

AppleScript:
A Comprehensive

Guide to Scripting and
Automation on Mac OS X

Hanaan Rosenthal

-D!SIGNER TO DISIGMII•

APress Media, LLC

AppleScript: A Comprehensive Guide to
Scripting and Automation on Mac OS X

Copyright © 2004 by Hanaan Rosenthai

Originally published by Apress in 2004

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-59059-404-9 ISBN 978-1-4302-5352-5 (eBook)
DOI 10.1007/978-1-4302-5352-5

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any lass or darnage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers
at http: I /www. friendsofed. com in the Downloads section.

Credits

Lead Editor
Chris Mills

Technical Revlewer
Bill Cheeseman

Editorlai Board
Steve Anglin, Dan Appleman,

Ewan Buckingham, Gary Cornell,
Tony Davis, john Franklin,
jason Gilmore, Chris Mills,

Dominic Shakeshaft,
]im Sumser

Project Manager
Sofia Marchant

Copy Edlt Manager
Nicole LeCierc

Copy Editor
Ami Knox

Productlon Manager
Kari Brooks-Copony

Productlon Editor
Ellie Fountain

Composltor
Katy Freer

Proofreader
Liz Welch

lndexer
john Collin

Artist
April Milne

Cover Designer
Kurt Krames

Manufacturlng Manager
Tom Debolski

To}ohanne

CONTENTS AT A GLANCE

About the Author • xxviii

About the Technical Reviewer • • • • • • • • • • • • • • • • • • xxlx

Acknowledgments • xxx

Preface: What makes AppleScript unique and.
what will make this book your favorite?. • • • • • • • • • • • • xxxi

Resources • xxxiii

PART ONE: READ ME FIRST

Chapter 1: lntroduction • 1

PART TWO: HOW TO APPLESCRIPT

Chapter 2: Starting to script-aU over again ••••••••••• 13

Chapter 3: Values • 55

Chapter 4: Doing the math: All about numbers • • • • • • • • • 117

CONTENTS AT A GLANCE

vi

Chapter 5: Pieking up dates • • • • • • • • . • • • • • • • • • • • 145

Chapter 6: Lists and records. • • • • • • • • • • • • • • • • • • • 187

Chapter 7: Giving commands • • • • • • • • • • • • • • • • • • • 217

Chapter 8: Variables • 231

Chapter 9: Operations and coercion • • • • • • • • • • • • • • • 261

Chapter 10: Teaching your script to make decisions ••••••• 305

Chapter 11: The assembly line: Creating repeat IQops • • • • • 321

Chapter 12: User interaction • • • • • • • • • • • • • • • • • • • 345

Chapter 13: Working with files • • • • • • • • • • • • • • • • • • 429

Chapter 14: Working with the clipboard ••••••••••••• 497

Chapter 15: Turn errors in your favor •••••••••••••• 509

Chapter 16: Other control statements • • • • • • • • • • • • • • 529

Chapter 17: Defining and calling subroutines • • • • • • • • • • 535

Chapter 18: Script objects • 569

PART THREE: THE WILD WORLD OF APPLESCRIPT

Chapter 19: AppleScript amenities in Mac OS X ••••••••• 595

Chapter 20: Scripting additions and extendibility •••••••• 615

CONTENTS AT A GLANCE

Chapter 21: The fundamentals of automating applications. • • 637

Chapter 22: Debugging scripts • • . . . • • • . 653

Chapter 23: A script by any other name. • • . . • . . • • 667

Chapter 24: Healthy scriptwriting practices . . • • . • • • • • . 677

Chapter 25: Scripting Apple apps • • • . • • • 697

Chapter 26: Scripting data and databases ••••.••••••. 717

Chapter 27: Automating media workflow •.•.•••••••• 741

Chapter 28: Smile: The AppleScript integrated
production environment ..••.....••••••••••••. 749

Chapter 29: Automating UNIX applications • • . . • • • • • • . 785

Chapter 30: Scheduling scripts • • • • • • • 793

Chapter 31: Controlling remote applications. . . • • 799

Chapter 32: The business of automation • • • 807

Index•................... 815

vii

CONTENTS

About the Author • • • • • • • xxviii

About the Technical Reviewer xx:ix

Acknowledgments • xxx

Preface: What makes AppleScript unique and
what will make this book your favorite?. • xxxi

Resources
...

• • • • • • • • • • • • XXXIII

PART ONE: READ ME FIRST

Chapter 1: lntroduction • 1

What are scripts for? . 2
Automating small things . 2
Automating big things . 3
Where's AppleScript? . 4
How are scripts written? 5
Where do scripts reside and how do they run? 5
AppleScript file format . 6
The golden triangle: AppleScript language, application scriptability, and the scripts
you write ... 7
The better script model . 8

Teaching the script new commands . 9
Packaging your commands into script objects . 9

Wrapping up . 1 0

PART TWO: HOW TO APPLESCRIPT

Chapter 2: Starting to script-aU over again • • . . • • . • • • • 13

Script concentrate: just add water! . 14
More results with less talk 20
Variable speed . 21

viii

CONTENTS

Values come in many dasses . 22
Text .. 23
Number .. 23
Boolean .. 23

Tell me about it . 24
The many faces of tell . 24
Continuation character . 25
Comparing results . 25
Objects you can tell things to . 26
Telling in blocks 26

More on Script Editor . 28
Event log . 28
Result history ... 28
Script description . 29
Toolbar ... 29
Recording scripts ... 30
Spaces don't count . 30
Understanding applications' scriptability 31
The application scripting dictionary 31

Classes in the dictionary 31
Commands in the dictionary . 32
At their mercy . 33

The object model . 33
Objects and dass inheritance . 35
Classes and commands . 36
What makes an object what it is? A Iook at object properties 36
Get properties . 37
Read only . 39

Property, inheritance, and dass! . 40
How to talk to objects so they Iisten . 40
Object names ... 41
May I see some ID please? 41
Every ... whose . 42
Index and range reference forms . 43
Relatives . 44
Objects and commands they understand . 45
Making your own commands 45
Handlers can deal with arguments 48
Handlers return results 51

Chapter 3: Values . 55

Stringing characters .. 57
What can we da with text? 57
Special string characters . 59
ASCII's a sure thing . 62
A string operation . 63

Considering and ignoring . 65
"My Dad" comes before "Your Dad" . 67

ix

CONTENTS

X

Sorting text • • . • . • • • . • • • • • . • . • • • • . • • . • . • • . • 7l
Breaking up strings . • . . • . . • . • • . . . • • • • • • . • . . . • • • . 72
Characters • • . • • . . • • . . . • . • • • • • • • • • • • • • • • 73
Pieking the pieces • • • • • . • • . • • . • • • • • • • • • • • 77
Chunk at a time • • • • • • • . . • 79
Words••.•••....••••••.•••••••••••••...•• 80
Paragraphs • . . • • • . • • • . . . • . • • • • • • . • • • • • . • • • . • • • . . . 83
Words and paragraphs in the real world • • • • • • • • . • • • • • • • • • • • 84
Mail to iCal script • • • • . . • • • • • • • • • . • • • • • • • • • • . • • 85
Text item delimiters • . • • • • • . • • • • • • . • . • • • • . • • • • • • • • 93
Offset••.•••••.••.••..••.••.....••• 108

Power wrap-up • . • • • • • • • • • . • • • • • • • • • • • • • • • • • 11 0
Strings and variables • . • • • • . . . • . • • . . . • • . • • • • • • 111
Escape character • • • . • . • • . • • • . • • • • • • • • • • • • • • . 111
lncluding tabs, returns, and spaces • . • • . • . . . • • • • . • • • • . • • • • . 111
ASCII numbers and characters . • • . • . . . • • • . • • . . • • • • • • • . • . . • • . . 112
String operators • • • • • • • • • • . • • • . • • • • • 112
Comparing strings • • . • . . • • • • . • . . . • • . . . • . . . • • • • • • • • 112
Considering and ignoring . . • • . . • . • • • • • • • • . • • • • • • • • • 113
Length••••••.••...••••••••••••••••••.••• 113
String parts • • • . . . • . • • • • • • • • • • • • • • . • • • 113
Text itein delimiters • . • . . • • • • • • • . • • • . • • . • • • . • • • • • . 113
Offset command • • • . • . . • . • • • . . • • • • • • • • • • • 114
Details previously. • • . • • • • . • • • • • . • • . • . • • • • • • • • • • 114

Chapter 4: Doing the math: All about numbers . • • 117

Massaging numbers•.•..••..•••..•••.•.••.••.•.•.• 118
Real big•..••..••••.••••••.•.•••.••••••••• 119
Rounding numbers • . . • • . . • • • • • . • • . • . • • . . 119

Rounding up • • • • • • • • • . • • • • • . • • • • • • . • . . . • 120
Rounding down • . . . • • . . . • • . • • • • • • • . . . • • . • • • • . • . 120
Rounding toward zero • . • • • • . • • • . • . . . • • • • • . • . • • • • • . . • • • • • 120
Rounding to nearest or as taught in school • . • • • • • • • • • • • . • . . • • • • • • 120
Rounding to other increments •...•••••••••••••••••••.••••.•• 121
Rounding handler•.•. ·, ••.•••.••••.•• ; ••.••••••••••• 124

Scripting at random • . . • • • • . . • • . • . . • • • • . • • • • • • • • • 125
Random number result . • . • . • • . • • • . • . • . . . • • . • • • • • • • • • • • • • • 125
Parameters • . • • • • • • • • • • • . • . . . • • • • • • • • • • 125
Blackjack! • • • • . • • • • • • • • • • • • . • • • . . • • • • • 127

You do the math • . • • . • • • • • • • . • • . • • • • . • • • • • • • • • • 132
Comparing with logic . . • . • • • . • . • • . • • • • • • • • • • . . . • • • • • • 133
Basic math • . • • . . • • • • • • • • • • • • . • • • • • • . • • • 134
mod and div . . . • . • • • . . • • • . • • • • . • • • • • • • • • • 136
Reversing numbers . • . . • . . • . • . • • • • • . . • • • • • • • • • • • • • . • 136
Fotder kitchen timer • • . . . • . • . • . . . • . . • . • • • • • • • • • • • • • • . . • • 137

Conclusion • • . • • • • • • • • • • • • • • • . • • • • • • • • • • 139
Power wrap-up • . • • • . • • • • . • • . . • . • • • • • • . • • . . 139

CONTENTS

Types of number values . 139
Coercing numbers . 140
Large numbers . 140
Rounding numbers . 140
Random numbers 141
Math operators . 142
Comparison operators . 142
Details previously . 142

Chapter 5: Pieking up dates• 145
The date dass and date object . 146
Date and time format 147
Forming dates on the fly . 148
More ways to specify dates . 150
User-supplied date . 150
current date . 152
time to GMT . 153
Date object properties . 154

dass property . 1 54
year .. 154
month .. 154
weekday . 154
time .. 155
date string . 155
short date string . 156
time string . 156

Useful date-related constants . 1 56
Doing math with dates . 157

Returning a Boolean . 157
Calculating time differences . 159
File age script .. 161
Using dates to get more dates . 165
Deleting old files . 166

Formatting time . 172
Last day of the month . 178
Alarm dock script . 178

The script . 180
Power wrap-up .. 181

The date value dass . 181
Specifying dates' 181
current date . 182
time to GMT ... 182
date dass properties . 182
Date constants • . 183
Comparing dates . 183
Calculating time differences . 183
Changing dates . 183
Details previously . 184

xi

CONTENTS

xii

Chapter 6: Lists and records. 187

More on lists . 189
Adding items to a Iist 190
Getting items from a Iist . , . . 190
List by dass . 193
List properties . 193
Treating one Iist item at a time . 194
List operations . 195
Commands that produce a Iist . 197
List of lists . 200

Records . 204
Getting record items . 205
Records shortfalls . 206
Where records do make sense . 206
Commands that return records . 208
Comparing records . 209
Concatenating records -. 209
Coercing records . 21 0
Creating records on the fly . 21 0

Power wrap-up .. 211
Lists .. 211
Manipulatinglists 212
Getting items from a Iist · 212
Comparing lists 212
List of lists . 212
List properties .. 213
Records . 213
Comparing records 213
Concatenating records 213
Coercing records 214
Details previously 214

Chapter 7: Giving commands 217

The anatomy of a command 218
Who made you boss? 219
copy and set ... 219

Using copy and set 219
copy and set examples 221

copy in applications 221
count ... 223

count for Iooping 224
Counting application objects . 224

get .. 225
The get command in AppleScript . 225
Getting values inside applii:ations . 226
Real-world use of the get command . 226

run .. 227
Running applications 227

launch .. 228

CONTENTS

Power wrap-up . 228
Application commands and AppleScript commands 228
set and copy . 229
get .. 229
run and launch 229
Details previously . 229

Chapter 8: Variables . 231

How are variables created? . 232
Assignments and declarations . 233
How to name variables . 233
Basic variable naming rules . 234

Basic no-no's . 234
More obscure naming rules . 234
Safe naming tactics . 235

Break all the rules! 235
Values and references . 236
How variables live and die . 239
Passing variables to handlers 242
Passing multiple values . 243
Properties . 243
When are properties a good idea? 244

Top-level variables . 245
Script object properties 245
User preferences . 245
Your script's preferences pane . 246

Predefined variable . 247
return .. 248
space and tab . 249
pi ... 249
Reference variables . 250
it ... 250
me .. 251
path to me .. 251
Tell me something 253
My property . 254
result ... 255

Power wrap-up . 256
Declaring variables . 256
Properties . 256
Global variables . 256
Local variables . 256
Naming variables 257
Values and references . 257
No good variables . 258
Predefined variables . 258
Reference variables it and me . 258
Result ... 259
Details previously . 259

xiil

CONTENTS

Chapter 9: Operations and coercion 261

What are operations? . 262
Operations and coercion . 262
What is coercion, anyway? . 263
How can we coerce values? . 263

xiv

When does AppleScript perform coercion on its own? 266
Boolean operations . 268

not .. 268
and .. 268
or ... 269
Mixing operators . 270

Comparison operators . 271
Variations . 272
What value classes can be used? . 273
Containmentoperators 274
Contained by exception . 276
Math operators . 276
Concatenation . 277

Concatenating strings . 277
String rules ; 277
Concatenating a string variable to itself . 278
More Iooping concatenations . 280
Concatenating records 281
Lists and concatenation . 282
Adding an item to a Iist . 283
Creating a Iist of lists . 283
Insert to Iist handler . 284
Concatenating other value classes . 285

The reference to operator . 285
lmplicit reference . 287
References and the tell block . 288
Consideration clauses . 288

lgnoring . 289
Consideration attributes . 290

Which value classes can be coerced? . 292
Date ... 294
Integer . 294
Singte-itern Iist . 294
Multi-item Iist . 294
Real .. 295
Record .. 295
String ... 295

Mixing operators and the mighty parentheses . 295
Understanding precedence rules . 296
Use parentheses! . 297

Power wrap-up .. 298
Operations . 298
Coercion . • . 298

CONTENTS

Explicit coercion . 298
Automatie coercion . 298
Boolean operators . 299
Comparison operators . 299
Containment operators . 300
Math operators . 300
The concatenation operator . 301
Adding items to a Iist 301
The reference to operator . 301
Consideration clauses . 302
Details previously . 302

Chapter 10: Teaching your script to make decisions 305
The basic conditional statement . 306
From the dictionary . 307
Offering alternatives . 308
More conditions . 309

Multiple condition script 309
How this script works 310
Canthis script be made better? 310

Complex Boolean statements 311
Nested conditional statements 312
Shortcuts . 315

Condition in a single line 315
Unnecessary conditional statements . 315
ls it true? ... 316
Shorthand writing 316

Power wrap-up . 317
Basic conditional statement . 317
if-then-else . 318
Details previously... 319

Chapter 11: The assembly line: Creating repeat loops 321
From the dictionary . 323
Repeat (forever) . 324

just when would you repeat forever? 324
lnterrupting a running script . 324
Exiting a loop programmatically . 324

Repeat a fixed number of tim es . 325
loop variables . 326
Repeat with a variable . 326

Using variables to define the range . 327
Changing increments . 328
Counting backwards . 330
Counting forwards and backwards in the same loop 330

Repeat in a Iist .. 331
Naming repeatvariables 331

XV

CONTENTS

Funny variable behavior 331
Another repeat in Iist example . 332
How useful is this, anyway? . 333

repeat while and repeat until . • 334
Other ways of counting loops . 338
Avoid Iooping when possible . 338
Power wrap-up . 339

A simple repeat loop . 339
Exiting a repeat loop . 340
Repeating a fixed number of times . 340
loop variables . 340
Repeat in a Iist .. 341
repeat while ... 341
repeat until , 341
Using counter variables . 342
Avoiding loops . 342
Details previously • . 343

Chapter 12: User Interaction •••••...•••..••••.. 345

xvi

display dialog . 346
From the dictionary: display dialog command . 346
From the dictionary: dialog reply . 347
The most basic form . 347
The erroneous Cancel button . 348
Custom buttons . 349
Default button . 350
Showing icons in dialog boxes 351
Getting text input from the user . 351
Using user-entered text . 352
How long do dialog boxes display? . 352
More about dialog boxes . 353
Validating user-entered text . 355
Alert handler . 357

choose from Iist . • 358
From the dictionary . 358
Using choose from Iist • • . . . • 359
Custom title . 360
Default selection . • 360
Selection restriction•... 361
Customizing buttons . 362

Choosing tinder items . 362
Common results . 363
Operating system version . 363

choose file . , • . . . 363
From the dictionary . 363
Result of choose file • • 363
When to use? .. 364
The basic command • . 364

CONTENTS

Custom prompt . 365
Restricting to specific file types . 365
How do I know the file's file type? . 366
Invisibles . 367
Setting the default location . 367
Allowing multiple selection . 368

choose file name . 368
From the dictionary . 368
choose file name vs. choose file . 369
When to use? . 369
Results of choose file name . 369
The basic command • 369
Custom prompt . 370
Default name and location . 370
Replace existing file . 371
Example . 371

choose fotder . 372
From the dictionary . 372
What does it do? 372
When to use? . 373
Parameters . 373
Choosing a fotder once 374

choose application . 375
From the dictionary . 375
Using the command . 375

choose URL . 376
From the dictionary . 376
Using the command . 376

choose color . 377
From the dictionary . 377
The result . 378
When to use? .. 378
The basic command and parameters . 378

User interaction and timeouts . 378
Quick custom dialog boxes for your script using AppleScript Studio 380

How will it work? . 381
Creating the application . 381
Edit your first dialog box . 383
Giving your window its AppleScript name . 384
Add dialog elements . 385
Name and edit dialog elements . 386
The hidden button field . 386
Testing the interface . 387
Connecting the buttons to the script . 387
The clicked event . 388
Testing the application . 389
Using the custom dialog in a script . 390

FaceSpan for OS X . 392
Nine steps to success . 392

xvii

CONTENTS

A word about FaceSpan's auxiliary resources . 399
library . 399
Templates . 400
Keep up to date . 401

Writing code ... 401
Handlers ... 401
FaceSpan scripts . 402

Tuterials . 403
Preliminaries . 403
Starting a project . 404
Project 1: Put a face on it . 404
Project 2: Multiple functionality for a button bar . 41 0
Project 3: Simple text editor . 412
Tutorial wrap-up . 418
The unsung heroes 419
To explore further 422

Power wrap-up . 422
User interaction and AppleScript . 422
display dialog .. 422
Dialog reply . 424
choose from Iist . 425
choose file . 425
choose file name . 426
choose color . 427
Details previously . 427

Chapter 13: Working with files 429

xviii

File reference delimiters . 430
File references, strings, and coercion 431
Alias and file reference . 433

How aliases work . 433
Finder references . 438
UNlX's POSlX paths 439

Coercing paths to and from POSlX paths . 440
Where are UNIX-style POSIX paths used? 442

URL .. 442
File name extension . 443
Getting file information . 445

From the dictionary . 445
Using info for . 446

Reading and writing files . 447
Commands for reading and writing files . 448
Reading and writing text files . 460
Writing RTF files . 460
Writing sound files with speech . 467

Working with the file system, the Finder, and System Events 468
Finder and System Events . 468
Files, folders, and disks . 468

CONTENTS

Creating files . 479
Getting the contents of folders . 479
Built-in file and fotder paths . 481
Using UNIX file commands 484

Faking volumes with disk utility 488
Mounting volumes 490
Power wrap-up . 492

File references . 492
UNIX paths .. 492
File name extension 493
Reading files . 493
Opening and closing file access 494
Writing to files . 494
Details previously . 49S

Chapter 14: Working with the clipboard 497

Getting the clipboard data to AppleScript 498
Setting the clipboard data . 498

Copy in applications . 498
Using the set clipboard command . 499
Using GUI scripting . 499

Clipboard info . 499
Parsing styled-text data . 499

How was alt that figured out? SOO
Getting styled text . SOO
How is the style data organized? . S01
Parsing hex numbers . S02
Parsing the style data . S02

Saving clipboard data to a PDF file . SOS

Chapter 15: Turn errors in your favor 509

Compile errors .. S10
How runtime errors work in AppleScript S10
The psychology of an error S10
The anatomy of an error 511
Trapping errors ... S11

The try block .. S12
The full try statement from the dictionary S13
What to do in case of an error S13
Putting error numbers to use . S1S
Testing for multiple errors S16
Nesting try handlers S16
Be careful not to trap too much S17

Can errors serve a function? S17
Script-wide try statement S18
Logging errors to a file S19
Generating errors .. S19

xix

CONTENTS

XX

Using errors for string coercion . 520
List of error messages 521

Operating system errors 521
Apple event errors . 523
Application scripting errors . 524
AppleScript errors . 525

Power wrap-up . 526
Compile errors . 526
Runtime errors . 526
Trapping errors . 527
Generating errors . 527
Details previously . 527

Chapter 16: Other control statements 529
Application responses . 530

Application responses and subroutines 531
Timeouts . 532

Setting a new timeout value . 532
Trapping the timeout error . 533

Chapter 17: Defining and calling subroutines 535
What are subroutines? . 536
Subroutines have to be called in order to work . 537
Your first subroutine . 538
The run handler . 539

l've never seen no run handler! 539
When should you explicitly use the run handler? . 540

What are parameters? 541
What's the result? . 542

Returning a result midway . 543
Returning results from subroutines . 543
Collecting results from subroutines . 544
Can a subroutine return more than one result? . 544
Subroutines' results can be used in an operation Statement 545
Classes don't often mix . 546

The two kinds of AppleScript subroutines . 547
Positional parameter subroutines . 548

From the dictionary . 548
Defining and calling positional parameter subroutines 548
Adding parameters . 549

Labeted parameter subroutines . 550
The definition and the call . 550
From the dictionary 551
Start with the basics: Subroutine parameter Iabels 551
Making up your own Iabels . 553
Calling subroutines with Boolean parameters . 554

Whose subroutine is it anyway? . 555

CONTENTS

Redefining AppleScript commands . 556
Subroutines and variables . 557

Declaring variables . 557
The scope of tocat and global variables . 557
Using local variables neverthetess . 558
Don't yield to global temptation . 559
Scope of properties . 559

Storing individual subroutines . 559
Moving script parts to subroutines . 560
Creating your own programming tanguage . 562
Working smart with subroutines . 563

Organizing scripts with subroutines . 563
Reusing code with subroutines . 563
Think ahead . 564
Think smatt . 564
Apptications aside . 564

Power wrap-up . 564
What are subroutines? 564
The basic subroutine . 565
Positional parameter subroutines . 566
Labeted parameter subroutines . 566
Subroutines and variable scope . 566
Details previously . 566

Chapter 18: Script objects 569

What are script objects and what are they good for? . 570
Simple: Loading script objects . 570
Serious stuft: Replicating scripts . 571

Declaring, initializing. and catting script objects . 571
Proliferating your script object . 572
Using subroutines to create script object instances 574

Script objects and instances . 576
Script objects, properties, and variables . 576
Loading script objects from fites . 577

Script toading basics . 577
Forming script libraries . 578
Where should you save your library? 578

Script objects and variables . 579
lnheritance: When scripts start to have children 581

Got no life: Using inheritance to create a shoot 'em up game 583
Run script command . 585

Run script with parameters . 586
Fotder stock example . 586
Alien invasion arcade game . 589
Case study: AutoGraph . 589
Power wrap-up . 591

What are script objects? . 591
Creating script instances with a subroutine . 591

xxi

CONTENTS

Declaring script objects . 592
Replicating script . 592
Script object and inheritance .. 592
Loading scripts . • • . 593
Run script command . 593
Details previously . · 593

PART THREE: THE WILD WORLD OF APPLESCRIPT

Chapter 19: AppleScript amenities in Mac OS X . ..•..•.. 595
The script menu . 596

Preinstalled script . 597
Other menu items . 597
Running and launehing scripts from the script menu 597
Getting the path of the current script . 597

Apple's sample scripts . 598
Fotder actions . 598

Starting out with fotder actions . 599
Where are fotder action scripts stored? . 602
Using the contextual menus with fotder actions . 602
Using scripts to manage fotder actions • 603
Fotder actions events . 603

Scripting the user interface . • 603
Enabling Ul scripting • 604
GUI scripting dictionary . 604
Some object structure . 605
What can you do with GUI scripting? . 605
Using Ul Browser to locate elements . 607

The Servicesmenu•... 611
Digital hub actions 612

Chapter 20: Scripting additions and extendibility ..•••..• 615
Scripting additions and the AppleScript language•.. 616

xxii

Scripting additions and Mac OS X 617
lnstalling scripting additions•.......... 617
Standard Additions 618

Userinteraction•............ 618
File commands . 622
String commands . 623
Clipboard commands . 624
File read!write • . 625
Scripting commands . 626
Miscellaneous commands . 627
Fotder actions . 628
Internet suite . 629

CONTENTS

Third-party scripting additions . • . . 629
Where to find third-party scripting additions . 630
ACME Script Widgets . 630
Satimage . 630
ScriptOB ... 631

Missing additions and garbled scripts 631
Scripting additions and script portability . 632
Otherfaceless scriptable utilities . 634

URL Access scripting . 634
ColorSync scripting . 634
Image Event scripting . 635

Chapter 21: The fundamentals of automatinJ applications o o o 637
Scripting dictionary basics . 638
Look, Iook again, and then Iook some more . 640
Things (objects) and things to do (commands) . 640
The object model .. 641

Classes . 642
Properties . 642
Elements . 647

Hey, you! Referencing objects . 647
Starting with the parents . 648
"Whose" hot and who's not. 649

Activating applications . 650

Chapter 22: DebUJJinJ scripts o o o o o o o • o o o o o • o o o o 653
Don't try to understand the problem, just solve it! . 654
Don't confuse user errors with bugs . 654
Values are a window to your script statements . 655
Using the return command . 655
Dialog boxes to the rescue . 656
Error messages tell a story . 659
Using the event log . 659

logging anything . 660
Log history . 660

Debugging with Script Debugger 661
The Script Debugger script window . 661
Script Debugger's debugging mode . 662
Script stepping . 664

Divide and conquer . 664
When your scripts are used by clients . 665

Error log . 665

xxiii

CONTENTS

Chapter 23: A script by any other name 667

Compiled scripts . 669
Script applications . 670

Droplets . 670

Stay-open applets . 672
run .. 672
reopen .. 672
quit .. 672
idle .. 673

Call handlers from other scripts . 673
Bundle up .. 674

Leeking scripts with run only 674

Startup screen . 675

Chapter 24: Healthy scriptwriting practices 677

xxiv

There are no bad scripts, just bad scripters . 678
Naming conventions . 678

A comprehensive naming convention system . 679
Naming subroutines . 679

Basic formula . 679
Camplex formulas . 680
Case sensitivity 681
Stay consistent . 681
Single words . 682
Speil it out . 682
Avoid "cute" expressions . 682

Naming variables . 682
Variable naming formula 682
Variable naming prefixes 683

Script templates . 685
Storage solutions . 685
Separate functions from. commands . 685

Commenting scripts . 686

Literal expressions can bring you down (dramatization) 687

Enhancing performance . 687
OS X, baby! . 687
Who's on top? .. 688

Faster syntax . 688

Using subroutine libraries . 689

Many little chunks 690
Loaded at the start and out of the way . 690
Creating and managing your own script libraries . 690
Load objects upfront, keep in properties . 690
Keep on top of things: Code buried in script objects can be time consuming 691

Feedback · 691

Keep the users informed . 691
Timing scripts . 692

CONTENTS

Delivering scripts to other sites 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 o o o 0 0 0 0 0 0 0 0 0 o o 692
Managing script preferences that the user can change 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 692
Updating and upgrading your solutions 0 693
Should you lock your code? 0 o 0 0 0 0 0 0 o o 693
Adding a debug mode to your scripts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o 0 o 693
Creating detailed text Iogs 0 o o o o o o o 0 o 0 0 694

Wrap-up 0 694

Chapter 25: Scripting Apple apps o o o o o o o o o o o o o o o o o 697

iTunes + iPod 0 698
Examples from Apple 0 o 0 o 0 o 0 0 0 0 o o 698
iTunes scriptable objects 0 0 0 0 o o o o 0 o 0 o 0 o 0 0 0 0 0 0 o o o 0 0 0 o 0 o 0 o o 0 0 698
Working with tracks and playlists 0 699
Scripting the equalizer 0 700
iPod scripting 0 701

Mail 0 701
Referring to a message 0 702
Creating a message 0 702
Message headers 0 703
String utilities 0 704

Address Book 0 o 0 0 0 0 0 0 0 704
iCal 0 707

Calendars 0 708
Events 0 708
New event based on Mai I 0 710
Use iCal to schedule scripts 0 o 0 712

iChat 0 713
iChat classes 0 713

Chapter 26: Scripting data and databases o o o o o o o o o o o o 717

Automating FileMaker Pro with AppleScript 0 718
Versions 0 719
The FileMaker object model and the commands you can use 0 0 0 0 0 0 0 0 0 0 0 0 0 719
Finding data quickly with the whose clause 0 723
Running AppleScripts from inside FileMaker 0 0 0 o o 0 0 o 0 0 0 0 o o o 0 o 0 0 0 0 0 0 725
Working smart with FileMaker 0 o o 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 726

Scripting Runtime Labs' MacSQL 0 728
Getting connected 0 728
Speed 0 729
Simple select command 0 729
More on result sets 0 730
Clean up or go overboard 0 731
MacSQL subroutines 0 731

ScriptOB 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o o o 0 0 o o o o o 0 o 0 o o 733
Classes and commands 0 733
Creating a database 0 733
Database management and variables 0 734

XXV

CONTENTS

Adding data to our database and deleting it 734
Finding data . 735
Sorting data . 737
Adding and deleting fields . 737
Working with files . 738

Chapter 27: Automating media workflow 741

BuHding a hot folder API 742
The anatomy of the homegrown API 742
Linking the product scripts to the system 743

Separate 1/0 from process . 7 44
Variable-data systems 745

Cost ... 745
Results are open 745
Custom fit without compromise 745
Data vs. information 746
Find and replace routines 746

Adding a nonscriptable application 746

Chapter 28: Smile: The AppleScript integrated production
environment . 749

Smile's integrated engine architecture . 750
Smile's technologies . 750
Smile's shell ... 751
About this chapter 751
The perfect complement to AppleScript . 752
Get familiar with Smile . 752
An introduction to Smile's technologies . 755

Smile's custom dialog windows . 755
Regular expressions . 756
The graphic engine 757
Smilelab . 759

A tutorial: Making a tool to write text over an existing PDF document 762
Preparing the scripts . 762
Rolling up the scripts into a graphical interface . 770
Exercises . 782

Chapter 29: Automating UNIX applications 785

Changing permissions . 786
Working with UNIX applications 789

Chapter 30: Scheduling scripts 793

iDo Script Scheduler . 794
Using iCal to schedule scripts 795
Managing stuck scripts . 796
UNIX cron .. 797

xxvi

CONTENTS

Chapter 31: Controlling remote applications. 799

Scripting remote Macs over IP 800
Enabling Remote Apple Events . 800
Talking to machines . 801
Authentication . 801
terms from . 802
Launehing applications . 802
Using aliases . 802

Controlling XML-RPC and SOAP 802
SOAP ... 803
XML-RPC ... 803
Sampie code . 803

Wrap-up . 804

Chapter 32: The business of automation 807

Starting to make an impact . 808
Rolling up your sleeves . 808
Taking the next step . 809
joining Apple's Consultants Network . 809

Figuring out the value of automation . 809
The broad impact .. 810
The art of prototyping 810
ls it possible? ... 811
Charging for automation 811
Scope creep ... 811
Supporting your solutions 812

Index . 815

xxvii

ABOUT THE AUTHOR

Hanaan Rosenthal: OK, so who are we kidding, this part is not
some facts concerning the author's life, but rather where I get to
write good stuft about myself. So, here I go with some info about
myself and how I got to be a scripter:

I started with computer graphics when I was 10 years old. I got a
Sindair 8-bit computer, wrote a couple of graphic programs and
a game for it, and published a newsletter that had a one-issue
life span.

When I got to Providence, Rl, from Israel at twice that age, I feil in
Iove with Macs after taking a course at the Rhode lsland School of
Design. I quit my job delivering candy, bought a Mac II with

$2,435 of the $2,500 my wife and I had in the bank, and became a computer graphics con
sultant. ln 1996 I started scripting professionally, and my first $100K + job came in 1998. This
project turned into a disaster when the president of the company I was creating the system
for decided to kill the project and blame it on me. Now it's all but a funny memory, since
over the past eight years I have had the pleasure of creating some pretty cool systems for
some pretty neat people from companies such as Fidelity Investments, The Hartford,
Wellington Management, Showtime Networks, The Boston Globe, and others.

During that time I also met with john Thorsen and the rest of the folks from TECsoft
Developers Consortium (TDC), which is a national consortium of AppleScripters.

Some of my early clients were financial companies from the Boston area for which I created
different graphing and document generation systems (all AppleScript based!). Thesejobs led
to an AppleScript-based graphing engine I invented that allows me to add custom graphing
capability to any AppleScript system. The daily stock graphs in The Boston Globe, for
instance, are created using one of these systems.

Now, as always, I mix consulting with other things I Iove such as caring for my two sweet kids,
whom johanne and I homeschool, pouring concrete countertops, renovating historical
homes, and rooting for the Boston Red Sox.

xxviii

ABOUT THE TECHNICAL REVIEWER

Bill Cheeseman lives in Quechee, Vermont. He is well known in the
AppleScript community as webmaster of The AppleScript Sourcebook
site (www.AppleScriptSourcebook.com) andin the Cocoa community
as the author of Cocoa Recipes for Mac OS X-The Vermont Recipes
(www.stepwise.com/Articles/VermontRecipes). He is the author of
two AppleScript utilities for Mac OS X, PreFab Ul Browser and PreFab
Ul Actions (www.prefab.com/scripting.html). He has programmed
extensively in a variety of languages on a long succession of Apple II,
Apple 111, and Macintosh computers. ln his spare time, he is a trial
lawyer specializing in intellectual property, and environmental and
commercial insurance coverage Iitigation.

xxix

XXX

ACKNOWLEDGMENTS

I would like to thank a few people for making this effort possible. The first thanks I owe to my
family who were there every step of the way: Johanne, my wife, who told me I could write a
book and was there for me whenever I was roaming the house aimlessly in search of a sen
tence, and also to my kids, Aylam and Olivia, who tallied the page count and graciously named
the book ''That dumb book my dad wrote about AppleScript" (the publisher didn't bite).

I owe thanks to Bill Cheeseman, who kept me honest and didn't hold back. This book would
not have been the same without Bill's deep understanding of the subject matter, which I can
only hope to possess. I also drew from the knowledge of people such as Emmanuel Levy,
Shirley Hopkins, Mark Munro, and the folks from TDC who turned every simple question into
an election-year debate.

I also owe thanks to the many people at Apress and friends of ED who were on top of every
thing from the direction of the book to crossing the t's and dotting the i's. l'd like to thank
Ami and Ellie and the rest of the folks who worked on this book, for managing to find even
the most obscure inaccuracies, and to Chris and Sofia, who whenever I sat there idle with
nothing to do cheered me up with one form or another that I had to fill out.

PREFACE:
WHAT MAKES APPLESCRIPT

UNIQUE AND WHAT WILL MAKE
THIS BOOK YOUR FAVORITE?

One issue that keeps coming up in the AppleScript world is the place of scripting between
recording macros and programming from scratch. ls scripting more like programming with
C++, or more like creating Photoshop Actions or FileMaker scripts? This question doesn't have
one answer, but it does have some interesting aspects. First, let's establish some facts:
AppleScript is an object-oriented programming language that has both depth and beauty in its
own right, and an unlimited potential for expandability by scriptable applications and script
ing additions. While AppleScript can be used for more straighttorward tasks like applying one
or two transformations to a mass of files, it shines brightest when taken to a higher Ievel. You
only start to tap into the power of AppleScript when you start branching and Iooping.

Figuring out, however, what AppleScript resembles the most is missing the point. The best
aspect of AppleScript is also what makes it like no other programming language. ln other
programming languages you write programs, mostly a standalone package of code with
some supporting files. The program has an interface that the user does something with, and
some result is produced. All that happens as part ofthat package. What makes AppleScript
different is that what we create with AppleScript is not so much a program, but rather a
robot that uses other people's programs. lmagine being a graphic designer with some mod
est scripting capability. Now imagine that you have to superimpose a transparent logo at the
corner of 1000 images for an online catalog. Manually, this would take you three days; how
ever, using AppleScript, you fashion yourself a robotic arm complete with a motor, a trigger,
and some controls, which does the job in 12 minutes. Next, you detach the cool gadget from
your arm, build it two legs, and set it loose with a remote control. Now, it does the boring
repetitive job of three people. You have created an employee that works at phantom speed,
is 1 00% accurate, and doesn't need health insurance. ln fact, when I meet with clients I ask
them to describe to me the ideal human position they would like the script to function as,
instead of a program they need; the scripter's job is to teach the Mac to do the work of that
person, using the exact same applications the human employee would have used. While
other programming languages create programs that need a human operator, in AppleScript
you create a super-operator that uses these programs with a speed and precision like no one
has ever imagined.

xxxi

PREFACE

xxxii

So, what possessed me to take on the task of writing what is undoubtedly the Iongest book
ever written about AppleScript? lt started with reading David Blatner's Real World
QuarkXPress 3 book in the early 90s. This book inspired me because it was written in such a
way that any novice could open it up and learn from it, but at the same time, the subject
matter was advanced enough to keep even the power users happy. Ever since getting
involved with AppleScript, I wanted to do the same for this programming language.

What sets this book apart is that it combines a substantial reference alongside in-depth
explanation and real-world examples. This combination of features isn't so much trying to be
everything for everyone as create a complete experience.

Another thing I noticed in other books was that they distributed the share of discussion
between subjects based on the subject's complexity, not its usefulness. These subjects were
organized according to the rote they played in the language. That has never made sense to
me, and I set out to change it. This book is not about the AppleScript language but rather
about the scripter. lt is organized from the viewpoint of a person who needs to do real things
with the language. This philosophy shows itself in a few ways: first, the subjects you will find
can be described as "things people want to do," things such as work with files, manipulate
strings, create interfaces, etc. ln each chapter I cover alt aspects related to the issue at hand,
while giving it the attention it deserves based on how much it is used in the real world, not
how many properties and related commands it happens to have. Second, alt information rel
evant to a specific topic is discussed, but is then taken a step further: it gives you the opin
ion of a professional scripter (that would be me) on what actual uses this feature has, what
related tricks there are, what are the potential problems, and more. The chapters also
include real-world examples that shed light on every feature from several different direc
tions. My thought was, lf I know it, I will write it. There is so much more to a programming
language such as AppleScript than meets the eye, and I wanted you to know as much of it as
possible.

About the scripts that come with the book: you can download the scripts for the book from
www.customflowsolutions.com. Go tothat site and dick the AppleScript book link to get to
the download area.

The scripts are divided into two groups: figure scripts and copy scripts. The figure scripts are
the scripts that appear in the screen shots in the book and they match the number of the
screen shot. The copy scripts are the scripts that appear in the copy and have a script num
ber above them, such as Script 3-5, which will be script 5 in Chapter 3.

RESOURCES

Following are some resources you can refer to for more information about AppleScript:

Apple's own AppleScript web pages (www.apple.com/applescript) are full of information,
sample scripts, and links to other resources. lf you are interested in scripting different Apple
applications such as iTunes, iPhoto, Mail, etc., then refer to the special application pages
listed in www.apple.com/applescript/apps/. The resources page lists about 50 links to web
sites, books, consultants, and more.

For making some AppleScript friends and getting your questions answered, you can join the
AppleScript users mailing Iist. join the Iist by going to www.lists.apple.com/mailman/
listinfo/applescript-users.

Outside the Apple-sphere there are a few great websites dedicated to AppleScript. Chief
among them is MacScripter.net. MacScripter.net has a few sections including the most com
plete database of scripting additions, AppleScript code shared by other scripters, a BBS, and
other features. Another great website is Bill Cheeseman's The AppleScript Sourcebook
(www.applescriptsourcebook.com). The AppleScript Sourcebook is known for Bill's detailed
explanation of different topics. Following software updates from Apple related to
AppleScript, this website is the place to Iook for explanations of what these updates involve.

For AppleScript training, the best place to go is www. teesoft. com. john Thorsen, the founder
of TECSoft, has been training on AppleScript since the beginning of time and has trained
thousands of people on the subject. john also provides online training as weil as a training
CD for AppleScript.

There are many other AppleScript-related websites that I haven't included. Piease see the
"links" page in Apple's AppleScript website and the other two websites I mentioned for a
complete listing of related sites.

xxxiii

AppleScript

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

2

What are scripts for?

AppleScript is for Macintosh automation, and so scripts you write can automate tasks you
would otherwise have to perform with the mause and keyboard.

While you can use AppleScript to automate almest anything you can do with the mause
and keyboard, you probably wouldn't want to. So what would you want to automate? The
answer to this question falls under two broad categories: small things and big things.

The main difference between big scripts and small scripts is the amount of thought and
planning required. When writing small scripts, you start out by ... writing the script. As the
script progresses, you add more functions, more lines, and you go back and fix and debug
until things work. Big systems require planning. You have to carefully consider the users,
the environment, the different triggers for things the system will do. You have to deal with
data sources, small interfaces, return on investment, and all these things that can kill your
efforts just as you start to get excited.

Automating small things
Small scripts are the way one usually starts to become familiar with AppleScript.
AppleScript Iets you easily create a script, test it, save it as an application, and start using
it. This quick turnaraund for truly useful utilities is part of the winning recipe that made
AppleScript so great.

A few years ago I was teaching a Photoshop dass, and during my five-minute break a col
league told me of a problern a dient of his, a prepress hause, was having. The dient
couldn't print lines in Quark XPress documents that were thinner than 0.25 point, and was
spending hours correcting every document that came in. By the end of my break I had
written the following script. saved it as an application, and handed it back to him. The
script went like this:

tell application "QuarkXPress 4.01"
tell every page of document 1

set width of (every line box whose width < 0.25) to 0.25
end tell

end tell

The prepress shop was thrilled for the "utility" we scrambled to program for them.

Now, since the dient got this one for free, and I gave it away, return on investment can't
be measured in terms of money. But just for kicks. we can figure it out if we assume it took
a person ten minutes to manually fix an average dient file, and that this prepress facility
went through ten files a day. Using these numbers, the time investment paid for itself 5000
times over during the first year. Sounds a bit over the top, but it's not. little AppleScript
efforts can make a big difference.

Automating big things
While AppleScript doesn't sweat the small stuff, it can be the base for large-scale custom
integrated systems. As far as what to automate, you could automate any task that has a
repeatable logic, and if the cost of automation is less than the amount of money you save,
and it usually is, the task will be worth automating. A repeatable logic is logic that can be
applied successfully to similar, but not identical, subjects, and produces a predictable out
come, based on the uniqueness of the subject.

For example, here is a process that is not so suitable for automation:

You take the clienrs instructions file, you read them, and figure out what cor
redions the client wanted. lf the client wanted the image to be color-correded,
you open the image in Photoshop and apply curves until it Iooks better.
Otherwise, just corred the typos.

This process is much too arbitrary and relies on the operator's human qualities such as the
ability to perform color correction and correct typos.

Here is a better candidate for automation:

When you get a job (rom a client, search for the client in the database to locate
the job in(ormation. lf the job is marked "urgent," e-mail the imaging room to
exped it within ten minutes. Open the lnDesign document and verify that oll the
fonts were provided. Make sure that the document contains the number of
pages indicated in the electronic job ticket; if it doesn't, make a note in the
database and e-mail the client. When done, make a copy of the job folder to the
archive folder on the server. and send another copy to the "in" fotder on the pro
duction server. Repeat for oll jobs that arrived last night.

Now this is a process that AppleScript was made for. Besides having programmatic ele
ments such as a repeat loop for applying the process for alt jobs and some branching, the
process itself is clear, logical, and can be applied to any dient job that comes in.

lf we Iook into the previous process, we see that quite a bit of it happens in applications.
The operator has to know how to use FileMaker for searching and entering data; lnDesign
for checking fonts, pages, etc.; and the Finder for moving folders around. Controlling these
and many others applications is one of AppleScript's main strengths. AppleScript can give
applications commands and get information from applications, such as the data in a
FileMaker Pro record or the number of pages in an lnDesign document.

INTRODUCTION

3

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

4

AppleScript is also ideal for performing repetitive tasks. For instance, how would you like
to show up at work one morning and realize that your jobforthat day is to go through 200
TIF images in a folder, add a black frame to each one, and export them as JPEGs? Then, you
must create a PDF file with alt the images, four-up, with the image name under each
image. Sounds like hard work? Your reward for job-well-done just might be another fotder
the next day ...

While not very sophisticated, this process is very repetitive. A script can do it for you while
you take a walk to the cafeteria and back.

Where's AppleScript?
For about ten years now, every Mac that shipped with System 7.11, also known as System 7
Pro, had everything needed to use AppleScript. No special installs, hardly any configura
tion issues from Mac to Mac, and a basic array of scriptable applications that grew rapidly,
and still does.

What it means is that writing scripts and installing and running them on other Macs
requires transporting the script file alone, and not a whole array of other resources; every
thing you need is there.

What's truly remarkable about the expandable nature of AppleScript is that most of the
language resides inside the actual applications you automate. For better or worse, the Ievei
to which applications are automatable and the ease in which you can include them in an
automated solution is largely up to the software vendor. lt is up to the development team
of every application to implement scriptability for any feature they imagine someone will
want to automate.

lt wasn't until a few years ago that Adobe jumped on the scripting bandwagon and started
incorporating AppleScript into their widely used graphics program. Adobe Illustrator 9 was
the first major Adobe app to be scriptable, followed by lnDesign, which started out boast
ing a comprehensive scripting vocabulary, and finally Photoshop 7 came out of the box
scriptable as weil.

As it stands, the very existence of AppleScript depends on the applications that support it.
Making an application scriptable doesn't mean simply checking the Make Scriptable
option in the Compile dialog box.

When writing Cocoa applications, there is a basic scripting dictionary that can
be easily made available; however. in order to allow scripters to automate their
applications, developers must put a good amount of thought, planning, and
development time into the scriptability of their applications.

To make an application scriptable, developers have to create special terminology for each
feature they want to make scriptable and come up with an object model for the applica
tion. That can add up to many hours and can't be done as an afterthought. However

difficult, software developers see good return on their investment when companies inte
grale their applications into automated solutions. This alone ties that application to the
dient and lowers the chances that the dient will dump their application for a competing
product.

How are scripts written?
You can't write and run AppleScript scripts from any text editor. To write scripts you need
to use a special script editor that will allow you to write the script, check syntax, compile
the script, run it, and save it as an application.

To start, you may want to use Apple's own free Script Editor. Script Editor is a little appli
cation that comes preinstalled and ready to use with every Mac system. Although Script
Editor has been around for years, it is only in version 2. Despite the low number, the
program is pretty robust and will allow you to do anything you need to start with
AppleScript. Besides Apple's Script Editor application, there are a few commercially avail
able AppleScript editors that have enhanced editing and debugging features.

Thlrd-pGtty scrlpt edltors: Other AppleScript editors include Late Night
So(tware's Script Debugger (www .latelightsw. cOIII) and Smile (www. satimage
software.cOIII), which is a commercial scripting program, but is also available
as a free download. See more about Smile in Chapter 28.

As you're writing a script, you can compile it right from the script editor. Even if you save
it as a droplet or an application, it can be changed, recompiled, and run right from the
script window. This makes your scripts (or other people's scripts for that matter) easy to
Iook at and try.

Where do scripts reside and how
do they run?

Scripts can be saved anywhere! lt is up to you where you want to save scripts you create.
This flexibility leaves you wide open to create your own super-organized script storage sys
tem, and, of course, allows you to create a holy mess.

Some applications have special folders, usually called Scripts, and if you place your
scripts there they will appear in some script menu. For instance, if you've installed the Mac
OS X script menu, the first item in the menu opens your personal scripts folder. This fotder
is found in the Library fotder in your own home folder, and any scripts or folders you put
there will appear under the Script menu in the menu bar. The Script menu also lists scripts
found in the Scripts fotder in the generat Library fotder on the startup disk. Folders found
in these Scripts folders are shown as submenus.

INTRODUCTION

Dl

5

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

6

More and more software vendors realize that adding a Scripts menu to their applications
is more than letting the user create their own script; it also allows them to quickly add
"features" to their applications that otherwise would take timely programming resources.

For example, BBEdit has a script menu with some useful scripts that perform some editing
functions.

AppleScript file format
Where scripts do get a bit confusing is in their file format. Although you write scripts using
text, and when you reopen a saved script the text is usually there, the script is actually
saved as special tokens that are interpreted by the AppleScript component when the script
is run.

This "what you see is not what you saved" situation will usually go unnoticed by the
scripter, unless there's some version issue, or usually an application or scripting addition
issue. What you have to remember is that the AppleScript language, as we discussed
earlier, is composed largely of the terminology that scriptable applications contain for
their own scriptability. An application can add hundreds of commands and objects to
AppleScript, each with their own arguments and properties. For a script to compile prop
erly, it needs the applications that are referenced in it present and open. ln fact, if an
application referenced in your script isn't present when you try to open the script, you will
either have to give up until you instaU it, or trick AppleScript to think some other applica
tion is that missing one. lf you do trick AppleScript, you will have a hard time changing the
AppleScript code you wrote for that application since it will appear as hard-to-read special
codes inside double angle brackets (known as Apple events code) instead of the easy-to
read English-like AppleScript text you're used to.

So how can all that affect you and your script? The main reason why you won't be able to
see your code properly is that the application, scripting addition, or application's
AppleScript plug-in isn't available. lf the application is open but is lacking a plug-in, the
script will open but won't display correctly.

Some apptications, mainly from Adobe, don't incorporate their scripting termi
nology into the actual apptication, but rather have a plug-in manage alt the
AppleScript-related activity.

Rest assured, however, that the actual script is fine. The next time you open it with the tar
get application open, it will return to its old self and compile properly.

So what formats can a script be saved as? There are three main kinds of script files: regu
lar compiled script, which is the native AppleScript file format, and scripts saved as plain
text or as applications. On top of that, OS X added a new option for saving compiled
scripts and script applications called "bundle." Bundles are folders that appear and behave
as files. You can read more about them in Chapter 23.

For most purposes, your script will start as text, but will be most likely saved as a compiled
script file. Later on the script can be saved as an application and installed somewhere.
A script may remain in its AppleScript format (nonapplication) state if it's either loaded
into another script or used in an application that is "attachable."

An attachable application is one that can have scripts attached to it, usual/y via
a Scripts menu.

There are also two kinds of applications: regular application and applets. A regular appli
cation runs the script when you double-dick it, and quits after the script is done. A droplet
can also respond to files being dropped on it. This is useful for a script that processes files
or folders.

When saving a script as an application, you can't specify whether you want it to be a
droplet or a normal application. lnstead, AppleScript determines that based on the con
tents of your script. Basically, if you told AppleScript what to do in case some files are
dropped on it, it will become a droplet; otherwise, it will be a normal application. We will
discuss all that in detail in later chapters.

So, why then would you ever save a script as text? There are a few reasons. One, saving
and opening scripts as text doesn't require that the script gets compiled. This is very use
ful when something stops you from compiling the script, namely, an error in your
AppleScript text. Also, when I send scripts to be used on other Macs, l try to send them in
text format. Getting the script as text forces the other person to open them in Script
Editor and compile them on the Mac on which the script will eventually run. This helps
iron out issues that may stem from using a slightly different version of application and
gives the script a chance to see where all the applications are located on the new Mac.

Another format-related option you have is to save a run-only version of the script. This will
allow the script to run, but no one will be able to read it. Distributing a script as run-only
is useful when you want to protect the rights to your proprietary code.

The golden triangle: AppleScript language,
application scriptability, and the scripts
you write

We looked at the rote of applications' scriptability earlier. Now, how does that scriptability
work with the AppleScript language and with the actual scripts you write?

All this is very much like any other spoken language, say, English. We have the base lan
guage that has verbs, nouns, adjectives, and some rules. We can use English to talk, but
what we say has to have some context in order to be interesting and for us to relate to
others. This is where different subjects come in, and I mean big subjects; subjects that have
their own lingo. Take for example military speak, computer geek speak, or medical lan
guage. They all are English, but each has its own special words, some of which no one

INTRODUCTION

7

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

8

outside of the business can understand. More than that, they add meaning. Take for exam
ple the following sentence: "Put your masks on, the operation is ab out to begin." lt means
two completely different things whether you're a surgeon or a sergeant, and if you're a
computer geek it means nothing!

The same with AppleScript: the language does give us the command make and the object
document, which are known to most applications, but simply writing make document has
no meaning unless you point it to an application that knows what to do with it. And this
application will have its own way of dealing with that command, which is different than the
way another application was told to deal with it.

OK, so now we have AppleScript with some programming basics and applications that con
tain their own nouns, also known as objects, and verbs, called commands. Where does that
leave you and your blank script editor window? Weil, you can use all these indiscrimi
nately: mix AppleScript core terms with application objects, or use AppleScript to crunch
data taken from an application's object properties.

Out of all these, perhaps the most exciting thing you can do (if you're the type of person
who can get excited by a programming language) is to create your very own commands
and objects. You create commands by writing handlers and objects by bundling those han
dlers along with some properties in script objects.

Let's see if we can get into the spirit of procreation (getting excited by the last section
should help some). What if your script's purpose is to automate the creation of a catalog?
What you might have is one string of commands, starting at the top going down, telling
the different applications what to do. First you have some database commands for gather
ing the information, then you use some AppleScript commands to clean and format the
text and add some dollar signs to numbers, etc., followed by some repeat loops and con
ditional statements (if, then) that dump all that text into the page Iayout program.

OK, that's not fair. When you start out you just want to get things done and you don't care
really how. While 1 stillthink you should start this way, 1 do want you to have a mental idea
of how you should be writing scripts once you get over the initial euphoria that overcomes
you every time your computer does something for you, and you have to run and get a
cup of coffee just so you can tell everyone that "the script did that by itself while I ...
while I ... was getting a cup of coffee!"

The better script model
So how would you make the orderly chain of commands different, and why? For the sec
ond question there are a few answers. The quick and dirty on it is that well-written scripts
are more portable and flexible. They're easier to change, and making a change can mean
improving the way multiple scripts run. Also, your code becomes more reusable, which is
a major part of being a profitable scriptwriter.

And how are better scripts written? While Chapter 24 is dedicated to healthy scriptwriting,
1 wanted to touch upon the "better script" model in general terms.

Teaching the script new commands
Let's start with redundant code. Redundant code is code that performs nearly identical
operations in many places in the script. For instance, in our catalog automation script, you
may have some code that goes to the database and gets some information from a field,
say, the price of an item. Then, the script adds a $ sign to the number and inserts it in a
named text frame in the page Iayout application. These operations strung together take
up, say, 30 lines of code, and they repeat in about five places in your script.

You can make your script much better by your own command! How about a command
that goes by the name "get_data_from_database_format_it_and_insert_into_layout".

This command you write yourself is called a handler or a subroutine. lt is placed separately
from the script, but its functionality is available from anywhere in the script.

When you decide to start writing your own commands, or handlers, your script will be sud
denly divided into two parts: the first part will contain the Iist of things that the script
should do, and the second part, a detailed description of how to do each thing.

For the sake of our example, you create the command by first describing to the script
what to do whenever you tell it to "get data from database, format it, and insert into Iay
out." Then you can execute that command from anywhere in your script, or even other
scripts. This allows you to get data from the database, format it, and insert it into the Iay
out using a single line instead of 30 lines.

Calling handlers is similar to asking someone for a cup of coffee: with three words you
asked them to perform about 20 separate operations.

When you're just starting to script, creating subroutines appears to be an added complica
tion that you may not be quite ready for. later on, however, writing and calling subroutines
can become one of the most important things you will do. Organizing your scripts with sub
routines makes them efficient and easy to read and edit. lt also makes your code much
easier to reuse in other scripts.

Handlers will be covered in more detail in the following chapter and in Chapter 18, which
is dedicated to the subject.

Packaging your commands into script objects

Now let's Iook at yet another way to organize your script.

Let's assume that you've created a whole bunch of subroutines, some for replacing data in
the page Iayout application, some to get data and record data in the database, and some
for general purposes. What this situation calls for is the creation of script objects. One
script object can deal with the database commands, one with the page Iayout stuft, and
the rest of the subroutines can be just a part of your script as they are now.

What you've done is the equivalent of creating your own applications. You can talk to
those parts of your script as if they were stand-alone units, or better yet, you can easily use
these units in other scripts.

INTRODUCTION

Dl

9

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

10

While script objects can help you organize a complex system, many scripters stay away
from them. You owe it to yourself to try to understand the different ways script objects
can be used, and to try at some point to utilize script objects in your solutions. You will
find that script objects are fun and satisfying to use, and can give you an edge as a script
writer.

One way to Iook at script objects is as a separate script file: lmagine saving a part of your
script in a separate file, then loading it into your main script and running it from there.
This can have a few advantages: it makes your main script smaller and more manageable,
and the same script object can be loaded into and used by different scripts.

You can also create script objects right inside your main script. This approach is useful
when you want a part of your script to act more like an object, rather than just code that
executes. lf your script controls a board game such as checkers, for example, each piece
on the board can be controlled by a script object. Since alt the game pieces are identical,
they can alt start out from the same script object. That object can have properties such as
side, which can be "black" or "white"; position, which can be "A3," etc.; and whether the
piece is a queen or not. At the start of the game the script object for each piece is created
and initialized with position and other values. During the game you can target different
pieces with commands such as eat_leftO or set is_queen to true, etc.

Wrapping up
So what have we looked at thus far? We saw that while AppleScript provides a rich lan
guage to work with, in order to talk to someone who can get real things done we need an
application.

Then, we can start creating our own commands, and finally, combine these commands
into our own script objects.

ln the following chapter we will go into the language in more detail. Later on in the book,
we will explore each facet of the language on its own.

u t my.nndom.n•mMr to ril•dom number
~ !Uy_r.rt""-'m_n.ut.n::f 'u m,_r.ndut
llt 1of4tr_~m• to "'Folc1r nurnblr •
••11 •ppllr.nhn "FirHI•r" ln "'*• n hlfioor n
u t myJoldcr l t ~~~ ruult auliul
ttll appllatl>n "Fiodtr' to ••• t hl ra11t ef
ci<Jll~ di1Jo~ ("OI!I~l! now lold.r • & '~ """-•-mr· ••
u t d~og._cornlla,d_rtrord m lfte rftiUII
lf bunGn tcturnr:d ofdlllog_co".".ncLr«ord bll nlor••rv:l:ai<•-

..U ;pplutlon "Firder" 10 doloto m~_fol<fl•
~d lf

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

14

OK, all you "been scripting for a year and think I can script the New York City traffic light
system" people, Iisten up. Although this chapter covers fundamental AppleScript concepts,
it is written also for you. There's nothing better than to reread about that stuft you think
is way behind you. Like any other complex subject, AppleScript has a Iot of Ievels, and in
order to understand more and get up to the next Ievel, you sometimes have to start fresh
and pretend you know nothing.

Script concentrate: just add water!
ln the following section, we'll write a script that contains in it some of the basic AppleScript
constructs. Then we'll run the script and try to understand what happened line by line. This
script will be a bit Ionger than your usual "Hello World" script, but once we sift through alt
the lines you'll be on top of it! Here's what the script will do:

Get a random number and use it to create a name for a folder. Create the fotder in the
Finder, name it, and then delete it if the user clicks Yes in a dialog box.

This part here will go over many big AppleScript issues. Don't get stressed if it's too much;
just go with the flow, read the text, and do the exercises. All of the points covered here
will be repeated in great detail throughout the book.

OK, let's start:

Open Script Editor. You can find it in the AppleScript fotder of your Applications fotder
(unless the system administrator thought it was a game and deleted it in last night's soft
ware raid).

Before we continue, here's a little Script Editor primer:

The main window is divided into two parts: the top is the area where you can write your
script and the bottom is divided into three tabs. The tabs in the bottom area of the script
window are Description, Result, and Event Log. Both the Result and the Event Logtabs are
essential for debugging. The toolbar contains buttons for your basic AppleScript functions:
Record, Stop, Run, and Compile. That's alt for now, let's start scripting.

ln the blank new Script Editor window that should be staring you in the eye right now, type
the following two words:

random number

See Figure 2-1.

The text you typed should be formatted with the font Courier. This is because it has not
been compiled yet.

To check your syntax, either press the ENTER key, or dick the Compile button.

STARTING TO SCRIPl-ALL OVER AGAIN

Untltled

Compllo

{ Ducrlptlon lll!wlt j Ewnl Log)

C>

Flgure 2-1.
The noncompiled script in the
Script Editor window

You're welcome to enter, but please, do not return: The ENTER key on the
Mac, to a/1 you Windows migrants, is not the same as the RfTURN key. The RrruRN
key is used to start a new line, and the ENTER key is used for other things, like
compiling a script in Script Editor. To teil between them. simply read what they
say and apply the following cryptic rufe: the ENTER key has the word HEnter~ on
it. and the RrruRN key has "Return" written a/1 over it.

Once you compile the script, the font and possibly the color of the text changes. Suddenly
AppleScript understands what you're saying. Weil, it understands what you're saying given
you speak properly, of course.

We're going to take a second to see what happens when you press the Compile button.
Before that. we will save the random number script as text to the desktop. Saving the
script as text does not require you to compile the script. To save the script as text. choose
Save As from the File menu. and specify Text from the File Format pop-up menu. We'll get
back to that script later on.

To better understand the difference between correct syntax and usable code, let's try the
following:

Start yet another script by choosing New from the File menu. and write the following:

It's time to go

When you try to compile this script. you get an error. We will ignore the specific error and
just note that what you typed didn't adhere to the AppleScript syntax. ln other words, if
you were in Greece and couldn't speak Greek, but tried to say something you just read in
the dictionary, the response of the Greek you're trying to communicate with will be some
thing along the lines of "Hah?"

15

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

16

Back to AppleScript now, let's delete the words "to go" and end up with

It' s time

Now the script compiles just fine. All excited, let's try to run it.

Now what you said was actually a sentence in Greek, but with no real meaning. The Greek
will now smile at the poor foreigner and move on.

Even if the script compiles, it still doesn't guarantee that it'll run! ln order for the script to
run, it has to be a correctly written AppleScript expression.

Being able to compile a script does, however, ensure that you can save it as a compiled
script. lf you can't compile it, and there may be other reasons for that, you may have to
save it as plain text until you figure out what went wrong.

OK, back to our random number script. lf you closed it, open it up, and if you want to start
over, start a new script window and type random number.

Now let's run the script and see what happens.

As far as folders suddenly synchronizing, catalogs being created, or your iMac suddenly
doing the Macarena, I can't say that anything really happened. However, the script did run.

Take a peek at the Result area. lf it's hidden, display the pane by dragging the horizontal
divider line with the grab bar up until the pane at the bottom fills about a third of the win
dow. The Result area shows us the script's result. And since the script has only one line, the
result is the result ofthat one line.

What you got is a decimal number somewhere between 0 and 1, which is the result of the
random number command. ln this context, random number is also an expression, since it
is responsible for the result of the script line.

Much like any other language, expressions and results are the building blocks of AppleScript.
Take for instance the following situation: My goal is to play squash, and here is how I went
about it:

I checked what day it is, and the result of that expression was Thursday. I can play on
Thursday! I checked the time; it was still early enough. t called my buddy and he could
play. Every single action t took had a result that led to my next action. ln this case, the pos
itive result of each step led to the next step; however, I could have collected alt the results
regardless of their orientation, and evaluated them alt at the end to see if squash will work
out. I could have a Iist that read

Day OK?
Time OK?
Partner OK?

At the end, I could read the Iist, and if I had three OKs. l'd go and play.

STARTING TO SCRIPT -ALL OVER AGAIN

ln order for that to happen, I need to store the results someplace. This "someplace" is
another form of expression called a variable. A variable is a word you can make up that
holds a value you can use later in the script. A script without variables is like a bucket with
a hole at the bottom. You can put a Iot in it, but since nothing is retained, you can't utilize
the script information you were given at an earlier point.

With that said, let's put the random number we picked into a variable so that we can go
back to it later in the script. To do that, change the single line in the script to

set my_random_number to random number

The set command assigns the result of the expression, in this case the random number
command, into the my_random_number variable. Later in the script we will use the value
that is stored in that variable to name a folder.

For now, let's add the number 1 00 to the end of the line to make it

set my_random_number to random number 100

The number that follows the random number command is an optional parameter. That
means that you can choose to omit it or include it. There are other optional parameters to
the random number command that we'll Iook at later on. The number parameter that
follows the command makes the random number command return a whole number (also
called an integer) between 0 (zero) and that number, instead of a decimal number
(also referred to as a real number).

To move on to the next line, press RETURN and then the following:

my_random_number as text

This expression includes coercion (which means conversion, in programmer language),
from a number to text. When my_random_number was created, its value was a number,
since the result of the random number command was a number. This is all OK, but for this
script we won't need that number to use for calculations or other number-related stuft,
but rather for including in a name of a folder. For that we need text.

You might be asking yourself, Why should AppleScript care if a value is number or text?
The answer is that AppleScript cares about type of value far less than other programming
languages, which may make your first few scripts easier to swallow, but can create some
confusion later on as you start trusting AppleScript's ability to guess whether you wanted
a number or text, etc. ln fact, since we later will tack that random number to the end of
the fotder name, which is a string, AppleScript will convert the number to text on its own.
Much more on that later, so hang on.

Now run the script. Before, the result was just a number; now the number appears in dou
ble quotes. Double quotes are the distinguishing characteristic of text, or to use a more
programming-like term, a string.

17

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

18

The last line, again, needs to be put in a variable for later use. What we'll do now, however,
is just put it back in the same variable. This is good if you don't need the value in its pre
vious form. Keep the first line of the script, but change the last line you wrote into

set my_random_number to my_random_number as text

Now we can build the string that will be used to name the folder. Type the following new
line at the end of the script:

Set folder_name to "Folder number " & my_random_number

Your script should now Iook like the one in Figure 2-2.

s:et ß1Y_t~'I<JOIJI-III.mll<!rl0 r~noJm n~Jmtl!!r IJO
s:et my_r.I.'I<IOm_lll.mll<!riO my_tanoom_,...,.".,,· as tut
l'C!t rOI<k.V_/'IJm(/ ro - ~IIIC!r num:xlr .. & ~-nii<IOnLIUNJCr

Flgure 2-2.
The script so far

The last expression connected two text strings together. Or in other words, concatenated
them. The & character, when put between two strings, returns the two strings as a single
string. This is also an expression, one that includes the concatenation operator.

Run the. script and see that the result is "Fotder number 35" (assuming that the random
number is 35).

The next and fourth line in our script will speak directly to the Finder:

tell application "Finder" to make new folder at desktop

This expression does two things: first, it involves a command, a direct order to make
something real happen-to create a fotder on the desktop. Second, it also returns an
AppleScript-like result: a reference to the new folder.

This reference isn't text or a number, and it is most likely going to be unusable for other
applications in its current form. However, it will give us a way to refer to that new fotder
we just made. We can grab that Finder object reference by adding a fifth line that puts the
result of the previous line into a variable:

set my_folder to the result

STARTING TO SCRIPT -ALL OVER AGAIN

Run the script and let's see what happens. The result you get is in the following lines:

folder "untitled folder" of folder "Desktop" -.
of folder "hanaan" of folder "Users" of startup disk

This is what's called a Finder reference to a file. While this will work now, as soon as we run
the line that will change the name of the folder, this reference will be useless. lt's a bit like
telling someone who's never seen you that you are going to be the guy with the beard, and
then going right away and shaving it oft! You are still you, but the description you gave is
no good.

For that we can try to use the alias data type. Change the last line to

set my_folder to the result as alias

Now, when running the script for the first time, the last line returns

alias "Macintosh HD:Users:hanaan:Desktop:untitled folder:"

Any subsequent time you run the script, the resulting folder's name will be untitled
folder 2, untitled folder 3. etc. This name difterence will be reflected in the result of
the script as weil.

This unique reference works much like aliases in the Finder: it knows what file you're talk
ing about even if it has been moved or renamed! This will come in handy.

Let's talk to the Finder again; write the following sixth line:

tell application "Finder" to set the name of my_folder to folder_name

What we did here is used the two variables we collected earlier in our script, folder_name
and myJolder, to rename the folder we created.

ln the seventh line we're going to ask the user to decide if s/he wants the folder deleted.
Type the following line:

display dialag ("Delete new folder "& folder_name & "?") buttans
{"Yes", "No"}

The displaydialag command has a few optional parameters, of which we will use the string
that is the dialog's text and the buttons. By default a dialog box has two buttons: OK and
Cancel.

Notice a couple of things:

1. We put the ("Delete new fotder "& folder_name &"?") operation in parentheses.
While we didn't have to, it keeps things a little more organized, just like in math.

2. The result of a dialogbox is a record. We won't get into records now, but just know
that from that record we can understand what buttons the user pressed and other
dialog-related stuft.

19

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

20

The following line we will add to the end of our script will put the dialeg result into a vari
able. You can display the dialeg box and collect the result into a variable in a single line,
but not now.

set dialog_command_record to the result

The next few lines Iook inside the dialeg result to determine if the user answered yes or
no, and acts accordingly.

if button returned of dialog_command_record is "Yes" then
tell application "Finder" to delete my_folder

end if

Notice that the variable my Jolder knows what fotder we mean even though the folder's
name was changed earlier on. Your script should now Iook like the script in Figure 2-3.

Untlll~t.l

Ht my_random_nllm-Hr to riindom nun1be:r 100
)i!l rn';_hll'n.h:nu_n•rn:.n: r lu fllt_tandul 1_1 l.ltlllbcJ • lc:At.
•et ~ldef' _n.:.m• •·o ~lur numbt.r • & mv_tl.ndOII'ftJUNbt'l'

t~tll .tlf'~lnithn "Flnlf•r" rn -ruk" nPw hl$t .u 4,.ifokrt\f)
Hl my_folder 1.0 1 .. IOSlliiiU •iiosl
ttll oppllcathn •Ftndor" ra .. , tlw ,.,.. of ny.foldor to fcldtr.IW"\e
dsploy dlolo~ f Dolell nowtoklor • & l>ldtr. rwne& 7"J b•ncnsi"Yes·. "'N<>"l
stl dla og_coml1iill"ld_relotd m ltM rtfulc
U b•tt(;ft u:htmrd of dlllllag_ci:llmmand_t~teord l:s ~c~· t~••

-..11 :=.pid iotla.n "flrd._. IIG d•JtUI rft\'- fold•f'
endlf

: DucrlotJ<<1 f

Flgure 2-3. The script so far

More results with less talk
Let's discuss again the way AppleScript relates to expressions and results. We know that
almest every line has a result that can be trapped. This is because every line is a statement.
There are statements that do not return results, but they are the exception.

A statement can contain a single operation, or multiple operations, and return a single
result. For instance, you can write the following:

set x to 3 + 4
set y to x * 5
set z to y - 37
set final_number_I_actually_want to z I 15

STARTING TO SCRIPT-AllOVER AGAIN

Or, you can make it a more math-like operation, and write

set final_number_I_actually_want to (((3 + 4) * 5)-37) I 15

The secend choice may be a bit more confusing if you're not used to math, but it will be
between 20% and 40% faster. That is because AppleScript has to only do the math without
setting all these variables.

On top of that, the first example created three variables that we don't really need: x, y,
and z. lf we have to separate the operations into lines, we can either reuse the variable, or
simply refer to the result of the previous line:

3 + 4
result * 5
result - 37
set final_number_I_actually_want to result I 15

Variable speed
Variables are the memory of AppleScript. Anytime you want to figure something out and
use it later, you assign your conclusions to a variable. That value can be retrieved later and
used anywhere in the script, simply by mentioning the variable.

Besides assigning values to variables, your job is also to name them. Naming variables log
ically can save you a Iot of frustration later on. The variable name is called an identifier.

The basic rules for naming identifiers are these:

• Must start with a character

• May contain characters, digits, and an underscore (_}

ldentifiers are case insensitive; however, when you've used a variable once in a script,
AppleScript will remember how you typed it, and anywhere else that you use it, AppleScript
will change the case of the Ietter to match the same pattern you used the first time.

Unlike many other programming languages, AppleScript allows you to assign any type of
data to any variable. ln other languages, when you create an identifier, you also tell it
what data type it will hold. ln AppleScript, you can create a variable and assign a text value
to it, and later replace that value with a number. Makes no difference.

Let's try some variable things. Open a new Script Editor window and type the following:

set the_city to "Providence"

Since the word "Providence" is in quotes, AppleScript knows that it's Iiterat text, or a
string, and not an identifier. The identifier the_city now has the string value "Providence"
assigned to it.

Let's type another line:

set the state to "Rhode Island"

21

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

22

Now we can do something with these variables. Type a third and fourth line:

set my_greeting to "Helle, I live in " & the_city& ", " & the_state
display dialeg my_greeting

See Figure 2-4.

Compll~

set rhe_ clry to "Pr0o11dence•
set rhe_ srare to "Rhoeie lsland"
setmy_11reef.tl9to "Hello, lltve ln • & the_cll;y& "," & fhe_ srate
dlsplay dlaiOg my_greetlllg
I

I Ducrlptlon Resuk EY~m L49)

0

Flgure 2-4.
The two variables
assembled into a
string that's assigned
to a third variable

We use the & character to connect, or concatenate, the different strings, both the ones
that are specified literally and the strings that are stored in the variables.

When you run the script, the dialeg box displays the final greeting. See Figure 2-5.

Htllo, I 11-.e ln Provklonce. Rhode lsland

Flgure 2-5. The script's
resulting dialog box

Variables have a scope in which they're good. Outside of that scope they don't mean
much. A bit like taking your cell phone to France and trying to make a call. lf you didn't set
up the phone to work there, it will most definitely not.

For now, we're not going to France, so there's nothing to worry about. But later on we will
discuss in great detail the implications of using variables in handlers, global and local vari
ables, and properties.

Values come in many classes
Value classes in AppleScript refer to the different ways we have to Iook at information.
Information may be a number, it may be text, it may be either true or false, or it may be a

STARTING TO SCRIPT -ALL OVER AGAIN

reference to an object somewhere. Whatever it is, it's not only the actual value that makes
a difference, but also the dass of that value.

The basic classes are very logical:

Text
Also called a string, text is just that: a bunch of characters strung together. A string always
has double quotes on either side. Here are some strings:

II AII

"My oh my! "
"IT IS SO ST&@%*"
"75"

Notice that even though we have the number 75, since it is in quotes, it is a string.

To concatenate strings together, you use the & character. For instance, the result of "to" &
"day" is "today".

The ampersand, or concatenation operator, can be used as a regular character inside a
string if it is enclosed in quotes, as shown here:

"AT" & "&" & "T" --> "AT&T"

There are other types of strings, which we will discuss later.

Number

Numbers come in two flavors: integer and real. An integer is always a whole round num
ber, and a real number can be either whole or decimal.

When performing math Operations, you can mix and match reals and integers; however,
the result will always be a real.

8.5 + 70 = 78.5
1.75 + 1.25 = 3.00

Boolean
Boolean is one of the most-often-used value classes. A Boolean value can be either true or
false.

3 = 5 --> false
"BIG" is "big" --> true
disk "Macintosh HO" exists --> true

23

APPlESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

24

Tell me about it
The tell statement is AppleScript's way to get the attention of the object we want to direct
commands to. lmagine a school, and you are a fly on the wall at the dean's office. The
dean has a helper named AppleScript, who's in charge of making sure that the dean's com
mands get to the right place.

The first command the dean gives is "I need the report by tomorrow." The helper Iooks at
him baffled; something is missing!

Oh, the dean finally got it: "Tell the student in the second seat in the first row of
Ms. Steinberg's dass that ... I need the report by tomorrow." That's better.

Unless you're using statements that contain only AppleScript commands and objects, you
have to use the tell statement to direct AppleScript to the right object. See, that object is
the one containing the command, so just throwing the command out there or directing it
to the wrong object will most likely generate an error.

For instance, if we happen to be scripting lnDesign and we want to get the font of some
text, we need to use the tell command to direct AppleScript to the text framethat is found
on the page that is found in a specific document. lf we tell the page to get the name of the
font, we will get an error.

The many faces of tell
While using the tel/ statement is required, there are a few variations to how you can do it.
They all work the same, but some are better than others in different situations. The main
difference between the different ways of using the tell statement is in readability versus
number of lines you use, so most of the decision is left up to you.

So what are the different ways to tell?

Let's get back to our dean. The dean used a long sentence that induded the target object
(the student) and the command in a single line: ''Tell the student in the second seat in the
first row of Ms. Steinberg's dass that I need the report by tomorrow."

From that statement we can start to understand the school's object model (which is essen
tial if it was a scriptable application), which is this: the main object is a school, in the
school we have dassroom objects, and each has a teacher. We can refer to the dassroom
by the teacher name! Also, each dassroom has seats arranged in rows, and each seat has a
student. That student has a name, age, and other useful school-related properties.

Now that we understand the object model a bit better, we realize that the dean could have
also said to his helper AppleScript: "Tell Ms. Steinberg's dass to tell the first row to tell the
student in the second seat that the report is due ... "

Notice how things got reversed? t;-Jow, instead of starting from the last object, we start at
the top and go down: tell the dass, followed by the row, followed by the seat, while before
it was the seat that is in the row that is in the dass.

STARTING TO SCRIPT -ALL OVER AGAIN

How about a real example? Open Script Editor and type the script shown in Figure 2-6.
Notice the ., character at the end of the first line, after the word "of." You get it by press
ing 0PTION+RETURN.

tell appllcatlon "Finder" to set posllloTL I to the po•itlon of ~
folder 'AppleScrlpl" of folder 'Appllcatlons' of d~k (nam~ of

stanup dlsk)

tell appllcatlon "Finder" to tell folder 'Applkilllon5' to ~
tell folder 'AppleScrlpl" to sei posllloTLZ to the posnlon

posllloTL I • poslltoTL<!

true

"

Flgure 2-6. Use OPTION+ RETURN to insert the line break character.

Look at the two different ways we target or request information to a specific folder. ln the
first one we use the set command directly after the first tell statement, and the specific
fotder is described as part of the set command.

ln the second one, we place the set command at the end, after we singled out the folder.

Continuation character

Back to the little ., creature. This character is AppleScript's continuation character and is
used to split long lines into more manageable chunks. lt's used for readability only and has
no effect on the script result.

You can insert the continuation character without also inserting a new line, by pressing
ÜPTION+L.

Comparing results

One more thing we did in that script is comparing to see if the two results we got from the
two lines were identical. For that we used the equals comparison operator. An operation
that uses the comparison operator may have one of two results: true or false. ln other
words, the operation returns data of dass Boolean. Comparison operators can be written
in many ways that perform the same; for instance, we could have used "is equal to" instead
of the simple = sign. Much more on operations and operators in Chapter 9.

25

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

26

Objects you can tell things to

Back to our main track here, the tell statement. Let's Iook at some so-called objects that
like to be referred to with the tell statement.

The main type of object is your run~of-the-mill scriptable application. Anytime you want to
send commands to an application, you have to start with the tell statement. Later on you
will also see how you can Ioad handlers or script objects into a variable, and that variable
will become an object that likes to be told things.

Telling in blocks

The dean scratches his head. He realized that two more students from that same dass owe
him different reports. Now, when instructing his trusted helper, AppleScript, he may not
want to use the entire reference to the student. lnstead, he can start with "While you're in
Ms. Steinberg's dass, tell the kid in row 2, seat 4, the student in row 6, seat 1, and the stu
dent in row 3, seat 2 that they have reports due."

See, when writing scripts, many times you will want to single out an object and then use a
few commands on it. What you won't want to do is use the entire object reference (file 1
of fotder 4 of fotder applications ...). lnstead, you can use a tell block. Here is how:

ln a tell block, we start by singling out the object or objects we want to affect, then we
give one or a few commands, and we finish with the line end tell.

For instance, in our Finder example, we got the folder's position. What if we want to get
the modification date of the fotder as weil? Here is how we can do that: we start with the
tell block. Write the lines shown in Figure 2-7 and dick the Compile button.

tell appllcatlon "rlnder"
•· Thls rode talk to ~ Flnder

endjtell

Re•ult E\lont Log Flgure 2-7.
Your first tel/ bleck

The second line starts with a double dash. This makes it into a comment, which AppleScript
ignores.

Now, add the lines shown in Figure 2-8.

STARTING TO SCRIPT-ALLOVER AGAIN

tell appllcallon "flnder·
tf!ll fokl.r "ApplfoScrlpt" of folder "Appllc:illlons"

- Thls code ls dlrected at the folder:!
e;,d tf!ll

end U!ll

Ruuk ~ntlog

Flgure 2-8. Adding more Ievels to the tel/ block

Notice how each Ievel of the teil block starts with the word "tell," ends with the word
"end," and all the lines in between are indented for readability.

Now add the statements that get some properties from the folder, and from items that are
in the folder. Figure 2-9 shows the final script.

Complle

te.ll applkatJon "Finder'"
tf!ll fokler "ApplfoScrlpt" of fokler "Appllcallons"

se.t filo...Usrto name of ewry ltem
set flme...(oldu_wos_created to crullon dare
set !lmt_(oldu_WM_Iftl)dl(lul to modlflcatJon d ate

e.nd te.ll
end tel~

date "Saturday. September 2 7. 2003 5:23:00 AAr

Flgure 2-9. The final script with the tel/ blocks

C)

When you run the script, the result shows only the last line's result; however, the rest of the
data you collected is safe and sound in the variables file_list, timeJolder_was_created, and
time Jotder _was_ changed.

27

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

28

More on Script Editor
One of the improvements OS X's AppleScript provided is the new Script Editor; it has many
nice new features that are covered throughout the book. lt has a customizable Aqua tool
bar that gives you access to the main features, and easy access to results, the event log.
and their respective histories.

Eventlog
The event log is the Result feature on steroids, and can be found in the tab at the bottom
of the Script Editor window. The event log Iogs the events that AppleScript sends, the
object the commands are sent to, and the result returned by the object. ln Figure 2-10 you
can see the preceding script and the log it created when running.

The script in Figure 2-1 0 shows how your commands are translated and boiled down to a
single teil block. Also you can easily see alt the results the different statements had, only
without the variables that store the result.

tell appUcalion "Finder"
tell folder "App~Scrlpt" of folder "Applialtlons"

set ffk./isr to name of every ltem
setrlme..(oldu.was.crtattd to ueatlon date
set rJme..(oldu_wos_mod~d to modlflcaliOn date

end tell
end teiC

teil applkalion "Finder•
get name of every ltem of folder "Appi@Scrlpt" of folder "Applkatlons"

("Example Scrlpts", 1'older Actlons Setup.app·, 1nstall Scrip!
Menu.app·, "Rernave Script Menu.app", "Script Edltor.app1

get crutlon date of foldtr "App~Scrlpt" of folder "Applications"
date "Saturday, September 27, 2003 S:23:00 AM"

get modlfkatlon date of folder "App~lpt" of folder "Applkations"
date "Saturday, September 27, 2003 S:23:00 AlK

end teil

Oesutptlon R ... ult

Flgure 2-10. The response of the event log

Result history
lf every script has a result, the Result Historyfeature keeps track of them all in chronolog
ical order.

STARTING TO SCRIPT-ALLOVER AGAIN

Choose Result History from the Window menu and dick the clock-shaped History button.
Figure 2-11 shows the Result History window.

datt "Sarurday, September 27, 2()(11 :27:45
t.rue 11 :16:42
foklf:r "foldtr numbtr 98' of rruh 07 :59:31

07 :5&:4&

Result History

date "Sarurday, ~prember 27, 2003 5:23 :00 AM'

Flgure 2-11. I ran the random number script multiple times, and the result history
captured them alt.

Script description
Clicking the Description tab at the bottom part of the script window in Script Editor
reveals a large text field. You can write a description for your script and format it using the
Format menu. Change the type size, font, and color as you like.

You can have that formatted text appear in a dialog box every time your script application
is launched. To display the dialog box at launch, check Startup Screen when you save the
script as an application.

Toolbar
You can customize the toolbar by choosing Customize Toolbar from the View menu, or by
CONTROL-clicking the toolbar and choosing Customize Toolbar from the contextual menu.

My favorite is the ability to make the icons smaller, or make them go all together. You can
also choose to add icons for a bunch of other features. The toolbar can be hidden alto
gether by clicking the pill-shaped hide toolbar button at the right of the script window's
title bar.

29

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

30

Recording scripts
Here's recording in a nutshell: you press the Record button in Script Editor, do some stuft
in another application, and everything you do is recorded in the AppleScript language.

OK, if it's that easy, why do we need to write a script ourselves ever again? Good question.

While recording is nice, not every application is recordable. ln order to be recordable, an
application has to get a time-consuming programming boost. One of the main efforts of
the AppleScript team with OS X implementation of the technology was not only on the
core of AppleScript, but also on the ease in which software vendors can implement script
ability and recordability in their own applications.

When you record scripts, you get a computer-generated code. lt doesn't contain any
repeat loops, handlers, conditional statements, or easy-tc-manage tell blocks. For the
most part, recording scripts is great if you can't figure out how to script a specific aspect
of an application. For instance:

• ln OS X Jaguar, the Finder isn't yet recordable, but ...

• ln OS X Panther, the Finder is at least partially recordable, which can make your life
a little easier.

To test it, start a new script window in Script Editor and dick the Record button in the
toolbar. Then, create new windows, move them, move files around, and see the recorded
actions.

As you can tell, some basic actions do not get recorded, such as closing windows and mov
ing and duplicating files.

Spaces don't count
Extra spaces and tabs will be cleaned up when you check syntax, so don't bother with
them. Also, indentation will happen automatically.

You can, for readability's sake. leave some blank lines here and there. AppleScript will
leave those alone.

To add text that you want the script to ignore, precede it with a double dash. This will
compile as a comment.

Adding comments is essential if you want to understand what either you yourself meant
when you wrote that script a couple of months ago, or worse. if someone eise has to fig
ure out what your code tries to achieve. lt is amazing how even our own scripts can
become a jungte of code after a while.

Another reason to comment scripts is that when you're creating scripts that are part of a
!arge system, these comments will be a part of your technical specifications. Clients take
weil to scripters who comment their scripts.

STARTING TO SCRIPT-ALLOVER AGAIN

Understanding applications' scriptability
As we talked about earlier, the success of AppleScript greatly depends on AppleScript
implementation by independent software vendors. much like the success of OS X depends
on the support and implementation of the same software vendors.

While the quality and thoroughness of AppleScript implementation in applications is up to
the individual vendors, there are a few rules they all go by, and for the most part, many
applications have shown a beautiful object model and a rich set of commands.

One of the main areas on which the AppleScript team is spending development resources
is helping developers streamline and ease the burden of making their applications
scriptable.

The application scripting dictionary
The application dictionary contains a listing and some descriptions of the application's
entire array of objects and commands. A dictionary is your first stop for anything to do
with the scriptability of a specific application. For me, it's also a way to divide applications
into the two major groups they fall into: scriptable and nonscriptable.

The dictionary for any scriptable application can be viewed in Script Editor by choosing
Open Dictionary from the File menu, and choosing an application from the application
Iist. The dictionary of the selected application will be displayed in the dictionary window.
Figure 2-12 shows the dictionary of the Finder.

As you can see in Figure 2-12, an application's dictionary is segmented into suites. The
suites are organized in a logical way in order to help you find the information you need.

ln each suite you will find both dasses and commands. Classes are the object types and
commands are the AppleScript commands ofthat application that are related to the suite.

Classes in the dictionary
Each object type, or dass, is listed in its respective suite, a listing that indudes specific
details about that dass.

There are two main types of information you will find for every dass. The first type of
information is etements. Under the etements heading are listed the potential elements a
dass could have once it is an actual object in the application. For instance, among the ele
ments of the fotder dass are folder, file, alias, dipping, etc. Disk is not an element of the
fotder dass since a fotder can never contain an object of the dass disk.

The other type of information listed for a given dass is that class's properties. Properties
can be read using the get command, and changed using the set command. Not all proper
ties can be set. however. Properties that are denoted with r/o are read only, and therefore
can't be changed, only read.

31

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

32

I

' eoe

..,.::ta.u:K

IPt:lla.t lort

• 01111PI,..I'4~

"""' Iot':

• =lM•rlr"'"c

bn

•coml'l"'ands
odotoflii'Oritu
dt~n up
tltct
ttnDIV
UUt

revtal
•p&u

..,conuners "'d fol~trs
..,Cia"ts

.... ~, ..

coru.lntr
duktcp -objw
dlst
fotder
.,.,h· >bJta

"'I' Cia"ts
allos tle
op~llcatlon fit
dlpplrg
dO<.rt'tnt !llt
tllt
lntcmtt locO!loo ! llo
!lldcage

'9' 'N1rdO'N d~5U
"11' \.WSts

Flr.Cierwtttdc:w

cllpplrg wtnoow
ln1orm.~tton 'Nfl''lat:YN

~ r~J c1 C-IH.n wlnUv"
"t111Ll~

T Ciaua
.ap:f:llc.ttJon
l.pf:llla.tlon j:toc:nl

4clk ecc.cssary procus
procc::n

~ Finder -

I Standard Slllle: Comnron ltrms lhDl most appücations should
suppon

dQ!C" Oose an oblec;
dose ll!feruc.e ·· ~ OOJtct 10 ciOSe

mu!!l" Return Jl!cmmtcroftlcmcntsofa pj!Qglar c:l;k<SwJthln lll ob!Q
ccunt rduence tte objtet wnose etements are to be counteil

~.eh typ~ ~LI-'~ •• th~ dC'.I!t) u(Ult t-=rntrb tU bt: I..UUntttJ
R.c.au.t: ntever the: 1umber lf ele-nents

dota Rzc• Rstym •bs ;Nu; jn bytc.s p(II\ obicct
dJ..ta sh:c rcferenc:c- ~ obJect \\hole d\1!.1 slzt b to bc rcturnejl

1:u t-,-pe d.J"i - IM daa tiPt for whoch the sl11 s cakulot•d
RI"'Enl· nti'()H' tn- ~17• dthP- nhjPrt •n h~'"c

dtltfe• M>y~. an jJr:m fmm irs mntajntr k) .". rrasb
d~lete relt!ren<2 lhe item 10 ctltte
RauJ: rtfuence - tc tte cem !bat was Iust deleted

duDilcatr: Dunlicate orc 11 mon: !lb~\
d•pHate refewxe •· the objeCI(s) to dupka:e

llc IOCiltfotl rtferentel • ~ new locaton ror tte obj!c!Csl
1 ~plad1g broltanl - Sl)edfiu liihether or not to repl.l~t 1tems rn ehe

des:lnötlal 1tlat h.i~ ~ nme name u ltems btlng duplca :ed
jrout~ng nppressed bOOifanj •·)pecdles liihelher or not to au:O<Jule nems

(~~WU~ h f4bd. 01111 "1111 "'' W'"'n lOP\111\jiO tlo: >Y>"'II fU<J•r.
t<; uL fore>ct to ltt dupllottd obj<et(s)

c;dU; \\Tify jf M obittt gi:ta
e .x l:ns re:~renc.e the !»bjt:Ct ln que:s:lon
Rt.~ul: '~"'" tru~ tf Jt C:Jdst.~. f;.l:;c jf no:

make; M4;c a !)cw drmed
make

n..w lYJV' rbc~ ·• f"''~ t""(~ nf •hlo rww •t..""n.-nt
at locallon re~rence ·• ,.,. loc.atlon ar Nhlth 10 Insert the element
lta reference ·· wllen crea:IIICI an alias fite. :he OJIQtnal ~tm to uene ar alas

to ar """'' aealing a fite ~.-er wlndow. !he tuget J(the Wlldow
lwtth pmpenles record l •· the lni!J<ll \"al~es for tte propnles ollhe !lemtm

Rosul: eftrence - to rte new oOject(sl

mo•r: Movc obi«!(S) !O a !leiY UWOO
mo~ retereoce lhe ob)!ct.S) to m<JYt

to tocaoon re~ren<e ·• 111e new lxctiOn l'lr :he ob)tct\l)
jrepl•d•g boolo411l - Sp•<lllt> .n .. th<l 01 nut 10 •~PI<ILc lt~m> ho""'

de:Jtinttion 1ha1 mve the stme name u lten\s betns movtd

Figure 2-12. The Finder's dictionary as shown in Script Editor

I

Commands in the dictionary
The commands in the dictionary are listed along with a brief description, followed by the
command's syntax and parameters. The optional parameters are listed in square brackets.

Following is an example taken from the Finder's dictionary. The example shows the listing
of the update command:

update: Update the display of the specified object(s)
to match their on-disk representation
update reference -- the item to update

STARTING TO SCRIPT-AU OVER AGAIN

[necessity boolean] -- only update if necessary (i.e. a finder ~
window is open). default is false

[registering applications boolean] -- register applications.
default is true

The description of the update command is great. You read it and there's no doubt of what
the command does.

The required parameter for the command is the reference to the object you want to
update.

The optional parameters are necessity, which is explained weil, and registering applica
tions, which I have no idea what it's good for or what it does. The dictionary author either
got a bit lazy, or simply didn't know the answer either.

At their mercy

While dictionaries are invaluable for any scripter, they are sometimes badly written and
incomplete. Not that they Iack commands or dasses, but many tim es dictionaries are writ
ten as an afterthought, not taking into account the immense difference a good dictionary
can make to the scripter who tries to automate that application. The amount of details and
Ievel of darity that is invested in dictionaries is solely up to the dictionary authors, and the
range of acceptable detail is high. For instance, when the properties are listed for a specific
dass, the dictionary usually mentions something in regard to the value that property
accepts. Some properties only accept a Iist, string, or number; some can accept only spe
cific keywords that are part of that application, such as the owner privileges property of
the item dass in the finder. The values can be read only, read write, write only, or none. lf
the dictionary doesn't specify them, you have to backwards-engineer objects to see what
they are set to in order to use the property in your script. While the Finder's dictionary
does Iist these options, some dictionaries Iack basic information, a thing that can make
scripting very frustrating.

Another thing that dictionaries Iack by nature is dass-command links. The dictionary does
not show you which dass accepts which commands. For instance, the Finder dictionary
contains the dass window and the command duplicate, but that doesn't mean that you
can duplicate a window. How commands and dasses interact is information you have to
get in other places such as books, Internet lists, or sample scripts that come with the appli
cation.

The object model
Perhaps the most compelling part of application scriptability is its object model.

The idea of an object model is that a higher-level object can have elements. These ele
ments are objects by themselves, possibly of a different kind or dass, and these objects
may have elements of their own. Usually, the number of elements can be anywhere from
zero and up, but sometimes applications will allow only one child element per object.

33

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

34

This type of hierarchy is called containership hierarchy, since it describes what objects con
tain which elements, and which elements are contained by what objects.

Let's Iook at Adobe lnDesign's object model as an example: the lnDesign application
object has a high-level object element called document. As you know, you can have multi
ple documents. The document is also an object in its own right, and can have its own child
elements such as spreads, layers, etc. Spreads can have many pages, each page has text
frames, guides, etc. The document, in other words, contains these pages, layers, etc.

