty cycle

maximum of 94%. So what we need to do is to select an IC with the published ‘min’ of its

tolerance range greater than the desired duty cycle. For example, a buck IC with a published

DMAX range of 97.5 to 99% may work in our current application.

Why did we say “may” above? If we include the forward drops of the switch and diode in

our calculation, we actually get a higher duty cycle than the 97% we got using the “ideal”

equation D = VO/VIN. The latter equation implicitly assumes VSW = VD = 0 (besides

ignoring other key parasitics like the inductor’s DCR). So the actual measured duty cycle in

any application may well be a couple of percentage points higher than the ideal value.

In general we should remember that whenever we get too close to the operating limits of a

control IC, we can’t afford to ignore key parasitics. We must also account for temperature

variations, because temperature may affect efficiency, and thereby the required duty cycle.

Question 12: What role does temperature play in determining the duty cycle?

Answer: As mentioned in Chapter 1, it is generally hard to predict the overall effect of

temperature on a power-supply’s efficiency, and thereby on its duty cycle variation with

respect to temperature. Some loss terms increase with temperature and some decrease.

However to be conservative, we should at a minimum account for the increase in the forward
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drop of the mosfet switch. For low voltage mosfets (rated ∼30 V), the increase in RDS

(on-resistance) in going from room temperature to “hot” is typically 30 to 50%. So we

typically multiply the published room temperature on-resistance by 1.4. For high-voltage

mosfets, as used in off-line power supplies, the increase is about 80 to 100%. So we

typically multiply the room temperature on-resistance by 1.8.

Question 13: How can we convert an unregulated input of 15 V to a regulated output

of 15 V?

Answer: The term “unregulated” implies that the stated value just happens to be the ‘typical’

(usually center) of a certain range, which may or may not yet have been defined. So an

“unregulated input of 15 V” could well mean say 10 V to 20 V, or 5 V to 25 V, or

12 V to 18 V, and so on.

Of course, ultimately, we do need to know what this input range really is. But it should

already be apparent that for a 15 V to 15 V conversion, if the input falls at the lower end of

its range, we would need to up-convert, and if the input is at its upper end, we would need to

down-convert. Therefore, we must choose a topology capable of performing both step-up

and step-down conversions on demand.

How about the buck-boost? Unfortunately, the standard inductor-based buck-boost also gives

us an inverted output, which we really don’t want here. What we need is a non-inverting

step-up/step-down topology. Looking around, a suitable candidate for this is the ‘SEPIC’

(single ended primary inductance converter) topology. See Figure 4-1. It is best visualized as

composite topology — a boost stage followed by a buck cell. Though this “boost-buck”

Capacitive Coupling
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VIN

VO

VIN

Voltage across each Inductor
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D =
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+

+

VIN
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SEPIC CONVERTER NON-ISOLATED TRANSFORMER-
BASED BUCK-BOOST CONVERTER

Figure 4-1: Positive-to-Positive Step-up/Step-down Converters
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combination needs only one switch, it requires an additional inductor, and also entails

significantly more design complexity. We may therefore wish to consider a derivative

(or variant) of the conventional buck-boost topology, but with the inductor replaced by a

transformer. In effect, what we are doing is — we are first separating (isolating) the input

from the output, and then reconnecting the windings of the transformer in an appropriate

manner so as to correct for the inversion. Thus we get a non-inverting or ‘non-isolated

transformer-based buck-boost’ — sometimes simply called a ‘flyback’ topology.

Question 14: It is much easier to find “off-the-shelf” inductors. So why is a

transformer-based buck-boost even worth considering?

Answer: It is true that most designers prefer the convenience of off-the-shelf components,

rather than custom-designed components (like transformers). However, high-power off-the

shelf inductors often come with two identical windings wound in parallel (on the same core),

(though that may not be immediately apparent just by looking at the datasheet). Further,

the ends of these two windings are sometimes completely separated from each other

(no galvanic connection between the windings). The reason for this may be that from a

production standpoint, it doesn’t make sense to try and solder too many copper strands on to

a single pin/termination. So the intention here is that the two windings will be eventually

connected to each other on the PCB itself. But sometimes, the intention of leaving separate

windings on an inductor is to allow flexibility for the two windings to be connected to each

other either in series, or in parallel, as desired. So for example, if we place the winding in

series, that would reduce the current rating of the inductor, but we would get a much higher

inductance. If in parallel, the inductance would come down, but the current rating would

increase. However, in low-voltage applications, where safety isolation is not a concern,

we can also exploit this inductor structure and use it as a 1:1 transformer. And that would be

very helpful in correcting the polarity inversion of the buck-boost. In other words,

an off-the-shelf inductor could now serve as a 1:1 transformer!

Question 15: In an inductor with split windings (1:1), how exactly does its current rating

and its inductance change as we go from a parallel configuration to a series configuration?

Answer: Suppose each winding has 10 turns and a DCR (dc resistance) of 1 Ω. So if it is used

in parallel configuration, we still have 10 turns, but the effective DCR is 1 Ω in parallel with

1 Ω, i.e. 0.5 Ω. When a series configuration is used, we get 2 Ω and 20 turns. We also know

that inductance depends on the square of the number of turns. So that goes up four times.

What about the current rating? This is largely determined by the amount of heat dissipation

the inductor can tolerate. But its thermal resistance (in degC/W) is not determined by the

winding configuration, rather by the exposed area of the inductor, and other physical

characteristics. Therefore, whether in series or in parallel configuration, we have to maintain

the same total I2R loss. For example, suppose we call the current rating in parallel as “IP”,
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and in series “IS,” then as per the DCR in our above numerical example, we get

IP
2 × 0.5 = IS

2 × 2

so

IP = 2 × IS

Therefore, in going from a parallel to a series configuration, the inductance will quadruple

and the current rating will halve.

What happens to the B-field? Don’t we have to consider the possibility of saturation here?

Well, B is proportional to LI/N (see Chapter 2, “DC-DC Converter Design and Magnetics”).

So if inductance quadruples, I halves, and N doubles, the B-field is unchanged!

Question 16: Is there any difference between the terms “buck-boost” and “flyback”?

Answer: The answer to that may well depend on whom you ask! These terms are often used

interchangeably in the industry. However, generally, most people prefer to call the

conventional inductor-based version a (true) “buck-boost,” whereas its transformer-based

version, isolated or non-isolated, is called a “flyback.”

Question 17: When and why do we need isolation? And how do we go about achieving it?

Answer: We must recognize that a (transformer-based) flyback topology may or may not

provide us with isolation. Isolation is certainly a natural advantage accruing from the use of

a transformer. But to preserve isolation, we must ensure that all the circuitry connected to the

switch side of the transformer (‘primary side’) is kept completely independent from all the

circuitry sitting on the output side (‘secondary side’). See Figure 1-1 in Chapter 1.

So for example, if in our attempt to correct the polarity inversion of a buck-boost we make

a connection between the primary and secondary windings of the transformer, we lose

isolation.

Further, to maintain isolation, besides making no galvanic connection between the power

stages on either side of the transformer, we must not make any signal-level inter-connections

either. So we must carry the feedback signal (or any fault information) from the output side

to the IC, via one or more ‘optocouplers.’ The optocoupler manages to preserve

primary-to-secondary voltage isolation, but allows signal-level information to pass through.

It works by first converting the secondary-side signal into radiation by means of an “led”

(light emitting diode), beaming it over to the primary side onto a photo-transistor, and

thereby converting the signal back into electrical impulses (all this happening within the

package of the device itself ).
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In high-voltage applications (e.g. off-line power supplies), it may in fact be required by law,

to provide electrical isolation between a hazardous input voltage level and user-accessible

(“safe”) output terminals of the power supply. Therefore there is a “primary ground” at the

input side of the transformer, and a separate “secondary ground” on the output side.

The latter is then to the ground of the system, and usually also to the earthed metal enclosure.

Question 18: In an off-line power supply, are the primary and secondary sides really

completely isolated?

Answer: It is interesting to note that safety regulations specify a certain physical spacing

that must be maintained between the primary and secondary sides — in terms of the RMS of

the voltage differential between them. The question arises — how do we define a voltage

difference between the two sides of a transformer that are supposedly separate? What is the

reference level to compare their voltages?

In fact they do share a connection! As mentioned, the secondary side ground is usually the

system ground, and it connects to the metal enclosure and/or to the ground wire of the mains

supply (“earth” or “safety ground”). But further down the mains distribution network,

the safety ground wire is connected to the “neutral” wire of the supply. And we know that

this neutral wire comes back into the primary side. So in effect, we have established a

connection between the primary and secondary sides. It does not cause the user any problem,

because he or she is also connected to earth. Therefore, the earth potential forms the

reference level to establish the voltage difference across the safety transformer, and to

thereby fix the primary-to-secondary spacing, and also the breakdown rating of any

primary-to-secondary insulation. See Mathcad file in accompanying CD-ROM.

Note that in some portable equipment, only a two-wire ac cord is used to connect it to

the mains supply. But the spacing requirement is still virtually unchanged, since a user can

touch accessible parts on the secondary side and complete the connection through the earth

ground.

Question 19: From the standpoint of an actual power supply design procedure, what is the

most fundamental difference between the three topologies that must be kept in our minds?

Answer: In a buck, the average inductor current (“IL”) is equal to the load current (“IO”),

that is, IL = IO. But in a boost and a buck-boost, this average current is equal to IO/(1 − D).

Therefore, in the latter two topologies, the inductor current is a function of D (duty cycle) —

and therefore indirectly a function of the input voltage too (for a given output).

Question 20: In the three basic topologies, how does the duty cycle change with respect to

input voltage?

Answer: For all topologies, a high D corresponds to a low input voltage, and a low D to a

high input.
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Question 21: What do we mean by the “peak current” of a dc-dc converter?

Answer: In any dc-dc converter, the terms “peak inductor current,” “peak switch current,”

and “peak diode current” are all the same — referred to simply as the peak current ‘IPK’

(of the converter).

Question 22: What are the key parameters of an off-the-shelf inductor that we need

to consider?

Answer: The inductance of an inductor (along with the switching frequency and duty cycle)

determines the peak current, whereas the average inductor current is determined by the

topology itself (and the specific application conditions — the duty cycle and load current).

For a given application, if we decrease the inductance, the inductor current waveform

becomes more “peaky,” increasing the peak currents in the switch and diode too (also in the

capacitors). Therefore, a typical converter design should start by first estimating the optimum

inductance so as to avoid saturating the inductor. That is the most basic concern in

designing/picking an inductor.

However, inductance by itself doesn’t fully describe an inductor. In theory, by choosing a

very thin wire gauge for example, we may be able to achieve almost any inductance on a

given core, just by winding the appropriate number of turns. But the current that the inductor

will be able to handle without saturating is still in question, because it is not just the current,

but the product of the current and the number of turns (‘ampere-turns’) that determine the

magnetic field present in the inductor core — which in turn determines whether the inductor

is saturating or not. Therefore, we need to look out for an inductor with the right inductance

and also the required energy handling capability, usually expressed in µJ (microJoules). This

must be greater than or equal to the energy it needs to store in the application, 1
2 × LIPK

2.

Note that the “L” used in this equation carries with it information about the number of turns

too, since L ∝ N2, where N is the number of turns.

Question 23: What really determines the current rating of an inductor?

Answer: There are two limiting factors here. One is the heat developed (I2R losses), which

we should ensure is not excessive (usually 50◦C or less). The second is the magnetic field

it can withstand without saturating. So most ferrites allow a maximum B-field of about

3000 gauss before saturation starts.

Question 24: Does the maximum allowable B-field depend on the air gap used?

Answer: When designing (gapped) transformers, we need to remember that first, the B-field

present within the core material (e.g. ferrite) is the same as the B-field in the air gap. It does

not change. Second, though by changing the air gap we can end up decreasing the existing

B-field, the maximum allowable B-field depends only on the core material used — it remains

fixed, for example, at about 3000 gauss for ferrites. Note that the H-field is defined as
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H = B/µ, where µ is the permeability of the material. So since the permeability of ferrite is

much higher than that of air, and since the B-field is the same in both, therefore the H-field

is much lower in the ferrite than in the air gap.

Question 25: Why is it commonly stated that in a flyback transformer, the “air gap carries

most of the stored magnetic energy”?

Answer: We can intuitively accept the fact that the energy stored is proportional to the

volume of the magnetic material. And because of that, we also tend to think the ferrite must

be carrying most of the energy, since it occupies the maximum volume — the amount of air

enclosed between the ends of the ferrite being very small. However, the stored energy is also

proportional to B × H, and since the H-field in the gap is so much larger, it ends up storing

typically two-thirds of the total energy, despite its much smaller volume.

Question 26: If air carries most of the stored energy, why do we even need the ferrite?

Answer: An air-cored coil would seem perfect as an inductor, especially since it would

never saturate. However, the number of turns required to produce a given inductance would

be impractically large, and so we would get unacceptable copper losses. Further, since

there is nothing to “channel” (constrain) the flux lines, the air-cored inductor would spew

electromagnetic interference (EMI) everywhere.

The ferrite is useful, because it is the very means by which we can create such high magnetic

fields in the first place — without an excessive number of turns. It also provides us the

“channel” for flux lines that we had been looking for.

Question 27: What is the basic design rule for calculating inductance for all the

topologies?

Answer: To reduce stresses at various points inside a power supply, and also to generally

reduce the overall size of its components, a ‘current ripple ratio’ (‘r’) of about 0.4 is

considered to be a good compromise for any topology, at any switching frequency.

“r” is the ratio ∆I/IL, where ∆I is the swing in the current, and IL is the average inductor

current (center of the swing ∆I). An r of 0.4 is the same as r = 40%, or r = ±20%. This

means that the peak inductor current is 20% above its average value (its trough being

20% below).

To determine the corresponding inductance we use the definition r = ∆I/IL, along with the

inductor equation, to get

VON = L
∆I

∆t
= L

IL × r

D/f
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solving

L =
VON × D

IL × r × f

This gives us the inductance in Henries, when f is in Hz. Note that VON is the voltage across

the inductor when the switch is ON. It is therefore equal to VIN − VO for a buck, and VIN

for a boost and a buck-boost. Also, IL is the average inductor current, equal to IO for a buck,

and IO/(1 − D) for a boost and a buck-boost.

Question 28: What is a ‘forward converter’?

Answer: Just as the isolated flyback is a derivative of the buck-boost topology, the forward

converter is the isolated version (or derivative) of the buck topology. It too uses a

transformer (and optocoupler) for providing the required isolation in high-voltage

applications. Whereas the flyback is typically suited for output powers of about 75 W or less,

the forward converter can go much higher.

The simplest version of the forward converter uses only one transistor (switch), and is thus

often called “single-ended.” But there are variants of the single-ended forward converter

with either two or four switches. So whereas the simple forward converter is suited only up

to about 300 W of power, we can use the ‘double-switch forward’ to get up to about 500 W.

Thereafter, the half-bridge, push-pull, and full-bridge topologies can be exploited for even

higher powers (see Figure 4-2). But note that all of the above topologies are essentially

‘buck-derived’ topologies.

Question 29: How can we tell whether a given topology is “buck-derived” or not?

Answer: The simplest way to do that is to remember that only the buck has a true LC filter

at its output.

Question 30: Which end of a given input voltage range VINMIN to VINMAX should we pick

for starting a design of a buck, a boost, or a buck-boost converter?

Answer: Since the average inductor current for both the boost and buck-boost increases

as D increases (IL = IO/(1 − D)) — the design of boost and buck-boost inductors must be

validated at the lower end of the given input range, that is, at VINMIN — since that is where

we get the highest (average and peak) inductor current. We always need to ensure that any

inductor can handle the maximum peak current of the application without saturating. For a

buck, the average inductor current is independent of the input or output voltage. However,

observing that its peak current increases at higher input voltages, it is preferable to design

or select a buck inductor at the upper end of the given input range, that is, at VINMAX.
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Figure 4-2: Various Buck-derived Topologies

Question 31: Why are the equations for the average inductor current of a boost and

a buck-boost exactly the same, and why is that equation so different from that of

a buck?

Answer: In a buck, energy continues to flow into the load (via the inductor) during the entire

switching cycle (during the switch on-time and off-time). Therefore, the average inductor

current must be equal to the load current, that is, IL = IO.

Note that capacitors contribute nothing to average current flow, because, in steady state, just

as the voltseconds across an inductor averages out to zero at the end of each cycle, the

charge in a capacitor does likewise (charge is the integral of current over time, and has the

units Amperes-seconds). If that did not happen, the capacitor would keep charging up

(or discharging) on an average, until it reaches a steady state.

However, in a boost or buck-boost, energy flows into the output only during the off-time.

And it can only be coming via the diode. So the average diode current must be equal to the

load current. By simple arithmetic, since the average diode current calculated over the full

cycle is equal to IL × (1 − D), equating this to the load current IO gives us IL = IO/(1 − D)

for both the boost and the buck-boost.
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Question 32: What is the average output current (i.e. the load current) equal to for the

three topologies?

Answer: This is simply the converse of the previous question. For the buck, the average

output current equals the average inductor current. For the boost and buck-boost, it is equal

to the average diode current.

Question 33: What is the average input current equal to for the three topologies?

Answer: In a buck, the input current flows only through the switch. It stops when the switch

turns OFF. Therefore, the average input current must be equal to the average switch current.

To calculate the average of the switch current, we know it is ON for a fraction D (duty

cycle) of the switching cycle, during which time it has an average value (center of ramp)

equal to the average inductor current, which in turn is equal to the load current for a buck.

Therefore the arithmetic average of the switch current must be D × IO, and this must be

equal to the input current IIN. We can also do a check in terms of the input and output power

PIN = VIN × IIN = VIN × D × IO = VIN ×
VO

VIN
× IO = VO × IO = PO

We therefore get input power equal to the output power — as expected, since the simple

duty cycle equation used above ignored the switch and diode drops, and thus implicitly

assumed no wastage of energy, that is, an efficiency of 100%.

Similarly, the input current of a boost converter flows through the inductor at all times.

So the average input current is equal to the average inductor current — which we know is

IO/(1 − D) for the boost. Let us again do a check in terms of power

PIN = VIN × IIN = VIN ×
IO

1 − D
= VIN ×

IO

1 −
VO − VIN

VO

= VO × IO = PO

Coming to the buck-boost, the situation is not so clear at first sight. The input current flows

into the inductor when the switch is ON, but when the switch turns OFF, though the inductor

current continues to flow, its path does not include the input. So the only conclusion we can

make here is that the average input current is equal to the average switch current. Since the

center of the switch current ramp is IO/(1 − D), its arithmetic average is D × IO/(1 − D). And

this is the average input current. Let us check this out:

PIN = VIN × IIN = VIN ×
D × IO

1 − D
= VIN ×

VO

VIN + VO
× IO

1 −
VO

VIN + VO

= VO × IO = PO

We get PIN = PO as expected.
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Question 34: How is the average inductor current related to the input and/or output currents

for the three topologies?

Answer: For the buck, we know that average inductor current is equal to the output current,

that is, IL = IO. For the boost we know it is equal to the input current, that is, IL = IIN. But

for the buck-boost it is equal to the sum of the (average) input current and the output current.

Let us check this assertion out

IIN + IO =
D × IO

1 − D
+ IO = IO ×

(

D

1 − D
+ 1

)

=
IO

1 − D
= IL

It is thus proved. See Table 4-1 for a summary of similar relationships.

Table 4-1: Summary of relationships of currents for the three topologies

Average Values Buck Boost Buck-Boost

IL IO IO/(1 − D) IO/(1 − D)

IL IIN/D IIN IIN/D

IL IO IIN IIN + IO

ID IO − IIN IO IO

ID IO(1 − D) IO IO

ID IIN(1 − D)/D IIN(1 − D) IIND/(1 − D)

ISW IIN IIN − IO IIN

ISW IOD IOD/(1 − D) IOD/(1 − D)

ISW IIN IIND IIN

IO IL ID ID

IIN ISW IL ISW

Question 35: Why are most buck ICs not designed to have a duty cycle of 100%?

Answer: One of the reasons for limiting DMAX to less than 100% is specific to synchronous

buck regulators (Figure 4-3) — when it utilizes a technique called ‘low-side current sensing.’

In “low-side current sensing,” to save the expense of a separate low-resistance sense resistor,

the RDS of the “low-side mosfet” (the one across the “optional” diode in Figure 4-3) is often

used for sensing the current. The voltage drop across this mosfet is measured, and so if we

know its RDS, the current through it is also known by Ohm’s law. It becomes obvious that in

fact for any low-side current sense technique, we need to turn the high-side mosfet OFF, and

thereby force the inductor current into the freewheeling path, so we can measure the current

therein. That means we need to set the maximum duty cycle to less than 100%.

192



The Topology FAQ

−
+

VIN

+

LOAD

Optional external
diode

Body Diode

Body Diode

Bootstrap

Capacitor

Supply Rails for Driver

Driver of

main mosfet

Figure 4-3: Synchronous Buck Regulator with Bootstrap Circuit

Another reason for choosing DMAX < 100% comes from the use of n-channel mosfets in any

(positive-to-positive) buck regulators. Unlike an npn transistor, an n-channel mosfet’s gate

terminal has to be taken several volts above its source terminal to turn it ON fully. So to

keep the switch ON, when the mosfet conducts, we need to drive its gate a few Volts higher

than the input rail. But such a rail is not available! The only way out is to create such a

rail — by means of a circuit that can pump the input rail higher as required. This circuit is

called the ‘bootstrap circuit,’ as shown in Figure 4-3.

But to work, the bootstrap circuit demands we turn the switch OFF momentarily, because

that is when the switching node goes low and the ‘bootstrap capacitor’ gets charged up to

VIN. Later, when the switch turns ON, the switching node (lower terminal of the bootstrap

capacitor) rises up to VIN, and in the process, literally “drags” the upper terminal of the

bootstrap capacitor to a voltage higher than VIN (by an amount equal to VIN!) — that

happens because no capacitor loses its charge spontaneously! Therefore, the reason for

setting the maximum duty cycle to less than 100% is simply to allow a bootstrap circuit

(if present) to work!

We will find that a bootstrap circuit is almost always present if an n-channel mosfet switch is

used in a positive to positive (or just “positive”) buck converter, or in a positive to negative
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buck-boost, or in a negative to negative (or just “negative”) boost. Further, by circuit

symmetry we can show that it will also be required (though this time to create a drive rail

below ground) when using a p-channel mosfet in a negative buck, or in a negative to positive

buck-boost, or in a positive boost.

Here, we should also keep in mind that the n-channel mosfet is probably the most popular

choice for switches, since it is more cost-effective as compared to p-channel mosfets with

comparable drain-to-source on-resistance ‘RDS.’ That is because n-channel devices require

smaller die sizes (and packages). Since we also know that the ubiquitous positive buck

topology requires a bootstrap circuit when using an n-channel mosfet switch, it becomes

apparent why a good majority of buck ICs out there have maximum duty cycles of less

than 100%.

Question 36: Why are boost and buck-boost ICs almost invariably designed not to have

100% duty cycle?

Answer: We should first be clear that the boost and buck-boost topologies are so similar in

nature, that any IC meant for a boost topology can also be used for a buck-boost application,

and vice versa. Therefore, such control ICs are generally marketed as being for both boost

and buck-boost applications.

One of the common aspects of these two topologies is that in both of these, energy is built

up in the inductor during the switch on-time, during which none passes to the output. It is

delivered to the load only when the switch turns OFF. In other words, we have to turn the

switch OFF to get any energy at all delivered to the output. Contrast this with a buck,

in which the inductor, being in series with the load, delivers energy to the load even as it is

being built up in the inductor itself (during the switch on-time). So in a buck, even if we

have 100% duty cycle (i.e. switch is ON for a long time), we will get the output voltage to

rise (smoothly). Subsequently, the feedback loop will command the duty cycle to decrease

when the required output voltage is reached.

However, in the boost and buck-boost topologies, if we keep the switch ON permanently, we

can never get the output to rise, because in these topologies, energy is delivered to the output

only when the switch turns OFF. We can thus easily get into a “Catch 22” situation, where

the controller “thinks” it is not doing enough to get the output to rise — and therefore

continues to command maximum duty cycle. But with a maximum 100% duty cycle, that

means zero off-time — so how can the output ever rise?! We can get trapped in this illogical

mode for a long time, and the switch can be destroyed. Of course, we hope that the current

limit circuit is designed well enough to eventually intervene, and turn the switch OFF before

the switch destructs! But generally, it is considered inadvisable to run these two topologies at

100% duty cycle. The only known D = 100% buck-boost IC is the LM3478 from National.
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Question 37: What are the ‘primary’ and ‘secondary’ sides of an off-line power supply?

Answer: Usually, the control IC drives the switch directly. Therefore the IC must be located

at the input side of the isolation transformer — that is called the ‘primary side’. The

transformer windings that go to the output are therefore said to all lie on the ‘secondary

side.’ Between these primary and secondary sides lies “no-man’s land” — the ‘isolation

boundary.’ Safety norms regulate how strong or effective this boundary must be.

Question 38: In many off-line power supplies, we can see not one, but two optocouplers,

usually sitting next to each other. Why?

Answer: The first optocoupler transmits error information from the output (secondary side)

to the control IC (primary side). This closes the feedback loop, and tells the IC how much

correction is required to regulate the output. This optocoupler is therefore often nicknamed

the “regulation opto” or the “error opto.” However, safety regulations for off-line power

supplies also demand that no ‘single-point failure’ anywhere in the power supply produces a

hazardous voltage on the output terminals. So if, for example, a critical component (or even

a solder connection) within the normal feedback path fails, there would be no control left on

the output, which could then rise to dangerous levels. To prevent this from happening,

an independent ‘overvoltage protection’ (OVP) circuit is almost invariably required. This is

usually tied to the output rail in parallel to the components of the regulation circuitry. This

fault detector circuit also needs to send its sensed ‘fault signal’ to the IC through a separate

path altogether, so that its functioning is not compromised in the event of failure of the

feedback loop. So logically, we require an independent optocoupler — the “fault opto.” Note

that by the same logic, this optocoupler must eventually connect to the IC (and cause it to

shut down) using a pin other than the one being used for feedback.

The reason why the two optocouplers are “sitting next to each other” is usually only for

convenience in the PCB layout — because the isolation boundary needs to pass through

these devices, and also through the transformer (see Figure 1-1 in Chapter 1).

Question 39: To get safety approvals in multi-output off-line converters, do we need

separate current limiting on each output?

Answer: Safety agencies not only regulate the voltage at the user-accessible outputs, but also

the maximum energy that can be drawn from them under a fault condition. Primary-side

current sensing can certainly limit the total energy delivered by the supply, but cannot limit

the energy (or power) from each output individually. So for example, a 300 W converter

(with appropriate primary-side current limiting) may have been originally designed for 5 V

at the rate of 36 A and 12 V at the rate of 10 A. But what prevents us from trying to draw

25 A from the 12 V output alone (none from the 5 V)? To avoid running into problems like

this during approvals, it is wise to design separate secondary-side current limiting circuits for
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each output. We are allowed to make an exception if we are using an integrated

post-regulator (like the 7805) on a given output, because such regulators have built-in

current limiting. Note that any overcurrent fault signal can be “OR-ed” with the OVP signal,

and communicated to the IC via the fault optocoupler.

Question 40: How do safety agencies typically test for single-point failures in off-line power

supplies?

Answer: Any component can be shorted or opened by the safety agency during their testing.

Even the possibility of a solder connection coming undone anywhere, or a bad ‘via’ between

layers of a PCB would be taken into account. Any such single-point failure is expected to

usually cause the power supply to simply shut down gracefully, or even fail catastrophically.

That is fine, but in the process, no hazardous voltage is permitted to appear on the outputs,

even for a moment.

Question 41: What is a synchronous buck topology?

Answer: In synchronous topologies, the freewheeling diode of the conventional buck

topology is either replaced, or supplanted (in parallel) with an additional mosfet switch.

See Figure 4-3. This new mosfet is called the “low-side mosfet” or the “synchronous

mosfet,” and the upper mosfet is now identified as being the “high-side mosfet” or the

“control mosfet.”

In steady state, the low-side mosfet is driven such that it is “inverted” or “complementary”

with respect to the high-side mosfet. This means that whenever one of these switches is ON,

the other is OFF, and vice versa — that is why this is called “synchronous” as opposed to

“synchronized” which would imply both are running in phase (which is clearly unacceptable

because that would constitute a dead short across the input). However, through all of this, the

effective switch of the switching topology still remains the high-side mosfet. It is the one that

effectively “leads” — dictating when to build up energy in the inductor, and when to force

the inductor current to start freewheeling. The low-side mosfet basically just follows suit.

The essential difference from a conventional buck regulator is that the low-side mosfet in a

synchronous regulator is designed to present a typical forward drop of only around 0.1 V or

less to the freewheeling current, as compared to a Schottky catch diode which has a typical

drop of around 0.5 V. This therefore reduces the conduction loss (in the freewheeling path)

and enhances efficiency.

In principle, the low-side mosfet does not have any significant crossover loss because there

is virtually no overlap between its V and I waveforms — it switches (changes state) only

when the voltage across it is almost zero. Therefore, typically, the high-side mosfet is

selected primarily on the basis of its high switching speed (low crossover loss), whereas the

low-side mosfet is chosen primarily on the basis of its low drain-to-source on-resistance,

‘RDS’ (low conduction loss).
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One of the most notable features of the synchronous buck topology is that on decreasing the

load, it does not enter discontinuous conduction mode as a diode-based (conventional)

regulator would. That is because, unlike a bjt, the current can reverse its direction in a

mosfet (i.e. it can flow from drain to source or from source to drain). So the inductor current

at any given moment can become negative (flowing away from the load) — and therefore

“continuous conduction mode” is maintained — even if the load current drops to zero

(nothing connected across the output terminals of the converter) (see Chapter 1).

Question 42: In synchronous buck regulators, why do we sometimes use a Schottky diode in

parallel to the low-side mosfet, and sometimes don’t?

Answer: We indicated above that the low-side switch is deliberately driven in such a manner

that it changes its state only when the voltage across it is very small. That simply implies

that during turn-off (of the high-side mosfet), the low-side mosfet turns ON a few

nanoseconds later. And during turn-on, the low-side mosfet turns OFF just a little before the

high-side mosfet starts to conduct. By doing this, we are trying to achieve ‘zero voltage

(lossless) switching’ (ZVS) in the low-side mosfet. We are also trying to prevent

“cross-conduction” — in which both mosfets may conduct simultaneously for a short interval

during the transition (which can cause a loss of efficiency at best, and possible switch

destruction too). However, during this brief interval when both mosfets are simultaneously

OFF (the “deadtime”), the inductor current still needs a path to follow. However, every

mosfet contains an intrinsic ‘body diode’ within its structure that allows reverse current to

pass through it even if we haven’t turned it ON (see Figure 4-3). So this provides the

necessary path for the inductor current. However, the body diode has a basic problem — it is

a “bad diode.” It does not switch fast, nor does it have a low forward drop. So often, for the

sake of a couple of percentage points in improved efficiency, we may prefer not to depend

on it, and use a “proper” diode (usually Schottky), strapped across the low-side mosfet in

particular.

Question 43: Why do most synchronous buck regulators use a low-side mosfet with an

integrated Schottky diode?

Answer: In theory, we could just select a Schottky diode and solder it directly across the

low-side mosfet. But despite being physically present on the board, this diode may be

serving no purpose at all! For example, to get the diode to take over the freewheeling current

quickly from the low-side mosfet when the latter turns OFF requires a good low-inductance

connection between the two. Otherwise, the current may still prefer the body diode — for

the few nanoseconds it takes before the high-side mosfet turns ON. So this requires we pay

great attention to the PCB layout. But unfortunately, even our best efforts in that direction

may not be enough — because of the significant inductive impedance that even small PCB

trace lengths and internal bond wires of the devices can present when we are talking about

nanoseconds. The way out of this is to use a low-side mosfet with an integrated Schottky

197



Chapter 4

diode; that is, within the same package as the mosfet. This greatly reduces the parasitic

inductances between the low-side mosfet and the diode, and allows the current to quickly

steer away from the low-side mosfet and into the parallel diode during the deadtime

preceding the high-side turn-on.

Question 44: What limits our ability to switch a mosfet fast?

Answer: When talking about a switching device (transistor), as opposed to a converter, the

time it spends in transit between states is referred to as its “switching speed.” The ability to

switch fast has several implications, including the obvious minimization of the V-I crossover

losses. Modern mosfets, though considered very “fast” in comparison to bjts, nevertheless do

not respond instantly when their drivers change state. That is because, first, the driver itself

has a certain non-zero “pull-up” or “pull-down” resistance through which the drive current

must flow and charge/discharge the internal parasitic capacitances of the mosfet, so as to

cause it to change state. In the process, there is a certain delay involved. Second, even if our

external resistances were zero, there still remain parasitic inductances associated with the

PCB traces leading up from the gate drivers to the gates, that will also limit our ability to

force a large gate current to turn the device ON or OFF quickly. And further, hypothetically,

even if we do achieve zero external impedance in the gate section, there remain internal

impedances within the package of the mosfet itself — before we can get to its parasitic

capacitances (to charge or discharge them as desired). Part of this internal impedance is

inductive, consisting of the bond wires leading from the pin to the die, and part of it is

resistive. The latter could be of the order of several ohms in fact. All these factors come into

play in determining the switching speed of the device.

Question 45: What is ‘cross-conduction’ in a synchronous stage?

Answer: Since a mosfet has a slight delay before it responds to its driver stage, though the

square-wave driving signals to the high- and low-side mosfets might have no intended

“overlap,” in reality the mosfets might actually be conducting simultaneously for a short

duration. That is called ‘cross-conduction’ or ‘shoot-through.’ Even if minimized, it is

enough to impair overall efficiency by several percentage points since it creates a short

across the input terminals (limited only by various intervening parasitics).

This situation is aggravated if the two mosfets have significant “mismatch” in their switching

speeds. In fact, usually, the low-side mosfet is far more “sluggish” than the high-side mosfet.

That is because the low-side mosfet is chosen primarily for its low forward resistance, ‘RDS.’

But to achieve a low RDS, a larger die-size is required, and this usually leads to higher

internal parasitic capacitances, which end up limiting the switching speed.

Question 46: How can we try and avoid cross-conduction in a synchronous stage?

Answer: To avoid cross-conduction, a deliberate delay needs to be introduced between one

mosfet turning ON and the other turning OFF. This is called the converter’s or controller’s
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‘deadtime.’ Note that during this time, freewheeling current is maintained via the diode

present across the low-side mosfet.

Question 47: What is ‘adaptive dead-time’?

Answer: Techniques for implementing dead-time have evolved quite rapidly as

outlined below.

■ First Generation (Fixed Delay) — The first synchronous IC controllers had a

fixed delay between the two gate drivers. This had the advantage of simplicity,

but the set delay time had to be made long enough to cover the many possible

applications of the part, and also to accommodate a wide range of possible mosfet

choices by customers. The set delay had often to be further offset (made bigger)

because of the rather wide manufacturing variations in its own value. However,

whenever current is made to flow through the diode rather than the low-side

mosfet, we incur higher conduction losses. These are clearly proportional to the

amount of dead-time, so we don’t want to set too large a fixed dead-time for all

applications.

■ Second Generation (Adaptive Delay) — Usually this is implemented as follows.

The gate voltage of the low-side mosfet is monitored, to decide when to turn the

high-side mosfet ON. When this voltage goes below a certain threshold, it is assumed

that the low-side mosfet is OFF (a few nanoseconds of additional fixed delay may be

included at this point), and then the high-side gate is driven high. To decide when to

turn the low-side mosfet ON, we usually monitor the switching node in “real-time”

and adapt to it. The reason for that is that after the high-side mosfet turns OFF, the

switching node starts falling (in an effort to allow the low-side to take over the

inductor current). Unfortunately, the rate at which it falls is not very predictable, as it

depends on various undefined parasitics, and also the application conditions. Further,

we also want to implement something close to zero-voltage switching, to minimize

crossover losses in the low-side mosfet. Therefore, we need to wait a varying amount

of time, until we have ascertained that the switching node has fallen below the

threshold (before turning the low-side mosfet ON). So the adaptive technique allows

“on-the-fly” delay adjustment for different mosfets and applications.

■ Third Generation (Predictive Gate Drive™ Technique) — The whole purpose of

adaptive switching is to intelligently switch with a delay just large enough to avoid

significant cross-conduction and small enough so that the body-diode conduction

time is minimized — and to be able to do that consistently, with a wide variety of

mosfets. However, the “predictive” technique, introduced by Texas Instruments, is

often seen by their competitors as “overkill.” But for the sake of completeness it is

mentioned here. Predictive Gate Drive™ technology samples and holds information

from the previous switching cycle to “predict” the minimum delay time for the
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next cycle. It works on the premise that the delay time required for the next

switching cycle will be close to the requirements of the previous cycle. By using a

digital control feedback system to detect body-diode conduction, this technology

produces the precise timing signals necessary to operate very near the threshold of

cross-conduction.

Question 48: What is low-side current sensing?

Answer: Historically, current sensing was most often done during the on-time of the switch.

But nowadays, especially for synchronous buck regulators in low output voltage

applications, the current is being sensed during the off-time.

One reason for that is that in certain mobile computing applications for example, a rather

extreme down-conversion ratio is being required nowadays — say 28 V to 1 V at a minimum

switching frequency of 300 kHz. We can calculate that this requires a duty cycle of

1/28 = 3.6%. At 300 kHz, the time period is 3.3 µs, and so the required (high-side) switch

on-time is about 3.6 × 3.3/100 = 0.12 µs (i.e. 120 ns). At 600 kHz, this on-time falls to

60 ns, and at 1.2 MHz it is 30 ns. Ultimately, that just may not give enough time to turn ON

the high-side mosfet fully, “de-glitch” the noise associated with its turn-on transition

(‘leading edge blanking’), and get the current limit circuit to sense the current fast enough.

Further, at very light loads we may want to be able to skip pulses altogether, so as to

maximize efficiency (since switching losses go down whenever we skip pulses). But with

high-side current sensing we are almost forced into turning the high-side mosfet ON every

cycle — just to sense the current!

For such reasons, low-side current sensing is becoming increasingly popular. Sometimes,

a current sense resistor may be placed in the freewheeling path for the purpose. However,

since low-resistance resistors are expensive, the forward drop across the low-side mosfet is

often used for the purpose.

Question 49: Why do some non-synchronous regulators go into an almost chaotic switching

mode at very light loads?

Answer: As we decrease the load, conventional regulators operating in CCM (continuous

conduction mode — see Chapter 1) enter discontinuous conduction mode (DCM). The onset

of this is indicated by the fact that the duty cycle suddenly becomes a function of load —

unlike a regulator operating in CCM, in which the duty cycle depends only on the input and

output voltages (to a first order). As the load current is decreased further, the DCM duty

cycle keeps decreasing, and eventually, many regulators will automatically enter a random

pulse-skipping mode. That happens simply because at some point, the regulator just cannot

decrease its on-time further, as is being demanded. So the energy it thereby puts out into the

inductor every on-pulse starts exceeding the average energy (per pulse) requirement of the

load. So its control section literally “gets confused,” but nevertheless tries valiantly to
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regulate by stating something like — “oops . . . that pulse was too wide (sorry, just couldn’t

help it), but let me cut back on delivering any pulses altogether for some time — hope to

compensate for my actions.”

But this chaotic control can pose a practical problem, especially when dealing with

current-mode control (CMC). In CMC, usually the switch current is constantly monitored,

and that information is used to produce the internal ramp for the pulse-width modulator

(PWM) stage to work. So if the switch does not even turn ON for several cycles, there is no

ramp either for the PWM to work off.

This chaotic mode is also a variable frequency mode of virtually unpredictable frequency

spectrum and therefore unpredictable EMI and noise characteristics too. That is why

fixed-frequency operation is usually preferred in commercial applications. And fixed

frequency basically means no pulse-skipping!

The popular way to avoid this chaotic mode is to “pre-load” the converter, that is, place

some resistors across its output terminals (on the PCB itself ), so that the converter “thinks”

there is some minimum load always present. In other words, we demand a little more energy

than the minimum energy that the converter can deliver (before going chaotic).

Question 50: Why do we sometimes want to skip pulses at light loads?

Answer: In some applications, especially battery-powered application, the ‘light-load

efficiency’ of a converter is of great concern. Conduction losses can always be decreased by

using switches with low forward drops. Unfortunately, switching losses occur every time

we actually switch. So the only way to reduce them is by not switching, if that is possible.

A pulse-skipping mode, if properly implemented, will clearly improve the light-load

efficiency.

Question 51: How can we implement controlled pulse-skipping in a synchronous buck

topology, to further improve the efficiency at light loads?

Answer: In DCM, the duty cycle is a function of the load current. So on decreasing the load

sufficiently, the duty cycle starts to “pinch off” (from its CCM value). And this eventually

leads to pulse-skipping when the control runs into its minimum on-time limit. But as

mentioned, this skip mode can be fairly chaotic, and also occurs only at extremely light

loads. So one of the ways this is being handled nowadays is to not “allow” the DCM duty

cycle to pinch off below 85% of the CCM pulse width. Therefore now more energy is

pushed out into a single on-pulse than under normal DCM — and without waiting to run

into the minimum on-time limits of the controller. However, now because of the

much-bigger-than-required on-pulse, the control will skip even more cycles (for every

on-pulse). Thereafter, at some point, the control will detect that the output voltage has fallen

too much, and will command another big on-pulse. So this forces pulse-skipping in DCM,

and thereby enhances the light-load efficiency by reducing the switching losses.
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Question 52: How can we quickly damage a boost regulator?

Answer: The problem with a boost regulator is that as soon as we apply input power, a huge

inrush current flows to charge up the output capacitor. Since the switch is not in series with

it, we have no control over it either. So ideally, we should delay turning ON our switch until

the output capacitor has reached the level of the input voltage (inrush stops). And for this,

a soft-start function is highly desirable in a boost. However, if while the inrush is still in

progress, we turn the switch ON, it will start diverting this inrush into the switch. The

problem with that is in most controllers, the current limit may not even be working for the

first 100 to 200 ns after turn-on — that being deliberately done to avoid falsely triggering

ON the noise generated during the switch transition (“leading edge blanking”). So now the

huge inrush current gets fully diverted into the switch, with virtually no control, possibly

causing failure. One way out of that is to use a diode directly connected between the input

supply rail and the output capacitor (cathode of this diode being at the positive terminal of

the output capacitor). So the inrush current bypasses the inductor and boost diode altogether.

However, we have to be careful about the surge current rating of this extra diode. It need not

be a fast diode, since it “goes out of the picture” as soon as we start switching (gets reverse-

biased permanently).

Note also, that a proper ON/OFF function cannot be implemented on a boost topology

(as is). For that, an additional series transistor is required, to completely and effectively

disconnect the output from the input.
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Conduction and Switching Losses

As switching frequencies increase, it becomes of paramount importance to reduce the

switching losses in the converter. These are the losses associated with the transition of the

switch from its on-state to off-state, and back. The higher the switching frequency,

the greater the number of times the switch changes state per second. Therefore, these losses

are proportional to the switching frequency. Further, of these frequency-dependent loss

terms, the most significant are usually those that take place within the switch itself.

Therefore, understanding the underlying sequence of events in the switch during each

transition, and thereby quantifying the losses associated with each of these events, has

become a key expectation of any power supply designer.

In this chapter, we are going to focus mainly on the mosfet, since that is the most widely

accepted “switch” in most high-frequency designs today. We will split its turn-on and

turn-off transitions into small well-defined subintervals, and explain what happens in each of

these. The associated design equations will also be presented. Note however, that as in most

related literature, we too will be resorting to certain simplifications, since modeling the

mosfet (and its interplay with the board that it is mounted on) is certainly not a trivial

task, to say the least. As a result, it is possible that theoretical estimates can end up

underestimating the actual switching losses by a large margin (typically 20 to 50%). The

designer should keep that in mind, and may need to eventually incorporate some sort of a

“fudge factor,” to correspond with reality. However, in our analysis, we have included a

“scaling factor” to try and minimize this error.

We will also show how to estimate driver requirements, and demonstrate the importance

of correctly matching driver capability to the mosfet in a given application. That should

ultimately help not only applications engineers to pick better mosfets for their applications,

but also IC designers involved in the process of designing driver stages for target

applications.

A cautionary note with regard to the terminology — in most of our switching analysis,

what we are calling the “load” is the load as seen by the transistor — it is not the load of

the dc-dc converter stage. Similarly the “input voltage” is only the voltage across the mosfet

when it is OFF — it is not the input to the dc-dc converter stage. We will eventually make

the required connections into the area of power conversion, but it should be clear that
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initially at least, the discussion is more from the standpoint of the mosfet, not the topology

that it may be a part of.

Switching a Resistive Load

Before we take up inductors, it is instructive to first understand what happens when we

switch a resistive load.

For simplicity, we are considering an ideal situation. So we start with a “perfect” n-channel

mosfet in Figure 5-1. It behaves in the following manner

■ It has zero on-resistance.

■ With zero gate-to-source voltage “Vgs” applied at its gate, it is completely

non-conducting.

■ As we raise the gate-to-source voltage Vgs slightly above ground, it starts

conducting, and so a drain current ‘Id’ flows from the drain to the source terminal.

■ The ratio of the drain current to the gate voltage is defined as the transconductance

‘g’ of the mosfet. It is expressed in ‘mhos,’ that is, ohm spelled backward. Nowadays

however, mhos is being increasingly called Siemens, or ‘S.’

■ We are assuming that g is a constant — equal to 1 S for this particular mosfet. So for

example, if we apply 1 V at the gate, the mosfet will pass 1 A. If we apply 2 V, it

will pass 2 A, and so on.

Vin

Id

Vd

R

Id(t) = g × Vgs(t)

Vd(t) = Vin − [Id(t) × R]

(g = transconductance
 of mosfet)

Vgs

Figure 5-1: Switching a Resistive Load
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The application circuit shown in Figure 5-1 works as follows:

■ The applied input voltage is 10 V.

■ The external resistance (in series with the drain) is 1 Ω.

■ The gate voltage is ramped up linearly with respect to time. So at t = 1 s it is 1 V, at

t = 2 s it is at 2 V, at t = 3 s it is at 3 V, and so on.

The analysis proceeds as follows (“Vds” is the drain-to-source voltage at any given moment,

“Vgs” is the gate-to-source voltage, and “Id” is the drain-to-source current):

■ At t = 0, Vgs equals 0 V. Therefore, from the transconductance equation, Id is 0 A.

So the drop across the 1 Ω resistor is 0 V (using Ohm’s law). Therefore the voltage

at the drain of the mosfet, ‘Vds,’ equals 10 V.

■ At t = 1 s, Vgs equals 1. Therefore from the transconductance equation, Id is 1 A.

So the drop across the 1 Ω resistor is 1 V (using Ohm’s law). Therefore Vds equals

10 − 1 = 9 V.

■ At t = 2 s, Vgs equals 2. Therefore from the transconductance equation, Id is 2 A.

So the drop across the 1 Ω resistor is 2 V (using Ohm’s law). Therefore Vds equals

10 − 2 = 8 V.

We proceed ramping up the gate voltage progressively in this manner. When 10 s have

elapsed, Vgs is 10 V, Id is 10 A, and Vds is 0 V. After 10 s, no further change in Vds or Id

can occur, even if Vgs is increased further.

Note: In general, if the gate voltage is increased beyond what it takes to deliver a specified maximum load

current, we say that in effect, we are applying “overdrive.” This is usually considered wasteful in that sense,

but in practice, overdrive helps reduce the on-resistance of the mosfet, and thereby decrease its conduction

losses.

The maximum load current in our example is therefore 10 A, and is “Idmax” in Figure 5-2.

If we plot the drain current and drain voltage with respect to time, we see that the crossover

time, ‘tcross,’ is 10 s here. Note that this time is by definition the time for both the voltage

and the current to complete their transitions.

The energy lost in the mosfet during the transition is

E =
∫ tcross

0
Vd(t)Id(t)dt Joules

A conceptual point to keep in mind here is that in related literature, it is often stated (rather

inaccurately as we will see) that the “area (jointly) enclosed by the voltage, current, and the

time axis is the energy lost in the switch” (during the transition). This is the gray isosceles

triangle in Figure 5-2. Half of this gray area has been hatched. We thus see that within the
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Figure 5-2: The Voltage and Current
Waveforms when Switching a Resistive
Load

“crossover interval rectangle,” there are eight triangles (in all) with the same area as the

hatched triangle. Therefore the total gray area is one-fourth the area of the crossover interval

rectangle. So if the statement about energy being equal to the enclosed area is true, we would

have gotten

E =
1

4
· Vin · Idmax · tcross Joules

This is not correct. In fact, we would have reached the same unfortunate conclusion had we

argued on the grounds that during the crossover duration, the average voltage is Vin/2 and

the average current is Idmax/2, and therefore the average cross-product is equal to

(Vin × Idmax)/4. This is fallacious too. In general,

AAVG × BAVG �=
(

A × B
)

AVG

So yes, this could in fact have turned out to be true, if, while the voltage was falling, the

current had remained fixed, and vice versa. That is what happens with an inductive load, as

we will soon see. However, in the case of a resistive load, both the voltage and the current

change simultaneously during the crossover interval. We clearly need another (better) way to

calculate the switching loss for the resistive case.

Let us compute the instantaneous cross-product Vds(t) × Id(t) at t = 1, 2, 3, 4 . . . seconds.

If we plot these points out, we get the bell-shaped curve shown in Figure 5-3. So, to get the

energy lost during the crossover, we need to find the net area under this curve. But we can

see that is not going to be easy, because this curve is rather oddly shaped. In fact, there is no

other way than to carry out a formal integration/summation procedure. And for that we have
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Figure 5-3: The Instantaneous Energy
Dissipation Curve for Resistive
Switching

to revert to the basic equations for voltage and the current (as presented in Figure 5-1).

We then integrate their product over time, and we get

E =
1

6
· Vin · Idmax · tcross Joules

This is the correct result for the energy lost in the switch, during a resistive turn-on transition.

If we now turn the mosfet OFF in the same way (with the crossover time kept fixed), we will

get exactly the same energy loss term again, though this time with the voltage rising and the

current falling.

We can thus also conclude that if we switch repetitively at the rate of fsw Hz, the net

dissipation, that is, total energy lost per unit time as heat, is equal to

Psw =
1

3
· Vin · Idmax · tcross · fsw Watts

This is therefore the switching loss (in the switch) for the case of a resistive load.

Note: Note that to be precise, this particular term more correctly should be called the ‘crossover loss,’ as

was first pointed out in Chapter 1. The crossover loss (i.e. specifically attributable to the V-I overlap) is not

necessarily the entire switching loss taking place in the switch, as we will see.

Now, suppose we had ramped up the gate voltage at a rate of 1 V per second as before, but

ramped down faster, say, at the rate of 2 V per second. Then the turn-on time and the

turn-off transition times would be different. So in that case we need to split up the crossover
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loss ‘Psw’ as follows:

Psw = Pturnon + Pturnoff

=
1

6
· Vin · Idmax · tcrosson · fsw +

1

6
· Vin · Idmax · tcrossoff · fsw

where ‘tcrosson’ and ‘tcrossoff ’ are the crossover times during turn-on and turn-off

respectively.

Now suppose the value of the external resistor was made larger, say 2 ohms instead of

1 ohm. Then the voltage at the drain would have swung from 10 V to 0 V in only 5 s. And

by that time, the drain current would have reached only 5 A. The gate voltage would at that

moment be only at 5 V. However, no further change in Id is possible (even if we increase

Vgs further). Therefore, though the crossover interval has become half of what it was, the

rise time of the current is still equal to the fall time of the voltage (i.e. 5 s). This is a

characteristic only of resistive loads (since V = IR applies to them).

The rules of the game change considerably, when we have an inductive load. In fact the

calculation becomes simpler — ironically because the simplicity (and predictability) of

Ohm’s law is lost.

Switching an Inductive Load

When we switch an inductive load (with a freewheeling path present of course!), we will get

the waveforms shown in Figure 5-4 (idealized). At first sight they may seem similar to the

resistive load waveforms of Figure 5-2. But on closer examination, they are very different.

In particular, we see that when the current is swinging, the voltage remains fixed, and when

the voltage is swinging, the current remains fixed.

Let us calculate the crossover loss under these conditions. We can do a formal integration as

before. But this time, we realize there is in fact an easy way out! Since one of the parameters

(V or I) is fixed when the other is varying, we can now justifiably take the average value of

the current, Idmax/2, and the average value of the voltage, Vin/2, to find the average

cross-product. In this manner, we arrive at the energy lost (in Joules) during the turn-on

transition

E =
[

Vin

2
· Idmax ·

tcross

2

]

+
[

Vin ·
Idmax

2
·

tcross

2

]

=
1

2
· Vin · Idmax · tcross
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Figure 5-4: The Voltage and Current
Waveforms when Switching an
Inductive Load

Note that for the same reason as indicated above, we can now justifiably think in terms of

the area enclosed. By simple geometry, the gray area in Figure 5-4 is half the rectangular

area, and so we get the same result as above.

We realize that our ability to avoid integration (and use simpler arguments to calculate the

crossover loss) is just a piece of “good luck” here — specific to the case of an inductive load.

Finally, when we switch repetitively, the inductive switching loss is

Psw = Vin · Idmax · tcross · fsw Watts

Note: We may superficially conclude that switching an inductive load leads to a dissipation three times

greater than a resistive load. That is indeed true, but only under the exact same conditions. In reality, the

value of Idmax is fixed for the case of a resistive load (depending on the value of the resistance used). But

for an inductive load, the current can be virtually anything — there is no set “Idmax” as such anymore — it

is whatever current that happens to be flowing through the inductor at the instant of switching (either just

before or after).

A basic question still remains — why are the inductive waveforms so different from the

resistive case? To answer that, we have go back to our previous analysis of the resistive load

case. There we will see that we had invoked Ohm’s law to find the voltage across the switch.

But with an inductor, Ohm’s law clearly does not apply. So to get the waveforms shown in

Figure 5-4, we have to recollect something we learned in Chapter 1 — when we turn the

switch OFF, the inductor will create whatever voltage is necessary to maintain the continuity

of current through it. Let us now show this principle at work in an actual buck converter, for

example (see Figure 5-5).

In Figure 5-5, we first consider the turn-on transition (on the left). Just prior to this, the diode

is obviously carrying the full inductor current (circled “1”). Then the switch starts to turn

ON, trying to share some of this inductor current (circled “2”). The diode current therefore

must fall correspondingly (circled “3”). However, the important point is that while the switch
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Turn-on transition

Diode current

Voltage at Switching Node

Voltage across Switch

Switch Current

Turn-off transition

1

2

3

7

4

Forced low
to forward-
bias the
diode

5

6

Figure 5-5: Analyzing the Transitions in a Buck Converter

current is still in transit, the diode has to be able to pass some current (the remainder, or

leftover amount of the inductor current). But, to provide even some of the inductor current,

the diode must remain fully forward-biased. Therefore, nature (i.e. induced voltage in this

case) forces the voltage at the switching node to remain slightly below ground — so as to

keep the anode of the diode about 0.5 V higher than the cathode (circled “4”). Then, by

Kirchhoff’s voltage law, the voltage across the switch stays high (circled “5”). Only finally,

when the entire inductor current has shifted to the switch, does the diode “let go.” With that,

the switching node is released, and it flies up close to the input voltage (circled “6”) — and

so now, the voltage across the switch is allowed to fall (circled “7”).

■ We therefore see that at turn-on, the voltage across the switch does not change until

the current waveform has completed its transition. We thus get a significant V-I

overlap.

If we do a similar analysis for the turn-off transition (right side of Figure 5-5), we will see

that for the switch current to start decreasing by even a small amount, the diode must first be

“positioned” to take up any current coming its way. So the voltage at the switching node
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must first fall close to zero, so as to forward-bias the diode. That also means the voltage

across the switch must first transit fully, before the switch current is even allowed to

decrease slightly (see Figure 5-5).

■ We therefore see that at turn-off, the current through the switch does not change until

the voltage waveform has completed its transition. We thus get a significant V-I

overlap.

We see that the fundamental properties and behavior of an inductor, as described in

Chapter 1, are ultimately responsible for the significant V-I overlap during crossover.

The same situation is present in the case of any switching topology. Therefore, the switching

loss equation presented earlier also applies to all topologies. What we have to remember is,

that in our equations, we are referring to the voltage across the switch (when it is OFF), and

the current through it (when it is ON). In an actual converter, we will need to ultimately

relate these V and I to the actual input/output rails and load current of the application. The

procedure for that is described later.

Switching Losses and Conduction Loss

The underlying motivation for initiating switching in modern power conversion is often

simplistically stated as follows — by switching the transistor, either the voltage across

the transistor is close to zero, or the current through it is close to zero, and therefore the

dissipation cross-product “V × I” is also almost zero. We have seen that during the

transition, that doesn’t really hold true anymore (the V-I overlap). Similarly, we should keep

in mind that though the V × I losses are much closer to the ideal or “expected” value of zero

when the switch is OFF, there are considerable losses when the switch is ON. That is

because when the switch is OFF, it is really so — the leakage current through a modern

semiconductor switch is almost negligible. However, when the switch is ON, the voltage

across it is not even close to zero in many cases. One of the highest reported forward drops

is in the “Topswitch®” (an integrated switcher IC meant for medium off-line flyback

applications) — over 15 V (over rated current and temperature)! In general, there will remain

a significant V × I loss term even after the inductor current has shifted entirely from the

diode to the switch. This particular loss term is clearly the conduction loss, PCOND (of the

switch). It can in fact be comparable to, or even greater than, the crossover loss.

However, unlike the crossover loss, the conduction loss is not frequency-dependent. It does

depend on duty-cycle, but not on frequency. For example, suppose the duty cycle is 0.6; then

in a measurement interval of say, one second, the net time spent by the switch in the

ON-state is equal to 0.6 seconds. But we know that conduction loss is incurred only when

the switch is ON. So in this case, it is equal to a × 0.6, where “a” is an arbitrary

proportionality constant. Now suppose the frequency is doubled. Then the net time spent in
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the on-state (in 1 second) is still 0.6 seconds. So the conduction loss remains a × 0.6. But

now, suppose the duty cycle changes from 0.6 to 0.4 (the frequency can be even doubled in

the process), the conduction loss is reduced to a × 0.4. So we realize that conduction loss

can’t possibly depend on frequency, only on duty cycle.

We can pose a rather philosophical question — why is it that the switching loss is

frequency-dependent, but not the conduction loss? That is simply because the conduction

loss coincides with the interval in which power is being processed in the converter. Therefore,

as long as the application conditions do not change (duty cycle fixed, input and output

power fixed), neither can the conduction loss.

The equation to calculate the conduction loss of a mosfet is simply

PCOND = IRMS
2 × Rds Watts

where ‘Rds’ is the on-resistance of the mosfet. IRMS is the RMS of the switch current

waveform. It is equal to

IRMS = IO ×

√

D ×
(

1 +
r2

12

)

(buck)

IRMS =
IO

1 − D
×

√

D ×
(

1 +
r2

12

)

(boost and buck-boost)

where IO is now the load current of the dc-dc converter stage, and D is its duty cycle. Note

that to a first approximation (current ripple ratio assumed very small), this is equal to

IRMS ≈ IDC ×
√

D (buck, boost, and buck-boost)

where IDC is the average inductor current and ‘IRMS’ is the RMS of the switch current

waveform.

The diode conduction loss is the other major conduction loss term in a power supply. It is

equal to VD × ID_AVG, where VD is the diode forward-drop. IDAVG is the average current

through the diode — equal to IO for the boost and the buck-boost, and IO × (1 − D) for the

buck. It too is frequency-independent.

We realize that the way to reduce conduction losses is by lowering the forward-drops across

the diode and switch. So we look for diodes with a low drop — like the Schottky diode.

Similarly, we look for mosfets with a low on-resistance “Rds.” However, there are

compromises involved here. The leakage current in a Schottky diode can become significant

as we try to choose diodes with very low drops. We can also run into significant body
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capacitance, which will end up being more dissipative. Similarly, the speed at which the

mosfet switches can be adversely affected as we try to reduce its Rds.

A Simplified Model of the Mosfet for Studying Inductive Switching Losses

In Figure 5-6, on the left, we have the basic (simplified) model of the mosfet. In particular,

we observe that it has three parasitic capacitances — between its drain, source, and gate.

These “small” interelectrode capacitances are the key to maximizing switcher efficiency,

especially at higher switching frequencies. Their role in the switching transition needs to be

understood clearly.

We have seen that the basic reason why we get any crossover loss in the first place is

because there is an unavoidable V-I overlap during every switching transition. That overlap

occurs because the inductor keeps trying to force current, and tries to create suitable

conditions for that to happen seamlessly, as we switch. But the reason why this overlap lasts

as long as it does is mainly because these three interelectrode capacitors are demanding to be

charged or discharged (as the case may be) at every switching event — so that they can

reach their new dc levels, commensurate with the altered state of the switch. So crudely

stated, if these capacitances are “big,” they take a longer time to charge or discharge, thus

increasing the crossover (overlap) time. And that in turn increases the crossover loss.

Further, since the charging and discharging paths of these capacitors often include the gate

resistor, the value of the gate resistance also considerably impacts the transition time, and

thereby the switching loss.

LS ≈ 0

LLK

Cgd Cgd

Cgs Cgs

Cds Cds

VIN VIN

Vdrive Vdrive

Rdrive

P
a
c
k
a
g
e

Inductor Inductor
Catch
Diode

Catch
Diode

“Switching Node”

“Drain”

“Gate”

“Source”X

X

X

X

Figure 5-6: Simplified Model of Mosfet
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On the right side of Figure 5-6, we have further simplified our simple model. So we have

lumped the internal and external inductances present at the drain into a single leakage

inductance “Llk.” Note that we are ignoring any gate-to-source inductance, thus implicitly

assuming the PCB layout is very good in this regard. We also lump the small resistor present

internally inside the mosfet, along with the external gate resistor (if present), and the driver

resistance (its internal pull-up or pull-down) — to give a single effective ‘Rdrive,’ or drive

resistance.

Note that in Figure 5-6, the main inductor is “coupled” — because it has a freewheeling path

available. But the leakage (or parasitic) inductance is “uncoupled,” because it has no path to

send forth its energy. It therefore expectedly “complains” — in the form of a voltage spike

(whenever we try to change the current through it). However, in our analysis, we will be

assuming this leakage inductance is very small (though not necessarily negligible either). We

will find that this results in certain artifacts in the switching waveforms, which makes them

appear slightly different, as compared to the idealized inductive switching waveforms shown

in Figure 5-4 and Figure 5-5. However, it turns out that these artifacts are mainly of academic

interest (provided of course that Rdrive is “small”). In addition, the artifacts in question

typically help decrease the crossover losses slightly. Therefore, the idealized waveforms are

more “conservative” in that sense, and we would do well just sticking to them.

Turning our attention to the “circuit” shown in Figure 5-6, we should be clear that this circuit

doesn’t really work! We know from our discussions in Chapter 1 that we can never hope to

achieve a steady state without at least an output capacitor present — to charge up and thereby

help stabilize the voltseconds across the inductor. So this circuit is clearly an idealization —

it only helps us to perform a paper-analysis of a particular switching transition.

Note that ultimately, the switch cares only about the voltage that appears across it when it

turns OFF, and the current passing through it when it is ON. That is why this simple circuit

can be safely accepted as representative of what happens in any topology, at the moment of

transition. For instance, we could take both the leakage and the main inductor in Figure 5-6,

and place them on the source-side of the mosfet instead. As long as the gate drive is still

well coupled to the source (i.e. no inductance between gate and source), nothing really

changes. That is no surprise, because we know that if a certain component (or circuit block)

“A” is in series with “B,” we can always interchange their positions and make B in series

with A, without changing a thing.

Finally, we should keep in mind that what we are calling the “drain” in our analysis is not

necessarily the pin of the package (of the same name). Nor the switching node! The

inductance Llk separates these points as indicated in Figure 5-6. Therefore, for example,

though the switching node is necessarily clamped close to the “Vin” rail when the diode is

freewheeling, the drain of the device may momentarily show a slightly different voltage

(clearly equal to the voltage appearing across Llk).
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The Parasitic Capacitances Expressed in an Alternate System

We will now progress to a detailed study of the inductive switching transitions of a mosfet.

For that, we will be splitting up the turn-on and turn-off into several subintervals of interest.

We will learn that for most of these subintervals, the gate behaves as a simple input

capacitance — that is being charged (or discharged) through the resistor ‘Rdrive.’ The

situation is identical to the simple RC circuit we discussed in Chapter 1. In effect, the gate

is “blind” to what all may be happening between drain and source (on account of the

transconductance of the mosfet).

If we look into the gate, from the viewpoint of the ac drive signal, the effective input

charging capacitance is the parallel combination (arithmetic sum) of Cgs and Cgd. We are

going to call this simply the gate or input capacitance ‘Cg’ in our discussion. So

Cg = Cgs + Cgd

The time constant of the charging/discharge cycles of the gate is therefore

Tg = Rdrive × Cg

Note: Here we seem to be indirectly suggesting that the drive resistance is the same for turn-on and

turn-off. That need not be so. All the equations we will present can easily take any existing difference in the

turn-on and turn-off drive resistances into account. So in general, we will have different crossover times for

the turn-on and turn-off transitions. Also note, that in general, within a certain crossover interval (turn-on or

turn-off), the actual time it takes for the voltage to transit need not be the same as the time the current takes

(unlike the case of a resistive load).

An alternative system of writing the capacitances is in terms of the effective input, output,

and reverse transfer capacitances — that is, Ciss, Crss, and Coss respectively. These are

related to the interelectrode capacitances as follows

Ciss = Cgs + Cgd ≡ Cg

Coss = Cds + Cgd

Crss = Cgd

So we can also write

Cgd = Crss

Cgs = Ciss − Crss

Cds = Coss − Crss
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In most vendors’ datasheets, we can usually find Ciss, Coss, and Crss under the section

“typical performance curves.” We will then see that these parasitic capacitances are a

function of voltage. Clearly, that can significantly complicate any analysis. So as an

approximation, we are going to assume that the interelectrode capacitances are all constants.

We will consult the typical performance curves of the mosfet, and then pick the value of the

capacitance corresponding to the voltage that appears across the mosfet when it is OFF (in

our given application). Later, we will show how to minimize this error, by the use of a

certain “scaling factor.”

Gate Threshold Voltage

The “perfect mosfet” we talked about earlier (Figure 5-1) started conducting the moment we

raised the gate voltage above ground (i.e. source). But an actual mosfet has a certain gate

threshold voltage ‘Vt.’ This is typically 1 to 3 Volts for ‘logic-level’ mosfets, and about 3 to

5 Volts for high-voltage mosfets. So basically, we have to exceed the stated threshold voltage

to get the mosfet to conduct at all (“conduction” defined typically as a current in excess

of 1 mA).

Because Vt is not zero, the definition of transconductance also needs to be modified

slightly from

g =
Id

Vgs
⇒ g =

Id

Vgs − Vt

Note that in our analysis, we are making another simplifying assumption — that the

transconductance too is a constant.

Finally, with all this background information, we can start looking closely at what actually

happens during the turn-on and turn-off transitions.

The Turn-on Transition

We have divided this interval into four subintervals as detailed individually in Figures 5-7

through 5-10. For quick reference and ease of understanding, the relevant explanations and

comments for each sub-interval are also provided within their respective figures.

