

Technology Training that Works

Presents

Practical

Industrial Programming

using lEe 61131-3 for PLCs

Web Site: www.idc-online.com

E 'Z'd (fj""d /"-maz : 1 cpu c-onzne.C0711

Technic:al "lfbrlnation that WorkS'

Copyright

All rights to this publication, associated software and workshop are reserved.
No pali of this publication or associated software may be copied, reproduced,
transmitted or stored in any fom1 or by any means (including electronic,
mechanical, photocopying, recording or otherwise) without prior written
permission of IDC Technologies.

Disclaimer

Whilst all reasonable care has been taken to ensure that the descriptions,
opinions, programs, listings, software and diagrams are accurate and workable,
IDC Technologies do not accept any legal responsibility or liability to any
person, organization or other entity for any direct loss, consequential loss or
damage, however caused, that may be suffered as a result of the use of this
publication or the associated workshop and software.

In case of any unceliainty, we recommend that you contact IDC Technologies
for clarification or assistance.

Trademarks

All tellliS noted in this publication that are believed to be registered trademarks
or trademarks are listed below:

IBM, XT and AT are registered trademarks of Intemational Business Machines
Corporation. Microsoft, MS-DOS and Windows are registered trademarks of
Microsoft Corporation.

Acknowledgements

IDC Technologies expresses its smcere thanks to all those engmeers and
technicians on our training workshops who freely made available their
expertise in preparing this manual.

'Ti.?cl1n.icai In/'orrnation thai Hi£Jrks

Customized Training

In addition to standard on-site trammg, IDC specializes in customized
courses to meet client training specifications. IDC has the necessary
engineering and training expeliise and resources to work closely with clients
in preparing and presenting specialized courses.

These courses may comprise a combination of all IDC courses along with
additional topics and subjects that are required. The benefits to companies in
using training is reflected in the increased efficiency of their operations and
equipment.

Training Contracts

IDC also specializes in establishing training contracts with companies who
require ongoing training for their employees. These contracts can be
established over a given period of time and special fees are negotiated with
clients based on their requirements. Where possible IDC will also adapt
courses to satisfy your training budget.

Referencesfrom various international companies to whom IDC is contracted
to provide on-going technical training are available on request.

Some of the thousands of Companies worldwide that have
supported and benefited from IDC workshops are:

Alcoa, Allen-Bradley, Altona Petrochemical, Aluminum Company of
America, AMC Mineral Sands, Amgen, Arco Oil and Gas, Argyle Diamond
Mine, Associated Pulp and Paper Mill, Bailey Controls, Bechtel,
BHP Engineering, Caltex Refining, Canon, Chevron, Coca-Cola,
Colgate-Palmolive, Conoco Inc, Dow Chemical, ESKOM, Exxon,
Ford, Gillette Company, Honda, Honeywell, Kodak, Lever Brothers,
McDonnell Douglas, Mobil, Modicon, Monsanto, Motorola, Nabisco,
NASA, National Instruments, National Semi-Conductor, Omron Electric,
Pacific Power, Pirelli Cables, Proctor and Gamble, Robert Bosch Corp,
Siemens, Smith Kline Beecham, Square D, Texaco, Varian,
Wamer Lambert, Woodside Offshore Petroleum, Zener Electric

Table of Contents

1 An introduction - IEC 1131-3 on PLC programming 1
1.1 Development & growth of Programmable Controllers 2
1.2 Need for standardization in programming approach 3
1.3 Drawbacks in conventional programming methodology 4
1.4 Features of IEC-1131-3 language definition 10
1.5 Summary 11

2
2.1
2.2
2.3

2.4
2.5

2.6
2.7

2.8

3
3.1

3.2

PLC software architecture
Software quality attributes
IEC software architecture
Component parts of IEC Software architecture
2.3.1 Configuration
2.3.2 Resource
2.3.3 Task
2.3.4 Program

Functions and function blocks
Local and global variables
2.5.1 Directly represented variable
2.5.2 Access paths
2.5.3 Execution control

Mapping software model to real life systems-Examples
Applications
2.7.1 Program Organization Unit (POU)
2.7.2 Hierarchical design
2.7.3 Communications

Conclusion

Common elements in IEC-1131-3
Common elements
3.1.1 Character set
3.1.2 Identifiers
3.1 .3 Keywords
3.1.4 Comments

Elementary data types
3.2.1 Integer
3.2.2 Real or floating point
3.2.3 Time or duration
3.2.4 Date and time data
3.2.5 String

12
12
13
14
14
15
15
15

16
17
17
18
18

18
20
21
22
22

24

25
25
26
26
26
27

27
27
28
28
29
30

3.2.6 Bit string 30
3.3 Generic data type 31

3.3.1 Initial values 31
3.4 Derived data types 31

3.4.1 Derived directly from elementary type 31
3.4.2 Structured data type 32
3.4.3 Enumerated data type 32
3.4.4 Sub range data types 32
3.4.5 Array data types 33
3.4.6 Default initial values of derived data type 33

3.5 Variables 34
3.5.1 Internal variable 34
3.5.2 Input variables 35
3.5.3 Output variables 35
3.5.4 Input/output variables 35
3.5.5 Global variable and external variable 36
3.5.6 Temporary variables 36
3.5.7 Directly represented variable 36
3.5.8 Access variables 37
3.5.9 Variable attributes 37

3.6 Variable initialization 38
3.7 Functions 38

3.7.1 Execution control 41
3.7.2 Function blocks 42

3.8 Programs 44
3.9 Resource 44
3.10 Tasks 44

3.10.1 Non-preemptive scheduling 45
3.10.2 Preemptive scheduling 45
3.10.3 Task assignment 46
3.10.4 Configuration 47

3.11 Summary 47

4 Structured text 48
4.1 Introduction 48
4.2 Statements used for assignments 49
4.3 Expressions 49
4.4 Evaluating an expression 50
4.5 Statements 51

4.5.1 Function block calls 51
4.6 Conditional statements 52

4.6.1 IF...THEN ... ELSE 52
4.6.2 CASE statement 53

4.7 Iteration statements 53

4.8
4.9

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6

4.7.1 FOR ... DO
4.7.2 WHILE ... DO
4.7.3 REPEAT ... UNTIL
4.7.4 EXIT
4.7.5 RETURN

Implementation dependence
Summary

Function block diagram
Introduction
Basics
Methodology
Signal flow
Feedback path
Network layout
Function execution control
Jumps and labels
Network evaluation rules
Summary

Ladder diagrams

53
54
54
54
55

55
55

57
57
58
58
60
61
61
62
62
63
64

65
6.1 Introduction 65
6.2 Basic concept 66
6.3 Graphical symbols used in ladder diagram 66
6.4 Boolean expressions using ladder diagrams 69
6.5 Integrating functions and function blocks within ladder diagrams 70
6.6 Feedback paths 71
6.7 Jumps and labels 72
6.8 Network evaluation rules 72
6.9 Portability 73
6.10 Summary 74

7
7.1
7.2

Instruction list
Introduction
Structure of IL programming language
7.2.1 Basics
7.2.2 Instruction structure
7.2.3 Comparison with Structured Text (ST) language
7.2.4 General semantics of IL expressions
7.2.5 Modifiers for deferred execution

75
75
75
75
76
77
77
78

7.3

7.4
7.5

8
8.1

8.2

8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10

7.2.6 Other modifiers

Calling functions and function blocks
7.3.1 Function block - Formal call with an input list
7.3.2 Function block - Informal call
7.3.3 Function block - Call with an input list
7.3.4 Calling a function - Formal call
7.3.5 Calling a function - Informal call

Portability and other issues

Summary

Sequential Function Chart (SFC)
Introduction to the basic concept of SFC

8.1.1 Structure of SFC

Steps
8.2.1 Initial step
8.2.2 Normal step

Transitions

Actions
Action qualifiers

Action control function block

Execution rules

Design safety issues

Top down design
Summary

79
80
80
80
81
81
81

82
83

84
84
85

89
89
89
91

92
95
98
98
99

100

101

1

An introduction to IEC standard
1131 part-3 on PLC programming

This chapter contains information on the use and growth ofprogrammable controllers in
industry, the basic problems in the earlier approach adopted for programming these
devices and the move towards development of standards for programming. It also
discusses the contribution of the standard in improvement of software quality,
productivity and maintainability.

Objectives
On completing the study of this chapter, you will learn:

• The basics of Programmable controllers and their role in modem industry
• The need for standardization of PLC languages
• A review of the programming approach prevailing before the evolution of

the standard and its shortcomings
• The features of lEC 1131-3 and its contribution towards qualitative

improvements to control software
• Move towards open vendor independent systems and software portability

Note
Before we go further, we will get a few basic aspects clear in our minds. The
International Electro-technical Commission (lEC for short) is the Geneva based
international standards making body, which formulates standards for electrical and
electronic equipment. These are adopted both within Europe and in most other industrial
nations of the world and integrated into their national standards (incorporating regional
variations where required). lEC 1131 is the standard relating to programmable
controllers. Part 3 of this standard deals with the languages used for programming these
devices and is commonly refelTed as lEC-1131-3. Even though lEC has renumbered its
standards since 1997 by prefixing the numeral 6, we will refer to it by the earlier
designation of 1131-3, which is still widely used in the industry rather than 61131-3.

2 Industrial control programming as per IEC-1131-3

The standard IEC-II3I is organized as follows:

Part Title

1 General information

2 Equipment requirements and tests

3 Progrmmnable languages

4 User guidelines

5 Messaging service specification

6 Communication via fieldbus

7 Fuzzy control programming

8 Guidelines for implementation of languages for programmable controllers

The standard uses the acronym of PC while referring to Programmable Controllers, but
in deference to the common use of this abbreviation for the Personal Computer, we will
use the term PLC (Programmable Logic Controllers) in this manual instead of pc. This is
in spite of the fact that the scope of present day programmable controllers extends beyond
the conventional interlocking function and includes highly complex control requirements.

1.1 Development and growth of Programmable Controllers
(PLC)-An introduction
The PLC is now an indispensable pati of any industrial control system. Originally
developed in the late 60's to serve the automation needs of the automobile industry in
USA, PLCs have grown much beyond this sector and today it is difficult to name an
industry segment that does not use a PLC. The initial purpose was to replace hardwired
relay based interlocking circuits by a more flexible device. The flexibility came through
the programmability of the device, which made it possible to use the same basic hardware
for any application as well as the ability to quickly change the program and modify the
behavior of a circuit. This obviously, is not possible with a hard-wired relay logic circuit.

Thus, the original PLC had:

• Inputs in the form of contacts (called as digital inputs)
• A processor
• A software to control the processor
• Outputs in the form of contacts, referred as a digital outputs (or sometimes

as voltages to drive external relays)

The Inputs and Outputs (called as I/O) were grouped in printed circuit boards, usually
plug-in type modules each containing circuits for several inputs or outputs. Such modules
grouped together in rack formation along with the Processor module, the power supply
module etc. form the hardware of the PLC. Large PLC configurations usually contain
several additional racks containing I/O cards daisy chained with the main PLC. More
complex systems have redundant power supply modules and additional processors to
increase the processing power or to execute multiple tasks simultaneously.

An introduction to IEC standard 1131 part-3 on PLC programming 3

The PLC market thus comprises various sizes of configurations:

• Micro PLC's of up to 100 I/O's
• Small PLC's of between 100 and 200 I/O's.
• Medium PLC's of up to a 1000 I/O's.
• Large PLC's of more than 1000 I/O's

PLC's are now extensively used in many industrial sectors including petrochemicals
and food processing and are largely replacing conventional devices in almost all fields of
activity.

As the use of PLCs grew, they became more versatile and started including the
capabilities of 3 term PID controllers with analog inputs and outputs in addition to the
combinational logic systems of hardwired circuits. The analog input and output signals
usually follow the 4 to 20 rnA signal standard, also developed in the 60's and which have
become the de-facto standard of the instmmentation industry.

Also, as the equipment, which the PLCs served to control became complex, with
several of them (each served by its own PLC) acting in tandem, it became imperative to
connect them together and share the information between them. Communication links
thus came to be a part of the modem PLC system. Figure 1.1 shows a typical PLC system
incorporating several of the features cited above.

Intra-PLC Comms Link

Figure 1.1
A typical PLC system

PLC Station #1

Remote ilO Chassis #1

Remote ua Chassis #2

Indicators

Mode Kev
Switch ."

RAM
Battery

Comrr:
Pons

PLC Station #2

Non~Vo:atHe

Memory

Processor
Detail

1.2 Need for standardization in programming approach
The software used in the early PLCs was of the ladder diagram type, which closely
resembles the circuit diagram with which all electrical engineers are familiar and still
remains one of the most popular PLC programming languages. (We will see more about
this language later in this chapter). The modem PLC system has however grown far
beyond its initial capabilities as a programmable logic controller and needed more
versatile tools for programming. The simple ladder diagram method of programming was

4 Industrial control programming as per IEC-1131-3

unequal to this task and had to be supplemented. The resulting multiplicity of languages
and sometimes dialects of a basic language became too complex for users to handle, with
each vendor's product requiring use of their proprietary programming language/tools.
Interoperability of PLC's of different vendors also caused problems of achieving
integrated control.

The development of MAP (Manufacturing Automation Protocol) by General Motors
was an initiative to enable communication between the PLC's of diverse manufacturers.
More than the standardization of programming languages, the MAP initiative's main
objective was communication between PLC's. The MAP standard could achieve this
objective but at a very high hardware cost and still had performance limitations.

PLC manufacturers realized that the future growth of PLC and their widespread use in
industry would not be possible unless the fundamental issue of program portability is
addressed. Thus stmied a move for a uniform programming approach to be adopted by all
the vendors through a basic programming standard. While certain additional capabilities
or extensions could be built-in to their product by different vendors, the basic features
were to be uniform thus ensuring portability of code and interoperability. IEC-1131-3 is a
result of this effort and has been evolved on a consensual basis by largely adopting the
prevalent programming practices of major manufacturers in the PLC industry.

Another standardization initiative is by the Instrument Society of America (ISA)
whose Fieldbus is an attempt to facilitate interconnection of devices distributed in the
field such as pressure transmitters, temperature controllers, valve positioning systems etc.
Though some of the issues of the structure of internal software of these devices are
addressed in the fieldbus standard, the standard does not cover languages used for their
programmmg.

1.3 Drawbacks in conventional programming methodology
As discussed in the previous section, most PLCs use some form of ladder Diagram based
programming a typical example of which is given in figure 1.2 below.

Start

l\orrnaHy
OpelJ

,VIator J

'''" PO\ver Rail (Left)

Figure 1.2
A typical ladder diagram

Normally
Closed

Ladder Rung

Power Rail (Right)//

Note how similar this diagram is to the conventional circuit diagram and how easy it is
to follow its action. The Diagram describes the logic used for starting a motor direct on
line. START and STOP are command inputs received from a control station. FAULT is a
signal from protection scheme of the motor. When START is ON it causes the output
COIL to pick up. The START and STOP commands are of momentary (pulsed) type and
the status of this output is used to lock the output in the status 'true' till STOP or FAULT
inputs change status. In addition to being simple, many PLCs also give a dynamic display
that shows the status of all these inputs and outputs in real time during the running of the

An introduction to IEC standard 1131 part-3 on PLC programming 5

system. Any malfunction both in the extemal signals or in the program itself is thus easily
identified and corrected.

However, this programming approach has a number of limitations in the context of the
modem PLC. We will discuss the areas where conventional programming approach
proves inadequate in some detail below.

The limitations are:

• Lack of software structure
• Problems in reusability
• Poor data structure definition
• Lack of support for describing sequential behavior
• Difficulty in handling complex arithmetical operations

Software structure
One of the main programming requirements when dealing with complex control systems
is to be able to break down the task into a number of smaller, less complex problems and
establish clear interconnections to one another. These individual pieces of code are called
program blocks or program units. Since these program units may be coded by different
programmers and used in different parts of a control system by others, care should be
taken to ensure that internal registers and memory locations of a subroutine do not get
changed inadvertently by another program block as a result of faulty code. This needs the
data to be properly encapsulated or hidden, which is not possible with the ladder
programming approach. This makes use of this program technique difficult for complex
tasks as any errors can result in catastrophic behavior of the control system.

Software reuse
In many control problems, one finds that certain logic gets repeated in a number of
places. With the ladder diagram programs it is necessary to duplicate the same circuit
over and over again. This makes the memory usage and the program execution
inefficient. For example, the basic motor starting scheme cited in figure 1.2 may get
repeated for a number of motors in a system. Arranging the logic sequence of this control
in a block, which can be invoked many times (with minor variations and changes in the
input/output designations) would simplify the program greatly. Facility for such code
reuse is usually limited in conventional ladder diagram programs.

Data structure
In the conventional approach to programming, digital data (both input and output) are
represented as single bits. Analog data is kept in the form of registers, which are generally
16 bits long. In this approach, there is no facility to represent related data in a group in the
form of a predetermined structure.

Modem programs approach control problems using object orientation. For example,
pressure sensors may be represented as a class of objects with each different sensor being
an instance of this class. A pressure sensor may have certain data associated with it.
These can typically be: the current value of pressure, a set point for the pressure, a time
value for setting an output flag when the set value of pressure is reached, a digital alarm
output etc. It is possible to carry out a set of logical operations (such as generating an
alarm in the event of a set value of pressure being exceeded beyond a set interval of time)
by using the values in the associated data structure. It is possible to use this data block for
different pressure sensors (each an instance of the class) by changing the data object's
contents. To be able to do this, the data values associated with each sensor must have a
unique name but all of them will have a common data definition. In PLC programming

6 Industrial control programming as per IEC-1131-3

terminology, this data class is called as a Data Structure with each instance of the sensor
being represented by a variable.

Class: PressureSensor (Data Structure)

Pressure
(Real)

Sel Pressure
(Real)

Set Time
(Duration)

Alarm OUlpul
(Boolean)

Figure 1.3
Data structurefor pressure sensors

Inslance . Sensor I(Variable)

Normally, in the conventional ladder programming methodology, the different pieces of
data described above are spread throughout program (and the PLC memory) and because
of this, data violations can occur easily. The lack of facility for defining a data structure
in the conventional ladder programming method will therefore impose constraints in
implementing object oriented control strategies.

Support for sequential operations
Many industrial controls perform operations as per a set sequence, particularly those

relating to automate operation of processes or machinery. Such operations involve:

• An initial step
• A transition with an associated condition; On fulfilling the condition,

deactivate the previous step and go to the next step
• The subsequent step where a set of operations will be performed
• The next transition followed by the next step and so on till the end of the

sequence

Representing a sequence of this nature logically in a ladder diagram is somewhat
cumbersome. We will illustrate this by an example. A typical chemical batch process for
a reactor vessel works in the fashion described below. (Refer to figure 1.4).

Stirrer Driver

A--!)I<j--{

B~
V - I I

V Control Valve

F . Flow (Volume) Totaliser

v
Drain

L..-__-{ F)-------+

Figure 1.4
A typical chemical process

The process sequence goes like this:

An introduction to IEC standard 1131 part-3 on PLC programming 7

1. Start of process
2. Check readiness of all systems. Ifready, go forward
3. Open valve for reagent A
4. Measure volume of flow of A and compare against set value
5. Close A when the set value is reached and open valve for reagent B
6. Measure volume of flow of B and compare with set value
7. Close B when the set value is reached. Start stining. Stati timer
8. Check for time to reach a predetermined set value
9. Stop stining when the set value is reached. Reset timer. Open Drain valve
10. Check flow and compare to sum of volumes of A and B
11. Close drain when total flow is equal to the sum. Reset all flow sensors. Go

back to step 1

We may introduce further complexities in this process by incorporating additional
parallel steps. For example, it may be required that a certain temperature needs to be
maintained during step 7. To do this we may introduce a sequence for monitoring the
temperature and switching an electrical heater on and off at certain temperature limits.

To represent the sequence of steps 1 to 11 logically in a ladder diagram, we may need
to anange the ladder rungs in different groups. One group consists of the transition
checks (represented in s. no. 2, 4, 6, 8 and 10). The next group consists of the transition
states to signify which step is cunently active. (In the above example the steps are 1, 3, 5,
7, 9, and 11 with one of them being active at any point of time.) The third is the step
actions, i.e., perform certain predetermined tasks at each step as dictated by the process.
Based on this approach, the above example can be represented by the following ladder
diagram in figure 1.5.

While this looks fairly straight forward, the complexities of the nature cited in the
above example, with additional parallel action sequences, will make the process more
difficult to represent and understand if we have to extend the above ladder diagram
program. (We would invite the readers who may be familiar with creating ladder logic
circuits to try doing this to have a 'feel' of the programming limitations this method
imposes).

8 Industrial control programming as per IEC-1131-3

START TR 2 ST I

1----l1----r---iV1I---------i(

ST"

ST,

STEP
TR 8 ST 7===: r~=::'--....----V1------i(

r- ~ TR In ST ')

~====~ :I-~:.:.:::-"<:--r---S-,y-S-~[S[T ;111
'---'---11-'-1TI:.:...;.~'';;;...0---V1 (

'ill)yl SYSCnl<

t-----V,·-I+1-E-A----LII-~-,:.../-"'----- -_-_-_-_-_-_-_-_-_-_-_--{-I.~:4 ~~~~~~~:
t-----v'-I'r(B F1Vf' " r,)-6 -I

I----I:'r STfR~!~IE (I~J-g---_I
DRAIN PlOW C TR Ii)

1-----'--;:1V1 c;l---'---I

ST\rvs OF SYSTEM
ST l ---..-~.~~.~~.~.-.--.... S\'SCHK

1-----''---11----11 t-----l t----ll-I---0---,

TRANSITION

ST J I 11- -lV!t~)-i!:-:"'__-I

ST' I I V(~l-'E-B---I

STIR
sn : l-1----------------lCJ---_I ACnON

S19 'I DC ~l-IN_'___I

ST 11 I I SYY:l-,:5_ET___I

Figure 1.5
Ladder diagram ofa typical batch process

Execution control
Execution control is another aspect of process control systems, which calls for more
sophisticated programming methodologies. To understand this, we have to first look the
sequence of operation of a PLC system. Refer figure 1.6 below.