Like many other applications, in lnDesign, you can ask for the object model in reverse as
weil: the parent of a specific text frame may be a specific page, etc. As you may have
guessed, any object may have only one parent object. Figure 2-13 shows a partial view of
lnDesign's containment hierarchy. By looking at it you can clearly see what objects have
the capacity to contain elements of which classes.

Flgure 2-13. lnDesign's containment hierarchy

Welt, I guess that AppleScript is a single parent world where everyone is an object and the
value can be found only in his or her property; sad.

STARTING TO SCRIPT-ALLOVER AGAIN

Objects and class inheritance
Class inheritance is not the same as containment hierarchy. Class inheritance describes
how dasses share similarities with dasses that inherit their attributes. Understanding dass
inheritance can allow you to refer to a narrower or broader range of objects, as you see fit.
For example, you may ask the Finder to delete items in one of the following three versions:

1. Delete every item of disk 1.

2. Delete every file of disk 1.

3. Delete every document file of disk 1.

These three statements are different such that the first one will delete the broadest range
of objects, which will indude any fotder or application on disk 1, since they are also items.
The second version will delete only files, not folders, but will still delete applications, since
the apptication dass is also a descendent of the file dass. The third version is the narrow
est. Every document file is also a file and also an item, but not every file or item is a
document file.

A dass is a group of like objects. For instance, in the Finder, there's an item dass. This dass
indudes files, folders, applications, and every other item you can have in a hard disk some
where. The item dass has a subdass called container. The container is a subdass of the
item dass. A fotder is both an item and a container; a file on the other hand is an item, but
not a container. ln lnDesign, a page item is a dass of which rectangle, text frame, and
graphic line are all members.

ln order to understand how dasses work, we have to Iook at the way they inherit proper
ties from one another. Every dass has a super dass. This super dass is the dass that is
higher on the chain. lt's a more basic and generic version of alt subdasses that spawn oft
of it. This is not the same as parent and child objects, since parent and child objects, as
described earlier, may be from different classes.

Let's Iook at a real-life analogy to dasses. Take dogs; dogs are a dass. The dogs dass has a
few subdasses: terriers, herding dogs, poodles, etc. The dogs dass is also a part of another
dass, mammals, which makes the mammals dass the dogs dass's super dass. The mam
mals dass by itself is a subdass of the dass living beings. That last dass, living beings, is the
top super dass; any subdass of the living being dass by default inherits alt of its properties.
For instance, alt living beings are born, then they live, and then they die. That is true for
mammals, dogs, and terriers. However, every member of the dogs dass walks on four legs,
which is not true for alt members of the mammals dass, which is the dogs dass's super
dass.

ln the application lnDesign, we have a dass calted base page item properties. This dass has
alt the properties that are shared by alt of its subdasses: page item, oval, rectangle, graphic
line, polygon, text frame, image, PDF, EPS, group, and master page item.

35

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

36

Classes and commands
Classes also share commands with their subdasses. For instance, the Finder's item dass
understands commands such as duplicate and delete. That ability to understand these
commands also passes to all of the item dass subdasses such as file, folder, etc.

Classes may be a bit intimidating in the beginning, and you may be asking yourself just
how essential it is to get that info down. Weil, dasses are very important, and although you
should be grateful they exist and define and make life more organized, don't kill yourself
trying to understand them right now. You can take care of a dog just fine without dwelling
on the evolutionary reasons for the existence of its tail.

What makes an object what it is?
A Look at object properties

Properties is where the relationship between a dass of objects and the objects themselves
becomes dear. While a dass has all the properties that all objects of that dass have, the
objects themselves have something the dass doesn't: values. For example, in the Finder we
have a dass File. That dass has a property called File Type. The dass however is not an
actual file; it's only a theoretical idea. On the other hand, a file on the hard disk is a real
file, and the property File Type of that file actually has a value, which teils us the file type
ofthat particular file.

Object properties are much like people properties. We all share the same set of properties
in the dass human. it's just that the values are different for each of us. For instance, we
have a height property. Each one of us has a number we can give the nurse at our annual
checkup. This number is written on the form at the specific place and used for some
health-related voodoo. ln AppleScript, object properties are used in similar ways: there are
objects, let's say files in the Finder. ln our script, we pinpoint the file we want to deal with
and we inspect its properties. We figure out that the size property of the file is 2MB. We
write that in our script in a variable and later use it in some AppleScript voodoo.

There are two ways to see which object properties AppleScript has access to. One is the
application's AppleScript dictionary, and the other is the get properties command.

When you use the dictionary in Script Editor, you can dick any item under the Classes dis
dosure triangle. The right side of the screen will then show you the properties of the dass
you dicked (remember, dass is another word for object type, so a dass has all the proper
ties of all the objects that are a part ofthat dass).

Figure 2-14 shows the FileMaker Pro 7 dictionary in Script Editor.

STARTING TO SCRIPT-ALLOVER AGAIN

600
llequlre<l SUite

.URLSulte
~ Subsei of ehe Core,

ycw ...
Fli<M•ker scrl
oppllatlon

dotabaso
documtnl
fleld
Iayout
record
repetltlon

uble
wtndow

•commands
dosslnfo
dose
copy
count
ae:a1e.
CU!

doto slze
delete
do me.nu
do scrlpc

ffi FlleMaker Pro

Og qll; A field ya!ue in a rerord or rcoues
Plural form:

cens
Eiomfnts:

repellllon by numorlt indu
Propcnleo:

best type rype class Jr/o l -- The best descrlp tor rype
eins rype class lrlol The class
default type rype dass lrlol ·· The default descrlptor IVP•
cholces Iist lrlol TM value Iist for rhe cell
formvia string)rlol · The celrs cakulatlon formul.il
lock unlocked/shared lock,lexclusM lock JriDI .. The lock mtus of the cell

~' name slling (rlol .. The celrs name
~ • protectlon read only{lormulas prOI:ected/rtad/wrlte)rlol - The protectoon of

thls cell
ceiiValue strl.ng - TM cell value
10 IIst [rlo] The untQue 10 o tlle cell (the nm e~ment ls the record 10, the

second elementls rhe ceiiiDl
repeat slze Integer lrlol Number o repeuoons of tl1e cell
globaiValue boolean [rlol ls thls cellaglobal c.IP
access no access/read/wrlte/update/create/delete/read/wrlte/read/update/

rtad/create/read/deletejwrlte/update/wrlte/c.reate/wril.e/de~te/update/create/
update/de~ce/wrlte/delete/read/wrlte/update/rnd/wrlte/c.reate/read/wrlte/de~te/
wrlte/update/create/ .. . Jr<ll l ·· The acc.ss priYIIeges

Figure 2-14. The FileMaker Pro dictionary shown in Script Editor. The cell dass is dicked on the
left and all of the cel/ dass properties are showing on the right.

The advantage of using the dictionary to examine a class's properties is that the dictionary
often comes with helpful hints. As you can see in Figure 2-14, the FileMaker Pro dictionary
has a nice explanation after each property. This can be an invaluable source of knowledge,
especially because it is not always obvious what type or range of value the property will
agree to. After every property in the dictionary either the data type or actual values you
can use are specified. For example, the FileMaker dictionary shows you that the lock prop
erty of the cell dass can have one of the following three values: unlocked, shared lock, or
exclusive lock.

Get properties
Getting the properties of an object or dass using the get properties command is a bit dif
ferent. Not only do you get the Iist of property names, but you also get the value of each
property for a specific object.

Let's try and get the properties for a single file in the Finder. We will first need to identify
the file whose properties we want to get. To do that we're going to use the choose file
command, which returns an alias reference to the file. After putting that alias result in a
variable, we will ask the Finder to get us the properties ofthat file. Create a new script win
dow and type the four lines shown in Figure 2-15.

37

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

38

02-lS File Propertin

Compll•

set rhe..(lle..o/Jos to choose flle
teil applkatlon 'l'lnder"

get properdes of rhe..(l~_oi/Qs
end teil

0

(dass:documem file. n.ame:"First flle scrlpt.scpt", ndex:23, dlsplaYI!d
name:"F rst flle scrlpt', n.ame eX1tnslon: 'scpt', e1<1erulon hldden:rrue,
coma lner:folder 'Desktop' of folder '1\anaan· of folder 'U•ers" of
stanup dlsk of appllcatlon 'l'lnder"', dlsk:startup dlsk of applkatlon
'l'lnder", posltlon:(·1, · 11, boonds:(-33, ·33 , 31 . 311. klnd:'Scrlpt",
label lndex:O. loc.ked:false, descrlptlon:mlsslng val.ue, comment:-,
slze:634.0, physkal slze:8192 .0. crutlon date:date "SaiUrday. July
3, 2004 11 :39:SS AM', modijkafion date:date "Sawrdav, July 3,
2004 II :39:55 AM", l<:on:mlsslng value, URL:'flle:/llocalhost/Users/
hanaan/Desktop/First'1620111e'll20script.scpt", owner."anaan·.
group:"Mleel", owner privl~ges:read wrl!e, groop privth!genead
only, everyones privtleges:rud only, flle tYPt:'osas·, creator
tYPe:loyS", statlonery:false. product verslon:-, ver51on:'j

{ Dosc:rlptlon llltollt I Ev•nt l1>11)

Flgure 2-15. The properties of a chosen file

The result of the script is a record that contains about 30 properties associated with the
file dass, and their values that apply to the actual file you chose.

While the get properlies statement seems like its own little command, it is not. The com
mand is actually the verb "get," while the word "properties" is simply another object prop
erty. Some object properties return a number, such as size; some return text, such as
name. The properlies property returns a record that includes all of the other properties.
We will discuss records in detail later on, but for now, just imagine the record as a Iist of
values with their Iabels. Each piece of data has the identifying Iabel that teils us what the
data stands for, and the actual value. Looking at the file properties we got (Figure 2-15),
we can see that the chunks of data are separated by commas, but each chunk is separated
by a colon. Here is a part of it:

name:"first book script", index:3, displayed name:"first book script",
name extension:"", extension hidden:false

You can easily tell that the value of the property name is "first book script", the index is 3,
extension hidden is false, etc.

The properlies property exists in most objects in most applications, so it's almost a sure bet
that you will get the results you want if you try it. All you have to make sure of is that
you have a valid object reference (see "How to talk to objects so they Iisten" later in this
chapter).

STARTING TO SCRIPT-ALLOVER AGAIN

Read only
As you Iook at a class's properties in the dictionary, some properties will have "r/o" written
next to them. These properties are read only, which means that you can ask to see their
value, but you can't change it.

While initially it appears to be a questionable restriction, some properties were simply not
meant to be tampered with or are naturally unchangeable. Let's take for example the
scriptability of the Address Book application. When you create a new person, that person
gets a creation date property. While being able to use AppleScript to get the creation date
of a person is nice, it would not make any sense if you could change that date; it would no
Ionger be the creation date, but just any date.

lf you try to change the value of a read-only property, as in the script shown in Figure
2-16, you get an error as shown in Figure 2-17.

tell ~pplicanon "Address Book"
set cre~tkln d~te of person I to (current d~te)

end tel~

, Ducrlpdon - Evtntl..og ,

Figure 2-16. A tarne attempt at changing a read-only property

• 02-16 set creatlon date error

AppleScrlpt Error

Address Book 90t an error: NSinternaiScrlptError

Flgure 2-17. Trying toset the creation date property of a person generates an error.

39

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

40

Property, inheritance, and class!
Remember that confusing "dass" discussion we had a couple of pages ago? Well, let's try
and recall some of it.

We saw that objects beleng to dasses, and dasses may have subdasses and super dasses.
We also separated them from the containment hierarchy, which is the way objects may be
elements of other projects (like a text frame is an element on a page). Classes are for das
sification purposes only, but they have a very streng connection with object properties. So,
take a dose of virtual dope and dive in:

How are properties inherited from super dasses? OK, take a mental Iook at your enter
tainment center's media organizer. lt has lots of tapes, CDs DVDs, VHS tapes, etc. What
name can we use to describe all those things? How about media units? Good, now
what characteristics can we define that will make sense for all media units? Type of media
(that may indude CD, DVD, VHS, etc.), length of time, genre, format, language, etc. Now
let's Iook at one of the media unit types. How about DVD movies? DVD movies are a sub
dass of the media unit dass, and media units are the super dass of the DVD movies dass.
lf we Iook at all the distinctive properties of a DVD movie, we'll find that some are unique
to DVDs, such as ratio (3:4 or 16:9), or whether the movie is subtitled or not. Other prop
erties, however, are inherited from the media unit dass. ln fact, the DVD movie dass
inherits all of its super dass properties.

The point is that dasses and inheritance of properties is not some far-fetched program
ming concept; it's a concept that can be found anywhere in the programming language
of life.

Every dass inherits all of the properties of its super dass: the text frame dass has all of
the properties of its page item super dass; the fotder dass has all of the properties of the
container super dass, etc.

How to talk to objects so they Listen
As we already know, in order to have your commands obeyed, you must address the recip
ient correctly. ln AppleScript, there are many ways to address objects in a way that will
make them eligible to receive and obey your commands.

These ways of pointing to an object are called reference forms. Mastering reference forms
is crucial to the success of your script. lf you can't point to the right object using the
appropriate reference form, your script will not be as reliable as it could be. The coming
section will help you understand reference forms and how to use them.

Let's go back for a minute to the dean at our made-up school. The dean's job today is to
assign extracurricular duties to students. Before naming the duties that need to be carried
out (command) he needs to identify the students who will perform the tasks. Based on
what we know so far, he can finger each student individually: tell the student in seat 4 of
row 8 of Mr. Popokovich's dass that his duty is dishwashing at the cafeteria. Or, in slightly
different words: the duty of student of seat 4 of row 8 of Mr. Popokovich's dass is

STARTING TO SCRIPT-ALLOVER AGAIN

dishwashing. While this is alt good, our poor dean will realize soon enough that in order to
name all the students and duties for the day, he will need to spend the entire afternoon
assigning duties! He needs a better system.

Object names
Many applications allow you to name, or Iabel, objects. The name of the object makes it
easier to refer to it; however, it is up to you to name it in the first place. Object names are
simply another property of the object. just like, say, the width of the object, its position, its
size, or color; the object's name is just one more piece of information that you can use to
get the object's attention.

Some applications, such as the Finder, have a natural naming structure already in place.
Also in Adobe Illustrator you can use the Layers palette to name objects, a name that can
be later used in a script to refer to that object.

The use of object names or Iabels can prove invaluable when automating graphics appli
cations: assigning a graphic frame on an lnDesign page the Iabel "chart" will allow your
script to later import the image chart. EPS into that frame. lf you've done your job, then
there will be one page item Iabeted "chart" on that page, and the script will work even if
you move that frame around.

One thing to remember about naming or labeling objects is that referencing those objects
using the name still depends a whole Iot on the way the application has implemented the
object model. Here are a few examples:

ln the OS X Finder, objects actually have a few name-related properties on top of the
name property, such as display name and name extension. Also in the Finder, you can only
work with files in a single folder at a time, so writing

delete every file whose name contains "temp"

will only delete files in the folder you're referring to, not the entire hard drive.

ln lnDesign and in lllystrator you can refer to alt objects in the entire document that have
a certain name, but lnDesign will omit the items that are a part of a group.

May I see some ID please?
While names are useful, some applications use an additional identifier for objects:
unique ID.

Unlike naming and labeling objects, an object's unique ID is assigned by the application
and is a read-only property, which means that you can't change it, only Iook at it. That
aspect of a unique ID is what makes is so useful: while the name of the object can be
changed by either a script or in the user interface, an ID is created automatically when the
object is created, and stays with the object until it is deleted, or the page it's on is deleted.

41

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

42

Unique IDs are an essential reference form since, unlike the name and index properties,
they are truly unique. You have to be aware that the id property for a particular
object may change the next time you launch the application. Also, the format of the prop
erty may change from application to application. ln lnDesign, object IDs are a three-digit
integer or higher. ln Address Book, a person's ID may Iook like this: 03CEBE56-CA2B-11 D6-
8BOC-003065F93D88:ABPerson.

Applications that assign IDs to objects are lnDesign, Quark, FileMaker, Address Book, iCal,
BBEdit, and more. However, these applications do not: Mail, Illustrator, Photoshop, Safari,
and Excel.

Every . .. whose
The whose clause, also known as the test reference form, is one of the most powerful pro
gramming constructs in the AppleScript language. lt gives you the ability to group objects
into subsets out of a !arger set of objects based on their shared attributes. OK, so that was
loaded. Let's break it down. Whenever you examine any group of objects, some of them
are similar in different ways. lf a fotder contains 50 files, 20 of them may be TIFF files, 1 0
may be aliases, 8 may be !arger than 1OMB, and some may be older than a month. On an
lnDesign page you may have 30 page items: 10 of them may be lines, 22 may have a stroke
of 1 point, and 20 may have a blue fill. Notice that I named properties that are unrelated:
in the Finder, the same file can be over 1OMB and under a month old, and may or may not
be a TIFF file.

This way of grouping objects allows you to easily and logically refer to just the objects you
want to affect.

Our dean, for instance, had a thought: "I can simply say 'Every student whose grade aver
age is C or lower has dishwashing duty today."' Ouch! Way too mean, but it would have
worked.

ln some applications, however, you can use an unlimited combinations of whose clauses
and commands. Here are a few:

Script 2-1

tell application "InDesign CS"
tell page 1 of document 1
delete every text frame whose contents is

end tell
end tell

The entire set we reference here is the set of text frames on page 1. Using the whose
clause, we can single out the text frames that contain no text and delete them.

Script 2-2

set the_folder to path to documents folder from user domain
tell application "Finder"

STARTING TO SCRIPT-ALLOVER AGAIN

duplicate (every file of the_folder whose size is greater than ~
(2 * 1000000))

end tell

ln the Finder, the set of objects is all the files in the documents folder. The script though
only wants to duplicate the files that are larger than 2MB.

Script 2-3

tell application "FileMaker Pro"
tell table "guests" of database "party"

set kids_list to cell "name" of every record whose cell "age" is ~
less than 12

end tell
end tell

ln this script, we will end up with a Iist of names of all the party guests who are younger
than 12.

When you work with an application that doesn't support the whose clause, you have to
settle for slower, clumsier repeat loops.

Index and range reference forms
The index and range reference forms both use integers to reference objects. To use the
index reference form, you type the dass name followed by the position of the specific
object you want. For instance, to get the first file of the second folder you can type file 1
of folder 2. The index reference form uses the order of the object, in the way the applica
tion defines that order. ln the Finder, for instance, the files are arranged alphabeticalty. ln
page Iayout applications the order of page elements is determined based on their stacking
order: the topmost item is always item 1. Some objects' order, such as pages, is easy to
determine.

The index reference form is especially useful when working with an application's docu
ments. Even if the extent of it is the use of tell document 7, it saves the scripter from
having to figure out the document's name or ID.

The index reference form works from the back as weil by specifying negative numbers. The
last item is also item -1, one before last is item -2, etc.

Another way to use the index reference form is with number words such as first, second,
and third, like this: third application file of last folder.

The range reference form is a variation of the index reference form. lt altows you to refer
ence an entire range of objects, instead of one object at a time. You do that by specifying
the index of the first item in the range you want, followed by the word "thru," and then
followed by the index of the last item in the range: pages 3 thru 6, files 1 thru 1 0, etc.

43

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

44

Ranges are often used when scripting different aspects of text. The following script
extracts a portion of a file's name:

Script 2-4

teil application "Finder"
tell folder "In" of disk "Jobs"

tell file 1
set job_number to (characters 3 thru 9 of name of it) ~

as string
end tell

end tell
end tell

Relatives
Relative reference refers to references that rely on a position of another object. For
instance, the reference paragraph after paragraph 3 requires that paragraph 3 will be a
valid reference in order for it to be valid itself. lf there's no paragraph 3, then you can't use
the reference paragraph after paragraph 3 or the paragraph before paragraph 3.

The following example loops through the paragraphs in the first TextEdit document and
creates a document that is a reverse version of the document where the first paragraph
is last, the last is first, etc. The way the script works is by always using the paragraph
after . .. reference form. The reference of the last paragraph according to the script is

paragraph after paragraph after paragraph after paragraph
after paragraph after paragraph 1 of document 1

This is due to the fact that I had five lines in the front document.

Here is the entire script:

Script 2-5

1. tell application "TextEdit"
2. tell document 1
3.
4.
s.
6.
7.
8.

set paragraph_count to count (get paragraphs of it)
set current_paragraph to a reference to paragraph 1 of it
set reverse text to ""
repeat with i from 1 to paragraph_count

if i is equal to paragraph_count then
set reverse_text to current_paragraph & return & ~

reverse text
9. else
10. set reverse_text to current_paragraph & reverse_text
11. end if
12. set current_paragraph to (a reference to paragraph after ~

current_paragraph)

STARTING TO SCRIPl-ALL OVER AGAIN

13. end repeat
14. end tell
15. set new document to make new document at end
16. set text of new_document to reverse_text
17. end tell

Objects and commands they understand
As a generat rule, different objects are designed to respond to different commands. For
instance, the reetangle object can understand the rotate command, while the poge object
unfortunately can't.

While it's basic for scripting to know what objects can handle which commands, and as
important to know how to phrase the command in a way that will give you a result and not
an error, it's sometimes difficult to find that connection.

The dictionary is not much help on that matter. lt lists all the events (commands) and all
the classes (objects), but doesn't make a connection between them.

The best place to go for that information is to the scripting guide that comes with most
scriptable applications, or to sample code that ships with the application.

Making your own commands
Do you know those people who start on a subject, like how their day went, but they get
entangled in the small details, which bring up little related thoughts and more details, and
soon enough you forget where they started and they forgot where they were going with
the conversation? OK, so I can be like that sometimes, but the last thing I want is to have
my scripts behave like that as weil.

So how can we organize our scripts to be more punctual and stick to the point?

When you write scripts, you use statements. These statements have some purpese that is
bigger than the individual statement itself. For instance, when you need a part of the script
to create a folder, you may want to first figure out if a fotder with that name already exists at
that location. Part of getting all that done may be to write a statement that retums the Iist of
files in a folder, a statement that renames a folder, a statement that creates a folder, etc.

The result is that even though you had a single purpese in mind, that purpose got trans
lated into quite a few lines of AppleScript code. Wouldn't it be nicer if we had a single
command that checks if a fotder exists, renames it if it does, and then makes a folder?

While there's no such command in AppleScript to date, AppleScript does give you the
chance to create one! This means thatyou can create the command that does all that, and
then, in your script, you can just tell that command to execute, or in AppleScript words,
call that command.

45

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

46

Creating your own commands, also called handlers or subroutines, will have a positive
effect on the organization, readability, flexibility, portability, and modificationability of
your script (OK, so I made up a word-it's my book, after all . ..) We will discuss the impli
cation of handlers on scripts in later chapters.

There are two ways to write handlers in AppleScript. You can either use positional
parameters or Iabeted parameter handlers. The easier form is positional parameters, and
therefore we will start by creating those. ln Chapter 18 we will get into Iabeted parameter
handlers as weil.

For now, let's Iook at the basic anatomy of a handler.

A handler has two aspects: the handler definition and the handler call. The call is simply
stating the name of the handler, possibly including a few parameters. A handler call may
Iook like this: my_commandO.

The term my_command is not a part of AppleScript. Beside bragging rights for your
handler, you also have naming rights. That's true, you get to give your handler any name
that is not a reserved word. You should also make sure that the name of the handler is
descriptive.

Start a new script window and type the handler call in, like in Figure 2-18.

my_comma/11()

Flgure 2-18.
A handler call

Now run the script, and you'll get the result shown in Figure 2-19.

csc~ doesn~ underst.lnd the my_com!Nnd
musage. Flgure 2-19. When the

script looked for the
handler definition and
couldn't find it, it
generated an error.

STARTING TO SCRIPT-ALLOVER AGAIN

The script found a command but didn't know what to do with it. This is our fault; we never
shared with the script the specifics of the plan. Let's do that now.

Add a couple of blank lines and add the following lines (see Figure 2-20):

on my_command()
--command here!
end my_command

my_comma~

onmy_CDmnHI~

-Command code herej
end my_comlfUind

HAndlers

Flgure 2-20.
The handler definition

The lines we added are the "wrap" for the handler definition. Whatever AppleScript code
we add between those lines will be the code that AppleScript will execute when the
my_command handler is called.

To see it run, let's insert a simple displaydialag command into the my_command handler.

Insert the following line between the on my_commandO and end my_command lines:

display dialog "Hello Handler!"

See Figure 2-21 .

e·o·e- ·!!\ 02-21 Calling HAndlers

my_comma~

on my_comma~
dlsplay dlalog "Hello Handler!f"

end my_commalld

-

l Ducrlption ~ Bit .. LOg J

C) l

ll
I! ' I

«

Flgure 2-21 . The script
runs, the my_command
handler is called,
and the code in the
handler is executed.

47

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

48

What will happen if the handler is never called? Try commenting the calling line: insert two
dashes before the line that calls the handler.

--my_command()

Now run the script and see that nothing happens. Handler definitions that never get called
just sit there and do nothing.

Even though handlers are thoroughly covered in Chapter 17, they are an important
enough subject to touch on a few different items in the next sections.

Handlers can deal with arguments
The handler we created is designed to display the same dialog box every time, which is
good if that's what we want. However, what if we want the same dialog box, but different
text every time? Or even different buttons? Let's give it a whirl.

When you want a handler to process different information each time it runs, you need to
somehow supply it that information. This is done using arguments that are passed inside
the parentheses. We will start with one argument for the dialog box text and then add
another one for the button's text.

An argument you pass to a handler is touched on at least twice if you want the script to
run, and a third time or more if you want the argument to be used in the handler.

The way to pass an argument to a handler is by creating a special variable name and plac
ing it in the parentheses in the first line of the handler definition. This variable is called a
parametervariable because a parameter value passes to it du ring the handler call.

When the handler runs, any value that is found in the parentheses of the handler call will
be the value of the parameter variable in the handler's definition.

To see all that work, type the variable name dialog_text in the handler definition paren
theses. Then, to supply the value forthat variable, type "Hello!'', including the quotes, in
the handler call's parentheses. Your script should Iook like the one in Figure 2-22.

lf you run the script now you will see that the dialog box still says "Hello Handler!". To
make the dialog box display the text we give it when we call the handler (Hello!), we need
to replace the text in the dialag command with the variable that contains the text we
passed from the handler call. That would be the variable dialog_text.

STARTING TO SCRIPT-AU OVER AGAIN

-80A [t 02-22 ~ine twnd .. rs 0
",.,_,_~.,

o• m;_commar../1;4/Q~-'cxq
:: r1 o<jlb V rlh 419 "H~IIn H>n::l llo ~·

pnd tHy_rn-u.~t

- --.

:
Otoupt""' ~ 8terC ..og

.:,

Flgure 2-22. When the handler my_command is called, the variable dialog_text
in the handler is going to be replaced with the text "Hello!" from the handler
callline.

Figure 2-23 shows how the revised script will Iook.

-8 6 e --Ii!. 02-23 caulng,dlers E3

my_comm~ellol")

1:::
on my_commond.diDiofl--!txt)

dlsplay dlalog diDJofl._rur
end mr_common4

.:

'·' -
;

[, ::!
i'

t Otocr1pt""' ~ EYon< Log J
,·i

Flgure 2-23. The parametervariable dialog_text is used in the disp/ay dialog
command. The string "Hello!" specified in the handler call is passed to the
parametervariable dialog_text, and is later used in the handler.

Try to run the script.

Now, copy the line of script that calls the handler (the first line in the script), and paste it
in a new line just below. Change the argument text in the second line to "Goodbye ... ".
See Figure 2-24.

49

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

50

~eoe l::?i 02-24 Calling Handlers e
mr_commo~"Hello!i
mr _ commoii<('Good bye .. .J'l

an mr_commo~dlalog_rvtr)
dlsplay dlalog dlalog_rur

end mr_command

"
I ,,

Descrlptlon "~ E .. nl l09 J ~

-
Flgure 2-24. The same handler is called twice.

When you run the script now, the same handler will be called twice, each time with a dif
ferent message.

To add a secend parameter that will be used for the button name, you have to add a
comma followed by the secend parametervariable in the first line of the handler definition:

on my_command(dialog_text, button_text)

just for kicks, try to run the script ... see Figure 2-25.

02- 24 Calllng Handlers

AppleScrlpt Error

itkllol"l doun'l m•ICh 1he 11M•",.••" (dl•log_toxt,
bunon_te:xt) for my_comm~:nd.

Flgure 2-25. The error says that while the handler definition has two parameter
variables, the handler call specifies only one.

To fix that, add a comma and a string in quotes, one after the word "Hello!" and one after
the word "Goodbye ... " in the two handler calls. See Figure 2-26.

Also, notice the buttans addition to the displaydialag command.

Run the script and see the dialeg box appears twice with a different button each time.

STARTING TO SCRIPT-ALLOVER AGAIN

-
806 02-26 Calling Handlers e)

my_common<Oi~llol", l>one1
my_commani('Goodb~ ... •• "Ciicki , ;

on my_command.diDiog_rvcr. burron..rvcl)
dfsptay dlalog dlalog_rvcr bunons (blltron..rextl

end my_command
::·

1- .

I.!

Oesctlptlon ~· ._.~ Ew.nt Log I ·-

"""

Flgure 2-26. Another parameter variable has been added to both the handler
call and definition and used as the button name.

Handlers return results
The next handler we will write will do a little calculation for us and return the result of the
calculation.

While handlers can return results, they don't always, and even if they do, you don't always
need to use that result.

lf we don't specify the result we want the handler to return, it will automatically return the
result of the last line on the handler. For instance, in the last part we ran a handler that dis
played a dialag box. The last statement of the handler returned the following result:

{button returned:"Click"}

Therefore, the entire handler returned that same result. Not that we care, however, since
we didn't trap that result, intend to do anything with it, or care if it comes back as a par
ticular data type.

ln the next mini-script we'll create a handler that returns a result. ln fact, that handler will
be completely useless unless it returns that result since it's going to do nothing other than
calculate some numbers. lf the result is lost, the handler is useless.

So how do we trap the result of a handler? Simple: we assign it to a variable. For instance,
if we have a handler that calculates the distance between two cities, we might call it in the
following way:

set the_distance to calculate_distance("Providence, RI", ..,
"San Francisco, CA")

51

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

52

Whatever the result is (which is hopefully the distance between the two cities) will be
assigned to the variable the_distance.

Try the following example:

Script 2-6

set year_barn_dialag_result ta ,
display dialag "What year were yau barn in?" ,
default answer "19XX" buttans {"OK"}

set year_barn ta text returned af year_barn_dialag_result
set the_persan_age ta get_persan_age(year_barn)
display dialag ("Then yau must be " & the_persan_age & " years ald")

ta get_persan_age(year_barn)
set year_barn_as_date ta date ("1111" & year_barn)
set the_age_in_secands ta ,

(current date) - year_barn_as_date
set the_age ta the_age_in_secands I 60 I 60 I 24 I 365
set the_age ta raund the_age
return the_age

end get_persan_age

ln the example, the result of the get_person_age handler call on line 3 is assigned to the
variable the_person_age.

A few things to notice: first, in the handler call we use the same variable as in the handler
parameter variable. lt may or may not be the same variable. As discussed in an earlier sec
tion, a variable used inside a handler is completely separate from variables used outside of
the handler, unless a variable is declared as global or as a property. We will discuss that in
further detail later on. Second, the first word in the handler declaration is "to" instead of
"on." These words can be used interchangeably.

ln line 6 of the preceding script we create a date that is formatted like this:
MIDIYYYY. This should work on any Mac whose date format in International
preferences has not been changed. lf the date format has been changed, then
this script may not work.

Since so far we worked with positional parameter handlers, the order of the parameter
variables and the values that are passed to them in the handler call have a material impor
tance. lf you flipped them around, the value you intended to use for one variable will be
assigned to a different one. This may return an error, or worst, the wrong result, which will
send you into a mad search for what went wrong.

This was an introduction to variables. Much more on that subject appears throughout the
book, and specifically in Chapter 8, which is dedicated to variables.

my _ti.s t to nery chat'ilcter of
..__... ________ --~1•~· my_rrew_nrlng to-

I Iove the big •
pe.at wtth rllt_dtoracrl!r ln my_lls

-dlsplay dlaiOQ the_charaaer
if tht....dlor«ter "' 5tring is "t"

set my_new_nrlng to my_
else

set my_new_srrlng to my_
end lf

nd repe.at
i:!iplay dialag my_ni!W_Jtrins

5et dotobose._records_ltsr tCJ every
reporwlth lfrom I to (count

set the_diltt~IHßt....ru(Jrd to
set telet item delimiters to
s:et fJeJd_ I/sr to ~Vf!ry text
s:et rhtt..IIQ.me tD ltem 1 of

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

56

Values are the bits of information that we use when we talk AppleScript: the numbers we
use, the text we display or store in different ways, dates and times we calculate different
things with, and any other piece of information.

When we speak the AppleScript language, it's important to notice the distinction between
giving commands and the information that we use to make the command mean some
thing. just like when we speak English, we can have this exchange:

"Hey what time is it?"

"Hmmm ... lt's quarter of four, I need to get to the bank before it doses and withdraw
$60 to pay Dan and Gail for helping me paint." ·

ln AppleScript this would have been the following (although this is not a real script):

set time_bank_closes to date "5/2212003 4:00 PM"
set time_to_get_to_bank to 15
set time_left_until_bank_closes to ~
time_bank_closes - current date - 18 minutes
if time_left_until_bank_closes > time_to_get_to_bank then

set my_money to withdraw 60 from bank
set list_of_people_to_pay to {"Dan", "Gail"}
give (my_money I 2) to (item 1 of list_of_people_to_pay)
give (my_money I 2) to (item 2 of list_of_people_to_pay)

end if

ln the preceding example we gave a few commands, such as set, withdraw, and give,
(which are commands found in the application Life, yet to be scriptable ...). The com
mands themselves, however, don't mean much without the values we attach to them:
dates and times that represent the bank dosing time, amount of money I have to with
draw, and the Iist of people I have to give it to.

These values, or bits of information, get their meaning not only from the data itself, but
also from the type of information they represent. For instance, the money I have to pay
Dan and Gail is stored in the script as a number. The significance of that is there are cer
tain things I can do with numbers that I can't do with text, for instance, math! I could take
the amount I withdrew and divide it by 2. I also did some math with the dates to figure out
if l'm too late to get to the bank. The result of these calculations was a number as weiL

What about the people I had to give money to? Each one of them was represented as text,
or a string in AppleScript terms. The names of the two people, however, were dumped
tagether in what we call a Iist, which we will Iook at in a bit.

The different types of data we use in AppleScript are called dasses, and the pieces of data
are referred to as values. ln AppleScript, then, the types of information we use are called
value dasses.

While in AppleScript there are about 14 value dasses, and some of these divide into even
smaller groups, there are a handful that we use constantly: numbers, text, and Boolean.
Boolean, the only dass that may need a basic introduction, is a value dass that can have
one of two values: true or false.

The fourth one I want to cover alongside number, text, and Boolean is Iist; as I mentioned
earlier, a Iist isn't really a single piece of information, but rather a duster of information. A
Iist is made out of items, and each item can be a value from any value dass.

A Iist is a sort of a compound value dass that is infinitely useful. lt is dynamic, which means
you can add items to it, and you can retrieve individual items from it at any time. We will
delve more into lists in a bit, and explore its many uses throughout the book.

Stringing characters
One of the things you will find yourself doing a Iot in AppleScript is working with text in
one way or another. The following sections Iook at the many aspects of text manipulation
in AppleScript.

What can we do with text?
While the official word for text 1'11 use in the book is "string," it is basically text. The string
value dass is an erdered string of characters. ln order to distinguish a string from other
value dasses and from variable identifiers, we wrap strings with straight quotes:

"Hello World!" is a string, while hello_world is an identifier, or a variable name.

You can assign strings to a variable using either the copy or set commands:

set my_greeting to "Hello World!"

This line assigns the text "Hello World!" to the variable my_JJreeting.

The same result using the copy command would Iook like this:

copy "Hello World!" to my_greeting

The length of a string is limited only by your computer's memory.

The character set you can use in a string is a different issue though. As simple strings go,
they can indude 256 different characters. ln fact, you can ask for any character's ASCII
value. ln OS X, though, different applications may return values in a dass called Unicode
text. Unicode text is a relative of string, but instead of being based on the single-byte pat
tern, it uses two bytes for many characters. Now what's a byte between friends, you ask,
and really what is the difference?

OK, so let's start with electronics 101: a byte has how many bits? 8. A bit can be how many
different values? 2. A bit can be either on or off. That means that when we have 8 of them,
and each one can be either on or off, we increase the number of variations. How many
variations do we get? You figure it out, manually:

V ALU ES

57

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

58

Take a piece of ruled paper and make eight columns. Now, write a zero at the top of each
column. ln the binary language, you wrote the number zero! Now, write seven zeros and a
one. Next row: six zeros, a one, and a zero. This is actually the number 2 in the binary system.
Continue writing the numbers down until you either get to the number 11111111, or you
feellike resorting to calling me names. ln any case, here is how your page would Iook like:

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

11111111

and so on ...

lf you got to the end and counted the rows, you will discover that you have a total of 256
rows. Hmm ... sounds familiar. lt works this way since each byte has 8 bits, the maximum
number of combinations 8 bits can have in the binary system is 256, and hence the 256
characters in the ASCII table.

Another way to figure that out is by using this formula: 2A8=256.

Where else does the number 256 appear? ln images, of course. The idea is the same: in an
8-bit image, each pixel has 8 bits to its disposal; therefore the image can only have 256 dif
ferent shades. A 24-bit image is an image that's made of three 8-bit images, usually a red
one, a green one, and a blue one. Enough of that though.

As for Unicode text, it has 2 whole bytes to use for most characters. That means that
instead of the 256 characters, it has, weil, let's Iook at our formula: 2A16=65,536. That's
right, a double-byte character can have 65,536 different characters.

Why do we need these variations? Weil, each variation is assigned a different character.
Here is how it works. ln a single-byte text system, such as the plain old string we use in
AppleScript, every character is assigned a byte of memory, so we can have 256 characters.
While that's just about enough for use on one computer, when we need to start commu
nicating with other platforms and other languages, the 256-character system falls short.
For that reason, most applications will return strings to AppleScript in the Unicode string
format.

What it means to you, the lone scripter, isn't much, since AppleScript for the most part
makes sure to convert between plain strings and Unicode text. That conversion in
AppleScript is called coercion. To coerce is to convert values from one dass to another.
More on coercion later. While AppleScript and OS X in particular are moving towards
Unicode parity, there are still many glitches. Some commands don't understand Unicode,
and some don't return string values in Unicode. This, however, is becoming better with
every release of the OS and will hopefully become seamless within a year or two.

Special string characters
While you can include any one of the 256 ASCII characters in a string, some of them need
a slightly different treatment. For instance, take double quotes. Since a double quote is
the character that specifies the start and end of a string, how can you include quotes in a
string? lf you write

set my_string to "Click on the file named "Read me" and open it"

AppleScript will get confused and think that the string ends at the second double quote
mark: set my _string to "Ciick on the file named ", and what comes after that won't compile.

The error you get, shown in Figure 3-1, is almost philosophical. l'm glad that AppleScript at
least found itself ...

Untitled

Syntax Enor

Exptaed ·g en·, "with", ""Witllout', othtr puamettr
name , tlc.. but round ·me·.

Flgure 3-1. AppleScript expected "without" but found "me".

The error is meaningless, since we messed up on the quotes front. The first thing you do
when an error makes no sense is check if you left some quote open somewhere.

To properly include a quote in the string, you escape it with a backslash, also known as the
escape character. The backslash is found to the right under the DELETE key on US key
boards.

V ALU ES

59

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

60

To property assign the text to the variable as we tried to previously, you write

set my_string to "Click on the file named \" Read me\" and open it"

Now, however, we have a second problem: how do we include the backslash character?
For instance, if we want to display a dialog box asking users not to use the backslash char
acter, we will need to use it ourselves. To do that we will simply escape it with another
backslash character:

Display dialog "Don't use the \\ character"

See Figures 3-2 and 3-3 for how to show the backslash character inside double quotes.
Fancy stuff!

-806 ·!!i 03-02 Cl

dlsplav dlalog "Don't u~e 1t1e \'\\\" charaaer1

1: I

·' , ::

!.

!' ·
i'•

Ruuk """"'log
~

Flgure 3-2. The code

~~------------~~~~~
Oon't u se the "\ • character

11
(Cancel)

Flgure 3-3. The resuiting dialog box

Other characters you should know about are the tab and return characters. These two
characters won't give you a hard time, just the opposite; there are a few ways to include
them in a string. You can simply use the words tab and return respectively outside the dou
ble quotes. lf you type the word "return" or "tab" inside double quotes, they will appear
spelled out instead of as the sign they represent. Another way to include these characters
is by typing \r for return and \t fortab (see details that follow). Both \r and \t will be
replaced with returns and tabs as soon as you compile the script; see Figures 3-4 and 3-5.

aet my_own_llllll'U to "coUee\tU.l~nrllonut \t$0 . 65"1

Event Log

Record Stop R-.~n Compie

stt my_own...me~tu to ·coffee s 1 . 1 s
donut iO.b!l1

Oescrlptlon

Flgure 3-4. The script
before compiling

Figure 3-5. The script
after compiling

The other way you can refer to the return and tab characters is by using their constants.
There are actually three constants: space, tab, and return. They're used like variables, but
the AppleScript language predefines them. just as with variables, you can't use these three
constants in quotes.

V ALU ES

61

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

62

They're useful when we use the concatenation operator to connect a few strings together:

set my_own_menu to "coffee" & tab & "$1.15" & return & "donut" &
tab & "$0.65".

The funny thing about the space, tab, and return constants is that you can actually set their
values in a script to something other than their originally intended values, as in this example:

set space to "-"
return "space" & space & "station"

The result is "space-station", not "space station".

That change, however, applies only to that script.

ASCII's a sure thing

Think about how neat it is to be able to describe characters without typing the character
itself. Think about characters that don't even appear on the keyboard, or characters that you
got out of some PC text file. ln AppleScript they Iook like gibberish, or like nothing at alt.

To identify a character, you can ask for its ASCII number, and then use the number instead
of the character. You do that using the Standard Additions commands, ASCII number and
ASCII character.

The ASCII number command takes a string as the parameter and returns a result in the
form of a number from 0 to 255. The number it returns is the ASCII number of the first
character of that string. For instance, the statement ASCII number space will return 32,
which is the ASCII number of the space character.

The opposite command is ASCII character. The ASCII character command accepts a num
ber between 0 and 255 as the argument, and returns the character that has that ASCII
number. For instance, the statement ASCII character 36 will return $.

Try the following script; see the resulting dialog box in Figure 3-6.

display dialag "I love the big " & ASCII character 240

While executing the script, AppleScript replaces the ASCII character 240 statement with
the Apple logo character.

-~

I Iove the big •

(Cancel) ll ""'

Flgure 3-6. The dialog box with ASCII character 240

Astringoperation
You'd think that performing operations on strings would return different strings as results.
ln fact, only one string operator returns a string. That operator is the concatenation oper
ator. or in other words, the "put two or more strings tagether to perform a single, Ionger
string" operator.

The rest of the operations you can apply to strings use comparison operators. That means
that their result is a Boolean: either true or false-for example, checking if "a" comes
before "b", or if the string "Angel food cake" contains the string "food".

The concatenation operator is specified in scripts by using &.

The concatenation operator can work on strings and on lists, and it's up to you to ensure
that you know whether the operations you perform with the concatenation operator are
supposed to return a Iist or a string. On top of that, you have to make sure that the result
the operation returns is the result you wanted.

What happens here in a sense is that we pay for the AppleScript programming language
relaxed syntax. ln many other languages, you have to declare, or dimension, variables
before you use them, and also specify the value dass for that variable (whether it will hold
a real, an integer, text, etc.).

We already saw the concatenation operator at work, but let's Iook at a couple of issues
with it:

Concatenating strings returns a string result. That makes sense. What else would it return?

Welt, try the following in a new script window:

set the_price to "$" & 6

The result is "$6".

The difference here is that we concatenated a string to a number. AppleScript took the
liberty to coerce the number into text, so the result is the same as if we treated the 6 as
text in this way:

set the_price to "$" & "6"

Same result.

However, let's see what happens when we switch places:

set the_price to 6 & " Dollar"

The result this time is different. Since the first operand (the item we operate on) is a num
ber and not a string, AppleScript figures that it would be safer to return a Iist instead of a
string. The result then is a Iist of two items, a number and a string:

{6, " Dollar"}

V ALU ES

63

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

64

To prevent that from happening, we have to include a coercion operator: as.

The operator as coerces the resulting value into a different value dass. ln this case, we can
write

set the_price to 6 & " Dollar" as string

which will return "6 Dollar".

We can also coerce the number into string by itself, and therefore the entire statementwill
result in a string:

set the_price to (6 as string) & "Dollar".

ln both instances the result is a single string: "6 Dollar".

What about the other operators? Weil, there are many operators that compare either two
strings or pieces of a string to other strings.

Theseoperatorsare =, *· >, ~. <, s;, starts with, ends with, contains, and is contained by.

Let's start with the simple ones. lt's easy to understand how we can see if strings are equal;
consider the following operations:

"Ice cream" = "carrot"

returns false.

returns true.

These two operators alone have multiple Variations, cooked up in the name of making the
AppleScript language more like a casual spoken language versus a programming language.
These Variations are shown in the following script:

Script 3-1

"Ice cream" is "carrot"
"Ice cream" equals "carrot"
"Ice cream" is equal to "carrot"
"Me" is not "You"
"Me" is not equal to "Vou"

How about the following statement:

"555-1212" = "5551212" --> false

or

"ASCII" "ascii" --> true

The result of the first operation is false while the second one is true. That is because
AppleScript makes assumptions about what special issues you may want to consider or
ignore while comparing text. You should not only be aware of these issues, but also always
keep in mind that AppleScript's assumptions can be overruled with special clauses that
allow you to ignore or consider certain conditions.

Considering and ignoring
There are a few string-comparison-related consideration clauses. They are (in alphabetical
order) case, diacriticals, hyphens, expansion, punctuation, and white space. Other consid
eration clauses exist, but don't relate directly to strings.

All the following samples are part of Script 3-2.

Let's start with a simple example of the case clause.

To use the case clause, or any other consideration clause, we have to wrap our statement
in the following way, using either the word "ignoring" or "considering," depending on our
intention:

considering case
''A .. = "a"

end considering

The result of the preceding script snippet will be false.

The default AppleScript behavior is to ignore the case of characters. so asking AppleScript
to consider the case of characters will yield a different result. Simply stating

.. A" = "a"

will return true, and since AppleScript ignores characters' case by default, the following
statement will return true as weil:

ignoring case
.. A'' = "a"

end ignoring

The deal with the diacritical, hyphen, and punctuation consideration clauses is a bit dif
ferent. Each one of these refers to a set of special characters that can be ignored when
comparing strings. All are true by default, so using them in a considering clause won't
change the result, but using them in an ignoring clause will.

The ignoring diacriticals clause allows you to ignore any accent marks, so that the follow
ing statement returns a true result:

ignoring diacriticals
"Resume" = "Resume"

end ignoring

result: true

V ALU ES

65

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

66

The ignoring hyphens clause allows you to ignore hyphens in the text:

ignoring hyphens
"stand-alone" = "standalone"

end ignoring
result: true

ignoring hyphens
"1-800-555-1212" "18005551212"

end ignoring
result: true

Note, however, that the ignoring hyphens clause will only ignore plain hyphens created
with the minus key, not any typographical dashes such as an en dash or em dash.

The ignoring punctuations clause allows you to ignore any punctuations marks. These
marks are . , ? : ; ! \ ' " ' . And in words: period, comma, question mark, colon, semicolon,
exclamation point, backslash, single quote, double quote, and that other character you get
when you press that key at the top left.

ignoring punctuation
"That's all, right? Now!" "Thats all right now"

end ignoring
result: true

The ignoring white spaces clause allows you to ignore spaces, tabs, and return characters
when comparing strings.

ignoring white space
"Space craft" = "Spacecraft"

end ignoring

result: true

The most obscure variation of the ignoring clause is probably used more in languages
where combined characters, such as A:, ae, CE, and ce, are used.

ignoring expansion
"A:" = "AE"

end ignoring

Result: true

Also, since case isn't considered, the following will be true:

ignoring expansion
11/f.ll = 11(1!11

end ignoring

A quick note regarding finding these characters on the keyboard: as a protest to the elim
ination of the venerable Key Caps, l've developed my own system that includes opening
text edit and frantically pressing as many keys as possible while holding different modifier
keys. This system isn't so good if you want to trace the key combination for later use.

Using a single considering or ignoring clause may get you what you need, but what if it
takes more than one? For that you can use multiple parameters, and even nest clauses.
Let's take a Iook.

Say you want to evaluate words that may or may not include either dashes, spaces, or
accents marks. Let's assume that we want to evaluate a student's response to a test ques
tion. While we need the answer spelled correctly, we want to be lenient when it comes to
spaces, dashes, accents, etc.

Here is how we can evaluate the accuracy of the answer:

ignoring white space, hyphens and diacriticals
set is answer correct to student answer = actual answer - - - -

end ignoring

This will ensure that if the answer was EI Niiio, the responses elnino, EI nino, Eliiino, and EI
Nino would also register as correct.

Another way to state the same intention is by nesting the different consideration clauses
like this:

ignoring white space
ignoring hyphens

ignoring diacriticals
set is answer correct to student answer = actual answer - - - -

end ignoring
end ignoring

end ignoring

What if you did want to consider the case of the answer, but wanted to give some slack
over the accents? Your statement would Iook like this:

considering case but ignoring diacriticals
a = b

end considering

"My Dad" comes before "Your Dad"

Much like the = operator, the different variations of the greater than and less than opera
tors always return a result as a Boolean. That means that the result of using an operator
can be either true or false. Before embellishing on the variations of the same basic opera
tors, we need to understand how a certain character is considered to be greater than
another.

V ALU ES

67

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

ln general. all 256 characters in the ASCII table are ordered based on how they would
appear in an English language dictionary. Here is the order of characters in which they will
appear if sorted:

ASCII Character ASCII Character ASCII Character
Number Number Number

32 (space) 107 k 182 a

33 108 183 I.

34 109 m 184 rr
35 # 110 n 185 1t

36 $ 111 0 186 J

37 % 112 p 187

38 & 113 q 188 0

39 114 r 189 Q

40 115 s 190 er:!

41 116 t 191 111

42 * 117 u 192 i.

43 + 118 V 193

44 119 w 194

45 120 X 195 '-1

46 121 y 196 !

47 I 122 z 197

48 0 123 { 198 ..:1

49 124 I 199 «

so 2 125 } 200 »

51 3 126 201

52 4 127 202

53 5 128 Ä 203 A

54 6 129 A 204 Ä

68

VALUES

ASCII Character ASCII Character ASCII Character
Number Number Number

55 7 130 ~ 205 ö

56 8 131 E 206 CE

57 9 132 N 207 re

58 133 ö 208

59 134 ü 209

60 < 135 ä 210

61 136 a 211

62 > 137 ä 212

63 ? 138 ä 213

64 @ 139 ä 214

65 A 140 ä 215 0

66 B 141 ~ 216 y

67 c 142 e 217 y

68 D 143 e 218 I

69 E 144 e 219 €

70 F 145 e 220

71 G 146 221

72 H 147 222 fi

73 148 223 fl

74 149 "j 224 *
75 K 150 ii 225

76 L 151 6 226

77 M 152 0 227

78 N 153 0 228 %o

79 0 154 ö 229 J..

69

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

ASCII Character ASCII Character ASCII Character
Number Number Number

80 p 155 ö 230 ~

81 Q 156 (J 231 A

82 R 157 u 232 E

83 s 158 Q 233 E

84 T 159 ü 234

85 u 160 t 235 i

86 V 161 236 'i

87 w 162 lt 237

88 X 163 f. 238 6

89 y 164 § 239 0

90 z 165 240 •
91 166 ~ 241 6

92 \\ 167 g 242 (J

93 168 ® 243 0

94 A 169 © 244 0

95 170 TM 245

96 171 246

97 a 172 247

98 b 173 "' 248

99 c 174 .JE 249

100 d 175 0 250

101 e 176 00 251

102 f 177 ± 252

103 g 178 ~ 253

104 h 179 ~ 254

70

ASCII
Number

105

106

Character ASCII
Number

180

181

Character ASCII
Number

255

Character

To determine in a script which one of two strings comes before the other, you can use any
of the following operators:

"a" comes before "b"

or

.. a" < "b ..

or

"a" is less than "b"

Similarly, the following operators checks whether the first parameter is greater than the
second, or appears later in the sorting chain:

"a" comes after "b"

or

''a" > "bn

or

"a" is greater than "b"

You can also use some of the comparison operators that have "or" built right into them:

ua•• ~ "bll

or

"a" is greater than or equal to "b"

or

.. 3 .. ~ .. b"

or

"a" is less than or equal to "b"

VALUES

71

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

72

Sorting text
ln the spirit of putting characters in order, let's try to analyze a script that takes a Iist of
strings and creates a new Iist, with the same strings in order.

First, here is the script. Note that this script snippet is a prime candidate for a subroutine.
The parameter will be the Iist we want to sort, and the returned result will be the sorted
Iist. For now, though, we will just concentrate on the code itself and not how it may fit in
a script.

I must also note that I did not write this script. This is one of the many useful subroutines
found in the AppleScript Guidebook. These scripts were for the most part written by Sal
Soghoian, the renowned AppleScript product manager from Apple Computer.

Let's see how the script works:

Script 3-3

1. set the index_list to {}
2. set the sorted_list to {}
3. repeat (the number of items in my_list) times
4. set the low item to 1111

s. repeat with i from 1 to (number of items in my_list)
6. if i is not in the index list then
1. set this_item to item i of my_list as text
8. if the low item is 1111 then
9. set the low_item to this_item
10. set the low_item_index to i
11. else if this_item comes before the low_item then
12.
13.
14.
15.

set the low_item to this_item
set the low item index to i

end if
end if

16. end repeat
11. set the end of sorted_list to the low_item
18. set the end of the index_list to the low_item_index
19. end repeat

Breaking up strings
A large part of working with text is being able to break apart a string and evaluate differ
ent pieces of it.

One obvious way to break a string is into its characters. Since a string is made of charac
ters, the length of the string is also the number of characters it has in it.

Actually, length is a string property. You use it to get a string's character count. Here is how
you do that:

length of 11 Iope 11

The result is a number, in this case, the number 4, since the word "rope" has four characters.

ln addition to the length property, we can also use the count command to get the number
of characters of a string. The count command can work on strings, lists, and records, and
also inside many applications. For instance, you can use the count command to get the
number of records in a FileMaker database, or the number of files in a folder.

Characters
So far, however, neither the length property nor the count command manages to break
the string apart. To break a string into characters, we have to use the word "character"
along with the get command:

get characters of "tic-tac-toe"

We can also drop the word "get", and write

characters of "tic-tac-toe"

Or make it more explicit, and write

get every character of "tic-tac-toe"

ln any case, the result will be the same, and the dass of the result, meaning the type of
data we get back from the statement, is a Iist. The Iist will contain all the characters of the
string, with each character taking up one item in the Iist.

{"t", "i", "c", "-", "t", "a", .. c", "-", "t", "o", "e"}

This is useful when you want to evaluate each character and perform an action based on
specific characters. For instance, having the string broken down into a Iist of characters
can be useful if we wanted to take a string and replace every instance of the character "t"
with the string "sl". However, there's a faster way to perform such replacement, as we will
see later on.

We will start with a variable with a string value, and then add another variable that will
hold a Iist containing every character of the string in the first variable:

set my_string to "tic-tac-toe"
set my_list to every character of my_string

At this point, the value of the variable my_list is

{lltiiJ lliiiJ II(IIJ n_n 1 lltiiJ llaiiJ II(IIJ n_n 1 lltiiJ n 0 uJ llell }

Next we will create a simple repeat loop that will loop through the characters and add
each one to an empty string variable. lf the character is "t". however, the script will replace
it with "sl".

VALUES

73

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

74

We start by defining the empty string variable:

set my_new_string to ""

But why do we have to do that? Shouldn't AppleScript be able to create a variable on the
fly? Why are we suddenly forced to define the variable? The answer is that in the next few
lines of code we'll need to add to the variable my_new_string. The way we add to vari
ables is by setting a variable to itself and then adding anything else on top of it. For
instance:

set the name to "Jack"
set the_name to the_name & " B. Back"

The result isthat the variable the_name has the value "Jack B. Back" assigned to it.

Anyway, back to our script.

As you can see in Figure 3-7, we defined the three variables that will be used in the script,
and created the skeleton of the repeat loop.

set my_srrlng to 'tlc·tiC·toe'
set my_lln to every cnaracter of my_srrlng
set my_new_stril'lfl to •

rept!!at wlth the..choraau ln rny_llsr

I
end repeat

Dncrlption

C)

Flgure 3-7. The variables are defined and a repeat loop skeleton has been created.

Since we will discuss repeat loops in detaillater on, for now I just want you to understand
that when we use in inside a repeat loop statement, the repeat variable, in this case
the_character, will be assigned the next Iist item at every loop revolution. To test the func
tionality of it, let's add a displaydialag command inside the loop.

display dialog the_character

Now run the script, which should Iook like the one in Figure 3-8.

Re<ord Stop aun Complle.

set my_strlng to "tlc·cwtoe•
nt my_Ust to ewry character of my_srrlng
sei my_naw_string to •

repeilt wlth rtw...chtlraaer ln my_llrr
dl pla.y dlalog rht...cht~raau

end repe.a~

Flgure 3-8. A temporary display dialog command has been added.

When you run the script, a dialog box will be displayed for each character in the string.
That should make the function of the repeat statement a bit clearer.

Now that we did that, comment out the display dialog command. This way you can quickly
get back to it later if you need to.

Next we will explain to the script what to do if the character happenstobe a "t," and what
to do if it's not.

Add the following lines inside the repeat statement:

if the_character as string is "t" then
set my_new_string to my_new_string & "sl"

else
set my_new_string to my_new_string & the_character

end if

Your script should Iook like the one in Figure 3-9.

V ALU ES

75

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

76

sei my _strif19 lo 'tic·lac·toe"
sei my_list to every character of my_string
sei my_new_srringlo-

reput wtth rht...clr"r"aer ln my_lü r
··dlsplay dialag tlt _character
if thLcharocter as strlng is 1" tlten

se.t my_Mw_srrlng to my_new_srrlng& ·sr
eise

set my_Mw_strlng to my_new_srrlng& tlre...chDractu
end lf

end repeat
d•splay dialog my_new_strini

(button rerurned:"'K1

Ouctlpcton

Flgure 3-9. A conditional statement reacts differently if the character is "t."

The conditional statement checks if the repeat loop variable the_character happens to be
a "t." lf it is, then the script adds "sl" to the my_new_string variable. lf it's any other char
acter, the character itself is added to the my_new_string variable. The value ofthe variable
the_character has to be coerced into a string since it is really "item n in a Iist," instead of
a string.

As we discussed earlier, we add to a variable by setting it to itself, and concatenating
(adding) more text to it:

set my_new_string to my_new_string & "sl"

The last statement of the script, for Iack of other use for our new and improved string. will be

display dialog my_new_string

You may be surprised to find out that the result hasn't changed; it is still "tic-tac-toe"! This
is due to AppleScript looking at the variable my_character as an item in a Iist instead of a
string. To remedy that we can force AppleScript to Iook at the text itself. We do that by
adding "text of" to the if statement; like this:

if text of the_character is "t"

Now the dialog box should be like the one in Figure 3-1 0.

l
sllc-slac-sloe

(Cancel)

Flgure 3-10. The dialogbox showing the resulting variable my_new_string

Another way we could've remedied this little problern is by coercing the_character
variable into a string:

if (the_character as string) is "t"

Pieking the pieces

So now we know that AppleScript can split a string into characters. What we also need to
know is how to extract chunks of strings for use in our script.

To put it in context, slicing up strings and turning chunks of them into new strings is one
thing that as a scripter you will do all the time: figuring out what date a job is due based
on the date embedded in the file name, parsing out text files and using the information
there, cleaning out unwanted characters taken from different sources, formatting phone
numbers, etc. The Iist is endless.

The first and most used tool we have is the ability to extract a number of characters from
a string by specifying the starting and ending character. This method is called the index
reference form, since you refer to a character (in this case) by its position among the other
characters.

An easy example would be

character 3 of "AppleScript"

As you must have guessed already, the result of the preceding statement is a string dass
with a value of "p".

And since we're talking AppleScript here, and not some other no-fun programming
language, we can also write

third character of "AppleScript"

The result, as you can imagine, is the same.

And if we can refer to the third character, then we surely can refer to the first character,
which would've made it cruel and unusual to not allow us to ask for the last character or
character before last character of "AppleScript".

VALUES

77

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

78

Try this:

character before last character of "AppleScript"

OK, so the only person I know that actually uses these terms in programming is Sal hirnself
(AppleScript product manager at Apple), but then again, I don't go out much.

Another thing that makes AppleScript a language more suitable for use by humans is that
the first character in a string. or the first anything for that matter, is referred to as 1, not 0.
This is known as a one-based index instead of zero-based.

Let's go back a step and Iook at the term "last character." Of course, using this kind of
syntax is useful forthat very last character, or even the one before it, but what about the
one before that? You're in luck, because AppleScript has the perfect solution! The last
character is also known to AppleScript as character -1 (that is, negative one). The reason
why this is so cool and so useful is that you can use a number to Iook for a specific
character counting from the end of the string, not the beginning. Using that negative
index reference style we can write

character -3 of "AppleScript"

which will return the character "i".

For your reference, Figure 3-11 shows you different ways you can refer to different char
acters in a string.

First character, 1st character, character 1

Second character, 2nd character, character 2 1 Third character, 3rd character, character 3

l Middle character

4 5 J. 7 8 9 16 11

AppleScript
-11-16-9 -8 -7 -6 -5 -4 t r 1 Character-3

Character before last character, character-2

Last character, character-1

Flgure 3·11. Referring to characters in a string

Looking at Figure 3-11 you can also see that the word "middle" is a valid reference,
although l've never used that one.

Another way to refer to a character is to use the arbitrary reference form: some. The some
reference form returns a random character from a string, which is another reference form
l've never used. I prefer to go the formal route and first derive a random number, and
then use that number to refer to a character by index:

set my_string to "AppleScript"
set my_random_number to random number from 1 to (length of my_string)
set my_random_character to character my_random_number of my_string

OK, so now that I Iook at it, it does seem neater to just write

set my_string to "AppleScript"
set my_random_character to some character of my_string

What was l thinking of all these years? Oh well, as long as I don't tell anyone . ..

Chunk at a time

Now that we know all about picking the right character, what about a bunch of characters?

What if we got a file name into a string, and we know that the client's account number is
a six-digit number starting from the third character?

OK, so the string is "JB445091_ UTFg12.sit". To extract the account number out of it, we
can write the following statement:

set job_file_name to "JB445091_UTFg12.sit"
set account_number to characters 3 thru 8 of job_file_name

The first thing you notice is that the word "thru" (which stands for through) isn't spelled
out. Say "thank-you" to the AppleScript team for locking the grammar police in the closet
that day. As one who uses the word "thru" in quite a few AppleScript Statements, I know
l'm grateful.

The secend twist is that although (or should l say altho) asking for a single character as we
saw earlier returned a value as a string, when you ask for a few characters using the thru
expression, the result is returned as a Iist of characters. That means that the value of the
variable account_number from before will be

{''4'', ''4", ''s'', ''o'', ''9'', ''1''}

The same is true for when you want all of the characters.

Both statements that follow will produce the same result, which is a Iist with all the char
acters from the string:

get every character of "AppleScript"
get characters of "AppleScript"

V ALU ES

79

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

80

Result:

{"A", ''p'', ''p", ''1", ''e", ''S", ''c", ••r", ''i", ''p", ''t"}

So in order to get the result as a string we can either ask for the text of it:

set account_number to text 3 thru 8 of job_file_name

or, as we saw earlier (though I doubt you were paying attention :-)), we can simply coerce
the resulting Iist into a string:

set account_number to characters 3 thru 8 of job_file_name as string

I know what you're thinking: since it's a number we're trying to get here, why wouldn't we
just ask for it as an integer? After all, a Iist of characters can be coerced into a string, and
a string containing numbers can be coerced into an integer, right? Weil, sort of. First, a Iist,
and even a Iist of numbers, can't be coerced into a number. What you could do, though, is
coerce the Iist into a string, and then into an integer in this way:

set account_number to (characters 3 thru 8 of job_file_name as string) ~
as integer

The first set of parentheses produces a string, and the as integer at the end converts that
string into an integer.

That same result could have been written in three lines for better readability in this manner:

characters 3 thru 8 of job_file_name
result as string
set account_number to result as integer

ln the preceding example we didn't store the result of each line in a variable; we didn't
even need to reuse the same variable. The result variable holds the resulting value of every
statement by default, and that saves us the trouble of using the set command.

Another point that we will discuss later is that the error-free execution of that script
depends on the extracted characters being all digits. More on that when we talk about
numbers.

Words
As would be expected, we can also break down text into individual words. Doing this will
also return a Iist, but unlike breaking text into characters where the integrity of the text
remained, breaking text into words eieans out any characters that are considered word
delimiters.

let's start with a little example. Write the script from Figure 3-12 and execute it.

. 03-12

Recotd Stop Run C11mplle

get evety word of "oh mv wordt

("oh", "m)l", "wordj

0

Flgure 3-12. A string being
broken into words

When you run the script the obvious happens: the result is a Iist in which each item is a
word. What you may not notice right away you're sure to notice in the example shown in
Figure 3-13.

Rec"d S:co Run Compllt

worcb of "3-day forcut, nanllliJ 5/ 12 120031

("J ' , "day'", "'lorcait". "rurttno". ·~·. " I t". "iOU J1

Flgure 3-13. Breaking text
into words eliminates the
delimiters.

Notice that I use words of and get every word of interchangeably. They
produce the same result.

V ALU ES

81

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

82

When you ask for the words of a string, you get a Iist of the words, but the dashes,
commas, slashes, etc. are nowhere to be seen.

The characters that are used as built-in word delimiters are

! \ "()':;?[]{}«»"""-

The following characters are considered to be words on their own, and even if they're
found right next to another valid word, they will be counted as their own item:

&*+><@\ \A_' 1- •f§·~ß®©™ '":;t:oo±::;;~~IJarrr1tJaonli.,;~/
"" ~ + 0 - I < > ;· ... %o

For instance, words of "you&me" has no delimiters and therefore should return a Iist with
a single item. However, AppleScript recognizes the ampersand (&) as a word, and there
fore gives it its own Iist item. The result will therefore be

{" you ", "&", "me"}

One more area where AppleScript shows intelligence in the way it breaks apart words is
when it deals with US currency marks, periods, and commas. When used in text, the dollar
sign ($), cents sign (ct), and percent sign (%) arealt considered their own words. This means
that writing

words of "Seven$Flat"

will return

{"Seven", "$", "Flat"}

However, if AppleScript recognizes that we meant to write a dollar amount, it will bunch
the $ sign with the number in one Iist item:

words of "pay me $10"

returns

{"pay", "me", "$10"}

This only works if the dollar sign is to the left of the number, unlike the percent and cent
signs, which will be considered a part of the same word only if they're found to the right
of the number.

words of "10%"

returns

{"10%" }

but ...

words of "%10"

returns

{"%", "10"}

When used between two digits, commas and periods suddenly give up their delimiter role
and jump in as part of the word. Take this statement for example:

words of "to get $1,000,000.50, you must give 100%."

returns

{"to", "get", "$1,000,000.50", "you", "must", "give", "100%"}

Notice that the period and comma that are a part of "$1,000,000.50" were left as part of
the dollar amount, but the comma that comes right after that amount and the period at
the end of the sentence were used as delimiters and are not a part of anything in the
resulting Iist.

Paragraphs

Very much like breaking strings into words, we can break them into paragraphs. The logic
behind a paragraph is much simpler: the first paragraph in the string starts at the begin
ning of the string, and ends at the first carriage return character, which is ASCII character
number 13. lf there's only one paragraph (and there's always at least one paragraph, even
if the string is empty!), then that one paragraph ends at the end of the string.

The rest of the paragraphs (if there are more than one) start right after the carriage return
and end right before the next one. The last paragraph ends at the end of the string.

Take for example the script in Figure 3-14. We started with a simple string that included
four paragraphs, and asked AppleScript to return every paragraph. The result is a Iist in
which every Iist item contains one paragraph.

bccwd Stop Run C-omplle

nt mr_srrlngto "Thl5 is a line
T~ next llnf ls here
rm thlrd
Last par.agraph arrhled'

everv paragraph of mr_srrtng
I

('Thls ts il llne', "The nfxt line ls here', ' fm third", "last
paragraph arrived1

Descr1ptlon

0

Flgure 3-14. AppleScript
breaks a string into
paragraphs.

VALUES

83

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

84

What would happen, though, if we try to merge the paragraphs back into a string again?
See Figure 3-15.

set my_srrlng to "Thls ls a llne
T~ next llne ls here
rm thJrd
L.an paragraph arrllled"

evuy paragraph of my_srrlng
get the result ;as strlng

"rhls ls a llneThe next I ne ls herel'm thlrd~n para9faph
arrived"

1 Descrt pllon

0

Flgure 3-15. A Iist of paragraphs coerced into astring become a single paragraph.

Why did that happen? Why is it that when we take a string, break it into paragraphs, and
then merge them back into a string right away we get one long paragraph? Because of the
fact that when AppleScript broke down the string into a Iist, each Iist contained only the
paragraph itself and not the carriage return character itself. We will discuss a quick solu
tion for that in the item delimiters discussion later on.

Words and paragraphs in the real world

That is, for those of us who consider AppleScript to be the real world ...

From my experience, looking at the words and paragraphs components of strings can be
extremely useful. Breaking down a text file into paragraphs and Iooping through them is
essential. and asking for every word of some text is great for finding the information you
need.

As an exercise, let's create a little script that will parse some text and use the information.

The script is a rendition of a script I actually use for scheduling purposes.

One of my !arge clients has scheduling software that sends me e-mails whenever l'm
scheduled to be part of a meeting. The e-mails are weil formatted, and their content is
predictable and reliable. lt contains in plain text information about the location and time
of the meeting, and some other general information.

What I need to do is parse that e-mail and create an event in my iCal calendar.

We will start by creating the script as a single flow, from top to bottom. The beginning will
gather the text from the message in Apple's Mai! application. Then, we will extract the
actual meeting information outofthat text, and we will end by adding a new event to iCal
with the information we collected.

After we're done, we will take a minute to better organize the script into subroutines. One
subroutinewill gather the text, the other will extract the data, and the third will apply it to
iCal.

lf you grade a script based on code efficiency, the script we're about to write is probably
an 8 out of 1 0. There are slight variations that would've worked just as well or better, but
for now l'd like to focus on using words and paragraphs to accomplish the job.

Mail to iCal script
We will start by extracting the information from Mail. What we will assume is that there's
a message selected, and that it contains text formatted to our expectation. lf this was a
script we had to distribute to users in our company, or make it public in any way, over 50%
of the code would have been related to idiot-proofing the script: making sure the user
selected a message, making sure the user selected the right message, making sure the user
knows what the script will do, etc. Everything short of making sure their Mac is plugged in.
ldiot-proofing your code takes time and makes the script more cumbersome, but it
ensures that different errors are fittered back to the user as friendly little comments such
as "Oh great one, please note that in order to select a message you must have Mai! open,
and then you must dick the message you choose to select. For clicking instructions, please
refer to your user manual."

This script, however, will be 100% functional without any error capturing.

Now for the script.

Like most applications, the mail application gives us access to the selection property. The
se/ection property belongs to the application object, and therefore can be accessed from
within the initial application tel/ bleck.

ln Mai!, like other applications, the se/ection property is a Iist, even though in our case it
holds only a single item. That item is the message, and we need to reference it in order to
get its text.

Before you start writing here, make sure that the Mail application is running and that you
have a single application selected. What you may also want to do is to type the content of
the message from the text that follows and send it to yourself. The message you will get
will serve as the script subject.

I realize that you might not be using Mail. lf you don't, you can skip the start and just set
the string variable you will see in a minute to the message text. This way you will bypass
Mai! and get right to cleaning the text.

V ALU ES

85

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

86

All this, by the way, isn't just logistics that relate strictly to learning AppleScript from my
book; these are different things you should do while writing actual scripts. Creating
dummy data, creating objects in application to use in testing, etc.

Let's Iook at the selection property first. Write the following lines and run the script:

tell application "Mail"
get selection

end tell

The result is a Iist containing one item. Now let's change the script to reference the first
item of the Iist:

tell application "Mail"
get item 1 of (selection as list)

end tell

Now the result isn't a Iist, but rather the item itself.

Why did I put selection in parentheses? Weil, Mail got a bit picky with me and this calmed
it down a little. Sometimes applications get confused and need you to describe what you
want more clearly by surrounding objects in parentheses.

Now let's go alt the way and extract the text.

ln Mail, every message has a content property that includes alt the text of the message.
You can see that in Mail's dictionary.

We'll discuss dictionaries and application objects and properties in detail in
Chapter 21.

What we need is to get the content property of the selected message into a variable. Here
is how:

tell application "Mail"
set the_message to item 1 of (get selection as list)
set message_text to content of the_message

end tell

Here is the content of the message. You can either e-mail it to yourself, or just assign it to
the message_text variable without calling Mail at alt.

Message text (with added carriage return marks for Iooks ...):

Meeting Reminder1[

Subject: Preapproval of the meeting proposed in the initial proposal draft1[

When: Friday, March 2, 2001, 8:30 AM - 9:30 AM (GMT-05:00) Eastern Time1f

Where: Break Room in the Marketing Wing

Notice that there are four paragraphs and that the meat or nutritional part is concentrated
in paragraphs 2, 3, and 4.

Let's add the lines of code that assign the contents of these paragraphs to different vari
ables. We will make the identifiers of these variables as descriptive as we can:

set message_subject_line to paragraph 2 of message_text
set message_dates_line to paragraph 3 of message_text
set message_location_line to paragraph 4 of message_text

Now we can start to turn the text into the information we need.

lf we examine iCal's dictionary we can see that there's an event object. That object is the
object we need to create. An event object has about 12 properties, out of which we only
care about four: start date, end date, summary, and status.

Of these four properties, two need a value of the dass Date, one is a string (summary), and
the status property uses a custom dass that can be one of four values: none, cancelled,
tentative, or con(irmed.

All this information can be found in the iCal application AppleScript dictionary. Here's an
excerpt from the iCal dictionary that shows these properties of the event dass:

summary Unicode text -- The event summary
start date date -- The event start date
status none/cancelled/tentative/confirmed -- The event status
end date date -- The event end date, if defined

Notice that although the status property uses values that are words, these words are not
strings-they're custom application values that fit this particular property of the event
dass: got it?

Anyway, our job is to end up with four variables that hold the data from these four prop
erties. We'll call thesevariables start_date, end_date, and the_summary. OK, so there are
only three variables. For the status property we will just use the confirmed value.

The next portion of the script will mold the plain text we got from the message into data
that will fit into these variables.

We'll start with the easy one: summary. The summary is just a text description, and I
believe that the text in the message_subject_line and message_location_line variables is
perfect. Let's concatenate them and assign the result to the the_summary variable:

Add the following line:

set the_summary to message_subject_line & return &
message_location_line

Now we need to attend to the dates. Let's start by breaking down the message_dates_line
variable into words. To do that we can type a temporary line that will return the words of
the string value of the message_dates_line variable.

VALUES

87

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

88

At the end of the script type

words of message_dates_line

Run the script, copy the result, and paste it in any text editor, or into a blank script win
dow. We will use that text as a reference, which will allow us to see what the different
words are and their order.

The result should be a Iist with 15 items:

{"When", "Friday", "March", "2", "2001", "8", "30", "AM", "9", .,
"30", "AM", "GMT", "oo", "Eastern", "Time"}

A quick analysis reveals that words 3, 4, and 5 contain the date; words 6, 7, and 8 make up
the start time; and words 9, 1 0, and 11 make up the end time.

ln AppleScript, a date object can contain both date and time. ln fact, if you don't specify a
time, AppleScript assigns midnight of that date as the time.

ln that case, we can create two strings; one will have the date and the start time, and the
other the same date and the end time. The AppleScript trick we'll use later is that we'll
convert that string into a date dass just by adding the word "date" before the string.

First though, we need to assemble the strings.

Script 3-4

set the_meeting_date to .,
word 3 of message_dates_line & space & .,
word 4 of message_dates_line & ", " & .,
word 5 of message_dates_line as string

set the start time to ., - -
word 6 of message_dates_line & ":" & .,
word 7 of message_dates_line & space & .,
word 8 of message_dates_line as string

set the end time to .,
word 9 of message_dates_line & ":" & .,
word 10 of message_dates_line & space & .,
word 11 of message_dates_line as string

Although adding the as string coercion parameter at the end is optional, I add it just to
remind myself of the dass of the variable. This also prevents confusion later if, say, you
want to start the concatenation with an integer. Now AppleScript will give you back a Iist,
not a string. Using as string at the end of operations that need to return strings is well
worth it.

Let's examine the variables we created:

Add the line

return the_meeting_date

What you will get is a string containing the date only. You can do the same with the other
variables to examine their values for accuracy.

ln the next two lines, we will concatenate the date and each of the strings containing the
start time and end time, and coerce them into a date dass.

set start_date to date (the_meeting_date & space & the_start_time ~
as string)

set end date to date (the_meeting_date & space & the_end_time ~
as string)

Run the script and see how AppleScript has formatted the date into its own date format.
As long as you give AppleScript some sort of a date containing at least the month, day, and
year, it'll take it from there and make it into a date it can understand.

OK, so it seems like we have alt the information we need, neatly formatted into dates, text,
etc. Now let's create the event in iCal.

iCal's AppleScript object model starts with the application dass, which has a calendar sub
dass, which has an event subdass. For that reason, we can't create an event just in iCal's
main tell block; instead we must talk to an existing calendar object. Since a working iCal
application must have at least one calendar object, we can safely use the reference of cat
endar 7. Here is the tell block we will use in order to talk to iCal's calendar:

tell application "iCal"
tell calendar 1

--command here
end tell

end tell

I always complete the tel/ blocks first before inserting the command. This is a way to elim
inate nagging little typos that will steal more debugging time than they deserve.

Now, type the following line in the tell block:

make new event at end with properties ~
{start date:start_date, end date:end_date, ~
summary:the_summary, status:confirmed}

The statement we added starts with the make command. The direct parameter is an event,
which is the dass of the object we're creating; we want the event created at the end, mak
ing it the last event to be entered. Also, as part of the make command statement, we can
specify object properties. This is a fast and efficient way to set the start date, end date, etc.
Notice that alt four properties we cared about now have a value.

V ALU ES

89

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

90

lf you left any lines in your script that start with the word "return" and are not in a sub
routine (we don't have any subroutines here yet ...), then comment these lines out by
adding a double dash before them (--). A line that starts with the return command will
stop the script's execution.

Now run the script and see if it worked!

As promised, we're going to take a minute and streamline our linear script into three sub
routines. We will cover subroutines extensively in later chapters; however, it's important to
get there with a wee bit of an "I already did it" feeling. So here we go.

The quick-and-dirty idea behind what we're about to do is to segment the linear script into
logical operations. Each operation will be determined based on its function, and may con
tain as few or as many lines of AppleScript code as needed. ln our example, we will have
three subroutines, each one dealing with one of the following tasks:

1. Get the message text from Mail.

2. Extract and format the information.

3. Create the new event in iCal.

ln our example, we'll see that each subroutine has three main components: the subroutine
identifier, which is the name of the subroutine; the parameters it takes; and the result it
returns.

Our first subroutinewill have no parameters, but it will return an important result: the text
of the currently selected message in Mail. The second subroutine will take that same mes
sage text that was the result of the previous subroutine and will return the start and end
dates and the summary.

The third subroutine will take the three resulting values (start/end dates and summary)
and use them to create the new event in iCal.

Figure 3-16 shows you how the new script will be organized. Notice the three subroutine
calls at the top, and how the body of each subroutine reflects almost perfectly the chunk
of the original script that performed its function.

eee moil "'«0"1110 ICol 0 80f'i ~HCintlOICol•..-.Jno
~~ 1ppkaoon "MMr A •:.":'tt mcss..,rfXI' to ~.lfiiiJr.",_rcxt() ttt r,._MUI41fii!: to r.: tn 1 ot (1ft 'tltctiOI"'J
ltftd ltf IIM.U"ffl,.tUI' to contti'JI Of flll,.mt.Jijffll r r ~!ft (rrwt_..,,,. tMt•c. thc..s~ to fonrwt_MW...._It(ontttMi:N(mUUrfil..tut)

loll C.C...--~fMLMr. IIW..MII. fllil..j.....,."
ond run

t1 ••N.UilfiLI~Uirtc to Pil"l9f10h 2 of,J.f.,.,__fat

liJ
•t ... UIIIfl.JMIJ' Mu_h to II.IUgnph l of I'MJ~fUI -StbtN!ntS btW tNi potfllt

ltl ",.,u,.t.»c.r'IINLh lO par&9f•Dh 4 Of MUU!f'_IU I
on mtlll..#ft~~rcxru A wt U..,~to mur~l- rtn.wn 1 m.t~J'fltJK«.",_._ ttll appllc'Je~on,r

u:t I#I(..IMIDf!l' to lrfm I of {get \etll!ttlon)

.. tAIL.meet.._., to .. Hl ma~taf to «<nh!.ltof ,",_".,~
wotd) of JIIQJ.._..,Q"_h &- s~u· & ... tf'Hit .. ll
WOtd • or MtS.r.,..,u_h a. •. • & ... murn .MUUf't-rurO
.,.d s of .MfjUft_Mfl.h u su-.g tn4 INfl.fft_IMIW,.._Iat

•• r-..n,."_tifW 10 ..
w«d tof.u~~~'·a .. an {twi'MI...~or""'r.b!(.tllt.U...._IUO B 'MIII'd 7 of IIIIUI41-.,"--h & tpne a. .. S.t IIIIUIGfLJultject'_.". 10 p.,-agraph 2 of IMSU!f(.fUt

ward I of .MUJllfl-*tts_h u tUWIQ Stt I'IWJ~INJUfii._MtJ..ohf: to ~jQf)l)h) of IMSUft.lW

tt t.flc..tlld_riMto - nt IIVIUf'-lot.tt.bfUitM to p&ragr•oh 4 ot lftiHJ..,.rur
."d t of Mtt.J4ilflt-Mö_h " $... ,,
~d I 0 of MtJJ4~~-Mti_IN 6 spKt & .. ltC (-.JUiftMIII'l'tO INJSII#f...~· Ft"-"• ~IIJ<Miolt.h
'WQf'd II of lftlt:J~rl_h. U Ur'llnO

nt ,..._,.".,..__.,, to-

tt. ".."· •• to dnt <rllc.JMtft._M• & sP~tt "{.ltt,.s(~,..._, 'WQrd) af o~ne~J.,..flll!ts.h • i,ate a.
tt W_'*fc w hfc Ullc....mrecta"_Mc& s~:~•n • r.llc...._r...., ward 4 af mui...,Mts. h 6 •• • 6

lii'Ofd 5 of MUJ4lfiUI«U..IiW as ~

~~·.~~~~· c i) ltf tiW_Il""--lliN 10 -
word 6 of nw.u.._.,u_., 6 .._. &

liNkt illltW t~rw: II t:l'ld •i(tl J)ICJI)ft'W I hQtt Clltt JrM.M t. tnd diU! Mlt1l 7 af MUJ8fl.,•cs_.. • 1p1n 6 -
fiiiiiLMc. IUINNIY'fftc...J""""""', •Uinn.tor*mtdf ward I af ••tr.U"ffi,.Mtt. h u 1trtng

tnd1tll utrlw..lllll:lrbtto ..
od t•14

j_
III'Ofd 9 of ltllrUs~llllclru_a..a. "':. & ..
\ltiOfd I 0 of IIMJ'"'fC,.olllfta. oltN 6 SQICt 6 ...
wtW1I II af "''a~Ma.h.u ftMo

-~- ·-· A._t ntlr1_.,, 1.0 dalt (1Jw...metrtw..d.ut6 SPI« • rM.st.an.r~

II nt Gll(. .. f! ta d.loWl cr"'Ma'.l.Jitf-•••u:' 6plt.e " ,, •• ~
mum lnM1'. Mtt, lltltMoL tllc..J*"""")'t

tnd f~S4ft-tfor"".IM -. ... - ~--1
._..., on c._...._~ltwr_Mc, Cltft.M«. rllc...s~ c • ttll lppllc.trioii '"Cir

tell ulendu 1
~ Nkl" Mtt twtCII Ind wtrh p.n»t:niU {Uin: d,ue:trMt,.Mt,. t l'ld d1tt:MI(.Mc,

lWtltl'lllfY.;rht._;~. t:l,.u.N. cOI'Iflnedl
~~II

~···" lltd~ • ..,..

I -....

Flgure 3-16. The original script compared with the new subroutine-happy script

Notice also in the new script that we put all of the three subroutine calls inside of the run
handler. Any lines of code that exist inside the run handler will execute when the script is
either launched as an application, or set to run from inside the script editor. The run han
dler is implied if not supplied, which means that if you don't include the run handler,
AppleScript will consider any stray line of code that is not in any other handler part of the
run handler. The script would run the same whether it includes or doesn't include the run
handler. However, since we're in "being organized" mode, it's appropriate to include the
run handler too.

Look at the content of the finished script that follows and make the needed changes to
your script to bring it to that point.

Here's the code of the new script:

~

VALUES

0

I
I

'

91

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

Script 3-5

92

1. on run
2. set message_text to mail_get_message_text()
3. set {start_date, end_date, the_summary} to ~
format_message_information(message_text)
4. iCal_add_event(start_date, end_date, the_summary)
5. end run

6. --Subroutines below this point:

1. on mail_get_message_text()
8. tell application 11Mail 11

9. set the_message to item 1 of (get selection)
10. set message_text to content of the_message
11. end tell
12. return message_text
13. end mail_get_message_text

14. on format_message_information(message_text)
15. set message_subject_line to paragraph 2 of message_text
16. set message_message_dates_line to paragraph 3 of message_text
17. set message_location_line to paragraph 4 of message_text

18. set the_summary to message_subject_line & return & ~
message_location_line

19. set the_meeting_date to ~
20. word 3 of message_dates_line & space & ~
21. word 4 of message_dates_line & II, II & ~
22. word 5 of message_dates_line as string
23. set the_start_time to ~
24. word 6 of message_dates_line & II: II & ~
25. word 7 of message_dates_line & space & ~
26. word 8 of message_dates_line as string
27. set the_end_time to ~
28. word 9 of message_dates_line & 11

:
11 & ~

29. word 10 of message_dates_line & space & ~
30. word 11 of message_dates_line as string

31. set start_date to date (the_meeting_date & space & ~
the_start_time)

32. set end_date to date (the_meeting_date & space & the_end_time)
33. return {start_date, end_date, the_summary}
34. end format_message_information

35. on iCal_add_event(start_date, end_date, the_summary)
36. tell application 11 iCal 11

37. tell calendar 1

38. make new event at end with properties ~
39. {start date:start_date, end date:end_date, ~

40. summary:the_summary, status:confirmed}
41. end tell
42. end tell
43. end iCal add event

Text item delimiters

Yet another AppleScript pearl, text item delimiters is an AppleScript global property, and
it's useful for a whole range of text manipulations.

The text item delimiters property is used primarily in two situations: when splitting strings
into lists, and when combining Iist elements into a single string.

Splitting strings with text item delimiters
By default, AppleScript's text item delimiters is set to an empty string {"1. which means
that asking for every text item of a string is the same as asking for every character of a
string. See Figure 3-17 for an example.

~Kord ~· Ru.n _ c_om....:pc....ll_e ------,--i
t;J"-l ntory tl!xt item of "hsv as 1231

I R.u Event Log ;

Figure 3-17. Every text item here returns
a Iist of characters. The fact that the text
item delimiters property is set to an
empty string makes AppleScript
understand that every single character,
including spaces, punctuation marks, etc.,
appears as an item in the resulting Iist.

Where things start to get exciting is when you set AppleScript's text item delimiters to a
different value.

Let's take a phone number that a user entered into a dialog box. The entry was 800-555-
1212. Now, let's see what happens when we change AppleScript's text item delimiters
property to "-".

VALUES

93

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

94

Start a new script window and enter the following script text:

set text item delimiters to "-"
get every text item of "800-555-1212"

As you can tell from Figure 3-18, the delimiters themselves are discarded, while anything
in between them gets put into Iist items.

The once single string with text "chunks" separated by a character we called a delimiter, is
now a Iist where each text chunk is a single Iist item.

"800-555-1212" changed to {"800", "555", "1212"}

03-18

ut text uem dehmiters to "·1 ~
get every text ltem of "800·55 ~ · T2· I

Delimiter characters are removed

l·aoo· "555" "1 212"1

• t ' Chunks of text between del imiters
divide into list items

Flgure 3-18. Changing the text item delimiters property to a dash.

Combining lists
The other function of the text item delimiters property is to act as padding when
combining a Iist into a single string.

let's take the Iist we created in the last part:

{"Soo", "555", "1212"}

Start a new script window and write a script like the one in Figure 3-19.

se.t teliCt em de llmlters to (j
set rM_/Isr to ("800", ·s s s·. "1 Z12")
set r~~t._srrlng 10 rhtUisr as mtng
I

Evtnt Lot~

Figure 3-19. When the text item delimiters property is set to an empty string,
the Iist items just squish together.

Now, let's give the text item delimiters property a different value. Change the first line in
our script to Iook like the one in Figure 3-20.

se.t text ltem dellmlters to (•1
set rhot_llst to {"800", · s s s·. "1 z 12")
15tt r~tt._srrtns 10 rM..tör as strlng
I

[)enriptio n

Figure 3-20. Now that the text item delimiters property is set to an asterisk (*),
when we join the Iist items into a string, the text item delimiters property value
is used as padding between the items.

VALUES

95

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

96

What you may be asking yourself is where the plural in delimiters come from. Can we set
the text item delimiters property to multiple delimiters? Weil, we can, but nothing will
really happen with them. just like the fact that your bank's deposit slip has place for seven
digits where you write the amount, AppleScript's delimiters is a bit about a promise. While
you can currently set AppleScript's text item delimiters to a Iist of strings, AppleScript will
only Iook at the first one and ignore the rest.

The text items delimiter can be set to a multicharacter string. ln the following script, the
text item delimiters property is set to the string "mississippi":

Script 3-6

set text item delimiters to "mississippi"
set the_secret_message to ~

"memississippiet mississippime mississippiamississippit" & ~
"fimississippive"

set the_items to text items of the_secret_message
set text item delimiters to ""
set the_message to the_items as string
-->"meet me at five"

Setting the text item delimiters property
Until now whenever we wanted to change the value of the text item delimiters property,
we just referred to it by name. However, this worked because we weren't talking to any
application at the time. ln other words, we weren't in any application's tell block.

lf you try the script in Figure 3-21, you will get an error. The error, shown in Figure 3-22,
let's you know that the Finder doesn't have a text item delimiters property, and therefore
can't change it.

tell appllcatlon "Finder-
set texl ltem dellmlters lo t··

enct tell

Flgure 3-21. Trying toset
the value of the text item
delimiters property

01-22

AJ!pii!Scrlpt Error

!"Inder got ~n trror: Qra't s et ttxt lttm dellmiters 10

Figure 3-22. The error resulted from running the script from Figure 3-21.

Trying to use commands and set properties that belong to an object you happen to not be
talking to at the time is a common error that can Iead to a wild goose chase, or should I
say a wild bug chase ...

What happened is a bit like saying, "George, your laces are untied." George Iooks con
fused, since he's wearing rubber boots. "Oh, I meant Jim's laces!" Now we're being clear.

ln this case, we need to specify that the property we want to set belongs to AppleScript
rather than to the Finder, which we happen to be addressing at the moment.

Figure 3-23 shows how we can set AppleScript's property inside any application's tell
block.

tell applrcat10n "Rnder"
set AppleScript's text item delimiters to ·.

end teil

06crlpllon

0

Figure 3-23. Setting the value of the text item delimiters property inside an
application te/1 block

VALUES

97

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

98

Text delimiters in the real world: Search and replace
One use of the text item delimiters property is for the purpose of performing a simple
search and replace on strings inside AppleScript.

The way we go about it is by setting the value of the text item delimiters property to the
character or text we want to replace, and split the text we want to search in, into a Iist.
This will remove the search character. Next we will set the text item delimiters property to
the replacement character, and combine the Iist back into a string.

For our example, we will convert a file path from AppleScript format to a UNIX-style string
reference. ln AppleScript, we refer to files by separating the fotder tree with colons in
this way:

"Macintosh HD:Users:hanaan:Desktop:Picture 1.PDF"

The same path in UNIX will be .

"Macintosh HD/Users/hanaan/Desktop/Picture 1.PDF"

We need to take the first string and replace the colons with slashes. Here is the script that
will do that:

Script 3-7

set the_file_path to "Macintosh HD:Users:hanaan:Desktop:Picture 1.PDF"
set text item delimiters to {":"}
set the_file_path_items to every text item of the_file_path
set text item delimiters to {"!"}
set the_UNIX_file_path to the_file_path_items as string

ln line 1 we put the file path in the form of a string into a variable. While AppleScript
doesn't care if you make operations on the value or on a variable holding the value, in
reality you will rarely operate on raw strings without first assigning them to variables. This
way your code isn't littered with text and numbers that you need to hunt for alt over if it
needs to be changed, or rather when it needs to be changed.

ln line 2 we set the value of the text item delimiters property to a colon (:). The actual
value we set the text item delimiters property to is a Iist of strings rather than a single
string. Although setting this property to a single string works today, it is more correct to
specify a Iist of strings since at some point AppleScript may support multiple text item
delimiters, and a Iist has a somewhat better chance of surviving that transition.

ln line 3 we split the string into a Iist, which leaves us with the text and without any of the
colons.

ln line 4 we change the text item delimiters to "/".

ln line 5 we coerce the Iist of string items into a single string. We do that by adding the as
string operator at the end. This uses the text item delimiter, which is now set to a slash (/),
as padding between the different Iist items. The Iist then becomes a string again, but
instead of any occurrence of the colon, we now have a slash.

While the script works OK and does what we wanted it to, there's a small job that we neg
lected to do. lt's called cleanup. Now I don't care if you're sitting in your high-school-year
pajamas among piles of laundry and the cereal bowl from this morning and yesterday's
morning still on your desk, but when it comes to scripting, not cleaning up after yourself
can cause your scripts to be almost as much of a maintenance nuisance as they are a time
saver.

Our cleanup job in this case has to do with returning the value of the text item delimiters
property to the same state we found it in. The operation will have two parts: remembering
what the text item delimiter was set to before we started meddling with it, and setting it
back to that value at the end.

Through that process we may never know what the actual value is, but that doesn't mat
ter. lt's like borrowing your friend's car for the day. You should come with a CD jewel box
marked CD_I_found_in_the_car. As you get in the car, put your friend's CD in there. At
the end of the day, before you return the car, take the CD out ofthat box and pop it back
into the CD player. lt makes no difference what CD it was, just that it was there when you
started out.

Here is what we will do with the script:

Start a new script line before the current first line of the script. This new first line will store
the original text item delimiter in a variable of our choice.

set the_original_text_item_delimiter to text item delimiters

The final step will be to restore the value of the text item detimiters property back to the
original value. But what isthat original value? Makes no difference, as long as you know
where you put it! Add the following line to the end of your script:

set text item delimiters to the_original_text_item_delimiter

And, as always, we can't quite leave until we properly turn our bits of code into a useful
subroutine.

The parameter for the subroutine, or in other words, the information the subroutine will
work on, will be the AppleScript style path as a string. The subroutine will return a string
containing the converted UNIX-style path.