Briefly, the interval t1 is just the time to get to the threshold Vt. During this time, we just

have a simple RC charging circuit. In t2 also, the exponential rise continues, but this time,

the drain current starts ramping up. But for all practical purposes, the gate doesn’t “know”

anything has changed, because the transconductance is fully responsible for the drain current

(and further, there is no change in the drain voltage). But in t3, the diode is allowed to stop

218



Conduction and Switching Losses

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage)

Interval

t1

Vt

( )−t/Tg

Vin

Vdrive

Vt
1 −

Tg ≡ Rdrive × Cg

Cg = Cgd + Cgs

Vgs = Vdrive

t1 = −Tg • ln

Vd = Vin

Id = 0

1 − e

TURN-ON

time

time

time

time

‘Forcing Voltage’

VF = Vdrive-Vt

Vdrive

If t=t1, Vgs=Vt, so from Vgs equation

Since Drain Voltage is fixed, there is almost no current injected into Gate (through Cgd) attributable to any variation of Vd.

Since Vgs is less than Vt, Drain Current is zero, and Drain Voltage is fixed at Vin.

There is a small  Cgd-current due to the increasing Vgs. But this is factored in by the use of Cg=Cgd+Cgs instead of just Cgs in

the time constant Tg.

During turn-on, in a switching power supply, the voltage at the switching node (Note: this is physically separated from Vd by

leakage Llk) cannot change unless the inductor current completely changes-over from the free-wheeling diode back to the

switch  because the diode must stay forward-biased if it is  to carry any current at all. Note: diode drop is  being ignored. 

t1

Figure 5-7: First Interval of Turn-on

conducting (since all the inductor current has by now shifted over into the switch). So now

the drain voltage swings. But in doing so, it injects a current through Cgd. Note that this

capacitance, despite being usually rather small, has probably the greatest effect on the

crossover time — because of the fact that it directly injects current from a high switching

voltage node (drain) on to the gate. Just prior to the interval t3, Cgd has a relatively high

voltage across it. But when the switch is fully ON, the voltage across Cgd must decrease to

its new final low value. Therefore, during t3, Cgd is essentially discharging. So the question

is — what is the path the Cgd discharge current takes? We can analyze that as follows —

having reached the gate, this discharge current has two choices — either to go through Cgs

and/or through Rdrive. But the gate is already at the constant level of Vt + Io/g — that being
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Vt + Io/g

Tg

Io

There is a small voltage spike on Vd node, as determined by V=Ld(Id)/dt, because voltage at the switching node is clamped.

There is thus only a very small current injected through Cgd, and only a small perturbation in Vgs, which we ignore.

Vgs continues exactly as in t1, if we assume “Llk/Rdrive” is very small.

The Drain current Id is determined by the ‘g’ of the Mosfet (typically 100 mhos for logic level Fets), multiplied by the difference

between the instantaneous Vgs and the threshold voltage Vt.  

Note that  we have to re-initialize the coordinates to satisfy boundary conditions, hence the t−t1 term in Vd.

t1
+

t2 If t=t1+t2, Id=0 and Vgs=Vt+Io/g, therefore

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage)

Vt ( )−t/Tg

−(t−t1)/Tg
Vin

gVF

Io
1 −

Tg ≡ Rdrive × Cg

Cg = Cgd + Cgs

Vgs = Vdrive

Vd = Vin −

t2 = −Tg • ln

Id = g • (Vgs − Vt)

g • VF • Llk • e

1 − e

TURN-ON

time

time

time

time

‘Forcing Voltage’

VF = Vdrive-Vt
Vdrive

t1

Interval

t2

Figure 5-8: Second Interval of Turn-on

the gate voltage level required by the mosfet to support the full inductor current Io. So, to a

first approximation, the voltage across Cgs (gate voltage) need not, and does not change. And

further, since the general equation for the current through any capacitor is I = CdV/dt, the

current through Cgs must be zero, because there is no change in the voltage across it during

this sub-interval. Therefore we conclude that all the current coming through Cgd into the

gate node gets diverted through Rdrive! But the voltage across Rdrive is fixed — one end

of it is at Vdrive, the other at Vt + Io/g. Therefore the current through it is predetermined

by Ohm’s law. Which means that Rdrive is actually in full control of the current through

Cgd during the interval t3. However, the current through Cgd also obeys the equation

I = C × dV/dt. So if I is fixed at a certain value (by Rdrive), we can calculate the

corresponding dV/dt across Cgd, and thereby calculate Vd. In effect, this means that Cgd and
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(t − t1− t2)

+

Rdrive × Cgd

Rdrive × Cgd

g
IoVtVdrive −

g
Io

Vgs = Vt +

If t=t1+t2, Vd=VIN, and if t=t1+t2+t3, Vd=0, so

Since Io is fixed, the gate voltage Vgs is fixed too  determined by Vgs=Vt+Io/g.

“Llk/Rdrive” is irrelevant here, since Id is fixed at Io. Therefore there is no voltage across Llk. 

However, since Vgs is fixed,current through Cgs is zero.

However, Drain voltage is changing. Thus that injects a discharging current “Cgd*d(Vd)/dt” through Cgd into the gate.

But there is a current flowing into the gate, determined by (Vdrive-Vgs)/Rdrive. Therefore this must equal the Cgd discharging current.

Equating terms, we get the d(Vd)/dt, and so we know how Vd changes. 

Final value of Vd is actually Io*Rds (close to zero).

Vt + Io/g

Io

t1
+

t2

t1
+

t2
+

t3

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage)

Vt

( )

+
g

IoVtVdrive − ( )

Vin

Vd = Vin −

t3 = Vin

TURN-ON

time

time

time

time

Vdrive

Interval

t3

Id = lo

Figure 5-9: Third Interval of Turn-on

Rdrive are together determining the rate of fall of drain voltage during t3 (and thus the

transition time of the voltage). The plateau in the gate voltage waveform during t3 is called

the ‘Miller plateau’ — referring to the effect of the reverse transfer capacitance Cgd. Finally,

after the voltage too has completed its swing, the current through Cgd stops completely, and

so once again, the gate behaves as a simple RC charging circuit. Note that during t4, the gate

is in effect being overdriven — there is no change in the drain current anymore (which is

already at its maximum possible value). However, driver dissipation continues during t4.

The ‘crossover time,’ being the time during which both the current and voltage are transiting,

is t2 + t3. As indicated, to know the driver dissipation, we need to consider the entire

duration t1 + t2 + t3 + t4. Note that by definition, at the end of t4, the gate voltage is at
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tcrossON

A charging exponential curve takes ln (1/(1-x))

time constants to reach x times the final value

(or 2.303 time constants for 90%), so

Vgs now resumes  exactly where it left off at the end of t1+t2, since current is no longer being injected through Cgd.

The Vgs equation for t1 and t2 applies in t4 too, except that we need to ‘forget’ that the Miller region (t3) ever happened. So we

need to translate the earlier curve horizontally by a duration t3. We thus simply replace t by t−t3 in the earlier Vgs equation to

get the Vgs in t4.

The crossover interval for switching losses in the Fet is only t2+t3. However, during t1 and t4, the drive circuit continues to

provide current into the gate. So t4 must also be known so as to calculate total driver dissipation.

Being an exponential curve, we typically calculate t4 based on the time to get to 90% of the Vdrive rail.

Vt + Io/g

Io

t1
+

t2
+

t3

t1
+

t2
+

t3
+

t4

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage)

Vt

Vin

t4 = (2.303 × Tg) − (t1 + t2)

TURN-ON

time

time

time

time

Vdrive

0.9 × Vdrive
Vdrive

Interval

t4

Id = lo

Vd = 0

( )−(t−t3)/Tg

Tg ≡ Rdrive × Cg

Cg = Cgd + Cgs

Vgs = Vdrive 1 − e

Figure 5-10: Fourth Interval of Turn-on

90% of its asymptotic level (Vdrive). So we can safely assume that for all practical purposes,

the driver does very little after this point. Therefore, at the end of t4, the transition is

considered complete — from the viewpoint of the switch, and also the driver.

The Turn-off Transition

In a similar manner as for turn-on, we have divided the turn-off interval into four

subintervals, as shown in Figures 5-11 through 5-14.
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Vdrive − Vsat

g
IoVt +

T1 = −Tg • ln

Vgs = (Vdrive − Vsat) × e + Vsat

Neither Id nor Vd change here because Vgs is still high enough and so the Mosfet is fully conducting.

Since logic level thresholds are steadily getting lower, we can no longer afford to ignore the saturation drop across the pull-down

transistor of the driver stage. We call this Vsat (typically 0.2V).

Vgs falls exponentially. The equation given here satisfies the required boundary conditions.

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage)

Interval

T1

Tg ≡ Rdrive × Cg

Cg = Cgd + Cgs

TURN-OFF

time

time

time

time

Vdrive

Vdrive

Vsat

Vin

lo

Vt + lo/g

T
1

−t

Tg

− Vsat

Vd = Vin

Id = 0

Figure 5-11: First Interval of Turn-off

Briefly, the interval T1 is the time for the “overdrive” to cease; that is, the gate returns to the

sustaining level Vt + Io/g (the minimum gate voltage required to support the full drain

current Io). During this time, there is no change in the drain current, nor in the drain voltage,

and so in effect we once again have a simple RC discharging circuit. In T2, the gate voltage

again plateaus. The reason for that is that the drain voltage must first swing close to Vin, and

thereby “position” the diode to get forward-biased and be ready to start taking up the current

that the switch will progressively shed (see Figure 5-5). So T2 is the time for the voltage

transition to complete. During T1 and T2 therefore, no change in the drain current occurs.

And with logic similar to what we presented for the turn-on sub-interval t3, during T2 the

rate of rise of the voltage Vds is once again determined (only) by Rdrive and Cgd. Finally,

in T3, the current starts falling toward zero. The gate voltage falls exponentially (as an
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Vsat

If t=T1, Vd=0, and if t=T1+T2, Vd=Vin, so

Vgs is fixed at Vt+Io/g (Miller region). So current through Cgs is zero.

However, Drain voltage is changing. Thus that injects a charging current “Cgd*d(Vd)/dt” through Cgd into the gate.

But there is a current flowing out of the gate described by (Vsat−Vgs)/Rdrive. Therefore this must equal the Cgd  charging current.

Equating terms, we get the d(Vd)/dt ,and so we get the equation for Vd.

During turn-off, the Drain current cannot change unless the switching node (and thus in effect Vd too) goes completely to Vin,

and thereby forward biases the diode (ignoring its forward drop), allowing it to start sharing some or all of the Drain current Id.

(t −T1)
Cgd × Rdrive

Vin × Cgd × Rdrive

− Vsat

g
Io

Vgs = Vt +Vt + Io/g

Io

T
1
+

T
2

T
1

(Gate Drive)

Vgs (Gate Voltage)

Id (Drain Current)

Vd (Drain Voltage) +
g

IoVt
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g
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T2 =

TURN-OFF

time

time

time

time

Vdrive

Vdrive

Interval

T2

Id = lo

Tg ≡ Rdrive × Cg

Cg = Cgd + Cgs

Figure 5-12: Second Interval of Turn-off

RC circuit) — down to Vt, at which moment, the end of subinterval T3 is declared. The

transition is now complete as far as the switch is concerned. But after that, during T4, the

RC exponential discharge continues down to 10% of the initial gate drive amplitude. As

before, driver dissipation occurs over T1 + T2 + T3 + T4, whereas crossover occurs during

T2 + T3.

Gate Charge Factors

A more recent way of describing the parasitic capacitor-based effects in a mosfet is in terms

of gate charge factors. In Figure 5-15, we show how these charge factors, Qgs, Qgd, and Qg,
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Under the small  “Llk/Rdrive” approximation, we can assume that the current injected through Cgd is very small and its effect on Vgs

is negligible.

Vgs continues to fall exponentially, since the Miller region is over (Vd has essentially stopped swinging). The equation here also

satisfies the required boundary conditions.  

The upper side of the parasitic inductance Llk is held at Vin, but its lower end (the Vd node) will show a small voltage spike from

V= Llk*d(Id)/dt.

If t=T1+T2+T3, Vgs=Vt and Io=0, so

Vgs =

Vt + Io/g

Io
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Figure 5-13: Third Interval of Turn-off

are defined. On the right column of the table in the figure, we have given the relationships

between the gate charge factors and the capacitances, assuming the latter are constants. Gate

charge factors represent a more accurate way of proceeding, since the interelectrode

capacitances are such strong functions of the applied voltage. However, our entire analysis of

the turn-on and turn-off intervals so far has been implicitly based on the assumption that the

interelectrode capacitances are constants. A possible way out of this, one that also helps

reduce the error in our switching loss estimates, is detailed in Figure 5-16, using the

Si4442DY (from Vishay) as an example.

Basically, we are using the gate charge factors to tell us what the effective capacitances are

(and the voltage swings from 0 to Vin). We see that the effective input capacitance (Ciss), for

225



Chapter 5

T4 = (2.303 × Tg) − (T1 × T3)

tcrossOFF

A discharging exponential curve takes ln(1/x)

time constants to reach x times the initial value

(or 2.303 time constants for 10%), so

Vgs continues to fall exponentially (same equation as in T3).The equation here also satisfies the required boundary

conditions.

Being an exponential curve, we typically calculate T4 based on the time to get to10% of the starting value (Vdrive rail).

Note we have ignored Vsat for the T4 equation. Note also that if we take Vsat to be greater than 10% of Vdrive, there is no valid

definition for T4 (the way we have defined it).

The crossover interval for switching losses in the Fet is only T2+T3. However, during T1 and T4, the drive circuit continues

to provide current into the gate. So T4 must also be known so as to calculate total driver dissipation. 
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Figure 5-14: Fourth Interval of Turn-off

example, is about 50% greater than the single-point Ciss value that we would have read off

from the typical performance curves (i.e. 6300 pF instead of 4200 pF). That factor accounts

for the fact that as the voltage falls, the capacitance increases. Note that we could have

calculated a scaling factor individually, for each capacitance. But it is simpler to use, say

Ciss, to first find a “universal” scaling factor — and then apply it across the board to all the

capacitances. In this manner, we arrive at the effective interelectrode capacitances quoted

in Figure 5-16. These are the values we should use for our switching loss calculations
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From C=Q/V applied at point circled
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Figure 5-15: Gate Charge Factors of a Mosfet

(in preference to those provided by directly reading off Ciss, Coss, and Crss from their

curves). Note that for finding the scaling factor, if we had looked at Crss (Cgd) instead of

Ciss, then we would find that the calculated effective capacitance is only 40% higher (than

what we would read directly from the curves). So the scaling factor can, in general, be fixed

at around 1.4 to 1.5 typically.

Worked Example

We are switching 22 A at 15 V through a Si4442DY mosfet, at 500 kHz. The total pull-up drive

resistance, by which the gate is driven by a pulse of amplitude 4.5 V, is 2 ohms. At turn-off, it is

pulled-down (to source) by a total drive resistance of 1 ohm. Estimate the switching losses and

the dissipation in the drive.

From Figure 5-16, we have Cg = Cgs + Cgd = 6300 pF.
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Figure 5-16: Estimating the Effective Interelectrode Capacitances from the Gate Charge

Factors (Si4442DY as an example)

Turn-on

The time constant is

Tg = Rdrive × Cg = 2 × 6300 pF = 12.6 ns

The time for the current to transit is

t2 = −Tg × ln

(

1 −
Io

g ×
(

Vdrive − Vt
)

)

= −12.6 × ln

(

1 −
22

100 ×
(

4.5 − 1.05
)

)

t2 = 0.83 ns
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The time for the voltage to transit is

t3 = Vin ×
Rdrive × Cgd

Vdrive −
(

Vt +
Io

g

) = 15 ×
2 × 0.75

4.5 −
(

1.05 +
22

100

)

t3 = 6.966 ns

So the crossover time during turn-on is

tcross_turnon = t2 + t3 = 0.83 + 6.966 = 7.8 ns

The turn-on crossover loss therefore is

Pcross_turnon =
1

2
× Vin × Io × tcross_turnon × fsw

=
1

2
× 15 × 22 × 7.8 × 10−9 × 5 × 105

Pcross_turnon = 0.64 Watts

Turn-off

The time constant is now

Tg = Rdrive × Cg = 1 × 6300 pF = 6.3 ns

The time for the voltage to transit is

T2 =
Vin × Cgd × Rdrive

Vt +
Io

g

=
15 × 0.75 × 1

1.05 +
22

100

T2 = 8.858 ns

The time for the current to transit is

T3 = Tg × ln









Io

g
+ Vt

Vt









= 6.3 × ln







22

100
+ 1.05

1.05







T3 = 1.198 ns
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So the crossover time during turn-off is

tcross_turnoff = T2 + T3 = 8.858 + 1.198 = 10 ns

The turn-off crossover loss therefore is

pcross_turnoff =
1

2
× Vin × Io × tcross_turnoff × fsw

=
1

2
× 15 × 22 × 10 × 10−9 × 5 × 105

pcross_turnon = 0.83 Watts

So finally, the total crossover loss is

Pcross = Pcross_turnon + Pcross_turnoff = 0.64 + 0.83 = 1.47 Watts

Notice that we have not even used Cds so far! This particular capacitance does not affect the

V-I overlap (since it is not connected to the gate). But it still needs to be considered! Every

cycle, it charges up during turn-off, and then during turn-on it dumps its stored energy inside

the mosfet. This is, in fact, the additional loss term that needs to be added to the crossover

loss term, so as to get the total switching loss in a mosfet. Note that in low-voltage

applications, this additional term may seem insignificant, but in high-voltage/off-line

applications, it does affect the efficiency noticeably. Let us calculate what it is in our case:

P_Cds =
1

2
× Cds × Vin2 × fsw =

1

2
× 450 × 10−12 × 152 × 5 × 105 = 0.025 Watts

So the total switching loss (in the switch) is

Psw = Pcross + P_Cds = 1.47 + 0.025 = 1.5 Watts

The driver dissipation is

Pdrive = Vdrive × Qg × fsw = 4.5 × 36 × 10−9 × 5 × 105 = 0.081 Watts

Note that typically, the above driver dissipation equation underestimates the actual driver

dissipation by almost 20% — as can be confirmed by integrating the product of the drive

current and the voltage across it, over each sub-interval. The reason for the error is simply

the Miller plateau — because during this interval, some additional current (other than from

the stored charge Qg), gets injected into the drive resistor. So our corrected driver dissipation

estimate is 1.2 × 0.081 = 0.097 W. The driver supply rail current is 0.081/4.5 = 18 mA.
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Applying the Switching Loss Analysis to Switching Topologies

Now we try to understand how our preceding analysis pertains to an actual switching

regulator application — in particular, what “Vin” and “Io” are, with respect to the topology.

For a buck, we know that at turn-on, the instantaneous switch (and inductor) current is

IO × (1 − r/2), where r is the current ripple ratio, and “IO” is the load current of the dc-dc

converter. At turn-off, the current is IO × (1 + r/2). Usually, we can ignore the current ripple

ratio and take the current as IO for both the turn-on and the turn-off analysis. So the load

current of the dc-dc converter, IO, becomes the same as the “Io” used so far in the switching

loss analysis. Similarly, in a boost and buck-boost, the current “Io” in our switching loss

analysis, is actually the average inductor current IO/(1 − D).

Coming to the voltage across the mosfet when it turns OFF (i.e. “Vin” in the switching loss

analysis) — for the buck, this is almost equal to the input rail of the dc-dc converter VIN

(a diode drop more in reality). Similarly, for a buck-boost, the voltage “Vin” is almost

exactly equal to VIN + VO, where VO is the output rail of the dc-dc converter. For a boost,

the voltage “Vin” is equal to VO, that is, the output rail of the converter. Note that if we are

dealing with an isolated flyback, the voltage at turn-off really is VIN + VZ, where VZ is

the voltage of the zener clamp (placed across the primary winding). However, at turn-on,

the voltage across the mosfet is only VIN + VOR (VOR being the reflected output voltage, i.e.

VO × nP/nS). In a single-ended forward converter, we have 2 × VIN at turn-off, and only

VIN at turn-on. Note that in all cases discussed above, we are assuming CCM.

We have tabulated these results in Table 5-1 for convenience.

Note that if we were in DCM, there is in principle no switching loss at turn-on — because

there is no current flowing in the inductor by that time. At turn-off, the current at transition is

IPK = ∆I, which can be found using V = L × ∆I/∆t.

Table 5-1: Connecting the switching loss analysis with actual
topologies

“Vin” “Io”

Turn-on Turn-off Turn-on Turn-off

Buck VIN IO

Boost VO IO/(1 – D)

Buck-Boost VIN + VO IO/(1 – D)

Flyback VIN + VOR VIN + VZ IOR/(1 – D)

Forward VIN 2 × VIN IOR

VOR = VO × n, IOR = IO/n where n = nP/nS
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Worst-case Input Voltage for Switching Losses

We must return now to the all-important question — when we have a wide-input voltage

range, what specific input voltage point represents the worst case for calculating switching

losses?

The switching loss equation is generically

Psw = Vin · Io · tcross · fsw Watts

We note that see that in all cases, this loss depends on the product of Vin and Io. But by now,

we know what Vin and Io are — from Table 5-1. So we can analyze the situation for each

topology as follows

■ For a buck, “Vin × Io” = VIN × IO. So the maximum loss will obviously occur at

VINMAX.

■ For a boost, “Vin × Io” = VO × IO/(1 − D). So the maximum loss will occur at

DMAX, that is, at VINMIN.

■ For a buck-boost, “Vin × Io” = (VIN + VO) × IO/(1 − D). We also know that

D = VO/(VIN + VO). So plotting “Vin × Io,” we get Figure 5-17 (a typical case).

Note that the curve is symmetrical around D = 0.5 — and that is the point of

minimum switching losses. Below that point, the voltage increases significantly, and

above that, the current increases significantly. Either way, the switching losses

increase as we move away from D = 0.5. Therefore, in general, we must first

examine the input range of our application, and see which of its ends is furthest from

D = 0.5. For example, if in our application, the input range corresponds to a duty

Figure 5-17: Switching Loss Variation
with Respect to Duty Cycle, for the
Buck-boost
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cycle range of 0.6 to 0.8, we need to do the switching loss calculation at D = 0.8,

that is, at VINMIN. However, if the duty cycle range is say, 0.2 to 0.7, we need to do

the calculation at D = 0.2, that is, at VINMAX.

How Switching Losses Vary with the Parasitic Capacitances

In Figure 5-18, we have taken the Si4442DY, and “varied” its Ciss — just to see what can

happen as a result of that. On the right vertical axis, we have the corresponding (estimated)

switching loss. Note that in computing the loss curve, a “scaling factor” of 1.5 has been

applied to the Ciss values given on the left vertical axis (though this is not obvious).

The gray vertical dashed line (annotated “35 nC”) represents the Si4442DY as it is. So under

the stated conditions, we have an estimated switching loss of 2.6 W. If we increase Ciss by

50%, that is, 4200 pF to 6300 pF, we see that Qg will go up to about 47 nC, and the loss to

2.8 W only.

Note: In the actual calculations, using the scaling factor of 1.5, “4200 pF” is actually 6300 pF, and

“6300 pF” is actually 9450 pF.

In Figure 5-19, we take the Si4442DY, and “vary” its Crss — just to see what can happen as

a result of that. The gray vertical dashed line (annotated “35 nC”) represents the Si4442DY

as it is. So under the stated conditions, we have an estimated switching loss of 2.6 W. If we

increase Crss by 50%, that is, 500 pF to 750 pF, we see that Qg will go up to about 39 nC

only, but the loss goes up to 3.1 W.
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Figure 5-18: Varying the Ciss of the Si4442DY
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Figure 5-19: Varying the Crss of the Si4442DY

In other words, Qg will certainly affect driver dissipation, but it is not necessarily a good

indicator of the switching losses — it is more helpful to try and minimize Qgd (or Crss) when

selecting mosfets, rather than just looking for a “low-Qg” mosfet.

Note: In the worked example, we had estimated the losses to be 1.5 W. There we had a pull-up of 2 ohms,

and a pull-down of 1 ohm. Whereas in Figure 5-18, we have basically doubled the pull-up and pull-down

resistors. However, the switching loss has not doubled — it is only 73% more.

Optimizing Driver Capability vis-à-vis Mosfet Characteristics

In Figure 5-20, we have two separate graphs. The one on the left has a fixed pull-up of

4 ohms. On the x-axis, we are therefore, in effect, varying only the pull-down. So if for

example, the x-axis is at 2, the pull-down resistor is 4 ohms/2 = 2 ohms. If the x-axis is at 4,

the pull-down resistor is at 4 ohms/4 = 1 ohm. We see that as expected, the losses decrease

as the pull-down is improved. We also see the effect of “varying” the threshold voltage. So,

lower threshold voltages also help lower the switching losses — provided the pull-down is

not too “weak.” On the right graph similarly, we have the results for a fixed pull-up of

10 ohms. We can thereby estimate the effect of varying the pull-up too, on the overall losses.

Finally, in Figure 5-21, we are keeping the pull-up + pull-down constant, as we vary the

ratio of the pull-up and pull-down resistors. This is from the IC designer’s viewpoint —

suppose he or she has roughly allocated a certain die area for the driver stage, say

simplistically fixed the pull-up + pull-down. Then the question is — how should the

available drive capability be distributed between the pull-up and the pull-down sections. For

example, if pull-up + pull-down = 6 ohms, is it better to split this as — pull-up = 4 ohms
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and pull-down = 2 ohms, or say, pull-up = 3 ohms and pull-down = 3 ohms, or pull-up =
2 ohms and pull-down = 4 ohms, and so on? We see that the answer to that depends on the

threshold voltage. So we need to have an idea of the mosfets we are planning to use, before

we decide on the optimum ratio. From Figure 5-21 we see that if the threshold is greater than

2 V, improving the pull-up (at the expense of the pull-down) will help, and so for example —

pull-up = 4 ohms and pull-down = 2 ohms will be preferable to pull-up = 5 ohms and
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pull-down = 1 ohm. However, if the threshold voltage is below 2 V, we see that the reverse is

true — so now, improving the pull-down (at the expense of the pull-up) will help.

Note: Some vendors provide a rather wide range (“MIN” to “MAX”) for threshold voltage. Often, they do

not even provide a “TYP” value. But surprisingly, some do not even provide the threshold voltage at all!

They simply state that their mosfet is “capable of 4.5 V drive” (as for example most of the mosfets from

www.renesas.com).
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Printed Circuit Board Layout

Introduction

A great many customer “complaints” regarding switcher ICs are ultimately traced to poor

PCB (printed circuit board) layout practices. When designing a PCB for a switching

regulator, we need to be aware that the final product is going to be only as good as its layout.

Certainly, some ICs are more noise sensitive than others. Sometimes, the “same” part from

several vendors can also have starkly varying noise sensitivities (see Appendix 1 for a case

involving the popular 384x series). Further, some ICs are architecturally more noise sensitive

than others (for example current mode controllers are far more “layout-sensitive” than

voltage mode controllers). We also have to face the fact that virtually no semiconductor

manufacturers characterize the noise sensitivity of their products (often letting the customers

discover it for themselves!). However, as designers, we can certainly, with poor attention to

layout, pull off the near-impossible — turn a comparatively stable IC into a jittery and

nervous part — one that can malfunction and even cause catastrophic consequences (switch

failure). Further, since very few of these problems can be easily corrected, or “band-aided,”

at a later stage, it is very important to get the layout right at the very beginning.

Most of the layout recommendations in this chapter revolve around simply assuring basic

functionality and performance. Though luckily, the beleaguered switcher designer will be

happy to know, in general, the electrical aspects are all related — pointing in the same

general direction. So for example, a good layout, that is, one that helps the IC function

properly, also leads to reduced electromagnetic emissions, and vice-versa. There are some

exceptions to this trend however, particularly when it comes to the practice of indiscriminate

“copper-filling” (or copper “flooding”) on PCBs, which we will touch upon later.

Subsequently, the reader can try to gain more insight into the practical aspects of making

switching regulators, by reading the chapters dedicated to the topic of EMI, later in this book.

Trace Section Analysis

A switch transition (crossover) occurs when the switch changes from an on-state (switch

closed) to an off-state (switch open), or back. It lasts typically less than 100 ns. But most of

the trouble starts right here! In fact, the noise has little to do with the basic switching

frequency of the converter itself — it is the transition that is responsible for most of the
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noise, and all its attendant problems. The smaller the switch transition time, the more are the

possible consequences, as we see.

The first requirement for the designer is to understand the flow of power-related currents in

the converter. This leads to an identification of the troublesome or “critical” traces of the

PCB; we must pay the closest attention to these traces. We will also see that this

identification process is very “topology-dependent.” So we can’t, for example, design the

PCB for a buck-boost, the same way we would do it for a buck. The rules change

significantly! We may thus also realize that very few PCB layout persons out there would

understand this too well! Therefore it really is a good idea for the power supply designer to

do the layout personally, or at the very least, closely supervise the PCB person in the act.

Some Points to Keep in Mind During Layout

Let’s summarize these for quick reference purposes:

■ During a crossover transition the current flow in certain trace sections has to

suddenly come to a stop, and in certain others it has to start equally suddenly (within

100 ns or less typically, which is the switch transition time). These trace sections are

identified as the “critical traces” in any switcher PCB layout. A very high dI/dt is

created in them, during every switch transition. See Figure 6-1. Expectedly, these

traces end up “complaining” vociferously in the form of small, but potent, voltage

spikes across them. If Chapter 1 has been fully understood by now, we realize that

this is just the equation V = L × dI/dt playing its part — with the “L” being the

parasitic inductance of the PCB trace. The rule-of-thumb for the inductance

presented by a trace is 20 nH per inch of trace length.

■ Once generated, these noise spikes can not only appear at the input/output (causing

performance issues), but also infiltrate the IC control section, causing it to behave

anomalously, and unpredictably. We could even end up briefly losing the usual

current limiting function too, leading to disastrous consequences.

■ Mosfets switch faster than ‘bjts’ (bipolar junction transistors). The transition times of

a mosfet can be of the order of 10 to 50 ns, as compared to a bjt’s 100 to 150 ns. But

that also makes the “spikes” far more severe in the case of the converters that use

mosfet switches — because of the much higher dI/dt’s they can generate in the

critical trace sections of the PCB.

Note: One inch of trace switching, say 1 A of instantaneous current in a transition time of 30 ns,

gives a spike of 0.7 V. For 3 A, and two inches of trace, the induced voltage tries to be 4 V!

Note: It is almost impossible to “see” the noise spikes. First of all, various parasitics help

limit/absorb them somewhat (though they can still retain the capability to cause “controller upset”).

Further, the moment we put in an oscilloscope probe, the 10 to 20 pF of probe capacitance can also

absorb the spikes, and we would probably see nothing significant. In addition, probes pick up
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Figure 6-1: Identifying the Critical Trace Sections for the Three Topologies

so much normal switching noise through the air anyway, that we are never even sure of what we

may be seeing!

■ Integrated switchers ICs (or simply “switchers”) have the switch in the same package

as the control. Though that makes for convenience and low parts count, such ICs are

usually more sensitive to the noise spikes generated by the parasitic trace

inductances. That is because the ‘switching node’ of the power stage (its “swinging

node,” i.e. the one connecting the diode, switch, and inductor), is a pin on the IC

itself, so that the pin conducts any unusual high-frequency noise at the switching

node straight into the control sections, causing “controller upset.”

■ Note that while prototyping, it is a bad idea to insert a current probe (through a loop

of wire) anywhere in a critical path (learn to recognize these in Figure 6-1). The

current loop becomes an additional inductance that can increase the amplitude of the

noise spikes dramatically. Therefore practically speaking, it often becomes virtually

impossible to measure the switch current or the diode current individually (especially

in the case of switcher ICs). In such cases, only the inductor current waveform can

really be measured properly.
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■ Note that in the buck and the buck-boost, the input capacitor is also included in a

critical path. That implies we need very good input decoupling in these topologies

(for the power section). So, besides the necessary bulk capacitor for the power stage

(typically a tantalum or aluminum electrolytic of large capacitance), we should also

place a small ceramic capacitor (about 0.1 to 1 µF) directly between the quiet end of

the switch (i.e. at the supply side) and the ground — and also as close as possible to

the switch.

■ In Figure 6-1, the control section (IC) has not been shown. However, we should

remember that the control circuitry usually needs good local decoupling of its own.

And for that we need to provide a small ceramic capacitor very close to the IC.

Clearly, especially when dealing with switchers, the decoupling ceramic for the

power stage can often do “double-duty” as the decoupling capacitor of the control

too (note that this applies to the buck-boost and the buck only, since the input

power-decoupling capacitor is required only for them).

■ Sometimes, more effective control IC decoupling may be required — in which case

we can use a small resistor (typically 10 to 22 Ω) from the input (supply) rail, going

to a (separate) ceramic capacitor placed directly across the input and ground pins of

the IC. This constitutes a small ‘RC filter’ for the IC supply.

■ Note that in all topologies, the inductor is not in the critical path. So we need not

worry much about its layout, at least not from the point of view of noise. However,

we have to be wary of the electromagnetic field the inductor creates, because that

can impinge on nearby circuitry and sensitive traces, and cause similar (though

usually not so acute) problems. So generally, it is a good idea to try and use

“shielded inductors” for that reason, if cost permits. If not, it should be positioned

a little further from the IC, in particular keeping clear of the feedback trace.

■ In the boost and the buck-boost, we see that the output capacitor is in the critical

path. So this capacitor should be close to the control IC, along with the diode.

A paralleled ceramic capacitor can also help, provided it does not cause loop

instability issues (especially in voltage mode control – see Chapter 7).

In the buck however, note that though the output diode needs to be positioned close

to the IC/switch, the output capacitor is not critical (its current is smoothened by the

inductor). If we place a ceramic capacitor in parallel to the output capacitor, it is

only for the purpose of decreasing high-frequency noise and ripple at the output even

further. But it is really not mandatory, and can cause severe loop instability,

particularly with voltage mode control, especially if the effective series resistance

(ESR) of the output capacitor section becomes too low (less than 100 mΩ typically).

■ The position of the diode is critical in all topologies. It leads to the switching node

and from there on, straight into the IC when using switcher ICs. However, in buck
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converter layouts in which the diode has unfortunately been placed a little too far

away from the IC, the situation can usually be rectified even at a later stage,

by means of a small series RC snubber connected between the switching node and

ground (across the catch diode, close to the IC). This RC typically consists of a

resistor (low-inductive type preferred), of value 10-100 ohms, and a capacitor

(preferably ceramic), of value about 470 pF to 2.2 nF. Note that the dissipation in the

resistor is C × V2
IN × f. So not only should the wattage of the resistor be appropriate

for the job, but the capacitance should not be increased indiscriminately, to avoid

compromising the efficiency significantly.

■ A first approximation for the inductance of a conductor (wire) having length ‘l’ and

diameter ‘d’ is

L = 2l ×
(

ln
4l

d
− 0.75

)

nH

where l and d are in centimeters. Note that the equation for a PCB trace is not much

different from that of a wire.

L = 2l ×
(

ln
2l

w
+ 0.5 + 0.2235

w

l

)

nH

where ‘w’ is the width of the trace. Note that for PCB traces, the inductance hardly

depends on the thickness of the copper on the board.

The logarithmic relationship above indicates that if we halve the length of a PCB

trace, we can make its inductance halve too. But we have to increase its width almost

10 times, to get its inductance to halve. In other words, simply making traces “wide”

may not do much — we need to keep trace lengths short.

■ The inductance of a ‘via’ (through-hole) is given by

L =
h

5

(

1 + ln
4h

d

)

nH

where ‘h’ is the height of the via in mm (equal to the thickness of the board,

commonly 1.4 to 1.6 mm), and ‘d’ is the diameter of the via in mm. Therefore a via

of diameter 0.4 mm on a 1.6 mm thick board gives an inductance of 1.2 nH. That

may not sound like too much, but has been known to cause problems in switcher

ICs, especially those using mosfets, for which an input ceramic decoupling capacitor

for the IC becomes almost mandatory. Therefore, it is strongly advised that this

capacitor be placed extremely close to where the pins of the IC actually contact the

board, and further, there should be no intervening vias either, between this capacitor

and the solder pads of the pins.
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■ Increasing the width of certain traces can in fact become counterproductive. For

example, for the (positive) buck regulator, the trace from the switching node to the

diode is “hot” (swinging). Any conductor with a varying voltage on it, irrespective of

the current it may be carrying, becomes an E-field antenna if its dimensions are large

enough. Therefore the area of the copper around the switching node needs to be

reduced, not increased. That is why we need to avoid the tendency of indiscriminate

“copper filling” — the only voltage node that really qualifies for copper filling is the

ground node (or plane). All others, including the input supply rail, can start radiating

significantly because of the high-frequency noise riding on them. By making large

planes, we also increase the probability of that plane picking up noise from nearby

traces and components, by means of inductive and capacitive coupling.

■ The so-called “1-oz” board in the United States is actually equivalent to 1.4 mils

copper thickness (or 35 µm) on the board. Similarly “2-oz” is twice of that. For a

moderate temperature rise (less than 30◦C) and currents less than 5 A, we can use a

minimum 12 mils width of copper per amp for 1-oz board, and at least 7 mils width

of copper per amp for a 2-oz board. This rule-of-thumb is based on the dc resistance

of the trace only. So to decrease its inductive impedance and ac resistance, higher

trace widths may be required.

■ We have seen that the preferred method to reduce trace inductance is to reduce

length, not increase width. Beyond a certain point, widening of traces does not

reduce inductance significantly. Nor does it depend much on whether we use 1-oz or

2-oz boards. Nor if the trace is “unmasked” (to allow solder/copper to deposit and

thereby increase effective conductor thickness). So, if for any reason, the trace length

cannot be reduced further, another way to reduce inductance is by paralleling the

forward and return current traces. Inductances exist because they represent stored

magnetic energy. The energy resides in the magnetic field. Therefore conversely,

if the magnetic field could be cancelled, the inductance vanishes. By paralleling

two current traces, each carrying currents of the same magnitude but in opposite

direction, the magnetic field is greatly reduced. These two traces should be parallel

and very close to each other on the same side of the PCB. If a double-sided PCB is

being used, the best solution is to run the traces parallel (over each other) on

opposite sides (or adjacent layers) of the PCB. These traces can, and should be,

fairly wide to improve mutual coupling and thereby the field cancellation. Note that

if a ground plane is used on one side, the return path automatically ‘images’ the

forward current trace, and produces the sought after field cancellation.

■ In high-power off-line flybacks, the trace inductances on the secondary side reflect

on to the primary side, and can greatly increase the effective primary-side leakage

inductance and impair the efficiency (see Chapter 3). The situation gets worse when

244



Printed Circuit Board Layout

we have to stack several output capacitors in parallel, just to handle the higher RMS

currents — long traces seem inevitable here. However, one way to decrease the

inductance is by the field cancellation principle discussed above. This is shown

implemented in Figure 6-2. Two copper planes (or big copper islands) are allocated,

starting from the output diode. One of these planes is the ground plane, the other

being the output voltage rail. By using two large parallel planes carrying forward and

return currents, the inductance almost completely cancels out, and leads to a very

good high-frequency freewheeling path as desired. Note that in the bargain, we also

get excellent current sharing between the output capacitors.

■ In single-sided boards, a popular way to ensure current sharing between several

paralleled output capacitors is shown in Figure 6-3. It doesn’t minimize inductance,

but it does ensure that the life of the first downstream capacitor does not come to a

premature end (simply because of “current hogging”). Note that in the “improved”

layout on the right side of the figure, the total distance from the diode through each

capacitor is roughly equal in all three cases shown — thus leading to more precise

sharing.

■ With multi-layer boards, it is a common practice to almost completely fill one layer

with ground (if so, it should preferably be the layer immediately below the power

components/traces). There are people who, usually rightly so, consider this a panacea

for most problems. As we have seen, every signal has a return, and as its harmonics

get higher, the return current, rather than trying to find the path of least dc resistance

Figure 6-2: How to Achieve Low-inductance Connections to Output

Capacitors of a Flyback.
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Conventional Layout
(Unequal high-frequency Current Sharing

between Output Capacitors)

Improved Layout
(Proper high-frequency Current Sharing

between Output Capacitors)

Output Capacitors of Boost and Buck-Boost

Figure 6-3: How to Get Output Capacitors of a Flyback to Share Current

(straight line), tries to reduce the inductance by imaging itself directly under the

signal path even though that may be “zigzagging” away on the board. So by leaving

a large ground plane, we basically “allow” nature to do its thing — searching and

finding the path of least impedance (lowest dc resistance or lowest inductive

impedance, depending upon the frequency of the harmonic). The ground plane also

helps thermal management as it couples some of the heat to the other side. The

ground plane can also capacitively link to noisy traces above it, causing general

reduction in noise/EMI. However, it can also end up radiating if caution is not

exercised. One way this can happen is to have too much capacitive coupling from

noisy traces. No ground plane is perfect, and when we inject noise into it, it may get

affected, especially if the copper is too thin. Also, if the ground plane is partitioned

in odd ways, either to create thermal islands, or to route other traces, the current flow

patterns can become irregular. No longer can return paths in the ground plane pass

directly under their forward traces. The ground plane can then end up behaving as a

slot antenna too, in terms of EMI.

■ The only important signal trace to consider is usually the feedback trace. If this trace

picks up noise (capacitively or inductively), it can lead to slightly offset output

voltages — and in extreme cases (though rare), even instability or device failure. We

need to keep the feedback trace short if possible so as to minimize pickup and keep it

away from noise or field sources (the switch, diode, and inductor). We should never

pass this trace under the inductor, or under the switch or diode (even if on opposite
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sides of the PCB). We should also not let it run close to and parallel, for more than a

few millimeters at most, to a noisy (critical) trace, even on adjoining layers of the

board. Though if there is an intervening ground plane, that should provide enough

shielding between layers.

Keeping the feedback trace short may not always be physically feasible. We should

realize that keeping it short certainly is not of the highest priority. In fact, we can

often deliberately make it long, just so that we can assuredly route it away from

potential noise sources. We can also judiciously cut into the “quiet” ground plane to

pass this particular trace through, so that in effect, it is surrounded by a “sea of

tranquility.”

Thermal Management Concerns

Larger and larger areas of copper do not help, especially with thinner copper. A point of

diminishing returns is reached for a square copper area of size 1 inch × 1 inch. Some

improvement continues until about 3 inches (on either side), especially for 2-oz boards and

better. But beyond that, external heatsinks are required. A reasonable practical value

attainable for the thermal resistance (from the case of the power device to the ambient) is

about 30◦C/W. That means 30◦C rise for every watt of dissipation inside the IC.

To calculate the required copper area, we can use as a good approximation the following

empirical equation for the required copper area:

A = 985 × Rth−1.43 × P−0.28 sq.inches

Here P is in watts and Rth is the desired thermal resistance in ◦C/W (degrees Centigrade per

Watt).

For example, suppose the estimated dissipation is 1.5 W. We want to ensure that, at a

worst-case ambient of 55◦C, the case of the part does not rise above 100◦C (safe temperature

for the PCB material — do not exceed!). Therefore the Rth we are looking for here is

Rth =
∆T

P
=

100 − 55

1.5
= 30◦C/W

Therefore, the required copper area is

A = 985 × 30−1.43 × 1.5−0.28 sq. inches

A = 6.79 sq. inches

If this area is square in shape, the length of each side needs to be 6.790.5 = 2.6 inches.

We can usually make this somewhat rectangular or odd-shaped too, as long as we preserve
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the total area. Note that if the area required exceeds 1 square inch, a 2-oz board should be

used (as in this case). A 2-oz board reduces the thermal ‘constriction’ around the power

device and allows the large copper area to be more effectively used for natural convection.

We should not think that heat is lost only from the copper side. The usual laminate (board

material) used for SMT (surface mount technology) applications is epoxy-glass ‘FR4,’ which

is a fairly good conductor of heat. So some of the heat from the side on which the device is

mounted does get across to the other side, where it contacts the air and helps lower the

thermal resistance. Therefore, just putting a copper plane on the other side also helps — but

only by about 10 to 20%. Note that this “opposite” copper plane need not even be

electrically the same point — it could for example just be the usual ground plane. A much

greater reduction of thermal resistance (by about 50 to 70%) can be produced if a cluster of

small vias (“thermal vias”) are employed to conduct the heat from the component side to the

opposite side of the PCB.

Thermal vias, if used, should be small (0.3 to 0.33 mm barrel diameter), so that the hole is

essentially filled up during the plating process. Too large a hole can cause ‘solder wicking’

during the reflow soldering process, which leads to a lot of solder getting sucked into the

holes, thereby creating bad solder joints for components in the vicinity. The ‘pitch’ (i.e. the

distance between the centers) of several such thermal vias in a given area is typically 1 to

1.2 mm. A grid of several such vias can be placed very close to, and alongside, a power

device, and even under its tab (if present).
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Feedback Loop Analysis and Stability

Transfer Functions, Time Constant and the Forcing Function

In Chapter 1 we had discussed a simple series resistor-capacitor (RC) charging circuit. What

we were effectively doing there was that by closing the switch we were applying a step

voltage (stimulus) to the RC network. And we studied its “response” — which we defined as

the voltage appearing across the terminals of the capacitor.

Circuits like these can be looked upon as a “black box”, with two terminals coming in

(the input, or the excitation) and two leaving (the output, or the response). One of the rails

may of course be common to both the input and output, as in the case of the ground rail.

This forms a “two-port network”. Such an approach is useful, because power supplies too,

can be thought of in much the same way — with two terminals coming in and two leaving,

exposed to various disturbances/stimuli/excitations.

But let us examine the original RC-network in more detail first, to clarify the approach

further. Let us say that the input to this RC network is a voltage step of height ‘vi’.

The output of this network is taken to be the voltage across the capacitor, which we now call

‘vo’ here. Note that vo is a function of time. We define the ratio of the output to the input of

any such two-port network, i.e. vo/vi in this case, as the ‘transfer function’. Knowing how

the RC network behaves, we also know the transfer function of this two-port network,

which is

vo(t)

vi
= 1 − e−t/RC

Note that in general, a transfer function need not be “Volts/Volts” (dimensionless). In fact,

neither the input nor the output of a two-port network need necessarily be voltage, or even

similar quantities. For example, a two-port network can be as simple as a current sense

resistor. Its input is the current flowing into it, and its output is the sensed voltage across it.

So, its transfer function has the units of voltage divided by current, that is, resistance. Later,

when we analyze a power supply in more detail, we will see that its pulse width modulator

(“PWM”) section for example, has an input that is called the ‘control voltage’, but its output

is the dimensionless quantity — duty cycle (of the converter). So the transfer function in this

case has the units of Volts−1.
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Returning to the RC network, we can ask — how did we actually arrive at the transfer

function stated above? For that, we first use Kirchhoff’s voltage law to generate the

following differential equation:

vi = vres(t) + vcap(t) = i(t)R +
q(t)

C

where i(t) is the charging current, q(t) is the charge on the capacitor, vres(t) is the voltage

across the resistor, and vcap(t) is the voltage across the capacitor (i.e. vo(t), the output).

Further, since charge is related to current by dq(t)/dt = i(t), we can write the preceding

equation as

vi = R ×
dq(t)

dt
+

q(t)

C

or

dq(t)

dt
+

1

RC
q(t) =

vi

R

At this point we actually “cheat” a little. Knowing the properties of the exponential function

y(x) = ex, we do some educated reverse-guessing. And that is how we get the following

solution:

q(t) = Cvi

(

1 − e−t/RC
)

Substituting q = C × vcap, we then arrive at the required transfer function of the RC network

given earlier.

Note that the preceding differential equation for q(t) above is in general a “first-order”

differential equation — because it involves only the first derivative of time.

Later, we will see that there is in fact a better way to solve such equations — it invokes a

mathematical technique called the ‘Laplace transform.’ But to understand and use that, we

have to first learn to work in the ‘frequency domain’ rather than in the ‘time domain,’ as we

have been doing so far. We will explain all this soon.

We note in passing, that in a first-order differential equation of the previous type, the term

that divides q(t) (‘RC’ in our case) is called the ‘time constant.’ Whereas, the constant term

in the equation (‘vi/R’ in our case) is called the ‘forcing function.’

Understanding ‘e’ and Plotting Curves on Log Scales

We can see that the solution to the previous differential equation brought up the exponential

constant ‘e’, where e ≈ 2.718. We can ask — why do circuits like this always seem to lead
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to exponential-types of responses? Part of the reason for that is that the exponential function

ex does have some well-known and useful properties that contribute to its ubiquity. For

example

d
(

ex
)

dx
= ex and

∫

(

ex
)

dx = ex + c (c is a constant)

But this in turn can be traced back to the observation that the exponential constant e itself

happens to be one of the most natural parameters of our world. The following example

illustrates this.

Example: Consider 10,000 power supplies in the field with a failure rate of 10% every year.

That means in 2005 if we had 10,000 working units, in 2006 we would have 10,000 × 0.9 =
9000 units. In 2007 we would have 9000 × 0.9 = 8100 units left. In 2008 we would have

7290 units left, in 2009, 6561 units, and so on. If we plot these points — 10,000, 9000, 8100,

7290, 6561, and so on, versus time, we will get the well-known decaying exponential function

(see Figure 7-1).

Note that the simplest and most obvious initial assumption of a constant failure rate has

actually led to an exponential curve. That is because the exponential curve is simply a

succession of evenly spaced data points (very close to each other), that are in simple

geometric progression, that is, the ratio of any point to its preceding point is a constant.

Most natural processes behave similarly, and so e is encountered very frequently.

Figure 7-1: How a Decaying Exponential Curve Is Naturally

Generated
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Figure 7-2: Plotting the Exponential Function with a Logarithmic y-scale or Plotting the Log of the

Function with Linear y-scale — Both give a Straight Line

In Figure 7-2 we have plotted out a more general exponentially decaying function, of the

form f(x) = A × e−x (though for simplicity, we have assumed A = 1 here). Let us now do

some experiments with the way we set up the horizontal and vertical axes.

If we make the vertical scale (only) logarithmic rather than linear, we will find this gives us

a straight line. Why so? That actually comes about due to a useful property of the logarithm

as described next.

The definition of a logarithm is as follows — if A = BC, then logB(A) = log(C), where logB

(A) is the “base-B logarithm of A.” The commonly referred to “logarithm,” or just “log,” has

an implied base of 10, whereas the natural logarithm “ln” is an abbreviation for a base-e

logarithm.

So, we get the following sample relationships:

log(10) = 1 log(100) = log(102) = 2 log(10x) = x log(10) = x

ln (e) = 1 ln
(

ex
)

= x ln (e) = x
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Now, if we take the natural log of both sides of the equation f (x) = A × e−x, and use the

last of the equations in the previous equation set, we get

ln[f (x)] = ln(e−x) + ln(A) = −x + ln(A)

Further, if we compare this equation with the well-known standard equation of a straight line

y(x) = mx + c (where m is the slope and c is its intersection on the y-axis), we realize that,

if we plot ln f(x) on the vertical (“y”) axis instead of f(x) (x being the horizontal or “x” axis),

we will get a straight line.

In general, plotting a function on a log scale or plotting the log of a function on a linear scale

is one and the same thing.

But what if we had plotted log f(x) on the vertical axis instead of ln f(x)? If we think about it,

we realize that is the same as asking — what is the log10 of e, or equivalently, what is the loge

of 10? As a matter of fact, there is not much difference really — because the base-10 and

base-e logarithms are proportional to each other. This is probably more easily remembered

when expressed in words — if the log of any number is multiplied by 2.303, we get its natural

log. Conversely, if we divide the natural log by 2.303 we get its log. This follows from

ln (10) = 2.303 and
1

log(e)
= 2.303

Therefore, plotting any arbitrary function using a log scale (base 10) will always give us the

same basic “shape” as plotting the natural log of the function. And if the function is an

exponential one to start with, we will get a straight line in either case (provided of course the

horizontal axis is kept linear). (See Figure 7-2.)

Time Domain and Frequency Domain Analysis

If we have a circuit (or network) constituted only of resistors, the voltage at any point in it is

uniquely defined by the applied voltage. If the input varies, so does this voltage — instantly,

and proportionally so. In other words, there is no ‘lag’ (delay) or ‘lead’ (advance) between

the two. Time is not a consideration. However, when we include reactive components

(capacitors and/or inductors) in any network, it becomes necessary to start looking at how

the situation changes over time in response to an applied stimulus. This is called ‘time

domain analysis.’

But we also know that any repetitive waveform, of almost arbitrary shape, can be

decomposed into a sum of several sine (and cosine) waveforms of frequencies that are

multiples of the basic repetition frequency ‘f’ (“the fundamental frequency”). That is what

‘Fourier analysis’ is all about. Note that though we do get an infinite series of terms, it is
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composed of frequencies spaced apart from each other by an amount equal to f ; that is, we

do not get a continuum of frequencies when dealing with repetitive waveforms. But later, as

we will see, when we come to more arbitrary waveshapes (nonrepetitive), we need a

continuum of frequencies to decompose it.

The process of decomposition into frequency components implies that the components are

mutually “independent.” That is analogous to what we learn in our high-school physics

class — we split a vector (applied force for example) into “orthogonal” x and y components.

We perform the math on each component considered separately, and finally sum up again to

get the final vector.

In general, understanding how a system behaves with respect to the frequency components of

an applied stimulus is called ‘frequency domain analysis.’

Complex Representation

A math refresher is helpful here.

We remember that the impedance of an inductor is Lω and that of a capacitor is 1/Cω. Here

ω = 2πf is the angular frequency in radians/s, f being the repetition frequency (say of the

Fourier component) under consideration. Since both these types of reactive components

introduce a phase shift (lag or lead) between their respective voltages and currents, we can no

longer just add the voltages and currents arithmetically in any circuit that contains them. The

solution once again is to use a form of vector analysis, except that now, a given voltage or

current vector has two components — magnitude and phase. Further, unlike a conventional

vector, these components are dissimilar quantities. Therefore, we cannot use conventional

vector analysis. Rather, we invoke the use of the imaginary number j =
√

(−1) to keep the

phase and magnitude information distinct from each other, as we perform the math.

Any electrical parameter is thus written as a sum of real and imaginary parts:

A = Re + jIm

where we have used ‘Re’ to denote the real part of the number A, and ‘Im’ its imaginary

part. From these components, the actual magnitude and phase of A can be reconstructed as

follows:

‖A‖ =
√

Re2 + Im2 (magnitude of complex number)

φ = tan−1

(

Im

Re

)

radians (argument of complex number)

256



Feedback Loop Analysis and Stability

Impedance also is broken up into a vector in this complex representation — except that

though it is frequency-dependent, it is (usually) not a function of time.

The ‘complex impedances’ of reactive components are

ZL = j × Lω

ZC =
1

j × Cω

Note that 1/j = −j. We see that the imaginary number ‘j’ is useful, because in effect, it also

carries with it information about the 90° phase shift existing between the voltage and current

in reactive components. So, the previous equations for impedance indicate that in an

inductor, the current lags behind the voltage by 90°, whereas in a capacitor the current leads

by the same amount. Note that resistance only has a real part, and it will therefore always be

aligned with the x-axis of the complex plane (i.e. zero phase angle).

To find out what happens when a complex voltage is applied to a complex impedance, we

need to apply the complex versions of our basic electrical laws. So Ohm’s law, for example,

now becomes

V(ωt) = I(ωt) × Z(ω)

We mentioned that the exponential function has some interesting properties. But a sine

wave too has rather similar properties. For example, the rate of change of a sine wave is a

cosine wave — which is just a sine wave phase shifted by 90◦. It therefore comes as no

surprise that we have the following relationships:

ejθ = cos(θ) + jsin(θ) sin(θ) =
ejθ − e−jθ

2j

e−jθ = cos(θ) − jsin(θ) cos(θ) =
ejθ + e−jθ

2

Note that in electrical analysis, we set θ = ωt. Here θ is the angle in radians (180° is

π radians). Also, ω = 2πf , where ω is the angular frequency in radians/s and f the

(conventional) frequency in Hz.

As an example, using the preceding equations, we can derive the magnitude and phase

of the exponential function f (θ) = ejθ:

Magnitude(ejθ) =
√

cos(θ)2 + sin(θ)2 = 1

Argument(ejθ) = tan−1

(

sin
(

θ
)

cos
(

θ
)

)

= tan−1 tan(θ) = θ
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Note: Strictly speaking, a (pure) sine function is one with a phase angle of 0 and an amplitude of 1.

However, when analyzing the behavior of circuits in general, a “sine wave” is actually a sine-shaped

waveform of arbitrary phase angle and magnitude. So it is represented as AO × ejωt — that is, with

magnitude AO, and phase angle ωt (radians). For example, an applied “sine-wave” input voltage is

V(t) = VO × ejωt in complex representation.

Nonrepetitive Stimuli

No stimulus is completely “repetitive” in the true sense of the word. “Repetitive” implies

that the waveform has been exactly that way, since “time immemorial,” and remains so

forever. But in the real world, there is a definite moment when we actually apply a given

waveform (and another when we remove it). Even an applied sine wave, for example, is not

repetitive at the moment it gets applied at the inputs of a network. Much later, the stimulus

may be considered repetitive, provided sufficient time has elapsed from the moment of

application that the initial transients have died out completely. This is, in fact, the implicit

assumption we always make when we carry out “steady state analysis” of a circuit.

But sometimes, we do want to know what happens at the moment of application of a

stimulus — whether subsequently repetitive, steady, or otherwise. Like the case of the step

voltage applied to our RC-network. If this were a power supply, for example, we would want

to ensure that the output doesn’t ‘overshoot’ (or ‘undershoot’) too much.

To study any such nonrepetitive waveform, we can no longer decompose it into components

with discrete frequencies as we do with repetitive waveforms. Now we require a spread

(continuum) of frequencies.

Further, to allow for waveforms (or frequency components) that can increase or decrease

over time (disturbance changing), we need to introduce an additional (real) exponential term

eσt. So whereas, when doing steady state analysis, we represent a sine wave in the form ejωt,

now it becomes eσt × ejωt = e(σ+jω)t. This is therefore a “sine wave,” but with an

exponentially increasing (σ positive) or decreasing (σ negative) amplitude. Note that if we

are only interested in performing steady state analysis, we can go back and set σ = 0.

The s-plane

In traditional ac analysis in the complex plane, the voltages and currents were complex

numbers. But the frequencies were always real. However now, in an effort to include

virtually arbitrary waveforms into our analysis, we have in effect created a complex

frequency plane too, (σ + jω). This is called s-plane, where s = σ + jω. Analysis in this

plane is just a more generalized form of frequency domain analysis.
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In this representation, the reactive impedances become

ZL = Ls

ZC =
1

Cs

Resistance still remains just a resistance (no dependency on frequency or on s).

Let us also see how impedances add up in the s-plane — in particular when we parallel or

series-combine reactances.

The effective impedance of a series combination is

Z(s) = Z1(s) + Z2(s) (series impedances)

For a parallel combination, we know that the reciprocals of the impedances add up to give

us the reciprocal of the effective impedance. So

1

Z(s)
=

1

Z1
+

1

Z2
(parallel impedances)

or

Z(s) =
Z1 × Z2

Z1 + Z2

Therefore, two inductors in series have an effective impedance equal to their sum

Ls = L1s + L2s

So the effective inductance is

L = L1 + L2 (series inductance)

Similarly two inductors in parallel behave as an effective inductance of

L =
L1 × L2

L1 + L2
(parallel inductance)

Note however, that capacitors seem to behave in an “opposite” manner to resistors and

inductors. Two capacitors in parallel give us an effective capacitance equal to their sum:

1

Z(s)
=

1

Z1
+

1

Z2
⇒ Cs = C1s + C2s ⇒ C = C1 + C2

C = C1 + C2 (parallel inductance)
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This looks like a series combination (for resistors and inductors), but in reality, it is a

parallel combination (of capacitors). Similarly, two capacitors in series give us

Z(s) = Z1(s) + Z2(s) ⇒
1

Cs
=

1

C1s
+

1

C2s

C =
C1 × C2

C1 + C2
(series capacitance)

This looks like a parallel combination (for resistors and inductors), but in reality, it is a series

combination (of capacitors).

To calculate the response of complex circuits and stimuli in the s-plane, we will need to use

the above impedance summing rules, along with the rather obvious s-plane versions of the

electrical laws. For example, Ohm’s law is now

V(s) = I(s) × Z(s)

Finally, the use of s gives us the ability to solve the differential equations arising from an

almost arbitrary stimulus, in an elegant way, as opposed to the brute-force method in the

time domain. The technique used to do this is the ‘Laplace transform.’

Note: Any such decomposition method can be practical only when we are dealing with “mathematical”

waveforms. Real waveforms may need to be approximated by known mathematical functions for further

analysis. And very arbitrary waveforms will probably prove intractable.

Laplace Transform

The Laplace transform is used to map a differential equation in the ‘time domain’

(i.e. involving ‘t’) to the ‘frequency domain’ (involving ‘s’). The procedure unfolds as

explained next.

First, the applied time-dependent stimulus (one-shot or repetitive — voltage or current) is

mapped into the complex-frequency domain, that is, the s-plane. Then, by using the s-plane

versions of the impedances, we can transform the entire circuit into the s-plane. To this

transformed circuit we apply the s-plane versions of the basic electrical laws and thereby

analyze the circuit. We will then need to solve the resultant (transformed) differential

equation (now in terms of s rather than t). But as mentioned, we will be happy to discover

that the manipulation and solution of such differential equations is much easier to do in the

s-plane than in the time domain. In addition, there are also several lookup tables for the

Laplace transforms of common functions available, to help along the way. We will thus get

the response of the circuit in the frequency domain. Thereafter, if so desired, we can use the
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Figure 7-3: Symbolic Representation of the Procedure for Working in the S-plane

‘inverse Laplace transform’ to recover the result in the time domain. The entire procedure is

shown symbolically in Figure 7-3.

A little more math is useful at this point, as it will aid our understanding of the principles of

feedback loop stability later.

Suppose the input signal (in the time domain) is u(t), and the output is v(t), and they are

connected by a general second-order differential equation of the type

c2
d2u(t)

dt2
+ c1

du(t)

dt
+ c0u(t) = d2

d2v(t)

dt2
+ d1

dv(t)

dt
+ d0v(t)

It can be shown that if U(s) is the Laplace transform of u(t), and V(s) the transform of v(t),

then this equation (in the frequency domain) becomes simply

c2s2U(s) + c1sU(s) + c0U(s) = d2s2V(s) + d1sV(s) + d0V(s)

So

V(s) =
c2s2 + c1s + c0

d2s2 + d1s + d0
U(s)

We can therefore define G(s), the transfer function (i.e. output divided by input in the s-plane

now), as

G(s) =
c2s2 + c1s + c0

d2s2 + d1s + d0
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Therefore

V(s) = G(s) · U(s)

Note that this is analogous to the time-domain version of a general transfer function f(t)

v(t) = f (t) · u(t)

Since the solutions for the general equation G(s) above are well researched and documented,

we can easily compute the response (V) to the stimulus (U).

A power supply designer is usually interested in ensuring that his or her power supply

operates in a stable manner over its operating range. To that end, a sine wave is injected

at a suitable point in the power supply, and the frequency swept, to study the response.

This could be done in the lab, and/or “on paper” as we will soon see. In effect, what we

are looking at closely is the response of the power supply to any frequency component

of a repetitive or nonrepetitive impulse. But in doing so, we are in effect only dealing

with a steady sine wave stimulus (swept). So we can put s = jω (i.e. σ = 0).

We can ask — why do we need the complex s-plane at all if we are going to use s = jω

anyway at the end? The answer to that is — we don’t always. For example, at some later

stage we may want to compute the exact response of the power supply to a specific

disturbance (like a step change in line or load). Then we would need the s-plane and the

Laplace transform. So, even though more often we end up just doing steady state analysis,

by having already characterized the system in the framework of s, we retain the option to be

able to conduct a more elaborate analysis of the system response to a more general stimulus

if required.

A silver lining for the beleaguered power supply designer is that he or she usually

doesn’t even need to know how to actually compute the Laplace transform of a function —

unless, for example, the exact step response is required to be computed exactly. Just for

ensuring stability margins, it turns out that a steady state analysis serves the purpose

completely. So typically, we do the initial math in the complex s-plane, but at the end, to

generate the results of the margin analysis, we again revert to s = jω.

Disturbances and the Role of Feedback

In power supplies, we can either change the applied input voltage or increase the load (this

may or may not be done suddenly). Either way, we always want the output to remain well

regulated, and therefore, in effect, to “reject” the disturbance.

But in practice, that clearly does not happen in a perfect manner, as we may have desired.

For example, if we suddenly increase the input to a buck regulator, the output initially just
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tends to follow suit — since D = VO/VIN, and D has not immediately changed. To maintain

output regulation, the control section of the IC needs to sense the change in the output

(that may take some time), correct the duty cycle (that also may take some time), and then

wait (a comparatively longer time) for the inductor and output capacitor either to give up

some of their stored energy or to gather some more (whatever is consistent with the

conditions required for the new steady state). Eventually, the output will hopefully settle

down again.

We see that there are several such delays in the circuit before we can get the output to

stabilize again. Minimizing these delays is clearly of great interest. Therefore, for example,

using smaller filter components (L and C) will usually help the circuit respond faster.

However, one philosophical question still remains — how can the control circuit ever know

beforehand how much correction (in duty cycle) to precisely apply (when it senses that the

output has shifted from its set value on account of the disturbance)? In fact, it usually

doesn’t! It can only be designed to “know” what general direction to move in, but not by

how much. Hypothetically speaking, we can do several things. For example, we can

command the duty cycle to change slowly and progressively, with the output being monitored

continuously, and stop correcting the duty cycle at the exact moment when the output returns

to its regulation level. However, clearly this is a slow process, and so though the duty cycle

itself won’t “overshoot,” the output will certainly overshoot or undershoot as the case may

be, for a rather long time. Another way is to command the duty cycle to change suddenly by

a large arbitrary amount (though of course in the right direction). However, now the

possibility of over-correction arises, as the output could well “go the other way,” before the

control realizes it. And further, when it does, it may tend to “overreact” once more. . . and so

on. In effect, we now get “ringing” at the output. This ringing reflects a basic cause-effect

uncertainty that is present in any feedback loop — the control never fully knows whether the

error it is seeing, is truly a response to an external disturbance, or its own attempted

correction coming back to haunt it. So, if after a lot of such ringing, the output does indeed

stabilize, the converter is considered only ‘marginally stable.’ In the worst case, this ringing

may go on forever, even escalating, before it stabilizes. In effect, the control is then “fully

confused,” and so the feedback loop is deemed “unstable.”

We see that an “optimum” feedback loop is neither too slow, nor too fast. If it is too slow, the

output will exhibit severe overshoot (or undershoot). And if it is too fast (over-aggressive),

the output may ring severely, and even break into full instability (oscillations).

The study of how any disturbance propagates inside the converter, either getting attenuated

or exacerbated in the process, is called ‘feedback loop analysis.’ As mentioned, in practice,

we test a feedback loop by deliberately injecting a small disturbance at an appropriate point

inside it (cause), and then seeing at what magnitude and phase it returns to the same point

(effect). If, for example, we find that the disturbance reinforces itself (at the right phase),

cause-effect separation will be completely lost, and instability will result.
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The very use of the word “phase” in the previous paragraph implies we are talking of sine

waves once again. However, this turns out to be a valid assumption, because as we know,

arbitrary disturbances can be decomposed into a series of sine wave components of varying

frequencies. So the signal we “inject” (either on the bench, or on paper) can be a sine

wave of constant, but arbitrary amplitude. Then, by sweeping the frequency over a wide

range, we can look for frequency components (sine waves) that have the potential to lead

to instability — assuming we can have a disturbance that happens to contain that particular

frequency component. If the system is stable for a wide range of sine wave frequencies,

it would in effect be stable when subjected to an arbitrarily-shaped disturbance too.