An introduction to IEC standard 1131 part-3 on PLC programming 9

Input States
Read to PLC

\kmory

~~
Ladder Rung

~~

Execution~~~

!--Yf---{

~
HH

~~

~~

~~

~~

Output Values
\Vrinen from
PLC i'vlemory

Figure 1.6
PLC operation sequence

PLCs execute a program in a cyclic order. To begin with, all input values are read via
the I/O modules and the status stored in PLC memory. Next the ladder rungs are executed
starting from the top and proceeding downwards till all rungs are covered. The output
values are stored in the PLC memory as each rung is executed. Finally all the output
values held in the memory are written to the physical outputs in a single operation. The
time of executing the entire program thus depends on the length of the program and the
complexity of the logic. Generally, longer the program, higher is the time for each pass of
execution (scan cycle time). This makes the behavior of such a system non-deterministic.
That is, there is no guarantee that when there is a change of status of a paliicular input,
the actions to be taken as a result will be performed within a stipulated time. (Remember,
we are talking of milliseconds here).

While the delay may be an acceptable in many cases, there may be situations where a
non-detem1inistic behavior can cause problems. For example, in a process, a paliicular
condition may call for extremely fast sequence of conective actions without which
catastrophic failures may occur. To delay such conective action for a whole scan cycle
time (the maximum possible delay) may not be an acceptable option. If it is required that
the action is initiated within 100 milliseconds and the PLC has a scan rate of 1000
milliseconds, the objective is NOT going to be achieved. The only way this can be done
is to divide the program into different sections and anange the execution in such a way
that critical sections are scanned at faster intervals. This kind of control is generally
difficult to implement in the ladder diagram approach.

Similarly, implementing PID control functions in PLCs for processes requiring fast
control behavior will need more sophisticated programming approach. The non­
detem1inistic nature of the simple ladder diagram program can give rise to problems of
control and a change in the program due to, say the addition of a few rungs of interlock
conditions, may influence the way the system performs its control function.

Arithmetic operations
It is possible that certain logic steps in a control system may require arithmetic operations
to be performed. For example, in the control system described in the earlier section, step
no. 10 involves an addition of two set values to decide when the transition to the next step
should occur. Ladder diagram programming in most implementations can perfOlID such

2

PLC software architecture

This chapter outlines the software architecture proposed in part 3 oflEe-ll3l standard
and the salient concepts of the sofnvare model. The strengths of the software approach
adopted are also discussed in detail.

Objectives
On completing the study of this chapter, you willleam:

• The principal quality attributes of a software
• The software architecture proposed by the standard IEC-II3I Pmi 3
• Definitions of the lEC software architecture components and details of these

Component pmis
• Execution control
• Mapping software model to real life systems
• How applications and POUs ensure hierarchical approach
• Communication model as per IEC-II3I

2.1 Software quality attributes
Software used in an industrial control PLC is like any other computer application. Its

quality will depend on the following factors:

• Capability
• Availability
• Usability
• Adaptability

We will review these aspects in detail below.

Capability
The software should possess an adequate degree of responsiveness compatible with the
control application for which it is used. It should be able to schedule tasks in the manner

PLC software architecture 13

required by the control application without compromising system safety aspects. The
hardware that it runs on should be able to handle the program, variables used and data
required to perform the control functions without memory overflow.

Availability
Like any hardware system, software too should perform its functions with a high degree
of availability. It should be robust enough to continue operating without crashing and
with a high Mean Time Between Failures (MTBF) value. It should be easy to
troubleshoot in the event of a failure so that the Mean Time To Repair (MTTR) is low.
This calls for structured program architecture, which is easy to understand with well­
commented code. It should withstand intended and unintended actions by users without
malfunctioning and should be secure from external threats.

Usability
Any software application should be user-friendly and should have an easy learning curve
so that, users are able to acquire the necessary degree of familiarity to work with the
software quickly. The human interfaces to the system must be clear, unambiguous and
intuitive with graphical devices used for interaction.

Adaptability
Improvements during the life of the software must be easy to implement so that its
functionality can be extended and the life of the software prolonged to the extent possible
without major upgrades. The software should offer portability to another platform without
major code changes and should be easily reusable in the new environment. Any software
has a finite life and will need to be upgraded in tune with technology advancements at
some point in time. When this happens, it should be possible to upgrade it with little
effort and without any loss of functionality.

2.2 lEe software architecture
The standard IEC-1131-3 has been evolved keeping in view the attributes discussed in the
section above. Adopting the software model proposed in the standard thus helps to
develop software of good quality, which would benefit the software developers, software
maintenance personnel and the system users alike.

We will see in this section the model architecture proposed in the standard. The
developers of the IEC standard had the objective of resolving the differences in the
programming approach of the then existing PLC control systems offered by major
vendors. In addition, they have also attempted to foresee the impact that emerging
technologies and future control requirements will have on the PLC software and language
structures. The software architecture must be able to accommodate these future
requirements without major structural changes. The software model may seem to be
somewhat elaborate going by CUlTent hardware architecture but has to be looked at in the
context of possible future demands.

A program requires the following types of interfaces in order to be executed by a PLC:

• I/O interface
• System interface
• Communication interface

I/O (or Input /Output) interfaces are the PLC's connection to the real or physical world.
The inputs can be contacts from various external devices such as control switches, limit
switches, push buttons, contacts associated with instruments and so on. These are the

14 Industrial control programming as per IEC-1131-3

'digital' inputs. Other inputs can be from measuring instruments and will be some kind of
analog values such as 4-20 mA, O-lOV etc. These are the analog inputs to the PLC.
Digital outputs are usually contacts for driving relays, contactors etc. and analog outputs
will be 4-20mA or other signals that can be used as set points for devices to carryout
position control, speed control etc.

System interfaces refer to the system services required to ensure the execution of a PLC
program by the hardware. These are usually in the form of specific PLC hardware and
embedded finnware, which enable invoking of programs, initialising the programs and
executing them.

Communication interfaces facilitate exchange of data with other devices and PLCs as
well as operator stations and other output devices.

The basic software architecture proposed by the standard is shown in figure 2.1 below.

Configuration

Resource

Ira~kI
\
\

IT,~Sk l
, ', "

,-........J._....,', \
Program ',Progra\n

, \

~

Task

Program Program
, C*

B=B
I ~ I

I Global and Directly1 Represented Variables I
~

Access Paths

Communication pathS!

E;<ecution Control Path

+-+ or +-+ Variable Access Path

8 Function Block

o Variable

Figure 2.1
The lEe so(nvare architecture

2.3 Component parts of IEC Software architecture
As seen in the above diagram, the software model suggested in IEC-113l-3 contains a
number of elements arranged in a hierarchical order. We shall review these components
in the following paragraphs.

2.3.1 Configuration

Definition (1.3.17)
A language element corresponding to a programmable control system as defined in IEC­
1131-1.

2.3.2

2.3.3

2.3.4

PLe software architecture 15

At the top is the configuration, which can be equated with the software for a complete
PLC system. In a control system spanning across multiple machines, each with its own
PLC, with all of them interacting with each other, there will be multiple configurations,
with the software for each PLC considered as one configuration. These configurations
will communicate with each other through special variables or via defined access paths
using the communication function blocks specified in Part 5 of the IEC 1131 standard.

Resource

Definition (1.3.63)
A language element corresponding to 'signal processing function' and its 'man machine
intel:face' and sensor and actuator intel:facefimctions', [fany, as defined in IEC-1131-1.

Next in the hierarchy is the Resource. A configuration can have one or more resources.
A resource is the engine that suppOl1s and directs the execution of one or more programs.
In other words, a program can function only when it is loaded into a resource. A resource
can exist in any device and that includes a PLC. For example, a resource can also
function in a PC and can support a PLC program for simulation purpose. A resource
provides the interface between the different I/O devices, the Human-Machine Interface
(HMI) of the PLC and the PLC program.

Just as a configuration can be equated to a PLC, a resource can be considered as the
software counterpart of a processor within a PLC. A multi-processor PLC can thus have
multiple resources, each one of them associated with a given processor card. A resource
in a PLC is an independent component and will not be under the control of any other
resource. Thus it is possible that a PLC can st311 and execute a number of independent
programs simultaneously.

Task

Definition (1.3.75)
An execution control element providing for periodic or triggered execution ofa group of
associatedprogram organisation units.

We saw in the paragraph above that a resource executes multiple programs. It does so
using software elements called tasks. A task can invoke one or more programs or function
blocks to be executed at a certain periodicity or by triggering them when a set of
conditions is fulfilled. The programs or function blocks are executed once when
commanded to do so by the task.

Program

A program consists of a logical assembly of all programming elements and software
constructs necessary for the intended signal processing actions required for the control of
a machine or a process by a programmable control system. It contains instructions to be
executed by the PLC hardware in a predetetmined sequence. The instructions can be in
the form of function blocks interconnected together to fOlm a sequence of actions. As
discussed in the previous chapter, a program obtains or 'reads' inputs from the PLC's I/O
devices, uses these inputs while executing the instructions and stores or 'writes' the
results to the PLC's outputs. Programs are initiated and controlled by tasks. A program
has to be assigned to a specific task and the task must be configured to execute
periodically or triggered upon certain conditions being fulfilled.

16 Industrial control programming as per IEC-1131-3

2.4 Functions and function blocks

Definition of FUNCTION (1.3.28)
A Program Organizational Unit which, when executed, yields exactly one data element
(H!hich may be multi valued e.g., an array or structure) and whose invocation can be used
in textual languages as an operand in an expression.

Definition of FUNCTION BLOCK (1.3.29)
An instance ofFunction Block Type

Definition of FUNCTION BLOCK TYPE (1.3.30)
A programmable controller programming language element consisting:

• Definition of a data structure partitioned into input, output and internal
variables

• Set ofoperations to be pel:formed upon the elements ofa data structure when
an instance ofthe function block type is invoked

Function block is the most important concept of this standard, as this is the feature,
which makes a hierarchical program structure possible. As we saw in the previous
paragraph, a program consists of various function blocks joined together to foml a
sequence of activities. It is also possible for function blocks contained within a program
to be directly controlled by a task in which case their execution can take place
independent of the execution of the parent program. (Refer to figure 2.1.) Function blocks
help to organize a complex problem into simple steps that can be managed easily. The
program thus gets properly structured. The other main feature of a function block is that
certain common control functions with identical logical sequence can be defined under a
common function block type and instances of this function block type can be created and
used for a specific control requirement. What is normally refened to, as a function block
is actually a function block instance? For example, a function block type, which imitates
the action of a PID controller, can be instantiated for various PID control loops just by
changing the input and output designations and other control parameters.

A function block defines data as a set of inputs and outputs. The function block can
store the results of its operation in a particular location within the data structure. The
outputs can also be used to modify internal variables, which can be local or global. The
values of all these inputs and outputs are maintained as a variable of a given data
structure, unique to each function block instance. The inputs of the structure can be thus
derived from the outputs of other function blocks and in tum its output can be used as
inputs for other function blocks or in its own next evaluation cycle. This ability to
remember the outputs and use them again as inputs by itself or by other function blocks is
what makes them extremely versatile. By using global variables to share data,
communication between different programs in a configuration becomes possible. Also,
transfer of data between different configurations is enabled using designated variables.

Standard function block types have been specified in the IEC-113l-3 standard for
commonly used requirements such as R-S bistables, timers, real time clocks etc. But the
interesting feature is that a programmer can create new function blocks and these can be
based on other existing function blocks and other software elements.

Functions are different from function bocks. Though the software architecture shown
in Figure 2.1 does not specifically indicate this component, functions are a form of
program organisation unit defined by the standard. A function can have many inputs but
gives a single output by perfonning certain operations on or using the inputs.

PLC software architecture 17

For example, a mathematical function such as SIN () finds the value of say SIN (A)
where A is an input and gives the result of the calculation as an output value. An AND
function may have two or more logical inputs and will give an output after performing a
logical AND of the inputs. Its output will be TRUE if all the inputs are TRUE, else
FALSE.

We can note two things here. One is that, there is a single output, which is the result of
a manipulation of the one or more inputs to the function. The second is that there is no
storage mechanism such as a variable within the function and because of this, a given set
of inputs always results in the same value of output. In this respect, functions behave
differently from function blocks, which may give different outputs because of their ability
to use stored values of their earlier evaluations in their processing.

2.5 Local and global variables

Definition of global variable (1.3.34)
A variable whose scope is global.

Definition of global scope (1.3.33)
Scope of a declaration applying to all program organization units within a resource or
c07?figuration.

Definition of local scope (1.3.48)
The scope of a declaration or label applying onZv to the program organization unit in
which the declaration or label appears.

Variables can be declared within programs and function blocks as per the standard.
Local variables can be named within a configuration, program, function block or
function. A variable is local by default to the software element in which it is declared. But
if a variable is declared as global in a program, it can be accessed from within all the
software elements inside that program including nested function blocks. When global
variables are declared in a resource or configuration level, they will be accessible to all
the software elements within that resource or configuration. Global variables thus provide
a method of sharing data between programs or between elements of a program.

2.5.1 Directly represented variable

Definition of direct representation (1.3.23)
A means of representing a variable in a programmable controller program .fi'om which a
manufacturer specified correspondence to a physical or logical location may be
determined directly.

Directly represented variables are used to address directly memory locations within a
PLC. Input or output memory locations can be represented in the format:

% I W 75 (Input) or % Q 100 (Output).
These variables can only be declared and accessed within programs but not within

function blocks, as such use would make the function blocks non-generic. Even in
programs, use of many directly represented variables renders the program less portable as
the memory locations can change between applications. These variables provide yet
another way of exchanging information between different programs.

18 Industrial control programming as per IEC-1131-3

2.5.2

2.5.3

Access paths

Definition (1.3.2)
The association of a symbolic name with a variable for the purpose of open
communication.

As the definition implies, the main purpose of an access path is communication.
Transfening data and information between different IEC configurations is provided by
the use of designated named variables, which can be accessed by remote configurations.
These special variables which provide the access path for communication are declared
using the name format: VAR_ACCESS and will formally declare the interface that a
configuration presents to other remote configurations. The standard does not define the
physical aspect of communication, which can be the Ethernet or Fieldbus or any other
proprietary protocol. It just assumes that some means of communication is available.

Execution control

Configurations and resources control the execution of Program organisation units
contained in them. Stmiing of a configuration results in the following actions:

• Global variables are initialized
• Resources started
• Variables within the resource initialized
• Tasks enabled
• Program elements controlled by the task are executed.

Shutdown of a configuration results in:

• Stopping of all resources
• Tasks in these resources are disabled
• Programs and function blocks stop executing

2.6 Mapping software model to real life systems-Examples
Simple systems with a single processor meant for controlling one machine or a system
usually have one configuration, one resource and one program. However larger systems
having multiple processors may be represented by a single configuration. Each processor
may conespond to a single resource and may control more than one program. It is also
possible to have a distributed control system spread across several PLCs connected
through a high-speed communication network. In this case it is possible for each of these
PLC's assigned to resources, which in tum will be combined under different
configuration groups. These models are shown in figures 2.2 to 2.4.

Figure 2.2
Single processor PLC

PLC software architecture 19

Conflguratioll

Resource I Resource 2 Resource 3

Figure 2.3
Multi processor PLC

20 Industrial control programming as per IEC-1131-3

Figure 2.4
Multiple PLes connected using a network

As can be seen in Figure 2.3, three processors are paIi of a single configuration and
each of the processors represents one resource. Each resource contains two programs. The
table (2.1) below illustrates the arrangement.

Processor 1 I Processor 2 I Processor 3
Configuration

Resource 1 I Resource 2 I Resource 3
Programs lA and IB I Programs 2A and 2B I Programs 3A and 31B

Table 2.1
Multiple processors shared by a single COI?figuration

In the multi PLC configuration shown in Figure 2.4, five PLC's communicating over a
network form two configurations. Each configuration has multiple resources and each
resource multiple programs. Table 2.2 below shows the arrangement.

Processor 1 Processor 2 Processor 4 Processor 3 Processor 5
Configuration A Configuration B

Resource 1 Resource 2 Resource 3 Resource 4 Resource 5
Programs lA Programs 2A Programs 3A Programs 4A Programs 5A

and IB and 2B and 3B and4B and 5B

Table 2.2
Multiple processors shared by multiple cOlifzguratiol1s

2.7 Applications
An application is a solution for the control of a unit of plant. Though this is not formally
defined in the standard, is still an essential feature of the software of a large PLC system.
Figure 2.5 illustrates.

2.7.1

PLC software architecture 21

In this case applications A, Band Care pati of a single configuration and include
programs spanning across several resources. An application should contain at least one
program. An application should include controls that stati, manage and shutdown a
machine or plant unit and should connect to all the sensors and actuators associated with
the machinery or plant. It should perform all combinatory logical interlocking sequences
and control loops required for the operation of the machine/plant. In addition to these, it
should interact with the operator terminals and communicate with other remote devices.

Figure. 2.5
Multiple application environments

Program Organisation Unit (POU)

Definition of POU (1.3.61)
A ,fitnction, ,fitnction block or a program.
Note: This term may refer to either a type or instance.

A program organisation unit includes programs, function blocks or functions. We have
gone through the details of these elements of language earlier in the chapter. These
elements are the basis by which IEC-1l3l-3 languages provide reusability. A program
can be reused in the form of program instances. So can function blocks and functions.
Since the basic type is already properly validated, the instances can be ensured to be error
free. The only limitation is that these elements cannot be recursively used as in common
high level programming languages such as Pascal. In other words, a function block
cannot call the same block inside its code. This is so because the behaviour of recursive
programs, function blocks or functions cannot be easily verified or validated in real time
mode and can yield unpredictable results. Another feature is that instances of a program
or function block can be copied in several resources and used for controls that are similar
to each other and can be grouped under a common prototype. The table 2.3 below
illustrates this concept.

POD type Replicated as Remarks
Program Type Program instance Macro level reuse for a family (Conveyor line

control, Steam turbine control)
Function block Function block Coding of reusable control algorithms such as PID
type instance control, ramp etc.
Function type Function Used for mathematical or logical functions such as

SIN (), AND etc.

Table 2.3
POU elements and reusability

22 Industrial control programming as per IEC-1131-3

2.7.2

2.7.3

Hierarchical design

The design of POU structures using types and instances of program elements ensures that
it is possible to adopt both top down and bottom up approach and anive at a
hierarchically clear program. The top down approach decides the overall structure and
identifies repeatable module types. These modules are then developed and assembled in
the form of instances to make a complete application. Figure 2.6 illustrates this
hierarchical approach.

Program type A is the top of the hierarchy (not shown). The program instance Al of
program type A is what is actually stored in a resource (shown in the bottom left hand).
This contains an instance RI of function block type R. This function block type R
contains an instance Xl of function block X and so on. This function block type may use
one or more functions, which are the smallest program elements in this hierarchy (not
shown in the figure).

Usually a PLC system vendor provides a library of functions as well as function blocks
for commonly encountered control problems. Creation of custom function blocks using
these libraries or using basic code structures is also permitted in most implementations.

Function Block Type X
Definition

Function Block
Instance X 1 of Type X

Program Instance Ai of Program Type A

Figure 2.6
Hierarchical sojilvare decomposition

Communications

Ability of to communicate data between remote processors is the key to building large
control systems and IEC-1131-3 provides ample scope for such communication.
Generally, communication can be grouped under two categories, internal and external.
Internal communications can either be communication between program elements or
between different resources within a configuration. Internal communication takes place
using variables within a program as in Figure 2.7 (a) or using global variables within a
configuration as shown in Figure 2.7 (b).

External communications between configurations use communication function blocks
SEND and RCV as shown in Figure 2.8 (a) or access paths with special VAR_ACCESS
type of variables as shown in Figure 2.8 (b).

PLe software architecture 23

The function blocks used for extemal communication are defined in pali 5 of IEe-113I
standard.

Program ;\

FB I

FB X

aJ---------l b

Figure 2.7 (a)
Example o(internal communication (within a program)

Contlguration C

Program A

VAR_EXTERNAL

x: BOOL:
END VAR

FB 2

F'B Y

Program B

VAR EXTERNAL

:-:: BOOL:
END_VAR

Figure 2.7 (b)
Example o(internal communication (within a configuration)

Configuration C

Program A
send 1
SEND

Configuration D

Program B
revl
Rev

FB 1

FB X

a -

..... SD J-+t-+-----f-+--+-. RD 11n.. I'll ,
F'S Y

Figure 2.8 (a)
Example ofexternal communication usingfil11ction blocks

24 Industrial control programming as per IEC-1131-3

Contlgm,liioll C

PI

Program A

FB I

,---O_BX <l----,Z~
VAR_ACCESS
CSX: P1Z: REAL READ_ONLY:

I

'CSX--

Configuratioll D

Progranl B

TO FB2 FB2

'F~~, -1,FBY I
\tAR!

Communication Via Access Paths

Figure 2.8 (b)
Example ofexternal communication using Access Paths

2.8 Conclusion
IEC-113l-3 thus adopts a well-structured, hierarchical software architecture, which
conesponds to the hardware architectures commonly used. We saw examples of how real
life control software can be mapped to various hardware configurations. We also
discussed the various component parts of this architecture and how, using the concept of
program organisation units, it is possible to design complex systems by deploying top
down and bottom up approach. We also saw the manner in which this approach can
ensure software reuse and enor free design. The facilities for communication of data flow
within a configuration and between a set of configurations provided in IEC-113l-3 makes
the development of complex systems possible. The details of such communication were
also illustrated.

3

Common Elements in IEC-1131-3

This chapter outlines the common programming elements, which are used in all the
programming languages defined in IEC-1131-3 standard. Knowledge of these elements
and the syntax of their use is a must for anyone 1'vho wishes to develop control software
for PLC applications.