To convert the script we've written so far into a subroutine we can call from anywhere, we
can start by wrapping it in a subroutine package:

Add the following line to the beginning of the script, before the first line:

to convert_this_path_to_unix_style(the_mac_style_path)

Notice that I used the word "to" and not "on." These two words are interchangeable as
beginning of subroutines.

The last line before the end will be the statement that returns the final value. This will be
the value that will be returned as the result of the subroutine call Statement.

VALUES

99

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

100

After what is now the last line of the script, type the following line:

return the_UNIX_file_path

lf you don't add the return statement at the end, the subroutine will return the result of its
last statement, which is in this case the value of the the_original_text_item_delimiter vari
able.

The last line we will add will have one word: "end."

We only have to type end, and AppleScript figures out which compound statement we're
ending, and finish the line for us when it compiles our script.

By now we have a subroutine that can be called, and will return a result. However, is it the
result we expected? Not really. That is because the subroutine is still processing the same
path we gave it as a string, and not the parameter it receives when it is called. See, the
point of this subroutine is that you can give it any file path and it'll convert it to a UNIX
path. To make our subroutine do that, we must make a little tweak in the middle.

The line that sets a variable to the Iiterat string is unnecessary. The variable it sets, which is
used later on in the subroutine, will be replaced with the variable that holds the value
supplied when the subroutine is called. This variable is called a parameter variable.

Figure 3-24 shows the finished script.

03-24

convert_this_pat/t.to_uniK_style("The:Mac:~:Pathi

to convur_rhts_parh..to_untx_sryle(r~moc_sryle_porh)
set t/M..originoLtuUtem_delimiter to ttxt item delimiters
·· ext II~ no Ionger needed
··set the_fll _path to Maclntosh HD sers hanaan.Desktop Ptcture 1 PDr
set text ttem dehmtters to ":"
set rhf_(//(_par/t.lrems to every text ttem of tht_mac_sty~t_patlt ·· was: the_ le_path
set text em d ltmlters to ·r
set ri!(_UNIX.../ilt_parh to che...(ile_parh..iwns as string
set text em dehm ers to chf_orlgiMLrext_lrem_aellmlru
retum r~orlglnal_!exr_ltem_dellmtret
retum rht...UNIX.(i/e._parh

end convm_ tltl.s_ pat/t.to_untx_sryl~

Flgure 3-24. The finished script

One final note about the cleanup we did here. ln my scripts. I always get the text item
delimiters property back to an empty string. as a single item in a Iist: {"']. This way I know
what to expect. An empty string as the only item in a Iist is the default value ofthat prop
erty, and always getting it back to that value is a good idea.

Reading and using tab-delimited text files
ln the following exercise we will use AppleScript to read a tab-delimited text file as if it
were a database table. Weil. actually. a tab-delimited text file is just that. What gives the
text meaning is knowing what each column stands for.

The feel-good part of tab-delimited text files is that they're easy to handle. There's no
code, no characters to omit. no hidden characters. just data separated by tabs. The way
data is arranged in a tab-delimited text file is just the same as in a database: there are
records. fields. and cells. ln the text file, each paragraph is a record. each column is a field.
and the cells are the text separated by tabs.

For our project's purposes, we will use a text file exported from FileMaker Pro. Granted,
we can use AppleScript to get the data right out of FileMaker Pro. but let's assume that we
get the data in that form from our company's headquarters.

Figures 3-25 and 3-26 show how the data Iooks in FileMaker and when opened in a text
editor.

efe-e· cont.acts

t.lame City Pflone ~
~M • 1401-837· 1123 r;!9
~n eostoo 1117-4M-2§5.7 14"'
I)[Ma san franclsco ~18-865-998-7 19

~ I

100~11:11 B.-se ;r A.

Figure 3-25. The data in the source FileMaker Pro database

conracts.rab

Flgure 3-26. The data as text in BBEdit text editor; the little gray triangles
represent tabs and the line with the go• angle is the return character.

VALUES

101

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

102

Our script will read the file, loop through the records (paragraphs), and display a little
dialog box with a message saying something like "Jane, 29 years old, can be reached at
401-837-1123 at home in Providence."

Our first task is to identify the file and read its contents. The result will be a string variable
that will contain the entire text contents of the file.

There are a few ways to identify the file you want. lt can be in a fotder that the script is
aware of, or the file can be dropped on a script droplet. What we're going to do here is Iet
the user choose the file, and process it from there.

The command choose file is perfect for that. lt's very simple to use, and it returns a file ref
erence.

A file reference isn't a string, although it can be coerced into a string. I personally use
strings as much as possible, as they are much more flexible. You can add them to text files
as script preferences, precede them with the word "alias," "folder," or "file" to create an
instant file (or folder) reference, and anyway, some applications require a string, not a file
reference as parameters to commands.

Figure 3-27 shows some file references and string variables.

03-28 Ale Referentes

~tcord Stop Jtun Complle

-Pialn <trlng
"Maclntosh HO:Users:hanaan:De sktop:contaas.taiJ"

··Simpl ftl re erence.
flle "'Ma<lntosh HO: Users:hanaan:Desktop:contaru .tab"

-Alias nie reference
Iias "Maclntosh HD:Users:hanaan:Desktop:c;ontacts.tab1

·· flle must aaually exlm for an alias to comp lle

I Ot!scrlllllon ! ~sult Eve nt LOQ l

0

Figure 3-27. Astring compared with file and alias references

We will spend quite a bit of book real estate on file references and working with files, so if
it's not all clear here, don't beat yourself up (unless, of course, it causes you pleasure).

So what we'll do here is convert every file reference right into a string as soon as we get it,
and back into a file reference when we have to.

To thoroughly enjoy this exercise, create yourself a little text file with data similar to the
one in Figure 3-26. Save that file as plain text (not RTF) on the desktop.

Let's start with the choose file command:

Start a new script window and type the following:

choose file

Compile the script and run it. AppleScript opens the normal Mac open dialog box and
allows you to specify any file, just like in Figure 3-28.

Choose the file you made and dick the Choose button.

Choose a Flle

lloltt Modilied
Today

1/ 15/0<1
6/4/03
Today

(Cancf!l) ~ Choose }

Flgure 3-28. The Choose a File dialog box

Now examine the result: the result ofthat statement containing the choose file command
is an alias. Let's add as string to the end of the statement:

choose file as string

Now that you run the script the result is a string with out the word "alias" preceding it.

Speaking of results, we need a home for the resulting string. What better place than a vari
able. Add the variable name with the set command to the beginning of the line like this:

set text_file_path to choose file as string

The next line will read the file and put the text in a variable:

set file_text to read file text_file_path

The shorter way to do that is simply have a single line that says

set file_text to read (choose file)

V ALU ES

103

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

104

This statement actually performs three commands: it chooses a file, which returns a file
reference; then it reads the file, which returns a string; and at the end, it also doubles as
an assignment command, and it assigns the resulting text it read from the file to a variable.

lt's great fun trying to see how few lines you can use to perform different actions,
although others might not agree. john Thorsen, a lengtime AppleScript developer and
trainer, tries to stretch each command on as many lines as he can. He says that he does it
for readability reasons, but I suspect that he does that because he charges his clients by
the line :-).

ln any case, we got to the point where we have the text in a variable and we can start play
ing with it.

What we will do from here, in generat terms, is loop through each record, and as we do
that, split the record and use the information in the cells to build our personalized message.

ln AppleScript terms, there are two ways to extract the records: the obvious choice would
be to use the paragraph element as we loop through the text. However, since we're in a
text item delimiters kind of mood, we should use that one instead.

let's break the text into a Iist, where each record is in one Iist. Write the next line of the
script like this:

set text item delimiters to return
set database_records_list to every text item of file text

Now we can loop through the items in the Iist.

Look at Figure 3-29 to see our progress, and the result we get when we break the text into
Iist items.

RKord !tun Compfl

set rexr_fde_porh to (<hoost l as su1ng
set (/lt._rexr to read ß rur_(l porh
set tex11 em del•mrters Lo (return)

set dotobo,e..ruords_li5r 10 every 11!111 1ttm of (1/e..rur
I

{"J;HII! Pr!Mdence 401 ·837·11 21 29', 'jon Boston
617 ·433· 2957 44". "'Oiivla San Franclsco 818

·665 ·9987 9".-,

Flgure 3-29. While the result
in the result window may be
a bit hard to understand, you
can make out the items that
are separated by a comma.
Notice how each item is
surrounded with double
quotes. That's what is telling
us that it's a Iist of strings.

Now we'llloop through the records. Add the following line to your script:

repeat with i from 1 to (count items of database_records_list)

What does i stand for? Weil i is the repeat variable. ln this type of repeat, its value is a
number that changes with each loop. ln the first loop, i will have a value of 1. in the next
loop, a value of 2, etc. This can be a useful variable and in many cases you make different
mathematical operations with it to figure out frame positions, grids, and other graphical
aspects.

What will i do for us now? Weil, we can use it to get the correct item of the
database _records _Iist.

Add the following three lines:

set the_database_record to item i of database_records_list
display dialog the_database_record
end repeat

Now run the script and see what happens. Every record turns into a string and displays in
a dialog box like in Figure 3-30.

Jane Provldence 401-83 7-112 J 29

(Cancel) l -~OK~

Flgure 3-30. The database record as a string

Now we need to break each record into a Iist that will contain the fields. Add a blank line
before the displaydialag line and insert the following lines:

Script 3-8

set text item delimiters to tab
set field_list to every text item of the_database_record
set the name to item 1 of field list - -
set the_city to item 2 of field_list
set the_telephone to item 3 of field_list
set the_age to item 4 of field_list
set the_message_text to ~

the_name & ~~, II & the_age & ~
II years old, can be reached at II & ~
the_telephone & II at home in II & ~
the_city as string

V ALU ES

105

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

106

Now, change the display dialog line to display the message instead of the_database_record:

display dialag the_message_text

Refer to Figure 3-31 for the finished script. Figure 3-32 shows one of the dialag boxes you
get when running the script.

03-31

set text_fllt._parh tol (choose ftle) u strlng
set fik_ttxt to read file text_flle_path
set tut ttem dellmlter to (re turn)

set darabosc..records_lisrto every text ltem of (1/e..texr
re~at wlth lfrom I 10 (count llems of dl.ltQtHJse..ruoras_t/st)

set the...darab<lse..ruord 10 ittm I ot dara/Hise..ruords_llsr
sei t~xt ltem denmlt~rs Lo tab
set fkld_lisr to every tut ltem of thc..docalnlsc..r~cord
set the...name Lo item I of fleld_llst
sei rhe..ctry to rem 2 of (leid_ IIst
set the..tdfphone te item 3 of fleld_llsr
set the..agt to ittm 4 of fleld_list
set the..~sagc_textto ~

t~llQme & •• • & tllUJ:g& & ~
• years old, can be reacbed ar • & ~
rhe_tekphone & • at home in· & ~
the_clty u mlng

dtsplay dlalog rhe..mMsage..ri!Xr
end n!peal

ten=(Rnult 1 E\ltnt Log !

Flgure 3-31. The finished script

Jane, 29 years old, can be reached at 401-837
-1123 at home ln Providence

Flgure 3-32. The dialog box resulting from running the script

Copy and set
I mentioned using the set command to assign a value to a variable. We also saw earlier that
the copy command produces the same result. Take a Iook at these two examples:

set the variable to "Value"

works the same as

copy "Value" to the_variable

This scenario is true for single values, such as strings, numbers, etc. The situation is differ
ent when working with Iist items. Consider the following scenario:

set my_list to {1, 2, 3}
set my_other_list to my_list
set item 2 of my_list to "a"
--> my_other_list = {1, "a", 3}

ln the preceding script, we start with a simple Iist of three items: {1, 2, 3}. Then we set the
variable my_other_list to the variable my_list.

The crucial detail here isthat the variable my_other_list is not set to the value of the Iist
my _Iist, which would be {1, 2, 3}, but rather to the variable itself. As you can see, when any
Iist item changes in my_list, as happens in line 3 of the script, the value of my_other_list is
affected as weiL

This situation is called data sharing, and is used when you want two variables that point at
the same place in memory. To get around data sharing, alt you have to do is use the copy
command when assigning lists, like this:

set my_list to {1, 2, 3}
copy my_list to my_other_list
set item 2 of my_list to "a"
--> my_other_list = {1, 2, 3}

ln the second variation of the preceding script, the variables my_list and my_other_list are
separate. Setting an item in one Iist does not change the other Iist.

More on value assignment
Remember having fun with shorter scripts that do more with less? Weil here's one for you:
in the preceding script, we used five lines of code to assign the fields' content to the four
variables. First, we put them alt in a Iist, then we broke them down to the individual items.
There's a better way to do that. lf you set a Iist of variables to a Iist of values, each variable
in the Iist gets the corresponding value in the value Iist assigned to it. Observe the follow
ing line:

set {~,b,c} to {"why","not","today"}

V ALU ES

107

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

108

The result isthat a = "why", b = "not", and c = "today". Pretty cool. We could have used
this trick in our script like the one shown in Figure 3-33.

rJane", "Providence·, -401 ·837· 11 2 r , "29"} ~

\ \ \ \

Th1s Statement produces
a l1st wi th four 1tems

set {the_name. the_city, the_telephone, rhe_age) to every text item of rhe_database_record

Figure 3-33. Using a single line to assign each item of a Iist to a separate variable.

As noted in the "Copy and set" section earlier, there is a slight difference between using
the set and copy assignment commands when we assign lists to variables. ln the example
shown in Figure 3-33, it doesn't really matter if we use the copy or set commands, because
what we're assigning here is the strings that are elements of the Iist to individual variables.
The Iist itself never gets assigned like it does in the Iongerversion shown in Figure 3-31.

Offset
The offset command is useful for figuring out where a certain substring starts in another
string. This command is a bit limited, but for small operations it can come in handy.

The result of the offset command is an integer that contains the first instance of the sub
string in the main string.

Here's a simple example of the offset command:

offset of "@" in "info@apple.com"

The result is 5.

ln Figure 3-34 we use the offset command to figure out a domain name in an e-mail
address.

Record Sto Rvn Complle

se1 rhLunDiLQtJar~s 10 1nf apple .com·
set ftrst_offret lo offset of "fr in the..onaiLaddre.u
se1 s!.contLo(fset 10 offset of . "in rhe_lmQII_address
se1 rht..domalrt to -.

charact rs ((Ir sr_offset + ') 1hru (suoml_o(fser · I) ...
of rlle....onQ/Laddresr as srrlng

Flgure 3-34. Using the offset command to get the domain off of a string

Of course, if the e-mail address were info@apple. store. com, our script would have still
returned "apple", while our intent was probably to get "apple.store".

A solution to this problern could involve using the text item delimiters we looked at
earlier. Following is the script that returns the correct domain, with or without additional
periods:

set the_email_address to "info@apple.store.com"
set first_offset to offset of "@" in the_email_address
set text item delimiters to {"."}
set email_address_items to text items of the_email_address
set domain_length to (length of (last item of email_address_items)) + 1
set text item delimiters to {""}
set the domain to ...

characters (first_offset + 1) thru -(domain_length + 1) ...
of the_email_address as string

The main change we made in this script is that we use the text item delimiters and the
every text item statements in order to get the length of the domain. We figure that if we
split the whole e-mail into chunks by using the period as a delimiter, the last chunk will be
the "com" or "net", etc.

ln line 5 we assign the length of that last eh unk to a variable.

line 5 has a pretty complex statement. This statement could've been broken down to two
or three lines, which would have made it more legible. lt could have read

get last item of address_items
get length of result
set domain_length to result + 1

V ALU ES

109

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

110

Anyhow, now the variable domain_length holds the length of the "com" plus 1 to account
for the period.

The variable domain_length comesback in another statement that needs some analyzing
in line 7. let's Iook at the complex portion of it:

characters (first_offset + 1) thru -(domain_length + 1) of ~
the_email_address

Westart with (first_offset + 1). Remernher that first_offset holds the offset of the@ character.
ln our example it would have a value of 5. lf we start the domain from the fifth character, we
will get the @ as part of our domain, so we must add 1 to it, which is where we get the
(first_offset + 1) operation.

The second part is also neat: -(domain_length + 1). The purpose of the minus sign is to Iet
AppleScript know that we want to start counting from the end of the string. Remernher
that character -1 is the last character, or 1 character before the end of the string. Now, we
know that the domain_length variable has a value of 4 (length of "com" +1), that means
that if we get the characters up to the fourth character from the end, we will still get that
darn period as part of our result. That's why we need to add 1 yet again to the
domain_length. We put it in parentheses so that it evaluates as a number, and only then
becomes negative.

line 7 could also have been broken into three lines in this manner:

set start_character_offset to first_offset + 1
set end_character_offset to domain_length + 1
set the_domain to ~

characters start_character_offset thru -end_character_offset ~
of the_email_address as string

Note that using a character range statement such as character x thru y of the_string
returns a Iist of characters, not a string, which is why we need to coerce the result into a
string at the end. Now what else do we have to take into account when joining a Iist into a
string? Text item delimiters, of course! Not only that, but at the start of the script we
changed the text item delimiters to a period. After line 5 and before line 7 (how about say,
line 6) we need to set the text item delimiters back to an empty string in a Iist: {"1.

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

Strings and variables
Assign strings to a variable.

set x to "some text"
copy "some text" to x

ln order to include quotes in your string, use the \ (backslash) character to "escape" them,
like this:

set x to "Press the \"OK\" button"
--> x = Press the "OK" button

Escape character
You also have to escape the backslash if you want to include it in a string, like this:

set x to "This is a backslash: \\"
--> x = This is a backslash: \

lncluding tabs, returns, and spaces
To include tabs and returns in strings, you can use \ t and \ r, respectively.

set tab_delimited_text to "Name\tCity\rJoan/tNew York/rJames\tAtlanta"
--Result:
Name -+ City
Joan -+ New York
James -+ Atlanta

Outside of the quotes you can specify the tab, space, and return characters using their
names, like this:

set tab_delimited_text to "Name" & tab & "City" & return & "Joan"
& tab & "New" & space & "York"
--Result:
Name -+ City
Joan -+ New York

The constants space, tab, and return can be set to other values; however, this is not rec
ommended.

V ALU ES

111

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

112

ASCII numbers and characters

Use the ASCII character command to get the character associated with a particular ASCII
position.

ASCII character 36
--> 11$11

The ASCII nurober command works the opposite way: you provide the character and the
result is the character that fits the position in the ASCII table.

ASCII character "$"
--> 36

String operators

The main operator used with strings is the concatenation operator, the ampersand: &.

The two operands are strings, but the right operand can be any value dass that can be
coerced into a string.

The following line concatenates (links together) the string to the left of the operator and
the string to the right of it.

"Apple" & "Script"
--> "AppleScript"

lf the left operand is not a string, the result of the operation is a Iist, not a string.

"$" & 5
--> "$5"
5 & "$"
--> {5, "$"}

Comparing strings

Strings can also be compared with the following operators: =. *· >, ~. <, :::;, starts with, ends
with, contains, and is contained by.

"Apple" = "Orange" --> false

With the >, <, ~. and:::; operators, the !arger character is the character that appears later in
the alphabet.

"A" > "B" --> false

Considering and ignoring

You can consider and ignore different attributes of the text to sway the comparison results
in different ways. Look for the section "Considering and ignoring" for details.

Length

You can get the length of a string in two ways:

By using the length property of the string:

length of "Charles River" --> 13

Or by using the count command:

count "my marbles" --> 10

String parts

A string has built-in parts. These parts are characters, words, paragraphs, and text items.
Asking for the parts of a string returns a Iist with each such part as a Iist item.

characters of "particles" --> {"p", "a", "r", "t", "i", "c", "1", ..,
neu, 11511}

words of "James: 'would you give-up! "' --> {"James", "would", "you", ..,
"give-up"}

paragraphs of "line 1

line 2
line 3"
--> {"line 1", "line 2", "line 3"}

Notice that the separators are not a part of the result. The words Iist has no punctuation
and the paragraph Iist has no return characters.

Text item delimiters

Text items of a string are the parts of any string, separated by the current text item delim
iters. While the text item delimiters can be set to a Iist of strings, only the first string will
be used.

The default text item delimiters value is {"1, which is an empty string in a Iist.

You script with text items as you would words and characters.

text items of "abc" --> {"a", "b", "c"}

V ALU ES

113

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

114

Changing the value of the text item delimiters constant changes the result.

set text item delimiters to {"b"}
text items of "abc" --> {"a", "c"}
set text item delimiters to {"@"}
text items of "george@jungle.com" --> {" george", " jungle.com"}
set text item delimiters to {"i"}
text items of "Mississippi" --> {"M", "ss", "ss", "pp", ""}
set text item delimiters to {"stop"}
text items of "helpstopmestopJoe" --> {"help", "me", "Joe"}

Setting the text item delimiters value inside an application tel/ block requires that you use
the following syntax:

set AppleScript's text item delimiters to .••

lt is also recommended that after setting the text item delimiters property in your script,
that you set it back to the default of {""}.

Offset command

The of{set command returns the offset of a substring in a string. The offset is the number
of characters from the beginning of the right operand string that the left operand string
first appears in:

offset of "s" in "Music" --> 3
offset of "Ang" in "Los Angeles" --> 5
offset of "a" in "1-800-555-1212" --> 0

The last statement's result is 0 because the string "1-800-555-1212" does not contain the
string "a".

Details previously ...

The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, refer to earlier sections in this chapter.

r11un 1'111111Puf..The..mlmi1U
set mutrtpller to 1 O " .--.~~·
thLnumbt.r_ro_round •
rou nd res ult
resull f multtpller
roulad_numbl!lj

Your band :
(6)[8)(6)[8]

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

118

ln AppleScript, math is not the purpose, but rather a tool. No matter what you are trying
to achieve, you will need to manipulate numbers. This chapter Iooks at numbers in
AppleScript and how to use them to get the results you want.

Massaging numbers
One of the great challenges in writing complex scripts is dealing with numbers and math.
ln AppleScript programming, though, your job is not to figure out the solution to a math
problem, but rather to figure out how to present the problern to AppleScript in a way that
it will be able to return a useful result.

AppleScript supports two kinds of numbers, or rather we should refer to them as two
classes of numbers: reals and integers.

lntegers are whole numbers without a decimal fraction, and with no potential of ever get
ting one. lntegers can, however, be negative numbers.

Real numbers have a decimal point, even if it's ceremonial, like in the case of the real 1.0.
lt's equal in value to the integer 1, but it is a real nonetheless.

When specifying numeric values (a snooty way of saying "numbers"), you're not allowed to
use commas, etc. Here are some examples:

Script 4-1

class of 2003 --> Integer
class of 1.5 --> real
class of "1000" --> string
"1000" as integer --> 1000
"1000" as real --> 1000.0
"1,000" as integer --> error

When we do math, some operations return results as real and some as an integer. The
implications aren't great because you can process both reals and integers interchangeably
without choking AppleScript.

There are some statements that demand whole numbers as parameters, and using a real
with a fraction will return an error, but these are obvious enough, such as

repeat 1. 5 time
--Loop here
end repeat

DOING THE MATH: ALL ABOUT NUMBERS

Real big
Real numbers have the tendency to be written using exponential notation. You can write
them this way, but they get converted to this most irritating format when the script is com
piled.

Try to write the following in a new script editor window:

10000.0

When you compile the script, the number will change to

1.0E+4

The mathematical equivalent is 1.0 * 1 0"4.

ln other words, AppleScript teils you, "I moved the decimal point four spots to the left.
Move the decimal point back, and you have your 10000 back."

Watch how easy it is to apply the decimal-shifting technique:

lf we take the number 123456789.987654321 and compile it in a script window, it will be
displayed as 1.23456789987654E+8. All we have to do is shift the decimal point eight
spaces to the right to get the number 123456789.987654.

What? Oh ... the last three digits after the decimal point ... oh stop being so picky! Why
do you need that precise a number anyway?

The same decimal-shifting idea works with negative exponential numbers. That doesn't
mean that the number itself is negative, just the direction of the decimal point. Example:

1.0E-4 is actually 0.0001 . Notice the decimal point moved four spots to the right. Move the
decimal and you get the number.

ln order to become part of that heartless form of displaying numbers, a real number has
to either be lower than 0.0001 or higher than 1 0000; otherwise, it is displayed as is.

Rounding numbers
Rounding numbers is an important aspect of scripting and programming. While the round
command rounds the number you give it to a nearby whole number, there are many more
things you can do with the command if you only make some modifications to it.

To start, let's Iook at the round command in detail.

The parameter you supply it is a real number. This makes sense, since an integer is already
round.

119

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

120

The result returned by the round command is an integer. Actually, the round command is
the definition of the difference between integers and reals: integers are round and reals
are (usually) not. I write usuatty because l'm not sure if 1.0 is considered round or not.
Hmm.

To test the basic function of the round command, start a new script window and type each
of the following lines:

round 1. 5 --> 2
round 2.2 --> 2
round -6.4 --> -6

You can fine-tune the result of the round command by using the rounding parameter.
There are five possible constant values to the rounding parameter, if you choose to use
any. The constants are up, down, toward zero, to nearest, and as taught in school. lf you
simply use the round command without specifying the round parameter, AppleScript will
use the to nearest logic, as described a little later in this chapter.

Rounding up

As it sounds, rounding up will always round to the next higher integer. Examples:

round 1.1 rounding up --> 2
round 5.5 rounding up --> 6
round -2.9 rounding up --> -2

Rounding down

The opposite of rounding up, rounding down will always return the next lower integer.
Examples:

round 1.7 rounding down --> 1
round 5.5 rounding down --> 5
round -2.1 rounding down --> -3

Rounding toward zero

The rounding towards zero constant acts the same as rounding down with positive num
bers, and with negative numbers it acts like the rounding up constant would.

Rounding to nearest or as taught in school

As far as what was taught in school, weil, I hate to say that I was probably chasing butter
flies the day they taught that ... but 1'11 make an effort to explain it anyhow.

DOING THE MATH: ALL ABOUT NUMBERS

Rounding to nearest is the default answer that will be used if none other is specified.
Rounding to nearest acts as you would expect, other than with the rounding in-between
numbers: numbers and a half. When you try to round 0.5, 2.5, 56.5, etc. the rounding to
nearest option will round towards zero. This is done that way, as explained in the
AppleScript Language Guide, to avoid cumulative errors.

Rounding as taught in school, on the other hand, will round numbers and a half away from
zero.

Rounding to other increments

When you simply round a real number, you get a whole number, or an integer, as a result.
That's good for some things, but let's Iook at two other seenarios that are related to
rounding numbers, but can't be achieved directly with the round command.

Scenario 1: What if we want to round a real to have no more than a certain number of dig
its after the decimal point?

Take for example currency formatting. lf we need to calculate a price, we need only two
decimal points. lf l'm automating a catalog and I need to use AppleScript to calculate the
7% Rl state sales tax on a product that costs $4.99, the total cost with tax will be $5.3393.
Rounding that number will give me $5, but what I want to show is $5.34, right?

Scenario 2: What if the script needs to start with an integer and get that integer's previous
number, which is a multiplication of 1 000? For instance, let's assume that I have a product
number of 55782. Using the product numbering scheme I can teach AppleScript that the
category number for that product is 55000. Sure, I can coerce it into a string, take the first
two digits, and tack on "000" at the end:

characters 1 thru 2 of (the_product_number as string) & "ooo" as string

But we're out of luck: this is the numbers section, and the strings section of the book is
way over, so we're stuck having to find a solution using the round command.

The solution to both seenarios I mentioned previously involves dividing and multiplying
the number before and after rounding it. To be more specific, here is how we would solve
each of the needs described in seenarios 1 and 2:

Let's start with the scenario 1 solution. When we analyze the finished script in Figure 4-1,
we can see that there are two mathematical operations that involve first multiplying by
100 on line 4, and then dividing by 100 at the last line. This forward-and-back action is the
foundation of our script.

121

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

122

Record Slop Run

set rhe_prlce to 4 .99
set rhe..t111Lr«e to 0.07

Compilt

crhe_.prtce • rhe..t111Lrarl) • rht..prlr:e
ruult • 100
round r4!sult round lng as taught in s<hool
set priGt_wirh_rox to result I 1001

5.34

DeKI'Iptlon EwmL.og

let's Iook at the script line by line:

Script 4-2

set the_price to 4.99
set the tax rate to 0.01
(the_price * the_tax_rate) + the_price
result * 100
round result rounding as taught in school
set price_with_tax to result I 100

0

Flgure 4-1. The script that
rounds currency to only
two decimal points

ln lines 1 and 2 we assign values to some variables we will use in the script. This is a good
idea even if the values never change. For instance, if the tax rate will always be 7%, we
should still assign it to a variable. This gives it a meaning and makes your script clearer and
more flexible, especially if that value is used in multiple spots in your script.

From line 3 untilline 6 we don't assign any variables. lnstead, we rely on the built-in result
variable that automatically holds the result of the previous statement. We do that since we
don't care for the intermediate results. We don't care to store the result of line 4, which
happens to be 533.93. We need that resulting value for the following operation, not
beyond it. The result of line 3 is used in line 4, the result of line 4 is used in line 5, and the
result of line 5 is used in the final operation in line 6.

ln line 3 we calculate the actual price with tax. This results in a number with too many dec
imal points, a problern we will need to remedy.

ln line 4 we multiply the result by 1 00. We do this because any real number with two dec
imal points multiplied by 1 00 should be whole. To figure out the number to use, we can
raise 10 to the power of the number of digits we want. Get it? We want to end up with two
decimal points, so we do 10"2 to get 100.

DOING THE MATH: All ABOUT NUMBERS

To make that result whole, we round it in line 5; we use the rounding parameter with the
value as taught in school to ensure that a price ending with a half a penny rounds to the
next penny up.

To give the resulting number its two decimal points back, we divide it by 100 in line 6.

Generally, as you as a math-whiz already know, if you take a number (n) and first multiply
it by another number (say m) and then divide it by that same number (m), you get your
original number back. We're counting on that fact, but we're adding a little twist: we round
the number in the middle.

This solution is not complete, though. What if our original price number was 4.5? Using
these operations would still return 4.5 and finally end up looking like this: "$4.5". Try to
add lines of code that will see if that's the issue and add the extra zero if needed. Hint: you
can't do that with numbers, only strings!

Scenario 2 is similar, but the crucial difference is that we first divide the number then
round it, and only then remultiply it.

As you can see in Figure 4-2, I tried to condense the operations from the last script into a
single script line.

04-Q2

Re<ord Stop Run Complle

set product_number to 55782
set category_number to (round (produa_number I I 000) roundlng down) • I 000

I ~ 55782
55

/ _))

sseee

55000

Ducrlption

Flgure 4-2. Figuring out the product category from the product number

Since we don't have script lines to specify the order of Operations, we have to rely on good
old parentheses.

The first operation is in the innermost set of parentheses:

product_number/1000

123

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

124

The result is 55.782

The result is then processed by the second set of parentheses:

round (product_number/1000) rounding down

We round down since even product number 55999 still belongs to category 55000. This
way, the number 55.782 rounds down to 55.

The final operation returns the number to its originallength:

(round (product_number/1000) rounding down)*1000

which returns 55000.

Rounding handler
To cap off the rounding discussion we're going to put tagether a handler that will be in
charge of rounding numbers.

The handler will accept two parameters:

• The number to round in the real value dass.

• The number of decimal points. This will be a small integer that teils the handler
what precision we want. For instance, a value of 2 will turn 1.66667 to 1.67.

Here is the complete handler followed by a brief explanation of the steps:

Script 4-3

on round_number(the_number_to_round, the_decimal_precision)
set multiplier to 10 A the_decimal_precision
the_number_to_round * multiplier
round result
result I multiplier

end round number

We already discussed steps 2 through 4 earlier. We multiply the number we want to round,
then we round it, and divide it by the same number to get it back to its original range.

The neat thing here is how we got to that number we need to multiply and divide by. We
use the number of decimal points that we wanted to end up with, and we raise the num
ber 1 0 by that number. For example, if we want to end up with three decimal places, we
would do this calculation: 10 1\ 3. The result will be 1000, which will be then used in the.
rounding, as seen in Figure 4-3.

Figure 4-3 shows the handler, a statement calling that handler, and the result.

DOING THE MATH: ALL ABOUT NUMBERS

04-03 Roundln Handler

Compll~

round..numi:MI15 .1234. 2)

on rouna_numbel'{rhe..number_to_rouna. the..d«JmaLprtclslom
set mulrlpller to 1 0 1\ the_dec/mol_predslon
t~numbtr_to_round • muJriplfu
round result
result I mulUpllu

end roullll_numlH!Ij

5.12

: Oescrlptlon

Figure 4-3. The handler and the handler call

ln the example, the real value 5.1234 is passed along with 2 as the number of decimal
spaces. The result is 5.12.

Scripting at random
Now what's a programming language without the ability to generate random numbers?
Like other languages, AppleScript has a command for generating random numbers, and a
number of strong parameters to make it work for you in many ways.

Random number result

The random number command returns a result that can be either an integer or a real.
Whether the result is a real or integer depends on whether the parameters you provided
are reals or integers.

ln any case, the random number command generates a single number result.

Parameters

The random number command can be used as is without any parameters. The result in
that case is a real number between 0 and 1 as shown in Figure 4-4.

125

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

126

0.152061199982

Duc:ription

Flgure 4-4. The random number command used without parameters

The first parameter you can use is a number, either a real or an integer, following the com
mand. Try this:

random number 5

The result is an integer between 0 and 5.

Now try this:

random number s.o

Now the result is a real with 12 decimal spots, also between 0 and 5.

You can also use the range parameters from and to; try this:

random number from 20 to 30

or

random number from 20.0 to 30.0

lf you combine parameters, only the first one will be used. For instance, the following
command will generate an integer from 0 to 3:

random number 3 from 20.0 to 30.0

The final parameter is a bit obscure. The syntax for it is

random number [any other parameters] with seed number

DOING THE MATH: ALL ABOUT NUMBERS

The with seed parameter associates a random number with the seed number. This allows
you to either get the same random number every time or ensure getting a different ran
dom number.

OK, so these two statements seemed to be contrary to the concept of random numbers.
Aren't random numbers supposed to always be random? Welt, yes. Sometimes, however,
you will be getting a random number that is a repeat of the last random number
AppleScript returned. This is due to the seed used.

To get the same "random" number every time, simply use the same seed number:

random number with seed 100

The result will always be 0.716641089949.

Now, try this script:

random number from 100000 to 999999 with seed (current date)

Using the current date as the seed ensures th~t the seed is different every time, and there
fore that the number you're getting is truly random.

Blackjack!
To cap off this short random number section, I thought it would be appropriate to invite
you for a little game of blackjack.

ln order to keep the script within a length that can work OK for the book, I simplified a
few rules. ln our AppleScript blackjack, the cards keep their value: for instance, Ace is
always 1, jack is 11, King is 13, etc.

lf this is too much for your purist-self, I suggest that you add the necessary lines of code to
make the game complete. This will involve seenarios for whether the different aces are 1 s
or 11 s, etc.

As for my script, here's how I went about it:

There are two players: the dealer and you. Each of you has a hand of cards. The informa
tion regarding that hand is kept in a record. Each of you have your own record that
includes two items: total, to see if either of you passed 21, etc., and astring I called "hand"
that's used to show you the cards you have, and the dealer's hand at the end of the game.
ln that string, cards may appear like this: [S][K]. That means you have a 5 and a King.

Here is how the player's record may Iook like:

{total:18, hand:" [10] [8]"}

This way, the statement that follows can be used if the script needs to show either the
player or the dealer's hand:

display dialog (display of dealer)

127

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

128

Here is the complete script, followed by a breakdown and description.

Script 4-4

1. set card_marks to {"[A]", "[2]", "[3)", "[4]", "[5]", "[6]", -.
2. "[7]", "[8]", "[9]", "[10]", "[J)", "[Q]", "[K]"}
3. set dealer hand to {total: o, hand: 1111 }

4. set player)and to {total:o, hand:""}

5. --setup dealer hand
6. set total_this_draw to o
1. repeat
8. set drawn_card to random number from 1 to 13
9. set total_this_draw to total_this_draw + drawn_card
10. set hand of dealer_hand to -.
11. (hand of dealer_hand) & -.
12. (item drawn_card of card_marks) as string
13. if total_this_draw > 21 then
14. set dealer_lost_round to true
15. set total of dealer_hand to total_this_draw
16. exi t repeat
11. else if total_this_draw ~ 17 then
18. set dealer_lost_round to false
19. exit repeat
20. end if
21. end repeat

22. --Draw first two p~ayer cards
23. set total_this_draw to o
24. repeat 2 times
25. set drawn_card to random number from 1 to 13
26. set total_this_draw to total_this_draw + drawn_card
27. set hand of player_hand to-.
28. (hand of player_hand) & -.
29. (item drawn_card of card_marks) as string
30. end repeat

31. if dealer_lost_round then
32. display dialog "You won! "
33. return
34. end if

35. set player_lost_round to false
36. repeat
37. set final_display to "* * *" & return & -.
38. "Your hand: " & (hand of player_hand) & return & return & -.
39. "Dealerls hand: " & (hand of dealer_hand) as string
40. if total_this_draw > 21 then
41. display dialog -.
42. "You lost! " & return & final_display buttons {"OK"}

DOING THE MATH: ALL ABOUT NUMBERS

43. exit repeat
44. else
45. display dialog "Your hand:" & return & .,
46. (hand of player_hand) buttons {"Hit", "Stay"}
47. if button returned of result is "Stay" then
48.
49. if total of player_hand > total of dealer_hand then
so. display dialog .,
51. "You won! '' & return & final_display buttons {"OK"}
52. return
53. else
54. display dialog .,
ss. "You lost!" & return & final_display buttons {"OK"}
56. return
57. end if
58. else
59. set drawn_card to random number from 1 to 13
60. set total_this_draw to total_this_draw + drawn_card
61. set hand of player_hand to (hand of player_hand) & .,
62. (item drawn_card of card_marks) as string
63. end if
64. end if
65. end repeat

We start the script by setting up some basic variables.

The first is a Iist of cards the way they should display. As you can see, the items in the Iist
correspond to the card numbers. This way, if the drawn card is 12, for instance, we can ask
for item 12 of card_marks, and get the string "[Q]". We'll use that to build the graphical
(kind-of) display of the hands.

set card_marks to {"[A]", "[2]", "[3]", "[4]", "[5]", "[6]", "[7]", .,
"[8]", "[9]", "[10]", "[J]" , "[Q]", "[K]"}

We also initialize the dealer's hand and the player's hand.

set dealer_hand to {total:o, hand:""}
set player_hand to {total :o, hand :""}

We continue by picking cards for the dealer. We simply repeat in a loop until the dealer's
card total reaches 17 points or more. lf the dealer got over 21, s/he instantly loses.

--setup dealer hand
set total_this_draw to 0
repeat

set drawn_card to random number from 1 to 13
set total_this_draw to total_this_draw + drawn_card
set hand of dealer_hand to .,

(hand of dealer_hand) & .,
(item drawn_card of card_marks) as string

129

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

130

Get that last statement? drawn_card is an integer from 1 to 13 (random, of course). ltem
drawn_card of card_marks is the string that shows how we want the card to Iook; for
instance, if the number drawn is 1, then item 1 of card_marks will be "[A]".

if total this draw > 21 then
set dealer lost round to true
set total of dealer hand to total this draw - - -
exit repeat

else if total_this_draw ~ 17 then
set dealer lost round to false
exit repeat

end if
end repeat

The preceding logical statement first checks if the card total exceeded 21. lf it did, the
dealer has lost. lf it reached 17, but didn't go beyend 21, then the dealer rests. ln both
these cases the script is instructed to leave the repeat loop. lf it wasn't instructed to do so,
the repeat loop would last forever.

The next segment of the script starts up the player's hand by drawing the first two cards,
and adding them to the player's total.

--Draw first two player cards
set total this draw to o
repeat 2 times

set drawn_card to random number from 1 to 13
set total_this_draw to total_this_draw + drawn_card
set hand of player_hand to ~

(hand of player_hand) & ~
(item drawn_card of card_marks) as string

end repeat

OK, so the next statement can come before the player's cards are drawn. ln it, we check if
the dealer lost. lf true, the player is notified of the victory.

if dealer lost round then
displaydialeg "You won!"
return

end if

Next, we create a similar loop to the repeat loop that built the dealer's hand, but here, we
interupt the loop with a dialeg box asking the player to either hit or stay.

lf the player stays, the script checks if s/he won. lf not, the player gets another card, and
here we go again.

set player_lost_round to false
repeat

DOING THE MATH: ALL ABOUT NUMBERS

The following statement creates a generat string that contains the dealer's hand and the
player's hand. This string will be used in dialogboxesthat inform the player of either a loss
or a win.

set final_display to "* * *" & return & ,
"Your hand: " & (hand of player_hand) & return & return & ,
"Dealer's hand: " & (hand of dealer_hand) as string

if total_this_draw > 21 then
display dialag ,

"You lost! " & return & final_display buttans {"OK"}

Figure 4-5 shows the resulting dialog box.

You lost! ...
Your hand:
(6)[8)(6)(8)

Oealer's hand :
(2](9Jia)[8)

Figure 4-5. You lost!

exit repeat
else

(Hit) (Stay)

displaydialag "Your hand:" & return & ,
(hand of player_hand) buttans {"Hit", "Stay"}

See the resulting dialog box in Figure 4-6.

Your hand:
(6)(8]

(Hll) (Stay)

--- '- ~--- 0 - • A o k

Figure 4-6. The player is prompted for the next move.

131

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

132

if button returned of result is "Stay" then
if total of player_hand > total of dealer_hand then

display dialog ~
"You won! " & return & final_display buttons {"OK"}
return

else
display dialog ~
"You lost!" & return & final_display buttons {"OK"}
return

end if
else

set drawn_card to random number from 1 to 13
set total this draw to total this draw + drawn card

set hand of player_hand to (hand of player_hand) & ~
(item drawn_card of card_marks) as string

end if
end if

end repeat

So what now? Welt, in order to prove your super AppleScript ability, I challenge you to
make the following improvements and e-mail them to me (Hanaan@mac.com):

Make the 11, 12, and 13 cards Oack, Queen, and King) have a value of 1 0, not their actual
card value as l've programmed them.

Make the Ace, or 1, have a value of either 1 or 11. This can be quite a challenge since you
will need to run an unknown number of seenarios to determine what the dealer's best
number under 21 is, and when the player went over his/her Iimit.

Put the whole game in a repeat loop and assign a starting cash allowance of, say, $1000.
Give the player the ability to bet money on each game and add or subtract the bet amount
at each round.

You do the math
Although numbers can be used in many ways that require not more than some counting
skills, when we think numbers, we think math.

I personally Iove math and Iook forward for those challenging operations a script may
require.

The operators you can use with numbers are the familiar ones such as addition, subtrac
tion, division, etc., and some less often used ones such as div and mod.

The math operators we can use on numbers are +, -, *, /, A, div, and mod.

There are also the good-old comparison operators, but these don't return a number;
rather they return a result in the Boolean value dass. Here are the comparison operations
you can use with numbers: =, *· >, ~. <, :5:.

DOING THE MATH: ALL ABOUT NUMBERS

Comparing with logic

Logical operators can be quite boring when used one at a time. However, when you gang
them up, you can create some mighty powerful, and also rather confusing, statements. My
ASP programmer triend Steve says that l use jSL to write my scripts. JSL stands for Job
Security Language.

A simple expression may Iook like this:

the_age ~ 18

which means "ls the value of the variable the_age equal to or greater than 18?" This
expression may return a true or false. But, that's not all!

What if we need to write a statement that will approve or reject a credit card application?
Now we need to check for a number of true-or-false expressions such as age, hausehold
income, bankruptcies, credit ratings, current debt, etc.

We can use Boolean operators such as or, and, not, etc. to combine simple expressions
into a compound statement.

This statement may Iook something like the one in Figure 4-7.

set Qf!Jpllcant_llf!Jf!JTOvtd to
age~ 18 and ..,

04-07

((bQnkrupdes = 0 aJid crlßlr_rarlng > 700 ~nd debr c 20000)..,
or (lnmkrupcles • o and crtd/Lrarlng > spo and debr < 1 0000)) ..
or (biJnkrupcles • 0 and aebt > 1000 and wiiLglllf...upJirst_born ls truel

Ruu lt Ewnl Log

Flgure 4-7. A compound statement that uses multiple comparison operations and some
Boolean operators.

One of the important factors that makes the formula in Figure 4-7 work is the use of
parentheses.

133

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

134

While you don't always need to add parentheses, they make your scripts more legible.
Many times the Iack of properly placed parentheses will break the script. lt may still com
pile OK but will return an error when executed.

lt is best to enclose each expression in its own parentheses. The preceding script could
have been improved from

(bankruptcies = o and credit_ratings > 500 and debt > 10000)

to

((bankruptcies = o) and (credit_ratings > 500) and (debt > 10000))

Another aspect of script readability that can help here is the use of soft returns.
AppleScript assumes that any script line ending with the character ..., continues on the next
line.

You get the ..., character by pressing ÜPTION+L or ÜPTION+RETURN.

Using soft returns, the preceding statement from may Iook like this:

((bankruptcies = o) and ~
(credit_ratings > 500) and ~
(debt > 10000))

Basic math
ln the following section we will create a handler that takes a Iist of numbers and returns a
record with a few mathematical facts regarding the Iist. The resulting record will include
the Iist average, the highest number, and the lowest number in the Iist. lf you fed the fol
lowing Iist to the handler:

{10, 3, 5, 4, 13}

you'll get this record as the result:

{average:7.0, high:13, low:3}

Here is the complete script:

Script 4-5

1. math facts({10, 3, 5, 9, 13})

2. on math_facts(numbers_list)
3. try
4. set high_number to item 1 of numbers_list
5. set low_number to item 1 of numbers_list
6.
7.
8.

set numbers total to o
repeat with i from 1 to count numbers_list

set the_number to item i of numbers_list

DOING THE MATH: ALL ABOUT NUMBERS

9. if the_number is greater than high_number then copy ~
the_number to high_number

10. if the_number is less than low_number then copy ~
the_number to low_number

11. set numbers_total to numbers_total + the_number
12. end repeat
13. set the_average to (numbers_total I (count numbers_list))
14. return ~

{average:the_average, high:high_number, low:low_number, ~

errored:false}
15. on error
16. return {average:o, high:o, low:o, errored:true}
17. end try
18. end math facts

The script is fairly simple, so instead of explaining it line by line I will just go over what was
done here.

I started by creating three variables. These variables, for the most part, will hold the values
that we will return in the handler's result. The variables are high_number, low_number,
and numbers_total, which will be used to get the Iist average at the end.

The repeat loop between lines 7 and 12 is the main loop that goes through the numbers
in the Iist and analyzes each number to see if it fits in the high number or low number
spots, and to add it to the numbers total.

Notice that although I could have created a repeat with the_number in numbers_list, I
chose to go with the traditional repeat using i as an integer from 1 to the number of num
bers in the Iist. There are a couple of reasons for that. The first reason is that I just like to
have an i variable counting the loops. I may not need it in the current version of the han
dler, but in the next version I may want to add more features that will require the loop
increment. Why change the script later if I can start it with a loop increment to begin with?

The other reason is even more pressing. When you use a repeat loop where the repeat
variable is the value of the Iist item, the variable isn't really the value of the Iist item. Try
the following script:

repeat with x in {"a", "b", "c"}
if x = "b" then display dialeg "yes"

end repeat

ln the secend loop we should've gotten a message, right? Oh weil ... more on that when
we discuss repeat loops in Chapter 11.

At the end of our handler we create the average number by dividing the numbers total by
the number of numbers.

Then we return the entire record containing the high number, Iew number, and average.

135

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

136

Also notice that the entire handler is wrapped with a try statement. This is to ensure that
there's a consistent response even if the Iist supplied as a parameter includes a string.

Notice that even if there's an error, the record still contains the same elements as in nor
mal operation. Handlers are much easier to use and manage if they always return a result
in the same value dass. and in that case, if the record has the same elements.

mod and div
The final math example we'll Iook at uses the mod and div operators. Although mod and
div are used less than other math operators, when you need them they really shine.

mod and div deal with how many instances of a number can fit inside a different number
without breaking. For instance, div can tell you that 2 can fit three times in 6.5, while mod
will tell you that after you fit 2 in 6.5 3 times, the rest will be 0.5.

Why is this so great? Here are a few examples of how your script can take advantage of div
and mod:

You need to impose four postcards per page, and the number of postcards changes from
job to job. lf a job has 27 postcards, how many whole pages will you need?

How about the following calculation:

set whole_pages to 27 div 4
if 27 mod 4 > o then set whole_pages to whole_pages + 1

27 div 4 will return 6, since 4 fits 6 times in 27. Then, if the remainder is zero, it means that
the division is perfect, like if we had 24 postcards. But if the remainder is more than 0,
then you need to add a page.

Or how about taking a number of seconds and showing them as minutes and seconds:

set seconds to 735
set minutes to seconds div 60
set extra seconds to seconds mod 60
set the_time to minutes & ":" & extra_seconds as string

Reversing numbers
To convert a number from positive to negative, simply add the minus sign before it, even
if the number is in a variable:

set my_balance to 500
set my_opposite_balance to -my_balance

ln this situation, the minus operator is used as a unary operator.

DOING THE MATH: ALL ABOUT NUMBERS

Fotder kitchen timer

Anyway, in our next example script we will convert an ordinary fotder into a kitchen timer.
The folder's name will change every second to reflect the remaining time. At the end,
iTunes will pick a random track and play it.

Here is the script in its entirety:

Script 4-6

1. set get_minutes_dialog to display dialog ~
"How many minutes?" default answer "120"

2. set timer_minutes to text returned of get_minutes_dialog as integer

3. tell application "Finder" to set the_folder_reference to ~
(make new folder at (path to desktop folder) with properties ~
{name:"Timer"}) as alias

4. repeat with the_minute from (timer_minutes - 1) to 0 by -1
s. set hrs_left to the_minute div 60
6. set min left to the minute mod 60 - -
1. set hrs_text to add_zero(hrs_left)
8. set min_text to add_zero(min_left)
9. repeat with sec_left from 59 to o by -1
10. set sec_text to add_zero(sec_left)
11. set displayTime to hrs _ text & ";" & min _ text & ";" & sec_ text
12. tell application "Finder" to set name ~

of the_folder_reference to displayTime
13. delay 1
14. end repeat
15. end repeat

16. tell application "iTunes"
11. play some track of library playlist "library" of source 1
18. end tell

19. on add_zero(the_number)
20. if the number < 10 then
21. return ("o" & the_number as string)
22. else
23. return (the_number as string)
24. end if
25. end add zero

The script utilizes one custom handler called add_zero, whose purpose is to convert an
integer into a string while ensuring that if the integer has only one digit it will be pro
ceeded by a zero. This has to be done as a string since if you ask AppleScript for 01 as
integer or as real, the preceding zero will be disregarded.

137

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

138

lf you have some basic understanding of handlers, you know that they can accept param
eters and return values. This handler accepts a single integer parameter and it returns a
string. lf the handler is fed the integer 5, it'll return "05".

The add_zero handler sits at the end of our script (lines 19-25), and we call it to perform
three times du ring the execution of the script.

The script starts by asking the user to set the timer to any number of minutes, and then in
line 2, AppleScript takes the text the user typed in the dialag box and converts it into an
integer.

This integer will be the starting point of the script. Just like setting a real kitchen timer, the
first thing is telling the timer how many minutes the timer has to be set to.

Une 3 of the script talks directly to the Finder. The Finder is instructed to make a new
fotder with a specific name.

I want you to notice a couple of things regarding the syntax ofthat statement. One is that
there's no tell block; both the command and the application reference are in the same
line. I did that because I needed the Finder to do one thing only.

The secend neat thing about this Statement is that it assigns a reference to the new fotder
not as the usual Finder reference that will include the name of the folder, but rather as an
alias reference.

Since Chapter 13 is dedicated to file references, for now 1'11 just add that the alias-style
reference to the fotder we created allows us to later change the name of the fotder again
and again, and the alias reference will always remain accurate.

Also notice the use of parentheses. Every expression is surrounded with parentheses to
direct AppleScript to the order we would like the expressions executed in, and to keep
generat order.

What comes next in the script is the main repeat loop starting at line 4 and ending on line
15. This repeat loop starts from the number of minutes and counts down to 0, stepping
-1 step at a time.

Actually, just like a real timer, the loop starts from one minute lower than the requested
number, plus 59 seconds.

Lines 5 and 6 are where we take the current number of minutes and separate that number
into hours and minutes. Here's how that's done, assuming for a secend that there are 135
minutes left:

set hrs_left to 135 div 60

This statement will return 2, since 60 fits two times in 135.

set min_left to 135 mod 60

DOING THE MATH: ALL ABOUT NUMBERS

This statement will return 15, since after we take all the whole 60s out of 135 two times,
or 120, the remainder that doesn't fit is 15.

These two statements repeat for each minute that passes, and they're followed by the
handler calls that add a leading zero to the number of hours or minutes, if needed.

The repeat loop starting on line 9 counts the seconds for each minutes. Like the last loop,
it starts from 59, the number of remaining seconds, and ends at 0.

Inside that second loop, the seconds are being formatted with the add_zero handler, and
then concatenated with the hours and minutes to form a single string that contains the
time left formatted as we like it. I used a semicolon, but you can also use a period or
dash-anything other than a colon, which should be the separator of choice if you could
use it in a fotder name.

Next, line 12 names our timer fotder with the newly formed name, line 13 delays the script
by a minute, and the entire process starts over.

After the repeat loop has ended, you can choose any method of alert. I ask iTunes to play
some track. The term some teils AppleScript to pick a random track.

Conclusion
No matter what you do in AppleScript, numbers and math are everywhere. Page Iayout
automation, database interaction, system administration-all require some dealing with
numbers. Some of my graphie-intensive scripts even forced me to pick up a trigonometry
book and figure out triangles' sines and cosines.

Throughout the book we will be attacking number problems and using the very concepts
covered in this chapter.

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

Types of number values
AppleScript supports two types of number values: real and integer.

A real number is a number with a decimal point, while an integer is any whole number.

class of 120 --> Integer
class of 3.8 --> Real
class of 99999 --> Integer
class of 1000.0 --> Real

139

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

140

Coercing numbers

You can coerce real numbers or integers into strings.

30 as string --> "30"
1.25 as string --> "1.25"

lntegers can be always coerced into real numbers.

2 as Real --> 2.0

A real number can be coerced into an integer only if it has no fraction.

4.0 as Integer --> 4
4.0001 as Integer --> error
round 4.4 as integer

Large numbers

When working with numbers that total five digits or more, including any decimal places,
AppleScript displays the numbers using exponential notation, instead of their normal
form.

The number 10000.0, for instance, will be displayed as 1.0E+4.

See the section "Real big" in this chapter for an explanation on how to decipher the
exponential notation code.

Rounding numbers

The round command takes a real number and rounds it.

The rounding parameter determines how rounding is decided on by AppleScript. There
are five constants that can be used with the round command: up, down, toward zero, to
nearest, and as taught in school.

Following are examples of using each one.

Simple rounding uses the default parameter round to nearest

round 1. 5 --> 2

Rounding up:

round 1.1 rounding up --> 2
round -2.9 rounding up --> -2

DOING THE MATH: ALL ABOUT NUMBERS

Rounding down:

round 5.5 rounding down --> 5
round -2.1 rounding down --> -3

The rounding towards zero constant acts the same as rounding down with positive num
bers, and with negative numbers it acts like rounding up would.

The rounding as taught in school constant acts the same as the default rounding, to near
est. The only difference is with numbers and a half: 1.5, -2.5, etc. These numbers will be
rounded away from zero.

round 5.5 rounding as taught in school --> 6
round -2.5 rounding down --> -3

Random numbers

The randoro nurober command is a part of the Standard Additions.

ln its basic form, the randoro nurober command generates a random number between
0 and 1.

random number --> 0.295602678734

The randoro nurober command has a few parameters: froro, to, and with seed.

The froro and to parameters specify to the command the number range in which the
returned random number has to be in.

random number from 1 to 10 --> 5
random number from 1 to 10 --> 3
random number from 1 to 10 --> 1

The parameter with seed determines where the random number is going to be pulled out
of in the pool of numbers stored in the computer's memory.

Using the same seed will return the same number on all computers.

random number with seed 100 --> 0.716641089949

To ensure a different random number is returned, use the current date as the argument
for the with seed parameter.

random number with seed (current date) --> truly random number ~
from o to 1

141

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

142

Math operators

AppleScript supports the following math operators: +, -, *, /, ". div, and mod.

set new_number to 5 + 12 --> 17
set new_number to 9 - 3 --> 6
set new_number to 10 * 4 --> 40
set new_number to 12 I 4 --> 3
set new_number to 3 A 2 --> 9 (nth power)

The mod operator returns the number of times the right operand fits whole into the left
operand. ln the following example, without breaking, 5 fits twice into 1 3.

13 div 5 --> 2

The div operator returns the remainder of the mod operation.

After you take 5 out of 1 3 twice, you are left with 3.

13 mod 5 --> 3

The div and mod operators can be used in scripts in some clever ways. See the "mod and
div" section in this chapter.

Comparison operators

AppleScript supports the following comparison operators: =, *· >, ;:::, <, :5. Theseoperators
can use their written forms as weil: is equal to, is not equal to, is greater than, is greater
than or equal to, is less than, is less than or equal to.

These operators always return a Boolean result: either true or false.

Details previously . . .

The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, refer to earlier sections in this chapter.

.. set the_promJJt to ' Pick a fllt
-set thfdile_patl\ to choose filt
-set flle_lnfo 10 Info fOf lh~Uile_p
-·set the_date 10 creatlon date of
ut rtrr...dar~ to date "saturday,

to ~
prompt "f'ld: a fokler to dun'

to tltc..folilu _pgtllas strlng

dlsp lay dla log ~
how how maJYV 1ft!! Iu old?' defaul

xt returned of wttks_d/4/os) u

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

146

As you're about to find out, the date dass in AppleScript is versatile and has many hidden
aspects worth exploring. This chapter covers working with dates, the date object proper
ties, and simple and complex date operations.

The date class and date object
ln AppleScript, a single value dass, the date value dass, holds information about a specific
second in time. That second indudes information about the date, time, weekday, month,
year, etc.

To create a date value we use the word "date," and following it we specify the date with a
string. The format of the string has to resemble a date to be recognized, but AppleScript is
fairly lenient about the exact format, and will fill in the blanks if needed.

To create a simple date, start a new window in Script Editor and type the following:

date "2/3/03"

ln certain situations you will find that some computers don't compile
statements containing dates. This situation can hoppen when the user's date
format in System Preferences is ordered differentty than you intended (year (irst,
etc.), and you have speci(ied a four-digit year. This buggy behavior may cause
some concern when planning for wide distribution of your scripts.

Now compile the script. As you can see in Figure 5-1, AppleScript takes the liberty of
formatting your date, and adding on to it the time, which is by default midnight of the
date you specified. You can, of course, specify your own time, and this is the time
AppleScript will use.

Flgure 5-1. The date
"2/3/03" compiled

PICKING UP DATES

Now try this:

date "2/3/03 1:54 PM"

AppleScript compiles this one as follows:

date "Monday, February 3, 2003 1:54:00 PM"

Date and time format
The format of the date string that AppleScript uses when it compiles the date you give it is
derived from the settings in the International panel of System Preferences (not the Date
and Time panel!).

Figure 5-2 shows the Formats tab in the Mac OS X System Preferences panels, which you
can use to modify the format of the date and time.

Dates

Tlmes

Language

Region! ; Unl~d surc:s

Friday,January 2, 2004
Jan 2, 200<4

l/2/04

12:34 AM 4:56PM

Numb~rs

Sl,ZJ.4.56

lnpul Me.nu

Show a.ll rcglons

(Customize ...)

(customlu ...)

(Customlze ...)

1

Flgure 5-2. The Formats tab in Mac OS X System Preferences

147

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

148

The fact that the user of the computer on which the script runs is able to change the date
format makes it unreliable for many purposes. For instance, if you want to extract the
weekday out of the date, you should be able to use the string manipulation shown in
Figure S-3.

Record SIJP IIWl Complle

set dD:t._nrfne to "12/ 31 /2003•
'l't rllr~dol"n (11 Rr, dDite... rrrln;J
an rll<... wu.t,d/11' 10 word 1 .,, trl!(..dlrrt u st l ln~

'Y.'tdnesdav'

0

Figure 5-3. Getting the weekday out of a date may work, unless the user has
changed his/her date formats in the International panel of System Preferences.

ln the example shown in Figure S-3, line 2 will result in the following value:

date "Wednesday, December 31, 2003 12:00:00 AM"

When converted to a string, the first word is "Wednesday."

This issue, however, becomes moot when you become familiar with the different proper
ties of the date object. We'll discuss those in a bit.

Forming dates on the fly
AppleScript does have a few default behavior patterns it uses to convert your date strings
into a date object. These are important when your script needs to take different values
and make up date objects out of them. For instance, your script may need to create a date
object that has the first day of the month, or Iet the user input a date and make sure
AppleScript understands it.

The following strings will all compile properly into date objects:

date "03/03/03" --> date "Monday, March 3, 2003 12:00:00 AM"
date "o" --> date "Monday, May 31, 2004 12:00:00 AM"
date "5/1/2002" --> date "Wednesday, May 1, 2002 12:00:00 AM"
date "Feb 28 5:50 AM" --> date "Monday, February 28, 2005 12:00:00 AM"
date "3:30" --> date "Monday, May 31, 2004 3:30:00 AM"
date "May" --> date "Saturday, May 1, 2004 12:00:00 AM"

PICKING UP DATES

Here are some of the rules AppleScript will use to compile these strings into dates:

ln general, AppleScript will do its best to fill in the blanks. Since the date object includes a
date and a time down to the second, AppleScript has to add something to most date
strings you give it.

• lf you specify only a date without the time, the default time will be midnight on the
date you specified. lf you didn't specify AM or PM, AppleScript will treat your time
as if you wrote the time in 24 hours format. That means that the default will be AM,
other than 12:00, which will compile as PM.

• lf you specify only a time without the date, AppleScript uses the date on which the
script was compiled.

Here are the preceding date strings with their compiled version:

date "03/03/03"

compiles as

date "Monday, March 3, 2003 12:00:00 AM"

AppleScript had to tack on the time, which is, by default, midnight.

date "o"

This compiles as

date "Wednesday, July 2, 2003 12:00:00 AM"

AppleScript uses the date the script was compiled. This book is my only alibi for any crime
that happened on that date ...

date "5/1/2002"

compiles as

date "Wednesday, May 1, 2002 12:00:00 AM"

Whereas

date "Feb 28 5:50 AM"

compiles as

date "Monday, February 28, 2005 12:00:00 AM"

Oops! What happened here is that the year hasn't been specified. AppleScript then took
the first digit we intended to use for the time and used it for the year, The minutes we
specified appear to have been ignored ...

date "3:30"

compiles as

date "Wednesday, July 2, 2003 3:30:00 AM"

149

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

150

The time was understood as 3:30 AM. and the date, again, is the date the script was
compiled on.

date "May"

compiles as

date "Thursday, May 1, 2003 12:00:00 AM"

AppleScript used the first day of May on the current year.

More ways to specify dates
OK, so I admit that until writing this book I was not aware of the following type of state
ment. What it allows you to do is tack the time from one date onto the date of another.
You do that in one of two ways.

The first one takes the time from the first date and the date from the second one.

The following script creates a date that points to 5 PM of the current date:

date "s:oo PM" of (current date)

The other way is to specify the date first relative to the time.

date "6:30 AM" relative to date "September 1, 2003"

lf you enter that Iiterat expression and compile it, AppleScript will change it to a single
date.

date "Monday, September 1, 2003 6:30:00 AM"

However, if you use variables, this may be very useful. as in the following example:

set the_date to (current date)
set the_time to "4:00 PM"
date the time relative to the date - -
--> date "Monday, May 31, 2004 4:00:00 PM"

The result shown depends on the date you run it.

User-supplied date
ln the following example, we'll create a script snippet that prompts the user to enter a
date, then we will see if the date is valid. lf the date is not valid, we will force the user to
reenter it. lf it is valid, we will give the user a chance to reenter it.

PICKING UP DATES

There are two basic ways to insist that a user does something to your specifications. One is
to create a subroutine that asks for user input. This way, if you inspect the user's response
and it's not good, you can have the subroutine catl itself until the user complies, and at
that point the subroutine can return a result to the calling statement.

The method we're going to use here, however, is a repeat loop.

The script enters a repeat loop with no specified end. The user is only atlowed out of the
loop if the data s/he provided has tested OK.

Notice that the script that fotlows starts with a plain repeat and ends with end repeat. Also
notice that the only way out of the loop is in line 9, which executes only if the user clicked
OK to a dialog box.

Here is the script:

Scrlpt 5-1

1. repeat
2. display dialog "Enter date" buttans {"OK"} .,

default buttan 1 default answer "MM/00/YYYY"
3. set user_date ta text returned af result
4. try
s. set the date ta date user date
6. display-dialag ("Yau have-chasen:" & return & .,

(date string af the_date))
1. buttans {"Try again", "OK"} default buttan 1

8. if (buttan returned af result) = "OK" then
9. exi t repeat
10. end if
11. an errar
12. display dialog .,

"Invalid date, please try again using the farmat \"MM/00/YYYY\"" .,
buttans
13. {"OK"} default buttan 1 with ican stap
14. end try
15. end repeat

Line 2 of the script asks the user to enter a date and gives a format to follow. Figure S-4
shows the dialog box. The format in the dialog box is just a part of the dialog text.

Flgure S-4. The input dialog box asking the user to enter a date

151

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

152

Une 3 assigns the user's typed text to one of the only two variables: user_text. The value
of user_text is astringthat was returned from the dialag command.

So how do we check if the date is valid? We try to coerce it into a date value dass. We're
counting on the fact that if the date is not valid, trying to coerce it into a date dass will
return an error. Therefore, we put the whole command into a try block.

That try block actually takes over the rest of the script. lt starts on line 4 and ends on line
12. lf anything goes wrong between lines 5 and 9, the on error part will be executed. We
start by attempting to coerce the string the user entered into a date dass. That happens
right after the beginning of the try statement, and is the statement we expect will gener
ate an error if the date is invalid.

lf the date string the user supplied coerced properly into a date dass, we continue by ask
ing the user if that was really the date s/he meant to enter. Maybe s/he mistyped some
thing, or AppleScript had a different idea of what date was intended.

So on line 6 we display an interesting dialog box, which can be seen in Figure 5-S. Part of
the dialog message is the property date string of the date object. We'll discuss this and
other date object properties later on; however, the date string property is a string that
holds the date portion of the date object.

You have chosen:
Wednesd~y. March s. 2003

II (OK }

Flgure 5-5. The dialog box confirming the date entered by the user

Une 7 checks if the user dicked OK to confirm that the date is fine. lf the user approved
the date, then line 8 executes and exits the repeat loop, and therefore allows the script to
continue.

current date
The current date command is part of the Standard Additions that come with the Mac OS.
lt takes no parameters, and returns a value in the date value dass.

current date
--result: date "Wednesday, July 2, 2003 10:15:09 PM"

When used as part of a larger operation, the current date command likes to be endosed in
parentheses. Actually, AppleScript is quite aware of that and will many times endose it
with parentheses when the script is compiled.

PICKING UP DATES

The usefutness of the current date command never ceases to amaze me. just imagine how
many times a day you turn to someone to ask what time or what date it is ...

OK, so its usefulness goes beyond knowing the current date and time. For one, it's a way
to get a unique time stamp on which you can perform several operations. You can use the
result of the current date to figure out the time it takes to run a script, as shown in the fol
lowing example:

set script_start_time to (current date)
--your script here
--more script
--a few more statements •..
set script_end_time to (current date)
set script_time_in_seconds to script_end_time - script_start_time
display dialog 11 The script took II & script_time_in_seconds & -.

II seconds to run!ll

time to GMT
Another date-related command, time to GMT, returns the time difference between the
time zone of the computer that runs the script to Greenwich mean time. The result is
returned in seconds, which means that in order to extract any useful information out of it,
like the number of hours, you have to divide it by the number of seconds in an hour.

As you will see later in this section, AppleScript has the number of seconds in an hour built
into a constant called hours. That means that, if the time zone is properly set on your com
puter, the foltowing script will return the time difference between your time zone and GMT:

Script S-2

set time_difference to (time to GMT) I hours
set time difference to round time difference - -
if time_difference < o then

set time_difference to -time_difference
set the_message to 11 You are II & time_difference & II hours behind GMT 11

else if time difference > o then
set the_message to 11 Vou are II & time difference & II hours after GMT 11

else
set the_message to 11 Your time zone is GMT 11

end if
display dialog the_message

We start the script by getting the time difference and dividing it by the constant hours,
whose vatue is 3600, which is the number of seconds in an hour (more about that specific
constant later in this chapter).

The conditional statement that starts on line 3 and ends on line 1 0 forms a different
message whether the time zone of the user is before GMT, after it, or the same.

153

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

154

lf the time zone is before GMT, then the time_difference value has tobemadepositive for
the dialog message. That happens on line 4:

set time_difference to -time_difference

Adding the minus sign before a number means it will be used as a unary operator, and it
turns a positive number into a negative and a negative number into positive.

Date object properties
So we decided that parsing the date as a string to extract the individual pieces such as the
month, weekday, hour, etc. wasn't such a good idea. For these items we turn to the prop
erties built right into the date object.

dass property

The first property is dass. The value of that property is always date.

The class property is useful to check if the value of a variable is of dass date.

year

The year property is an integer representing the four-digit year of the given date.

year of (current date)
result: 2003

month

The month property contains the name of the month of the given date. The value of the
month property isn't a string or a number, rather one of the following 12 constants:
]anuary, February, March, April, May,june,july, August, September, October, November, or
December.

You can coerce the month property into a string, and finally, in the AppleScript release
1.9.3 that ships with OS X 10.3 (Panther), you can coerce the month property into a
number, and compare the order of months.

weekday

The weekday property can contain one of these constants: Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, or Saturday.

The following script will return the month containing the first Friday the 13th of a given year:

PICKING UP DATES

Script 5-3

set the_year to 2004
repeat with i from 1 to 12

set date_string to i & "/131" & the_year as string
set the_date to date date_string
if weekday of the_date = Friday then

return month of the_date
end if

end repeat

Notice lines 3 and 4. Line 3 creates a string with the months changing based on the loop,
the day of month is 13, and the year is specified at the start of the script. ln its first repeat
loop that string will Iook like this:

"1/13/2004"

Line 4 coerces that string into a dass date, and line 5 checks if the weekday of that date
happens to be Friday. lf it is Friday, the name of the month is returned.

Try and have a month Iist and have the script add all the Friday the 13th months of the
year to that Iist.

time
Unlike the date-related properties we've seen so far, the time property of a date object is
just a long integer. lt represents the number of seconds that have passed since midnight of
the given date.

time of (current date)
result: 73793

To extract any meaningful information out ofthat number, we have to make some mathe
matical or comparison operations. We'll do a bunch of them later on in the "Doing math
with dates" section.

date string
The date string property is a string that contains the date portion of the date object.

The date part in the Formats tab of the International panel of System Preferences, shown
in Figure 5-2, determines the exact format of the date string property.

date string of (current date)
--result: "Wednesday, July 2, 2003"

155

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

156

short date string
This property first came out with AppleScript version 1.9.3, which shipped with Panther.

The short date string property is a string that contains a short version of the date portion
of the date object.

The date part in the Formats tab of the International panel of System Preferences, shown
in Figure 5-2, determines the exact format of the short date string property. You can make
several adjustments such as adding leading zeros to the day and month.

timestring
The timestring property is a string that contains the time portion of the date object.

The time part in the Formats tab of the International panel of System Preferences, shown
in Figure 5-2, determines the exact format of the timestring property.

set date_string to "1pm"
time string of date date_string
--result: "1:00:00 PM"

Useful date-related constants
ln order to assist you in performing date arithmetic, AppleScript was fitted with a few
date-related constants. These constants mean that you can use them in the script without
having to remember their numerical value.

Here are the constants and their values:

minutes = 60

hours = 3600

days = 86400

weeks = 604800

just to get the idea, type the following script and run it

display dialog weeks

Now what exactly do these numbers mean, and what are they good for? When you're per
forming operations on dates, you can get results in three flavors: if you compare dates,
you get a Boolean value. When you're adding to or subtracting a period of time from a
date, you get another date, but when you check the difference between two dates, the
result is an integer that indicates the number of seconds between these two dates.

Let's Iook at the last two scenarios.

PICKING UP DATES

lf I want to check what the date's going to be three weeks from today, I could use the fol
lowing script:

(current date) + 1814400

The number 1814400 is the number of seconds in 3 weeks. Now, I don't expect to want to
remember that, Iet alone figure out the number of seconds in, say, 5 weeks, 3 days, and 2
hours! So, since the constant weeks is equal to the number of seconds in one week, the
same result can be gotten like this:

(current date) + (weeks * 3)

Here are some expressions that return a true value:

days * 7 = weeks
24 * hours = days
(date "1/1/2004") - (date "1/1/2003") = 52 * weeks + days

So, where are the years and months constants? Weil, the number of seconds in a month or
in a year isn't constant; therefore they couldn't become AppleScript constants.

Expect much more fun with these constants in the next section.

Doing math with dates
When performing operations on dates, the result can be one of three classes: date, integer,
or boolean. Weil, actually, the as operator can be also used on dates to coerce them into
strings, but that's not really math ...

Returning a Boolean

As with numbers, dates can be compared. You can use the is equal to operator to see if
two dates are equal.

set the_date_string to "7127/2003"
set the_date to date the_date_string
if (current date) = the_date then

display dialeg "happy birthday"
end if

So you may expect that the script, if ran on july 27, 2003, will display a dialog box, right?
Hmm, maybe not.

See, when you run line 2 of the preceding script, the resulting date would be

date "Sunday, July 27, 2003 12:00:00 AM"

That means that only if the script runs at exactly midnight will you get the dialog box.

157

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

158

There are a few ways to remedy this prob lern. One is to compare the day, month, and year
separately.

You can also take the date portion of the (current date) command, and convert that into a
date. This will give you today's date, at midnight.

Here is how that might work:

Script 5-4

set the_date_string to "7/27/2003"
set the_date to date the_date_string
set todays_date_string to date string of (current date)
set todays_date to date todays_date_string
if todays_date = the_date then

display dialog "happy birthday"
end if

You can also use the comes after and comes before operators with dates:

set the_date_string to "7/2712003"
set the_date to date the_date_string
(current date) comes after the_date

ln this case, there's still a chance that you will not get the intended result. ln the preced
ing script, anytime after midnight (or zero in the morning) of july 27 will be considered
after the_date.

Here's an example script that Iooks at a version of a file in both the server and on the hard
drive. lf the hard drive version of the file is newer, the file is copied over the server version:

Script 5-5

1. set backup_folder_path to "Backup:files:"
2. set file_folder_path to "Macintosh HD:Users:hanaan:Documents:"
3. set file_name to "proposal.pdf"
4. --get modification date of the original file
s. set file_info to info for alias (file_folder_path & file_name)
6. set original_modification_date to modification date of file_info
1. --get modification date of the original file
8. set file_info to info for alias (backup_folder_path & file_name)
g, set backup_modification_date to modification date of file_info
10. if original_modification_date comes after ~

backup_modification_date then
11. tell application "System Events"
12. duplicate file (file_folder_path & file_name) to ~
13. folder backup_folder_path with replacing
14. end tell
15. end if

A few points regarding the preceding script:

PICKING UP DATES

First, as usual, I like to keep paths to files and folders as strings. This allows me to con
catenate them and coerce them into alias file or fotder references as I wish.

ln lines 5 and 8 I use the command info for to get file information. This command is great
since it's part of the Standard Additions, which means that you don't have to use it in a
Finder tell block.

Calculating time differences

When you want to see the time difference between two dates, AppleScript gives you a
result in integer dass. The resulting integer is the number of seconds between the two
dates. At first it Iooks a bit funny, especially when trying to figure out things like Frank
Sinatra's age:

set date_born to date "Sunday, December 12, 1915 12:00:00 AM"
set date_died to date "Thursday, May 14, 1998 12:00:00 AM"
set seconds_lived to date_died - date_born

The result (2.6009856E+9) of that script teils us that Frank lived for a little over 2.6 million
seconds. There are two main ways to make that number make some more sense.

lf we want to know how many days or weeks were in that period, we can use AppleScript's
built-in constants: minutes, hours, days, and weeks.

The following script will ask users for their birthday and tell them how long they lived:

Script 5-6

1. set the_dialog to display dialog "Enter your date of birth" .,
default answer 1111 buttons { "weeks", "days"}

2. set birthday_string to text returned of the_dialog
3. set increment_chosen to button returned of the_dialog
4. try
s. set birthday to date birthday_string
6. on error
1. display dialog "Bad date format, birthday boy!"
8. return
9. end try
10. set age_in_seconds to (current date) - birthday
11. if increment chosen = "weeks" then
12. set age_in_weeks to round (age_in_seconds I weeks) rounding down
13. display dialog "You have been alive " & age_in_weeks & " weeks"
14. else
15. set age_in_days to round (age_in_seconds I days) rounding down
16. display dialog "You have been alive " & age_in_days & " days"
17. end if

159

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

160

This method works weil with predictable increments such as weeks or days. However, if we
just want to know the age in years, then we would be better off comparing the date com
ponents: year, month, and day. We have to compare all three since comparing years only
may leave you with the wrong answer. Look at this example:

set birthday to date "Wednesday, October 31, 1979 12:00:00 AM"
set today to date "Thursday, July 10, 2003 12:00:00 AM"
set age to (year of (today)) - (year of birthday)

The script returns a result of 24, which is the difference between 1979 and 2003. However,
the dude won't turn 24 for three more months!

Now, we could use the following trick:

set birthday to date "Wednesday, October 31, 1979 12:00:00 AM"
set today to date "Thursday, July 10, 2003 12:00:00 AM"
set age_in_days to (today - birthday) I days
--The result is 8653.0
set age_in_years to age_in_days div 365.2425 -23 years
set extra_days to age_in_days mod 365.2425 -252(+) days

The number 365.2425 is the number of days (on average) per year, taking into account
leap years.

Another method would be to compare the years and the months.

lf the month in your birthday comes after the month in today's date, then you have to
reduce the year difference by one. However, if the months are the same, then the day has
to be compared, and the same rule applies: if the day in your birthday comes after the day
in today's date, then you have to reduce the year difference by one. lf the days are the
same, then guess what: it's your birthday!

Thanks to the improvements Panther or OS X 1 0.3 brings us, we can now compare the
month of a date without going to the extreme measures of finding the numerical value of
the month using Iist manipulations, etc.

Here's how we can go about that script:

Script 5-7

set birthday to date "Wednesday, October 31, 1979 12:00:00 AM"
set today to date "Thursday, July 10, 2003 12:00:00 AM"
set age_in_years to (year of today) - (year of birthday)
if (month of birthday) comes after (month of today) then

set age_in_years to age_in_years - 1

else if (month of birthday) is equal to (month of today) then
if (day of birthday) comes after (day of today) then

set age_in_years to age_in_years - 1

else if (day of birthday) is equal to (day of today) then
set today_is_my_birthday to true

end if
end if

PICKING UP DATES

File age script

ln the following exercise, we will create a script that allows the user to choose a file and
will then tell the user the age of the file in weeks, days, hours, and minutes.

We will make handsome use of the four constants we looked at earlier, and also Iook at
the mod and div operators.

The script starts when we ask the user to pick a file, and then we extract the date out of it,
as shown in Figure 5-6.

set the_promf!l to "Pick a flfe and rll teU you lts age!"
set the._flle_path to choose flle w prompt the_prom/1f
set fik._info to mfo for the__file._path
~et the_datl.! to cu•ation dale of fik._irrfo

date "Saturday, July 3, 2004 9:14: 14 PM"

EnmLog

Figure 5-6. The first four lines of the script have one purpose: to get the
creation date of the chosen file.

While these four lines will eventually make up the beginning of our script, they might be
in the way while we develop the rest of the script. What we want to do is to copy the result
of these four lines (shown in the result panel in the script window in Figure S-6), and tem
porarily assign it to the the_date variable. This will allow us to skip the choose file step
when we create the script. True, we may want to test our script on more than one date,
but having one date for testing can give you consistent results throughout the initial devel
opment stage.

ln the script shown in Figure S-7, I have commented the first four lines, and inserted a
temporary line as described previously.

161

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

162

Record Ru11 Complle

-Set the_prompt to "Pick a fll~ and rU teil you l'ts aiJI!I"
··set the_ le_pa.tl\ to choose le Wltl1 prompt tlle_prompt
-SI!l fil _Info to Info for tht!_fllt!_palh
··set the_c!ate to creatJOn date of flle_lnfo
set rhe.._daruo date "Sarurday, AprilS . 2003 6:00:4!1 Ph41

date "Sarurday, April 5 , 2003 6:00:49 PM"

Flgure 5-7. The script's second stage

Next, we will get the difference between the creation date and the current date. We do
that by simply subtracting the file's creation date, now stored in the the_date variable,
from the date returned from the current date command. This step is shown in Figure S-8.

-SI!t the_prompt to 'PJCI(a fllt and rll teil you l'ts age!'
-set !he_ le_patll to choose file wtth prompt tllt_prompt
-sl!t fil _Info to Info for tn _file_path
-·set !he_date to crea on date of e_lnfo
set rhe.._dartto date "Saturdav. Aprils , 2003 6:00:4!1 PM'
sei f/ic.. llge_ltt.St<QndS to (current d ;m} · tN_daa
I

j ~ Enntl~

0

Flgure S-8. Subtracting a date from another date produces an integer
result that is the number of seconds passed between the two dates.

PICKING UP DATES

The result we got was 22031214; twenty-two million and some odd seconds. The rest of the
script will involve parsing that number of seconds into weeks, days, hours, and minutes.

We start parsing from the large chunks down. To figure out how many weeks fall within
that number of seconds, we use the div operator.

22031214 div weeks --> 36

The result to this statement should give us the whole number of weeks. We could of
course divide the number of seconds by the weeks constant, but we would have gotten a
decimal number instead of simply the number of weeks:

22031214 I weeks --> 36.427271825397

We also need to know what the leftover number of seconds is after we extracted the
number of whole weeks. We get that leftover number by using the mod operator, like this:

22031214 mod weeks --> 258414

The result, 258414, is the number of seconds left after we deducted the 36 weeks.

Figure 5-9 shows the script with the new statements extracting the number of weeks and
the time remaining without the weeks.

aeo t 05-09 G

··stt the_prompt to ~Iek a le and rn ttll you s a;er

~
·-set ~_fl e_patll to choose filt v.1!11 prompt the_prompt
-set ftkunfo to m'o for tht_ft _path
··sei the_d~te to creatton date of fiJ .anfo
$el t~.d11te to datt "Saturday, April 5, 2003 6:00:49 PM"
scr f/Jil_ogc._irucconds to (cun~nt dJ tC) !hl!..daUJ

set wuit.s_o/dto (JI<_ag~ln_H!Con-d1 dlv weeks
set kfr_owr_stconds to (Ue__ogt_IIL.seconds mod weeksj !' ·'

'· ''

,_ .
I

J; DeKriptioll I Result Event Log
I~ ii'
A:'··

Flgure S-9. The fourth stage of our date script extracts the number of
weeks and the leftover seconds.

163

111

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

164

Next, we will repeat our last two lines, but now with the days, hours, and minutes con
stants. Figure 5-10 shows these lines of code.

eoo L" OS-10 0
-set the_~rompt to ""Pick a ftle and fitteil you tts ag!!l" ',
··set the.file_path to choose file Wlth prompt the_prompt
-set tlleJnfo to Info for the_fl _pith
··Set the_date to cre~tlon date of me_lnfo
nt tM..datt to da e "Saturday. April S, 2003 6 :00:49 PM"
nt file_o~ltl.. seconds to (curre m date) · rhe..dore
I
set wuks. old to (fle...age...tn..srconds dlv weeks
set left_ovu_stuonds to ~age...ltt..seconds mod weelcs

set dgys_old to lqr_o~r _seconas dlv days
nt Jetr_ovu _seconds to le(r_over_suoNJs mod days

set hours_old to kft_over. seconds dlv hours

[t !
suleft_ovu_seconds to le(t.over_sK.Onds mod hours

set minutes_old to ftft_ovu. secoNis div minutes
set le(t. ovu_seconds to fe(t..over. suonds mod mlnutes

I[

~

'

.
46

I'

1 Descttptlon I -.Ir • Eve"l Log I 1:'

Flgure 5-10. Variables have been put in place for the days. hours, and minutes.

Our next step is to combine all the variables into a single message we can use to inform
the end user of the files-age.

We do that with simple concatenation, as shown in Figure 5-11.

The other step that was done in the script in Figure 5-11 is the reinstatement of the initial
script lines that allow the user to choose a file.

So, if you want to know if the monster chasing you through a dark forest is a vampire,
throw some beads on the ground. lf he's a true vampire he'll be compelled to stop and
pick them up. And if you are a true programmer, you will not relax until you rewrite the
end of this script to make sure that the final message doesn't read "1 hours".

PICKING UP DATES

~ 05-11
set rht_prompr to ' Pick a flle and ru teU you lU agel'
set tht..(/~h to choose lile wlth prompt rlle_prompr
set (llt..flf(o to Info for rht...{Tit..pglh
set rht..dare to crea!lon d;ue of (/le...ln(o
-su !he_date to dart "Saturday, Apnl S, 2003 6·00 '49 PM'
set fik._t~g~ln_ suond~ to (currenr date) · rhe_date

set wula_oldto (lle._ag...Jn..se;:ol'lds dlv weeks
setfe(t_ovu_secondno {Ut_Qff..ln_seconas mod weeks

set dayr_old to left_oliU_seconds dlv days
set left.ovu_secollds to lt(r_oliU_stcolldt mod days

set ltours_ old t<l k(r_oW!I'_secollds dlv hours
set lt(t_ow.r_suonds to left_owr_seconds mod hours

set mlnutts_old to ftft_over_seconds dlv mlnutes
set letcow.r_seconas to left_oliU_seconds mod mlnutes

set (1110Lmusage to ~
"rhe flle is • & lllftks.old & • weeks. ' & doys_old & • davs, • &

hours_old & • hours and • & mlnures_old & • m lnutes old"
dlsplay dlalog (/nQLmCSSQ~

(button returned:"'K1

Doucription 1-..--.-. Ewntlog J

0

[,

Flgure 5-11. All the variables we coliected in the script are put into a single string
and displayed to the end user.

Using dates to get more dates

As we've just seen, when we test the difference between two dates, we get an integer.
Similarly, we can add or subtract an integer from a date and get another date.

This can be useful for several purposes. For instance, you can have a script Iook in a folder
and delete every file that's over three weeks old. Here is the statement that will test
whether to trash the file or not:

if (file_modification_date + (3 * weeks)) > (current date) then .••

The expression (3 * weeks) evaluates as an integer that stands for the number of seconds
in three weeks, since the constant weeks, as discussed earlier, evaluates as 604800, which is
the number of seconds in one week.

165

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

166

ln a script I recently created, I had to figure out the date of the last day of any given
month. Here's how I used date calculations to achieve that:

The variable the_month is an integer from 1 to 12 and it stands for the month whose last
day I want.

set the_month to 4
set the_year to year of (current date)
set the_date to date ((the_month + 1) & "111" & the_year as string)
set the_date to the_date - (1 * days)

Note the statement on line 3. We build a date that's made out of the month plus one, and
the day is 1. That gives us the first day of the following month. ln line 4 we subtract a day
from the date to get the last day of the previous month, which happens to be the date we
were looking for.

Deleting old files
let's use the same motif as we did earlier with the file's creation date. This time, however,
we will Iook at a file's modification date.

let's create a script that Iooks at a folder's contents and deletes every file that's older than
a specified number of weeks.

What we will need is to prompt the user to enter the number of weeks. Then, we will need
to calculate the date that isthat number of weeks ago. We'll call that date expiration_date.

Then, we take the modification date of each file. lf it is less than our expiration date, it
means that the file is over that number of weeks old and we can delete it. For our pur
poses, instead of deleting the file, we can just set its Iabel to red (which requires you to use
OS X 10.3 or higher).

Creating the script
ln this script we will use a property that will hold the path to the fotder we want to clean
out. This property will be kept as a string, not a file reference since a string is more flexi
ble and we're less likely to mess up with it.

The script will start by checking if that path is valid, or in other words, if the fotder speci
fied actually exists.

lf the fotder does not exist, the user will be prompted to choose a different one.

While this is the way the script will start, we will write that portion at the end. ln our last
example we started with the file-choosing portion, later commented it out for develop
ment purposes, and reinstated it at the end. Both ways work OK. For testing purposes we
should create a fotder and put some assorted files in it.

There are two ways to create this script. We can either rely on scripting additions such as
info for and Iist folder, or use the system events scripting, which is very much like scripting
the Finder.

PICKING UP DATES

While working with files is documented in Chapter 13, we should note that if we do want
to use Iist fotder and info for it'll mean that we have to get a Iist of alt the items in the
folder, then we have to loop through them, testing each one to see if it's a file and not a
folder, and finally test the date and set the Iabel if needed. This will create a lengthy and
slow repeat loop.

lnstead, we will use system events, which allows us to utilize the whose clause. Using the
whose clause, we can condense the entire repeat loop into a single line of code!

One problern with system events, though, is that while they support deleting files, they do
not support Iabels. For that reason I will write my script using the Finder instead. The final
version, which does not use Finder file Iabels, can be switched back to system events
scripting.

Before we start programming the Finder, we need to have a fotder path to work with for
testing purposes and an integer indicating the number of weeks old the file has to be in
order to be marked.

While the integer isn't a big issue, a path may be a bit irritating. Not that I can't trust myself
to spell out the full path; however, I have saved myself some time by creating a little lazy
workaround.

/f you're using Script Debugger, you can just drag and drop the fotder on your
script. This will create an alias reference to the fotder.

For the workaround, start a new script, type the command choose folder, and run the script.

The choose fotder command will force you to choose a fotder and return a path to that
folder, as shown in Figure 5-12.

alias "Machtosh HD:Users:hanaan.Ouktop.
DesktOP Sluff:"

Flgure 5-12. The
result of the choose
fotder command

167

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

168

The script in Figure 5-12 is a throwaway script. We copy the resulting string only (without
the word "alias") to our real script. and close this one without saving.

Our script starts with two variables: theJolder_path, which holds the path pointing to the
fotder we want to clean, and weeks_old, which will be the integer specifying how many
weeks old the file has to be to be deleted (or have its Iabel changed in our case ...).

Figure 5-13 shows the initial stage of our script.

OS-13 Cle .. n follli!r

Compllt:

se·t rt;e_(Gidtr.pa;h to ~
"Madntosh HD:Users:hanaan:Oesktop:scrlpt tolder test:"

s~:t Widu. uh.' tu 121

I~ j Ne ..,~ l'<entlog)

Figure 5-13. The initialstage of the clean fotder script

Our next step is to script the part that calculates the date that is x weeks ago. I used 12
weeks in my script, which ensures me that some of the files in my test fotder will be
affected and some will not.

The date calculation statement is rather simple, and like many other Statements in
AppleScript, it can be written out on a single line or spread out over severallines. The single
line version is shown here:

Set too_old_date to (current date) - (weeks_old * weeks)

The multiline version is a bit Ionger but is more flexible and easier to understand. This is
important if you want to return to this script some months down the road and understand
what you wrote. Commenting your script may also help.

Set this_date to current date
Set weeks_old_in_seconds to weeks_old * weeks
Set too_old_date to this_date - weeks_old_in_seconds

lt's always fun to see in just how few lines you can write your script.

The following part of the script will be telling the Finder to treat the old files. Here is how
it'lllook:

PICKING UP DATES

Script 5-8

tell application "Finder"
tell (every file of folder the_folder_path ~

whose creation date comes before too_old_date)
set Iabel index to 2

end tell
end tell

Notice how we can use a single statement to address only the files we want. ln the final
version of the script, the statement that now says set Iabel index to 2 will simply say delete.

Figure 5-14 shows the script with the added statements.

Stl 1/tt...(OidU_txlfh 10 ~
' Madntosh HD:Usen :hanaan:O~slctop :scripl folder tesl:"

stt wrelcs_old to 1 2

set thls_date to current date
set wetlcJ_old..tn_seconds to weeks_qJd • weeks
nt too_old_dott to thls_dote · wencs.old../lt.stconds

tell applecatlon "Finder"
tell (every fllt of fotder t#le...(oldu_patll ~

whose creabon date comes before ttu~_old_dote)
ntlabel lndu to 2

end teil
end teil

Descriprion Ruuk Evc nt LOil

Flgure 5-14. The script with the added Finderstatements

Adding the user interaction portion
The final stage of the script will be getting the end user involved. We need to make sure
that s/he understands what the script will do. We will also allow the user to change the set
tings that are stored in script properties, these being the folder that will be cleaned and
the number of weeks.

We start by promoting the first two variables into properties with an initial value. Then, we
check the current value of the properties. Remember that, even though we assign a value
to the properties when we write the script, this value will be changed by user activity and
the new values will stick.

169

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

170

After the properties are declared, the first real part of the script will be checking if the
fotder is valid, and making sure that the number of weeks specified isn't zero. lf alt is weil.
we will show a dialog box reminding the user that the files in a specific fotder that are
older than a specific date will be deleted.

When we get the OK (OK button, that is), we will go ahead with the process.

Figure 5-15 shows the script with the added properties and conditional statement.

05-15 Clean folder

l!:ecord Run Complle

property thl._folder_poth : -
property Wf'..t.ks_old : 0

-venly folder
try

altas rhe._fokte.r_parll
on error

set tht__folder_f'Qth to ~
choo~e talder wlth prompt "Pk:k a folder to clean'

set tht__folder_f'(lth to tlle..(okttt_pmh as mlng~
end try
-verl weeks
11 weeh_old < 1 then

set we.eks_dloiDg 10 dlsplay dlalog -
"Delete flies th.lt how ti<M' many weeks oldr' deiauf answer ~ •

set we.el<s_old 1o CttlCl rerurned of wttks_etlilloffJ a.s r teger
end lf

sei chls_doc~ to current date
set wtt.ks_oltUn_secotlds to wttk.5_old • weeks
n1 coo_old_dare to rhir_date • waks_old_ln_secomls
set folder_nQmt. to name of Un o or alias rht__(oldtr_parll)
sei rhon_clote to short dat strlng ot roo_old_date
set rllt__mtwrge 1o "Flies ln folder ,- & tolder_Mmt-

& '\" that were created before • & shon_d"re & • wll be deleted ."
try

dlsptay dlakM} rht__mt,ssogt
on error

return
end uy

tell pphcauon "Finder·
tell (every lile of folder rhe_foldtr_parh-.

whose creatlon date comes befcH~ too_olil_dol()
set Iabei Index to 2

end tell
end tell
I

llesult Event log

Flgure 5-15. The user interaction portion has been added.

PICKING UP DATES

Let's see what was added to the script and what is still missing.

The verify fotder section (shown in the following code) uses a trick that builds on the fact
that an invalid file path will return an error if you coerce it into an alias. This means that if
the variable theJotder _path does not contain a valid path, an error will be generated. The
error will be captured, and instead of an error message, the user will be asked to choose a
different folder. This part happens in the portion between the on error and end try lines.
You can read more about error handling in Chapter 15.

Scrlpt 5-9

--verify folder
try

alias the_folder_path
on error

set the_folder_path to ,
choose folder with prompt "Pick a folder to clean"
set the_folder_path to the_folder_path as string

end try

The verify weeks section (shown in the following code) checks if the weeks_otd property is
less than 1. What it doesn't do is verify that the user entered a value that can be coerced
into an integer. lf the user tried to be funny and typed Five, for instance, the script would
choke when trying to coerce the result into an integer.

Scrlpt 5-10

--verify weeks
if weeks_old < 1 then

set weeks_dialog to display dialog ,
"Delete files that how how many weeks old?" default answer "5"

set weeks_old to (text returned of weeks_dialog) as integer
end if

The next thing that we did was create the message to allow the user to bow out of the deal
and cancel. For this we used three new variables: fotder_name, short_date, and finally,
the_message.