A word on the amplitude of the disturbance. Note that we are studying only linear systems.

That means, if the input to a two-port network doubles, so does the output. Their ratio is

therefore unchanged. In fact, that is why the transfer function was never thought of as say,

being a function of the amplitude of the incoming signal. But we do know that in reality, if

the disturbance is too severe, parts of the control circuit may “rail” — that means for

example an internal op-amp’s output may momentarily reach very close to its supply rails,

thus affording no further correction for some time. We also realize that there is no perfectly

“linear system.” However, any system can be approximated by a linear system if the stimulus

(and response) is “small” enough. That is why, when we conduct feedback loop analysis of

power converters, we talk in terms of ‘small-signal analysis’ and ‘small-signal models.’

Applying these facts to our injected (swept) sine wave, we realize that its amplitude should

not be made too large, or else internal “railing” or “clipping” can affect the validity of our

data and the conclusions. But it must not be made too small either, otherwise switching noise

is bound to overwhelm the readings (poor signal to noise ratio). A power supply designer may

have to struggle a bit on the bench to get the right amplitude for taking such measurements.

And that may depend on the frequency. Therefore, more advanced instruments currently

available allow the user to tailor the amplitude of the injected signal with respect to

the (swept) frequency. So for example, we can demand that at higher sweep frequencies, the

amplitude is set lower than the amplitude at lower frequencies. If we are looking at the

switching waveform on an oscilloscope, we should see a small jitter — typically about 5 to

10% around the “edge.” Too small a jitter indicates the amplitude is too small, and too large

a jitter can cause strange behavior, especially if we are operating very close to the “stops” —

the minimum or maximum duty cycle limits of the controller, and/or the set current limit.

Transfer Function of the RC Filter

Let us now take our simple series RC network and transform it into the frequency domain,

as shown in Figure 7-4. As we can see, the procedure for doing this is based on the

well-known equation for a dc voltage divider — now extended to the s-plane.
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Figure 7-4: Analyzing the First-order Low-pass RC Filter in the Frequency Domain

Thereafter, since we are looking at only steady state excitations (not transient impulses),

we can set s = jω, and plot out a) the magnitude of the transfer function (i.e. its ‘gain’), and

b) the argument of the transfer function (i.e. its phase) — both in the frequency domain of

course. This combined gain-phase plot is called a ‘Bode plot’.

Note that gain and phase are defined only in steady state as they implicitly refer to a sine

wave (“phase” has no meaning otherwise!).

Here are a few observations:

■ In the curves of Figure 7-4, we have preferred to convert the phase angle (which was

originally in radians, θ = ωt), into degrees. That is because most of us feel more

comfortable visualizing degrees, not radians. To do this, we have used the following

conversion — degrees = (180/π) × radians.

■ We have also similarly converted from the ‘angular frequency’ (ω) to the usual

frequency (in Hz). Here we have used the equation — Hz = (radians/second)/(2π).
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■ By varying the type of scaling on the gain and phase plots, we can see that the gain

becomes a straight line if we use log vs. log scaling (remember that the exponential

function needed log vs. linear scaling to appear as a straight line). We thus confirm

by looking at these curves, that the gain at high frequencies starts decreasing by

a factor of 10 for every 10-fold increase in frequency. Note that by definition, a

‘decibel’ or ‘dB’ is dB = 20 × log (ratio) — when used to express voltage or

current ratios. So, a 10:1 voltage ratio is 20 dB. Therefore we can say that the gain

falls at the rate of −20 decibels per decade at higher frequencies. Any circuit with a

slope of this magnitude is called a ‘first-order filter’ (in this case a low-pass one).

■ Further, since this slope is constant, the signal must also decrease by a factor of 2 for

every doubling of frequency. Or a factor of 4 for every quadrupling of frequency,

and so on. But a 2:1 ratio is 6 dB, and an “octave” is a doubling (or halving) of

frequency. Therefore we can also say that the gain of a low-pass first-order filter falls

at the rate of −6 dB per octave (at high frequencies).

■ If the x and y scales are scaled and proportioned identically, the angle the gain plot

will make with the x-axis is −45°. The slope, that is, tangent of this angle is then

tan(−45°) = −1. Therefore, a slope of −20 dB/decade (or −6 dB/octave) is often

simply called a “−1” slope.

■ Similarly, when we have filters with two reactive components (an inductor and a

capacitor), we will find the slope is −40 dB/decade (i.e. −12 dB/octave). This is

usually called a “−2” slope (the angle being about −63°).

■ We will get a straight-line gain plot in either of the two following cases — a) if the

gain is expressed as a simple ratio (i.e. Vout/Vin), and plotted on a log scale (on the

y-axis), or b) if the gain is expressed in decibels (i.e. 20 × log Vout/Vin), and we use

a linear scale to plot it. Note that in both cases, on the x-axis, we can either use “f”

(frequency) on a log scale, or 20 × log (f) on a linear scale.

■ We must remember that the log of 0 is indeterminate (log 0 → −∞), so we must not

let the origin of a log scale ever be 0. We can set it close to zero, say 0.0001, or

0.001, or 0.01, and so on, but certainly not 0.

■ The bold gray straight lines in both the right-hand side graphs of Figure 7-4 form the

‘asymptotic approximation.’ We see that the gain asymptotes have a break frequency

or ‘corner frequency’ at f = 1/(2πRC). This point can also be referred to as the

‘resonant frequency’ of the RC filter.

■ The error/deviation from the actual curve is usually very small if we replace it with

its asymptotes (for first-order filters). For example, the worst-case error for the gain

of the simple RC network is only −3dB, and occurs at the break frequency.
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Therefore, the asymptotic approximation is a valid “short cut” that we will often use

from now on to simplify the plots and their analysis.

■ With regard to the asymptotes of the phase plot, we see that we get two break

frequencies for it — one at 1/10th, and the other at 10 times the break frequency of

the gain plot. The change in the phase angle at each of these break points is 45° —

giving a total phase shift of 90° spanning two decades (symmetrically around the

break frequency of the gain plot).

■ Note that at the frequency where the single-pole lies, the phase shift (measured from

the origin) is always 45° — that is, half the overall shift — whether we are using the

asymptotic approximation or not.

■ Since both the gain and the phase fall as frequency increases, we say we have a

‘pole’ present — in our case, at the break frequency of 1/(2πRC). It is also a

“single-pole,” since it is associated with only a −1 slope.

■ Later, we will see that a ‘zero’ is identifiable by the fact that both the gain and phase

rise with frequency.

■ The output voltage is clearly always less than the input voltage — at least for a

(passive) RC network. In other words, the gain is less than 1, at any frequency.

Intuitively, that seems right, because there seems to be no way to “amplify” a signal,

without using an active device — like an op-amp for example. However, as we will

soon see, if we use filters that use both types of reactive components (L and C), we

can in fact get the output voltage to exceed the input (but only at certain frequencies).

And that incidentally is what we more commonly regard as “resonance.”

The Integrator Op-amp (“pole-at-zero” filter)

Before we go on to passive networks involving two reactive components, let us look at an

interesting active RC based filter. The one chosen for discussion here is the ‘integrator,’

because it happens to be the fundamental building block of any ‘compensation network.’

The inverting op-amp presented in Figure 7-5 has only a capacitor present in its feedback

path. We know that under steady dc conditions, all capacitors essentially “go out of the

picture.” In our case we are therefore left with no negative feedback at all at dc — and

therefore infinite dc gain (though in practice, real op-amps will limit this to a very high, but

finite value). But more surprisingly perhaps, that does not stop us from knowing the precise

gain at higher frequencies. If we calculate the transfer function of this circuit, we will see

that something “special” again happens at the point f = 1/(2π × RC). However unlike the

passive RC filter, this point is not a break-point (or a pole, or zero location). It happens
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Figure 7-5: The Integrator (pole-at-zero) Operational Amplifier

to be the point where the gain is unity (0 dB). We will denote this frequency as “fp0.” This is

therefore the crossover frequency of the integrator. “Crossover” implies that the gain plot

intersects the 0 dB (gain = 1) axis.

Note that the integrator has a single-pole — at “zero frequency”. Therefore, we will often

refer to it as the “pole-at-zero” stage or section of the compensation network. This pole is

more commonly called the pole at the origin or the dominant pole.

The basic reason why we will always strive to introduce this pole-at-zero is that without it

we would have very limited dc gain. The integrator is the simplest way to try and get as high

a dc gain as possible.
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On the right side of Figure 7-5, we have deliberately made the graph perfectly square in

shape. We have also assigned an equal number of grid divisions on the two axes. In addition,

to keep the x and y scaling identical, we have plotted 20 × log(f) on the x-axis (instead of

just log(f)). Having thus made the x- and y-axes identical in all respects, we realize why the

slope is called “−1” — it really does fall at exactly 45° now (visually too).

Therefore, by plotting 20 × log(gain) versus 20 × log(f), we have obtained a straight line

with a −1 slope. This allows us to do some simple math as shown in Figure 7-5. We have

thus derived a useful relationship between an arbitrary point “A” and the crossover frequency

‘fp0’

fp0 ≡
1

2π × RC
= GainA × fA

Note that in general, the transfer function of a “pole-at-zero” function such as this will

always have the following form

1

Xs
(pole-at-zero transfer function)

The crossover frequency is

fcross =
1

2πX
(crossover frequency)

In our case, X is the time constant RC.

Mathematics in the Log Plane

As we proceed toward our ultimate objective of control loop analysis and compensation

network design, we will be multiplying transfer functions of cascaded blocks to get the

overall transfer function. That is because the output of one block forms the input for the next

block, and so on.

It turns out that the mathematics of gain and phase is actually easier to perform in the log

plane, rather than in a linear plane. Some simple rules that will help us later are as follows:

■ When we combine transfer functions, decibels add up. So for example, if we take the

product of two transfer functions A and B (cascaded stages), we get C = AB. This

follows from the property log(AB) = log(A) + log(B). In words, the gain of A in

decibels plus the gain of B in decibels, gives us the gain of C in decibels.

■ The overall phase shift is also the sum of the phase shifts produced by each of the

cascaded stages. So phase angles also add up.
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■ From the upper half of Figure 7-6, we see that if we know the crossover frequency

(and the slope of the line), we can find the gain at any frequency.

■ Suppose we now shift the line vertically (keeping the slope constant) as shown in the

lower half of Figure 7-6. Then, by the equation provided therein, we can calculate by

what amount the crossover frequency shifts in the process.

Transfer Function of the LC Filter

In a buck, there is a post-LC filter present. Therefore this filter stage can easily be treated as

a cascaded stage following the switch. The overall transfer function is then very easy to

compute as per the rules mentioned in the previous section. However, when we come to the

boost and buck-boost, we don’t have a post-LC filter — there is a switch/diode connected

between the two reactive components that alters the dynamics. However, it can be shown,

that even the boost and buck-boost can be manipulated into a ‘canonical model’ in which an

effective post-LC filter appears at the output — thus making them as easy to treat as a buck.

The only difference is that the original inductance L (of the boost and buck-boost) gets

replaced by an equivalent (or effective) inductance equal to L/(1−D)2. The “C” remains the

same in the canonical model.

Since the LC filter thus becomes representative of the output section of any typical switching

topology, we need to understand it better, as we now do using Figure 7-7:

■ For most purposes, we can assume that the break frequency of the gain plot does not

depend on the load or on the associated parasitic resistive elements of the

components. So the resonant frequency of the filter-plus-load combination can be

taken to be simply 1/(2π
√

(LC)), that is, no resistance term is included.

■ The LC filter gain decreases at the rate of “−2” at high frequencies. The phase also

decreases providing a total phase shift of 180°. So we say we have a “double-pole”

at the break frequency 2π
√

(LC).

■ Q is the ‘quality factor’ (as defined in the figure). In effect, it quantifies the amount

of “peaking” in the response at the break frequency. Very simply put, if for example

Q = 20, then the output voltage at the resonant frequency is 20 times the input

voltage. On a log scale, this is written as 20 × logQ, as shown in the figure. If Q is

very high, the filter is considered “under-damped.” If Q is very small, the filter is

“over-damped.” And if Q = 0.707, we have ‘critical damping.’ In critical damping,

the gain at the resonant frequency is 3 dB below its dc value, that is, the output is

3 dB below the input (similar to an RC filter). Note that −3 dB is a factor of 1/
√

2 =
0.707 — that is, roughly 30% lower. Similarly, +3 dB is 2 = 1.414 (i.e. roughly

40% higher).
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Figure 7-6: Math in the Log Plane
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Figure 7-7: The LC Filter Analyzed in the Frequency Domain

■ The effect of resistance on the break frequency is usually minor, and therefore

ignored. But the effect of resistance on the Q (i.e. the peaking) is significant (though

eventually, that is also usually ignored too). However, we should keep in mind that

the higher the associated series parasitic resistances of L and C, the lower the Q. On

the other hand, at lower output powers, the resistor across the C (i.e. load resistor) is

high, and this actually increases the Q. Remember that a high parallel resistance is

in effect a small series resistance, and vice versa.

■ We can use the asymptotic approximation for the LC gain plot as we did for the RC

filter. However, the problem with trying to do the same with the phase of the LC is

that there will be a very large error, more so if the Q (defined in the figure) becomes

very large. If so, we can get a very abrupt phase shift of 180° close to the resonant

frequency. This sudden phase shift in fact can become a real problem in a power

supply, since it can induce “conditional stability” (discussed later). Therefore, a

certain amount of damping helps from the standpoint of phase and possible

conditional stability.
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■ Unlike an RC filter, the output voltage in this case can be greater than the input

voltage (at around the break frequency). But for that to happen, Q must be greater

than 1.

■ Instead of using Q, engineers often prefer to talk in terms of the damping factor

defined as

damping factor = ζ =
1

2Q

■ So a high Q corresponds to a low ζ.

From the equations for Q and resonant frequency, we can conclude that if L is increased, Q

tends to decrease, and if C is increased, Q increases.

Note: One of the possible pitfalls of putting too much output capacitance in a power supply is that we may

be creating significant peaking (high Q) in its output filter’s response. And we know that when that happens,

the phase shift is also more abrupt, and that can induce conditional instability. So generally, if we increase C

but simultaneously increase L, we can keep the Q (and the peaking) unchanged.

Summary of Transfer Functions of Passive Filters

The first-order (RC) low-pass filter transfer function can be written in different ways as

G(s) =
1/

RC

s + 1/
RC

(RC low-pass)

G(s) =
1

1 +
s

ω0

(RC low-pass)

G(s) = K
1

s + ω0
(RC low-pass)

where ωO = 1/(RC). Note that the “K” in the last equation is a constant multiplier often used

by engineers who are more actively involved in the design of filters. In this case, K = ωO.

For the second-order filter, various equivalent forms seen in literature are

G(s) =
1/

LC

s2 + s
(

1/
RC

)

+ 1/
LC

(LC low-pass)

G(s) = K
1

s2 +
ω0

Q
s + ω2

0

(LC low-pass)
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G(s) =
1

(

s

ω0

)2

+
1

Q

(

s

ω0

)

+ 1

(LC low-pass)

G(s) =
1

1 + 2ζ

(

s

ω0

)

+
(

s

ω0

)2
(LC low-pass)

where ωO = 1/(LC)1/2. Note that here, K = ω2
O. Also, Q is the quality factor, and ζ is the

damping factor defined earlier.

Finally, note also that the following relations are very useful when trying to manipulate the

transfer function of the LC filter into different forms

L/
R = 1/

ω0Q and 1/
RC = ω0

/

Q (LC filter)

Poles and Zeros

Let us try to “connect the dots” now. Both the first- and second-order filters we have

discussed gave us poles. That is because they both had ‘s’ in the denominators of their

transfer functions — if s takes on specific values, it can force the denominator to become

zero, and the transfer function then becomes infinite, and we get a pole by definition. The

values of s at which the denominator becomes zero are the resonant (or break) frequencies,

that is, the locations of the poles. For example, a hypothetical transfer function “1/s” will

give us a pole at zero frequency (the “pole-at-zero” we talked about earlier).

Note that the gain, which is the magnitude of the transfer function (calculated by putting

s = jω), won’t necessarily be infinite at the pole location. For example, in the case of the RC

filter, we know that the gain is in fact always less than or equal to unity, despite a pole being

present at the break frequency.

Note that if we interchange the positions of the two primary components of each of the

passive low-pass filters we discussed earlier, we will get the corresponding ‘high-pass’ RC

and LC filters respectively. If we calculate their transfer functions in the usual manner, we

will see that besides giving us poles, we also now get single- and double-zeros respectively

(both at zero frequency) as indicated in Figure 7-8. So, zeros occur whenever (and wherever)

the numerator of the transfer function becomes zero.

Zeros are “anti-poles” in many senses. For one, their presence is indicated by both the gain

and the phase increasing with frequency — opposite to a pole. Further, zeros also “cancel”

poles if they happen to fall at the same frequency location.
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Figure 7-8: High-pass RC and LC (first-order and second-order) filters

We had mentioned that gain-phase plots are called Bode plots. In the case of Figure 7-8,

we have drawn these on the same graph, just for convenience. Here the solid line is the gain,

and to read its value, we need to look at the y-axis on the left side of the graph. Similarly,

the dashed line is the phase, and for it, we need to look at the y-axis on the right side. Note

that just for practice, we have once again reverted to plotting the gain (expressed as a

simple ratio) on a log scale. The reader should hopefully by now have learnt to correlate the

major grid divisions of this type of plot with the corresponding dB. So a 10-fold increase is

equivalent to +20 dB, a 100-fold increase is +40 dB, and so on.

Now we can generalize our approach. A network transfer function can be described as a ratio

of two polynomials:

G(s) =
V(s)

U(s)
= k

a0 + a1s + a2s2 + a3s3 + . . .

b0 + b1s + b2s2 + b3s3 + . . .

This can be factored out as

G(s) = K

(

s − z0

) (

s − z1

) (

s − z2

)

. . .
(

s − p0

) (

s − p1

) (

s − p2

)

. . .

So the zeros (i.e. leading to the numerator being zero) occur at the complex frequencies

s = z1, z2, z3 . . . and so on. The poles (denominator zero) occur at s = p1, p2, p3 . . . and

so on.
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In power supplies, we usually deal with transfer functions of the form

G(s) = K

(

s + z0

) (

s + z1

) (

s + z2

)

. . .
(

s + p0

) (

s + p1

) (

s + p2

)

. . .

So the “well-behaved” poles and zeros that we have been talking about are actually in the

left-half of the complex frequency plane (“LHP” poles and zeros). Their locations are at

s = −z1, −z2, −z3, −p1, −p2, −p3 . . . , and so on.

Interaction of Poles and Zeros

We can break up this analysis in two parts:

1. For poles and zeros lying along the same gain plot (i.e. belonging to the same

stage) — the effect is cumulative in going from left to right. So suppose we are

starting from zero frequency and move right, toward a higher frequency, and we first

encounter a double pole. We know that the gain will start falling with a slope of −2

beyond the resonant frequency point. But as we go further to the right, suppose we

now encounter a single-zero. This will impart a change in slope of +1. So the net

slope of the gain plot will become −2 + 1 = −1 (after the zero location). Note that

despite a zero being present, the gain is still falling, though at a lesser rate. In effect,

the single-zero canceled half the double pole, so we are left with the response of a

single pole (to the right of the zero).

The phase angle also cumulates in a similar manner, except that in practice a phase

angle plot is harder to analyze. That is because phase shift can take place slowly

over two decades around the resonant frequency. We also know that for a double

pole (or double-zero), the change in phase may in fact be very abrupt at the resonant

frequency. However, eventually, the net effect is still predictable. So for example, a

double pole followed by a single-zero will start with a phase angle of 0° (at dc) and

then tend toward –180°. But about a decade below the location of the single-zero,

the phase angle will gradually start increasing (though still remaining negative). It

will eventually settle down to −180° + 90° = −90° at high frequencies.

2. For poles and zeros lying along different gain plots (all coming from cascaded

stages) — we know that the overall gain in decibels is the sum of the gain of each

(also in decibels). The effect of this math on the pole-zero interactions is therefore

simple to describe. If for example, at a specific frequency, we have a double pole in

one plot and a single-zero on the other plot, then the overall gain plot will have a

single pole at this break frequency. So we see that poles and zeros tend to “destroy”

each other, as we would expect since zeros are “anti-poles” as mentioned previously.
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But poles and zeros also add up with their own type. For example, if we have a

double pole on one plot, and a single-pole on the other plot (at the same frequency),

the net gain will fall with a slope of −3 after the break frequency. Phase angles also

add up similarly.

These rules will become even clearer, a little later, when we actually try to work out the

open-loop gain of a converter.

Closed and Open Loop Gain

Figure 7-9 represents a general feedback controlled system. The ‘plant’ (also sometimes

called the “modulator”) has a ‘forward transfer function’ G(s). A part of the output gets fed

back through the feedback block to the control input, so as to produce regulation at the

output. Along the way, the feedback signal is compared with a reference level, which tells it

what the desired level is for it to regulate to.

H(s) is the “feedback transfer function,” and we can see this goes to a summing block (or

node) — represented by the circle with an enclosed summation sign.

Note: The summing block is sometimes shown in literature as just a simple circle (nothing enclosed), but

sometimes rather confusingly as a circle with a multiplication sign (or x) inside it. Nevertheless, it still is a

summation block.

Σ

INPUT
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−
+

H(s)
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OUT × H OUT

[IN− (OUT × H)] × G = OUT

Solving,
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= ≡ ×

OUTPUT
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(where T ≡ GH)

(disturbances)

IN

H

T
G =

Transfer function

(control-to-output)

Also,

G = control to output transfer function (plant)

H = feedback transfer function

T ≡ GH = open-loop gain

OUT/IN ≡ G/(1 + GH) = closed-loop gain 

Solving,

Figure 7-9: General Feedback Loop Analysis
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One of the inputs to this summation block is the reference level (the ‘input’ from the

viewpoint of the control system), and the other is the output of the feedback block (i.e. the

part of the output being fed back). The output of the summation node is therefore the ‘error’

signal.

Comparing Figure 7-9 with Figure 7-10, we see that in a power supply, the plant itself can

be split into several cascaded blocks. These blocks are — the pulse width modulator (not to

be confused with the term ‘modulator’ used in general control loop theory for the entire

plant itself), the power stage consisting of the driver-plus-switch, and the LC filter.

The feedback block, on the other hand, consists of the voltage divider (if present) and the

compensated error amplifier. Note that we may prefer to visualize the error amplifier block

as two cascaded stages — one that just computes the error (summation node), and another

that accounts for the gain (and its associated compensation network). Note that the basic

principle behind the pulse width modulator stage (which determines the shape of the pulses

driving the switch), is explained in the next section, and in Figure 7-11.

In general, the plant can receive various ‘disturbances’ that can affect its output. In a power

supply these are essentially the line and load variations. The basic purpose of feedback is to

reduce the effect of these disturbances on the output voltage.

In Figure 7-9 we have derived the open-loop gain, which is simply the magnitude of the

product of the forward and feedback transfer functions — that is, obtained by going around

the loop. On the other hand, the magnitude of the reference-to-output transfer function is

called the closed-loop gain. Note that the word “closed” has really nothing to do with the

feedback loop being literally “open” or “closed.” Further, “GH” is called the ‘open-loop

transfer function’ — again, irrespective of whether the loop is literally “open,” say for the

purpose of measurement, or “closed” as in normal operation. In fact, in a typical power

supply, we can’t ever even hope to break the feedback path. Because the gain is typically so

high, even a minute change in the feedback voltage will cause the output to swing wildly. So

in fact, we always need to “close” the loop (and thereby dc-bias the converter into

regulation), before we can measure the so-called “open-loop” gain.

As a further proof of this, note that in Figure 7-9, if we go around the cascaded stage

consisting of G and H, and calculate the ratio of the input signal to the output, we get

IN −
(

OUT × H
)

OUT × H
=

IN

OUT × H
− 1 =

(

1 + GH

G

)

1

H
− 1 =

1

GH
+ 1 − 1 =

1

GH

Therefore, the ratio of the output to the input, that is, the transfer function of the cascaded G

and H blocks, is equal to GH — which is simply the open-loop gain. Therefore, even with

the loop “closed,” as we go around, we are always going to get the open-loop gain GH. Note

that the phrase “closed-loop gain” actually refers to the change in the output, if we change

the reference voltage slightly.
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Figure 7-11: Combining Blocks and Thus Showing That “Open-loop” Gain Is

Actually in a Closed Loop

The Voltage Divider

The output VO of the power supply first goes to a voltage divider. Here it is in effect,

just stepped-down, for subsequent comparison with the reference voltage ‘VREF.’ The

comparison takes place at the input of the error-amplifier, which is usually just a

conventional op-amp (voltage amplifier).

We can visualize an ideal op-amp as a device that varies its output so as to virtually equalize

the voltages at its input pins. Therefore in steady state, the voltage at the node connecting Rf2

and Rf1 (see “divider” block in Figure 7-10) can be assumed to be (almost) equal to VREF.

Assuming that no current flows out of (or into) the divider at this node, using Ohm’s law

Rf1

Rf1 + Rf2
=

VREF

VO
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Simplifying,

Rf2

Rf1
=

VO

VREF
− 1

So this tells us what ratio of the voltage divider resistors we must have, to produce the

desired output rail.

Note however, that in applying control loop theory to power supplies, we are actually

looking only at changes (or perturbations), not the dc values (though this was not made

obvious in Figure 7-9). It can also be shown that when the error amplifier is a conventional

op-amp, the lower resistor of the divider, Rf1, behaves only as a dc biasing resistor and does

not play any (direct) part in the ac loop analysis.

Note: The lower resistor of the divider, Rf1, does not enter the ac analysis, provided we are considering

ideal op-amps. In practice, it does affect the bandwidth of a real op-amp, and therefore may on occasion

need to be considered.

Note: If we are using a spreadsheet, we will find that changing Rf1 does in fact affect the overall loop

(even when using conventional op-amp-based error amplifiers). But we should be clear that that is only

because by changing Rf1, we have changed the duty cycle of the converter (its output voltage), which thus

affects the plant transfer function. Therefore, in that sense, the effect of Rf1 is only indirect. We will see that

Rf1 does not actually enter into any of the equations that tell us the locations of the poles and zeros of the

system.

Pulse Width Modulator Transfer Function (gain)

The output of the error amplifier (sometimes called “COMP,” sometimes “EA-out,”

sometimes “control voltage”) is applied to one of the inputs of the pulse width modulator

(‘PWM’) comparator. On the other input of this comparator, we have an applied sawtooth

voltage ramp — either internally generated from the clock when using “voltage mode

control,” or derived from the current ramp when using “current mode control.” Thereafter,

by normal comparator action, we get pulses of desired width, with which to drive the switch.

Since the feedback signal coming from the output rail of the power supply goes to

the inverting input of the error-amplifier, if the output is below the set regulation level, the

output of the error amplifier goes high. This causes the pulse width modulator to increase

pulse width (duty cycle) and thus try and make the output voltage rise. Similarly, if the

output of the power supply goes above its set value, the error amplifier output goes low,

causing the duty cycle to decrease. See the upper half of Figure 7-11.

As mentioned previously, the output of the pulse width modulator stage is duty cycle, and its

input is the ‘control voltage’ or the ‘EA-out.’ So, as we said, the gain of this stage is not a
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Figure 7-12: Gain of Pulse Width Modulator

dimensionless quantity, but has units of 1/V. From Figure 7-12 we can see that this gain is

equal to 1/VRAMP, where VRAMP is the peak-to-peak amplitude of the ramp sawtooth.

Voltage Feedforward

We had also mentioned previously, that when there is a disturbance, the control does not

usually know beforehand how much duty cycle correction to apply. In the lower half of

Figure 7-11, we have described an increasingly popular technique being used to make that

really happen (when faced with line disturbances). This is called input-voltage/line

feedforward, or simply “feedforward.”

This technique requires that the input voltage be sensed, and the slope of the comparator

sawtooth ramp increased, if the input goes up. In the simplest implementation, a doubling of

the input causes the slope of the ramp to double. Then, from Figure 7-11, we see that if the

slope doubles, the duty cycle is immediately halved — as would be required anyway if the

input to a buck converter is doubled. So the duty cycle correction afforded by this

“automatic” ramp correction is exactly what is required (for a buck, since its duty cycle

D = VO/VIN). But more importantly, this correction is virtually instantaneous — we didn’t

have to wait for the error amplifier to detect the error on the output (through the inherent

delays of its RC-based compensation network scheme), and respond by altering the control

voltage. So in effect, by input feedforward, we have bypassed all major delays, and so line

correction is virtually instantaneous (i.e. “perfect” rejection of disturbance).

We just stated that in its simplest form, feedforward causes the duty cycle to halve if the

input doubles. Let us double-check that that is really what is required here. From the dc

input-to-output transfer function of a buck topology,

D =
VO

VIN
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Therefore, on doubling the input,

VO
(

2 × VIN

) =
D

2

which is what we are doing anyway, through feedforward. So, we can see that this simple

feedforward technique will work very well for a buck. However, for a boost or a

buck-boost, the duty-cycle-to-input proportionality is clearly not going to be the best

answer.

Using voltage feedforward to produce automatic line rejection is clearly applicable only to

voltage mode control. However, the original inspiration for this idea came from current mode

control. But in current mode control, the ramp to the PWM comparator is being generated

from the inductor current waveform. In a buck topology for example, the slope of the

inductor current up-ramp is equal to (VIN − VO)/L. So if we double the input voltage, we do

not end up doubling the slope of the inductor current. Therefore, neither do we

end up halving the duty cycle. But in fact, we need to do exactly that, if we are looking

for complete line rejection (from D = VO/VIN). In other words, voltage mode control

with feedforward in fact provides better line rejection than current mode control (for

a buck).

Power Stage Transfer Function

The power stage formally consists of the switch plus the (equivalent) LC filter. Note that this

is just the plant minus the pulse width modulator. (see Figure 7-10).

We had indicated previously that whereas in a buck, the L and C are really connected to each

other at the output (as drawn in Figure 7-10), in the remaining two topologies they are not.

However, the small-signal (canonical) model technique can be used to transform these latter

topologies into equivalent ac models — in which, for all practical purposes, a regular

LC-filter does appear after the switch, just as for a buck. With this technique, we can

then justifiably separate the power stage into a cascade of two separate stages (as for

a buck):

■ A stage that effectively converts the duty cycle input (coming from the output of the

PWM stage), into an output voltage

■ An equivalent post-LC filter stage, that takes in this output and converts it into the

output rail of the converter

With this understanding, we can build the final transfer functions presented in the next

section.
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Plant Transfer Functions of All the Topologies

Let us discuss the three major topologies separately here. Note that we are assuming voltage

mode control and continuous conduction mode. Further, the “ESR zero” is also not included

here (introduced later).

Buck Converter

Control-to-Output Transfer Function

The transfer function of the plant is also called the ‘control-to-output transfer function’

(see Figure 7-10). It is therefore the output voltage of the converter, divided by the ‘control

voltage’ (EA-out). We are of course talking only from an ac point of view, and are therefore

interested only in the changes from the dc-bias levels.

The control-to-output transfer function is a product of the transfer functions of the PWM, the

switch and the LC filter (since these are cascaded stages). Alternatively, the control-to-output

transfer function is a product of the transfer functions of the PWM stage and the transfer

function of the ‘power stage’.

We already know from Figure 7-12 that the transfer function of the PWM stage is equal to the

reciprocal of the amplitude of the ramp. And as discussed in the previous section, the power

stage itself is a cascade of an equivalent post-LC stage (whose transfer function is the same

as the passive low-pass second-order LC filter we discussed previously), and a stage that

converts the duty cycle into an output voltage. We are interested in finding the transfer

function of this latter stage.

The question really is — what happens to the output when we perturb the duty cycle slightly

(keeping the input to the converter, VIN, constant)? Here are the steps for a buck:

VO = D × VIN (buck)

Therefore, differentiating

dV0

dD
= VIN

And this is the required transfer function of the intermediate duty-cycle-to-output stage!

Finally, the control-to-output transfer function is the product of three (cascaded) transfer

functions, that is, it becomes

1

VRAMP
× VIN ×

1/
LC

s2 + s
(

1/
RC

)

+ 1/
LC

(buck: plant transfer function)
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Alternatively, this can be written as

1

VRAMP
× VIN ×

1
(

s

ω0

)2

+
(

s

ω0Q

)

+ 1

(buck: plant transfer function)

where ω0 = 1/
√

(LC), and ω0Q = R/L.

Line-to-output Transfer Function

Of primary importance in any converter design is not what happens to the output when we

perturb the reference (which is what the closed loop transfer function really is), but what

happens at the output when there is a line disturbance. This is often referred to as ‘audio

susceptibility’ (probably because early converters switching at around 20 kHz would emit

audible noise under this condition).

The equation connecting the input and output voltages is simply the dc input-to-output

transfer function, that is,

VO

VIN
= D (buck)

So this is also the factor by which the input disturbance first gets scaled, and thereafter

applied at the input of the LC filter. But we already know the transfer function of the LC

low-pass filter. Therefore, the line-to-output transfer function is the product of the two,

that is,

D ×
1/

LC

s2 + s
(

1/
RC

)

+ 1/
LC

(buck: line transfer function)

where R is the load resistor (at the output of the converter).

Alternatively, this can be written as

D ×
1

(

s

ω0

)2

+
s

ω0Q
+ 1

(buck: line transfer function)

where ω0 = 1/
√

(LC), and ω0Q = R/L.
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Boost Converter

Control-to-Output Transfer Function

Proceeding similar to the buck, the steps for this topology are

VO =
VIN

1 − D

dVO

dD
=

VIN

(1 − D)2

So the control-to-output transfer function is

1

VRAMP
×

VIN

(1 − D)2
×

1/
LC ×
(

1 − s
(

L/
R

))

s2 + s
(

1/
RC

)

+ 1/
LC

(boost: plant transfer function)

where L = L/(1 − D)2. Note that this is the inductor in the “equivalent post-LC filter” of the

canonical model. Note that C remains unchanged.

This can also be written as

1

VRAMP
×

VIN

(1 − D)2
×

(

1 −
s

ωRHP

)

(

s

ω0

)2

+
s

ω0Q
+ 1

(boost: plant transfer function)

where ω0 = 1/
√

(LC), and ω0Q = R/L.

Note that we have included a surprise term in the numerator above. By detailed modeling

it can be shown that both the boost and the buck-boost have such a term. This term

represents a zero, but a different type to the “well-behaved” zero discussed so far (note the

sign in front of the s-term). If we consider its contribution separately, we will find that as we

raise the frequency, the gain will increase (as for a normal zero), but simultaneously, the

phase angle will decrease (opposite to a “normal” zero, more like a “well-behaved” pole).

We will see later that if the overall open-loop phase angle drops sufficiently low, the

converter can become unstable because of this zero. That is why this zero is considered

undesirable. Unfortunately, it is virtually impossible to compensate for (or “kill”) by normal

techniques. The only easy route is literally to “push it out” — to higher frequencies where it

can’t affect the overall loop significantly. Equivalently, we need to reduce the bandwidth of

the open-loop gain plot to a frequency low enough that it just doesn’t “see” this zero. In

other words, the crossover frequency must be set much lower than the location of this zero.
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The name given this zero is the ‘RHP zero’, as indicated earlier — to distinguish it from the

“well-behaved” (conventional) left-half-plane zero. For the boost topology, its location can be

found by setting the numerator of the transfer function above to zero, that is, s × (L/R) = 1.

So the frequency location of the boost RHP zero is

fRHP =
R × (1 − D)2

2πL
(boost)

Note that the very existence of the RHP zero in the boost and buck-boost can be traced back

to the fact that these are the only topologies where an actual LC post-filter doesn’t exist on

the output. Though, by using the canonical modeling technique, we have managed to create

an effective LC post filter, the fact that in reality there is a switch/diode connected between

the actual L and C of the topology, is what is ultimately responsible for creating the

RHP zero.

Note: Intuitively, the RHP zero is often explained as follows — if we suddenly increase the load, the

output dips slightly. This causes the converter to increase its duty cycle in an effort to restore the output.

Unfortunately, for both the boost and the buck-boost, energy is delivered to the load only during the switch

off-time. So, an increase in the duty cycle decreases the off-time, and there is now, unfortunately, a smaller

interval available for the stored inductor energy to get transferred to the output. Therefore, the output

voltage, instead of increasing as we were hoping, dips even further for a few cycles. This is the RHP zero in

action. Eventually, the current in the inductor does manage to ramp up over several successive switching

cycles to the new level consistent with the increased energy demand, and so this strange situation gets

corrected — provided full instability has not already occurred!

Line-to-output Transfer Function

We know that

VO

VIN
=

1

1 − D
(boost)

Therefore we get

1

1 − D
×

1/
LC

s2 + s
(

1/
RC

)

+ 1/
LC

(boost: line transfer function)

Alternatively, this can be written as

1

1 − D
×

1
(

s

ω0

)2

+
s

ω0Q
+ 1

(boost: line transfer function)

where ω0 = 1/
√

(LC) and ω0Q = R/L.
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Buck-boost Converter

Control-to-output Transfer Function

Here are the steps for this topology:

VO =
VIN × D

1 − D

dVO

dD
=

VIN

(1 − D)2

(Yes, it is an interesting coincidence — the slope of 1/(1 − D) calculated for the boost is the

same as the slope of D/(1 − D) calculated for the buck-boost!)

So the control-to-output transfer function is

1

VRAMP
×

VIN

(1 − D)2
×

1/
LC ×
(

1 − s
(

LD/
R

))

s2 + s
(

1/
RC

)

+ 1/
LC

(buck-boost: plant transfer function)

where L = L/(1 − D)2 is the inductor in the equivalent post-LC filter.

Alternatively, this can be written as

1

VRAMP
×

VIN

(1 − D)2
×

(

1 −
s

ωRHP

)

(

s

ω0

)2

+
s

ω0Q
+ 1

(buck-boost: plant transfer function)

where ω0 = 1/
√

(LC), and ω0Q = R/L.

Note that, as for the boost, we have included the RHP zero term in the numerator. Its

location is given by

fRHP =
R × (1 − D)2

2πL × D
(buck-boost)

Line-to-output Transfer Function

We know that

VO

VIN
=

D

1 − D
(buck-boost)
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Therefore,

D

1 − D
×

1/
LC

s2 + s
(

1/
RC

)

+ 1/
LC

(buck-boost: line transfer function)

This is alternatively written as

D

1 − D
×

1
(

s

ω0

)2

+
s

ω0Q
+ 1

(buck-boost: line transfer function)

where ω0 = 1/
√

(LC) and ω0Q = R/L.

Note that the plant and line transfer functions of all the topologies do not depend on the load

current. That is why gain-phase plots (Bode plots) do not change much if we vary the load

current (provided we stay in CCM).

Note also that so far we have ignored a key element of the transfer functions — the ESR of

the output capacitor. Whereas the DCR usually just ends up decreasing the overall Q (less

“peaky” at the second-order (LC) resonance), the ESR actually contributes a zero to the

open-loop transfer function. Because it affects the gain and the phase significantly, it usually

can’t be ignored — certainly not if it lies below the crossover frequency (at a lower

frequency).

Feedback Stage Transfer Functions

Let us now lump the entire feedback section, including the voltage divider, error amplifier,

and the compensation network. However, depending on the type of error amplifier used, this

must be evaluated rather differently. In Figure 7-13 we have shown two possible error

amplifiers often used in power converters.

The analysis for these two cases is as follows

■ The error amplifier can be a simple voltage-to-voltage amplification device, that is,

the traditional “op-amp” (operational amplifier). This type of op-amp requires local

feedback (between its output and inputs) to make it stable. Under steady dc

conditions, both the input terminals are virtually at the same voltage level. This

determines the output voltage setting. But, as discussed previously, though both

resistors of the voltage divider affect the dc level of the converter’s output, from the

ac point of view, only the upper resistor enters the picture. So the lower resistor is

considered purely a dc biasing resistor, and therefore we usually ignore it in control

loop (ac) analysis.
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Rf1
+

−

+

−

Rbias

VCONTROL

VCONTROL
VREF

VREF

VCONTROL

VO

VCONTROL

VO

VO

VO

Z1

gm

=

=

Z2

Z1

Transfer function:

Z2 is Rf2 at dc, and Rbias is Rf1
(Rf1 is only a biasing resistor --- does not appear
in ac analysis)

Zin is Rf2 at dc
(Rf1 does appear in ac analysis) 

• gm • Zo(s)
Rf1 + Zin(s)

Rf1

• gm • Zo
Rf1 + Zin(s)

Rf1

H(s) =

Z1(S)

Z2(S)
H(s) =

Note: In defining transfer function H(s), we have not included negative sign

Transfer function:Transconductance

op-amp

Conventional

op-amp

Zin

Zo

Z2

Figure 7-13: Generic Representation of Feedback Stages

■ The error amplifier can also be a voltage-to-current amplification device, that is, the

“gm op-amp” (transconductance operational amplifier). This is an open-loop

amplifier stage with no local feedback — the loop is in effect completed externally,

and that again causes the voltages at its input terminals to get equalized (like a

regular op-amp). If there is any difference in voltage between its two pins, ∆V, it

converts that into a current, ∆I, flowing out of its output pin (as determined by its

transconductance gm = ∆I/∆V). Thereafter, since there is an impedance Z

connected from the output of this op-amp to ground, the voltage at the output pin of

this error amplifier (i.e. the voltage across Z — also the control voltage) changes by

an amount equal to ∆I × Z. For example, in our converter, if VFB (the voltage from

the divider, applied to the inverting pin) increases slightly above VREF, this will

cause the op-amp to source less current. That will decrease the control voltage

(across Z) and so the duty cycle will decrease. Ultimately, because of the high gain,

the system again settles down only when the voltages on the input pins of the

op-amp become virtually the same. For the gm op-amp, both Rf2 and Rf1 enter into

the ac analysis, because together they determine the error voltage at the pins, and

therefore the current at the output of the op-amp. Note that the divider can in this

case be treated as a simple (step-down) gain block of Rf1/(Rf1 + Rf2), cascaded with

the op-amp stage that follows.
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Note: We may have wondered — why do we always use the inverting terminal of the error amplifier for

applying the feedback voltage? The intuitive reason for that is that an inverting op-amp has a dc gain of

Rf/Rin, where Rf is the feedback resistor (from the output of the op-amp to its negative input terminal), and

Rin is the resistor between its inverting terminal and the input voltage source. So the output of an inverting

op-amp can be made smaller than its input, if so desired (i.e. gain <1). Whereas, a noninverting op-amp has

a dc gain of 1+ (Rf/Rin), where Rin in this case is the resistor between its inverting terminal and ground.

So its output will always be greater than its input (gain >1). This restriction on the dc gain has been known

to cause some strange and embarrassing situations in the field, especially under certain abnormal conditions.

Therefore, a non-inverting error op-amp is generally not favored.

Lastly, note that by just using an inverting error amplifier, we have in effect also applied a

−180° phase shift “right off the bat”! We will see in the following section, that this increases

the possibility of oscillations by itself.

Closing the Loop

We are now in a position to start tying all the loose ends together! For each of the three

topologies, we now know both the forward transfer function G(s) (control-to-output) and

also the feedback transfer function H(s). Going back to the basic equation for the closed-loop

transfer function,

G(s)

1 + G(s)H(s)
(closed-loop transfer function)

we see that it will “explode” if

G(s)H(s) = −1

But G(s)H(s) is simply the transfer function for a signal going through the G(s) block,

and then through the H(s) block, that is, the open-loop transfer function. We know that the

gain is the magnitude of the transfer function (using s = jω), and its phase angle is its

argument. Let us calculate what these are for the transfer function of −1 above.

Gain = ‖−1‖ =
√

Re2 + Im2 =
√

(

−1
)2 + 02 = 1 (magnitude)

Phase = φ = tan−1

(

Im

Re

)

= tan−1

(

0

−1

)

= tan−1
(

0
)

= 180° (argument)

Note: When doing the tan−1 operation, we may often need to visualize where the number is actually

located in the complex plane. For example, in this case, tan of 0° and tan of 180° are both zero, and we

wouldn’t have known which of these angles is the right answer — unless we visualized the number in the

complex plane. In our case, since the number was minus 1, we correctly placed it at 180° instead of 0°.
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So we see that the system is unstable if a disturbance (of certain frequency) goes through

the plant and feedback blocks, and returns at 180° angle, with the same magnitude.

The summing block that follows has one negative and one positive input, since it represents

a negative feedback system. This implies that another 180° shift will occur after the signal

leaves the H block. So we conclude that in general, a system would be unstable if a

disturbance goes around the loop and comes back to the same point, with the same magnitude

and the same phase.

In a typical gain vs. frequency plot, we will see that a gain of 1 usually occurs at only one

specific frequency, and this is called the ‘crossover’ frequency. Beyond this point the gain

becomes less than 1 (i.e. below the 0 dB axis).

The stability criterion is therefore equivalent to saying that the phase shift (of the open-loop

transfer function) should not be equal to 180° (or −180°) at the crossover frequency. But

we need to ensure a certain margin of safety — in terms of the degrees of phase angle at the

crossover frequency required to prevent this from happening. This safety margin is called the

‘phase margin.’

Note that the possibility of instability applies only at the crossover frequency. For example,

it surprisingly doesn’t matter even if the response somehow manages to come back larger

than the stimulus itself, even at the same phase angle — that does not cause instant instability,

simply because it can be shown this particular vector condition can’t support any further

increase in the amount of disturbance.

How much phase margin is enough? In theory, even an overall phase shift of −179° (i.e. a

phase margin of 1°) would not produce full instability — though there would certainly be a

lot of ringing at every transient, and at best it would be very, very, marginally stable. But

component tolerances, temperature variations, and even small changes in the application

conditions can change the loop characteristics significantly, ushering in full-blown instability.

It is generally recommended that the phase lag introduced by the successive G and H blocks

be about 45° short of −180° — that is, an overall phase lag of −135°. That gives us a phase

margin of 45°. On the other hand, a phase margin of, say, 80° is certainly very stable, but

is also usually not very desirable. Under transients, though there is no ringing (after the

first overshoot or undershoot), the correction is too slow, and the thus the amount of

overshoot/undershoot can become quite significant. A phase margin of 45° would generally

be seen to cause just one or two cycles of ringing, and the overshoot/undershoot would also

be minimal.

Note: Under very large line or load steps, we will actually no longer be operating in the domain of the

“small-signal” analysis which we have been performing so far. In that case, the initial overshoot/undershoot

at the output is almost completely determined simply by how large a bulk capacitance we have placed at the

output. That capacitance is needed to “hold” the output steady, until the control loop can enter the picture

and help stabilize the output.
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Criteria for Loop Stability

We should remember that phase angle can start changing gradually — starting at a

frequency even 10 times lower than where the pole or zero may actually reside. We have also

seen that a second-order double-pole (−2 slope with two reactive components) can cause a

very sudden phase shift of about 180° at the resonant frequency if the Q is very high.

Therefore, in practice, it is almost impossible to estimate the phase at a certain frequency,

with certainty — nor therefore the phase margin — unless a certain strategy is followed!

Therefore, one of the most popular (and simple) approaches to ensuring loop stability is as

follows:

■ Ensure that the open-loop gain crosses the 0 dB axis with a −1 slope.

■ We also want to maximize the bandwidth to achieve quick response to extremely

sudden load or line transients. By sampling theory, we know that we certainly need

to set the crossover frequency to less than half the switching frequency. So, in

practice, most designers set the crossover frequency at about one-sixth the switching

frequency (for voltage mode control).

■ Ensure that the crossover frequency is well below any troublesome poles or zeros —

like the RHP zero in continuous conduction mode (boost and buck-boost — with

voltage mode or current mode control), and the “subharmonic instability pole” in

continuous conduction mode (buck, boost, and buck-boost — with current mode

control). The latter pole is discussed later.

Plotting the Open-loop Gain and Phase with an Integrator

We are interested in plotting the gain and phase of the open-loop transfer function T(s). This

is the product of the transfer functions of the G (plant) and H (feedback) blocks in cascade.

Review the rules presented earlier in the section “mathematics in the log plane.”

Let us start by taking a typical plant and then following it up with the simple integrator

(first described in Figure 7-5). On the left-hand side of Figure 7-14 we have plotted the plant

gain, the gain of the op-amp integrator, and the overall gain. We can see that the latter is

simply the sum of the previous gains (when expressed in dB). We also see that the plant gain

falls off after its resonant frequency at a slope of −2. But the integrator slope is falling

at −1. Therefore the overall (cascaded) slope is −1 before the double pole, and −3

thereafter. That is why we need a “compensation network” around the error amplifier, to

meet our simple loop design strategy mentioned in the previous section.

In particular, at lower frequencies we can clearly see that the open-loop gain is offset

vertically by an amount equal to the plant gain. If the plant is a buck, then we know its
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transfer function is

VIN

VRAMP
×

1/
LC

s2 + s
(

1/
RC

)

+ 1/
LC

(buck)

So, the vertical offset of this gain plot is

20 × log

(

VIN

VRAMP

)

dB (buck)

The crossover frequency of the integrator, ‘fp0,’ is related to the crossover frequency of the

open-loop gain ‘fcross’ by the rule indicated in Figure 7-6

fp0 =
VRAMP

VIN
×
(

fcross

fLC

)3

× fLC ≡
1

2π × RC
(integrator only)

Therefore, if we have a certain crossover frequency, ‘fcross,’ in mind, this tells us the ‘RC’ that

the integrator section must have, to make that happen.

However, we still have a problem. Though we can clearly set the open-loop crossover

frequency almost where we want, we are still not crossing over with a −1 slope as desired.

Canceling the Double Pole of the LC Filter

In the right-hand side of Figure 7-14 we have hypothetically (so far) modified the

compensation of the previous section to now include two single-order zeros — placed

exactly where the plant’s double pole lies — thus effectively canceling the latter out

completely. The op-amp still provides the necessary pole-at-zero from its “integrator

section,” and if extrapolated, this would cross over at fp0 with a slope of −1. But now, with

the two-zeros present, the open-loop gain also now falls at a slope of −1 (except for the slight

LC peaking along the way). Note that there is a vertical offset between these two curves by

an amount equal to the plant gain at low frequencies (which we already know from above).

Therefore we can easily apply the equations given in the lower half of Figure 7-6.

Simplifying, we will get the following relationship between ‘fcross’ (the crossover frequency

of the open-loop gain) and ‘fp0’

fp0 =
VRAMP

VIN
× fcross ≡

1

2π × RC
(integrator + 2 zeros at LC resonant freq.)

This equation therefore connects the desired crossover frequency with the required ‘RC’

product of the integrator section of the op-amp. We can thus adjust the RC to get the required

crossover.
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Note that for a boost or buck-boost, the only change required in the above analysis is

L ⇒ L
/

(1 − D)2 (boost and buck-boost)

VIN

VRAMP
⇒

VIN

VRAMP × (1 − D)2
(boost and buck-boost)

Our compensation analysis seems complete. However, there is one last complication still

remaining. We may need at least one pole from our compensation network. This is for

canceling out the ‘ESR zero’ coming from the output capacitor. We have been ignoring this

particular zero so far, but it is time to take a look at it now.

The ESR Zero

We ignored the ESR of the output capacitor in Figure 7-14, and also in the list of transfer

functions provided earlier. For example, earlier we had provided the following

control-to-output transfer function for a buck

VIN

VRAMP
×

1
(

s

ω0

)2

+
1

Q

(

s

ω0

)

+ 1

(buck: control-to-output transfer function)

where ω0 = 1/
√

(LC). The ESR zero adds a term to the numerator. A full analysis shows that

the control-to-output transfer function now becomes

VIN

VRAMP
×

( s

ωesr
+ 1
)

(

s

ω0

)2

+
1

Q

(

s

ω0

)

+ 1

(buck: complete control-to-output transfer function)

where ωesr = 1/((ESR) × C) is the frequency (in radians per second) at which the ESR zero

is located. Judging by the sign in front of the s-term in the numerator, this is a

“well-behaved” (left-half-plane) zero. But it does increase the gain by +1 after the ESR zero

location. So if the plant gain was falling at a slope of −2 (past its double pole, not

cancelled), as soon as it encounters the ESR zero, its slope will change to −2 + 1 = −1.

If we were using only an op-amp integrator (no LC-pole cancellation), the open-loop gain

will then fall with a slope of −2 instead of −3. But that is not enough. However, if we

introduce just one zero (besides the pole-at-zero and the ESR zero), we can get the −1

intersection at crossover, as we are seeking.

However we should remember that ESR is a parasitic and is hard to control and define well.

In fact, vendors of capacitors rarely provide “min/max” limits for this parameter (usually
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assuming rather that the MAX of the ESR is the only concern to us). In addition, trace

lengths will also contribute to the effective ESR, thereby changing the location of the ESR

zero significantly from what we may have been expecting. In addition, the ESR zero is also

likely to keep changing with respect to temperature, and also over time (especially for

aluminum electrolytics). So the preferred strategy is to estimate rather crudely where the ESR

zero is, and try to cancel its effect altogether — by means of a pole provided by the

compensation network — at around the same location as the ESR zero.

In general, for making the control loop less sensitive to high-frequency switching noise,

designers often put another pole roughly at about 10 times the crossover frequency (sometimes

at half the switching frequency). So now the gain will cross the 0 dB axis with a slope of −1,

but at higher frequencies it will drop off more rapidly, with a −2 slope. But why did we pick

10 times the crossover frequency? Because we know that the phase introduced by this

high-frequency pole will actually start making itself felt at one-tenth the frequency of the

pole, and we didn’t want to adversely impact the phase angle in the vicinity of the crossover

frequency (i.e. the phase margin). Later on we will realize that we can actually move this

high-frequency pole much closer to the crossover frequency. In fact that is often desirable,

because it “improves” the phase margin (by reducing it and bringing it closer to the ideal

value of 45°).

Designing a Type 3 Op-amp Compensation Network

Three types of error amplifier compensation schemes are used most often — called the

Type 1, Type 2, and Type 3 in order of increasing complexity and flexibility. The former two

are just a subset of the latter, so we prefer to do a Type 3 compensation to demonstrate the

full scope (though often, a Type 2 compensation should suffice).

The transfer function of a Type 3 error amplifier as shown in Figure 7-15 can be worked out

easily in the manner we did before. It is given by

ωp0

s
×

( s

ωz1
+ 1
) ( s

ωz2
+ 1
)

(

s

ωp1
+ 1

)(

s

ωp2
+ 1

) (Type 3 feedback transfer function)

where ωp0 = 2π(fp0), ωz1 = 2π(fz1), and so on. Note that we are ignoring the minus sign

in front of this transfer function, as we are separating out the 180° phase shift inherent in

negative feedback systems.

There are two poles “p1” and “p2” (besides the pole-at-zero “p0”), and two zeros, “z1” and

“z2” provided by this compensation. Note that several of the components involved play a
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dual role in determining the poles and zeros. So the calculation can become fairly

cumbersome and iterative. But a valid simplifying assumption that can be made is that R1 is

much greater than R3, and C1 much greater than C3. So the locations of the poles and zeros

are, finally,

fp0 =
1

2π × R1(C1 + C3)
≈

1

2π × R1C1

fp1 =
1

2π × R3C2

fp2 =
1

2π × R2

(

C1C3

C1 + C3

) ≈
1

2π × R2C3

fz1 =
1

2π × R2C1

fz2 =
1

2π × (R1 + R3)C2
≈

1

2π × R1C2

Note that the reference designators of the components have changed in this section for

convenience. What we are now calling “R1” was “Rf2” when we previously discussed the

voltage divider. Similarly, the gray unnamed resistor in Figure 7-15 was previously called

“Rf1.”

Let us take up a practical example to show how to proceed in designing a feedback loop

with this type of compensation.

Example: Using a 300 kHz synchronous buck controller we wish to step down 15 V to 1 V.

The load resistor is 0.2 Ω (5 A). The ramp is 2.14 V from the datasheet of the part. The

selected inductor is 5 µH, and the output capacitor is 330 µF, with an ESR of 48 mΩ .

We know that the plant gain at dc for a buck is VIN/VRAMP = 7.009. Therefore, (20 × log)

of this gives us 16.9 dB. The LC double pole for a buck is at

fLC =
1

2π ×
√

LC
=

1

2π ×
√

5 × 10−6 × 330 × 10−6
⇒ 3.918 kHz

We want to set the crossover frequency of the open-loop gain at one-sixth the switching

frequency, that is, at 50 kHz. Therefore we can solve for the integrator’s “RC” by using our

previous (simplified) equation

fp0 =
VRAMP

VIN
× fcross ≡

1

2π × RC
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So in our case

R1C1 =
VIN

2π × VRAMP × fcross
=

15

2π × 2.14 × 50 × 103
= 2.231 × 10−5 s−1

If we have selected R1 as, say, 2 kΩ, C1 is

C1 =
2.231 × 10−5

2 × 103
⇒ 11.16 nF

The crossover frequency of the integrator section of the op-amp is

fp0 =
1

2π × R1C1
=

105

2π × 2.231
⇒ 7.133 kHz

The ESR zero is at

fesr =
1

2π × 48 × 10−3 × 330 × 10−6
⇒ 10.05 kHz

The required placement of zeros and poles is

fz1 = fz2 = 3.918 kHz

fp1 = fesr = 10.05 kHz

fp2 = 10 × fcross = 500 kHz (set fp2 = fcross for better results — see later)

The remaining components are calculated on the basis of this desired placement of poles and

zeros. But now we can use the complete (nonsimplified) versions of the previous equations

for fp0, fz1, and so on. So we get the following solutions to these simultaneous equations

C2 =
1

2π × R1

(

1

fz2
−

1

fp1

)

=
1

2π × 2 × 106

(

1

3.918
−

1

10.05

)

⇒ 12.4 nF

R2 = R1
fp0

fLC
= 2 × 103 ×

7.133

3.918
⇒ 3.641 kΩ

C3 =
1

2π ×
(

R2fp2 − R1fp0
) =

1

2π ×
(

R2fp2 − R1fp0
)

=
10−6

2π ×
(

3.641 × 500 − 2 × 7.133
) ⇒ 88.11 pF

R3 =
R1 × fz2

fp1 − fz2
=

2 × 103 × 3.918

10.05 − 3.918
⇒ 1.278 kΩ
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Note that as usual, for a boost or buck-boost, the only change required in the above analysis is

L ⇒ L
/

(1 − D)2 (boost and buck-boost)

VIN

VRAMP
⇒

VIN

VRAMP × (1 − D)2
(boost and buck-boost)

However, in all cases, we must ensure that the selected crossover frequency is at least an order

of magnitude below the RHP zero (location provided previously)!!

Optimizing the Feedback Loop

In Figure 7-16 we have plotted the results of the previous example, and we can see that

though the crossover frequency is high enough, the phase margin is rather too generous.

Figure 7-16: Plotting the Results for the Type 3

Compensation Example (nonoptimized)
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A very high phase margin may be “very stable,” with almost no ringing, but there will be

greater undershoot/overshoot.

But what did we expect? Let’s analyze this further. For now, let us ignore the high-frequency

pole “p2” of the error amplifier. Let us also ignore “p1” since it mutually cancels out with

respect to the ESR zero coming from the plant. Therefore the plant just has a double pole at

frequency fLC, and this tends to give it the ominous shift of 180° we talked about. But our

two single-order zeros from our error amplifier mutually cancel this double pole. So that

effectively leaves us with just the pole-at-zero coming from the integrator section of the error

amplifier. And like any single pole, this provides a net −90° phase shift to the open-loop

characteristics. The phase margin is therefore expected to be 90° short of −180°, that is, 90°.

It is no surprise we got an actual phase margin of 79° as seen in Figure 7-16. The conclusion

is that we are certainly very stable, with no possibility of oscillations, but we are also

over-damped. We can however accept this as a viable solution too, except perhaps in more

critical applications. But if the application is critical, what we would really want to do is to

be able to maintain the present crossover frequency of 50 kHz (1/6th of the switching

frequency), but to make the phase margin slightly “worse” — for better transient

response.

We should also have realized by now that intuitively, poles are generally responsible for

making matters “worse” — since they always introduce a phase lag, leading us closer to the

danger level of −180°. On the other hand, zeros boost the phase angle (phase lead), and

thereby help increase the phase margin away from the danger level.

Therefore, logically, to decrease the existing phase margin of 79° to say 45°, we need

another pole — that is, to make matters “worse,” though in a calculated manner. And in

fact, that is what p2 does (we have just not been considering it in our present discussion).

Looking back at our worked example and the resultant gain-phase plots, we realize that the

reason its effect at the crossover frequency was minimal was that we had placed it too far out

(10 × fcross). Let us therefore now change its criterion and place it exactly at the crossover

frequency. So we now have

fp2 = fcross = 50 kHz

We can guess that the phase shift introduced by a single pole at its resonant frequency is 45°,

so the new phase margin should be around 79° − 45° = 34°. We plot the gain-phase plots

with this new high-frequency pole criterion (and freshly calculated compensation component

values) and we get the curve shown in Figure 7-17.

In Figure 7-17, we see that the phase margin is now almost exactly 45°. The reason it is a

little more than our initial estimate of 34° (though we desired 45°), is that the crossover

frequency has decreased slightly to 40 kHz.
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Figure 7-17: Plotting the Results for the Type 3

Compensation Example (optimized)

Note that in terms of the asymptotic approximation, the open-loop gain crosses the 0 dB axis

with a slope of −1, but then immediately thereafter falls off at a slope of −2. But since the

pole is very close to the crossover frequency, the gain in reality falls by 3 dB at this break

point (as compared to the asymptotic approximation). So the actual crossover occurs a little

earlier. The reason the phase is affected by almost 45° at the crossover frequency is that

phase starts changing a decade below where the pole really is.

It can therefore be shown that by trying to place the high-frequency pole exactly at the

crossover frequency, the crossover frequency itself shifts downward by almost exactly 20%. So

the corollary to that is — if we are starting a compensation network design in which we are

going to use the high-frequency pole in this manner, we should initially target a crossover

frequency about 20% higher than we actually desire (and get).

Note that engineers use various “tricks” to improve the response further. For example, they

may “spread” the two zeros symmetrically around the LC double pole (rather than

coinciding with it). One reason to put a zero (or two) slightly before the LC pole location is

that the LC pole can produce a very dramatic 180° phase shift, and this can sometimes lead

to conditional stability. So the zero absorbs some of that “abruptness” in a sense.
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Conditional stability is said to occur if the phase gets rather too close to the −180° danger

level at some frequency. Though oscillations do not normally occur at this point, simply

because the gain is high (crossover is not taking place at this location), under large-signal

disturbances, the gain of the converter can suddenly fall momentarily toward 0 dB, thus

increasing the chance of instability. For example, if there is a very large change in line

and load, the error amplifier output may “rail,” that is, reach a value close to its internal

supply rails. Its output transistors may then saturate, taking a comparatively long time to

recover and respond. So the gain would have effectively decreased suddenly, and it could

end up crossing the 0 dB axis at the same location where the phase angle happens to be

−180° — and that would meet the criterion for full-blown instability.

Input Ripple Rejection

Why are we interested in maximizing the open-loop gain T = GH anyway? Because it can be

shown that the effect of line and load variations on the output is decreased by virtually the

same factor ‘T.’

For example, looking at the earlier equation, we see that the line-to-output transfer function

for the buck is the same as its control-to-output transfer function, except that the VIN/VRAMP

factor is replaced by D. So for example, if VRAMP = 2.14 V, and D = 0.067 (as for 1 V

output from a 15 V input), then the control-to-output gain at low frequencies is

20 × log

(

VIN

VRAMP

)

= 20 × log

(

15

2.14

)

= 16.9 dB

and the line-to-output transfer gain at low frequencies is therefore

20 × log (D) = 20 × log (0.067) = −23.5 dB

The latter represents attenuation, since the response at the output is less than the disturbance

injected into the input. But both these are without feedback considered (or with the error

amplifier set to a gain of 1, and with no capacitors used anywhere in the compensation).

So when feedback is present (“loop closed”), it can be shown by control loop theory that

the line-to-output transfer function changes to

line-to-outputwithfeedback =
(

1

1 + T

)

× line-to-outputwithoutfeedback

where T = GH. Since T (the open-loop transfer function) at low frequencies is very large, so

T + 1 ≈ T. Further, since 20 × log (1/T) = −20 × log (T), we conclude that at low

frequencies, the additional attenuation provided when the loop is closed is equal to the
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open-loop gain. For example if the open-loop gain at 1 kHz is 20 dB, it attenuates a 1 kHz

line disturbance by an additional 20 dB — over and above the attenuation already present

without feedback considered.

Let’s conduct a more detailed analysis. Suppose we are interested in attenuating the 100 Hz

(low-frequency) ripple component of the input voltage in an off-line power supply to a very

small value. If our crossover frequency is 500 kHz, then by using the simple relationship

derived in Figure 7-6, we can find the open-loop gain at 100 Hz (here we are assuming we

carried out the recommended compensation scheme, which leaves us effectively with only a

pole-at-zero response in the open-loop gain). So the gain at 100 Hz is

Open-Loop-Gain100Hz =
fcross

100 Hz
= 500

Expressed in dB, this is

20 × log
(

Open-Loop-Gain100Hz

)

= 20 × log (500) = 54 dB

So the additional attenuation is 54 dB here. But we already had |20 × log (D)| = 23.5 dB

of attenuation. So by introducing feedback, the total attenuation of the 100 Hz input

ripple component has increased to 54 + 23.5 = 77.5 dB. This is equivalent to a factor

of 1077.5/20 = 7500. So if, for example, the low-frequency ripple component at the input

terminals was ±15 V, then the output will see only ±15/7500 = ±2 mV of disturbance.

Load Transients

Suppose we suddenly increase the load current of a converter from 4 A to 5 A. This is a

“step load” and is essentially a nonrepetitive stimulus. But by writing all the transfer

functions in terms of s rather than just as a function of jω, we have created the framework

for analyzing the response to such disturbances too. We will need to map the stimulus into

the s-plane with the help of the Laplace transform, multiply it by the appropriate transfer

function, and that will give us the response in the s-plane. We then apply the inverse

Laplace transform and get the response with respect to time. This was the procedure

symbolically indicated in Figure 7-3, and that is what we need to follow here too.

However, we will not perform the detailed analysis for arbitrary load transients here,

but simply provide the key equations required to do so.

The ‘output impedance’ of a converter is the change in its output voltage due to a (small)

change in the load current. With feedback not considered it is simply the parallel
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combination of R, L and C. So

Zout_withoutfeedback = R||1
/

Cs||L =
sL

1 + s
L

R
+ s2LC

where R is the load resistance, and L is the actual inductance L for a buck, but is L/(1 − D)2

for a boost and a buck-boost. We have taken the three components in parallel as indicated by

the symbol “||.”

With feedback considered, the output impedance now decreases as follows:

Zout_withfeedback =
1

1 + T
× Zout_withoutfeedback

Even without a detailed analysis (using Laplace transform), this should tell us by how much

the output voltage will eventually shift (settle down to), if we change the load current.

Type 1 and Type 2 Compensations

In Figure 7-18, we have also shown Type 1 and Type 2 compensation schemes (though with

no particular strategy in placing the poles and zeros). These are less powerful schemes than

Type 3. So whereas Type 3 gives us one pole-at-zero AND 2 poles AND 2 zeros, Type 2

gives us one pole-at-zero AND 1 pole AND 1 zero. Whereas Type 1 gives us ONLY a

pole-at-zero (simple integrator).