Objectives
On completing the study of this chapter, you wi11learn about:

• Character sets, identifiers, keywords and comments
• Various data types covered by IEC-1131-3 standard (elementary types and

derived types) and their initialization
• Variables and how to declare them in program constructs
• Types of Functions covered by the standard and their execution control
• Usage of function blocks, defining of function block types and declaring

function block instances
• Usage of programs, defining program types and declaring program instances
• Usage of resources
• Tasks and scheduling, task declaration and execution of function blocks and

programs controlled by a task
• Configuration definition

3.1 Common elements
IEC-1131-3 defines both textual languages and graphical languages. Structured Text
(ST) and Instruction List (IL) are the two textual languages. Graphical languages are
Function Block Diagram (FBD) and Ladder diagram (LD). Sequential Function charts
represent the total flow of a control system and can use any of the above languages
embedded in its transitions and action blocks. IEC-1131 provides several common
programming elements for constructing PLC control systems based on any of these
languages and defines their usage. For example, the variables and data types are common

26 Industrial control programming as per IEC-1131-3

to all the programming languages and will follow the same standard definitions
irrespective of whether they are to be used in ST, IL LD or FBD language. We willleam
about some of these common elements and the rules goveming their usage here.

We will first describe the basic rules goveming:

• Character set
• Identifiers
• Keywords and
• Comments

We will thereafter review in detail the Data types covered in the standard, the different
types of variables and how to declare and initialize them. We will then go through the
defining and declaration of program organisation units viz., functions, function blocks
and programs. Finally, we will leam about resources, tasks and configurations.
Complying with the guidelines contained in the standards is important in order to ensure
complete portability between systems.

3.1.1

3.1.2

3.1.3

Character set

IEC 1131-3 restricts usage of characters to those of the Basic Code Table of ISO 646.
This set contains digits, letters and other characters normally found in any PC keyboard.
Altematives are provided when the same key may be used for different characters in
different countries. For examples the veliical bar character 'I' is permitted to be replaced
by '!'. Use of special alphabet variants specific to a country are not permitted except
when allowed by the national extension of the standard. Language element names are
case insensitive. However when used in comments in the code or in printable strings the
characters are used with case sensitivity. Language keywords are case sensitive and
should always be in uppercase.

Identifiers

Identifiers are used for naming different language elements such as variables, new data
types, function blocks and programs.

The rules goveming the naming of identifiers are as follows:

• A name can contain letters, digits and the underline character '_'
• Lower case alphabets are permitted
• The first character shall not be a digit
• Two underline characters cannot occur together
• There should be no embedded space within a name
• The first six characters should be unique i.e., no two names should have an

identical string in the first six characters

Keywords

Keywords are special words used to define program constructs or the start/end of
particular software elements (example: FUNCTION, END_FUNCTION). Identifier
names should not preferably use keywords even though many compilers would
distinguish the two based on context. IEC 1131-3 has standard functions and function
blocks, which should be regarded as keywords and not be used as identifiers (e.g., RS,
SIN, TON etc.). The set of keywords as defined by the standard are listed in table C-2 of
Annex C of the standard.

3.1.4

Common elements in IEC-1131-3 27

Comments

As we have discussed earlier, comments in the code serve to explain the flow and purpose
of the code so that its understanding and maintenance become easier. Comments are
placed between the set (* and *). Instruction List language puts some restrictions on the
placement of comments. Otherwise, comments can be placed wherever a space can be
interposed. Nested comments are NOT permitted. Multiple lines of comments are
permitted.

3.2 Elementary data types
Modern PLC systems have to handle a wide variety of data. IEC-113l-3 standard
recognizes this need and provides for a comprehensive range of data types. Data types
can either be Elementary or Derived. Elementary data types are:

• Integer to be used for counters and identities
• Real (Floating point) for arithmetical calculations
• Time (duration) and Time & Date for timers and time triggered functions
• String for text inf01111ation processing
• Bit String for low level device operation
• Boolean for logic operation

Each elementary data type has various sub types defined in the standard. Also each data
type has a set of formats for defining literal (constant) values. We will briefly describe
these data types below.

3.2.1 Integer

Integer data type is generally used to denote parameters, which cannot assume a decimal
value such as counts and identities (whole numbers). Unsigned integer representation can
be used in situations where a negative value is not expected. Signed integers can assume
both positive and negative values. For the same number of bits used an unsigned integer
can cover larger range of values. The standard defines various types of integers (based on
whether signed or unsigned and the number of bits used) and the user can select a
particular type depending on the expected range of values likely to be encountered in a
given application. The table below lists the integer types covered in the standard.

lEe Data type Description Bits Range

SINT ShOli Integer 8 -128 to +127

INT Integer 16 -32768 to 32767

DINT Double Integer 32 _231 to 2 32 - 1

LINT Long Integer 64 _263 to 2 63 - 1

USINT Unsigned short integer 8 oto 255

UINT Unsigned integer 16 oto 2 16 - 1

UDINT Unsigned double integer 32 oto 2 32 - 1

ULINT Unsigned long integer 64 Oto2 64 -1

Figure 3.1
Integer types as per IEC-1131-3

28 Industrial control programming as per IEC-1131-3

Examples of use are as follows. For a counter where the count cannot exceed 100, SINT
will be suitable. Where large positive and negative values can be expected as in the case
of a position encoder, long integer of LINT type can be used.

3.2.2

3.2.3

Real or floating point

There are two types of Real variables as shown in the table in Figure 3.2 below.

lEe Data type Description Bits Range

REAL Real 32 + 10 ±38

LREAL Long Real 64 + 10 ± 308

Figure 3.2
Tvpes o(real data

The format of these data types shall be as defined by IEe 559. These data types are
useful in representing very small to very large numbers, which can take both positive and
negative values. They are typically used for analog values from transducers, tachometers
etc., for algorithms in closed loop controls and for analog outputs driving position
controls. REAL values have a precision of one pati in 2 23 and LREAL values, one part in
2 52. REAL literals are used for representing constant values using decimal notations or
exponential notation for using very large or small nos. A single underscore character can
sometimes be added for clarity as a separator between digits.

Examples are:
12.2345
+11 233.234
-2.43 E -25
0.534 e 22

Time or duration

This data type is used for representing time duration, examples being process control
timing and time delays used for generating error alarms. The data is stored using Days,
hours, minutes, seconds and milliseconds. The maximum length of duration and precision
are implementation dependent.

Time literals are used in Long form and Short forms. In both forms the following letters
are used:

d days
h hours
m minutes
s seconds
ms milli-seconds
Examples of short form are:
T#ld4h34m43s22ms
T#35rn23.5s
(Note the use of a decimal, which is permitted in the last field of the literal)
Long foml is similar to the above but gives improved readability.
Examples are:
TIME#ld 4h 34m 43s 22ms

- - - -

T#35m 23.5s

3.2.4

3.2.5

Common elements in IEC-1131-3 29

The use of underscore characters between the fields shown above ensures better
readability.

Date and time data

The date and time data type is very useful for recording the date and time of specified
events, for calculation of elapsed periods between specific events and for triggering
specific actions at a predetermined time and date. The date and time data can be anyone
of the following types as shown in the table in Figure 3.3.

IEC Data type Description Bits Usa2;e
DATE Calendar date Storing calendar dates
TIME OF DAY or Time of day As real time clock
TOD Implementation
DATE AND TIME Date and time of day dependent Storing date and time of

- -

orDT day

Figure 3.3
Types ofdate and time data

When using these data types as literals two forms viz., long and short are used as given
in the table in Figure 3.4.

IEC Data type Short Form Long Form
DATE D# DATE#
TIME OF DAY TOD# TIME OF DAY#
DATE AND TIME DT# DATE AND TIME#

Figure 3.4
Form ofdate and time data in literals

In date literals the format is Year, followed by month followed by date (yyyy-mm-dd)
as shown below.

D#2002-09-21 or
DATE#2002-09-2l both of which stand for 21 st of September 2002.
TIME_OF_DAY literals use the format hh:mm:ss using a 24 hour scale. Examples are:
TOD#13:10:22.23 or TIME OF DAY#13:10:22.23
Date and Time literals are a combination of the above and use the format yyyy-mm-dd-

hh:mm:ss.
Examples are
DT#2002-09-21-13:10:22.23 and
DATE AND TIME#2002-09-21-l3: 10:22.23- -

Which combine the values shown in the two data type examples above.

String

Strings are used for the purpose of storing textual information for batch identities,
operator displays and messages to other systems via communication interfaces. The
length of information that can be stored is implementation dependent. Booth printable and
non-printable characters can be used in a string. All string literals must be framed within
single quote sign'. Non-printable characters can be inserted by prefixing the hex value of

30 Industrial control programming as per IEC-1131-3

character (as two hex digits) by $ sign. Similarly commonly used control characters
should be preceded by $ sign when used within strings. Figure 3.5 illustrates such cases.

Code Interpretation
$$ Dollar sign
$' Single quote character
$L or $1 Line feed character
$N or $n New line character
$P or $p Form feed (new page)
$R or $r Carriage return
$T or $t Tab character

Figure 3.5
Control characters lvithin strings

3.2.6 Bit string

Bit string data types are provided for storing binary data which is commonly used for
exchange of status information with remote devices and also for low level bit operations
for interfacing with PLC hardware. Table in Figure 3.6 below shows the different bit
string data types.

IEC Data type Description Bits Range

BOOL Bit string of 1 bit 1 Logical state

BYTE Bit string 8 Binaty data

WORD Bit string 16 Binary data

DWORD Bit string 32 Binaty data

LWORD Bit string 64 Binary data

Figure 3.6
Bit string data types

BOOL data type is used for status data, which can be FALSE (0) or TRUE (1). FALSE
and TRUE are reserved keywords and cannot be used for other purposes in a program.
Data types of more than 1 bit are used to define the contents of multiple bit data.

3.3 Generic data type
Generic data types are used for variables in functions and function blocks where
overloaded I/O is supported. Overloaded I/O refers to the capability of a variable to be
used for different data types but which have similar propeliies. It should be noted that
only manufacturer-defined functions can be overloaded but this is not applicable to user­
defined functions. PLC manufacturer should list functions that support overloading and
ensure that all 110s of a overloaded function are of the same generic data type. Generic
data type will start with the prefix 'Any'. Figure 3.7 shows the hierarchy of elementary
data types and how they can be combined under different generic data types.

Common elements in IEC-1131-3 31
ANY

ANY F.'E,i\,L

~ LREf\,L

L REAL

,i\,NY_If\JTL Llt·.JT, DINT, II'H, ::m·.JT

UUf\IT, UDlt,rr, UINT, USINT

UlVO F~D, [lvVORD, VVO RD, BYTE, BOO L

STF.'II'··jO

Tlt','1 E OF DAY

3.3.1

3.4

3.4.1

TIME

Figure 3.7
Hierarchy ofdata types

Initial values

The standard defines the default initial values applicable to different data types. For
magnitude type of data and bit string type (refer Figure 3.7), the initial value is set to O.
For string data, it is null string. Date values take the initial value of 000 1-01-0 1. All these
initial values can be ovelTidden when a variable of a particular data type is declared.

Derived data types

Derived directly from elementary type

New data types can be defined using the above elementary data types. They are declared
as given in the example given below.

TYPE
VOLUME: LREAL;

END TYPE
The above statement declares a derived data type called volume, which corresponds to

elementary data type LREAL.

32 Industrial control programming as per IEC-1131-3

PRESSURE;
PRESSURE;
TIME;
BOOL;

3.4.2

3.4.3

3.4.4

Structured data type

This is a category of derived type where a composite data type can be defined using a
structure in which each field will correspond to one of the elementary data types. We saw
the example of such a data structure for a pressure sensor in chapter 1 (Figure 1.4).

This derived type (named PRESSURE_SENSOR) is defined as a combination of the
following four different parameters:

• The pressure value as currently available from the sensor
• A set value of pressure
• The time for which the pressure can exceed the set value
• An alarm output

This can be declared as follows.
TYPE PRESSURE SENSOR:

STRUCT
CURRENT PRESSURE
SET PRESSURE
SET TIME
ALARM

END_STRUCT;
END_TYPE;
Note the use of a derived data type called PRESSURE while declaring the new

structured data type PRESSURE_SENSOR. This derived type must earlier be declared
using an elementary data type.

Enumerated data type

It is possible that a particular variable may only take certain specific values, in which case
these values can be explicitly specified using an enumerated list. Let us say, a Selector
switch has two modes viz., auto and manual. The variable representing the status of the
selector switch can be defined as an enumerated type having the two states specified
above. The data type for this variable can be defined as follows.

TYPE
SWITCH_MODE: (AUTO, MANUAL);

END TYPE
The above statement means that the data type SWITCH_MODE can take either of the

values AUTO or MANUAL. It may be possible that these literals AUTO and MANUAL
may occur for other data types also. As such, while referring to the enumerated literal, it
should be prefixed with the enumerated data type followed by #, for e.g.,
SWITCH MODE#AUTO.

Sub range data types

Sometimes it may be necessary to restrict the range of values that a variable may be
assigned. Let us say the speed range of a motor can vary only between 600 RPM and
1000 RPM. The data type for the speed can be defined as:

TYPE
MOTOR SPEED UINT (600 .. 1000);

END TYPE

PRESSURE := 1.5;
PRESSURE := 3.0;
TIME:= T#10m;

BOOL :=0;

3.4.5

3.4.6

Common elements in IEC-1131-3 33

Necessary range checks must be introduced 111 the compiler to ensure that values
outside this range are not assigned.

Array data types

In many applications, it may be advantageous for a single variable to store different
values of a paIiicular type of parameter. For example, in a furnace it may be necessary to
measure temperature over an 8 hour period and store them all to a common variable. This
will require a data type, which should be a linear anay, which can be represented as
follows:

TYPE FURNACE TEMPERATURE :
ARRAY (1 .. 8) OF UINT;

END TYPE
Let us further assume that in the same furnace the measurement is done at 4 points on

the periphery and at 6 different heights and all these measurements have to be stored in
one multi element matrix, the data type can be defined as follows.

TYPE FURNACE TEMPERATURE MATRIX:
- -

ARRAY (1..4, 1..6) OF FURNACE _TEMPERATURE;
END TYPE
Note that this array data will hold the temperature recorded over the entire peripheral

surface of the furnace for 8 hours measured hourly. Also note that the first anay
FURNACE_TEMPERATURE has been declared using the elementary type UINT
(considering that the temperature values will always be positive and covered by the range
of this data type). The second array data type FURNACE_TEMPERATURE_MATRIX
has been declared using the data type FURNACE_TEMPERATURE, which is a single
dimensional an'ay defined earlier. The number of anay dimensions and the depth of
nesting (anays within arrays) is implementation dependent.

Default initial values of derived data type

All derived data types can be assigned initial default values, which will override the
default values of the conesponding elementary data type. These defaults are included in
the type definition. Note the example below.

TYPE PRESSURE: REAL := 1.0;
(*Default value defined as 1 bar*)
END TYPE
TYPE PRESSURE SENSOR:

STRUCT
CURRENT PRESSURE
SET PRESSURE
SET TIME
ALARM
END_STRUCT;

END_TYPE;
TYPE

SWITCH_MODE: (AUTO, MANUAL) :=AUTO;
(*Enumerated value default set as AUTO*)
END TYPE
Similarly array data types can also be given default initial values for each anay

element. When a structured data type is used in other derived data types, each such

34 Industrial control programming as per IEC-1131-3

derived type can have separate initialization values for individual elements of the
structure.

3.5 Variables
Variables are used to store values of various intermediate parameters in different program
organisation units. Variables can be used for inputs, outputs or for intemal values of
parameters used in the processing of the POU. Input, output and input/output variables
provide external interfaces between POUs or between a POU and the external
environment. (Recall the discussions under the section Communications in the previous
chapter). Global variables can be declared in programs, resources and configurations. A
variable that is declared as External in a POU can access global variables declared outside
the POD. In the case of function blocks, variables declared as extemal, can reference
global variables defined in a configuration, resource or program that contains the function
block.

Variables can be declared using the construct:
VAR

<declaration>
END VAR
The declaration will consist of the variable identifier followed by the data type of the

variable, which can be elementary or derived. Multiple variables can be declared in a
single line. For example:

X, Y, Z : REAL;
Sl, S2 : SINT;
PI, P2 : PRESSURE;
The above statements declare variables X, Y and Z which are real, S I and S2 which are

short integers and PI and P2 which are of derived data type PRESSURE.
Variables can be of the following types:

• Internal
• Input
• Output
• Input/output
• Global and External
• Temporary
• Directly represented

We will discuss the details of these types below.

: REAL;
: SINT;

3.5.1 Internal variable

These variables are local to a POU and are declared as follows.
VAR

X,Y,Z
Sl, S2

END VAR

: BaaL;
: REAL

3.5.2

3.5.3

3.5.4

Common elements in IEC-1131-3 35

Input variables

Input variables act as parameters to a POU such as programs, functions and function
blocks and the values for these variables are supplied from external sources. The
declaration of these variables is done as follows:

VAR INPUT
Switch1, Switch2
Max Value

END VAR

Output variables

Output variables act as output parameter to a POU which will be written to external
variables. The declaration of this type of variables is done as follows.

VAR OUTPUT
PUMPl, PUMP2 : BaaL;
Messagel : STRING (15);

END VAR

Input/output variables

Some variables can act both as inputs and outputs and are declared as follows.
TYPE

MODE
(READY,ON, OFF);

END TYPE
VAR IN OUT

STATUS: MODE
END VAR
The above instruction defines an enumerated data type MODE and a variable STATUS

is declared as an Input /output variable of the data type MODE. Depending on input value
of STATUS as obtained from preceding function blocks and other conditions (say,
POSITION), the value of STATUS can be changed and the new value can be written to
the variable for use by other external POUs. It may be more efficient to pass large multi
element variables as input/output variables since in that case only the address of the
variable is passed rather than the entire data string. The above example can be represented
graphically in Figure 3.8.

INSTANCE X

FUNCTION BLOCK X

POSITrON -----rt---I

Value of Variable
Position Passed

STATUS······ STATUS f------

/0.

L Input! Output
Variable Values Modifjed
Within the Function
Block

Figure 3.8
Graphical representation ofthe use ofinput/output variable

36 Industrial control programming as per IEC-1131-3

3.5.5

3.5.6

3.5.7

Global variable and external variable

The purpose of these variables is to facilitate communication between POUs within a
configuration. Variables declared as global within a configuration are accessible to all
POUs within the configuration. A POU, which has to access a global variable, has to
declare it as an External variable within the POD. For example, let us say that a set point
of a controller has to be communicated a number of POUs in a control system.

The declaration at the configuration level will be:
VAR GLOBAL

SetPointl : REAL;
END VAR
The POUs within the configuration which are required to use the global variable

SetPointl will have to declare it as an external variable as follows.
VAR EXTERNAL

SetPointl : REAL;
END VAR
Any change in the value of the variable will be read by all POUs that declare it as an

external variable.

Temporary variables

Variables that are used for intermediate values computed within a POU and have no need
for access outside the POU can be declared as temporary variable. The values of
temporary variables are stored in a separate area of memory, which is cleared as soon as
the POU execution is completed.

VAR INPUT
PI, P2, P3 : REAL;

END VAR
VAR OUTPUT

AVI: REAL;
END VAR
VAR TEMP

Totall : REAL;
END VAR
Totall : = PI +P2+P3
AVI : = Totall/3
In the above example, the variable Totall is not needed to be retained outside the POU

as it is used as an intermediate value in a calculation and hence is declared as a temporary
variable. AVI which is the average of the input variables PI, P2 and P3 is declared as an
output variable being the result of the POD.

Directly represented variable

These are variables, which refer directly to a memory location of the PLC without using
an identifier. These variables start with a % character followed by an alphabetic code of
one or two letters. The first letter defines whether the memory location is used for input,
output or for internal memory. Codes used are:

I Input
Q Output
M Internal memory
The second letter shows the type of memory organisation (bits, bytes or word).

3.5.8

3.5.9

Common elements in IEC-1131-3 37

X Bit
B Byte (8 bits)
W Word (16 bits)
D Double word (32 bits)
L Long word (64 bits)
The last pali contains a numeral representing the memory location. Sometimes this field

may have a set of numerals separated by periods to represent the physical location in a
system. A few examples are given below.

%IX122 Input memory bit address 122
%IB 100 Input memory byte 100
%IW20.1.13 Input memory word at rack 20, module 1, channel 13
%QLI00 Output memory Long word at address 100
%Q140 Output memory Bit at 140
(Absence of second character denotes by default a Bit)

Access variables

As we saw in the previous chapter, PLC systems can communicate over a network using
access paths through access variables. Such variables can be input or output variables in a
program, global variables or directly represented variables. They can also be specified
with READ ONLY or READ WRITE attributes to restrict remote devices.

- -

The syntax of usage is as follows.
VAR ACCESS

Motor RPM : RPM : REAL READ ONLY
ENDVAR
The above means that RPM is the global parameter through which the value of

Motor_RPM can be accessed for 'read-only' purpose by extemal devices.

Variable attributes

The different types of variables enumerated above can be used with specific attributes.
They are:

RETAIN
CONSTANT
AT

RETAIN
When a variable has this attribute, the values are retained in PLC memory in the event of
a power failure. (In some implementations, all variables are retained by default.

The attribute is defined as shown below:
VAR IN RETAIN

SpeedSetting : DINT;
END VAR

CONSTANT
These are variables which have been given specific values that cannot change.

For example
VAR IN CONSTANT

SpeedRamp : REAL:= 18.5; (*RPM per Sec *)
END VAR

PRESSURE := 1.5;
PRESSURE := 3.0;
TIME := T#10m;

BOOL :=0;

38 Industrial control programming as per IEC-1131-3

AT
Global variables and variables declared in a Program can be given the attribute AT to
assign specific memory locations for these variables. Unless a variable has this attribute,
it will be automatically assigned to a memory location by the compiler or programming
station. An example is:

VAR
Digital_Values AT %QX100: ARRAY (1..10) OF BOOL;

END VAR

3.6 Variable initialization
We have seen earlier how a data type can be assigned a default initial value. A variable of
a particular data type will be initialized with the default value for the applicable data type.
This can however be modified and a new initial value assigned to it while declaring the
variable.