The value of the fotder _name variable is the value attached to the name Iabel in the
record returned from the info for command. I know, this was a mouthful. The chapter
dealing with files thoroughly explains this command.

The short_date variable is assigned the short date string property of the date, which we
figured out earlier in the script.

Finally, the variable the_message collects the last two variables with a bunch of other text
into a coherent message used in the disptay diatog command. The dialog box is shown in
Figure 5-16.

171

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

172

Flies in fotder "scrlpt fotder test• that were created
before 11/12/03 will be deleted.

(Cancel)

Flgure 5-16. The dialeg box informing the user of the
action that follows

A few things to notice about the dialag statement:

First, the entire statement is inside a try block. This is done because if the user clicks
Cancel, instead of returning a button clicked "cancel" result, AppleScript returns an error.
The error is error -128 user canceled, and the only two ways to avoid it are specifying but
tons other than Cancel, or trapping the error with a try statement as we did here. Anyway,
if we change the button's name, we have to test which button the user pressed; but in this
case, if there's no error, the user must have pressed the OK button.

Another thing to notice is the use of quotes in the dialog text. lf you Iook at the script, you
will notice that in order to display a quote mark in the dialog box, we need to escape it, or
in other words, to put a backslash before it: \ n.

Following is the part of the script specifying the variables and displaying the dialog box:

Script 5-11

set folder_name to name of (info for alias the_folder_path)
set short_date to short date string of too_old_date
set the_message to "Files in folder \'"' & folder_name ..

& "\" that were created before" & short_date & "will be deleted."
try

display dialog the_message
on error

return
end try

Formatting time
Now, you may want to use the time difference results you extracted (see scripts 5-9
through 5-11 .. .) for your own good as a scripter and never report on them to the end
user during runtime. lf, however, you do decide to putthat information somewhere, which
is usually a good idea, you may want to format it a little. Since the time is returned as sec
onds, anything under 3 minutes or so is fairly comprehensible. For example, take 130 sec
onds-well, we know it's a bit over 2 minutes. But what if the process took 1519 seconds?
You may want to provide the end user or system administrator some more Understandabte
results, for instance, 0:25:19. let's Iook at the handler that will format an integer contain
ing a number of seconds into a nice-looking string:

PICKING UP DATES

We'll devise a strategy first. We will need to break down seconds into hours, minutes, and
seconds. For each we will have a string variable. Even though these start as integer values,
we will end up reporting on them as a string. The variables we'll use are h, m, and s.

Also, we will be better off dealing separately with times that are an hour or langer, times
that are a minute or langer, or finally, times that are shorter than a minute.

Each portion will be responsible for setting values to the h, m, and s variables, and the final
line of the script will concatenate them with a colon as a delimiter.

Figure 5-17 shows the skeleton of the script.

II secs z: 3600 then
··An hour or longer ...

el se lf secs ~ 60 then
••A mlnute or Ionger

else
··L.ess 1han a mmute

end II
sei foTmattul_lime to h & •:• & m & ' :' & s u string

: Dmriptlon ! ~ Eventlog }

CJ

Flgure 5-17. The skeleton of the "format time from seconds" script

Notice that the script is basically one big conditional statement. lt is separated on the basis
of the seconds variable being an hour or more, a minute or more, or under a minute.

Another thing to notice right away is that we use the number 3600 for an hour, and 60 for
a minute. Actually, AppleScript helps us out by giving us constants we can use instead of
these numbers. There are four time-related constants, and they're all covered later on in
this section. For now, we will Iook at two of them: the constant hours has the value
3600 assigned to it, and the constant minutes is by default 60. This is as if AppleScript
anticipated your needs here and created these two variables for you.

173

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

174

So are they constants or variables? Weil, a bit of both. They are constants in the
way that they are available from App/eScript out of the box, but they are like
variables since you may assign any value to them. However, there's no reason to.
More on that subject later in this chapter.

So with that said, we can make our script read better by replacing the number 3600 with
the constant hours, and the number 60 with the constant minutes.

Let's continue with the actual script. Next, we'll attack the simplest part: what happens if
the number of seconds is less than a minute.

ln that case, hours should be 0 and minutes should be 0. Now you may be asking yourself,
"What would happen when we concatenate these zeros into a string?" We certainly don't
want to see 20 seconds formatted like this: 0:0:20. We will, later on, create a little handler
that will add a zero before the number if it has only one digit. For now, we just need to set
the h and m variables to 0. Figure 5-18 shows our progress so far.

lf su:s 2: hoors then
-An hoor or Ionger •. ,

~Ist> lf HCS :t mln~U!!S then
-A mln~e or Ionger

eise
set h to o
~et m to 0
set s to recr

tndlf
U!l (orri1QrttJt.rlme to II & ·:· & m & ·:· & s as mlng

Flgure 5-18. The script with the time constants and the first portion filled in

ln building the following two portians of the script, we will make some cool use of the mod
and div commands. Here's a little reminder of what they do and the way we will use them:
the div command returns the number of times that the right operand fits into the left
operand. ln this case, we can use it to extract the minutes out of the seconds number. For
instance, if the total seconds is 130, we can do 7 30 div 60. The result will be 2, which would
tell us that 60 fit twice into 130. Now what about the rest? lf the number 60 fits twice in
130, then the remainder is 10. To get that remainder, you can use the mod operator: 130

PICKING UP DATES

mod 60 returns the leftovers of 130 div 60. Figure 5-19 shows the next portion of our script,
where we added the portion dealing with numbers between 1 minute and 1 hour.

Re:ord J.un tomplle

UllUliD :lU

lf IUS 1< hou~ I Mn
··An hou· or lonoer. ..

else 1f S«J ~ rn•..tes Ihren
-A m111u:e l' Ionger
nlhlo 0

ci:K

ser nao s~ dlv GO
ur sto sm mod 60

stl h 10 0
sttmtoO
~-1 tlD (I{';

end lf
se1 (ormarre:t..l.'tm to h & . • & m & ·:· & s as svlrg

"0:1: 10"

Elfvif •09 I

Flgure 5-19. Note the use of mod and div in figuring out the
minutes and seconds. Hours are still 0.

ln the script shown in Figure 5-19, I also added a test at the top. I set the secs variable,
which is the number of seconds I want to evaluate. Also notice that the resulting string has
the number of minutes shown as 2 and not 02, as we will soon have it.

The final portion of the script, the portion that deals with numbers 3600 and up, is similar
to the second portion, just that we have to go through the div and mod exercise twice,
once for the hours and once for the minutes.

We start by extracting the number of hours with the div operator. The mod operator
allows us to get the number of seconds left over. This number is then treated the same
way as in the second section. Figure 5-20 shows the script in its almost-complete form.

175

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

176

v 05-20 Format time from seconds

Complle

set secs to 1 092 5

lf secs ;t ho~rs then
-An hour or Ionger ..
set lt to stcr dlv 3 600
nt mlnwes_lt(z 1.0 ua mod 3600
nt m to mrnutes_kft div 60
ser s to mlmnes_le(t mod 60

f!'ls~ lf stcs ~ mi!\Utes then
··A mlnute or looge:r
se11110 o
Set m to su:s dlv 60
set s to s«s mod 60

eise
Set 1110 0
se1mto0
set s to sus

end lf
set formorrtd_rlrm to h & " " & m & ":" & s as strlng

"3 :2:5"

1 Df. scrlptlon

Figure 5-20. The part that deals with number of seconds 3600 or larger is added.

Now we get to aesthetics. lf you Iook at the result of the script in Figure 5-20, the string's
value indicates 3 hours, 2 minutes, and 5 seconds. While the result is correct, we would
like to display it as 3:02:05.

What we need is a little handler that will tack on a 0 before numbers that have one digit,
numbers that are less than 1 0.

The handler will take a number, in this case between 0 and 60, and will return a string con
sisting of two digits. lf the number is 1 0 or greater, it will be simply coerced into a string.
lf it is less than 10, a 0 character will be jammed in front of it. Here's what our handler will
Iook like:

Script 5-12

on make_two_digit(the_number)
if the number is less than 10 then

set the_result to "o" & the_number as string
else

set the_result to the_number as string
end if

end make_two_digit

You could go ahead and make this handler more sophisticated and allow a number to have
any number of digits, but that's up to you.

PICKING UP DATES

Watch, though, how we call the handler: instead of calling it on a separate line, we just embed
the call into the statement that concatenates the seconds, minutes, and hours. lnstead of

set formatted_time to h &
we write

set formatted time to ~
h & ":" & ~
make_two_digit(m) & "·" & ~
make_two_digit(s) as string

& m &

You may also add a 0 to the h variable, if you want.

& s as string

The final touch is converting the entire script into a handler. The handler will accept a
single integer value, and will return a string showing the formatted time. The final script is
shown in Figure 5-21.

0~-71 Fomur 11...,. frnm ••rnnd<

u ~r~~~~r._wa:.wü_rc._rlill'l(s"ll
tf fl!t! ~ ~GIJII thtn

- k h'U' ::111.:i~tr • .. , "ln "'" diw lfillß
,.., mlllll!ll>,.J•Il tu ••u. muol 3500
~l m 111 ~oiS..Ii/l diY GO
Sft r ta •••tt~ ldt •all bJ

"''"' lf <Hr > ".in,.., th<M
-A - r u~ Of lor9~

..a

n<lltD 0
~l lJI ta l OC! dil; lW
nt r ta J~ RtDd tiO

Rlillo 0
ut mrc 0
u.t rta J~

Olldlf
set ~fllt#fttd....'lr.te to-.

II&':"&~

-u..:>Q_.,."". ~ ~- ~ ~
-~ wo_~:n u suift~

reum ror.zn~::r..l
011d (or...._ret«'Jii...to_tiiN

oa ma4..!w.!..<llil(~
lf rl:lt...Nmkr ls lus tloan I J then

at :lrl...re~to '0 ' .r. !llc..JJUIIIbu IS sulng
eh.,

at :lrc...re:r.to lllf...IIWIIbu ti strlng
endlf
n!lam :r.._.,~_..

81d lltiä.e"t-J#fl
I

Flgure 5-21. The
final script is made
out of two handlers.
The first handler
takes an integer
parameter. The result
is that number
formatted in hours,
minutes, and seconds
as a string.

177

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

178

Last day of the month
ln some cases, such as reporting on financial information, we need AppleScript to know
the date of the last day of a given month.

Now, getting the first day is not a problem. Say we have an integer variable called
the_month. This variable is set to the number 7, indicating that we want some date in july.
To get the first day, all we have to do is concatenate a string and tack the word "date"
before it:

Script 5-13

set the_year to year of (current date)
set the_month to 7
set the_day to 1
set next month to the month + 1 - -
set last_day_string to next_month & "/" & the_day & "/" & -.

the_year as string
set last_day to date last_day_string
set last_day to last_day - (1 * days)

The preceding script is quite simple: we start by setting some variables (using Iiterat values
in the script is just bad form), so lines 1 through 3 set the day, month, and year variables.

Line 4 figures out for us the next month.

ln line 5 we build a string that initially points to the first day of the following month. All we
have to do in line 7 is subtract one day (in seconds) from the first day of the following
month. The result is the last day of the month we started with.

date "Thursday, July 31, 2003 12:00:00 AM"

Alarm clock script
The script presented in this section used to wake me up every morning when I had to be
in Boston for a few months.

Like a few other scripts we looked at earlier, this one is composed of a single endless
repeat loop. Line 45 of the script exits that loop after iTunes finishes playing the wakeup
song.

lf you check the script, you'll see that it has a few other exit repeat statements that Iead
you out of other endless loops. These are more related to user interaction than to dates.
The user interaction trick forces the user to enter a valid value into the dialeg box, and this
trick is explained in Chapter 12. The basic idea behind it is that you repeat indefinitely,
until you manage to coerce the user-entered text into the value dass you want such as a
number or a date, as it is in this case.

let's go over the script's parts:

PICKING UP DATES

ln lines 3-6, we choose the song file and extract the file's name into a variable. Note that
we only have the user choose a file if the property wakeup_tuneJile_path is set to the
default settings of missing value. That means that these lines will only be executed the first
time the script runs. Later on in the script, in lines 26, 27, and 28, we give the user a chance
to change the song file.

The following part, which starts on line 7 and ends on line 23, allows you to figure out and
verify the wakeup time and date.

We start with line 7 where we simply figure out the date of tomorrow:

set tomorrow_date to (current date) + (1 * days)

We willlater apply a new time to the date of tomorrow_date.

Line 8 starts a repeat loop that ends on line 23. The purpese of that loop is to qualify the
text the user typed as a valid date. The user was not only asked to provide a time, but also
a time string, like "7:00 am", that can be coerced into a date.

The script first stores the string the userentered into the requested_time variable. Then it
will try to coerce the requested_time value of the requested_time variable into a date. This
happens in lines 13 through 22. lf the coercion is successful, AppleScript will exit the
repeat loop (line 15). lf the coercion fails, the try statement will capture the error and the
on error statement portion will be executed.

At this point, we start a new try statement. This time it is meant to allow the user to can
cel. We ask the user to enter a new date, but we give hirn/her a way out this time. lf the
Cancel button is pressed, the display dialog command will generate an error this time, and
the script will stop. This happens on lines 19 and 20.

Line 25 will then collect all the information and will use a self-terminating dialogbox to Iet
the user knaw when the clack is gaing to play which sang, and allaw the user ta change
the tune that'll play. This dialag box is shawn in Figure 5-22.

The song "Burning down the house.mp3"
should wakf' you up on:
Mond;~y, Decembu 22, 2003 7:00:00 AM

Flgure 5-22. The script displays a
dialag box that allows the user
to change the song. The dialag
box will give up (close by itself)
after 15 seconds.

Lines 22 through 31 allow the user to change the song file.

The final part of the script starts on line 33 and ends on line 49.

lt is again an endless repeat loop that exits only when the date stored in the variable
wakeup_date is smaller than the current date.

if (current date) > wakeup_date then •••

179

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

180

The script

Following is the script in its entirety:

Script 5-14

1. property wakeup_tune_path : missing value
2. property requested_time : "7:00"
3. if wakeup_tune_path is missing value then
4. set wakeup_tune_path to choose file with prompt ~

"Pick a wakeup tune" of type {"MPG3"}
5. end if
6. set song_name to name of (info for wakeup_tune_path)
1. set tomorrow_date to (current date) + (1 * days)
8. repeat
9. set wake_dialog to display dialag ~

"Enter time you want to wake up:" default answer ~
requested_time buttans {"stop", "OK"} default button "OK"

10. if button returned of wake_dialog is "Stop" then return
11. set requested_time to text returned of wake_dialog
12. date requested_time
13. try
14. set wakeup_date to date requested_time of tomorrow_date
15. exit repeat
16. on error -no good date
17. try
18. display dialag "Enter time again"
19. on error
20. return
21. end try
22. end try
23. end repeat
24. repeat
25. display dialag "The song \"" & song_name & "\'"' & return & ~

"should wake you up on: " & return & wakeup_date buttans ~
{"Change Song", "•"} default button "•" giving up after 15
26. if button returned of result is "Change song" then
27. set wakeup_tune_path to choose file with prompt ~

"Pick a wakeup tune" of type {"MPG3"}
28. set song_name to name of (info for wakeup_tune_path)
29. else
30. exit repeat
31. end if
32. end repeat
33. repeat
34. if (current date) > wakeup_date then
35. tell application "QuickTime Player"
36. try
37. close every movie
38. end try

PICKING UP DATES

39. open wakeup_tune_path
40. tell movie 1

41. set sound volume to 300
42. play
43. end tell
44. end tell
45. exi t repeat
46. else
47. delay 10
48. end if
49. end repeat

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

The date value dass

The date value dass is a value dass intended to store, keep track of, and manipulate dates.

A value of the date dass has information about the year, month, day, day of week, hour,
minute, and second.

The date value is more of an object with properties rather than a simple value.

The way a given date will Iook when compiled is dependent upon the settings in the
International panel of System Preferences.

Specifying dates

The following statement:

date "2/3/03"

will compile like this:

date "Monday, February 3, 2003 12:00:00 AM"

AppleScript is pretty loose in the values it will accept as a valid date. All the following
strings compile properly when converted to dates:

date "03/03/03" --> date "Monday, March 3, 2003 12:00:00 AM"
date "o" --> date "Monday, May 31, 2004 12:00:00 AM"
date "5/1/2002" --> date "Wednesday, May 1, 2002 12:00:00 AM"
date "Feb 28 5:50 AM" --> date "Monday, February 28, 2005 12:00:00 AM"

181

111

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

182

You can also marry a date and a time using either the of or relative to operators.

Or

date "s:oo PM" of (current date) --> date "Monday, May 31, 2004 s:oo:oo
PM"

date "6:30 AM" relative to date "September 1, 2003"
--> date "Monday, September 1, 2003 6:30:00 AM"

current date

The current date command is a part of the Standard Additions. lt returns the current date
and time using the date value dass:

current date --> date "Monday, May 31, 2004 12:18:38 PM"

When mixing the current date command in a Ionger statement, AppleScript requires you
to place the command in parentheses.

set tomorrow date to (current date) + days

time to GMT

The time to GMT command returns an integer that stands for the number of seconds
between the time set on the computer running the script and Greenwich mean time.

time to GMT --> 14400
result I hours --> -4.0

date dass properties

The date dass contains the following properties: year, month, day, weekday, time, date
string, short date string, and time string.

Examples follow:

year of (current date) --> 2004
month of (current date) --> May

The following script returns the day of the month:

day of (current date) --> 31

The following script returns the day of the week as a constant value, not as a string:

weekday of (current date) --> Monday

PICKING UP DATES

The following script returns the number of seconds passed from midnight last night:

time of (current date) --> 55956

Date constants

The constants minutes, hours, days, and weeks help you manipulate dates. Each one has a
numerical value:

• minutes = 60, the number of seconds in a minute

• hours = 3600, the number of seconds in an hour

• days = 86400, the number of seconds in a day

• weeks = 604800, the number of seconds in a week

See earlier sections in this chapter for script samples using these constants.

Comparing dates

The same operators used to compare numbers can be used to compare dates: =, ;t, >, <,
~. ~. Operations using these operators return a Boolean result. When comparing dates,
later dates count as !arger. Following is an example:

set theDate to "1/1/2000"
(current date) > date theDate --> true

The = and ;t operators aren't really useful with dates, since only two dates that are identi
cal to the second will be considered equal.

Calculating time differences

Subtracting one date from another date produces a result that is the number of seconds
between the two dates.

set theDate to "1/1/2000"
set time_lapse to (current date) - date theDate --> 139323057
set days_passed to round (time_lapse I days) rounding down

The result of 139323057 is the number of seconds passed between 1/1/2000 and time of
writing. The last line returns the number of days instead of seconds.

Changingdates

To change a date into another date, you have to either add seconds to it or subtract sec
onds from it. Doing so is much easier when using the date constants minutes, hours, days,
and weeks.

183

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

184

The result of each of the following script statements is always a date dass.

The following statement returns the date three weeks from today:

(current date) + (weeks * 3)

The following script returns yesterday's date:

(current date) - days

Details previously . . .
The last part of this chapter is a summary of the entire chapter. For more details on any of
the items, refer to sections earlier in the chapter.

L employment form.pdf
2. malu ust.pdf
3. makr ~st.pdf
4. meetang summary.pdf
!i. UIW ma"u2l.pdf

L tteadquarters map.gll'
2. lntematlon<il logo.glr
3. loga.glf
4. smi.lllogo,lll(
I

lroths•

muerem.jldl

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

188

lists and records are the nonvalue-dass value classes. Although they're considered value
classes like strings, integers, etc., in truth they're simply a compilation of other values.

lmagine a Iist as a clothes hanging rack. The rack can be empty, but it can also have a few
items hung on it. The items can be of different types, and you can Iook them over and pick
the item you want to use. You can take items off the rack and put others on it.

The only problern with that rack is that the only way to define the item you want to work
with is by its position on the rack. Today I will wear the shirt on the third hanger, the pants
from hanger 12, and my socks must be on hangers 6 thru 7.

lt is the same with a list-you can have an empty Iist that can sit and wait for you to add
items to it; you can start with a predefined Iist, such as a Iist with the names of the 12
months; and you can also create lists out of application objects like the names of every file
in a specific folder, or ID of every text frame on a given page, etc. So a Iist is a flexible and
expandable storage solution. Each item in the Iist, as it's called, can hold a value of any
value dass.

ln other programming languages lists are referred to as arrays, and they can, for the most
part, include any number of elements, but only from a single value dass. For instance, an
array will have only text elements. A Iist in AppleScript can have text strings, numbers,
dates, and, yes, other lists as items.

As we've seen in our scripts in previous sections, a Iist is surrounded by curly brackets and the
items, if any, are separated by a comma. You can see a few examples of lists in Figure 6-1.

06-01 Usts

RKord Stop Run Complle

11, 2 , 3 , 4, SI ··A S1 o tegers
("make', "Iove', ·nor, "war'"} -A llst or strlngs
IT. 8. 1. "b", 4, "u1 .. 14. mixed llst
I"B", ti'Uf, 2, ·me1 -A mlxed IIst
(6 • 3, 18 • 18, 9 • 4 , 6" 2 , "A" & "•1-A 1151 ofexpresslon~

Resuk E\itnt Log

Flgure 6-1. Different lists assigned to variables. The last Iist has five items, and each
one is an expression.

LISTS AND RECORDS

So what is a record, then? Arecord is similar to a Iist, but every item is labeled. This makes
it easier to find items because their order isn't important, but it also Iimits the things you
can do with it.

lf we Iook back to our rack example, in the Iist scenario, I could have grabbed the contents
of hanger 3 thinking it was my hat, but if in an earlier script statement I hung my boxer
shorts there, it could get pretty interesting. lf my hanger rack was a record, I could have
just asked the script to hand me the hat off my clothes hanger.

A record in AppleScript is also wrapped in curly brackets, and each item is still separated
by a comma, but each item now has two parts: the Iabel and the value itself.

One common place you see a record is in the result returned from the displaydialag com
mand. Figure 6-2 shows a display dialag command along with the resulting record.

R'"cord Sto p

displav dlalog ..
"Ptease tllttr vour name· d efault answer ..
• buttons {"OK; givi119 up afte~ 30

ltext retumed:"Hanaan", button retumed:"OK", gave up:falsel

Flgure 6-2. A statement with the disp/ay dialog command, along with the resulting
record below

This record result allows me to get different information: for instance, what text did the
user type, or whether the dialag gave up or not. As will be explained in detail in Chapter
12, the give up parameter closes down the dialag box if the user hasn't responded in the
specified number of seconds.

More on lists
The best way to start with a Iist is to create an empty one. The syntax we use to create a
new Iist and assign it to a variable also happens to be the syntax we use to erase all the
items from a Iist:

set my_list to {}

The double curly brackets with nothing in between represent the empty Iist.

189

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

190

Adding items to a List
There are two ways to add items to a Iist, each with advantages and limitations.

The best way to append an item to the end of a Iist is to use the following syntax:

set end of the list to the item - -
This is the fastest way and the most efficient memory-wise, and since appending an item
to the end of a Iist is one of the more common list-related tasks, you will find yourself
using it quite a bit.

The other method of adding to a Iist is to reassign the Iist to a variable, along with the new
item.

The operator we use to do that is the concatenation operator: &.

Whenever you use the concatenation operator on a Iist, you get a single Iist as a result.
Here are a few examples of Iist operations:

Scrlpt 6-1

set new_list to {1, 2, 3} & {4 ,5 ,6 }--> {1, 2, 3, 4 ,5 ,6}
.set list_1 to 1 & 2 & 3 & 4 & 5 & 6--> {1, 2, 3, 4 ,5 ,6}
set list_2 to "a" & "b" & "c" & "d" --> "abcd"

Oops ... what happened here? list_1 ended up as a Iist, but list_2 ended up as a string.

Remember that the concatenation operator works on strings as weil as on lists, and if you're
trying to concatenate a string to another string or to a number, the result will always be a
string, unless, of course, you add the coercion operator as. So, let's try that again:

set list 2 to "a" & "b" & "c" & "d" as list--> {"a", "b", "c", "d"}

That's better.

Getting items from a List
Once we have either built a Iist or gotten a Iist returned as a result, we need to be able to
extract items out of it.

ln the following example, I created a Iist with six items, assigned it to the variable my _Iist,
and then extracted items out of it in various ways:

Script 6-2

set my_list to {1, 2, 3, 4 ,5 ,6}
item 3 of my_list --> 3
first item of my_list = item 1 of my_list --> 1
last item of my_list = item -1 of my_list --> 6
middle item of my_list --> 3

LISTS AND RECORDS

You can also use the term "some" to get a random item from a Iist.

set winner_name to some item of lottery_entry_list

You can also get a range of Iist items from the same Iist using the thru operator:

items 2 thru 5 of {1, 2, 3, 4 ,5 ,6}
--result: {2, 3, 4 ,5}
items -2 thru -1 of { .. a .. , .. b .. , "c", "d", "e .. }
--result: {"d", "e"}

This range technique is also the only way to delete an item from a Iist. Here is how you do it

To delete an item from the middle of a Iist, say the third item from a five-item Iist, you use
this method:

set the_list to {"a", "b", "c", "d", "e"}
set remove_item to 3
set new_list to (items 1 thru (remove_item - 1) of the_list) ~
& (items (remove_item + 1) thru -1 of the_list)

Here it is in a more Iitera! form:

set new_list to (items 1 thru 2 of the_list) ~
& (items 4 thru 5 of the_list)

lt is, however, safe to assume that you can't predict whether the item we'll want to remove
is in the middle and not the first or last item. So for that, we have to create a conditional
statement that checks where the item is in the Iist. Check out Figure 6-3 for how that can
be done.

06.03 Remove item from Iist

Rtcord Stop Run Compllt

set rht..../Ur to ra·, "b", -~. "d", •• ,
set rtnKJwJt l!lfl to 3

lt rtmOw...lrun • 1 then
set ncw_llst to rest or thc_llsr

else lf rmtOIII(../lem • (length of t ht..llsl) then
··last item
stl M.w_lisr to Utems 1 thru ·2 of rht....llsr}

else - ltem ln lhe mlddle
Set ncw_llsr to (ltems 1 thru (ttmOvt..itun • 1J of tht....llst} ~

& (~-ems {TtmOO'ILI!em + I) th111 · I of tht..Ust)
end I~

r~· . ."., "d", "e1

Flgure 6-3. Removing
an item from a Iist

191

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

192

And as usual, I can't leave weil enough alone, and l'm compelled to turn this script into a use
fullittle handler that you can use in your own scripts. See Figure 6-4 for the handler version.

R«ord Stop Run Compllc

Sl!t l""...Jin t:o fa', "b', 'C:, 'd', 'el
set rtmo"oY....I!t.m to 3

if '""'o~item • 1 then
set ncw_lllr to rest of rht_l1.st

t.l:it.1f rtmoWLirtl!l• Otngth of l/x..lisU thtn
~last ltem
set "".,._lat to (tt.,ms 1 thN ·2 of tM..../ist)

else - ltem 1n 1M mlddk!
set llllW_Usr to (nems 1 thru (temo"oY....trem • 1) of the../lsll ~

&d ttems cre.moi!IL/tem + l) thru •1 of rM..../Jsf)
end i~

D

Flgure 6-4. A handler
for removing an item
from a Iist

Now there's another way to get the same result that appears much cleaner from a
scriptwriting standpoint. lf you Iook at the solution presented in Figure 6-5, you can see
that the same result can be achieved with far fewer lines of code.

This is misleading, though, since if the handler will have to remove an item from a long Iist,
with, say, a few dozens items, there will be a significant speed difference. Whenever you can
avoid Iooping, you should. Looping means just that, doing the same thing over and over.

on rwool'()tmL(I"OOLUSti~llsr. Rk!..irtnLI~
Set II!W_ ~S: 10 ,")
11 ptill Wlt• lfrotn I to COJrl r/rc IIH

lf I• cht lrcM :MLt thtn sH ... d of _", Jsrto nwm I <II rH 1111)
IOd "'PUl
N1UI'IIIICW_IIII

•n<l , • ..._~.,.,_".",_u~

&«oll ..

Flgure 6-5. A solution
for removing an item
from the Iist appears
neater but will take
far Ionger to execute.

LISTS AND RECORDS

List by dass
As we saw earlier, a Iist can contain items from any value dass. What AppleScript allows
you to do is create another Iist that contains alt the Iist items of a specific dass. This allows
you to extract numbers, text, etc. from a Iist that may contain multiple value dasses.

All you have to do is ask for that dass of a Iist:

text of {"I" ,"Love" ,"You" ,2} --> {"I" ,"Love" ,"You"}

lf your Iist contains expressions, such as mathematical or string operations, the resulting
Iist will have the result ofthat expression, not the expression itself:

integers of {1000 - 999, 1 + 1, -97 + 100} --> {1, 2, 3}

This method appears to be a good way to figure out valid numbers in a phone number, for
instance.

Scrlpt 6-3

set the_phone_number to "(Soo) 555-1212 "
set the_phone_number_characters to characters of the_phone_number
-- Result: {··c··, ''8'', "o", ··o··, •')", ·· ", ''s", ··s", ''s", ''-'', ''1", ~

112", 111", 112"}
integers of the_phone_number_characters
-- Result: {}

This, however, will not work as you expect, since integers that are endosed in quotes are
still strings ...

List properties
Being a bit more complex than other value dasses, the Iist value dass has a few neat prop
erties that allow you to get different variations of the Iist. The properties are class, length,
rest, and reverse.

The class property is always the same:

Class of {1, 2, 3}
--result is list

Here are the other properties:

193

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

194

Length
The length of the Iist is the number of items it has. Figure 6-6 shows that the length prop
erty of the given Iist is 4.

lengt/1 of {1 , LI. , ·a·, true~

..

O.ucription

Flgure 6-6. Length of Iist

Asking for the length property returns an identical result as using the count command on
the Iist.

length of {1 ,2 ,3} = count items of {1 ,2 ,3}

Rest
The rest of a Iist is all the items of the Iist without the first item.

rest of {"don't", "talk", "while", "you", "eat"}
--result: {"talk", "while", "you", "eat"}

The string "don't", which was the first item in the Iist, has been removed.

Reverse
just like it sounds, the reverse property of a Iist presents the same items in reverse order.

reverse of {"start", "middle", "nearly there", "finish"}
--result: {" finish", "nearly there", "middle", "start"}

Treating one list item at a time

Often the purpose of collecting items into a single Iist is so you can later go through that
Iist and do something with each item. Take cooking, for instance: you start by standing in
front of the potato bin, going through each potato, putting only the nice ones in your bag.
You created a Iist of potatoes called nice_potato_list. Then you go home and peel each
potato. You loop through the Iist, remove defects, if any, and peel each one.

LISTS AND RECORDS

See, you create a Iist and then loop through it to treat each item. This happens quite a bit
in scripting, so our example later on will deal with that scenario.

There are two ways to get at every item of a Iist in succession, and both involve creating a
repeat loop.

The idea is to repeat an action, and have the same variable take on the value of the next
item in the Iist. The example that follows turns the second part of our potato example into
a script:

set potato_list to {"small potato", "nice potato", "banged potato"}
repeat with the_potato in potato_list

tell application "kitchen"
peel the_potato

end tell
end repeat

ln the preceding example we start with a Iist of potatoes. As we loop through the Iist, with
each repetition the variable the_potato takes on the value of the next item in the Iist, until
the Iist is over.

ln the next example, the repeat variable is a number, not a Iist item. For that reason, we
must add another line that assigns the next Iist item to our variable:

set potato_list to {"small potato", "nice potato", "banged potato"}
repeat with i from 1 to (length of potato_list)

set the_potato to item i of potato_list
tell application "kitchen"

peel the_potato
end tell

end repeat

ln this example, the value of the repeatvariable i is 1, then 2, then 3; therefore the variable
the_potato is set first to item 1 of potato_list, then item 2, and then item 3.

There are advantages of using this method versus repeating with a variable in a Iist, which
we'll discuss in the "List of lists" section later in this chapter.

List operations

We already looked at the concatenation operator and saw how we can use it to put Iist
items together into a single Iist.

The other Iist operators are, for the most part, comparison or containment operators, and
they all return a Boolean value.

195

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

196

Comparing lists
As with any other value dass, you can compare two lists to see if they're equal or not. You
can't, however, check if a Iist is greater or smaller than another.

{1,2,3} = {1,2,3}
--result is true, (I know, this is a shock).

Comparing portions of lists
List comparison doesn't end in comparing whole lists. You can check if parts of a Iist match
with parts of another Iist. The operators you use to do that are starts with, ends with, con
tains, and is contained by.

Let's examine these operators:

starts with and ends with
The starts with operator can check if a Iist starts with either another Iist or any other dass.
The following statements will alt return true:

{1, 2, 3, 4} starts with 1
{1, 2, 3, 4} starts with {1}
{1, 2, 3, 4} starts with {1, 2}
{1, 2, 3, 4} starts with {1, 2, 3, 4}

The next Statement, however, returns false:

{"abc", "def", "ghi"} starts with .. a"

The last statement was false because in order to see whether a Iist starts with a specific
string or ends with a specific string, you have to use the entire string in the comparison
operation.

The following statement will return true:

item 1 of {"abc", "def", "ghi"} starts with "a"

The difference is that here we're using the starts with operator on item 1 of the Iist, which
happens to be a string. What we're doing here in fact is this:

"abc" starts with "a"

The ends with operator works the same, but this time compares the last item of a Iist, or if
the operand is a Iist, the ends with compares the last items of the given Iist.

contains
Use the contains operator to see if a Iist contains either a single value or another Iist. lf a
Iist either starts with or ends with a value, then it definitely contains it.

Here's an example using the contains statement. This script checks if the startup disk con
tains the documents folder. Of course, there are other ways to check that, but we're in Iist
mode right now.

LISTS AND RECORDS

The script will first create a Iist using the Iist fotder command, and then checks to see if the
default folders are part of that Iist.

set folder_list to list folder (path to startup disk) ~
without invisibles

if folder_list contains "Applications" and ~
folder list contains "Desktop" and ~
folder_list contains "Library" and ~
folder_list contains "System" and ~
folder_list contains "Users" then
display dialog "Startup disk has all key folders"

else
display dialog "Startup disk is missing some key folders"

end if

After line 1 executes, the result is a Iist with the names of every file and fotder of the
startup disk as its items.

Line 2 checks to see if the Iist contains a series of strings. Since we separated each contains
statement with the Boolean operator and, the comparisons operate independently, and
only if all items that are checked are contained in the Iist does the startup disk get the OK.

ls contalned by
The is contained by operator checks whether the left operand, which can be a Iist or a sin
gle value, is contained by the Iist in the right operand. Here's an example:

{1, 2} is contained by {1, 2, 3} --> true
{"a", "c"} is contained by {"a", "b", "c"} --> false
{1, 2} is contained by {1, 2, 3} --> true
"treasure" is in (words of "treasure ehest") --> true

As you can see, the term is in can be used instead of is contained by.

Commands that produce a list
Asking AppleScript for multiple elements of an object or a value returns a Iist. A simple
example of that is

characters of "abc"
--result: {"a", "b", "c"}

The same statement can also use the word "every":

every character of "abc"

The same situation of getting a Iist of elements as a result is heavily used when scripting
applications with a strong object model.

197

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

198

When talking to applications, not only can you ask for a Iist of objects, which are usually
elements of a higher-dass object, but you can also ask for one property of alt these ele
ments, and you can also filter the elements you get with the whose clause.

While we will discuss this in much more detail in later chapters that deal with scripting
applications, here are a few examples.

tell application "Finder"
set big_file_name_list to name of every file of folder x ~
whose size > 10000.

end tell

Result: a Iist where each item is a string that contains a file name. All file names in the Iist
belong to files larger than 1OMB.

Applications can also return lists of references to objects, not only values such as numbers
and text. Figure 6-7 shows how lnDesign returns a Iist of references to text frames. Notice
how each reference is using the ID of the text frame, and every parent object up the chain
of command.

06-07

: ~
Rt<ord Stap Run Compllt

t~ll applicatlon "lnDesign CS"
evcry text fr.lme or aaive documem

end tcll

(U!xt tramt ld 657 of page ld 420 of spr~ad ld 403 of documem
"GLZ004061 o.t:.Jndd" of applkatlon 1nDes!vn CS", textframe ld 63-4 of
p.1~ ld 4 20 of spread ld 403 of documem "GLZ004061 O.E.Indd' of
applkatlon 1nOeston CS". II! XI frame ld 611 of page Iet 420 of spread Iet
403 of documem "GL2004061 O.E.indd" of applkation nDesi9n CS", text
frame Iet 588 of page ld 420 of sprud ld 403 of document
"GLZ004061 O.t:.lndd" ot applkatlon "'nDes !in es", text frillmt ld 5 65 of
page ld 4 20 of spread ld 403 « document "GL2004061 O.E.hldd' ot
applkatlon 1nOeston CS", text frame ld 2 34 of page ld 1 ~0 of master
sprud id 13 5 of document "(;L2004061 O.E. indd" of applioation
1nDeslgn CS", tut frame ld 2 01 ot Pl!lf ld 146 of maste r spread ld 141
of doc:umen1 "CL2004061 O.E.Indd" of appllcatlon ,nDeslgn CS"'

Figure 6-7. in Design returned a massive Iist of references to text frames.
Despite its size, the Iist contains only six items.

Another common command that returns a Iist is the Iist fotder command. This command is
a part of the standard additions, and its purpose is to return a Iist of file names enclosed
by a folder.

LISTS AND RECORDS

As seen in Figure 6-8, the Iist fotder command returns a Iist of file names only, not the
whole path. To do something with the files in following statements, you have to concate
nate the folder path to each of the file names in the Iist.

06-08

Iist folder (path 10 current U!ler folder~ wlthout Invisibles

("A~we atcounts', "Actlve Projecu.·, "CFS", 'Desktop', "Documents',
l)oyte Houses·. "Fund Pa98 Mal<er". ln<:omplete". "JapaMse varlables.txt".
1Jtnry". "l4ollles·. ·~o~us~c·. "my browser". 'Nai\OSaur games·, "'ther
accounu·. "PPF', 'Personal', "Pictures·. "pfoptest·. "Publlc". "Shared".
"SStes", ' spllt", "volume'l

Flgure 6-8. The Iist
folder command
with its result

The Iist fotder command doesn't distinguish between different types of files, or even
between folders, etc. You can, however, specify whether you want the Iist to include invis
ible files or not.

Figure 6-9 shows a typical set of Statements that gets a Iist of file names using the Iist fotder
command, and then repeats in the Iist and treats each file.

s~t fo!du_"atltt4l 'Madntostl HD:fllu for S(rlpt:"
s~t (oldu_cont,nt_llst to liSt folde r alias (o/Mr _parh .,

wlthout lnvlslb 1e s
Npeat Wlth fl/t..Mitlf ln fokiU. lDiftmt.Ust

Iet flle..path to (oJdu. ptJth & (llf..IIDmc
··do somuhlng wlth alias flle.path

end repea~

Flgure 6-9. The Iist
folder command is
used in combination
with a repeat loop.

199

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

200

List of lists

Flgure 6-10. The
sample fotder

let's get fancy now. lf Iist items can belang to any value dass, they can also be lists them
selves. Not only that, but creating a Iist of lists is a very useful form of scripting.

We discussed the usefulness of a Iist in solving the need for an expandable storage space:
a Iist of files in a folder, for instance. We don't always know how many files we're going to
have when the script runs, so instead of putting every file name in its own variable, which
does rarely happen, we create a single Iist and make each file name an item in that Iist.

Now, what if we're looking to tackle a more complex problem? What if we need to create
a report that will Iist all files in a particular fotder by file type, and have a header above
each file Iist that will consist of the file type? Figures 6-10 and 6-11 show the sample fotder
and the report the script should generate.

8

Hoti ..,.jq\.tlltl(ff \. rf'<II J.'ojl ll'

.. ~.,

...
lnll tr USI.pdf

lft.ill ~ brodL tt

Flgure 6-11. The
report the script
will generate

••uo •••. ~. 1 ~uy.o...,w

Li~uUII

..
nolltiMK.odf

\..r~.nemiJ.~

L lrochure .lndd
Z. LayOUt.lndd
3. ~all er.lndd

Fll t type : osas

L Crc:11e brochure.scpt
L Lrt~le ITilller.sco1

Fll t 1ype: POF

L tmpl:l'f!Tient form.pdf
Z. rnalu ust.pdf
3. rnaler w..st.pdf
4. rnet tlng summary.pdf
5. Ultr monuol.pdf

Fll t type: Glff

L Hl!adquaners map.gl
2. International logo.glf
3. logo.glf
4. snalllogo,gl{
I

unll1«1 taklu

~u, •. ,w ~vvo .• ·

-=....
II .. • er~(t'Minl furm.,Jf

~ ~

n'ttaog..........,ocff l~er ..an...a .p_"

LISTS AND RECORDS

Here's the final script:

Script 6-4

1. set the_folder to (choose folder) as string
2. set master_file_list to list folder alias the_folder ~

without invisibles
3. set types_list to {}
4. set types_of_files_in_master_list to {}
5. repeat with i from 1 to count master_file_list
6. set file name to item i of master file list
7.
8.
9.
10.
11.
12.

set file=info to get info for file (the_folder & file_name)
set file_type to file type of file_info
copy file_type to end of types_of_files_in_master_list
if file_type is not in types_list then

copy file_type to end of types_list
end if

13. end repeat
14. set list_of_file_lists to {}
15. repeat with i from 1 to count types_list
16. set temporary_list to {}
17. repeat with j from 1 to count master_file_list
18. set the_file_name to item j of master_file_list
19.
20.
21.
22.

set the_file_type to item j of types_of_files_in_master_list
set comparison_type to item i of types_list
if comparison_type is equal to the_file_type then

copy the_file_name to end of temporary_list
23. end if
24. end repeat
25. copy temporary_list to end of list_of_file_lists
26. end repeat
27. --format report
28. set report_text to ""
29. repeat with i from 1 to count types_list
30. set the_type to item i of types_list
31. set list_of_files_of_that_type to item i of list_of_file_lists
32. set report_text to report_text & "File type: " & the_type & ~

33.
34.
35.

return & "***" & return
repeat with j from 1 to count list_of_files_of_that_type

set the_file_name to item j of list_of_files_of_that_type
set report_text to report_text & j & ". " & ~
the_file_name & return

36. end repeat
37. set report_text to report_text & return & return
38. end repeat
39. --Show report
40. tell application "TextEdit"
41. make new document at beginning with properties ~

{text:report_text, name:"File Report"}
42. end tell

201

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

202

The main challenge in understanding the script, and in writing it too, is the different Iist
variables.

let's go over the different lists this script creates and deals with:

The first Iist is masterJile_list. This is simply a Iist where each item is a name of a file in
the chosen folder. The number of items then will be the same as the number of files in the
folder.

The Iist types_ofJiles_in_master_list will be a parallel Iist to masterJile_list. lt'll have the
same number of items, but in this Iist, each item will have a file type. The two lists corre
spond in a way that if you take the same item number, one Iist will contain a file's name,
and the other Iist will contain this file's type. Synchronized lists is a simple way to build
database functionality for runtime purposes. Figure 6-12 shows the two lists side by side.
The windows you're looking at are taken from late Night Software's Script Debugger,
which has some great views of lists, records, and other compound values.

_t I'Tet ty I'Ttlt

Value Value
1tom1 "BrOCI!V"o .lndd" l"lld3"
ltom2 ~ ·erutt broot.ro.<opt" r-·
ltOI'I\J ~ ·eroato ~nalltr "''t" ,._.
iltrn 4 1: "tmoplo)'mm\ form.pdf" f"'POF •
~5 1 "Hoadquarlors mop.glf" I"'Fr'
ltOI'I\6 r! "nt.maiionol lo90.9if" I"'Fr·
ltom 7 ~ "l•yout.lndd" l.lld3.
ltom8 ~ "logo.glf" I

j"GFr'
ltOI'I\9 ~ "INIItr .-1.pdf" j"'PDF •
rttm 10 1: "INiltr Ym.pdf" f"'POF •
lt<mll "Hall•r .lndd" !"lld3"
ltom 12 ~ "meeilnQ JUf'niNI'Y .pdf" l'l'Dr •
ltom13 ~ .,"...,, \o90.9if" j"llFf"
ltom 14 ~ "lkor l.pdf" I

I
j'l'DF •

i I
! ~

Flgure 6-12. The lists master_file_list and types_of_files_in_master_list are compared.

So what is types_list responsible for? The types_list Iist variable will have a single item for
each unique file type. Since the fotder I chose contains files of four different types, the
types_list Iist will contain four items by the end.

These three Iist variables collect their values in the first repeat loop from line 5 to line 13.

ln line 14 we introduce a new Iist variable: list_ofJile_lists. This Iist will have as many items
as the types_list. Each of the items will be a Iist by itself that will include the names of files
whose file type is the corresponding item in the types _Iist variable. Figure 6-13 illustrates
how the script is designed with corresponding lists.

LISTS AND RECORDS

type_list items
item1: "InDd"
item2:"osas"
item3 : "PDF"
item4 : "GIFf"

1---- The file type of every file in item 1 of
1i st_of_fi1e_1ists is found in item 1 of type_list

1ist_of_fi1e_1ists items
item1 : {"Brochure", "Layout", "Mailer"}

.__~ i tem2 : { "create brochure", "create mai 1er"}
item3:{"emp1oyment form . pdf" , "mailer east . pdf" , "meeting summary.pdf", "user manual.pdf"}
item4:{ "Headquarters map .gif", "international 1ogo .gif", "sma11 1ogo . gif"}

Flpre 6--13. The synchronization between the type_list and list_of_jile_lists variables

A key to understanding the structure shown previously is that AppleScript isn't aware of
any link between the two lists, nor is it responsible to maintain their synchronicity. This job
is up to you, and it takes planning and confidence. Confidence, because you unleash your
script to gather information and coltect two separate lists, and at the end you expect that
these two lists will match.

From line 15 to line 26 we actualty have a double repeat loop. The first loop loops through
the type lists. The second loop loops through the entire master_file_list. What happens in
the loop is that the type from the type Iist, which is assigned in line 20 to the variable
comparison_type, is compared with the type of the file, which is assigned in line 19 to the
variable the_file_type.

The names of alt the files that match the current comparison file type are coltected in line
22 to the Iist variable temporary_list. Notice the conditional statement between lines
21 and 23.

Line 25 is key. ln that line, the temporary Iist is tacked onto the end of the list_of_file_lists
variable. Since this happens once in the repeat loop starting on line 15, and this loop
repeats the number of timesthat is equal to the number of items in types_list, then the
result is that the variable list_of_file_lists will have, by the end, as many items as the
types_list variable; each item is a Iist by itself.

ln the next portion of the script, a string variable calted report_text is created (line 28).
This variable slowly gathers text that accounts for the report. After alt, the report isn't a
Iist, rather a string of text.

Foltowing the introduction of the report_text variable, we start a repeat loop that is almost
identical to the repeat loops in the previous section. Here, however, instead of creating the
list_of_file_lists variable, we're using the values in it to generate the report.

Now, whenever you Iook at your script and see that two parts of it are almost identical,
you start wondering whether you could have done OK with only one of them, slightly
more bloated. Meaning if in one part of the script we coltect the data we need to use in
the report, and in the other part of the script we use the data we collected, couldn't we
have just used the data the first time around? Couldn't we just generate the report as
we're collecting the information? Wouldn't it be faster and more efficient?

203

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

204

Yes and yes, but! Yes, we probably could have just generated the report without creating
the elaborate lists. Yes, doing so would have created a faster script. Looking for the but?
Weil here we go: first, it's not always better to create faster, smaller, and more efficient
scripts. When Apple tried to create a faster, smaller, and more efficient Mac, it called it the
Cube, and a little bit later it called it off. Part of what makes Power Macs great, in centrast
to the Cube, is the !arge door on the side that makes the entire inside accessible. This
helps on a few Ievels: it helps you add RAM, replace the hard drive, or just admire alt that
fun-looking stuft. lt helps Apple's (number one in the industry) technical support trou
bleshoot and fix your Mac, and it helps Apple's engineers create the Mac in the first place.

The same lessons are true for the scripts you write. Sometimes you have to spread it out a
little to make it better. The construction of our script clearly distinguishes between data
collection and structure, and the final output of that data. This is important, since now
that you have two cool parts to your script, you can actually turn them into handlers, and
call them something like data_collection and file_report. Now, they become their own
independent objects that can be expanded upon and used in other scripts as weiL

See, the construction of that script wasn't an arbitrary attempt to make the script Ionger
and therefore more legible, rather an attempt to separate the input branch (data collec
tion) from the output branch (report making).

Due to the database field-like nature of a Iist, it is a natural choice for collecting and
temporarily storing data.

Records
While lists are wild things with items only you and god know that they contain, records are
also a collection of items, but here, each item is meticulously labeled.

Figure 6-14 illustrates the differences between a Iist and a record.

0

•• Thls 1s a nsr
sei rhe...dudelo t"llob·, 24, true, 55000)

·· Thls is a rHord
set rhe..dude to (name:"Bob". age:24. mofffed:true . /nccme:SSOOOJ
I

, Oescrlptien Eventlog ,

Flgure 6-14. A Iist and a record with the same vaiues in each item

LISTS AND RECORDS

Like a Iist, a record has items that can be counted using either the record's length property
or the count command:

length of {name: "Bob", age: 24, married: true, income: 55000}
count {name: "Bob", age: 24, married: true, income: 55000}

Both of these statements return 4.

Getting record items

Let's go back to the_dude with the following assignment statement:

set the_dude to {name: "Bob", age: 24, married: true, income: 55000}

lf we want to use in our script some of the information from the record assigned to the
the_dude variable, we have to know the record Iabels. Since there's no real way to get the
Iabels during runtime, scripting records can become a fairly planned-out static sort of
thing.

Figure 6-15 shows how to get a value from a record.

06- lS

Record St o lluct Complle

oge of (name:"8ob·. oge:Z4. morrled:true, lncome:S 5000)
I

Figure 6-15. Getting a value from a record using that item's Iabel

Records are useful when you have a static set of information that you use in the script, and
you would rather clump that information into a single variable instead of dividing it into
multiple singte-vatue variables.

205

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

206

Records shortfalls

While we can count the items in a record, we can't ask to see an item by index.

Figure 6-16 shows the error we get when we try to get item 2 of a record.

06-16

AppleScrlpt Errnr

Can'l gctllcm l of (mune:"llob". ;agc:2.o\. mo.rri!Od:
true. "come 550001.

Flgure 6-16. Trying to getan item of a record based on its index
(position) generates an error.

Another problern with implementing records in a script is that you can't add items to them
during runtime.

As you'll see later, you can concatenate records to form !arger records.

When working with records, it's important to remember that records aren't simply an
improved version of the Iist value dass, but rather a separate dass with its own uses and
limitations.

Where records do make sense

One function that records fill really weltlies in application scriptability.

Whenever you ask for properties of any object, you get a record containing alt properties.

Figure 6-17 shows the vast range of information we get when we ask for the properties of
a text frame from an lnDesign document. Getting these items as a Iist would surely con
fuse even the best scripter.

Getting the properties of an object as a record is also useful while creating the script or for
familiarizing yourself with the application's object model.

Another place where you will find a record to be a useful tool is when you write scripts
that someone else has to not only run, but also open and understand.

LISTS AND RECORDS

t~ll ~ ppllatlon 'lnDe slgn CS"
propenles of 1 xt fram 1 flf aaiv dO<umen~

·end tel I

{absolute rotat1011 an le:O.O, absolute lnorizontal 5ca le:JOO.O, absolute shear ilngle:O. O,
absolute rtJcal cale: 1 oo.o, ld: li:S 7, rllows:fals , CM!rrldllen~fa lse, assoclated XML
elementnodung. alt graph~es:{l, allpa 1tem :{}. cootent type:text tyl)e, end cap:butt
end cap, end j!Nn:mtter end joln, II tln :50.0, 1U color:cololld 8 of document
"CL2 004061 O.E. Ind cf' of appllcatlon 1nDeslgn es·. Sta rttext frame :te:)(t frame ld 6 s 7
ot pa~ ld 420 o spread ld 403 of document "GL.2 0040610.E.Indd ofappllcallon

DutQn es-. gap !lnt:-1.0. 9eometrlc bounds:{176.Sii I 999999997, 7JI.S,
247.55 3999999997. 366.01. text {rame Index.: I . rotanon angle :o.o. strolce dnt:· l .o.
left 1nt end:none. Stloke cotor:swateh ld 17 o1 documer.t -<:;L200406 1 O.E.Indd- of
applia on nDf!s n CS", nroke welght:O.O. ud te~ frc. m4! :text frameld 657 of pa~
ld 420 of spread ld <403 o document ·c:L.2004061 0. E.lndd~ of appllcallon 1n0f!slgn
cr, mltl!r llml :4 .0 . nonprlndng fa)S@, rM!xt t!XI fr.~~me:noth lng, 011e rpr1n1 fll:fa l e,
overrldden aster page ttm:no lng, local dlsplay settlng:default, shear a.ngle:o.o, text
frame preferences:rexr frame preferences or text frame ld li5 7 of page id 42:0 of
~ pr~ad ld 403 of lloc:um~nr "CL200C.061 O.E.Indd-uf lll'plic.atlon -lnDI!!~Igrl es-, parenr.
page id 420 of spread id 403 of documenl '(;L2004061 D.E.indd" of app lication

nDeslgn CS", corner effect:none, COIIteniS:"ft.Y All', corner radiu~ : 12.0 , gradlent fll
angle :O.O , gradif'nt li!llength:O.O, grad lent stnJke angle: O.O, grad le rn stroke le ngth:O_O,
gradientstra ke litart:(5.0, 5.0J, gralll nt I st.trt:(5.0, S.Ot, horlzontalscale: JOO.O,
Index:: 1. itco m la~r.laver ld 14 7 of docurnent "GL2()0o!I0610.E.Indd. of al)pllcatlon

nDIHign CS", lockl!d:faße, objeu rl'fl're nu~o :rext fram11 ld 657 of pag11 d 420 or
spread id 403 of document 'GL200~061 O.E.indd" of applic.ation 'lnDesign CS",
Iab ei: ' FLIEl 3 9 1', previous !eKI fr.~me:noll11ng , \lerllGI I ~ cale: l 00.0, rlght l1ne end: none,
strok ahgnment:aonter alignment, parent 5tory: lext flcJw id 640 of docllment
"GL20040610.E.Indd" ofapplcatt.onlnDeslgnCS", §lJ'oke t:ype:moke S1yle ld 23081 of
document "(JLZ00-4061 O.E.indd' of application "I l>'e51gn CS~. text wrap prdHe nc~s :
text wrap preference~ of textframeld 657 afpage ld 42() ofspread ld 40J af
document 'GL200~061 O.E. indd' of applic.alion 'ln(}e~ign CS", v1sibl bounds:
{1 T6-S61 999999997, 738 .S, 247.553999999991, :868.0}, 15olate b lendlng:fal!ie,
knocko~n group;hlse , blend mode :oormal, op aclty. l OQ.Q, ~hadow b le:nd mode:
multlply, shadow color: color ld a o1 documen "GL.Z0004061 O.Ltndd" of appllcallon

Design es·. shallow mode:none, shadow opaclty:75 .o, shadow blur radlus:S.O,
s~dow x offset:7.0, shad v oft er:T.O. feather (()rrll!r tYPe:d lffus Iom. feathec modl' :
none. fea~r width:9.01

Flgure 6-17. Properties of an lnDesign text frame

Records make scripts much more legible, and using them will make the job of the poor
scripter who'll have to take over your job a wee bit easier (oh, what the heck, Iet him fry).

207

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

208

Commands that return records

Being a self-describing set of information, records lend themselves nicely to be used as the
result of different commands.

The command info for accepts a file reference as parameter, and returns all of that file's
attributes. Figure 6-18 shows the attributes of the file Picture 1, which is created by taking
a screen shot.

06-18

Complle

Info for allas ((path to d~sktop as strlng) & 'plc:ture l .pdr')
I

(name:"Picrure l.pdf". creallon dare:date "Sunday. July4 , 2004 9:02 :
34 AM•. modiflutlon date:due 'Sunday, july 4, 2004 9:02 :35 AM',
lcon posirlon.(O. 0). slze:2,44 .0, folder:false, allas:false, name
e ens~en:'pdf', e)(l!nslon hldden:true, llisible:ti'Uf!, package older:
talse. file IVPt:"PDF •• file crutor:-mr, dl5played name:"''lcture 1·.
default applluoon:allas 'Madntosh HD~pllcations:Prevlew.app :·.
klnd:"PPF Document", lodl;e,d:f<ilse, busv starus:la15e, short verston:- .
long verslon:i

Flgure 6-18. The result of
the info for command

Another old favorite is the display dialog command. What's neat about this particular
command is that depending on the parameters you give it, the record you get as a result
may have different items in it.

Figures 6-19 and 6-20 show two different uses of the display dialog command and their
respective results in the record value dass.

Compile

dl5play dialag 'What ls your namer defautt answer "1

{tel<t ruumed:"Hanaan·. button returned:"'K1

0

Flgure 6-19. The display dialog
command with the default
answer parameter used

LISTS AND RECORDS

dlsplay dlalog 'CI[(k a bunon, or don.'t .. • g ng up after 1 01

l1ex1 re1Urntd:lianaan·, bunon rerurned :'"OK'l

De.~crlpt•on

Flgure 6-20. The display dialag command with the giving up
parameter used

Notice how the display dialag command returned a different result in Figures 6-19 and
6-20. lt is up to you to know what result to expect and how to deal with it when it comes.

Comparing records
Records can only be compared to other records. You can see if two records are equal or
not and see if a record contains or is contained by another record. Though the AppleScript
language guide claims that you can use the starts with and ends with comparison opera
tors on a record, I found no evidence of that. lt makes sense that these operators aren't
used since the order of a record plays no rote in comparisons.

For instance, the following statement will return true as a result regardless of the fact that
the items are ordered differently:

{model: "Focus", year: "2000"} = {year: "2000", model: "Focus"}

The following two statements are also true:

{model: "Focus"} is contained by {year: "2000", model: "Focus"}
{year: "2000", model: "Focus"} contains {model: "Focus"}

Concatenating records
You concatenate records the same way you concatenate lists: by using the concatenation
operator, &. Following is a simple record concatenation operation:

{model: "Focus", year: "2000"} & {size: 2}
--result: {model: "Focus", year: "2000", size: 2}

209

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

210

lf the two records share one or more properties, they will merge into a single item whose
value is taken from the record on the left.

{model: "PB17", RAM: 512} & {RAM: 256, speed: 1000}
--result: {model: "PB17", RAM: 512, speed: 1000}

Notice how both records contained the property RAM, but the result threw away that
property from the right-side operand.

Coercing records

Directly, you can only coerce a record into a Iist.

{model: "Focus", year: "2000", size: 2} as list
--result: {"Focus", "2000", 2}

Creating records on the fly
Creating a compound value on the fly is usually the specialty of a Iist. Records are usually
planned and predefined by nature.

However, since this is a comprehensive book, I thought l'd add a stick way to create a
record on the fly, with custom Iabels and all. All we'll do is concatenate text into a string
that Iooks like a record and then run that text as a script.

Figure 6-21 shows a simplified no-frills version ofthat method.

06-21

~==-=-----'-'-'----"R=.:un'-- Complle _______ -.--1
set my_recofd to run ~crlpt 1a: t ,b ~2r
dass of my _record

record

Flgure 6-21. Astring converted into a record

LISTS AND RECORDS

lf the record you're trying to create includes strings, you must escape the quote with a
backslash. Figure 6-22 shows an example of taking two lists, one of the record Iabels and
one of the record values, and turning them into a single record value.

RKord !tun Complle=----------------r:--1
set loflel_list to ('tat". "dog'. 'fish1
nt Vllflle..llsr 10 ("Furbalr. llumper". "Smoke'(l

set my_ttxt to 1'
II!PUI Wllh lfrom I 10 (COllrll IDbt.ll/j!)

sn the..k!Pel to item I of /QIId_llsr
Sei 1/le.. VQ/IM! lO ltem ~ of vr>IIIC..IiSI
set my_rexrto my_rext & rlrda/16 & ":'
lf class of the...valw ls smng then

set my_rext to my_ttxt & "\- & tht....vo/ue & "\
else

set my_rext to my_rtxt & rlrt....wlue
end lf
lf I < (COUnt labd_Hst) then

set my_rur to my_rar & •• •
end lf

end repeat
set my_rutto my_rur & 1'

run scrlp 1 my_text

(car:"Furbali. dog:"Humper", (islr>mokey")

. Oucripllon

Flgure 6-22. Coercion of a compex Iist into a record value

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

Lists
The Iist data type is a container that may contain no items, one item, or multiple items
from any other data type. The following Iist has three items, each one being a string:

{"Boston", "Atlanta", "San Francisco"}

An empty Iist Iooks like this:

{}

211

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

212

Manipulating lists

To add an item to a Iist or link two lists, use the concatenation operator.

set new_list to {"A", "B"} & {1, 2, 3} --> {"A", "B", 1, 2, 3}

To add a single item to the end of a Iist, use this statement:

set new_list to {1, 2, 3}
set end of new_list to 4 --> {1, 2, 3, 4}

Getting items from a List

You can get a single item from a Iist using the item's position in the Iist.

Script 6-5

set city_list to {"Boston", "Atlanta", "San Francisco"}
set the_city to item 2 of city_list --> "Atlanta"
first item of city_list --> "Boston"
last item of city_list --> "San Francisco"
item -1 of city_list --> "San Francisco"

You can also get a range of items with the thru term. The result here will be a Iist:

set city_list to of ~
{"Boston", "Atlanta", "San Francisco", "Providence", "Seattle"}

set the_city to items 2 thru 4 of city_list
--> {"Atlanta", "San Francisco", "Providence"}

Comparing lists

You can compare two lists, or a Iist with a possible Iist item.

{1, 2, 3} contains 2 --> true
{1, 2, 3} starts with 2 --> false
{1, 2, 3} ends with 3 --> true

List of lists

A Iist whose items are also lists is a Iist of lists.

{{1, 2, 3}, {10, 20, 30}, {100, 200, 300}}

LISTS AND RECORDS

List properties

To get the Iist without the first item, use the rest property.

rest of {"Atlanta", "San Francisco", "Providence"}
Result --> {"San Francisco", "Providence"}

The reverse property contains the same Iist in reverse order.

reverse of {"Atlanta", "San Francisco", "Providence"}
Result --> {"Providence", "San Francisco", "Atlanta"}

Records

A record is a Iist where each item has a descriptive Iabel.

{name: "Burt", age: 30, member: true}

Record Iabels can't contain spaces; however, terms defined in an application's dictionary
that has a space may be used as a record Iabel in a record created by that application.

You can't get a record's item by position, only by Iabel.

age of {name: "Burt", age: 30, member: true} --> 30

Comparing records

You can check whether two records are equal, or whether a record contains, or is con
tained by, another record. Following are a few examples:

{name: "Burt", age: 30, member: true} = {age: 30, name: "Burt", .,
member: true}

Result --> true

The preceding statement returns true because AppleScript puts no emphasis on the order
of the items in a record.

{name: "Burt", age: 30, member: true} contains {name: "Burt"} --> true
{name: "Burt"} is contained by {name: "Burt", age: 30, member: true} .,

--> true

Concatenating records

Concatenate records by using the concatenation operator.

{name: "Burt", age: 30, member: true} & {position: "President"}
Result --> {name: "Burt", age: 30, member: true, position: "President"}

lf both operands contain the same Iabel, then the value from the left operand will be used.

213

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

214

Coercing records

A record can be coerced into a Iist, in which case the Iabels will be stripped.

Details previously ...

The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, refer to earlier sections in this chapter.

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

218

lf you had to choose a triend from ancient Greece, Socrates may be an interesting choice.
You two could sit down for hours reflecting on and discussing the state of things. However,
if you needed someone who can get things done, someone in command, you'd probably
want to move a few hundred years into the future to ancient Rome, and consider some
one like julius Caesar.

AppleScript is more like Caesar than like Socrates; it rules the Mac OS kingdom. When
AppleScript talks, most Statements it uses contain a command, and after stating most of
those, it'll wait there until it gets a result. The AppleScript language is used to get results,
to get things done. And since AppleScript has no mouse or keyboard, it gets things done
by giving commands. lnterestingly enough, the commands AppleScript was given at the
factory are few: copy, count, get, run, set, and error. So where does the complexity lie?
Remember that most of the AppleScript language comes from applications' scriptability.
Applications have many more commands built into them. lnDesign, for example, has about
80 of its own commands, FileMaker Pro has about 30, and Photoshop has over 65 com
mands.

Note that there are many other command-like terms used in AppleScript. How these
terms are categorized isn't all that important, so here I will stick to the five commands
listed in the AppleScript Language Guide. I did Iist a sixth such command, which is the error
command, but it will be described in Chapter 16, which is dedicated to errors.

The goal is to draw a broad enough base of understanding commands that anytime you
want to start automating a new application, the learning curve won't be as steep. You will
be able to start focusing on the subject of your automation rather than on struggling with
simple things that refuse to work.

The anatomy of a command
Commands, even in life, are not just meaningless sentences you throw around. Commands
have a purpose, and any one of a few things can make them not work.

So what makes a successful command?

To start, you need a well-defined recipient for the command, which is called a target. That
target must be able to execute the command and report back after it is carried out. Then,
you need to be able to specify the details of the command and make sure that your recip
ient understands the details. You should note that the built-in AppleScript commands and
some scripting addition commands don't have a teil block, and therefore the "target" of
these commands is not an application object in an application's teil block.

Another important aspect is knowing what result to expect, if any, and how to process an
error in case your command statement generates one.

Let's start with the command itself. As we saw earlier, AppleScript has only six built-in com
mands. The rest belong to either an application or scripting addition, or to a script object.
Script object commands are usually commands that you have full control of, mainly
because you can write them yourself.

GIVING COMMANDS

When you do (and you will), you will have intimate knowledge of their inner working, and
also how to make them error-out.' As we discuss creating your own commands in more
detail, we will also Iook at ways to make sure you don't lose yourself in an unmanageable
mess of commands, to the point where they're unusable.

Commands you make yourself, also called handlers and subroutines, are very cool. They're
written using AppleScript, and they are your discount-fare ticket to becoming a power
user. We will discuss them in great detaillater in the book.

For now, though, we will try to focus on AppleScript commands and application commands.

Who made you boss?
One of the important aspects of a good command, as we said earlier, is a good target.
Semething that will understand the command and give you a result back. ln the case of
the six AppleScript commands, the target is AppleScript, so the command can be used
without specifying a target object.

Let's Iook at the five commands:

copy and set
copy and set, as they're used in AppleScript, are usually found in assignment statements.
Assignment statements are statements that assign a value to a variable. Although the way
the two commands go about assigning values is in reverse to each other, the result they
produce is in most cases the same.

Using copy and set

Since assigning values to variables is one of the most basic things we do in AppleScript, we
should pay some attention here.

lf we go back to our last analogy that said that variables are like AppleScript's knowledge
and memories, using the set and copy commands in AppleScript is like your making a men
tal note of important information that is presented to you. Consider the following:

I walk down the hall when I see a co-worker with someone I don't recognize. "Hanaan," he
says, "l'd like you to meet Jena. She's the new marketing director, she was transferred here
from Satt Lake." I say "Helle," shake hands and think to myself, "Man, is she cute! l've got
to remember her name." So I make a mental note of her face, and assign her information
as single values into variables:

set the name to "Jena"
set the_origin to "Salt Lake"
set the_position to "marketing director"

219

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

220

OK, l've got it down. The next day I meet her in the cafeteria. "Hi," I say, "How's day two
treating you?"

"Oh hi," she answers.

I quickly pull out the information I gathered the day before, and compile a completely
generic sentence, personalized to impress:

Set my_next_sentence to "So "& the_name & "were you also the " & the_position & "
when you worked at our" & the_origin & "office?"

I say my_next_sentence, and ...

"What a pathetic guy," she thinks, "He actually remernbered all this information just to
impress me? I got to copy 'Hanaan' to my 'people_l_should_avoid' Iist."

OK, so that wasn't the result I was hoping for, but nevertheless, without the use of vari
ables and assigning values to them, alll would've had was "Hi, you're that person who was
transferred from our other office to fill a position here." Even worse.

What's even more unique about the assignment commands set and copy, is that they not
only assign a value to a variable, but they can also define the variable. That means that I
was not planning to store jena's name untill met her. I wasn't walking around knowing that
I will need to remember information about a new person.

The same happens in a script. You may start the script by initializing some variables such as
the current date and name of the startup disk, but as you advance in the script, more val
ues will become needed, and along with them you will need to define more variables.

So where is the difference between copy and set? lt would be bad if two out of the five
commands in AppleScript do the exact thing!

The difference is that in some cases the set command allows for two variables to share the
same value, while the copy command always makes a copy of the data before stuffing it
into the second variable.

This, however, is only true in cases where the value we set is a Iist, a record, or a script
object.

Let's Iook at some set and copy examples:

ln the most basic form, set and copy assign a value of any dass to a variable. That value can
then be later retrieved by using the variable's identifier. The identifier, just for clarification,
is the actual word you used to name the variable.

set the user name to "George"

is the same as

copy "George" to the_user_name

However, things are different when we start dealing with values in a Iist or record.

GIVING COMMANDS

copy and set examples

Let's try a simple exercise:

set my_list to {1, 2, 3}
set your_list to my_list
set item 3 of my_list to 10

We start with a Iist of three numbers. Then we assign that Iist to another variable. Now we
have two Iist variables: my_list has the value {1 ,2,3} assigned to it, andyour_list has my_list
assigned to it.

Now, what would you expect will happen to your _Iist when I change my _Iist? Put expecta
tions aside; when we assigned my _Iist to your _Iist, we didn't set your _Iist to the value of
my _Iist, but rather as a reference to my _Iist. That means that changing my _Iist also
changes your _Iist.

At the end of the preceding script, both my_list and your_list will have the value of
{1' 2, 10}.

To me, that situation sort of beats the purpose of assigning a variable to another variable.
The point is that you can have one variable keep the original value and the other hold the
value that will get changed. lf I wanted two variables to remain synchronized, I would, weil,
use only one variable.

ln order to assign the Iist value of one variable to a second variable, you can use the copy
command instead of the set command.

Here's how the script would Iook:

set my_list to {1, 2, 3}
copy my_list to your_list
set item 3 of my_list to 10

ln the preceding script, the value of my _Iist will be {1, 2, 1 0}, while your _Iist will remain
{1' 2, 3}.

copy in applications
ln AppleScript, the meaning of a command is determined by the object that receives it.
That means that while you're inside an application's tel/ block, the copy command may get
a different meaning.

For one, many applications include the copy command without any parameters. A statement
that is made solely of the copy command will act as if you chose Copy from the Edit menu.

221

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

222

Typically, when an application allows you to use the copy command to copy selected items
to the clipboard, the target application has to be in the front. You can use the activate
command for that, or you will quickly encounter the error message in Figure 7-1.

Untltled

AppleS~rlpt Error

Adobe lllu•tntor es got an trro 0 llusttator mu>l be
tht front appllca.tlon when uylng to cut. copy or
putt

Flgure 7-1. Many applications have tobe front-most to execute
the cut, copy, and poste commands.

While it's easy to see if you forgot to add the activate command before using the copy
command (the script stops during testing ... }, user behavior is almost impossible to pre
dict. Take for instance a scenario where you have a whole bunch of commands that target
Adobe Illustrator. Before alt these commands execute, you include the activate command,
which brings Illustrator to the front. lf at any point the user gets bored and decides to
check e-mail or browse the Web while the script is running, the script will stop when the
copy command executes.

There are a few things you can do. First, place the activate command right before the copy
command. This will shorten the time the impatient user has to switch back away from your
target application.

Another thing you can do is to trap the error and alert the user that s/he shouldn't be
messing with his/her Mac while the script is running. Another dialog box solution is to dis
play a dialogbox for three seconds, telling the user not to interfere. You can use the giving
up parameter of the displaydialag command to have the dialog box display for a specific
period of time.

The script that follows illustrates the methods previously outlined:

Script 7-1

1.

2.
3.
4.

tell application "Adobe Illustrator 10"
tell document 1

set selected of every text art item to true
end tell

s. activate
6. try
]. display dialag "The script can't be interrupted!" .,

buttans {"•"} giving up after 3
8. copy
9. on error error_message number error_number
10. if error_number is 9002 then
11. display dialag "Hey buddy, don't mess with your Mac while .,
the script is running!"

GIVING COMMANDS

12. end if
13. end try
14. make new document
15. paste
16. end tell

Other applications require that you specify a target object for the copy command, as
shown in the following script:

tell application "BBEdit 6.5"
copy text of window 1

end tell

count
The count command returns the number of items in a Iist, a record, or a string. Here are
some simple examples:

Script 7-2

count "abc" -->3
count {10,20,30,40,50} --> 5
count items in {"alef", "bet",· "gimel", "dalet"} --> 4
count {name: "Jerry", occupation: "singer", outlook: "greatful", .,

status: "dead"}
Result: --> 4

Another way to get the number of characters in a string or the number of items in a Iist or
in a record is by tapping into these classes' length property. As you can see in Figure 7-2,
the count command will return an identical result to that value's length property.

0

, O.lcrlpuon

Flgure 7-2. my_list has four items,
therefore the length property of it
is equal to the result of the count
command when using my_/ist as a
parameter.

223

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

224

count for Looping

One of the most common uses of the count command comes in handy when constructing
repeat loops. Many times, when you create a repeat loop, you need to treat items that are
part of a Iist. Since these items are treated one at a time, the count command helps us fig
ure out how many times we need to loop.

set user list to list folder "Macintosh HD:Users:"
repeat with i from i to (count user_list)

set the_user to item i of user_list
--do something with the_user

end repeat

Counting application objects

Another way to use the count command is to get the number of elements of an applica
tion. The result can be used for Iooping through and treating each object, or for other
purposes within the script. This command becomes even more useful when used with the
whose dause.

There's a small twist, however, in using the count command inside applications: the appli
cation may have its own count command that requires different syntax. So just how com
plicated can that get? Not too complicated at alt. See, what most people do is never deal
with the application's syntax, which varies from application to application. lnstead, you can
just get a reference of every object of a specific dass into a Iist and count the Iist. You can
do that in a single statement, and there are a few advantages: the syntax is similar from
application to application, and you can use the whose dause to narrow down the range of
objects you're counting.

The FileMaker example that follows uses both FileMaker's own count command and
AppleScript's version:

Script 7-3

tell application "FileMaker Pro"
--Application's count command:
count database "clients" class record
count record 1 class field
--AppleScript's count command:
count (every record of database "clients")
count (records of database "clients" whose cell 1 > o)

end tell

ln the preceding example, lines 3 and 4 use FileMaker's count command. You can see that
the syntax requires that you specify an object and a dass. The object is the object whose
elements you want to count, and the dass you specify is the dass of the elements you
want to count. line 3 counts the record elements of the database "clients" object.

GIVING COMMANDS

Line 6 does the same thing using AppleScript's count command. Line 7 also uses
AppleScript's count command, but with the whose clause, which helps narrow down the
counted objects to only the records whose cell 1 is greater that 0 (sounds just like
AppleScript ...).

Also, when compiling the script, AppleScript adds parentheses around the every object ref
erence. This is to make it clear that this part of the statement returns a Iist, and
AppleScript counts the Iist.

lnDesign has taken a similar approach to FileMaker, where you specify the object whose
elements you want to count, and the type of objects you want counted. The following
script counts the pages of document 1 :x:

get

tell application "InDesign 2.0.2"
count document 1 each page

end tell

While you don't see the actual word "get" of the get command, the get command itself is
used in many statements that you write.

The get command is used slightly differently in AppleScript than in scripting applications.
ln AppleScript, the get command returns the resulting value from an expression into the
result variable, while an application returns a value related to one of its objects to the
same result variable.

lf you forgot, result is a variable built into AppleScript, and any value that is returned by
any expression is assigned to this variable.

Like the get command, the result variable usually goes unnoticed. However, it's important
to understand what role these two terms play in your scripts.

The get command in AppleScript

Consider the following script Statements, which you'll hardly ever see in actual scripts (not
created for demonstration or training):

get item_cost * sales_tax
set item_price to result

ln the preceding example, the first statement gets the value of a simple mathematical
expression and assigns it, automatically, to the result variable. The second statement
assigns the value of the result variable to a more permanent variable, because as you imag
ine, the next statement will most likely alter the value of the result variable once more.

225

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

226

The same two-line script snippet shown previously can be written, and most commonly is,
using a single assignment statement with no mention of the words "get" and "result":

set item_price to item_cost * sales_tax

The difference isthat in the two-line example, we explicitly use the get command, while in
the one-liner, and in most real-world applications, we will not.

Getting values inside applications

When working inside an application's tell block, the use of the get command doesn't
change much. lnstead of returning a value resulting from an expression such as 2 + 2, or
item 2 of my _Iist, it returns a value related to one of its objects.

tell application "InDesign 2.0.2"
get document 1
copy result to my_document

end tell

ln the preceding script, we get the document from lnDesign and assign it to the my_docu
ment variable.

The same can be achieved in the following script:

tell application "InDesign 2.0.2"
set my_document to document 1

end tell

The application uses its own version of the get command, passes the resulting value to
AppleScript, and AppleScript then assigns it to a variable.

Real-world use of the get command

Theoretically, you can script successfully for many years without knowing that the get
command even exists. The get command, as shown previously, returns a result to
AppleScript, after which it is your job to do something with it.

There are some times when certain applications will get picky when you try to combine
too many commands in one statement.

For instance, let's Iook at the caveats of the following generat statement:

tell application "some app" to set n to .,
(count pages of document 1) * (count documents)

ln the preceding statement, AppleScript actually processes a few commands: it first gets
the pages of document 1, counts the result, does the same for getting and counting the
document objects, and multiplies the two results. While this should theoretically work, an
application may have an issue with it.

GIVING COMMANDS

The solution may be to either break down the commands into individual lines or use the
two explicit get commands. Following are three possible ways to write the preceding
script. Out of the three, the second one strikes a good balance between legibility and
functionality.

Version 1: Lay it alt out there.

tell application "some app"
set document_pages to get pages of document 1
set application_documents to get documents of it
set page_count to count document_pages
set document_count to count application_documents
set n to page_count * document_count

end tell

Version 2: Let's not overdo it ...

tell application "some app"
set page_count to count (get pages of document 1)
set document_count to count (get documents of it)
set n to page_count * document_count

end tell

Version 3: All in one line

run

tell application "some app" to .,
set n to (count (get pages of document 1)) * (count (get documents .,
of it))

The run command has two functions: running an application, which is hardly ever done by
itself, and running a script object.

Running applications

Every time AppleScript goes into an application's tell block and starts to execute com
mands, the run command is set to that application.

For example, the following script:

tell application "Script Editor"
make new document

end tell

227

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

228

ls actually seen by AppleScript as

tell application "Script Editor"
run
make new document

end tell

This scenario suggests that the run command really isn't that useful, which is true.

You can, however, choose to send the run command to an application that's not running
at the time. lnstead of using the run command inside the tell block, you can use it to spec
ify the full path to the application. This helps if you suspect that more than one copy or
one version of the same application exists on the Mac. Here's how you do that:

run application "Macintosh HD:Applications:AppleScript:Script
Editor.app:

launch
The launch command is technically an application command and not one of AppleScript's
commands. lt works similarly to the run command with one difference you should be
aware of.

When you use the run command to start up an application, the application will start, and
a new blank document will be created. lf you use the launch command instead, a new
document is not created.

tell application "BBEdit 6.5" to launch

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this section to
Iook up facts related to the chapter without the chatter.

Application commands and AppleScript commands
Most commands you will use in your scripts will be commands that are defined in applica
tions' dictionaries. AppleScript has only six built-in commands. These are copy, count, get,
run, set, and error.

Application commands need a target object on which the command operates.
AppleScript's built-in commands and scripting addition commands have targets, but they
are not real objects.

GIVING COMMANDS

set and copy

The set and copy commands assign values to variables.

set the_variable to "value"
copy "value" to the_variable

These commands work the same other than with lists. ln this case, AppleScript uses data
sharing, which makes the same Iist shared by two variables.

get

The get command is used to get values from variables and from applications' object prop
erties. The get command is hardly ever used explicitly, but is one of the most used com
mands in its implied form.

The two following statements produce the same result:

get item 2 of {100, 110, 120} --> 110
item 2 of {100, 110, 120} --> 110

run and launch

Both the run and launch commands will open an application that is not running.

The run command will create a new document after starting the application, and the
launch command will not.

Details previously . . .

The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, see the full chapter.

229

Hlel o Be

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

232

ln AppleScript, and most other programming languages, variables are made of two parts:
the identifier and the value. The identifier is a name that describes the value, but the value
is what you actually want to use. Here's an example:

set first_name to "Spange"

ln the preceding example, we assign the value "Sponge" to the variable first_name. lf we
want to either retrieve the value of that variable or assign a different value to it some
where else in the script, we use the identifier first_name. When the script is run,
AppleScript evaluates the identifier and returns the variable's value.

Picture variables as a container on your desk. The container has a Iabel on it that says,
"today's newspaper". What would you imagine would be found in this container? We
would surely expect to find today's newspaper. Will that be the case every day, though?
Weil, let's say that our script is instructed to go to the stand before you get to work, get
the newspaper for you, and put it in that container. Will that paper be the same every day?
Weil, yes and no. The size, shape, and Iook, or format, will be the same, but the informa
tion will not. When asked what's in that container, you can either say, "This is the newspa
per from july 23, 2003," which will be accurate today, but not tomorrow. See, the variable
Iabel. or identifier, as referred to by AppleScript, is (or should be) the accurate description
of the variable's value, while the value is the information itself. When you open that news
paper, what you care about is the news collected up to last night, which can be found in
that specific newspaper you're holding. That information is the value, the stuft you use.

How are variables created?
ln AppleScript, there are a few ways in which you can define variables in certain points of
the script. The most widely used form of defining a variable is through an assignment
statement with either the set or copy commands.

Another way to create variables is by declaring a property or a global variable. The main
difference between the two is that when declaring a global variable, you don't assign a
value to it, but you do assign a value to a property.

lt is important to understand that while you can implicitly declare a local variable any
where in the script by simply assigning a value to it, global variables and script properties
have to be explicitly declared. This declaration occurs in the first part of the script before
the run handler. The start of a well-structured script may Iook like this:

Script 8-1

property identifierl:"starting value"
property identifier2:"starting value"
global identifier3, identifier4
on run

local identifiers, identifier6
--Statements

end run

Assignments and declarations
So we agreed that a variable is a container that holds specific information, like, for exam
ple, the "Employee of the Month" spot on a company's bulletin board. Let's take a second
to imagine how that spot was created. The office manager came up with the idea, and the
assistant printed the header that says "Employee of the Month" and posted it. The variable
has been declared. The actual name of the employee of the month won't be posted there
until next month. When it is, then the variable will be assigned a value.

--declare the variable:
global employee_of_the_month
--or
local employee_of_the_month
--assign a value to the variable:
set employee_of_the_month to "Fred Flintstone"

Does that mean that you have to declare a variable before assigning a value to it? Not
always.

As you saw in the preceding script, there are two main kinds of variables: global variables
and local variables (we will get into the specific differences between them later in "How
variables live and die").

Basically, when you don't declare a variable, it naturally becomes a local variable. To define
a global variable, you must declare it as such:

global my_variable

How to name variables
Variables are defined by you when you write the script. Variable identifiers, or the actual
word you use to assign or get a value from a variable, is a word that you make up yourself,
and there are syntax rules you have to follow in order for your variable to work. Once you
considered alt the basic no-no's in variable naming, you are pretty much on your own.

What's good is that you don't usually have to wait until runtime to discover if your variable
name can't be used. For the most part, the script would simply not compile.

VARIABLES

233

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

234

Basic variable naming rules
Here are the things to avoid when deciding on a name, or identifier, for a variable:

Basic no-no's

The following rules are easy to learn because if you break them, the script will simply not
compile.

Rute 1: An identifier can't start with a digit or contain spaces, dashes, or any other non
alphanumeric characters.

Here are a few good variables:

my_total_solitare_score
X

RatioBetweenTaxiblelncomeAndCharitableContribution

And some bad ones:

2 times dose - -
price*tax
first&last

More obscure naming rules

The following rules are a bit more problematic since they will only reveal themselves as
problems du ring runtime. Even then, though, they're easy to detect and fix:

Rule 2: An identifier can't be the same as a reserved word.

AppleScript has several words it reserves for its own use. These words, as you can imagine,
can't be used as variable or handler identifiers. AppleScript also has its own variables, such
as PI, space, hours, etc. These are different from reserved words. Trying to set the value of
a predefined variable has the potential of messing up your script, while trying to use a
reserved word as a variable will generate an error when the script tries to compile.

lnstead of listing alt these words just for the purpose of remembering not to use them, you
can simply use AppleScript's built-in syntax coloring:

ln Script Editor, and virtually alt other script editors, you can use the preferences to set
AppleScript's syntax colaring and formatting. These attributes, shown in Figure 8-1, are
actually global, which means that if you use more than one AppleScript editor, the changes
will affect both.

Anyway, notice the categories Language keywords, Application keywords, and Variables
and subroutines names. lf you make them different, you will notice right after compiling
your script whether the variables you typed have the color and formatting you assigned to
the Variables and subroutines names category.

N.., text. (unc~1Led)

Operators, etc. (+ & ,l
~guage keywards

Appllcatlon keywords
Comments

Values (numbtrs , strln~ts.

Variables and subrolll:fnt

(Use Defaulu)

courler IRegular

Lu<lda. Sans Regular

Lutlda Sans Demlbold II

Lu<lda Sans Regular

Lutlda Sans Regular

LudetaSans Regulil.r

Lu<lcta Sans ltallc

(Rev rt } (Apply)

Flgure 8-1. Apple's Script Editor allows you toset AppleScript's syntax
coloring in the preferences pane.

Rule 3: A handler's identifier can't be used as a separate variable identifier.

ln your own scripts, you are the name giver to both variables and subroutines, so not
repeating the same name shouldn't be hard. lt may be a slight problern if you inherit a
long script that you now have to maintain; however, the first time you test the script the
issue will probably reveal itself and will be resolved.

As a rule, I always name my variables with word caps, and my handlers with underscore
separators, like this:

this_is_my_handler(argumentPassedToit)

Safe naming tactics
Try to make your variables and subroutine names stand out. I always use at least two words
in my variable identifiers. This way I can tel! them apart from other elements. The syntax
coloring is a big help, too.

Break all the rules!
OK, so now that we recited all the rules and know them perfectly, l'll give you the invisi
bility cloak that'll allow you to bypass all those rules! Use spaces, start with a number, and
use reserved words, anything you want!

VARIABLES

235

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

236

All you have to do is wrap your identifier in a pair of straight lines, like this:

lmy variable!

This shields the variable from any naming rules.

Values and references
We use variables in scripts to hold values. When we need that value, we use the variable's
identifier, and the script treats it as if it is the value itself. ln fact, the identifier is an expres
sion that returns the value stored in the variable.

This works fine with normal value classes such as strings, numbers, lists, etc. What about
other computer things, more real things like a folder on the hard disk or a text frame in
lnDesign? Can we setvariables that hold these things? Not really, but close enough.

While we can't take the entire chunk of data that makes a fotder and cram it into a vari
able, we can create a variable that holds a reference to that folder.

ln fact, referring to applications' objects is a major part of scripting, and being able to
store these references in variables is very important.

While each application has its own reference forms, it's not that hard to figure out. All we
have to do is use the same reference form we use when we want to do something to an
object: we have to follow the object hierarchy.

Script 8-2

tell application "Finder"
set my_folder to folder "Applications" of disk "Macintosh HD"
delete my_folder

end tell

ln the preceding script, we assign to the variable my Jotder a reference to the fotder
Applications of disk Macintosh HO. This allows us to work with that fotder later on, or as
line 3 of the script shows, use the variable to delete the folder.

We can also more explicitly say that we want a reference to an object instead of the object
itself.

tell application "InDesign es"
set my_page to (a reference to page 2 of document 1)

end tell

As a shortcut, you can also use ref instead of a reference to. AppleScript will fill in the rest
when you compile the script.

tell application "InDesign es"
set my_doc to ref document 1

end tell

While testing your script you want to learn about the forms different applications use to
return object references to you. lf you're not careful, when you turn to use the reference
it is no Ionger current and will return an error.

Figure 8-2 shows a script that changes the name of a fotder and then tries to delete it.

08-02

1e11 aprJIIcallon "Fll\d.er"
stt my_folder 10 a reftl'!nce to foldtr ·crrent Jobs" of d l ~k "Matlnlo5h HD'
set name of my_foldu to "finished jobs"
cle l 1j! my_foldu

end teil

(~ j 1\ .. ult E've"'log !

Flgure 8-2. The Finder will return a reference to a folder, then use the reference
to rename the fotder and then delete it.

When this script runs, it generates an error, shown in Figure 8-3, on the delete command.
The reference worked OK to rename the fotder but not to delete it. Why is that?

08-02

AppleScrlpt Error

Andtr got an trro" un't set rwnt of foi<Hr 'dltnt
Jobs' of dlsk "Maclnrostl HD' to ·nnlshed Jobs',

Flgure 8-3. The Finder got an error trying to delete the fotder
referred to in the variable.

To understand we have to Iook at the reference the script gave us in the line where we
assign the reference to the variable. Figure 8-4 shows that line and the result.

VARIABLES

237

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

238

08-04

teil •pplc..IU)Il 'Tlndtr'
ut nty _foldv t<l & rdertncc to fotd.r -dltm Jobs- o f (1>1. 'Ml<lntosh HO'

end tel~

, Du<rfotioA

Flgure 8-4. The result of the assignment statement

As you can see, the reference the Finder gave us has the fotder name in it. This makes the
reference obsolete the second we renamed the folder.

ln the Finder, we would be much better off if we coerced the reference form into an alias
dass, like in the script shown in Figure 8-5.

08-05

tell ilppflc.itlon "flncler"
set my_(older to a reference to fotder -dient Jobs' of dlsk "Maclntosh Ho- u aha~

end tell

alias "Madntosh HO:CIIent Jobs:-

\ [)UCriptfon ltesUit [W:nt Log s.

Flgure 8-5. A Finder reference to an item is coerced into an alias reference.

An alias reference remains current even as the file or fotder it points to changes name or
location. ln fact, it works just like the aliases in the Finder.

More on file references in Chapter 14.

This is, however, just the way the Finder works. Other applications have their own object
reference issues.

As we've already seen, Adobe lnDesign is an example of good scripting implementation.
Every object in lnDesign has a property called object reference; this property returns a
reference to the object. lf this seems redundant to you, then you're onto something.

lf we got close enough to the object to get its object reference property, then we must
already have some sort of a reference to the object. lt's a bit like asking, "What was the
color of King Arthur's white horse?" Weil, not really, because the reference lnDesign
returns is most likely not the same reference you used to get to the object to ask for that
property. Figure 8-6 shows how you ask for that object reference and what you get in
return.

08-06

~cord __ R_u_n __ Complle

ttll aoppllcatlon 1nDeslgn es-
set mv_obj«rlO object reference of text frame I of documem 1

end tel~

tutframeld 65 7 o page ld 420 of spread ld 403 of documut
"Brochure Summtr 200<4 .1ndd" ol appllcation ,nDesign es-

Figure 8-6. The object reference property in lnDesign

Notice that the object reference we used to get to the object wasn't very stable. lf a new
object was created, or a page inserted, our reference wouldn't hold. However, the value of
the object reference property uses the unique ID of the spread, page, and text frame, so
even if you change the stacking order or add pages, the reference would still be good.

How variables live and die
So far we know that assigning a value to a variable allows you to retrieve that value later
on. That is true to some extent, but as your scripts become more sophisticated, you will
need to understand for what, where, and how long variables are good.

As we stated earlier in the chapter, when you simply assign a value to a variable, you are
actually getting AppleScript to perform two actions: declare the variable and assign a value
to it.

The variable that was created, however, has been declared as a local variable, by default.

Local variables are good until you start creating your own commands, or in other words,
defining handlers.

Let's examine the following example to better understand what I mean:

set user name to "Ben"
display dialog ("Hello " & user name & "!")

VARIABLES

239

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

240

When you run the script, AppleScript displays the dialog box shown in Figure 8-7.

Flgure 8-7. Hello Ben dialog box

Line 1 of the script declared the local variable user_name, and then assigned the value
MBen"toit.

Line 2 displayed a dialog box that used the value stored in the variable.

So far so good.

What we're going to try now is to put the display dialog statement from line 2 in the pre
ceding script into a subroutine. This is the way it will Iook:

Scrlpt 8-3

set user name te "Ben"
say_helle()
en say_helle()

displaydialeg ("Helle" & user_name & "!")
end say_helle

The subroutine is declared between lines 3 and 5. lt is called to action on line 2.

lf you try to run the preceding script, you will get the error shown in Figure 8-8.

08-09

Tbe .. rlo.ble user_n~mel• not derot~ed.

Flgure 8-8. Apparently, the variable user_name has not been declared.

So what went wrong? We did specifically assign a value to the user_name variable in line 1,
so why did line 4 retum the error it did? Because our local variable was good in the body of
the script, but not inside any handlers.

The scope of a local variable-and since we didn't specify otherwise, user_name was a
local variable-is the current handler only.

What handler is that exactly? lt's the run handler. The run handler can be left out, but it is
always implied. Our script could have explicitly specified the run handler as shown in
Figure 8-9.

on run
nt usu_nome to 'Ben"
st~y_MIIoQ

end run

on say_htJ/oO
d lspl<ay d log ("Hello • & usu _nome & , ,

end soy_lttllq

Flgure 8-9. The run handler, which was implied in the last script, is described
explicitly here.

Now, looking at the script in Figure 8-9, things come into focus a bit. The user_name
variable was declared in the run handler and therefore not recognized in the say_hetlo
handler.

There are a few ways to remedy the problern and they divide into two main solutions:

You can either tell the handler what the variable is by passing it as an argument, or tell all
handlers in the script what the variable is and then avoid any issues with any handler that
may want to use that variable.

Up front, the second choice appears to make more sense. Why pass a variable as an
argument to multiple handlers when you can just announce it once to all handlers? The
main reason is portability. May not seem like a big deal at the start, but later on, when you
try to take those brilliant handlers you created and use them in a different script, figuring
out which global variables or properties are used by the handler may just put you in the
seat of a surgeon trying to separate conjoined twins.

As many variables as a handler may need, it is almost always better to pass them as argu
ments rather than declare them as global variables, especially if the reason for it is blatant
laziness.

VARIABLES

241

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

242

Passing variables to handlers
There are a couple of ways to create handlers and therefore a couple of ways to pass vari
ables to handlers. The two methods will be covered extensively in Chapter 17, but here's a
primer for passing variables the simple way.

To pass a variable, you include it in the parentheses following the handler name. Figure
8-1 0 shows how that can be done.

on run
sfl o~.scr_nomE tG lle •
.sgy_hello!user_norm.J

~nd rU'I

on !O~_t.ltiiOI.UStr_tram~
d15pla~ tBaklg OH!IIO • & uw.Mme & 11

4! n Cl s ay _l!t !Jo

Flgure 8-10. Passing the user_name variable to the say_hel/o handler

While this example works, it is a bit misleading. What we're passing isn't the variable, but
rather the value of the variable. The user _name variable in the run handler is completely
separate from the one in the say_hetlo handler. The two scripts that follow show other
ways of passing a value to a handler:

Script 8-4

on run
set user_name to "Ben"
say_hello(user_name)

end run
on say_hello(somebody)

display dialog ("Hello " & somebody & "!")
end say_hello

ln the preceding script, the handler call passes the value of the variable user_name. The
say_hetlo handler receives the value and assigns it to the somebody variable, where it is
used in the handler.

Script 8-5

on run
say_hello("Ben")

end run
on say_hello(somebody)

displaydialeg ("Hello" & somebody & "!")
end say_hello

ln this script, we don't pass a variable at alt. What we do is simply pass the value itself.