We know that we always need a pole-at-zero in the compensation, for achieving high dc

gain, good dc regulation, and low-frequency line rejection. So the −1 slope coming from the

pole-at-zero adds to the −2 slope from the double pole of the LC filter and this gives us a

−3 slope — that is if we don’t put in any more zeros and poles. But still we want to intersect

the 0 dB axis with a −1 overall slope. So that means we definitely need two (single-order)

zeros to force the slope to become −1.

Type 2 compensation can also be made to work, because though it provides only one zero,

we can use the zero from the ESR of the output capacitor (despite its relative unpredictability).

We remember, in Type 3 we canceled out the ESR zero completely, citing its relative

unpredictability. But now we can consider using it to our advantage, if that is indeed

possible. Of course, for the Type 2 scheme to work, the ESR zero must be located at a lower

frequency than the intended crossover frequency.
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Set both at
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pole

Set at ESR
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Set at ESR

zero

Set at fsw or

higher

Figure 7-18: Type 1, Type 2, and Type 3 Compensation Schemes (poles and

zeros arbitrarily placed and displayed)

Alternatively, we can easily use Type 2 compensation with current mode control, as explained

later.

Type 1 compensation provides only a pole-at-zero, and in fact can only work with current

mode control (that too with the ESR zero below crossover). Note that it is just a simple

integrator.
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Transconductance Op-amp Compensation

The final stages of the analysis of voltage mode controlled converters are reserved for the

transconductance op-amp. In Figure 7-13 we had presented its transfer function rather

generically. Now let us consider the details.

We can visualize this feedback stage as a product of three transfer functions, H1, H2, and H3

as shown in Figure 7-19. When we plot the separate terms out as in Figure 7-20, we see that

this looks superficially like Type 3 compensation — but it is not! Though it provides two

zeros and two poles (besides the inevitable pole-at-zero), we see a big difference —

especially in the behavior of H1 (the input side). The problem here is that the dc level of H1

is fixed by the resistive divider (now called Rf2 and Rf1). Its high-frequency value is also

fixed at 0 (think of the capacitor Cff conducting fully). So along the way, it transits by

means of one zero, followed by a pole. But the slope during this transition has to be +1 as

for any single-order (RC) combination. What all this means is that effectively, if we fix pole

V
R

E
F

VO

+
−

Rf2

Cff

Rf1 C1

R1

C2

Comp

H1(S)

H2(S) H3(S)

gm

H(s) = H1(s) × H2(s) × H3(s)

Zero at 1/(2π × R1 × C1 )

Pole at 1/(2π × R1 × C2)

Pole-at-zero crossover at 1/(2π × C1)
s ⋅ (C1)(1+ R1 ⋅ C2 ⋅ s)

1 + R1 ⋅ C1 ⋅ s

Rf1 × (Rf2 ⋅ Cff ⋅ s + 1)

(Rf1 + Rf2) ×
Rf1 ⋅ Rf2

Rf1 + Rf2

Cff ⋅ sRf2 ⋅

Cff ⋅ sRf2 +

H3(s) = Zout(s) = C2 parallel (C1 series R1)

= if C1>>C2

H2(s) = gm

H1(s) =

Dc and high-freq level (in dB) = 20 × log (gm)

=

1

1
Rf1 +

Rf1

Zero at 1/(2π × Rf2 × Cff)

Pole at 1/(2π × Rf2 || Rf1  ×  Cff)

(Rf1 || Rf2 is parallel combination)

Dc level (in dB) = 20 × log (Rf1/(Rf1 + Rf2))⋅ Cff ⋅ s + 1

Figure 7-19: “Full-blown’‘ Transconductance Operational Amplifier

Compensation
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Figure 7-20: The Intermediate Feedback Blocks of the Transconductance Op-amp

fp2 at some frequency, the location of the zero fz2 is automatically defined. There is no

flexibility in using this zero and pole pair. For example, if we try to fix both zeros of the

overall compensation network at the LC double-pole frequency, the pole fp2 will be literally

dragged along with fz2, and so the overall open-loop gain would finally fall at −2 slope

again, not at −1 as desired. Therefore, the zero of H1 can only be used if the associated pole

fp2 is at or beyond the crossover frequency. Our final strategy for placing the poles and zeros

is indicated in Figure 7-20.

It actually requires a great deal of mathematical manipulation to solve the simultaneous

equations and to come up with component values for a desired crossover frequency.

Therefore, the derivation is not presented here, but the steps are in accordance with the basic

math-in-the-log-plane tools presented in Figure 7-6. The final equations are presented below,

through a numerical example, similar to what we did for Type 3 compensation.

Note: The way we have separated the terms of the transconductance op-amp, the “pole-at-zero” (fp0_H3)

seems to be dependent only on C1 (no resistance term). However, we could have also “clubbed” the voltage

divider section H1 along with H3 (since these are simply cascaded blocks, in no particular order). Then the

“pole-at-zero” would have appeared differently (and also included a resistance term). However, whichever

way we proceed, the final result, that is, H, will remain unchanged. In other words, H1, H2, and H3 are just

intermediate mathematical constructs in calculating H (with no obvious physical meaning of their own

necessarily). That is why the actual pole-at-zero frequency of the entire feedback block is designated as fp0,

not fp0_H3.
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Example: Using a 300 kHz synchronous buck controller we wish to step down 25 V to 5 V.

The load resistor is 0.2 Ω (25 A). The ramp is 2.14 V from the datasheet of the part. The

selected inductor is 5 µH, and the output capacitor is 330 µF, with an ESR of 48 mΩ . The

transconductance of the error amplifier is gm = 0.3 (units for transconductance are “mhos,”

i.e. ohms spelled backwards). The reference voltage is 1 V.

The LC double pole occurs at

fLC =
1

2π ×
√

LC
=

1

2π ×
√

5 × 10−6 × 330 × 10−6
⇒ 3.918 kHz

We choose our target crossover frequency “fcross” as 50 kHz. We pick Rf2 = 4 kΩ and

Rf1 = 1 kΩ based on the voltage divider equation, the output voltage, and the reference

voltage. Then

Cff =
(

Rf1 + Rf2
)

2π × (Rf1 · Rf2) × fcross
⇒ 3.98 nF

The crossover of the overall feedback gain (H) occurs at a frequency “fp0” as indicated in

Figure 7-20, where

fp0 =
VRAMP ×

(

Rf1 + Rf2
)

(

2π
)2 × fLC × Rf22 × Cff 2 × VIN × Rf1

⇒ 10.9 kHz

So

C1 =
1

2π × fp0
×

Rf1

Rf1 + Rf2
× gm ⇒ 0.87 µF

R1 =
1

2π × fLC × C1
= 46.5 Ω

C2 = COUT ×
ESR

R1
⇒ 0.34 µF

We have presented the computed gain-phase plots in Figure 7-21. We see that we have an

adequate 40° of phase margin, and the crossover frequency is 40 kHz. Note that for visual

clarity we used a rather small output capacitance and a large ESR for this particular

application and power level. And that is why C1 is not very much larger than C2. But the

intention was to shift the ESR zero to less than the crossover frequency, just to demonstrate

the principle and be able to plot it out easily. However, the equations and above procedure

are valid for any output capacitance and ESR.
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Figure 7-21: Plotting the Results of the “Full-blown”

Transconductance Op-amp-based Compensation Example

Simpler Transconductance Op-amp Compensation

There is a practical difficulty involved in using the “full-blown” transconductance op-amp

compensation scheme discussed above — because the pole and zero from H1 are not

independent. They will even tend to coincide if say Rf2 is much smaller than Rf1 (i.e. if the

desired output voltage is almost identical to the reference voltage). In that case, the pole and

zero coming from H1 will cancel each other out completely. Therefore, we can’t proceed

anymore, because we were counting on the zero from H1 to change the open-loop gain

from −2, to −1, “just in time” before it crossed over.

But there is one other available zero that we can perhaps use — coming from H3.

Unfortunately, we have used that up already to cancel part of the LC double pole. (Note that

if we hadn’t done that, then along with the −1 slope imparted to it by the integrator section

(pole-at-zero), the open-loop gain would have had a slope of −3 after its LC double pole

location). Therefore to correct the open-loop gain slope from −2 to −1, we now must use

the only other available zero — the ESR zero, which we had actually canceled out

deliberately by a pole in the “full-blown” compensation scheme described previously. But if

we do that, we no longer need fp1, or C2. So we are left with the simple transconductance

stage shown in Figure 7-22. The equations for this, based on the new strategy, are presented

in the following example.

Example: Using a 300 kHz synchronous buck controller we wish to step down 25 V to 5 V.

The load resistor is 0.2 Ω (25 A). The ramp is 2.14 V from the datasheet of the part. The
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Figure 7-22: Plotting the Results for the Simpler

Transconductance Op-amp-based Compensation Example

selected inductor is 5 µH, and the output capacitor is 330 µF, with an ESR of 48 mΩ . The

transconductance of the error amplifier is gm = 0.3 (mhos), and the reference voltage is 1 V.

The LC double pole occurs at

fLC =
1

2π ×
√

LC
=

1

2π ×
√

50 × 10−6 × 150 × 10−6
⇒ 1.84 kHz

We choose our target crossover frequency “fcross” as 100 kHz.

The crossover of the feedback gain (H) occurs at a frequency fp0

fp0 =
VRAMP × fcross

2π × fLC × ESR × COUT × VIN
⇒ 105 kHz
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So

C1 =
1

2π × fp0
×

Rf1

Rf1 + Rf2
× gm ⇒ 2.32 µF

Note, if the divider is not present (i.e. VO = VREF), the gain of the stage Rf1/(Rf1 + Rf2)

above should be set equal to 1. Further,

R1 =
1

2π × fLC × C1
= 37.35 Ω

We have presented the computed gain-phase plots in Figure 7-22. We see we have a

generous 78° of phase margin and a crossover frequency of 100 kHz. Based on the logic

presented for the Type 3 compensation scheme (nonoptimized case, see section “optimizing

the feedback loop”), the phase margin in this case is also expected to be around 90°.

Here too, one way to reduce the phase lag (if so desired) is to reintroduce the pole fp1 from

H3 — by reintroducing C2 (as in Figure 7-19). So we can then set the position of this new

pole at the crossover frequency, for best effect. The value for C2 required for that is

C2 =
1

2π × R1 × fcross
⇒ 42.6 nF

Note that by reintroducing C2, the computed crossover again occurs slightly earlier (by

about 20%) — at around 80 kHz, instead of 100 kHz. The phase margin is now 36° (closer

to the optimal).

Also note that for this simpler compensation scheme to work, the ESR zero must lie between

the LC pole frequency and the selected crossover frequency.

As before, for a boost or buck-boost, the only change required in the preceding analysis is

L ⇒ L
/

(1 − D)2 (boost and buck-boost)

VIN

VRAMP
⇒

VIN

VRAMP × (1 − D)2
(boost and buck-boost)

However, we must also always ensure that the selected crossover frequency is at least an order

of magnitude below the RHP zero!!

Compensating with Current Mode Control

The plant transfer functions presented earlier were only for voltage mode control. In current

mode control, the ramp to the pulse width (duty cycle) modulator is derived from the
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inductor current. It can be shown that in the process, the inductor effectively goes “out of the

picture” and so there is no double LC pole anymore. So the compensation is supposedly

simpler, and the loop can be made much faster. But the actual mathematical modeling of

current mode control has proven extremely challenging — mainly because there are now two

feedback loops in action — the normal voltage feedback loop, and a current feedback loop.

Various researchers have come up with different approaches, but even as of now, they don’t

seem to agree with each other completely.

However everyone does seem to agree that current mode control alters the poles of the

system (as compared to voltage mode control), but the zeros are unchanged. So the boost and

the buck-boost still have the same RHP zero, as we discussed earlier. And care is still needed

to ensure that the RHP zero is at a much higher frequency than the chosen crossover

frequency.

As mentioned, in current mode control, the ramp to the PWM comparator is derived from the

inductor current. Actually, the most common way of producing the ramp is to simply sense

the forward drop across the mosfet (or of course by using an external sense resistor in series

with it). This small sensed voltage is then amplified by a current sense amplifier to get the

voltage ramp, which is then applied to the PWM comparator. At the other pin of the PWM

comparator, we have the output of the error amplifier (control voltage). Since the ramp itself

gets terminated at the exact moment when it reaches the control voltage level, in effect, we

end up regulating the peak of the inductor current ramp. That is why it is often said that a

converter with current mode control behaves like a current source.

The inductor/switch current ramp is obviously proportional to the voltage ramp at the PWM

comparator. So the voltages and currents can be converted into each other through the use of

the ‘transfer resistance’ V/I, as defined in Figure 7-23. Therefore we realize that we can look

at the overall effect either in terms of currents, or in terms of the voltages — as shown in

Figure 7-24. We will see that ‘slope compensation’ too (discussed below) can be expressed

either as a certain A/s or as V/s. These are equivalent ways of talking about the same thing,

and they are proportional to each other, through the transfer resistance RMAP.

One of the subtleties of current mode control is that (for all the topologies) we need to add a

small ramp to the comparator ramp. This is called slope compensation. Its purpose is to

prevent an odd artifact of current mode control called subharmonic instability. Subharmonic

instability usually shows up as alternate wide and narrow switching pulses. We also discover

that the transient response is severely degraded. A bench measurement of a converter that is

currently exhibiting this strange pulsing pattern will give us a Bode plot that does not

resemble anything we may have been expecting. For one, there is no way to know what the

phase margin is.

For subharmonic instability to occur, two conditions have to be met simultaneously — the

duty cycle should be close to or exceed 50%, and simultaneously, we should be in CCM
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Figure 7-23: How the “Transfer Resistance” Maps the

Current in the Switch, into a Voltage Sawtooth at the

Comparator Input

(continuous conduction mode). Note that the propensity to enter this state increases as the

duty cycle increases (input lowered). So we should always try to rule out this possibility at

VINMIN . We could certainly avoid this problem altogether, by choosing DCM (discontinuous

conduction mode). But otherwise, in CCM, slope compensation is the recognized sure-fix.

Though it is interesting to note that by applying slope compensation, we are in effect

blending a little voltage mode control with current mode control. In fact, it is equivalent to

taking the ramp generated from the switch/inductor current, and adding a small fixed voltage

ramp to it. Or we can do what is more common — modifying the control voltage as shown

in Figure 7-24.

If we take the Bode plot of any current mode controlled converter (one that has not yet

entered this wide-narrow-wide-narrow state), we will discover an unexplained peaking in the

gain plot, at exactly half the switching frequency. This is the “source” of subharmonic

instability. Because, though this point is much past the crossover frequency, it is potentially

dangerous because of the fact that if it peaks too much, it can end up intersecting the 0 dB

axis again — which we know is one of the prescriptions for full instability.

Subharmonic instability is nowadays being modeled as a pole at half the switching

frequency. Note that in any case we never consider setting the crossover frequency higher

than half the switching frequency. So in effect, this subharmonic pole will always occur at a
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Figure 7-24: Slope Compensation Can Be Expressed Either in Terms

of Amperes/Second or as Volts/Second, through the Use of the

Transfer Resistance
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frequency greater than the crossover frequency. However, we also realize that its effect on

the phase angle may start at a much lower frequency.

The original models for current mode control did not predict this half-switching-frequency

peaking (i.e. subharmonic instability). But it has been well known that we need to set a

minimum amount of slope compensation — the value of which depends on the slopes of the

up-ramp and down-ramp of the inductor current. But the criteria used for setting the precise

amount of slope compensation, have been slightly differing. Our approach, outlined later, is

based on more recent trends.

The subharmonic pole peaking is akin to the double-pole response of an LC filter. So it, too,

has a certain “Q”, which depends on the slopes of the inductor current, and the applied slope

compensation. If the applied slope compensation is too low, the Q will increase, unless we

increase the inductance (to decrease the slopes of the inductor current correspondingly).

In effect, this means we need a certain minimum inductance for a given slope compensation,

to remain stable. Alternatively, we need a minimum slope compensation for a given

inductance, to remain stable. However, slope compensation, the way it is commonly applied,

affects the peak current limit too, and that can affect the output power capability of the

converter. We have to be careful about that too. In general, we should check that we are

being able to meet the required output power, at both ends of the input voltage range.

So how much of slope compensation should we really apply? In the chapter on DC-DC

converter design, equations for the minimum inductance were provided. These were actually

based on ensuring that Q never exceeds a value of 2 — that value in turn being based on

various bench measurements and data, using typical dc-dc converters. A smaller value of Q

will certainly be more “safe”, but it will require a larger inductor. A large value of Q will

lead to subharmonic instability. Hence Q = 2 is normally a good compromise, but it is

prudent to confirm the resulting choice of inductor on the bench, on a case-by-case basis.

The design equations presented for the compensation network below, are based on the

simpler model from Middlebrook. But they give a good match with far more elaborate

models, provided we realize that

■ We need to ensure that the RHP zero is much higher than the crossover frequency.

■ The half-switching-frequency pole is also higher than the crossover frequency.

■ In addition, the half-switching-frequency pole is sufficiently “damped” — by

introducing the right amount of minimum inductance vis-à-vis the applied slope

compensation (or the appropriate amount of slope compensation, based on the desired

or optimum value of inductance — as for example for a current ripple ratio of 0.4).

Note that in our presentation, summarized graphically in Figure 7-25, we are even ignoring

some other poles from Middlebrook’s original model, on the grounds that they usually fall

well outside the crossover frequency, and therefore are of little practical interest.
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Figure 7-25: Simplified Plant Transfer Function for Current Mode Control

In our simplified model, we are thus left with only a single pole in the plant transfer function

for all the topologies. This pole comes from the output capacitor and the load resistor (the

“output pole”). When we combine it with the inevitable pole-at-zero (from the integrator

section of the op-amp), the overall (open-loop) gain will fall with a slope of –2 (after the

output pole location). Therefore, we need just one single-zero to cancel part of this slope out,

and finally get a −1 slope with which to cross over as desired. Further, this single zero can

either be deliberately introduced using Type 2 compensation (in which case we could use its

available pole to cancel out the ESR zero) — or we could simply rely on the naturally

occurring ESR zero. In the latter case, we would need to ensure that the ESR zero is at a

frequency lower than the crossover frequency. That could indirectly force us to move the

crossover frequency out to a higher frequency (but without getting too close to the other
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trouble spots mentioned above). And if we can do that, we may be able to use just a Type 1

compensation scheme — because now we don’t need even a single pole in our

compensation, other than the inevitable pole-at-zero.

The design equations and steps for the transconductance op-amp are as follows (see

Figure 7-26).

1. Choose a crossover frequency ‘fcross.’ Although we would like to typically target

one-third the switching frequency, we must manually confirm that this frequency is

significantly below the location of the RHP zero (the equations for the RHP zero

were presented earlier, and they still apply here).

2. We realize that, once again, while plotting the open-loop gain, the gain of the

integrator will shift vertically by the amount GO (dc gain of plant). Therefore, using

the simple rule in the lower half of Figure 7-6, we can find the required fp0 that will

VO

+
−

Rf2

Rf1 C1

R1

gm

C2

Attenuation ratio  ‘y’ =
VREF

V
R

E
F

VO

Note:
C1 >> C2

C1

1
fp0 = fp1= fz1=

Set for required
crossover of Open-

Loop Gain

Set at ESR zero of
Plant

Set at Output Pole of
Plant

Feedback Transfer

Function

Poles and Zeroes:

2π × R1 ⋅ C2

(1 + R1 ⋅ C1 ⋅ s)

2 × C1 × (1 + R1 ⋅ C2 ⋅ s)

y × gm

H(s) = y × gm ×

2π ×

1

2π × R1 ⋅ C1

1

Figure 7-26: Transconductance Op-amp for Current Mode Control
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lead to the desired crossover frequency (of the open-loop gain). So

fp0 =
fcross

A/
B

where the values of GO = A/B are presented in Figure 7-25.

3. Calculate C1 using

C1 =
y · gm

2π × fp0

where y is the ‘attenuation ratio’ in Figure 7-26.

4. Calculate R1 using

R1 =
1

2π × C1 × fP

where fP is the output pole of the plant, as given in Figure 7-25.

5. Calculate C2 using

C2 =
1

2π × R1 × fesr

where fesr is the location of the ESR zero, that is, 1/(2π × ESR × CO).

The design equations and steps for the conventional op-amp are as follows (see Figure 7-27).

1. Choose a crossover frequency ‘fcross.’ Although we would like to target one-third

the switching frequency if possible, we must manually confirm that this frequency is

significantly below the location of the RHP zero. The equations for the RHP zero

were presented earlier, and they still apply here.

2. We realize that once again, while plotting the open-loop gain, we will find that the

gain of the integrator will effectively shift vertically by the amount GO (dc gain of

plant). Therefore, using the simple rule in the lower half of Figure 7-6, we can find

the required fp0 that will produce the desired crossover frequency (of the open-loop

gain). So

fp0 =
fcross

A/
B

where the values of GO = A/B are presented in Figure 7-25.
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For consistency with

previous figures, there is no

C2 here
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+
−

C1
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VREF Note:
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fp0 =
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crossover of Open-

Loop Gain
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Plant
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2π × R1 ⋅ C1

(1 + R2 ⋅ C1 ⋅ s)

(R1 ⋅ C1 ⋅ s) × (1 + R2 ⋅ C3 ⋅ s)
H(s) =

1
fp1 =

2π × R2 ⋅ C3

1
fz1 =

2π × R2 ⋅ C1

1

Figure 7-27: Conventional Op-amp for Current Mode Control

3. Calculate C1 using

C1 =
1

2π × R1 × fp0

where R1 has been chosen while setting the divider.

4. Calculate R2 using

R2 =
1

2π × C1 × fP

where fP is the output pole of the plant, as given in Figure 7-25.
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5. Calculate C3 using

C3 =
1

2π× R2 × fesr

where fesr is the location of the ESR zero, that is, 1/(2π × ESR × CO).

The above design procedure is the same for all the topologies. We just have to use the

appropriate row of the table provided inside Figure 7-25. Note that for all the topologies, the

“L” used is now the actual inductance of the converter (not the “equivalent” inductance of

the canonical model).
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EMI from the Ground up — Maxwell to CISPR

Sooner or later, every power supply designer finds out the hard way that if anything has the

potential to cause a return to the drawing board at the very last moment, it is either a thermal

issue, a safety related issue, or a stubborn EMI (electromagnetic interference) problem.

Of these, the first does get resolved relatively easily — more copper, better heatsinking, and

hopefully more air. The safety issues also melt away, with a little prescience during the

design phase — and later by some heat shrink tubing, tie-wraps, liberally applied hot-melt

glue, RTV (room temperature vulcanizing — i.e. silicone glue), and so on. But we discover

that EMI turns out to be a veritable “balloon” — if we try to “push” in the emissions

spectrum on one side, it “bulges” out at the other. We manage to achieve compliance with

regulatory conducted emission limits, only to find it has been at the expense of the radiated

limits, or vice versa. And sadly, our trusted little bag of tricks (and that dusty Fair-Rite kit of

beads) may also sometimes mysteriously let us down. It’s then we realize rather acutely — if

we can’t comply, we can’t sell!

The stumbling block to a successful understanding of this very vital but misunderstood area

of power conversion is that some of the terminology and descriptions used by signal integrity

engineers to describe EMI have been bandied about a little too freely in power. Sure there

are great similarities, but the devil is in the details. Maybe that’s why all the EMI FAQs and

‘EMI for Dummies’ help-books just didn’t seem to help. This general feeling of helplessness

has ultimately translated into a popular perception that there is some black magic involved in

EMI. Actually, as we will see, all that is really needed is some high school physics, some

simple math, and a clear conceptual understanding for all things “power.”

That said, EMI is admittedly a challenging area, partly because a lot of uncharacterized

parasitics enter the stage, each vying for attention. So bench tweaking is not going to be

completely avoidable. But with a clear insight into EMI, any major redesign should never be

required. It is plain however, that for this to happen, the engineer just can’t afford to wait

until the penultimate moments of the project before he or she takes EMI seriously. It is

important to get in early, and get in close — with a clear insight into EMI as applied to

power conversion. The alternative is the high cost involved in waiting, redesigning, and also

days of fruitless and expensive test lab time.
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The Standards

The issues of safety and ‘electromagnetic compliance’ (EMC) are usually clubbed together in

most countries. The CE mark (i.e. European Conformity mark) is one such example. Another

is the CCC mark (China Compulsory Certification — required by the People’s Republic of

China, i.e. mainland China). Generally speaking, designated product categories must carry

such marks in their respective market regions, and are then assumed to comply with both the

applicable safety and EMC standards. In the United States, though, the issues of safety and

EMC are taken up separately. The “UL mark” (Underwriters Laboratory Inc.) indicates

compliance to product safety standards, whereas “FCC certification” (Federal

Communications Commission) reflects compliance with electromagnetic interference (EMI)

standards. But EMI is only one note in the gamut of EMC (see Figure 8-1). In the United

States, unlike Europe, the ‘susceptibility’ aspect of EMC has been left to the dictate of

market forces rather than to the force of law. In Japan, the situation is that though EMC

specifications exist, they are stated specifically only for IT (information technology)

equipment (or ‘ITE’). In addition, the decision to actually affix the relevant mark (called the

EMC

EME

CE

RE

EMS

CS

RS

EME = Electromagetic Emission
EMS = Electromagnetic Immunity/Susceptibility
CE = Conducted Emission
CS = Susceptibility to Conducted Emissions
RE = Radiated Emission
RS = Susceptibility to Radiated Emissions

CONDUCTION

RADIATION

CULPRIT VICTIM

(EMI)

Figure 8-1: The EMI/EMC “Tree” (emissions and

susceptibility)
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VCCI label, for Voluntary Control Council for Interference) is completely voluntary (as the

name itself suggests). But we must realize that all such EMI/EMC/Safety marks, whether

required by regional/national laws or not, are increasingly perceived by the market as an

indication of product quality. Thus, though in theory some of these may be voluntary, in

practice, marketing pressures may make them inevitable.

How deep should the power supply engineer really delve into the details of standards and

regulations? The road is undoubtedly tricky, because the standards themselves are in a state

of continuous evolution. And even though the underlying intent is the same, the various

international standards can appear quite diverse. Even where supposedly uniform standards

have been accepted, there may be national or regional ‘deviations.’ And even if,

hypothetically speaking, the standards were all identical (and there is a definite movement

toward that), the certification aspects are never likely to be identical in all countries. The

bottom line is that no relevant information that can be provided here, or elsewhere, will turn

out to be durable enough to withstand the scrutiny of time. So a timely chat with a

recognized test lab or consultant should, in any case, always be on a developmental

checklist. With that reassurance in mind, the engineer will probably best spend his or her

time mastering the engineering aspects of EMI/EMC, that being something about which that

test house can’t really provide detailed guidance.

But the engineer still needs to know how far he or she needs to go down the engineering

route to achieve necessary compliance — and hopefully, as easily and cost-effectively as

possible. The good news here is that, as mentioned, despite the present diversity in

regulations, there exists a clear and steady movement toward a set of universally accepted

(harmonized) standards. The EMI/EMC standards in all the countries and regions mentioned

previously, and in fact in most others around the world, are increasingly based on (if not

identical to) a well-known set of European standards. Note that, previously accepted norms

or standards that were recognizable by familiar prefixes — ‘VDE,’ ‘CISPR,’ ‘IEC,’ and

‘ISO,’ have all been steadily converging into a single set of pan-European norms prefixed

‘EN.’ A typical power supply engineer is therefore almost always concerned about just

achieving compliance with the European EMI standard called “EN 550022” (meant for IT

equipment). This standard was originally (and in fact popularly even now) known as

CISPR 22. It is the standard we too will be largely focusing on. The corresponding U.S.

standard is “FCC Part 15.” Despite some differences, the FCC accepts testing to CISPR 22

standards. In fact in 2002, the FCC harmonized Part 15 completely to CISPR 22, laying out

a transition period for manufacturers to eventually comply.

As an example of how other countries tend to follow the lead set by Europe and the

United States in these matters, take Canada for example. The regulatory Canadian

body having jurisdiction over EMI is called ‘Industry Canada.’ However, its technical

requirements are essentially equivalent to those of the FCC. Therefore, if FCC approval

327



Chapter 8

has been obtained (either by meeting Part 15 of the FCC rules or CISPR 22), the equipment

need not be retested.

Maxwell to EMI

Light, radio-frequency waves, infrared radiation, microwaves, and so on are all

electromagnetic waves (see Figure 8-2). For all these, the basic relationship connecting their

wavelength λ (in m), their frequency f (in Hz), and the speed of the wave u in the medium of

propagation (in m/s), is given by λ = u/f . For a wave propagating in free space (or air), the

speed u is called ‘c’ and has the value 3 × 108 m/s. An easy form to remember is

λmeters =
300

fMHz

The ratio c/u is always greater than 1, and is called the index of refraction of the material

(through which the wave travels at the speed u). Note that though c is popularly called the

velocity of light, it is the same for any electromagnetic wave. It can be shown that

c = 1/
√

(µoεo), where µo is the permeability of free space (vacuum or air) and εo is the

permittivity of free space. µo and εo are fundamental constants, since they represent the

properties of our universe.

Figure 8-2: The Electromagnetic Environment
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It is well-known from our physics class that if a piece of electronic equipment has a

dimension close to λ/4, it can end up radiating (or receiving) the corresponding frequency

very effectively. This is the principle behind a radio antenna. Note that although a TV

antenna is symmetrical around the point where it connects to the cable and has a total

physical length of λ/2, it actually has only λ/4 (effective receiving length) on each side.

But what if an antenna is much shorter than the ‘optimum’ of λ/4? Antennas are actually

quite effective down to less than λ/10 — which explains why we can pick up almost all the

FM stations well enough from a (fixed length) whip antenna on our car. But what if the

antenna is much longer than λ/4? In that case, we can consider the antenna as, in effect,

being clamped at λ/4 — the remaining length basically superfluous. Therefore, we should

never judge an antenna by its length!

When we plug a piece of equipment to the ac power lines, its input cable (ac line cord) can

combine with the wiring of the building to form an antenna. This can produce strong radiated

interference that can affect the operation of other devices in the vicinity. In addition to the

radiation process, the emissions can also just conduct through the mains wiring, and thereby

directly affect other similarly plugged-in devices. Therefore, there are distinct radiated

emission limits and conducted emission limits specified within all EMI regulatory standards.

We have realized that it would be a mistake to jump to the conclusion that a certain cable

length or PCB (printed circuit board) trace is either “too short” or “too long,” and therefore

not contributing to a certain stubborn EMI peak we may be observing. Further, we should

keep in mind that any antenna is as good a receiver, as it is a transmitter. So we could have

a situation where radiation is originally generated by the output cables, but then picked up

by the input cables (by radiation), from which point onward it gets conducted into the wiring

of the building (or/and radiated once again). In fact, we will find that the input and output

cables are often responsible for a lot of high-frequency EMI noise, both in the radiated

spectrum and the conducted spectrum.

Concerns about cable length take on a whole new meaning when they are coupled with

circuits containing modern high-speed digital chips. Such chips are themselves powerful

EMI emitters, but with the help of inadvertent antennas like the surrounding PCB traces and

cables, and also with the inadvertent help of various board, component, and enclosure

parasitics, they can put on quite a show! Courtesy Maxwell!

Maxwell showed that whenever an electric field (the ‘E-field’ — dimensions V/m) varies

with time, it produces a magnetic field (the ‘H-field’ — dimensions A/m), and vice versa.

In fact, the better-known Faraday’s law of induction (without which no transformer in the

world would exist) is actually the first of the set of four Maxwell’s unifying equations. So

we learn that the E- and H-fields appear simultaneously, the moment the original magnetic or

electric source has a time variance. At some distance away, these fields combine to form an

electromagnetic wave — that propagates out into space (at the speed of light).
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We know that any capacitor that is charged up has an associated E-field residing in the space

between the plates, and thus a “resident energy” term of (1/2) × CV2. We certainly don’t

expect to have any associated H-field, simply because there is no current flowing once

everything is “steady” (ignoring leakage current). However during the capacitor charging

process (as the capacitor voltage is rising from zero to its final value), there is a charging

current passing through the capacitor. So during that time, both E- and H-fields are

generated. Applying the same analogy to a coil passing a steady dc current — it has an

associated H-field, with a resident energy of (1/2)LI2 in ‘steady state’ — but no E-field.

Note that in power supplies, there are various subtle connotations to the word ‘steady state.’

But in the sense used above, a power supply is really not “steady” — except perhaps in its

steady repetitiveness. In other words, in every switching cycle, the inductor current is

actually ramping up and then down, between two extremes. So this pattern is certainly

steady, but the currents and voltages aren’t, since they are constantly changing. So, as the

current undulates, there is a constantly changing H-field and an accompanying E-field.

Together, these two fields constitute an electromagnetic field in the vicinity of the coil

(forming an electromagnetic wave only a certain distance away). That is why, in switching

power converters, EMI has become such a major concern. For example, rod inductors

(often used in post-LC filters at the output) are nicknamed ‘EMI cannons’ by some

engineers. They spew energy all around, and special precautions are needed to prevent this

energy from conducting or radiating over to greater distances.

We can ask — what really makes modern digital chips and modern switching converters

worse from the standpoint of EMI? That is because of the escalating frequencies involved.

Smaller and smaller PCB traces and lead lengths can become effective antenna at very high

frequencies. So nowadays we are getting painfully aware of the fact that as the frequency

increases, so can the intensity of these fields (at a certain distance). Note however, that when

talking about switching power converters, the “frequency” that we are talking about is not

necessarily the basic PWM switching frequency (which is only of the order of say

100–500 kHz — i.e. a time period of a few microseconds). We are referring more to the

exceedingly fast transition times — which are of the order of 10 to 100 ns only. The Fourier

analysis of such a switching waveform will reveal a large amount of very high-frequency

content, associated with the actual switch transitions. These can cause far more EMI.

Maxwell’s equations are usually written out in a way that doesn’t fully reveal the following

fact very clearly — it turns out that it really does not matter whether we are talking about

waveforms of switched voltages (time varying E-fields) or of switched currents (time

varying H-fields) — eventually their respective equations are complementary and are thus

very similar. Further, these two fields become proportional to each other at a large distance

away, constituting an electromagnetic wave, one that can travel great distances on its own.

It also follows that if we can ‘kill’ one component of an electromagnetic wave (either its

E-field or H-field), we will manage to kill the entire wave.
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If we consider the ratio of the amplitudes of E and H of an electromagnetic wave, we will

see that though these fields decrease as the distance from the source increases, their ratio

remains constant at any point sufficiently far away. The proportionality constant depends on

the material of propagation, being equal to E/H =
√

(µ/ε), where µ is the permeability of

the material (of propagation), and ε its permittivity. Note that ε is the electrical analog of the

magnetic parameter µ that describes the extent to which a given material allows itself to

become magnetized by an external magnetic field. We also note that the units of E are V/m,

and H is A/m. Therefore the ratio E/H has the units V/A which is simply a resistance (ohms).

In air or vacuum (free space), E/H =
√

(µo/εo) = 120 · π = 377 ohms. The subscript ‘o,’

used for the permeability and permittivity above, now refers to free space.

If the fields are very close to the source (as compared to the wavelength of their associated

EMI wave), they do not follow the simple rules described above. See Figure 8-3 for

example, for the possible range of impedances for these so-called ‘near-fields.’ (Near-fields

are defined as those at distances less than λ/6 from the source.) It also becomes clear why it

is often colloquially said that “E-fields have high impedance,” whereas “magnetic fields have

low impedance.” A small circular current loop of trace on a PCB produces magnetic fields,

but a strip of copper or metal with a swinging voltage on it (e.g. a heatsink) forms a source

of electric fields. Of course, once there is time-variance involved, the H-field leads to an

associated E-field, and an E-field produces H-fields. However, only at a great distance
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Figure 8-3: Impedances in Free Space
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away do the E- and H-fields become proportional to each other and thus form an

electromagnetic wave.

As a real-life example of how apparently small-sized circuits can cause major EMI problems,

consider a circular current loop (diameter ≪ wavelength) enclosing an area “A” (in m2)

carrying an ac current of amplitude “I” (in amperes) and of frequency “f” (in Hz). Its field

pattern can be broken up into a near-field (x < λ/2π) and a far-field (x > λ/2π). The

far-field (the electromagnetic wave) at a distance x from the center of the coil, when

calculated in the plane containing the loop, can be shown to be

H =
π · I · A

λ2 · x
A/m

E = 377 ·
π · I · A

λ2 · x
µV/m

where E/H = 377 Ω is called the wave impedance in free space, or the intrinsic impedance

of free space. We can see that as wavelength decreases (frequency increases), the field

strength increases. Note that (for far-fields) both E and H vary as the reciprocal of the

distance. But if we get closer and closer to an electric or magnetic source, we could

ultimately find field components varying as 1/x, 1/x2, and 1/x3. But more importantly, we

will also see that the dependence on distance of the E-field is no longer the same as that of

the H-field. Therefore their ratio too now keeps changing as the distance decreases. They are

therefore said to constitute an (local) electromagnetic field (not a wave).

In standard radiated EMI tests, the specified measurement range of frequencies is 30 MHz

and above (usually up to 1 GHz). An antenna is placed to sense the fields at a specified

distance from the device. FCC specifies this distance to be 3 m, whereas CISPR requires

10 m. Let us see why there is actually no conflict here (usually).

The distance from the source that corresponds to the boundary between what is considered a

near-field and what is a far-field is given by

λ

2π
=

c

f
×

1

2π
=

3 × 108

30 × 106 × 2π
=

10

2π
= 1.6 m

Note that λ/2π = 0.16λ, as was used in Figure 8-3. A simpler way to remember the above

relationship is as follows — if we call the boundary between the near- and far-field ‘X’

(expressed in meters), the corresponding frequency (in MHz) is

fMHz =
48

Xmeters

So a measurement distance of 3 m can be considered a “near-field” distance only for

frequencies of 48/3 = 16 MHz and below. But that is well below the range of frequencies
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of interest for a typical radiated EMI test (30 MHz to 1 GHz). Therefore we can conclude

that over the specified test frequency range, we will only see far-fields. Coming to CISPR,

only frequencies lower than 4.8 MHz can present near-fields at the specified distance of

10 m. That is even further below the range of concern in a radiated test. Therefore, knowing

that the measured field is a far-field for either of the two standards, we can then deduce that

the radiated emissions level must be varying with distance as 1/x. That makes it finally

possible to compare apples to apples. Therefore, the 3 m FCC reading can be easily scaled to

a 10 m CISPR reading (and vice versa). The reading at 3 m (FCC) as compared to a reading

at 10 m (CISPR) will differ by

20 × log

(

E3 m

E10 m

)

= 20 × log

(

10

3

)

= 10.5 dB

So if we add 10.5 dB to any radiation spectrum measured as per CISPR, we get the equivalent

FCC spectrum. This variation is referred to in the standards as an “inverse linear distance

extrapolation factor of 20 dB per decade.” Note that we are talking of a decade of distance,

not of frequency or amplitude! And 20 dB per decade of distance is simply another way of

stating a 1/x dependency (1/x2 would be 40 dB/decade). So for example, a 1/x (far) field at

30 m would be related to the field at 3 m by

20 × log

(

E3 m

E30 m

)

= 20 × log

(

30

3

)

= 20 dB

CISPR 22 also says that if the ambient noise levels are too high at 10 m, we can do the

measurement at 3 m, and basically add 10.5 dB uniformly to the 10 m limits.

We also note that radiated tests usually only bother to measure the E-field — since the

H-field is then automatically known, being proportional to the E-field. Of course, the

near-field and far-field definitions assume a point source. Therefore, especially in the case of

the 3 m test, some further validation to prove that we really do have only far-fields may

become necessary.

Susceptibility/Immunity

Looking at Figure 8-1 again, we realize that it can also happen that when interference from

the culprit does affect the operation of a device in the vicinity (the victim), it may simply be

because the victim device is overly sensitive to EMI. Therefore to assure a prospective buyer

that his equipment or device is not going to malfunction whenever someone in the adjacent

building just turns on an electric shaver or vacuum cleaner, for example, governments

recommend (as in the United States) or mandate (as in the European Union) that a certain
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tolerance to incoming EMI be built into the device — or at least be specified clearly for the

customer to know beforehand. Now, since all rules must apply equally to all equipment big

or small, including the culprit itself in this case, it follows that any equipment should not emit

too much EMI or be too susceptible to it. These issues are thus two sides of the same coin,

and are therefore considered central to the concept of electromagnetic compatibility (EMC).

Electromagnetic compatibility (EMC) is therefore defined as the ability of equipment or

systems to share the electromagnetic environment (much like we share our freeways).

Devices should operate satisfactorily, without either inducing (emitting) or experiencing

interference from others. Note that the sensitivity of a device to electromagnetic fields is

alternatively described as its immunity rather than its susceptibility.

Recognizing that the local environment plays a role in defining the amount of received

interference and its acceptability, EMI limits are split into two basic application categories:

■ Class A, corresponding to commercial/industrial equipment/environment

■ Class B, corresponding to domestic or residential equipment

Clearly, Class B limits will be more restrictive. In fact, these are roughly about 10 dB lower

than Class A limits. That is a ratio of about 1:3 in terms of the actual amplitudes of the

emission levels.

Like Class A and Class B emission limits, there are also different levels of immunity too.

The manufacturer usually specifies the level of tolerance his or her equipment is designed to

meet. Based on certain specified test disturbance signals, the generic levels of susceptibility/

immunity are:

■ Type A: Performance during the test does not fall below a level set by the

manufacturer (usually the normal operating level of performance).

■ Type B: Though performance degradation is possible during the test, normal

performance returns automatically after the test ceases, and with no loss of stored

data or any change in the operational characteristics.

■ Type C: Restoration of normal performance after the test requires operator

intervention (not skilled personnel) and the use of normally accessible controls (like

a reset toggle switch on the outside).

■ Type D: Nonrecovering failure (possible permanent damage). Includes anything that

does not fall within the three types of immunity levels listed above.

Note: There are some situations where the interpretation of the law may not be very clear-cut. We may

therefore also get as many opinions as the number of consultants we talk to! For example what if the

proposed equipment is meant for an industrial installation, but the same electric utility lines are providing

power to a nearby residential area? Should we comply with Class A or Class B? Generally speaking, in such
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cases, to avoid last minute delays and a possible redesign, we should err on the side of caution. In this case

that means we should design to Class B limits at the very outset.

Some Cost-related Rules-of-thumb

A brief look at possible costs:

■ The FCC spectrum for digital equipment (currently) begins at 450 kHz, while the

equivalent CISPR/EN regulations start at 150 kHz. So FCC compliance can be

achieved with a relatively small and inexpensive filter.

■ CISPR/EN Class A compliance often requires a filter with at least twice the volume

of the FCC-level unit. This filter can therefore be up to 50% more expensive.

■ CISPR/EN Class B compliance can require a filter with three to ten times the volume

of the FCC unit, and could cost up to 4 times more.

Note: CISPR limits apply to line voltages of 230 VAC, whereas FCC limits are tested at United States line

voltage (115 VAC). For a given output power, the input operating current is higher if the input voltage is

less. Therefore, in any equipment designed to operate at United States line voltages, thicker copper is

required in the filter chokes, and that is somewhat of a cost adder.

EMI for Subassemblies

EMC is generally considered a system-level concern, since from the legal perspective,

it applies only to the end-equipment. So a component power supply (also called an ‘OEM’

power supply or a ‘subassembly,’ e.g. the one inside our desktop computer) does not usually

have to meet any EMI/EMC standard per se, unlike a stand-alone power supply. So the

ultimate EMC responsibility rests with the system manufacturer. However, take the case of a

component off-line power supply (a front-end converter) for example. Here, a major

component of the EMI at the input of the system will clearly be coming from the power

supply. So it certainly won’t help if the power supply itself is producing more EMI than the

limits that would apply to the overall system. We should also remember that when the power

supply is integrated with the equipment, there are always some hard-to-predict interactions

between the power supply and the rest of the system — through the connectors, wiring,

chassis, grounding, and so on. So the final EMI is not necessarily just the arithmetic sum

(in dB) of the different subassemblies. Keeping this in mind, the system manufacturer would

most likely call out for a front-end converter to maintain its EMI to less than 6 to 10 dB

below the legal limits. That would usually leave enough headroom for the rest of his

circuitry, and also for unexpected interactions. In addition, certification labs themselves may

require the submitted prototypes be at least 2 to 3 dB below certification limits — so as to

leave a margin for variations in subsequent production. Summing all this up — the practical
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resulting situation for front-end OEM converters is simply this — yes, they don’t need to

comply with the legal EMI limits, in fact they need to be much better!

What about dc-dc converters that happen to be positioned deep inside the equipment? Again,

there are no legally applicable EMI/EMC standards for these. Further, since they are likely to

be preceded by various circuits and filters, surge suppressors, fuses, capacitors, inrush

limiters, and so on (e.g. in the front-end power supply), there is usually an adequate (and

fortuitous) EMI barrier already present, that prevents noise from the dc-dc converter from

getting on to the ac mains lines via conduction. So, assuming an effective EMI radiation

shield is also present (e.g. the grounded metal enclosure), radiated interference may also not

be of great concern. Therefore typically, for low-power on-board dc-dc converters, no

dedicated input filter stages may be required. However, if such a filter becomes necessary,

it can usually just be a simple single-stage LC circuit — possibly even using a small ferrite

bead inductor for the L of the filter. And sometimes, just one such filter stage may be good

enough to service several paralleled converters.

Nowadays, manufacturers of dc-dc converter modules are often going through the trouble of

profiling the EMI spectrum present at the (unfiltered) inputs of their products. The purpose is

that, whether it is legally required or not, the information will certainly come in handy to the

system designer when he or she makes EMI-related decisions. But often, even the outputs of

modules are being EMI-profiled nowadays. The question arises — why do we even need to

test the outputs (for EMI)? In fact, old-school power supply designers are somehow

reflexively conditioned into accepting the concept of noise at the input cables, since they

visualize the input rails as being rather coarsely regulated, and thus with lots of ripple. They

also tend to think that the output voltage rails are relatively ‘smooth’ since they carry

regulated “dc,” and can therefore be considered “quiet.” But in reality, even the outputs can

send forth significant amounts of high-frequency noise, which can often turn out to be even

more stubborn than the relatively lower frequency EMI components present at the input.

Further, like the input, the output rails from the module or power supply may also be looking

into long cable runs (as in telecom applications and distributed power networks). This we

know will create a wide-band antenna for EMI. And, as mentioned earlier, the output

radiation can be picked up by the input cables, aggravating the problem at the input too.

CISPR 22 for Telecom Ports — Proposed Changes

There is an ongoing debate about extending CISPR 22 to include mandatory full testing on

telecom ports. Telecommunication ports are defined as those “which are intended to be

connected to telecommunications networks (e.g. public-switched telecommunications

networks, integrated services digital networks), local-area networks (e.g. Ethernet, Token

Ring), and similar networks.” There is also a possibility that other product standards will

336



EMI from the Ground up — Maxwell to CISPR

also start referencing these tests for signal lines in general. The new regulations were due to

come into effect in 2001, then again in 2003, but have been successively delayed.

One stumbling block has been that the contemplated test would require a special “ISN”

(Impedance Stabilizing Network) — which was apparently in short supply. Note that a more

readily available ISN, called the ‘LISN’ (Line Impedance Stabilizing Network), is commonly

used to test the inputs of an off-line power supply. It works by placing an impedance of 50 Ω

between each input line and earth ground — so as to closely simulate typical mains wiring

impedances. But the proposed telecom ISN would require the impedance to be raised to

150 Ω — that figure being more representative of the actual impedances occurring on typical

data networks.

It is increasingly clear that eventually, the law is going to place significant additional EMI

requirements on all on-board power converters and any power supply, off-line or otherwise,

working inside telecom equipment. Therefore, in the not so unforeseeable future, we could

soon all be routinely testing the outputs of every power supply in much the same manner as

we test their inputs today. In fact even as of now, many of the big telecom equipment

manufacturers, of their own volition, routinely comply with CISPR 22 limits on both the

inputs and outputs of their telecom power supplies. Of course, instead of the special

proposed ISN, they have just gone ahead and used the more readily available input LISN to

test the outputs too.
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C H A P T E R 9

Measurements and Limits of Conducted EMI

Here we take up the concepts of ‘common mode’ and ‘differential mode’ noise. Also,

regulatory conducted emission limits and related measuring techniques are discussed.

Differential Mode and Common Mode Noise

Initially, we are going to stick to more conventional descriptions of these parameters. But

gradually, we will start discussing certain nuances/differences that can arise in applying the

concepts to the area of power conversion.

Conducted emissions fall into two basic categories:

■ Differential mode (DM), also called symmetric mode or normal mode

■ Common mode (CM), also called asymmetric mode or ground leakage mode.

Looking at Figure 9-1, ‘L’ stands for Live (or “Line” or “Phase”), ‘N’ for Neutral, and ‘E’ is

the “Safety Ground” or simply, ‘earth.’ ‘EUT’ stands for Equipment Under Test. Note that

the earth is shown represented by the IEC symbol for Protective Earth (ground with a circle

around it) and is occasionally labeled ‘PE’ in literature. The DM noise generator is across the

L and N pair. It tries to push/pull a current Idm through these two wires. No current flows

through the earth connection on account of this noise source.

Note: There is nothing special about the DM noise current direction indicated in Figure 9-1. It can well be

the other way around — that is, going in through either L or N, and coming out of the other. In off-line

power supplies, we will see that in fact, the direction reverses every ac half-cycle.

Note: The designer may realize that the basic ac input operating current of the power supply is also

differential in that sense — since it flows in through one of the L or N wires and leaves by the other.

However, the Idm shown in Figure 9-1 does not include this component. That is because the operating

current, though differential, is firstly not considered to be “noise.” Further, its frequency is low (twice the

line frequency — 100 or 120 Hz, thus being virtually dc). Even its harmonics are well below the range of

standard conducted EMI limit curves (150 kHz to 30 MHz). However, it must not be forgotten that the

operating current will dc-bias the noise filter choke, and can thereby adversely affect the performance of any

EMI filter (and also of the current probes being used to gather data). So, though we can ignore the ac (line)

component in that sense, it still has an indirect effect on the high-frequency input filter.

In Figure 9-1, the CM noise source is shown connected at one end to earth. On the other

side, it goes through equal impedances to each of the L and N lines. It will therefore also
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Figure 9-1: Differential and Common Mode Noise

drive equal noise currents into the L and N wires — and in the same direction. However,

note that that assumes equal line impedances too. We realize that if the impedances are

unbalanced, we will get an “asymmetrical common mode” current distribution (in the L and

N wires). And that is, in fact, a common scenario in actual power supplies. Also note that this

“asymmetrical common mode” is equivalent to a mixture of true-CM mixed with some DM

(we will demonstrate that a little later).

Note: Since CM noise is itself often called “asymmetric,” it is preferable to call this type of operating

mode “non-symmetric” rather than “asymmetric.”

Engineers often instinctively tend to disregard common mode noise present on the output of

their converters. So a typical output noise and ripple measurement is always deliberately

differential in nature — we spend a long time trying to get the oscilloscope probe positioned

correctly on the output terminals (with minimum length of probe ground-wire), simply to

avoid picking up common mode noise. But suppose the converter is providing power to an

actual subsystem (not a resistive “dummy load”). Looking into the input of this subsystem,

we will rarely (if ever) see equal (balanced) impedances (i.e. from each of its input terminals

to the earth ground). So what happens is that any “common mode” noise existing previously

on the output rails of the converter becomes a differential input voltage ripple (of high-

frequency) for the subsystem. In other words, common mode noise gets converted into

differential mode noise, if the line impedances are unequal. Therefore, it is no surprise that if

an unbalanced filter (e.g. a choke present in only one of the two lines) is present at the input

of the subsystem, it will only make matters worse. And further, no amount of CMRR

(common mode rejection ratio) in the subsystem will help either. True, the subsystem will

usually contain a front-end line-to-line input capacitor that will help decouple some of this

incoming DM noise. But eventually, the subsystem can start misbehaving. Therefore,

reducing common mode noise at the point of creation is always the highest priority.

Thereafter, equalizing the line impedances becomes important. The latter can often be
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achieved by placing balanced filters at the input of the subsystem (e.g. with two inductors,

one on each input line).

Note also that since by the very nature of their creation, common mode currents usually have

a much higher high-frequency content than differential mode currents, they also have the

capacity to cause severe radiation (besides also causing inductive and capacitive coupling to

nearby components and circuits). In fact, it is often said that the rule-of-thumb is that a mere

5 µA of common mode current in a 1 m length of wire can cause FCC Class B radiation limits

to be violated. For FCC Class A limits this number goes up to 15 µA. Note also that the

shortest standard ac power cord is 1 m in length.

To avoid confusion, we should note that the net common mode current going through the

Earth is called “Icm” in our case (Icm/2 in each line). However, in related literature, this is

often called “2Icm” (Icm in each line).

Note: There is nothing special about showing the CM noise current in Figure 9-1 as coming out of the

equipment (through both the L and N wires). It could well be in the reverse direction. And like DM noise,

it too could be sloshing back and forth, depending on what part of the incoming ac half-cycle we are on,

at a given moment.

Note: We will see that in an actual power supply, differential mode noise is initiated by a swinging

(pulsating) current — but the DM noise generator is itself closer to a voltage source. On the other hand,

current mode noise is initiated by a swinging voltage, but the CM noise generator itself behaves more like

a current source. That is actually what makes common mode noise so much more “stubborn” — like any

current source, it demands a path to flow through. And since its path can include the chassis, the enclosure

can itself become a large high-frequency antenna.

Let us now do some simple math to split the measured “non-symmetric” currents in the

L and N lines into true-CM and DM components. To avoid algebraic errors, we first establish

a convention for what is a ‘positive direction’ for the current flow. Let us assume that in

Figure 9-1, the direction from right to left is a positive direction, and left to right is negative.

We also keep in mind that a current ‘I’ flowing in one direction on any wire is equivalent to

‘–I’ in the other direction (on the same wire).

Suppose we measure 2 µA going from right to left in one wire (say, the L wire). Then we

measure 5 µA going from left to right in the other wire (N). We want to estimate the CM and

DM components from these two measurements only.

We have by definition (from Figure 9-1)

IL =
Icm

2
+ Idm = 2 µA

IN =
Icm

2
− Idm = −5 µA
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Solving these simultaneous equations

Icm = −3 µA

Idm = 3.5 µA

This means we have a current of 3 µA flowing from right to left in E (common mode

component). And we have 3.5 µA (differential mode component) flowing from right to left

in L, and left to right in N (differential mode component).

Suppose we measure a current of 2 µA flowing from right to left in the L wire, and no current

in the N wire. Estimate the CM and DM components from these two measurements.

We similarly get

IL =
Icm

2
+ Idm = 2 µA

IN =
Icm

2
− Idm = 0 µA

Solving,

Icm = 2 µA

Idm = 1 µA

So a non-symmetric mode can be considered part asymmetric (CM) and part symmetric (DM).

How Conducted EMI Is Measured

For measuring EMI, we need to use an ISN (‘Impedance Stabilization Network’). In off-line

power supplies, this becomes a LISN (Line Impedance Stabilization Network) — also called

an AMN (Artificial Mains Network). See Figure 9-2 for a simplified schematic. Note that the

LISN, as recommended for CISPR-22 compliance, is detailed in CISPR 16.

The purpose of the LISN is multifold:

■ It is a source of clean ac power to the power supply.

■ It provides data to the measurement receiver/spectrum analyzer.

■ It provides a stable, balanced impedance (as seen by the noise signals emanating

from the power supply).

■ Most importantly, it makes the measurements repeatable anywhere in the world.
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Figure 9-2: Simplified Schematic of LISN

Note that from the viewpoint of the noise generators in the power supply, it is the LISN that

forms their load.

Let us assume that the values of L and C used in the LISN are chosen so that the following

statements hold true, unequivocally:

■ The inductance L is low enough not to impede (ac) line current (50/60 Hz) — but

high enough to be considered ‘open’ over the frequency range of interest

(150 kHz to 30 MHz).

■ The capacitance C is low enough not to pass the ac (line) voltage — but high enough

to appear as a ‘short’ over the frequency range of interest.

Note that Figure 9-2 doesn’t really represent the LISN per se, but is really the equivalent

schematic required for calculating the level of noise picked up by the receiver. So in fact,

the impedance of the cable + receiver has already been factored in — into the values of the

components shown (namely the 50 Ω resistors). We know that a typical coaxial cable going

to a measuring instrument (analyzer/receiver or oscilloscope etc.) presents a 50 Ω impedance

to a high-frequency signal (because of transmission line effects). So when the receiver is

measuring the noise, say between L and E, the LISN actually uses a relay/switch to place a

real resistor of 50 Ω across the opposite pair, that is, between N and E. So in that case, the

“50 Ω” shown across L-E is in reality just the impedance of the cable going to the receiver.

In this way, as we toggle the switch to measure either VL or VN, the lines are kept balanced at

all times. Note that the choice of 50 Ω also simulates the impedance of typical mains wiring

to high-frequency signals. But in any case, the procedure makes the measurement virtually

“blind” to the actual impedance of the mains wiring — making it repeatable in any location.
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To know what the measured voltages VL and VN are, we now look at Figure 9-3. The

voltage due to the common mode component is 25 Ω multiplied by the current flowing in the

earth connection (i.e. 50 Ω times the current in each leg). The voltage due to the differential

mode component is 100 Ω times the differential mode current. Therefore the LISN provides

the following load impedances to the noise generators (in the absence of any input filter)

■ The CM load impedance is 25 Ω.

■ The DM load impedance is 100 Ω.

As we flick the switch on the front panel of the LISN, we will measure the following noise

voltages:

VL = 25 × Icm + 50 × Idm

or

VN = 25 × Icm − 50 × Idm

Both the VL scan and the VN scan obviously need to comply individually with the limits.

But how different can the VL and VN scans be? In fact, the above two equations have

inspired a rather misleading statement often found in related literature — “if the noise

emission is predominantly DM, the VL and VN scans will look almost the same. The scans

also look identical if the noise is predominantly CM. And if the VL and VN scans look very

different, that implies that both CM and DM emissions are present.” However, in the case of

an off-line power supply, this statement is clearly not true. Because, that would imply that

somehow the emissions on the L and N lines are different. However, we know that in any

typical off-line power supply (with an input bridge rectifier), the L and N lines are
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essentially symmetrical — both from the viewpoint of the operating current and therefore the

noise spectrum. So every successive ac half-cycle, the operating current, and the noise

distribution get transposed from one line to the other. True, at any given moment, the noise

on L will be quite different from that on N, but when averaged over several ac cycles (as any

spectrum analyzer would do), equality (symmetry) is restored. Any remnant differences

between the VL and VN scans can be traced back to some undocumented asymmetries

between the two halves of the test circuit, or some severe radiation source impinging

asymmetrically on the cables or traces close to the inlet of the power supply.

We observe that the standards do not require us to measure the CM and DM components

individually, but rather a certain sum as described in the preceding equations. However, there

are times when engineers do want to see both the CM and DM components separately — for

troubleshooting and/or diagnostic purposes. So various people have come up with clever

ideas to separate the CM and DM components. Some of these are mentioned below.

■ A device called the ‘LISN MATE’ is rare now. It was invented by an engineer named

Nave. It provides about 50 dB attenuation for the DM component, but the CM

component comes right through (slightly attenuated — by about 4 dB). The

schematic for this is shown in Figure 9-4.

■ The transformer-based device shown in Figure 9-5 exploits the fact that common

mode voltages cannot cause transformer action — because transformer action

requires that a differential voltage be applied, so as to produce current in the

windings, and thereby causes the flux to swing within the core. Unlike the LISN

MATE, in this case both CM and DM noise components are outputted. This device

used to be available from AEMC in France, at www.aemc.fr.

CM

= 16.7Ω
3
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L2
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VL
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TO
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16.7Ω

16.7Ω

50Ω
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Figure 9-4: The LISN MATE
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Figure 9-5: A CM and DM Separator

■ Both methods above unfortunately require modifications to the standard LISN —

because they invoke a certain simultaneous math between the VL and VN

components. However, a LISN normally provides either VL or VN at any given

moment — not both (at the same time, as required here). We can modify the

traditional LISN, but that is not only tricky to do, but also hazardous because of the

high voltages involved. Therefore, a completely different approach is simply to buy a

LISN explicitly designed for the purpose of providing separate CM and DM noise

scans (besides providing the necessary “summed up” scan for achieving compliance).

An example of such a LISN is the ESA2000 from Laplace Instruments at

www.laplaceinstruments.com.

The Conducted Emission Limits

What are we designing our filter to really achieve? In Table 9-1, we have provided the

CISPR 22 test limits and the FCC limits. We have plotted out the CISPR limits in

Figure 9-6. Note that in the table, dBµV has also been expressed in terms of mV,

in deference to engineers who may have trouble thinking “logarithmically.” By definition,

a decibel is dB = 20 × log(voltage ratio). So “dBµV” implies a logarithmic comparison

to a reference voltage of 1 µV. Note that for power, a decibel is 10 × log(ratio).

Note: The FCC does not state average limits, only quasi-peak. However, the FCC does accept certification

to CISPR 22. But in that case, “mix-and-match” of the standards is not allowed — it’s either one or the other.
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Table 9-1: Conducted emission limits

CLASS A (Industrial)

FCC Part 15 CISPR 22

Quasi-Peak Average Quasi-Peak Average

Freq (MHz) dBµV mV dBµV MV dBµV mV dBµV mV

0.15–0.45 NA NA NA NA 79 9 66 2

0.45–0.5 60 1 NA NA 79 9 66 2

0.5–1.705 60 1 NA NA 73 4.5 60 1

1.705–30 69.5 3 NA NA 73 4.5 60 1

CLASS B (Residential)

FCC Part 15 CISPR 22

Quasi-Peak Average Quasi-Peak Average

Freq (MHz) dBµV mV dBµV mV dBµV mV dBµV mV

0.15–0.45 NA NA NA NA 66–56.9* 2–0.7* 56–46.9* 0.63–0.22*

0.45–0.5 48 0.25 NA NA 56.9–56* 0.7–0.63 46.9–46* 0.22–0.2*

0.5–1.705 48 0.25 NA NA 56 0.63 46 0.2

1.705–30 48 0.25 NA NA 60 1 50 0.32

* This is a straight line on the dBµV vs. log(f) plot. See worked example
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Figure 9-6: CISPR 22 Limits Plotted Out
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Example: What is 1 mV expressed in dBµV?

1 mV → 20 × log
10−3

10−6
dBµV = 20 × log 103 dBµV = 60 dBµV

In general,

(dBµV) = 20 × log

(

(mV)

10−6

)

(conversion from mV to dBµV)

Example: What is 56 dBµV in mV?

56 dBµV → 1056/20 × 10−3 mV = 0.63 mV

In general,

(mV) = (10(dBµV)) × 10−3 (conversion from dBµV to mV)

Returning to Table 9-1, we look at the CISPR Class B regions between 150 kHz to 450 kHz

and 450 kHz to 500 kHz. Note that this is actually one continuous region, with the limit line

passing straight from 150 kHz through 500 kHz (“straight” on a standard dBµV vs.

log(f) plot).

■ The equation for a point in the region 150 kHz to 500 kHz (average) for CISPR 22

(conducted) Class B, average limits is

(dBµVAVG) = −19.07 × log(fMHz) + 40.28 (exact)

This is easier to remember as

(dBµVAVG) = −20 × log(fMHz) + 40 (almost exact)

■ The equation for a point in the region 150 kHz to 500 kHz (average) for CISPR 22

(conducted) Class B, quasi-peak limits is

(dBµVQP) = −19.07 × log(fMHz) + 50.28 (exact)

This is easier to remember as

(dBµVQP) = −20 × log(fMHz) + 50 (almost exact)
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Note: The published CISPR 22 Class B limits in the range 150 kHz to 500 kHz are themselves actually

‘rounded-up’ versions of the ‘easier to remember’ forms provided above. That is why the “exact” equations

above look surprisingly stranger than the “almost exact” ones. In fact, what has been done in CISPR 22 is a

line was drawn with a slope of −20 dB/dec, passing through the 1 MHz point (extrapolated, see Figure 9-6)

— at 40 dBµV for the average limits and 50 dBµV for the quasi-peak limits. Thereafter, the calculated

y-coordinates at 500 kHz (point of truncation of this portion) and at 150 kHz were rounded off to the nearest

decibel.

Example: What are the CISPR Class B conducted emission limits at a frequency of 300 kHz?

A frequency of 300 kHz is 0.3 MHz. Therefore, the average limit is

−19.07 × log(0.3) + 40.28 = 50.25 dBµV

The quasi-peak limit (which is defined to be 10 dB higher in this region) is automatically

60.25 dBµV.

Looking at the FCC and CISPR 22 quasi-peak limits in Table 9-1, we can justifiably ask —

do the numbers imply that the FCC standards are actually more stringent than those of

CISPR 22 (above 450 kHz)? Not really! The first difference is that FCC measurements are

done at the lower U.S. line voltages, whereas the CISPR measurements are done at roughly

twice that. So we may be in the position of comparing apples to oranges. Further, though

FCC has no defined average detection limits, the language allows for a relaxation of the

limits (by 13 dB) if the quasi-peak reading exceeds the average by more than 6 dB.

Therefore, practically speaking, equipment compliant to CISPR will always be found

compliant to FCC limits.

Quasi-peak, Average, and Peak Measurements

We have not yet explained what the rationale is behind the two types of limits — average

and quasi-peak.

Historically, quasi-peak was meant to simulate human responses to noise. Humans have a

slowly increasing level of aggravation or annoyance to a persistent disturbance. Therefore,

to simulate this (subjective) response, there are built-in attack and release rates in quasi-peak

detection. The signal level is effectively weighted according to the repetition frequency of

the spectral components constituting the signal. So, the result of a quasi-peak measurement

will always be dependent on the repetition rate. The higher this frequency, the higher the

measured quasi-peak level. Further, because of the finite charge and discharge time constants

involved in quasi-peak detection, the spectrum analyzer must sweep considerably slower in

this setting. Therefore, peak detection can be carried out, and this turns out to be much faster.
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Further, with peak detection, we will always get the highest reading (usually followed by

quasi-peak and then by the average, see Figure 9-7).

So, to perform EMI scans quickly (at least in the initial stages of design), most engineers

prefer peak detection. The results of this are then compared against the published quasi-peak

limits, and compliance is sought. If it is achieved, in effect, some additional headroom

(safety margin) has been gained, because if a quasi-peak reading had been carried out,

it would have certainly given a reading less than the peak reading. The headroom is “nice

to have,” because it will help account for various uncontrolled parasitics that may show up

at a later stage. So, quasi-peak detection really needs to be performed only when we are

marginally failing the peak detection test (with quasi-peak limits applied).

Note: Usually, if we can meet the quasi-peak limits, we automatically meet the average limits too (using

average detection and average limits). But there are stray cases where CISPR 22 quasi-peak limits may be

complied with, but the average limit test is failed. That is a bad sign, possibly indicating that a major

re-design of the PCB layout and/or transformer is required.

It is often colloquially stated that ‘at frequencies below approximately 5 MHz the noise

currents tend to be predominantly differential mode, whereas at frequencies above 5 MHz

the noise currents tend to be predominantly common mode.’ But this may or may not be true

always. Certainly at frequencies above 20 MHz, any conducted noise is most likely

attributable to inductive pickup, for example from radiation spilling out from the cables.