Note:
This is not applicable to external variables, as they will automatically assume the value

of the conesponding global variable).
An example is:
VAR

MAX_Pressure: REAL:2.5 (*Initialised at 2.5 ATG*)
END VAR
We have seen how a derived data type PRESSURE_SENSOR can be declared with

default initial values. (See italicized text below).
TYPE PRESSURE SENSOR:

STRUCT
CURRENT PRESSURE
SET PRESSURE
SET TIME
ALARM

END_STRUCT;
END_TYPE;
A variable Pressure1of data type PRESSURE_SENSOR can be initialised thus.
VAR INPUT

Pressure1:PRESSURE SENSOR
(CURRENT PRESSURE=:2.3,SET PRESSURE:=2.8,

- -

SET_TIME:= T#8m, ALARM :=0);
END VAR

3.7 Functions
Functions are a type of Program Organisation Unit. They are small reusable programs
that form the fundamental building blocks of complex industrial control programs. A PLC
implementation contains several standard functions for performing various mathematical,
string and Boolean operations. In addition, user defined functions can also be created for
repetitive tasks. Functions can be nested within one another. A function contains one or
more inputs and returns a single output as a result of the evaluation defined within the
function. It is possible to represent a function in any programming language defined in
the standard. For example:

Common elements in IEC-1131-3 39

SINE_OF_ANGLE:= SIN (ANGLE) (*ANGLE in Radians*)
Represents the trigonometric sine function which returns the value of input value

ANGLE of an angle in radians using Structured Text language. The same can also be
represented using function block diagram shown on Figure 3.9.

SIN

ANy__REAL----j
ANGLE SIN OF ANGLE t-----ANY REAL

Figure 3.9
FED for SINjill1ctiol1

Declaring a new function IS done usmg the construct FUNCTION
END FUNCTION as follows.

FUNCTION SUM OF 3:REAL
VAR INPUT

A,B,C:REAL
END VAR
SUM OF 3 :=A+B+C

END FUNCTION
This function adds three real number inputs and stores the result to SUM_OF_3.
There are functions which are capable of handling overloaded data types such as SQRT.

The suppOli to overloaded data types however depends on the implementation. This
avoids the need to define multiple functions one for each data type for performing
essentially the same operation. Many functions can handle values directly without the
need for parameters to pass values.

Functions are available to convert data types, for example:
From Integer to REAL, From String to Integer type or Real type and so on.
It should be however remembered that such conversion may result in illegal values

which are not appropriate to the data type to which the input is being convelied. It is
therefore necessary to ensure that the run time enor detection and reporting is done.
Various types of standard functions defined in the standard are reproduced in the tables
below.

NAME Description DATA Type
ABS Absolute value ANY NUM
SQRT Square root ANY REAL
LN Natural Logarithm ANY REAL
LOG Common Logarithm ANY REAL
EXP Exponential ANY REAL
SIN Sine of an angle in radian measure ANY REAL
COS Cosine of an angle in radian mcasurc ANY REAL
TAN Tangent of an angle in radian measure ANY REAL
ASIN Arc sine of a number result in radians ANY REAL
ACOS Arc Cosine of a number result in radians ANY REAL
ATAN Arc Tangent of a number result in radians ANY REAL

Figure 3.10
Numeric jill1ctiol1s

40 Industrial control programming as per IEC-1131-3

d ddt tfl tNttltthoe 1a ese unc IOns suppor over oa e aa vpes.
NAME Description ST DATA Type
ADD Addition Il +12+.. + ANY NUM
MUL MultiplicationI 1*12* * ANY NUM

Figure 3.11
Extensible arithmeticfill1ctions

pon 1e reqUirements 0 t e program.
NAME Description ST DATA Type

SUB Subtraction 11-12 - ANY NUM-

DIV Division Il/I2 / ANY NUM

MOD Modulus Il MOD 12 MOD ANY INT

EXPT Exponential Il 12 ** ANY REAL-

MOVE Assigns the value I I to the result - ANY

In the above examples of extensible functions, the number of inputs can vary depending
u t1 f h

Figure 3.12
Non-extensible arithmetic fill1ctions

h hN ote t at t ese unctIOns accept 011ly two mputs.
NAME Description DATA Tyne
SHL Shift bit string n positions to left, fill zero on right. ANY BIT
SHR Shift bit string n positions to right, fill zero on left. ANY BIT
ROR Shift bit strings n positions to right, rotate ANY BIT
ROL Shift bit strings n positions to left, rotate bits ANY BIT

Figure 3.13
Bit string,fill1ctions

NAME Description Symbol in Ladder diagram DATA Type
and FBD

AND Result ofT I & 12 & 13 .. & ANY BIT

OR Result ofTl OR 12 OR.. >=1 ANY BIT

XOR Il XOR 12 XOR .. =2k+1 ANY BIT

NOT Result of NOT Il BOOL

Figure 3.14
Boolean bit stringfill1ctions

NAME Description DATA Type
SEL Selection: If G is TRUE then result:=Il ELSE it is 12 ANY
MAX Maximum: Result :=Maximum of all inputs ANY
MIN Minimum: Result :=Minimum of all inputs ANY
LIMIT Gives the result as input I subject to limits set by the maximum ANY

and minimum values MN and MX
MUX Gives the result as the value of input selected by the a given ANY

input K

Figure 3.15
Selection,fill1ctions

3.7.1

Common elements in IEC-1131-3 41

NAME Description Symbol

GT TRUE if input I1 is greater than 12 >

GE TRUE if input II is greater than or equal to 12 >=

EQ TRUE if input I1 is equal to 12 =

LE TRUE if input I1 is less than or equal to 12 <=

LT TRUE if input I I is less than 12 <

NE TRUE if input II is NOT equal to 12 <>

Figure 3.16
Comparison .Iimctions

NAME Description Symbol
SEL Selection of one of two enumerated values depending on a

boolean condition being TRUE
MUX To select one of a set of enumerated values based on the value

of an integer selector
EQ Test the equality of two inputs of the same data type =

NE Test inequality of two inputs <>

Figure 3.17
Functions/or enumerated data type

Only a few of the standard functions as shown above can use enumerated data types
since a variable of such data type does not have an intrinsic value which can be used in a
numerical or string operation.

Execution control

The execution of a function used in a Ladder diagram or Function Block diagram can be
controlled using a special input called EN. The function will execute only when EN
becomes TRUE. When EN is false, the function remains inactive and does not evaluate
its input and does not assign any value to its output. When a function executes
successfully based on the value of EN, it sets the value of a special output ENO as TRUE.
If the function encounters an enor and is not able to complete its evaluation, the output
ENO remains FALSE. This output can be connected to the input EN of another function.
Sequential control of a set of functions can thus be controlled using the combination of
EN and ENO and a chain of such functions can be ananged to produce an output only
when all the functions execute in sequence without any enol'.

Figure 3.18 illustrates the above principle using a ladder-cum-function block diagram
example.

42 Industrial control programming as per IEC-1131-3

START

~ 11---------1

VALUE]----1

VALUE 2 -1

!VfUI.
EN ENO

DONE

SQRT L __-{'~
f----j EN ENO,-) I

----r RESULT

~(Vi\LUEI"VALUE2)

3.7.2

PRODUCT
VAU iF I 2nd VALUE2

Figure 3.18
Execlition control offimctions

Function blocks

Function Block (FB) is the next type of POD. It has a pre-defined set of input variables
and output variables associated with it. Each function block has an underlying algorithm,
which enables evaluation of all it inputs and produces a set of output values. Unlike
functions, function blocks can also have temporary variables, which store intermediate
values during its evaluation. These are not accessible from outside the Function Block.
The execution of a function block can also depend on its own output in a previous
instance of execution. Thus the function block has data persistence since the previous
output vales can be remembered and reused. Also, the same set of inputs need not
necessarily produce the same set of outputs because of data persistency.

Function Block type defines the data structure and the algorithm. Function block
instance is a set of values held in this data structure. The algorithm modifies the data held
in the structure when the FB instance executes. As we saw earlier, the input and output
variables of a FB instance can be accessed externally but not the internal variables. An
FB instance has to be invoked when explicitly requested as a part of a graphical network
of connected blocks in a POU (known as the FBD) or by a call using Instruction List or
Structured Text language.

FB instances are declared using variable definitions within a POD. Normally variable
declarations are local by default, which means that FB instances can only be seen within
the POU in which they exist. FB instances when declared as global can be accessed by
any POU within the resource or configuration in which the global instance is declared. A
function block instance can be passed as an input to another POU. The CUlTent input and
output values of a FB instance can be accessed in textual language using the construct:

<Function Block instance> . <variable name>
FB types are declared using the definition:
FUNCTION BLOCK

<Variable declarations>
<Algorithm>

END FUNCTION BLOCK
- -

The algorithm or the body of the FB can be written in any language type (textual and
graphical) supported by IEC-1131-3 standard.

Function block instances are declared just as variables. A function block instance is
only a data structure which is processed as per algorithm defined in the function block
type. For example:

Common elements in IEC-1131-3 43

VAR
COUNTERl:COUNTER

END VAR
COUNTER is a function block already defined. COUNTERI which is an instance of

this function block is declared as a variable. Other possible ways are
VAR GLOBAL

COUNTERl:COUNTER
END VAR
The above is a construct in which an instance of a global function block COUNTER is

declared.
VAR INPUT

COUNTERl:COUNTER
END VAR
Here an instance of function block COUNTER is used as input to another POU.
The example below shows the method of creating a custom function block COUNTER

and how it is instantiated.
(*Declaring an enumerated data type for use in the FB COUNTER*)
TYPE

POSITION: (RESET, ADD, HOLD)
END TYPE

FUNCTION BLOCK COUNTER
(Define and initialise input, output*)
VAR INPUT

POSN : POSITION := RESET;
END VAR
VAR OUTPUT

OUT: INT : = 0;
END VAR
(*Define procedure*)
IF POSN = RESET THEN

OUT:= 0
ELSIF POSN = ADD THEN

OUT :=OUT+ 1
END IF

END FUNCTION BLOCK
Having defined the function block COUNTER, we can now proceed to declare an

instance COUNTER1 of this function block in a Program COUNTADD as follows.
PROGRAM COUNTADD
VAR INPUT

INPUT_POSN: POSITION;
END VAR
VAR OUTPUT

Maxadd: INT;
END VAR
VAR

COUNTERl:COUNTER
END VAR
(*In the above statements, input and output variables have *)

44 Industrial control programming as per IEC-1131-3

(*been declared and an instance of COUNTER has also been *)
(*declared. Now we can proceed to invoke instance COUNTERI *)
COUNTER1 (POSN := INPUT POSN);
Maxadd :=COUNTERI . OUT;
END PROGRAM

3.8 Programs
Programs are the largest type of POUs and are declared within a resource. In behaviour,
Programs are similar to function blocks and are reusable using program instances. The
main difference between Programs and Function blocks is that in programs, all types of
variable such as directly represented variables, Global Variables and Access variables can
be declared. Programs can contain instances of function blocks, which can be executed by
different tasks. Program instances cannot be used within themselves (nested). As stated
earlier, programs can only be declared within a resource. Program types are defined as
follows.

PROGRAM <Name of Program type>
<Variable declarations>
<Algorithm, also called as program body>

END PROGRAM
Programs are usually complex software constructs and are meant to control a complete

system or equipment such as a boiler or a steam turbine. Program types are generic in
nature and are applicable to a particular equipment type. Instances of a program type can
be created and used to control a number of similar equipment, say a number of identical
boiler units.

Instances of a program are declared thus:
PROGRAM BOILER 1 : BOILER
Where BOILER is a Program type whose instance is BOILER_I. Let us say that the

program type covers input variables KCAL, SET_PR and SET_TEMP and output
variable FUEL_RATE, these can be passed in the instance BOILER_l as global variables
for inputs and to directly represented output locations.

In this case, the statement will be:
PROGRAM BOILER_I: BOILER (KCAL:= AI, SET_PR:= A2,
SET_TEMP = A3, FUEL_RATE => %QW33);

3.9 Resource
A Resource generally corresponds to a device that can execute IEC Programs and is
defined within a configuration using an identifier and the processor on which the resource
will be loaded. A resource contains Global variable declarations, Access variables that
permit remote access to named variables, External variable declarations, Program
declarations and task definitions.

3.10 Tasks
One of the main requirements in a large process control system is the ability to execute
different patis of the control program at different rates depending on the process
requirements. For example, a system may contain components with large inertia in its
parameters, say a boiler furnace whose temperature can only vary slowly in view of the
large thermal time constant and as a result, the function block which controls the furnace
temperature may execute once in say 10 seconds. On the other hand, a turbine will have a

3.10.1

3.10.2

Common elements in IEC-1131-3 45

very fast speed response and the over speed monitoring function block will have to
execute at a much faster rate. An interlocking logic of a fast moving process line may
require even faster execution.

Tasks achieve this type of control by triggering programs and function blocks at
specified time periods. The standard provides for allocation of specific programs and
function blocks to specific tasks, which execute at predefined intervals and priority rates
(0 for the highest priority and 1,2, 3 etc. in decreasing order). When multiple tasks are
declared within a resource, they need to be scheduled. The scheduler decides the exact
moment that a task has to execute. Since two tasks cannot run conculTently, some form of
arbitration is needed to resolve the sequence in which two waiting tasks have to be taken
up. There are two ways in which a PLC schedules tasks; by non-preemptive scheduling
and by preemptive scheduling. We will briefly discuss them below.

Non-preemptive scheduling

The rules in this type of processing are:

• Tasks once stmied are allowed to be completed before the next in line is
taken up. (Completion means that all programs and function blocks assigned
to the task are executed in sequence once)

• If two tasks are waiting to be executed, the one with the higher priority is
taken up first

• If two waiting tasks have equal priority, the one waiting for longer time is
taken up first

• A task once completed is taken up for execution only on completion of the
assigned task interval

The advantage is that designing a system based on non-preemptive method is more
straightforward and easier. The disadvantage is that, it is difficult to predict the exact time
interval with which a task will be executed and also, a desired execution sequence of
tasks cannot be ensured. This results in unpredictable system behavior and is therefore
non-deterministic in nature.

Preemptive scheduling

When a system with deterministic behavior is desirable, preemptive scheduling is to be
used. This will ensure consistent timing between events. In this method, when a higher
priority task is to be executed as per the specified interval, it is immediately scheduled
and the cUlTently active lower priority task is suspended and will be continued after the
higher priority task terminates.

Figure 3.19 illustrates the distinction between the two methods of scheduling.
Tasks have to be declared as under:
TASK INTERLOCK (INTERVAL := t#50ms, PRIORITY := 1);
TASK LOGRECORD (SINGLE :=LOG EVENT, PRIORITY :=2);
As can be seen the declaration starts with TASK followed by an identifier. The

characteristics of the task are specified within the parentheses and consist of the
following.

INTERVAL with time value indicates that the task has to execute with the periodicity
defined by INTERVAL value.

46 Industrial control programming as per IEC-1131-3

NON·PH.EEMPTTVF SCUEDULINC,

~ T~t~k X< Priority {~, Interval fOUnt;;;

Figure 3.19A
Task scheduling- Non-preemptive approach

Jon ! 50 2CW 250 JOn 350 400 450 500

0> Inlennl I{}Onls

550 6Un 650 "JOO

3.10.3

• fm;k Z. Friority 2. InitTva] 300Ub

Figure 3.19B
Task scheduling- Pre-emptive approach

Alternatively, a task can be specified as SINGLE and assigned to a boolean variable.
This indicates that the task will be executed ONCE only on the rising edge of the variable
(when its value changes from 0 to 1).

Next is the PRIORITY which will specify the order of priority assigned to the task. As
we saw in the earlier paragraphs, this value determines the sequence in which tasks are
scheduled when more than one task are to be executed.

Task assignment

Programs and Function blocks are assigned to a task using the keyword WITH. It is not
necessary to assign all programs and FB instances to a task. An FB instance not assigned
to a task is executed in the same task as the program which contains the FB instance.
Programs that are not assigned to a task execute continually in the background at the
lowest priority level.

3.10.4

3.11

Common elements in IEC-1131-3 47

In order to ensure predictable outputs during execution of Programs and FB instances,
IEC-1131-3 defines a set of rules, which are as follows:

• If more than one input value of FB named A are obtained from outputs of FB
named B, all these outputs will be produced by the same execution ofB

• When a number of FBs are assigned to the same task X and all of them
obtain their inputs from the outputs of another FB named A assigned to a
different task Y, all these out values of FB A will be produced by the same
execution of task Y

The way these conditions are to be achieved is not mentioned in the standard. However,
it can be inferred from the rules that:

• A temporary buffer will have to be used to store the value of outputs of FBs
as they are generated during a task

• When the task is completed the buffer values are copied to the output
locations in a single unintenupted copy operation

Configuration

A configuration defines the software of a complete PLC. A configuration includes at least
one and usually several, resources. A resource in turn defines several tasks and programs
to be executed by these tasks. Global variables common to all resources are specified in
the configuration. Access variables to be used for communication with other
configurations are also specified at the configuration level. Global variables are also
declared at resource level and are accessible to all the programs within the resource.

The configuration is introduced using the following software construct,
CONFIGURAION <Ident(fier>
GLOBAL VARIABLE Declaration
ACCESS VARIABLE Declaration
RESOURCE Declaration
< Global variables within resource>
<Task definitions>
<Programs>
END CONFIGURATION
Variables used within a resource are identified hierarchically thus:
<Resource Identifier>.<Program Identifier>.<Variable name>

Summary
In this chapter, we had an over view of different data types and variables. We also learnt
about the different types of POUs such as functions, function blocks and Programs. We
reviewed the basic functions defined in the standard and how these are used to build a
hierarchically arranged software structure. We also learned about resources and tasks and
how tasks achieve a sequential execution of programs and function blocks using
preemptive or non-preemptive scheduling approach. We saw how an entire PLCs
software is organised within a configuration.

Most of the examples given in this chapter used the structured text method of
programming. However, it is possible to represent them using the other languages such as
Instruction List, Function Block Diagram, Ladder diagram and Sequential function charts,
the last three being graphical languages. We will next go on to the details of each of these
languages in the coming chapters.

4

Structured text

This chapter contains information on the programming language called Structured Text,
which is one ofthe two textual languages defined in the standard IEC-1131-3.

Objectives
On completing the study of this chapter, you willleam about:

• The basics of Structured Text (ST) language
• Assigning values to variables using ST
• Creating expressions
• Use of operators
• Function/Function block calls using ST language
• Conditional and iteration statements

4.1 Introduction
Structured Text (abbreviated as ST) is a high level textual language similar to PASCAL.
The similarity is superficial only as ST is primarily aimed at solving control problems in
real time. Most of the examples about data type declarations, variable declarations and
other constructs we saw in the last chapter were written using ST and the readers will
therefore be somewhat familiar with the syntax and style of using ST. We had also
discussed about how the programs are written with indenting to improve readability and
comments to make the code understandable. The same conventions will be used in this
chapter too.

In the strict sense, the syntax used for the above declarations does not fom1 pati of the
ST language as defined in IEC-1131-3. The standard defines ST as a language that
consists of statements that can be used to assign values to variables using various types of
arithmetic and Boolean operators. We will go through the various constructs of ST
language in this chapter.

Structured text 49

4.2 Statements used for assignments
The general syntax of assignment statements takes the form:

A:=B
A is a variable to which a value is assigned using B which can be an expression or a

literal constant or another variable. The value obtained by evaluation of B is assigned to
the variable A by this statement and replaces the previous value of A. Needless to say the
data type of A should be the same as that ofB.

Look at the following examples.
Speed: = 12.5;
This statement assigns a literal constant value of 12.5 to a variable Speed. It is assumed

that the variable Speed has been declared as a REAL data type variable in some preceding
part of the POD.

Countadd := Countadd + 1;
The above statement assigns a value to an Integer variable Countadd, which is higher

than its previous value by 1.
Pressure [4] := Force/Area;
This statement replaces the 4th term of the anay variable Pressure by the value

evaluated by the expression Force/Area where Force and Area are two other variables
having some predetermined values.

A:= SIN (Angle)
This is an example of the use of an arithmetic function (a sine function) for assigning a

value to variable named A.
The statement
Pressure 1 : = Pressure
Causes the value of an anay variable Pressure to be assigned to another anay variable

Pressure_1 of the same data type. When assignments involve multi element variables as
cited in the example above, all elements should be assigned before one or more of the
elements are accessed by other operations.

4.3 Expressions
Expressions are pati of statements where the values of one or several variables are
manipulated using operators of arithmetic or Boolean types to produce a single value.
This value is then assigned to another variable, which should be of the same data type as
the result of the evaluation. An expression is placed on the right hand side of an
assignment statement. The PLC implementation will return an enor if the data type of the
result of the evaluation of an expression does not match that of the variable to which the
value is assigned.

The table in Figure 4.1 below lists the operators as defined in the standard. This list is in
the inverse order of precedence (from highest to lowest) using which an expression will
be evaluated.

OPERATOR DETAIL
(oo 00) Expression within parentheses
Function (oo 00) Parameter list of a function, function evaluation
** Raising to a power
- Negative of
NOT Boolean complement

* Multiplication
/ Division
MOD Modulus

50 Industrial control programming as per IEC-1131-3

OPERATOR DETAIL
+ Addition
- Subtraction
< > <= => Comparison" ,
= Equality
<> Inequality
AND,& Logical (boolean) AND
XOR Boolean Exclusive OR
OR Boolean OR

Figure 4.1
Operators defined in IEC-1131-1

4.4 Evaluating an expression

(*(A+B)/2.0*)

(*A + B/2.0*)

(*SQRT (A+B)*)
(*A + B/2.0 +SQRT 16.0*)
(* 17.0-25.0/C*)

16.0
4.0
17.0

An expression is evaluated using the order of precedence as shown above. Parts of
expressions whose operators have higher precedence are evaluated first. In case operators
in two parts have equal precedence, they are evaluated proceeding from left to right.