Passing multiple values
To pass multiple values to a handler, providing you use positioned parameters and not
Iabeted parameters (until now we only dealt with positional parameters), you must sepa
rate the values you pass in the handler call with commas, and do the same with the param
eter variables in the handler definition. The handler call must have a single value for each
parameter variable in the handler definition.

You must not confuse that with a Iist, however. The parameters are passed as single values.
You could pass a Iist as a value to the handler, but it will be put into a single variable. More
on that when we cover handlers in Chapter 18.

Properties
We discussed the ability of global variables to be visible to alt handlers. Another way to
make a value visible to any handler in the script is to assign it to a property. Properties are
just what they say they are: properties of the script. Much like an application object that
may have properties such as name and version, a script is an object that can have its own
properties.

For instance, if you're creating a script that is responsible for backing up some files to the
server, one of its properties may be the destination fotder for the backed-up files.

Both global variables and properties share another important feature: when the script
assigns a different value to a property, the property will retain that value even after the
script is done running. That means that the script can remember values you give it from
run to run. Remember, this is true for both global variables and script properties.

lf you open the script, however, you will not see the new value assigned to the property. lf
you open the script and recompile it, the values of the properties will be reset to the orig
inal values you gave them.

VARIABLES

243

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

244

To try it, type the script in Figure 8-11 and save it as an application. Then run the script a
few times.

Rtcord Stop Run

propeny usu_nam~ :

lf wser.nume ls - then

08-11

Complle

dlsplay cHalog "Enter name:· default answer t
set user_Mme to text retumed of resutt

end lf
dlsplay dlalog fliello • & usu. /tQmt & "11

(bunon returned :"'K")

Flgure 8-11. This script has a property that will retain its value from run to run.

When you run the script for the first time, the value of the user _name property is "", or a
blank string. The second line in the script picks up on that and asks users to enter their
name.

The fourth line assigns the text the user typed to the property user _name. From this point
on, the script has the value embedded into it, and the way this particular script is struc
tured, the user has no way to reenter the name. The script in Figure 8-11 verifies that the
user typed the right name, and gives hirn/her the chance to enter a new name.

There's always a big question as to whether to use properties or variables. ln truth, there's
no functional difference between them, especially when dealing with relatively simple
scripts.

As with global variables, it is strongly advised to weigh carefully before adding properties.
Since they're mainly used for specific functions of the script, if you try to reuse them later
in other scripts you may run into trouble separating the properties you need from the
ones you don't.

When are properties a good idea?
ln the following sections we Iook at three instances in which utilizing script properties can
be very useful.

Top-level variables

Once in a while there are pieces of information that belong at the top of the script. For
instance, I always include a debugMode property, which has a Boolean value. Certain func
tions I want performed only if l'm debugging, but I would hate to forget to turn them off
before I put the script to use, or worse, send it to a dient. So any debugging-related func
tion I just wrap in a if debugMode then block, and alll have to do in order to turn them alt
off is to set the debugMode property to false.

Script object properties

While we will cover this issue in detail when we talk about script objects, I thought it would
be appropriate to discuss the aspect of properties in script objects in this chapter.

A script object is a script you write and save, and later on tell other scripts to use it as if it
were an application. You can either call different handlers in that script or just tell it to
run, which in this case will invoke the run handler of the script.

Before we get into properties, here's how you call a script:

Assurne that you saved a script named "commands.applescript" in your hard drive. This
will be the script that Ioads and runs it:

set my_script to load script file "Macintosh HD: commands.applescript"
tell my_script to run

See, that was so easy.

So what do properties have to do with alt that? Weil, if you properly organize the scripts
you want to Ioad, then each script should have its function: you can have different scripts
that are a collection of commands for a specific application, or a script that's in charge of
performing file operations, etc. For these scripts, having appropriate properties is perfectly
acceptable since the properties are a part of the function the script is supposed to per
form, so the chance that you will want to separate handlers from this script and reuse
them somewhere else is slim: instead, you can Ioad this script to the other script.

User preferences

OK, so making the user open the script and make changes is the last thing you want.
However, some situations just call for it. Take for example a droplet script that creates
titles in Illustrator and exports them as TIFF files. The user indicates that s/he may want to
change the font the script uses sometime down the road. Weil, you could go ahead and
build a way forthat user to gracefully change the font, butthat would be one more thing
that can get broken later and ... you're already out the door ... so you add the titleJont
property to the top of the script and tell the user to change it later on to a different font.

While I do that sometimes, I don't like to for obvious reasons. Anytime you Iet the end
user mess with your scripts you're asking for trouble, and besides, it's hardly as nice as
facilitating a way for the user to change some script settings.

VARIABLES

245

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

246

Your script's preferences pane
Unless you go for an AppleScript Studio application, you can't really create a preference
pane with radio buttons, etc.; however, you can present a series of dialog boxes intended
for collecting different settings from the user.

The idea is to present a single dialog box at the beginning with three buttons: Cancel, in
case the user didn't mean to launch the script; a Run button used for normal Operation,
which should also be the default button; and last, a Settings button for changing some
preferences.

lf the user clicks the Settings button, s/he will be presented with a series of dialog boxes
whose results will supply values to the script's properties.

ln our next example, we'll pretend we have an Illustrator script that replaces variables with
data in a template and applies the font specified in the titleJont property. The template
file path is specified in the template_path property.

The only twist in this script is that if the file specified in the template path property doesn't
exist, we will force the user to pick one.

Here's how I would do that:

Script 8-6

1. property title_font : 1111

2. property template_path :

3. on run
4. set template_file_exists to check_if_path_exists(template_path)
s. if not template_file_exists or title_font is "" then
6. get_user_settings()
1. set got_settings to true
8. else
9. set got_settings to false
10. end if
11. if not got_settings then
12. display dialog "Run the script or change settings?" buttons .,
{"Quit", "Settings", "Run"} default button "Run"

13. set dialog_result to button returned of result
14. if dialog_result is "Quit" then
15. return
16. else if dialog_ resul t is "Settings" then
17. get_user_settings()
18. end if
19. end if
20. --REST OF YOUR SCRIPT HERE ••.
21. end run

22. to get_user_settings()

23. choose file with prompt ~
"Pick an Illustrator template" of type {"PDF "}

24. set template_path to result as string
25. tell application "Adobe Illustrator 10"
26. set font_list to get name of every text face
27. end tell
28. choose from list font_list with prompt ~

"Pick a font for the title"
29. set title_font to result as string
30. end get_user_settings

31. to check_if_path_exists(the_file_path)
32. try
33. alias the_file_path
34. return true
35. on error
36. return false
37. end try
38. end check_if_path_exists

ln the preceding script, we have a run handler and two custom handlers: one is in charge
of collecting settings from the user, and the other one checks if a file path passed to it
actually exists on the hard disk. lt does that by trying to coerce the file path into an alias
reference. lf the file doesn't actually exist, then the coercion statement will generate an
error. We capture the error in line 35, and return false.

Back to the script itself, in line 4 we check if the currently set template path exists. ln line
5, if either the file wasn't there or the font is still set to an empty string, then we force the
user to choose new settings.

We also create a local variable called got_settings. This variable indicates whether we
forced the user to pick a specific setting, so that we don't ask hirn/her again if s/he wants
the settings changed.

lf the got_settings variable is false, that means that the user didn't yet get the chance this
time araund to pick settings, so we display the dialag box that allows the user to pick the
settings.

Predefined variable
AppleScript's predefined variables, return, space, tab, and pi, are global variables with a
preset value. Although l'd like to see this Iist grow, the variables that are in the Iist can be
quite useful, and some are essential.

The first four predefined variables are useful for text and math manipulations; however,
they aren't essential, and have the same value assigned at alt times (unless you discover
that you can change it ...).

VARIABLES

247

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

248

The other variables, it, me, and result, are a bit more sophisticated. it and me are refer
ences, and result can be anything.

Here are the details:

return

The return variable's default value is the return character. lt's useful for text concatenations.

Although you can set return to any value you choose, you probably shouldn't, unless
you're playing a practical joke on someone. ln that case, start the script with statements
that change return to a tab value, tab to space, and space to return. Then, give it to a
friend to debug.

Here's an example of using the return variable:

set names_message to "Peter" & return & "Paul" & return & "Mary"

The result:

"Peter
Paul
Mary"

Here's another, more flexible way to perform the same generat function:

Script 8-7

set names_list to {"peter", "paul", "mary"}
set names_message to ""
repeat with i from 1 to (count names_list)

set the_name to item i of names_list
set names_message to names_message & i & ". " & the name & return

end repeat
display dialog names_message

ln line 5, we concatenate a bunch of text into a single string, and add it onto itself in a
repeat loop. The last item we add in each loop is return, which adds another line to the
string.

ln scripts where I use this a Iot and want a shorter version of return, I create a global vari
able called er for carriage return. Then I add the following statement:

set er to ascii character 13

From that point, I can use er as I would the return character.

space and tab

just like the return variable, the space and tab predefined variables hold a one-character
string.

The value of the space variable is a single word space, or ASCII character number 32, and
the value of the tab variable is a single character string with one tab character, or ASCII
character number 9.

Using these variables produces the same result as typing the actual character, or using the
command ASCII character with their respective numbers. They are very useful, though,
since by looking at a string with a few spaces, or tabs, you can't always see right away what
characters are used, and how many of them.

The following script handler uses the tab and space variables to trim them from the start
or end of a string. lt takes one argument, which is the string you want trimmed.

Script 8-8

pi

1. on trim_spaces(the_text)
2. repeat
3. if the_text starts with space or the_text starts with tab then
4. set the_text to rest of characters of the_text as string
5. else
6. exit repeat
7. end if
8. end repeat
9. repeat
10. if the_text ends with space or the_text ends with tab then
11. set the_text to characters 1 thru -2 of the_text as string
12. else
13. exit repeat
14. end if
15. end repeat
16. end trim_spaces

The pi variable has the value 3.14159265359 assigned to it. You can use it anywhere you do
math with trigonometry.

The following script calculates the amount or ribbon you would need to tie around a given
number of pies:

VARIABLES

249

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

250

Script 8-9

on how_much_ribbon(pie_count, pie_radius)
set pie_circumference to pie_radius * pi
set ribbon_length to pie_circumference * pie_count
--add 10% to compensate for bow-tie at end
set ribbon_length to ribbon_length * 1.1
return round ribbon_length

end how much ribbon

Reference variables

it

The value dass of the following two variables is an object reference:

The it variable refers to the current target of the telt block. The it variable is mostly
implied and used literally for readability.

Figure 8-12 shows a script using lnDesign.

ln the script, the variable it has been placed inside the lnDesign tell block, therefore the
value of the it variable is a reference to the application.

Compll~

teil apphcauon 1n0eslgn ct
lt

end ltll

Flgure 8-12. The value of the it variable is a reference to the
application lnDesign.

So when is the it variable used, and when is it implied?

Consider the following script, which is a variation on the script in Figure 8-12:

Script 8-10

tell application "InDesign CS"
name of active document
tell active document

name
get name of it

end tell
end tell

ln the preceding script, the results of line 2, line 4, and line 5 are identical. This is because
when you just name a property, AppleScript returns the value stored in that property of
the object targeted by the tell block, in this case, the inner tetl block.

So, in line 2 we ask for the name of active document, and we get it. ln line 3 we target the
active document with a tetl block. lines 4 and 5 are identical; they both ask for the name
property of the active document, just that line 5 is more explicit.

You could've also used name of it or get name instead.

While the it variable can be implied instead of written out, in many cases you would want
to use it in order to make your script read more easily. Saying

if name of it is "Document 1"

is much nicer than

if name = "Document 1"

me
The variable me refers to the script object. The script object is the main script you're run
ning. Any handlers you wrote or properties are commands and properties of the script
object, which separate them from the application commands. There aren't many distinct
uses for the me variable; however, the few uses it has repeat quite a bit throughout the
script, and they're not easily replaceable with other syntax.

path to me

One of the nice uses of the me variable is using the path to me command. The path to me
command returns the path to the script application. This is very useful in making your
scripts find files that they count on for execution.

Say that you have a script that generates a text file called settings as part of its execution.
The script needs a reliable fotder to write the file to and find the file for reading.

One solution is to use one of OS X's many unmovable folders in the user's library folder,
or other places. This, however, complicates things, because if the script is stopped from
being used on a specific Mac, you either have to hunt for these files, or just leave your
mess all over.

VARIABLES

251

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

252

Another solution is to get the user to always put the script fotder in the root directory or
on the desktop or somewhere you can teach your script to find. This is also not so good
since, weil, you just made a crucial mistake: you counted on the user to Iisten to your
instructions ...

Here's a solution that has worked for me with many different projects:

I create a fotder that I designate as the main fotder. This fotder can have any name, and the
user can also change the name and it wouldn't matter.

Then, I create a fotder structure, and yes, I do have to ask the user not to rename fotders in
there. ln this case, I might have a fotder in the main fotder called scripts where I put my
scripts. I have a settingsfotder and a utilities fotder where I usually put my application
script that the user launches. I also have a fotder I call system where I put files I absotutety
don't want the user to touch. Figure 8-13 shows the sample fotder structure I described.

·8ee ['1 Na in Felder ... r Scrlpts
.,.. Stltlngs
.,.. i svmm
... ill Utllltlt s

Uunch me ...

Now, let's see how this works.

0

.. .. ~ Flgure 8-13. A sample automated
system fotder structure

To create a settings file alll need is the path to the settings folder. Since I told the user
to put the main fotder anywhere, I can't count on a specific location. I have to do an inside
job in order to find the tocation.

The following script creates a few variables whose string vatues describe the location of
different fotders in my fotder structure:

Scrlpt 8-11

tell application "Finder"
set main_folder_path to container of container of (path to me) ~

as string
end tell
set settings_folder_path to main_folder_path & "settings:" as string
set system_folder_path to main_folder_path & "system:" as string

ln line 2 we get the container of container of path to me. The container of path to me is
the fotder the script is in. This is the utilities fotder. The containerofthat fotder is the
main folder. From there, I have to simpty concatenate the names of the other fotder to the
mainJolder variable to get paths to other fotders.

Let's assume for a minute that the main fotder is located in the root directory of the hard
disk. ln this case, the following expressions will return the results right below them:

path to me
-->alias "Macintosh HD:Main Folder:utilities:Launch me ..• "
container of path to me
--> alias "Macintosh HD:Main Folder:utilities:"
container of container of path to me
--> alias "Macintosh HD:Main Folder:"

This main fotder can be put anywhere and named anything. Thanks to the path to me com
mand, we can always locate it from within the utility script.

Tell me something

The me variable also comes in handy when you want to call a handler from within an
application tell block.

lf you try to run the script shown in Figure 8-14, you will be presented with the error mes
sage shown in Figure 8-15. The reason is that when you call a subroutine, AppleScript sees
it as a command, and checks to see if the current target of the tell block understands that
command. lf it doesn't, you get an error.

on say_hcllc()
d lsplay dialog ~ello!"

end say_hdo
I

{ Dtstrtprlo"

08-15

AppleSulpt Error

Flnder gotan error: 01\~ contlnue s•y_hello.

Flgure 8-14. Calling a handler
from within the Finder tel/
block returns an error.

Flgure 8-15. The error you get
from calling a command within
an application tel/ block

VARIABLES

253

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

254

I always get a kick from the message, "can't continue." I guess what I want is more details,
something like, "Can't continue because my feet hurt," or something.

Anyway, the reason why the Finder just couldn't continue the command was because the
Finder doesn't have a say_hello command in its dictionary.

Who does? The script. What you have to do in this case, or whenever you want to call a
handler from within an application tell block, is to specify that the command belongs to
the script, and not the application. Figure 8-16 shows how that's done.

lell a.ppßcarion "FFnder'
tell me toj sav_heiJaO

end tell

on 5av _hello()
d lsplay dl~log "Hello!"

end sav _hello

{bunon returned:"'K1

, Dt:~criplion

0

Ey.,nt Log

Flgure 8-16. To call a handler that belongs to the main script from within an
application's te/1 block, you have to target the script using the me variable.

The other way to do it, which is a bit shorter and nicer, is to just add the word my before
the command.

tell application "Finder"
my say_hello()

end tell

My property

Another problern you may encounter is when you try to retrieve values of properties whose
names are used both as a property in your script and as a property in the application.

Take for example the following script:

Script 8-12

property name : "Olivia"
tell application "Finder"

tell file 1 of disk "Macintosh HD"
display dialeg (get name as string)

end tell
end tell

ln line 4 we want to get the property name and display its value in a dialog box. The dia
leg box displays the name of file 1 of disk Macintosh HD.

lf we want the dialog box to display the property name defined in the script itself, we must
specify it using one of the following forms:

get name of me
get my name

Either way, the name "Clivia" will be displayed, not the name of the file.

result
The result variable is the most often updated, and most used variable in AppleScript. The
result of every statement that you run, given the statement returns a result at alt, is that
the returned value is assigned to the result variable.

Examine the simple statement in the script in Figure 8-17.

2 + 4
resu11

Watch line 1 of the script in Figure 8-17. lt contains a simple mathematical expression that
isn't assigned to any specific variable, it is simply expressed to the air. But, thanks to the
result variable, the value it returned is safe. The value 6 that was returned from the state
ment in line 1 was put in the result variable. Line 2 retrieves the value of the result variable
and shows that it is 6.

VARIABLES

255

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

256

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

Declaring variables
Variables can be declared explicitly or implicitly.

To implicitly declare a variable, just assign a value to it. The two statements that foltow
use two different commands to assign a string value to a variable whose identifier is
my_variable:

set my_variable to "the value"

or

copy "the value" to my_variable

Properties
Properties are variables that are declared before the script's run handler. You have to
assign a value to a property right from the start.

property identifier_name : "initial value"

The value of a property is available throughout the script including alt subroutines, and will
come back even between script runs.

Global variables
Much like properties, global variables are declared before the run handler. You don't
supply them with an initial value, and you can declare multiple global variables with one
statement.

global identifier_l, identifier_2, identifier_3

Once the value of a global variable has been set, it will be available throughout the script
including alt subroutines, and will come back even between script runs.

Local variables
Any variables you created and did not declare as either a global variable or a property are
local variables. The value of a local variable is available only inside the handler it was
defined in. To use the value of a local variable in another handler, you must pass it as a
parameter.

Explicitly declaring local variables is not necessary, but is good practice.

on run
local identifier_1, identifier 2
--statements

end run

Naming variables

The basic variable naming rules are as follows:

1. An identifier can't start with a digit or contain spaces, dashes, or any other non
alphanumeric characters.

2. An identifier can't be a reserved word. You will know right away if it is.

3. An identifier can't have the same name as a handler identifier in the same script.

Use straight brackets at the start and end of a variable identifier, and you can break alt the
rules:

set 1123 GO! Yes, this is a legal variable! I to "string value"

A good variable has at least two words to separate it from any other reserved word or
predefined variable.

The words can be first Ietter capped or separated by an underscore.

Values and references

A variable can hold a value, but it can also hold a reference to an object.

ln the first example, the value of x at the end will be "display dialog" since we set x to the
text of document 1, which is "display dialog" at the time.

Script 8-13 (also includes following script)

tell application "Script Editor"
set text of document 1 to "display dialog"
set x to text of document 1
set text of document 1 to "beep 3"
set y to x as string

end tell

VARIABLES

257

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

258

ln the secend example, the value of x at the end will be "beep 3" since we set x to a
reference to the text of document 1, not the text itself. When we get x as string, the text
of document 1 is already changed to "beep 3".

tell application "Script Editor"
set text of document 1 to "display dialog"
set x to a reference to text of document 1
set text of document 1 to "beep 3"
set y to x as string

end tell

No good variables

Variables whose values have not been set will generate an error if you try to use them.

Predefined variables

AppleScript has a few predefined variables that are mentioned and used throughout the
book. These variables are

• return, which has the value of a return character

• space, which has the same value as a space character

• tab, which has the same value as a tab character

• pi, which has the real value of 3.14159265359

• minutes, which has the value of 60 seconds

• hours, which has the value of 3600 seconds

• days, which has the value of 86400 seconds

• weeks, which has the value of 604800 seconds

Reference variables it and me

The variable it is used to describe the currently targeted object. ln the following script, the
value of it is document 1 of Script Editor:

Script 8-14

tell appÜcation "Script Editor"
tell document 1

display dialag (text of it)
end tell

end tell

The value of me is always the current script.

You use me to get the path to the script application.

path to me

Yeu can direct handler calls te the script itself and away frem the applicatien's teil bleck.

Script 8-15

Result

tell application "Script Editor"
do_this_thing() of me

--or ...
my do_this_thing()

--or ...
tell me to do_this_thing()

end tell

The result variable centains the result ef the last statement that ran, given that the last
statement returned a result. ln the fellewing example, the value ef the result variable will
be 12 after the first line and 36 after the secend line:

5 + 7
result * 3

Details previously . . .
The last part ef this chapter is a summary ef the entire chapter. Fer mere details en any ef
the items here, refer te earlier sectiens in this chapter.

VARIABLES

259

stt my_age to 16
dlsplay d~logi my_llg, & • candles"
I

dl,pl3y dialag "Enter VOll! email
set tmafl to rext retu'lled of resutt
lf not (lt11101/contalns "VI~

;md ~
:!emDU •nds: wlth ·.com") or

.and ~
:!olrs!t ot -~ n !ll'illllJ > 1)) ~
then
:llsplay dlal::19 1rvalld ema.il, uy a

eise
u lt ,.peat

end 11
I'II,Ut

applicatlon , nDes(gn r:s
tell page l af document l

~peat wllh ifrom {count
tell graphrc llll!! I

Iet SW4tch..INIIIK tO
set llne_tlm to

11nd teil
lf SWilf,#LINIIIIfi b "None•
I de~te 9raphlc line I
11nd lf

end repeat
end tell
teil

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

262

Since operators and operations are everywhere in AppleScript, they are covered exten
sively throughout the book. Mainly, you will find operations covered in the chapters
devoted to numbers and math, text and strings, dates and time, etc.

This chapter tries to tie up the loose ends but not to cover what is extensively covered in
the other, more targeted chapters.

What are operations?
I like to come up with my own definitions whenever needed, but in the case of operations,
the AppleScript Language Guide describes it best:

"Operations are expressions that use Operators to derive values from other values."
(AppleScript Language Guide, page 161)

ln simple terms, operations turn flower, milk, and sugar into pancakes, a few words into a
sentence, some numbers into a meaningful result, etc.

ln the pancake's case, the ingredients are the operands, mixing is the operator, the mixed
batter is the expression, and the steaming pancake on your plate is the result.

While AppleScript doesn't have operators that can be used for cooking, it does have oper
ators for comparing values, doing math with numbers, performing Boolean operations,
calculating dates and times, etc.

Operations and coercion
Operations can only happen when the operand values are either from the same value dass
or from compatible value dasses: strings can only be compared to and concatenated to
other strings; math can only be done with numbers (reals and integers), date and time
manipulations can have operands that are numbers in some cases, etc.

This restriction is very reasonable from the computer's standpoint. After all, the different
value dasses serve entirely different purposes.

AppleScript, however, is more a person's language than a computer language. Therefore,
AppleScript is designed to try and deal with the value dass restriction internally, and shield
you from having to indude some potentially irritating code.

Although my lazy side is delighted whenever the computer does anything for me, there is
also a Ievel of anxiety: what does AppleScript do behind the scenes, and what do I need to
know about it? ls it true that what I don't know can't hurt me?

OPERATIONS AND COERCION

What is coercion, anyway?
Coercion is when a value changes over from one value dass to another. For instance, the
value 5 is an integer, and the value "5" is a string. You can't do math with "5", and you can't
concatenate 5 to another string as long as it is an integer.

So, to do math with the string value "5", it must be converted, or coerced, into a number,
and to use the number value 5 in a string, it must be itself coerced into a string.

How can we coerce values?
ln parts of the script where we intentionally want to coerce values from one value dass to
another, we use the as operator.

The as operator is the coercion operator. The left operand is a value of a specific value
dass, and the right operand is the value dass you want the left operand coerced into.
Figures 9-1 and 9-2 show a couple of examples.

Flgure 9-1. Astring value
is coerced into an integer.

Flgure 9-2. An integer value
is coerced into a string.

263

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

264

A single statement can combine a few Ievels of coercion, as seen in Figure 9-3.

Compllt

(("S" as lnu~gerl ' rs· as ln eger)) as sti" O

"25 "

Dl!scrlptlon Flgure 9-3. A single statement
with two Ievels of coercion

ln Figure 9-3 you can see that each of the operands had to be coerced into an integer
individually before the multiplication could take place. However. since the result had to
end up being a string. we had to coerce the entire statement into a string.

Notice the use of parentheses; you do not want to leave the order of evaluation up to
AppleScript! While it might end up correctly, parentheses bring predictable results and
help make your script legible.

The script in Figure 9-3 could have been broken down into a few lines, as seen in Figure 9-4.

Flgure 9-4. The script from
Figure 9-3 broken down into
lines

Although AppleScript will attempt to coerce values for you, you should in many cases
explicitly coerce values and operation results on your own. This makes your intention
clearer and prevents potential problems down the road, especially with operators that can
result in more than one value dass such as the concatenation operator.

OPERATIONS AND COERCION

The reason for this is tied with AppleScript's core difference from other programming
languages. Part of what makes AppleScript an easy language to use is its ability to coerce
values between classes "on the fly," without your even thinking about it. So why doesn't
every language do that? There's a very good reason. Once a programming language tries
to guess your intention, it moves away from being transparent. AppleScript does take
some of the work out of your everyday scriptwriting, but it does that with a heavy set of
rules that you eventually have to learn.

What I prefer to do is coerce values myself whenever I remember. ln the following State
ment, I don't have to explicitly coerce the result into a string, but if the composition
changes, I would have. The possibility that AppleScript may coerce the result properly
now, but won't do that if I make a small change, stresses me out enough to just take over
coercion from AppleScript, even if it means some extra work. Here's the example:

Script 9-1 (includes the following two scripts)

set the_age to 35
set the_text to "I am " & the_age
--> "I am 35"

As you can see, the result for the preceding script is a string. However, what if I change the
composition to the one shown here:

set the_age to 35
set the_text to the_age & " is my age"
--> {35, " is my age"}

Oops, now it's a Iist. lf I counted on the result here to be a string, I would have gotten an
error.

Coercion of values is everywhere and is part of many of your AppleScript Statements, even
if you're not aware of it. My suggestion is, become aware of it and do the extra work to
take charge of it, as I do in the following script, which would be my preferred way to state
the first script in the preceding example:

set the_age to 35
set the_text to "I am " & the_age as string
--> "I am 35"

Even though the result hasn't changed here, it will remain a string even if the statement
changes, as it almost certainly will.

265

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

266

When does AppleScript perform coercion on
its own?

AppleScript attempts to coerce values automatically during some operations.

ln an operation there are three elements: left operand, operator, and right operand. ln
order for the operation to be successful, the left and right operands must belong to the
same dass, and the operator must be compatible with that dass.

When an operation is encountered, AppleScript determines the value dass of the left
operand. lf the left operand is of a legal dass, and the operator can work with that
operand, then the right operand is checked to see if it also matches.

lf the left operand isn't compatible with the operator, AppleScript attempts to coerce it. lf
it can't, AppleScript will return error number -1700, which means that AppleScript can't
coerce a value into the needed value dass.

lf the left operand is compatible with the operator, or AppleScript manages to coerce it,
then the right operand is evaluated, and if needed, coerced to match the left operand.

Let's Iook at some script snippets:

ln the script tt)at follows, the left operand is compatible with the operator, but AppleScript
will have to coerce the right operand to match:

5 + "12.3"

ln the following script, AppleScript will first coerce the left operand into an integer to
make it compatible with the + operator. Then it will coerce the right operand to match it
as weiL

"s" + "12.3"

The result will be a real number, since any operation that happens between a real number
and an integer results in a real value.

One side effect of the left-to-right operation evaluation method is that an operation with
the same values and same operator can produce a different dass of results based on the
order of the operands. Take for example the concatenation operator. lf the left operand is
a string, then AppleScript will attempt to coerce the right operand into a string as weil, and
return a string result. lf the left operand is any other value dass, the result will be a Iist,
with each operand as an item in the Iist. Look at the following example:

The script in Figure 9-5 will result in an error since AppleScript evaluates the operation as
a Iist, not a string, and the disptay dialag command requires a string.

The error message in Figure 9-6 shows the Iist value that AppleScript evaluated from the
operation in the script in Figure 9-5.

OPERATIONS AND COERCION

Record Run Complle

set my_agtto l 6
dlsplay dlaiDgi my_og.e & • candles"
I

Flgure 9-5. The disp/ay
dialog command fails since
the operation evaluates as a

\!!!!1!!'~~~~~~~~~~~~~~~:!'!~.1.· Iist, not a string.

09-0S

Appi•Scrlpt Error

C•n"t m•ll• {16. • undln"linto • >tring.

Flgure 9-6. The error shows
that the result was indeed a
Iist, not a string.

As a solution to this problem, I go back to encouraging you to program a hot key on your
Mac that types " as string" for you. Any operation where you want the result to be a string
will be coded more quickly, giving AppleScript a little help in the coercion effort. Figure 9-7
shows the script the way it should be written.

se.t my_age to 16
dlsplav dlalog (mv. age & • candtes· u strlng~

Flgure 9-7. The display
dialog command has no
problern since the argument
has been explicitly coerced

~~~~~~~~~~~~~~~~~2=!':!!1!!rtJl·"' into a string. 

The following operation will return an error, since AppleScript can't coerce "sixteen" into 
a number: 

"sixteen" + 2 

267 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

268 

Boolean operations 
Boolean is a value dass that allows only two possible values: true or false. Operating on 
Boolean values also produces a Boolean result. 

The Boolean operators we discuss here should not be confused with comparison opera
tors discussed later on. Although comparison operators produce a result in the Boolean 
value dass, the operands are not Boolean values. 

The three Boolean operators we will discuss here are or, and, and not. ln operations that 
use these operators, both operands and the result are Booleans. 

Using and, not, and or is pretty self-explanatory, much like the use of these words in the 
English language. 

not 
The not operator is used in operations with only a single Boolean operand to the right of 
it. The not operator simply reverses the value of that single operand. 

The following script snippets show the not operator in action: 

not true 
--> false 
not (1+2=3) 
--> false 

Since the expression (1+2=3) results in the Boolean value of true, putting the not operator 
before it reverses it to false. 

The not operator is useful in a few situations. One is reversing a Boolean value when testing 
its value in a conditional statement, as shown here: 

if (not log_file_exists) then create_log_file() 

The parentheses are not needed here, but I use them to make the script dearer to read, as 
I do in my actual scripts. 

and 
The and operator produces one true result out of these four possible combinations: 

true and true --> true 
true and false --> false 
false and true --> false 
false and false --> false 

Here are some better examples: 

if (email_address contains "@") and (email_address contains ",") then 
set valid_email_address to true 
end if 



or 

OPERATIONS AND COERCION 

Notice the use of the parentheses. They are not necessary, but they visually group the 
different operations. 

To check if the value of the variable x is within a range of numbers, say between 10 and 20, 
you will use the following statement: 

if (x ~ 10) and (x ~ 20) then do_something() 

The or operator produces a false result only if both operands are false. lf any of the 
operands are true, the result is true. 

true or true --> true 
true or false --> true 
false or true --> true 
false or false --> false 

Here are some more examples: 

if (email ends with ".net") or (email ends with ".com") or 
(email ends with ".org") then ••• 

The script in Figure 9-8 first assigns some color values of lines on an lnDesign page to two 
variables: swatch_name and line_tint. 

lf either the value of swatch_name is "None" or the value of line_tint is 0, then the line is 
deleted. 

09-0., 

tell a p p ßcatlon , nDe 5ign CS' 
tell page 1 of document 1 

re~at wlth I from (toum graphic llnes) to 1 by • 
tell graphk line I 

~et swDrch.Mtm to name of stroke color 
set J/ne.. r/m 1-o s11oke tim 

end tell 
if swotch.Mmt b "None• or line..rlnr ls 0 then 
I de ete graphlt line I 
end lf 

end repeal 
end tell 

end tell 

, Desalption 

Cl 

Figure 9-8. Notice the Booiean operation in the ifstatement to see the use of 
the or operator. 

269 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

270 

Mixing operators 
Since the result of a Boolean operation is a Boolean value, you can create complex Opera
tions using many Ievels of Boolean operations. 

Here's another one: 

(email contains ·~@") and-. 
((email ends with ".com") or (email ends with ".net")) and-. 
((offset of "@" in email) > 1) 

The preceding script includes four Boolean values: 

• email cantoins "@" 

• email ends with ".com" 

• email ends with ".net" 
• (o{fset of"@" in email)> 1 

The final result is true if 1 and 4 are true, and either 2 or 3 are true. 

Figure 9-9 shows a script that uses this Boolean operation to validate an e-mail address 
that a user types in. The script is in a closed loop and doesn't allow the user to leave unless 
a proper e-mail has been put in. Good use of Boolean, but very irritating for the user! 

Notice that the conditional statement starts like this: 

if not ••. 

Everything after the not operator is in parentheses. lf the operations in the parentheses 
evaluate as true, the not operator will reverse them, and the condition will not be met. 
The condition will be met if the e-mail isn't valid. 

repeat 
dlspl!y dlalog "Enter vour email address· d fault !n>wer - bunons I"OK1 
set ema I to text retu ·ned of result 
lf nOl (ttmqU contalns • ." -. 

and-. 
:cemD/1 ends Wlth ·.com1 or (E.II!IIH ertds wlm ·.n2nJ .. 

and -. 
,(0 S. t 01. n f!w.Q/4 > I)) ~ 
then 
jJsplay dlal~ 1rvalid @mall, try agaln' buttons ('OK1 wtth lcon 0 

else 
a.r lt qpeat 

artd lf 
end rtpeat 
I 

Flgure 9-9. A 
Boolean operation 
using the not, and, 
and or operators 
validates a user

!wnt-"9 

\~J!;J~;'ll~~gi~~=::~~~~-=-~~--~~~fi supplied e-mail ·~ address. 



OPERATIONS AND COERCION 

Comparison operators 
Comparison operators basically ask a simple question: is the left operand the same as the 
right one, or not? There are, of course, some variations to this question. 

The result of a comparison is always a Boolean value, and can be either true or false. 

Let's Iook at how AppleScript deals with comparing values. 

The basic comparison operator is the equals (=) operator. lt returns true if the left and 
right operands are the same. 

nan = nbn 
-->false 
(5 + 5) = 10 
-->true 

The opposite of the equals operator is the unequa I operator: *· You get it when you press 
OPTION+=. 

17 * 17.5 
-->true 

The last operation returned a true value because 17 is not the same as 17.5. 

When comparing numbers, AppleScript acts as you would expect. However, when compar
ing text, things can get a little more complicated. We will Iook at the different possibilities 
in the "Consideration clauses" section later on. 

The other comparison operators can help you figure out if the left operand is smaller or 
!arger than the right operand. 

5 > 3 
--> true 
12.1 < 12 
--> false 

A slight variation of the greater than (>) and less than (<) operators are the greater than 
or equal to (~) and less than or equal to (:;;;) operators. You insert them by typing OPTION+. 

(period) to get ~ and OPTION+, (comma) to get :;;;. 

These two operators have a built-in Boolean operator! 

The ~ operator checks to see if the right operand is greater than or equal to the left 
operand. The :;;; operator checks if the right operand is smaller than the left operand or 
equal to it. The two operators come in very handy, so make a mental note of them and put 
them to use. 

271 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

272 

Variations 
AppleScript includes a few variations on the ways you can write the operators in your 
script. Some of the possibilities are very English-like, and have minute differences. 

The table that follows shows the different comparison operators and their variations. 
Square brackets show optional words. 

Note that some of these variations will compile differently from the way you typed them. 
lf you type=>. for instance, AppleScript will compile it into "2:". 

Sign 

= 

> 

< 

Variations 

is 
equal 
equals 
[is] equal to 

is not 
isn't 

. isn't equal [to] 
is not equal [to] 
doesn't equal 
does not equal 

[is] greater than 
comes afl:er 
isn't less than or equal [to] 
is not less than or equal [to] 

[is] less than 
comes before 
isn't greater than or equal [to] 
is not greater than or equal [to] 

=> 
[is] greater than or equal [to] 
isn't less than 
is not less than 
does not come before 
doesn't come before 

<= 
[is] less than or equal [to] 
isn't greater than 
is not greater than 
does not come after 
doesn't come after 

Shortcut 

OPTION+= 

SHIFT+. (period) 

SHtFT+, (comma) 

OPTION+. (period) 

OPTION+, (comma) 



OPERATIONS AND COERCION 

Here are some more comparison examples: 

50 ~ 50 
--> true 
51 ~ 50 
--> true 
"Zebra" comes after "Armadillo" 
--> true 
50 is not greater than 50 
--> true 
date "Tuesday, January 1, 2002 12:00:00 AM" comes after (current date) 

What value classes can be used? 
While the result of the comparison operators is always a Boolean, the operands can be of 
other dasses. Since AppleScript requires that both left and right operands are of the same 
value dass (both are numbers, or both are strings, etc.), if the operands are of two differ
ent dasses, AppleScript will attempt to coerce the right operand to match the value dass 
of the left one. 

The operators equal and not equal can be used to compare operators from any value 
dass. ln using these operators, AppleScript won't even try to coerce the right value into 
the dass of the left value. lf the values of the operands beleng to two different dasses, 
AppleScript will simply return a "not equal" verdict instead of returning an error. Examine 
the following script snippets: 

5 = "lalala" 
--> false 

AppleScript didn't even try to coerce the string "lalala" into a number; it simply deemed 
the two values not equal and returned a false result. 

We know that by trying the following line: 

5 = "5" 
--> false 

lf AppleScript would have just tried, it would have managed to coerce the right operand, 
"5", into an integer and seen that it was equal to the left operand. 

For this reason, it is important to coerce the values before comparing to avoid letting 
AppleScript make these coercion decisions for you. 

lf your intention is to check whether the two operands do beleng to the same value dass, 
you should compare the value dasses themselves in this manner: 

(class of variable_x) = (class of variable_y) 

or 

if (class of variable_x) = string then .•• 

273 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

274 

ln the same way that we used the equals operator, the result of the following operation is true: 

5 "' "lalala" 

The rest of the comparison Operators, the ones that check for positional comparison, have 
to use two operands that are from the same value dass. lf not, the value of the right 
operand has to be able to be coerced to the value dass of the left operand. 

Since these operators check to see if the left operand come before or after the right 
operand, they only work on values from the value dasses: string, real, integer, and date. lf 
an operand is a singte-itern Iist, AppleScript will coerce it into either a string or a number 
if needed and possible. When comparing dates, AppleScript requires that both left and 
right operands are valid dates. 

Containment operators 
Containment operators is a name used to describe a group of six operators. These opera
tors check whether one operand is a part of the other operand. Furthermore, some con
tainment operators check whether one operand starts or ends with the second one. 

like the comparison operators, the result of operations using containment operators is 
always a Boolean. 

The following table lists the different containment operators and the operand dasses they 
SUpport. 

Syntax variations Operand value classes 

start with Iist and string 

starts with Iist and string 

begin with Iist and string 

begins with Iist and string 

endwith Iist and string 

ends with Iist and string 

contain record, Iist, and string 

contains record, Iist, and string 

does not contain record, Iist, and string 

doesn't contain record, Iist, and string 

is in record, Iist, and string 



OPERATIONS AND COERCION 

Syntax variations 

is contained by 

is not in 

isn't in 

isn't contained by 

is not contained by 

Operand value classes 

record, Iist, and string 

record, Iist, and string 

record, Iist, and string 

record, Iist, and string 

record, Iist, and string 

Containment operators don't work on numbers of any kind. 

Following are some examples of operations taking advantage of containment operators: 

"Apple Pie" contains "Apples" 
--> false 
"Apple Pie" starts with "Apple" 
--> true 
"art" is contained by "start" 
--> true 
{1, 2, 3} starts with 1 
--> true 

The following two operations show that you can test whether a Iist starts with another Iist: 

{"abc", "def", "ghi"} starts with {"abc", "def"} 
--> true 
{"abc", "def", "ghi"} starts with {"abc"} 
--> true 

You can also test to see if a Iist starts with a value of any other value dass. 

{"abc", "def", "ghi"} starts with "abc" 
--> true 

ln the following example, even though the first item of the Iist starts with the right 
operand, the result is false. The starts with and ends with operators only evaluate whole 
Iist items when comparing them. 

{"abc", "def", "ghi"} starts with "a" 
--> false 
"the end" ands with "the end" 
--> true 

The preceding Operation shows that when strings (or lists) are equal, the starts with and 
ends with operators will return a true result. 

275 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

276 

Contained by exception 
The operator is in, which can be also written as is contained by, is really the same as the 
contains operator. Asking "ls the mouse in the trap?" is the same as asking "Does the trap 
contain the mouse?'' Due to this, the order in which AppleScript evaluates the operands is 
reversed in operations using the is in operator. ln operations using the is in operator, 
AppleScript checks the right operand first and only then checks to see if the left operand 
matches its value dass, or can be coerced into that value dass. 

Math operators 
The fourth group of operators contains all the math operators. I will Iist them briefly in this 
section, but for comprehensive coverage, you should Iook at Chapter 4. 

All math Operators can have operands that are either integers or reals. lntegers and reals 
can be mixed as the left or right operands. The result of operations using these operators 
will always be a real if one of the operands is a real. Furthermore, and keeping with the 
book's nit-picking style, I should mention the following two facts: the integral division (div) 
operator always produces an integer, which makes sense. Also, the exponent (A) operator 
always produces a real. 

The following table lists the math operators, their names, functions, and keyboard shortcuts. 

Syntax Name 

* Multiply 

+ Plus 

Minus 

I Division 

div Integral 
division 

mod Module, 
remainder 

A Exponent 

Keyboard shortcut Function 

SHtFT+B 

SHIFT+= 

I 
OPTION+/ 

5HtFT+6 

Multiplies the left and right operands. 

Adds the left and right operands. 

Subtracts the right operand from the 
left operand. 

Divides the left operand by 
the right operand. 

Returns the number of times the right 
operand fits whole in the left operand. 

The right operand issubtracted from 
the left operand repeatedly until the 
remainder is smaller than the right 
operand. That final remainder is the 
result. 

The result is the left operand 
multiplied by itself the number of 
times indicated by the right operand. 



OPERATIONS AND COERCION 

Concatenation 
Probably the most used operator in AppleScript is the concatenation operator, whose 
syntax is ampersand (&). 

To concatenate means to link together or join. AppleScript's concatenation operator can 
concatenate two strings into a third string, two lists into a third Iist, and two records into a 
third record. 

Trying to concatenate any other value dass, or a mix of value classes, will return a Iist con
taining the left and right operands. More on that later in the chapter. 

Following is a description and a few examples of the concatenation operator; however, for 
more complete coverage, see the individual chapters dealing with strings, and lists and 
records (Chapter 3 and Chapter 6, respectively). 

Concatenating strings 
When the left operand of an operation using the concatenation operator is a string, 
AppleScript tries to coerce the right operand into a string and produce a single string 
made up of three strings: the left operator, followed by the text item delimiter, followed 
by the right operand, after it has been coerced into a string, if possible. 

The most common usage is concatenating two or more strings, where at least one is a vari
able. Take a Iook at this example: 

set user name to "Olivia" 
set user_greeting to "Hello" & space & user_name 
--> "Hello Olivia" 

ln the preceding example, I concatenated the Iiterat expression " Hello ", the value of the 
space constant, which is by default a single space, and the value of the variable 
user_name, which happened tobe "Oiivia". 

String rules 
As with any other string operation, the same rules apply regarding constants such as tab, 
space, return, etc., and the need to escape certain characters such as quotes. 

To produce the following string: 

I said "Hello"! 

you need to write 

Set my_string to "I said \"Hello\"!" 

Notice the backslashes before two of the quotes. The backslash is AppleScript's escape 
character. When you escape the quote marks by placing the backslash before them, they 
become a Iiterat part of the text, instead of defining the string boundaries as the first and 
last quotes do. You can read more on this in Chapter 3. 

277 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

278 

Concatenating a string variable to itself 
ln many cases you will need to add text to the same string variable, for instance, if you're 
building a Iist or a report. 

To concatenate a string variable to itself, simply include the variable identifier in the 
expression itself. 

set my_var to "Hit" 
set my_var to my_var & space & "the" 
set my_var to my_var & space & "road" 

ln the following example we create a simple HTML file that has a title and some contents 
in a one-cell table. The contents and the title will be stored in the variables the_title and 
the _ contents. 

ln this example we add a return at the end of every line. This isn't required by web 
browsers, but makes it more legible for people. 

Here is the script: 

Script 9-2 

1. set the_title to "Welcome" 
2. set the_contents to "Hello World!" 
3. set html to '"' 
4. set html to html & "<html>" & return 
s. set html to html & "<head>" & return 
6. set html to html & "<title>" & the_title & "</title>" & return 
1. set html to html & "</head>" & return 
8. set html to html & "<body>" & return 
g, set html to html & "<table border=\"2\">" & return 
10. set html to html & "<tr>" & return 
11. set html to html & "<td>" & return 
12. set html to html & the_contents & return 
13. set html to html & "</td>" & return 
14. set html to html & "</tr>" & return 
15. set html to html & "</table>" & return 
16. set html to html & "</body>" & return 
11. set html to html & "</html>" & return 

And the finished HTML text: 

<html> 
<head> 
<title>Welcome</title> 
</head> 
<body> 
<table border="2"> 
<tr> 
<td> 



OPERATIONS AND COERCION 

Hello World! 
</td> 
</tr> 
</table> 
</body> 
</html> 

While this is good, we can make another small leap towards readability by indenting the 
lines with tabs. 

What we don't want to do, though, is to add & tab & tab & tab & tab, etc. to the script. This 
will make it hard to manage. 

What we will do is create a little handler that will add the number of tabs we want to the 
script. The handler will simply repeat a given number of times and concatenate a tab char
acter to an empty string in every repetition. The number of tabs needed will be passed to 
the handler as an argument, and the handler will simply return a string made of the num
ber of tabs specified in the argument. 

Here is the script: 

Script 9-3 

1. set the title to "Welcome" 
2. set the contents to "Hello World!" 
3. set html to "" 
4. set html to html & "<html>" & return 
s. set html to html & indent(1) & "<head>" & return 
6. set html to html & indent(2) & "<title>" & the_title & ..., 

"</title>" & return 
1. set html to html & indent(1) & "</head>" & return 
8. set html to html & indent(1) & "<body>" & return 
9. set html to html & indent(2) & "<table border=\"2\">" & return 
10. set html to html & indent(3) & "<tr>" & return 
11. set html to html & indent(4) & "<td>" & return 
12. set html to html & indent(S) & the_contents & return 
13. set html to html & indent(4) & "</td>" & return 
14. set html to html & indent(3) & "</tr>" & return 
15. set html to html & indent(2) & "</table>" & return 
16. set html to html & indent(1) & "</body>" & return 
11. set html to html & "</html>" & return 

18. on indent(indent level) 
19. set the_indent_string to 1111 

20. repeat indent_level times 
21. set the_indent_string to the_indent_string & tab 
22. end repeat 
23. return the_indent_string 
24. end indent 

279 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

280 

Notice the indent handler. lt starts by creating an empty string, then loops the number of 
times given by the argument, and concatenates a tab to the string each time it loops. 

ln every line of the script where we want a tab indent, we just call the handler with the 
required indent Ievel. The handler returns a string that becomes a part of the concatena
tion. There's no need for it to have its own line in the script. 

More looping concatenations 

Now let's imagine that we have two lists, one with names of people and one with their 
date of birth. We want to add these names to the table we created in the last script. 

What we'll need is a repeat loop that adds both the text and the HTML tags to the main 
HTML string. 

Herewe go: 

Script 9-4 

1. set the_title to "Names and Dates" 
2. set name_list to {"George", "Silvia", "Ben", "Frank"} 
3. set date_list to {"October 15th", "December 6th", "May 11th", ..., 

"January 15th"} 
4. set html to '"' 
5. set html to html & ~ 

"<html><head><title>" & the_title & "</title></head>" & return 
6. set html to html & "<body>" & return 
1. set html to html & "<table border=\"2\">" & return 
8. set html to html & "<tr>" & return 
9. repeat with i from 1 to count name_list 
10. set html to html & "<td>" 
11. set html to html & i & "<td>" 
12. set html to html & (item i of name_list) & "<td>" 
13. set html to html & (item i of date_list) 
14. set html to html & "<ltd>" & return 
15. set html to html & "<tr>" & return 
16. end repeat 
17. set html to html & "<ltr>" & return 
18. set html to html & "</table></body></html>" & return 
19. set the_path to (get path to desktop as string) & ..., 

"names_and_dates.html" 
20. open for access file the_path with write permission 
21. write html to file the_path 
22. close access file the_path 
23. set the_alias to the_path as alias 
24. tell application "Safari" 
25. activate 
26. open the_alias 
27. end tell 



OPERATIONS AND COERCION 

Notice the repeat loop starting at line 9 and ending at line 16. lt has an entire <td> tag 
that opens and closes, all the text for the row that includes items from the lists, and the 
<tr> tag that adds another row. 

lines 20, 21, and 22 save the text to a text file, and the rest of the line makes Safari open 
the HTML file and display it. 

Concatenating records 
When simply concatenating two records, the items from the second record are added to 
the first record. Figure 9-1 0 shows two records concatenating (in their natural habitat . . . ) 

09-10 

set my_recordto tname :~anaan·. htljhf:71 .5t 
set orhu_record to [cJry:"Pr<Widence·, srare:"RI"} 
set completc.. recordto my. record & othu.recor~ 

l name:"Hanaan·. ltdglrr.71 .5 , cJry:'Pr<Mdence·, sratc"RF'} 

, Oemlption Flgure 9-10. Simple 
concatenation of records 

When the second record contains a Iabel that is identical to a Iabel in the first record, the 
resulting record ignores the Iabel and its value from the second, or right-side record 
operand, as seen in Figure 9-11. 

set nJQ/n..course to (ftanu:'Soup", ma n:"Pasta', drlnk:'Wate(") 
set IIessen to ((orut'Cake', drlnk:"SSIake1 
set mou/ to maltt.course & llessUlj 

(sranu:'Soup', IJIQ/n:"Pasta", drln/c'Wate(', (ood:'Cake1 

Flgure 9-11. lf a duplicate 
Iabel is found in the secend 
record, it is dropped from 
the resulting record. 

281 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

282 

Lists and concatenation 

Concatenating two lists results in a single Iist containing the items of the left operand fol
lowed by the items of the right operand, as shown in Figure 9-12. 

Flgure 9-12. Two lists being concatenated 

lf one or more of the lists' items are lists themselves, these lists will remain intact and will 
not become a part of the main Iist. Figure 9-13 contains two lists. The items of the two lists 
are lists themselves, but they don't merge with the main Iist. The left operand is a two-item 
Iist, the right operand is a one-item Iist, and therefore the result is a three-item Iist. 

U1.2. 3L{4. s. 6L(~ 8, 9» 

Flgure 9-13. Only the two main lists combine into a single Iist when 
concatenating. List items that are lists remain intact. 



OPERATIONS AND COERCION 

Adding an item to a List 

Many times when working with lists, the intention is simply to tack on a value as the last 
item of the Iist. For instance, say we have a Iist of names, {'Joe", "Jill1. and we want to add 
a value to it to make {''loe", ''litt", "Bob1. 

The inclination would be to set the Iist to itself plus the new item, like this: 

set my_list to {"Joe", "Jill"} 
set my_list to my_list & "Bob" 

While this will work, there's another way to get the result you want. Adding a Iist to itself 
has to allocate temporary space in memory for the new Iist on top of the memory needed 
for the original Iist. This method can cause delays when adding items to long lists. 

So in order to add items to a Iist faster, all you need to do is set the end of the Iist to the 
item, like this: 

set my_list to {"Joe", "Jill"} 
set end of my_list to "Bob" 
--> {"Joe", "Jill", "Bob"} 

With the second method, however, the Iist items will be dispersed in memory, while using 
the first method, the Iist items will occupy adjacent memory locations. This means that 
while creating the Iist may be slower using the first method, using the Iist later on may be 
more efficient, at least a few milliseconds faster. 

Creating a List of lists 

The syntax we saw previously, setend of Iist, is also useful for tacking on a Iist to the end of a 
Iist, but leaving the original Iist intact. This is useful when you need to create a Iist of lists. 

ln the following script, we attempt to create a Iist of three lists: 

Script 9-5 (also includes the following script) 

set the_list to {} 
repeat 3 times 

set the_list to the_list & {1, 2, 3} 
end repeat 
the_list = {1, 2, 3, 1, 2, 3, 1, 2, 3} 

Not exactly our intention. However, try this instead: 

set the_list to {} 
repeat 3 times 

set end of the_list to {1, 2, 3} 
end repeat 
the_list = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}} 

Now that's more like it! 

283 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

284 

Insert to list handler 

As a little example of Iist concatenation, here's a subroutine that adds a given item to a 
given Iist at a given position. 

The parameters are, as mentioned earlier, the Iist you want to add to, the item you want to 
add, and the position. 

Script 9-6 

set the_list to {1, 2, 3, 4} 
insert_to_list(the_list, "a", 2) 

on insert_to_list(the_list, the_item, the_position) 
if the_position ~ 1 then --add to start 

set the_list to (the_item as list) & the_list 
else if the_position ~ (count the_list) then --add to end 

set end of the list to the item - -
else --add in middle 

set the_list to ~ 
(items 1 thru (the_position - 1) of the_list) & ~ 
the item & ~ 
(items the_position thru -1 of the_list) as list 

end if 
return the_list 

end insert_to_list 

Notice that in line 5 we have to coerce the item into a Iist. This turns the item into a Iist 
with a single item. The reason is that if the dass of the item is a string, then the result of 
the operation is a string. 

One of the shortfalls of the simplified handler shown previously is that if the item you 
want to add to the Iist is itself a Iist, the results will not be consistent. lf the item is inserted 
in the middle or at the start (position 1 ), as follows, then the result will be one Iist con
taining alt items of both lists: 

set the_list to {1, 2, 3, 4} 
insert_to_list(the_list, {"a", "b"}, 1) 
--> {"a", "b", 1, 2, 3, 4} 

ln the preceding example we add the Iist {"a", "b1 to the beginning of the Iist {7, 2, 3, 4}. 
The result is a single Iist. 

lf the item is added to the end of the Iist, it will remain a separate Iist, as you see here: 

set the_list to {1, 2, 3, 4} 
insert_to_list(the_list, {"a", "b"},S) 
--> {1, 2, 3, 4, {"a", "b"}} 

As an exercise, change the preceding handler to make sure that, if the item that has to be 
inserted is a Iist, it is treated equally no matter what position it is inserted into. 



OPERATIONS AND COERCION 

Concatenating other value classes 
Concatenating operands of value classes other than string, Iist, or record produces a Iist 
with two items, the left operand and the right operand. ln the following code the concate
nation operator is used with two date values. The result is a Iist with the two dates in it. 

(current date) & (current date) 
--> {date "Saturday, October 25, 2003 10:35:30 AM", ., 

date "Saturday, October 25, 2003 10:35:30 AM"} 

The reference to operator 
We use the reference to operator when we want to include objects in our script that would 
just not fit, mainly objects from applications. Think about it: your script can include text 
and numbers, but what happens when you want to set a variable to a specific lnDesign 
page, or a fotder on the hard disk? 

The reference to operator is most useful when the object you want to refer to has a value 
that AppleScript can get in one of the familiar classes such as number, text, Iist, etc. For 
instance, if you assign the text of a TextEdit document to the variable doc_text, you get the 
actual text in string form. Later on, even if the text of the document changes, the value of 
the variable doc_text will remain unchanged. See Figure 9-14 for an example. 

Figure 9-14. The text of a TextEdit document is assigned 
to a variable, but AppleScript returns the result as a string. 

Assigning the value of the document's text as string is OK if this is what you want, but what 
if you want a variable's value to be a reference to the document? This way you can use the 
variable to refer to the document anytime and get its current text. Figure 9-15 shows an 
example of how to do that. 

285 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

286 

tell ipplleatlon 'TutEdlt" 
5tl doc..rexr to a refe.rence to tut of document I 

end tel. 

every telCt of dotument 1 of appllatlon 'Tei«Edil" 

Flgure 9-15. When the variable is set to a reference to the text, 
you can always use it to get the current text of the document. 

So now that we have a variable whose value is a reference to the document's text, in order 
to get the actual string value of the object the variable refers to, we need to ask for the 
contents of the variable, as shown in Figure 9-16. 

ll.uord Stop Ru11 Compllt 

teil applleatlon 'TextEdlt" 
set doc..ttJil to a referenc:e to text of dowment I 
tonttms of d«..leKI 

end tell 
I 

Flgure 9-16. After we set a variable as a reference to an object, 
we may be able to retrieve the value of the object by getting its content. 



OPERATIONS AND COERCION 

lmplicit reference 
When we assign an application's object to a variable, we don't always have to explicitly use 
the reference to operator. Any application object that is not meant to return a text or num
ber value will automatically return a reference to the object. 

For instance, Iook at the following line: 

set the doc to document "letterhead" 

The value of the variable the_doc is a reference to the document. 

The difference is, though, that when we use the reference to operator, the object we refer 
to doesn't have to actually exist. Also, the reference itself will Iook different and may 
affect its function in the script during runtime. 

Let's evaluate the two following instances, both referring to a specific layer in an Illustrator 
document: 

Script 9-7 (also includes the following script) 

lnstance 1: 

tell application "Adobe Illustrator 10" 
tell document "brochure.ai" 
set my_layer to layer "images" 
end tell 

end tell 
--> layer 1 of document 1 of application "Adobe Illustrator 10" 

lnstance 2: 

tell application "Adobe Illustrator 10" 
tell document "brochure.ai" 
set my_layer to a reference to layer "images" 
end tell 

end tell 
--> layer "images" of document "brochure.ai" of ~ 
application "Adobe Illustrator 10" 

ln the first instance we do not use the reference to operator, but rather assign the object 
itself to the variable my _layer. Even though we mentioned the names of both the docu
ment and the layer, AppleScript (following lllustrator's scripting structure) assigned the 
variable the value layer 1 of document 1 ... without the names. 

ln the second instance, AppleScript set the variable my _tayer to a reference to a layer using 
the exact wording we used in the script: layer "images" of document "brochure.ai" ... 

Other applications may deal with that situation differently. The Finder, for instance, will 
also keep true to our language when we use the reference to operator, but if we simply 
write set theJolder to fotder 1, the Finder will set the variable theJolder to a reference 
that includes the folder's name. 

287 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

288 

The best thing to do is test, test, and then test some more. Always know exactly what value 
you will get and what the implications are. lf you refer to document 1, but then another 
document is added, the reference may not be pointing to the document you intended. 

References and the tell block 
Since references to application objects include the application itself, it is possible to use 
these references outside of the application's tell block. 

Figure 9-17 shows how we can create a reference to a page item in lnDesign inside the 
application's tell block, but then use the reference with the delete command outside the 
tell block. 

09-17 

Compile 

teil applicatlon "lfiDeslgn CS" 
teil document 1 

tell JJage 1 
sei my_ob]ea: to a reference 10 page ll.em 1 

end teil 
end teil 

end teil 
delete my_objea 
I 

Rnult I Event Log 

C> 

Figure 9-17. The object referred to in the my_object variable contains the 
application, which allows you to use it even outside the application's tel/ bleck. 

Consideration clauses 
Although most AppleScript commands seem to speak for themselves, there are a tot of 
hidden assumptions that AppleScript makes by default in order to execute commands 
more smoothly. 

All clauses, with the exception of the application responses clause, are relevant when making 
text comparisons. 



OPERATIONS AND COERCION 

The most common clause in text comparison is the case clause. You will notice it outside 
of AppleScript when you try your password for the fifth time wendering whether . . . the 
passward is case sensitive. What does case sensitive mean exactly? Weil, just by looking at 
two words we can see if they're the same, but are the words "free" and "FREE" the same? 
lf you ignore the fact that one is uppercase and the other is lowercase, then they are the 
same. 

This point is exactly what consideration clauses are alt about. 

ln AppleScript, by default, the following statement is true: 

"FREE" = "free" --> true 

But what if you want to be a bit stricter and check to also see if the case is identical? What 
you have to do is put the statement in a consideration clause, like this: 

considering case 
"FREE" = "free" --> false 

end considering 

Since the comparison operation in the preceding script happens inside the consideration 
clause block, AppleScript is forced to also check whether the case of the letters match, 
and therefore returns a false result from the operation. 

lgnoring 
While the letters' case is ignored during text comparison by default, some conditions you 
could possibly want to ignore are considered. Take for example white space and dashes: by 
default, the two Statements that follow will return a false result: 

"White-house" = "Whitehouse" 
"Apple Script" = "AppleScript" 

But what if we want to see if the correct answer was provided to the question "Where 
does the president live?", and we want to allow some latitude? What we can do is make 
the comparison while asking AppleScript to return a true result even if there's an extra 
hyphen or white space. Here is how we would do that: 

Script 9-8 

Set the_quiz_question to "Where does the president live" 
Display dialog the_quiz_question default answer "" 
Set user_answer to text returned of result 
ignoring white space and hyphens 

set answer_is_correct to (user_answer equals "Whitehouse") 
end Ignoring 
if answer_is_correct then display dialog "You got it!" 

ln the preceding example, even if quiz takers spelled "White house" or "White-house," 
they would still come up on top. 

289 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

290 

Now, what if we want to consider capitalization? For instance, the question is "Wh ich is the 
smallest state?" and we want to accept Rhode lsland and Rhode-lsland, but not rhode 
island. 

What we want to do is consider case during comparison, but ignore dashes. Here is how 
we do that: 

Script 9-9 (also includes the following script) 

considering case 
ignoring white space and hyphens 

11 Rhode Islandll is equal to 11 Rhode-Islandll --> true 
11 Rhode Islandll is equal to 11 Thode islandll --> false 

end ignoring 
end considering 

The reason that "Rhode lsland" was found to be not equal to "rhode island" is that we 
asked AppleScript to consider the case of the letters. 

Here's another way to make the same statement: 

considering case but ignoring white space and hyphens 
11 Rhode Island 11 is equal to 11 Rhode-Island 11 --> true 
11 Rhode Islandll is equal to 11 Thode islandll --> false 

end considering 

Consideration attributes 

So far we have looked at three attributes that AppleScript can consider when comparing 
strings: case, white space, and hyphens. Following is a detailed description of all possible 
consideration attributes. 

case 
lf considered during string comparisons, AppleScript will check to see if the capitalization 
is equal in the two strings being compared. By default case is ignored, and therefore when 
making string comparisons without case consideration, AppleScript ignores the case of the 
different strings. 

white space 
By default, spaces, tab characters, and return characters are considered in string compar
isons, which will make "whitehouse" different from "white house". lf white space is 
included in the ignore clause, the preceding two strings would come out equal. 

Script 9-10 
11 Slow motionll is equal to 11 Slowmotionll --> false 
ignoring white space 

II slow motionll is equal to II slowmotion II --> true 
end ignoring 



OPERATIONS AND COERCION 

diacriticals 
Diacritical marks, or accents, can be either considered or ignored during string compar
isons. (These are character accents such as ', ', ·, ·· , and - .) Diacriticals are considered by 
default, so if you want the string "resume" tobe considered equal to "resume", then you 
have to ask AppleScript to ignore diacriticals. 

Script 9-11 

"resume" is equal to "resume" --> false 
ignoring diacriticals 

"resume" is equal to "resume" --> true 
end ignoring 

hyphens 
As we saw earlier, by default, strings with hyphens will evaluate to be not equal to the 
same string with hyphens. 

Script 9-12 

"Wall-Street" is equal to "Wall Street" --> false 
ignoring hyphens 

"Wall-Street" is equal to "Wall Street" --> true 
end ignoring 

expansion 
Expansion deals with Ietter combinations found in some European languages and their 
two-letter counterpart. 

For instance, by default AppleScript would consider "~"not equal to "AE", "CE" not equal 
to "CE", etc. Unless of course you tell AppleScript to ignore diacriticals. 

Script 9-13 

"AE" is equal to "lf." - -> false 
ignoring diacriticals 

"AE" is equal to "lf." --> true 
end ignoring 

NOTE Note that the AppleScript re(erence manual states the opposite. 

punctuation 
By default, AppleScript considers punctuation marks (. , ? : ; ! \ ' " ') when comparing 
strings. lf the punctuation attribute is ignored, the strings are compared as if these punc
tuation marks were not there. 

291 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

292 

Scrlpt 9-14 

"it's" equals "its" --> false 
"1,000.00" equals "1.000,00" --> false 
ignoring punctuation 

"it's" equals "its" --> true 
"1,000.00" equals "1.000,00" --> true 

end ignoring 

application responses 
The application responses consideration attribute has nothing to do with comparing text, 
and little to do with operators. lt is described here briefly and covered in detail in 
Chapter 16. 

When AppleScript sends a command to an application, it waits until the command is 
through executing before moving on to the next script statement. 

While this is good under normal operation, there are instances where you want to leave 
the application with a command and move on to other things. 

Here is how you do that: 

Script 9-15 

ignoring application responses 
tell application "Adobe Photoshop CS" 

do action "convert all files to jpeg" 
end tell 

end ignoring 
doTheNextThing() 

ln the preceding example, AppleScript will tell Photoshop to perform the action and move 
on to the next statement. 

Which value classes can be coerced? 
As discussed before, coercing a value is converting it into a different value dass by using 
the as operator. 

13 as string --> "13" 
"13" as real --> 13.0 

ln these two examples we coerced an integer value into a string and then coerced a string 
value into a real. 

These operations worked for two reasons: 



OPERATIONS AND COERCION 

First, the value dasses were interchangeable. That means that the value's original value 
dass can be legally coerced to the value dass we coerced it into. lf it is not, an error will 
occur, as shown in Figures 9-18 and 9-19. 

09-18 

setrhl!..vDJueto 11. 2, 3) a.s recordl 

Ruu~ 

Flgure 9-18. in this script we try to coerce a Iist value into a record. 

09-18 

C•n"t m.1kol1. 2. J) lnto • rocord. 

Flgure 9-19. The result of the script shown in Figure 9-18 is an 
error, telling you that you can't coerce a Iist into a record. 

This is not to say, though, that the reverse wouldn't work; in this case it would have. 

The second condition for a successful coercion is that the values themselves fit weil with 
the new value dass. For instance, here is what may happen when converting a string into 
an integer: 

"3" as integer --> 3 

The preceding one worked, but what about this one: 

"Hello" as integer --> error number -1700 

This didn't work because although the dass itself is legal, the actual value we tried to 
coerce isn't. 

293 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

294 

So which dasses can be coerced to which? Following is a Iist of each value dass and the 
dasses it can be coerced to, with some notes and exceptions. 

boolean, class, constant, and data value dasses can be each coerced into a single-item Iist 
only. 

Date 

Set x to true as list--> {true}-- a boolean coerced to a list 
Set x to string as list--> { string }--a class coerced to a list 

Dates can be coerced into strings, and into a single-item Iist: 

Set x to (current date) as string--> ~ 
"Tuesday, October 28, 2003 5:06:29 PM" 

The exact format of the date is determined by the Date and the Time tabs in the 
International panel in System Preferences. 

Integer 

An integer can be coerced into a string any day without any restrictions. 

An integer can also be coerced into a real, which will be the integer with a decimal point 
and a zero behind it. 

Set x to 3 as real --> 3.0 

And as with most other value dasses, you can coerce an integer into a single-item Iist. 

Singte-itern list 

A single-item Iist can be coerced into any other dass, given that the item in the Iist can be 
coerced into that dass. 

{3} as integer --> 3 
{"lalala"} as real --> error -1700 

Multi-item list 

A Iist with multiple items can only be coerced into a string as long as alt the items them
selves are cool with the notion of turning into strings. 

{1, 2, {"a", "b"}, (current date), "bumbum", 33.33} as string 
--> "12abTuesday, October 28, 2003 5:22:03 PMbumbum33.33" 



OPERATIONS AND COERCION 

Real 

A real value can be coerced into a string and a singte-itern Iist without any trouble. 

lf the real value has no fractional part, like 1 0.0 or 2.0, then it can be coerced into an inte
ger as weil; otherwise, it has to be rounded. 

Record 

Records can only be coerced into a Iist. All that happens is that they shed their Iabels. 

String 
Strings that match the required format can be coerced into integers or real values. Strings 
can also become a singte-itern Iist. 

Mixing operators and the mighty parentheses 
One of the fun things about creating operations is that the same operation with the same 
result can be spread over multiple lines in the script, or be crammed into a single line. 
While operations that are spread out are usually easier to read, in many cases you would 
want to create more complex operations that contain more than one operator and multi
ple operands. 

What's important to remember is that an operation has one or two operands and a single 
operator. Complex operations, then, are really Statements made up of many nuclear oper
ations. Let's Iook at the following operation as an example: 

5 + 5 + 3 

ft appears to have three operands and two operators, right? Not really. The way 
AppleScript attacks this statement is by first resolving the leftmost operation: 5 + 5. The 
result is then the left operand for the following operation: 10 + 3. 

So in a sense, AppleScript does this: 

5 + 5 = 10 
10 + 3 = 13 

When resolving such statements, AppleScript uses the table of precedence to determine 
two things-the order in which operations should be resolved (shown in the Order col
umn in the following table, which originally appeared in the AppleScript Language Guide), 
and what order in which to resolve operations whose operators have the same precedence 
Ievel, such as multiply and divide (shown in the Form of association column). 

295 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

296 

Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Operators 

0 

+,-

A 

*, /, div, mod 

+,-

as 

<,$;,>,;;:::: 

=.-:~-

not 

and 

or 

Form of association 

Innermost to outermost 

Unary 

Right to left 

Left to right 

Left to right 

Left to right 

None 

None 

Unary 

Left to right 

Left to right 

Understanding precedence rules 

Type of operator 

Grouping 

Plus or minus sign for 
numbers 

Exponentiation 

Multiplication and 
division 

Addition and 
subtraction 

Coercion 

Comparison 

Equality and inequality 

Logical negation 

Logical for Boolean 
values 

Logical for Boolean 
values 

While the order of precedence resolves some of the confusion, there are quite a few 
operators with the same order of precedence, like plus and minus. The Form of associa
tion column in the preceding table explains how AppleScript deals with statements that 
contain multiple operators that have the same precedence Ievel. 

Left to right and right to left 
Operators marked "Left to right" are evaluated in that order when more than one opera
tor from the same precedence exist. For instance, the Operation 

12 + 5 + 30 -- 7 

will be resolved as follows: 

12 + 5 = 17 -- leftmost 
17 + 30 = 47 

The result of the previous operation (17) is now the left operand. 



OPERATIONS AND COERCION 

Unary 
A unary operator is one that takes a single operand to its left, for instance: 

-7 

The minus operator in this case turns the positive number operand to its right into a neg
ative number, and a negative number into a positive one. 

lf you type multiple unary operators, they start evaluating from the one closest to the 
operator, going further and further away. Look at the following statement: 

Not not not true 

Here's how AppleScript Iooks at the preceding statement: 

Not (not (not true)) 

ln fact, if you do use the statement without the parentheses, when you compile the script, 
AppleScript will add parentheses for you! 

None 
The operators marked none can't be a part of a multi-operation statement that is not sep
arated with parentheses. 

3 > 4 > 5 --> error! 
(3 > 4) = true --> works because of the ••• parentheses. 

Use parentheses! 

While it's important to understand the order of precedence, you should not get to a point 
where it matters. The reason is the number orie operator on the Iist: parentheses. 

lf you write Statements that contain more than one or two operations, you should wrap 
each operation in parentheses. 

Since AppleScript evaluates parentheses the same way you learned in school, from the 
innermost out, it should be easy enough for you to use them. 

There are two benefits for using parentheses: readability and predictability. 

When working with complex multi-operation statements, you want to be able to analyze 
the intended result and tweak the order of operation in the most efficient manner. lf you 
only use parentheses where you have to, the statement will require you to memorize the 
table of precedence (or constantly Iook it up ... ). Using parentheses for each separate 
operation will make it easier for you to arrive at the statement that produces the results 
you intended. 

Oh, one more thing-did I mention· you should use parentheses? 

297 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

298 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

Operations 
Operations are expressions that use operators to derive values from other values. 

Coercion 
Coercion is when a value changes over from one value dass to another. 

Explicit coercion 
To explicitly coerce a value from one dass to another, use the as operator. 

set the_number to "120" as integer --> 120 
set the_string to 75.5 as string --> "75.5" 
(not true) as string --> "false" 

Coercions that occur inside statements should be endosed in parentheses. ln the follow
ing statement, AppleScript will wrap at least the first coercion statement in parentheses if 
you don't: 

("120" as integer) + ("120" as integer) --> 2 

Coercion from Iist to string is common, especially when working with text. 

set the_string to "Home" 
set the_list to characters 3 thru 4 of the_string --> {"m", "e"} 
set the_string to the_list as string --> "me" 

You may coerce data multiple times in the same statement. 

set the_price to ((characters 2 thru -1 of "$12.95") as string) .., 
as real 
--> 12.95 

Automatie coercion 
AppleScript will try to coerce values on its own when it sees fit. While such coercions are 
sometimes helpful, your script will be more legible and easier to change if you use the as 
operator explicitly. 



OPERATIONS AND COERCION 

AppleScript will coerce other values into strings in order to concatenate them with other 
strings, if needed. ln the statement that follows, AppleScript has to coerce the integer 15 
into a string: 

"July " & 15 --> "July 15" 

ln this statement, however, the integer comes first, so AppleScript doesn't perform the 
coercion. lnstead of a string, you get a Iist. 

15 & " of July" --> {15, " of July"} 

Boolean operators 
Boolean operators operate on Boolean values and expressions. Any expression in a 
Boolean operation must evaluate as a Boolean. These are AppleScript's Boolean operators: 
not, and, and or. Following are some examples of using Boolean operators. 

The not operator is a unary operator. lt works by changing the operand to its right. 

not true --> false 

The and operator will return true if both left and right operands are true. 

true and true --> true 
(12 > 6) and (length of "Shaq" is 4) --> true 
(5 = 5) and ("Yes" is "no") --> false 

The or operatorwill return true if either the left or right operands are true. 

true or false --> true 
false or false --> false 
(12 > 6) or (12 < 6) --> true 

You can create complex Boolean statements that contain multiple Boolean operations. 

if (email contains "@") and .. 
((email ends with ".com") or (email ends with ".net")) and., 
((offset of "@" in email) > 1) then 
set valid_email to true 
end if 

Comparison operators 

Camparisen operators can operate on many types of values, but the result of a 
comparison operation is always a Boolean. 

AppleScript includes the following comparison operators: =, ::t-, >, <, <::, ~. 

Check out the Variations table in this chapter for other text variations of each operator, 
such as is greater than. 

299 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

300 

Each value dass uses a slightly different set of comparison operators. For class-specific 
operators, see the corresponding chapters: Chapter 3 for strings, Chapter 4 for numbers, 
Chapter 5 for dates, and Chapter 6 for lists and records. Following are a few comparison 
operations: 

3 > 2 --> true 
8 = "8" --> false 
(current date) > date "1/1/2000" --> true 

Containment operators 

Containment operators also return a Boolean value. They check whether a particular value 
contains, or is contained by, another value. 

The containment operator group includes the following operators: starts with, ends with, 
contains, doesn't contain, is contained by, and isn't contained by. 

Each operator listed here has variations that can be seen in this chapter. Following are a 
few containment operator examples: 

"Friendship" contains "Friend" --> true 
{12, 14, 16} contains 14 --> true 
{"ABC", "DEF"} contains "A" --> false (the list contains "ABC" but ..., 
not "A"). 

Math operators 

AppleScript allows you to use the following math operators: 

• * (multiply) 

• +(plus) 

• -(minus) 

• I (division) 

• div (integral division) 

• mod (modulo, remainder) 

• "(exponent) 

Here are a few examples: 

3 * 5 --> 15 
72 I 12 --> 6 
3 " 2 --> 9 

For a complete explanation of math operators in AppleScript, see Chapter 4. 



OPERATIONS AND COERCION 

The concatenation operator 

AppleScript uses the ampersand (&) as the concatenation operator. 

You can concatenate strings, lists, and records, like this: 

"Micro" & "Soft" --> "MicroSoft" 
"Steely" &space & "Dan" --> "Steely Dan" 
{1, 2, 3} & 4 & {5, 6} --> {1, 2, 3, 4, 5, 6} 

Adding items to a list 
To add items to the end of a Iist, you can either use the concatenation operator or the 
following statement: 

set end of {1, 2, 3} to 4 --> {1, 2, 3, 4} 

This method works differently when adding lists to lists. When using the end of style 
operation, the lists are added as individual units. 

set the_list to {} 
set end of the_list to {1, 2, 3} 
set end of the_list to {4, 5, 6} 
set end of the_list to {7, 8, 9} 
--the_list --> {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} 

When using concatenation, the lists all merge. 

set the_list to {} 
set the_list to the_list & {1, 2, 3} 
set the_list to the_list & {4, 5, 6} 
set the_list to the_list & {7, 8, 9} 
--the_list --> {1, 2, 3, 4, 5, 6, 7, 8, 9} 

The reference to operator 

The re(erence to operator returns a reference to an object, instead of the value of the object. 

The following statement returns the string that is the secend word of another string: 

set the_string to "Double Impact" 
to word 2 of the_string 

The following statement, however, uses the re(erence to operator to get a reference to word 
2. ln this example, if the variable the_string changes, the variable the_string_word_re(will 
change as weiL 

set the_string to "Double Impact" 
set the_string_ref to a reference to the_string 
set the_string_word_ref to a reference to word 2 of the_string_ref 

301 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

302 

Consideration clauses 
You can use a consideration block to alter the default result of a comparison operation. 
The consideration clause teils AppleScript to either consider or ignore specific attributes. 
The attributes that can be considered or ignored are case, white space, diacriticals, 
hyphens, expansion, and punctuation. 

Following are two examples of using the different consideration clauses. For more exam
ples, see earlier in this chapter. 

For considering case: 

"AppleScript" = "applescript" --> true 
considering case 

"AppleScript" = "applescript" --> false 
end considering 

Or, for ignoring white space: 

"8oo 555-1212" is equal to "8005551212" --> false 
ignoring white space and hyphens 

"800 555-1212" is equal to "8005551212" --> true 
end ignoring 

Details previously ... 
The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here, refer to earlier sections in this chapter. 



if sodDUe{r ~ 0 then 
sei .the..drlnlt. t4 "soda" 
ser sDdDLII!(no sodai_Ie(r • 1 

eise lf bars_ll!(t > o then 
sei the..drlnk to "beer" 
sei beers_lt(t to beers_le(t - 1 

else if KJdkas_le/1 > o then 
sei thc..drlnk to "Vodka" 
sei vodk~s_k/t ICJ vodkas_left • 

eise 
sei thc_dJ'ink to "nothing" 

end lf 
retum rnt_dr1JJ1t 
gtt_drlnt 

if cor_color • "'green· or L .. ,._ . ...... 

lf mpg < 30 11ten 
lf age ~ 3 then 

lf corr ~ 1 
buy l"noon•." 

end tf 
e11d lf 

end if 
end if 
I 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

306 

The AppleScript language, like other programming languages, revolves around two things: 
a few simple concepts, and a Iot of syntax. One of these concepts is the conditional state
ment. The concept behind conditional statements is so basic that most kids can master it 
by the time they can put a sentence together. 

ln AppleScript, the ability to make decisions is what gives your script artificial intelligence. 
The more conditional statements you use, attached to different sensors, the more organic 
and fluid your script is. 

ln AppleScript, we refer to an if statement as a conditional statement or a conditional 
statement block. 

Conditions are everywhere! They do not need a conditional statement to exist. The state of 
every property of every object of every application, the text or buttons that are returned 
from a dialog box, the value and properties of any variable you use in your script-these 
are all conditions that you can test and use to your advantage. The only thing stopping you 
is your imagination (and how many hours you can bill for ... ). 

The idea of a condition is that as complex as it may be, the result is prima!: it can be either 
true or false. Even the most complex Statements boil down to true or false. 

The basic conditional statement 
The basic syntax for a conditional statement, shown in Figure 10-1, is arranged in what we 
call a tell block. A tell block starts with the word "if," followed by the first condition, and 
ends with the line end if. 

lf Cllll<lmer_Ol~ ls less than 2 1 then 
set oliow_pw.-chtn e to falsj! 

nd lf 

u 

Flgure 1G-1. The 
basic te/1 block 

ln Figure 10-1 you can see the basic conditional statement. Line 1 has the condition. We 
test whether the value of the variable customer _ age is less than 21. 

The second line acts on the findings. That means that the code in line 2 will only execute 
if the statement in line 1 is true. lf the statement isn't true, it is then false, and the script 
will skip the lines following line 1, until the script gets to either the end of the if statement 
block or a line that starts with the word "else." 



TEACHING YOUR SCRIPT TO MAKE DECISIONS 

ln the case of the script in Figure 1 0-1, the third and last line indicates the end of the 
conditional statement. 

From the dictionary 
A bit later in this chapter we will go into the different ways you can use the if statement. 
Following is a dictionary-definition-style description of the different flavors of the if-then 
statement. 

The variable we use is boolean_expression. The value ofthat variable can be either true or 
false, and it may be a complex expression replacing the variable. 

1. The one-liner: 
if boolean_expression then statement 

2. The if-then statement block: 

if boolean_expression then 
statement -- comment: execute if boolean_expression is true 

end if 

3. The if-then-else statement block: 

if boolean_expression then 
statement comment: execute if boolean_expression is true 

else 
statement 

end if 
comment: execute if boolean_expression is false 

4. The if-then-else statement block, where there are two or more different Boolean 
statements to follow: 
if boolean_expression then 

statement -- comment: execute if boolean_expression is true 
else if another_boolean_expression then 

statement -- comment: execute if another_boolean_expression ~ 
is true 
end if 

5. The if-then-else statement block. Same as the previous one, but with a provision in 
case none of the Boolean expressions used are true: 

if boolean_expression then 
statement -- comment: execute if boolean_expression is true 

else if another_boolean_expression then 
statement comment: execute if another_boolean_expression is true 

else 
statement comment: execute if no boolean expression was ~ 

true thus far. 
end if 

307 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

308 

Figure 10-2. 
A conditional 

statement is 
used with the 

eise clause. 

Flgure 10-3. 
A conditional 

statement's 
flow chart 

Offering alternatives 
ln the script shown in Figure 10-1, there's a single conditional statement. lf the condition 
is false, then line 2 of the script will be skipped, and the statement will be over without 
having anything happen. 

AppleScript makes it easy to specify what happens if the condition set in the first line of 
the conditional statement happens to be not true. 

Sometimes you will want to act only on a condition being true or false, but sometimes you will 
want to perform one or more actions if the condition is true, and other actions if it is false. 

ln that case you use the eise clause. When used by itself, the eise clause divides the condi
tional statement into two parts: what happens if the condition is true, and what happens if 
it is false. lt's that simple! 

lf there's more juice, pour some for yourself; if there isn't, get some water. 

LO 02 

t•ll ~phca~ll>n "Findll'" 
lf dislr. "File S!rver:· extstS tho!n 

ll"oakt nt:\N folde,• in di1~ ·n~e ~rwr:· 

~~~-
d 15play d llloq 'Fitast rTOJnt server in~ uy igaln"

•nd if
end tell

True

Make new folder
in disk

"File Server : "

Start script

Does disk
"File Server : "

Ex i st ?

False

Display dialog
box alerting
the user to

mount the disk

The script in Figure 1 0-2 shows
the eise statement being used.

Note that the example in Figure
10-2 should be clear enough, but
just to make sure, Figure 10-3
shows a flow chart that describes
the script.

TEACHING YOUR SCRIPT TO MAKE DECISIONS

More conditions
Many times, a conditional statement will be made out of multiple conditions. ln this case,
the first condition that is true will be executed and the conditional statement will be over.

Here's how it might work logically:

You're at a party and you want something to drink. lf there's soda, you drink that. lf there
isn't, you Iook for the beer. lf there's nothing else, go for the hard stuft. Although I know
many people who may find my logic a bit backwards ...

ln AppleScript, the conditional statement for that search for liquid may Iook like this:

if exists "soda" then
set contents of glass to "soda"

else if exists "beer" then
set contents of glass to "beer"

else
set contents of glass to "Vodka"

end if

The first condition checks for soda. lf there is soda, it makes no difference if there's also
beer or vodka. You will drink soda and skip the beer and vodka part. lf there's no soda, the
beer gets a chance. Again, if there's beer, the vodka is out of luck and it makes no differ
ence if there is or isn't any left.

Now, suppose if you go to hunt for drinks for yourself and a friend. Your friend, for argu
ment's sake, has the same preference as you do: he would rather get soda, then beer is
OK, and so on.

To write a script that will fetch drinks for both of you, you will need to run the conditional
statement twice.

Multiple condition script

You can do this in a couple of ways. lf the script will always Iook for drinks for two people
only, you can explicitly run the condition twice, as shown in the following script:

Script 1G-1

1. local drink_A, drink_B

2. set sodas_left to 4
3. set beers left to 1
4. set vodkas_left to 5

s. --drink for me
6. if sodas_left > o then
7.
8.

set drink A to "soda"
set sodas_left to sodas_left - 1

309

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

310

9. else if beers_left > o then
10. set drink_A to "beer"
11. set beers left to beers left - 1 - -
12. else if vodkas left > o then
13. set drink A to "Vodka"
14.
15.
16.
17.
18.
19.

set vodkas left to vodkas left - 1 - -
else

set drink_A to "nothing"
end if
--drink for a friend
if sodas_left > o then

20. set drink_B to "soda"
21. set sodas left to sodas left - 1 - -
22. else if beers_left > o then
23. set drink_B to "beer"
24. set beers_left to beers_left - 1
25. else if vodkas_left > o then
26. set drink B to "Vodka"
27. set vodkas_left to vodkas_left - 1
28. else
29. set drink_A to "nothing"
30. end if

How this script works

Let's examine the preceding script. Lines 2, 3, and 4 set the inventory. Each drink has a vari
able that indicates how many single servings are left in the category.

Later on, lines 6 through 17 contain the conditional statement block that determines your
drink, or what the script calls drink_A. At the end ofthat conditional statement, the inven
tory has gotten updated to compensate for the drink you got.

Lines 19 through 30 do the same thing. but this time the result assigns a drink value to the
drink_B variable.

Can this script be made better?

What instantly irritates me about the preceding script is that the two main chunks, lines 6-17
and lines 19-30, are nearly identical! This is wasteful coding, and will simply not do ...

When you encounter two parts of your script that are very similar, there is usually a way to
condense them, and make one of them take care of both tasks.

The two main forms of doing that are subroutines and repeat loops (or a combination of both).

ln this case, we could either put the conditional statement into a subroutine and call it
twice, or with a bit more thought we can create a Iist of people you want to get drinks for
and loop through that Iist. Each loop will determine the drink for the next person in the Iist.

TEACHING YOUR SCRIPT TO MAKE DECISIONS

I know we are getting slightly sidetracked here, but we just can't leave the poor script
looking like that. So what we'll do is put the conditional statement into a subroutine and
call it twice, as shown in Figure 1 0-4.

10-04

Rtcord ~to ll.u.n Compll~

global sodos_le{r. llfus_lf(r. llt!dkos_ltfr
loul dtfl1k..A. drlnk..B

1et sodtJs_ltft to 4
1et llfets_~r ro I
set lfOdkt~s_le(r ro 5

set dtlniLA to gcr..dri11kO -drlnk for me
sel dTinlr._B lo get.dtin)dj ··dnnk for a frie nd

on gtr.drlnk()
lf sodos_lf(r > 0 then

sei rhe.dr/111< to "soda"
set sodas_Je(r to sodas_left • l

else lf beus_/dl > 0 then
set tht..dfl11k ro "beer"
sei beei'Lfe(r to beus./dl · I

else lf 110dk11s_le(r > o then
set r~drt11k to 'Vodka"
nt vodi<lls_k(t to vodkf!s_le(c • 1

!!lse
set the... drink tG ' nothing'

end lf
retum tM...dr/1111.

end gll. drlnk:
I

"soda'

Blelltl.oQ 1

0

Flgure 111-4. The conditional statement has been put in a subroutine.
Now, it appears only once but can be called multiple times.

ln a real-world situation, I would have wanted to start off by loading the inventory from a
database (or user input) and then outputting the final inventory (i.e., after the drinks have
been taken) at the end of the script.

Complex Boolean statements
What's important to remember when working with conditional statements is that the part
of the statement that lies between the word "if" and the word "then" boils down to one
thing: a Boolean value that can be either true or false.

311

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

312

Although the Boolean result may be simple, the logic used to arrive at it may be very com
plex. Until now we looked at a simple Boolean operation, sodas_left > 0, which simply
evaluates one number.

Figure 10-5 shows a complex Boolean operation that is used in the conditional statement.

• ~ •J.nd ·~..,. •orccc~~n cand ·cMft.~ t.or~.l• t;.,.. c~~t t,:: tl'tcn
.ill'n'.CIN-.t/J ~

_ _.L

Flgure 1G-5. A conditional statement using a complex Boolean operation

To make this situation a bit easier to swallow, what I usually do is start by assigning the
result of the complex Boolean operation to a well-named variable. Then I can use that vari
able in the conditional statement instead of the monstrous operation itself. Figure 10-6
shows an example of this.

•. :o 06

•n lti..U..._fll. l '-l...., to •
mt.MJo'\,.:1 andl (~ • .b 01 ((~r-1o C ~d !cwtfl_c Or «Md!f»nJJ) a~~d CQt~bR_ ..)

Jt .__,t..MI,.IIIoLN I-
MI~~r'C'~tW'!Lt'()

... du
I

0

I

Flgure 1o-6. The same complex Boolean operation assigned to a variable before
being used in a conditional statement

Nested conditional statements
A nested conditional statement is made of multiple conditional Statements that are nested
in a conditional statement block.

You put forth one condition; if it comes true, the next condition is tested, and so on.

Figure 1 0-7 shows a simple nested conditional statement.

TEACHING YOUR SCRIPT TO MAKE DECISIONS

0

top Complle:__ _______ ---:--1·

lf (car_color • "green' or car_color • "yellow"l then
lf car_prlce s. what_Lca'l.a((ord then

tluy_caro
end lf

end I~

Flgure 1D-7. A simple nested conditional statement

By the nature of their functionality, some scripts will contain more conditional statement
than others. Some scripts contain so many that their entire structure is one huge condi
tional statement.

One way to make working with complex conditional statements easier to handle is to use
small conditional statements and nest them in other conditional Statements. At first it may
Iook like a waste of time and lines, but as the script becomes larger and more difficult to
handle, you will start seeing the benefits of this style of writing.

Let's Iook at an example-say that you're in the market for a car. You travel from dealer
ship to dealership and can present your requirements in two different formats:

The first format is this single statement: if you have a car that is yellow or green, uses less
than 30 MPG, can fit five, is less than three years old, and costs less than $1 0,000, 1'11 take it!

The second format goes like this: do you have cars that are yellow and green?

Hmm, OK, of these cars, do any use less than 30 MPG?

OK now, out of these cars, are any three years old or younger?

And so on ...

Format 1 is better since it'll get you out of the dealership more quickly. However, since it's
in the nature of scripts to change around, what if new requirements pop up?

Let's say that if the car costs more than $8000, it also needs to have a CD changer. While
you could build that into your Boolean operation, it would be much simpler to modify
your script if the conditional statement is made up of multiple nested Statements.

313

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

314

From Ieeking at the two scripts in Figures 1 0-8 and 10-9, you can see that when you nest
conditional Statements inside other conditional Statements, the script is langer, but it is
also easier to read and will be much easier to add to later on.

Rcci! rd Stop Run Compile

Ir (cor.coiDt • "greer~" ar cor.color • '"yelloW'") and
(mP(I < 30) and (olf! :S 3) and (cosr :S 1 OOOOl
then
buy_carQ

end I~

Flgure 111-8. The car search script in one conditional
statement with a long Boolean operation

10-0~

Recilrd Stop Run Compile

lf car_color • "green· or co,._color • "yellow" then
lf mpg < 30 then

lf agt ~ 3 then
lf cost .~ I oooo then

buy_caK)
end lf

end lf
end lf

end if
I

0

Flgure 10-9. The same car search script with the Boolean
operation broken down into multiple Ievels in the conditional block

Another big advantage of spreading out your conditions over multiple nested statements
is that you can now add more statements in the different Ievels of the conditional state
ment, a thing you couldn't do with one Boolean operation.

TEACHING YOUR SCRIPT TO MAKE DECISIONS

Shortcuts
Here are some neat tricks to help you make the most out of conditional Statements and
save you some typing too.

Condition in a single line
What separates the conditional statement (and the tell command) from other control
statements such as Iooping and error capturing (try) is that you can start and end it on a
single line, like in the following script:

if time_left = o then set game_over to true

This form of conditional statement is useful when the statement is simple and has no fore
seen potential for an eise clause.

One place I use it a Iot is when exiting repeat loops.

if (count text frames = o) then exit repeat

Unnecessary conditional Statements

Sometimes you want to check if a condition is true or false just in order to set the value of
a variable to that true or false value. You may write the following:

Script 10-2 (includes the following script)

if the_stop_light_color is "green" then
set walk_now to true

else
set walk_now to false

end if

This does appear to make sense, but it is far too long. lnstead try the following:

set walk_now to the_stop_light_color is "green"

The expression the_stop_light_color is "green" evaluates to either true or false. That value
can be directly assigned to the walk_now variable without a conditional statement.

315

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

316

ls it true?

To check whether a Boolean value assigned to a variable is true or false, it isn't necessary
to type the full statement. Simply use the variable itself, like this:

lnstead of typing

if Boolean_variable = true then do_something()

type

if Boolean_variable then do_something()

lf you want to find out if the value is false, simply add the not operator before the variable.

if not tired_yet then write_another_chapter()

This last line says that the handler write_another_chapter will be called if the variable
tired_yet is false.

Shorthand writing

Like in other AppleScript statements, there are certain words you can omit that
AppleScript will fill in for you. The only problern with this is that when you then switch to
doing some programming in another language that doesn't have the same exact shortcut
facilities (such as RealBASIC), you have to remember to write everything in.

One such shortcut AppleScript has is the word then. Simply omit it, and AppleScript will
add it for you when it compiles. The other word you can omit in every control statement
is the word after the word end.

Try this: start a new script window and write the script in Figure 1 0-1 0. Then compile the
script, which will end up looking like the one in Figure 1 0-11.

11 1_illll_lilzy
type_ le11s
end!

Flgure 1D-10. The words
then in the first line and
if in the last line have
been omitted.

TEACHING YOUR SCRIPT TO MAKE DECISIONS

lf l_om_kuy thtn
rypt .. .ll\u

end if

Power wrap-up
This section summarizes the chapter in an intensive-reference style .. Use this part to Iook
up facts related to the chapter without the chatter ..

Basic conditional statement
When your script has to decide between executing one set of Statements or the other, you
use a conditional statement.. There are a few ways of writing conditional statements, but
they alt include the two words "if" and "then .. "

Here is an example of a simple conditional statement:

Scrlpt 10--3 (includes followlng scrlpts)

if some_boolean_expression = true then
display dialog "The answer is right"

end if

ln the preceding example, only if the variable some_boolean_expression is true will the
line containing the display dialog command execute ..

The Boolean expression doesn't have to be a variable; it can be a complex Boolean opera
tion, as in this example:

if (the_chip contains "GS") or (the_chip contains "GS") and ...,
the_model contains "Power" and ((the_RAM ~ 1000) or,

(the_MHZ ~ 1000)) then
buy_mac()

end if

317

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

318

No matter how complex, if the expression between if and then on the first line evaluates
as either true or false, it is legal.

The two preceding scripts could have been written using one line only, like this:

if some_boolean_expression = true then display dialog ~
"The answer is right"

if-then-else
lf the script is going to choose from two options, the eise part of the statement has to sep
arate those choices, like this:

Script 10-4 (lncludes following script)

if some_boolean is true then
--perform these statements

else
--perform these other statements

end if

To allow even more options, you can add branching with additional eise if lines, like this:

if some boolean is true then
--perform these statements

else if some boolean is true then
--perform these other statements

else if some_boolean is true then
--perform these other statements

else
--perform these other statements

end if

The final eise line is not required. lf included, it handles all the cases that did not fall within
the previous conditions.