And we know that that is inherently common mode in nature. However, since radiative

pickup is not necessarily the main (or only) source of common mode noise in a switching

converter, we should be prepared for surprises. For example, we recall that unequal line

impedances can convert a (high-frequency) common mode noise into a (high-frequency)

differential mode noise.
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Finally, we observe that standard conducted EMI emission limits are typically only up to

30 MHz. We can ask — why weren’t the limits set even higher? The reason is that by

30 MHz, any conducted noise is expected to automatically suffer severe attenuation in the

mains wiring, and therefore won’t really be able to travel far enough to cause interference

much down the road. However, since the cables can certainly still radiate (locally), typical

EMI radiation limits cover the range from 30 MHz to 1 GHz.

353



This Page Intentionally Left Blank



C H A P T E R

10

Practical EMI Line Filters



This Page Intentionally Left Blank



C H A P T E R 10

Practical EMI Line Filters

When we start designing EMI filters, we will find that safety issues, thermal issues, and even

loop stability concerns are intricately linked to the central issue of EMI. In particular, we

must look closely at the aspect of safety, because even though we can attempt to sell

equipment that doesn’t function satisfactorily, product safety is a legal requirement without

which we just cannot sell. So particularly in an off-line application, where the voltages are

high enough to cause injury, safety becomes a major concern, even if we are just designing

its EMI filter.

In this chapter, we will focus mainly on filters for (single-phase) off-line power supplies.

However, tips for dc-dc converters will also be provided along the way.

Safety Issues in EMI Filter Design

The concept of safety and how it impacts the filter section is summed up as follows:

■ Any exposed metal (conducting) part (e.g. the chassis or output cables) is capable of

causing an electrical shock to the user. To prevent a shock, such parts must be

earthed and/or isolated from the high voltage parts of the power supply in some way.

■ No single point failure anywhere in the equipment should lead the user to be exposed

to an electrical shock. There should be two levels of protection, so that if one gives

way, there is still some protection available.

■ Levels of protection that are considered essentially “equivalent” are a) earthing of any

exposed metal surface, b) physical separation (typically 4 mm) between any exposed

metal and parts of the circuit containing high voltage, and c) a layer of approved

insulator between any exposed metal and the high voltage. Note that the insulator

must have a minimum dielectric withstand capability of 1500 V ac or 2121 V dc.

■ To qualify the preceding slightly — connecting the metal enclosure of the equipment

to earth can sometimes be considered as an acceptable level of safety protection —

there are exceptions to this, as we will soon learn. However, assuming for now that

earthing is acceptable, we know that to protect the user in case the earth connection

fails (maybe due to something as simple as a loose contact), we need to provide one

more level of protection. So this could simply be the “4 mm” of separation.

357



Chapter 10

But consider the case of a high-voltage mosfet (switch) mounted on the (earthed)

metal enclosure (for better heatsinking). Clearly, we can’t provide any level of

protection through physical separation. So in this case, we need to place one layer of

approved insulator between the mosfet and the enclosure. Note that in this position,

the insulator serves as ‘basic insulation.’

■ What if we have an exposed conductor that is not connected to earth (such as for

equipment with a two-wire ac cord), or if earthing is itself not an acceptable level

of protection for that particular type of equipment as per safety regulations? Then,

besides the layer of basic insulation, we need another insulating layer (with identical

dielectric withstand capability). This is called ‘supplementary insulation.’ Together

these two layers (basic + supplementary) are said to constitute ‘double insulation.’

We could also use a single layer of insulation, with dielectric withstand properties

equivalent to double insulation (i.e. 3000 V ac or 4242 V dc). That would then be

called reinforced insulation. So for example, if the equipment is by design, meant

only for a two-wire ac cord, we would need two layers of approved insulators (or

a single equivalent layer) from primary side to any exposed metal (e.g. output).

■ Why do we even bother to connect the enclosure to earth in the first place? In some

cases, that is not even considered an acceptable level of protection. And besides, we

could achieve two-level protection simply by double (or reinforced) insulation. The

main reason for using an earthed metal enclosure is that we want to prevent radiation

from inside the equipment from spilling out. Without a metal enclosure, whether

connected to earth or not, there is very little chance that a typical off-line switching

power supply can ever hope to comply with radiated (and possibly conducted)

emission limits. That is especially true when switch transition speeds are dropping

to a few tens of nanoseconds. Earthing further improves the shielding effect.

■ The metal enclosure is rather expectedly eyed by engineers as an excellent and

fortuitous heatsink. So in practice, power semiconductors are often going to be

mounted on the enclosure (with insulation). However by doing this, we also create

leakage paths (resistive/capacitive) from the internal subsystems/circuitry to the

metal chassis. And though these leakage currents are small enough not to constitute

a safety hazard, they can present a major EMI problem. If these leakage currents are

not ‘drained out’ in some way, the enclosure will charge up to some unpredictable/

indeterminate voltage, and will ultimately start radiating (electric fields). That would

clearly be contrary to the very purpose of using a metal enclosure. So we then need

to connect the enclosure to earth (other than for safety reasons!). We note that even if

we didn’t have power devices mounted on the enclosure, there could be other leakage

paths present to the enclosure. And besides that, an unearthed enclosure would also

inductively pick up and reradiate the strong internal electric/magnetic fields.
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■ Therefore, a) providing a good metal enclosure, and b) properly connecting it to

earth is the most effective method of preventing radiated EMI. However, by creating

this galvanic connection (to earth), we also now provide a “multi-lane freeway” for

the conducted (common mode) noise to flow “merrily” into the wiring of the

building. So now, to be able to stay within the applicable conducted emission limits,

we need to provide a common mode filter somewhere.

■ Generally speaking, if the equipment is designed not to have any earth connection

at all (e.g. a two wire ac cord), there will usually be no metal enclosure present

either. Ignoring the problem of meeting radiation limits for now, the good news

here is that no significant common mode (CM) noise can be created either — simply

because CM noise needs an Earth connection by definition. Therefore a CM filter

need not be present in this case. However, we must remember that conducted noise

limits include not only common mode noise, but differential mode (DM) noise too.

So irrespective of the type of enclosure and earthing scheme, DM filters are always

required.

■ One of the simplest ways of suppressing noise is to provide decoupling (between the

nodes involved). For CM noise this could mean just placing high-frequency ceramic

capacitors between the L and E wires, and also between the N and E wires, possibly

at several points along the PCB. But the problem is that each of these CM line filter

capacitors also unintentionally passes some ac line current into the chassis (besides

the CM noise). The ac component is not considered to be “noise,” but it can certainly

cause an electrical shock to the user. Therefore, safety regulations restrict the total

amount of current that is injected into the earth/enclosure. And this in turn means

that in any common mode filter stage we need to place an upper limit on the net CM

filter capacitance. However, we know that if the “C” of an LC filter is made smaller,

then to maintain the desired attenuation level (resonant frequency), we need to

correspondingly increase the L. Therefore, it is not surprising that the inductance

used for the CM filter stage (in off-line applications) is usually fairly large

(several mH).

Practical Line Filters

We now look at a typical power supply line filter, as shown in Figure 10-1. Its ultimate

purpose is to control conducted emissions in general, and therefore it has two stages

(as highlighted) — one for differential mode and one for common mode. Let us make some

relevant observations.

■ Both the CM and DM stages are symmetrical (balanced). From the viewpoint of the

noise emerging from the bridge rectifier and flowing toward the LISN, there are in
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Figure 10-1: Practical Line Filter and the CM and DM Equivalent Circuits

effect two LC filters in cascade (both for DM and CM noise). This filter

configuration can provide good high-frequency attenuation (roll-off).

■ Occasionally, unbalanced filters may be tolerable — for example a single DM choke

(i.e. on one line only). Or sometimes, in very low-power applications, just a plain

decoupling capacitor (e.g. C1) may suffice. Sometimes tuned filter stages are seen in
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commercial off-line power supplies (e.g. from Weir Lambda, UK). But there are

some anecdotal industry experiences that suggest that under severe line transients or

under input surge waveforms, as those typically used for immunity testing, tuned

filters can display unexpected oscillations (resonances), ultimately provoking failure

of the power supply itself. Therefore, tuned filters are generally avoided in most

commercial designs.

■ Note that the filter is usually placed before the input bridge (i.e. toward the incoming

ac line input) — especially because in that position it also suppresses the noise

originating from the bridge diodes. Diodes are known to produce a significant

amount of medium- to high-frequency noise, especially at the moment they are just

turning OFF. Small RC snubbers (or sometimes just a “C”) are therefore often placed

across each diode of the input bridge. Though sometimes, we can get away simply

by choosing diodes with softer recovery characteristics.

■ Note that input bridge packs using ultrafast diodes are often peddled as offering

a significant reduction in EMI. In practice they don’t really make much difference —

at least not enough to justify their steep cost. In fact typically, the faster a diode, the

greater are the reverse current and forward voltage spikes that it produces at turn-off

and turn-on. So very fast bridges may in fact produce worse EMI scans.

■ Typical practical values for the inductance of a CM choke in medium-power

converters range from 10 to 50 mH (per leg). The DM choke is always much smaller

(in inductance, but not in size as we will see). Typical values for the DM choke are

500 µH to 1 mH.

■ In Figure 10-1, we have shown both the CM and DM filter stages as being

symmetrical (balanced). So for example, we have placed identical DM chokes on

each of the L and N lines. In Fig. 10-1 we see that in fact the DM choke is also a

part of the CM equivalent circuit (and vice versa). And since line impedance

imbalance can cause CM noise to get converted into DM noise, it is always

advisable to keep both the CM and DM stages symmetrical (balanced).

■ One obvious way to maintain equal CM inductances in both lines is to wind them

on the same core (e.g. a toroid). That automatically assures a good inductance

match (assuming of course that there are an equal number of windings per leg).

Note that if we are winding the CM choke ourselves (as during prototyping), we

must note the relative direction of the windings, as indicated in Figure 10-1 (see third

sample choke picture). With such a winding arrangement, the magnetic field inside

the core will cancel out completely (in principle) for DM noise. Similarly, the flux due

to the operating ac line current will also cancel out (that too being differential in

nature). Therefore the choke will present an impedance only to the CM noise

component.
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Note: The reader is cautioned that there are several widely used but confusing symbols for the

CM choke found in schematics in related literature. But whatever the symbol, as long as it is meant

to serve as a common mode choke, the direction of the windings must be as shown for the toroid

in Figure 10-1.

■ If we reverse the current direction in one of the windings of a CM choke, then it

becomes a DM choke (for both lines). However, now it is also subject to the flux

produced by the ac line input current (no cancellation occurs). DM chokes, in

general, should always be put through a “saturation check” — because of the

impedance they present to the line current.

■ We see that DM chokes may need to be quite large, just to avoid core saturation —

despite the fact that their inductance is usually much less than that of CM chokes.

But in fact, a CM choke can also be very large. That, however, is primarily

necessitated not by the typically higher inductance required, but more so by the

desire to provide the required inductance with the minimum amount of copper losses.

So, a core with a high AL value is sought, and that usually spells “bigger core.” We

should also keep in mind that we don’t want the core to “topple over” and saturate,

on account of small imbalances in symmetry of the windings. So we may ultimately

need to oversize the CM choke for various such reasons.

■ Theoretically, there is no need for any air gap in a common mode choke, because

the flux due to the line current is expected to cancel out completely. In practice, it

doesn’t fully, mainly due to slight differences in the individual winding arrangement

(despite the equal number of turns). At a minimum, this causes the core to get

dc-biased in one direction, and thereby cause an imbalance in the inductance it

presents to the two lines. This would expectedly degrade the EMI performance, but

in extreme cases, the core may even saturate. Note that core saturation in the filter is

clearly not a catastrophic event (like the saturation of the main inductor/transformer

of the converter can be), but since it is accompanied by severely worsening

EMI-suppression efficacy, we need to prevent that too. Therefore, as in a forward

converter transformer, a small air gap is usually present, even in a CM choke.

This may be an actual air gap (between split core halves), or it may be a distributed

gap, as in powdered iron cores. Though this lowers the inductance index (AL)

somewhat, the resulting solution is much more immune to production variations,

and is also more stable over time. In general, whenever we introduce an air gap,

the core starts partially acquiring the properties of the interposing air — and since

air never saturates, the air-gapped core too has a much softer saturation

characteristic.

■ We can consider spending some more money and avail ourselves of magnetic

materials like “amorphous” cores or ‘Kool Mu®’ if we want to achieve higher

inductance (with higher saturation flux densities), in a smaller size.
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■ Toroidal CM chokes in particular, when used in off-line applications (i.e. with both

windings on the same core) must meet safety requirements relating to the separation

distances between the windings (‘clearance’ and ‘creepage,’ as discussed later). So

for example, we cannot simply wind the two windings carelessly overlapping each

other — we need to maintain a specified physical separation. Nor can we just use a

bare toroid core to wind them on — we need an approved coating and/or a suitable

bobbin.

■ A bare ferrite can be a rather good electrical conductor, especially if it is the more

commonly used manganese-zinc ferrite (as opposed to nickel-zinc formulations).

This can be confirmed by simply pressing the tips of an ohmmeter at two points on

the surface of any bare ferrite lying around in the lab. Further, if we are trying to rely

on the enamel coating of a typical copper magnet wire to protect from shorts, we

should know that the coating is considered to be just operational/functional

insulation, and is not considered to be even basic insulation.

■ Note that Lcm in Figure 10-1 is the inductance of each leg of the CM choke.

Therefore, it is the inductance measured across either winding, with the other

winding open. Now, if we repeat this measurement, but instead of keeping the other

winding open, we short its ends together, what we measure is the leakage inductance

Lk. By definition, the two leakage inductances in each leg are uncoupled, and

therefore they cannot be sharing any magnetic path. Therefore the leakage

inductance of a CM choke behaves differently from the rest of the choke —

differential currents no longer cancel out for this inductance. In effect, Lk presents an

inductive impedance to DM noise. This “hidden” inductance of a CM choke has

been successfully exploited by filter designers, to serve as an “unintentional” DM

choke. Therefore, in low-power converters, we usually won’t see any separate DM

chokes — just CM chokes. The good news here is that the leakage inductance is

effectively an air-cored inductor, so it never saturates — even if for some reason, its

“parent” CM choke saturates completely. Thus the efficacy of a leakage-based DM

choke is maintained at any supply current level.

Note: In any transformer, if we measure its leakage inductance (by shorting the secondary

winding), the reading remains virtually unchanged even if we remove the core completely from the

bobbin. That is because leakage, by definition, is uncoupled and does not pass through the

magnetic core — if it did, it would be “coupled.”

■ The inter-winding capacitance of a choke affects its characteristics significantly at

high frequencies. This can be intuitively visualized as providing an easy detour for

noise to simply flow past the windings. To minimize the end-to-end capacitance of a

toroidal winding, it is recommended that the winding be single layer. Also, in

Figure 10-1, the sample CM choke picture in the middle is better than the one to its

left, in terms of minimizing the end-to-end capacitance. That is because of the split
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introduced in each winding section by the special bobbin used. The split also helps

increase the leakage inductance (which helps reduce DM noise). Bobbins with

several such splits are also available at a price.

■ Line to line capacitors are called ‘X-capacitors’ (“X-caps”). X-caps when used in

off-line applications before the input bridge must be safety approved. But after the

bridge (on the rectified side), it’s basically a ‘don’t care’ situation from the safety

point of view. Note that since it is essentially a front-end component, approved

X-caps are typically impulse-tested up to 2.5 kV peak.

■ Line-to-earth capacitors are called ‘Y-capacitors.’ Since Y-caps are critical in terms

of having the potential to cause electrocution if they fail, approved Y-caps are

typically impulse-tested up to 5 kV peak. Note that Y-caps used anywhere on the

primary side (in off-line applications) must always be safety approved. Depending on

the location in the power supply, we may even need two Y-caps in series (basically

corresponding to double insulation). However, sometimes we can also find Y-caps

placed between the secondary ground and earth/enclosure (for EMI suppression

purposes). In this position, it is usually acceptable to use any ordinary 500 V ac rated

capacitor (unapproved).

■ Traditionally, off-line X-caps were of special metallized film + paper construction

whereas Y-caps were a specially constructed disc ceramic type. However we can also

find X-caps that are ceramic, as we can find Y-caps that are film type. It’s a choice

dictated by cost, performance, and stability concerns. Film capacitors are known to

always provide much better stability over temperature, voltage, time, and so on —

than most ceramics. In addition, if they are of ‘metallized’ construction, they also

possess self-healing properties. Note that ceramic capacitors do not have any

inherent self-healing property. However, ceramic Y-caps are specifically designed

never to fail shorted under any condition, as this would pose a serious safety hazard.

■ If for any reason (e.g. filter bandwidth or cost) ceramic is preferred for the Y-cap

positions, then we need to carefully account for its basic tolerance, its variation with

respect to temperature and applied voltage, and all other long-term variations and

drifts. That is because we need a certain filtering efficacy, but at the same time we

can’t increase the leakage current into the chassis. In this regard, we should keep in

mind that the capacitance stated in the datasheet is not just a nominal (or typical)

value, but in fact it happens to be a fairly misleading value. For example, the fine

print may reveal that the test voltage at which the capacitance is stated is close to, or

equal to zero Volts! So the actual capacitance it presents in a working circuit may be

very different from its declared value. This is, in general, especially true for ceramic

capacitors that use a high dielectric constant (“high-k”) material (e.g. Z5U, Y5V,

and so on). We should also know that ceramic capacitors age, except for COG/NPO
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types. A typical X7R capacitor ages 1% for every decade of time (in hours). So its

capacitance after 1000 hours will be 1% less than what it was after 100 hours, and so

on. Higher dielectric constant ceramics like Z5U can age 4 to 6% for every decade

of time. So in effect our filter stage, too, gets less efficacious with time. And we need

to account for this in the initial design.

■ Theoretical filter performance is based on the assumption that we are using “ideal”

components. However, real-life inductors are always accompanied by some winding

resistance (DCR) and some inter-winding capacitance. Similarly, real capacitors have

an equivalent series resistance (ESR) and an equivalent series inductance (ESL).

At high frequencies, the inductance will start to dominate, and so a capacitor will

basically no longer be functioning as one (from the signal point of view). However,

capacitors with smaller capacitances generally remain capacitive up to much higher

frequencies than do larger capacitances. See Table 10-1 for some typical self-resonant

frequencies (the point above which, capacitors start becoming inductive). Therefore,

quite often, a smaller Y-cap may help, where a large Y-cap is not yielding results.

We can also consider paralleling a larger value Y-cap with a small Y-cap.

Table 10-1: Practical limitations in selecting components and materials for EMI filters

X-Capacitors Y-Capacitors

Capacitance (pF) Resonant Frequency (MHz) Capacitance (µF) Resonant Frequency (MHz)

1000 53 0.01 13

1500 42 0.022 9

2200 35 0.047 6.5

3300 29 0.1 4.5

4700 21 0.22 2.7

6800 19 0.47 1.9

Magnetic Materials for EMI Chokes

Initial Permeability Bandwidth (MHz)

Powdered Iron 60 10

33 50

22 100

10 >100

Ferrite 15000 0.17

10000 0.3

5000 1.0

3000 1.2

2500 1.5

1500 3.0
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■ Surface mount (“SMD”) versions of off-line safety capacitors are also now

appearing — for example from Wima, Germany (http://www.wima.com) and Syfer,

UK (http://www.syfer.com). But we must realize that it is not enough that the

capacitor merely ‘complies’ with a certain safety standard — the capacitor should

actually be approved (tested by various safety agencies, and carrying their respective

certification marks). From the electrical point of view, one of the great advantages of

SMD components is their virtually non-existent ESL. This improves their

high-frequency performance in any filter application. On the flipside, some ESR or

dc winding resistance (“DCR”) is often useful in helping damp out oscillations.

Without any resistance altogether, oscillations would last forever. That is one of the

reasons why engineers sometimes pass one or both of the leads of a standard

through-hole Y-cap through a small ferrite bead (preferably of a material with lossy

characteristics, like Ni-Zn). This can often help suppress a particular high-frequency

resonance involving the Y-cap, which is showing up in the EMI scan. But we must

be careful that in doing so, we are not ending up with a radiation problem instead.

■ Designers of low-voltage, low-power dc-dc converters may find the “X2Y” patented

product range available from Syfer (and from the company X2Y itself — at

http://www.x2y.com) very useful if they need to miniaturize and lower the

component count. This is a three-terminal integrated SMD capacitor-based EMI filter

that simultaneously provides line-to-line and also line-to-ground decoupling. Picor

(a subsidiary of Vicor) at http://www.picorpower.com is also now selling what is

billed as the industry’s first active input EMI filter stage for standard 48 V bricks.

It may be a viable choice if board space is at a premium, despite its roughly $20 cost.

■ We note that a Y-cap is always tested to higher safety standards than an X-cap.

So we can always use a Y-cap at an X-cap position, but not vice versa. For example,

we can consider placing a ceramic Y-cap in parallel with a film X-cap, so as to

improve the DM filter bandwidth.

■ Generally, we try to maximize filter performance by increasing its ‘LC’ product as

much as practically possible (thus lowering its resonant frequency). Further, given a

choice, we would prefer to harness that improvement by using larger capacitances,

instead of impractically-sized inductors. But as we know, the maximum

Y-capacitance we can use is limited by safety considerations. X-caps too were

limited for many years to a maximum value of 0.22 µF (though occasionally

0.47 µF was also seen). But that was simply availability and component technology

limitations. Nowadays, we can get X-caps up to 10 µF. We should be conscious,

however, that large input capacitances can cause undesirably high inrush surge

currents at power-up. This may also cause eventual failure of the X-cap, especially if

it is the very first component after the ac input inlet. Film caps can self-heal from
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such an event every time it occurs, but eventually the capacitance gets degraded

slowly over time with each successive event. Therefore, despite EMI concerns,

we should try and place X-caps after any input surge protection element — for

example, the NTC (negative temperature coefficient) thermistor, or wirewound

resistor, and perhaps even after a front-end choke.

Note: What were traditionally called X and Y capacitors are now more accurately called X2 and

Y2 capacitors respectively. From the viewpoint of safety regulations (like impulse voltage rating

etc.), the X1 and Y1 are considered virtually equivalent to two X2 and Y2 capacitors in series,

respectively. For example Y1 caps are impulse tested to 8 kV. Also, the original terms ‘X-caps’ and

‘Y-caps’ have recently started getting defaulted to refer to the more uncommonly used (higher

voltage) X1 and Y1 capacitors instead.

Note: In off-line power supplies, for better EMI suppression, we may decide to place Y-caps from

the rectified dc rails (either one or both) to earth. So sometimes we place Y-caps from primary

ground to secondary ground (usually connected to earth ground), or from the HVDC (high voltage

dc) rail to secondary ground. In either of these positions, a Y1 capacitor (or two Y2 capacitors in

series) may be required.

Note: Safety regulations for Nordic regions (and Switzerland) may require each Y-cap shown in

Figure 10-1 to be actually two Y2 capacitors in series (or a single Y1 capacitor). Historically, this

has been necessitated by the fact that earthing is poor in those geographical regions. In fact, it used

to be pointed out that even the main conference room of the Norwegian safety agency NEMKO

(literally Norwegian Electric Material Control) did not have any earth connection available in the

wall outlets. Therefore, practically speaking, a lack of earth is not considered a fault condition in

many parts of the world, but is just a normal condition (this actually also includes about one-third

of homes in the United Sates). Therefore, very often, whether the equipment is supposed to be

earthed or not, it is expected to have reinforced insulation anyway. Earthing, if present, is then just

for helping out with EMI. We see that Y1 caps will often find use even in single-phase equipment.

However, X1 caps are basically meant only for 3-phase equipment, since there is no pressing

safety need for such a high voltage rating between the L and N wires in single-phase equipment.

Safety Restrictions on the Total Y-capacitance

Y-caps don’t just bypass high-frequency noise, but also conduct some of the low-frequency

line current. That is what the X-caps do too, the difference being that the Y-caps carry this

current into the protective earth/chassis. To prevent a fatal electric shock from occurring,

international safety agencies limit the total RMS current introduced into the Earth by the

equipment to a maximum of typically 0.25 mA, 0.5 mA, 0.75 mA, or 3.5 mA (depending on

the type of equipment and its ‘installation category’ — i.e. its enclosure, its earthing and its

internal isolation scheme). But note that somehow, 0.5 mA seems to have become the

industry default design value, even in cases where 0.75 mA or 3.5 mA may have been

allowed by safety agencies. It is important to know how high one can actually go in terms of
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ground leakage current, as this dramatically impacts the size and cost of the line filter, in

particular the choke.

Keeping the discussion here at a theoretical level, we can easily calculate that we get

79 µA per nF at 250 VAC/50 Hz. This gives us a maximum paralleled capacitance of 6.4 nF

for 0.5 mA, or 44.6 nF for 3.5 mA, and so on. So, a typical configuration in off-line power

supplies consists of four Y-caps, each being 1nF or 1.2 nF or 1.5 nF. Or only two

Y-capacitors, each of value 2.2 nF. Note that there may be other parasitic capacitances and/or

filter capacitances present, which should be accounted for in computing the total ground

leakage current, and thereby correctly selecting the Y-caps of the line filter. However we

must keep in mind that if for better EMI performance/CM noise rejection, a Y-cap is

connected from the rectified dc rails to earth (or from the output rails to earth), there is no

ground leakage current through these capacitors in principle. Therefore there is no limit on

their capacitance either.

Equivalent DM and CM Circuits

The filter in the upper half of Figure 10-1 reduces to the CM and DM equivalent schematics

shown in the lower half of the same figure. The equivalent schematics are from the

viewpoint of the noise coming out via the bridge, heading toward the mains wiring (LISN).

Some observations are:

■ We see that the DM choke acts as a CM filter element too.

■ The leakage inductance of the CM choke appears as a DM filter element too.

■ Both the Y-caps also appear in the DM equivalent circuit (though arguably they will

not add much to the heftier X-capacitance).

■ Considering that a very small value for Ldm is usually enough (because of the much

larger X-capacitance possible), no “intentional” DM choke may be required. The

leakage inductance of a common mode choke is roughly 1 to 3% of Lcm, depending

on its construction. That is usually enough to serve as an unintentional, but effective

DM choke.

■ Though CM chokes usually have a high inductance (and that is certainly needed —

particularly for complying with CISPR 22 limits below 500 kHz), a good part of the

CM noise is usually found in the frequency range of 10 to 30 MHz. So we must

consider the fact that not all ferrites have sufficient bandwidth to be able to maintain

their inductance (AL) at such high frequencies. In fact, materials with a high

permeability tend to have a lower bandwidth, and vice versa (“Snoek’s law”).

Therefore a “high-inductance” CM filter may look good on paper, but may not be as
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effective as we had thought, at high frequencies. See Table 10-1 for typical values of

initial permeability vs. bandwidth (bandwidth being defined here as a 6 dB fall in

permeability).

■ A DM noise generator is more like a voltage source. So putting in an LC filter works

well for a DM source, as it simply presents a “wall” of impedance that serves to

block the DM emissions from entering the mains lines. But this strategy by itself is

not going to be very effective for CM noise, because a CM noise source behaves

more like a current source. And we know that current sources demand to keep

current flowing, and can therefore surmount any “wall” of impedance we may place

in their path (by increasing the corresponding voltage). However, if, besides placing

a “wall” of impedance, we also present an alternative route for the current to keep

flowing, we would be successful in preventing the CM noise from entering the mains

wiring of the building. Thereafter we could “kill” the noise by dissipating the

associated energy. This places a rather unusual-sounding demand on the CM choke

— not only do we need high bandwidth, but we should actually lower its quality

factor ‘Q’, especially at high frequencies. One way to achieve that is to increase the

DCR. But that will impede the line current too, and thereby lower the efficiency of

the entire power supply. A better solution is to use a “lossy” ferrite material for the

CM choke. The usual ferrite used for power transformers and inductors is

predominantly of manganese-zinc composition. But lossy ferrites of nickel-zinc

composition are actually more helpful in “killing” high-frequency CM noise

components. Unfortunately, they also have such low initial permeabilities that it is

impossible to get the desired high inductance (at lower frequencies). Therefore the

lossy CM choke is usually an add-on to the normal CM filter stage. It could be just a

small bead/toroid/sleeve made of similar lossy material, with both the L and N wires

passing through its aperture.

■ Engineers are often mystified to find that making the DM choke out of (low

permeability) powdered iron or lossy ferrite helps too, when all else has failed —

despite all the talk about DM noise being essentially a “low-frequency emission.”

The reason seems to be as follows — the CM noise in a power supply is actually a

non-symmetric mode, at its point of creation. Though ultimately, by cross-coupling,

it does tend to spread into both the lines equally. It has been shown that non-

symmetric noise can be considered as a mix of CM and DM components. Therefore

in practice, we do get a fair amount of high-frequency DM noise too — arising out

of the non-symmetric CM noise. That is why high bandwidth/low permeability/lossy

materials can help in DM noise suppression too.

■ The DM and CM filters are usually laid out in the order shown in Figure 10-1. The

basic idea seems to be that the last stage the noise encounters (as it travels from the
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power supply into the mains) should be a common mode filter. Because, if the last

stage was a DM stage for example, it may not be very well balanced from the

viewpoint of the noise emerging from the CM filter. And so the CM noise could get

converted into DM noise, as previously explained. However, we do have a DM stage

now, to hopefully take care of these additional DM noise components! Therefore,

many successful commercial designs have reversed the order as drawn in Figure 10-1,

with the DM stage being placed closer to the power inlet. In brief, there seems to be

no hard and fast rule for which stage should come before which other stage.

■ A possible location for an additional X-cap is directly on the prongs of the inlet

socket (at the entrance to the power supply). We remember that in this position any

line-to-line capacitor will be exposed to a huge current surge at power-up, and could

degrade, if not fail immediately. So if this X-cap position seems to be the last resort,

it should at least be made as small as possible (typically 0.047 µF to 0.1 µF). Or we

can try ceramic capacitors in this position (approved ceramic X-caps or Y-caps

should be tried here).

■ Similarly, the two front-end Y-caps (“C4” in Figure 10-1), or two additional Y-caps,

can also be connected directly on to the prongs of the ac inlet socket, rather than on

the PCB. This can help a great deal if the wires going from the PCB to the mains

inlet socket are themselves picking up stray fields (and are therefore beyond

assistance from the main filter stage, which unfortunately lies on the PCB — before

the point of noise injection).

■ Sealed chassis mountable line filters (sometimes with integrated standard IEC 320

line inlets) are available from several companies like Corcom (now part of Tyco

Electronics) and Schaffner, Germany (at www.schaffner.com). Such filters perform

excellently but are less flexible to subsequent tweaking, and also far more expensive

than board-mounted solutions.

Note: Incidentally, Schaffner also makes some of the most widely used, standard test equipment

for immunity surge-testing.

■ Note that the performance of most commercially available line filters is specified

with 50 Ω at both ends of the filter. Therefore its actual performance in a real power

supply may be quite different from what its datasheet says.

■ In general, the traces on the PCB corresponding to the filter section should be thick

and wide for low inductance. CM noise suppression also usually requires a very good

high-frequency connection to the enclosure. So, the relevant traces of the PCB

should be connected to the chassis through several metal standoffs if possible.

However, if standoffs are not feasible, the connection (to the enclosure) should be

made via thick braids of fine insulated wire. A “good” connection is usually also
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helpful between the enclosure and the earth wire (middle prong of the IEC inlet).

In that case braided wire can also be used. In the past, major power supply

manufacturers had their own special custom-made metal brackets to connect the

earth prong of the IEC inlet socket to the enclosure. But nowadays, standard IEC 320

inlets with built-in metal brackets are directly available, such as that from Methode

Electronics Inc. at www.methode.com.

Some Notable Industry Experiences in EMI

One of the most stubborn cases of conducted EMI failure encountered by the author was

ultimately (and rather mysteriously) solved by simply reversing the orientation of the CM

choke (turning it by 180◦ on the PCB). It was later deduced that the leakage from the core

was being picked up by a nearby trace or component, and so the phase of the coupling had

somehow become an issue (interference pattern). But since most inductors/chokes are

symmetrically built, and also do not carry any marking to distinguish one side from the

other, implementing such a fix was not easy in production. However nowadays, with so

many similar “orientation-sensitive” cases being reported (even relating to the main inductor

of the converter itself), some key inductor manufacturers have taken the step of placing a

‘polarity mark’ on their inductors/chokes.

In another well-documented EMI problem at a leading power supply manufacturing house,

it was discovered that the CM choke had to be rotated by 90◦ (not 180◦) to comply. That

clearly spells “bad news” if the unit is already in production, because it means the PCB

layout has to be redesigned (and perhaps the power supply needs to be requalified too).
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DM and CM Noise in Switching Power Supplies

Main Source of DM Noise

Now we turn our attention to a real power supply to see for ourselves where all the buzz is

really coming from. First consider what would happen if the input bulk capacitor of the

power supply had been a “perfect” capacitor: i.e. with zero effective series resistance (ESR)

(ignoring all other capacitor parasitics too). Then any possible differential noise source

inside the power supply would be completely bypassed by this capacitor. Clearly, the reason

this does not happen is the non-zero ESR of the bulk capacitor.

So the ESR of the input capacitor is the major portion of the impedance “Zdm” seen by the

DM noise generator. The input capacitor, besides being refreshed by the operating current

flowing in through the supply lines, also tries to provide the high frequency pulses of current

demanded by the switcher. But whenever current passes through any resistance, such as the

ESR in this case, there must be a corresponding voltage drop. So we will see a high

frequency voltage ripple across the terminals of the input capacitor. See Figure 11-1.

This high-frequency voltage ripple shown in Figure 11-1 is in effect the DM noise generator.

It is essentially a voltage source (VESR_hf), but producing noise in the form of a noise

current Idm.

However, we should take a closer look at Figure 11-1. The input line current flows through

the diodes only for a brief moment during the AC cycle. That’s when the diodes are forward

biased. But during the time the diodes are OFF (highlighted in gray on each waveform), the

high frequency switching current still continues to flow through the mosfet. This drives VESR

negative. So the high-frequency ripple continues to be seen on the HVDC rail (marked

“VIN”). But surprisingly, noise still appears on the line side of the supposedly reverse biased

diodes too. That indicates that the DM noise generator tends to behave as a current source

when the diodes are OFF (dragging in noise through the reverse-biased diodes). We can

look at this from another perspective. The bulk capacitor, because of its non-zero ESR is

incapable of providing all the entire high frequency content of the switching current. But the

inductor, being essentially a current source, is literally not going to take “no” for an

answer. The current must come from somewhere, even if it means dragging the voltage on

the anode the bridge rectifier diode momentarily low so as to extract current from that route.
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Figure 11-1: How DM noise is created

Therefore, the DM noise generator is modeled as a voltage source during the times when

the diodes are ON, but as a current source during the times when the diodes are all OFF.

The two models flip-flop back and forth at twice the line frequency. This could make it very

hard to analyze. However, it has been seen that if a small X-cap is placed immediately to the

left of the input bridge, then we can safely assume that the EMI spectrum is dominated by the

voltage source, and can thus ignore the current source model. See “C1” in Figure 10-1.

Also note that in Figure 11-1 we have shown Idm as going into L and out of N. In the

opposite half of the ac cycle, these directions will reverse, along with the ac line current

direction. So the DM current direction “sloshes back and forth” depending on which part

of the ac cycle we are on. Of course, from the point of view of the final EMI scan, this

makes no difference, as several ac cycles will be looked at by the analyzer for each

measurement.
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The Main Source of CM Noise

By definition, if there is CM noise, there must be some leakage path to Earth. But in power

supplies this path is quite unlike what engineers in other fields may be talking about. For

example, in many power supplies, we often use the enclosure to provide us with a fortuitous

“infinite heatsink” with which to cool our power devices. We need some electrical insulation,

since the tab of the power device is usually the drain of the mosfet, and that point is usually

swinging. An insulator for such a purpose needs to be a poor electrical conductor, but a good

thermal conductor — so we can cool the device, while still meeting safety requirements. But

we also know that whenever we have two metal plates with an interposing dielectric (the

insulator), we create a capacitance. From Maxwell’s laws we know that if we vary the

voltage across these plates, we create a magnetic field, and that is attributable to a current that

starts flowing through this parasitic capacitor. In our case, this corresponds to noise current

flowing into the earth — in other words “common mode noise.” The applicable equation is

I = C
dV

dt

Usually, we don’t have much control over the dV/dt, and nor do we really want to reduce it

too much in the interest of efficiency. So to reduce this current, we need to reduce C. But a

closer look at the root equations reveals a dilemma. The thermal resistance (Rth — in ◦C/W)

is given by

Rth =
1

ρ
×

d

A

where A is the cross-sectional area of the insulator in m2 (i.e. the interface area between the

device and the heatsink), d is the thickness of the insulator in m, and ρ is the thermal

conductivity of the insulating material (in W/m-◦C). However, the capacitance “C” (in F) is

given by

C = K × εO ×
A

d

where K is the dielectric constant of the insulator, and εO is the permittivity of free space

(8.854 × 10−12 F/m). Note that K is dimensionless, being the ratio of the permittivity of the

insulating material to the permittivity of air (free space), that is, K = ε/εO. It is also called

the relative permittivity, εr.

Therefore, combining the above two equations, we get Rth as a function of C:

Rth =
K × εO

C × ρ
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We can conclude that

■ The relationship between Rth and C does not depend on A or d — since only the

characteristics of the material remain in the equation above.

■ So, if we try to improve (decrease) Rth, the capacitance will definitely increase. And

that would clearly increase the CM noise current.

■ Because of the inverse proportionality, we can conclude that if we manage to halve

the parasitic capacitance, that will give us roughly a 6 dB improvement in EMI—

because CM emissions (in dB) would vary according to 20 × log(Ratio of C), and

we know that 20 × log(2) ≈ 6 dB. However, we can see from the curve that is also

accompanied by a doubling of the thermal resistance of the interface. So if, for

example, we previously had a 10°C difference from case to heatsink, we would

now have 20°C. And we also know that every 10°C rise of temperature doubles

the failure rate of the component (rule-of-thumb). So, we have to weigh the

consequences of trying to reduce EMI in this manner against reliability.

Typical values of parasitic capacitance that can be created in a power supply by the insulator

are presented in Table 11-1. Here we are comparing a traditional insulator material, mica,

with a modern choice, silicone rubber.

Note: Mica is a naturally mined mineral (mainly from India). Besides being cheap, it is a very good

thermal conductor, and a very poor electrical conductor. Therefore, it was the insulator of choice for many

years for mounting power semiconductors on heatsinks. It is still very popular in extra high-voltage

applications. However, in power supplies, it fell from favor mainly because of certain production issues —

particularly those revolving around the thermal grease that was always required along with it. Besides being

messy to apply and hard to control, thermal grease can evaporate slowly (at high temperatures), and this

causes a worsening of the thermal resistance over time. Modern materials like silicone rubber have an ability

to conform to fairly imperfectly flat surfaces. They therefore require no grease. In fact, the thermal resistance

actually falls with time for these insulators.

Table 11-1: Typical mounting capacitances

Package Area (cm2) Material K Thickness (mm) Capacitance (pF)

TO-3 5 Silicone Rubber 5 0.2 111

Mica 3.5 0.1 155

TO-220 1.644 Silicone Rubber 5 0.2 36

Mica 3.5 0.1 51

TO-3P 3.25 Silicone Rubber 5 0.2 72

Mica 3.5 0.1 101

TO-247F 2.8 Silicone Rubber 5 0.2 62

Mica 3.5 0.1 87
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From Table 11-1 we can see that mica creates higher parasitic capacitances despite a

lower K, and that is clearly attributable to the smaller thickness of insulator typically

required. The same happens when we use some of the modern, expensive, and yet popular

polyimide (not “polyamide”!) insulators which are excellent thermal conductors, but are also

very thin. These can be recognized by their typically amber color, and they come in various

brand names like Kapton, Kinel, Upilex, Upimol, Vespel, and so on.

So the question is — should we just put in another layer of insulator to solve our EMI

problem? In other words, what thickness of insulator do we really need?

The criterion to select a given thickness of insulator is normally based on maximizing

thermal performance (as thin as possible) while still complying with any applicable safety

requirements, like the required voltage withstand capability. European safety norms require

that basic or supplementary insulation be rated at least 1500 V-ac, whereas double or

reinforced insulation must be rated over 3000 V-ac. So, for example, a mica sheet of

0.06 mm thickness is typically rated 1000 V-ac, whereas 0.1 mm thick mica is typically

rated 1500 V-ac (or 2000 V-ac). Therefore 0.06 mm thick mica usually cannot be used

except as functional isolation. It can be used in low voltage dc-dc converters, or even in

off-line applications where the heatsink is not connected to the chassis/earth. If the line

voltage is always less than 130 V-ac (as for equipment intended for use only in the

United States), the mandatory dielectric withstand requirement for basic insulation is only

1000 V-ac. Therefore, 0.06 mm mica can be used as basic insulation (with earthing providing

the second level of protection). For general acceptability all across Europe, we may always

need to place reinforced insulation (rated 3000 V-ac) from primary side to earth —

irrespective of earthing (since lack of earthing doesn’t count as a fault condition in many

regions). In our case, that means two layers of 0.1 mm mica are always required when

mounting primary side power devices on to the chassis.

Note: It must be pointed out that some high-end power supply designs (e.g. military grade) use ceramic

insulators (e.g. beryllium oxide or aluminum oxide, the latter also called alumina). These offer very high

thermal conductivities — about 30–50 times better than mica (which has ρ = 0.7 W/m-◦C) and can

therefore be much thicker, so as to reduce the capacitance (they need to be thicker too, because they are

brittle). We note that beryllium oxide has toxic properties and is therefore not suited for a typical

commercial production environment. But use of these ceramic materials can significantly reduce the

capacitive noise. There is also an interesting rule called the “45° rule” (degrees of angle not temperature)

which has been used successfully by designers of such high-end converters. This rule indicates that you

actually decrease the thermal resistance by using larger thicknesses of insulator, basically because more

and more of the cross-sectional area of the insulator gets utilized as thickness increases. Note however that

like mica, thermal grease is required with these materials too, because of their inherently poor surface

finish.

Note: If we want to know how much thermal resistance is typically attributable to thermal grease, we must

remember that without this grease we would have air in the spaces between the device and heatsink, and that

is a very poor thermal conductor. Thermal grease lowers this interface resistance significantly by filling the
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spaces, but it does not establish zero thermal resistance either. We can usually model thermal grease as

leaving behind about 0.2°C/W of resistance for each square inch of area of contact. The thickness of the layer

of grease is not significant, only its area of contact. Knowing the total thermal resistance accurately should

help in making a better choice of the insulator and trading some thermal resistance off if necessary for

lowering the capacitive coupling.

Now we need to understand the physics behind common mode noise generation. We will also

see why the explanations usually given do not really apply to power supplies. Let us first list

two main reasons why this divergence should come as no surprise:

1. In power supplies the main leakage path to earth is not resistive, but capacitive.

We also know that in steady state the average current through a capacitor must be

zero. So there is no way that a constant leakage current can keep flowing into the

earth. It must be going back and forth so as to keep the average voltage across the

parasitic capacitance a constant.

2. In fact, the parasitic capacitance is not connected symmetrically to the two input

(rectified) dc rails. So why should the ground leakage current end up being shared

equally by the two lines?

Now let us look at Figure 11-2 to see the path the common mode current must actually be

taking. Note that we are ignoring the common mode currents that are injected to the

secondary side (earthed) through the primary-to-secondary parasitic capacitance present

inside the transformer.

We first observe the main path the CM noise current Icm takes (bold arrows) for this

particular half of the ac cycle. Note that both schematics (top and bottom) refer to the same

ac half-cycle — the top indicates the possible path of current whenever the switch is turning

OFF, and the lower schematic, the path when the switch is turning ON. Two diodes are

therefore shown as “reverse-biased” all the time, and assuming the diodes are “perfect,” only

the diodes shown in black tone in the schematics can conduct (even for CM noise). Note that

there are also some stray CM paths indicated (dotted arrows), through which a certain

amount of noise may be flowing. However, for now let us ignore these extra paths — in

particular the component marked “Y-CAP” on the schematic. We can then make the

following observations:

■ The upper half of Figure 11-2 shows what happens at the moment the mosfet is

turning OFF. The voltage on the drain suddenly goes high. We know that if the

voltage across any capacitor changes suddenly, a current is injected through

the capacitor, as given by I = CdV/dt. This injected current passes into the

chassis/earth, and in the process the capacitor acquires a small amount of charge.

■ The lower schematic shows what happens at the moment the mosfet turns ON. The

drain of the mosfet now goes low. So the parasitic capacitance has to give up all the
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Figure 11-2: How CM Noise Is Created

charge it acquired in the previous step (in steady state). The mosfet therefore turns

ON and discharges this parasitic capacitance completely, as indicated.

■ We note that when the switch was turning OFF, current was being pulled in through

the L wire. And when it turns OFF, the current is pushed out of the N wire. But the

latter is equivalent to a current of opposite sign flowing into the N terminal. So

eventually, we get the “spiky” CM current shown in the blurb to the right of these

schematics. Note that this CM noise is not “dc” as is often suggested in literature.

■ We have a non-symmetrical CM current flow. That is, we don’t have identical

currents at any given instant in the L and N lines. Further, when the next ac half-cycle

comes, the line current and the noise current pattern will get transposed between the

L and N lines. (Calling it CM noise is in that sense really a misnomer — just one of

the ways in which various terms seem to have gotten misapplied in this area).

■ Whenever we command the mosfet in any power converter to turn OFF, the inductor

does not allow the current in the mosfet to change — until a freewheeling path is
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available. The freewheeling path is provided by the catch diode (not shown in

Figure 11-2). But for this diode to become “available” (conduct) it must get

forward-biased. Which means that the voltage across the mosfet has to rise fully,

before the current through it even starts to diminish. But for the mosfet voltage to

rise up, all the parasitic and non-parasitic capacitances preventing it from doing so

must get charged up too. We know that, for example, one of these capacitors is the

drain-to-source capacitance (the COSS of the mosfet). Another such capacitor that we

can now identify is the parasitic mounting capacitance to earth. Therefore, in its

case too, the inductor current is responsible for pushing current through it (thereby

charging it up as required). In other words, the parasitic capacitance “brings the

whole weight of the inductor to bear” on the situation. And that is the reason why in

a switching power supply, the so-called “CM noise generator” is said to behave as a

current source.

■ Now, the drain-to-source capacitance has to get charged up for the diode to start

freewheeling, because the other end of this capacitance is firmly connected to a fixed

voltage rail (the primary side ground). However, in principle, the parasitic

capacitance to earth need not get charged up at all (for freewheeling to be realized).

In fact, we can “enforce” zero current flow through this parasitic capacitance by

simply breaking the galvanic connection (continuity) to the earth wire (that is coming

in from the mains — assuming no filter stage is present so far). And as expected, this

then has no effect on the actual switching process. But what we have done in the

process is allowed the enclosure (the other side of this capacitor) to “float.” Let us

see how that happened. The leakage current through the parasitic capacitor is related

to the dV/dt across the parasitic capacitor by the equation I = CdV/dt. So if this

parasitic charging current is made zero (by breaking its path), the dV/dt must be zero

too. However, on one side of this capacitor, we have a fixed dV/dt (with respect to

ground) — created by the switching of the mosfet. So the only way the dV/dt across

this parasitic capacitor can be zero is if both plates of the capacitor have the same

dV/dt, that is, no net change in the voltage across the capacitor. What all this simply

means is that if we don’t have a galvanic connection to the earth wire, the enclosure

will eventually develop a dV/dt exactly equal to that present on the drain of the

mosfet, and it will therefore start radiating. So we may have succeeded in improving

the conducted emissions spectrum (by virtually disallowing CM noise from entering

the mains wiring), but we are surely stuck with a radiation problem now.

■ Therefore what we really want to do is to provide a path for the CM current to

flow. By doing this, we can prevent the dV/dt from developing on the chassis.

For minimizing noise in general, we must actually ensure that all the grounding

(earthing) connections — from the PCB to the enclosure, and on to the earth wire,

are good. Any intervening PCB traces should also be wide, and of low inductance.
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■ But having now allowed the Icm to flow, how do we control (or limit) it!? First,

we need to prevent it from creating strong electromagnetic fields. So our main goal

should be to minimize the loop area of the CM current path, so as to prevent it from

becoming an effective H-field antenna. We also need to divert this current away

from the mains wiring (by providing an alternate path — and thereby returning

the current to its source). We thus realize the important role played by the two

additional Y-caps marked ‘Y-CAP’ in Figure 11-2 (connected between the rectified

dc input rails and earth). One or the other, or both of these capacitors, are commonly

seen in commercial power supplies, and they always help in providing several

valuable decibels of additional EMI suppression. They must be placed very close to

the mosfet — and with low inductance connections (via standoffs in the enclosure

for example).

■ Since these additional Y-caps hardly pass any ac line frequency leakage current into

the earth (being on the rectified side of the bridge), they are not subject to the

previously described safety considerations regarding ground leakage currents.

Therefore we can make them quite large in capacitance. However, as per safety

regulations, we still can’t ignore what their voltage rating needs to be. So in this

position, we usually need two Y2 caps in series (or a single Y1 cap).

■ We can see that the CM noise in power supplies tends to be “non-symmetric.”

However, the X-cap and Y-caps just before the diode bridge (i.e. toward the incoming

supply lines) help in distributing this noise almost equally between the L and N lines.

And that is important if we want the common mode filter that follows to work as

envisaged. Otherwise, we will find that it isn’t working as well as we expected. And

if we didn’t know better, we could be needlessly trying to increase the size of the

CM choke (but we may need to try increasing the DM choke!).

■ Even seasoned engineers are often extremely nervous about chassis-mounting of

power devices. Often they can be coaxed into mounting the output diodes in this

manner, but not the high-voltage mosfet. But actually, if the Y-caps shown in

Figure 11-2 (marked “Y-CAP”) are provided for, and they return the injected noise

back very close to the mosfet, there is really no problem. To help this process, a metal

standoff from the enclosure to the PCB should be positioned very close to where the

mosfet is mounted, and a Y-cap from the drain can then be connected right there (see

Figure 11-3).

■ Effective CM noise suppression usually requires a very “good” connection to earth.

So the earth traces should be very thick and preferably straight — along the length of

the PCB — with several metal standoffs if possible, to establish good high-frequency

connection from the PCB to the chassis. If this is not done, and supposing the

connection is made only toward the ac inlet, and also with wire that is not of very
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Figure 11-3: How to Mount Power Devices on the Enclosure

low inductance, the enclosure can start radiating as indicated in Figure 11-4. We can

visualize that board-mounted IEC inlets will work much better because of the more

direct connection they can provide to help return the CM noise back to its source.

■ The entire loop of the PCB traces (up to the input side) as shown in Figure 11-4

needs to be thick and short. Unfortunately, this often tends to be necessarily long,

considering board layout constraints, and all the other components that need to be

mounted on it. So in that case we can provide a high frequency decoupling capacitor

from the HVDC to primary ground, very close to the mosfet.

Note: Copper traces can’t provide a very low inductance if they are long, however wide they may

be. We must remember that though halving the length of any trace does roughly halve its

inductance, we have to increase the width of a trace by a factor of 8 to 10 to halve its inductance

(see Chapter 6).

■ Some engineers try to get the “best of both worlds,” by mounting the device on the

enclosure, but with special insulators — which come with a built-in ‘Faraday shield.’

This is actually just a thin metal layer sandwiched between layers of insulator. It is

supposed to be connected on the PCB to primary ground, and thereby it ‘collects’ the

injected noise and returns it, without letting it pass into the enclosure. However

because of safety requirements, such composite insulators are usually very thick, and

their thermal resistance is usually unacceptably high — defeating the very purpose of

chassis-mounting.
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Figure 11-4: Preventing the Enclosure from Radiating

■ A “ground choke” should be avoided at all costs. Think of what it can do if we

put this in Figure 11-4, say on the wire connecting the PCB to the power inlet.

See the following discussion.

The Ground Choke

We ask — is it really a good idea to place a small inductor (e.g. a bead or small toroid with a

few turns) somewhere in the earth connection? Suppose we place it on the wire connecting

the ac inlet to the enclosure (or PCB to inlet). This is then called a ‘ground choke’ or ‘earth

choke.’ It is commonly found on low-power evaluation boards (from vendors promoting

their “clever” IC solutions), but rarely seen on a commercial power supply.

We first note that the idea of such a choke seems to be at odds with our previous suggestion

of a good high frequency connection to earth. When we place the ground choke, we are

basically trying to prevent conducted CM noise from flowing into the mains wiring. But in

return, we may have a radiation problem. In addition to that, there are industry-documented

cases where the ground choke has caused severe system problems. For example if a power
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supply is turned on at the peak of the input ac waveform, it produces a very high initial surge

of charging current through the Y-caps. If there is a ground choke present, it causes the

voltage on the earth traces and the enclosure to locally “bump up.” Now in most cases, the

return of the output rails of the power supply is also connected directly to the enclosure, and

forms the ground plane for the entire system. The system would also typically connect to the

chassis/enclosure at several points downstream. So this surge-induced bump, around the

power supply, causes severe imbalances across the system ground plane — leading to data

upsets and even destruction of the subsystems. A similar situation will arise during ESD

testing and conducted immunity testing, in which surge voltages are applied from line to

line, or from line to earth. So however tempting it may seem to the power supply designer

(who is focused only on solving his or her conducted mode EMI problem, and going home!),

a ground choke should be avoided at all costs. Some high-voltage semiconductor companies,

who are only making open-frame (enclosure-less/standalone) evaluation boards, seem to

have nothing to lose, and everything to gain, by putting in a ground choke. They know that

being open-frame anyway, no one expects them to comply with any radiation limits. So they

quietly push the problem they may have been seeing in their conducted emissions plot —

toward a future radiation emissions saga for the systems designer. Beware!
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Fixing EMI across the Board

1-oz (okay 2-ounces!) of prevention are always better than cure. So here we look at some of

the practical design aspects involved in controlling and testing EMI.

The Role of the Transformer in EMI

Very often an engineer resolves a stubborn EMI problem by just ‘playing’ with the

transformer. The transformer comes into the picture in the following ways:

■ With its windings carrying high-frequency current, it becomes an effective H-field

antenna. These fields can impinge upon nearby traces and cables, and enlist their

help in getting transported out of the enclosure, via conduction or radiation.

■ Since parts of the windings have a swinging voltage across them, they can also

become effective E-field antennas.

■ The parasitic capacitance between the primary and secondary windings transfers

noise across the isolation boundary. Since the secondary side ground is usually

connected to the chassis, this noise returns via the earth plane, in the form of CM

noise. The situation is very similar to the tradeoffs required in heatsink mounting

issues. In this case, we wish to couple the primary and secondary very close to each

other in order to reduce leakage inductance (especially in flyback transformers),

but this also increases their mutual capacitance, and thus the CM noise.

Here are some standard techniques that help prevent the preceding:

■ In a safety-approved transformer, there are three layers of safety-approved polyester

(“Mylar®”) tape between the primary and secondary windings — for example the

popular #1298 from 3M (at www.3m.com). In addition to these layers, a copper

‘Faraday shield’ may be inserted to “collect” the noise currents arriving at the

isolation boundary, and diverting them (usually to the primary ground). See

Figure 12-1. Note that this shield should be a very thin strip of copper foil, so as to

avoid eddy current losses and also keep the leakage inductance down. So, it is

typically 2 to 4 mils thick, consisting of one turn wound around the center limb.
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Faraday Shield
(electrostatic screen)

Flux Band
(magnetic screen)

Figure 12-1: Screens used for transformers

A wire is soldered close to its approximate geometric center and goes to the

primary ground. Note that the ends of the copper shield should not be galvanically

connected together, as that would constitute a shorted turn from the viewpoint of the

transformer. Some designs also use another Faraday shield, on the secondary side

(after the three layers of insulation). This is connected to the secondary ground.

However, most commercial ITE (information technology equipment) power supplies

don’t need either of these shields, provided adequate thought has gone into the

winding and construction, as we will soon see.

■ There is usually also a circumferential copper shield (or “flux band”) around the

entire transformer. See Figure 12-1. The ends of this shield can be, and usually are,

shorted (soldered) together. It serves primarily as a radiation shield. This is often left

floating in low-cost designs. However, it may be connected to the secondary ground

if desired. And if so, safety issues will need to be considered, in regard to the

requirement of reinforced insulation between primary and secondary, and also the

required primary to secondary ‘creepages’ (distance along the insulating surface) and

‘clearances’ (shortest distance through air) as applicable. When the transformer uses

an air gap on its outer limbs, the fringing flux emanating from the gap causes severe

eddy current losses in the band. So this band is also usually only 2 to 4 mils thick.

Like the Faraday shield, this too can often be omitted by good winding techniques.

■ To reiterate, from the point of view of EMI, a flyback transformer should be

preferably center-gapped, that is, no gap on its outer limbs. The fringing fields from

exposed air gaps become strong sources of radiated EMI besides causing significant

eddy current losses in the surrounding copper band.
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22pF
Control

VIN

VOUT
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BOBBIN

SAFETY BARRIER
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START

Transformer
Start

Transformer
Start

Figure 12-2: Low-noise Transformer Winding Technique

■ There is usually an auxiliary winding present on the primary side, which provides a

low voltage rail for the controller and related circuitry. One end of this is connected

to primary ground. Therefore, it can actually double over as a crude Faraday shield

if we a) wind it evenly and spread it out over the available bobbin width, and b) we

help it collect and divert noise by ac-coupling its opposite end (i.e. the diode end)

to primary ground, through a small 22 to 100 pF ceramic capacitor as shown in

Figure 12-2.

Figure 12-2 also reveals a low-noise construction technique, as applied to a typical flyback

transformer. We should compare the right-hand schematic with its equivalent “winding”

version on the left. In the following discussion, we note that though transformers with split

windings are not being explicitly discussed here, the same principles can be easily extended

and applied to them too. Here are some observations on Figure 12-2.

■ Since the drain of the mosfet is swinging, it is a good idea to keep the corresponding

end of the primary winding buried as deep as possible, that is, it should be the first

layer to be wound on the bobbin. The outer layers tend to shield the fields emanating

from the layers below. For sure, the drain end of this winding should not be adjacent

to the ‘safety barrier’ (the three layers of polyester tape), because the injected

noise current is proportional to the net dV/dt across the two “plates” of the parasitic

capacitor (formed by the windings on either side of the interface). Since we really

cannot reduce the capacitance much (without adversely impacting the leakage

inductance), we should at least try to reduce the net dV/dt across this interface

capacitor.
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■ Comparing the diagram on the left with its schematic on the right, we see that the

“start” and “finish” ends of any winding have also been indicated. In particular, all

the start ends have been shown with dots in the schematic. Note that in a typical

production sequence, the coil winding machine always spins the bobbin in the same

direction, for every layer and winding placed successively. Therefore, since all the

start ends (i.e. dotted ends) are magnetically equivalent — if one dotted end goes

high, the other dots also go high at the same moment (as compared to their opposite

ends). We can also see that from the point of view of the actual physical proximities

involved, every dotted end of a winding automatically falls close to the nondotted end

of the next winding (with the usual fixed winding direction). This means that for the

flyback transformer of Figure 12-2, the diode end of the secondary winding will

necessarily fall adjacent to the safety barrier. And because of that we will have a

certain amount of dV/dt still present across the barrier. But note that this dV/dt is

much smaller than if the drain end of the primary winding was brought adjacent to

the safety barrier (because of the bigger voltage swing on the primary side, due to

the large turns ratio). However, the transformer as shown in Figure 12-2 now has the

advantage that the “quiet end” (ground) of the secondary winding is now the

outermost layer. That is by itself a good shield. So we can safely drop the ubiquitous

circumferential shield (flux band). Consider the alternative — suppose we had

wound the transformer the “wrong” way, that is, by reversing all the start and finish

ends shown in Figure 12-2. That would have brought the drain end of the primary

winding right next to the safety barrier, with the secondary ground end (which is

usually connected to the chassis) directly across the isolation boundary. With this

winding arrangement, we would have a healthy dose of CM noise injected directly

into the chassis/earth — not the best way to achieve compliance for sure!

■ When we go through the same reasoning for a forward converter transformer, we

will find that with the described winding sequence, we will automatically have the

quiet ends of both primary and secondary windings overlooking each other across

the safety barrier (isolation boundary). That is because the relative polarities between

the primary and secondary windings in a forward converter are opposite to those of a

flyback transformer. So now, very little noise will be injected through the parasitic

capacitance. That is good. But the outermost layer is not “quiet” anymore, and we

could have a radiation problem. So in this case, the circumferential shield may

become necessary.

■ Another way out of the forward converter “outer surface radiation problem” is to ask

production to reverse the direction of the secondary winding (only). So for example,

if up to the finish of the primary winding, the machine was spinning clockwise, for

the secondary we should specify an anticlockwise direction (with expected resistance

coming, not from the transformer, but our production staff!). If we do that, the
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reasoning given previously for the flyback will now apply unchanged to the forward

converter transformer too. So we would now have a “quiet” exterior (without any

flux band necessary), though some more common mode noise transferred across the

isolation boundary, due to the dV/dt. Note that in general, aiming for a “quiet”

exterior seems to be a better option than trying solely to prevent noise injection

through the interface capacitance, because the latter can be overcome by various

tricks — like having the auxiliary winding double over as a Faraday shield, and so

on. But a radiation problem can be hard to manage. We do note however, that a

forward converter transformer has no (or very small) air gap, so it is generally

considered “quieter” in terms of radiation to start with (as compared to a flyback).

Tip: We don’t need to draw any current at all from this ‘Faraday winding’ to make it work. So it need not

even be required by our circuitry (for an auxiliary rail). In that case, we could just wrap a few turns of thin

wire (spread out evenly), with one end of it connected to primary ground, and the other end via a small

22 pF capacitor to primary ground. This technique certainly saves production costs associated with the

making and placing of a formal Faraday shield — not to mention the improvement in efficiency due to the

reduced leakage inductance (as compared to what a formal Faraday shield may lead to). In that sense, this

informal Faraday shield is a very useful idea, certainly worth trying out.

■ When the transistor is mounted on the chassis for thermal reasons, there is a

technique that is used to actually try and cancel the current injected through the

heatsink capacitance. This is done by placing another winding, equivalent to the

main winding, and opposite in phase (though it can be of much thinner wire).

See Figure 12-3. The idea is that if the noise current is being pushed out from

the primary winding, the cancellation winding gets the same current pulled in.

Therefore in effect, the injected current does a quick “U-turn” back to its noise

source. Note that this additional cancellation winding should be very closely

coupled to the main winding. Often it is wound bifilar with the primary winding

(i.e. both wound simultaneously, rather than one on top of the other). However we

Figure 12-3: Cancellation Winding to
Reduce CM Noise

opposite in
phase

similar
capacitance

Icm

393



Chapter 12

should be aware that in that case, we will have a high voltage differential between

the two windings at points along their length. So if, for example, there are pinholes

in the enamel insulation, there is a danger of flashover and resulting failure of the

power supply. The solution is to use wires with “double insulation.”

Note: This technique does nothing to cancel the noise injected through the interface capacitance

(i.e. between the primary to secondary windings). But despite that limitation, a 10 dBµV reduction in

conducted EMI is still possible (at various points in the EMI spectrum). So this could certainly be worth

trying out, if there is a last-minute problem and a major redesign of the board needs to be avoided.

It therefore may be prudent to plan for this winding in advance, including a PCB placeholder for the

additional capacitor.

Note: The above idea can clearly be applied to any off-line topology (and also all high-power dc-dc

converters) — whenever the switch needs to be mounted on the chassis/enclosure (and its tab is swinging).

A similar technique may be useful on the secondary side too, if suppose the catch diode is to be mounted on

the chassis. However this secondary-side heatsink noise injection is of concern only when the tab of the

diode (which is almost invariably the cathode of the diode) happens to be the switching node for that

particular topology/configuration. So we can work out that the normal boost and flyback topologies don’t

have this problem, since the cathode end of their diodes are “quiet.” However, the (positive-to-positive) buck

and the forward converter do have swinging cathodes (tabs), so we should be careful when chassis-mounting

their diodes.

■ Rod inductors are often used in LC post-filtering stages on the output. Because of

their open magnetic structure, they have been called “EMI cannons.” But they are

nevertheless still popular because of their low cost, and also the low “real estate”

they need. Some tricks have therefore been developed to control their ill-effects.

First, they should be placed vertically (as they normally are). Further, if two such

rods are being used on a given output, we should wind the two rods identically, but

reverse the current flow in one of them, as compared to the other (by suitable

modification of the PCB). See Figure 12-4. So, looking from the top, one rod should

be carrying current clockwise and the other anticlockwise. This helps redirect the

flux from one, back into the other (“U-turn”). In that way, much less “EMI-spilling”

occurs.

EMI from Diodes

Here we list some of the things to keep in mind and try out, regarding diodes:

■ Diodes are a potent source of low- to high-frequency noise. Slow diodes (like those

in a typical input bridge) can also contribute to such noise.

■ Input bridges that use ultrafast diodes are available, and their vendors claim

significant reduction in EMI. But in practice they don’t seem to provide much

advantage. They also typically have much lower input surge current ratings. In fact
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FLUX LINES

PATH OF
CURRENT

Figure 12-4: Correct Way to Use Rod Inductors

in a front-end position, any component always needs to be able to handle a lot of

stress (if not abuse), such as the stresses occurring during power-up at high line.

■ To minimize EMI, ultrafast diodes should be selected on the basis of softer

reverse recovery characteristics. For medium- to high-power converters, RC

snubbers are also often placed across these diodes (at the expense of some

efficiency). In low-voltage applications, Schottky diodes are often used. Though

these diodes have no reverse recovery time in principle, their body capacitance can

be relatively high, and can end up resonating with PCB trace inductances. So an RC

snubber is also often helpful for Schottkys. Note that if any diode has fully recovered

(i.e. zero current) before the voltage across it starts to swing, there is no reverse

recovery current. In that case, diodes really don’t have to be ‘super-super-fast.’
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In fact many engineers have reported much lower EMI by choosing slower diodes

for snubbers/clamps. A popular choice for snubber applications is the soft-recovery

fast diode BYV26C (or BYM26C for medium power) from Philips.

■ It is advisable to have the mosfet switch roughly two to three times slower than the

reverse recovery time of the catch diode — to avoid shoot-through currents — that

will produce strong H-fields (in addition to causing dissipation). Therefore it is not

uncommon to intentionally degrade the mosfet switching speed by adding a resistor

(typically 10 Ω to 100 Ω in off-line applications) in series with the gate — maybe

with a diode across the gate resistor so as to leave the turn-off speed unaffected

(for efficiency reasons).

■ Small capacitors may often be placed across the mosfet (drain to source). But this

can create a lot of dissipation inside the mosfet, since every cycle the capacitor

energy is dumped into the mosfet. (P = 1/2 × C × V2 × fSW).

■ Ultrafast diodes also exhibit high forward-voltage spikes at turn-on. So momentarily,

the diode forward voltage may be 5 to 10 V (rather than the expected 1 V or so).

Usually, the snappier the reverse recovery, the worse is the forward spike too.

Therefore, at mosfet turn-off, the diodes become strong E-field sources (voltage

spike), whereas at mosfet turn-on, the diodes will generate strong H-fields

(current spike). A small RC snubber across the diode will help control the forward

voltage spike too.

■ In integrated switchers, access to the gate of the mosfet may not be available. In that

case, the turn-on transition can be slowed by inserting a resistor of about 10 Ω to

50 Ω in series with the bootstrap capacitor. The bootstrap capacitor is in effect the

voltage source for the internal floating driver stage. At turn-on, it is asked to provide

the high current spike required to charge up the gate capacitance of the mosfet. So a

resistor placed in series with this bootstrap capacitor limits the gate charging current

somewhat, and thereby slows the turn-on.