Consider for example, the expression:
X := A+ B/2.0 + SQRT (A+B) - 25.0/C
With the values of A=IO.O, B=6.0 and C=5.0
The evaluation is done in this order:
B/2.0 3.0
25.0/C 5.0
A + 3.0 13.0
A+B
SQRT (16.0)
13.0 +4.0
17.0-5.0 = 12.0
Thus X = 12.0
Adding a parenthesis to the above expression will change the result. Consider this:
X := (A+ B)/2.0 + (SQRT (A+B) - 25.0)/C
N ow the expression will be evaluated in this order:
A+B 16.0
16.0/2 .0 8.0
A+B 16.0
SQRT (A+B) 4.0
4.0-25.0 -21.0 (*SQRT (A+B) - 25.0*)
-21.0/C -4.2
8.0 + (-4.2) 3.8
X is assigned the value 3.8
This example illustrates how the evaluation is affected by the change in precedence

obtained by introducing a set of parentheses.
In the case of Boolean expressions, similar rules of precedence apply. However, a

Boolean expression is evaluated only up to a point that is needed to determine the value.
Consider
X := A AND B OR C
If the value of A is FALSE, the expression is straightaway evaluated as FALSE as the

evaluation of the lower precedence part B OR C will not affect the final result anyway.

Structured text 51

4.5 Statements
Statements are software instructions for various purposes such as calling function blocks,
iterative processing, conditional evaluation etc. These will be discussed in the following
paragraphs.

4.5.1 Function block calls

A function block instance can be invoked in a program by calling the name of the FB
instance and assigning values to each input parameter. On being thus invoked, the
function block instance will execute its code using the input parameter values specified as
a part of the calling statement and update the variables associated with the FB instance
outputs. If parameter values are not supplied for one or more of the inputs, the values of
the previous invocation will be used. If the FB instance is being invoked for the first time,
the default values given while defining the function block type will be used. Consider the
following example shown in Figure 4.2.

INSTANCE NAME 'IALVE~_I

TYPE NA?\'-fEVALVE

Pres:mre

Set Point

Figure 4.2
Example ofafill1ctiol1 block

Valve_1 is an instance of the function block type Valve shown in the above figure. The
statement declares the instance:

VAR
Valve_1 : Valve;

END VAR
The initial invocation of the instance is done by the statement:
Valve_1 (Pump_status:=Pump1,Pressure:=P1 ,Set_Point :=10.0);
A subsequent invocation can be:
Valve_1 (Pump_status := Pump2,Pressure :=P2);
In this case the value of Set Point declared earlier IS retained from the previOUS

invocation.
The function block instance output can be assigned to other variables thus:
Valve1_Command:= Valve_l.Open;
The value of Valve1_Command is the value of the output Open when the function

block instance Valve_1 was last executed. Alternatively, the inputs of function block
instance can be obtained directly from input memory locations and the output stored
directly to variables as shown:

52 Industrial control programming as per IEC-1131-3

Valve_l (Pump_status - IX80, Pressure :=IW100, Set Point :=10.0,
Open:=Valve1_Command);

4.6 Conditional statements
Structured Text Language provides statements that decide a particular course of action
depending on a set of conditions. We will see different types of such conditional
statements in the following paragraphs,

4.6.1 IF...THEN ... ELSE

The general format of this statement is as follows:
IF <Condition> THEN
<Statement>
ELSE

<Statement>
ENDIF;
The statement in the FB example Valve_1 in Figure 4-2 may typically be as follows.
IF Pump_Status AND (Pressure => Set_Point) THEN

Open :=TRUE;
ELSE

Open :=FALSE;
ENDIF;
If the conditional statement following IF is fulfilled then the value of variable Open will

be set to TRUE. Otherwise it is set to FALSE.
These statements can be nested within each other to form more complex conditions.

These will have the genera fOlm
IF <Condition 1> THEN

<Statement1>
IF <Condition 2> THEN

<Statement 2>
ELSE

<Statement 3>
ENDIF

ELSE
<Statement 4>

ENDIF;
In the above construct, Statement 1 is executed if Condition 1 is fulfilled. After

executing Statement 1, Condition 2 is checked and if true, Statement 2 is executed,
otherwise, Statement 3 is executed. If Condition 1 is not fulfilled, then Statement 4 is
only executed.

There is also the ELSIF construct, which operates thus.
IF <Condition 1> THEN
<Statement1>
ELSIF <Condition 2> THEN
<Statement 2>
ELSIF <Condition 3> THEN
<Statement 3>
ELSE

<Statement 4>
ENDIF;

Structured text 53

Statement 1 is executed if condition 1 is fulfilled.
Statement 2 is executed if condition 2 is fulfilled.
Statement 3 is executed if condition 3 is fulfilled.
If none of the above conditions are fulfilled then Statement 4 is executed. It is assumed

that conditions I, 2 and 3 are mutually exclusive.

4.6.2 CASE statement

o·,
FALSE;

o·,
FALSE;

100;
200;
300;
TRUE;

100;
200;
300;

TRUE;

CASE is another type of conditional statement where certain actions are calTied out
depending on the value of an integer variable. For example:

CASE RPM_Setting OF
1: RPM
2: RPM-
3: RPM
Speed_Switch
ELSE

RPM
Speed_Switch

END_CASE;
CASE statement can also be used with enumerated variables. An example is shown

below.
TYPE

Setting: (SLOW, MEDIUM, FAST);
END TYPE
VAR

RPM_Setting: Setting;
END VAR
CASE RPM_Setting OF
SLOW: RPM
MEDIUM: RPM
FAST: RPM
Speed_Switch
ELSE

RPM
Speed_Switch
END_CASE;

4.7 Iteration statements
Iteration statements cause the execution of a set of statements repeatedly based on the
value of a particular integer variable used as a counter to decide as to how many times the
statements will be repeated. It is also possible to do the iteration based on a Boolean logic
being fulfilled. Care must be taken to ensure that the execution does not cause an endless
loop. These statements considerably increase the execution time of programs/function
blocks. We will discuss below the various constructs used for iteration.

4.7.1 FOR ... DO

This construct causes an iteration to be performed based on the value of a integer variable
of type INT, SINT or DINT. The syntax of FOR DO iteration construct is as follows.

FOR < Counter Variable initialization>

54 Industrial control programming as per IEC-1131-3

TO <Final value of the variable>
BY <Increment to be applied> DO
<Statements to be executed>

END_FOR;
In this statement BY can be omitted, in which case the increment will be assumed to be

1. The iteration will be terminated once the value of the counter variable reaches the final
value. (Since the check will be made prior to executing the statements, they will not be
executed in the step when the counter value has gone beyond its final value).

Consider the following example:
ForK :=1 TO 11 BY2 DO

ALARM[K] := TRUE;
END_FOR;
This statement will store logical to positions 1,3,5,7,9 and 11 of the array variable

ALARM.
Note
It must be ensured that the value of the integer variable K is not modified in the

statements inside the loop as it may give rise to unpredictable behavior.

4.7.2

4.7.3

4.7.4

WHILE ... DO

This construct will cause a set of statements to be repeated while a particular boolean
expression is TRUE. Since the check is done before the statements are executed, the
execution goes out of the loop once the expression becomes FALSE. The syntax of the
construct is as follows:

WHILE <Boolean Expression> DO
<Statements>

END_WHILE;
An example of this can be:
J:=I;
WHILE]<=100 & WORDS(J) <> 'KEY" DO

]:=1+2;
END_WHILE;

REPEAT ... UNTIL

This is similar to the WHILE ... DO construct with the difference being that the check is
made after the statements are executed. The syntax is:

REPEAT
<Statements>

UNTIL <Boolean Expression>
END_REPEAT;

EXIT

It may sometimes become necessary to tenninate the execution of an iteration routine on
the occurrence of a certain event without completing the full sequence of the iteration. In
such cases the EXIT statement is used to break out of the loop. It can only be used within
an iteration, for obvious reasons.

See this example:
WHILE Volume Tank 1 <=Set Tank Volume DO

Valve_l := OPEN;

4.7.5

Structured text 55

IF ALARM [1] THEN
VALVE 1:= CLOSED
EXIT;

ENDIF;
END_WHILE;
When the tank fluid volume is less than the set value, valve no. 1 is kept open. At the

same time, it is ensured that a certain alarm condition represented by the array position 1
of the variable ALARM is not TRUE. If it becomes TRUE, then valve 1 is closed and the
iteration terminates.

RETURN

RETURN statement is similar to EXIT but is used inside functions and function blocks
only. It causes the execution of the function block or function to cease based on the
condition given in an expression being fulfilled and will continue the next part of the
code. Consider this example.

FUNCTION BLOCK Tank Fill
- -

TYPE
Valve_Status: (OPEN, CLOSED);

END TYPE
VARINPUT

Volume_tank, Set_Tank_Volume: REAL;
Alarm: BOOL;

END VAR
VAR OUTPUT

Valve: Valve_Status := CLOSED;
Msg : STRING;

END VAR
WHILE Volume Tank <=Set Tank Volume DO- -

Valve := OPEN;
IF ALARM THEN

VALVE := CLOSED;
Msg := 'Motor Overload Operated';
EXIT;

ENDIF;
END_WHILE;

END FUNCTION_BLOCK;
In this example, function block Tank_Fill executes to fill a tank till the liquid volume

reaches a preset value. However, if an alann condition as indicated by the status of the
Boolean variable ALARM becomes TRUE, it closes the filling valve and stops execution
of the function block. It gives a message to alert the operator of an alarm condition in the
system.

4.8 Implementation dependence
While IEC-1131-3 does not provide any limitations to ST language, it allows
implementations to impose certain limits on some of the language features such as length
of expression, length of statements, number of CASE selections etc. This is to ensure that
the compiler is able to handle the code correctly and also to be certain that the target PLC
capabilities are not exceeded.

56 Industrial control programming as per IEC-1131-3

4.9 Summary

• Structured Text (abbreviated as ST) is a high level textual language similar
to PASCAL

• ST uses a strong data typing and so avoids errors due to type mismatch
• It is possible to represent complex process logic conditions using various

features of the language
• Variables are declared and used to denote process conditions and to perform

the required process operations
• Operators are defined in the language for arithmetical and boolean

operations as well as for comparison
• Programs, Function blocks and functions can be written using Structured

Text language
• Programs can use Function blocks and Functions by using the calls provided

in the language
• Syntax of statements includes features such as conditional and iterative

execution

5

Function block diagram

This chapter contains information on the graphical programming language Function
Block Diagram (FBD) described in IEC-1131 part 3. Representation of control systems
using fimction block diagram is explained using examples and rules for evaluation of
FBD networks are also illustrated.

Objectives
On completing the study of this chapter, you will learn:

• The methodology of Function Block Diagram (FBD) method of
programming industrial control systems

• Representation of signal flow between FBD elements
• Feedback paths
• Execution control method adopted
• Evaluation ofFBD networks

5.1 Introduction
Function Block Diagram (FBD) is the second of the five programming languages covered
in IEC-1131-3 viz., Structured Text, Function Block Diagram, Ladder Diagram,
Instruction List and Sequential Function Chmi. This is the first Graphical Language
covered by the standard.

5.2 Basics
FBD is a graphical representation of an Industrial programmed control system and adopts
a set of symbols and conventions defined in IEC-1131-3. It represents a control system in
telms of signal flow between processing elements similar to the methodology adopted for
signal flow in electronic circuits. By using interconnected graphical blocks, it expresses
the behaviour of functions, function blocks and a composite program. An FBD can also
be used within a Sequential Function Chart.

58 Industrial control programming as per IEC-1131-3

The standard accepts both semi-graphic and full-graphic modes of representations.
Semi graphical mode uses normal characters such as - and I to be used for depicting
graphical objects. Full graphic representation uses graphical symbols to represent
program objects and is prefened by most vendors. (Figure 5.1 show some of the basic
representations used both in semi graphic and full graphic modes).

The standard does not define the details of a full graphic system to a fine degree but
leaves it to the implementation of the vendor. For example, the standard does not specify
the format of line intersections, junctions and crossovers in full graphic implementation.
These can be decided based on the propeliies of the graphic system and additional
features such as angled/rounded corner of the FBD blocks, color/shaded boxes etc. can be
used if the system penl1its them. .

IFULL GRA1'HiC I

Horizontal and
Vertical Signal Flow Lines

interconnection of
Horizontal and
Vertical Signal Flows

1
··············1··············

I

I 1.....+ + .
I I

Signal Flow Corners

I
..... j

.....:..... ~

L .

f .. ···· ..

Blocks
With
Connectors

, ,
.. ·.. ·1 r······

I f· .. ···
....... I

I.. J

Figure 5.1
COl11l11on~v used graphic representation

5.3 Methodology
As we saw earlier, the Function Block Diagram language is used to express:

• The behaviour of a control program made up of functions and function
blocks using a set of interconnected blocks

• The behaviour of steps, actions and transitions in sequential function charts
• The flow of signals between processing elements

Function block diagram 59

An FBD network is similar in character to an electrical circuit diagram, which uses
interconnecting lines between components to represent flow of signals. Typically, an
FBD network is used to depict control loops and logic and is prefened by programmers
who are familiar with electrical circuit diagrams.

FBD uses certain graphical conventions. For example:

• A function block is a rectangular block with inputs entering from the left and
outputs exiting from the right

• The type name of the function block is always shown within the block
• The name of the function block instance is always shown above the block
• The formal names of function block inputs and outputs are shown within the

block at the appropriate input and output points

(Note: In some implementations, input and output parameters are denoted using their
'pin' numbers and use other means such as a pull down menu, to show the full names)

Figure 5.2 shows a typical FBD network for a tank control program. TankControl is the
name of the function block type (shown within the block) and the name of the instance is
TankControll. It receives inputs Weight, FullWeight and EmptyWeight besides a
Command input from a thumb-wheel switch, represented by function block ThumbSwitch
and instance Switchl. The outputs of the program are the values FILL, EMPTY and
STIR.

The input Weight is itself derived from other function blocks shown in the diagram as
instances Weigher land Weigher2 of the FB type Weigher. These compute a value using
functions ADD and DIV, which represent the input Weight of the TankControll FB. Note
here that this signal has been given a name AVE_WEIGHT and shown temlinating in a>.
This indicates a cross diagram connector used mainly to improve the readability of the
program but has no other significance. The program behavior is in no way affected by the
use of this representation. Also note the way the input signal Loaded Weight has been
drawn. This is an example of a crossover representation of signal flow.

STIR

EMPTY

FILL

TankControl1

TankControl
FiliValue

Command

Weigher
Offset Weigh

ThumbSwitc
Input Pasi

>---=========F=:::-lWeight EmptyValue

'----iFuIIWeight StirSpeed
2.5-----jEmptyWeight

LOADED_WT-------,

32_HS_1234

>AVE_WEIGHT

2.0-----------......J

Figure 5.2
A typical FED showing a tank control program

60 Industrial control programming as per IEC-1131-3

It is also possible to have direct or literal constants (such as the input EmptyWeight to
FB instance TankControll having a fixed value of 2.5) as inputs to functions and function
blocks.

5.4 Signal flow
As we discussed in the section on methodology, an FBD network is a representation
based on signal flow between different program components.

Signals are considered to flow:

• From outputs of functions or function blocks
• To Inputs of other functions or function blocks

Outputs of function blocks are updated as a result of function block evaluations and
thus changes of signal status are propagated from left to right across the FBD.

It is sometimes required to inveli (or negate) the status of Boolean signals that is a
TRUE signal has to be made as FALSE or vice versa when they flow from one function
block to another. This is represented by a small circle at the input point in case it is a
negated input; and at the output point in the case of a negated output. Figure 5.3 shows
this feature.

Switch I

X3

Test!

Vi\. 12 --_.._ _........ l __J/

Purnp 1

Figure 5.3
Negated boolean signals in an FED

This representations is not supported in some implementations which use a NOT
function to represent negation. Figure. 5.4 show such representation of the FBD network
illustrated in Figure. 5.3. These two FBD networks are functionally the same.

TeS11

I'ump I

Pump tV10tflT

Status NOl 1'1

Figure 5.4
Negated boolean signals in an FED represented by NOTfzll1ction

Function block diagram 61

5.5 Feedback path
The standard allows signal feedback, which is a special case of signal flow. In the
preceding examples, we saw the signals proceeding from left to right that is the output of
a function block fOilllS the input to another function block to the right. Feedback is a case
when the output of a function block forms the input of a preceding function block (i.e.,
one to the left in the FBD network).

In figure 5.5, which illustrates a feedback path where the output 'Level' from FB Loadl
is fed back to FB Loop 1 as the input ProcessValue. This representation is called explicit
feedback path.

A feedback path can be Implicit in which case a connector will be used to link the
output of a block on the right side of the FBD network to the input of a block on the left­
hand side of the diagram.

A feedback path implies that a value within the feedback path is retained after the FBD
network is evaluated and used as the starting value for the next evaluation. The system
behaviour will however depend on the order in which the blocks are evaluated. In the
example shown, if Loop 1 is evaluated before Load lthen input ProcessValue will be set to
the value of Loadl.Level as obtained in the previous evaluation. But if Loadl is evaluated
before Loopl then the input FlowRate will be set to the value of Loopl.Output as
retained from the previous evaluation. This means that different implementations may
evaluate the same FBD network differently depending on the order of evaluation. In order
to overcome this problem, the standard stipulates that an implementation may provide a
facility to define explicitly the order of evaluation of the function blocks in an FBD. The
exact method of defining this order is however left to the implementation design.

Loop I

Output

Load 1

Flow Rate

Eno!"

)dain ('rmt!",,!

Process '/nlac

SdPnintlUGA}

()RDER --------+----'

O. i5 ----------------i
IHGll ERROR

Figure 5.5
Example ofexplicit feedback path

5.6 Network layout
It is important to arrange the Function Block Diagram Networks in such a way that signal
flow can be traced easily. The blocks should be placed so that signal path crossovers are
avoided and no unnecessary direction changes are required in the signal path. The
standard does not impose any specific limits on the size or complexity of a network.

62 Industrial control programming as per IEC-1131-3

However, it pem1its an implementation to limit the number of function block type
specifications and the number of instances of a function block within one configuration.
This will limit the size and complexity of the FBD networks that a particular
implementation can support.

5.7 Function execution control
The execution control of functions in an FBD network depends, by default, on the
position of the block. For example, in the FBD network shown in Figure. 5-5, the
function >= is evaluated after the function block Loop 1. This type of control is called an
implicit execution control. The control of the functions can however be made explicit by
using the Function Enable input EN. This input EN is a Boolean variable. A function will
be evaluated only if the input EN is TRUE. While the value of EN remains FALSE, the
function will not be evaluated and its output will not be generated.

Similarly, the function output ENG is a Boolean variable which changes state from
FALSE to TRUE when the function has been evaluated. By using a combination of EN
input and ENG output, it is possible to trigger certain values to be generated when
specific conditions are met. Figure 5.6 illustrates an example.

add_Acid
pH_High-, I

EN ENG
100.0----1 11---1-------- stirRate

ADD

EN ENG
speed-------------1
offset:-------------L J

Figure. 5.6
Example ofexplicit jill1ction execution control

speedGK
pumpSpeed

In this example, as long as either of the inputs add_Acid or pH_High is false, the input
EN to the Assignment function ' : = 'and ADD function are FALSE and these functions
are not evaluated. When both these inputs add_Acid and pH_High are TRUE, the EN
input to the Assignment function becomes TRUE. This function moves the value 100.0 to
the output variable stirRate. When this operation is complete it sets the value of ENG as
TRUE, which in tum causes the function ADD to be evaluated.

There are two issues to be noted. The standard does not clearly state about the use of
the output value of a function whose EN input is FALSE. The other point is that a
function in which the evaluation results in an intemal etTor such as an overflow, will not
set the output ENG.

5.8 Jumps and labels
In an FBD network, it is possible to transfer control from one part of a network to another
using a 'jump' facility. For this purpose, a section of an FBD network can be represented
by a 'label'. By assigning a Boolean value to a label identifier, control can be transferred

Function block diagram 63

to the part of the network associated with that pmiicular label. A double alTOW, followed
by the label identifier, represents these Boolean signals. See figure. 5.7 below.

GasLevel

0.15

0.02

>=

<

GAS_ALARM

ENABLE ----;

MX12 ----;

AND

SIREN

Figure 5.7
Example oftransfer ofcontralusing jump 'facility

In this example, when the value of the input GasLevel is equal to or greater than the
value 0.15, the comparator function >= is evaluated and sets the boolean output signal of
the Label Identifier Gas Alarm TRUE. This causes the control to be transferred to the
section of the FBD network identified by the label Gas_Alarm.

It is to be noted that the standard is not clear on what happens to the rest of the network
after a jump has been executed. One way is to complete the evaluation of all the linked
blocks and then execute the jump. Another possibility is to stop evaluation and transfer
control to the pmi of the FBD represented by the Label identifier. Because of this
ambiguity, the IEC guidelines for using the standard 1131-3 recommends that jumps
should not be used within an FBD network. For situations where such transfer of control
is essential, it is recommended that Sequential Function Chmis (the last of the five IEC
1131-3 languages) be used for programming.

5.9 Network evaluation rules
The sequence of evaluation of function blocks is implementation-specific, since the
standard does not define any order for evaluation of the functions. Most implementations
follow an evaluation sequence from left to right. Some implementations may do it stmiing
from top and proceeding downwards.

However, in the interest of ensuring consistency of the data transfened between
functions and function blocks, the following rules should be adopted:

• No element in a network shall be evaluated unless the states of all inputs
have been evaluated. This means that before proceeding to evaluate the
functions and function blocks in an FBD network, all input values corning
from other elements must be available

• The evaluation of a network element shall not be complete until the states of
all its outputs have been evaluated. In other words, the outputs of a function
block cannot be considered as available until all its outputs have been
evaluated

64 Industrial control programming as per IEC-1131-3

• The evaluation of a network is not complete until the outputs of all its
elements have been evaluated. That is to say, that all outputs of functions
and function blocks should be updated before the evaluation of an FBD
network can be taken to be complete

• When data are transferred from one FBD network to another, all the
elements coming from the first network should be produced by the same
network evaluation. The evaluation of the second network shall not start till
all the values from the first network are available. This rule is of particular
interest in a network where parts of a network run under the control of
different tasks at different scan cycle timings

5.10 Summary
Function Block Diagram expresses control behaviour of an industrial control system
using a network of software blocks with signals transferred between them. It is similar in
concept to an electrical circuit diagram, where interconnections between blocks represent
signal flow. It is ideal for use in a wide range of situations including closed loop control
and Boolean logic.