Also note that if a variable is already a Boolean, you don't have to include the is true or is
{aise part, simply use the variable itself, like this:

if document exists then
display dialog "The answer is right"

end if

Or from within an application's tell block:

Script 10-5

tell application "InDesign CS"
if (exists of document 1) then

display dialog (name of document 1)
else

TEACHING YOUR SCRIPT TO MAKE DECISIONS

display dialog "Create a document first"
end if

end tell

Details previously . . .
The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, refer to earlier sections in this chapter.

319

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

322

The repeat loop is one of the two concepts that make AppleScript so powerful (the other
one being conditional statements).

These loops allow you to perform the same action multiple times. Figure 11-1 shows an
example of a simple repeat loop.

repeat 3 time~
bel!p
delay I .d reput

, Oucliptloo

Flgure 11-1. A simple repeat loop

OK, so this didn't do much; it just beeped. Also, the operation was performed identically
each time, without any variation. But, isn't that the idea: an assembly line that performs
the same exact operation every time? Yes and no. See, if you have an assembly line in a
soda can factory, for instance, you may want your repeat loop to punch in the top of the
cans. The operation will be identical, but the can will be a different can every time.
ldentical cans, but different instances.

Or, what if you need to create a repeat loop that paints the white strips on the road? The
road is the same road, but the position of the line changes.

There can in fact be many attributes that change from one repetition to the next to make
the production line more intricate.

The most basic form of a repeat loop is this:

repeat
--Do something ..•

end repeat

Notice that the statement starts with the word "repeat" and ends with an end repeat line.
This is a requirement for all repeat statements.

What's sorely missing in the preceding repeat statement is a consideration the wizard's
apprentice didn't take into account: what will make the repeat loop stop!

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

There are a few ways to tell AppleScript to stop Iooping. Some rely on an actual number,
and some allow the specific situation to determine the stopping point. For instance, if you
loop through folders and do something to each folder, the number of repetitions will
depend on the number of folders, which is unknown at the time you write the script.

You can also include one or more statements inside the repeat statement block that either
exit that repeat loop, or tell AppleScript to continue Iooping.

Following are the different variations of the repeat control statement, followed by a
detailed explanation of each one.

From the dictionary
This section lists the different flavors of the repeat loop. These flavors are explained in
detaillater on in the chapter.

Script 11-1 (including the 6 following scripts)

Repeat forever:

repeat
--statement/s to repeat

end repeat

Repeat a specific number of tim es:

repeat n times -- n is an integer
--statement/s to repeat

end repeat

Repeat with a loop variable:

repeat with i from start_integer to end_integer-- i changes value ~
with each loop

- -statement/s to repeat
end repeat

Repeat with a loop variable, jumping by intervals other than 1:

repeat with i from start_integer to end_integer by step_interval
-- i changes value with each loop by the step_interval

--statement/s to repeat
end repeat

Repeat until a certain Boolean condition becomes true:

repeat until boolean_expression
--statement/s to repeat

end repeat

323

1111

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

324

Repeat while a certain Boolean condition is true:

repeat while boolean_expression
--statement/s to repeat

end repeat

Repeat (forever)
Weil, you never would really repeat forever, although l'm sure OS X is made to run contin
uously for that long ...

By forever I mean that the repeat statement itself doesn't contain any provisions for ending
the loop.

While Iooping forever does have a place in scripting, believe it or not, you can, and should,
include an exit repeat statement inside the repeat loop block. More on that a bit later.

just when would you repeat forever?

One instance that comes to mind is a script agent. An agent is a script that stays open and
checks for a condition for as long as it's running. lt repeats in an endless loop and may
Iook at a hot fotder or for a certain application to be running to kick in a process. When
the process is over, you may want the script to exit the repeat loop and end, but you may
not. You may want the script to continue Iooping all day waiting for that condition to
occur again.

lnterrupting a running script

A script that is in the middle of an endless loop can only be interrupted by pressing CoMMAND+.

(period), or by force quitting using CoMMAND+OPrtoN+EsCAPE, but this isn't necessary.

Exiting a loop programmatically

Another way to use the simple repeat statement without specifying an end to it is by
including an exit repeat statement.

This statement is contained for the most part in a conditional statement. lf it isn't, the loop
will end after the first repetition.

The advantage of using the exit repeat statement instead of some other repeat statement
types is that the condition can be placed anywhere in the repeat block, not stuck in the
first line.

Figure 11-2 shows an example of a repeat loop with an exit repeat Statement inside a con
ditional statement.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

rtput
.. ja sruff
lf ctna'"-cond•lon tho!n -t111S can)~ ttu! or Ia 'e

txlt I"'IMU
end lf
··:lo 01~r stuff

end ~pellt
I

Flgure 11-2. A plain repeat
loop with a condition to
exit the loop

You may be asking yourself what happens if the condition is never met. Welt, then
AppleScript will run the script forever. lt is your job as a scripter to make sure your loops
run their course and come to an end if and when appropriate. Remember, Command+.
(period) will stop a script or quit a script application that's in the foreground. You will need
to use that during testing.

Repeat a fixed number of times
This simple repeat variation doesn't offer much support, and leaves most of the work to
you. lt is useful when you want to perform the same operation with no variation from one
loop to the other.

Figure 11-3 shows an example of a repeat loop that will repeat five times.

C>

~R~~c~o~rd _______ Ru_n __ ~c_omp~il_e ________ -y~

rep~al 5 times
-do stu

end nl!~llt

Flgure 11-3. A repeat loop
that repeats five times

325

1111

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

326

You can use a variable to vary the number of repetitions, like in the following script:

Script 11-2

Display dialog "How many times should I beep?" default answer "5"
Set beep_count to text returned of result as integer
repeat beep_count times

beep
delay 1

end repeat

The preceding script asks the user to enter a number, and then repeats a beep command
the number of times dictated by the user.

What's done is that the user's response (which comes as a string) is coerced into an inte
ger. However, there's no verification to make sure the user doesn't cancel or enters a value
that cannot be coerced into an integer.

Loop variables
The reason why the previous repeat loop flavor doesn't give us much to werk with is that
for a repeat loop to be versatile, you usually need at least one variable that will change
with each loop.

Let's take a Iook at the following two examples:

You have a Iist of phone numbers, and you want to add the area code to the ones that
have only seven digits. While we won't get into the details of this script, looking at the loop
requirements, we see that each repetition will treat a different number from the Iist.

You want to write a script that loops through a folder's contents. lt then takes every TIFF
file and adds it to an image catalog in lnDesign. Here we need a variable that will hold the
path to a different item in the current fotder with every repetition.

AppleScript gives us a couple of ways to integrate that variable into the loop from the outset.

The first one we'lllook at is a repeat loop that hands you a counting variable, which holds
an integer that changes value with every repetition. The secend one is automatically set to
the next item in a specified Iist.

Let's take a closer Iook at these two repeat loop variations.

Repeat with a variable
Repeat with a variable allows you to specify an integer variable and have that variable
increase (or decrease) in value with each repetition, as shown in Figure 11-4.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

Record Stop Run . Complle

n!J>Nl wlth n from I to 10
display dialog "This ls reptdtlon n.umber • & n

~nd n!pl!llt

I

'bunon returned:"'OK1

CJ

Figure 11-4. The variable i increases in value with each
repetition, starting with 1 all the way to 1 0.

This repeat flavor also altows us to play with the way the repeat variable increases or
decreases. Let's Iook at a few examples:

Using variables to define the range

As you may imagine, you can use any numbers, or integers stored in variables, to start and
end the specified range.

Script 11-3

repeat with n from start_integer_variable to end_integer_variable
--do something with n •••
end repeat

This is useful since you don't always know the number of repetitions you want to perform,
and the starting number may not be 1. Many times, you want to treat the first item differ
ently, or start from another number for any other reason .

. This is one of the most widely used variations of repeat loops. What often happens is that
you need to perform a certain operation on a range of application objects-for instance,
alt the pages of an lnDesign documents, the records in a FileMaker's found set, or alt the
files in a particular folder. For that, you use the repeat loop along with the count com
mand. The count command along with the object range returns the number of applicable
objects, which in turn becomes your repeat loop's number of repetitions. Figure 11-5
shows an example of this. ln the example, the script needs to add the word "folder" to the
end of the folder name.

327

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

328

ll-05

Re,otd R_un __ c_om....;p:....ll_e __________ T"""""i

set rlle_(oldu_potlt to ((oose folde) as s;trlng
t~ll appliut.on "Finder•

tell fotder rht_{oldu _parh
reput wlth t from 1 to (COUI'It folders)

set tht_ foldu. Mme to name of fokler 1
lf the_foldu_name does not end wlth "Folde r" then

set new.I1Qme to rht...{oklu. name & • Folder·
set name of folder I to new. I1Qme

end lf
end repeat

end tell
end tel

Flgure 11-5. A repeat loop with a variable used for the range

Changing increments
The first variation of this repeat loop flavor Iets you change the increments that the loop
variable increases by. ln the previous examples, the loop variable increased by 1 each time,
but what happens if we increase it by another number? All we have to do is add the by
argument along with the increments we want to use. let's Iook at the following example:

Script 11-4

set the_list to {}
repeat with i from 1 to so by 5

set end of the list to i
end repeat
the_list = {5, 10, 15, 20, 25, 30, 35, 40, 45, SO}

lf we take this concept a step further, we can create the entire multiplication table, and
what the heck, let's make it in HTML:

Script 11-5

1. set html to '"'
2. set html to html & "<html>" & return
3. set html to html & "<head>" & return
4. set html to html & "<title>Multiplication table</title>" & return
s. set html to html & "</head>" & return
6. set html to html & "<body>" & return

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

7. set html to html & "<table border=1 cellpadding=2>" & return
8. set html to html & "<tr>" & return

g, repeat with i from 1 to 10
10. repeat with j from (1 * i) to (10 * i) by i
11. set html to html & II <td> II
12. set html to html & j
13. set html to html & "</td> 11

14. end repeat
15. set html to html & 11 <tr> 11 & return
16. end repeat

Now this is quite a repeat loopo For one, it is two repeat loops nested one inside the othero

The outer repeat loop simply counts from 1 to 10, assigning the loop value to the variable i,
which becomes the driving force behind the inner repeat loopo

The inner repeat loop uses the variable jo What gives j the correct integer value for the
multiplication table is that every time the loop executes, the start point and end point
move upo Here is the inner repeat statement the way it appears in the code:

repeat with j from (i * 1) to (i * 10) by i

ln the first loop, the value of the variable i is 1, and the inner repeat loop Iooks like this:

repeat with j from 1 to 10 by 1

ln the second loop the value of i is 2, and therefore the repeat statement translates into
this:

repeat with j from 2 to 20 by 2

The third loop is where i is 3 and the values of j are 2, 4, 6, 8 0 0 0 20:

repeat with j from 3 to 30 by 3

The values of j are 3, 6, 9, 12 o o o 30 and so on, alt the way to the finalloop where the value
of the variable i is 1 Oo

repeat with j from 10 to 100 by 10

The values of j are 1 0, 20, 30, 40 0 0 0 1 000

Inside the loop, we add the <td> tag, followed by the actual value assigned to the variable j,
followed by the closing <ltd> tago

Figure 11-6 shows the resulting web pageo

329

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

330

Counting backwards

Flgure 11-6.
The web page resulting
from the multiplication
table script

AppleScript can also repeat backwards. This means that the value of the repeat variable is
higher at the start than at the end. To do that, you must use a negative number in the by
clause:

Script 11-6

Repeat with i from 100000 to 1 by -1
Display dialog "Shuttle launch in " & i & " seconds" giving up after 1

End repeat

While the preceding script won't land me a job at NASA, it shows how a repeat loop starts
high and counts down. Note that it is not enough to specify from high to low numbers;
you must add the by negative number at the end.

Counting forwards and backwards in the same loop
What if a loop calls for one variable to count both up and down? For that you will need
some sort of a rig. You'll need to count up, and have the value of the repeat variable
reversed inside the loop.

Scrlpt 11-7

repeat with i from 1 to 10
set negative_i to -i

end repeat

The variable negative _i will start from -1 alt the way to -10.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

Repeat in a List
ln many cases what you need is not an integer variable that goes up in value, but rather
the value stored in the next item in a Iist.

For instance, if you have the following Iist of names:

{"Ben", "Jen", "Stan"}

Figure 11-7 shows how you can create a variable that will have the next Iist item in every loop.

Set IUI171t. l lsr tO ('"Be n". 1tn", "Sttn,
repeat wlth rhe..r~~~me ln Mme..Nsc

display dialog (the..illlmt u stting)
endirepul

Flgure 11-7. A repeat loop
that repeats in a Iist

This script will display a dialogbox with the value of the variable the_name in each repetition.

Naming repeat variables

Notice that before I used single-number variables such as i and j as the repeat variables.
I did that because the variable's value had no special meaning other than being an integer.
ln this case, the variable actually holds a value that's an item from a Iist. So if the Iist is
called names_list, then it's only fitting that the repeatvariable will be called the_name.

Funny variable behavior

ln AppleScript, we get used to the fact that an expression always returns its value as a
result. When we run the statement 2 + 3, the result is always 5. Also, when literally asking
for a Iist value, we get the contents of the Iist item, as shown in Figure 11-8.

331

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

332

set name....list to l"Ben', 'Jen·. "Sten1
ltem 2 af name_llst

I

1en·

Desalpt ion Flgure 11-8. ltem 2 of the
name_list returned "Jen"

While we can count on that in normal AppleScript behavior, it is slightly different when
repeating in a Iist. Look again at the script in Figure 11-7. The line that displays the dialog
box goes like this:

Display dialog (the_name as string)

But wait a minute, isn't the value of the_name supposed tobe a string? Nope, it isn't.

The value of it is a reference to the Iist item: item 1 of name_list, item 2 of name_list, and
item 3 of name_list. To use it as a string, or any other value dassforthat matter, you have
to coerce it to that dass as I did in the script.

ln the Panther release of AppleScript, the value of the repeatvariable the_name would
still be item 1 of name_list, etc. but the displaydialag command now knows how to eval
uate the reference into a string, so the as string coercion operation I used is no Ionger
needed.

Another repeat in list example

Back to the name Iist we looked at earlier. let's say that you have a report template called
report template. rtf.

What your script will do is

• Open the template file in TextEdit.

• Set the first word in the document to the person's name.

• Save the document with the person's name plus the word "report."

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

Here is the script:

Script 11-8

set names_list to {"Ben", "Jen", "Stan"}
repeat with the_name in names_list

set reportFilePath to (path to desktop) & the_name
set reportTemplatePath to (path to desktop) & "report template.rtf"
tell application "TextEdit"

activate
open file reportTemplatePath
tell document 1

set word 1 to the name
save in reportFilePath
close saving no

end tell
end tell

end repeat

Notice that throughout the script we use the repeat loop variable twice: once to set the
report file path and the other time when we do the variable data publishing. Welt, sort of ...

How useful is this, anyway?
ln my opinion, repeating in a Iist isn't all that useful and doesn't save you much time.

What happens most of the time is that you eventually expand on the repeat loop func
tionality and you end up needing that variable that counts the loops. So here's what you
do to get the same functionality without repeating in a Iist.

lnstead of

set names_list to {"Ben", "Jen", "Stan"}
repeat with the_name in names_list
--> do something
end repeat

try th is script:

Scrlpt 11-9 (includes previous script)

set names_list to {"Ben", "Jen", "Stan"}
repeat with i from 1 to (count names_list)

set the_name to item i of names_list
--> do something with the_name
end repeat

Although the secend method is one line Ionger than the first, it gives you the benefit of a
loop variable (i in that case), which you will find usefullater on.

333

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

334

repeat while and repeat until
ln some situations, the number of repetitions will be determined by a condition that is ful
filled rather than by a number you know in advance or the number of items in a Iist.

Using repeat while and repeat until, you can attach a condition to the repeat loop that will
exit the repeat loop when the result of the condition changes. For instance, if we have a
cookie jar we're trying to empty (one cookie at a time), the condition is whether the jar is
empty or not. Here's how we can script it:

Repeat until (jar is empty)
Eat cookie

End repeat

ln the preceding script, which won't run on any of my Macs, the condition jar is empty
comes back false as long as there are still cookies in the jar. As soon as there aren't, the
script exits the repeat loop.

Now in the preceding example, we could've theoretically counted the cookies and
repeated a number of times that is equal to the number of cookies; however, in some
cases, there's no number that can be easily determined in advance. We'lllook at a couple
of examples later on.

The opposite of repeating while a condition is true is repeating until a condition is true. ln
this case, we start with the condition being false and loop until it becomes true. This
method is the exact opposite of the repeat while syntax.

Note that the repeat while and repeat until methods can be used interchangeably by
adding the not operator before the condition. You choose one over the other simply by
how it sounds and how weil it fits what you do.

The syntax for the two examples goes as follow:

repeat while (condition is true)
-- do something
end repeat

The opposite of that is

repeat until (condition is true)
-- do something
end repeat

Figures 11-9 and 11-1 0 show simple examples of repeat until and repeat while.

ln Figure 11-9 we have a virtual pile of playing cards. We want to see how many cards we
flip before the card total reaches over 1 00. So we have a variable that adds the card val
ues, and a variable that counts the cards. The script willloop until the cards total reaches
1 00, and will return the number of cards flipped so far.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

set cordr_cornrrer til 0
set rorlll_ct;rrds_ VQ/we to 0
~peilt untll toriiLcQrds_w;rlue > 1 00

set Cllrd_ vr;r/~ !Cl random number 13
set totol_ cords_ vt1f11e to totol_cords_ vt1l11e +

cord_vr;rlue
set cllrds.countu to cords.counter + 1

Uld reput
relum c<Ud.s_countuj

17

(De.scrlptlon

Flgure 11-9. Repeating until the total card value reaches over 100

ln the script shown in Figure 11-1 0, the loop simply checks whether the file exists. When
distilling a PostScript file into a PDF using Acrobat Distiller 5, for instance, Acrobat Distiller
won't tell you when the PDF is complete. This loop can come in handy for delaying the
script until the PDF file has been created.

____ co_m~pl_lc ________________ ~

set pdf_parh til (path to desktop) &. "temp.pdr 1.5 strlf\9
tell appO<ation "Finder'

reput whlle (exists of file pdf_fHlfHJ ls ralse
delav I

end repeat
end telll

Flgure 11-10. Repeating while the file doesn't exist

335

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

336

The script in Figure 11-11 is a modification of the script in Figure 11-9. lt repeats while the
card total is less than 21. Look at the record that the script returns: it contains the card
count, the total card value, and the cards themselves.

The problem? We asked the script to loop while the card value is less than 21, but the card
value at the end isover 21. This happens because when the repeat loop condition exe
cutes, the card value has already been raised above 21! At that point, alt the repeat loop
can do is stop, but the darnage has already been done, and the card total has climbed
beyend 21.

set caras_coumer to 0
set roraLcards_value to o
set cardl to II
repeat whlle roraLcaras_value < 21

set card..value to random numbe r from 1 to 1 3
setend of cards to card_va/ue
set roraLcaras_vaiiJl. to roral_cards_valw + card_IIQ/IJl'
set cards_coumu to cardl_countl'-r + I

end repeat
set cara_ruora to ~

jcard_count:cards_counter .,
, towlcards_ volue:roraLcards_ va/ue
, cards:cardsl ..,

{card_coum:3. rotaLcards_value:23. cards:l9, 3 , 11 H

Oucrlptlon Ellent 1.09

Flgure 11-11. Does the repeat until continue one loop too many?

So how do we fix this problem? We use a simple repeat loop with a slightly more complex
conditional statement, as shown here:

Script 11-10

repeat
set card value to random number from 1 to 13
if (total_cards_value + card_value) ~ 21 then exit repeat
set end of cards to card_value
set total_cards_value to total_cards_value + card_value
set cards_counter to cards_counter + 1

end repeat

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

ln the preceding script, the condition to stop the repeat isn't a part of the repeat State
ment, but rather a separate if statement. lt checks wh~ther the total goes above 21 before
it actually adds the new card to the total.

Here's a neat example of the repeat until command. This example shows a script that
arranges files in folders for archiving. The script has to make sure that each fotder has files
whose accumulated file size is almost, but not quite, 600MB (or any other specified size)
so that they can fit on a disk.

The script combines two loops.

Script 11-11

1. set max_folder_size_in_mb to 600
2. set images_folder to path to pictures folder from user domain ~

as string
3. set archive_folder to "Macintosh HD:archive:"
4. set subfolder counter to 1
5. tell application "Finder"
6. repeat until (count files in folder images_folder) is o
1. set folder_name to "folder " & subfolder_counter
8. set archive_sub_folder to make new folder~

in folder archive_folder with properties {name:folder_name}
9. set image_list to list folder ~

alias images_folder without invisibles
10. set file_list to {}
11. set total MB to o
12. set file counter to 1
13. repeat while ((total_MB is less than max_folder_size_in_mb))
14. set fileName to item file_counter of image_list
15. set file size to size of ~

(info for alias (images_folder & fileName))
16. set file_size_in_MB to (file_size I 1024 I 1024)
17. set total_MB to total_MB + file_size_in_MB
18. set file_counter to file_counter + 1
19. move file fileName of folder images_folder ~

to archive sub folder
20. if (count files in folder images_folder) is o then
21. return
22. end if
23. end repeat
24. set subfolder_counter to subfolder_counter + 1
25. end repeat
26. end tell

The first loop in the preceding script starts at line 6. lt will repeat until the fotder we're
archiving is empty.

Notice that there's no mention of how many files there are or should be, only a simple
condition: keep Iooping while there are more than zero files.

337

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

338

The second repeat loop starts on line 14, andrelies on a variable called total_MB. This vari
able is a real value and is being added to incrementally. The size of every file that the script
processes is added to the total_MB variable. The second loop repeats while the value of the
total_MB variable is under the specified amount in the maxJolder_size_in_mb variable.

ln this script we also make use of two counters: the file_counter variable counts the files,
and the subfolder_counter counts the subfolders.

Other ways of counting loops
The Iooping method of repeat with variables from x to y is the only one that has a built-in
loop counter. This does not mean that you can't create your own loop counter.

lt is common practice to use a counter variable in some instances with any of the other
repeat loop flavors.

What you do is start by assigning an initial value to your counter variable, and then
increase it, decrease it, multiply it, or divide it by any value you want.

This method gives you the most flexibility over your counter variable.

Here's an example:

Set counter_variable to 1
repeat

set counter_variable to counter_variable * 2 - 3
do something with counter_variable

end repeat

The variable counter _variable will have the following values: -1, -5, -13, -29, -125, -253,
-509, etc.

Why would you need such an odd set of numbers? Welt, I doubt you'll ever need this one,
but it does demonstrate what flexibility you have with your counter variable, should you
ever need it.

Avoid looping when possible
Although the repeat loop is a staple we can't do without, its use should be limited as much
as possible. The reason for that is speed and efficiency.

What you can use instead of a repeat loop in some cases is the whose clause. The whose
clause targets multiple items at the same time and allows you to apply an action to alt of
them tagether much faster than if you had a repeat loop target each one individually.
lmagine standing in front of 1 00 people alt wearing different color hats and having to ask
alt the red-hat wearers to take oft their hats. With a repeat loop it would be first person
with red hat, take it oft; second person with red hat, take it oft; third person with red hat,
take it oft, etc.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

With a whose clause, it would be every person whose hat is red, take your hats off.

ln the following example, we will delete all files that have the word "temp" in the name.
First, the repeat version:

tell application "Finder"
tell folder theFolder

repeat with i from 1 to (count files)
if name of file i contains "temp" then

delete file i
end if

end repeat
end tell

end tell

Or, the smart version that uses the whose clause:

Script 11-12 (includes previous script)

tell application "Finder"
delete every file of folder theFolder whose name contains "temp"

end tell

lt's not only that the code is shorter and more to the point, but the execution time will be
shorter-much shorter in situations where there are many objects to loop through.

Power wrap-up
This section summarizes the chapter in an intensive-reference style. Use this part to Iook
up facts related to the chapter without the chatter.

A simple repeat loop

The simplest repeat loop will repeat until stopped either by an exit repeat statement inside
the loop, or by the user pressing CoMMAND+. (period). With every repetition the script will
be executing the statements between the repeat line and the end repeat line.

repeat
--Do something ...

end repeat

339

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

340

Exiting a repeat loop

You exit a repeat loop with the exit repeat statement. This statement usually sits in a con
ditional Statement that determines when the loop has reached its potential. Here's how
the exit repeat statement is used:

repeat
--Do something .•.
if time_to_stop_loop is true then

exit repeat
end if

end repeat

Repeating a fixed number of times

Use the following version of the repeat statement to repeat a specific number of times:

repeat 12 times
--Statements to execute repeatedly

end repeat

Loop variables

Loop variables are variables that automatically change with each repetition. ln the follow
ing script, the variable i is the loop variable. lt will start with the value of 1 and increment
by 1 with every repetition. The loop will stop when the value of i has reached the number
indicated at the end of the repeat line.

repeat with i from 1 to 10
--The value of the variable i starts with 1

--and grows by 1 with each loop
end repeat

Another example:

repeat with i from 1 to (count characters of user_name)
--Statement to execute repeatedly

end repeat

We can use the by parameter to change the repeatvariable to any other number. The loop
in the following script will have 20 repetitions:

repeat with i from 5 to 100 by 5
--The value of the variable i starts with 5 and grows by 5 up to 100.

end repeat

You can also count backwards.

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

Script 11-13

repeat with i from 20 to o by -2
--The value of the variable i starts with 20 and
--decreases by 2 until it reaches o.

end repeat

Repeat in a list

When you have a Iist whose items need to be processed in order, you can make the loop
variable take on the value of the next item in the Iist every time. ln the following example
the value of the loop variable will be a different value from the employee_names Iist:

Script 11-14

set employee_names to {"Jena","Jack","Bonnie","Frank"]
repeat with the_name in employee_names

--The value of the variable the_name
-- starts with "Jena" in the first loop, then "Jack", etc.

end repeat

repeat while

You can repeat while a certain condition is true. This allows you to repeat the execution of
statements without setting a predefined loop count. The following script willloop as long
as there's an open document in FileMaker Pro. Since the repeating statement closes the
front open document, alt documents will be eventually closed, the Boolean expression
document 7 exists will evaluate as false, and the loop will conclude.

Script 11-15

tell application "FileMaker Pro"
repeat while (document 1 exists)

close document 1
end repeat

end tell

repeat until

The repeat until flavor of the repeat loop works the opposite way from the repeat while
statement. You supply the repeat loop with a Boolean expression, and as soon as that
expression evaluates as true, the loop will stop.

Script 11-16

tell application "FileMaker Pro"
repeat until (count documents = o)

close document 1
end repeat

end tell

341

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

342

Using counter variables
Counter variables are like loop variables, but you, the scripter, decide on their value. The
typical countervariable will increase in value by 1 with every loop. You can have multiple
counters that serve different purposes, as in the following script:

Script 11-17

set year_counter to o
set dog_year_counter to o
repeat

set year_counter to year_counter + 1
set dog_year_counter to dog_year_counter + 7
set the_message to "After " & year_counter & .,
"years, your dog is really" & dog_year_counter & "years old."

try
display dialog the_message

on error -128 -- user canceled
exit repeat

end try
end repeat

Avoiding loops

When automating tasks in applications. try to avoid using repeat loops in favor of using the
whose clause. Besides ending up with a shorter and cleaner script, the script will also exe
cute faster. The following two scripts perform the same action of changing the Iabel of
files that are over two weeks old. The first one will use a repeat loop and the second will
use the whose clause.

Script 11-18

set the_folder to "Macintosh HD:Images Folder:"
tell application "Finder"

repeat with i from 1 to (count files of folder the_folder)
if (creation date of file i of folder the_folder) > .,

((current date) - (days * 14)) then
set label index of file i of folder the_folder to 1

end if
end repeat

end tell

And the whose clause version:

THE ASSEMBLY LINE: CREATING REPEAT LOOPS

Script 11-19

set the_folder to "Macintosh HD:Images Folder:"
tell application "Finder"

tell (every file of folder the_folder whose creation date > ~
((current date) - (days * 14)))
set label index of it to 1

end tell
end tell

Details previously . . .
The last part of this chapter is a summary of the entire chapter. For more details on any of
the items here, refer to earlier sections in the chapter.

343

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

346

This chapter details the features related to user interaction. ln various situations you need
to get the user involved du ring the execution of your script.

While AppleScript does provide ways for the user to interact with the script and provide
some input during script operation, these interaction facilities are minimal. AppleScript
was designed for accessing data and manipulating it, and therefore doesn't include robust
interface tools. lf your solution calls for a more complex interface than the commands
provided by the AppleScript (and detailed in this chapter), you have to Iook into other
tools. These tools start from third-party scripting additions such as 24U that allow you to
design more robust dialag boxes. To create solutions that include multiple complex win
dows with controls such as pop-up menus, images, movies, etc., you should Iook into using
a development tool such as FaceSpan or the more complicated AppleScript Studio. Both
FaceSpan and AppleScript Studio are explained in this chapter.

The best example for user interaction in AppleScript is, perhaps, the displaydialag com
mand, which can display a message, request the user to enter text, or dick a button.

The display dialag command and other user interaction commands are all a part of the
Standard Additions scripting additions that come installed as part of the Mac OS.

display dialog
The displaydialag scripting addition is one of the most useful commands, and one of the
first you will try in AppleScript, or in any other programming language.

The Standard Additions dictionary defines two display dialog-related items: the display
dialag command and the dialog reply record.

From the dictionary: display dialog command

Following is the Standard Additions dictionary definition for display dialog:

display dialog: Display a dialag box, optionally requesting user input
display dialog plain text -- the text to display in dialog box

[default answer plain text] -- the default editable text
[buttons a list of plain text] ~
-- a list of up to three button names

[default button number or string]
-- the name or number of the default button

[with icon number or string]
-- the name or ID of the icon to display ..•

[with icon stop/note/caution] ~
-- ••• or one of these system icons
[giving up after integer]

-- number of seconds to wait before automatically dismissing ~
dialog

Result: dialog reply
-- a record containing the button clicked and text entered ~
(if any)

USER INTERACTION

From the dictionary: dialog reply

The following is the specification of the dialog reply record:

Class dialog reply: Reply record for the 'display dialog' command
Properties:

button returned plain text [r/o]
-- name of button chosen (empty if 'giving up after'

was supplied and dialog timed out)
text returned plain text [r/o]

-- text entered (present only if 'default answer' was supplied)
gave up boolean [r/o]

-- Did the dialog time out? (present only if 'giving up after' ~
was supplied)

The most basic form

The basic form of the command allows you to display a simple message in a dialog box
along with two buttons, OK and Cancel. Figure 12-1 shows that basic display dialog com
mand and its resulting record, and Figure 12-2 shows the dialog box itself.

0

(bulton rewrned:"OK1

, Dosulptlon - Ewnllog ,

HelloWorldl i '

Flgure 12-1. The script shows the
simple displaydialag command.
The Result tab in the lower split
view shows the record
AppleScript returned once the
user clicked OK.

Flgure 12-2. The dialag boxthat
was displayed when the script ran

lf you Iook at the script result in the Result tab in Figure 12-1, you will notice that the
result is a record with a single item. The Iabel is button returned, and the value is "OK". This
record will actually have more items in it when we add more parameters to the display
dialag command.

For now, we can see that the button returned (the button the user clicked) was the OK
button.

347

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

348

The erroneous Cancel button

let's try to run the script and dick the Cancel button.

Hmm ... where's the result? No record this time? What happened isthat AppleScript gen
erates an error when the Cancel button is dicked. We can get more information about it
if we trap it using the try . . . on error control block.

Create a new script and copy the text from the script in Figure 12-3.

lry
dlsplay dlalog "llello Workll"

on errur error_text
dlsplay dlalog uror_rexr

e~try

; Dmrlptlon ! j Ewnt Lov)

Flgure 12-3. Trapping the Cancel button error using the try block

Now run the script and dick the Cancel button to the first dialog box. This will generate
an error.

As explained in detail in Chapter 15, if you place an identifier after the on error line,
AppleScript will create a variable with that identifier containing the error message. ln sim
ple terms, the variable error_text, which could have been x for alt intents and purposes,
will get the text of the error message.

The second dialog box will display that text. This will be, in effect, our own error message
dialog box.

As you can see for yourself in the dialog box shown in Figure 12-4, the error AppleScript
returned was a User Canceled error. This error has an error number of -128.

(Cancel) @~~

Flgure 12-4. The dialog box showing the error message

USER INTERACTION

Custom buttons
By default, AppleScript gives you the OK and Cancel buttons. However, you can easily
define one, two, or three buttans of your own.

To define buttons, we use the buttons argument followed by a Iist of button names as
strings. Each string will become a button.

A Iist with more than three items will generate a parameter error, and an empty Iist will
prompt AppleScript to use the default OK and Cancel buttons.

When running the script in Figure 12-5, the dialog box shown in Figure 12-6 will be displayed.

12-05

Compilt

dlsplay dialag 1>o somethlng7" bunons ~
I l"Yes·. 'No". "Maybe1

[bunon retumed: 'No1

0

Flgure 12-5. You can create your own dialog buttons.

r---11
Oo somethlng?

Flgure 12-6. The dialogbox with the custom buttans

lf you use text that is too long for the button, AppleScript will produce a dialog box with
wider buttans to try and accommodate your text. All buttans are stretched equally, and
the widest button you will get can have about 20 characters.

There's no way to change the type font size or style of the dialog box. For that kind of con
trol, you need to upgrade your skill to the "everything is possible" land of AppleScript
Studio, FaceSpan 4.0, or other third-party scripting additions.

349

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

350

Default button
What's missing from the dialog box in Figure 12-6 is a button that will execute when the
RETURN key is pressed. This is called the default button.

You can turn a button into the default button by using either the name or sequential num
ber of one of the dialog box's buttons.

Running the script in Figure 12-7 will produce the dialog box shown in Figure 12-8.

dlsplay dlalog "Do somethlngr bunons -
("'Yes·. "No". "Maybe1-

default bunon "Ma'/bl!•

(b utton retur""d. "No1

Flgure 12-7. The default button is specified.

Do somethlng?

Flgure 12-8. The dialog box with a default button

The default button argument may also take an integer between 1 and 3. 1 would be the
leftmost button in the dialog box. This means that to get the same result as shown in
Figure 12-8, you could have specified the default button as 3 instead of "Maybe".

Deciding which button is the default one can p\ay an important rote. What you have to
assume is that for the most part, people don't read dialog boxes. There's even a phrase
that says "lt's a Mac, just dick OK ... " This aspect of human nature forces you to make the
default button the button with the least harsh consequences. For instance, the default
button in a dialog box that reminds users for the last time that the script is about to erase
their hard disk should be the Cancel button, not the OK button.

USER INTERACTION

Showing icons in dialog boxes

The right icon in a dialog box is a bit like the score in a movie: it sets the mood. A dialog
box that informs the user that the process has completed should probably have the note
sign, while alerting the user that something did or might go wrong can be aided with the
stop icon.

There are four icon choices in all:

• Stop

• Note

• Caution

• And, the default choice, having no icon at all

You specify an icon by adding the with icon argument to the display dialag command,
followed by the choice of icon.

For example:

Display dialog "Are you sure you want to do this?" with icon stop

Notice that the word "stop" isn't a string; instead it's a constant defined in the display
dialog standard scripting addition.

You can also specify an icon by number. The number 0 will give you the stop icon, the
number 1 will display the note, and 2 will show the yellow-triangle caution sign.

Getting text input from the user

Beginning pragrammers derive special satisfaction from getting information back from
users, and AppleScript makes that real easy to do.

All you need is to add a default answer parameter to your display dialag command,
followed by a string. When you run the script shown in Figure 12-9, AppleScript will show
you the dialog box that appears in Figure 12-10.

(ltxt re!urned:"John Doe". bunon returned:""OK1

• O.>oiptlon Ewmlot ,

Flgure 12·9. A command that will
display a dialog box with a user text
input field, shown in Figure 12-10

351

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

352

Enter your name:

Flgure 12-10. A simpledialogbox
with a text input field

Specifying the default text parameter in the displaydialag command will tell AppleScript
to add the input field to the dialag box. The string you supplied as part of the default text
parameter is the text that appears by default in the field when the dialag box is displayed.

Out of the box, AppleScript allows only a single text field. With some creativity, you can
stretch this field a bit, but you only get one.

There are a few ways to create custom dialag boxes. You may be able to find a third-party
scripting addition with some more dialag box support. One such scripting addition is 24U
from 24U Software (www.24usoftware.com/).

My favorite way to create custom dialag boxes is to create a standalone AppleScript Studio
shell application. The application runs in the background, and has a few windows that can
be shown or hidden.

Using user-entered text

Notice the result panel in Figure 12-9. Until now, the result record had a single item
Iabeted button returned. Now, we have a new item added on: text returned.

The text returned item of the dialag reply record contains a string that is the text the user
typed.

Only dialag box commands that include the default text parameter will have the text
returned item in the dialeg reply record.

Later on in this chapter we will Iook at different ways to validate the text users enter.

How long do dialog boxes display?

Dialog boxes may display forever when shown outside an application's tell block. Inside a
tell block, the dialag box will expire after 120 seconds, or a different amount of time if
specified using the timeout block.

You can, however, take centrot over the length of time the dialag box lingers by means of
the give up parameter.

Consider the following displaydialag command:

display dialog "Click this within ten seconds!" giving up after 10

USER INTERACTION

lf you clicked the OK button within ten seconds, the dialog would return this result:

{button returned:"OK", gave up:false}

Otherwise, the dialog box would automatically close itself, and the result would be:

{button returned:"", gave up:true}

As you can see, the use of the giving up after parameter is responsible for the gave up item
in the dialog reply record.

The value of the gave up parameter is Boolean, and it is true if the dialog gave up since no
one clicked any button, or false if the user clicked a button.

Following is an example of how the giving up after parameter can be used for speed
quizzing:

Script 12-1

set q to display dialog "5472 -:- 57 =" buttons {"56", "76", "96"} .,
giving up after 7

if (gave up of q is true) then
set qResponse to "Not fast enough!"

else
if button returned of q is "96" then

set qResponse to "You got it!"
else

set qResponse to "Wrong answer"
end if

end if
display dialog qResponse

The preceding example places the dialog reply in the variable q. The script counts on the
fact that the dialog reply record will contain a gave up item that will have a Boolean value.

More about dialog boxes

Although you can only display a single text field when including the default answer param
eter, you do have some play with that text field.

The first thing you can do is to make the user text field larger.

To make the text field wider, force the button to be wider. You can do that by adding any
where between 1 0 and 15 spaces before and after the name of one of the buttons.

You only need to pad one button since AppleScript will automatically make all buttons as
wide as the widest one.

Running the script that follows produces the dialog box shown in Figure 12-11 .

353

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

354

Script 12-2

display dialog
buttans {"

default answer ""
yes ", "Hmmu, "Non}

~~------------------~--------------·---~ •. !
I

(~~ Y1!S =) (~ Hmm

Flgure 12-11. A wide dialogbox thanks to fake-wide buttons

Making the text field hold multiple lines is even easier. All you have to do is add a few
returns in the default answer parameter's string.

The following script line produces a dialog box with an input field that has five lines,
shown in Figure 12-12.

Script 12-3

display dialog "" default answer (return & return & return & return .,
& return)

i
i ; ~

(Cancel)
:',
'i

~·

Figure 12-12. A multiline textinputbox

You can also create a mini-form and then parse-out the returned text. This is not, however,
a very reliable form.

The script that follows produces the dialog box shown in Figure 12-13.

Script 12-4

set form to ""
set form to form & "Name: xxxxxx" & return
set form to form & "Phone: xxx-xxx-xxxx" & return
set form to form & "E-mail: me@mac.com"
display dialog "Please enter your information:" default answer form

USER INTERACTION

Piease enter your Information:

Flgure 12-13. A dialogbox acting as a form

Validating user-entered text

The nature of asking the user to enter data involves expecting a certain type of data back.
When the data you expect is a string, such as the user's name, a city, or a company name,
there shouldn't be any problems, since AppleScript returns a string as the text returned
item in the dialog reply.

You may, however, run into issues when you expect the user to enter a value that has to be
later coerced into a valid date, an integer, or a string with special formatting such as an
e-mail address or URL.

The method I found most effective is to put the dialog box inside an endless repeat loop
that won't relent until the user either enters a conforming string or cancels.

As an example, let's imagine that we want the user to enter a meeting date and that the
date, besides being a valid date, has to be in the future .

What we'll need is a variable that will hold the final date.

We start the script by creating the loop, initializing the date variable, and displaying the
dialog box:

set date_is_ok to false
set the_date to missing value
repeat

set date_dialog to display dialog "Enter date" default answer '"'
••• more script here

end repeat

Next, we will try to coerce the string the user typed into a date. lf successful, we will check
whether the date is after today's date.

lf it is, we will release the user from eternal bondage and exit the repeat loop.

lf anything goes wrong, then the user is requested to reenter the date, and the loop
repeats again.

Notice in the following script that we also put the initial dialog box in a try statement in
case the user wants to cancel.

355

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

356

Script 12-5

1. set the_date to missing value
2. repeat
3. try
4. set date_dialog to display dialog "Enter date" .,

default answer 1111

s. set user_date to text returned of date_dialog
6. try
1. set the_date to date user_date
8. if the date comes after (current date) then
9. exit repeat
10. end if
11. end try
12. display dialog "Reenter date" buttans {"OK"} .,

default button 1 with icon 0
13. on error
14. --User canceled •••
15. return
16. end try
17. end repeat

So, the try statement that extends from line 2 to line 15 is the try statement that checks
that the user didn't cancel.

The try statement that extends from line 5 to line 1 0 is responsible for capturing the error
generated in the event that the string the user typed doesn't want to be coerced into a
date dass. There's no on error in this case; the repeat loop simply doesn't end. Also, the if
statement that starts on line 7 doesn't have an eise clause. lf the condition isn't fulfilled,
the repeat loop simply makes another revolution.

We can take this script a step further and check once more with the user that the date
AppleScript coerced his/her string into is indeed the date s/he intended.

We do that by inserting yet another layer containing a dialog box and a conditional (if)
statement. The conditional statement will simply check to see if the button returned is
Keep, which keeps the date, or Change, which changes it.

Following is the script with the new portion added on:

Script 12-6

1. set the_date to missing value
2. set dialog_text to "Enter date"
3. set dialog_icon to -1
4. repeat
s. try
6. set date_dialog to display dialog dialog_text .,

default answer 1111 with icon dialog_icon
1. set user_date to text returned of date_dialog
8. try

USER INTERACTION

9.
10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

set the date to date user date
if the-date comes after (current date) then

set-msg to "You've entered the following date:" & ..
return & {date string of the_date) & ..
return & "Keep it or change it?"

display dialag msg buttans {"Change", "Keep"} ..
with icon 1

if button returned of result is "Keep" then
exit repeat

else
set dialog_icon to 1

end if
end if

on error
set dialog_icon to o

end try
set dialog_text to "Re-enter date"
--Following line no Ionger needed:
--display dialog "Reenter date" buttons {"OK"} ..

default button 1 with icon o
27.
28.

on error
--User canceled ..•

29. return
30. end try
31. end repeat

Hmm ... Iooks a bit different. The other change I made in the last script is that I put the
initial dialog box's icon and message parameters in variables. The icon and message will
change based on the different situations that the script encounters. For instance, initially
we want the message to be just "Enter date", and we want no icon. lnstead of creating a
whole other dialog box statement with no icon, I set the icon to -1, which achieves the
same result.

lf the date checks OK, but the user chooses to change it rather than to keep it, then the
textwill read "Re-enter text", but the icon will be the calm note icon. However, if the user
flunked on the entry and the returned text failed to be coerced into a string, then we will
change the icon to 0, which will display the stop icon.

The nice thing is that we do alt that with one dialog box. This is also better, since it makes
the same impression with one instead of two dialog boxes.

Alert handler
One more dialog box-related thing I include in my script is the alert handler.

lt so happens that a dialog style that repeats quite often is what I call alert. lt is a simple
dialog with one OK button and a stop icon. For this dialog box I create a special handler
called alert, which has a single parameter: the text to display. I call that parameter msg
(short for message).

357

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

358

I would normally prefer to stay away from shorthand and personal acronyms.
They cause general confusion, and if you manage to remember what you meant
two years ago when you wrote the script, your replacement certainly won't.
Unless this is what you're aiming for. which is a language my ASP programmer
buddy Steve Adler calls }SL (short for Job Security Language), you should spell
things out AMAP (As Much As Possible).

Acronyms are perfectly acceptable, however. when they are a part of a well
defined naming convention.

Here's what my handler and the handler calllook like:

Script 12-7

alert("Did it again!")--the call

on alert(msg)
display dialeg msg buttans {"OK"} default button 1 with icon 0

end alert

Now I could certainly spiee it up a bit and add more parameters, such as one for the icon,
etc. But the idea of my alert handler is that it's very simple. I have other dialog-related
handlers that include more options. Not this one.

choose from list
The choose from Iist command is a scripting addition (part of the Standard Additions col
lection) that allows you to display a special dialeg box that lists a number of strings. You
can then choose one or more items from the Iist.

The dialeg box has two buttons, which always perform the same OK/Cancel function;
however, you can customize the titles of these buttons.

You can also determine which items are selected by default.

From the dictionary

The following is the dictionary specification of the choose from Iist command:

choose from list: Allows user to select an item from a list of strings
choose from list a list of plain text -- a list of strings
to display (an empty list if no selection)
[with prompt plain text]

-- the prompt to appear at the top of the list selection dialeg
[default items a list of plain text] ~
-- list of strings to initially select

USER INTERACTION

[OK button name plain text] -- the name of the OK button
[cancel button name plain text] -- the name of the Cancel button
[multiple selections allowed boolean] -- Allow multiple items to be ~
selected?
[empty selection allowed boolean]

-- Can the user make no selection and then choose OK?
Result: a list of plain text -- the list of strings chosen
Choose from list result

The Choose from List dialog box has two buttons: OK and Cancel. Although you can cus
tomize the titles of these buttons, you can't add buttons or change the function of these
buttons.

The OK button, which is always the button on the right and the default button, will always
return a Iist. By default, this Iist is always going to be a one-item Iist. You can use parame
ters (shown later on) to allow an empty selection or a multiple-item selection.

Clicking the Cancel button, however, will return a false result. The reason for that, I
assume, is to spare you from a record result with the Iist and button in separate items, like
in the dialeg reply record.

lt is, however, a bit frustrating not knowing the value dass of the result you're expecting.
This situation forces you to first check if you got a false answer. You can do that with one
of these two solutions:

1. Check if the result is false:

set item_choice to choose from list {1, 2, 3}
if item_choice is false then

--Cancel clicked
else

--OK clicked
end if

2. Check if the result is a Iist:

Script 12-8 (includes two previous scripts)

set item_choice to choose from list {1, 2, 3}
if class of item choice is list then

--OK clicked
else

--Cancel clicked
end if

Using choose from list

ln its simplest form, the choose from List command takes a single parameter: the Iist you
want the user to choose items from.

359

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

360

The result is always a Iist. lf nothing is chosen, which is a possibility, the command returns
an empty Iist. lf the user selects one item, then the result is a singte-itern Iist.

Following is an example of the simplest use of the choose from List command. Figure 12-14
shows the dialog box that the following script line produces.

choose from list {"a", "b", "c"}

Piease make your selectlon:

a
b
c

Figure 12-14. The simpiest Choose from List diaiog box

Notice how the Iist expands to fit the number of items.

Custom title
The first thing you will want to change about this dialog is the title. You do that with the
prompt parameter.

For example:

choose from list {"a", "b", "c"} with prompt "Pick a letter"

Figure 12-1 5 shows the dialog box resulting from this script.

Default selection

Figure 12-15. A Choose from Listdialog box with a
custom prompt message

lf there are items that you want to already have selected when the dialog box displays, you
can specify them with the default items parameter.

USER INTERACTION

ln the following example, the user has to pick from a Iist of five cities. A property called
previous_city captures the selection the user made the previous time the script ran.

This time, we will display the Iist, but have the city that was previously chosen selected by
default.

Figure 12-16 shows the dialeg box resulting from the following script:

Script 12-9

property previous_city · ""
set city_list to ~

{"New York", "Providence", "Atlanta", "San Francisco", "Seattle"}
set the_city to choose from list city_list with prompt ~

"Pick a city" default items {previous_city}
set previous_city to the_city as string

N~wYork

Atlanta
San Francisco
Sunl~

Selection restriction

Flgure 12-16. The secend time this
script ran, the Iist item "Providence"
was selected by default.

The choose from Iist command allows you to restriet the selection the user can make. You
can choose to allow or disallow the selection of multiple items, and allow or disallow the
user to select nothing. By default, the user must choose one item, and one item only.

To allow the user to select multiple items, set multiple selections allowed to true. This can
be done by specifying the value true after the parameter, or having the parameter follow
the word "with":

Script 12-10

set state_list to {"NY", "RI", "GA", "CA", "WA"}
set chosen_states to choose from list state_list with multiple ~
selections allowed
--> -- Result: {"RI", "GA", "WA"}

ln the preceding script, the user selected three items: Rl, GA, and WA.

ln a similar fashion, you can allow the user to dick OK while making no selection at all.

361

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

362

Now, about selecting nothing, the user can always dick Cancel, but by default, if the user
hasn't picked any item from the Iist, the OK button will be disabled. You can allow the
user to pick no items and still dick OK with the empty selection allowed parameter.

set chosen_states to choose from list state_list with empty selection ~
allowed

lf the user selected noting and dicked OK, the result would be an empty Iist:

--> {}

Customizing buttons
The choose from Iist command has two buttons: OK and Cancel. As discussed earlier, the
function and position of these buttans are set. The right-side button will return a Iist con
taining the selected items, and the left-side button will always return the value false.

You can, however, change the title of these buttons. To do that you can use the OK button
name and cancel button name parameters. Each one of these parameters is followed with
a string containing the new title for the button.

The following script will display the Choose from List dialeg box shown in Figure 12-17.

Script 12-11

set state_list to {"NY", "RI", "GA", "CA", "WA"}
set chosen states to choose from list state list ~ - -

OK button name "Make a Pick" cancel button name "Na ••• "

Piease make your selectlon:

INY
Rl
GA
CA
WA

Choosing finder items

Flgure 12-17. Choose from Iist with
custom buttans

The Standard Additions give us a few ways to allow the user to choose files, folders,
disks, etc.

Although they are user interaction functions and are discussed in the upcoming text, they
will be covered extensively in the file management realm in Chapter 13.

USER INTERACTION

Common results

All file-related choose commands, with the exception of choose application, return an alias
to the chosen file.

You can ask to get the result returned as a string simply by adding the as string coercion
parameter at the end of the command.

Operating system version

lt's important to note that, while the command and result remain the same no matter
which Mac OS you use, the Iook of the dialeg box will change. OS X 1 0.1 will show the
generic file-list dialeg box, Jaguar (OS X 1 0.2) will Iet you choose a file using the outline
style view, and Panther (OS X 1 0.3) adds the sidebar to the left of the Finder windows.

choose file
The choose file command has many uses. lt allows the user to specify a file using the Open
dialeg box.

From the dictionary

The following text is the dictionary definition of the choose file command:

choose file: Choose a file on a disk or server
choose file

[with prompt plain text]
-- a prompt to be displayed in the file chooser

[of type a list of plain text]
-- restriet the files shown to only these file types
[default location alias] -- the default file location
[invisibles boolean]

-- Show invisible files and folders? (default is true)
[multiple selections allowed boolean]

-- Allow multiple items to be selected? (default is false)
Result: alias -- to the chosen file

Result of choose file

The choose (ile command will return either a Iist, an alias, or an error, depending on the
user action and parameters.

First oft, the dialog box will generate a "user canceled" error if the user clicks the Cancel
button.

363

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

364

lf the user clicks OK, then the command will return a single alias by default. However, if
the multiple selections allowed parameter is set to true, then the result will be a Iist of
aliases, even if the user chose only one file.

That means that you probably have to put your choose file command in a try block,
and know whether to anticipate a Iist of aliases or a single alias based on your use of the
multiple selections allowed parameter.

When to use?
The choose file command is the AppleScript version of the Open dialog box. Not that the
command opens anything, but it does present the user with the Open dialog box and
allows hirn/her to specify a file. From that point on, what happens to the file is up to you
and your script.

You use choose file when you need the user to specify a path to a file that the script has to
deal with.

Allowing the user to choose a file has the same sort of effect as a script droplet. The user
has the ability to specify a file that the script will then process.

lmagine you create a script that opens an lnDesign file, exports all images, and catalogs
them.

Sure, if you have a strict filing convention and fotder hierarchy, the script may be able to
find the files that need processing. However, if the file can be any lnDesign file from any
where on the hard disk or network, you will want to use the choose file command to allow
users to specify the file themselves.

One of the most important parameters of the choose file command is the ability to restriet
the user to choosing files of specific file types. just as when you use the open command
from an application you are restricted to choosing files that this application supports, the
same is true for the restrictions you can put on your script's users, and what files they can
choose with the choose file command. More details on that later on.

The basic command
To invoke the basic choose file command, you don't need to specify any parameters, just
the command itself.

This script line will produce the dialog box shown in Figure 12-18:

choose file

USER INTERACTION

" Ado~ Acrobat 6.0 Professional
.. (J Ado~ lllunr.uor es
.. Ado~ lnDto•lgn es
" Ado~ lnDtoslgn esJ
.. ~ Ado~ Photoshop es
" AppleScrlpt
" Art Olrectors Toolklt 3

I Calculator
Chess
Otrlx ICA Cllent

Dill Modilied

Yesterday
9/12/03
5/15/04
11/22/03
2/10/04
5/10/04
517/04
7/1/04
9/27/03
2/25/04
9/27/03
9/27/03
6/10/03

Flgure 12-18. The basic dialog box produced by the choose file command

Custom prompt

The first parameter you can change is the prompt. The prompt is the text that appears at
the top of the dialog box.

The default Choose Filedialog box shown in Figure 12-18 has no prompt.

The script that follows produces the dialog box whose top is shown in Figure 12-19:

choose file with prompt "Pick a file to use as template"

Choo~ a File

Pick .1 flle 1.0 us.t: AS te:mplate.

Dltc Modlllod
Today

1/15/0<!

Flgure 12-19. The top of a Choose Filedialog box with a custom prompt

Restricting to specific file types

One of the parameters that makes the choose file command so useful and powertut is the
of type parameter.

365

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

366

The oftype parameter takes a Iist of up to four strings, each representing a file type. When
the dialog box is displayed, the user can only choose files whose file types appear in the
Iist.

ln the following example, we Iimit the user to choosing a text file:

choose file of type {"TEXT"}

The following script prompts the user to pick a background image (for something) and
restricts hirn/her to choosing a JPEG, TIFF, GIF, or PSD file:

choose file with prompt "Choose a background image" ..,
of type {"JPEG", "TIFF", "GIFf", "8BPS"}

How do I know the file's file type?

Looking at the Iist of four file types I used previously, you might be wendering how I fig
ured them out. Getting TIFF and JPEG is kind of obvious, but how did I know that the PSD
file type is 8BPS? ls there a Iist of file types somewhere? There might be a Iist, but I don't
have it. To get the file type, I use ... weil ... a script!

The following script line will return the four-letter string that is the chosen file's file type.
lt uses, as you can see, the choose file command.

file type of (info for (choose file))

Creating small scripts that give you results you need to use in your script, as I did
here to get the file's four-character type, is one of the scripter's best toots.

The preceding script is a combination of three commands: choose fi/e, which returns an
alias; info for, which returns the info record of the alias; and (get) file type of, which returns
the file type item of the file info record.

As you can see in Figure 12-20, the script's result is the chosen file's four-character code.

Flgure 12-20. The script's result is the
chosen file's four-character type code.

USER INTERACTION

To use, just copy the result from the Result pane and paste it in your Iist.

Here's a fun exercise for you: create a scripter's utility script that builds a Iist of file types
for use with the choose file command. The script should be a repeat loop that loops four
times. Every loop the user should be asked to choose a different file for the file type Iist. lf
the user clicks Cancel at any point, exit the loop.

The result of the script should be a Iist of file types of the files the user picked. To make it
even better, make sure that the user is notified if a file with the same file type is picked.

Invisibles
By default, the choose file command will allow you to pick invisible files. To restriet the
user to visible files only, add the invisibles parameter with a true value to its right, or add
without invisibles.

The difference between the invisibles and file type restriction is that when you use the
without invisibles parameter, invisible files won't even show. When you restriet to only spe
cific file types, all files will show, but files with different file types will be grayed out.

The following script will show the Choose File dialog box, but will not allow users to pick
invisible files:

choose file without invisibles

Setting the default location
The optional default location property allows you to set a starting point for the Choose
File dialog box. As the dialogbox is displayed, you may want to direct the user to a specific
folder.

The following script Iets users start the search at the documents fotder in their home
directory:

choose file default location (path to documents folder from user domain)

You can also specify a fotder path the usual way. ln the following script, the variable
jobsJolder_yath was set to a path referencing the jobs folder. Note that the variable itself
is a string, not a file reference, therefore we need to add the word "alias" before it when
we use it to specify the default location.

Script 12-12

set jobs_folder_path to "Macintosh HD:Clients:Jobs:New Jobs:"
choose file with prompt "Pick a job to process" ..,

default location alias jobs_folder_path

lf the fotder you specify as the default location doesn't exist, the starting location will
revert to the default, but no error will be generated.

367

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

368

Allowing multiple selection

You may allow the user to pick multiple files at one time. To do that, set the multiple
selections allowed parameter to true. This can be done by adding the ward "true" after the
parameter, or putting the parameter after the work "with."

The natural restriction of the multiple selections allowed parameter is that alt files have
to be visible to you in the same Choose File dialag box. lf you want to pick one file from
the documents folder in your home domain and one file from some nested folder on the
server, you may have a problem. OS X 1 0.3 does allow you to switch from Iist view to out
line view in the Choose File dialag box. The Iist type will allow you to collapse and expand
folders and therefore choose files from different locations. Still, it will be most comfort
able for the user to choose multiple files from the same folder.

Adding the allow multiple selections parameter with a true value will alter the command's
result from a single alias to a Iist of aliases. Even if the user ends up choosing one file only,
this alias will be returned as the only item in a Iist.

The following script allows the user to choose multiple files:

choose file with multiple selections allowed

Two files were chosen:

--> {alias "Macintosh HD:image 1.gif", ..,
alias "Macintosh HD: image 2.gif "}

choose file name
The choose (ile name command is specified in the Standard Additions. lt allows you to add
a Save As-like dialag box to your scripts. The result is a path to a not-yet existing file.

From the dictionary

The following is the dictionary specification of the choose (ile name command:

choose file name: Get a new file reference from the user, ..,
without creating the file
choose file name

[with prompt plain text]
-- the text to display in the file creation dialag box

[default name plain text] -- the default name for the new file
[default location alias] -- the default file location

Result: 'file' -- the file the user specified

USER INTERACTION

choose file name vs. choose file
The difference between the choose file and choose file name commands is the same as the
difference between the Open and Save dialog boxes. When you open, you can choose a
file. When you save, you specify a file name and location, but the file doesn't yet exist.

When to use?
You use the choose file name command whenever you want the user to specify a file that
the script has to create in some way-for instance, if the script creates a text log, and you
want to Iet the user decide where that log is saved and what the log's name is. Or, if you're
creating an lnDesign project from a template, and you want the user to specify where the
project should be saved.

Results of choose file name
The choose file name command can return one of two types of values based on the button
that the user clicks. lf the user clicks the OK button, the command returns a file reference
to the yet-to-exist file. lf the user clicks Cancel, then a "user canceled" error will be gen
erated.

The reason why the choose file name command returns a file reference (file "filepathj
instead of an alias (alias "filepathj as in the choose file command, is that AppleScript only
allows alias references to files that actually exist, and the file you specify here does not yet
exist.

The basic command
The basic choose file name command used in the following script will display the Save dia
log box shown in Figure 12-21.

choose file name

Choose File Name

Spt.dfy new tlle rumr 11nd loc~tlon

~wM:~~======~~~;:
Where: ...::::;..;:;.;;..;;.;;.;.;.;=.::~----~:..>

Flgure 12-21. When used without any parameters, the choose file name command
displays the basic Save dialeg box.

369

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

370

Custom prompt

As with other file-related dialog box commands, you can add a custom title to your dialog
box. As you can see in Figure 12-21, there is a default prompt saying "Specify new file
name and location". Using the with prompt parameter, as in the following script line, will
replace that prompt with your own custom message.

The following script will display the Choose File Name dialog box with a custom prompt:

choose file name with prompt "Save the log file"

Default name and location

As with the choose file command, the choose file name command also contains a parame
ter that allows you to set the default folder location. This location will be the first folder
shown in the dialog box.

The choose file name command also allows you to set the default name for your file.

The following script Iets the user choose a file name while directing the user to the log
files folder and providing a default file name of log. txt. The resulting Choose File Name
dialog box is shown in Figure 12-22.

Script 12-13

set default_log_folder to (path to documents folder from user domain ~
as string) & "log files:" as string

choose file name with prompt "Save the log file" ~

default location alias default_log_folder default name "Log.txt"

lf the user accepted the defaults and clicked OK, the result would be

file "Macintosh HD:Users:hanaan:Documents:log files:Log.txt"