■ To control EMI, ferrite beads (preferably of lossy nickel-zinc material) are sometimes

placed in series with catch diodes (often slipped on to their leads), such as at the

output diode of a typical off-line flyback. However, these beads must be very small,

as they can have a significant effect on the efficiency of the power supply.

Note: In multioutput off-line flyback converters, we may find larger beads (possibly with more than one

turn, and made of the more common manganese-zinc ferrite) in series with the output diodes belonging to

some of the auxiliary outputs (i.e. those not being directly regulated). But the purpose of these beads is not

EMI suppression, but to block some of the voltseconds and thereby improve the “centering” of the outputs.

■ A comment about split/sandwich windings. In general, the primary winding may be

broken up into two windings, which are then positioned on either side of the

secondary winding — so as to reduce leakage inductance in flybacks, and proximity
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Not Recommended Recommended

Figure 12-5: Correct Way to Parallel Windings

effect losses in forward converters. This is acceptable for EMI provided the two split

winding sections are in series. In general, putting windings in parallel is not a good

idea (especially from the EMI point of view). In high-current power supplies, the

secondary winding is also sometimes broken up into two windings (or foils).

The intention is usually to increase the current handling capability. See Figure 12-5.

But these split secondaries are also usually placed physically apart, on either side of

the primary winding. However, in paralleled windings, the two supposedly “equal”

sections are actually always magnetically slightly different — because of their

different physical positions inside the transformer. Plus, their DCR is also just a

little different (different lengths), creating the possibility of an internal current loop.

The designer may be completely unaware of this, except for the severe tell-tale

ringing on the voltage waveform, and a mysteriously bad EMI scan. So if paralleling

is really needed, it is better to use the scheme in the right-hand side schematic of

Figure 12-5. Here the forward-drops of the two diodes help “ballast” the windings,

and this also helps “iron out” any inequality between the two halves.

Beads, and an Industry Experience — the dV/dt of Schottky Diodes

In a very high-volume power supply design and manufacturing house, the following situation

arose. The output Schottky diode of an off-line 70 W flyback had a small but unacceptably

mysterious “ppm” (parts per million) failure rate in production testing. Finally, by careful

analysis, this was traced to a very slight wiggle (ringing) somewhere in the middle of the

turn-off waveform of the diode. Then, by drawing asymptotes, it was seen that the dV/dt

rating of that particular diode was being momentarily exceeded at the point of the wiggle,

thus probably causing its failure (no other overstress could be seen). A small ferrite bead was

inserted on the leg of the Schottky diode. This smoothed out the wiggle, reduced the EMI

dramatically in the bargain, and as a proof of the hypothesis, no Schottky failures were
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seen thereafter. There was a 1 to 2% loss in overall efficiency though. So, not all Schottkys

are created equal. We must be conscious of the different dV/dt ratings they can have,

depending on their vendors. And also of the leakage current through them, which can not

only cause loss in efficiency, but in certain cases anomalous behavior — like premature

current limiting at turn-on (especially in integrated switchers where the switch drop is being

sensed for implementing current limiting).

Note: On the topic of beads, note that beads also sometimes have been put in series with the mosfet. But

we should not put any such bead in the source. If we do so, then during crossover transitions, the source pin

(with bead) can develop spikes. And since the gate is referenced to the source, not the drain, this can lead to

a spurious turn-on, resulting in reliability issues. Therefore, a bead, if necessary, should be placed only on

the drain side of the mosfet. True, this extra uncoupled inductance can also cause a small spike in principle,

but in practice, that is rarely an issue. For the same reason, if we want to monitor the current in the mosfet

by means of a current probe, we should place the loop of wire (to slip the probe tip on to) on the drain side,

never on the source.

Basic Layout Guidelines

For each topology, we need to carefully figure out which PCB trace segments are “critical”

in terms of layout and EMI. “Critical” traces are “high-frequency current sections” — in

which current is forced to either start flowing or stop flowing (suddenly) at the instant of

turn-on or turn-off. So at each transition we get a very high dI/dt across such traces. Further,

from the rule-of-thumb “20 nH per inch of trace,” we get a voltage spike according to

V = LdI/dt. These spikes can not only cause a lot of EMI, but can also infiltrate into the

control sections of the IC, causing anomalous behavior (and possibly switch destruction).

To minimize the fields, and simultaneously reduce the associated inductance, the area

enclosed by such high-frequency current loops must be minimized. Therefore, analyzing the

topologies from this viewpoint, we get the results summarized in Table 12-1. All traces

leading to components marked “Critical” must be kept very short (and not too thin!).

The corresponding high-frequency loop areas will then be minimized automatically.

We indicated above, that layout concerns and EMI concerns generally overlap. In other

words, what is good in terms of layout (ensuring proper performance) is also good for EMI.

There is, however, one possible exception to this trend — in particular we need to be careful

Table 12-1: Good component placement

Input Cap Output Cap Catch Diode Inductor

Buck Critical Not Critical Critical Not Critical

Buck-Boost Critical Critical Critical Not Critical

Boost Not Critical Critical Critical Not Critical
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about inadvertently making traces that have a swinging voltage on them too wide, as they

can become good E-field antennas. The prime example is the trace at the switching node of

any topology. We may be wanting to increase its copper area, for the purpose of lowering

parasitic inductance and/or helping dissipate heat from the mosfet or catch diode, but we

must do this judiciously.

The ground plane is a very effective method of bringing down the overall level of the EMI

emissions. On a multilayer board, if the very next layer to the side containing the power

components (and their associated traces) is a ground plane, the EMI can drop by about

10 to 20 dB. This is clearly more cost-effective than opting initially for a “cheap” one- or

two-sided board, and then having to use bulky filters later. However the integrity of a

ground plane should be maintained, as far as possible. For this, we should remember that

return currents tend to travel by the shortest straight line path at low frequencies. But at high

frequencies (or the higher harmonics of the waveform), the return currents tend to image

themselves directly under their respective forward traces (on the opposite layer). Therefore,

currents, given a chance, automatically try to reduce the area they enclose — as this lowers

the self-inductance, and thereby offers the current the lowest impedance route possible

(at low frequencies, trace impedances are resistive, but at high frequencies they are

inductive). So in particular, if we make ill-considered cuts in the ground plane (possibly with

the intention of “conveniently” routing some other trace), the return currents of the power

converter stage (which really need this ground plane) will get diverted along the sides

of any intervening cuts. And in doing so, will form effective slot antennas on the PCB.

Last-ditch Troubleshooting

It is helpful to separate the CM and DM components to be able to study them and debug a

bad EMI scan. But a standard LISN reading only provides a certain weighted sum of the total

conducted noise (CM and DM). Therefore, unless special accessories are available (including

a modified LISN), we can only guess which part of the EMI scan is mainly DM and which is

CM. So we may never know the root cause of the noise either. In Figure 12-6 we have shown

two current probes, wired up in such a way that they are actually performing “simultaneous

equation” math on the L and N wires — to separate the CM and DM components (also

see Figure 9-1 in Chapter 9). Note that by doing these two measurements at the same time

(using two probes rather than one), we have also retained valuable information about the

relative phase relationship, existing between the CM and DM components.

Note: The bandwidth and current capability of the current probes used for noise measurements are

important. Popular choices for such probes are from Pearson Electronics and Fischer Custom

Communications at www.pearsonelectronics.com and www.fischercc.com, respectively. For very high

currents (up to thousands of amperes if necessary), a possible choice are current probes based on the

“Rogowski principle.” This type of probe is available from several manufacturers, for example Power
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Figure 12-6: Using Two Current Probes to Separate DM and CM Noise Components

Electronic Measurements Ltd. at www.pemuk.com. These probes are not the usual current transformer type.

The output from a Rogowski probe depends not on the instantaneous current enclosed, but on the rate of

change of current. So, instead of just placing several turns around the wire to be sensed, as in a typical

current transformer, the Rogowski probe effectively takes an air-cored solenoid and then bends that in a

circle around the sensed wire (like a doughnut). Such probes are also considered virtually noninvasive.

The usual lab active current probes (which also measure dc, and therefore include a Hall sensor) are usually

just not suited for these high-bandwidth noise measurements.

Note: When viewing pulse transition times below 100 nanoseconds, or emission noise frequencies above a

few megahertz, it is advisable to keep the cable length small. Thereafter, we must terminate the cable at the

oscilloscope, or measuring instrument, with a 50 Ω resistor. However, most modern oscilloscopes

incorporate a selectable 50 Ω input impedance. Correct termination of cables prevents standing wave effects.

Note that, with this 50 Ω termination, the measured voltage is approximately half of what it really is because

we essentially have a voltage divider formed by the cable and the terminating resistor. Oscilloscopes will

usually automatically correct for this, if they ‘know’ that there is a 50 Ω termination present. Also note that

fast-rising pulses can produce spurious ringing, due to high-frequency current crowding on the surface of the

cable shield. This can be suppressed by threading the measurement cable through one or more ferrite beads

(or toroids). For example, Pearson reports that they obtained good results by placing three turns through four

ferrite cores of about one inch inside diameter, two inches outside diameter, and 1/2 inch thickness.
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Note: A quick diagnostic test for understanding a particular high-frequency conducted EMI problem

(measured by a LISN at the inputs of the power supply) is to twist the output cables of the power supply

tightly together (along with their respective return wires). This induces field cancellation (also called flux

containment), thus reducing the radiation from the output cables (if present).

This procedure was actually implemented in full production on a particular high volume commercial

design. A few tie-wraps were used to hold the bunch of wires tightly together in the twisted position. This

happened to be a last-ditch effort to avoid costly last-minute redesign, just before full production. This

“twist-and-tie-wrap” technique is admittedly not very practicable or desirable, in production. But it is cheap.

Note that a ferrite sleeve slipped over the entire output cable bunch was also working equally well, if not

better. But it was disqualified simply because it was far more expensive than three tie-wraps! However, it is

interesting to note here, that even though a ferrite sleeve may look like a radiation shield (and smell like one

too! — and even produce almost the same results as twisting the cables produces, it actually works by

reducing the common mode noise currents themselves, not merely by “shielding” the EMI arising due to them.

Twisting, on the other hand, simply tries to cancel the fields of adjacent wires (with their returns). Looking

back, in this particular case, the root cause was that there was obviously a significant amount of common

mode noise already present on the output, which was causing the output cables to radiate. The radiation was

thereafter being picked up by the input cables, leading to the failed conducted EMI test.

In Figure 12-7, we show a practical technique to separate that part of the conducted

emissions spectrum that is due to radiation from within the converter. We see how to learn to
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Figure 12-7: Analyzing Magnetic and Electric Field Sources Inside a

Power Supply
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identify these as E-fields or H-fields. For this, we need to cut the PCB traces just before the

input bridge, and then route the ac power from a canned filter outside the enclosure.

The ends of the existing filter are kept either open (to receive E-fields) or connected together

through a small loop (for seeing the H-fields). The other end of this EMI filter is then routed

as usual to the LISN and spectrum analyzer. We can thus see this “extraneous” (radiation-

based) noise. It will give us an indication if a heatsink, for example, is causing severe

E-fields, or if a certain magnetic component is causing severe H-fields. We can also wave a

small plate of thick copper (connected to earth) in suspected areas to see which component

may be the actual source of the fields. However, for analyzing the source of magnetic

near-fields, a slab of ferrite (from a typical EMI suppression kit) works far better than a

copper plate (this can be waved around similarly — but there is no need to earth it).

Caution: AC power is NOT to be applied through the LISN. This will cause a serious hazard. Also the

plate/slab must be well-wrapped in tape to prevent accidental contact with components.

Are We Going to Fail the Radiation Test?

Most of the smaller companies cannot afford a precompliance setup for radiated emission

tests. However a few of them have a fairly good idea beforehand whether they are going to

be successful in that test or not — just by looking hard at the conducted EMI scan. What

they do is to look carefully at the spectrum in the third region of CISPR 22. This is the flat

region from 5 to 30 MHz. They can even scan higher to higher frequencies, if possible.

They realize that even though they may have achieved compliance with the conducted limits

in this third region, it is not good enough! So, they look at the overall shape of the plot in

this region. If they find that it is gradually rising toward the 30 MHz end, they are quite

confident that they have a radiation problem. However, if the plot starts drooping, or remains

generally flat as 30 MHz approaches, they are likely to submit the prototype immediately to

a lab for the formal radiated limit compliance certification. In other words, we can actually

“see” the energy level in the 5–30 MHz region. If there is an undue amount of conducted

noise energy in this region, radiation can’t be too far off either!
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Input Capacitor and Stability Considerations

in EMI Filters

There are certain things we may do unintentionally at the input of the converter that

can have a major impact on the performance of the EMI filter, and also the converter

itself. If we don’t know the rules of the game, we can end up saturating our filter chokes

and even inducing instability.

Is the DM Choke Saturating?

Part of the designer’s average “EMI troubleshooting day” may involve taking a core from

the shelf and placing some turns on it. But the temptation of winding a few more turns

(to increase the inductance) may just do it — the core could start saturating, rendering it

less and less effective. But how could we have known that?

The simplest equation to check if a core is saturating or not is

B =
LI

NAe
teslas

where L is the measured inductance in H, N the number of turns, and Ae is the effective area

of the core in m2. Note that Ae is simply the normal geometric cross-sectional area of the

core. If it is an E core, we would take the area of the center limb (or twice the area of each

side limb, whichever is smaller, though usually, either way we get the same result). So if we

plug in the peak current we can calculate the peak B-field in the choke. If we know the

material of the core, we probably already know its saturation flux density BSAT. Then we can

easily check if the core is saturating or not. Note that BSAT for powdered irons is usually

around 10,000 gauss (1000 mT or 1 T) and for ferrites it is 3000 gauss (300 mT,

or 0.3 T).

But what is the peak current? This is the term that is usually completely underestimated by

most designers, and that is why they often don’t realize that their DM choke is ineffective

because it is saturating.

The temptation to wind a few more turns on the DM choke (if present of course) in an effort

to raise its inductance may just produce enough ampere-turns to saturate it. What happens
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after that depends a lot on the material itself. Powdered iron may be more forgiving up to a

point, but then it also has lower initial permeability to start with. Ferrites can saturate

comparatively more sharply (though we know that air helps soften that — either in the form

of an air gap, or distributed, as in powdered iron). Of course if the DM choke is just the

leakage inductance from the CM choke, then in effect it is a completely air-cored coil

anyway, and we don’t have to worry about it saturating.

So in DM chokes, the major concern is core saturation. But in CM chokes, underestimating

the current will make it run excessively hot, due to higher copper losses.

In a typical off-line input stage, with no Power Factor Correction (‘PFC’) stage present,

the input bridge conducts only for part of every ac half-cycle as seen from Figure 13-1.

The input (bulk) capacitor discharges slowly, during the remaining time, at a rate that

depends on the power it is delivering to the converter — which except for the small loss in

the filter itself, is essentially equal to the input power, that is, PIN = POUT/η, where PIN is

the power being drawn from the supply lines, for given output power POUT at a certain

efficiency, η. If we put larger and larger bulk capacitance we can end up with extremely high

peak and RMS currents through the input bridge and the filter chokes (along with a lot of

low-frequency harmonic content that is regulated separately by line harmonic standards —

i.e. PFC-related). The higher currents are attributable to the fact that the bridge conduction

time becomes shorter as we increase the bulk capacitance. And since a certain amount of

average input power is being constantly demanded by the converter, the current “bursts”

through the diodes must increase in amplitude, so as to compensate for the shorter gating

interval.

Knowledge of the input RMS current is necessary to correctly estimate the copper losses in

both the CM and DM chokes, whereas knowledge of the peak current is necessary to

correctly estimate the DM core volume (its energy handling capability). In a CM choke,

the input ac line current effectively cancels out, so its saturation is usually not considered

either a possibility or a concern. That means it is “chopped” out of a vertically offset sine

wave of that time period.

The shape of the input current into the power supply is usually described as a ‘haversine’ —

which is simply a sine waveform offset on its vertical axis so as to make the minima of the

curve coincide with the horizontal axis (t = 0). The current waveform shown in Figure 13-1

is thus a haversine — with a time period equal to the diode conduction time (during which it

occurs). That means it is “chopped” out of a vertically offset sine wave of that time period.

The following equations can be derived.

The time for which each diode conducts is

tC =
cos−1 [A]

2 × π × fLINE
seconds
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Figure 13-1: The Input Current Waveshape Analyzed
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where

A =
√

1 −
PIN

2 × C × fLINE × V2
AC

C is in Farads above.

The RMS and average values of the current waveform (calculated only over the diode

conduction time) are, respectively,

IAVG =
√

2 × π × PIN

VAC × [1 + A] × cos−1 [A]
Amp

and

IRMS = IPEAK ×
√

1.5

2
= 0.612 × IPEAK

where the peak of the current is

IPEAK = 2 × IAVG

We have to average the RMS and average values over the full ac cycle, as shown in the

following example.

Example: A power supply delivering 5 A@14 A at 70% efficiency has a 330 µF input

capacitor. What are the RMS and peak input currents at 265 VAC/50 Hz?

PIN =
5 × 14

0.7
= 100 W

So A = 0.978, and tC = 0.67 ms. We calculate IAVG = 4.05 A, IPEAK = 8.1 A,

IRMS = 8.1 × 0.612 = 5 A.

We have also provided a graphical method in Figure 13-1 — for any general case (at a line

voltage of 265 V-ac). In our case, the selected input capacitance per (input) Watt is

330/100 = 3.3 µF/W. We locate this value on the horizontal axis, and then we can see

that this gives us about 0.05 A for the RMS current on the vertical axis. But the vertical

axis is the current per Watt of input power. So for our case, the RMS current is 100 × 0.05

= 5 A. This agrees with our numerical calculation above.
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Since we have two conduction intervals per ac cycle time period, the input average and RMS

currents, now calculated over the whole cycle, are (with T = 1/fLINE)

IIN_AVG = 4.05 ×
2 × tC

T
= 0.27 A

and

IIN_RMS =
[

5.032 ×
2 × tC

T

]1/2

= 1.3 A

Therefore, we have to ensure that our DM choke does not saturate with a peak instantaneous

current of 8 A. Both the CM and DM chokes must have copper thick enough to handle

1.3 A RMS.

If we are dealing with a wide-input (universal) off-line power supply, we should check all the

currents at low line too! At low line, despite the fact that the conduction time increases

significantly, the required average dc input current is much higher too. So the peak/RMS

currents will generally tend to increase, not decrease, as we lower the line voltage. If we

assume efficiency is unchanged in going from high line to low line (i.e. PIN is a constant),

then a detailed calculation based on the equations presented above reveals that the RMS,

peak, and average currents increase by almost 4% exactly, in going from 265 V-ac to 90 V-ac

(for 3 µF/W). Not much of an increase really! So Figure 13-1 should suffice. Or we can do a

detailed calculation.

Note that if we had PFC, then at 265 V-ac input, we would get an RMS current of only

IIN_RMS =
PIN

VIN_RMS
=

100

265
= 0.38 A

The peak is also less

IIN_PEAK = IIN_RMS ×
√

2 = 0.534 A

But note that, if this is a universal-input power supply, we again need to check the currents

at low line too, and rate the chokes according to the worst case. In this case (with PFC),

we see that at 90 V-ac, all the currents increase almost three times over their values at

265 V-ac (again assuming efficiency is unchanged in going from high line to low line).

However, it is nevertheless clear that introducing power factor correction in off-line power

supplies always leads to much smaller EMI filter chokes.
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Tip: In a power supply without PFC, if we are trying to measure the bridge conduction time with an

oscilloscope, we should ensure that the input to the power supply is not from a variac. An electronic

programmable ac source is preferable, because the variac tends to appear inductive, and keeps trying to push

its residual energy through the bridge for just a little longer. This increases the conduction time, and makes

the peak current significantly lower than if the power supply is powered off the wall.

Practical Line Filters in DC-DC Converter Modules

See Figure 13-2 for an example of how EMI suppression techniques are applied to dc-dc

converters. We have shown an industry standard isolated “brick” (along with its external

EMI filtering). The input to this particular module is a coarsely regulated ‘–48 V-dc’ or

‘–60 V-dc’ bus, forming part of a distributed power architecture for a data/telecom network.

Its output is isolated and regulated (e.g. 3.3 V/50 A or 12 V/10 A etc). The –48 V-dc input is

usually derived from an off-line telecom power supply (called a “rectifier”).

Notice how the traces are laid out in the module’s external EMI filter as illustrated in

Figure 13-2. Note, in particular, the placement of the Y-caps. We should also keep in mind

Figure 13-2: Typical EMI Filter for DC-DC Modules (bricks)
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that one of the most effective methods of suppressing EMI, especially in board mounted

dc-dc converters, is a good ground plane. On a multilayer board, best results are usually

obtained by having this plane be the internal layer just below the top (power) component

side. Up to 20 dB reduction in noise is possible. The “input instability” issue, as indicated in

Figure 13-2, is discussed next.

Note: As per the usual safety regulations, voltages below 60 V-dc generally are not considered hazardous

and therefore are not subject to the isolation/earthing requirements described earlier. But above 60 V we

generally would need reinforced installation. However, in Europe, more recent definitions have evolved

concerning ‘Telecommunications Network Voltage’ (TNV) circuits, which by their very nature are not

accessible to humans in general. So for example, above 60 V-dc and below 120 V-dc we have what is called

a ‘TNV-2 circuit.’ Though this requires insulation, it need not be of the reinforced/double insulation

category. So in general, the Y-caps shown in Figure 13-2 can be standard 2 kV rated components. However,

if the preceding “rectifier” has reinforced isolation between its own output and the ac mains, then the Y-caps

in the module can be just regular 100 V capacitors. Note also, that the Y-caps in a dc-dc converter are

between two dc levels, so we can forget about ac ground leakage currents and their related safety issues as

previously discussed. This gives us the flexibility of choosing large-capacitance Y-caps.

Note: For protection against ESD (electrostatic discharge) upsets, 0.01 µF caps between the terminal block

contacts and earth are often also included. These are essentially Y-caps. But note that there have been cases,

particularly when these caps were ordinary 50 V multilayer ceramic (“MLCs”), that they got destroyed

during the course of an ESD test — simply because they got charged up to excessive voltages! Therefore,

these capacitors, and any other Y-caps present, must be evaluated under such abnormal but likely

disturbances too. Eventually, we may need to increase the capacitance and/or the voltage rating and/or size

of the caps just to protect them from/against over-charging.

Since about 1971 the phenomena of ‘input oscillations’ or ‘input instability’ has received

quite a lot of attention. It has been shown that instability can occur if the output impedance

of the filter is not within a certain “safe” window, as related to the input impedance of the

converter (we are talking about the impedances presented to the power flow now — not the

CM or DM noise). So, with the modern trend of low-impedance “all-ceramic” solutions in

dc-dc converters, the possibility of this particular type of instability is becoming more and

more real.

One of the easiest ways to see the impact of the negative input impedance of a typical

converter is to set it up with only ceramic input capacitors (about 10 µF or less) — and then

do a “hard power-up.” In this type of power-up test, the dV/dt of the applied input is kept

intentionally very high. On the bench, this can be done by simply slamming the banana plug

from the input of the converter into the output terminals of a (low-impedance/high-current)

lab dc power supply. Then, if we monitor the input (supply) pin of the converter with a

digital oscilloscope (triggered correctly, and in one-shot acquisition mode), we will see an

initial overshoot — that can be as high as 1.5 to 2.5 times the supposed dc voltage level

(as set on the lab supply). Note that if the input capacitance is large enough (beyond a

certain value), the dV/dt (and overshoot) gets automatically reduced, due to the higher
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charging current required for this input capacitor. On the other hand, if the ceramic capacitor

is replaced by an aluminum electrolytic (even one with a lower capacitance), the overshoot

is dramatically reduced. Tantalum capacitors also produce overshoots under hard power-up,

but these are less pronounced than with ceramic.

Note: We should remember that in any case, it’s never a very good idea to use tantalums at the input of any

converter — due to tantalum’s inherent surge current limitations. However, if for some reason, tantalums

must be used at the input (in any topology), or at the outputs (for a boost or buck-boost), we must ensure

that they are 100% surge-tested by their vendors. And even for such surge-tested tantalum capacitors, it is

recommended that the maximum voltage applied across them in our application be less than half their

voltage rating — that is, a voltage derating of 50%.

We see that it is possible to damage a dc-dc converter, which uses only small-value ceramic

capacitors at its input — more so when we already happen to be operating rather close to its

maximum input voltage rating.

The designer should note that in Figure 13-2, we have placed an electrolytic capacitor in

parallel to the ceramic input capacitors — for the purpose of damping out “input instability.”

This needs further explaining. To understand the underlying causes associated with this

phenomena, we need to start with the well-known buck converter equations and see what

happens if we (hypothetically) “jiggle” the duty cycle, just a little bit, around its steady state

value. Note that in a practical situation, this could happen very easily under normal line or

load transients. Therefore, expressing the input voltage and the input current as a function of

duty cycle

VIN(D) =
VO

D

IIN(D) = IO × D

So

dVIN = −
VO

D2
dD

and

dIIN = IOdD

Dividing these two equations we get (for a buck converter)

dVIN

dIIN
= −

VO

IO × D2
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This is the incremental resistance at the input. Let us call this “RIN.” So for a buck

converter, its incremental resistance in ohms is

RIN = −
RL

D2

Here RL is the load resistance (ohms), and is assumed constant. Note that both the input

voltage and the input current always have positive values in a (positive-to-positive) buck

converter. Therefore the ratio VIN/IIN is also certainly a positive quantity. It’s only their

relative change that is in opposite directions — hence the minus sign in the preceding

equation.

Another way to look at it is as follows. For a given output power PO, if the input voltage

increases slightly, then the input current must decrease. That’s because PO (and therefore

roughly PIN too) must remain constant.

VO × IO = PO ≈ VIN × IIN

This is clearly true for any topology. We can therefore work out the (negative) incremental

input resistance for the other topologies in a similar manner.

Example: What is the input resistance of a 3.3 V/50 V brick, with an input range of 36–75 V?

Output power is 3.3 × 50 = 165 W. RL is 3.3/50 = 0.066 Ω. Duty cycle is 0.092 at 36 V

input. So the magnitude of RIN is 0.066 / (0.092)2 = 7.8 Ω. In terms of decibels this is

20 log(7.8) ∼= 18 dBΩ. A similar calculation at 75 V input gives 31 dBΩ. So the (magnitude

of the negative incremental) impedance of the buck converter falls as the input voltage falls.

We will see that this means that this form of instability is more likely to occur at low input

voltages.

What is it about the interaction of the impedances at the filter-converter interface that causes

this instability? Let us see what is really happening as we jiggle the input to the filter (VIN).

See Figure 13-3.

Here VINC is the voltage that appears at the terminals of the converter. The filter impedance

and the converter impedance form a voltage divider.

VINC = VIN ×
ZINPUT

ZINPUT + ZSOURCE

Looking at this equation, we ask — what happens if ZINPUT becomes negative? Numbers

explain it best. Suppose ZINPUT = −30 Ω, and ZSOURCE = 10 Ω. Then VINC/VIN is equal to
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Figure 13-3: Input Interaction and Two Possible Solutions to Increase Damping

−30/(−30 + 10) = +1.5. This implies a 50% input overshoot. However things get uglier.

What if ZSOURCE = 40 Ω instead of 10 Ω? Now VINC/VIN is equal to −30/(−30 + 40)

= −3. The sign looks odd! But let’s not forget that we are actually talking of incremental

impedances (the number crunching here is actually very simplified). So the sign of VINC is

not really negative, but its change is.
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What is being indicated is that if we momentarily increase the applied input voltage (at the

input of the filter), the input voltage at the converter end falls slightly (though momentarily).

The control loop of the converter will however “think” that the input has fallen rather than

increased, so it will respond incorrectly to the change. And isn’t that the usual recipe for

output oscillations?!

Therefore, the most basic criterion for avoiding this type of instability is

ZSOURCE < |ZINPUT|

Now, in reality, the input impedance of the converter is frequency-dependent (RIN was just

the low-frequency value of ZINPUT). In the more detailed converter model, a parallel

capacitance CIN (see Figure 13-3) appears across the input of the converter, mainly due to

the output filter components of the converter being reflected into the input. This causes the

(real part of the) input impedance to be less and less negative as frequency increases.

In Figure 13-4, we have shown a typical input impedance plot with respect to frequency.

Note that only the magnitude of the converter impedance has been displayed, primarily

because the y-axis is in log scale, and we know that log scales cannot be negative.

ZSOURCE (the output impedance of the filter) is also changing with frequency. Looking into

the output terminals of the filter (from converter) we see basically a simple parallel LC filter

stage. Therefore ZSOURCE has the shape indicated in Figure 13-4.

ZSOURCE(filter)

Z INPUT
(converter)

LC2π

1
f =

∆IIN

∆VIN
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Figure 13-4: Input Filter Interaction and Stability Criteria
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The stability criterion therefore means that we are demanding that the output impedance of

the filter must be always less than the input impedance of the converter for any frequency.

But what happens if the LC filter has insufficient damping and therefore has a resonance

peak? This is the encircled problem area in Figure 13-4, and we can see that in this region

we are violating the basic stability criterion. This peak needs to be suppressed. Therefore,

in addition to the basic stability criterion, a follow-up criterion must be added to ensure that

at resonant frequency, the LC filter peak is properly damped out.

For damping, we could simply add some more resistance to the choke (DCR) as shown in

Figure 13-3. But that is not a very good idea since the entire operating current also passes

through this choke, and the overall efficiency would suffer. Instead, it is preferable to add a

slight resistance (ESR) to the capacitor as also shown in Figure 13-3. We know that any

capacitor in steady state blocks any dc voltage completely. So the input capacitor sees only

the ac component of the input current flowing into the switching mosfet. This therefore

correspondingly reduces the dissipation required to achieve a given target of damping.

However, we also need to maintain good decoupling at the input of the converter (to keep

its control sections from getting affected, as also to suppress EMI). Therefore the usual

commercially implemented solution for such bricks is to place an additional high-ESR

capacitor in parallel to the existing low-ESR decoupling capacitors. It can been shown that

we need to meet the following conditions to make the system unconditionally stable (the first

of these is essentially the basic criterion discussed previously):

ESR < |RIN|

ESR >
L

CBULK × |RIN|
CBULK ≫ CINPUT

where CINPUT is total capacitance at the input terminals of the converter (including CIN,

ceramic capacitors, any X-caps, supply decoupling caps, and so on). CIN is typically a

few µF, but without elaborate modeling of the converter, or some type of measurement, its

value may be unknown to most designers. But generally speaking, if CBULK is chosen to be

much larger, it effectively “swamps” out the effect of CIN, and so the system is stable

anyway (the thumb rule is that CBULK should be four to five times the total effective

low-ESR input capacitance physically present at the input to the converter, that is, before

CBULK was added).
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The Math behind the Electromagnetic Puzzle

We now present the main mathematical analysis and tools needed to finally cap a successful

filter design. First we should recall our hazy Fourier series class. Fourier analysis is often

avoided by power supply engineers, but it can go a long way toward understanding and

tackling several key issues like EMI/noise, transformer proximity losses, PFC (power factor

correction), and so on.

Math Background — Fourier Series

Collecting some of the basic definitions first:

For a function f (x) with the time period expressed in terms of an angle (2π ), we can write

f (x) =
1

2
ao +

∞
∑

n=1

(

an cos nx + bn sin nx
)

an =
1

π

∫ 2π

0
(f (x) cos nx)dx

bn =
1

π

∫ 2π

0
(f (x) sin nx)dx

Alternatively,

f (x) =
1

2
ao +

∞
∑

n=1

(

cn cos(nx − φn)
)

cn
2 = an

2 + bn
2

tan φn =
bn

an

Alternatively,

f (x) =
∞
∑

n=−∞
dne jnx
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dn =
an − jbn

2
(n ≥ 0)

dn =
an + jbn

2
(n < 0)

For a function f (t) with a time period ‘T’ (units of time):

f (t) =
1

2
ao +

∞
∑

n=1

(

an cos

[

2πnt

T

]

+ bn sin

[

2πnt

T

])

an =
2

T

∫ T

0
f (t) cos

[

2πnt

T

]

dt

bn =
2

T

∫ T

0
f (t) sin

[

2πnt

T

]

dt

In most math school books, the time period is expressed as 2π. However, in power supplies

we know that the period we are interested in is in units of time not angle, that is, T = 1/f .

The normal way to convert angle θ to t is to use the equivalence θ/2π → t/T, that is,

θ → 2πt/T.

Note: The designer should not get confused by the fact that the first term in the expansion is sometimes

called “ao/2,” sometimes “ao,” or sometimes something else altogether. Either way, in any Fourier expansion

of any arbitrary periodic function, the first term is always the area under the waveform calculated over one

time period (i.e. its arithmetic average).

Note: If the waveform is “moved” up or down, or side to side, on the graph, while keeping its basic shape

unchanged, the appearance of the Fourier series may seem to change drastically. However, the magnitude of

the amplitude of any harmonic (i.e. “|cn |”) remains the same (except for the average term which we don’t

really care about anyway). We should remember that only the magnitudes of the harmonics (the |cn |’s) relate

to measurable physical effects. And these can change only if the peak-to-peak value of the waveform

changes (or of course its basic shape). Otherwise not!

Note: We can first calculate the cn for the simple case of a waveform of unity height (alternatively its

peak-to-peak value). Then the cn for a waveform with a height of “A” (alternatively of peak-to-peak

value “A”) will simply be A times the previous cn .

The Rectangular Wave

Let us find the series for the unity height rectangular wave shown in Figure 14-1. Textbooks

provide the following expansion:

f (x) =
α

π
−

2

π

(

sin α × cos x

1
−

sin 2α × cos 2x

2
+

sin 3α × cos 3x

3
− . . .

)
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T
1

f(t)

tON

2α

2π
1

f(x)

Figure 14-1: A Rectangular Waveform in Radians or in Time

Note that this is in terms of angles. Firstly, to avoid confusing the symbol “x” with distance

(distance being also often called “x”), it helps to first change it to a more familiar symbol for

angle, like “θ.” We can then also use the summation sign to write the above expansion in a

more compact form:

f (θ) = const +
∞
∑

n=1

cn cos(nθ)

where

|cn| =
∣

∣

∣

∣

2 sin(nα)

nπ

∣

∣

∣

∣

Then, applying our conversion rule to go from angles to time (time being called the “t-plane”

here), we get

f (t) = const +
∞
∑

n=1

cn × cos

[

n ×
2π × t

T

]

The cn in this equation can also be explicitly written out, using the same conversion

rule (from angle to time). We must remember though, that 2α in the θ-plane corresponds
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+

VIN
nSnP

VO

VIN + VOR

VDS(t)
nS

nP
VO ×VOR =

VDS(t) = (VIN + VOR) ×
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∞
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D + (−1)
n[ ]( )∑

∞

Figure 14-2: Fourier Series of Drain Voltage Waveform of a Flyback

to tON = D × T in the t-plane (i.e. the switch on-time in a power supply). So we get

|cn| =
∣

∣

∣

∣

2 × sin(nα)

n × π

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

2 × sin
[n

2
× 2α

]

n × π

∣

∣

∣

∣

∣

∣

∣

→

∣

∣

∣

∣

∣

∣

∣

∣

2 × sin

[

n

2
×
(

2π ×
tON

T

)]

n × π

∣

∣

∣

∣

∣

∣

∣

∣

Finally in the t-plane,

|cn| =
∣

∣

∣

∣

2 × sin(n × π × D)

n × π

∣

∣

∣

∣

(unity height, rectangular wave, Fourier coefficients)

As an example, let us apply this to the flyback in Figure 14-2.

We have provided the full expansion of the voltage on the drain of the mosfet (ignoring the

leakage spike and possible ringing).

Note that we now have multiplied all the unity height cn’s by the actual wave amplitude

(since we know that all the coefficients scale accordingly). Also, the first term is the average

value of the waveform. Note that we could also have written this expansion with alternating

signs as follows:

VDS(t) = [(VIN + VOR) × D] + (VIN + VOR)

×
∞
∑

n=1

[

2 × sin
(

n × π × D
)

n × π

]

× cos

[

2π × n × t

T

]

×
(

−1
)n
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Figure 14-3: Reconstructing the VDS of the Flyback from Its Harmonics

In Figure 14-3 we have plotted both these expansions out (i.e. with same signs or alternating

signs), so that the designer can see a) how including more harmonics helps to reconstruct the

original waveform better, and b) the effect of the alternating signs (dotted curve) is just to

shift the phase of the entire waveform.

Note: When using a math “crib-sheet” to help in an expansion for a certain “power supply waveform,” we

can avoid mistakes if we first scale the math function given in the book to unity peak-to-peak value (or unity

height as desired). Then we can change its form of expression, from angles to time as discussed. Thereafter,

we can multiply all the cn’s by the actual peak-to-peak value (or height) of our power supply waveform.

In doing so, the dc value (first term) of the Fourier series (in the crib-sheet) can be completely ignored, as it

is usually irrelevant. But if required, it can always be added on later, by examining our particular “power

supply waveform” and calculating its arithmetic average, as we normally do (and adding it to the Fourier

series thus available).

Analysis of the Rectangular Wave

We are actually interested only in the coefficients cn, not in the Fourier series per se. We see

that the coefficients have the form sin(x)/x. Plotting them out in Figure 14-4, first with linear

scaling, and then with log scaling, we make the following key observations

■ For the rectangular wave, the cn’s have the form sin x/x.

■ For EMI suppression it doesn’t matter if, say, the odd harmonics are present, or the

even, or both. We are concerned only with the envelope of the emissions, since that

is what we need to design the filter for (and to keep below the EMI limit lines).

■ Therefore, on the log plot we can see that until x = 1 the function sin(x)/x is flat.

After that it rolls-off as x increases. The envelope (with log scaling) falls at the rate

of 20 dB/decade — we know that −20 dB is one-tenth, and a decade is 10 times.
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Figure 14-4: |cn| Plotted out for a Rectangular Waveform

The Trapezoid

Now we take the rectangular wave discussed above and make it a little more realistic by

introducing nonzero rise and fall times. By a similar procedure as for a rectangular wave,

we can get the following equation (for the case of equal rise and fall times):

cn = A ×
2 × (tON)

T
×









sin

{

n × π × tR

T

}

n × π × tR

T









×









sin

{

n × π × (tON)

T

}

n × π × (tON)

T









where tRISE = tFALL = tR , and A is the amplitude (peak-to-peak). We are again ignoring any

signs as being essentially irrelevant.

Clearly we will get two break points now. The first break point occurs at

n × π × tON

T
= 1

that is,

n1 =
T

π × tON

Since n = frequency of harmonic/fundamental frequency, that is, n = f × T, we get the

corresponding break frequency to be

fBREAK_1 =
1

π × tON
=

0.32

tON
(first break frequency)
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Frequency

Max(cn)
Amplitudes

of Harmonics
(envelope) 

n
2π2tR

2ATcn = 20 × log

nπ
2Acn = 20 × log

here

here

tRISE= tFALL= tR

A

1
f = πtR

−40dB/
dec

−20dB/
dec

Figure 14-5: Envelope of Amplitudes of Harmonic of a Trapezoid

The second break point is at

n2 =
T

π × tR

that is,

fBREAK_2 =
0.32

tR
(second break frequency)

We know what to expect too — that after the second break point, the net roll-off will be at

20 + 20 = 40 dB/decade. See Figure 14-5.

Note that n must be an integer to have any physical meaning. The first breakpoint, therefore,

may not be even visibly apparent. What we will perceive is that the envelope ramps down

almost from the lowest frequency, at the rate of 20 dB/decade.

We can ask — when does n1 become higher than n = 2? We can solve to get the condition

T

π × tON
> 2

that is,

D =
tON

T
<

1

2π
= 16%

We can ask — when does n1 get to be between n = 1 and n = 2? Solving

T

π × tON
< 1
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that is,

D =
tON

T
>

1

π
= 32%

In other words, only for very narrow duty cycles we might get to “see” the first break point.

Further, below the first break frequency, the envelope of the harmonics becomes “flat.”

Theoretically, the first break point should be calculated and the envelope should be made flat

below this frequency. But other than that, we can use the following equations to describe all

the cn (note that in these equations, the cn are no longer the actual coefficients of the Fourier

expansion, rather they represent the envelope):

cn = 20 log

(

2A

nπ

)

cn = 20 log

(

2A

n2π2tRfSW

)

The first of the two equations above is valid between the first and second break points,

and the second equation is valid for all frequencies higher than the second break point. Note

that the switching frequency is fSW = 1/T. The trapezoid rise and fall times are shown in

Figure 14-6. Note how tON has been defined here.

The EMI from a Trapezoid

Note that the trapezoid is similar to the current in the mosfet (assuming a very high

inductance, i.e. the ‘flat-top approximation’). This current, we know, determines the DM

noise. It is therefore helpful to see from Figure 14-6 what a trapezoidal spectrum looks

like for different duty cycles, frequencies, rise and fall times, and so on. In all cases, we

have also provided in the form of a gray line, the extreme case, that is, with zero rise and

fall times (the rectangular wave). We know that this gray line (tR = 0) always falls at

20 dB/decade. Note that each curve is displayed in the window of concern from the point of

view of conducted EMI limits, that is, from 150 kHz to 30 MHz. Note that each point in a

spectrum is an actual mathematically generated harmonic amplitude. But as mentioned,

ultimately we are only concerned with the envelope of these clusters of points. One

observation to make is that if tRISE is very small but tFALL is large, and vice versa, the

envelope falls with a slope somewhere between 20 dB/decade and 40 dB/decade.

Note: Some of the harmonic envelopes in Figure 14-6 show a slight rise at the high-frequency end. But this

is only an artifact of the computational resolution used in the program (for improving the speed of

calculations). Therefore, no meaning should be ascribed to it.
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Figure 14-6: Amplitudes of Fourier Harmonics for Various Switching Voltage

Waveforms

The Road to Cost-effective Filter Design

There is no use designing a filter if we don’t know how far we really need to go to achieve

compliance. So it is a good idea to take stock of where we are at this point.

■ If the converter has a switching frequency of fSW, the harmonics are fSW, 2fSW,

3fSW, and so on. The harmonics tend to have lower and lower amplitudes than the
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fundamental frequency (first harmonic). But for simplicity, let us for now assume

that the amplitudes of these harmonics are flat with respect to frequency.

■ We normally always start by trying to achieve compliance at the lowest frequency,

that is, fSW. But if the switching frequency drops below 500 kHz, certain factors

start working starkly in our favor, and some against. We will discover that soon.

■ A question we can ask is — should we try to use a complicated multistage filter — to

achieve, say, an extreme attenuation of 60 or 80 dB/decade — or should we stick to

the usual filters, which provide only about 40 dB/decade?

■ We can also ask — if the switching frequency is less than 150 kHz, how low should

we try to keep the EMI level at the fundamental frequency (since it is out of the

range of the EMI limits anyway)?

■ These questions can be answered only if we are made aware of what factors work in

our favor and which don’t, and what is the overall effect of all that on the techniques

we need to apply to ensure compliance. In fact, if we design the filter with only the

information presented so far, we will probably end up with an over-designed filter.

We therefore need to see the interplay of the “forces arraigned against us,” especially

in the low-frequency region (150 kHz to 500 kHz).

■ We observe that the conducted emissions limit lines (CISPR 22) actually allow for

progressively higher emissions on our part — below 500 kHz.

■ But in addition, the sensitivity of the standard LISN also decreases as the frequency

falls off. This effectively allows us more noise too. Roughly, the LISN impedance

falls from 50 Ω at about 500 kHz to about 5 Ω at very low frequencies — at an

approximate rate of 10 db/decade below 500 kHz. See Figure 14-7.

■ However, we note that unfortunately, our EMI filter becomes less effective at low

frequencies — being a low-pass stage (typical attenuation of 40 dB/decade above its

resonant frequency).

Let us see what all this nets us. Suppose by suitable design we have achieved compliance at

the lowest frequency. So, if the switching frequency is less than 150 kHz, that would mean

that we have about 2 mV (66 dBµV) of noise emissions at 150 kHz (see Table 9-1). Now let

us go in the reverse direction; that is, from low frequency to high frequency. This is what

happens (see Figure 14-8):

1. The LISN sensitivity increases (at the rate of ∼10 dB/decade). So we would start

getting higher and higher noise readings.

2. But the EMI filter starts becoming more and more effective, attenuating the signal at

a typical rate of 40 dB/decade.
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IMPEDANCE OF LISN FOR DM

IMPEDANCE OF LISN FOR CM

IMPEDANCE OF LISN

10
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1
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Figure 14-7: LISN Impedance at Low Frequencies

~10dB/decade
(LISN sensitivity)

40dB/decade
(Filter attenuation)

10dB/decade
(Filter margin)

SET
COMPLIANCE

HERE
(e.g. 2mV)

 

−30dB/decade
(measured noise)

−20dB/decade
(CISPR limit line)

Figure 14-8: How Decreasing Low-frequency LISN Sensitivity and Increasing

CISPR 22 Limit Lines “Help” Achieve Automatic “Headroom” in Noise

Measurements
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3. This swamps out the increasing LISN sensitivity, and so our measured noise actually

falls at the rate of 40 − 10 = 30 dB/decade. (assuming a flat emission spectrum).

4. But the limit lines are asking for us to decrease the noise level at the rate of only

20 dB/decade.

5. Therefore the measured noise level continues to fall below the limit lines with an

increasing headroom of 30 − 20 = 10 dB/decade.

That is why we need to achieve compliance at the lowest frequency first.

In reality, there will be some additional spikes in the EMI scan, due to parasitics we didn’t

model. But we should deal with them individually, at the board level, rather than try to bring

the entire EMI spectrum down by a brute-force over-designed filter. It is therefore important

to be aware of the “trends” as described above. However, in the solved examples that will

follow, we will actually be ignoring the change in the LISN sensitivity, mainly for simplicity.

In effect we are just assuming that the fall in LISN sensitivity provides us some additional

headroom for unexpected spikes.

Practical DM Filter Design

In Table 14-1 we have provided the height of the switch current trapezoid for all the main

topologies (with the flat-top approximation).

The voltage across the ESR of the input bulk capacitor is therefore

v = ESR × ISW Volts

If there was no filter present, the switching noise current received by the LISN would be

ILISN =
v

100
=

ESR × ISW

100
Amps

(since the LISN has an impedance of 100 Ω for DM noise).

Table 14-1: Switch currents (center
of ramp) for different topologies

Topology ISW (switch current)

Buck IO

Forward IO × (nS/nP)

Buck-Boost IO/(1 − D)

Flyback IO × (nS/nP)/(1 − D)

Boost IO/(1 − D)
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However the analyzer measures the noise across one of the two effective series 50 Ω

resistors in the LISN. So the measured level of noise is

VLISN_DM_NOFILTER = ILISN × 50 =
ESR × ISW

2
Volts

We have assumed that CBULK is very large, and that it has no ESL, and also that its ESR is

much less than 100 Ω.

Example: What is the DM noise spectrum measured at the LISN for a 5 V@15 A flyback at an

input of 265 VAC, with a transformer turns ratio of 20? We are using an aluminum electrolytic

bulk capacitor whose datasheet states that it has a capacitance of 270 µF, a dissipation factor

(tangent of loss angle) of tan δ = 0.15 as measured at 120 Hz, and a frequency multiplier

factor of 1.5 at 100 kHz.

First the ESR is to be computed at the 120 Hz test frequency. By definition

ESR120 =
tan δ

2πf × C
=

0.15 × 106

2 × 3.142 × 120 × 270
= 0.74 ohms

At a high frequency, the ripple current is allowed to increase by the frequency multiplicative

factor of 1.5. Therefore, since the heating (I2×ESR) must still be the same, it means that the

ESR at a high frequency must be 1/(1.5)2 times the ESR at low frequency. Therefore for our

purpose,

ESR =
1

1.52
× 0.74 = 0.33 ohms

And so

VLISN_DM_NOFILTER =
ESR × ISW

2
= 0.17 × ns

/

np
× IO = 0.13 Volts

This is the amplitude of the measured signal. It is the “A” in the corresponding Fourier

series. In terms of dBµV its value is 20 × log(0.13/10−6) = 102 dBµV. We can thus predict

that the spectrum is as shown in Figure 14-9 (curve marked “DM Noise”).

In Figure 14-9, we have also shown how the measured spectrum relates to the CISPR 22

Class B quasi-peak emission limits (bold line). We are also showing the case when the

switching frequency is just below the point where the CISPR 22 limits start. For example, let

us assume that this switching frequency is 100 kHz. For simplicity, we are also assuming

that the common mode noise is not a major contributor at these low frequencies. In practice

we should allocate some dB margin for the CM noise (as calculated a little later). We are
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Figure 14-9: DM filter Calculation (see solved example)

also not accounting for any other required production margins or headroom required here.

Also, as mentioned previously, since we are comparing peak values with quasi-peak limits,

we automatically get some valuable headroom/margin.

Since we have 102 dBµV at the switching frequency of 100 kHz, the equation of the

envelope is (straight line on a log vs. log plot)

dBµV(f ) = −slope [{log(f ) − log(100)}] + 102

Since the (magnitude of the) slope is 20 dB/decade, at 150 kHz we get

dBµV(f ) = −20 [{log(150) − log(100)}] + 102 = 98 dB

This is 98 − 66 = 32 dB higher than allowed. And that means that we need to use a filter to

attenuate the noise. We need to pick a low-pass LC filter which provides an attenuation of

32 dB at 150 kHz. Knowing this, we can calculate its break frequency. For example if we are

using an LC low-pass filter, it has an attenuation characteristic of about 40 dB/decade above

its break frequency (i.e. 1/2π
√

(LC)). So from Figure 14-9 we can see that its equation is

32 = slope × [{log(f ) − log(fBREAK)}] = 40 × [{log(150) − log(fBREAK)}]

Therefore,

log(f ) = log(150) −
32

40
= 1.38

f = 101.38 = 24 kHz
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We therefore need a filter that has an LC of

LC =
(

1

2π × 24000

)2

= 4.4 × 10−11 sec2

Therefore if C is, say, 0.22 µF, we get L = 200 µH.

Note that if this is a standard two-stage off-line filter, we need to look at the DM equivalent

circuit presented in Figure 10-1 in Chapter 10 to realize what exact values of the various

X-capacitors in the figure this “C” really corresponds to in that schematic.

Note: We can ask — since the break point associated with the rise and fall times didn’t enter the picture

here, does that mean that it doesn’t matter how fast we turn-on and turn-off the mosfet? Yes from the DM

noise viewpoint it really doesn’t matter much. However there are parasitics that we have ignored (chiefly the

ESL and trace inductances). And since, unlike the ESR, these will produce frequency-dependent voltage

spikes, it is in our interest not to keep the mosfet crossover (transition) times too small.

Practical CM Filter Design

There are two ways of going about this. Either way we are assuming that the mosfet heatsink

is tied to the chassis. At one end of the parasitic capacitor Cp we are applying the trapezoid

that best describes a typical drain waveform. This causes a CM noise current Icm to flow

through the earth wire. We assume that the parasitic capacitances and/or X-caps cause this

current to split up equally between the L and N wires. So we have Icm/2 in each of these

two wires.

First Method: (Quick)

We already know the Fourier components of the trapezoid, and so we can consider them

individually and determine the injected current due to each harmonic. As an example, we

take the forward converter. Here the peak to peak amplitude of the drain-to-source waveform

(“Vmax” or “A”) is twice the supply rail (VIN). From Page 424, we have

cn = A ×
2 × (tON)

T
×









sin

{

n × π × tR

T

}

n × π × tR

T









×









sin

{

n × π × (tON)

T

}

n × π × (tON)

T









Since sin x/x ∼ 1 if x is very small, we get

cn ≈ 2A ×









sin

{

n × π × (tON)

T

}

n × π
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So assuming duty cycle is about 50%, the amplitude of the fundamental (first harmonic) is

c1
∼=

2A

π
=

4 × VIN

π
Volts

We realize that, as for the DM noise calculation, from the viewpoint of the noise envelope

and its required attenuation, only the fundamental harmonic really counts. The current

caused by this is

Icm =
VDS

25 − j
T

2π × Cp

(since the LISN presents an impedance of 25 Ω to Icm). But the voltage measured across the

50 Ω resistor of the LISN is due to Icm/2 flowing through it. So

Vcm =
Icm

2
× 50 = Icm × 25 Volts

Simplifying,

Vcm =
4 × VIN

π −
j

50 × Cp × fSW

Volts

|Vcm| =
200 × VIN × Cp × fSW
√

(

50π × Cp × fSW

)2 + 1

Volts

In terms of dBµV this is

VLISN_CM_NOFILTER = 20 log(
|Vcm|
10−6

) = 120 + 20 log(|Vcm|) dBµV

So for example, if VIN = 100 V(A = 200 V), Cp = 200 pF, fSW = 100 kHz, we get

Vcm = 0.4 V or 112 dBµV (for the first harmonic). We can follow a similar procedure as for

the DM filter to calculate the LC of the common mode filter, and thereby the Lcm and Y-caps

corresponding to Figure 10-1.

Second Method: (Detailed)

This method will provide the entire harmonic content of the injected current. Looking at

Figure 14-10 we see the exponential edges of the current wave shape — this can be proven

by a Laplace transform analysis. The “25” in the figure appears because 25 Ω is the
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tRISE

Cp × Vmax

dt

dV
Icm = Cp × =

tRISE

Vmax ≡ AIcm (1−e −t /25Cp)

Icm e−(t−t
RISE

)/25Cp

Icm

( )

Figure 14-10: CM noise current Injected through Heatsink

Mounting Capacitance

impedance the LISN presents to the CM current. Therefore the measured noise at the LISN

when t < tRISE is

Vcm_1 = Icm × 25 =
25 × Vmax × Cp

tRISE
× (1 − e

−t/
25Cp)

and for t > tRISE it is

Vcm_2 = Icm × 25 =
25 × Vmax × Cp

tRISE
×



e
−
(

t − tRISE

)

/

25Cp





The same situation occurs when the mosfet turns ON — only the directions are reversed.

We can do a Fourier analysis of the voltage waveform and as per Mark Nave’s paper, we get

Vcm =
50 × Vmax × Cp

T
×









sin

{

n × π × tR

T

}

n × π × tR

T









×






e
−jnπ

(

tRISE

T

)

− e
−jnπ

(

tRISE

T
+ 2D

)
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where D is the duty cycle, and we have assumed that tRISE is the same as tFALL. The sinx/x

term again contributes an additional 20 dB/decade roll-off after the break frequency

(described by x = 1). The term in the rightmost bracket has no roll-off. Its magnitude

changes between the limits 0 and 2 as the harmonic number changes or/and duty cycle

changes. So for all practical purposes, if we are just interested in the envelope, we can take

its maximum value of 2 to get

Vcm =
100 × Vmax × Cp

T
×









sin

{

n × π × tR

T

}

n × π × tR

T









This equation is therefore flat untill the break frequency, after which it rolls off at

20 dB/decade. The flat part (the ‘pedestal’) can be found using the approximation

sin x/x ∼= 1. It is

Vcm =
100 × Vmax × Cp

T

For our example of VIN = 100 V (A = 200 V), Cp = 200 pF, fSW = 100 kHz, we get

Vcm =
100 × 200 × 200 × 10−12

10−5
Volts

So Vcm = 0.4 V or 112 dBµV (for the first harmonic). This is the same result we got by the

first method.

We make the following key observations with regard to common mode noise:

■ The envelope is initially always flat and fixed at 100 VmaxCpfSW. At the break point

described by f = 1/(πtRISE), the envelope rolls-off at 20 db/decade.

■ The pedestal (flat part) does not depend on the rise and fall times contrary to popular

perception. So the envelope does change, but not at the low-frequency end. And for

EMI purposes it is that end that is our starting point for a filter design — any

subsequent roll-off is not going to affect the filter design.

Note: Since the pedestal of the common mode noise envelope is independent of the rise and fall times,

does that mean that it doesn’t matter how fast we turn-on and turn-off the mosfet? Yes it doesn’t. But read

the similar note previously given for the DM filter design section. (see page 430).
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A P P E N D I X 1

Focusing on Some Real-world Issues

This is a compilation of articles written by the author. Barring some minor edits and

graphical improvements, these are presented here exactly as they first appeared on the EE

Times website www.planetanalog.com. Each article carries an apt (often irrepressible)

introduction, and sometimes also a closing comment — from the Editor of Planet Analog,

Mr. Stephan Ohr himself (who incidentally, also had a major hand in tweaking the language

herein for, you guessed it — greater acceptability and lesser controversy!).

The purpose of these articles is to focus on specific issues that have come to the attention of

the author over his many years in the industry, working across several continents. That is

why they are written in a very personal style. But the content is hopefully not missing

altogether!

Sounds Like Worst-case, But There’s Danger Lurking in the Middle

(February 2004)

Sanjaya Maniktala describes a PC power supply failure that seemed widespread in Japan, but seldom occurred

in the U.S. Was it something in the sushi? he asks. It turns out, the failures are related to the way components

are specified and tested. This amusing and instructive piece kicks off a new column on power supply design.

Sanjaya’s comments will appear monthly at Planet Analog online.

In hindsight, this probably seemed routine enough to inspire some complacency. An OEM

PC power supply was all set to go into full production. The Design Integrity Team put it

through its paces. Maximum loads were applied at extreme ambients. Stress levels were

verified, life predictions matched up, vibration testing, EMI, safety etc., were a cinch. The

product was released and no problem was noticed in the several thousand units first shipped

to the American market. Then the failures started to show up in droves. All came

mysteriously from Japan. Must’ve been something in the sushi!

What happened was actually so simple that several people must have kicked themselves (and

each other). Turns out this power supply had not been tested in Standby mode! Why test in

Standby mode?? That’s only a handful of watts compared to the 550 W max load. However,

when fully operational, the power supply had a fan running off its main 12 V output. In

Standby mode the fan stopped as all the outputs collapsed. Well, all outputs but one! A small

standby integrated converter was also present on-board delivering a low power 5 V
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housekeeping rail. Unfortunately, it was left freestanding by an otherwise experienced

engineer who thought its low power wasn’t worth his while. Its temperature in Standby

mode thus made history. But we also learned that the Japanese actually initiate the Standby

function of their PCs rather than leaving the computer idle, as Americans would.

Also remember that a buck converter’s input capacitor sees the maximum RMS current at

D = 0.5. If your input voltage range is, say, 15 V to 48 V, and you test it “diligently” at both

the input corners, you still may never know how long your capacitor will really last. Or take

an interleaved buck converter with two independent channels running out of phase. Here we

are actually relying on both channels being fully loaded to reduce the input capacitor’s RMS

current. But in fact this current can be even higher if one channel is unloaded. Coming to

magnetics, we also now know that the surface temperature of a core-loss dominated choke

means nothing if there is a variable-speed fan present. Remember a few years ago when

major manufacturers had field returns, in which the powdered iron chokes had virtually

returned to their original powdered form because of prolonged core temperatures. This had

then prompted vendors to scramble to characterize life expectancy. Try www.micrometals.

com for more information.

Editor’s Note:

Sanjaya Maniktala, author of the popular Planet Analog series on EMI in power supplies, has over 15 years of design experience

with companies like Artesyn Technologies in the Bay Area and Siemens AG in Leipzig. He holds graduate degrees from the Indian

Institute of Technology, Bombay and Northwestern University, Illinois, as well as patents on the Floating Buck Regulator

topology. This article kicks off a regular column at Planet Analog online. “Write me at sanjayamaniktala@yahoo.com with your

favorite bedtime story!” he bids.

Loop Design Sometimes Compensates for Lower-quality Switchers

(March 2004)

Sanjaya Maniktala is back with a new installment of his popular power supply design column. The question he

asks is how to make up for the erratic quality of the 3842 and 3844 switching power supply controllers now on

the market. An adjustment of the RC components in the hysteresis loop allowed a power supply company to

safely utilize the batch lot of jittery components they were stuck with — some 50,000 of them.

The 3842/43/44/45 series of pulse width modulators are possibly the most popular

controllers for off-line applications for several years now. Originally from Unitrode (now

Texas Instruments, “TI”), I can find ‘clones’ from at least 12 more semiconductor companies

on the web (see if you can better the count). The list may in fact be quite endless. Their

quality is however often questionable, though I do admit that their Application Information

seems all rather well written (hmmm, but did I read that somewhere else?).

Practically speaking these ‘equivalents’ can differ quite a bit. At one time we even had basic

functionality problems due to an insurmountable jitter from an ‘alternate source’ part.
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No amount of decoupling on any pin was helping, and it was thus obvious that it was the

result of an internal noise feedthrough from the driver stage to the clock, leading to

premature pulse termination and unpredictable frequency. The 3844 from the slightly more

expensive vendor worked perfectly on the same board and was in fact being shipped out in

millions (this was a flyback for a very well-known computer manufacturer). Now trying to

return the 50,000 jittery devices to the equally well-known (though now clearly jittery)

vendor was met with the familiar ‘show me where in the datasheet’ attitude.

I did manage to band-aid the problem shortly after my arrival at the Singapore-based

company I worked for, and they did manage to slip the bad parts into their high volume

production, with no future ‘ppm’ issues either. Though understandably they didn’t return to

the previous vendor to renew their learnings on what constitutes a ‘guaranteed spec’ and

what is not.

This was the simple logic I applied to solve the problem: in the 3844, the clock pulse is

generated by a simple RC charge-discharge cycle taking place between two fixed voltage

thresholds. At the falling edge of the PWM pulse, noise was getting injected onto the ramp

and could fool the internal comparator into ‘thinking’ that the timing capacitor had reached

its upper threshold (see Figure A-1), at which point the discharge cycle would start

prematurely (not shown in figure for reasons of clarity). Now what if we decreased the

discharge time by decreasing the C, but simultaneously increased the R to maintain the same

frequency? Now the ramp is actually slightly lower at the instant where the falling edge of the

PWM pulse occurs. We can see that the noise margin has thus improved.

Figure A-1: Noise in the 3844
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We must remember that normally, if there is a major change on the primary side of an

off-line power supply, we definitely need a fresh approval from safety agencies. But this

minor change in the RC combination apparently just merited a notification. End of story.

Please do write me with your personal experiences whenever you can. I will certainly acknowledge you. I can be reached at odd

hours of the day and night at sanjayamaniktala@yahoo.com. Steve Ohr will hear about it too!

Re-inventing the Wheel . . . as a Square

(April 2004)

We’ve all seen renderings of the disconnect between marketing, engineering, and customers in product

development — using a child’s backyard swing as the example. What marketing requested shows a three-tiered

swing, with cushions and lollypop dispensers. What engineering came up with shows a rocket-propelled

platform, springing back-and-forth through a steel-reinforced tunnel. What the customer really wanted,

of course, was a truck tire hanging by a rope from a tree limb. This month, Sanjaya Maniktala comments on

some magnificently-designed power supplies.

A lot has been said about not reinventing the wheel. But how about not repeating errors?

‘Errors’ are like wheels that we shouldn’t even have tried to invent, let alone re-invent,

because this wheel was probably square in shape to start with, and there was never any

chance of it succeeding.

Yet some may be surprised to know how often this may already have happened. And will

happen again. It’s just that we don’t hear much about it.

If we had inside knowledge, we would often find that such projects usually had impeccable

beginnings. Clear design goals, a thoughtful strategy, solid design trade-offs, but then one

embarrassing turn to the left. The result was a product that had no known identifiable sire,

and in fact no one even remembered ever having worked on it! We all know that marketing,

given its nature, always tries to emphasize successes. And no doubt they would be working

overtime to gloss this one up. But engineers, with an eye on not repeating known errors in

future development, are always keenly interested in what should or could have been done.

If only they knew.

Here is a list of some eyebrow raising situations which caught my attention over the years.

The examples leave one incredulous.

Example 1

A telecom project required a rack of several 3000 W Power Factor Corrected (PFC)

hot-pluggable power supplies. Two brilliant teams went about it, one writing C++ code

and the other designing the power sections and the backplane. This was to operate off a

3-phase AC mains supply.
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The engineers thought the best way out was to parallel three single phase 1000 W

power-trains; that is, each power-train would be running off a different input Phase and the

common Neutral. In doing so, the required minimum voltage rating of the FET switches

would be the usual 450 V or so, as for any single-phase PFC stage, rather than other

techniques which would usually require FETs with roughly twice the voltage rating.

The project did get completed.

Then the Marketing guys appeared and informed them that they just couldn’t sell it —!!

Because in many countries and areas, a 3-phase incoming supply point does not even include

the Neutral wire (which in any case is not even designed to carry that much of return current

either). This was a complete dead-end. But couldn’t the Marketing guys have got, involved a

little earlier? Say about 2 years before the project came to a head?

Example 2

Users of a control IC meant for a Flyback topology should recognize that the maximum

allowable duty cycle should never be set to 100%. A 100% duty cycle basically means the

switch is no longer switching, and could just end up staying ON permanently. So if the

output voltage is low, and the IC is trying to get it to rise by increasing the duty cycle ‘D’,

and if D is 100%, there is now unfortunately zero available time for the current to freewheel

into the output. So how can the output ever rise up try as hard as the controller insists?

Yes such an IC has unfortunately been released into the general market. Look

around!

Example 3

Another product is a fairly popular off-line switcher IC family meant for Flyback

applications. In an off-line case, the value of Dmax has several more implications. Here we

must recall that the earlier generation of this switcher family had a maximum duty cycle of

about 67%. When the next generation was conceived, the one-man product-definition team

heuristically assigned a Dmax of 78%. His idea was that by ‘allowing’ a wider input current

pulse, we would automatically get a lower current pedestal, and this would enhance the

‘power capability’ of his device (since this figure was being based purely on current limit,

not on dissipation).

This design strategy could actually have succeeded. But there is a catch. Let us consider

what happens if we just remove the input power. By allowing the duty cycle to go up to

such a high level, the momentary peak currents actually increase much more now, as

compared to a case where the Dmax is set lower. This has severe implications on the

transformer, since its size is related to the saturation level. There are also some other

subtle issues. For example, it can be shown that the dissipation in the zener clamp can
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also go up significantly, thus worsening the overall efficiency. So the ‘advantage’ if any,

turned out to be an illusion.

Example 4

The popular 3842/3844 series I wrote about earlier, despite its popularity was apparently

hastily conceived. Here we actually have a current mode controller that has no built-in slope

compensation!! One would think that everything required for a particular topology should be

inherent in the design. After all, we don’t buy a bicycle from a store and then go out looking

for a pair of tires for it! In this case we do just that.

Example 5

One of the first semiconductor companies to come up with ICs for implementing a boost

PFC pre-regulator had got it all wrong, and they admitted that to us privately: You can never

hope to do proper sine wave shaping with peak current sensing! You need to do average

current mode control, because it is the average current drawn that forms the input current

waveshape. Their competitor understood this, and so despite having broken in later, they

quickly became the market leaders in PFC ICs. The former company changed hands, and is

virtually unknown as a separate entity today.

That’s all for now. Please do write me at sanjayamaniktala@yahoo.com.

The Mighty Zener

(May 2004)

We are by now sadly conditioned to expecting that nothing good is ever going to come our way, at least not

easily and cheaply, writes Sanjaya Maniktala in the latest installment of his power supply design column.

Surprise, surprise: The gate-source zener on your power FET (a couple of cents) can really save your bacon on

safety issues.

Looking at any typical off-line power converter, we will usually find a controller IC driving

a high voltage FET. At the gate, besides the usual pull-down resistor to (primary) ground, we

may also see a paralleled 500 mW/18 V zener diode. Yes, this diode does cost a few cents,

but omitting it can be even more costly! This is just one of those examples of minor ‘details’

that will ultimately distinguish a bad power supply design from a really good one.