While the standard includes jump instructions for transfer of control, the ambiguities
inherent in the standard make such use inadvisable. FBD networks are better suited to
express continuous circuit behaviour and recourse should be taken to Sequential Function
Charts when there is a need for sequencing. For ensuring proper execution of the program
and COlTect control functions, the basic rules for network evaluation should be followed.

6

Ladder diagrams

This chapter contains information on the graphical programming language Ladder
Diagram (LD) described in lEe-1131 part 3. Representation of control systems using
ladder diagram is explained using examples and rules for evaluation ofLD networks are
also illustrated.

Objectives
On completing the study of this chapter, you will learn:

• The basic concept of Ladder Diagram based programming
• Graphical symbols applicable to Ladder diagrams
• Boolean Expressions using Ladder Diagrams
• Integrating Functions and Function Blocks within Ladder Diagrams
• Feedback paths
• Use of Jumps and labels in Ladder Diagrams
• Network evaluation lUles
• POliability of LD programs to other languages

6.1 Introduction
Ladder Diagram is the second graphical language for programming industrial control
systems described in IEC-1131-3. Ladder diagrams are derived from electrical circuit
diagrams, which have been conventionally used to represent relay logic operations. Many
of the symbols and terminology have also been adopted from the circuit diagrams. In
other words, Ladder Diagrams are graphical representations of Boolean expressions, but
they can also include other information normally not possible with Boolean expressions.

Ladder diagrams can be used to define the behaviour of:

• Functions
• Function Blocks
• Programs
• Transitions in Sequential Function Chmis

66 Industrial control programming as per IEC-1131-3

6.2 Basic concept
Figure 6.1 show a typical example of ladder diagram. In this diagram, DrainClose,
DoorClose etc. are Boolean variables represented as contacts. PumpOff is a variable
whose state is decided by the variables DrainClose, DoorClose and Manual and is
represented as a coil.

Drain CJose Door Close Pump OtT

Power Flow
•

'~ __Contact

Left Power Rajl Right Power Rail

1------1 f------j 1----.---(

COil/

Figure 6.1
Example ofa ladder diagram

As can be seen from this example, a ladder diagram has two vertical power rails, one on
the left and another on the right side of the diagram. The left vertical rail canies the
power to the coil (notionally) through the contacts. The contacts are arranged along
horizontal 'rungs' and the power flows through these rungs to energise the coil, which is
on the right hand side of the logic diagram, when the logic condition represented by the
contacts is TRUE (AND logic). Altemative paths can be present with other contacts in
them (in parallel), which can be used to build OR logic. In the above example Drain
Close and Door Close represent an AND logic. Contact Manual which gives an
altemative path is part of the OR logic. PumpOff will become TRUE when DrainClose
AND DoorClose are both true OR Manual is true. In Structured Text language the
following expression would describe this logic.

Pump Off := (Drain Close AND Door Close) OR Manual;
A contact can be considered as providing a 'read only' state of the variable represented

by a coil since it cannot change the state of the variable itself. On the other hand, the coil
can be considered as a 'write only' access to the same variable. The network that is
associated with the logic of a coil is called as a 'ladder rung'.

The standard pelmits the right side power rail not being shown and is therefore omitted
in some implementations. Also note that the names of the variables are shown above the
respective symbols.

6.3 Graphical symbols used in ladder diagram
As in the case of Function Block Diagrams, the standard permits the use of semi-graphic
and full graphic representations in an implementation. Since the full graphic display
depends on features and capabilities specific to the hardware used in the implementation,
these are not defined in the standard in minute detail.

The standard defines various types of contacts in Figure 6.2. The first column describes
contact behavior, the second the semi graphic symbol and the last column full graphic
symbol.

Ladder diagrams 67

Normally Open Contact

Contact where power flow

---1~occurs from left to right ----11---when the associated variable
is 1

Normally Closed Contact

Contact where power flow

V1occurs from left to right ----111---when the associated variable
is 0

Positive transition sensing
Contact

Contact where power flow
occurs from left to right for

---1p~one ladder diagram ---IPI---
evaluation when the
associated variable changes
from 0 to 1

Negative transition sensing
Contact

Contact where power flow ---INI--- -----1N~occurs from left to right for
one ladder diagram
evaluation when the
associated variable changes
from 1 to 0

Figure. 6.2
Representation ofcontacts in a ladder diagram

The contact symbols shown in the above diagram include contacts, which detect normal
and inverse states, as well as rising and falling states of power flow. The latter group
causes the associated coil to be set for one evaluation of the Ladder Diagram.

68 Industrial control programming as per IEC-1131-3

Coil
The Coil is set to the state
according to the power ()
flow coming from the left - -- --
hand link. If power flow is ON,
the coil state is set Oi\!.

Negated Coil
The negated coil is set to the
opposite state to the power (j)-
flow coming from the lett hand - -- --
link. If the power flow is ON,
the coil Slate is set OFF

SETCoi!
This coi1 is set on the ON state
when there is power flow ()
coming trom the left hand link. --- S --
The c;il remains set until it
is RESET

Figure. 6.3
Representation ofcoils in a ladder diagram

--(S)--

Symbol for coils and special types of coils are shown in figures 6.3, 6.4 and 6.5.
The coil symbols SET and RESET allow a variable to be latched in ON condition by

SET signal and cleared by the RESET signal. Figure 6.5 shows representation of special
types of coils.

The Retentive type coils shown in the above diagram are useful in representing
variables, which should be held in a particular state in the event of a PLC power failure
and subsequent restoration. This may be applicable to position of interlocks, plant
operation modes etc., which should remain in the conect state, unchanged when the PLC
is powered up after a power failure. (This is similar in action to stay-put selector switches
used in conventional control desks/panels).

Positive and negative transition coils detect the change of power flow and change the
state of the associated variable for one evaluation of the ladder diagram.

.RESETCoil
This coil is reset to tile OFF
state when there is power (R)
flow coming from the left - - - --
hand link. The coil remains
OFF until ir is RESET

Retentive mel1101'Y coil
The same behaviour as the
normal coil, expect that the - - -(rv'l)- __
state of the associated
variable is retained on P1.,C
power fail.

SET retentive memory coil
The same behaviour as the SET
coi I except that the state of the __ {Si'v1} __
associated variable is retained
on PLC power fail

Figure. 6.4
Representation o.fSpecial coils in a ladder diagram

-(!vI)--

Ladder diagrams 69

RESET n~tentive memory Coil
The same behaviour as the
RESET coil except that the <)-
state of the associated - - RlvI _.
variable is retained on PLC
powerfaiJ.

Positive transition-sensing coil
If the pmver flow on the lef'l
hand link changes hom OFF ()-
to ON. the variable associated - - - p --
with the coil is set ON for one
1adder rung evaluati on.

Negative transition-sensing coil
If the power flow on the left hand
link changes from ON to OFF. the __ <N)- __
variable associated with the coil .
is set ON for one ladder rung
evaluation

Figure 6.5
Representation ofmore special coil types in a ladder diagram

--(r)--

--(N)-

6.4 Boolean expressions using ladder diagrams
As seen in the previous section, the contacts in combination with a coil ananged in a
ladder mng can be used to represent various combinational logic states. Figure. 6.6
represents AND logic of inputs AI, A2 and A3. When all these are TRUE, the variable
Xl represented by the coil is set TRUE.

Figure 6.6
Representation ofAND logic in a ladder diagram

The above diagram is equivalent to the following expreSSIOn ill a Stmctured Text
program.

Xl := PI AND P2 AND P3
Alternative parallel paths joined by veliical connectors are used to represent OR logic

as shown in Figure 6.7.
In the above figure the variable Xl conesponds to the following Stmctured Text

expression.
Xl := (PI OR RI AND P2 AND P3) OR (Sl AND S2)
Thus various combinatory logic conditions can be represented using the symbols given

in the figures 6.2 to 6.5.

70 Industrial control programming as per IEC-1131-3

Sl S:2

H 1---------'

Figure. 6.7
Representation ofcombined AND OR logic in a ladder diagram

6.5 Integrating functions and function blocks within ladder
diagrams

It is possible to include functions as well as function blocks within Ladder Diagram
networks provided celiain basic conditions are fulfilled. These are:

• The Functions/Function Blocks should have Boolean inputs and output
• Inputs can be directly driven from ladder rungs
• Outputs can drive coils

An example is shown in Figure 6.8.

f-------j FORWi\.RD

2500 - MAX

BAfClJCNT- CYCLES

Figure. 6.8
Function block embedded within a ladder diagram

SPEED '-- SPEED B

In this example, SWITCH_A and SWITCH_B represent contacts of a Pushbutton for
stmiing and stopping a motor. These are Boolean inputs to the Function Block
MOTOR_B. Output MOTOR is a Boolean variable which is used to set the variable
MTR_B depending on the status of variable INHIB_2.

It may be noted that the Function Blocks represented within a Ladder diagram can have
other non-Boolean inputs and outputs as well, as shown in the example. Value 2500.0 is a
constant value assigned to input MAX. Similarly the function block has an input
CYCLES whose value is from variable BATCHCNT.

Two other aspects need mention. The standard stipulates that there should be at least
one Boolean input in a Function Block, which is to be connected to the left-hand power
rail. Secondly, the technical report on the application of the standard provides for explicit

Ladder diagrams 71

evaluation of functions and function blocks using EN input and ENO output. (Figure 6.9
shows an example of the latter).

COOL
TEMP A

TFMPB
TEMP C --L --'

TEST "fAX i GT DONF,

PI------j EN ENO f-------il EN ENO f----{

I

8750 ----'

Figure 6.9
Use ofEN and ENG parameters in afill1ctiol1 block embedded within a ladder diagram

In figure 6.9, there are two functions. Function MAX evaluates the maximum value of
three variables TEMPA, TEMPB and TEMPC. Function GT (Greater Than) evaluates
whether the input received from MAX function is greater than 875. If TRUE, it sets the
variable COOL to ON state. The above operation is controlled using the variable TEST,
which drives the enabling (or control) input to function MAX. TEST is a positive
transition contact and causes power to flow to MAX for one evaluation. When the
evaluation is done the output ENO of MAX is set TRUE which sets input EN of function
GT and enables its evaluation. The output DONE of GT indicates that the function GT
has been evaluated.

6.6 Feedback paths
Ladder diagrams can incorporate feedback loops when a contact of the variable that is
being evaluated occurs in the ladder rung, which powers this variable. Figure 6.10
illustrate this usage.

STR FAN

1--------.---1 l---<)-
CHECKS

FAN
f---I p r---n/r---i

SWITCH A! REMOTE

f---IP~
SWlTCHB

Figure 6.10
Feedback in a ladder diagram

In this example the contact FAN occurs in the rung which contains coil FAN. The value
of FAN is taken from the previous evaluation of this variable FAN and the current state
of the variable FAN is evaluated accordingly. However if any of the subsequent rungs
contain this variable the result as obtained in the current evaluation will be used for
evaluation.

72 Industrial control programming as per IEC-1131-3

6.7 Jumps and labels
It is possible to transfer control from one part of a Ladder diagram to another part using
graphical Jump and a label identifier. This is illustrated in Figure. 6.11.

Pressure

I-----j 11--.,-------1

Oxygen

/1-----'

SPG

Figure 6.11
Graphical Jump in a ladder diagram

In the diagram shown, control is transferred to the part of the network identified by
label SPG when the variables represented by contacts PRESSURE and OXYGEN are
TRUE. The double arrow sign (») indicates that a jump has to be executed. However
lEC 1131-3 does not clearly stipulate the behaviour of a ladder diagram program once a
jump has been executed. Therefore, lEC guidelines on using this standard recommend
that jumps may not be used within an LD network and that Sequential function chmis be
used to achieve such functionality.

6.8 Network evaluation rules
The sequence of evaluation of Ladder diagrams stmis from the top rung and proceeds
downwards.

The following rules are adopted to ensure that there is no inconsistency or ambiguity in
evaluation:

• No element in a network shall be evaluated unless the states of all inputs
have been evaluated. This means that before proceeding to evaluate the
ladder rungs, functions and function blocks in a ladder network, all input
values coming from other elements must be available
Note: This rule may not be applicable to networks that involve
feedback, since the input value of feedback variable may not be
available before evaluation of the network

• The evaluation of a network element shall not be complete until the states of
all its outputs have been evaluated. In other words, the outputs of a ladder
diagram cannot be considered as available until all its outputs have been
evaluated.

• The evaluation of a network is not complete until the output of all its
elements have been evaluated. That is to say, that all outputs ofladder rungs,
functions and function blocks should be updated before the evaluation of a
ladder network can be taken to be complete

Ladder diagrams 73

• When data are transfened from one network to another, all the elements
coming from the first network should be produced by the same network
evaluation. The evaluation of the second network shall not start till all the
values from the first network are available

6.9 Portability
Ladder diagram networks where simple logical conditions are involved can be expressed
as function block diagrams or using Stmctured Text Programming language. For
example, the Ladder Network shown in figure 6.7 can be represented by an equivalent
Function Block Diagram shown in figure 6.12 as well by a Stmctured Text statement as
shown in an earlier section.

However with Ladder diagram networks involving the use of enabling inputs and
outputs EN and ENO, translation into Structured Text language will not be possible.
However, such ladder Diagram networks can be translated into FBD networks since FDB
constmct pemlits use of EN and ENO variables. Figure 6.13 below shows a translation of
the ladder network illustrated in Figure. 6.9.

In this case, the transition sensing contact has been represented using a function for
detecting the rising edge of a signal (R_TRIG).

P2

P3
Kl

PI

RI

SI

52

Figure 6.12
FBD equivalent ofthe ladder diagram shown infigure 6.7

TEST -;U.h FN(ll-+--- DONE

TElvtP /\.
TE1o.{P B

TEMPe

-+---COOL

8750 -'

Figure 6.13
FBD equivalent ofladder diagram shown infigure 6.9

74 Industrial control programming as per IEC-1131-3

6.10 Summary
Ladder diagrams are derived from the electrical circuit diagrams, which have been
conventionally used to represent relay logic operations. LD network is pmiicularly
suitable for programming combinatory logic encountered in process interlocking.

Functions and function blocks can be embedded in a logic diagram provided that:

• The Functions/Function Blocks have Boolean inputs and outputs
• Inputs can be directly driven from ladder rungs
• Outputs can drive coils

The Functions and function blocks embedded in a Ladder Diagram Network can have
EN/ENO type inputs and outputs. Though the standard provides for Jump type constructs
for transfer of control, their use is not recommended. Network evaluation should follow
the rules contained in the standard. The translation of LD networks to FBD networks is
usually straightforward but it may not be possible to translate LD networks to Structured
text and vice versa for all types of program constructs.

7

Instruction List

This chapter contains information on the programming language Instruction List (IL)
described in IEe-ll3l part 3. Representation of control systems using IL is explained
using examples.

Objectives
On completing the study of this chapter, you will learn:

• Basic structure of IL programming language
• Standard operators, Conditional operators, jumps and labels
• Calling functions and function blocks
• Portability and other issues

7.1 Introduction
Instruction List (IL) is the fOUlih of the five programming languages covered in IEC­
1131-3 viz., Structured Text, Function Block Diagram, Ladder Diagram, Instruction List
and Sequential Function Chart. Instruction List is a low-level language using which the
behavior of functions, function blocks and programs can be expressed.

7.2

7.2.1

Structure of IL programming language

Basics

Instruction List (IL) is similar in structure to machine assembler language and is based on
a review done by IEC of many proprietary low-level Instruction List languages used by
PLC manufacturers. The standard includes a wide range of operators used in these
languages. IL is simple, easy to learn and can be used to solve problems of limited
complexity. It is similar to the instruction set used by microprocessors on which many
PLCs are based. In comparison, Structured Text, which resembles higher-level languages

76 Industrial control programming as per IEC-1131-3

such as Pascal, needs to be compiled to the appropriate machine assembly language
before it can be executed on a PLC.

While some of the implementations treat Instruction List as the basic language to which
any other language will be translated, others treat Structured Text as their base language
on the consideration that IL is better suited to small PLCs only. This is despite the fact
that IEC 1131-3 regards all languages as equally acceptable and does not recommend that
a paI1icuiar language be considered as the base language. As far as readability and
debugging is concerned, IL is more difficult compared to Structured Text. The best
practice would be therefore, to write complex logical problems in ST and use IL where
there is a need for highly optimized and efficient code.

7.2.2 Instruction structure

IL consists of a series of instructions, each being a line of code. An instruction contains
an operator and one or more operands. Operands are variables or constants that are
manipulated by the operator. Operators usually operate on a single operand but some
operators can handle more than one operand (which will be separated by commas).

An instruction stores a value to a register (a defined location in the memory) or use the
value already stored, modify it and then store the changed value back in the register. The
register is thus the result of an instruction (as per the definition of the standard) and is
therefore called as the 'result register'. The result register is also referred to as the
accumulator (or just accu). There are also operators that compare the value of a variable
with the value currently stored in the result register and use the comparison to store a new
value into the register or to perform other operations. The operation may be to jump to a
specific instruction (skipping a few lines of instruction in the middle) and then continue
from that instruction onwards. A label identifies the instruction to which the jump should
be performed. A label must be followed by a colon mark. The sequence in which an
instruction is written is: Label (optional), Operator, Operand and comment (optional).

The comment, which is used to document the code so that it can be understood clearly,
should be placed within parentheses followed by * and should be at the end of the line.
The standard does not permit a comment to be written anywhere else, either in the
beginning of the instruction or between operator and operand. Figure 7.1 below shows a
typical Instruction list.

Label Operator Operand Comment

LD RPM (*Load the variable RPM to result register*)

GT 500 (*Test if Value in result register >500*)

JMPNC Volt A (*IfNOT jump to Volt_A*)

LD Voltage (*lfTRUE Load value of variable Voltage*)

SUB 5 (*Subtract from it a value of 5*)

ST Voltage (*Store the new value to Variable Voltage*)

Volt A: LD I (*Load value I *)

ST %Q70 (*Store the value to output 70*)

Figure 7.1
Typical set ofIL instructions

Instruction list 77

The above program tests whether the value of the variable RPM is greater than 500. For
this purpose, the cunent value of variable RPM is loaded into the result register by the
first LD instruction after which the register contains an Integer being the cunent value of
RPM. Then by using the GT (Greater Than) operator it is verified whether the current
value of the register is greater than the Constant 500. If TRUE, the value 1 is stored in the
register and if FALSE the value 0 is stored. Note that at the end of this operation, the
value of variable RPM is no longer available in the register and will be replaced by the
Boolean value of 1 or O.

If the register value is FALSE then the JMPNC instruction causes the sequence to jump
to the line represented by the Label Volt_A. If the register value is TRUE, the execution
continues without the jump and loads the variable of Voltage to the register and using the
subtraction operator (SUB) deducts a constant of 5 from this value. Now the register will
contain the result of the subtraction. The next instruction ST stores the new content of the
register to the variable 'Voltage'. If the jump is performed, the above intervening steps
are omitted and the value of variable Voltage is not reduced by 5 and the instruction
stmiing with the line containing the label Volt_A is executed directly. The last two lines
of the program load the Boolean value 1 to the result register and using the ST (store)
instruction the value 1 is stored to the output represented by the number 70.

Note that in order to improve readability, the IL program is written using fixed
Tab positions (or as a table) so that the component parts of each line (Label,
Operator, Operand and Comment) are clearly identifiable by a gap.

7.2.3 Comparison with Structured Text (ST) language

The above example shows that an IL program has to break down a task into a number of
small instruction steps to be executed in a sequence and the flow is controlled using jump
instructions and conesponding labels. Comments written at the end of each line are useful
in making the meaning of each instruction clear to those who read the code. In contrast, a
high level language will contain fewer lines and does not require so many comments
since the language itself resembles the natural language closely. The IL program in
Figure 7.1 can be re-written in Structured Text (ST) language as:

IF RPM> 500
Voltage := Voltage-5

END IF
%Q70:= 1
Compare the simplicity and readability of the ST program and fewer lines of code

compared to the IL program to perform the same set of operations.

7.2.4 General semantics of IL expressions

500Current Result GT

The IL language instructions thus generally follow the expression:
New Result - Cunent Result Operator Operand
For example, the subtraction instruction in the example in Figure 7.1 can be represented

as :
New Result Cunent Result SUB 5
That is, the operator SUB subtracts the value 5 from the Cunent value held in the result

register and the New Result obtained by this operation is written to the result register.
Similarly a comparison operator such as GT compares the Cunent Result with the

operand and the New Result becomes 1 if the comparison is TRUE. This value is stored
to the result register.

New Result

78 Industrial control programming as per IEC-1131-3

In case the above comparison is FALSE, the value °is stored in the result register.
There are some operators whose action does not fit into the above generalization. For

example the store operator ST stores the Current Result to the variable name defined by
the operand. For example the instruction can be expressed as:

Operand - Cunent Result

______--'--s:...:T-'----- I_v_oI_t_ag"'-e-'----- _

7.2.5 Modifiers for deferred execution

are the instruction

A (*LoadA
B (*Defer ADD, Load B
C (*Defer MUL, Load C
D (*Add D
(*Do defened MUL operation

1*)
2*)
3*)
4*)
5*)

(*Do Deferred ADD operation 6*)
numbers shown at the end of the comment line

Use of modifiers in the form of a bracket (parenthesis) is allowed by the standard to defer
the execution of an instruction. These are useful when it is required to evaluate an
arithmetic function containing nested expressions such as:

A + (B * (C+D).
This operation can be performed using the deferred execution modifier pair '(' and ')'

as follows.
LD
ADD (
MUL(
ADD
)
)
Note: The

numbers.
At the end of this operation, the result register will contain the value of the expression

A + (B * (C+D). However in this process a stack of result registers need to be created so
that intermediate values arising out of defened execution can be held in the memory. The
above IL program will create a stack of 3 registers during its execution. Figure 7.2 below
shows the values in result stacks at the end of each line of instruction. The stack of result
registers is represented as RegisterO, Registerl and Register2.