Choose File N~me

S..ve the log ßle

~~~:::::~~========~:;~ 
Where: o..=....:..::.___:.;__ _____ .....<..:J 

Flgure 12-22. A Choose File Name dialag box with a default path and file name 



USER INTERACTION 

Replace existing file 

An interesting feature of the choose file name command is that you cannot choose a file 
name in a fotder in which a file with the same name already exists. lf you do. you will get 
the generic File Already Exists dialog box with an option to replace it. 

What's interesting about it is that the choose file name command doesn't create any file. 
and therefore the same-name file that already exists in the selected location will not be 
replaced even if you choose the Replace option. 

lt is up to you. the scripter. to verify manually that a file with the same name doesn't exist 
in the chosen location. and delete it or move it if needed. 

Example 

As a simple example of using the choose file name command. we will create a new 
lnDesign fite and save it using a name and location the user chooses with the choose file 
name command. 

The script is shown here first. followed by explanation: 

Script 12-14 

1. set j obs _ folder _path to ":Jobs:" 
2. try 
3. set new_file_path to choose file name ~ 

default location alias jobs_folder_path ~ 
default name "job name.indd" 

4. on error e 
s. display dialog "Canceled" 
6. return 
1. end try 
8. set new_file_path to new_file_path as string 
9. tel! application "Finder" 
10. if exists file new_file_path then 
11. delete file new_file_path 
12. end if 
13 . end tel! 
14. tel! application "InDesign CS" 
15. set new_doc to make new document 
16. tel! new doc 
17. save it to new_file_path 
18. end tel! 
19. end tel! 

The script starts with line 1 setting a variable to a string value that refers to the fotder Jobs 
on the startup disk. ln line 3, we use the variable jobsJolder_path to specify the default 
location. 

371 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

372 

The reason why the value for the default location fotder path was placed in a string vari
able was that if we would try to use it literally, like this--alias ";/obs:"-AppleScript would 
have compiled it into alias "Macintosh HD;Jobs:", and the drive name-independent vari
able value would have vanished. 

lines 2 through 7 encompass the try command that captures the error generated if the 
user clicks the Cancel button. 

ln line 8, I coerce the file reference into a string. Strings are easier to work with since they 
can be later converted to aliases, file references, fotder references, or also written to a text 
file themselves if needed. 

ln lines 9 through 13, we check whether the file reference returned by the choose fite 
name command exists, and delete it if it does. 

We take the liberty of deleting the file since if the file does exist, the choose fite name 
command would have alerted the user and prompted him/her to replace the file. 

ln lines 14 through 19, we have lnDesign create a new file and save it to the file path the 
user chose in line 2. 

choose fotder 
The choose fotder command allows you to make the user choose a fotder using the 
Finder's Choose Fotder dialog box. The choose fotder command is a part of the Standard 
Additions scripting additions. 

From the dictionary 

The following is the dictionary definition of the choose fotder command: 

choose folder: Choose a folder on a disk or server 
choose folder 

[with prompt plain text] 
-- a prompt to be displayed in the folder chooser 

[default location alias] -- the default folder location 
[invisibles boolean] 

-- Show invisible files and folders? (default is false) 
[multiple selections allowed boolean] 

-- Allow multiple items to be selected? (default is false) 
Result: alias -- chosen folder 

What does it do? 

The choose fotder command presents users with the Choose Fotder dialag box and allows 
them to choose a folder. The result is a reference to that folder. 



USER INTERACTION 

lf the user clicks Cancel, however, the "user canceled" error will be generated. 

Figure 12-23 shows the dialag boxthat the choose fotder command generates. The follow
ing script shows the basic form of the choose fotder command, without any parameters: 

choose folder 

Choose a Fotder 

Adobe Acroba! 6.0 Profnslonal r- Adobe llluma!or es 
Adobe lnOeslgn es 
Adobe lnOeslgn CS.J 
Adobe Pho!oshop es 
Applexrlp! 

Cilculi!Or 
Ch@>S 

Otrlx ICA Clltnl 

OVD Plaver 

FlleMaker Developer 6 

A O.ro Modl~d 

S/1 5/04 
ll/22/03 
2/10/04 
5/10/04 
5/7/04 
7/1/04 
9/27{03 
2/25/04 
9/27/03 
9/27/03 
6/10/03 
9/27/03 
8/4/03 

Figure 12-23. The dialeg box shown by the choose fotder command. Notice 
how files are grayed out. 

When to use? 

The choose fotder command should be used when you need a reference to a fotder and 
you want the user to choose the fotder for you. 

The fotder can be chosen once and then stored in a property. You can then start the script 
by checking if the fotder reference is still valid. lf it's not, you can ask the user to "refresh" 
it. See this script's example in the "Choosing a fotder once" section. 

Parameters 

The choose fotder command is very similar to the choose file command. 

Both allow you to choose Finder items. 

Both will produce an error if the user clicks Cancel. 

And, both share the same exact parameters: invisibles, default location, and multiple 
selections allowed. 

373 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

374 

To read more about these parameters, refer to the "Choose file" section earlier. Here are 
the descriptions in short: 

The invisibles parameter determines whether invisible folders appear in the Iist or not. You 
can set Invisibles to true or false. 

The default location parameter determines the location that the Choose Fotderdialog box 
starts out in. By default, this would be the startup disk. 

The multiple selections allowed parameter allows the user to select multiple folders at 
once. You set that parameter either by adding a true or false value right after it, or placing 
it after the with indicator. 

lf the multiple selections allowed parameter is turned on, then the choose folder command 
returns a Iist of aliases instead of a single alias. 

Choosing a fotder once 
The script snippet that follows has a folder _path property. The property starts out having 
the value "missing value" assigned to it. 

The script starts out by figuring out if the fotder reference is valid. lf it isn't, the user is 
prompted to choose a different folder. 

Script 12-15 

property folder_path missing value 
try 

alias folder_path 
on error 

set folder_path to choose folder 
set folder_path to folder_path as string 

end try 

ln the preceding example, we count on the script generating an error if the value of the 
variable fotder _path does not contain a valid fotder reference. 

Alloses: The alias value class requires that the string that follows the ward 
"alias" is a valid path to a file or fotder that actually exists. /f the alias isn't 
pointing at a valid file. the file won't compile. lf the string following the alias 
prefix is stored in a string variable. then a runtime error would occur. More on 
that in Chapter 13. 

When the error occurs (which means that the fotder reference isn't good), we quickly trap 
it in our on error net, and make the user choose a different folder. 



USER INTERACTION 

Also notice that I keep the fotder reference as a string. This helps me keep my options open. 

choose application 
The choose application command is defined in the Standard Additions dictionary. lts pur
pose is to Iet the user pick an application on the machine running the script. The choose 
application command can return either an alias pointing to the application, or the appli
cation itself, as you will see a bit later. 

From the dictionary 

The following is the dictionary definition of the choose application command: 

choose application: Choose an application on this machine or the ~ 
network 

choose application 
[with title plain text] -- the dialog window title 
[with prompt plain text] 

-- the prompt to appear at the top of the application ~ 
chooser dialog box 

[multiple selections allowed boolean] 
-- Allow multiple items to be selected? (default is false) 

[as type class] 
-- the desired type of result. May be application 

(the default) or alias. 
Result: app -- the application chosen 

Using the command 

The choose application command, if used by itself with no parameters, displays the dialog 
box shown in Figure 12-24. The default result is an application object as shown here: 

application "Finder" 

Using the as parameter, you can ask for the result to be returned as an alias to the appli
cation, as shown here: 

choose application as alias 
--> alias "Macintosh HD:Applications:FileMaker Pro 7:FileMaker ~ 
Pro.app:" 

You can also use the with title and with prompt parameters to add a title and a prompt to 
the dialog box. ln Figure 12-24 you can see the default title "Choose Application" and the 
default prompt "Select an application". 

375 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

376 

Stlect M appllcatlon; 

( Browse ..• ) 

choose URL 

Choose Appllcatlon 

& Klnd 

Appllcation 

Appllatlon 

Appliatlon 

Appllu.tlon 

Clu1ic Appliutlon 

Cunlc Appliutlon 

Cluslc Appllcatlon 

( Cancel 

Flgure 12-24. The 
default Choose 
Application dialog 
box with the default 
prompt and title 

The choose URL command is defined in the Standard Additions. lt allows the user to spec
ify a URL to a server in one of several protocols, such as FTP servers, file servers, remote 
applications, etc. 

The result of the command is a URL that can be used as a parameter with other commands 
such as mount volume (described in Chapter 13). 

From the dictionary 

The following is the dictionary definition of the choose URL command: 

choose URL: Choose a service on the Internet 
choose URL 

[showing a list of ~ 
Web servers/FTP Servers/Telnet hosts/File servers/~ 
News servers/Directory services/Media servers/~ 
Remote applications] -- which network services to show 

[editable URL boolean] -- Allow user to type in a URL? 
Result: URL -- the URL chosen 

Using the command 

The choose URL command has two parameters. The showing parameter allows you to 
specify a Iist of protocols that will appear in the protocol pop-up menu at the bottom. By 
default the Iist shows seven protocols (listed previously in the "From the dictionary" 
section). The following script restricts the command to three of the seven protocols. 



USER INTERACTION 

The script also uses the Boolean parameter editable URL with a false value. This prevents 
the user from typing in a URL rather than choosing one from the Iist. 

The dialog box resulting from the following script is shown in Figure 12-25. 

choose URL showing {Web servers, FTP Servers, Telnet hosts} without ~ 
editable URL 

Ol!ems 1 
Show: 

Conn~ct to Serv~r 

Choon .. suve.r from the Iist 

Webservers 
fTP servers 

[r--=------------J 
I 

( Add to Favorites } ~=-~-' ( Cancel ) @~~ 
Flgure 12-25. The 
dialeg box resulting 
from the choose ur/ 
command in the script 

The following script will ask the user to specify a file server URL by either choosing it from 
a Iist or typing it, and then mount the specified volume: 

set server address to choose URL showing {File servers} with ~ 
editable URL 
mount volume server address 

choose color 
The following is the dictionary definition of the choose color command. 

From the dictionary 

choose color: Choose a color (defined in: StandardAdditions.osax) 
choose color 

[default color RGB color] -- the default color 
Result: RGB color -- chosen color 

377 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

The result 

The result is an AppleScript dass called color specifications. lt is no more than a Iist of 
three integer values, representing the red, green, and blue values of an RGB color. 

Although the color picker the user is presented with does allow the user to specify HEX 
colors for web and CMYK colors. the result will always be the RGB color equivalent. 

When to use? 

Use this command whenever you're in a situation that the user has to specify a color. This 
feature wasn't intended for precise color use in production or design environments, but 
rather for picking colors in a more generat way: pinkish, light blue, etc. 

ln Chapter 13, we Iook at an example where we create an RTF file. The choose color com
mand is used there to specify RGB colors that are later used in the RTF file. 

The basic command and parameters 

I I I I I l I I I I I l 
Figure 12-26. 

The choose color command has one parameter: default 
color. lt allows you to specify the color that is displayed by 
default when the dialog box appears. 

The following script will display the Choose Color dialog 
box without a predefined default color: 

choose color 

The following script will display the Choose Color dialog 
box shown in Figure 12-26. 

choose color default color {65535, o, o} 

The Choose Color 
dialag box 

ccan«D ........_ _ _, 

378 

User interaction and timeouts 
AppleScript's timeout feature creates an error if you send an application a command and 
the application doesn't respond within a certain amount of time. 

By default, that timeout period is 120 seconds, which is enough for 99% of any command 
an application has to complete. However, if your script is displaying a dialog box of any 
kind inside an application's tell block, but the user is out on a break or something. the dia
lag box will stick around and generate a timeout error. 



USER INTERACTION 

The error will be generated and the script will stop, even though the dialog box will be still 
displayed. 

ln general, we can avoid timeout errors by extending the timeout period, like this: 

tell application "Finder" 
with timeout of (3 * hours) seconds 

--do something that may take a long time ... 
end timeout 

end tell 

However, with dialog boxes, there's no guarantee that anyone will be there to dismiss 
them. lf your script displays a dialog box of any kind at, say, Friday afternoon, your time
out should be at least three-and-a-half days long, in case of a long weekend ... lnstead, 
you should try to capture the timeout error. lf the dialog you're dealing with is a normal 
dialog box generated by the disptay dialag command, alt you need to do is add the giving 
up parameter and either specify a number of seconds that is less than 120 seconds, or 
increase the timeout and set the giving up time to a number of seconds smaller than the 
timeout 

lf you're displaying another type of dialog box, such as the Choose File or Choose Fotder 
dialog boxes, however, you don't have the giving up parameter on your side. ln these 
cases, you have a few other choices: you can either trap the timeout error using a try 
block, and simply stop the script if the dialog times out, or use Ul scripting (also referred 
to as GUI scripting) to actually dick the Cancel button and exit the script gracefully. 

The try statement in the following script is designed to trap the timeout error, which is 
error number -1712, and use user interface (UI) scripting to dick the Cancel button. 

Script 12-16 

try 
tell application "Finder" 

choose file 
end tell 

on error number error_number 
if error_number is -1712 then 

tell application "Finder" to activate 
tell application "System Events" 

tell application process "Finder" 
click button "Cancel'' of window "Choose a File" 

end tell 
end tell 

end if 
end try 

The preceding script is one big try statement. Une 5 is designed to not only trap the error, 
but also to figure out the error number. 

The conditional statement from line 6 through line 13 will execute if the error is the time
out error, or in other words, error number -1712. 

379 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

380 

Lines 8 through 12 target the Cancel button of the Choose File window, and dick it. 

More on errors: Read more on errors, error trapping, and figuring out which 
errors hove which numbers in Chapter 15. Also, Iook for the Chapter 19, which 
deals with U/ scripting to see how to isolote the button you need in the jungte of 
U/ elements. 

Quick custom dialog boxes for your script 
using AppleScript Studio 

Undoubtedly the biggest boost AppleScript has gatten in the last few years is AppleScript 
Studio. With Studio you can create full-blown Cocoa applications for Mac OS X using 
Xcode and AppleScript. 

AppleScript Studio is a set of classes that come with Mac OS X and enable any AppleScript 
Studio application to run on every Mac OS X computer. To develop AppleScript Studio 
applications of your own, you do have to install Apple's Developer Tools, which are 
included with OS X but are not installed by default. While we can use AppleScript Studio 
to create fully programmed applications, here I will teach you a neat technique for using 
an AppleScript Studio application with minimal AppleScript programming to create a 
series of rich custom dialag boxes that you can use in your scripts. 

We are going to take advantage of one of the Cocoa programming environment's coolest 
features: any application you build is automatically scriptable. OK . .. so it doesn't have an 
object model with rich properties relating to the application's subject matter, but all of the 
Ul elements are fully scriptable from external scripts such as the scripts you're writing in 
Script Editor. 

What we will create here is a simple application with a minimal amount of programming 
(as little as four lines!) that will act as a repository for dialag boxes and panels. 

Later, using our script, we can display those panels, return any buttans that were clicked, 
and extract any text from the text fields, status of check boxes, selections of pop-up 
menus, etc. 

We can also utilize another new AppleScript feature and embed the dialogs application 
inside a script application bundle. This will mean that the user doesn't see multiple files, 
just your script application. 

Now, why go through this trouble instead of just creating an AppleScript Studio applica
tion? Many times what you want is a script, and a simple AppleScript application is the best 
solution. Since adding AppleScript Studio-created dialag boxes is relatively easy, you may 
find it to be a cool alternative. 

You also may have scripts you already created and you just want to enhance them with 
some extra dialag boxes. 



USER INTERACTION 

How will it work? 

Our dialog boxes will be windows in the AppleScript Studio application we're going to create. 

All buttons in the application will do the same thing: they will copy their own title to a hid
den text field called "button", and then make the window invisible. The rest of the 
elements will just have names that the script can later use to extract their contents or 
state. 

From the script we will invoke the dialog box in three steps: 

1. Tell the dialogs application to show the window we want. 

2. Use a repeat loop to wait while the window is still visible. 

3. Once the window has become invisible. the script will extract the values from the 
different text fields and other Ul elements. Remember that the text fields and 
other Ul elements retain their value even after the window is invisible. 

We will start by creating the application and then we will create the script tidbits that will 
display the dialog box and get the dialog information. 

Creating the application 

We will create a new project in AppleScript Studio called "dialog". This project will be the 
application we'll use to edit and later show dialog boxes from. 

Launch Xcode, which is an application that is part of the Developers Tools package, and 
start a new AppleScript Application project as shown in Figure 12-27. Name the project 
"dialogs". as you see in Figure 12-28. 

Asslstant 

New Project 

r--
Empty P<ojoct 

'f llatlon 

~pleSulpt Oocumont- .,..od ~pllallon 

~pldulpt Droplot 
CMbon ~plkollon 
Cocoo ~pliallon 
CO<OJI Document- b.ued Appllc~tlon 

Cocoa-j.lva Applkatiofl 
Coc.OJI.-J~~ Docum~nt-bau·d Appllatlon 

'f lundl• 
CMbon Bundlt. 

Thl> pro)ect build• • <lmplo CO<oa applicatlon Wflnon in ~p~ctlpt. 

( Cancel ) 

Flgure 12-27. 
Create a new 
AppleScript 
Application 
project. 

381 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

382 

Asslstiant 

New AppleScrlpt Appllcatlon 

Projw Dlr~ctory: -/dlalogs/ 

'TM pro)•CI dlrtCIOry ~(dla.Jog</ will M UU!.td lf ftf.Ct«ary, arwl IM projtCI mt 
dlalog<.xcodt will M autod rht.rtln. 

( Cancel ) ( Prevlous ) Flgure 12-28. 
Name the new 
project "dialogs". 

After the project has been created, locate the icon for the MainMenu. nib file (highlighted 
in Figure 12-29) and double-dick it. 

The MainMenu. nib file is the interface of your application. 

[~_N_w_s_r_an_d_s_~_'_N __ ~ __ m_r_enu __ c_e_e_u_u_d_er_. __________________________ ~] 

... ppl(lt.fn~mfWO<k 
llpploSu1ptKit.•>dic<lonory 
1\pploSalptKit. fn~mewofk 
CCKoa.fnmeworlt 
doa.Jog,..pp 
dlalog< ·•pplescrlpt 
Fou.ndiltion. framework 
lnfoPIIst.strl"!f• 
maln..m 

tl-rt .-xh-o/dyld .h> 

(~ All Colu0 

• 

e 

Flgure 12-29. The MainMenu. nib interface file icon in your Xcode project 



USER INTERACTION 

ln the MainMenu file window (at the top of Figure 12-30), locate the icon for the default 
window, dick it, and dick Delete. We will create a panel to replace it. 

At the top of the Cocoa panel, dick the fourth icon to show the palette with the window 
elements, shown at the bottom of Figure 12-30. 

Drag an instance of the panel object to your MainMenu file window, as shown in Figure 
12-30. 

Ma~nMenu.nib 

Images 

Fil!'s Owner First Responder 

Wlndow 

Panel 

Flgure 12-30. Dragging a new panel to the MainMenu. nib file window 

Edit your first dialog box 

ln the MainMenu. nib file window, double-dick the newly created panel to open it. 

ln Interface BuHder (18), go to the Tools menu and choose Show Info. This will display the 
Info palette. lf not selected, select Attributes from the pop-up menu at the top of the Info 
palette. 

383 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

384 

Figure 12-31. 
The Info palette 
with our panel's 

settings 

ln the Info palette you can give your dialog box a title and apply texture to it if you want. 
The texture will make it brushed steel. Many people poke fun at the brushed steel win
dows; call me uncool if you want, but I like them! 

Tp give your panel the brushed steellook, check the Has texture check box. 

Also, type a title in the Window Title field at the top. I used the title "Provide Your 
Information:". 

The window's three controls, Miniaturize, Close, and Resize, should be checked off. This 
will help to ensure that the window stays up until one of the buttons is clicked. 

lf you didn't create a new panel but rather used the window that came with the applica
tion by default, you have to uncheck Visible at launch time. Remember, when the 
application launches, we don't want any windows to show; we only want the windows 
showing when our script specifically makes them visible. 

N5Pontllnfo 

( Altributu J 0 I 

WlndoW Tltle~ Pnwtde your lnformallon: 

Control>: 0 lollnlatorizt 
O tlo10 

Reslu 

JW:klnv: 0 Nonrotalned 
Q Retolnod 

Buffered 

0 Releau whtn clo10d 
Hlde on ductlvate 
Visible atlaunch titM 

!!!I Defened 
!!!I One shot 
0 Utlllry wlndow (hntl only) 

Non aalvatl"9 Panel (P>nel only) 
~ Has lfJCture 

!!!I Has SMdow 
Display tooltiP< wtoon app ls ln•<tlve 

The Info palette with the appropriate settings is 
shown in Figure 12-31. 

Giving your window its AppleScript name 
The dialog box we designed must have an AppleScript name on top of its title. The panel's 
name will be used by our script to specify the window we want to show. 

To name the window, choose AppleScript from the top pop-up menu in the Info palette. 

lf there are any controls on the window, such as buttons, etc., make sure that none of 
them are selected. lf they are, you will be naming them, not the window. 

Now, type the name in the Name field as shown in Figure 12-32. 



USER INTERACTION 

Flgure 12-32. The window Infopalette with the new 
window name 

:e e NSPaiiellnfo 

I~ 

twne: (;.sorlnfo 

EvtncHondl«t = 
~0 Nlb 

~o -• 
~0 WindCJW 

-
Soipt 

c~ ... 

Jlllll 

] Index: 0 

--- - -----'----"c 

( ..... So1pt ) ( &II! So1pl ) 

Add dialog elements 
The dialog box we're going to create will be fairly simple, housing three text fields, a check 
box, a pop-up menu, a slider, and a few buttons. 

The text Iabels are there for information only and don't serve any programming-related 
purpose. 

The purpose of the dialog box we're creating will be to collect the user's information, but 
you're welcome to experiment with any other fields, Iabels, and Ul elements. 

lf you want to just follow the example, then set up your panel the way I did, as shown in 
Figure 12-33. 

Flgure 12-33. The finished dialog Iayout 

385 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

386 

Name and edit dialog elements 

The dialog box we created has two types of elements: buttons and nonbutton elements. 
We will need to name the nonbutton elements only. 

We name the elements in the AppleScript pane of the Info palette. Make sure that the Info 
palette is visible and choose AppleScript from the pop-up menu at the top, as shown in 
Figure 12-34. 

To name an element, dick it in the window and type the element's name in the Name text 
field on the Info palette, also shown in Figure 12-34. 

The names I gave the text fields are "name", "phone", and "email". 

The pop-up is named "salutation"; the check box is called "newuser". and the slider is 
called "mood". 

Provlde your inform;~tJon : NSTutfleld Info 

( ~pleS<:rtpt 

Index: 8 

( N-S<:tlpt ) ( Edlt Script ) 

Flgure 12-34. Naming user elements in the AppleScript pane of the Info palette 

The hidden button field 

Notice the label-free square text field at the bottom left of the window we designed, 
shown in Figure 12-35. That field is named "button" and is the way for us to know which 
button the user clicked. 

When any button is clicked, our script will take the title of that button and place it in 
that field, which will be hidden. later on, we can use our script to get the contents of the 
button text field to know which button was clicked. 



USER INTERACTION 

You can make the button transparent by checking the Hidden check box in the Attributes 
pane of the Info palette. 

Testing the interface 

ln IB, you can press CoMMAND+R (or choose Test Interface from the File menu) at any point, 
to see how the interface willlook, and try out all the controls you put on it. 

Connecting the buttons to the script 

One more thing we have to do in order to make the buttons perform is link them to the 
script in Xcode. 

We link the buttons to the script in the AppleScript pane of the Info palette, as shown in 
Figure 12-35. 

6 Provldt your Information . 
NSiunon lnlo 

AppleScript 

Name ~M.;.;.s._:..:.J ''----~---~ lndu: 13 

E-mail 

New user 

Happy Sad 

( N w S<rlpt ) ( Edit Salpt ) 

Figure 12-35. To link a Ul element to a script, dickthat Ul element (a button in this case), 
and check both the clicked action and the script. 

1. Click the first button. 

2. Choose AppleScript from the pop-up menu at the top of the Info palette. 

3. ln the Event Handlers pane, expand the Action triangle and check clicked. 

4. ln the script pane, check dialogs.applescript. 

Notice that we didn't give the buttons names. We can, but it's easier to rely on their title 
instead, like we do in the display dialog command. 

387 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

388 

Repeat steps 1 through 4 for alt buttons. 

ln AppleScript Studio, alt those buttons will invoke the same event handler in the script. 

To create that event handler in the script, dick one of the buttons to select it (any one) 
and dick the Edit Script button at the bottom of the Info palette. 

Once you do, the script in the Xcode project will open, and the clicked event will be 
added, as shown in Figure 12-36. 

•· dlalogs.appi@scnpt 
•· dlalogs 

0 fQ. All Colun) 

• .II. 

- Cruted by Hanaan Rosemhal on Monjul OS 2004. 
- Copyright Ce) 2003 _My(ompanyName_. All rlghts reseM"d. 

on cli<bd rMObjw 
c• Add your scrlpth@re. "l 

end cllcbd 

Flgure 12-36. The Xcode project window with the script, and the clicked event that has been 
added by IB. 

The clicked event 

The clicked event will be invoked whenever a Ul element that is linked to that event is 
dicked. 

Since all of the buttons in the panel we designed are linked to the clicked event, dicking 
any of them will invoke the clicked event. 

The way we structure the dialogs application will allow us to treat all buttons with one sim
ple script. All we want is to copy the title of the button that has been dicked to the field 
named "button". Following is the script we will write between the on clicked theObject and 
end clicked lines: 



USER INTERACTION 

on clicked theObject 
tell (window of theObject) 

set contents of text field "button" to title of theObject 
close 

end tell 
end clicked 

The script will start by identifying and focusing the attention on the window on which the 
clicked button sits. 

Since the variable theObject is a reference to the button that has been clicked, when we 
talk to the window of theObject (line 2), we instantly identify the window that this button 
belongs to. Again, we can have the same script work for all dialog boxes we design in that 
application. 

ln line 3 we set the contents of the text field named "button" to the title of the clicked 
button. 

line 4 closes the window. 

At this point, the dialog portion is done, and this is pretty much all the code your dialogs 
application will require. 

The rest of the work will be up to the script itself-it will need to extract the values from 
the different text fields and other Ul elements. 

Testing the application 

ln Xcode, choose Build and Run from the Build menu, or press CoMMAND+R. This will build 
the application and launch it. 

Click the Save All button if Xcode prompts you to save changes. 

The default location for the application is in the Build folder inside the project folder. 
Later on you can move it to any other location. You must beware, however, because if you 
leave a copy of it in the Build folder, AppleScript may try to launch this version of the 
application when it is mentioned in the script. 

When you see the dialogs application in your dock, you can switch to your script editor, 
where you will complete the exercise. 

To test the scriptability of your application, try something like this: create a new script 
window in Script Editor, or other script editing application, and type the following script 
lines: 

tell application "dialogs" 
get name of every window 

end tell 

389 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

390 

As a result you should get a Iist of one item, the name of your one window: 

{"user info"} 

Now, let's test for the text fields. Change the script to Iook like this one: 

tell application "dialogs" 
tell window "user info" 

name of every text field 
end tell 

end tell 

And the result will be 

{"name", "phone", "email", "button", missing value, ., 
missing value, missing value, missing value, missing value} 

The reason for alt the missing values is that you haven't named alt of the text Iabels that 
are also considered text fields by AppleScript. 

Using the custom dialog in a script 

Now that you have created the application and tested its scriptability, let's see if we can 
put it to use. 

Our strategy will be to start by telling the dialogs application to show the window we want 
to use as a dialog box. Then, we will wait until the window isn't showing anymore, and 
finally, when that happens, we will extract the values from the different controls. 

Show the dialog box 
The part of the script that shows the dialog box will Iook like this: 

tell application "dialogs" 
activate 
tell window "user info" 

set contents of every text field to "" 
set visible of it to true 
--more to come here 

end tell 
end tell 

We start by activating the application. Then, we clear the text from alt the text fields. This 
is important since we don't want the dialog box to retain the values from the last time you 
used it. 

lnstead of clearing the text fields, you could use this part to populate them with default 
values as weiL 

Then we say setvisible of it to true, which simply displays the window. 



USER INTERACTION 

Wait for the user to close the dialog box 
Next we will create a repeat loop that will go on as long as the window is open. 

Since we want to replicate the script's natural behavior, the script has to sit there until the 
user picks a button. 

The script with the waiting repeat loop Iooks like this: 

tell application "dialogs" 
activate 
tell window "user info" 

set contents of every text field to "" 
set visible of it to true 
--Wait for window to close: 
repeat while visible of it is true 
end repeat 
--more to come here 

end tell 
end tell 

You could, if you needed to, track the time the dialog box is up and bring it down after a 
while. This can replicate AppleScript's give up parameter in the display dialog command. 

Extract user-entered values 
Next we will go control by control and extract the values the user chose or typed in. 

To figure out which button the user clicked, just use this line: 

set buttonReturned to contents of text field "button" 

Here's the script in its entirety: 

1. tell application "dialogs" 
2. activate 
3. 
4. 
s. 
6. 
7. 

tell window "user info" 
set contents of every text field to "" 
set visible of it to true 
repeat while visible of it is true 
end repeat 

8. set buttonReturned to contents of text field "button" 
9. set userName to contents of text field "User" 
10. set userPhone to contents of text field "phone" 
11. set userEmail to contents of text field "email" 
12. set userName to contents of text field "User" 
13. set userSalutation to title of current menu item ~ 

of popup button "salutation" 
14. set userMood to integer value of slider "mood"-- O=happy, ~ 

100=sad 

391 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

392 

15. set userNew to integer value of button "new user" 
-- 1=checked or O=unchecked 

16. tell me to activate 
17. end tell 
18. end tell 

FaceSpan for OS X 
This section is by Shirley Hopkins of DTI, maker of FaceSpan. 

Whether you want to develop a fully functional application or just provide an interface for 
an AppleScript you have already written, FaceSpan provides the tools you need. 

What is FaceSpan? lt is an integrated development environment that allows you to create 
the user interface, add resources (movies, graphics, etc.), define the code, and build a 
Macintosh application that Iooks and runs like an "off-the-shelf" application. FaceSpan 4.0 
does this for you in an easy-to-use, high-level environment. Everything you need to build 
an application for OS X is at your fingertips. lts predecessor application, versions 1 through 
3.5, works with earlier versions of the OS. This discussion will only cover the 4.0 version. 

FaceSpan 4.0 is deceptively easy to use. Butthereisa Iot of power "under the hood." With 
a full complement of objects from tables and tab views to a secure text field that hides 
user entries as they are typed, FaceSpan interfaces are created with simple drag and drop. 
Much functionality is built in, and handlers are provided that can be used as is or modified 
to suit your specific needs. You can even make calls directly to Cocoa if the need arises. 

Best of alt, FaceSpan takes advantage of AppleScript's object-oriented structure. Events gen
erated at the window item Ievel can be handled in the script for the item, in the script for 
its parent window, or in the Project Script. lf an event is handled at the window item Ievel, 
it can be continued to a same-named handler in a window or the Project Script. Properties 
assigned at the Project Script Ievel can be "seen" by the window's scripts and by window 
item scripts using the my qualifier. lt's like having a well-organized team at your command, 
with each item and each script working in concert. You can even add Script Object scripts 
(FaceSpan scripts) to your project to further the object-oriented functionality. 

For the more advanced user, FaceSpan interfaces nicely with Script Debugger, which can 
be set to work as its editor and/or debugger (www.latenightsw.com). 

Nine steps to success 
Basically, the process of creating a project in FaceSpan can be outlined in nine easy steps: 

1. Start a new project. Determine the project type and give it a name. Optionally, 
you may want to quick-start a project using a template (see Figure 12-37). 



USER INTERACTION 

N~wProjut 

Project Name: 

Use projea nam~ as executable name 
The extcutoble rwne <>n bo thilllged tn Project Stnlngs 

Locatlon: - / Tutorlal Projects2 / Project 1 Simple Interface{ ( Choo~ •.. ) 

E><amples . - /Desktop{Unti!IM PrOJe<l, /Users/ <honlt > /Untlt led Pr0je<t 

Projea Type: \.:.:Ap!:!:.pl:.::ica=:=ti~o.:..:n::::::::===- = - ==-=--==-· ====·--=--=~-= - =-=-==~ ~ 
Templatu P•th 
<default ttmplate> 
&unonbt 

Conte.xtuaiMtnu 
DroppableTable 
Oynami<Popup 

ldlellmer 
}Us!OI.tovs 

JAj>pllatlons(f>to.Span 4.l{Templotu{Aj>pllatlons/luttonlar 

/ Appllallons / hc<Spon 4.2 {Templito>/Applit>tlOfls{Cont .. l~IMenu 

/ Aj>plk.oll<>ns(F>co.Sp•n 4.2/Templ>tts/Aj>pl a.tlons/OroppableToble 

/AI>pllutlons / f><<Span 4.2/Tompl•t..,. / A!>pl ut ons/Oynam cPopup 

JAj>pllutlons /hteSpon 4.2/Templotos/Aj>pliatlonslldloTlmer 

JAj>piiGitioos /FoteSpan 4.2/Templatts / Appl latlons/)ustDI.l lovs 

( Cancel ) 

Flgure 12-37. New Project window 

2. Add resources. The project has a main window and main menu created by default. 
There is also a script for the project, the Project Script. Artwork, movies, sounds, 
and files can be added to your project using the Project window (see Figure 12-38) 
or by selecting Add Files from the Project menu. 

f-----,---Pr= ole:.•ct::.-fll•• & Objects 
.,. ,... Button Bar 

"' 

"' 
"' 

Wlndows 
c:::J maln 

buttonBar 
Menus 

M;Un Menu 
lmage.s 

Aleft.tlf 
Center.tif 

ARight .tlf 

Projea SCrlpt.applesaipt 
_ buttonBar-106S.applescrl 

-'ltTitle: 

lcon: Aleft.tlf 

Alt. lcon: 

Sound: 

Opt 

~RMR __ ;:::::::;:;:::::~; 
khalllor: ltlorne<o<OIY Push 

luttOfl Type: Rounded Bewl 8unon 

P1.1umut. lmagt Otllr Toxt 

Al~nm~~ ~C~~u~'----------~~ 

OpllonS ------------

Wbled 

ltlouse 8orders Flgure 12-38. 
Project window 

393 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

394 

3. Set up windows. For many scripts, the main window, provided by default, is all 
that you will need (see Figure 12-39). Open the main window by double-clicking its 
entry in the Project window. Define its properties in the Info palette provided. (lf 
the Info palette is not open, you can open it from the Windows menu or press 
CoMMAND+I.) You can add more windows (or panels) as needed. 

Appün.nao -------

T•••urtd Wlndow 

Background Color [d 
OptlonJ ---------

vOn , ~ l'jeodod lP•nol onlyl 

U ~.ry W~ndow iP•ntl on vl 

on·uuvallng "'"'' !P•nol onlyl 
Flgure 12-39. 
Main window 

4. Design the user interface. Objects are added to windows (and panels) by drag
ging objects from the Objects Palette and placing as needed (see Figure 12-40). As 
you move objects around in a window, guides appear to help in positioning. 

Flgure 12-40. 
Objects Palette 

Clicking a title bar in the Objects Palette opens the object group. lf you only need 
one object, use the small round button to open the group. This allows the group to 
close automatically once the item is placed on the window. You can also CoNTROL

click (right-click) on a window to select an object from its contextual menu. 

Hint: hold the cursor over an object in the Objects Palette to see its description 
(tool tip). 

Set the properties for each object in the Info palette. lf the Info palette is not open, 
it can be opened from the Window menu or by pressing CoMMAND+I. 



USER INTERACTION 

The Info palette shows information for the interface element currently selected 
and indicates its dass in its title bar (see Figure 12-41). ln naming objects, select 
names that are easy to remember. Names are used to reference objects in scripts 
and are case sensitive. 

Text: l:liill] 
bd<grouncl: II II "1. Dr.lw 

Securt 

Sm~l.l Flgure 12-41. 
Infopalette 

Hint: get in the habit of typing a tab after typing an entry in a text field for the Info 
palette. 

5. Edit main menu. Change, add, or remove items from the main menu as needed 
(see Figure 12-42). To work with the main menu, double-dick its entry in the Menus 
folder of the Project window. 

Scrlpts 
l'fo)ea Sctlpupple.scrlpt o 

• Olher 
Crtdlts.rtf 

Flgure 12-42. 
Main menu 

395 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

396 

To change an item, dick a menu title in the menu bar to disdose its menu items. 
Highlight an item and type over it. Change the behavior for a menu item in the 
Actions Iist of the Info palette. ltems assigned "<execute script>" will need to have 
code written in the choose menu item handler in the Project Script to handle its 
being selected. 

To add an item to the menu bar, drag an item from the Menus group of the Objects 
Palette (an insert line will appear where the item will be inserted). A Submenu item 
added to the menu bar will have one blank menu item by default. CoNTROL-dick 
(right-dick) an item in a menu Iist (or on a blank item) to add, delete, or move 
items within a menu Iist. 

Close the main menu when complete 

6. Attach scripts. A project script is provided by default. You can put all of your code 
here, or you can manage your scripts in an object-oriented manner by attaching 
scripts to windows or window items. 

Flgure 12-43. 
Project Script 

To create a script, select the item to which the script will be attached and press 
CoMMAND+E (or select Add Script from the Script menu). To open an existing script, 
double-dick its entry in the Project window. 

To get references to the window and to window objects, the Object Browser in the 
Scripting Help drawer of the Script Edit window can be used. Double-dick an 
object in the Object Browser, and its full reference is placed at the cursor location 
in the script. 

Create functionality by adding code to scripts. FaceSpan helps you by providing a 
wealth of handlers that can be used as-is or modified to suit your needs. Many are 
written as templates requiring that you replace placeholder text (designated by ALL 
CAPS) with references to objects or values. 

Test your code by dicking the Compile button in the Script Edit window. Correct 
errors as needed. Most errors will be typographical in nature: forgot to end a quote 
with a quotation mark, misspelled a word, forgot to dose a parenthesis pair, etc. 
(See Figure 12-43.) 

........ l,. ... ,.._ ..... ." 
flo t.t\tn Meau 

. ) 

11#'1 bii"W'htft 

: ll'"fi:Polh". ' •1 ' 11 
·I~J 

.: ~gVllrte 

.. ~· . .-... 
l ".,..b ... ~ 

•• 
11 ., C\COCe ,...". tarn 

u -Jt.u t....~U~:I .. u 
1) ..-d cto".. mHU itan 

•• 
" •• """""*'lllll<llOIG 
" C• 
I& tnS NI ... IIIJI'1 oiUn::f!IV 

•• 
lG l&lWMIIS.II)I"'ll"'MriiJfU.-*'!Ubtagi«OfKfntAU'l'OYIMPITi ('8"81A: \ I\H5 

an rtw~c:• .a ~~APD:rt} lllrt dtl'•~o~ti...ll;tJt.oxa dlht.*~• es.•.,. ::rtt ,.,...g.alY• - •• 
•~u\t'ln->tbee';"'biW:OUIIJtntN"'~ ~·t 



USER INTERACTION 

7. Test and debug. Click the Build and Run button in the Project window (or press 
CoMMAND+R} to test run the script. Debug as needed. The Message window can be 
a great aid for simple debugging. To test values for variables at runtime, place log 
statements within code having the following format: 

log variableValue 

The value for variableValue in the preceding example would be printed to the 
Message window as the project runs (see Figure 12-44). 

Laundled appllcalion 'PTojea 1 Simple ln1erface', proce5S ID 426 
2004~7-16 19:52:20.296 Protec11 Simple lnlerface!426! "Thls lsa sample enlry'" 

Flgure 12-44. Message window 

The Build and Run button changes to a Stop button while a project is running. Click 
this button to stop a test run. 

8. Edit the Credits page. To add user instructions, comments, etc. to the Credits 
page, double-dick Credi ts. rtf (see Figure 12-45) in the Other folder of the 
Project window. The page will open in your default text editor. A template is pro
vided that can be modified as needed. 

T .. llng: 

Wllllapeclllb'*l IO: 

Flgure 12-45. 
Credits.rtf 

397 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

398 

9. Save the project. You may wish to set the preference Save unsaved projects to 
Ask before building. This will remind you to save projects periodically as you work. 
Once the project is working as desired, save the project. 

Establish settings for the executable (application created) if desired. The name of the 
executable will be the same as that of your project if you checked Use project name 
as executable name when you created the project. You can give your executable a 
different name. You can also assign a custom icon, an identifier, and an info string 
to be used by the system. These settings are found in the Executable Settings dialog 
box (see Figure 12-46), which is opened by selecting Executable Settings from the 
Project menu. 

Executable Setnngs 

Executable Oocuments 

<d~f~ult lcon> 

( Choo .. ... ) 

Exe<utahl~ No.m · lunon IM 

Gu Info String: lunon l •r. Copyright 2004. My(omp•nv. lnc. 

•d~fit:r: A com.MyComp.any.lunon I.J.r 

V•nion: 1.0 

BuHd locotlon: ( ProjeCI Foldtr 

-(Tutorl•l Pro)t<I$2/ Project2 lunon .. ,, 

Flgure 12-46. Executable Settings dialeg box 

Note: if you do use a different name for the executable than that for the project, 
you will need to change the name of the project in the various menu items for the 
Application menu. 

Build and run (or build) your project after editing the Credits page. 

You can now save and close the project (or throw it away, if you choose). 

After completing the preceding steps, you should now have a fotder that Iooks like the 
one in Figure 12-47. 



USER INTERACTION 

Flgure 12-47. Project folder 

Altft.tlf 

buttonBar 
- l06S .applesutpt 

Projea 2 Bunon 8M 

Bunon Bar 

Project 2 Bunon Bar 

ARight.tlf 

Ctnter.tlf 

Projtct Scrlpt.apple.scrlpt 

Te.st88arl 

10 lterns. 10.52 GI avoilab .. 

bulld 

Crtdlts.rtf 

The executable, which will have the default icon that resembles a Ietter "A" (or the custom 
one you assigned), can be double-clicked to run. The main menu is part of your applica
tion by default, allowing the user to quit the application by selecting Quit from the File 
menu or pressing COMMAND+Q. 

As you can see, a Iot of functionality is built into a FaceSpan project without your having 
to even think about it. 

A word about FaceSpan's auxiliary resources 
FaceSpan gives users a wealth of aids to make creating projects easier and to fit the way 
the user wants to work. Among these are the script library and template collection. 

Library 

One of the features of FaceSpan is a growing library of standard handlers that can be used 
to build scripts. The library is accessed by CONTROL-clicking (right-clicking) an empty line of 
the Script Edit window. Code found in this library includes comments documenting how 
the routine can be implemented (see Figure 12-48). Property declarations, a call statement 
for the subroutine, and supporting handlers, as needed, are also included. 

399 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

400 

l:lundled 
open-·.,.il' 

•nd loi.Wldled Cut 
Copy 
Paste 

Propertles 
Handlers 

Ust Statements 

Open llbrary ln Finder 

Spelllng 
Spee<h 

Flgure 12-48. Script Library entry 

No l)obuggu 

lf the code includes a property statement, this should be cut and pasted at the beginning 
of the script where the property will be managed (usually the Project Script). A call to the 
handler is often included and will need to be cut and pasted at the appropriate location in 
the script. Some entries act as templates, with placeholder text (indicated with ALL CAPS). 
These will need to be replaced with actual object references or values. 

The Script Library fotder is installed in the same fotder as FaceSpan. You can add your 
own routines to this collection by saving scripts as text with the . applescript extension 
and placing in appropriate folders. 

Templates 
Another great resource is the Templates folder, which is also installed in the same fotder 
as FaceSpan. Templates are a great way to quick-start a project. You can save a project at 
any stage as a template. just save the project to the Templates fotder using Save As. Take 
note that your current project is now the template project, so you will want to close out 
the current project and reopen the original project from which the template was created 
before continuing. 



USER INTERACTION 

Keep up to date 

As there are new templates and library scripts being added periodicalty, you may wish to 
check FaceSpan's down Ioads web page (www. FaceSpan. com) to make sure you have alt of 
the tatest. 

The completed projects described in the tutorials foltowing are also found on the down
loads page. 

Writing code 
When writing a script in Script Editor, there is a strong tendency to write statements as one 
big monolithic piece of code. When you work with an interface, however, each action or 
event that can take place can potentialty be "handled" in a separate "mini-script" or handler. 

Handlers 

Writing code for FaceSpan depends on the use of handlers. When an object in a window is 
dicked, it sends a clicked event. Statements induded in the clicked handler for the object 
dictate what happens when the button is dicked. Many handlers indude the variable 
theObject as part of the on statement. This variable is a reference to the object that sent 
the event. lf you have a clicked handler in a script for the object, the clicked handler will 
only receive the event for its object. However, if you put a clicked handler in the script for 
a window or in the Project Script, the code will need to determine which object sent the 
event since any object betonging to the button dass can send a clicked event. 

Think of handlers (routines) as the building blocks for a project. The more you can 
"bundle" statements together into meaningful blocks of code that perform a singular 
function, the more reusable your code will become. 

For the sake of consistency, the user-defined handlers used in the tutorials alt use posi
tional parameters. Positional parameters are those references, values, or variables that you 
find inside of parentheses in the first line of a handler. What you need to remember is if a 
handler has variables within parentheses, you need to provide a value for each item, and 
in the same order inside the parentheses for the calling statement. Handlers found in the 
Script Library should alt have sample call Statements that can be used as a model. Or, 
better yet, cut the statement (or statements) and paste where the calt is to be made. 

To get a template for a handler that responds to an event sent by an interface object, dick 
the object in the Object Browser for the Script Help drawer. The handler choices for the 
object are then displayed in the Handler browser. Double-dicking an entry in the Handler 
browser will place the handler template in the script at the current cursor location. Make 
sure the cursor is in an open area of the Script Edit window before double-dicking. 

401 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

402 

FaceSpan scripts 
lf you like the idea of having reusable script handlers in a Script Library, you will Iove the 
concept of using FaceSpan scripts. With a FaceSpan script, you put a coltection of handlers 
tagether into one script file. For instance, alt of your handlers that work with text in your 
favorite scriptable text editor could be put in one file. just stack the handlers in the file, as 
you coltect them, but be sure to keep documentation handy to remind you of the handlers 
and if/or what parameters are required. Save the file as a text file with the . applescript 
extension. 

When you want to use the handlers in the coltection, add the file to your project. To add 
a file, select Add Files from the Project menu or drag the file to the Scripts fotder in the 
Project window. The code inside of the file is not available to your scripts until you actu
alty Ioad the file. This is normalty done in the Project Script so that alt objects can have 
access to the code. 

1. Define a global variable to reference the file's handlers in the Project Script. You 
might want to calt it gTextScripts. 

global gTextScripts 

2. Before you need to use the handlers, Ioad the file into the variable using the name 
of the file as shown in the Project window but withoüt the . applescript extension. 

set gTextScripts to load facespan script "FSTextScripts" 

3. When you need to calt one of the handlers in the file, first make sure that the script 
from where the calt is being made has declared the global variable at the top of the 
script. 

global gTextScript 

4. Now any statement in the script can reference a handler in the file as an element 
of the variable. For instance, if the FaceSpan script contains a getText () handler, 
you would calt the handler using 

set theText to gTextScript's getText ( ) 

ln alt other respects, the handlers found in a FaceSpan script are used like handlers found 
in any other script within a project. 

More advanced users will appreciate the simplicity with which one can create script object 
files using FaceSpan script. CoNTROL-click the Script fotder in the Project window and 
select New Script from the contextual menu. A new unattached script is created for the 
project. You can accept the default name or change the name by clicking the Show 
lnspector button. The code in these files is loaded and referenced within a project in the 
same manner as described previously. 



USER INTERACTION 

Tutorials 
The best way to examine how an application functions is to work with it. Following are sev
eral simple projects to demonstrate some of FaceSpan's features. The tutorials will follow 
the basic nine-step procedure outlined previously with further explanation as needed. 
Remember to refer to the nine-step outline as you work through the projects for more 
information. 

Even if you do not currently have access to FaceSpan, the projects are short enough that 
you can mentally work through them to see how FaceSpan makes it easy to create work
ing applications using AppleScript. 

Preliminaries 

Before you start putting your first project together, you might want to set up a fotder 
where you want your projects to be saved. You may also want to establish some prefer
ences for how you want to work. 

Once you launch FaceSpan, select Preferences from the Application menu. lf nothing else, 
you will want to establish the location for your projects. To target the fotder that you set 
aside for your projects, select Other from the Default project location drop-down Iist in 
General Preferences and navigate to the fotder you created. Most preferences are pretty 
self-explanatory. The following are suggested: 

General: 

When adding files: Copy files into project fotder 

Sync script names with object names 

Windows and panels: Remember document states 

When FaceSpan launches: Show Objects Palette 

Show Infopalette 

Editing: 

All options are checked. You may wish to uncheck allow text completion. 

Building: 

As defaulted 

403 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

404 

Starting a project 

With FaceSpan running, select New from the File menu. ln the New Project dialog box, 
give your project a name. For most applications you will want to dick the Use project 
name as executable name check box. Select the application type from the pop-up and, if 
needed, designate where the project will be saved. Select a template from the templates 
Iist, if desired. Once you have given FaceSpan this information, dick OK. 

Project 1: Put a face on it 

The first project will demonstrate adding a user interface to a script that is already written. 
The basic procedure outlined could be applied to any number of scripts you might have 
that could benefit from a user-friendly interface. 

For demonstration, assume that the existing script presents users a Iist of options from 
which they must select one or more options (choose from Iist). There is also a text string 
that must be entered by users (display dialog). From there the script performs some func
tionality depending on the choices made. Putting this all in a FaceSpan project is a no
brainer. The structure for the current script could read something like the following: 

set userChoicelist to {"Choice 1", "Choice 2", "Choice 3"} 
set defaultString to "Input string here" 
--calls routine that uses choose from listtoreturn user's choices 
set userChoice to getUserChoice (userChoicelist) 
--calls routine that uses display dialog to get string entry 
set userlnput to getUserinput (defaultString) 
--call main process using input from user 
doMainProcess (userChoice, userlnput) 
--this is followed by routines that perform the various functions 

Here are the steps (refer to the nine-step outline in the "Nine steps to success" section for 
details): 

1. Start a new project. 

Select application for type. No template will be used. 

2. Add resources. 

No resources will be added to the project; skip step 2. 

3. Set up windows. 

This project will only require one window, "main," which is provided by default. 

4. Design the interface. 

Analyzing the script should help in deciding the design for the project. The script dictates 
the need for a main window with one text field for text entry (see Figure 12-49). A check 
box matrix can be used in place of the choose (rom Iist command. The window will also 
require a push button for the user to push to "trigger" the functionality. 



USER INTERACTION 

60 ~ My Project 

Option 1 Enter Desaiptlon: 

Q Option 2 1 1 
Q Optlon 3 '------------.J 

Flgure 12-49. Project 1: main window 

Open the "main~ window and set its properties (use your discretion for settings, but don't 
change the window's name). 

Check box matrix 
To create the check box matrix, drag a check box from the Buttons group of the Objects 
Palette. Once placed on the window, hold down the OPTION key. Click and drag on one of 
the sizing handles for the check box to create three check boxes stacked vertically. The 
Info palette will display the word "Matrix" in its title bar. Use the Info palette to name the 
matrix "matCheck~ (see Figure 12-50). 

Rows: '3"1 x: 4.00 

Columns: ~ y: ~ 

Tndt 

Q rudlo 

Q Highllght 

O ust 

DRw ~cltground 11 11 

DRw col! background ~~ ~~ 

Flgure 12-50. Matrix 

Now double-dick the first check box in the matrix. (The window will gray out, indicating 
that a nested object is selected, and the Info palette will display "Button Ce II~ in its title.) Set 
the name for the first check box to Option 1. Set the title to Option 1 (see Figure 12-51 ). 

405 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

406 

Figure 12-51. Button cell 

Click each of the next check boxes and repeat, naming them "Option2" and "Option3" 
with titles "Option 2" and "Option 3." Click back on the window when finished. Note: 
names for the check boxes need to correspond to names used for reference in scripts; 
titles can be any title you choose. 

Label 
To create the Iabel above the text field, drag a Small System Font Text from the Text 
Object group in the Objects Palette. Once placed, double-dick the object. (The window 
will gray out, indicating that the text field editor is now active.) Type the text you want for 
the title (see Figure 12-52). 

Q option 1 

0 0ption2 
:} Option 3 

Text field 

lllv Project 

Flgure 12-52. Label 

The text field is the box in the Text Objects group that does not have a scrollbar. Add one 
to the window and resize as desired. Name the text field "txtlnput" in the Info palette. You 
may want to set a text tormatter for this field to ensure that only text can be entered. For 
this, select Add formatter from the Format menu. The tormatter type should be Text by 
default. You may wish to experiment with the various format options (see Figure 12-53). 



USER INTERACTION 

Push button 

Ap~-~~ ------------------
SQuart 0 liDund 

Align<MnC 

Co~ ----------------------

T~•r: I I 
lutground: II II ;!. Dnw 

Edl ... blt 

AIIOW'J omlbutt ~d~lnv 

':1. S.koctobl~ 
Seture 

Sm•ll Flgure 12-53. 
Text fieid 

Add a push button to the main window. Name the button "pshExecute." Label it "Execute". 
You may wish to give the push button default behavior to send it a clicked event when the 
user presses the RETURN key on the keyboard. For this, set Keyboard Equivalent in its Info 
palette to the Return option found in the pop-up (see Figure 12-54). 

lco 

Al ICOf' 

Sound: 

~~·· ---------------------
~ Embltd 

"'ouso Bordors 

Flgure 12-54. 
Keyboard 
equivaient 

407 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

408 

5. Edit main menu. 

No alterations will be made to the main menu. 

6. Attach scripts. 

This project will require that a script be added for the Execute button and the "main" window. 

Execute button script 
Create a script for the push button "pshExecute." The clicked handler for the button will 
call two user-defined handlers: (1) getUserlnput, which gets the results of the user's input, 
and (2) doMainProcess, where most of the code from the existing script will be placed. 

lf FaceSpan preferences are set to Add code for standard handlers (in Editing Preferences), 
the script will have a clicked handler as part of the button's script. Complete it as follows: 

on clicked theObject 
set {userOptions, userEntry} to getUserinput ( ) 
doMainProcess (userOptions, userEntry) 

end clicked 

Main window script 
Create a script for the "main" window. A handler in this script, getUserlnput, will be used 
to collect the result of the user's interaction with the window items (see listing that fol
lows). To write this user-defined handler, use the Object Browser in the Script Help drawer 
to add references to the objects. For instance, after typing set userOptions to name of 
every cell of in the first statement, double-dick the entry for the matrix in the Object 
Browser (see Figure 12-55). 

ObjectBtowur 

Yll\l.ln 

textFitld 
oc~nput 

p•hEucute 

Class: mattl• 

• ·1 
Flgure 12-55. 
Object Browser 

Notice that a complete reference is entered, including a reference to the window. Finish 
the statement to read as in the following script. Follow this procedure for entering the ref
erence for the text field in the next statement. The completed routine should be similar to 
the following: 

on getUserinput ( ) 
set userOptions to name of every cell of matrix "matCheck" ., 

of window "main" whose state is on state 
set userEntry to string value of text field "txtlnput" of ., 
window "main" 

return {userOptions, userEntry} 
end getUserinput 



USER INTERACTION 

Main process subroutine 
The main process subroutine (doMainProcess) will take care of most of the functionality 
from the existing script. This could be placed in the script for the "main" window, in the 
script for the push button, or in the Project Script. This is one of the nice things about 
FaceSpan: most routines can be placed wherever it makes the mostsense to you (and per
haps the script). For demonstration, a user-defined routine has been "dummied up" to 
indicate how this handler would be written. Putting the procedure in the script for the 
"main" window allows the Script Help drawer to return the reference for the text field. 

ln the "main" window's script include the following: 

on doMainProcess (userOptions, userEntry) 
if "Option1" is in userOptions then 

--Statements to perform if Option1 checkbox is checked 
end if 
--add if/then statements for remaining checkboxes. 
set string value of text field "txtlnput" of window "main" to -. 
"Script completed successfully" 

end doMainProcess 

7. Test and debug. 
lf the project runs successfully, the message "Script completed successfully" will appear in 
the text field. As you test run a project, you may see the need to add additional code or 
functionality. Often this becomes apparent as you experience how user behavior might 
cause a project to fail. 

ln this project, should the user fail to check a check box, or fail to add information to the 
text field, the project could fail. This can be prevented by making sure that at least one 
option is checked and a default entry is placed in the text field. An opened handler for the 
window would be an appropriate place for such code. 

Main window script opened handler 
Open the "main" window's script. To create the handler, select main in the Object Browser 
and disclose the Window entry in the Handlers browser. With the text cursor on an open 
line in the script, double-dick opened from the handler Iist. The handler wrappers are 
added to the script. Add Statements to the handler so it reads as follows. (Use Object 
Browser to get the references to the matrix and text field.) 

on opened theObject 
set state of cell 1 of matrix "matCheck" of window "main" to on state 
set string value of text field "txtinput" of window "main" to -. 

"Default value" 
end opened 

8. Edit F page. 
Refer to the outline in "Nine steps to success" for details. 

9. Save project. 
Although this project has no real functionality, the hope is that this introductory project 
will give you a quick overview of using FaceSpan to create a simple user interface. 

409 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

410 

Project 2: Multiple functionality for a button bar 

This project demonstrates using a template to quick-start a project. 

Perhaps you have a number of scripts that work in the same environment such as ones for 
automating lnDesign or QuarkXPress. Think how handy it would be to have a floating but
ton bar so that alt you (or your user) need do is push a button to get script functionality. 
The following tutorial demonstrates this. You will want to have some graphics handy that 
measure 36 pixels by 36 pixels (or however !arge you want your buttans to be). These can 
be just about any common format; TIFF may be preferred. 

1. Start new project. 

ln the New Project window, select the ButtonBar template from the template Iist to quick
start this project (see Figure 12-56). 

Project Type: Applicatlon - _lli 

Tompl•cu ~th 

I <dofauh cemplate> 

"' . " .. 
~ l tontextuaiMI!nu /Appllcatlon< /Fat<.Spon 4.2/TtmplaC<S/Appllcadons /Contex~u•IMonu 

OroppableT_,• /Applla.clons Jface.Span 4.2 /TtmplotH//oppl allons/DroppobleTablo 

Dynami<Popup /Ai>PI atlons/Facdpan 4.2/Tompl.tH//oppllcatlons/ [)yfwnld'opup 

""' ldltTimtr / /oppllutlons /FateSpon 4.2/Templa~to/Applladons/lcllellmer 
~ }uscDialogo /Applluclons/Fot<.Spon 4.2 /Ttmplatu /Appllcatlons/JuscOiologo • -

( C.ncet ) 

Figure 12-56. ButtonBar template 

2. Add resources. 

You can add a number of graphics to your project at one time by 5HtFT-selecting and drag
ging them into the Images fotder in the Project Window. just make sure that you do not 
release the graphics until the line below the Images fotder appears. 

3. Set up windows. 

The template provides alt we will need for this project. 

4. Design the interface. 

Much of what is needed for the interface is provided by the template, but you can modify 
the project to fit your particular needs. 

Bevel buttons 
The template provides a panel "buttonBar" that is set up to float. lt has one bevel button. 
Duplicate this bevel button to create the number of buttons that you want on your button 
bar. You may need to resize the window. To duplicate the bevel button, select it and press 
CoMMANo+D. Enter values into the fields (the demonstration project used 39 in the 



USER INTERACTION 

Horizontal Offset field, 0 in the Vertical Offset field, and 8 for Repeat Count). Click OK 
(see Figure 12-57). 

Flgure 12-57. 
Duplicating an 
object 

To assign an image to a button, dick the button and enter the name of the graphic in the 
lcon field for the Info palette. Type the file name exactly as it appears in the Images Iist in 
the Project window. 

Note: in version 4.2 you can drag the entry from the Project window to the button to 
assign the image. 

Alternately, you could set it up so that a button works as a toggle with one graphic to dis
play when in the "on" position and another to display when in the "off" position. To do 
this, set the Behavior for the button to Toggle and add a file name reference to the Alt. 
lcon field. 

5. Edit main menu. 

The title of the menu item Bring All To Front in the Window menu has been changed to 
Reepen panel in the template. lts action is handled in the choose menu item handler in the 
Project Script. 

Note: projects created with a template inherit the name of the template. You will need to 
open the menu editor and change the title of each of the three menu items with the tem
plate's name. (Use the title field in Info palette to change the title.) 

6. Attach scripts. 

Now it's just a matter of adding scripts and code to the project to respond to the buttans 
being pushed. One way this could be done would be to put a lengthy iflthen statement in 
a clicked handler inside the panel's script. This would test for the button being pushed and 
then call procedures depending on the button pushed. This has been started for you in the 
template and reads as follows: 

on clicked theObject 
set theName to name of theObject 
if theName is "button" then 

--call to procedure for bevel button "button" 
processlmage () 

else if theName is "buttonl" then 
--call to next procedure 
--repeat for all buttons 

end if 
end clicked 

411 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

412 

The routines called could be in the same script, in the Project Script, or could even be part 
of an imported FaceSpan script. The template provides a dummy routine. 

on process!mage () 
--Statements for called routine 
activate 
display dialog "Button was pushed" 

end processimage 

Code to accommodate the floating panel is part of the Project Script that is included in the 
ButtonBar template. This includes code to respond to the Reopen panel menu item in 
the choose menu handler: 

on choose menu item theMenuitem 
if title of theMenuitem is "Reopen panel" then 

display panel thePanel 
end if 

end choose menu item 

7. Test and debug. 

Click the Compile button to test your scripts. A project with this limited scope should run 
without a hitch. 

8. Edit Credits page. 

lf you decide to save this project, you may want to put instructions to your user on the 
Credits page. 

9. Save project. 

Projects that use a template inherit the name of the template's executable. You will need 
to open the Executable Settings window (select Executable Settings from the Project 
menu). Change the name of your project there. 

Project 3: Simpletexteditor 

This project demonstrates how using scripts from the script library can reduce the amount 
of actual code writing required in a project to a bare minimum. 

Our next project will create a simple text editor using scripts provided as part of FaceSpan's 
Script Library to work with User Defaults and the Open panel (see Figure 12-58). 

T•xt Ed1tor 

Flgure 12-58. 
Simple text editor 



USER INTERACTION 

1. Start new project. 

Select application for type. No template will be used. 

2. Add resources. 

No resources will be added to the project. 

3. Set up windows. 

Open the "main" window and set its properties. (Use your discretion in setting its properties.) 

4. Design the Interface. 

The "main" window will be set up to allow the user to dick the "pshGet" button or drop a 
file on it to open. The name of the file opened will display in the text field and the con
tents of the file will display in the text view (has scrollbar). When the user dicks the Save 
button, the text in the text view will be saved over the original file if changes have been 
made. We will add some push buttons, a text view, and a text field to the window. 

Push buttons 
Add a push button to the window and place it top left. Name the button "pshFiles" and 
give it the title "Get File". 

Duplicate the button by pressing CoMMAND+D with the button still selected. You will want 
a horizontal offset of 0; the vertical offset is not critical. Try 200 as a value. Rename the 
duplicated button "pshSave" and give it the title "Save File." 

To handle a drop event (should our user drop a file on the "pshfiles" button), we need to 
set the "pshFiles" button up to accept a drop. To do this, dick the button and select the 
Drag & Droptab in the Info palette. Click the check box next to Filenames in the Iist. The 
button is now ready to accept a file name (see Figure 12-59). 

Acc•ed Orag Types 

Altnamts 

Ale conttnrs 
Promistd filu 

Plain teJct 

Rlch Tut Format data 

RTF'O fonnatttd fllt conttnts 

Tab- separated tut 

llFF lmagt.s 

QulckOraw plcturt data 

POF data 

Encapsulatt.d PostScrlpc ([PS) dota 

Font ond character data 

Flgure 12-59. Drag & Drop 

413 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

414 

Text view 
The text view is identified by a scrollbar on the right side. Add a text view to the window 
and resize by dragging resize handles as needed. 

Several objects in FaceSpan 4 are nested inside other objects. The text view is an example. 
When you drag the text view onto a window, you will notice that the title for the Info 
palette is "Sc roll View". The scroll view is the parent of the text view and gives it scrollbar 
behavior. Make sure you name the scroll view "txtScroll". 

To access the text view, double-dick the scroll view. Notice that the window grays to indi
cate that you are inside a nested structure. To "back out" of the structure, you can dick the 
little up arrow in the lower-right corner of the text view, use the CoMMANo-up arrow key 
combination, or dick back on the window. lf you want to set properties for the text view, 
make sure that the Info palette displays the words "Text View" at the top (see Figure 12-60). 

Text field 

Tut Editor 
Ut Vlew 

10. 1066 

-f: ..........., j Slu lhg & D<op Othor ~ 

Colon---------

Ttxt: ~ ll.l.ckground: ~ 
Options 

Edltotblt 

Stlt.a•blo 

DriiW> ~ckground 

Allowsundo 

Allows grophics 

Allows multiple fonu 

Flgure 12-60. Text View 

0 

Add a text field to the window and resize as needed. Name the text field "txtFile". You will 
also want to uncheck the Editable option in the Attributes pane. 

S. Edit main menu. 

A contextual menu is connected automatically to a text view and a text field to provide 
access to text formatting and spelling functionality. You may also want to add this func
tionality to the main menu. 

Double-dick Main Menu in the Project window to open the menu editor. 

Drag the Format item from the Menus group in the Objects Palette to the main menu bar 
(a line will appear where the menu will be inserted). The Format menu has a Fant item and 
Text item that open to display submenus. Functionality for the menu items in the Format 
menu is built in (see Figure 12-61). 



USER INTERACTION 

Flgure 12-61. Main menu 

Close the menu editor. 

6. Attach scripts. 

Open the Project Script. lf Add code for standard handlers is checked in the Preferences 
Editing tab, the Project Script will include two handlers by default: launehed and ehoose 
menu item. The Project Script is an ideal place to manage values that need to be available 
to various objects within the project. 

Functionality for managing values that are permanently stored with the application is pro
vided by User Defaults. User Defaults is a colleetion of key/value pairs that are stored as 
part of a project. Our demonstration project will use eode found in the Script Library to 
manage User Defaults. 

CoNTROL-cliek or right-cliek an open line in the script window to open the Script Library. ln 
the GetSetSave collection you will find the entry UserDefaultList. This provides the code 
for managing User Defaults as a Iist of values. When the entry is selected, the code is 
dumped to the cursor location in the script edit window. 

Notice that the code includes property statements. These will need to be cut and pasted 
at the top of the Project Script. The comments suggest that the handler be called as part 
of the project's will finish launehing event. Cut the call to the UserDefaultsList handler (it 
will be pasted in the next step into the will finish launehing handler). 

will finish launehing handler 
To add a will finish launehing handler to the script, select the project name in the Object 
Browser. From the Iist of handlers presented, disclose the Appl ication group. Make sure 
the text cursor is on an open line in the edit window, and double-dick the will finish 
launehing entry. Wrappers for the handler are added to the script. The call should still be 
on the clipboard, so highlight the single statement inside the will finish launehing handler 
and paste. 

Define the User Defaults by editing the defaultList property. Forthis project, leave the Iist 
as defaulted. Notice that there is only one item in the defaultList thePath with a default 
value of -1. Each entry in User Defaults is a key/value pair. Each item in our default Iist is a 
Iist of two items: the key and the value. 

The eurrentValues Iist needs to have a Iist of empty strings to correspond to each item in 
the defaultList. This variable will keep track of the values while in runtime. User Defaults 
normally are not saved back to the application until right before the application quits. 
Notice that a will quit handler is included as part of the code. 

415 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

416 

lf you use User Defaults, you will need to identify the executable settings for the application. 

Click the Compile button for the Project Script. Once compiled, you can dose the script if 
you wish. 

"pshFiles" button script 
Create a script for the "pshFiles" button. This will need a handler to take care of a file 
name drop. ln the DragDrop collection of the Script Library there is an entry called 
DropFile. Add it to the "GetFiles" button's script. Notice that the code indudes a property, 
kCurrentFile. Cut and paste this property dedaration at the top of the Project Script. lt also 
makes a call to a populateWindow handler. 

Should the user dick the button (instead of dropping a file), the script will need a handler 
to Iet the user select a file from an Open Panel dialog box. ln the File Fotder collection of 
the Script Library, find the entry for GetFileOpenPanel. Add this to the button's script. The 
code indudes statements to be provided as part of a .call to the handler. Cut the call State
ments and paste them into the clicked handler for the button. The value for thePath (the 
default fotder path) is item 1 of the currentValues Iist. The theTitle and thePrompt values 
can be any string value. Add a call to the populateWindow handler and update the value for 
the kCurrentFile property. The clicked handler should read similar to the fol(owing: 

on clicked theObject 
set thePath to (item 1 of my currentValues) 
set theTitle to "Place Title Here" 
set thePrompt to "Select file" 
set theFiles to getFiles (thePath, theTitle, thePrompt, false) 
populateWindow (theFiles) 
set my kCurrentFile to theFiles 

end clicked 

Main window script 
Create a script for the "main" window. Again, the script code will come from the Script 
Library. ln the Window collection, the entry lnitialize Window should be found. Add it to 
the "main" window's script. This handler can set up initial values and flag our project when 
a condition changes. Cut the hasChanged property and paste at the top of the Project 
Script. 

PopulateWindow 
The PopulateWindow routine will call a readFileText handler and place the contents of the 
file in the text view. The name of the file will be placed in the text field. This routine will 
be placed in the script for the "main" window. The PopulateWindow code, found in the 
Windows collection of the Script Library, is a handler template designed just for this 
purpose. Add it to the "main" window's script. Words shown in ALL CAPS need to be 
replaced with actual references and values pertinent to the script. Highlight TEXT FIELD 
REFERENCE in the first line and double-dick the entry for txtFile in the Object Browser. 
For VALUE, replace this with the variable fileRef. Notice that the next line calls a handler 
that is induded with the template. Highlight TEXT OBJECT REFERENCE, and double-dick 



USER INTERACTION 

the entry for TextView in the Object Browser. (You may need to dick the twisty triangle 
next to the txtScroll entry to see the entry for TextView.) Compile the script. 

7. Test and debug. 

This may be a good place to test what has been done so far. When the project runs, drag 
a text file onto the Get File button, or dick the button and select a file from the Open 
panel. Stop the run. lf nothing happened when you dragged a file to the button, check to 
make sure the name of the button is the same as is required by the drop handler. 

if name of theObject is "pshFiles" then 

Also, double-check to make sure you have set the button to recognize a file (check 
Filenames in the Drag & Drop tab of Button's Info palette). 

Save button script 
Create a script for the "pshSave" button. This will call a routine to verify if there is text in 
the text view. lf the value of the application property hasChanged is found to be true, the 
routine will need to save the text to the current file. (The reference to the current file is in 
the kCurrentFile property.) 

The routine that we will use, GetTextandSave, is found in the GetSetSave collection of 
the Script library. Place this in the script for the "pshSave" button. The call to the 
GetTextandSave routine needs to be cut and pasted into the clicked handler for the Save 
Button script. The properties hasChanged and kCurrentFile are already defined in the 
Project Script, so they can be deleted. 

All that is left is to add a reference to the text view in place of the TEXT VIEW REFERENCE 
placeholder. 

One last detail 
There is just one detail that needs to be attended to. The hasChanged property will have 
the value false until code is added that will (1) set the value of hasChanged to false when 
new text is placed in the text view, or (2) set the value of hasChanged to true when the 
text view gets a changed event. 

Main window script 
For the first step, the populateWindow handler in the script for window "main" would be 
a good place to initialize the value for the hasChanged property. Add the following state
ment as the last line: 

set my hasChanged to false 

For the second step, a changed handler can be added to the window's script. This will set 
the value of hasChanged to true when the window receives a changed event from the text 
view. The changed handler is found in the Editing group of handlers for a text object. 
Select the text view entry in the Object Browser and disdose the Editing handlers. Double
dick the changed entry to add its wrappers to the window's script. 

417 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

418 

Add code so the handler reads as foltows: 

--toggles false to true for application property hasChanged 
on changed theObject 

if name of theObject is "TextView" and my hasChanged is false then 
set my hasChanged to not my hasChanged 

end if 
end changed 

Compile the script. Again, after these additions have been made, you may wish to test run 
the project. 

8. Edit Credits page. 

Even though adding a Credits page may seem like an unnecessary step, it adds a touch of 
professionalism to your project. 

9. Save project. 

When you are satisfied, save the project. 

This is just the beginning of what could be a fulty functional text editing application. As is, 
it can be used to read text from a file and save the edited text. You may want to run it just 
to explore alt of the text editing capability that comes with a text view without your hav
ing to write one line of code. 

Tutorial wrap-up 
The goal of the tutorials was to introduce you to some of the ways that FaceSpan can be 
used, and give a better understanding of what can be done with it. This is just the tip of the 
iceberg. There is so much more waiting for your creativity. The possibilities for creating 
stunning interfaces with custom views and the ability to nest objects within one another 
are just some of the options. 

There is literalty no right and wrong way to put a project together. The tutorial examples 
use a style that is referred to as a distributed approach, as code is "distributed" among the 
various objects. Not that there is anything wrong with putting alt of your code in the 
Project Script, it's just that a distributed approach makes a project easier to read and 
maintain. There are no hard and fast rules for how this is done, but the foltowing steps are 
a good guideline: 

1. Variables whose values need to be used throughout the project are put in property 
statements for the application. 

2. lf FaceSpan scripts are used, define and initialize a global variable to reference the 
file in the application script. 

3. Reserve the application script for managing persistent properties, handling menu 
actions, and for handlers that need to be available to more than one window. 



USER INTERACTION 

4. Handlers that work with "outside" applications are often placed in the Project 
Script or are part of a collection that is loaded from a FaceSpan script. 

5. All activity that is generated in a window should be handled in the window's script 
or in individual scripts for its window items. 

6. lf there are a number of similar buttans in a window, you may wish to handle their 
clicked events in a single clicked handler using iflthen tests to determine which 
button sent the message. 

7. Use prebuilt scripts from the Script Library when possible. There should be no need 
to re-create the wheel. Make sure that property statements are cut and pasted to 
the top of the Project Script. Place sample calls to the handlers in code where 
appropriate. 

A word about my 
Watch for the little qualifier my: it can make or break a project. 

1. Use the my qualifier as part of a call to a handler when you are making the call 
within a tell statement. 

2. Use the my qualifier to reference a property in a parent object. lf a property State
ment is declared at the application Ievel, my is needed to reference the property 
from a script at either the window or window item Ievel. 

Code in the Script Library assumes that property declarations will be made at the applica
tion Ievel with the code at the window or window item Ievel. Notice that references to 
properties include my. 

The unsung heroes 
Within FaceSpan are a number of functionalities and windows that can be used to facilitate 
project building. You may find them seldom-used or may wonder how you could work 
without them. 

The dictionary viewer 
Dictionaries are online references of an application's object classes and methods (com
mands). Besides being able to display its own, FaceSpan's dictionary viewer displays the 
dictionaries for other scriptable applications. You can even set it to show the information 
as raw event codes. And, a dictionary can be saved so it can be viewed without having to 
find it each time you want to use it (see Figure 12-62). 

419 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

420 

0 

FaceSpan » 
Back rward S.loct DictiOIWY 

SUfte:s application, applications 
An appllc.orion·s top ltftl scrlptlng ob)ect 

TStAnd.ard Suitt: 
•com~ds 

... Ciuus 
•Text Suite: 

.c.N:=am==• --,-----TVIM'-'-";:_- ___._!}!_ .;;.Oo;:;;Krlo::=.P;.;;tlon-=---------.-< 
'I' Proport Iu 

'I' Appllatlon Suite 
•commonds 
... (l,aue.s 

bundle 
d~ta 

eiefault enuy 
lt'tlent 

font 
foNNtter 
Image 
ilem 
movie 
paJ!tboard 
respander 
sound 
user- defoulu 
wlndow 

Flgure 12-62. Dictionary viewer 

Contextual menus 

<lnherit:anct> 
open panel 
keywlndow 

m&in bundle. 

lcon lmiilge 

sofi'VIcu mcnu 
~ldden 

wtRCiows menu 
malnwtndow 
act~ 

frontmoJt 

m~nmtmu 

font panel 

color pantl 
na.m~ 

",we panel 

rHponcler 11 AJI of the proportlos of lhe superdus. 
open- panel •~• open ponel 
wtndow 11 the currem key wlndow 
bundle tht maln buncllt of the appllcotion 
lmogo the lcon for the appUc.otlon 
mtnu the sel\'ices menu of tht oppllcatlon 
boolun ls the application hlddon? 
menu the wtndow'-s menu of tht a.pplica.tion 
*ndow 11 the current maln wlndow oflhe appB 
boolun I• the appllc.otion actlwo1 
boolean II IS tllls me frontmost appl ation1 
menu the maln mtnu of the appllcatlon 
font-panel the font panel 
cotor- panel tM: color pv~et 
•lling 11 the name of the appllcation 

0 Displayascodes 

just about every object in FaceSpan has a contextual menu to give an alternate method for 
creating and managing objects. CoNTROL-Click (or right-click) an object to see the options 
available. lt's enough to make you want a three-button mouse (if you don't have one 
already). 

Object lnspector 
To get information about a resource in the project, the Object lnspector is the place to go. 
Click the Show lnspector button in the Project window and activate one of the three tabs. 
You can preview graphics and movies in the Preview tab (see Figure 12-63). 



USER INTERACTION 

Figure 12-63. Object lnspector 

Formatting helps 
lf you find yourself needing to align objects, the Alignment panel is a handy tool. 
COMMAND-select objects you wish to align and select Align from the Format menu 
(CoMMAND+SHJFT+A). Hold the cursor over an icon in the tool to get its description (tool 
tip) if you can't discern its functionality (see Figure 12-64). 

Flgure 12-64. Alignment panel 

The Format menu also has some handy formatting aids that respond to quick-key short
cuts: Shift Right (CoMMAND+]) and Shift left (CoMMANo+D; Comment Selection (CoMMANo+}) 

and Uncomment Selection (COMMAND+{). 

Testinterface 
Objects have built-in behavior such as changing appearance when selected. These behaviors 
can be tested by putting a project in Test Interface mode. To indicate when a project is in 
Test Interface mode, FaceSpan's icon changes in the doc. To return to edit mode, press 
COMMAND+Q. 

421 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

422 

To explore further 

To see the tutorial projects and other sample projects at work, visit FaceSpan's download 
page. Download the projects desired. We hope you will soon experience the variety of 
ways that AppleScript and FaceSpan can make a world-class application, or just a much
used utility, out of your AppleScript scripts. 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

User interaction and AppleScript 

Since the AppleScript language was designed for data manipulation, the user interaction 
portion of it is minimal. This chapter deals with the few user-interaction commands 
AppleScript does possess. 

All user interaction commands are defined in the Standard Additions dictionary. 

display dialog 

The display dia/og command displays a simple dialog box with buttons and an optional 
text field. This is the basic displaydialag command, which displays a dialeg box with some 
text and two buttons, OK and Cancel: 

display dialog "Something interesting" 

You can see screenshots of the different resulting dialeg boxes previously in this chapter. 

Canceling a dialog box 
When clicking the Cancel button, the command will generate a "silent" error. The error is 
the "user canceled" error, number -128. lt will stop the script if not captured in a try bleck, 
but will not generate an error message. Here's how to trap the cancel error: 



USER INTERACTION 

try 
display dialag "Something interesting" 

on error number -128 

end 

display dialag "You canceled" 
return 

Custom buttons 
The displaydialag command allows you to define up to three custom buttons. This is done 
with the buttans parameter. To specify custom buttons, you supply the buttans parameter 
with a Iist of up to three strings, where each string is one button's title. The buttons will be 
displayed in the dialog box in the same order they appear in the Iist. 

The following script will display a dialog box with the buttons Yes, No, and Maybe: 

displaydialag "Click a button:" buttans {"Yes", "No", "Maybe"} 

To specify which button is the default button, use the default buttan parameter. This 
parameter accepts either a string that is the name of the button you want to make the 
default button or an integer that specifies the button by number. 

The following script lines both define the Yes button as the default button: 

displaydialag "Click a button:" buttans {"Yes", "No", "Maybe"} ., 
default button 1 

displaydialag "Click a button:" buttans {"Yes", "No", "Maybe"} ., 
default button "Yes" 

To extract the button the user clicked, get the buttan returned item of the dialog reply 
record (see the "Dialog reply" section that follows). 

Dialog icons 
AppleScript dialog boxes can have one of three icons, or no icon at all. 

lcons are specified with the with ican parameter. The options are as follows: 

For the stop icon, use the value "stop" or 0; for the note icon (face with speech bubble) 
use either "note" or 1; for the caution icon (yellow tri angle) use either "caution" or 2. The 
noninteger values are not strings but rather reserved words you type without quotes. The 
following two script lines will display a dialog box with the stop icon: 

display dialag "The script will now stop" with icon stop 
display dialag "The script will now stop" with icon 0 

423 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

424 

Getting user input 
The display dialag command allows you to solicit user input by using the default answer 
parameter. The default answer parameter takes a string value. lncluding that parameter 
will cause the dialog box to include a text field. The string you provide as the parameter's 
value will be the default text in the text field. To have a blank text field, use a blank string 
("") as the parameter's value. 

The following script will display a dialog box with a blank text field for user input: 

display dialog "Enter your name:" default answer "" 

The following script will display a dialog box with default text: 

display dialog "Enter your date of birth:" default answer "MM/DD/YYYY" 

To extract the text the user typed, get the text returned item of the dialag reply record 
(see the "Dialog reply" section that follows). 

Dialogs that give up 
The gave up parameter of the display dialog command allows you to specify a time period 
in seconds, after which the dialog box will "give up" and close itself. 

lf the gave up parameter is included, the dialog reply record will include the Boolean 
parameter gave up. A true value indicates that a button was not clicked and the dialog box 
gave up after the specified number of seconds. 

The fallowing script will give up after 20 seconds: 

display dialog "Click a button, quick!" giving up after 20 

Dialog reply 

The dialog reply is a record returned by the display dialog command. The dialog reply 
record is a bit different depending on the parameters you use. Following are pairs of state
ments using the display dialog command, followed by the resulting dialog reply record. 

A simple dialog box: 

display dialog "Click a button" 
--> {button returned:"OK"} 

A dialog box with text input: 

display dialog "Enter your name" default answer "" 
--> {text returned:"Joe", button returned:"OK"} 

A dialog box with a give up parameter: 

display dialog "Click a button, quick!" giving up after 20 
--> {button returned:"", gave up:true} 



USER INTERACTION 

choose from list 
The choose from Iist command is defined in the Standard Additions dictionary. lt allows 
you to Iet the user choose an item from a Iist of strings. The result can be a Iist of items, 
or simply false if the user clicks the Cancel button. 

The following script allows the user to choose from a Iist of three cities: 

choose from list {"Los Angeles", "Boston", "Atlanta"} 

The choose from Iist command has a few parameters that define the titles of the buttons 
and the item-selection behavior. 

Prompt 
Use the with prompt parameter to specify a prompt to the dialog box. 

To specify alternate titles for the OK and Cancel buttons, use the OK button name and 
Cancel button name parameters, as you see in the following script: 

choose from list with prompt "Pick a city" ., 
{"Los Angeles", "Boston", "Atlanta"} OK button name "Get there" 

ltem selection 
By default, the user must make a single choice. No empty selection or multiple selections 
are allowed. To change these defaults, use the multiple selections atlowed and empty 
selection atlowed parameters. 

The following script will allow the user to dick OK even if no selection has been made: 

choose from list {"Los Angeles", "Boston", "Atlanta"} ., 
with empty selection allowed 

The following script will allow the user to select multiple items from the Iist: 

choose from list {"Los Angeles", "Boston", "Atlanta"} ., 
with multiple selections allowed 

You can also specify which items will be selected by default. The following script starts 
with the "US" item selected: 

choose from list {"US", "France", "Mexico"} default items {"US"} 

choose file 
The choose file command allows the user to specify an existing file using the Open dialog 
box. This command returns an alias to the chosen file, and generates an error if the Cancel 
button is clicked. The following script will display the basic Open dialog box using the 
choose file command: 

choose file 

425 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

426 

Prompt 
The with prompt parameter allows you to specify a custom prompt. By default, there is no 
prompt. The following script will display the dialog box with a custom prompt: 

choose file with prompt "Pick a text file to clean:" 

Restricting file types 
The of type parameter allows you to specify a Iist of up to four file types. The choose file 
command will allow the user to choose only files whose type is mentioned in the Iist of 
types you provide. The following script will restriet the user to choosing text and word files: 

choose file of type {"W8BN", "TEXT"} 

Default location 
The default location is an alias to a folder that the choose file dialog box will point to as it 
opens. The following script will ensure that the Open dialog box starts out by pointing to 
the desktop: 

choose file default location (path to desktop) 

Invisibles 
The Boolean parameter invisibles determines if the choose file command will allow the 
user to choose invisible files. 

Multiple selections 
The Boolean parameter multiple selections allowed determines if the choose file command 
will allow the user to choose multiple files. 

choose file name 

The choose file name command displays a dialog box similar to the Save dialog box. lt 
allows you to specify a file name and location of a nonexisting file. The command doesn't 
create any file, only returns a path to the new file the user specified. 

The choose file name command has three parameters: with prompt, default name, and 
default location. 

The with prompt parameter adds a prompt to the top of the dialog box. 

The parameters default name and default location allow you to specify the default file 
name and default folder location that the Save dialog box will be pointing to. The follow
ing script will allow the user to choose a file name and location with a default location of 
the desktop and a default name: 

choose file name default name "Image.JPG" default location path ., 
to desktop 
--> file "Macintosh HD:Users:hanaan:Desktop:Image.JPG" 



USER INTERACTION 

choose fotder 
The choose fotder command is nearly identical to the choose file command (see the section 
"choose file" earlier), but instead of a file, the userwill be only able to select a folder. 

choose application 
The choose apptication command allows the user to pick an application from the applica
tions on the computer. The parameters with title and with prompt allow you to customize 
the choose application dialog box. The multiple selections altowed parameter allows the 
user to pick multiple applications. 

The result is either an application as an application object as shown here: 

application "Finder" 

or you can use the as parameter to have the command return the result as an alias to the 
application file instead, as shown here: 

choose application as alias 
--> alias "Macintosh HD:Applications:FileMaker Pro 7:FileMaker Pro.app:" 

choose URL 
The choose URL command returns a path to a URL you either choose or specify in a spe
cial dialog box. You can use the showing parameter along with one or more of the follow
ing terms to Iimit the type of URL the user can choose. The possible values for that 
parameter are "Web servers", "FTP servers", "Telnet hosts", "File servers", "News servers", 
"Directory services", "Media servers", and "Remote applications". 

The Boolean parameter editable URL determines if the user can specify a URL by typing it. 
A false value means that the user will not get a text field in which the URL can be edited 
or typed in. 

choose color 
The choose color command allows the user to specify a color using OS X's Choose Color 
dialog box. The color is returned as a Iist of three integers from 0 to 65,535, which describes 
the color as 16 bits per pixel. The command's one parameter, defautt color, allows you to 
specify the color that the dialog box will have when it first appears. The following script will 
allow the user to pick a color, and the default color in the dialog box will be red: 

choose color default color {65535, o, o} 

Details previously ... 
The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here, refer to earlier sections in this chapter. 

427 



Color Label: 

• • pleScri 'hample ScrlpU 
Felder Actlans Serup.app 
lnstall Script Nenu.app 
RI!ITIOYt! Scnpt Nenu.app ~~~~~~~~~~~~~~~~JIIIIIJ!!JI!!!!I!I[!!!J!I!!!!!I!!!I!IIIJ!II!I!l!!!l!l Scrlpt E<ltor.app" Move 10 Trash 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

430 

ln this chapter we will see how you can use scripts to manipulate files by copying, moving, 
and deleting them, by reading them and writing to them, and also how to refer to files and 
folders. 

When we work with files, what we need is a way to refer to the files we work with. No mat
ter if our goal is to create a text file, back up some folders, or delete the entire contents 
of a hard disk, the ways we refer to a file are the same. 

There are a few ways AppleScript can refer to files, and our job is to choose the method 
that works best with the specific situation and with the application we're using. 

Some of the methods used to refer to files are alias, file reference, POSIX file, URL, and a 
few more, including some that are only defined in the Finder and System Event applica
tions' dictionaries. 

File reference delimiters 
The main part of a file reference is a string that contains the full name of the file. This full 
name starts out with the name of the volume the file is on, followed by the name of each 
fotder in the fotder tree that the file is a part of. The fotder names, and finally the subject's 
file name, are separated by a delimiter. 

This delimiter is one of two characters: colon (:) or slash (!). The colon is the Mac's origi
nal delimiter that is still being used by most disks, by most Mac users, and in most cases by 
AppleScript. The slash is used due to the integration of the UNIX OS with OS X. 

For example, if you have a file called reference. pdf in a fotder called documents on your 
hard disk whose name is "Macintosh HO", the full name, or the path name, is going to be 
"Macintosh HD:documents:reference.pdf". 

When a situation calls for a UNIX-style path, then the path will be "Nolumes/Macintosh 
HD/documents/reference.pdf". Notice that the word "Volumes" was added. This addition 
will be there to identify files that are not found on the startup disk. More on that later on 
when we discuss UNIX file references. 

The most descriptive-reading reference style is the Finder reference style. Although it 
works only within the Finder's tell block, it's easy to coerce it into an alias, string, etc. 

ln the following examples, you can see a few ways to Iook at a file path, starting with the 
Finder's reference, and then both Mac-style and UNIX-style path names. Figure 13-1 shows 
the Finder's window displaying the hierarchy leading to the final file. 

Finder reference: 

document fjte "/nDesign CS Scripting Guide.pdr of fotder "Scripting" of fotder "Adobe 
lnDesign Technicat Info" of fotder "Adobe lnDesign CS" of fotder "Applications" of startup 
disk of application "Finder" 



WORKING WITH FILES 

Mac-style path name: 

Macintosh HD:Applications:Adobe lnDesign es:Adobe JnDesign Technical Jnfo:Scripting: 
lnDesign es Scripting Guide.pdf 

UNIX-style path name: 

/Applications/Adobe lnDesign eS/Adobe lnDesign Technical lnfo/Scripting/lnDesign es 
Scripting Guide.pdf 

Wadntosh HO 

Adobe Acrobat 6.0 Professional 
!ji Adobe Illustrator es 

"' Adobe ln!leslgn es 
Adobe ln!leslgn es 3.0.1 RndMt.pdf 

T Adobe ln!leslgn Technlcal Info 
lnOulgn es Prlntlng Guldt.pdf 

• Scrlptlng 
I> Adobe Sampie Scripu 

r.t lnOesoQn CS SrnOIIIlQ Guode pdT 

Tagged Text.pdf 
Alters Rl!;;odMe.pdf 

• Fonts 
:-4 rnOeslgn es 

lnOeslgn es ReadMe.pdf 
• .. 

Flgure 13-1. A Finder window showing the path names shown previously 

ln pre-05 X, the Mac allowed you to use slashes (!) in file names. While this was very use
ful for specifying dates in names of files and folders, it became a nightmare when files had 
to be backed up or looked at by other operating systems. 

Now, Mac OS X doesn't allow the use of colons (:) or slashes (!) in names of files and folders. 

File references, strings, and coercion 
Most file reference types can be coerced into each other or into a string. ln fact, most file 
reference types are a string preceded by the reference type. lf, for instance, you wanted to 
refer to a file called Report. doc found on the hard drive, the string would be 

"Macintosh HD:Report.doc" 

The alias reference would be 

alias "Macintosh HD:Report.doc" 

431 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

432 

The file reference form would be 

file "Macintosh HD:Report.doc" 

Notice that the prefix changes, but the string is the same. 

What's more, you can use the as coercion to convert between one reference form to 
another. Following are a few examples (the following paths have to be changed to point to 
actual files on your hard drive in order to work): 

Script 13-1 

tell application "Finder" 
file "Macintosh HD:Report.doc" as alias 

--> alias "Macintosh HD:Report.doc" 
a reference to file "Macintosh HD:Report.doc" 
--> file "Macintosh HD:Report.doc" 
file "Macintosh HD:Report.doc" 
--> error: Can't get file "Macintosh HD:Report.doc". 

end tell 

ln this case, AppleScript generated an error, since the file reference isn't a dass you can 
use by itself. The Statements were put in a Finder tell block since using the file reference 
form outside the tell block will not compile. 

Due to the relatively complex nature of file reference forms, I usually prefer to store file 
references as strings. You can coerce any file reference form into a string, and coerce the 
string back into different file reference forms by simply attaching the appropriate prefix to 
the string. 

Script 13-2 

set the_path to "Macintosh HD:Report.doc" 
set the_alias to alias the_path 
--or: 
tell application "Finder" 

delete file the_path 
end tell 
--or: 
tell application "System Events" 

set unix_path to posix path of file the_path 
--"/Report.doc" 

end tell 

Strings are also much more flexible when you want to store them. ln order to store your 
path in a text file or in a database, you would most likely want to convert it to a string. 

There are times, however, when you will need the power of the alias dass, which is dis
cussed later on in this chapter. 



WORKING WITH FILES 

Alias and file reference 
The two main forms of file reference are the file and alias. While their written forms 
appear similar, they do have significant differences, which we will Iook at here. 

The written form of these references include the prefix word ("alias" or "file"), followed by 
a string that represents the path name. 

A path name is the full (ile name inc/uding the drive and subsequent nested 
folders going down to the (ile's name, al/ separated by colons. 

Examples: 

alias "Macintosh HD:AppleScript Reference.pdf" 
file "Macintosh HD:AppleScript Reference.pdf" 

Note that the secend form using the term "file" will only compile if placed inside an 
application tel/ block such as a Finder tel/ block. 

How aliases work 

The first thing you may notice about using the alias reference form is that AppleScript 
goes out and checks if there's a file (that includes folders, applications, etc.) that corre
sponds to the supplied path name. 

lf you script includes the following statement: 

alias "Macintosh HD:AppleScript Reference.pdf" 

as you compile the script, AppleScript will check to see if there's actually a file named 
AppleScript Reference. pdf on a mounted volume named "Macintosh HD". lf there isn't 
such a file, AppleScript will return a syntax error. When trying to compile the following 
statement, AppleScript will generate the error shown in Figure 13-2. 

alias "Macintosh HD:Windows XP source code.TXT" 

Undtled 

Syntax E"or 
fllt Maclntosh HD:Windows XP sourct <Ode. TXT 
wun'tfound. 

Flgure 13-2. The script won't compile since the file referenced with the alias 
reference form doesn't exist. 

433 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

434 

Now why would AppleScript go through the trouble of checking the file's existence right 
away? The answer is that as soon as AppleScript finds the referenced file, it creates an 
internal reference to that file. This reference works much like the way file aliases work in 
the Finder: the file is found even if its name or location has been changed. Yes! As long as 
the script has been provided a valid alias, the script will retain a pointer to that file until it 
is deleted. 

Alias file-tracking example 
To test and demonstrate that alias capability, we will create a script that tracks a file you 
pick, and reports back if the location or name has changed. 

For that, we will need two properties: one for the alias itself, which will change when the 
file is moved or renamed, and one that will keep track of the previous path name as string. 

The application's script will start by checking if the the_a/ias property has been set (line 3). 
lf the script is running for the firsttime and the the_a/ias property has not been set, then 
the script will ask you to choose a file (line 4). The choose file command will return an alias 
that will be assigned to the the_alias property. 

From there, the script will compare the string variable containing the previous location to 
the alias to check if the file has moved (line 7). lf the file has moved, AppleScript will show 
you the old path and the new path in a dialog box (line 1 0). 

Here's the script: 

Script 13-3 

property the_alias : missing value 
property last_pathname : "" 
if the_alias is missing value then 

set the alias to choose file 
else 

set this_pathname to the_alias as string 
if this_pathname = last_pathname then 

display dialag "The file hasn't maved" 
else 

displaydialag "Old file path:" & return & ... 
last_pathname & return & ... 
"New lacatian: " & return & ... 
this_pathname 

end if 
end if 
set last_pathname ta the_alias as string 

Run the script once to choose the file. 

Now, change the name of the file you chose, or even move it to a different folder. Run the 
script again (without recompiling the script!). The script should show you the old path and 
the new path of the file you originally chose. 

To force AppleScript to Iet go of the the_alias property, recompile the script. 



WORKING WITH FILES 

Nontracked aliases 
Can we use the alias reference form on a file that doesn't yet exist? Yes, however, you will 
be losing the benefit of AppleScript's file-tracking functionality described previously. The 
way to use an alias in AppleScript for referring to a nonexisting file is by describing the 
path name using an expression that is not a Iiterat expression. 

Either write 

or 

Set the_path_name to "Macintosh HD:Windows XP source code.TXT" 
alias the_path_name 

alias (get "Macintosh HD:Windows XP source code.TXT") 

ln both cases, AppleScript will only evaluate the alias at runtime. lf the corresponding file 
still does not exist, then you will get error number -43, which means "file not found." 

So what about file references? 
File references are different from aliases in a few ways. For starters, an alias points to an 
existing file or folder, while a file reference can be pointing to a file that doesn't yet exist. 

File references can't be assigned to variables just by tacking a string onto the word "file." 
For example, Iook at the following statement: 

set file reference to file "Macintosh HD:Some file.pdf" 

or 

set file_reference to file the_file_path 

Running either line in a script will generate a runtime error number 10 (general script 
error). 

The right way to store such references in variables is by using the reference to operator, or 
by using them in scripting additions or application-related commands. 

Inside an application's tell bleck, the file reference can stand by itself. 

tell application "Finder" 
set file_reference to file the_file_path 

end tell 

To assign a file reference to a variable, use the following: 

set file_reference to a reference to file "Macintosh HD:Some file.pdf" 

The result will be 

file "Macintosh HD:Some file.pdf" of «script>~ 

435 

1111 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

436 

Or, you can simply use the simple file reference form as you would use alias in commands 
that support both file reference forms, such as the read command: 

read file "Macintosh HD:Some file.txt" 

Referring to folders and disks 
When referring to folders or disks, use the same syntax you would use for files, but add a 
colon at the end, like this: 

"Macintosh HD:Applications:" 

The colon at the end of the file name indicates that the item is a container. When creating 
aliases, AppleScript will add a colon to the end if the referenced file is a container of sorts. 

Using colons helps you when concatenating folders into a path name. lf you have a colon 
at the end of the path name, all you have to do is tack on the name of the next folder. 

Referring to packages 
Packages, also referred to as bundles, are a funny breed of file. ln a Finder window, they 
Iook like files. However, to the system, they're not much more than a fotder with more 
folders and files inside of it. The most commonly known form packages take is Cocoa 
applications, but packages do exist in the Carbon world as well. The folders and files inside 
the package make up the different components of the application. 

ln the Finder's dictionary packages are just packages, not containers or files. ln the System 
Events dictionary, however. packages are referred to as bundles. 

Referring to these items becomes especially important when you work with your own 
AppleScript Studio applications. There, however, you need to refer to the package from 
the inside, which you can do with the bundle object. 

From the outside, however, all you need to do is add a colon to the end of the applica
tion's path name, and then add the rest of the path of the enclosed file or fotder you want 
to work with. 

You know that an application is a package when you CoNrRoL-Click it. lf one of the menu 
items is Show Package Contents, as shown in Figure 13-3, then you know it's a Cocoa appli
cation you're dealing with, and you can open the package and Iook around. 



WORKING WITH FILES 

Create Archive of "Sifart• 

Copy "Saf~rt· 

Dlsable Folder Actlons 
Conflgure Folder Actlons ... 
~ufflt ~ 

Flgure 13-3. The file contextual 
menu showing the Show 
Package Contents menu item 

Figure 13-4 shows the package contents of the application Safari. 

Resources 
Acknowledgments.nf 
ActMty_Stop.tlf 
AddUnk.tif 
AddUnkOisabled.tlf 
AddUnkPressed.Uf 
AddressBook.tlff 
AdvancedPreferences.tlff 
Appearanc.ePreferences.t lff 
Autoftll.tlf 

Oec 5, 
)un 1, 200<4, 3:42 PM 
Jun 7, 200<4, 11:01 PM 
)an 21, 2004, 7:29PM 
Oec s. 2003, 3:00PM 
Feb 17, 2004, 7:46PM 
Jan 21. 2004, 7:29PM 
)an 21, 2004, 7:29PM 
Jan 21. 2004, 7:29PM 
)an 21. 2004, 7:29 PM 
)an 21, 2004, 7:29 PM 
Jan 21. 2004, 7:29PM 
)an 21. 2004, 7:29PM 
Jan 21, 2004, 7:29PM 
)an 21, 2004, 7:29PM 
)an 21, 2004, 7:29PM 
)an 21. 2004, 7:29 PM 
)an 21, 2004, 7:29PM 
Jan 21. 2004, 7:29PM 

Flgure 13-4. The open package of the application Safari 

So, to refer to a file inside the package, you may have to do a couple of things: 

First, you will have to check if the application has the . app file name extension. This exten
sion has to be added to the path name. 

437 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

438 

After that, you have to add the colon, followed by the rest of the path. Packages always 
start with a single fotder called Contents. From there, there are a couple of other folders 
called MacOS and Resources. Open them up and double-dick some files. You will be sur
prised how much of your system you can mess up in a short period of time! 

The following path points at a TIFF file in the resources folder in the Safari package: 

alias "Macintosh 
HD:Applications:Safari.app:Contents:Resources:AutoTabMarker.tif" 

Finder references 
So far we looked at the way different applications, scripting additions, and AppleScript 
itself refer to files. The Finder dictionary (and System Events dictionary) allow us to refer 
to files and folders as objects in a well-structured object model. 

The top object (other than the application itself) is the hard disk. Every subsequent fotder 
in the structure is an element ofthat object, and the folders also have their own elements: 
the files and folders they contain. 

The Finder's file reference form uses AppleScript's English-like object reference form to 
refer to files. For instance, Iook at the following script and at the result: 

tell application "Finder" 
file "Macintosh HD:Users:hanaan:Desktop:chocolate:chocolate.jpg" 

end tell 
--> document file "chocolate.jpg" of folder "chocolate" of ., 
folder "Desktop" of folder "hanaan" of folder "Users" of ., 
startup disk of application "Finder" 

This reference form, when still inside the Finder's tell block, may be easily coerced into a 
string. 

tell application "Finder" 
file "Macintosh HD:Users:hanaan:Desktop:chocolate:chocolate.jpg" ..... 

as string 
end tell 
--> "Macintosh HD:Users:hanaan:Desktop:chocolate:chocolate.jpg" 

The same file reference form works in the Finder's sister application, System Events, as well. 

With files and folders being objects, you can now create nested tell blocks for directing 
commands to certain files or folders. The following three examples have the same out
come: 

Script 13-4 (includes two following scripts) 

tell application "Finder" 
delete file "Macintosh HD:jobs:report.rtf" 

end tell 



WORKING WITH FILES 

or 

or 

tell application "Finder" 
tell startup disk 

delete document file "report.rtf" of folder "jobs" 
end tell 

end tell 

tell application "Finder" 
tell startup disk 

tell folder "jobs" 
tell document file "report.rtf" 

delete it 
end tell 

end tell 
end tell 

end tell 

Notice the word "it" after the delete command in the last example. The object it refers to 
the current tell target, in this case the file report. rtf. The use of it is optional for the 
most part, but does make your script a bit clearer than if you simply used the command 
delete by itself. 

UNIX's POSIX paths 
A POSIX path is a file reference form used in the UNIX OS, and therefore also in Mac OS X 
to some extent. 

The main differences between the normal Mac file reference and the UNIX file reference 
are the delimiters used to separate folders, and the optional inclusion of the startup disk 
in the path name. 

The most visible difference is the delimiters. lf a path name is made out of names of fold
ers followed by the name of the file at the end, the delimiters are the characters that sep
arate the folder names. 

ln Mac operation and programming, path names use the color character as a delimiter. ln 
UNIX. that delimiter is a slash. So, for a path name that Iooks like this on the Mac: 

"Macintosh HD:Documents:Report.pdf" 

the UNIX-style path name would Iook like this: 

"Macintosh HD/Documents/Report.pdf" 

439 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

440 

ln UNIX, a path name's beginning depends on the location of the file: any file on the 
startup disk may start with a slash while the name of the startup disk is omitted: 

"/Documents/Report.pdf" 

lf the file is on another hard disk, let's say a disk named "External2000", the word 
"Volumes" has to be added at the start, like this: 

"Volumes/External2000/Documents/Report.pdf" 

Furthermore, in UNIX, any file that is found in the current user's home directory will start 
with a tilde (-). That means that if you have the file named report. rtf on your desktop, 
the UNIX path to it may be one of the following three POSIX paths: 

-Joesktop/report.rtf 
/Users/hanaan/Desktop/report.rtf 
Volumes/Macintosh HD/Users/hanaan/Desktop/report.rtf 

For now, you are on your own as far as adding the word "Volumes" or replacing the name 
of the home fotder with a tilde. AppleScript may have a few ways to coerce the color
delimited path into a slash-delimited path, but the conversion isn't foolproof, and you may 
have to do some fixing. 

Coercing paths to and from POSIX paths 

AppleScript gives us a few ways to convert traditional colon-delimited AppleScript paths 
into UNIX POSIX paths, and vice versa. 

You should know, however, that whenever you're using these paths, you will have to qual
ify them; and because they hardly work OK right out of the conversion, some adjustment 
is usually necessary. 

POSIX path property 
Aliases and file reference objects have a POS/X path property. This property can also work 
on nonexisting files, and in that case it isn't a hard reference to the file, but rather a "best 
guess" of how the conversion should work. 

lt is important to note that the POS/X path property exists so that scripters can make bet
ter use of the do shell script command. 

You can get the POS/X path property of nonexisting files, which means that it is unsafe to 
assume that a file or fotder exists because you've gotten its POS/X path property. 

As one would expect, the POS/X path property was designed to work only with alias or file 
objects. However, when it was released, the POS/X path property also worked on strings. 
Unfortunately, people started relying on that "feature" and the AppleScript team couldn't 
remove it; now it's there for good. 



WORKING WITH FILES 

The POS/X path property also works in reverse: you can ask for the POS/X path property of 
a slash-delimited path, and get its colon-delimited counterpart. Here too, however, the 
conversion is a best guess based on position of slashes, and doesn't represent a sure-fire 
path you can use in your script. The POS/X path property, however, was not intended to 
work in reverse. For that purpose the POS/X file object was created. 

Here are some examples of the POS/X path property: 

POSIX path of (path to startup disk) 
--> "!" 
POSIX path of (path to documents folder from user domain) 
--> "/Users/hanaan/Documents/" 
POSIX path of "lala:bombim" 
--> "/lala/bimbim" 
POSIX path of "/lala/bimbim" 
--> "/:lala:bimbim" 
POSIX path of file "-/report.xls" 
--> "/-:report.xls" 

Notice the last example: it has the tilde, but AppleScript somehow treats it as a fotder 
name and places a colon between it and the file name; that's pretty useless, and hopefully 
will be fixed in future versions of AppleScript. 

POSIX file straight-up 
POS/X file is an object that converts a UNIX-style path that is returned from the do shell 
script command into a file reference. lt is similar to the POS/X path property discussed 
previously, but it isn't identical in outcome. 

POS/X file behaves a bit like the alias object does, where it will resolve itself into a file 
object if you hand it a file path as a Iiterat expression instead of a string variable. 

For instance, if you type this line: 

posix file "/Applications/Chess" 

When you compile your script, AppleScript will convert your text to 

file "Macintosh HD:Applications:Chess" 

Manual coercion using strings 
Another way to convert colon-delimited file path names into slash-delimited file path 
names is to use string and Iist manipulation using AppleScript's text item delimiter. lt is 
important to realize that AppleScript colon-style paths are different than UNIX paths, 
using slashes in more ways than simply the delimiter. For instance, to refer to files and 
folders inside the startup disk, you start with a slash instead on the startup disk name. For 
this reason, it is important to thoroughly test the manual conversion of paths from UNIX 
to Mac and vice versa before using them, because simply changing the delimiters will most 
likely result in a nonworking path. The example that follows shows how to manually 
change the delimiters: 

441 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

442 

Script 13-5 

set the_path to "Macintosh HD:Users:hanaan:Desktop:report.xls" 
set AppleScript's text item delimiters to ":" 
set path_items to text items of the_path 
set AppleScript's text item delimiters to "/" 
set the_unix_path to path_items as string 
--> "Macintosh HD/Users/hanaan/Desktop/report.xls" 

Also in this case, however, the name of the hard disk isn't stripped; you still don't have the 
word "Volumes" before the path name, and there's no consideration to the fact that the 
file is in your user directory. More work is required here as weil. 

Where are UNIX-style POSIX paths used? 

The main use of POSIX paths is in the do shell script command. This command allows you 
to perform a UNIX shell command and hit the heart of the UNIX-based OS X. 

Whenever you perform any shell command of a file or folder, and many of the shell com
mands do just that, you specify the file using a POS IX path. 

Here's an example of a shell script that generates an error if the file referenced in the shell 
script doesn't exist: 

do shell script "test -f ~/oesktop/report.xls" 

lf the path includes a space, you will need to escape it with a backslash, which means that 
since it's coming through AppleScript, you need to escape that backslash with another 
backslash. 

URL 
The URL file reference is useful for opening local files using Safari or other web browsers. 

You can get a file's URL by tapping to its URL property defined in the Finder and System 
Events dictionaries. 

The script that follows gets the URL property of the file you choose: 

Script 13-6 

set the_alias to (choose file) 
alias "Macintosh HD:Developer:Documentation:index.html" 
tell application "System Events" 

set the_url to URL of the_alias 
end tell 
--> file://localhost/Developer/Documentation/index.html 



WORKING WITH FILES 

While you can get the URL of any existing file, folder, or disk, it is only useful with lnternet
sawy files such as HTML, JPG, GIF, etc. 

You can use the URL in Safari, or you can use the open location command. 

The following script will open a new window in Safari and display the URL in the variable 
the_url (from the preceding script): 

tell application "Safari" to make new document with properties-. 
{URL:the_url} 

You can also use the open location command to open a URL in the default browser: 

open location the_url 

The open location command is part of the Standard Additions. 

open location: Opens a URL with the appropriate program 
(defined in: StandardAdditions.osax) 
open location [string] -- the URL to open 

[error reporting boolean] -- Should error conditions-. 
be reported in a dialog? 

File name extension 
One more present the new UNIX-based OS X gave us is the introduction of file name 
extensions. Yup, just like that, say goodbye to years of taunting my PC programmer bud
dies about their antiquated dependency on easily changeable file name extensions ... OK, 
enough of that. Now file name extensions are great! I Iove them. 

Files can either have an extension, or not. Despite the irritation, it is always better to have 
a name extension. lt makes it easier to spot the purpese of the files, and makes you a bet
ter network citizen. 

lf the file has a name extension, it might be hidden. ln the Finder, you can see the name 
extension and its status in the Info panel. 

Click a file, choose Get Info from the File menu, and expand the Name Extension pane. 
Figure 13-5 shows the Finder's Info box with the Name & Extension pane. 

443 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

444 

n RTF _Sptdflcatlons.pdf Info 

;." RTF ..Sp~clflcatlons.pdf 

KlncL PllF Oo<;umenl 
Slzo: 276 Ka on disk (278.826 bytH) 

Wlltre: o .. ktop:Desktop Stufl:old dt<ktop 
stulf:RTF Speclflat:lons: 

Ctta!td: Tuud•y, December 30, 2003 9:58 
AM 

Modlfltd; MOnd.ly, }.lnu.ry 8. 2001 3:59 ~ 

Staliontry P~d 

LDckod 

Hide u:tension 

.,.. OwMrshlp 6 Perrnlsslons. 

... '"""""""-

Flgure 13-5. The Finder's 
Info box with the Name 
& Extension panel 

Using AppleScript, you can check the status of the name extension in a few ways. The best 
way to gain information about the existence and status of a specific file's extension is by 
tapping into the file information record. 

As seen later in this chapter, you can use the get info command to return records contain
ing useful information about any files you wish. While OS 9 had one name-related prop
erty called name, OS X has four name-related properties. Three of them are Unicode 
strings: name, displayed name, and name extension. The fourth is a Boolean variable, 
extension hidden, which is true if the extension is hidden, and false if it is visible. 

Following is a little script that goes through alt the files that don't have an extension, and 
if the file type is PDF, it sets the name extension to PDF as weil: 

Script 13-7 

1. set the folder to (choose folder) as string 
2. tell application "Finder" 
3. tell folder the_folder 
4. try 
s. set file_list to name of every file ~ 

whose name extension is "" 
6. repeat with the_file in file_list 
7. if file type of file the_file starts with "PDF" then 
8. set name of file the_file to (the_file & ".pdf") 
9. end if 
10. end repeat 
11. on error error_text number error_number 
12. if error_number is -1728 then --no matehing files 
13. display dialog "No applicable files were found" 
14. else 



WORKING WITH FILES 

15. display dialeg error_text 
16. end if 
17. return 
18. end try 
19. end tell 
20. end tell 

ln line 5 of the script we isolate the files whose extension is hidden. 

Since the Finder will generate an error if no applicable files are found, we have to prepare 
forthat possibility with a try statement. 

Once we trap an error, on line 11, we check to see the nature of the error. lf the error 
number is -1728, we know that no applicable files were found, and we can gracefully exit 
the script. For more on errors and error trapping, see Chapter 15. 

Getting file information 
Whenever you need to get file information from a file or folder, the best place to go is the 
info for command. 

The info for command is a scripting addition and a part of the Standard Additions. 

The power of the info for command is in the information it returns to you. The information 
about a file is returned in a record whose properties are shown in the following section. 

From the dictionary 

Here's the dictionary entry for the info for command: 

info for: Return information for a file or folder 
(defined in: StandardAdditions.osax) 
info for anything 

-- the alias or file reference to the file or folder 
Result: file information 

-- a record containing the information for file or folder ~ 
specified 

The record returned from the info for command is also described in the Standard 
Additions dictionary: 

Class file information: Reply record for the cinfo for' command 
Properties: 

name Unicode text [r/o] -- the name of the item 
displayed name Unicode text [r/o] -- the user-visible name of ~ 

the item 
name extension Unicode text [r/o] 

-- the name extension of the item (such as "txt") 

445 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

446 

bundle identifier Unicode text [r/o] 
-- the item's bundle identifier (if the item is a package) 

kind Unicode text [r/o] -- the kind of the item 
default application alias [r/o] 

-- the application that normally opens this kind of item 
creation date date [r/o] -- the date the item was created 
modification date date [r/o] -- the date the item was last ~ 

modified 
file type string [r/o] -- the file type of the item 
file creator string [r/o] -- the creator type of the item 
short version string [r/o] 

-- the item's short version string (from the Finder's ~ 

'Get Info'box) 
long version string [r/o] 

-- the item's long version string (from the Finder's 'Get ~ 

Info' box) 
size integer [r/o] -- the size of the item in bytes 
alias boolean [r/o] -- Is the item an alias file? 
folder boolean [r/o] -- Is the item a folder? 
package folder boolean [r/o] 

-- Is the item a package (a folder treated as a file?) 
extension hidden boolean [r/o] 

-- Is the item's name extension hidden from the user? 
visible boolean [r/o] -- Is the item visible? 
locked boolean [r/o] -- Is the item locked? 
busy status boolean [r/o] -- Is the item currently in use? 
icon position point [r/o] 

-- the coordinates of the item's icon in its window or on the ~ 

desktop 
folder window bounding reetangle [r/o] 

-- the Coordinates of the folder's window (if the item is a ~ 
folder) 

Using info for 

The nice thing about using the info for command is that, due to it being a scripting addi
tion, you don't have to use it inside an application's te/1 block. 

You should familiarize yourself with the info for reply record. The different elements can 
come in very handy at many situations. 

Following is a script that uses the info for command to calculate the number of days a cho
sen file has not been updated. The script will do that by subtracting the modification date 
from the current date. The script is first shown in the legible format, written over a few 
lines, and then condensed to two lines only: 

set the_alias to (choose file) 
set file info to info for the alias 
set seconds_old to (current date) - (modification date of file_info) 



WORKING WITH FILES 

set days_old to seconds_old div days 
set file_name to name of file_info 
display dialog "The file \"" & file_name & "\" hasn't been modified .... 