On the face of it, this zener does look as if it is there simply to ‘protect’ the gate oxide layer

under various transients and noise spikes that may be encountered in the field. But while the

effects of this one single component can be subtle, they can be dramatically helpful. This is

admittedly a rare situation, especially in power conversion, where we are by now sadly

conditioned to expecting that nothing good is ever going to come our way, at least not easily
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and cheaply enough, without some sort of indirect or unforeseen price to pay somewhere

along the way. In fact, here too, we do have our share of some rather reflex-action pessimism

abounding. People still seek to question the basic wisdom and validity of this rather crucial

zener.

But let us start off by first describing how I personally encountered this issue. The Singapore

based design-cum-manufacturing outfit I worked in at that time had a policy of never

(knowingly) putting in even one superfluous 1-cent component. They considered that

equivalent to ‘shipping free parts with every power supply.’ They understood that at their

current manufacturing volumes, they could probably hire another power supply design

engineer for every zener diode they could eliminate from the schematic.

Yet even they couldn’t ultimately avoid this rather stubborn ‘gate-source’ zener. Note that

this is actually a ‘gate to ground’ zener, because there usually is a current sense resistor

between source and ground.

The trouble actually started after their first manufacturing sample had been built with no

such zener in place. It was submitted for the mandatory UL1950 safety approval. At the test

house, various abnormal tests were carried out. In some of these tests the switching FET

exploded. And in all such destructive tests, the controller driving the FET failed too,

sometimes quietly, and sometimes quite spectacularly. But either way, this was perfectly OK

as per UL, since ‘safety’ was the only concern here, and this should never have been

compromised. But in fact, in one case safety did get affected!

In this case, the optocoupler, which was as usual connected to the controller for regulation

purposes, cracked open. Now that was something unacceptable to UL, since it meant that

the ‘sacred’ primary to secondary insulation barrier (inside the opto) had somehow gotten

breached. That could conceivably lead to a hazardous voltage level from the mains line

input (primary side) reaching a user who may have been in physical contact with the system

(secondary side) at that very moment. Of course, thereafter, the input fuse would also

blow up, disabling the entire system. But a fuse can never be relied upon to blow up fast

enough to prevent electrocution, its main use is only in preventing a fire.

This is the rapid chain of events that had apparently occurred:

1. The FET blew up and its drain and source shorted together.

2. The resulting high current ripped through the current sense resistor in the source,

causing this MOF (Metal Oxide Film) resistor to fail open.

3. The inductor current coming in through the drain, still needing a path to freewheel

through, diverted into the gate, raising its voltage and then entering the controller IC.

4. The controller IC then failed and the high voltage/current damaged several

components connected to the pins of the IC, including the optocoupler!
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5. The optocoupler cracked, and its safety barrier was breached.

6. Finally, the fuse blew (but too late!).

7. About half an hour later, the ‘prime culprit’ (one sleepy and hapless power supply

design engineer somewhere out there) receives a midnight call from his fulminating

boss. Surely the topic this time is not any upcoming promotion.

Now, had we pored over some older power supply designs we may have seen that a transient

voltage suppressor (‘TVS’) was often ‘mysteriously’ placed across the current sense resistor.

In fact, its purpose was to circumvent this very chain of events. It takes us from the end of

Step 2 straight to step 6. A TVS is basically just a rugged zener diode, and one that is

designed to always fail in a shorted condition. So when the MOF resistor fails in Step 2, the

resulting rising voltage would cause the TVS to almost simultaneously fail too, thus

maintaining galvanic continuity for the current to keep flowing from drain to source to

ground, till the fuse interrupts. So in this case, the current wouldn’t need to divert into the

gate (and the IC) as happened in Step 3.

But we note that a TVS is a fairly expensive solution. So in Singapore, we decided to try a

zener between gate and ground. In this location, the zener also always fails in a shorted

condition. It thus protects the controller IC and all its associated components (including the

opto), till the fuse interrupts.

During debugging stages, or in initial prototyping, a gate-source zener comes in real handy

too. It not only saves a lot of soldering/desoldering, but it dramatically extends the life of

the constantly reworked board. Because though the FET fails, the controller IC and all its

associated components always survive. So even after an otherwise ‘impressive’ blow-up,

we usually just need to replace the FET, the current sense resistor, the zener, the pull-down

gate resistor, and input fuse, to be up and running again in half an hour.

And the skeptics: some are still convinced that the small anode-cathode zener capacitance

can combine with the input capacitance of the FET and the lead and trace inductances to

form a high-Q pi type of tank circuit (C-L-C). So they recommend a small resistor of

about 10 ohms placed between the zener and the gate lead, to damp out any oscillations.

Yes, inarguably, the zener must be very close to the FET, but about the oscillations?!!

Well, one prominent FET manufacturer earlier was quite sure that this doomsday scenario

could really happen, and had even stated as much in a certain Application Note (though this

section was later removed). On further inquiries (from me in particular) they backed off,

and in fact provided fresh data to actually disprove their own earlier assertion. So ultimately,

privately they blamed it on one lone engineer of theirs, who didn’t quite ‘follow the book’

when he reported he saw ‘oscillations.’ Probably a bad scope probe. We will never know.

As you can see, an engineer’s job is not getting any easier. If you have time, do drop me a line, at sanjayamaniktala@yahoo.

com . . . just don’t blame me if your converter circuit isn’t working.
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Better Do the Math: Ignore Transfer Functions at Your Own Peril

(June 2004)

It seems that there must be at least two distinct groups of people working in power, writes our power supply

guru. One group consists of academicians who invoke integral calculus equations to describe a buck regulator.

Another group of power supply professionals may wonder if this is going to really help them design better

products. Sanjaya Maniktala says the math CAN translate into a better product, not just some yellowing

seminar material fighting for immortality on a dusty shelf.

It seems that there must be at least two distinct groups of people working in power.

One consists of academicians who won’t hesitate to invoke integral calculus to derive the dc

transfer function of a buck topology (and then write textbooks filled with equations). Another

group is practicing power supply professionals, many of whom tend to believe that anything

even remotely abstract is not going to really help them design better products. I personally

feel that there is a valuable middle ground available to all of us here.

By presenting examples of interesting “transfer function interactions,” I am hoping to show

that it does actually help significantly if engineers try to think in a relatively abstract manner,

and it can translate into a better product, not just some yellowing seminar material fighting

for immortality on a dusty shelf.

The dc transfer function of a topology is simply the expression connecting the input and

output voltages. Most engineers realize that it follows directly from the fact that we have a

voltseconds law in existence, which must be diligently upheld by the concerned inductor of

any viable topology. ‘Viable’ implies that the topology (discovered or yet-to-be) can exist

indefinitely in a steady and stable state. If not, we will certainly hear about it from the

switch.

Now consider the equation for the output of a buck-boost in discontinuous conduction

mode (‘DCM’)

VO =
D2 · V2

IN · 106

2 · IO · L · f
Volts

where VO is the output voltage of the buck-boost, L is in µH, and f is in Hz.

This therefore has the following dependency

VO ∝ D2 · V2
IN

Now consider the dependency of a buck converter in continuous conduction mode (‘CCM’):

D ∝
1

VIN
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So the point here is as follows: if we have a composite topology in which the duty cycle of a

buck in CCM is used to drive a buck-boost in DCM, we can get the dependency on Vin

above to cancel out completely as follows:

VO ∝
1

V2
in

· V2
in = constant

What does this tell us? If the output of the buck-boost is independent of the input voltage,

clearly we must have inherent line regulation. And it is for free!

In practice, if we have a PWM controlled master buck stage, whose switching waveform is

used to drive a slave buck-boost stage which has no independent PWM (just the switch

being toggled), then we know that the output of the buck is certainly well-regulated (because

we have a PWM and independent regulation loop), but the output of the buck-boost is also

partially regulated with respect to line variations. We have no load regulation, but if the

load of the buck-boost is fairly constant, we may not need it either. Or we can clamp the

output of the buck-boost with a zener to give it constant load characteristics. Do note that

this isn’t bad considering we have only one PWM control!

We can also use the fact that the output voltage of a discontinuous mode converter at a given

duty cycle depends on its inductance. So we can ‘tune’ the slave buck-boost to have the

required output level (at its expected maximum load current) by a careful choice of

inductance. Within a valid range, this technique provides completely adjustable auxiliary

output voltages, something we cannot normally expect from composite topologies based only

on continuous conduction modes.

Note that the zener on the output of this slave converter is almost completely nonconducting

when the slave converter is working at its designed (maximum) load. The efficiency is

therefore as high as we normally expect from any conventional switching power converter.

However, if the load on the slave decreases, the zener comes into play and starts

automatically shunting the balance of the current away. It is then behaving as a conventional

shunt regulator. Therefore load regulation, which is taken for granted when dealing with

single or multi-CCM stages, is not ‘automatic’ here. It is being ‘enforced’ by the zener, but

luckily, if the inductance has been chosen correctly, this needs to happen only at less than

maximum loads.

So how did we manage to achieve automatic line regulation? As the input voltage increases,

the feedback loop of the regulated buck converter commands its duty cycle to decrease to

maintain output regulation. It just so happens that this decrease in duty cycle is exactly

what was required by the discontinuous mode buck-boost to ‘regulate’ its own output

almost perfectly.
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Have you also ever wondered why the number of turns on a single-ended forward converter

transformer (not its output choke) can be calculated either at the high input voltage extreme

or the low input voltage, or in fact at any input voltage? Here we have a transformer

operating in DCM, but with a duty cycle dictated by a CCM equation (since it is coming

from the output choke). Only then do we get a surprising transfer function coincidence:

that when the switch is ON, the product of the applied voltage across the transformer

and its duration (the voltseconds) turns out to be a constant, irrespective of the input voltage.

Therefore any input voltage will give us the same number of required primary turns.

Now I need to transfer some of my functioning into other worldly interactions. But don’t forget to write me at

sanjayamaniktala@yahoo.com with your comments, insight, and power-horror stories.

Aluminum Cap Multipliers — Why We Can’t Have Them and Eat
Them Too

(July 2004)

With virtually the highest available CV (capacitance times voltage) capability, accompanied by the lowest cost,

aluminum capacitors are still not even close to getting canned into history books, as some would think. Some of

our younger engineers get rather charged up thinking about ceramic and modern polymer technologies, writes

columnist Sanjaya Maniktala. They should really be paying closer attention to aluminum electrolytics.

With virtually the highest available CV (capacitance times voltage) capability, accompanied

by the lowest cost, aluminum capacitors are still not even close to getting canned into history

books, as some would think. Some of our younger engineers get rather charged up thinking

about ceramic and modern polymer technologies, but they should really be paying closer

attention to the viability and finer design aspects of the still undying aluminum electrolytic

capacitor (hereafter called an ‘elko’).

So why not use an elko?? OK, it has a higher ESR. Granted! But let’s not forget that

‘all-ceramic’ solutions can exhibit dangerous input oscillations, and it is now actually

being recommended that to damp out these oscillations we should put a high-ESR elko in

parallel to the existing input ceramic cap. We may also require a higher ESR just to ensure

stability when using voltage-mode control.

To cut to the chase, let us therefore assume that we finally see the need to use an elko

in a particular location. Now the main concern with such a component is its life expectancy.

Eventually, the electrolyte inside will evaporate causing the capacitance to decrease, and

beyond a certain level we would declare the capacitor ‘dead’ (worn out). We can clearly

understand that a few factors will play key roles in this process:

a) The hermeticity of the end seals of the capacitor. However, no joint is one hundred

percent perfect, and so some evaporation will take place slowly over time. But we

see the need to pick a vendor with a high (and consistent) quality.
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b) The surrounding temperature. The heat could come from nearby components or

through internal heat dissipation. If we lower the temperature, the evaporation rate

will decrease, and extend the life. We will see a little later how this leads to the

published ‘temperature multipliers.’

c) The core temperature. We expect that there will be hot-spots inside the capacitor

since we have less-than-perfect thermal conductivity inside it. As a worst-case, that

is the temperature to consider when calculating life. In fact the entire life

expectancy calculation is reduced to accurately predicting this core temperature

(since we can’t measure it).

d) The ESR. This would certainly affect the internal heat dissipation, possibly raising

the temperature and aiding the evaporation process.

e) The frequency. Since ESR can be a function of frequency, the frequency will

indirectly affect the life of the capacitor. We will see that this leads to the published

‘frequency multipliers.’

The most important datasheet parameter is the ripple current rating. This is typically stated in

Amperes RMS at 120 Hz and 105◦C. It essentially means that if the ambient temperature is

at the maximum rating of 105◦C, we can pass a (low frequency) current waveform with the

stated RMS, and in doing so we will get the stated life. The declared life figure is typically

2000 hours to 10,000 hours under these conditions. Yes there are lower grade 85◦C

capacitors available, but they are rarely used, as they can hardly meet typical life

requirements at high ambients.

Let us now understand what a frequency multiplier tells us. The ESR of an elko is also

usually stated at 120 Hz. The vendor may have directly provided a ripple current rating at

100 kHz in addition to the 120 Hz number. If not, he would certainly have provided

‘frequency multipliers.’ A typical frequency multiplier is 1.43 at 100 kHz. That means that if

we are allowed 1 A ripple current at 120 Hz, then at 100 kHz we are allowed 1.43 A. This,

by design, will produce the same heating (core temperature rise over ambient) as 1 A causes

at 120 Hz. Therefore this is also equivalent to saying that the ESR at 100 kHz is related to

the ESR at 120 Hz by the following equation:

(

I100 kHz

I120 Hz

)2

=
esr120 Hz

esr100 kHz
=
(

1.43
)2 = 2.045

Thus the high-frequency ESR is about half the low-frequency ESR. Frequency multipliers

should be used always, or we will overestimate the heating and underestimate the life,

possibly forcing us to move to a larger cap size.

Temperature multipliers we have to be more careful about. And we have to clearly

understand what they really imply.
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The datasheet usually provides certain ‘temperature multipliers’ for the allowable ripple

current. For example for the old but well-known LXF series from Chemicon, the numbers

provided are

1. At 65◦C the temperature multiplier is 2.23.

2. At 85◦C the temperature multiplier is 1.73.

3. At 10◦C the temperature multiplier is 1.

This means that if for example the rated ripple current is 1 A (at a maximum rated ambient

of 105◦C), then we can pass 1.73 A at an ambient of 85◦C, and 2.23 A at an ambient of

65◦C. But in doing so, the core temperature will remain the same.

So what is the actual story the temperature multipliers are telling us? The amount of heating

and the core temperature rise are proportional to I2
RMS, so if we assume that in every case

the final core temperature was the same, that is, TCORE, then comparing the 105◦C ambient

case with that at 85◦C:

TCORE − 105

TCORE − 85
=

I105
2

I85
2

=
1

1.732
=

1

3

We can thus solve for TCORE to get

TCORE = 115◦C

This says that if we pass 1.73 A at 85◦C, or 1 A at 105◦C, the core temperature will be

115◦C in either case. In fact, for most 105◦C rated capacitors, we will have roughly 5◦C

differential from ambient to the outer can and then another 5◦C from the can to the innards

(the core), giving us a total of 10◦C from ambient to core.

Let us check our reasoning by confirming the 65◦C multiplier

115 − 105

115 − 65
=

10

50
=

I105
2

I65
2

So the multiplier must be 50.5 = 2.236, which agrees with the published datasheet value.

Therefore we see that from the vendor’s published ripple current temperature multipliers,

we can easily deduce his designed-in maximum core temperature.

The problem with this is that if the core temperature is at its maximum rated 115◦C, the life

would always just be the declared 2000 hours or so. But that is hardly enough to get us

through even one quarter of a year. We usually need at least about 44,000 hours (5 years)
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of life expectancy from all elkos used in a typical commercial power supply. How do we get

there? We do that by reducing the core temperature thereby slowing the evaporation rate

of the electrolyte. Does this imply we should not be using temperature multipliers to increase

the current?

There is actually another complication. It has been determined that not only is the absolute

value of the core temperature important, but the differential from can to core is critical too.

So if we increase the differential beyond the designed-in 5◦C, the life can deteriorate

severely, even if the can is held at a lower temperature. But the designed-in differential

of 5◦C occurs ONLY when we pass the maximum specified ripple current (no temperature

multipliers applied), and that is irrespective of the ambient. Which means that as a matter

of fact we cannot use any temperature multipliers at all. So, if the cap is rated to pass 1 A

at 105◦C, then even at an ambient of say 65◦C, we are allowed to pass only 1 A,

NOT 2.23 A.

When the differential is decidedly kept equal to or less than the designed-in value, the life of

the elko is then determined by the familiar doubling rule — for every 10◦C fall in core

temperature (from its maximum rated), the life doubles. That is how we can finally get the

required 44 khours. For example if the core is correctly estimated to be at 65◦C, then the

calculated life of a 2000 hour capacitor is actually 2000 × 2 × 2 × 2 × 2 × 2 = 64 khours.

But we do see that we can’t have our cake and eat it too. We can increase the ripple current

(but not the life) by applying the temperature multipliers OR we can increase the life (but

not the ripple current) by not applying these multipliers. We just can’t have it both ways!

Elkos give us lots of benefits as it is, and we just shouldn’t be asking for any more.

Do write me at sanjayamaniktala@yahoo.com. Please copy Steve at sohr@cmp.com too, just so he knows I am not babbling.

Limit Your Peak Current, Not Your Reliability

(August 2004)

Pop. Pop. Pop. Pop. It’s not the Fourth of July. It could be your own dc-dc design blowing up, worries our power

supply expert, Sanjaya Maniktala. You do want to check out your design under a variety of adverse conditions,

he suggests. Fault management is the key to designing power supplies that last.

Now that you finally got your dc-dc converter working, is it really time to start popping

the champagne? Shouldn’t you at least wait to see whether it even survives the very first

abnormal condition that comes its way? You don’t really want to be the one to have to

decipher (in your rather understandably hazy and exulted condition) whether that second pop

came from the adjoining bottle or from your very own power supply. Fault management is

the key to designing power supplies that last. Unfortunately, all this also has the immediately
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sobering potential to completely unmask the full extent of your design capabilities!

Therefore, ensure that your current limiting is up to the task before you begin to celebrate.

In a typical high-power off-line supply, fault management requires a clear understanding of

the required shutdown and subsequent recovery sequencing of the various constituent stages:

the power factor correction stage, the auxiliary (house-keeping) power supply, and the

power trains. This is complex for sure. Therefore, in single-chip converters, we tend to think

that the task of surviving abnormal conditions is trivial. But not so fast buster! A great deal

depends on how quickly the current limiting acts. Also, whether it is set correctly to start

with. And whether it can even do its expected job. (For the latter aspect, we will delve into

the subtleties of ‘frequency foldback’ in our next column. Here we first do all the necessary

spadework.)

In the high-voltage off-line power industry, the underlying design philosophy is to size the

transformer as per the current limit. Which means that the transformer should not saturate

even if the current hits the limit, as it usually will during any normal power-up or under

shorts or overloads. Of course it is always good to have the flexibility to set the current limit

‘correctly’ — to be just able to meet the required holdup time, step load capability, or any

specified transient peak load requirement (as for disk drive motors, incandescent lamp loads,

and so on). So though the thickness of the copper windings is certainly determined only by

the continuous operating current (long-term heating effects), the actual physical size of the

magnetic core must be set strictly according to the current limit alone. And this may or may

not be related to the continuous operating current, as could easily happen if we use some

popular integrated switcher families which provide only a discrete range of built-in fixed

current limits.

Implicit in this design strategy is the realistic realization that we just cannot set a given

current limit, and expect it to be enforced fast enough to be able to save the switch if the

transformer starts saturating, even momentarily. While this was blatantly obvious for

bipolar transistors in the past, though the situation has improved with the advent of FETs, it

is not enough to have changed this basic design philosophy. At least not for high-voltage

applications.

The design philosophy prevalent within the low-voltage dc-dc semiconductor industry is so

vastly different from that of the off-line power industry, that transmigratory power engineers

(nomads like me in an eternal search for a meaningful home) have a hard time reconciling

initially. Here too, we can have families of integrated switchers with fixed current limits,

but we almost invariably end up totally ignoring the current limit (just so long as it is high

enough to guarantee the desired output power). So we size the inductor according to the

continuous operating load current — no more, no less. For example we may use a switcher

with a 5 A current limit for a 2 A application, and use only an inductor rated for 2 A.

We could also use the same switcher for a 4 A application and we would then use a 4 A
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inductor. Here we are assuming that since the switch is obviously OK with a current of 5 A,

then even if we use a 2 A inductor, and it saturates momentarily, the current limit circuitry is

capable of acting fast enough to immediately turn the transistor OFF the exact moment that

it attempts to exceed 5 A. So the switch can never be destroyed, since its legal limit is

assiduously enforceable.

Now this scenario is clearly more likely to be true for FETs than bipolars, because the

former have virtually no storage/delay times and can react almost immediately. But “almost”

is not always good enough. Not in power. For example, if the input voltage is raised, the

saturating inductor’s current may ramp up so steeply, that even during the minimum ON time

(minimum pulse width), the current may spike up high enough to damage the switch. In this

case, we should ensure that the inductor is not saturating at the moment the current

attempts to exceed the set current limit. That gives the circuitry enough time to safely turn

the switch OFF.

While testing and evaluating the LM2590HV to LM2593HV family of high-voltage devices

we observed some failures if we used very small sized inductors when the input voltage

was higher than 40 V. Thus our official recommendation in the datasheets for the inductor

selection is somewhat of a cross between the two design philosophies talked about above —

we have stated that if the input is less than 40 V, the inductor should be sized as per the

continuous rated load current, but if the input exceeds 40 V, we should size the inductor as

per the fixed current limit of the device (disregarding the load current totally).

We should also keep in mind that the above mentioned devices are bipolar-based integrated

switchers. We can expect the situation to be better if we use integrated devices which use

FET switches. On the other hand, if we are using controllers, then even with FET switches

we should be cautious, because the switching speeds and corresponding delays are likely to

be worse than with integrated switchers. It all boils down to our ability to set the current

limit accurately and to enforce it fast enough. It is not a trivial proposition.

The reader may wonder how we ensure rock-solid reliability for low-voltage applications if

we disregard the current limit altogether, as we effectively seem to be doing above. Well in

reality we don’t, but this aspect is cleverly hidden from most users, though not deliberately

so, and certainly not to their disadvantage! Most integrated switcher families are actually

virtually ‘bullet-proof.’ And one of the key methods to ensure this is by providing a second

level of current limit protection, usually not even mentioned in the datasheet, since it is rarely

encountered and almost completely transparent to the user. But this second limit is

typically about 20 to 30 percent higher than the first (declared) current limit. If this is

ever encountered, as with severely saturating inductors and high input voltages, the IC is

designed to enter a foldback condition. As we said, more on this subtlety the next time!!

Till then don’t forget to drop me a line at sanjayamaniktala@yahoo.com and do copy Steve at sohr@cmp.com.
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Reliability Is No Flash in the Pan

(September 2004)

Don’t be so quick to pop the champagne when your new power supply prototype seems to work, Sanjaya wags

a finger. Lest you want a lawsuit, ensuring reliability requires a disciplined effort around a second current limit.

It’s a long lonely trudge back to the drawing board, he says.

That was some night of celebration! Now past the ebbing wave of our once-blissful

incognizance, we are become increasingly aware that the fireworks display back there did

not herald the onset of any new-found freedom – rather a lonely trudge back to the drawing

board in the very near future, accompanied only by the growing realization that a) switching

power conversion is not half as easy as it sounds, and b) reliability should never be

considered to be a flash in the pan.

In the previous month’s column we revealed that many integrated switcher ICs are virtually

indestructible by design. In that case, why even bother about knowing all about the peak

currents? To answer this delicately and with a measure of natural human kindness, the second

current limit not only helps make the IC ‘bulletproof,’ but also ‘idiot-proof.’ This second

current limit, if present, is not even supposed to be encountered under normal operation, or

even under “normal abnormal conditions!” That sounds oxymoronic, but in fact most of us

practicing engineers would have to struggle extremely hard to even get the peak current to

slip past the first current limit unnoticed, so as to trigger the IC into this last-ditch survival

mode. But if that happens, unfortunately, now the problem is that the converter output just

folds back (low output voltage at higher loads). This in turn is the result of the second level

current limit comparator being designed to either cause a smooth, progressive reduction in

the switching frequency (‘frequency foldback’), or just skipping several on-pulses (the

number of pulses skipped being roughly proportional to the amount by which the peak

current is exceeding the second level threshold — an averaged sort of frequency foldback).

But before looking further at frequency foldback, let us again beat upon some of the points

from the previous month’s column, and refine them further. We saw that for a low-voltage

integrated switcher, we can for example use a “5 A device” for a 3 A load, and then its OK

to use only a 3 A inductor. Note that we have been talking only about buck switchers so far.

A “5 A” buck switcher is by definition meant for a maximum load current (‘Io’) of 5 A,

and therefore its current limit (‘Iclim’) will usually always be internally set a little higher,

maybe between 6 to 6.5 A. But this train of logic relies on a property that is specific only to

the buck topology: its average inductor current equals its load current. We also recollect that

the usual design procedure for selecting the inductance for any dc-dc topology is to set the

peak inductor current about 20% higher than the average inductor current. We can show that

this ‘20% inductor criterion’ leads to an ‘optimum’ of sorts from the viewpoint of all the

power components of the converter (for more details see application note AN-1197 at
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http://power.national.com). So for a buck, with a 5 A load current, we will typically have a

peak inductor current of 5 × (1 + 0.2) = 6 A. But remember, this holds only for a buck!

For ‘non-buck’ topologies we have to be careful because there the load current has no simple

relationship to the average inductor current. And therefore nor to its peak or to the required

current limit either. This means that if we come across a device declared to be say a

“5 A buck-boost” (or boost) switcher IC, we should remember that this just means that 5 A is

its set current limit, NOT its max load current. The max load for a non-buck topology

depends on the input-output conditions of the particular application. For the boost and the

buck-boost, the average inductor current is not the load current ‘Io’ but is Io divided by

(1 − D), where D is the duty cycle. (See AN-1246 at http://power.national.com for more

details). This leads to the following basic design rule for the two ‘non-buck’ topologies: the

worst-case average (and peak) inductor current occurs at the lowest input voltage. That is

thus the input end at which we must design or select our inductor. In contrast, for a buck, we

always pick its inductance at the maximum input voltage of the application, because that is

the end at which its peak current is the maximum.

We need to refine the above numerical computations slightly and to also see the importance

of tolerances in reliability and cost. We said that for a low-voltage 5 A buck we can pick a

3 A rated inductor if our max load current is 3 A. That is not completely accurate. Though

the chosen inductor is allowed to have a 3 A continuous rating (based on the copper

thickness and core loss), its peak or saturation rating (i.e. the current at which the core

shouldn’t saturate even momentarily) must be such that it can handle the peak current, which

by design is typically about 20% higher than the average value, that is, 3 × 1.2 = 3.6 A.

But we also know that if this happens to be a “high-voltage” application (defined here as an

input greater than about 40 V) we may have to size our inductor according to the current

limit, not the load current. That number is 5 A in this case. But very roughly so!

Here we should actually check the IC datasheet to see the MAX value of the current limit

range. For example, for a 5 A switcher the MIN value may be say 6 A (set high enough

simply to guarantee full 5 A load capability with the usual 20% inductor design criterion

mentioned above), but the MAX value of the current limit may be say 7 A over temperature

and process variations, and depending upon how it may have been trimmed in production.

So now, though the inductor needs to have a minimum continuous rating of only 3 A (for a

load current of 3 A), the inductor must be able to handle peaks of 7 A! That primarily

determines the size and cost of the inductor. Not the amount of copper. In fact, for a high

voltage application, the load current is not really important anymore, because the weight of

copper used doesn’t really affect the inductor cost much, provided of course that the available

winding window area is enough to accommodate the required number of turns, and so we are

not being forced to pick a larger core size simply to accommodate the required windings, or

because the overall core temperature is too high as a result of excessively thin wire gauge.
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We also now realize that all “5 A” switchers from different vendors are not necessarily the

same! The spread/tolerance of the current limit is very important as it determines the size

and cost of the inductor when dealing with high voltage ICs. The MIN value of the current

limit is important because it determines the minimum guaranteed power output, and the

MAX value of the current limit determines the size of the inductor. Therefore, some key

manufacturers of high voltage integrated circuits pride themselves on how ‘tight’ their

tolerance is on the set current limit. That is indeed admirable, but only provided we are

comparing apples to apples; that is, comparing only high voltage integrated switcher families

with fixed current limits from different vendors. This comparison makes no sense if we have

a device (e.g., a controller) where we can set the current limit externally. In that case we can

match the current limit much more accurately to the load current, and thus get the smallest

possible core size. That helps reduce core size. (More on this aspect in the next month’s

column and how such vendors virtually trick us into ‘thinking’ that the core size has

decreased.)

For non-buck topologies, we now realize that say for a buck-boost application with an input

of 15 V to 25 V and an output of 15 V output, the max duty cycle is 50% and this occurs

at the minimum input of Vin = 15 V. So if the load current is 5 A, the average inductor

current is 5/(1 − 0.5) = 10 A. With the 20% inductor criterion, the peak switch current will

be 10 × 1.2 = 12 A. So the MIN of the current limit must be set higher than 12 A. And then

depending on the available accuracy for current limit, the MAX may be as high as say 20 A.

Clearly, a 5 A switcher is not going to suffice, nor an inductor rated only for 5 A!

A related issue is the case when a buck IC is used in a so-called ‘inverting configuration’.

We should realize that in doing so actually the topology has in effect changed from a buck to

a buck-boost. So now we just cannot get 5 A of load current from a declared ‘5 A’ IC. How

much load current is possible depends on the specific input-output conditions. So again, our

peak current is not close to 5 A, nor should the inductor rating be “5 A”. Or we will certainly

be frozen into a July 4th timeframe forever.

From an IC designer’s point of view and even our applications level understanding, we must

carefully recognize another basic problem with the very concept of current limit. Suppose we

now have a very ‘fast acting’ current limit, and we also use ‘blazingly fast’ FETs (very low

gate charge). Does that mean we are 100% protected? Not necessarily! What does the

current limit comparator really do? All it can do is to command the duty cycle to reduce

further when we hit the current limit. But it can’t make the pulse width narrower than a

certain minimum on-time. This small minimum pulse width of about 100–150 ns is usually

required for the internal circuitry to be able to sense the current every cycle, and we also

actually have to turn the switch ON every cycle for the purpose. In fact this minimum pulse

width may need to be set even higher, say around 150–250 ns, especially if we are using

controllers (as opposed to integrated switchers) since a ‘good’ controller IC must handle a
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relatively wide range of FET characteristics, and various possible PCB layouts and their

corresponding trace delays and glitches.

Current mode control may also be worse off in this regard, because of the need to

incorporate a certain higher than usual minimum leading edge noise blanking time.

Generally, high frequencies will aggravate the situation further, since the same minimum

pulse width corresponds to a much higher minimum duty cycle at high frequencies. What

this leads to is the very curious situation as indicated in Figure A-2 (for a buck). Consider a

‘hard’ power-up, that is, a sudden application of input power, with a high dV/dt, as say with

a banana plug slammed into the lab dc power supply. Initially, there is no output voltage rail

present, so the current ramps up at the rate of Vin/L, eventually steadying to (Vin − Vo)/L.

But during the off-time, at initial powerup, the ramp-down rate is much smaller, as it depends

basically only on the diode voltage drop of 0.5 Volts or so. So every cycle, the net current

rises just a little higher, irrespective of any current limit. This is a clear case of current

staircasing. Over several cycles, depending on the amount of output capacitance and the

input dV/dt, the inrush current may go up to very high and almost unpredictable levels. Even

‘soft-start,’ if available, may serve absolutely no purpose at all, at least not in controlling the

inrush current. The situation actually gets worse with a ‘good’ diode, that is, one where the

diode voltage drop is less, because it is this diode drop that stands almost alone in trying to

get the current to ramp down. The same thing happens if we short the output!

One solution to this problem is to reduce the frequency (or just omit on-pulses as shown in

the lower diagram of Figure A-2). This effectively increases the off-time and reduces the

minimum duty cycle, and thus gives enough time for the current to ramp down. See the

datasheet for LM1572 (at http://power.national.com) for a deeper explanation of such a

practical frequency foldback scheme. But note that if too much off-time is available (an

excessive amount of frequency foldback), the average current may not be able to rise high

enough to meet even the initial load requirement under startup. That could well lead to a

scenario that is rather uncomfortably well known in the semiconductor industry — that of an

IC which has a declared and mysterious “startup problem” under certain types of loads.

In general, we have to be very careful in implementing any type of foldback scheme.

Foldback is a two-edged sword. It might help control responses to abnormal conditions, but

may also end up encroaching on normal responses.

Another method being used nowadays for synchronous buck ICs is to sense the current

during the off-time (i.e. across the lower FET). Note that this allows us to skip on-pulses

entirely and is in effect a frequency foldback of sorts. Though its main purpose in powering

modern core processors is to be able to carry out a high-to-low conversion at high switching

frequency. For example, from 20 V to 1 V at 1 MHz would require 1/20th of 1 µs, that is, an

on-pulse no wider than 50 ns. That doesn’t leave us much time to be able to sense current in

the high-side FET. So the only option is to sense current in the low-side FET. On the face
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Figure A-2: Frequency Foldback

of it, low-side sensing should also help restrict the current under startup and overloads. But it

has its own set of peak current and reliability problems, and these will form the subject of a

column in the near future.

Write me at sanjayamaniktala@yahoo.com. Please don’t hesitate to ask for pdfs of my older articles, as some of you have already

done. And also don’t forget to also write Steve (at sohr@cmp.com) and give us the good news that the fireworks display is over at

your end.

Editor’s Note:

Sanjaya has a new book out, which the publisher, McGraw-Hill Professional, is promoting as “The Bible” for power supply

designers. On Amazon.com, the title is Switching Power Supply Design & Optimization.

The Incredible Shrinking Core

(October 2004)

Magnetics is a terrible embarrassment to many engineers, writes Sanjaya Maniktala, in this month’s column

on power supply design. I suspect they often end up pretending it doesn’t really matter (“magnetics-denial”),

he says. But dc-dc size, it turns out, is more a function of reliability than of switching frequency. Undersizing the

core, he reminds, can have some serious consequences.

Magnetics is a terrible embarrassment to many engineers. I suspect they often end up

pretending it doesn’t really matter — ‘magnetics-denial’ — “Oh, I just toddle up to the bin

and pick any inductor that works.”
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Considering that the entire movement in switching power conversion in the last decade to

higher and higher frequencies is driven mainly by the burning desire to shrink magnetic

components, there must be something wrong with this rather cool, laid-back attitude. It is

of course my personal opinion that some engineers often make the problem sound even more

complex, by spending all their remaining waking hours twiddling with the Nyquist criterion,

double-edge modulation, and so on.

To put it in perspective, none of these issues have really ever been a show-stopper in any

practical design scenario, nor have they allowed us to eventually reduce the size of the

power supply. We note that size must ultimately dove-tail with reliability, because if we

undersize the core for example, we will certainly cause core saturation and a fair amount

of resulting silicon shrapnel in the lab! We saw that last month. Now consider the equations:

1) E =
µµ0N2I2Ae

2le
×

1

z

2) B =
µµ0NI

le
×

1

z

3) E =
B2Ve

2µµ0
× z

4) L =
µµ0N2Ae

le
×

1

z

where

z =
le + µlg

le

µ = relative permeability

µe = effective permeability

(MKS units)

Above, I have extracted four key equations from my recent book. I hope to give you a simple

insight into the art of reducing the core size. Here we are assuming that core and copper

losses are not the limiting factor (as is usually the case with the modern geometries and

materials), and that the inductor size is simply related to the energy storage requirement or
1
2 × L × Ipeak2. In my book, I have introduced a useful variable called the ‘z-factor,’ defined
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above, since I found it helps simplify the equations considerably. (Also, see the magnetics

on-line seminar at http://www.national.com/onlineseminar/2004/magnetics/magnetics.html.)

Here is the logic: from the fourth equation, we see that to be able to keep the inductance

fixed as z goes from 1 to 10 (air gap increased), we only need to increase the number of

turns N by 100.5 = 3.2 times. Therefore, from the second equation we can see that if z went

from 1 to 10, but the ampere-turns NI was increased only by a factor of 3.2 (so as to keep

L fixed, as we usually want to do), then the operating B-field would be reduced to 1/3rd of

its original value.

From the first equation, the energy stored in the core has remained unaltered in the process,

though from the third equation we can see that its overload capability (i.e. measured up to a

certain saturation flux density BSAT) has increased 10 times. So, any “headroom,” as

measured from the operating B-field value to the saturation level (BSAT), or from the

operating energy storage level to the peak energy handling capability must have increased

considerably, even though inductance has been kept a constant in this case.

All this could translate to a much higher field reliability where the converter will likely

encounter severe abnormal or transient line/load conditions. However, if all the “bells and

whistles” are present in the design of the control circuitry (e.g. feedforward, primary/

secondary current limit, duty cycle clamp, and the like), and they serve to protect the

converter adequately against any such abnormal conditions, this gives us a great opportunity

to select a smaller core for the same power level. In doing so we would be essentially

returning to the point of optimum core size, which is defined as that where the peak

operating flux density BPEAK is just under BSAT (with current limiting and/or duty cycle

clamping present to ensure that BSAT is never exceeded, even for a cycle).

What do we learn here? That by increasing the gap of the core we can move to smaller core

sizes. Yes, powdered iron cores for example have a distributed air gap, and come in various

“effective permeabilities.” So actually, lower permeability materials should in principle

always lead to smaller core sizes, as they have a larger air gap in effect. All this is rather

counter-intuitive I admit. The restricting factor is that to use very low permeability materials,

we need more and more turns, and so we will either just run out of enough window space to

accommodate these extra turns, or we will have our copper losses mount to the extent that

the core size becomes a secondary issue.

Now returning to another issue I promised to touch upon in last month’s column. High-

voltage off-line integrated flyback switcher ICs are available from several vendors, but they

are restricted because they usually come only in a family of fixed current limits. So if for

example we have a 5 A part, the next lower part being a 3 A part, the 5 A part is certainly

optimum for peak currents slightly below 5 A. But what if the peak current in our particular

application is 4 A? For lack of a suitably matching part, we would now be forced to use a
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5 A IC for a 4 A application, but we would still need to size the core for 5 A! We may be

able to reduce the copper diameter in going from a 5 A application to a 4 A application, but

not the physical size of the inductor, as it must still continue to withstand 5 A, which it

would see under sudden step-load changes (or even under normal power-up or power-down).

So how do some such vendors manage to showcase a smaller magnetic component for the

4 A application? By increasing the current ripple ratio ‘r’! By the previous equations, it can

also be shown that if L is allowed to decrease (fewer turns), the energy storage requirement

decreases and so we can reduce the core size. Inductors operated with large current ripple

ratios are therefore always smaller, though the problem is that they just transfer the burden to

the input/output capacitors (more filtering required). But you may not notice that

immediately!

Write me at sanjayamaniktala@yahoo.com. Please don’t hesitate to ask for pdfs of my older articles, as some of you have already

done. And also don’t forget to write Steve (at sohr@cmp.com).

Editor’s Note:

Sanjaya has a new book out, which the publisher, McGraw-Hill Professional is promoting as “The Bible” for power supply

designers. Available through Amazon, the title is Switching Power Supply Design & Optimization.

Plain Lucky We Don’t Live in a PSpice World!

(November 2004)

We have a natural ally in nature, writes columnist Sanjaya Maniktala. Design problems occur, he says, when we

schedule a confrontation with natural forces. Nature doesn’t have “convergence” problems, like PSpice often

does. Try simulating the air flow over a heat sink.

We should keep that in mind, that all we need to do sometimes is to just sit back and allow

nature to do its ‘thing.’ We have a natural ally in nature. Design problems actually really

start, only when we have somehow managed to adopt what is in effect a schematic

confrontation with natural forces. Luckily, nature doesn’t have ‘convergence’ problems, like

PSpice often does. All this may sound like some vague debating point in some esoteric

man vs. machine philosophy panel discussion but it is actually just plain design

common-sense. Appreciating these finer aspects of nature can help us succeed with a host of

seemingly mundane or challenging engineering pursuits. And it’s almost faster than getting

our grand simulator engine to essentially mimic nature itself.

As a seemingly trivial example, we all know that when an object heats up, the air around it

moves upward trying to cool it down. Eventually, we achieve thermal equilibrium. But have

you noticed that oddly enough, the higher the dissipation, the lower the thermal resistance

(expressed in ◦C per Watt). This is because the rising air turns “turbulent” under higher
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dissipations, in an effort to help us even further. This phenomenon, once understood, is

actually exploited in creating special pin fin heatsinks that try to provoke turbulent air flow

even at lower dissipations. You can try “Pin Fin Heatsinks” (http://powerelectronics.com/

mag/power_pin_fin_heatsinks/) and “Equations of Natural Convection” (http://

powerelectronics.com/mag/power_simple_equations_simplify/index.html) for more

information. Carrying our learning to the extreme, small miniature fans are sometimes

mounted on high dissipation ICs blasting air perpendicularly at very close quarters onto the

exposed hot surface. This is called ‘impingement air flow,’ and it leads to a further and really

dramatic reduction in thermal resistance. A good read on this technique is available at the

ETD Library of Louisiana State University (http://etd02.lnx390.lsu.edu/docs/available/

etd-0411103-105200/unrestricted/Chapter1.pdf).

Now let’s take a typical switching converter. If we apply a voltage across an inductor during

the switch on-time, we get a corresponding increment in current from the basic equation

V = LdI/dt. But then we turn the switch OFF. Now we will find that a certain voltage

automatically appears across the inductor. Its magnitude may be undefined initially (as during

initial power-up), but what we can be sure of always is that it is of reverse polarity to the

voltage we applied during the on-time. If we think hard, we realize that our contribution as

engineers is simply that we managed to create a circuit schematic (or ‘topology’) where we

allowed nature to develop this reverse inductor voltage. But if for example, in a typical

converter, we put the diode in the wrong way (or forget the diode altogether!), we may just

be preventing this voltage reversal, causing instantaneous combustion.

From V = LdI/dt, we also see that to get the increment in current during the on-time to

exactly equal the decrement, every cycle, we need the quantity ‘V multiplied by time’ during

the on-time to be equal in magnitude to the same quantity during the switch off-time. In fact,

that is the fundamental voltseconds law of power conversion. It leads directly to the

expression of duty cycle in terms of input and output voltages.

But what drove nature to strive to do all this? To put it bluntly, we are lucky we don’t live in

a ‘PSpice world.’ Luckily, most natural processes tend to converge in our world and without

‘user intervention!’ We can foresee that if the current doesn’t decrease to exactly the same

instantaneous value it had at the start of the cycle, then every cycle there will be a small net

increase in current. After a million switching cycles (nowadays that could take just one

second!) this ‘small’ net increase will not be so ‘small’ anymore. Ultimately, we would

probably never achieve a measurable or stable ‘steady state’ on the bench. And any ‘switch’

we may develop will ultimately combust under these escalating currents. Keep in mind that

if it is not current, the switch will certainly fail due to excess voltage, because nature goes all

out to help us, even increasing the reverse voltage (if that is schematically possible) to force

a ‘reset’ (i.e. convergence in effect). Too bad if we didn’t leave any available doors open to

allow nature to step in to help us out here. On the other hand, we would be hard pressed to

463



Appendix 1

make a typical PSpice-based converter circuit stabilize without explicitly implementing

closed-loop feedback.

Note that the voltage reversal can be considered from the electromagnetic viewpoint as a

result of Faraday’s law of induced EMF (or Lenz’s law). It is interesting to recognize that

not only ‘transformer action’ would not be possible without this law, but no stable dc-dc

inductor-based topology could exist either, because Faraday’s law is simply the voltseconds

law in another form (or vice versa). Without Faraday, we have no voltseconds law either.

And without this, there would be no switching power conversion for one!

But what has all this to do with PSpice? Well, on a more subtle level, and in the same spirit

of things, nature also tries to lend an additional helping hand by imparting ‘parasitics’ to

every component we use. These actually help many processes converge eventually (or

stabilize), even if we have partially overlooked some crucial design aspect or abnormal

operating condition. Yes, these parasitics do seem like a nuisance usually, but they have the

potential to even temporarily stabilize an inherently flawed new topology. Of course we

usually don’t want to operate a converter that depends on parasitics for its functioning.

Though we do something similar when implementing ZVS (‘zero voltage switching’).

Parasitics often just ‘soften’ an abnormal or excessive application condition though we may

not realize it (that’s until we run PSpice!). As a trivial example, the ESR helps limit the

inrush current into the input capacitor. We also know that even the small trace inductances

leading to the input capacitor can help dramatically reduce shoot-through (cross-conduction)

currents in synchronous buck converters.

Let us also consider what happens if we suddenly overload a normal nonsynchronous buck

converter . . . say by placing a dead short on the output? The duty cycle is still way up

initially, not having had time to respond. So the converter ‘thinks’ the output voltage is still

high and since its duty cycle is unchanged, it actually continues to try to deliver the normally

required output voltage. But we know for a fact that the actual voltage on the output

terminals has been forced to zero by the short. So to where did the excess Volts disappear?

In fact, the full calculated output voltage momentarily appears across the diode and the dc

resistance of the inductor. And the current must therefore increase (overload current) such

that the following equation is satisfied unequivocally during the initial moments of the short:

Vd + I ∗ DCR = Vo, where Vd is the diode forward drop, and DCR the dc resistance of the

inductor. So in a fault condition on the output, the DCR of the inductor and the diode drop

actually both help in reducing the overload current. ‘Good diodes’ (with low forward drop)

make the overload currents even higher. Note also, that in the latter case, it is not only the

fact that we have a diode drop that helps reduce the overload, but the fact that this drop

actually increases with increasing current, thus effectively helping out when needed the

most. In fact, this effect was belatedly replicated by placing a series resistance (ohmic) term

in the PSpice diode model.
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Do write me at sanjayamaniktala@yahoo.com and copy Steve at sohr@cmp.com if you want to express convergence of views

on this topic. But it’s also OK, even if you want to momentarily explode and vent yourself after reading my little viewpoint. Just

as long as we all manage to ultimately stabilize the resulting situation! And quite naturally so!

Why Does the Efficiency of My Flyback Nose-dive?

(December 2004)

Sanjaya’s back with a confession: “I learned a lot at that little company I worked for way-back-when.” What

he learned is that flyback switchers have problems with leakage inductance which can come around to bite your

tail. Also, a thing-or-two about PSpice, Andrew Lloyd Weber musicals, consultancies in the dot-com era, and

the little Precision Advocate that lives inside us. A December smorgasbord, Sanjaya’s most personal column yet.

Enjoy!

Looking back at the six or seven power conversion companies I have worked in so far,

I think it is somewhat intriguing to realize that professionals often learn (and contribute) the

most in smaller companies. Just a plain coincidence that these companies are also often the

ones engineers are least likely to ever want to admit having worked for, many years later!

Call it a ‘trial by fire’ or ‘hardening by heat treatment.’ Whatever! I remember Bruce Carsten

had written a last-page article in some forgotten publication over a decade ago titled “Why

Innovations Seem to Come from Smaller Companies.” A very pointed and

thought-provoking article, one that I glanced over several times over the years. I just recently

threw it away after cleaning up after completing my book.

This month however, I decided I was finally going to come to terms with my past in a way,

and try to force myself to remember in vivid (and somewhat painful) detail how I learned to

deal specifically with leakage inductance many years ago, while working in a rather small

outfit making innovative integrated switcher ICs for off-line flyback applications. In doing

so, it will also be clear to you, what really hampers the flyback topology itself, at higher

output power levels and low output voltages.

But before I get into that, I will take stock of some of the interesting correspondence

I received in response to last month’s column. In particular I had an interesting Email

exchange with Paul Tuinenga, co-founder of MicroSim (creators of PSpice, now part of

Cadence). I will let Paul state it best in his own words: “I have this recollection of a

passage from an out of print book (I think it was) ‘Paper Money’ by Adam Smith, in which

the author tells of a conversation with a Southern stock-broker — ‘The computer is like a

dog. Very useful. Wouldn’t think of hunting without one. They spot birds and retrieve. But

you don’t give the gun to the dog’!” Paul and I ended up being pretty much on the same

page as he also agreed with my basic sentiment that “PSpice essentially includes all the

equations . . . like say Kirchhoff’s laws. So it does a great job in predicting the final outcome

(usually . . . !). However, in using it, we engineers therefore tend to forget the actual
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equations ourselves — which is a curse for any good engineer, since he loses the power of

‘optimization’ so essential to a good designer . . . he just forgets to think! Not the direct fault

of the machine though. In a way, he gets blinded by the luxury of a powerful machine . . .

which ‘does’ but can’t ‘think.’ I feel he can certainly use it to AID design, not as a substitute

for design.”

Returning to the flyback topology, working in this particular switcher IC company, I had

been trying to come up with a more accurate set of ‘quick selection curves’ for their

next-generation switcher IC family. Their older Excel spreadsheet and the corresponding

published efficiency curves were really not holding up very well in actual bench verification.

Seemed to be finally giving credence to the constant griping by previous customers that the

efficiency and max power curves were “unachievable” and “how the hell did you come up

with these anyway?” Not that the company was initially really looking to correct these

apparent inaccuracies, since when it got assigned to me, the decision was based mainly on

some rather astute financial and business sentiments (I didn’t say ‘Machiavellian’).

Actually this story itself is interesting enough to merit a slight detour here, since it keenly

epitomizes the touch-and-feel of the entire dot-com era in the Silicon Valley area (while it

lasted). The previous applications senior engineer (the one who had created the original

Excel spreadsheet and thus indirectly ensured only he understood it fully) had quit suddenly.

He had then thoughtfully set up a lucrative private consulting agency — but not before

taking with him a whole lot of stock options from this flyback company (“high flying adored

did you believe in your wildest moments, all this would be yours” - Evita).

The consulting activity actually was in parallel to a ‘full-time’ senior position that he also

took up in a rather sleepy company (you guessed it, a ‘big’ one). I just don’t know whether

this latter company knew/didn’t know/didn’t care/thought it was perfectly OK, or even

admired any human’s ability to ‘multiplex’ so dramatically. I couldn’t do it for sure! Oh yes,

talented Mr. Ripley was also managing to teach evening EE classes at the local university in

his ‘spare time’?! Several years later, after this ‘big’ company got swallowed, and then

re-swallowed successively, by bigger and bigger companies, it apparently just became too

big even for Mr. Ripley, and so one fine day, along with the whole dot-com era, he too got a

pink slip. But, till that transpired, he was more than willing to come back, again and again,

to the previous (and precious) flyback IC company, generating all the efficiency and

selection curves for every future product family they desired (essentially by magically

reconfiguring his previous spreadsheet, as only he could).

Yes, he was certainly counting on making much more than a 40-hours-per-week exempt

employee like me. However, company management may have been on to him, opening the

door just a little for him (a few hours per week over a few months), perhaps with the

unstated intention of transferring his expert knowledge back in-house, and afterward

dumping him. All this while, with some help from him, I had successfully developed far
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more elaborate Mathcad models which I then used to put out the quick-selection curves for

two new product families. In the process I also showed the company what they needed to do

to improve their efficiency estimates, especially in regard to leakage inductance. Job done, I

too then quit suddenly. I probably left the company with the unenviable choice of either

figuring out the older, flawed but simpler Excel program, or running with the more accurate

and bench-verified, but horribly complex Mathcad program. I really don’t know what they

did after that, though I suspect they may have had to play footsie with the other engineer

again, at least to make sense of the spreadsheet.

During the bench verification process, I noticed that for 12 V outputs, we got a nice fit with

the theoretical efficiency estimates on that spreadsheet, but for lower voltage outputs (5 V,

for example) the bench test verification went way off the efficiency estimate curves,

especially for high loads. Why so? We went over every loss term, often with a microscope,

both on the bench and in the program, refining the models more and more, almost to the

extent of making the entire Mathcad file completely iterative. (It would take roughly 24–36

hours to generate the final efficiency curves from the moment I would hit ‘calculate’ on a

600 MHz PC. The company had to put three PC workstations in my cubical to ensure

I would get some work done while the simulation was running!) But no luck getting the

actual measured efficiency to match the simulation! We were certainly getting much better

with each iteration, but still couldn’t explain where the remaining couple of efficiency points

were going.

I rechecked my program several times, dotting the i’s and crossing the t’s (the little German

living inside of me ever since my Leipzig days) but it looked solid every way I attacked it.

In desperation, I then started poring over some old literature looking for clues, and this one

from a very old Philips publication “3C85 Handbook” caught my attention: “Leakage will

reflect from secondary side to primary side according to square of turns ratio of the

transformer.” That was it! We all know it is standard design practice for any universal-input

off-line flyback to keep the reflected output voltage ‘VOR’ fixed at an ideal of about 105 V.

The VOR is the output voltage multiplied by the turns ratio. So basically, the required turns

ratio for a 5 V output is

nP

nS
=

VOR

VO
=

105

5
= 21

For a 12 V output the turns ratio is

nP

nS
=

VOR

VO
=

105

12
= 8.75

The secondary side leakage (uncoupled) inductance is associated not only with the actual

transformer windings, but the lead-out terminations and even the PCB traces leading to and
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returning from the diode and output capacitor. Assume two inches of total secondary side

trace length for example, and remembering the thumb rule of 20 nH/inch, we get say 40 nH

secondary leakage inductance. For a 12 V output, this will reflect to the switch side as an

effective leakage of 40 × (8.75)2 = 3062 nH or about 3 µH. This will be added to the

existing primary side leakage (typically about 10 µH) to give about 13 µH. The associated

energy will be dissipated in the zener clamp. However for a 5 V output, the same 40 nH gets

reflected as 40 × (21)2 = 17640 nH or about 18 µH! This will give a total primary side

leakage of 10 + 18 = 28 µH! Triple the first estimate. Enough to inflict trauma on the

wimpy zener clamp which probably was just expecting a nice sunny day paddling away on

the beach, but got hit by a tsunami instead.

As soon as I understood this, and learned to correctly estimate and perform an ‘in-PCB’

measurement of effective leakage (not by just shorting the secondary side pins of the

transformer, but by placing thick shorts across the diode and output cap), I modeled it into

the Mathcad file. The fit to bench results was almost too good to be true - within 1% over

the entire load range. After much more testing, by several engineers in fact, the company

finally acknowledged this to be the missing piece of the Flyback jigsaw puzzle, and then

published the new product family quick-selection curves I had generated and verified, and

also the guidelines on leakage inductance measurement. Of course they didn’t want to

‘alarm’ previous customers by going back and correcting the curves of the previous family

(which they now knew were super-optimistic). Plain marketing sense!

That is all I could manage this month after a rather hearty and long Thanksgiving break, and

that coming in just after a tiring 4-hour course on Magnetics I had to prepare for and present

at Power Systems World 2004 (in which, incidentally, I had Keith Billings himself in the

adjoining room giving a similar 4-hour course on hold-your-breath: Magnetics! What timing!

Luckily (for me) we managed to split the attendees almost evenly. I walked in to say Hi to

Keith too.

After suitable reflection, do feel free to write me at sanjayamaniktala@yahoo.com with any free-wheeling comments you may

have. Just don’t forget to copy Steve at sohr@cmp.com so he can keep an eagle eye on where this column is headed!

It’s Not a Straight Line: Computing the Correct Drain to Source Resistance
from V-I Curves

(January 2005)

Is the V-I curve of a MOSFET switch really a straight line as we imagined? The RDSON is clearly a function of the

current through the MOSFET. But with the device alternating between peaks and valleys, what current value do

we use? We can do a ‘worst-case analysis’, based on the highest RDSON (an instantaneous value) along the

V-I curve. But is that value really ‘worst-case’, or is it even worse than ‘worst-case’?! Power supply guru
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Sanjaya Maniktala celebrates his anniversary on Planet Analog with some observations on the proper use

of RDSON.

Performing an efficiency calculation for a power converter will certainly require knowledge

of the drain to source on-resistance (hereby called RDSON) of the switch. In doing so we may

refer to the V-I characteristics of the said mosfet. We will probably be thinking that all we

need do is to find the slope — “V/I” — to get the RDSON.

But hold on just a minute! Is the V-I curve really a straight line as we imagined? If not, the

RDSON is clearly a function of the current through the mosfet. So what is the RDSON we need

to take for our calculation? We can do a “worst-case analysis” based on the highest RDSON

(slope) along the V-I curve, which would always be found to occur at the highest

instantaneous value of current, that is, the peak switching current. But is that value really

“worst case,” or is it even worse than “worst-case”?!

The current through the mosfet is actually varying every cycle between two values, the peak

and the trough. It is certainly not fixed at the peak value (at which we may be finding the

“worst-case” slope). We are not interested in finding the worst-case instantaneous value of

the RDSON, what we want is the worst-case value over the entire switching cycle. In a

switching converter, the RDSON is actually varying smoothly between two values, just as

the current is.

By a rather painful analysis, it can be shown that a very close fit to the exact

integration-based calculation is obtained simply by (a) finding the RDSON at the extreme

current values: the peak and trough, and (b) averaging these two values to get the effective

RDSON over the entire cycle. Simple enough!

But hold on a minute longer. Look at the published V-I curve (the black part of Figure A-3).

This represents a typical integrated switcher device, rated for 1.5A. The device is therefore

supposed to function up to 100◦C at 1.5 A. But does the curve extend all the way? Not at

all! The 100◦C is mysteriously truncated! No other information is available in the datasheet.

The only way out for us as designers is to try to extrapolate the V-I curve. See gray part.

We now see that the curve intersects at a whopping drop of 17 V at 1.5 A at 100◦C! Maybe

that is what the vendor didn’t want to circle out for us. But at least we can now find the

effective RDSON.

However, we could erroneously take the average over the entire range to get

RDSAVG =
17

1.5
= 11.3 Ω
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Figure A-3: The Missing Half of the Topswitch Datasheet Curve

This estimate is way too optimistic. As mentioned previously, a more correct estimate is the

RDS averaged over the RDS at the extreme values. At peak value

RDSMAX =
17

1.5 − 0.625
= 19.4 Ω

We also know that the RDSON−MIN is 10 Ω from the datasheet since the RDSON is rather

typically stated at only 1/10th the maximum current, that is, 10 Ω at 150 mA in this case.

So the correct effective RDSON is the average of the two

RDS =
RDSMIN + RDSMAX

2
=

10 + 19.4

2
= 14.7 Ω

Now that we know the RDS is 50% higher than what was indicated to us, we also have a

better idea of the conduction loss in the mosfet.

Please drop me a note at sanjayamaniktala@yahoo.com and copy sohr@cmp.com. One year of this column is now complete . . .

many thanks to you all.

Don’t Have a Scope? Use a DMM, Dummy!

(February 2005)

Sanjaya’s got a gremlin on one of his shoulders; a cherub on the other. The gremlin says, “You call yourself an

engineer?! You’ll never get this power supply to stabilize. Why don’t you just quit?” The cherub says: “Back of
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the envelope calculations can work. Look what I brought you from Micro Center. Put this little meter to work.”

Somewhere between computational theory and the simplest hands-on measurement, Sanjaya has a window on

switching regulator efficiency. If only these voices would stop . . .

Ouch that hurts! Heaping insult on top of a latent injury, and then adding some disgrace for

good measure too! And just as I was getting around to finally using the ‘Math function’ on

my $3000 digital storage oscilloscope (DSO) to carefully measure the duty cycle of the

switching regulator (which I may add, was strongly requested by you in the first place) . . .

And now you come back to claim that the $9.99 Velleman digital multimeter (DMM) from

Micro Center is enough to do the job! And even more accurately?! Hmm. Wise Guy! Now

you know why I have recently started to just hate everything about power!! And you know

what!? I think I am going to have to cut and run pretty soon!

Now wait a minute (the voice of reason), relax. Let’s get some information first. Just the

basic facts. I promise to ease your pain, get you on your feet again. But in return you must

understand that we really can’t afford to overlook the numbers. For that is where the subtle

secrets of power conversion usually reside: in those very ‘trivialities’ that you were always

taught to ignore. “Don’t get bogged down with comfortably numbing details (if you ever

want to amount to anything in life),” that other voice said! “Try to see the big picture.”

The DSO? You see that! What do you want with a DMM? Let’s take the buck regulator for

starters (the voice of reason replies). The simplified ‘textbook equation’ for duty cycle is

D = VO/Vin. So if we were say stepping down from 20 V to 5 V, the calculated duty cycle is

D = 5/20 = 0.25. Suppose the load is 2 A. That’s an output power of 5 V × 2 A = 10 W.

Now, the center of the ramp portion (average) of the inductor current is always going to be

fixed at 2 A for a buck topology, come what may. That follows from Kirchhoff’s first law

(and believe me, you can’t afford to ever get on the wrong side of that guy!).

Then by simple waveform analysis, the average input current (which is the average switch

current for this topology) can be calculated from the rectangular waveform of height 2 A

with a duty cycle of 0.25. This gives an average input current of 2 A × 0.25 = 0.5 A. So the

input power is 20 V × 0.5 A = 10 W. We can see that that is exactly the same as the output

power, and therefore we are at 100% efficiency.

Well, what did you expect? (That voice again, the other one.) The very act of using the

simplified ‘textbook equation’ for duty cycle was tantamount to assuming 100% efficiency.

Where are the loss terms? We have clearly been guilty of ignoring the forward voltage drops

across the switch, the diode, the inductor, the capacitor, besides assuming zero switching

losses too!! In fact, as soon as we start to consider the non-ideal characteristics of real

components, we will see that the inclusion of each non-ideality contributes a little to the

increase in the duty cycle over its baseline ‘textbook’ value.

Which is precisely why we wanted to know the actual duty cycle in the first place. But

without an oscilloscope with ‘Math function’ capability, are we really stuck? Let’s think
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again. We are expecting the average input current to be 0.5 A. Now let’s measure it using

the DMM. Suppose we read 0.6 A. Right off the bat, we now know the efficiency is (2 A ×
5 V)/(0.6 A × 20 V) = 10/12 = 83.3%. Two extra watts are lost somewhere. That’s right. An

additional 0.1 A drawn from the input at 20 V is 20 V × .1 = 2 W. So that ties up. But for

the buck topology, the center of the current waveform MUST still be the load current.

Therefore the only way the average input current, as calculated from the rectangular

waveform, can be 0.6 A, is if the duty cycle has increased to 0.6 A/2 A = 0.3. So now we

do know the duty cycle! Look Ma, no DSO!

In fact, at this point we can declare completion of our initial assignment, that of using a

DMM instead of a DSO to find out the actual duty cycle. But we can take this opportunity to

delve a little deeper too. Suppose the diode drop is known to be 0.4 V. The actual duty cycle

of the current through it is 1 − 0.3 = 0.7. The estimated loss in it is 2 A × 0.4 V × 0.7 =
0.56 W. However, we know that we are dissipating 2 W. But we have computed that only

0.56 W is being lost in the diode. That leaves 2 − 0.56 = 1.44 W still to be explained. We

can keep going in this manner and try to account more and more accurately for all the wasted

energy. But we can see that the actual duty cycle is the key to a full efficiency analysis.

It is also interesting to note that had we used our initial duty cycle estimate of 0.25 to

calculate the diode loss, we would have estimated it to be 2 A × 0.4 V × 0.75 = 0.6 W. That

is more than the 0.56 W calculated above. So in reality, losses tend to be lesser than we may

have first thought. Why so? This is just another subtle example of how nature moves in

mysterious ways to rescue us, as it tries to create conditions for natural processes to converge.

Do see my Nov 2004 article on this topic. If we are interested in creating a mathematical

model of our power supply in gory detail, we should realize that the entire mathematical

process needs to be both iterative and convergent too! For example, as described in last

month’s column, the voltage drop across the switch is a function of current. So suppose the

switch voltage drop is a little higher than first estimated, for any reason, like say a higher

ambient temperature. Now the switch would dissipate more of the incoming energy

(conduction loss term). Therefore, the converter, in an effort to keep delivering the required

output power will have to increase the input power — and therefore the input current. But

this will cause the switch voltage drop to increase further too, and so the input current will

have to increase a little more. So on and so forth, till mathematical convergence occurs.

Nature converges similarly, only much, much faster! Like almost at the speed of light!?

The number crunching is actually quite different for the non-buck topologies. Try to work through a numerical analysis for any

other topology. And if you don’t get it easily enough, do feel free to write me at sanjaya.maniktala@nsc.com and I will take it up

in next month’s column (but definitely copy sohr@cmp.com if you want real results). In fact, this month’s column was itself

inspired by a rather persistent but nice caller called ‘Jag’ from Sunnyvale, California. He was asking me just such a question,

based on the boost topology. Actually, nowadays I do get several Emails and calls from engineers from different parts of the world,

seeking advice or help to solve a troublesome and usually non part-specific technical problem. And I am always glad to help,

provided of course I have the time and acumen to think it through, and ‘get it.’ Though sometimes I admit, in my case too, my lips

move, but you won’t hear what I am saying! Good Luck.
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Are We Making Light of Electronic Ballasts?

(March 2005)

Way to go, Sanjaya! Rave reviews of Sanjaya Maniktala’s book on switching power supply design identify it as

the new “bible,” the absolute definitive text on this subject. Planet Analog is proud to have “discovered” him, to

have published excerpts, and invites you to read his current column. This one is on the reliability of electronic

lighting ballasts in India, where the wiring is frayed, the temperature sizzles, and ownership of fluorescent tubes

constitutes bragging rights. Afterward, we’ll send you to Amazon to see some of those terrific reviews. First,

click here . . .

“Power conversion” is a conversion from one form of energy to another. It doesn’t preclude

the conversion of input energy into light, instead of more conventional load profiles that

power supply engineers are generally accustomed to. In fact, I found out the hard way how

difficult this area of power conversion can really be. Far more difficult than your average

dc-dc converter!

My first exposure to electronic ballasts was, it now seems, light years ago (no pun intended),

while I was working in the swank and well-equipped central R&D labs in Bombay of one of

India’s largest electrical manufacturers. That company is to India, probably what Siemens is

to Germany — with a huge and diversified market share in almost everything ‘electrical.’

India, of all the hot, confusing, bustling places on earth, may actually form the best place to

see what the brouhaha about ballasts is all about. It is the perfect testing ground (and

potential graveyard) for all electronic ballasts, big and small, the ultimate leveler if ever

there was one.

We are aware that electronic ballasts are universally known to provide more stress-free

working environments, attributed to their steady flicker-free light, besides other nice features

like instant-start, the more recent auto-dimming capability, and power-factor correction.

Though electronic ballasts have been available for a dozen years, it is very surprising that

sales have barely started to exceed copper-wound (or ‘magnetic’) ballasts, which are known

to be physically bulkier, heavier, and much less energy efficient. (Touch one and you will

surely scream ‘yeeeooowwaaaaaasste.’)

True, electronic ballasts cost more, but you are supposed to get paid back handsomely in a

few years in reduced energy costs. Some governments also continue to contemplate subsidies

to help consumers afford such ballasts. But I don’t think it has happened yet.

In a typical office environment, the light bills can amount to 40% of the total energy costs.

There is great need to conserve energy in lighting, much as we are doing with standby power

requirements of appliances. Community-conscious and inherently progressive organizations,

like my employer for example, have installed PIR (passive infra-red, i.e. body-heat) sensors

almost everywhere to turn the lights on and off as needed. I suspect they also use electronic

ballasts. Remember, PIR sensors do help at night, but clearly can’t save energy on their own

during the day. For that electronic ballasts must be used in conjunction.
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(As an aside, we may not conserve THAT much energy if engineers like me continue to

leave their computers and monitors on the whole day, night, through weekends, and on long

breaks, spicing up their screensavers with graphic-intensive witticisms like “go away,”

“scat,” or simply “attending a meeting” refreshing over and over again. I had heard of

endless meetings, but a 10-day blinking message can really take the cake).