Instruction No. RegisterO Registerl Register2
1 A

2 A B

3 A B C
4 A B C+O

5 A B* (C+O)

6 A + B* (C+O)

Figure 7.2
Illustration ofresult register stack

Jump instructions if used within parentheses would cause problems with conect
evaluation and even though the standard does not specifically state that their use is illegal
it is recommended that they be not used in program modules containing defened
execution steps.

7.2.6

Instruction list 79

Other modifiers

Other modifiers such as N (for negation) and C (conditional) are also used in IL language.
N is used in combination with Boolean operators to invert the result of a Boolean
operation. For example:

LD Bool-l
ANDN Bool-2
The above instructions will inveli the result of an AND operation of Boolean variables

Bool-I and Bool-2 and store the result to the result register.
Modifier 'C' is only meant for use with a jump instruction. Use of it makes the

operation of the instruction conditional. Use of both Nand C with a jump instruction
inverts the condition for the jump operation.

For example:
JMP Lab-l denotes an unconditional jump to the label Lab-I.
JMPC Lab-l denotes a jump, which is conditional on the cun'ent value of

the result register being TRUE.
JMPNC Lab-l denotes a jump, which is conditional on the cunent value of

the result register NOT being TRUE.
Figure 7.3 shows the various IL operators including Comparison and Jump operators

and modifiers that can be used with these operators. The 'comments' colunm gives the
explanation of use of each operator.

Operator Modifiers Operand Comments
Main Operators
LD N ANY Load operand into results register
ST N ANY Store results register into operand
S BOOL Set operand TRUE
R BOOL Set operand FALSE
AND N ,(ANY Boolean AND
& N, (ANY Boolean AND (Alternative)
OR N ,(ANY Boolean OR
XOR N, (ANY Boolean exclusive OR
NOT ANY Negation
ADD (ANY Addition
SUB (ANY Subtraction
MUL (ANY Multiplication
DIY (ANY Division
MOD (ANY Modulo division
Comparison and Jump operators
GT (ANY Comparison Greater than
GE (ANY Comparison Greater than or equal to
EQ (ANY Comparison equal
NE (ANY Comparison NOT equal
LE (ANY Comparison less than or equal
LT (ANY Comparison less than
JMP C,N ABEL Jump to Label
CAL C,N NAME Call function block
RET C,N Return from function or function block
) Execute last deferred operator

Figure 7.3
List ofIL operators

80 Industrial control programming as per IEC-1131-3

Note:
• Operators with multiple modifiers can operate with one or more of them

together. An example of this is given in Figure 7.4 below
• Operand ANY indicates that the operator can be used for more than one data

type such as Integers, Floating point numbers, real, date/time etc
• Sand R operators can be used for Boolean data type only

Operator Action
AND Boolean AND
AND (Deferred Boolean AND
ANDN Inverted Boolean AND
ANDN (Deferred Boolean AND with result inverted

Figure 7.4
Multiple modifiers-example ofusage

7.3 Calling functions and function blocks
The standard provides different alternative methods for calling functions and function
blocks from within IL programs. The method of calling function blocks differs from that
for calling functions. There are three different ways in which a function block can be
called.

7.3.1

7.3.2

Function block· Formal call with an input list

In this method the operator CAL is followed by function block parameters and their
values. The parameters can either be given directly or calculated. Each parameter must
have a specific name.

An example of such a call is given below.
CAL LOOP-I (
SP 200
PV (
LD %IW30
ADD 5
)
)
The function block instance called is Loop-I. The parameter SP takes a value of 200.

The parameter PV has its value calculated by addition of 5 from the Input Word 30.

Function block· Informal call

In contrast to the earlier method, an informal call first defines the values of parameters SP
and PV before calling the function block using the operator CAL. The same function
block call cited earlier will be written in this method as follows. Loop I.SP indicates that
parameter SP of function block instance Loop-I.

LD 200
ST Loop-I.SP
LD %IW30
ADD 5
ST Loop-I.PV
CAL Loop-l

7.3.3

7.3.4

7.3.5

Instruction list 81

Function block - call using input operators

This method can be used only with certain specific IEe Standard function blocks. Also a
number of special operators are reserved for use with such function blocks. A list of these
reserved operators for use with standard function blocks is shown in Figure 7.5.

Operator Function block type Comments
Sl,R SR Bistable Set and Reset SR bistable
S,Rl RS Bistable Set and Reset RS bistable
CLK R~Trig, rising edge detector Clock input to rising edge detector function

block
CLK F~Trig falling edge dtector Clock input to falling edge detector function

block
CU, R, PV CTU, up-counter Control parameters for up-counter function

block
CD,PV CTD, down-counter Control parameters for down-counter

function block
CU, CD, R, PV CTUD, up/down counter Control parameters for up/down-counter

function block
IN,PT TP, Pulse timer Control parameters for pulse timer function

block
IN,PT TON, ON delay timer Control parameters for on delay timer

function block
IN, PT TOF, Off delay timer Control parameters for off delay timer

function block

Figure 7.5
II operators reservedforfill1ction block operations

IL language can reference function block inputs and write values to outputs usmg
variables specified in the function block declaration.

Calling a function - Formal call

In this type of invoking functions, the name of the function is given first, followed by
values of input parameters.

For example:
SHR(
IN:= %IW20
N:= 5
)
The above code calls function SHR (shift right) giving values to input parameters IN

andN.

Calling a function - Informal call

In this method, when a function is invoked the function name is first given followed by
the input parameter values. The first parameter value is supplied by the current value of
the result register.

For example:
LD %IW20
SHR 5
This is how the call will be made for function SHR using the informal call method. The

difference is thus only in the syntax for specifying the value of the first input parameter.

82 Industrial control programming as per IEC-1131-3

In both cases the result retumed by the function is available in the result register and
can be loaded to an output word by using an instruction such as:

ST %QW20
Which loads the result to output word 20.

7.4 Portability and other issues
Conversion of a program from IL into other languages is not easy and can be done only
when a restricted range of operators is used as per a strict format. Similarly, translating
from other languages to IL, though relatively easier, is not straightforward and has its
own limitations.

Figure 7.6 below shows an example of how a Function Block Diagram can be translated
into an IL program.

Another issue is that IL language is not fully described in the standard and many issues
are left open. The way instructions operate is not always defined in detail. Method of
storing of anay and string type variables (which are of multi-element type) in the result
register is not clearly spelt out. Run time behavior under various enor conditions such as
use of an incorrect data type is also not defined clearly.

All this places a heavy responsibility on those who write or maintain IL programs. The
programmer has to ensure that no incorrect data types, which do not match with the
respective operator, are used. Also, the code must be properly documented to ensure that
in the event of problems, it can be understood clearly by anyone who reads it. Jump
instructions should generally be avoided since they interrupt the program flow and make
understanding the code difficult.

Test A=Ell
TestB

Stal1

I .

SR

____--j AND
-

Switch

% 1 x') -----L_J
Si Q1 F+---- Start SR

Reset --------------j R

This can be written in Instruction List as fo11ows :

Figure. 7.6
Portability example

LD
OR
AND
AND
ST
LD
51'
CAL
LD
ST

Test A
TestB
Switch
I~O 1 x 5
Start.S I
Reset
Start.R
Start
StaJt.Q 1
Start SR

(* Test A or *)
(* Test B")
(* AND Switch")
(* AND Input 5*)
(* Set input of Stan *)
(* Load value of Reset ")
(* Store in reset input *)
(* Call ib. Start *)
(* Load output Q1 *)
(* and store in StartSR ")

Instruction list 83

7.5 Summary
In this chapter we learnt the following:

• Instruction List (IL) is a text based programming language and closely
resembles low-level machine language instructions used for programming
microprocessors. It is simple to implement and is therefore adopted by many
smaller PLC manufacturers

• Programming complex tasks is difficult with IL when compared to a higher
level language such as Structured Text

• IL is generally used for simple problems requiring highly optimized code
• IL has well defined semantic rules, which are used in the instructions. An

instruction contains operators with or without modifiers, operands and labels
(where required). Comment, though optional is highly recommended to
ensure that the code is readable and can be understood properly

• IL provides the facility of calling function blocks and functions using several
alternatives formats. The standard defines special operators which can be
used when calling IEC standard functions

• While jump instructions are allowed, their use makes the program flow
discontinuous and difficult to follow. Incorrect use (say, within a program
block containing deferred instructions) may give rise to errors in execution.
Use ofjump instruction is therefore not desirable except when unavoidable

• The standard does not provide full definitions for errors and their handling
nor defines the program behavior when encountering errors such as
inappropriate data types. Since only limited language validation checks are
done, such errors can only be detected during run time

• Conversion from IL to other languages is difficult and can be done only
under certain conditions. Conversion from other language to IL is relatively
easier but by no means straightforward

8

Sequential Function Chart (SFC)

This chapter outlines the basics of Sequential Function Chart, which is one of the three
graphical languages defined in IEC-1131-3.

Objectives
On completing the study of this chapter, you will learn about:

• The basic concepts of Sequential Function Chart language
• Structure of the language and its main features
• Steps and transitions
• Defining sequences using other IEC languages
• Execution of actions within sequential function charts
• Ensuring design safety while using sequential function charts to represent

complex control systems
• Top down design of a PLC control system using sequential function charts

8.1 Introduction to the basic concept of Sequential Function
Chart (SFC)
The Sequential Function Chart (SFC) language has its ongm in Petri-net, a
methodology used for representing the flow of computer applications. The states and
transitions were represented in this system using circles and arcs. A graphical language
called Grafnet for representation of industrial process control systems using a similar
methodology was developed based on a French national standard. This language was
supported by most of the European manufacturers of early PLC systems. Subsequently,
IEC standard 848: 1988 for preparation of function charts for control systems was evolved
based on Grafnet language.

IEC-1131-3 has adopted many definitions relating to sequential function chart from IEC
848 and the enhancements to SFC methodology over the earlier standards are primarily
aimed at integrating it with the other languages ofIEC-1131-3.

8.1.1

Sequential Function Chart (SFC) 85

The SFC representation indicates the following in respect of an industrial process or
machinery:

• Main phases of the process
• In the case of machinery, the main states.
• Behavior of action blocks pertaining to each phase or state
• Conditions for change from one phase to the next phase

Any process has celiain well-defined phases or stages occUlTing in a predetermined
sequence. Each stage has certain associated functions. The representation of the sequence
in which the functions are performed stage-wise is the essence sequential function chart
The SFC is represented as a sequence of steps, with each step representing a phase of the
process being controlled.

The next important aspect is the progression from one phase to the next. This change is
determined based on celiain conditions. These conditions which decide when a process
progresses from one step to the next can either be time based or triggered a combinatory
logic being fulfilled. In SFC parlance, this is called a transition.

In some cases, it may be necessary to skip some steps of the process or branch into one
or more of several alternative sequences based on certain process conditions or dynamic
parameters of the process. SFC provides methods to handle such special situations using
divergent paths. These divergent paths usually combine at some later stage of the
process and this is known as convergence of sequences.

We will now go into the details of these aspects.

Structure of SFC

As we saw in the earlier paragraph, an SFC consists of a series of steps, with each step
representing a stage of a process. The change over from one step to the next is decided by
transitions, which follow a step. It is to be stressed here that a SFC need not necessarily
show an entire process. A complex process can be split into several SFCs each
representing a part of the process. A Function block can itself be defined using a SFC and
can be integrated into a larger POD. As in the case of other graphical IEC languages such
as the FBD or the LD, the Sequential Function Chart can also be represented in full
graphic or semi-graphic form. The semi graphic representation is illustrated (using a pali
of a SFC) in figure 8.1.

+------------...;..

START i i

--!..._-----------+

Start Chk

+------------+

i REAGEN~_A

+------------+

+-----~------

Figure 8.1
Example ofSFC in semi graphic representation

86 Industrial control programming as per IEC-1131-3

Most current day implementations favor the full graphic fonnat, which will be used in
all the ensuing examples.

Refer to figure 8.2, which shows an example of the SFC for a simple process sequence
already described in figure 1.4 (Chapter 1).

oSIART 0
-+-- START. CO"DITIO'i ..CHECK

_ + VOLUME .-\

,-±===;- STIR TIME

Figure 8.2
Example ofSFCfor a process sequence

In this SFC, it may be noted that there are several rectangular boxes, each joined to the
next by a vertical line. There is a horizontal line across each of the vertical lines. The
rectangular boxes are the process steps. Each step performs a celiain set of actions. The
veliical lines between the steps indicate the sequences in which the steps are to be
executed for control of the process. These are the sequence lines. The SFC convention is
that the execution sequence of steps is generally from top to bottom. This is the default
sequence. When the sequence is in any other manner, an arrow will be placed in the
sequence line indicating the progression sequence.

The horizontal lines marked across each sequence line are the transitions, which decide
when exactly the process should move to the next step. The conditions of each transition
are also shown in the SFC for clarity. The first step of any SFC should be the step
designated as START, which as you may note, is represented by a rectangle two vertical
lines on each side. This is the step that will be executed at the cold start of a PLC.

Another important convention of the SFC is that, there can normally be only one active
step in a sequence. When a transition condition becomes TRUE, the pervious step, which
was active, is tumed off and the next step after the transition is tumed on. The flow of
active steps is referred to as sequence evolution. A transition is usually described on the
SFC itself using any of the IEC programming languages. In complex cases, the standard
permits named transitions. Such named transitions can be represented separately in an
associated diagram.

In the above example, the process is tenninated by a STOP step, which means that the
process tem1inates once the described sequence is completed. This may not however,
always be the case. Depending on the requirements of a given process, the same sequence
of steps may have to be repeated over and over again. Or the repetition will depend on the
position of a certain selector switch, called, say, as REPEAT. If switch REPEAT is on,
the sequence will be automatically repeated. Otherwise it will proceed to the step STOP
and will get terminated.

Sequential Function Chan (SFC) 87

Refer to figure 8.3 for a repeating sequence of the same process shown in the earlier
case. Note the an'ow in the branching sequence line, which indicates the direction in
which the sequence to be followed.

S."j".'\RT.. COXDI"PU:< ""CHECK

CHECK".v"OLLf\fE

REPEAT I

Figure 8.3
Example ofSFCfor a repetitive process sequence

We can consider other possible alternate sequences in this process. Let us say, that the
stir interval will be extended, if necessary, by checking the pH value of the tank contents.
If this value has not reached a set value, the stir step has to be repeated. Figure 8.4
represents this additional condition introduced using a divergent sequence path.

PH..:: 70

Figure 8.4
Example ofSFCfor a conditional branch in the sequence

88 Industrial control programming as per IEC-1131-3

In this example, the process loops back to an earlier step and repeats the sequence. In
other cases, the alternative sequence may bypass a few steps and converge at a later step.
An example is shown in figure 8.5, where a heating step has been added. Let us say that
for a pmiicular product mix, the contents of the tank need to be heated to temperature T
whereas for another product, this can be skipped. Depending on the desired product, the
required step will be activated.

.... . .. ST1R TT\lE > 10m
- AND PRODUCT A

Figure 8.5
Another example ofSFCfor a conditional branch in the sequence

HL".T

STIR.. TlTvlE > 10m

AND PRODUCT" B

Temp> 150.0

We may note here that the each branch has a transition associated with it. This is
usually the case with processes having divergent paths. In such cases, each transition is
evaluated in sequence from left to right. The first transition in the sequence, which on
evaluation permits the progression to the next step, becomes the controlling one. The
standard also provides methods to change the evaluation sequence.

In the examples shown in figures 8.3, 8.4 and 8.5, only one of the branch sequences can
be executed at a given instant. But in certain processes, it may be necessary that several
parallel sequences have to be operated simultaneously. For example, when a process is in
progress various parameters such as temperature may have to be monitored constantly
and the process may have to be shut down if the values reach dangerous limits. Or an
alarm has to be raised to enable the operator to take some manual tuning action. These
actions have to go on simultaneously along with the main process. The standard provides
a way of achieving this requirement using simultaneous sequence divergence. The SFC
indicates simultaneous divergence using a double horizontal line. Refer to the example in
figure 8.6.

Sequential Function Chart (SFC) 89

- ------~-- iF TElvlP;- ,,0

IF VOLU\1E n > -- 200 AND TEMP < 120

Figure 8.6
An example ofSFC with simultaneous sequence divergence

The sequences, which are operating simultaneously after divergence, may once again
come back to a common main sequence later through a simultaneous sequence
convergence. In the example shown in figure 8.6, such a convergence is also
represented. It should be noted that the transition after the simultaneous convergence is
evaluated only when all steps in the different paths preceding it are active. Then, on
successful evaluation of the transition, the execution moves to the next step, before which
the previous steps in all the different simultaneous sequence paths are made inactive.

8.2 Steps
We learnt about the use of steps in the previous section. There are essentially two types of
steps.

8.2.1

8.2.2

Initial step

The START step in the SFC is an initial step represented by a rectangle with double
veliicallines. An SFC can have only one such initial step and this is the step which will
be activated first when a PLC is stmied,

Normal step

All the other steps in the SFC are normal steps and are represented by plain rectangles.
Each step should be given a unique name, which is written in the center of the

rectangle. Within a given SFC, the name of a step cannot be repeated. The actions to be
taken when a step becomes active are defined using one or more action blocks. The action
blocks can be represented in any of the IEC languages, viz., ST, IL, LD or FBD. A
complete description of action blocks will be given in a subsequent section.

90 Industrial control programming as per IEC-1131-3

A step has two associated variables, which can be accessed from any point in the SFC.
The first is the Step active flag. This flag is set when the step is active. The variable
associated with this flag is named as <Step name>. X and its status can be tested from
any point. The variable will be set to TRUE when the step is active. This is useful to also
set the status of a related variable. See the figure 8.7 below.

Dircct Connection with
active nag of REAGENT A

J--z:.......- Valve A

Flow ReagentA

Figure. 8.7
Use ofactive flag ofan SFC step

In this Figure, the step ReagentA denotes that valve A should be kept open till the
transition condition to the next step is fulfilled. By associating the variable ValveA with
the active flag ReagentA.X, it can be ensured that the valve A is held in open position till
the step ReagentA is active.

The second variable associated with a step is the elapsed time (.T). This variable is
designated by the name <Step Name>. T and is of data type TIME. When a step becomes
active, the flag is set to 0 and then starts counting the elapsed time. This can be used
directly in the evaluation of the subsequent transition, in case the step is meant to be
active for a pre-determined duration. This variable value is retained even after the step
has ceased to be active and is reset when the step becomes active once again in a later
cycle. The example shown in figure 8.8 illustrates this principle.

STIR.T> # T 10m

Figure 8.8
Use ofelapsed time variable ofan SFC step

In this example, the step STIR has to be performed for a set value of time. The variable
STIR.T enables the next transition to check whether the required interval has elapsed. On
completion of a certain elapsed period, the process moves to the next step Drain. The
elapsed time variable can also be used for program diagnostic purposes to ensure that the
steps are active for the periods they are meant to be.

Sequential Function Chart (SFC) 91

8.3 Transitions
We have learnt earlier in this chapter that transitions are used to determine when the
process should move from one active step to another in the sequence. Transition
conditions can be expressed using any of the other IEC standard languages. In the
examples, which we have seen so far, the transitions have been represented on the SFC,
using structured text. But, the same can be represented using Ladder diagram or Function
block diagram as well.

In the case of structured text, it takes the form of an expression. If the expression on
evaluation returns the value TRUE, the transition takes place. (Refer figure 8.9A). The
statement for transition from the step ReagentA is conditional on the total flow of the
reagent A having reached a set value given by the expression:

Flow_ReagentA => 980
When the flow has totaled to 980 (Kilo Liters) the above expression becomes TRUE

and the transition to the next step is initiated.

I
-l-- Flow Reagent A = > 980

Figure 8.9A
Use ofST expressionfor transition

The same condition can also be used in the form of a Ladder diagram as shown in
figure. 8.9B.

I FI"'j-f-(' --t_

Figure. 8.9B
Use ofLD rungfor transition

In this case the transition replaces the coil ---()---. When the contacts given in the rung
establish power flow from the left power rail to the transition line, transition is triggered.

A transition condition can also be in the form of an FBD as shown in figure 8.9C
below.

92 Industrial control programming as per IEC-1131-3

REliGENT

GEFull t-----------'--

980. Set Point

Figure 8.9C
Use ofFED for transition

In this example a function block instance called Flow_Chk_A compares the flow
against a set value and once the set value is reached, it makes the Boolean output
Flow_Limit TRUE. This triggers transition to the next step in the sequence.

A transition connector can be used if the transition logic cannot be accommodated in
the same line. The example in figure 8.9D shows such a case.

I FlO\i'r-"' ...,.r- : Flow i\ Full,>

Figure 8.9D
Use oftransition connector

Transitions can also be identified by names and using this name, the transition can be
defined in any page of the SFC using any of the IEC languages. Figure 8.10 shows
examples of such named transitions.

rlow.'\. FuJI __+-__

Sequential Function Chart (SFC) 93

(" Named Transi lion')

~W'I"L-_A r_.:I'-;)\V i\~I I ' (f· ···1 (* LD Representation*)

(* Structured Ttxt Representation")

TRANSlTlON FLOW A FULL

"' FLOW :\ '" 980,

END TRANSITION

Figure 8.10
Defining a named transition using IEC languages

8.4 Actions
As we saw earlier each step of an SFC represents a particular state of a machine or a
process. When a set of conditions is fulfilled, a transition occurs and a sequence of
actions is initiated to achieve the process condition defined for the concerned step. In the
SFC graphic representation, this is shown as a rectangular box within which the actions
conesponding to the step are indicated using any of the IEC standard languages. An
example is shown in figure 8.11 below.

ALERT OPERATOR SWITCH MODE

Figure 8.11
Representation ofSFC actions

SWITCH MODE I AND ALARMS 0

OPEN VALVE A

The rectangular box contains a qualifier, the name of the action, which should be
unique within the SFC and an indicator variable where applicable. The qualifier defines
when an action is to be initiated. The list of qualifiers normally used in SFCs is shown in
the table in figure 8.12 below.

94 Industrial control programming as per IEC-1131-3

Qualifier Description
None Same as N
N Executes when the step is active
S Sets an action active (stored)
R Resets a stored action
L Tenninates after a given period
D Time delayed, starting after a given period
p Pulse action, executes once when the step is activated
SD Stored and time delayed, an action which is set active after a delay and

executing even though the associated step may get deactivated before the time
delav elapses

DS Delayed and stored. In this case if the step is deactivated before the time delay
elapses, the action is NOT stored.

SL Stored and time limited. The action is started and executes for the set period.

Figure 8.12
Action qualifiers

An action can be represented either within the SFC or if it is too complex, in another
page or diagram. When an action is thus represented in another part of the diagram, its
name is used to identify it. An action may be used in more than one step if it gets repeated
in different parts of a process. Sometimes a step has no actions and simply waits for the
next transition. In that case, it is said to be performing a 'wait' function.

The indicator variable is used for annotation purposes and its use is optional. It usually
represents the key variable, which indicates that an action has been completed.

As in the case of transitions, actions too can be described using any of the IEC
languages.

Sequential Function Chart (SFC) 95

VALVE A OPEN

FLO\V eMP A

FLO\V_Cl'vlP

FLOW A. - Flow

980 - Sctpoint

Out - VALVE.A

(a) Action described using fBD

VALVE A OPEN

(b) Action described using LD

Figure 8.13
Representation ofSFC actions using different IEC languages

An action in SFC format can also be used within Program organization units written
using any of the other IEC languages. Figure. 8-14 shows an example of an action within
a LD program. An action is initiated when there is a power flow into the action block.
Action indicator variable is used to signal the completion of this action.

Figure 8.14
Use ofaction block ·within a LD rung

An action used within a function block diagram is shown in figure. 8.15.

RE/\GENT /\.X

Figure 8.15
Use ofaction block within a FED

CLOSE VB

96 Industrial control programming as per IEC-1131-3

8.5 Action qualifiers
We saw in the last section the various action qualifiers used in action blocks. Qualifiers
are used to define when exactly during a step an action should be initiated. Some of the
actions are of stored type, which, once initiated continue till reset. Such actions may span
across one or more steps and their operation requires rather careful sClUtiny. Timing
diagrams can be used to study the operation of actions with different qualifiers. With
stored actions, a reset command is necessary, as othelwise the action will continue
indefinitely. Figures 8.16 to 8.24 illustrate various action qualifiers using timing
diagrams.

Step 1.X--~
r==~'--==--~

Action /\=_.......:1

Figure 8.16
Use ofaction qualifier-N

Step 1 S Stepl.X ----lI

TR I
TR I

Action 1 .--J II
Step N.X n

R ITR N

TR N

Figure 8.17
Use ofaction qualifiers-S and R

Sequential Function Chart (SFC) 97

StcpA.X----'A

'1Ft 1

Figure 8.18
Use ofaction qualifier-L

orR J

Step

AclHJll 1

___---.JI

l.X

"\"linn A

Skp!.X

'fR-l

l\ct.i-on }

1-;-3s--1

Figure 8.19
U~e ofaction qualifier-D

98 Industrial control programming as per IEC-1131-3

TR]

Figure 8.20
Use o/action qualifier-P

Stepl.X

TR I

Action A

L
----_1
__ I~: _

Step A.X ---'

StepN.x----------I

,

I Step A PI Action 1

- I--TR 1 PO Action 2
..

Figure 8.21
Use 0/action qualifiers-PO and P1

I Step A I
I SD

T#5s Action 1

- I--TR]
..

TR]

A.etion 1

Action 2

Step A.X

Action 1

---_I

______l-

____I

~5S-1

Action J

'-----r_~-------IG Action 1 I
TR N

Figure 8.22
Use ofaction qualifiers-SD and R

Step A.X

Step N.X---------....JI

II

Step N.X ---'1I Step I I
DSI Action A1'#105

- -TR 1

TR N

Figure 8.23
Use ofaction qua/ifiers-DS and R

Step 1.X

Action A

Step IX

Step N.X

Action A

Sequential Function Chari (SFC) 99

r- 105 -1
~

r- 105--1

----fI'-- _

_____----'r--

LX

N.X -----------'

TR 1

Figure 8.24
Use a/action qua/ifiers-SL and R

Action A

I.X

I\LX

i\ctionA

Action B

It may be seen that in most of the above Figures, there is a small spike in the action
status towards the end. The reason is that the actions associated with a step are executed
for one last time after the step is deactivated.

100 Industrial control programming as per IEC-1131-3

8.6 Action control function block
The standard defines a hypothetical function block representing an action control
function. Each action qualifier is represented by an instance of this function block. . The
output Q of this function block results in the execution of an action when its value
becomes TRUE.

8.7 Execution rules
SFC is used to describe the functioning of a POU and its execution is controlled by a task.
Generally POUs are executed periodically, say, once in 500 milliseconds. An SFC is
evaluated during each execution. The rules for evaluation are as follows:

• The initial step is the first step to be evaluated after system initialization.
Actions associated with this step are executed first

• At each execution, the status of active steps is first evaluated and all
transitions following these active steps are evaluated

• Actions, which ceased in the last evaluation, are executed one last time
• All actions associated with active steps are executed
• Steps that precede transitions, which are evaluated as true in the CUlTent

cycle, are deactivated and succeeding steps are activated
• Actions associated with deactivated steps are marked for execution for one

last time in the next evaluation

Some of the aspects to be noted in designing an SFC are:

• Two steps cannot be directly linked. There must be a transition between
them

• Similarly, two transitions must be separated by a step
• A transition from one step may lead to two or more steps. These steps are

executed simultaneously. The associated sequences execute independently
thereafter

• The evaluation of a transition condition and (if it is TRUE) the deactivation
of the preceding step and activation of the succeeding step are all actions that
occur with no delay

• If several different transition conditions become TRUE in any given
evaluation cycle, the deactivation and activation of associated steps happen
with no delay

• If a step is activated, the actions associated with the step are executed first
even though the transition after this step may be TRUE already

8.8 Design safety issues
As we saw in the earlier section on transitions, it is possible to have two or more branches
from a step with each branch having its own transition. Even if more than one transition
becomes TRUE at the same time, only one branch is selected for execution. By default,
the leftmost transition, which is TRUE, is the one that is selected. However, the user can
define the transition priority by numbering the transitions. The transition having the
lowest number has the highest priority. An asterisk placed at the center of the branch line
indicates user-defined priority. Figure 8.25 illustrates this action.

1~"ANI'
STEPB

Di;.~fHlllt Proct'durc Left to Right

TRANS.!

STErR

Sequential Function Chan (SFC) 101

TRANS 2

US{:f d~fll1ed precedence (as per numbers shO\-\/I1)

Figure 8.25
Transition priority

Wherever possible, the programmer must ensure that the divergent paths are mutually
exclusive by introducing suitable transition logic condition.

Branching can be used to skip some of the steps as well as loop back to an earlier step.
Examples of such divergence were discussed in earlier sections in this chapter.

Simultaneous convergence and divergence are used to ensure parallel operation of more
than one sequence. In the case of a transition following a simultaneous convergence, all
the steps that converge simultaneously must be active before the succeeding transition is
evaluated. Figure 8.26 shows an example.

PUl\lP A

VALVE A

Figure 8.26
Simultaneous convergence and divergence

PUlvlP B

fTRFWD

VALVE B

PUMP C

102 Industrial control programming as per IEC-1131-3

In this example, steps PUMP_A, PUMP_B and PUMP_C must be active before
transition I is tested. Under this condition, if Transition TR_FWD becomes TRUE, steps
PUMP_A, PUMP_B and PUMP_Care deactivated and steps VALVE_A and VALVE_B
are activated. All these happen simultaneously. An SFC program must avoid conditions,
which will lead to unsafe situations. For example, two converging steps may be mutually
exclusive by virtue of the preceding transition conditions being so. Under such condition
convergence will never occur and the sequence will therefore not proceed beyond this
point. Many compilers can detect such unsafe SFC constructs and alert the programmer.

8.9 Top down design
An SFC is primarily used for top down design of a complex process control system. Any
process consists of a number of states. The major steps are identified and represented in
the form of an SFC. The conditions that cause a change of state are identified and
represented as transitions. The actions to be taken in each step are represented as action
blocks. Thus the entire process sequence can be shown in a SFC. In a complex process
each step may itself consist of a number of minor states, which can be too cumbersome to
be shown using action blocks alone. In such cases, each major step can be represented as
another sequential function chart, with all minor steps represented as steps of this SFC
with the sequence represented using transitions.

Thus an SFC can be alTanged hierarchically into smaller sequences each with its SFC
with all of them being combined in a overall SFC to simplify understanding.

Many implementations support the above concept and refer to this feature as macro step
(which is not defined in the standard, though). The macro step is the name given to a step,
which encapsulates an SFC within the step.

To avoid difficulties in interpreting such complex layered SFC systems, celiain
programming aspects should be noted.

• Meaningful names must be given to steps, transitions and actions so that the
purpose of their use is clear from the name itself

• Names should be unique within a POU
• An SFC should be kept small. Hierarchical design should be used to

represent complex systems by depicting action blocks in the form of lower
level SFCs

• Simultaneous sequences should not interact with each other as far as
possible. For example, steps in different sequences should not change the
same variable

• The top level SFC must make sure that any halted state within a sub
sequence is properly closed on completion of the sub sequence. Such
problems can arise from plant trip condition and must be handled cOlTectly
by the main SFC

8.10 Summary
Sequential function charts provide a flexible and hierarchical method of representing

complex control processes graphically. The main features of this method are:

• Alternative sequences in a process can be represented using divergent paths.
• Simultaneous divergence of different sequences is provided in SFCs
• The elements of SFC such as steps and transitions can be represented using

any of the graphical languages defined in the standard

Sequential Function Chart (SFC) 103

• Action qualifiers are used to define the manner in which actions are
sequenced

• Though SFC is generally used for representing large control systems, they
can also be used to represent low level actions in a pati of a sequence such as
a function block, which occur within a POD

Industrial Control Programming as per IEC-1131-3

PROGRAMMING OF INDUSTRIAL CONTROL

TYPICAL EXAMPLES PRESENTED AS PROBLEMS

PREAMBLE

• The examples given below represent a cross section of real life
situations encountered in industrial processes. Participants will use
IsaGRAF PLC programming software to model their solutions and
validate them using the simulation tools provided.

• It is advised that the same problem be worked out using different
languages applicable in each case so that their comparative merits can
be understood. Overall framework of the solution may be preferably
done using a Sequential Function Chart.

• Though the software includes Flow Chart as one of the techniques, this
method may not be used as it is not a part of the IEC-1131-3 standard

PROBLEM-I: MOTOR START

A Motor is started by an ON push button (pulse type contact) and stopped
by an OFF push button (pulse type contact) through an output coil (Coil M).
Motor Trips if there is a fault (contact F is TRUE) and cannot be started till it is
reset (becomes FALSE). Conditions to be taken care of are as follows:

1. When push buttons ON and OFF give their pulse inputs (assumed for
a duration of 500 m. sees), the action required (START or STOP) should
take place within 3 seconds. Otherwise an alarm should initiate (coil
AI). The condition START and STOP is sensed by the contact of motor
power contactor (K). When motor runs contact K is TRUE else it is
FALSE.

Note: Such a situation can arise when there is some failure in the motor control
circuit 'which is beyond the PLC's scope.

2. An alarm A2 should initiate when F becomes TRUE and the motor
trips as a result.

3. An alarm A3 should initiate if F becomes TRUE and the motor
continues to run beyond 5 Sec.

4. Reset button for releasing alarms.

P-l

Industrial Control Programming as per IEC-1131-3

PROBLEM-2: MAGNETIC SEPARATOR

A magnetic separator is used to attract scrap iron pieces that may be
mixed up with bulk materials and cause damage to conveying or crushing
equipment.

A metal detector detects a iron piece on a conveyor (represented by a
push-button type momentary contact MD). A magnet (Coil M) suspended over
the conveyor at a point downstream is energised. After a delay sufficient for the
metal piece to reach the point where the magnet is located and be removed by itt
the travelling monorail from which the magnet is suspended moves away (coil
HI) from the conveyor. The trolley is stopped by the forward limit switch LSF
when it is over a scrap chute. The magnet is disconnected from supply to allow
the metal pieces to fall into the chute and the monorail takes it back (coil H2) to
the original position. It is stopped by limit switch LSB when it reaches the
position above the conveyor.

If at any point before the trolley starts moving away from the conveyort
another piece is detectedt the magnet continues in its position till the piece is
removed from the conveyor.

Two timers are to be used. One is for timing the detection of the metal
piece to the start of magnet moving away (Tl). Another is for the magnet to be
de-energised over the chute (T2). Once a new piece is detectedt the timers start
from zero time again.

Assumption is that the time between detection of metal and its being
attracted is more than the complete travel cycle time of the trolley (both ways).

PROBLEM 3: OVERHEAD TANK AND LOW LEVEL SUMP

An overhead tank is filled up by a pump from a low level sump. The
conditions of operation are:

1. The pump starts when the tank level becomes low (TLL).

2. The pump stops when the tank gets filled up (TLH).

3. The pump stops if the sump level becomes too low (SLL).

4. The pump does not start if sump level is too low.

5. The condition of tank level being low and pump not running will give
an alarm Al after a wait time of 10 seconds.

6. Provide a Reset button to start the pump again.

7. Stop button for stopping the sequence.

8. Reset button for releasing alarms.

P-2

Industrial Control Programming as per IEC-1131-3

PROBLEM 4: PRESSURE SWITCH OPERATED COMPRESSORS

Two compressors feed compressed air into a air-receiver. The start and
stop of the compressors is to be automatic through two LOW pressure switches
Ll and L2 and one NORMAL pressure switch Nl. Ll picks up (TRUE) at a
higher pressure value compared to L2. Nl picks up at higher pressure than Ll.

Low pressure switches go True when pressure < set value; while normal
pressure switch goes True when pressure> set value.

1. Compressor Cl will start if switch Ll picks up (TRUE).

2. In addition Compressor C2 will start if L2 picks up (TRUE).

3. C2 will stop if Ll becomes FALSE.

4. Cl stops if switch Nl picks up (TRUE).

5. An alarm Al should initiate if Ll picks up and Cl does not start within
5 seconds.

6. An alarm A2 should initiate if L2 picks up and C2 does not start within
5 seconds.

7. An alarm A3 should initiate if Nl remains FALSE for more than 15
Minutes.

8. Reset button for releasing alarms.

PROBLEM 5: PRESSURE SIGNAL OPERATED COMPRESSORS

This problem is similar to that of the previous one except that Ll, L2 and Nl are
replaced by a pressure transducer. The conditions of operation are as follows.

1. If pressure < 35 ATe for more than 5 secs will cause starting of Cl.

2. If pressure < 25 ATe for more than 5 secs will cause starting of C2.

3. C2 will stop if pressure> 35 ATe.

4. Cl will stop if pressure> 40 ATe.

5. An alarm Al should initiate if Pressure < 35 ATe and Cl does not start
within 10 seconds.

6. An alarm A2 should initiate if Pressure < 25 ATe and C2 does not start
within 10 seconds.

7. An alarm A3 should initiate if Pressure remains < 35 ATe for more
than 15 Minutes.

8. Reset button for releasing alarms.

Note: ATG represents atmospheres gauge

P-3

Industrial Control Programming as per IEC-1131-3

PROBLEM 6: NEUTRALISING TANK OPERATION

This is a typical batch mode operation of an effluent neutralizing system.
The simplified sequence of this process is as follows.

1. At the start command of the system, the effluent is transferred from a
storage reservoir to a neutralizing tank using a transfer pump.

2. Pump will stop when tank level HIGH relay picks up.

3. A stirrer then starts and operates for a period of 5 minutes.

4. A pH measurement probe draws a sample and an output pH value is
obtained.

5. Based on the value, the following are decided.

• Neutralizing agent to be used. (If pH < 7 agent A else agent B). For
agent A, valve A will be opened and for agent B, valve B will be
opened.

6. Valve A or B to open.

7. Close valve A or B when the pH reaches value of 7.

8. Stirrer operates for a period of 10 minutes

9. Open Drain valve of neutralizing tank.

10. The pump will start when tank level LOW relay picks up.

11. Repeat the cycle from step 1.

12. Start button to start the sequence.

13. Stop button to stop the sequence.

P-4

IDe Technologies - Technology Training That Works

Ii.'c·hn%gy Ti"tlining that Vl/or1<:s

Pre-Workshop Questionnaire

Industrial Programming using lEe 61131-3

Full Name, _

City/Country Date _

1. What are the two main reasons you attending this training workshop?

2. Briefly describe your main responsibilities in your current job?

3. Where did you hear about this workshop?

0 IDC Technologies Brochure 0 Web Site

0 Colleague 0 Other

4. Have you been on a previous IDC Technologies workshop? 0 Yes 0 No

5. In which area do you work?

0 Trades 0 Manager

0 Technician 0 IT

0 Technologist 0 Engineer

0 Other

6. What size is your organisation?

0 less than 50 people 0 More than 100 People

0 Between 50 and 100 people

[<'ch17ology Thlining that W~)rks

Technical Questions

1. What are the different "languages" that make up the IEC 61131-3 standard?

2. What are the main (or key) features of the IEC 61131-3 standard?

3. Why does the IEC 61131-3 standard have resources? What does a resource mean?

4. Will IEC 61131-3 languages result in applications that run slower and require more memory than

using a simple ladderlogic program?

5. Is it possible to transfer IEC 61131-3 programs from one vendor's PLC to another?

'Techn%g).' Training thaT l-V<:Jrks

Post Course Questionnaire
Workshop Name: ..

Name: Company: Date: ..

To help us improve the quality offi/ture technical workshops your honest andfi'ank comments wi!! provide us with valuable feedback.
Please complete the following:

How would you rate the ~~~~"",,':'IIM?

Poor Average Excellent
Please place a cross ex) in the appropriate column and make any

0 I 2 3 4 5 6 7 8 9 10
comments below.

1. : Subject matter

.:.~:::.:.i.:~~:~;~al,}:.. 'als
,

,ll ct111l.lg m~nl1~1 ~.

4. • ()verheadslides

5. Venue

6. Instructor

7. How well did the meet your n

8. ()ther, please specify ,

Miscellaneous
Which section/s of the workshop did you feel was the most valuable? .

Was there a section of the workshop that you would like us to remove/modifY? ..

Based on your experience today, would you attend another IDC Technologies workshop?

Ifno, please give your reason .

Do you have any comments either about the workshop or the instructor that you would like to share with us? .

Do we have your permission to use your comments in our marketing?

Would you like to receive updates on new IDC Technologies workshops and technical forums?

If yes, please supply us with your email address (please print clearly): .

and postal address: '" .

Do you think your place of work may be interested in IDC Technologies presenting a customised in-house training workshop? YesD NoD
If yes, please fill in the following information:

Contact Person: Position: .

E-mail: Phone Number: .

New IDe Workshops

We needyour help. We are constantly researching and producing new technology training workshopsfor Engineers and Technicians to help you in
your work. We would appreciate it ifyou would indicate which workshops below are ofinterest to you.
Please cross (x) the appropriate boxes.

INSTRUMENTATION AUTOMATION & PROCESS CONTROL INFORMATION TECHNOLOGY

Practical Automarion and Process Control using PLCs Practical Web-Site Development & E-Commerce Systems for Industry

Practical Data Acquisition using Personal Computers & Standalone Systems \ Industrial Network Security for SCADA, Automation, Process Control and PLC
Systems

Practical On-line Analytical Instrumentation for Engineers and Technicians

Practical Flow Measurement for Engineers and Technicians ELECTRICAL

Practical Intrinsic Safety for Engineers and Technicians Safe Operation and Maintenance of Circuit Brealcers and Switchgear

Practical Safety Instrumentation and Shut-down Systems for Industty PracticaJ Power Systems Protection for Engineers and Technicians

Practical Process Control for Engineers and Technicians Practical Higl~Voltage Safety Opetating Procedures

Practical InduStrial Programming using 61131-3 for PLCs . Practical Solutions to Power Quality Problems for Engineers and Technicians

Practical SCADA Systems for industry Wind & Solar Power - Renewable Energy Technologies

Fundamentals ofOPC (OLE for Process Control) Practical Power DiStribution

Practical Instrumentation for Automation and Process Control Practical Variable Speed Drives for Instrumeptation and Control Systems

Practical Motion Control for Engineers and Technicians

Practical HAZOPS, Trips and Alarms , , ! •••• ELECTRONICS

Practical Digital Signal Processing Systems for Engineers and Technicians

DATA COMMUNICATIONS & NETWORKING Shielding, EMC/EMI, Noise Reduction, Earrhing and Circuit Board Layout

.... Practical Data Communications for Engineers and Technicians Practical EMC and EMI Control for Engineers and Technicians

Practical DNP3, 60870.5 & Modern SCADA Communicarion Systems

Practical FieldBus and Device Nerworks for Engineers and Technicians MECHANICAL ENGINEERING

Troubleshooting & Problem Solving ofIndustrial Data Communications Fundamentals of Hearing, Ventilation & Airconditioning (HVAC) for Engineers
and Technicians

Practical Fibre Optics for Engineers and Technicians Pracrical Boiler Plant Operation and Management

Practical InduStrial Networking for Engineers and Technicians Practical Centrifugal Pumps - Efficient use for Safety & Reliability

Practical TCP/IP & Ethernet Networking for Industty

Practical Telecommunications for Engineers and Technicians PROJECT & FINANCIAL MANAGEMENT

Best Practice in Industrial Data Communications Practical Projecr Management for Engineers and Technicians

Practical Routers & Switches (including TCP/IP and Ethernet) for Engineers Practical' Financial Management and Project Investment Analysis
and Technicians

Troubleshooting & Problem Solving of Ethernet Networks Practical Specification and Technical Writing for Engineers and Other Technical
PeoDle

For ourfit/lUst oftitles please visit: www.idc-online.com/training

Ifyou know anyone who would benefitfrom attending an IDC Technologies workshop or technicalforum, please fill in their
contact details below..
Name: .

Position:

Company Name:

Address:

Email:

Name:

Position:

Company Name:

Address:

Email:

Thank you for completing this questionnaire,
your opinion is important to us.