California, with its high energy costs is certainly waking up to the potential savings from

electronic ballasts this year. See a very useful discussion of ballast sales and impending

regulations starting 2005 with the papers at http://www.aboutlightingcontrols.org/

education/papers/ballasts.shtml. Another very nice piece on the myths associated with

ballasts and tubes can be found at http://www.energyusernews.com/CDA/

Article_Information/Fundamentals_Item/0,2637,119815,00.html.

Note that the fluorescent tube also responds rather positively, in terms of its own life and

performance, when driven at over 20 kHz (as in an electronic ballast), rather than with 60 Hz

(as in magnetic ballasts). Tube-replacement costs are thus significantly reduced with

electronic ballasts. But, wait! What about the life of the ballast itself? That is another story

altogether!

Electronic ballasts unfortunately have been plagued by failures (see http://lightingdesignlab.

com/commercial/articles/Energy_Efficiency.htm). So how do we as traditional power supply

engineers provoke incipient failures in power supplies? We increase the stress levels,

especially during design phases. Simple burn-ins are actually too kind to the system!

To demonstrate an exaggerated burn-in situation, let’s take an ‘Amazing Race’ detour, and

parachute down directly into a remote residential area somewhere in the heartland of India.

Oh I know you feel suddenly out-of place! Here time stands still. Well, almost! After a

moment’s rest, you can probably observe that the AC utility lines and the frayed household

wiring haven’t been replaced for several decades now. But worse! Here we happen to be

ensconced by several industrial units using heavy electrical machinery, even during the night.

The mains input in India is officially supposed to be 230 VAC or is it 220 V or 240 V? Even

I will never know. In fact, that may be a rather redundant question, especially here, because

the voltage is known to drop down to a steady level of almost 120 VAC (no typo here:

one hundred and twenty!). More so in the summer months (9 of these in India) when all the

fans and air-circulators try to come on at the same time. The standard household

incandescent bulb is now seen glowing faintly in the distance, too dim to even see where the

TV and fridge lie gasping for breath.

So it may confer minor bragging rights with inquisitive neighbors to possess fluorescent

tubes in every room of the house! The sage had mentioned these tubes provide a more

acceptable illumination level even at such low input voltages. Provided they work!! To get

them to work, magnetic ballasts are literally powerless. An electronic ballast can work in
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principle, since it is basically the flyback (buck-boost) topology principle. Aha! Out with the

sage! . . . I now see a power conversion engineer firmly entrenched here too! And this poor

guy has to ensure his circuit design can get the tube to fire, and continue to run at such a low

input voltage.

However, we can’t be in the business of designing and selling one ballast design for one

area and another circuit design for another area or locality. So now let’s take the same ballast

and move inside an industrial facility (with better local wiring). We are not surprised to find

this is where the maximum usage of fluorescent lighting occurs. Rows upon rows of

multi-tube ceiling fixtures, as in all countries. Sounds familiar and encouraging. I too feel

almost at home now.

But now we sadly note that the utilities often raise the voltage at the substation end,

just to compensate for some arbitrary calculated ohmic drops across miles and miles of

lines. But suppose we happen to be the unlucky business unit sitting ‘up close and personal’

to the actual distributing substation. The intervening ohmic drops are thus virtually

negligible. What we get coming into our facility 24/7/365 is a steady overvoltage of over

270 VAC!

But now if we dare to use heavy industrial machinery on our premises, we also know that

that can unleash huge inductive spikes back into the mains coinciding with the solenoids and

motors turning off. As any typical ballast manufacturer in much of the third-world (and

Eastern European, especially the former Soviet bloc), we are faced with the daunting design

task of ensuring rock-solid reliability under steady voltage variations of about 100–300 VAC,

overlaid with huge spikes.

In fact the relevant qualifying test is usually based on keeping the ballast in operation, and

simultaneously applying at the input, the well-known 8/20 µs lightning surge test.

No short-term or long-term damage should ever occur. Note that these line surges are of

frequent occurrence in these areas (rather than a rare ‘one in a blue-moon’ type of thing), so

we just cannot rely on MOV’s (metal oxide varistors) which have inherent lifetime/wearout

issues.

Nor can we rely on TVS’s (silicon transient voltage suppressors) because the latter often

can’t even handle the type of energy a single 8/20 µs spike throws at them, least of all a

succession of spikes at a certain constant rate per minute.

But that’s not all! Any ballast in the world must be able to survive the ‘deactivated tube’ test.

That is where the gas has leaked out, but the heating filaments are still present, and so the

circuit keeps trying to start the tube endlessly (at the elevated voltage and frequency needed

to cause it to strike). In fact, this particular test killed every ballast we ever tested in Bombay

with no exception (except the one I finally designed! You knew I would say that, but it’s

true!). We burned out every known name-brand ballast we actually imported at that time
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from the USA, Europe, Singapore, Korea, Japan (you-name-it) into India. We personally

performed the last rites. And it was a virtual crematorium.

So India is possibly a great place to hone the design skills for any mains input (‘off-line’)

power conversion device. Remember that when you set up a design center in Bangalore!

This should help take the sting out of it. Next month will get into the nitty-gritty

technicalities, and tell you exactly how the simple electronic ballast actually works, and how

we ended up enhancing the reliability besides reducing the manufacturing cost by a factor of

almost 2 in the course of what was probably the most successful R&D technology transfer

project in that company. Not that they remember me anymore!

Don’t forget to write me at sanjayamaniktala@yahoo.com and do copy Steve at sohr@cmp.com, if you don’t want your energy to

be wasted! And all power to you!

Editors’ Note:

Sanjaya’s book, Switching Power Supply Design & Optimization, is published by McGraw-Hill. User reviews at

Amazon.com identify it as the new “bible” on switching power supply design.”

More on Designing Reliable Electronic Ballasts

Long, long ago, in a land far away (actually, not so far away with the Internet and 800 numbers), our hero tried

to figure out how to keep electronic ballasts from blowing up. The key, writes Sanjaya in this installment of his

power design column, is in the ferrite inductor in series with the lighting tube. While its basic purpose is to limit

the current, there is a good deal of resonant frequency energy coming off-line. Your choice to use it for

good or evil.

This month I need to fulfill the promise I made about explaining what all we did with

electronic ballast technology in India, thousands of years ago (or so it seems).

The most common (and commercially viable) fluorescent ballasts still use bipolar transistors

(BJTs), not mosfets. They are also self-oscillating, and therefore need no PWM control IC.

This is actually an advantage. Engineers who have worked with self-oscillating topologies

(like the well-known Royer oscillator) know not to underestimate them. They are inherently

self-protecting and tend to be very rugged. Short their outputs and the frequency

automatically adjusts itself to maintain critical conduction mode, so there is no staircasing of

the current or magnetic flux in the inductor.

In the electronic ballast too, there is a ferrite inductor in series with the tube. Its basic

purpose is to limit the current, as in conventional copper ballasts. The difference being that

copper ballast needs a large line-frequency choke made of iron/steel, whereas the electronic

ballast is much smaller, lighter, and made of ferrite material. The size advantage is exactly

what we expect and invariably achieve by creating switching action at a very high frequency.

However, one basic difference as compared to a conventional half-bridge switching power

supply (which the electronic ballast shown in Figure A-4 resembles) is that the ballast is
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Figure A-4: The Basic Electronic
Ballast and the Improvements
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actually a resonant topology. The L in series with the tube forms a series-resonant circuit

with the two C’s of the half-bridge (which are effectively in parallel from the AC point of

view). So the current sloshes back and forth, and it makes perfect sense to therefore make

the circuit self-oscillate, with the help of base-drive transformers as shown in the oval circle.

Note that when the tube has not fired, that is, when we first apply AC input, the small

unnamed capacitor across the tube is the effective series capacitance of the resonant tank

circuit. It is the starter cap. The oscillations are in fact at even a higher frequency than in

normal operation on startup. But what’s more, since there is almost no damping resistance

during startup, a high voltage is created across the tube, to get it to fire. We must remember

from our high-school EM course that a series LC presents a very low input impedance at its

resonant frequency, and at that moment, the voltages across the L and the C can both be very

high, though opposite in phase, thereby effectively canceling out as far as the input is

concerned.

This is just the opposite as compared to a textbook parallel LC tank circuit, which presents a

very high impedance at its resonant frequency, and in which the currents in each component

can be very high, though opposite in phase, thus effectively canceling out as far as the input

is concerned. We also remember that if we drive such a low-impedance series LC tank circuit

with the driving frequency equal to its natural resonant frequency (which is what we really do

by using a self-oscillatory scheme), the oscillations build up every cycle, and so, though the

input voltage remains the same, the currents and the voltages across each reactive component

keep building up every cycle. Finally, the tube ‘fires,’ thus effectively bypassing the small
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starter capacitance. Thereafter, the circuit lapses into a more stable, damped, and lower

frequency oscillation based on the resonant frequency created by the C’s of the half-bridge.

We can clearly see one major problem already. That is, what if the tube does not fire? This is

a real-world possibility, since the seals at the ends of the tube may leak, thus affecting the

‘vacuum’ inside the tube over a period of time. In this situation, we are expecting to replace

the tube, not the ballast! But in a virtually undamped LC circuit, the oscillations will build

up every cycle, and eventually the transistors, which see the same current when they turn on,

will be destroyed. This is what leads to the ‘deactivated tube’ test. The tube does not fire and

the filaments at the end of the tube are typically of such low resistance, that they really can’t

damp out the steadily escalating oscillations. Some engineers therefore try to place an

additional resistor in series with the small starter capacitance, but this certainly affects the

ability to start the tube, especially at lower mains input voltages.

A PTC (a thermistor with a positive temperature coefficient) can be used, but it is an

expensive solution and also has response-time limitations. In the case of the existing ballast

design (just before we set to work on it), the previous engineers had tried to circumvent the

deactivated tube failures by using more expensive and hefty ‘horizontal deflection’ transistors

(the well-known BU508A). But these have low gain, and they run inefficiently and get hot.

So now heatsinks had to be added. In addition, there was still a need to turn off the ballast

after several such unsuccessful attempts to fire the tube. So in came an expensive mechanical

thermal overload relay, fastened to the heatsinks. But then they found out that it just failed to

act fast enough to protect the transistors, given the high heatsink thermal capacity

involved.

Our contribution was to use the principle of the flyback converter to recover energy back

from the inductor. See the second Figure A-5. So an additional winding (with turns ratio and

polarity carefully worked out) recovered the excess energy and delivered it back to the main

input bulk capacitor. But to eventually cease the switching operation, a sense resistor

(or diode in our case) was added that would charge up a capacitor and eventually trigger a

small NPN-PNP latch sitting on the base of the lower transistor. Now mains resetting would

be required to make the ballast try again. Fail-safe really.

Another critical area of improvement was in the base drive. Historically, many vendors use a

single-inductor approach (see first schematic in Figure A-5). However, we should remember

that the key to turning ON a bjt efficiently is a little different from the way we want to turn it

OFF. In particular, the turn-on must be a little slower (delayed) and it has been shown that

the actual crossover duration is significantly reduced if in fact we don’t do a hard turn-on.

On the other hand, for turn-off we do want to create a hard turn-off, yanking the base

momentarily, several Volts below the emitter voltage.

The problem with the single-inductor drive is that the turn-on waveform of one transistor is

the exact inverse of the turn-off waveform of the other. So there is no possibility of driving
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Figure A-5: Different Toroidal-type Drive Transformers

them appropriately and differently, and thereby efficiently. The transistors can thus run very

hot with the single-inductor base drive. In Figure A-5, we have ‘hi’ for the high-side

transistor, ‘lo’ for the low-side, and ‘sw’ stands for the primary winding, that is, the loop of

wire passing through the base-drive current transformer from the switching node. To conquer

the limitations of the single-inductor drive, engineers often use the double-toroid approach.

However, if the permeabilities and dimensions of the two toroids are not well-matched, there

are again discrepancies during the crossover, resulting in losses. But realizing that the actual

permeabilities of the two toroids are not really important, but their relative permeability is,

we started using an innovative ‘balun’ core to drive the transistors. The advantage is that

‘both halves’ of the balun are created in the same batch, so though the permeability may

have a lot of process tolerance, the two halves are still very well-matched. Besides, since the

two halves possess uncoupled inductance, that allows us to create the appropriate turn-on

and turn-off waveforms by a little ‘wave-shaping’ circuit as shown in Figure A-6. Baluns,

usually made for RF suppression, and on Ni-Zn ferrite, can be made to order with the more

preferred Mn-Zn material. Then they require lesser turns and run very cool themselves too.

With these improvements, we could do away with the heatsinks altogether. The transistors

would now run cool-to-the-touch, even while free-standing. No thermal trip was required.

The transistors could also now be the cheaper and higher gain MJE13005. As for the input

surge test, we replaced the filter with a smaller differential mode toroidal filter deliberately

made of lossier Ni-Zn ferrite material, and simultaneously increased the input bulk
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Figure A-6: Base-drive Enhancement
Circuit
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capacitance slightly, for that is the only way to really pass the lightening surge test without

MOVs, and so on.

Last, I will pass along an interesting e-mail I received from Pat Rossiter in Denver,

describing that such reliability problems exist not just in India, but right here in the US too.

He writes:

Dear Sanjaya / Mr.Maniktala [please circle correct choice]: I read with great interest your

article in today’s Planet Analog Newsletter. I’m not as technically versed as I’d like to be, but it

looks like the ballast that you invented (way to GO!) would be just the ticket for our lights here

at Yellow Cab. We are a stone’s throw from a sub station and our power fluctuates a bit and in

the past month I have replaced 5 ballast packs. The point of this email–and it is certainly about

time that I got to it–is where can I get the ballast packs you described? Eagerly awaiting your

illumination on the matter.

With that I put my pen down again for this month. Hope to hear from you at sanjayamaniktala@yahoo.com. But do copy the

person who started this column off: Steve Ohr at sohr@cmp.com. Thanks a lot!!

The Organizational Side of Power Management: One Engineer’s Perspective

Even with jobs going overseas, the age-old conflict between engineering and marketing has not diminished.

In this departure from diodes, mosfets, and loop currents, Sanjaya looks at the organizational side of power

management projects. The vocal, technology-grounded engineer may too often be the unwanted child in a

“King’s Court,” he worries.

Talking endlessly about quaint base-drive toroids, ticklish lifetime issues with aluminum

capacitors, neat though quirky current-sensing techniques, and what have you, has only one

purpose in mind: that of advancing technology. But do we, as engineers, usually solidly

devoted to our craft, really manage to achieve that to the full extent we hoped and struggled

for? Or is it a case of “one step forward” and then “two steps backward” (for reasons beyond
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our control)? A glass that at best remains tantalizingly half-empty and half-full — all

because of a darn leak, that we just forgot to factor into our calculations!

But what about the organizational side? Advances in science and technology, especially in

power conversion, hinge on a few basic and fairly obvious commonsensical principles. But

surprisingly, these are the very ones often overlooked at an organizational level. Let me try

to categorize some of my personal observations here — see if you agree:

Communication

A lot can be learned by simply sharing experiences: things that worked and things that didn’t.

Why should engineers always end up repeating mistakes and learning the hard way —

potential bugs or possible catastrophes that they could’ve known about beforehand, just by

listening and thinking. Couldn’t they also take what in fact was already proven to be the best

available engineering solution at that time, and develop it further? Creativity has its place,

but let’s not re-invent the wheel please!

However, when organizations grow, they usually start subdividing, and fairly quite arbitrarily

too. So the Power team becomes separate “AC/DC” and “DC/DC” groups. Whereas we all

know that at the heart of any ac/dc switcher is none other than a dc/dc switcher! At a later

stage, the DC/DC group may become “Portable Power” and “Power Management” groups.

But both still use the same topologies duh! Then sooner or later, Power Management may

bifurcate into “high power” and “low power.” Does all this imply any radical change in

engineering principles? Not really! So the end result is that engineers, the ones that are

expected to generate products and revenue in the first place, simply don’t run into each other

anymore, or get to talk about their experiences to each other, even over a coffee machine.

What’s worse: if the assignments are on the unimaginative basis of “one project, one

engineer,” then even within any such finely divided sub-group, there is almost no sharing of

engineering information thereafter.

Yes, I agree: marketing or sales or even Field Application engineers may need to be divided

to get more “business focus,” but for engineering focus, you actually need to get the

engineers together, not drive them apart. Engineers always thrive when they share. No one

really benefits in the long run if the pinky, for example, no longer knows what even the

middle finger is up to. And power conversion is just too tricky an area to take that chance.

Integrity

Engineers are trained to respect only facts and data! That’s the key to their success as

engineers: standing behind every robust and brilliant product they create. Unfortunately, that

strength also sometimes isolates them from the rest of the crowd. Of course there are people
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whose legitimate job is to slightly blur the boundaries between fact and fiction — to create

nebulous and fuzzy perceptions in others minds. Sales, Marketing, PR for example?

But conflicts over integrity can turn out to be quite debilitating to an engineer in the long

run. Like what to write in a datasheet. Or what can or can’t be designed and how soon.

Or “promote this part number please . . . I don’t care what you are writing in your App Note

if you don’t manage to sell my part first and foremost!” In fact, I know a company where the

entire Applications Engineering department reports to the person who doubles over as the

Marketing manager too. That may not have been such a bad idea provided that person was

once an engineer, or at least had a thorough grasp of technical details. But that is usually not

so. So one can easily envisage a situation where the Marketing person promises the customer

the moon and the stars (all at daybreak tomorrow!), and then goes back to drive his

engineers to build his (already committed) palace of dreams overnight. Or else!

Resources

Engineers relish challenges. Changes to their daily routine excite them. Do not hand them

the humdrum job of simple repetitive power-up testing of 50 odd boards for a customer. That

kills their spirit. Yet how often have we seen that, come layoff time, the first persons to go

are the CAD guys, then the technicians, and then the documentation expert! On paper, the

concerned manager can show impressive savings to his superiors. Headcount is what it is all

about! But a few months later, engineers are still trying to grapple with ORCAD or Protel

just to do their simple PCBs.

And in addition, they have to learn a rather complicated language whose only purpose is to

transcribe what they already know and have written, into a format suitable for the datasheet

standard used by the company. And yes! Those damn 50 boards are still waiting on the

bench! Why couldn’t these engineers have been doing what they are best trained to do, and

also enjoy the most — you guessed it: engineering!? In fact right now, they may have just

become the most highly paid technicians around.

Peer Environment

Technology may never gain a foothold in a “king’s court,” where you are either rewarded

with largesse for being vehemently agreeable, or unceremoniously sentenced to the dark

dungeons for the rest of your life. Engineers like to speak out — but usually only when they

are sure of their facts and have incontrovertible data to back themselves up. They therefore

deserve and need a “peer environment,” where they are judged (primarily) by the respect

received from their peers, the king be damned (on occasion)!

It must be kept in mind that this can really bother the king sometimes! So managers who

supervise engineers should be fairly competent at a technical level themselves and respect
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data and facts equally. They can’t attempt to win a technical argument by throwing rank on

their subordinates. Nor should they ever go around, God forbid, trying to subsequently shoot

the “emotional and/or disrespectful” engineer down (“that’ll teach him”). Surprisingly that

does happen more than we dare admit. Not only does the good engineer pay the price, but so

does technology in the long run.

Do write me at sanjayamaniktala@yahoo.com. If you think I’m being a busybody, don’t hesitate to tell Steve at sohr@cmp.com to

ask me to cut these musings out — and get back to mosfets and diodes please!! Alternately, voice your opinion (albeit, multiple

choice) on the Planet Analog home page.

Final Note: What better way is there to prove this than by personal experience! This was the only article

not sponsored under the Author Encouragement Program of my erstwhile analog chipmaker company. But at

least their Power marketing director (my previous Apps Manager cum Boss) finally did read the first article

of my series!
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Reference Design Table

Buck Boost Buck-Boost

Duty Cycle
VO + VD

VIN − VSW + VD

VO − VIN + VD

VO − VSW + VD

VO + VD

VIN + VO − VSW + VD

VIN_50 (V)
(2 · VO) + VSW + VD

≈ 2 · VO

1

2
· [VO + VSW + VD]

≈ VO
/

2

VO + VSW + VD

≈ VO

Output Voltage,
VO (V)

VIN · D − VSW · D − VD

· (1 − D)
VIN−VSW · D−VD · (1−D)

1−D

VIN ·D−VSW ·D−VD ·(1−D)

1−D

Voltµseconds
(Vµs)

VO+VD

f
· (1−D)·106 VO−VSW +VD

f
·D·(1−D)·106 VO+VD

f
·(1−D)·106

L (µH)
VO + VD

IO · r · f
· (1 − D) · 106 VO−VSW +VD

IO ·r ·f
·D·(1−D)2 ·106 VO + VD

IO · r · f
· (1 − D)2 · 106

Inductor Current
Ripple Ratio ‘r’

VO + VD

IO · L · f
· (1 − D) · 106 VO−VSW +VD

IO ·L ·f
·D·(1−D)2 ·106 VO + VD

IO · L · f
· (1 − D)2 · 106

∆IL (A)
VO + VD

L · f
· (1 − D) · 106 VO−VSW +VD

L ·f
·D·(1−D)·106 VO + VD

L · f
· (1 − D) · 106

RMS Current in
Input Cap (A) IO ·

√

√

√

√D ·

[

1 − D +
r2

12

]

IO

1 − D
·

r
√

12

IO

1 − D
·

√

√

√

√D ·

[

1 − D +
r2

12

]

IPP in Input
Capacitor (A) IO ·

[

1 +
r

2

] IO · r

1 − D

IO

1 − D
·
[

1 +
r

2

]

RMS Current in
Output Cap (A)

IO ·
r

√
12 IO ·

√

√

√

√

√

D +
r2

12
1 − D

IO ·

√

√

√

√

√

D +
r2

12
1 − D

IPP in Output
Capacitor (A) IO · r

IO

1 − D
·
[

1 +
r

2

] IO

1 − D
·
[

1 +
r

2

]

Energy Handling
Capability
(µJoules)

IO ·Vµs

8
·

[

r ·
(

2

r
+1

)2
]

IO · Vµs

8 · (1 − D)
·

[

r ·
(

2

r
+ 1

)2
]

IO · Vµs

8 · (1 − D)
·

[

r ·
(

2

r
+ 1

)2
]

RMS Current in
Inductor (A) IO ·

√

1 +
r2

12

IO

1 − D
·

√

1 +
r2

12

IO

1 − D
·

√

1 +
r2

12

Average Current
in Inductor (A)

IO
IO

1 − D

IO

1 − D
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RMS Current in
Switch (A) IO ·

√

√

√

√D ·

[

1 +
r2

12

]

IO

1 − D
·

√

√

√

√D ·

[

1 +
r2

12

]

IO

1 − D
·

√

√

√

√D ·

[

1 +
r2

12

]

Peak Current
Switch/Diode/
Inductor (A)

IO ·
[

1 +
r

2

] IO

1 − D
·
[

1 +
r

2

] IO

1 − D
·
[

1 +
r

2

]

Average Current
in Switch (A)

IO · D IO ·
D

1 − D
IO ·

D

1 − D

Average Current
in Diode (A)

IO · (1 − D) IO IO

Average Input
Current (A) IO · D

IO

1 − D
IO ·

D

1 − D

Output Voltage
Ripple (±mV)*

1
/

2 · IO · r · ESR(mΩ) 1
/

2·
IO

1−D
·
[

1+
r

2

]

·ESR(mΩ) 1
/

2·
IO

1−D
·
[

1+
r

2

]

·ESR(mΩ)

r = ∆IL /IL , L in µH, f in Hz, All voltages and currents are magnitudes

* ESL ignored

V(IN_50) is the input voltage at which D = 0.5
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Index

100% duty cycle, 194 (see also duty cycle max)

1298 (Polyester Tape), 389 (see also Mylar)

1-oz board, 244

2-oz board, 244, 247, 248

3M, 389

3-phase, 367, 442

45◦ rule, 379

abnormal conditions, 42, 43, 46, 83, 117, 291, 411, 445,

452, 453, 455, 458, 461, 464

ac inlet, 366, 370, 385 (see also IEC 320 line inlet)

ac line cord, 329, 343

ac resistance, 149, 150, 163–176, 244 (see also FR)

adaptive deadtime, 199 (see also deadtime)

air flow, 20, 21, 248, 325, 379, 462, 463

air gap spacers, 148

air gap, 70, 145, 147, 148, 187, 188, 362, 390, 393, 406, 461

center limb, 390

distributed, 362, 406

air gapped transformers, 148, 187 (see also air gap)

air-cored coil, 188, 363, 400, 406

AL, 105, 107, 135, 147, 362, 368 (see also inductance index)

all-ceramic solution, 411, 449

alumina, 379

aluminum electrolytic capacitor, 17, 20, 242, 412, 431,

449, 480

aluminum oxide, 379

ambient temperature, 6, 19, 20, 117, 161, 247, 439,

450–452, 472

AMN (Artificial Mains Network), 344 (see also ISN

and LISN)

amorphous cores, 362

Ampere’s Law, 105

Ampere-seconds, 190

Ampere-turns, 135, 148, 163, 187, 405, 461 (see also current

scaling)

antenna, 18, 51, 244, 246, 329, 330, 332, 336, 343,

383, 389, 399

AP (see area product)

arc/flashover, 22, 31, 32, 44, 394, 455

area product, 159, 160 (see also window space)

argument of complex number, 256, 257

Artificial Mains Network, 344 (see also ISN)

asymmetric noise, 341, 344 (see also CM noise)

asymptotic approximation, 266, 267, 272, 303

attenuation, 9, 304, 305, 319, 320, 347, 353, 359,

360, 428, 429, 432, 434

audio susceptibility, 285 (see also line-to-output transfer

function)

automatic ramp correction, 282 (see also feedforward)

auxiliary winding, 391, 393

average current mode control, 444

average diode current, 42, 56, 137, 191 (see also diode

current)

average EMI limits, 348, 350–352

average inductor current, 39, 51, 56, 59, 487 (see also

inductor current)

average input current, 143, 191, 192, 471, 472, 488

AWG formula, 173

balanced filters/impedances, 342, 343, 359, 361

ballast electronic, 473, 475, 476, 478

bandwidth, 281, 286, 293, 364–366, 368, 369, 399, 400

base-drive transformer, 477

basic insulation, 358, 363, 379

BCM, 37, 39, 75, 92, 93

bead, 336, 369, 385, 396–398, 400, 401 (see also ferrite and

Fair-Rite)

beryllium oxide, 379

B-field, 104, 107, 108, 114, 146, 147, 160, 161, 185,

187, 461

bifilar, 393

bipolar junction transistor (see BJT)

BJT, 10–12, 17, 84, 197, 198, 240, 453, 454, 476, 478

blanking time, 84, 200, 202, 458

board (see PCB)

bobbin, 146, 152, 153, 157, 158, 166, 168, 172,

173, 363, 364, 391, 392

Bode plot, 265, 274, 289, 314, 315

body capacitance, 22, 395

body diode, 103, 193, 197, 199, 200

bond wires, 197, 198

boost converter output cap current sharing, 245, 246
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boost, 15, 22, 35, 53–58, 65, 66, 131, 179, 180, 183,

186, 189–192, 194, 202, 214, 231, 232, 241,

242, 246, 270, 283, 286, 287, 293, 294, 296,

298, 301, 306, 313, 314, 394, 398, 412, 430,

444, 456, 472

configurations, 54, 179, 194

bootstrap, 11, 193, 194, 396

boundary conduction mode (see BCM)

braided wire, 140, 370

break frequency, 266, 267, 270, 272–274, 276, 277, 424–426

break point, 267, 303, 424–426, 433, 436

bridge conduction time, 406, 410 (see also bridge rectifier)

bridge rectifier, 129, 346 (see also input bridge)

BSAT, 108, 111, 160, 405, 461 (see also saturation)

buck master-slave configuration, 448

buck, 14, 15, 22, 53–56, 58–60, 65, 66, 129, 131, 153, 156,

157, 167, 179–183, 186, 189–192, 201, 211, 212,

214, 231, 232, 240–242, 244, 262, 270, 282–285,

293–296, 298, 299, 304, 306, 310, 311, 394, 398,

412, 413, 430, 440, 447, 448, 455–458, 471

configurations, 58, 179

buck-boost master-slave configuration, 448

buck-boost, 15, 22, 46–55, 65, 66, 131, 135–137, 142, 179,

180, 183–186, 189–192, 194, 214, 231, 232,

240–242, 246, 270, 283, 286–288, 293, 294,

296, 298, 301, 306, 313, 314, 398, 412, 430,

447, 448, 456, 457, 475

configurations, 49, 50, 52, 54, 180, 194, 457

buck-derived topologies, 129, 189, 190

bucket regulator, 13, 14

bundle of wire, 173, 175, 176

cancellation winding, 393, 394

canonical model, 270, 283, 286, 287, 322

capacitance per (input) Watt, 408

capacitance times voltage, 449

capacitive coupling, 165, 183, 244, 246, 343, 380

Capacitor COG/NPO type, 365

capacitor equation, 30, 31

capacitor frequency multiplier, 431, 450

CCC mark, 326

CCM, 37–39, 40, 41, 49, 75, 76 , 91–94, 98, 102, 103,

155, 197, 200, 201, 284, 289, 293, 314, 315,

447–449

CE mark, 326

ceramic, 21, 242, 243, 359, 364, 365, 366, 370, 385, 391,

411, 412, 416, 449 (see also decoupling)

insulator, 379

CGS units, 104, 108, 109, 147, 159

Cgs/Ciss, 215, 217–219, 220–227, 233 (see also Gate input

capacitance)

charge pump, 15

chassis, 379, 392, 433 (see also enclosure and

chassis-mounting)

chassis-mounting, 383, 384, 393 (see also chassis and

enclosure)

circular mil, 149, 152

circulating energy, 154

CISPR standards, 332, 351 (see also CISPR22 standards)

CISPR16 standards, 344

CISPR22 standards, 327, 333, 335, 337, 349, 351, 368, 402,

429, 430, 431 (see also CISPR16 standards)

Ciss/Cgs (see Cgs/Ciss)

clamp, 17, 42, 43, 135, 139, 155

Class B, 334, 335, 349, 351, 431

clearance and creepage, 157, 363 (see also physical spacing)

clearances, 390 (see also clearance and creepage)

closed loop gain, 277, 278, 280, 291

CM and DM Separator, 348

CM choke orientation, 371

CM choke, 361–363, 368, 369, 406, 409

CM filter design, 359, 360–370, 433–436 (see also CM choke)

CM filter equivalent circuit, 360, 368, 434

CM load impedance, 346

CM noise generator, 343, 382

CM noise nonsymmetrical type, 381

CM noise rejection, 342

CM noise, 165, 341–344, 346–348, 352, 359, 368, 369,

380–383, 389, 393, 399, 401, 435

CMRR, 342

coaxial cable, 345

COG/NPO, 365

common mode rejection ratio, 342

COMP pin, 281

complex impedances, 257

complex number magnitude, 256, 257

complex representation, 256

component power supply, 335

composite insulator, 384

composite topology, 183, 448

conditional stability, 272, 303–305

conducted EMI, 344, 386, 402

limits, 329, 348, 349, 353, 359, 426

scans, 192, 346–348, 352, 361, 366, 376, 386, 397, 399,

402, 430

conduction loss, 12, 16, 18, 199, 207, 213, 214, 470, 472

diode, 214

Conservation of Energy, 25

continuous conduction mode (see CCM)
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continuous conduction mode forced, 40, 75, 102, 103

control circuit upset, 241

control circuit, 4

control voltage, 96–99, 251, 281

control-to-output transfer function, 284, 288, 291, 296, 304

copper band, 390

copper filling, 239, 244

copper flooding, 239, 244

copper foil, 150, 166 (see also foil thickness)

copper loss, 69, 114–117, 144, 148, 157, 161, 163, 188,

406, 460, 461

copper plane, 248 (see also ground plane)

copper shield, 390 (see also EMI screens)

Corcom, 370

core loss, 17, 69, 109, 110, 113, 114, 116–118, 154, 157,

160–163, 176, 440, 456

coefficients, 111

core saturation (see saturation)

core temperature, 20, 440, 450–452, 456

corner frequency, 266 (see also break frequency)

cost, 10, 12, 16, 21, 63, 75, 81–83, 141, 147, 164, 168, 194,

242, 325, 327, 335, 361, 364, 366, 367, 390, 393,

394, 399, 401, 427, 444, 449, 456, 457, 473,

474, 476

creepage, 390 (see also clearance and creepage)

Criteria for Loop Stability, 293

critical conduction mode, 37 (see also boundary conduction

mode)

critical damping, 270

critical path/traces, 240, 241, 398

cross-conduction, 197–200, 464 (see also deadtime)

crossover frequency, 268–271, 286, 289, 292, 293, 295–310,

312–315, 318–321

crossover loss, 12, 17, 18, 29, 196, 198, 209–211, 213, 215,

216, 29, 230, 479 (see also switching loss)

crossover transition, 10, 12, 16, 207, 208, 210, 213, 215,

217, 219, 221, 222, 224, 226, 229, 239, 240, 330,

398, 433, 478, 479

cross-regulation techniques, 142

Cuk converter, 22

current crowding, 149 (see also skin depth)

current density, 149, 150, 159, 166

current into output capacitor, 59

current limit, 43, 46, 64, 82–88, 90, 91, 94–96, 142, 144, 147,

156, 194–196, 200, 202, 240, 264, 318, 398, 443, 453,

454–458, 461

individual outputs, 195

initial, 96

memory effects, 43

second level, 454, 455

current mode control, 84, 97, 98, 99, 201, 281, 283, 293, 307,

313–315, 318, 319, 321, 444, 458

current probe, 241, 341, 398–400

current rating, 43, 81, 82, 88, 184, 187

current ripple ratio, 69, 75, 76, 79, 89, 92, 100, 102, 113, 117,

167, 188, 214, 231, 462 (see also r)

flyback, 137

current scaling, 134, 135, 154 (see also Ampere-turns)

current sense, 192, 195, 200, 251, 445, 446, 457–459, 478

current sensing on low-side, 192, 200, 459

current sensing on Primary side, 195

current sharing, 245, 246

current spike, 17, 83, 396, 454 (see also spike)

CV, 449

damping, 270, 272–274, 302, 318, 366, 412, 414, 416, 446,

449, 477, 478

critical, 270

data/telecom networks, 410, 446

datasheet, 20, 85, 91, 96, 106, 108, 109, 112, 145, 184, 218,

299, 310, 311, 364, 370, 431, 441, 450, 451, 454,

456, 458, 469, 470, 482

dBµV, 348–350, 434

conversion to mV, 350

dc resistance of inductor (see DCR)

dc transfer functions, 64, 65, 447

DCM, 37–40, 42, 75, 91, 92, 94, 98, 102, 155, 197, 200,

201, 231, 315, 447–449

DCR, 16, 32, 42, 78, 184, 289, 365, 366, 369, 397, 416, 464

deactivated tube, 475, 478

deadtime, 197–199 (see also cross-conduction)

decibel, 266, 269

decibel-micro-volts, 348–350, 434

conversion to mV, 350

decoupling, 124, 359, 360, 384, 416, 441 (see also input

decoupling and ceramic))

derating, 21, 120, 122, 412

dI/dt, 33, 240, 398

dielectric high-k, 364

dielectric withstand capability of insulator, 357

dielectric, 94, 377, 379

differential equations, 252, 261

digital multimeter (see DMM)

diode conduction loss, 214 (see also diode dissipation)

diode conduction time, 406, 408 (see also bridge

conduction time)

diode current, 67, 71, 190 (see also average diode current)

diode dissipation, 119, 120 (see also diode conduction loss)

diode surge current rating, 394

discontinuous conduction mode (see DCM)
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displacement current, 26

dissipation factor, 431

dissipation in mosfet driver, 221–224, 226, 227, 230, 234

dissipation in the IC, 247

dissipation in zener clamp, 443 (see also zener clamp)

dissipation, 6, 7, 9, 11–17, 19, 52, 69, 78, 109, 113, 117, 119,

123, 138, 139, 161, 176, 184, 209, 211, 213, 396,

416, 443, 450, 462, 463

distributed power network, 410

DM and CM Separator, 348

DM choke, 360–363, 368, 369, 383, 405, 406, 409

DM filter design, 359–367, 430–433 (see also DM choke)

DM filter equivalent circuit, 360, 368, 433

DM load impedance, 346

DM noise generator, 343, 368, 375, 376

DM noise, 341–344, 346–348, 352, 359, 399, 426, 433

DMM, 470–472

dominant pole, 268 (see also pole-at-zero)

double insulation, 358, 364, 379, 394, 411

double toroid base drive, 479

Dowell’s equation, 164, 165, 169–172, 176

driver, 198, 199, 205

capability, 234

dissipation, 221–224, 226, 227, 230, 234

dropout, 7 (see also linear regulator)

duality principle, 24, 25, 26, 30–32

duty cycle, 48, 58, 72, 97, 142, 186, 251, 263, 281

50% conditions, 60, 118, 124, 232, 314, 440

definition, 41

forward converter, 153, 155, 162

freewheeling diode, 52

maximum, 87, 142, 147, 182, 192–194, 264, 443, 457,

458, 461

dV/dt, 411, 458 (see also Schottky diode)

e, 252, 253

EA-out, 281

Earth, 181, 341, 357, 367, 370, 379, 382, 383, 385,

389, 411, 433

IEC symbol, 341

eddy currents, 165, 389, 390

E-field, 244, 329, 330, 333, 389, 396, 399, 402

electric shock, 359, 367

electrolytic, 18, 94, 297, 412, 449 (see also aluminum

electrolytic capacitor)

electromagnetic compatibility (see EMC)

electromagnetic environment, 328

electromagnetic wave, 329, 330, 332

electronic ballast, 473, 475, 476, 478

Electrostatic discharge (see ESD)

elko (see aluminum electrolytic capacitor)

EMC, 326, 334, 336 (see also EMI susceptibility)

EMI average limits, 348, 350–352

EMI cancellation winding, 393, 394

EMI cannons, 330, 394

EMI Class A, 334, 335, 349

EMI filter for dc-dc modules, 410

EMI for subassemblies, 335

EMI from digital chips, 329

EMI industry experiences, 361, 371, 385, 397

EMI mix-and-match of standards, 348

EMI peak detection, 351, 352

EMI plots, 352 (see also conducted EMI and EMI

precompliance)

EMI precompliance, 402

EMI quasi-peak limits, 348, 350–352, 431, 432

EMI radiation limits, 353

EMI reduction by twist-and-tie-wrap, 401

EMI reduction using Gate resistor, 396

EMI screens, 157, 164, 165, 390 (see also Faraday winding)

EMI susceptibility, 326, 333, 334 (see also

susceptibility/immunity levels)

EMI troubleshooting with ferrite slab, 402

EMI, 9, 11, 13, 18, 92, 124, 155, 165, 188, 201, 239, 246,

325, 330, 332–336, 357, 359, 361, 362, 364, 378,

389, 394–399, 401, 423, 426, 428, 436, 439

EN550022, 327 (see also CISPR22 standards)

enamel, 363, 394

enclosure, 336, 343, 357, 358, 364, 367, 382, 384 (see also

chassis)

energy handling capability, 77, 80, 81, 88, 90, 145, 187,

460, 487 (see also saturation)

epoxy-glass, 248

equivalent buck-boost models, 135, 136

equivalent foil transformation, 169, 170, 172

Equivalent Series Inductance (see ESL)

Equivalent Series Resistance (see ESR)

error amp dc biasing resistor, 281, 289

error amplifier 96, 98, 280, 281, 290

ESD, 386, 411

ESL, 16, 125, 365, 366, 431, 433, 488

ESR zero, 242, 284, 289, 296–300, 306, 307, 310, 313,

318, 320, 322

ESR, 16, 18, 21, 32, 42, 78, 94, 125, 365, 366, 375, 416,

430, 431, 433, 449, 450, 488 (see also ESR zero)

Et, 75, 109, 119 (see also voltseconds)

Et100, 114 (see also voltseconds)

Ethernet, 336

exponential function, 253
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failure rate, 19, 21, 253, 397 (see also ppm and reliability)

Fair-Rite, 325 (see also bead)

fan, 21, 440, 463

FAQ, 179–202

far field, 331–333

Faraday shield, 384, 389, 390, 391, 393 (see also

EMI screens)

Faraday winding, 393 (see also Faraday shield)

Faraday’s law, 26, 27, 329, 464 (see also Lenz’s law and

Maxwell’s laws)

fault, 16, 185, 195, 196, 367, 379, 452, 453, 464 (see also

short and overload)

FCC relaxation of EMI limits, 351

FCC, 326, 327, 332, 335, 349, 351

FCCM, 40, 75, 102, 103

feedback loop, 263

testing, 262–264

feedback trace, 242, 246, 247

feedback transfer function, 277, 278, 291

feedforward, 280–283, 461

ferrite bead (see bead)

ferrite sleeve (see bead)

ferrite, 17, 21, 107, 108, 111, 117, 145, 146, 148, 162, 187,

188, 363, 365, 368, 369, 400, 405, 406, 476

(see also bead, Ni-Zn and Mn-Zn)

field cancellation principle in PCBs, 245

field intensity, 104 (see also H-field)

field ripple ratio, 107

field strength, 104 (see also H-field)

film capacitor, 364, 366

metallized, 364

filter first-order, 266

filter second-order 273–275, 284, 289, 293

phase shift, 272, 293, 303

Fischer Custom Communications, 399

flashover/arc (see arc/flashover)

floating buck regulator, 440

fluorescent tube, 473, 474

flux band, 390–393

flux cancellation, 154, 163

flux density, 104, 107, 109, 115, 163 (see also BSAT and

B-field)

flux, 104, 105, 133

flyback converter primary turns, (see number of

primary turns)

flyback duty cycle, 132

flyback IC Topswitch, 94, 95, 213, 469

flyback output cap current sharing, 245, 246

flyback wire gauge nomogram, 150, 151

flyback, 33, 52, 94, 129–138, 141, 142, 146–149, 154, 160,

163–165, 184, 185, 188, 189, 213, 231, 244–246,

389–397, 422, 423, 430, 431, 441, 443, 465–468,

475, 478

current ripple ratio, 137

foil optimum thickness, 163, 164

foil thickness 148, 151, 163, 164

foldback, 43, 86, 454, 455, 458, 459

frequency, 453, 455, 458, 459

forced continuous conduction mode, 40, 75, 102, 103

Forcing Function, 251, 252

forward converter primary turns, (see number of

primary turns)

Forward converter, 68, 129, 152, 154–157, 160, 163, 164,

189, 190, 231, 362, 392–394, 397, 430, 433

magnetics, 152–176, 449

2-switch, 189

forward transfer function, 277, 278, 291

Fourier analysis, 171, 419–423, 426, 427, 435

FR, 166, 168, 170, 171, 174, 175 (see also ac resistance)

FR4 laminate, 248

freewheeling, 15, 53, 131, 133, 138, 139, 197, 200,

382, 443

frequency domain, 252, 255, 256, 260

frequency foldback, 453, 455, 458, 459

frequency multiplier, 431, 450

fringing flux, 390

front-end converter, 53, 181, 335

full-bridge converter, 189

Gate charge factor, 224, 228 (see also Qg)

Gate input capacitance, 217, 396 (see also Ciss/Cgs)

Gate resistor for EMI, 396

ground choke, 385, 386

ground leakage current, 367, 368, 380, 383 (see also

leakage current)

ground leakage mode, 341 (also see CM noise)

ground of a dc-dc converter, 181

ground of control IC, 181

ground plane, 244, 246, 247, 399, 411

ground reference, 53, 180

ground, 49, 134, 245

half-bridge converter, 189

Hall sensor, 400

haversine, 406, 407

headroom, 7, 87, 142, 187, 352, 430, 432, 461

heatsink, 4, 247, 325, 331, 358, 377–379, 389, 393, 394, 402,

433, 435, 478, 479 (see also pin-fin heatsink)

H-field, 104, 188, 329, 330, 333, 383, 389, 396, 402
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high-k material, 364

holdup time, 142, 162, 453

HVDC rail, 4, 367, 375, 384

hysteretic controllers, 39

IC 384x, 239, 440, 441, 444

IC 7805, 196

IC LM1572, 458 (see also National Semiconductor)

IC LM259xHV, 454 (see also National Semiconductor)

IC LM267x (see also National Semiconductor)

IC Topswitch, 94, 95, 213, 469

IEC 320 line inlet, 370, 384 (see also ac inlet)

IEC standards, 327

IEC symbol for Earth, 341

IGBT, 12

imaginary number j, 256

immunity, 326, 333, 334, 361, 370, 386 (see also

susceptibility/immunity levels)

impedance non-symmetric, 342, 383

Impedance Stabilizing Network, 337 (see also ISN

and LISN)

impingement air flow, 463

incremental resistance, 413

index of refraction, 328

induced voltage, 25–27, 33, 104 (see also Lenz’s law)

inductance index, 105 (see also AL)

inductance of a via, 243

inductive load, 208, 210, 211

inductor current, 65–69, 71, 91, 186, 187, 190, 192, 214, 456

(see also average inductor current)

inductor design, 64, 72–75, 110, 117–119, 142

inductor equation, 30, 31, 188

inductor rating, 457

inductor reset, 41, 138, 463

inductor saturation (see saturation)

inductor with split windings, 184 (see also split)

Industry Canada, 327

input bridge, 361, 364, 376, 383, 394, 406

input capacitance of mosfet (see Ciss/Cgs)

input capacitor dissipation, 123

input capacitor RMS current, 440 (see also RMS current)

input current of converter (see average input current)

input decoupling, 242, 385 (see also decoupling)

input instability, 411–415, 449

input power definition, 6

input surge protection, 367 (see also TVS)

inrush current, 13, 14, 202, 386, 458

installation category, 367, 411

Insulated Gate Bipolar Transistor, 12

insulating tape thickness, 168

insulation barrier, 445 (see also isolation)

insulation basic, 358, 363, 379

insulation double (see double insulation)

insulation operational/functional, 363

insulation Primary-to-Secondary, 164, 186

insulation reinforced, 358, 367, 379, 390, 411

insulation supplementary, 358, 379

insulator approved, 357

insulators, 377, 384

integrated switcher, 83, 84, 86–88, 147, 213, 241, 396, 398,

439, 453–455, 457, 461, 465, 469 (see also switcher,

National Semiconductor and Power Integrations)

integrator, 267, 268, 293, 295, 306, 307, 318

interleaved buck converter, 440

interleaving windings, 163, 164 (see also split windings)

intrinsic impedance of free space, 332

inverse Laplace transform, 261, 305

inverse linear distance extrapolation factor, 333

ISN, 337, 344 (see also LISN)

ISO standards, 327

isolation functional, 379

isolation Primary-to-Secondary, 164, 186

isolation scheme of converter, 367

isolation, 129, 136, 185, 186, 189, 195, 357, 389, 392, 393,

410, 411

jitter, 264, 441

junction temperature, 21

Kapton, 379

Kinel, 379

Kirchhoff, 25–29, 32, 212, 252, 465, 471

Kool Mu, 362

L × I equation, 77, 100, 101, 112, 113, 144, 145

Laplace Instruments, 348

Laplace Transform, 252, 260, 305, 306, 434

large changes in line and load, 304

layers per portion, 166, 169, 170, 175

LDO, 8, 12, 182 (see also linear regulator)

leakage current, 12, 16, 213 (see also ground leakage

current)

leakage inductance energy, 138

leakage inductance in-circuit measurement, 140

leakage inductance reset, 139

leakage inductance, 135, 137, 139, 155, 164, 165, 216, 363,

389, 391, 393, 396, 406, 465, 467, 468

LED, 185

Lenz’s law, 26, 104, 105 (see also Faraday’s law and

Maxwell’s laws)
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life, 10, 19–21, 94, 117, 143, 245, 439, 440, 446, 449–452,

474, 475, 480

lightning surge test, 475

line and load variations, 5, 87, 92, 251, 262, 278, 285, 292,

293, 304, 305, 412, 453, 462 (see also step line

change and step load change)

line frequency leakage current, 383

line impedance stabilizing network, 337, (see also LISN)

line impedance, 342, 352

line input current waveshape, 407

line input ripple rejection, 304, 305

line regulation, 5, 448 (see also line rejection)

line rejection, 283, 306 (see also line regulation)

linear regulator, 7, 142 (see also LDO)

linear system, 264

Line-to-Earth capacitor, 364 (see also Y-capacitor)

Line-to-Line capacitor, 364, 370 (see also X-capacitor)

line-to-output transfer function 285, 287, 304

LISN MATE, 347

LISN, 337, 344–346, 348, 359, 368, 399, 401, 402,

428–431, 434, 435

load and line variations (see line and load variations)

load regulation, 5, 448

logarithm, 254

Loop Stability Criteria, 293

loop stability, 16, 242, 251–322, 357

low dropout regulators, 8 (see also LDO)

Magnetic Definitions, 103, 104

magnetic field and current relationship, 70

magnetic induction (see B-field)

magnetization current, 154

magnetizing force (see H-field)

manganese-zinc ferrite (see Mn-Zn and ferrite)

manufacturing variations, 199 (see also spread/tolerance)

margin tape, 146, 157, 168, 391 (see also transformer

voltage rating)

Mathcad, 466–468

Maxwell’s laws, 328, 330, 377 (see also Lenz’s law and

Faraday’s law)

mean length per turn, 167

Mean Time Between Faulures (see MTBF)

Metal Oxide Varistors, 475, 480

metallized film cap, 364

Methode Electronics, 370

mhos, 206

mica, 378, 379

Miller plateau, 221, 223, 230

minimum inductance, 98

minimum load, 103

minimum pulse width, 458

MKS units, 104, 108

MLCC, 94, 411 (see also ceramic)

MLT (see mean length per turn)

Mn-Zn, 363, 369, 479 (see also ferrite)

model of mosfet, 215, 216

modulator, 277, 278

mosfet Gate capacitance (see Ciss/Cgs)

mosfet Gate charge factor, 224, 228 (see also Qg)

mosfet interelectrode capacitances, 215–218, 225, 228

(see also Ciss/Cgs)

mosfet model, 215, 216

mosfet scaling factor for capacitances, 218, 226, 227, 233

motorboating, 43

MOV, 475, 480

MTBF, 19 (see also failure rate, ppm and reliability)

multi-layer boards, 245

multilayer ceramic, 94, 411 (see also MLCC)

multimeter (see DMM)

multioutput off-line converters, 195

multiplier, 449 (see also temperature multiplier and

frequency multiplier)

Mylar, 168, 389 (see also polyester and film capacitor))

National Semiconductor, 43, 456, 458, 461

natural log, 254, 255

n-channel mosfet, 10, 11, 193, 194, 206

near field, 331–333, 402

negative input impedance, 411

negative temperature coefficient, 367

NEMKO, 367

nickel-zinc ferrite (see Ni-Zn and ferrite)

Ni-Zn, 363, 366, 369, 396, 479 (see also ferrite)

non-inverting buck-boost, 183, 184

nonsymmetric EMI mode, 342–344, 369, 381, 383

non-symmetric impedance, 342, 360, 383

nonsymmetrical CM current (see nonsymmetric

EMI mode)

nonsynchronous buck converter, 464 (see also

nonsynchronous regulators)

nonsynchronous regulators 39, 200 (see also nonsynchronous

buck converter)

Nordic region, 367

normal mode EMI, 341

NTC (see negative temperature coefficient)

number of primary turns, 129, 130, 145–148, 155, 159,

162, 163, 169, 175, 449, 456, 461

octave, 266

OEM converters, 335, 336, 439
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off-line converters multioutput, 195

Off-line, 4, 23, 63, 64, 68, 84, 85, 87, 88, 129, 144, 155, 164,

183, 186, 195, 196, 213, 230, 244, 305, 335, 337, 341,

344, 346, 357–359, 361, 363, 364, 366–368, 379, 394,

396, 397, 406, 409, 433, 440, 442–444, 453, 461, 465,

467, 476

telecom, 410

off-the-shelf Inductor, 63, 64, 81, 103, 110, 112, 117, 145,

184, 187

open-loop gain, 277, 278, 280, 289, 291, 293–295, 303,

304, 319

optocoupler, 4, 185, 189, 195, 196, 445, 446

oscilloscope, 50, 240, 264, 342, 345, 400, 410, 411,

471, 472 (see also scope)

output capacitor, 14

average current, 56

dissipation, 122

oscillations, 415

paralleled, 245

over-damped, 270, 302

overdrive, 207, 221, 223

overload, 16, 42, 87, 453, 459, 461, 464 (see also short

and fault)

overshoot, 84, 258, 263, 292, 302, 411, 412, 414

overvoltage protection (see OVP)

OVP, 195, 196

parallel capacitance, 259

parallel inductance, 259

paralleled windings, 397

paralleling foils, 168

paralleling wire strands, 149

parasitic, 15–18, 84, 138, 182, 198, 215–217, 218, 233, 240,

272, 296, 325, 352, 363, 375, 378, 380–382, 389,

391, 399, 430, 433, 464 (see also leakage

inductance)

pass-transistor, 7 (see also linear regulator)

PCB, 18, 20, 51, 83, 138, 181, 184, 195–198, 216, 239, 243,

244, 247, 248, 329, 330, 370, 371, 382–385, 394,

395, 398, 399, 410, 433, 458, 467

critical path/traces, 240, 241, 398

feedback trace, 242, 246, 247

field cancellation principle, 245

FR4 laminate, 248

multilayer board, 399, 411

peak detection EMI, 351, 352

Pearson Electronics, 399

penetration ratio, 172, 174

permeability, 104, 108, 109, 146, 147, 188, 328, 331, 365,

368, 369, 406, 460, 461, 479

effective, 147

permittivity, 328, 331, 377

PFC, 406, 409, 410, 419, 442–444, 453, 473

phase margin, 292, 293, 297, 301, 302, 310, 313, 314

(see also stability criteria and stability margin)

phase shift sudden, 272, 293, 303

Philips, 396, 467

physical spacing, 186, 357, 363 (see also clearances and

creepage)

Picor, 366

pin-fin heatsink, 463

plant, 277

transfer function, 281

transfer function current mode control, 318

polarity of windings, 130, 131, 371, 392

pole (stability), 267, 270, 274–276, 302 (see also pole-at-zero)

pole at the origin (see pole-at-zero)

pole-at-zero, 267–269, 306, 307, 309, 318 (see also

dominant pole)

polyamide, 379

polyester, 389, 391 (see also Mylar)

polyimide, 379

polymer capacitor, 449

positive temperature coefficient, 478

post LC-filter, 270, 287, 288

post-regulator IC, 196

powdered iron, 20, 111, 117, 362, 365, 369, 405, 406,

440, 461

Power Electronic Measurements Ltd., 399, 400

Power Factor Correction (see PFC)

Power Integrations (see Topswitch)

power throughput capability, 156, 159

ppm, 397, 441 (see also failure rate and reliability)

Predictive Gate Drive, 199 (see also deadtime)

pre-load, 201

Primary ground, 134, 186, 384

Primary turns (see number of Primary turns)

Primary winding, 9, 129–134, 138–140, 154, 155, 166, 168,

171, 173, 175, 176, 231, 391–393, 396, 397, 479

(see also Primary turns)

Primary-side inductance, 137–139, 144, 162

Primary-side leakage, 139, 140, 468

Primary-to-Secondary insulation, 164, 186

printed circuit board, 18 (see also PCB)

process variations, 85 (see also tolerance/spread)

proximity effect, 63, 163, 164, 175, 396, 397, 419

Pspice, 462–465

PTC (see positive temperature coefficient)

pulse skipping, 200, 201, 455, 458

pulse width modulator (see PWM)

500



Index

push-pull, 189

PWM ramp (see ramp of PWM)

PWM transfer function, 281, 282

PWM, 84, 97, 201, 251, 278, 281, 314, 330

Q, 270, 272–274, 293, 317, 318, 369, 446

Qg, 224, 227, 230, 233, 234 (see also Gate charge factor)

Quality factor (see Q)

quasi-LDO, 8 (see also LDO)

r, 75, 77–80, 86, 87, 90, 91, 93–98, 107, 108, 125, 146,

148, 155 (see also current ripple ratio)

Forward converter, 144

flyback converter, 137

RAC (see ac resistance)

radian, 256–258, 265, 296, 421

radiated EMI, 18, 21, 51, 155, 244, 246, 325, 326, 328–330,

332, 333, 336, 343, 347, 352, 353, 358, 359, 366,

382, 384–386, 389, 390, 392, 393, 401, 402

railing, 264, 304

ramp of PWM, 97–99, 201, 280–286, 288, 294–296,

299–301, 304, 310–317

rating, 19–21, 42, 43, 51, 53, 56, 57, 59, 60, 80–83, 85–89,

91, 94, 101, 102, 112–114, 120, 122–124, 141, 143,

155, 183–187, 202, 213, 364, 367, 379, 383, 394, 397,

398, 411, 412, 443, 450–454, 456, 457, 469

RC filter, 265, 273

RC snubber, 243, 361, 395, 396

RCC (see ringing choke converter)

recovery characteristics, 21, 361, 395, 396

Rectifier (telecom power supply), 410, 411

reference-to-output transfer function, 278

reflected load current, 138

reflected output voltage (see VOR)

reflected secondary-side leakage, 140, 468

reflow soldering, 248

reinforced insulation, 358, 367, 379, 390, 411

reliability, 10, 19–21, 64, 378, 398, 452, 454–456, 459–461,

473, 475, 476, 480 (see also failure rate, MTBF

and ppm)

Renesas, 236

reset (see inductor reset)

resistive divider, 308 (see also voltage divider)

resistive load, 206, 208, 217

resonance, 266, 267, 270, 361, 365, 416, 477

resonant topology, 15, 477

reverse recovery characteristics, 21, 361, 395, 396

RHP zero, 286–288, 293, 301, 313, 314, 318–320

ringing choke converter, 39, 476

ripple current, 94, 123, 124, 143, 431, 450–452

RMS current, 52, 78, 367 (see also RMS)

switch, 75

transformer voltage, 186

RMS, 81, 94, 103, 115, 116, 120, 122–124, 167, 214, 245,

406, 408 (see also RMS current)

rod inductors, 330, 394

Rogowski probe, 399, 400

room temperature vulcanizing, 325

room temperature, 6 (see also ambient temperature)

Royer oscillator, 476 (see also RCC)

RTV, 325

Rule for level-shifting voltages, 134

Rule for load scaling, 100

Rule for RDS vs. temp, 183

Rule for reflecting reactive component values, 137

Rule for voltage/current scaling, 132–135, 146, 154

(see also voltage scaling and current scaling)

Rule for volts/turns, 135

Rules-of-thumb, 6, 77, 79, 83, 120, 122–124, 141, 142, 149,

240, 244, 335, 343, 378, 398

Safety clearances in transformer, 186 (see also margin tape)

Safety maximum allowed Y-capacitance, 368

Safety, 129, 157, 168, 176, 184, 186, 195, 196, 325–327,

341, 357–359, 363, 364, 366, 367, 379, 383, 384,

389–392, 411, 439, 442, 444–446

Nordic Regions, 367

sandwich, 384, 396

saturation, 70, 72, 77, 81–85, 87–89, 105–108, 110, 114, 115,

117, 145, 147, 156, 157, 185, 187–189, 362, 363,

405, 406, 409, 443, 454, 456, 460, 461

(see also BSAT)

sawtooth (see ramp of PWM)

scaling factor for mosfet capacitances, 218, 226, 227, 233

Schaffner, 370

Schottky diode, 22, 45, 197, 214, 395, 398

dV/dt rating, 397

leakage, 398

scope, 446, 470 (see also oscilloscope)

SCR, 14

Secondary ground, 134, 186

Secondary-side leakage, 139, 140, 467

self-healing, 364, 366

self-oscillating topologies, 476 (see also RCC)

Semiconductor Controlled Rectifier, 14

separation distance (see physical spacing)

SEPIC, 22, 183

series capacitance, 260

series inductance, 259

series regulator, 7 (see also linear regulator and LDO)
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series-pass regulators, 7 (see also linear regulator)

series-pass transistor, 8

shielded inductors, 242

shoot-through (see cross-conduction)

short, 42, 43, 46, 82, 165, 196, 363, 364, 390, 445, 446,

453, 458, 464, 476 (see also overload and fault)

SI system, 104 (see also MKS units)

Siemens, 206

silicone rubber, 378

single phase, 367, 443

single point failure, 196, 357

skin depth, 63, 148–151, 154, 161, 163–166, 170

slope compensation, 97–99, 314, 317, 318, 444

small-signal analysis, 264, 292

SMD/SMT, 248, 366

SMT/SMD, 248, 366

Snoek’s law, 368

snubber, 43, 243, 361, 395, 396

dissipation, 243

soft start, 202, 458

solder wicking, 248

specmanship, 20

spike of induced voltage, 44 (see also spike)

spike, 34, 396, 430, 433, 444, 475 (see also voltage spike

and current spike)

s-plane, 258, 262

split windings, 163, 164, 166, 168, 184, 364, 391, 396, 397

spread/tolerance (see tolerance/spread)

square mils, 152

stability criteria, 292, 415, 416

stability margin, 262 (see also phase margin)

staircasing, 42–46, 458, 463, 476

standoffs, 370, 383

startup problems, 458

steady state, 35–37, 40, 70, 82, 133, 154, 190, 216, 258,

262, 463

step line change, 251, 262 (see also line and load variations)

step load change, 5, 262, 305, 453, 462 (see also line and load

variations)

step response (see line and load variations)

subassembly, 335

subdivision technique, 169–171, 175

subharmonic instability, 96–98, 293, 314, 315, 317

supplementary insulation, 358, 379

Surface mount (see SMD/SMT)

surge-testing

susceptibility/immunity levels, 334 (see also immunity and

EMI susceptibility)

swinging voltage, 131, 399

switch dissipation, 9, 11, 13, 17, 120, 122, 396

switcher, 242, 457 (see also integrated switcher)

switching loss, 12, 18, 29, 201, 205, 208, 209, 211, 213–215,

227, 230–234 (see also crossover loss)

switching node, 50, 131, 133, 199, 212, 216, 241, 243,

244, 399

Syfer, 366

symmetric mode, 341, 344 (see also DM noise)

synchronous, 39, 102, 192, 193, 196–199, 458, 464

integrated Schottky, 197

system ground, 181, 186

Tantalum capacitors, 242, 412

telecom ports, 336

telecom power supplies, 337

telecom, 442

telecom/data networks, 410, 446

Telecommunications Network Voltage (see TNV)

temperature multiplier, 450–452

Texas Instruments, 199, 440

thermal conductivity, 377, 379, 450

thermal constriction, 248

thermal grease, 378–380

thermal resistance, 78, 161, 184, 247, 248, 377–380, 384,

462, 463

core, 117

thermal vias, 248

thermistor, 367, 478 (see also NTC and PTC)

three phase, 367, 442

threshold voltage, 218, 220, 234–236

through-hole, 243

time constant, 24, 27, 217, 228, 229, 251, 252, 269

time domain, 252, 255, 260

TNV, 411

tolerance/spread, 85–88, 90, 182, 292, 364, 456, 457, 479

(see also process variations and manufacturing

variations)

Topswitch, 94, 95, 213, 469

toroid, 361–363, 369, 385, 400, 479, 480

Trace Section Analysis, 239

transconductance, 206, 217, 218, 290, 308–312, 319

transfer function coincidence, 447, 449

transfer function definition, 251, 261, 262

transfer function feedback, 277, 278, 291

transfer function forward, 277, 278, 291

transfer function interactions, 447, 449

transfer function of LC filter, 270

transfer function of plant, 284

transfer function of power stage, 283

transfer function of PWM, 284

Transfer Function of RC filter, 264
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transfer function overall, 269

transfer resistance, 314

transformer action, 132, 133, 155, 347, 464

transformer margin tape, 146, 157, 168, 391 (see also

transformer voltage rating)

transformer power throughput capability, 156, 159

transformer voltage rating, 186 (see also margin tape)

transformer voltage/current scaling, 132–135, 146, 154

(see also voltage scaling and current scaling)

transformer-based buck-boost, 184

Transient Voltage Suppressor (see TVS)

transition (see crossover transition)

tuned filters for EMI, 360, 361

turbulent air flow, 463

turn-off, 137, 212, 213, 217, 218, 222, 225, 229, 230, 433

(see also crossover transition)

turn-on, 84, 95, 200, 211, 212, 217, 218, 225, 229, 231,

396, 433 (see also crossover transition)

turns ratio, 129, 130, 135, 139, 141, 154, 156, 163

TVS, 213, 446, 475

twist-and-tie-wrap for EMI, 401

two-port network, 251, 264

two-switch forward converter, 152 (see also forward

converter)

Tyco, 370

Type 1 Compensation, 297, 306, 307, 318

Type 2 Compensation, 297, 306, 307, 318, 321

Type 3 Compensation, 297, 298, 301, 303, 306–308, 309, 313

UL mark, 326

UL1950, 445

ultrafast diodes, 21, 22, 361, 394–396

unbalanced filters, 360 (see also balanced filters/impedances)

unbalanced impedance, 342, 360, 383

under-damped, 270

Unitrode, 440

Upilex, 379

Upimol, 379

utilization factor, 160 (see also window utilization factor K)

variac, 410

VCCI label, 327

VDE, 327

Vespel, 379

voltµseconds, 41, 75, 112, 162 (see also voltseconds and Et)

voltage dependent equation, 105, 108, 109, 145–147, 159, 162

voltage divider, 280 (see also resistive divider)

voltage independent equation, 105, 106

voltage mode control, 16, 97, 98, 242, 281, 283, 284, 313,

315, 449

voltage reversal, 34, 35, 40, 180, 464

voltage scaling, 132–133 (see also volts/turn and transformer

voltage/current scaling)

voltage spike, 17, 32, 33, 42–45, 50, 133, 135, 137, 138,

154, 216, 220, 225, 240, 241, 361, 396, 398, 422

(see also spike)

volts/turn, 132 (see also voltage scaling)

voltseconds, 40, 46–48, 56, 57, 60, 65, 66, 68, 70, 79, 80, 93,

100, 102, 103, 108, 114, 119, 133, 155, 162, 190, 216,

447, 449, 463, 464 (see also voltsµseconds and Et)

VOR, 133, 137, 139, 140, 231, 467

wave impedance, 332

wearout failure, 19 (see also life)

Weir Lambda, 361

wide-input voltage range, 64, 110

Wima, 366

winding height, 168 (see also margin tape)

windings in parallel, 184, 185, 397 (see also split and

sandwich)

window space, 81, 145, 146, 157, 159, 456

window utilization factor K, 157, 160 (see also window space)

wire bundle, 173, 175, 176

wire gauge formula, 173

wire gauge selection nomogram, 150, 151

wire gauge, 81, 148, 150, 153, 187, 456 (see also AWG)

wire optimum diameter, 149

wire optimum high-frequency resistance, 166

wirewound resistor, 367

X2-capacitor, 367

X2Y (EMI filter), 366

X7R, 365

X-capacitor, 364–367, 376, 433

Y2-capacitor, 367

Y5V, 364

Y-capacitor, 364–367, 370, 383, 386

Z5U, 364, 365

zener clamp, 138–141, 231, 468

zener, 444–446, 448

zero (stability), 267, 274–277, 281, 284, 286, 287, 289,

293–303, 306–311, 313, 314, 317–322 (see also ESR

zero, RHP zero and pole-at-zero)

z-factor, 147, 148, 460 461

ZVS, 22, 197, 464
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