for " & days_old & "days." 

And, the same script on two lines: 

set the_alias to (choose file) 
display dialog "The file \"" & (name of (info for the_alias)) & .... 

"\" hasn't been modified for " & ((current date) - .... 
(modification date of (info for the_alias))) div days & " days." 

The result of line 2 of the script (set file_info to info for the_alias) is 

{Name: "report.rtf" , .... 
creation date:date "Thursday, November 20, 2003 11:04:20 PM", .... 
modification date:date "Thursday, November 20, 2003 11:04:30 PM", .... 

icon position:{o, o}, size:6.961535E+6, folder:false, alias:false, .... 
name extension:"rtf", extension hidden:false, visible:true, .... 

package folder:false, file type:"RTF ", file creator:"MSWD", .... 
displayed name:"report.rtf", default application: .... 
alias "Macintosh HD:Applications:Microsoft Office X:Microsoft Word", .... 
kind:"Microsoft Word RTF document", locked:false, .... 
busy status:false, short version:"", long version:""} 

Other useful bits of information you can get from the info for result are the file's size in 
bytes, whether the file is a fotder or not, and whether it's an alias or not. You can see if the 
file is busy or locked, and more. 

Reading and writing files 
When I started using AppleScript, one of the things that fascinated me the mostwas writ
ing text files. Man, that was almest as much fun as displaying my first dialeg box. 

AppleScript has a few commands for reading data from files and writing the data back. For 
the most part, these commands are used to read and write text, but you can pretty much 
read and write any data: graphic formats, PDFs, etc. The reason why we mostly use the 
read and write commands for text files is that we can easily create text in strings, see what 
we created, and understand it. Any other data is a bit more complex. You can't really Iook 
at the data of a PDF file and understand what's going on in there. 

But text doesn't have to be dull. There are plenty of text-based file formats that allow you 
to create richly formatted files, such as XML, RTF (see the "Writing RTF files" section later 
in this chapter), SVG (another flavor of XML), etc. Also, both QuarkXPress and lnDesign 
make use of their own tagged text file format, which you can create. 

447 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

448 

Commands for reading and writing files 

Reading and writing files is done using the file read/write scripting additions, which are part 
of the Standard Additions. The main commands are read and write, but in order to use 
them, we use other commands that are used to open and close access to the files we want 
to read and write to, and get and set the end of file (EOF) of the files we want to deal with. 

Following is an explanation of the different file reading and writing commands. 

read 
The read command allows you to read the text data or binary data of a file. 

From the dictionary 
read: Read data from a file that has been opened for access ~ 

(defined in: StandardAdditions.osax) 
read anything 
-- the reference number, alias, or file reference of the file to ~ 

read 
[using delimiters list of string] 

-- ... or a list of values that separate items to read 
[as type class] -- the form in which to read and return data 
[for double integer] 

-- the number of bytes to read from current position; 
-- if omitted, read until the end of the file 

[before string] -- read up to but not including this ~ 
character ... 

[until string] -- .•. or read up to and including this character 
[from double integer] 

-- starting from this position; 
-- if omitted, start at last position read from 

[to double integer] -- stopping at this position 
Result: anything -- the data read from the file 

Using the read command 

Reading files is fairly straightforward: you furnish the read command with the required file 
reference, and the result is the contents of the file. 

Try the following: 

Use TextEdit to create a text file. Make sure to convert the file to plain text (not RTF). Let's 
say that the file is named work. txt and we save it on the hard disk. 

Type some text in the file, save it again, and close it. 

Now, start a new script document and write the following line: 

read file "Macintosh HD:work.txt" 

The result of running the script is the text stored in the file. 



WORKING WITH FILES 

Opening and closing access to files 
The Standard Additions define two file-access-related commands: open for access and 
close access. 

These commands allow AppleScript access to files for reading data from and writing data to. 

Although we can read data from files without opening them for access, there's a differ
ence in the way the read command operates when you do or don't open the files. This 
difference is illustrated in the "Reading files and open for access" section. 

From the dictionary 
Here's the dictionary definition of the open for access and close access commands: 

open for access: Open a disk file for the read and write commands 
(defined in: StandardAdditions.osax) 
open for access file 

the file or alias to open for access. 
If the file does not exist, a new file is created. 
[write permission boolean] -- whether to allow writing to the ~ 

file. 
Result: small integer 

a file reference number; use for 'read', 'write', and 'close ~ 
access' 

close access: Close a file that was opened for access 
(defined in: StandardAdditions.osax) 

close access anything 
-- the file reference number, alias, or file reference of the ~ 

file to close 
The open for access result 

Notice the result section of the open for access command: it's an integer. 

When you open access to a file, the result is not a file reference in the usual form of a path 
name, but rather an integer referring to the file. This integer can be used to specify the file 
when you read data from the file, write data to the file, use the EOF commands, and close 
access to the file. 

The following script shows the use of the integer resulting from the open for access command: 

set the file to "Macintosh HD:work.txt" 
set the_file_integer to open for access file the_file 
--> 5680 
set file_data to read the_file_integer 
close access the_file_integer 

You can use the original file reference for all these as well-after all, you had to have a 
normal file reference to the file for the purpose of opening the file for access. However, 
using the file reference number allows AppleScript to find the file faster. Really, at least a 
billionth of a second faster! 

449 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

450 

Seriously though, if you do a fair amount of reading and writing files, get used to extract
ing that integer from the open for access command and using it. 

The number is referring to the file for as long as it is open, so there's no use in holding on 
to the value of this integer beyond that point. A new integer, one number up from the last 
one, is assigned every time you open a file for access, even if it's the same exact file. 

File reference argument 
Although you may use a plain string to refer to a file, it is recommended that you use a 
proper file reference. 

open for access "Macintosh HD:new file.txt" 

will work, but this is better: 

open for access file "Macintosh HD:new file.txt" 

This is OK too: 

open for access alias "Macintosh HD:new file.txt" 

The only problern with the last script line is that if the file doesn't exist yet, the script will 
refuse to compile. However, using the alias will work OK if the string defining the alias's 
path is a variable. 

set the_path to "Macintosh HD:new file.txt" 
open for access alias the_path 

What if there's no such file? 
The open for access command is used not only for reading existing files, but also for creating 
them! 

Try the following script: 

set new_file_path to (path to startup disk) & "not there yet.txt" as 
string 
open for access file new_file_path 
close access file new_file_path 

After running this script, Iook in your startup disk and see that a new file named not there 
yet. txt was created there. lt does happen to be empty (has zero bytes), so reading it will 
generate an error, but you could write text to it. 

Opening a file for writing 
The open for access command has one parameter (with no arguments): with write permission. 

This parameter allows you to write to the file. This would be the only way you can write 
text (or other data) to that file. Trying to write to a file that has not been opened using the 
with write permission parameter will generate an error. 



WORKING WITH FILES 

The following line opens a file for access with write permission: 

set the-_file to "Macintosh HD:work12345222.txt" 
open for access alias the_file with write permission 

Close what you've opened 

Every time you open a file for access you should use the close access command to close it 
down again. Not closing a file is a bit like leaving the phone off the hook. 

So, the last command relating to reading or writing to or from a file should be followed by 
a command closing access to that file. 

You shouldn't worry, however, that leaving a file open for access will cause any darnage to 
the file. The file itself isn't actually affected by the open for access or close access com
mands. 

Even if you open a file for access with write permission, the file's busy status remains 
unchanged. ln fact, once you opened access to a file from one script, you can use another 
script to write to that file using the same file reference number. 

Also you should know that quitting the script editor will close access to any files you 
opened. 

Read command parameters 

The read command can become even more powerful with a set of parameters. 

Using a delimiter to read text into a Iist 
The using delimiter parameter allows you to read a text file directly into a Iist. You do that 
by specifying a delimiter character. This character acts as the text delimiter, which sepa
rates the text read from the file into Iist items. 

For example, if we have a multiline text saved in a file, we can read that file in to a Iist, 
where each Iist item is a paragraph, simply by setting the with delimiters parameter to the 
return character, like this: 

set paragraph_list to ~ 
read file "macintosh HD:other work.txt" using delimiter return 

--> {"First paragraph", "second paragraph", "next line"} 

The as parameter allows you to read files that were saved especially to be read with the as 
parameter. 

While we usually save strings and read them back as strings, we can also save lists and 
records using the write command, and then read them back as lists or records using the as 
parameter. 

Look for more on that option later on this chapter when we discuss saving and loading lists 
and records. 

451 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

452 

Reading a specific number of characters 
The for parameter allows you to read a specific number of bytes, or characters, from the 
current position. 

For instance, the following script will read the first 1 0 characters of a text file, or the first 
1 0 bytes of any other file type: 

read file "macintosh HD:somefile.txt" for 10 

The before and until parameters 
The before and until parameters are similar: they both allow you to set a stopper charac
ter. The file will be read from the start (or from the number indicated . after the from 
parameter) until the character indicated after the until parameter is reached. The before 
parameter reads up to the specified character while the until parameter includes the indi
cated character. 

Let's assume that we have a text file with the contents "abcde-abcde". 

The following scripts will illustrate the use of the until and before parameters: 

read file "macintosh HD:work.txt" before "d" 
--> "abc" 

Notice that the character "d" is omitted, unlike in the next script: 

read file "macintosh HD:work.txt" until "d" 
--> "abcd" 

Now, let's start from the fifth byte: 

read file "macintosh HD:work.txt" from 5 until "d" 
--> "e-abcd" 

This time, the script started from the fifth character and continued up until the following 
instance of "d". 

The from and to parameters 
The from and to parameters allow you again to specify starting and ending points for read
ing data. 

While the for parameter reads a certain number of bytes from the file marker (or from the 
start), the (rom and to parameters read data from a specific byte counted from the start of 
the file. 

Let's assume that we have a text file with the contents "applescript". 

The following script will use the from and to parameters to read characters 3 through 6: 

read file "macintosh HD:work.txt" from 3 to 6 
--> "ples" 



WORKING WITH FILES 

Reading files and open for access 
Two more commands in the readlwrite suit are the open for access and close access. These 
commands open read and write access to files. 

As you saw in the first read example, the read command does not require that the file is 
first opened for access. Opening the file with the open for access command prior to read
ing changes the scene a bit. 

For one, the open for access command places a file marker, which determines the position 
from which the read operation starts. 

To understand that better, imagine reading a book. When you start the book, you start 
from page 1 and you read, say, five pages. When you put the book down, you mark it with 
a marker. When you pick it up again, you can't go back! You have to start reading from the 
point of the marker, and as you read more, the marker advances. When you get to the end 
of the book, you have to close it and put it away before you can read it again. 

The same is true with reading a text file. As an example, open the file you saved before 
and type the alphabet: abcde . . . wxyz. Now save the file and close it. 

We will write a script that uses the read command with the to parameter. 

Start a new script and write the following: 

Script 13-8 

open for access file "Macintosh HD:work.txt" 
repeat 

set the text to read file "macintosh HD:work.txt" for 4 
display dialag the_text 

end repeat 

Now run the script. 

The script will loop, each time reading the next four bytes, which is also four characters, 
until it gets to the end of the file. At that point, you will get an "end of file" error. 

No matter what you do, you will not be able to read this file again until you use the close 
access command to close access to that file. Try to run your script again, and you will get 
the error to start with. To fix the problem, do the following: 

Create another script file, then type this line and run the script: 

close access file "Macintosh HD:work.txt" 

Now, you can read more from that file. 

Working with end of file (EOF) commands 
EOF is an integer that signifies the number of bytes (or characters) there are in a given file. 
AppleScript allows you to both get a file's EOF and set it. 

453 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

454 

The end of file property of a file is the same as the file size as returned by the info (or 
command: 

set the file to alias "Macintosh HD:work.txt" 
size of (info for the_file) = get eof of the_file 
--> true 

From the dictionary 

Following are the dictionary entries of the get eof and set eof commands 

get eof: Return the length, in bytes, of a file opened for access 
(defined in: StandardAdditions.osax) 

get eof anything 
-- a reference number, alias, or file reference of a file 
-- that has been opened for access 

Result: double integer -- the total number of bytes in the file 

set eof: Set end of file location for the specified file ~ 
(defined in: StandardAdditions.osax) 
set eof anything -- Reference number or file to set end of file ~ 

location of 
to double integer 

-- the new length of the file, in bytes. Any data beyond this ~ 
position is lost. 

Getting a file's EOF 
To get the EOF value of a file, we use the eof command. The eof command takes a single 
argument, a valid file specifications value, and returns an integer. 

The following script returns the EOF value of the file work. txt from your hard disk: 

set the_file to alias "Macintosh HD:work.txt" 
set file_character_count to get eof of the_file 

The get eof command returns a real value, although the digit after the decimal is always 0. 
The reason for that is that internally AppleScript uses a double-integer dass to store the 
file size, which can get beyond the Iimits of a plain integer. As a result, AppleScript returns 
the value as a real. No big deal, though. 

Setting a file's EOF 
When you set a file's EOF, you in fact determine the new end of the file. Setting the EOF to 
a smaller number than it already is will permanently delete the data after the new EOF you 
set. For instance, if the text of your file is "I Love Christina", the EOF of it is 16. lf you go 
ahead and set the EOF to 12, you will find your file saying "I Love Chris", which is still per
fectly valid, but may not be what you intended. 

On the other side of the coin, if you set the EOF to a !arger number than it is, AppleScript 
will fill the extra characters with characters of ASCII number 0. These are invisible charac
ters, but if you use the arrow keys, you can actually advance through them. 



WORKING WITH FILES 

The following script sets the size of the file Work. txt to 1 0: 

set the file to alias "Macintosh HD:work.txt" 
set eof of the file to 10 

The following script takes the same file and discards half the characters: 

set the_file to alias "Macintosh HD:work.txt" 
set file_character_count to get eof of the_file 
set eof of the_file to (round (file_character_count/2)) 

Using EOF when writing files 
To add text to the end of a file, do the following: 

set file_ref to open for access file theTextFilePath with write 
permission 
write theData to file_ref starting at eof 
close access file_ref 

Writing files 
AppleScript allows us to write data to files using the write command as defined in the 
Standard Additions. 

Although we can write any type of data, for the most part, we stick to what we understand, 
which is text. We can see it, read it, and understand it. For writing JPEGs, I suggest that you 
use Photoshop :-). 

From the dictionary 

Following is the dictionary definition of the write command: 

write: Write data to a file that was opened for access with ~ 
write permission 

(defined in: StandardAdditions.osax) 
write anything -- the data to write to the file 

[for double integer] 
-- the number of bytes to write; if not specified, write all ~ 

the data provided 
[starting at double integer] -- start writing at this position ~ 

in the file 
to anything 

--the reference number, alias or file reference of the file ~ 
to write to 

[as type class] -- how to write the data: as text, data, list, ~ 
etc. 

455 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

456 

Using the write command 
The write command returns no result. lt simply writes text or other data to a file. 

To use the write command to write to a file, you must first use the open for access com
mand with the with write permission parameter in order to grant yourself writing privileges. 

You then have to specify the file you want to write to either by referring to it using file 
specifications or alias, or by using the reference number returned by the open for access 
command. 

Since the open for access command will create a new file if none is there, you can easily 
create text files and write to them. 

As you may remember from earlier, the open for access command returns an integer, 
which is a reference to the file. You can use that integer to refer to the file you want to 
write to. 

The following example creates a new text file (if none is there) and writes some text into it: 

set the_file_path to "Macintosh HD:work.txt" 
set file_reference to open for access file the_file_path with ~ 
write permission 
write "abc" to file reference 
close access file_reference 

The same script could be different, if we choose to forgo the integer result of the open for 
access command, and just use the original file reference. 

set the_file_path to "Macintosh HD:work.txt" 
open for access file the_file_path with write permission 
write "abc" to file the_file_path 
close access file the_file_path 

Notice that, in both cases, we cleaned up after ourselves by closing the file. 

How much to write and where to start 
Two of the write command's parameters help you specify how much data or text you want 
to write to the file, and at which position in the file you want to start. 

The starting at parameter takes an integer argument and is very useful for writing text or 
data to a file, when you don't want to start the writing from the beginning of the file. 

One of the most common uses of the starting at parameter is adding data or text to the 
end of a file. 

For that, you will simply tell the write command to write at the end of the file, or starting 
at EOF. Here's the example script: 



WORKING WITH FILES 

Script 13-9 

set the_file_path to "Macintosh HD:work.txt" 
open for access file the_file_path with write permission 
write "this is the beginning" to file the_file_path 
write " and this is the end!" to file the_file_path starting at eof 
close access file the_file_path 

The resulting text file will have the text "this is the beginning and this is the end!" 

Notice that the first text line started writing at the beginning of the file, and the second 
one, using the starting at parameter with the eof argument, stuck the second bunch of 
text after the first one. 

Determining how much we want to write may be a bit redundant since AppleScript will 
write all of the text or data we supply in the write command. lf you want to Iimit the writ
ten text or data, however, you can do that with the for parameter. 

The for parameter takes an integer as argument, and will Iimit the number of bytes/char
acters written to that number. 

ln the following script, only the first five characters will be written: 

Script 13-10 

set the_file_path to "Macintosh HD:work.txt" 
open for access file the_file_path with write permission 
write "abcdefghij" to file the_file_path for 5 
close access file the_file_path 

TextEdlt AppleScript style 
The following script is a small AppleScript dialog-box-based text editor: 

Scrlpt 13-11 

1. property file_name : "Untitled" 
2. property the_text 
3. property the_file : "" 
4. repeat 
s. set paragraph_count to count paragraphs of the_text 
6. if paragraph_count is less than 20 then 
1. repeat (20 - paragraph_count) times 
8. set the_text to the_text & return 
9. end repeat 
10. end if 
11. set r to display dialog file_name ~ 

default answer the_text buttans {"Open", "Save As", "Save"} 
12. set the_text to text returned of r 
13. set the_button to button returned of r 
14. if the button is "Save" then 
15. if the file = "" then 

457 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

458 

16. 

17. 
18. 
19. 
20. 
21. 
22. 

23. 
24. 
25. 
26. 
27. 

28. 
29. 
30. 
31. 
32. 

set the_file to choose file name with prompt ~ 

"Save text file:" 
end if 
open for access the_file with write permission 
write the_text to the_file 
close access the_file 

else if the_button is "Save As" then 
set the_file to choose file name with prompt ~ 

"Save text file as:" 
open for access the_file with write permission 
write the_text to the_file 
close access the_file 

else if the_button is "Open" then 
set the_file to choose file with prompt "Open file" ~ 

of type {"TEXT"} 
set the _ text to 1111 

set the text to read the file - -
end if 
set file_name to name of (info for the_file) 

end repeat 

From line 6 to line 1 0 we pad the text with returns to make sure that the window remains 
large. 

lines 16 through 20 treat the Save command. lf the variable theJile is still empty, the user 
is prompted to choose a file name and locationl and then the file is saved. lf the file has 
been saved before, then it will just be saved again to the same file. 

The save as command, lines 22 through 25, prompts you to pick a new file name and loca
tion every time. 

Lines 27 through 31 operate the Open command. You choose a file, the file is read, and ... 
the repeat loop starts over again, but this time with the new file name and contents read by 
the read command. 

The text editor script allows you to compose text, save it, save it as another file, and open 
text files. Since it all happens in one big loop, it feels like an application. 

Try to analyze it to see how it makes use of the different file commands. The script uses 
the following file-related commands: open for access, close access, read, writel choose file, 
and choose file name. 

Using the write command to create a script log 
ln this little exercise we will create a handler that I personally use in all my systems. The 
purpose is to create a detailed log of script activity. This log will help you determine what 
went wrong if the script crashes and you're on the other end of the phone with a commu
nicationally challenged individual trying to describe the problern to you. 

The idea behind the logging system here is that instead of collecting all of the messages 
into a long string and writing the whole thing to a file at the end, the script constantly 



WORKING WITH FILES 

writes the tatest information to the end of the file. This way, if the script gets an error, you 
can pinpoint the error location in the script. You can make the log as detailed as you want 
by calling the handler from more areas in your script. 

The handler really is pretty simple. lt receives a message to add to the log, and adds it 
along with the date and time. 

You can make it more complex by incorporating a date-based fotder structure, but we will 
avoid that. lnstead, we will create a log file whose name will include the date and the file 
extension .log. We use .log because on OS X, files with this extension are automatically 
opened by the Console application, which adds a Ievel of coolness to the mix. 

Following is the finished handler. To use it, call it from anywhere in the script with a sim
ple text message that describes your current location in the script. You can even use a 
number with several digits as a code for the script location. To find the script position of 
the last executed command, just search the script forthat number. 

Another technique I use is to include a property called debug that has a Boolean value. 
You can set it up so you call the add_to_log handler only if the debug handler is on. 

Here's the handler: 

Script 13-12 

on add_to_log(the_message) 
set YY to year of (current date) 
set MM to month of (current date) as integer 
if MM < 10 then set MM to "o" & MM 
set DD to day of (current date) 
if DD < 10 then set DD to "o" & DD 
set log_file_name to YY & "_" & MM & "_" & DD & ".log" as string 
set log_file_path to (path to desktop) & log_file_name as string 
set full_message to return & (current date) & return & the_message 
set file_reference to open for access file log_file_path ~ 
with write permission 
write full_message to file_reference starting at eof 
close access file_reference 

end add_to_log 

ln lines 2 through 8 we create the file path for the log file. You can either do that once and 
keep it in a property or have it created every time. 

Line 9 puts the message together. Notice that the return characters are added before the 
text. Adding a return at the end to be used as a new line for the next time the script runs 
does no good. 

Here's the handler call: 

set the_message to "1044 Adding client name to job ticket" 
if debug then add_to_log(the_message) 

459 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

460 

Saving and loading AppleScript lists and records 
Another fantastic feature of the write command is the little-known as parameter. 

Besides being able to save binary data, you can write AppleScript lists and records to files, 
and read them right back! This is great for saving script preferences and data that can be 
shared among scripts or backed up. lt's true that you can coerce most things into strings 
and save them as text, but here you can save lists containing real numbers, date values, 
and more embedded lists, write them alt to a file, and later read them back. 

All you have to do is use the as Iist or as record parameter at the end of the write command. 

The following script writes a simple Iist to a file, and the script following it reads it back: 

set the_list to {"Anthony", 37, .., 
date "Sunday, December 4, 2067 12:00:00 AM"} 
set file_path to (path to desktop) & "list file" as string 
set f to open for access file file_path with write permission 
write the_list to f as list 
close access f 

Now, let's read it back: 

Script 13-13 (lncludes previous script) 

set file_path to (path to desktop) & "list file" as string 
set f to open for access file file_path 
set the_new_list to read f as list 
close access f 
--> the_new_list = 
--> {"Anthony", 37, date "Sunday, December 4, 2067 12:00:00 AM"} 

Reading and writing text files 

By far the most useful function of the read, write, and other related commands is the abil
ity to save and read plain text documents. 

We will use text files as a way to introduce these commands, and later on see what other 
uses they may have. 

Writing RTFfiles 

RTF is the acronym for Rich Text Format. RTF is a plain text-based file format that uses 
tags to specify type-style formatting. RTF is widely used on both Macs and PCs, by 
Microsoft Word and TextEdit, and it can be also imported into lnDesign, QuarkXPress, and 
other programs. 

Creating styled RTF files is actually pretty easy. All you have to do is apply RTF tags before 
the text, specify some colors and fonts, and you can create RTF files that can be viewed 
with Apple's TextEdit, MS Word, etc. 



WORKING WITH FILES 

I was surprised to see how easy it was to format and create RTF files with AppleScript. You 
should know that l don't have a masters degree in computer science and have memorized 
the encoding and specifications for 125 different file formats. All I did was backwards
engineer a simple RTF file I created with TextEdit. After creating a new file with a single 
word and some basic formatting, I opened the file using BBEdit and tried to figure it out. 

The first thing I did was remove any extraneous lines I didn't understand and check if 
Word and TextEdit still wanted to open them. I boiled the coding down to a bare minimum 
before I started looking at the formatting encoding. 

ln this part of the book I will give you a small head start. lf you want to create more com
plex RTF files, you will need to get a good RTF reference, which can be found on the 
Microsoft supportweb site. 

RTF reference: You can also find the RTF reference in a more Mac-friendly for
mat at this web address: 

www.ucmb.ulb.ac.be/documents/RTF-Spec-1.3.ps.gz 

lt is a PostScript file, but Preview will open it! 

RTF file formatting basics 
Here are some of my (very basic, but useful) findings: 

First oft, the entire RTF text is surrounded by curly brackets. 

Next, there are a couple of elements, also wrapped by curly brackets: These elements 
describe the fonts and colors used in the document. The fonts are each assigned a code, 
fl, f2, etc., that you can later use in the document for formatting purposes. 

The colors are specified using red, green, and blue and are separated by semicolon. The 
colors are referred to by number: cfO is black, and color f1 (color font 1) is the first color 
specified, f2 is the second color, etc. Other elements can also use colors: ulc2 will apply the 
second color to the underline of the following text. 

After that, there were some lines describing document boundaries and paragraphs that I 
will leave as an exercise for you to explore on your own. Open up your own RTF with 
BBEdit and try getting them yourself. 

Carriage returns 
ln order to include carriage returns in your document, you must escape them with the 
backslash (\) character. That means that only a return character that has a backslash right 
before it will register as a new line in the RTF document. 

The header 
The RTF file starts with this text: 

461 

1111 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

462 

\rtf1 

and is wrapped in its entirety with curly brackets. Wh ich means that the following text is a 
valid RTF file that will display the Ietter "a" when opened: 

{\rtf1 a} 

Try to type this in BBEdit or other text editor, and open it with Word or TextEdit. 

Specifying fonts 
We will start by specifying fonts: 

Add a new line between the "rtfl" and the "a", and type the following: 

{\fonttbl\fO\ Helvetica;\f1\ Helvetica-Bold;\f2\ Chalkboard;} 

This line specifies the font table (fonttbl) with three fonts, and assigns each font a new 
name to be used in your file: Helvetica will be fO, Helvetica-bold is f1, and chalkboard is f2. 

Specifying colors 
Next, let's add some color. After the fonts line, add an additional line, and type the fol
lowing: 

{\colortbl;\red255\greeno\blueo;\redo\greeno\blue255;} 

This starts the color table (colortbl) and adds two colors: red and blue. You willlater refer 
to these colors by number: 1 for red and 2 for blue (color 0 is black, by default). 

Our RTF file so far 
So far, our RTF file Iooks like this: 

{\rtf1 
{\fonttbl\fo\ Helvetica;\f1\ Helvetica-Bold;\f2\ Chalkboard;} 
{\colortbl;\red255\greeno\blueo;\redo\greenO\blue255;} 
a} 

Adding some formatted text 
To format our "a", let's add some text before it. 

To set the type size, use the code fs followed by the size in half-points. That means that 
size 18 should be written as 36. Also, the code must be escaped with a backslash: \fs36. 

To change the font we can just add the font name we assigned to the font in the fonts 
table, fl, f2, etc., like so: \ f7 

To change the color to red, add the following to the formatting line: cf, followed by the 
color number. ln our case, \ cf7 is red, since the first color we specified is red. 

I also changed the text "a" to "AppleScript". 



WORKING WITH FILES 

Our complete formatted line will be 

\f1\fs36 \cfl AppleScript 

And, the complete file so far: 

{\rtfl 
{\fonttbl\fo\ Helvetica;\fl\ Helvetica-Bold;\f2\ Chalkboard;} 
{\colortbl;\red255\greeno\blueo;\redo\greeno\blue255;} 
\f1\fs36 \cfl AppleScript} 

And the fite with two lines, each formatted differently: 

{\rtfl 
{\fonttbl\fo\ Helvetica;\fl\ Helvetica-Bold;\f2\ Chalkboard;} 
{\colortbl;\red255\greeno\blueo;\redo\greeno\blue255;} 
\f1\fs36 \cfl AppleScript\ 
\f2\fs24 \cf2 The language for the rest of us} 

Notice the backslash at the end of the first line, escaping the return character. 

Figure 13-6 shows the final formatted file opened with TextEdit. 

8 Q 6 RTF testlng.rtf 

AppleScrlpt 
Tho languago ,.,.. 1111 rut of ...[ 

Creating RTF with AppleScript 

Flgure 13-6. The 
final formatted 
file opened with 
TextEdit 

Creating RTF fites using AppleScript is done in three stages: 

1. Use AppleScript to concatenate actual text, header text, and formatting tags into 
valid RTF content. 

2. Use AppleScript's write command to write the text to a new text file. 

3. Use the Finder to change the fite type and creator type, if you want a specific appli
cation to open your RTF document. For instance, if you want Word to open your 
fite, you will change the file type to RTF, and the fite creator to MSWD. 

ln this example, we will create a script that asks the user for some text, and then to pick a 
start color and end color, and the script will create an RTF fite in which the color of the 
characters blend from the start color alt the way to the end color. 

We start by getting the user to choose some colors and specify the text: 

set start_color to choose color 
set end color to choose color 
display dialog "Enter document text:" default answer "AppleScript" 

463 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

464 

set the_text to text returned of result 

We now have three variables: start_color, end_ color, and the_text. 

We move on by starting to collect the RTF text. 

set rtf text to 1111 

set rtf_text to rtf_text & 11{\\rtf111 & return 
set rtf_text to rtf_text & 11{\\fonttbl\\f1\\ Helvetica-Bold;} 11 & return 

ln the three preceding lines, we initialized a string variable that will be used to collect the 
RTF text, and started building the RTF code itself. 

Notice that we have to use a double backslash character instead of only one. We do that 
since in AppleScript, when you want to include a backslash character in a string, you must 
escape it with ... another backslash character. 

The returns we add after each line are strictly for legibility of the file. They have no bear
ing on the final outcome. 

Next, we need to add the color specifications. This is going to be interesting since the 
number of colors will be based on the number of characters in the string assigned to the 
the_text variable. 

We start by breaking down the color variable into 6 integers: rl, gl, b 1, r2, g2, and b2 for 
the RGB values in the start color and end color. 

We will also need to convert the colors from the 16-bit color spec AppleScript returned 
(0-65535) to the 8-bit color used in RTF (0-255). 

The next portion of the script is a bit complex, but nothing that is beyond your bright self. 
l'm leaving it without detailed explanation to avoid turning this into an RTF book, but if 
you do want to follow it, follow one color component, say, the red, all the way through. 

Script 13-14 

1. --Split the color vars to separate components 
2. copy start_color to {r1, g1, b1} 
3. copy end_color to {r2, g2, b2} 
4. --Convert the 16 bit AppleScript color to 8 bit RTF color 
5. set r1 to r1 mod 256 
6. set g1 to g1 mod 256 
1. set b1 to b1 mod 256 
8. set r2 to r2 mod 256 
9. set g2 to g2 mod 256 
10. set b2 to b2 mod 256 
11. --Figure out the color difference for each component 
12. set difference red to r2 - r1 
13. set difference_green to g2 - g1 
14. set difference_blue to b2 - b1 
15. --Find out how different each component is between characters 
16. set step_red to round (difference_red I character_count) 



WORKING WITH FILES 

17. set step_green to round (difference_green I character_count) 
18. set step_blue to round (difference_blue I character_count) 
19. --Create the color table component 
20. repeat with i from 1 to character_count 
21. set next_red to r1 + ((i - 1) * step_red) 
22. set next_green to g1 + ((i - 1) * step_green) 
23. set next_blue to b1 + ((i - 1) * step_blue) 
24. set rtf_text to rtf_text & ~ 

"\\red" & next red&~ 
"\\green" & next_green &~ 
"\\blue" & next blue & "·" - , 

25. end repeat 
26. --Start the text formatting 
27. set rtf_text to rtf_text & "}" & return 
28. set rtf_text to rtf_text & "\\f1\\fs120" 
29. --Add the text and color for each character 
30. repeat with i from 1 to character_count 
31. set next_character to (character i of the_text) as string 
32. set rtf_text to rtf_text & "\\cf" & i & " " & next_character 
33. end repeat 
34. --Close the RTF code 
35. set rtf_text to rtf_text & "}" 

Next, we will need to save the resulting text to a file. 

We will Iet the user pick a file for us using the choose file name command. After the file 
has been picked, we will save the RTF-encoded text as plain text to the file path the user 
had specified. 

To make life easier for the user, we will predefine the default file name as the text of the 
file and the . rtf file extension. 

Following is the final portion of the script: 

Script 13-15 

1. --Shorten the text to fit in the file name, if needed 
2. if character_count > 26 then 
3. set default_name to characters 1 thru 26 of the_text as string 
4. else 
5. set default_name to the_text 
6. end if 
1. --Let the user choose the RTF file's name and location 
8. set final_rtf_path to choose file name ~ 

with prompt "Save RTF file:" default name (default_name & ".rtf") 
9. --Write the RTF text to the file 
10. open for access final_rtf_path with write permission 
11. write rtf_text to final_rtf_path 
12. close access final_rtf_path 
13. --Open the RTF file in TextEdit 
14. tell application "TextEdit" 

465 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

466 

15. open final_rtf_path 
16. end tell 

The final script will produce an RTFfile as the one shown in Figure 13-7. I used black as the 
start color and white as the end color, and my textwas ... "AppleScript" . 

• AppleSalpt.rtf 

App eScrip 

Here is the final script: 

Script 13-16 

1. set start color to choose color 
2. set end_color to choose color 

Flgure 13-7. 
The final RTF 
document our 
script produced 

3. display dialog "Enter document text:" default answer "AppleScript" 
4. set the_text to text returned of result 

5. set character_count to length of the_text 

6. set rtf text to "" 
1. set rtf_text to rtf_text & "{\\rtf1" & return 
8. set rtf_text to rtf_text & ~ 
"{\\fonttbl\\f1\\ Helvetica-Bold;}" & return 
9. set rtf_text to rtf_text & "{\\colortbl;" 
10. --Split the color vars to separate components 
11. copy start_color to {r1, g1, b1} 
12. copy end_color to {r2, g2, b2} 
13. --Convert the 16 bit AppleScript color to 8 bit RTF color 
14. set r1 to r1 mod 256 
15. set g1 to g1 mod 256 
16. set b1 to b1 mod 256 
11. set r2 to r2 mod 256 
18. set g2 to g2 mod 256 
19. set b2 to b2 mod 256 
20. --Figure out the color difference for each component 
21. set difference_red to r2 - r1 
22. set difference_green to g2 - g1 
23. set difference_blue to b2 - b1 
24. --Find out how different each component is between characters 
25. set step_red to round (difference_red I character_count) 
26. set step_green to round (difference_green I character_count) 
21. set step_blue to round (difference_blue I character_count) 
28. --Create the color table component 



WORKING WITH FILES 

29. repeat with i from 1 to character_count 
30. set next_red to r1 + ((i - 1) * step_red) 
31. set next_green to g1 + ((i - 1) * step_green) 
32. set next_blue to bl + ((i - 1) * step_blue) 
33. set rtf_text to rtf_text & "\\red" & next_red & .... 

"\\green" & next_green & "\\blue" & next_blue & ";" 
34. end repeat 
35. --Start the text formatting 
36. set rtf_text to rtf_text & "}" & return 
37. set rtf_text to rtf_text & "\\f1\\fs120" 
38. --Add the text and color for each character 
39. repeat with i from 1 to character_count 
40. set next_character to (character i of the_text) as string 
41. set rtf_text to rtf_text & "\\cf" & i & " " & next_character 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 

end repeat 
--Close the RTF code 
set rtf_text to rtf_text & "}" 
--Shorten the text to fit in the file name, if needed 
if character count > 26 then 

set default_name to characters 1 thru 26 of the_text as string 
else 

set default name to the text - -so. end if 
51. --Let the user choose the RTF file's name and location 
52. set final_rtf_path to choose file name .... 

with prompt "Save RTF file:" default name (default_name & ".rtf") 
53. --Write the RTF text to the file 
54. 
55. 
56. 
57. 
58. 
59. 
60. 

open for access final_rtf_path with write permission 
write rtf_text to final_rtf_path 
close access final_rtf_path 
--Open the RTF file in TextEdit 
tell application "TextEdit" 

open final_rtf_path 
end tell 

Writing sound files with speech 

Another fun file-related trick that has been introduced by the ever-busy AppleScript team 
is the ability to save sound files using AppleScript. 

These aren't any sound files, but rather text that is read back by one of the Mac's voices. 

467 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

468 

The following script will allow you to choose a file, and it'll save a text file that is the voice 
of Ralph reciting a verse from the Bible: 

say "The lord is my Shepherd, I shall not want" ... 
using "Ralph" saving to (choose file name) 

Working with the file system, the Finder, and 
System Events 

This section deals with the different aspects of scripting the file system using the Finder 
and System Event applications. 

Finder and System Events 

One of the AppleScript improvements that came with Mac OS X is the faceless background 
application known as System Events. 

System Events is a scriptable application that takes on some of the Finder's scripting capa
bilities. 

The idea behind the introduction of System Events was to allow scripters to script the file 
system including files, folders, etc. without having to rely on the state of the Finder. While 
Finder conditions relating to the file system may change and break your scripts, the System 
Events application remains consistent. 

While the System Events scripting responsibilities grow, the Finder still holds on to a few 
exclusive scripting features. For instance, System Events doesn't have access to Finder win
dows and icon positions. 

You do have to refrain from assuming that the System Events scripting dictionary is merely 
a subset of the Finder's dictionary. Both dictionaries have subtle differences in their object 
model that can catch you by surprise. 

Although some file-system-related functions are available through Standard Additions 
such as Iist fotder and info for, these functions are informational only: they get information, 
but can't really do anything. To perform file-related actions such as creating folders and 
deleting files, you have to use either the Finder or System Events. 

Files, folders, and disks 

The first things that come to mind when scripting the file system are the different items 
you can control and the commands you can use on them. 

Until OS X, AppleScript's object model for the file system was something to sink your teeth 
into, but at least it was alt concentrated in one place: the Finder's dictionary. Now, to make 
matters more complex, we can also use System Events, which has a slightly different object 
model. 



WORKING WITH FILES 

The following portion of the book will examine the object model of both System Events 
and the Finder. 

The Finder's file system object model 
The top of the food chain in the Finder's object model is a super dass catled item. The 
item dass refers to anything you could possibly put on your hard disk. That indudes alt 
types of files, such as files, folders, disks, etc. 

This is helpful when you want to script commands or get properties of items of unknown 
type. For instance, if you want to create a handler that deletes a Finder item, you can use 
the item dass without having to worry if the item passed by the handler catl is a file, an 
application, or a folder. This can work since alt Finder items understand the same com
mands and have the same basic information. 

The item dass has three subdasses: container, file, and package. 

Containers 
The container dass indudes alt Finder items that don't have any value on their own, but 
have the potential of containing other items, such as files or other containers. 

The container object dass has the following subdasses: disk, folder, desktop-object, trash
object. The last two, trash-object and desktop-object, are two special containers to which 
we can refer by name. Fotlowing are two examples using trash and desktop: 

tell application "Finder" to set trashed_items to every item of trash 
tell application "Finder" to move every file of desktop to trash 

Notice how in the two preceding script lines (of which the second one you won't want to 
execute ... ) we used the words "trash" and "desktop" to refer to the two special Finder 
containers. 

Using the container dass is great when you want to execute any command on or get info 
about objects that you know are containers, but are not sure if they are disks, folders, etc. 
The script that fotlows backs up every TIFF file of a given container: 

tell application "Finder" to duplicate every file of ., 
container the_container to folder "backup" of home 

The preceding script will duplicate items from a given container, whether that container is 
a disk or a folder. 

Notice the use of the word "home" in the preceding script. home happens to be a property 
of the application Finder, and so is desktop, trash, and startup disk. What make the trash 
and desktop objects different from the properties startup disk and home is that desktop and 
trash are actual objects with properties and elements. For instance, you can ask the Finder 
to get you the bounds property of desktop, but not the bounds property of home. 

469 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

470 

The disk and fotder subdasses of container are familiar: disk is, for the most part, a top
level folder, and for many scripting purposes they are the same, unless you want to use a 
command such as erase or eject. These commands work only with disks. 

Files 

The file dass has five subdasses: alias file, application file, document file, internet location 
file, and clipping. 

Each subdass may add its own set of properties that no other dass has. The application file 
dass, for instance, has a Boolean property called has scripting dictionary. This property is 
true when the application is scriptable. 

While for the most part you will just use the dass file in scripts, distinguishing between the 
different subdasses may be useful when getting lists of specific items from folders. 

For instance, we can create a script that goes through the hard drive and deletes all of the 
nonworking alias files. The script will loop through all of the alias files in each fotder and 
try to fix them. 

Heck, let's create that script right now! 

We will create a script that willloop through folders and delete all the aliases whose orig
inal items no Ionger exist. later on you can fix it to ask the user for a new original, but that 
is your homework. 

The script has to be recursive, or in other words, a script that can execute itself. This isn't 
exactly like a repeat loop, although it has a repeat loop in it. Recursive means that if you're 
processing files in folders, the script will methodically go into every fotder and process all 
the files in that fotder too. 

Make sure to distinguish between AppleScript's alias dass and the Finder's alias file. Alias 
file is the file's shortcut on the desktop (or anywhere else you put it), and AppleScript's 
alias is a dass that points to a file. 

Following is the script: 

Script 13-17 

1. set the container to (choose folder) 
2. clean_aliases_from_container(the_container) 
3. on clean_aliases_from_container(the_container) 
4. tell application "Finder" 
s. set alias_file_list to alias files of container the_container 
6. repeat with the_alias in alias_file_list 
1. set theitem to original item of the_alias 
8. if not (exists of the!tem) then 
9. delete the_alias 
10. end if 
11. end repeat 
12. set container_list to (folders of container the_container) 
13. repeat with the_sub_container in container_list 



WORKING WITH FILES 

14. set the sub container to (the_sub_container as string) ~ 
as alias 

15. my clean_aliases_from_container(the_sub_container) 
16. end repeat 
17. end tell 
18. end clean_aliases_from_container 

line 1 of the script allows the user to choose a folder. This fotder will be the top-level 
fotder processed by the script. The script will then process all nested files in that folder. 

ln line 2 we call the main handler, clean_aliasesJrom_container. As you will see in a 
minute, what makes the script recursive is the fact that the handler calls itself. 

The handler, which starts from line 3 through 18, treats only one folder. 

First, all the alias files are treated. That happens from line 5 through 11. We start by creating 
a Iist, listing only the alias files in the folder: 

set alias_file_list to alias files of container the_container 

Then, we loop through the Iist, check the original item property of each alias file, and 
delete the alias files whose original item doesn't exist. 

From line 12 to 17 we do a similar thing: we Iist the containers that are in the fotder and 
loop through these. What we do with the containers, however, is very different. We use 
them, one at a time, as the argument in the call forthat handler itself. That happens in line 
15. When there are no more folders, AppleScript knows to get back to the spot it left off 
and continue running through more folders. · 

Packages 
Packages are a cross-breed between files and folder: they appear as files in a Finder's win
dow, but they can be opened up as a container that holds more folders and files. 

ln the System Events dictionary, they're referred to as bundles, not packages, but the 
object is the same. 

The most common form of packages is the Cocoa application. 

Packages can also be created by your using the script editor. ln fact, you can create two 
types of packages: script application bundle and script bundle. More on that when we dis
cuss saving scripts. 

You can read more about packages earlier in the first section of this chapter. 

System Event's file system object model 
System Events has a slightly different object model than the Finder. 

While the top dog in the System Events' object dass hierarchy is item like in the Finder, the 
subdass of that item dass that deals with Finder items is the dass disk item. We will Iook 
at disk items now, and at other items later on. 

471 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

472 

The type of hierarchy we're looking at here isn't the containment hierarchy, but 
rather an inheritance hierarchy. 

The top object, the disk item, is also the most generat object; any other object in the file 
system is a disk item: folders are disk items, applications are disk items, clippings are disk 
items, etc. Also, every fotder is a disk item, but not every disk item is a folder. 

The disk item object dass has four subdasses: folder, alias, disk, and file. Note how differ
ent they are from the Finder's object dass hierarchy. However different, the System 
Events' dass hierarchy is pretty easy to understand. Let's Iook at the four different sub
dasses in detail. 

Files 

Files indude any disk item that can't contain other disk items. Unlike the Finder, System 
Events does not distinguish between application files, clippings, document files, etc. 

The file dass has one subclass, which is file package. File packages are identical to what the 
Finder refers to as bundles. They are a breed of file that appear as files in a Finder window, 
but can be opened as a folder. One flavor of a file package is Cocoa applications, as seen 
in the following script: 

tell application "System Events" 
every file package of folder "applications" of startup disk 

end tell 

The preceding script lists all applications and other bundles that may be there. 

Folders 

ln scripting terms, folders are disk items that can have elements. These elements are sim
ply files and other folders that are contained by the folder. 

The folder dass has no subclasses, which means that System Events just Iooks at them as 
folders. 

Disks 

ln the Finder, disks are a subdass of the container dass. ln System Events disks are a direct 
subdass of the disk item dass. 

The following script lists the names of all available disks: 

tell application "System Events" 
name of disks 

end tell 
--> {"Macintosh HO", "Number Nine", "Network"} 



WORKING WITH FILES 

Aliases 
Atiases may be a bit confusing. Unlike the Finder, which has the alias subdass of the file 
dass, and refers to the shortcut aliases you can create with the Make Alias command in 
the Finder, aliases in System Events are the alias value dass we use in AppleScript. The alias 
dass is a reference form to any disk item. You can read more about it in the first section 
of this chapter. 

System Events items 
Up until now we looked at the objects and dasses of System Events that directly deal with 
the file system. These are called disk items. The item dass of System Events is an entirely 
different animal. 

To start, the disk item dass we looked at earlier is a subdass of the item dass. The follow
ing is a Iist all the other types (or subdasses) of items System Events gives us access to: 
document, window, application, color, text, attribute run, character, word, paragraph, user, 
login item, disk item, domain, item, script, fotder action, action, attribute, and Ul element. 

You can learn a Iot about scripting your system by tinkering with the System Events dic
tionary. Let's Iook at a few of these items and see what information they hold. 

User 
No, not only you and your family members are privileged enough to be users on your 
OS X-equipped Mac. Try this script to see who else has an account on your Mac: 

tell application "System Events" 
name of every user 

end tell 
--> {"nobody", "root", "daemon", "unknown", "smmsp", "lp", "postfix", ., 
"www", "eppc", "mysql", "sshd", "qtss", "cyrus", "mailman", ., 
"appserver", "johanne", "olivia", "hanaan", "aylam" } 

Now, let's see what properties each user has. l'll first check the properties of user 
"hanaan": 

tell application "System Events" 
properties of user "hanaan" 

end tell 
--> {full name:"Hanaan Rosenthal", Name:"hanaan", 

home directory:"/Users/hanaan",., 
picture path:"/Library/User Pictures/Animals/Dragonfly.tif", 
class:user} 

Hmm ... I have access to the users' picture path. Maybe l'll create an AppleScript Studio 
application that automatically changes users' pictures based on their mood. Maybe not. 

473 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

474 

The following script Iooks for only the users whose home directory is in the Users folder: 

tell application "System Events" 
full name of every user whose home directory starts with "Iusers" 

end tell 

Domain 
Domain is yet another term Mac users have to get used to. Domains are a UNIX method of 
specifying regions in the startup disk relating to different system functions. 

The following script lists the domains: 

tell application "System Events" 
name of every domain 

end tell 
--> {"System", "Local", "Network", "User", "Classic"} 

What other things are domains good for? For example, we know you can get the path to 
different system locations using the path to Standard Addition command. But what if you 
want to get the paths to all possible locations a scripting addition can be in, or get the 
paths for all font folders in the system? To do that the easy way, you need System Events. 

tell application "System Events" 
scripting additions folder of every domain 

end tell 
--> {folder "Macintosh HD:System:Library:ScriptingAdditions:" ., 

of application ., 
"System Events", folder "Macintosh HD:Library:ScriptingAdditions:" ., 
of application "System Events", missing value, ., 
folder "Macintosh HD:Users:hanaan:Library:ScriptingAdditions:" ., 
of application "System Events", ., 
folder "Number Nine:System Folder:Scripting Additions:" ., 
of application "System Events"} 

lf you don't recognize the result, it is a Iist of references to every scripting additions folder 
on your system. 

Login item 
Remember the good old OS 9 times, when all you had to do was pop an alias of a file in 
the startup disk's folder and it would launch when the system started? 

The following script will prompt the user to pick an application, and will create a login 
item for that app, which means that the application will start by itself when that user Iogs 
in. (Remember, in UNIX land we don't start, we log.) 

Script 13-18 

set the_app to choose application with prompt ., 
"Choose application to startup automatically" as alias 

tell application "System Events" 
set app_name to name of the_app 



WORKING WITH FILES 

set app_POSIX_path to POSIX path of the_app 
make new login item at end with properties ~ 

{name:app_name, kind:"APPLICATION", path:app_POSIX_path, ~ 

hidden:true} 
end tell 

Now, after users have lots of fun with your script, they will have a surplus of unwanted 
login items. The following script will allow them to choose a login item from a Iist and have 
it deleted: 

Script 13-19 

tell application "System Events" 
set login_item_list to name of every login item 
choose from list login_item_list OK button name "Delete" 
set selected_login_item to result as string 
if selected_login_item is not "false" then 

delete login item selected_login_item 
end if 

end tell 

Your homework is to allow the user to delete multiple login items at a time, and warn the 
user before deleting ("Are you sure ... "). 

What can you do to Finder items? 
ln this section we will focus not on alt of the things you can do with the Finder application, 
but rather alt the things you can do with and to Finder items. 

Since the System Events commands are so similar to the Finder's commands, we will con
centrate on the Finder. 

open and close 
The open command can open any Finder item that you can open from the Finder. lt acts 
as if you double-clicked the item. lf you use the open command on a folder, the fotder will 
open. lf you use it to open a file, you can actually determine ahead of time which applica
tion is going to be used to open the selected item. You do that by asking for the default 
application property found in the info for command reply. 

This is one way to do it: 

name of (info for (default application of (info for (choose file)))) 

The close command only works on folders. 

Moving and copying files 
The Finder gives you a few commands for moving and copying files to various places. The 
following five commands are variations of moving and copying files: 

475 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

476 

copy and duplicate 
While you can use the copy command to make a copy of a file or a fotder to a different 
location, the duplicate command gives you some very useful parameters. 

To use the basic duplicate command, you have to specify a reference to the Finder item 
you want to duplicate and a reference to the container you want to duplicate it to: 

tell application "Finder" 
duplicate file the_file_path to folder the_folder_path 

end tell 

You can use the duplicate command to simply replace the Finder's Duplicate command 
from the menu. ln this case, alt you have to specify is the path to the item you want to 
duplicate: 

tell application "Finder" to duplicate file the_file_path 

The most useful feature, however, is being able to decide what to do if an item by that 
name already exists in the container you duplicate to. To do that, use the replacing param
eter with a Boolean value: 

duplicate file the_file_path to folder the_folder_path replacing yes 

delete 
The delete command in the Finder's dictionary doesn't actually delete anything, it just 
moves the referenced Finder item to the trash. 

tell application "Finder" to delete file the_file_path 

would be identical to 

tell application "Finder" to move file the_file_path to the trash 

Or, delete multiple items with the Finder's powertut implementation of the whose clause: 

tell application "Finder" 
delete every file of desktop folder whose labe! index is not 

end tell 

You can also empty the trash by simply using the empty command: 

tell application "Finder" to empty 

or 

tell application "Finder" to empty trash 

move 
Moving files works just like dragging files in the Finder: you have the file or fotder you 
want to move and the fotder or disk you're moving it to. You can also specify whether you 
want to replace an existing item with the same name: 



WORKING WITH FILES 

Script 13-20 (includes following script) 

or 

tell application "Finder" to move file the_file_path to container ., 
the_folder_path 

tell application "Finder" 
try 

move file 1 of folder source_folder to folder dest_folder 
replacing no 

on error number error number 
if error_number is -15267 then 

display dialog ., 
"Can't replace the file, replace the scripter instead ••. " 

else 
display dialog "An error occurred: " & error number 

end if 
end try 

end tell 

ln the preceding example we asked AppleScript not to replace items if it encounters items 
with identical names in the destination container. This forced us to place the whose state
ment in a try block to capture the error. ln the preceding example we also captured the 
error that the failed move generated and acted on it. lf files already exist, AppleScript will 
generate error number -15267. 

exists 
The exists command is one of my favorites. lt takes one parameter, the Finder item whose 
existence is in question, and returns a Boolean: true if the item exists or false if it doesn't. 

exists of file "I am here!" of the desktop 

The fun thing about this ability to contemplate existence of files is that due to the clean 
Boolean result, you can incorporate the command directly into statements that call for a 
Boolean value, such as if statements: 

Note that both the words "of and "the .. are optional in this commands. The 
word "the, .. actually. can be added in most places where it makes sense gram
matically with no consequences to your script. 

make 

The make command allows you to create Finder items such as files, folders, and Finder 
windows, although most places where the make command is used, it is used to create 
folders. 

The make command is always followed by the word "new," and then by the dass of the 
objects you want to create. 

477 

1111 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

478 

Following are a few examples of the make command. 

The following script creates a new fotder on the desktop. The script will use the with 
properties parameter to name the fotder "My Files" and assign a comment to it: 

tell application "Finder" 
activate 
make new folder at desktop with properties ~ 

{name:"My Files", comment:"Place to put stuff"} 
end tell 

The following script creates a new window in the Finder pointing to the startup disk. You 
can specify the fotder the file will point to after the to parameter. 

tell application "Finder" 
activate 
make new Finder window to startup disk 

end tell 

The make command can also be used to create text files. 

tell application "Finder" 
make new file at desktop with properties ~ 

{name:"My File", comment:"Place to put thoughts"} 
end tell 

Managing files in windows 
The following few commands work with files, but don't really do anything to them. For 
instance, selecting a file or sorting a window doesn't change any files or folders, only how 
you Iook at them. 

Selecting and reveallng files 
The select and reveal commands work very similarly in the Finder. They both select a 
Finder item in the Finder window. lf the container of the item is closed, both commands 
will open it, but slightly differently: 

The select command will open the container to a window using the last viewing style (icon, 
outline, or browser). lf the reveal command has to open a window to reveal the item, it 
will default the view browser view. 

Revealing files and folders in Finder windows can come in very handy. ln the interface of 
any system or script dealing with files, it is a pleasant surprise for the user to have a but
ton that reveals a related file or fotder in the Finder. That is, of course, if the intention of 
your script is to keep these users out of the file system ... 

eject 
The eject command takes a disk reference as the parameter and ejects that disk. 

tell application "Finder" to eject disk "Removable 4000" 



WORKING WITH FILES 

The following script will use the ejectable property of a di~k to eject only the disks that can 
be ejected: 

tell application "Finder" 
eject (every disk whose ejectable is true) 

end tell 

Creating files 
AppleScript allows you to create files in a variety of ways. One way, obviously, is using 
applications that create the kind of files you need to create. 

To create text files, you can use one of two methods: you can use the Finder to create an 
empty text fite, or you can use the open for access and write commands defined in 
Standard Additions to create text files and write text into them. 

The open for access and write commands are explained in detail in this chapter in the 
"Reading and writing files" section. 

Getting the contents of folders 
AppleScript gives us several ways to get a Iist containing the items in a particular folder. 
The two routes you can take are using the Iist fotder Standard Addition or use the Finder. 
Each way has its advantages. 

listfotder 
Iist fotder is a command defined in the Standard Additions dictionary. The Iist fotder com
mand returns a Iist containing the names of the files and folders in the container (either 
fotder or disk) you specify: 

list folder (path to startup disk) 
--> {".DS_Store", ".hidden", ".hotfiles.btree", ".Trashes", ".vol", -. 
"Active accounts", "Applications", "automount", "bin", "client jobs",-. 
"cores", "Desktop", "Desktop (Mac OS 9)", "Desktop DB", "Desktop DF",-. 
"Desktop Folder", "Developer", "Games", "jobs", "Library", "mach",-. 
"mach.sym", "mach_kernel", "Network", "obj", "Previous Systems",-. 
"private", "sbin", "System", "TheFindByContentFolder",-. 
"TheVolumeSettingsFolder", "tmp", "Trash",-. 

"User Guides and Information", "Users", "usr", "var", "Volumes"} 

Oh no, what's alt that stuff?! Do I realty have alt this junk right on my hard drive? Yes I do. 
Luckity, most of these files are invisibles. ln case I didn't want to have them listed, I can 
omit the invisible files by giving the invisibles parameter a false value. 

list folder (path to startup disk) without invisibles 

OK now, this time I got less junk, and a Iist I can actualty use. 

479 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

480 

Using the Finder to get the content of folders 
While Iist disks is great because you don't need any application to use it, the Finder offers 
a much more powerful solution. 

Using both every and whose clauses, we can filter out just the set of files we want to work 
with. 

Let's Iook at a few examples of using the Finder to filter files in different folders. 

The following script will Iist alt files in a chosen fotder that have not been modified for ten 
weeks and have no Iabel attached to them: 

set the_folder to choose folder 
tell application "Finder" 

every file of the_folder whose ~ 

(modification date < ((current date) - (10 * weeks)) ~ 
and label index = o) 

end tell 

Notice how in the preceding script we managed to use a single command to Iook for files 
(not folders) that are of a certain age and Iabel. 

ln the next script we will Iook for files that are !arger than 1OMB and are not applications. 
Unlike the last script, this script will be recursive, starting from the fotder selected by the 
user: 

Script 13-21 

1. global list_of_large_files, byte_limit 
2. set list_of_large_files to {} 
3. set mb limit to 10 
4. set byte_limit to mb_limit * 1024 * 1024 
s. set the_folder to (choose folder) as string 
6. set list_of_large_files to get_large_files(the_folder) 

1. on get_large_files(the_folder) 
8. tell application "Finder" 
9. try 
10. set file_list to every file of container the_folder ~ 

whose size ~ byte_limit and kind is not "Application" 
11. set list_of_large_files to list_of_large_files & file_list 
12. end try 
13. set folder_list to every folder of container the_folder 
14. repeat with the_listed_folder in folder_list 
15. set the_listed_folder to the_listed_folder as string 
16. my get_large_files(the_listed_folder) 
17. end repeat 
18. end tell 
19. return list_of_large_files 
20. end get_large_files 



WORKING WITH FILES 

Lines 7 through 20 of the script represent the main handler that makes the script recur
sive. ln line 16, the handler calts itself. 

Notice that we start by taking alt the applicable files and adding a reference to them to the 
list_ot_targeJiles Iist. That happens on lines 10 and 11. After that, we get alt the folders in 
the current folder, which the handler treats, and feed each fotder to that same handler as 
the argument. 

What makes this script possible is the Finder's incredible ability to filter the right kind of 
files with the whose clause. See lines 1 0 and 13. 

Entire contents 
Another useful property of the containerdass in the Finder is the entire contents property. 
The entire contents property lists a reference to every file and fotder contained in nested 
folders. 

Here is something NOT to try: 

tell application "Finder" 
get entire contents of (path to library folder from system domain) 

end tell 

This would give you a Iist of the system's library contents, which is comprised of one and a 
quarter gigabytes of mainly smalt text files. 

The entire contents property can come in very handy, however. You can use it to quickly 
Iook for a file by name. 

tell application "Finder" 
set fileString to entire contents of folder "The:folder:path:" ... 

as string 
fileString contains fileName 

end tell 

Listing disks 
On a related issue, you can use the Iist disks command to get a Iist of alt your disks. 

Built-in file and fotder paths 
OS X is alt about domains, permissions, and libraries where you have to be quite orderly, 
otherwise you get thrown out. ln OS 9, your computer was your computer and the hard 
drive was your hard drive, while in OS X, the computer belongs to the system, and you are 
a mere user. But from down there you rise and slowly gain control, and realize that while 
you still have to ask permission where you need to go, it is worth the tremendous stability 
and the ability to get anything you want done. 

Part of getting areund in OS X is gaining an understanding of the different domains and 
special folders that organize the different domain-related files. 

481 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

482 

The best way to get to these folders is by using the path to command, as defined in the 
Standard Additions. Using the path to command, you can get the paths to the different 
font folders that sometime seem to be randomly scattered around the system. 

The path to command has two main parts: the fotder you're looking for, and the domain 
you want to find the fotder in. Following are a few examples: 

path to fonts 
--> alias "Macintosh HD:System:Library:Fonts:" 
path to fonts from user domain 
--> alias "Macintosh HD:Users:hanaan:Library:Fonts:" 
path to launeher items folder from Classic domain 
--> alias "Number Nine:System Folder:Launcher Items:" 

The path to command has two other parameters. The as parameter allows you to ask for 
the result as a string instead of an alias. 

path to startup disk as string 
--> "Macintosh HD:" 

The other parameter is fotder creation. According to the dictionary, fotder creation means 
that if the fotder you're asking a path for does not exist, the fotder will be created. Also, 
the dictionary claims that the default is true. Nevertheless, I still got an error when trying 
to get the path to a nonexisting folder. 

Startup disk and user directory 
Two of the most useful paths you can get are the paths to the startup disk and the user's 
home directory. Using built-in paths that represent these two containers can take you a 
long way to having a system-independent script. 

The idea is to make our script as portable and flexible as possible. I know what you're 
thinking ... this is just a script that'll run on your Mac and has a small chance of going any
where eise. Not necessarily so. As you will discover, a small bit of code you write to per
form a simple task suddenly grows into a full-blown script and then becomes a part of a 
larger scheme. lt is at that point that you copy the script to some other Macs to test it, and 
wham! Nothing works since the other Mac's hard drive has a different name. 

So, as much as you just want to get that pesky script quickly working, I urge you to take 
the time and replace the hard drive names using one of the few ways AppleScript has to 
refer to the startup disk, no matter what its name is. 

Let's say for example that your script refers to a fotder called Client Jobs on the hard 
disk. You need a variable in your script that'll reference that folder. lf you use a Iiterat 
expression, your script line may Iook like this: 

set the_jobs_folder_path to "Macintosh HD:Client Jobs:" 

lf you move the script to a Mac with a differently named hard drive, your script will break. 
lnstead, use the path to startup disk reference, like this: 



WORKING WITH FILES 

Declare a global variable called something like "hd", and assign the name of the startup 
disk to it up front. From that point, anytime you want to refer to the startup disk, just use 
this variable. 

global hd 
set hd to (path to startup disk) as string 
set the_jobs_folder_path to hd & "Client Jobs:" 

Why did we coerce the hd variable to string? This way it's easier to concatenate it to names 
of other folders, colons, and other strings that make up path names. After the path name 
is complete, you can give it the correct designation, such as folder, alias, file, etc. 

path to me 
One of the most useful statements you can use in your quest for script-portability is path to me. 

The expression me refers to the script application itself. You use path to me when you 
need to know where the script application is. 

This comes in awfully handy when your script is a part of some sort of folder structure. The 
way I like to set it up is by having a folder I call the main folder. Inside I have all the fold
ers the system needs (even small systems). The folders may be resources, templates, 
in/out, etc. One of my folders is always named system. ln this folder I put my script, etc. 
Since the script is the application that the userwill need to use for launehing the system, I 
usually give the user an alias file in a more convenient place, just to keep his/her paws out 
of the system's folder structure. The script, however, needs to know where all the related 
files are. All the script needs for that is the path to the main folder. To get that I need to 
just get the container of the container of the script application's file. The container is the 
folder System, and that folder's container is the main folder. Here's the line in the script 
that assigns the main folder's path to a variable: 

tell application "Finder" 
set main_folder_path to container of (container of (path to me)) 

end tell 

The problern with using path to me is that when you create your script with Apple's Script 
Editor application, the path to me expression will return the path to the application itself. 
You can see that in Figure 13-8. 

0 

alias "Madntosh HO:Appllcatlons:Applf!SulptScrlpt 
Edftor.app:' 

Flgure 13-8. The path to me 
command in Script Editor 

lil 'l!l!!!!!!~·~o.~>crt~PI:I~o~n~~~~EIIt~nt~Lot~,:_ll!!!!!!~ returns the path to the Script 
111!! ' Editor application. 

483 

1111 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

484 

For that, you can actually embed the path to the fotder you're using in the development 
stages, and then remove it. 

Late Night Software's Script Debugger allows you to choose whether the path to me 
expression returns the path to the application or to the script file. For our purposes, we 
usually want the path to the script file. For me, this feature alone was worth Script 
Debugger's price. 

Using UNIX file commands 

One of the biggest boosts for Mac users, and scripters in particular, is the whole new OS 
under the hood of OS X. I am of course referring to UNIX. 

One of the most exciting additions to AppleScript comes in the form of a single command: 
do shell script. 

Shell scripts are UNIX command-line-style scripting. There are a few flavors of shell script
ing, hundreds of commands, and endless possibilities. 

ln this book I do not go into shell scripts in any sort of detail since there's no way I can do 
the subject any justice. lnstead, I will show you how to use the do shell script command in 
AppleScript, and how to convert Mac-style color-delimited file paths to UNIX-style slash
delimited POSIX paths. 

ln this section we willlook at the doshell script command for the purpose of managing the 
file system. Although we will only Iook at a couple of commands, I urge you to pick up a 
UNIX book that fits your Ievel and get a good understanding of shell scripts and UNIX as a 
whole. 

The doshell script command 
The doshell script command is very simple: it takes a single string parameter and executes 
it as if you typed it in the Terminal application and pressed RETURN. 

When the do shell script command requires a path to a file, that path is using a special 
slash-delimited UNIX format. This format, including conversion between UNIX and 
AppleScript style paths, is explained in detail in the "UNIX paths" section of this chapter. 

Figure 13-9 shows the script in the Script Editor with a shell script and the result. Figure 
13-10 shows the same shell script executed in the terminal followed by the terminal's 
result. 

The command l'm showing is the shell ts command, which is similar to AppleScript's Iist 
fotder command. Like the Iist fotder command, the ts command takes a parameter describ
ing the path of the directory whose contents you want to Iist. 

Like many other shell script commands, the ts command may take no parameters, and in 
this case uses the current working directory as the directory to Iist. More on the working 
directory in a bit. 



WORKING WITH FILES 

ln the script shown in Figure 13-9, we call the shell script "ls". The result is a string listing 
the files and folders in the directory I Applications/ AppleScript/. The slash at the start 
of the path name indicates that the path is an absolute path and not a relative path. More 
on that later on in this chapter. 

"Example Scripu 
Felder Actlon.s Sewp.app 
InstaU Script Menu.app 
Remave Script Menu.app 
Script Ecltor.app· 

Flgure 13-9. The /s command 
passed using the doshell script 
command from the Script Editor. 
The parameter passed along with 
the /s command is a POSIX path 
pointing to the AppleScript folder 
in the Applications folder. 

ln Figure 13-1 0 you can see a breakdown of the ts command the way it is executed from the 
Terminal. You can compare the command and the result between Figures 13-9 and 13-1 0. 

Termin .. - bil!ih - 80.K24 
Lu~·L Luyi11: I'! LXI Ju L 5 .W :E:a :51 '-'• lLyp1 
LIEILCC*e to DaNtn! 
l l':l~vmt:lvl 1.~..('.1Wf111rt"r : ·· hlll-.n"l$ 1.~ /olii1fl l if'.nt. innv 1 
Elr:Cßi)Le SCrtt:Jts ReaoYe scrtot Heru.al)l) 
rollh· Ac.tion~ ~~.~ ~ipt Cditor .qJp 
Ira~·lu LI '-:-slFJl ~nu.'-W 

,.,-.,-; J l 
The ls command 
followed by the 
path parameter 

Flgure 13-10. The ls command in the Terminal application with the result below it 

Absolute paths, relative paths, and the working directory 
When executing file-related shell script commands either in AppleScript or in the Terminal, 
you need to pass the path of the target file or directory as parameters. There are two ways 
to pass that file path parameter: either as an absolute path or as a relative path. 

Passing an absolute path means that you disregard your current location and assume that 
the starting point (which is also the top directory, in this case) is either the startup disk or 
the current user's home directory. Relative paths start from the current working directory. 

485 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

486 

When specifying an absolute path starting from the startup disk Ievel, as shown in Figure 
13-9 and Figure 13-1 0, we start the path with a slash. To indicate the startup disk only, we 
pass a slash by itself. The following shell script will Iist the content of the startup disk: 

do shell script "ls /" 

I fully realize that the ls command is by AppleScript and that the use of the ls 
command through the shell script may be redundant. l'm using the ls command 
since it's simple to understand. 

ln a way, when executing the do shell script command from AppleScript, it is easier to use 
absolute paths starting from the startup disk since this is the path that is returned by the 
POS/X path property of alias file references. ln the following script, we first get the path to 
the user's documents folder using AppleScript's path to command, then we get the POS/X 

path property of the result, and use it with the ls command in a shell script: 

set mac_path to path to documents folder from user domain 
--> alias "Macintosh HD:Users:hanaan :Documents:" 
set unix_path to POSIX path of mac_path 
--> "/Users/hanaan/Documents/" 
do shell script {"ls " & unix_path) 

lf you want to start from the current user's directory, you have to precede the slash with a 
tilde: "-/". The following script will have the same result as the previous one, listing the 
contents of the documents fotder in the home directory: 

do shell script {"ls -toocuments") 

To do this, however, you will need to build the path yourself without much help from 
AppleScript's various POSIX path amenities. 

You can also refer to disks other than the startup disk. To do that, you need to precede the 
name of the disk with the word "Volumes". The script that follows lists the contents of the 
hard disk External2000: 

do shell script {"ls /Volumes/External2000") 

When writing shell scripts in the Terminal application, where they belong, the most com
mon way to pass path arguments is as relative paths. Relative paths use an implied work
ing directory for all your file-related commands. You can add on to that working directory, 
or change the working directory and work from there. 

lmagine giving someone directions to the kitchen in your house. You may tell that person 
to go to the front door or his/her room and start from there (absolute paths), or you may 
ask that person where s/he is standing at the moment and give directions from that point. 
After all, s/he might be one doorway away, so why send hirn/her all the way to the front 
door and back. 



WORKING WITH FILES 

We can change the working directory with the cd command, after which we can see the 
path to the working directory in the Terminal as the prefix to our commands. Figure 13-11 
shows the Terminal after the working directory was changed with the cd command. 

The first line (after the welcome line) shows the cd command change the working direc
tory to the AppleScript fotder in the application's fotder in the startup disk. The following 
line starts with that directory as part of the command prompt. 

Tuminill - bnh - 80x24 
Lost logln: non .l>l 5 15:39:38 an ttypt 
llel"'*' to Darvlnl 
Hanoan-Rosenthols-to.puter:--.$ cd /AjlpllcotiCN/Aj>pleScrlpt/ 
Hanoan-Rosenthols-Coooputer:/,l,ppllcotiCN/,I,ppleScrtpt -.$ I 

Flgure 13-11. The Terminal window shown after the cd command. 
Watch how the command prompt changes. 

To describe the enclosing directory when using relative paths you can use . ./. The follow
ing script lists the directory that encloses the current working directory: 

do shell script to "ls .. /" 

The problern with using the working directory in AppleScript's doshell script is that, unlike 
the Terminal, AppleScript forgets the working directory between executions of the doshell 
script command. You could execute multiple commands by separating them with a semi
colon. The following script will change the working directory with the cd command and Iist 
the working directory with the ls command: 

set shell_l to "cd -tdocuments" 
set shell_2 to "ls" 
do shell script (shell_l & ";" & shell_2) 

The fact that AppleScript doesn't retain the working directory makes using working direc
tories pretty useless and absolute paths the method of choice. 

Using spaces 
Since spaces in shell scripts are used to separate the command from the parameters and 
the parameters from each other, we can't just casually use spaces in file and fotder names. 
The easy way to include spaces in names is to escape them with the backslash character. To 
refer to the fotder name client jobs, for instance, we need to type clients\ jobs. 

This brings up an issue when we try to use the do shell script command in AppleScript, 
since in AppleScript the backslash character is an escape character by itself. The solution is 
to precede the space character with two backslashes: the first one to escape the space, 
and the second one (right before it) to escape the first one. The following script lists the 
fotder client jobs in the startup disk: 

do shell script to "ls /client\\ jobs" 

487 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

488 

Why and when are shell scripts used in AppleScript? 
There are a few reasons to entrust some of your file commands to shell scripts. 

One is that shell commands don't produce a Finder progress dialog box when deleting or 
copying files. Shell scripts also deal much better with large number of files. lf you have a 
fotder with over 1 000 files and you need to extract a few files out of there, or if you need 
to search for a file in a directory tree, UNIX shell scripts can do that much faster. 

Sometimes it's not that the Finder scriptability Iacks a command, it's just that the shell 
script equivalent is a bit more than you want. For instance, if you need to duplicate a file 
to a different fotder and rename it, you need to use the dupticate command and the set 
command to change the name of the file, which may cause an irritating problern if the file 
you're duplicating exists in the target location. Using shell scripts you can copy a file to 
another file that will duplicate it and rename it in one shot. 

Shell scripts' ability to use wild card characters make them ideal for some tasks as weil. 
Since it is way out of the scope of this book, I urge you to pick up a good Mac OS X UNIX 
book and study it. 

Another reason to use UNIX is that you can tap years of UNIX development. Digging a bit 
will yield an array of useful UNIX-based applications and shell commands that can plug the 
holes in the functionality you're trying to achieve. 

Faking volumes with disk utility 
One of the challenges you encounter when working on dient scripts from your home 
office (another way to describe working from bed while watehing footbaU ... ) is tapping 
into the company's servers. Servers are often referred to in scripts, but are guarded behind 
firewalls and are inaccessible from your home. 

To get around this prob lern, I use a mirror of the server I create using a disk image. 

A mounted disk image will appear to AppleScript as if it was any other mounted server on 
the system. 

Since it would be unreasonable to replicate the entire fotder structure of the server, you 
would want to copy only the parts that your script will use. 

To replicate a server on your hard disk, you start by creating an empty disk image the size 
you need. 

Start up the Disk Utility application in OS X 1 0.3. ln earlier versions you should use the 
standalone disk copy application. 

Click the new image icon in the toolbar or choose New Blank Image from the Image menu. 

ln the Save As field type the name of the server you're replicating. From the dialog box 
choices at the bottom (shown in Figure 13-12), choose a size that is going to be sufficient 
for the files you will be testing in your scripts. 



WORKING WITH FILES 

I usually use 1OOMB, but if you're working with !arge images, you need more. just remem
ber that the size of the disk image will be the size that you choose, so choosing 2GB will 
make the disk image huge. 

Ynterday 
Yesterday 
Today 
Today 

Todav • 
Today • 

Slte 40NI n 
Enctyplion. ~-=~:=====:::;::::::====~ 
f~t rtad/wfitt dlsk lomgo 

( New Folder ) 

Figure 13-12. The New Blank Image dialog box 

Also choose read/write format. 

After you dick Create, the disk image will be created and also mount on your system, as 
shown in Figure 13-13. 

Windows2000Serwr...ASD22S 

Flgure 13-13. The new mounted disk image 

489 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

490 

ln the mounted disk, create the needed folder structure and copy the needed files to the 
folders in the folder tree you've created. 

Although you should test this solution in your own environment, AppleScript should not 
see the difference between that disk and the actual server, and the scripts that were cre
ated or modified using the fake disk should work smoothly when the real server is around. 

You do have to watch, however, for features that may work slightly differently from your 
disk to the server, such as sorting of files and the availability of file Iabels, etc. 

Mounting volumes 
Mounting volumes from the server, remote computers, or iDisks is done with the mount 
volume command. That command is defined in the File Commands suite of the Standard 
Additions. 

The main parameter of the mount volume command is a string that defines the server. This 
string is actually a URL that describes the server and the protocol used to connect to the 
server such as 5MB or the more common AFP. While the user name and password can be 
defined using the mount volume parameters, you can also incorporate that information 
right into the URL string itself. 

From the dictionary 

Here's the mount votume command the way it appears in the dictionary: 

mount volume: Mount the specified AppleShare volume 
(defined in: StandardAdditions.osax) 
mount volume string 

-- the name or URL path (starting with 'afp://') of the volume ~ 
to mount 

on server string -- the server on which the volume resides 
[in AppleTalk zone string] 

-- the AppleTalk zone in which the server resides 
[as user name string] 

-- the user name with which to log in to the server; 
omit for guest access 

[with passward string] 
-- the passward for the user name; omit for guest access 

Using the command 

The basic command will Iook like the one right here: 

mount volume "afp://serverNameOripAddress" 



WORKING WITH FILES 

After running this command, the user will be shown a login dialog box to which s/he can 
enter his/her user name and password. That same dialog box allows the user to add that 
server to the keychain. Adding the server login info to the keychain should not be taken 
lightly because it will make access to the server much easier from the computer the script 
ran on. Adding the login info to the keychain can cause other issues as explained later in 
this chapter. 

Adding login information to the command can happen in one of two different ways. You 
can either combine the information into the URL itself, or use the different command 
parameters. 

The following two script lines will work the same under most circumstances. The first com
bines the login info into the URL and the second one uses parameters: 

mount volume "afp://username:my_password@serverNameOripAddress/" 
mount volume "afp://serverNameOripAddress" ., 
as user name "username" password "my_password" 

You can also use other protocols instead of AFP such as SMB. The protocol you use 
depends on the server setup. 

The following subroutine can be used as a generat subroutine for mounting server volumes: 

on mountVolume(userName, pswd, serveriP, volumeName) 
set serverString to ., 

"afp:/1" & userName & ":" & pswd & "@" & ., 
serveriP & "!" & volumeName as string 

mount volume serverString 
end mountVolume 

Mounting an iDisk 

To mount an iDisk, use the following line of script: 

mount volume "webdav://idskuser:idiskpassword@idisk.mac.com/idskuser/" 

Mounting volumes and the keychain feature 

One of the issues that may cause problems when trying to access volumes with the mount 
volume command is the keychain. lf the volume info is already entered into a keychain but 
the password has changed, you may get an error. lt has been reported that this situation 
happens when the login info is embedded in the URL. Manually deleting the keychain 
entry from the keychain can solve this problem. 

491 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

492 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

File references 

The basic form of referring to items on a hard drive or on the network is by using the 
colon delimiters. Referring to the file Reference. PDF in the fotder Documents in the hard 
disk Macintosh HD is done like this: 

"Macintosh HD:documents:reference.pdf" 

Most commands that need a file reference as a parameter or return a file reference as a 
result use one of four main forms: 

File reference is used by many applications and scripting additions. See the following ref
erence form: 

file "Macintosh HD:documents:reference.pdf" 

Alias reference is probably the most common reference, mainly for commands that result 
in a file reference. Only files that exist and are accessible by AppleScript can be referenced 
with the alias reference form. The alias reference form remains accurate even if the file is 
moved on the same volume or renamed. See the following reference form: 

alias "Macintosh HD:documents:reference.pdf" 

POS IX path reference is used by the do shell script command. 

"/documents/reference.pdf" 

Some scripting additions and applications commands take a simple string as a valid file 
reference. 

"Macintosh HD:documents:reference.pdf" 

References to folders, disks, and other containers such as packages end with a colon, like this: 

"Macintosh HD:documents:" 

UNIX paths 

UNIX paths are used in conjunction with the doshell script command. AppleScript has two 
primary ways to convert. the traditional AppleScript path form, which is colon delimited, 
into a slash-delimited UNIX-style path. 

The first method is by using the POS/X path property of a file, as shown here: 



WORKING WITH FILES 

set unix_path to POSIX path of (choose file) 
display dialog unix_path 

The preceding script will display a dialog box showing the UNIX-style path of any file you 
choose. 

The second method was created to convert UNIX paths back to AppleScript-style colon
delimited file references. This method uses the POSIX file object. This object converts a 
UNIX path into a normal AppleScript file reference, as shown here: 

POSIX file "Macintosh HD:Applications:AppleScript:Folder Actions Setup" 
--> "/Applications/AppleScript/Folder Actions Setup.app/" 

File name extension 

AppleScript allows you to get information about a file's name, displayed name, and name 
extension. You can get this information with the info for command. The info for command 
returns a large record with plenty of information about the given file. 

The following four properties are connected to the name and name extension: 

set file info to info for file ~ 
"Macintosh HD:Applications:AppleScript:Folder Actions Setup.app:" 

name of file_info --> "Folder Actions Setup.app" 
displayed name of file_info --> "Folder Actions Setup" 
name extension of file_info --> "app" 
extension hidden of file info --> true 

Reading files 

You can read files into a variable with the read command. The following script will read a 
chosen text file: 

set file_text to read (choose file of type {"TEXT"}) 

You can also open the file for access before reading it. Opening a file before reading it has 
some implications detailed in this chapter. 

Reading a file to a Iist 
By default, when you read a file, you get all the text as a string. Using the using delimiters 
parameter, however, you can break the text into a Iist of items using a delimiter. The fol
lowing script reads a file to a Iist, where each Iist item is a paragraph: 

set text_paragraphs to ~ 
read alias "Macintosh HD:report export.txt" using delimiters 

{return} 

493 

1111 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

494 

Reading specific data 
The read command has several other parameters that allow you to specify exactly the 
bytes (characters) you want to read from the file. The parameters are 

• For (integer): The number of bytes you want to read. 

• Before (string): Read all characters up to, but not including, the specified character. 

• Until (string): Read all characters until right after the specified character. 

• From (Integer): Start to read from this position and on. lf omitted, start from 
character 1. 

• To (Integer): Read up to this point. lf omitted, read to the end. 

Reading different types of data 
You can use the as parameter to read different types of data such as text, different image 
file formats, and raw AppleScript data such as a Iist. Refer to earlier parts of this chapter 
for more information about this. 

Opening and closing file access 

Before writing to files, and sometimes before reading files you have to open access to the 
file, which is done with the open for access command. After the file is opened and read or 
written to, it should be closed with the close access command. 

The open for access command returns an integer that is used as a temporary reference to 
that file. That reference number can be later used by the read, write, and close access 
commands. The following script opens a file for access, and then uses the resulting file ref
erence to read the file and close access to it: 

set file_ref to open for access alias "Macintosh HD:report export.txt" 
set report_text to read file_ref 
close access file_ref 

Note that opening and closing access to a file does not change its "busy" status. These files 
can be opened by any other application even after AppleScript has opened them for 
access. 

ln order to write to a file, you have to give it write permission. This is done as part of the 
open for access command: 

set file_ref to open for access ~ 
alias "Macintosh HD:report export.txt" with write permission 

Writing to files 

After you opened a file for access with write permission, you can use the write command 
to write any data to the file: 



WORKING WITH FILES 

set file_ref to open for access ~ 
alias "Macintosh HD:report export.txt" with write permission 

write "Today's special: Pea soup" to file_ref 
close access file_ref 

Writing a specified number of bytes 
You can use the for and starting at parameters to specify how many bytes (characters) to 
write, and where to start writing. The following script writes text from a variable starting at 
the tenth byte of the file for 20 more bytes. Any part of the text in the variable beyond the 
twentieth byte will be omitted: 

set file_ref to open for access ~ 
alias "Macintosh HD:report export.txt" with write permission 

write the_long_text_variable for 20 starting at 10 to file_ref 
close access file ref 

Writing different types of data 
You can write data in different text and graphic file formats such as Unicode, GIF, TIFF, etc. 
You can also write data in native AppleScript format such as a Iist. You do that with the as 
parameter. For more information about that, refer to earlier portions of this chapter. 

End Of File (EOF) 
EOF is a file property that describes the number of bytes in the file. The EOF of a text file 
that has only the word "Apple" will be 5. 

You can use EOF with the read and write commands. The following script writes text to the 
end of the file: 

set file_ref to open for access ~ 
alias "Macintosh HD :report export.txt" with write permission 

write the_long_text_variable to file_ref starting at EOF 
close access file_ref 

You can get and set the EOF of a given file with the get eof and set eof commands. 

Details previously ... 
The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here, refer to earlier sections in the chapter. 

495 



Rocc..-d s, 

st~le<l_ tvct_data 
set the.__style to .cla~s ksty» of 

sryled_rext_datll 

cca 

Cut 
C.opy 

Paste 

H•class ASEL». 5 J. { Unicode text, 
31472J,{styled Clipboard text, 
21021,{strlng, 15736},{•dass RTF •. 
1934811 

Descrlption ,............ 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

498 

ln this chapter we will focus both on scripting clipboard operations such as copying and 
pasting between applications, and on manipulating data in the clipboard. As you will see, 
there are a few ways to get objects in and out of the clipboard, and it is used to move 
around objects that don't always fit wett in native AppleScript variables. 

Getting the clipboard data to AppleScript 
The command the clipboard will return the contents of the clipboard. The dass of the 
result ofthat command depends on the copied item; however, copying text usually returns 
styled text. See how to parse that style information later on in this chapter. 

Setting the clipboard data 
There are a few ways AppleScript or different applications allow you to set the content of 
the clipboard. 

Copy in applications 

Some applications will allow you to use the copy command with no parameters. Doing so 
will copy the selection to the clipboard. 

ln the following example, we copy the current selection in the front document in 
Microsoft Word to the clipboard: 

tell application "Microsoft Word" to copy 

The next example converts an RGB Illustrator document to a CMYK document. 

Script 14-1 

tell application "Illustrator CS" 
tell document 1 

set selected of every page item to true 
end tell 
activate 
copy 
close document 1 saving no 
make new document with properties {color space:CMYK} 
paste 

end tell 

Note that in the preceding example, the scripter is responsible for two critical tasks: the 
first is selecting the items that need to be copied, and the second is activating the applica
tion. The copy command only works on the application if it is the front-most process. 



WORKING WITH THE CLIPBOARD 

Using the set clipboard command 

Use the set command to set the contents of the dipboard to a string. 

set the clipboard to "Paste me!" 

The following script sets the dipboard to the short version of the date: 

set the_date_string to short date string of (current date) 
set the clipboard to the_date_string 

Using GUI scripting 

You can usually copy selections from any application using Ul scripting. The example in the 
"Saving dipboard data to a PDF file" section shows how this is done. 

Clipboard info 
The get clipboard info command returns some information about the contents of the dip
board, as shown in the following example: 

set the clipboard to "Paste me!" 
get clipboard info 
--> {{string, 9}} 

The Iist contains an item, also a Iist,. that shows that the contents of the dipboard is a 
string containing 9 bytes. 

The clipboard info can return some pretty complex results, which I willleave up to you to 
figure out. For instance, after copying one word from a Microsoft Word document, the 
dipboard info returns the following result: 

{{«class HLNK», 923}, {«class O}LK», 132}, {«class LKSD», 342}, {«class LNKS», 874}, {«class 
EMBS», 29184}, {picture, 258}, {string, 77}, {scrap styles, 22}, {«class HTML», 30393}, {«class 
RTF», 7779}, {«class 08}0», 342}, {«class MURF», 56}, {«class DSIG», 4}} 

Forgive me for not going there ... 

Parsing styled-text data 
You must have seen styled text before: that pesky variation on the string dass that appears 
in the most irritating situations just to throw us oft. Countless times I found myself in situ
ations where comparing two seemingly identical strings returned a false result. The prob
lern was almost always not related to the text itself, but rather to the dass: I was 
comparing plain strings with either styled text or Unicode text. By now, these two string 
dass flavors are much better integrated into AppleScript, and comparing them with regu
lar strings containing the same characters returns a true result. 

499 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

500 

So what else is styled text good for, and where is it used? Styled text is the primary format 
that AppleScript uses to describe styled text copied into the clipboard. 

How was alt that figured out? 
The first one who published information regarding styled text was Arthur j. Knapp, who 
made his findings known in a post to the AppleScript Users mailing Iist. 

From there, the information was further developed into a full-blown demo by Mark 
Munro, founder of Write Track Media, a consulting firm specializing in automation services 
and related products. 

I took the information and turned it into the little tutorial you see in this chapter. 

Getting styled text 
Try the following: 

Create a new document in Word and enter two words. Format them with bold, italic, etc. 
You can also format text in a FileMaker Pro cell. 

Now, select the text and choose Copy from the Edit menu. 

ln a new script window, type the following two lines: 

set clipboard_contents to the clipboard 
class of clipboard_contents 
--> string 

AppleScript views styled text as a string when you try to get its dass. However, let's pry 
open the data we got from the clipboard to reveal the style information. 

Change the script to the following: 

set clipboard_contents to the clipboard 
clipboard_contents as record 
--> {ccclass ktxb:"This is it!", ccclass ksty11:11data ., 
stylooo2oooooooooooC00090014 
01000 
00(00000000000000000005000(00090 
0140300000(00000000000011} 

When you ask for styled text as a record, AppleScript separates the text information from 
the style information. The text is placed in a record item Iabeted «dass ktxt» and the style 
data is placed in a record item Iabeted «dass ksty». This makes it easy to pluck the infor
mation we want. To get the text only as a plain string, which is the only way I know to get 
a clean (nonstyled) string from styled text, is by getting that «dass ktxt» item. The follow
ing script ends up with two variables: the_text and the_style. 



WORKING WITH THE CLIPBOARD 

set clipboard_contents to the clipboard 
set styled_text_data to clipboard_contents as record 
set the_text to llclass ktxtn of styled_text_data 
-->This is it! 
set the_style to ((class kstyll of styled_text_data 
--> ((data styl000200000000000C0009001401000 
OOCOOOOOOOOOOOOOOOOOOOSOOOC000900140300000C000000000000ll 

What we can do with the string is clear: anything we do with any other string. The style 
data, however, is a bit more challenging. With some testing and intuition we should be 
able to crack it down. 

How is the style data organized? 

We start with the understanding that the real data is broken down into 40-byte chunks, 
starting from the fifth digit and on. Each style-data chunk describes what's called an attrib
ute run. An attribute run, also referred to as text-style range, is a set of characters that 
bear the same style. The 40 digits bear information about the location of the attribute run 
in the string, the font, the style, and even the text's color. 

Following is a breakdown of the 40-digit code into functions. Most codes are four charac
ters that have to be converted from hex numbers into normal numbers. For instance, the 
four digits responsible for the size may be 0009 for size 1, but 0010 for size 16-get it? 
Weil, if not, don't worry. We will use a handy javaScript call that will take our hex-encoded 
numbers and convert them into numbers mortals can understand as weil. See the "Parsing 
hex numbers" section later on. 

The following table breaks down the 40-digit style into components: 

Digit Range Function Number Format 

1-8 Range starting point Hex 

9-12 Line height Hex 

13-16 Font ascent Hex 

17-20 Font family ID Hex 

21-24 Style (bold, italic, etc.) Hex 

25-28 Type size Hex 

29-32 Red value Hex 

33-36 Green value Hex 

37-40 Blue value Hex 

501 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

502 

As you can see, digits 9 through 24 are the style (including font, and styling type such as 
bold, italic, etc.), and digits 25 through 40 represent the color information. 

Characters 21 and 22 represent the type style in this order: 

00: Plain 

01: Bold 

02: ltalic 

03: Bold and italic 

04: Underline 

05: Underline and bold 

06: Underline and italic 

07: Underline, bold, and italic 

10: Shadow 

11: Shadow and Bold 

etc. 

Parsing hex numbers 
To parse hex numbers into normal numbers, we use the JavaScript parseint command with 
the hex number passed as integer. 

set textDataStartAt to "ooFF" 
set textDataStartAt to ~ 

run script "parse!nt( \"" & textDataStartAt & "\" , 16) " in ~ 
"JavaScript" 
--> 255 

The largest 4-byte hex number is FFFF and its integer value is 65535. 

Parsing the style data 
Before we can tap all these goodies, we need access to the style data, and we need it as a 
string. Unfortunately, the style data isn't about to be coerced into a string without a fight, 
so a fight it'll be, and guess who's going to win? When AppleScript won't coerce a value 
into a string, all you have to do is force AppleScript to throw an error with the text you 
want in it, and then parse out the part of the error you want. This technique is explained 
in Chapter 15. 



WORKING WITH THE CLIPBOARD 

Back to style parsing: our first mission whose solution is shown next is to extract the group 
of 40-digit style range descriptions from the style's data portion. Here's how we do that, 
assuming that we continue the script from previously and the variable the_style has the 
style information in it: 

try 
the_style as string 

on error the_style_error 
end try 
Can 't make ccdata styl000200000000000C000900140100000COOO 
00000000000000004000C000900140300000COOOOOOOOOOOOn into a string. 
set text item delimiters to {"ccdata style"} 
set style_data to the_style_error's text item 2 
set text item delimiters to {"n"} 
set style_data to style_data's text item 1 
set text item delimiters to {""} 
style_data 
--> 000200000000000(000900140100000(000000000000 
00000004000(000900140300000(000000000000 

The result is the data itself. Now, we need to remove the first five digits (or characters, 
since it is a string) from the style info. 

Set style_data to (characters 5 thru -1 of style_data) as string 

Next we will create a Iist where each item is 40 digits that describe a single text-style range: 

set style_range_list to {} 
repeat with i from 1 to ((length of style_data) I 40) 

set this_style_data to ~ 
characters (((i - 1) * 40) + 1) thru (i * 40) of style_data as ~ 
string 

set end of style_range_list to this_style_data 
end repeat 
style_range_list 
--> {"00000000000(000900140100000(000000000000", ~ 

"00000004000(000900140300000(000000000000"} 

Next you will need to loop through the strings in the Iist and use the table shown earlier 
to extract the elements you want to use. Work with the text's size, style, or color-what
ever you want. 

503 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

504 

The following example loops through the Iist of style ranges and creates a color palette 
that includes all the colors that exist in the file. lt also assumes that you have a subroutine 
called HexToNum that takes the 4-byte hex string and converts it into an integer between 
0 and 65535. 

set color_palette_list to {} 
repeat with the_style_range in style_range_list 

set red_info to characters 29 thru 32 of the_style_range as string 
set green_info to characters 33 thru 36 of the_style_range as string 
set blue_info to characters 37 thru 40 of the_style_range as string 
set color_specs to {HexToNum(red_info), ~ 

HexToNum(green_info), HexToNum(blue_info)} 
set end of color_palette_list to color_specs 

end 

Following is the complete script: 

Script 14-2 (includes alt script parts shown previously) 

set clipboard_contents to the clipboard 
set styled_text_data to clipboard_contents as record 
set the_text to «class ktxt» of styled_text_data 
set the_style to «class ksty>~ of styled_text_data 

try 
the_style as string 

on error the_style_error 
end try 
set text item delimiters to {"«data style"} 
set style_data to the_style_error's text item 2 
set text item delimiters to {"11"} 
set style_data to style_data's text item 1 

set text item delimiters to {""} 
set style_data to (characters 5 thru -1 of style_data) as string 

set style_range_list to {} 
repeat with i from 1 to ((length of style_data) I 40) 

set this_style_data to ~ 

characters (((i - 1) * 40) + 1) thru (i * 40) of style_data ~ 
as string 

set end of style_range_list to this_style_data 
end repeat 
style_range_list 

set color_palette_list to {} 
repeat with the_style_range in style_range_list 

set red_info to characters 29 thru 32 of the_style_range as string 
set green_info to characters 33 thru 36 of the_style_range as string 
set blue_info to characters 37 thru 40 of the_style_range as string 
set color_specs to {HexToNum(red_info), ~ 



WORKING WITH THE CLIPBOARD 

HexToNum(green_info), HexToNum(blue_info)} 
set end of color_palette_list to color_specs 

end repeat 
return color_palette_list 

on HexToNum(hex) 
set parsed_hex to ~ 

run script "parseint( \'"' & hex & "\" , 16) " in "JavaScript" 
return parsed_hex 

end HexToNum 

Saving clipboard data to a PDF file 
Following is an ultra-cool script in regard to utilizing PDF data in the clipboard. lt takes a 
selection you make with the marquee in the application Preview and saves it to a file you 
specify. 

The highlights of the scripts are as follows: 

ln line 1 the user chooses the name and location for the file. 

ln lines 4 through 8 we use Ul scripting in System Events to deploy the Copy menu item of 
Apple's yet-to-be-scriptable Preview application. 

ln line 11 we verify that the clipboarddass is a record. This is still not a guarantee for suc
cess, but it at least makes sure that something other than a string has been copied. ln a 
script like that you'd most likely want to deploy a more comprehensive error trapping 
solution. I didn't do it here in order to not hide the important portions of the script. 

ln line 12 we create the file. ln line 13 we write the data to the file, and then close it in 
line 14. 

ln lines 17 and 18 we use the Finder to set the file's type to PDF and creator to prvw, the 
creator type of the application Preview. This will ensure that Preview is the application that 
is launched when we open the file using the Preview application. Unfortunately, we have to 
use the Finder's open command, not Preview's, since it is not yet scriptable. (Did I mention 
that already?) 

SOS 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

506 

The complete script is as follows: 

Script 14-3 

1. set destination_file_path to choose file name default name ~ 
"Selection.pdf" 

2. tell application "Preview" to activate 
3. delay 1 
4. tell application "System Events" 
5. tell application process "Preview" 
6. click menu item "Copy" of menu "Edit" of ~ 

menu bar item "Edit" of menu bar 1 

1. end tell 
8. end tell 
9. delay 1 
10. set the_clipboard_data to the clipboard 
11. if (class of the_clipboard_data) is record then 
12. set fileRef to open for access destination_file_path with ~ 

write permission 
13. write the_clipboard_data to fileRef as data 
14. close access fileRef 
15. tell application "Finder" 
16. tell file destination_file_path 
17. set file type of it to "PDF " 
18. set creator type of it to "prvw" 
19. end tell 
20. 
21. 
22. 

reveal destination_file_path 
open destination_file_path 

end tell 
23. else 
24. 

25. 

set the_message to ~ 
"Make a selection with the marquee tool in Preview" 
display dialog the_message buttans {"OK"} default button 1 ~ 
with icon stop 

26. end if 



An error occurred. 
-128 

E.T. cculd not phone hcme: 
wrong number 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

510 

There are two kinds of errors in AppleScript: compile errors and runtime errors. Since 
compile errors are very easy to discover and usually easy enough to fix, this chapter will 
concentrate mainly on runtime errors. 

Compile errors 
Compile errors are errors that prevent the script from compiling. 

The bad news is that they happen a Iot when you start to script simply because the syntax is 
still foreign to you. Later on, you still get them when your syntax is correct but some Iitera! 
expression you used didn't take. For instance, type the following in a new script window: 

Alias "Mammamia" 

When you try to compile this script, AppleScript will return an error instead. The same 
happens when you try to compile a date with an illegitimate string. 

The good news is that a compile error is a bit like losing your car keys at the gym. lt's irri
tating, but you can't make it worse by driving away ... 

How runtime errors work in AppleScript 
Runtime errors in AppleScript aren't an all-out unanticipated mistake that can't be recov
ered. Rather, runtime errors are designed to Iet you know that the data that was provided 
for a certain statement to chew on doesn't fit, and that AppleScript's next resort is to 
throw an error and terminate the script. Errors are the way out when the range of accept
able possibilities didn't come to be. 

So are errors good or bad? Errors are actually a good thing, much like pain is a good thing 
for our health for the one reason, which is, we do our best to avoid it. 

So can we avoid errors altogether? Not really. But while we can't avoid them, we can antic
ipate them, trap them, analyze them, and sentence them to community service. 

The psychology of an error 
Rule number 1: As the scripter, you subconsciously avoid doing things that will generate 
errors. Have someone else test your script for you. 

Rule number 2: As the scripter, you think you know your script best. Wrong! Give it to the 
first novice user, and s/he will provoke errors within the first three seconds. 

Rule number 3: People don't read instructions. lf you think to yourself, "I wrote in the dia
log to enter a date, it's not my fault if they don't," you're wrong, it is your fault. The blame 
does not lie with what the user entered, but with the fact that you didn't anticipate it. 



TURN ERRORS IN YOUR FAVOR 

Rule number 4: Anywhere in your script that can generate an error due to user incompe
tence will generate an error. Furthermore, the error yet again is reflected on you, the 
AppleScript genius, not the just-started-yesterday user. 

The anatomy of an error 
Every error that is thrown has a few components that help you identify its cause. The two 
main components are the error text that describes the error, and the error number, which 
we can use to make decisions, while the script is running, on what action we want to take. 

The other components of an error are the partial result, which is the piece of result that the 
command did manage to return; the offending object, which is the object that is responsi
ble for the error; and the expected type, which is the type of data the script would have 
liked to get instead of the offending object. 

To understand a bit better, start a script and type the following: 

1 + "abc" 

ln this case, the error is "Can't make data into expected type," which is error number 
-1700. There's no partial result, but we do have an offender. The offending object is "abc", 
and the expected type is number. AppleScript tried to coerce "abc" into a number, but 
couldn't. 

Understanding the two main properties of an error, the number and the message, is 
important both when you want to trap potential errors and when you conspire to take the 
offender's role and throw an error yourself! More on that later in this chapter. 

Trapping errors 
How much effort you put into trapping errors really is up to you. You may be writing 
scripts for your own use, or for a limited use, and don't want to turn it into a big produc
tion. ln this case, you may want to test the script and explain to the user how to write 
down any error and Iet you know. 

On the other hand, if the script will have to be distributed among many users, or worst, 
distributed to unknown users all over the place, you want to take every precaution that no 
potential error will remain untrapped. 

ln the following section we will script as if trapping errors is a mission-critical entity, and 
Iook at all different ways to trap errors. 

511 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

512 

The try block 
The one and only way to trap errors in AppleScript is by using try statement blocks, which 
start with a line containing a single word, "try," and end with a line containing two words, 
"end try." Most try blockswill also have an additionalline in the middle that starts with "on 
error," but more on this one later. 

The script that follows shows the basic try block: 

try 
statement 1 

statement 2 
statement 3 ••. 

end try 

lf no errors occur in any of the lines containing statements 1, 2, and 3, then the try com
mand is as much use as life insurance for a vampire. 

lf one of the three statements does decide to throw an error, then any of the statements 
from there until the end try statement will be skipped. 

ln fact, every time an error is thrown, AppleScript Iooks back in the script, line by line, to 
find a try statement. ln this case, it will find that try statement. lf no try statement is found, 
then AppleScript has no choice but to air our dirty laundry and Iet the user know that an 
error has occurred. lf a try statement was found, AppleScript Iooks to see if there's an on 
error line associated with that try statement. 

ln our case, there's no on error line, just an end try. This means that AppleScript just con
tinues to execute the lie following the end try line, and we may never know that an error 
has occurred. 

ls not knowing an error occurred ever a good idea? Weil, unless you have some control 
issues, it may be perfectly fine. Take for instance the following script: 

Script 15-1 

tell application "Finder" 
try 

delete file "Macintosh HD:temp" 
end try 

end tell 

ln the preceding script, we specify to delete a temporary file. We may want to run these 
lines at the end or beginning of the script just to make sure we leave things neat. All we 
want is that the file will not exist after the lines execute. So if the file doesn't exist and the 
delete command in the Finder throws an error, we may not want to know about it. We 
could test for the error to see if it is any other error, but that will be a bit much. 

So, just using the try and end try mandatory portions of the try block will simply skip 
the remainder of the script lines until the end try, and resume operation from there as if 
nothing happened. 



TURN ERRORS IN YOUR FAVOR 

The full try statement from the dictionary 

Following is the dictionary definition of the tl}' statement. 

try 
--Statement or Statements that may throw an error. 

on error [error_message] [number error_number] ~ 
[from offending_object] [to expected_type] ~ 

[partial result result_list] 
--the statement that will execute in case of an error .•• 

end try 

As you can see in this example, the tl}' statement can be very involved. lt is usually much 
simpler, though. Out of alt the different parameters, alt we really deal with are the error 
message itself and the error number. 

What to do in case of an error 

So far we dealt with the try statement as a simple block with a start and an end. Now, how
ever, we're going to add the on error line in the heart of the tl}' statement. From now on, 
our try statement block will have two compartments: 

try 
compartment 1 

on error 
compartment 2 

end try 

ln compartment 1 we put all the statements that we want to execute under normal oper
ation. ln compartment 2 we want to put alt the statements that we want to execute if any
thing goes wrong in compartment 1. Here's another way we can put it: 

try 
light candles on cake 

on error 
call fire department 

end try 

Do we usually invite firemen to birthday parties? I know my wife wouldn't mind, she has a 
thing for firemen, but they always seem so busy. However, it is a good idea to have a plan 
to call the fire fighters in case something goes wrong with the candles. 

One of the most common uses of the on error clause is to trap error number -128. Error 
-128 is the user canceled error and it is thrown by the displaydialag command when the 
user clicks the Cancel button. Any other button is simply returned in the dialog reply 
record; only the Cancel button generates an error. Error -128, however, will not generate 
an ugly error message to the user. All that'll happen if the Cancel button is clicked is that 
the script will exit, or if it is saved as an application, the application will quit. 

513 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

514 

One separate way to deal with this particular one is to rename the Cancel button with a 
space before and after. This, however, will deprive the user from being able to dismiss the 
dialog box with the EscAPE key. 

Following is a simple example of trapping the Cancel button error: 

Script 15-2 

try 
display dialog "What' s next?" buttans {"Cancel'', "Go", "Run"} 

on error 
display dialag ''I'm out of here •.. " giving up after 5 

end try 

Now this is OK, but what we want to do in many cases is take action only if the error is a 
specific error. ln this case, we want the dialog box displayed only for the user-canceled 
error. 

For that we need to know the error number. just for adventure's sake, let's pretend we 
don't know exactly what error is thrown and what the error number is. To figure it out, we 
need to create a little script, make sure that AppleScript throws an error at us, trap it, and 
analyze it. We do that with the error and error nurober properties that are returned by the 
error. 

To get information about an error, you can add a variable identifier right after the on error 
line. The error message will be assigned to this variable. Examine the following script: 

Script 15-3 

try 
display dialog "Do it?" 

on error the_error_message 
displaydialag "An error occurred. The message was:" & ., 

return & the_error_message 
end try 

Figure 15-1 shows the message of the second dialog box. lt shows that the value of the 
variable the_error_message we placed after the on error was "User canceled." 

An error occurred. The message w01s: 
User Canceled 

Flgure 15-1. The error message trapped in the variable 
the _ error _ message is "User canceled." 

To trap the error number, we add the word "number" before the variable. For now, add 
the word "number" as shown in the following script, run the script, and dick the Cancel 
button. Figure 15-2 shows the dialog box displayed as a result of you clicking Cancel. 



TURN ERRORS IN YOUR FAVOR 

Check out the error number the dialog box revealed. (I also changed the text ofthat sec
ond dialog box, butthat shouldn't matter.) 

Script 15-4 

try 
display dialag "Da it?" 

an errar number the_errar_message 
displaydialag "An errar accurred. The number is:" & ., 

return & the_errar_message 
end try 

An error cx:curred. The error number ls: 
-128 

Flgure 15-2. The dialog box reveals the error number. 

Ah, the satisfaction of attaining hard-earned knowledge! Now, let's mix the error message 
with the errar number: 

Script 15-5 

try 
display dialag "Da it?" 

an errar the_errar_message number the_errar_number 
displaydialag "An errar accurred:" & return & the_errar_message & ., 

return & the_errar_number 
end try 

Putting error numbers to use 

Now that we know how to figure out the error numbers, we can start using them. To start, 
we will modify the preceding script to display the second dialogbox only if the error num
ber is -128. To do that we just have to replace the expression following the word "number" 
from a variable to a Iiterat expression, or in other words, the actual error number. Here's 
how the script willlook: 

Script 15-6 

try 
display dialag "Da it?" 

an errar number -128 
displaydialag "Yau canceled the script. Bye!" 

end try 

515 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

516 

The preceding script is OK, but it Iets us act upon only one error. What if we anticipate two 
or more errors? For that there are two possible options: we have to either nest multiple try 
statement blocks one inside the other, or we have to put the error number into a variable 
and use an if-else if block to test for the different possible errors. 

Testing for multiple errors 

ln many cases, the same statement may throw more than one type of error. ln order to 
treat each error differently, you will need to use a simple conditional statement. Another 
thing you will need to do is identify the number of the errors you want to treat, and leave 
one last open eise clause to deal with any other error that may occur. The script we will 
Iook at will take two variables: one with a path pointing to a folder, and one with a path 
pointing to a file. The script will attempt to duplicate the file into the folder. 

Two of the things that can go wrong are that one of the paths point to a nonexisting file, 
in which case AppleScript will throw error number -1 0006; and the other error is that the 
file you're copying already exists in the destination folder, which is error number -15267. 

Watch how we act differently based on the error: 

Script 15-7 

1. try 
2. tell application "Finder" 
3. duplicate file source_file to folder dest_folder 
4. end tell 
s. on error error_message number error_number 
6. if error number is -10006 then 
1. display dialog ~ 

"Either the file or folder you specify doesn't exist" 
8. else if error_number is -15267 then 
9. display dialog ~ 

"The folder already has a file with the same name" 
10. else 
11. display dialog "The following message has occurred:" & ~ 

return & error_message 
12. end if 
13. display dialog "The script is going to stop now" 
14. return 
15. end try 

Nesting try handlers 

Another way to achieve a similar result is to use a Iiterat expression (a number, in this case) 
to describe the error number. This will force us to nest the try statements in the following 
fashion: 



TURN ERRORS IN YOUR FAVOR 

Script 15-8 

1. try 
2. try 
3. try 
4. tell application "Finder" 
5. duplicate file source_file to folder dest_folder 
6. end tell 
1. on error number -10006 
8. display dialog ., 

"Either the file or folder you specify doesn't exist" 
9. end try 
10. on error number -15267 
11. display dialog ., 

"The folder already has a file with the same name" 
12. end try 
13. on error 
14. display dialog "The following message has occurred:" & ., 

return & error_message 
15. end try 

ln the preceding example, the statement whose error we want to trap is actually inside 
three nested try statements. Each one of the first two will only trap a specific error. lf the 
error that occurred is not that error, the error will triekle down to the next try statement. At 
the end, the error will get to the generat error message that is designed to trap any error. 

Be careful not to trap too much 

Error trapping is not a solution to errors! Well, it kind of is, but either to errors you antic
ipate, or for freak-once-in-a-lifetime errors. Du ring your testing and debugging stage, you 
should stay away from trapping errors. You want to see it as it comes and treat it. Once 
you've managed to account for almost all situations, go ahead and add some try state
ments just to be sure. See the "Script-wide try statement" section later in this chapter. 

Another thing you may consider is deactivating any error-trapping try statements. Simply 
comment out the try statement components. When all is done, uncomment the try State
ments to make them active again. You do that since during the testing stages you actually 
want to see the errors so that you can possibly find better solutions for them. 

Can errors serve a function? 
Yes, we can train errors to serve a scripting function for us. While programmatically they 
may still be classified as something that an AppleScript command or statement couldn't 
handle, for us as scripters, they may present an opportunity. The key isn't whether the error 
is good or bad, but rather how reliably will AppleScript throw an error at a particular place. 
And just as AppleScript is reliable at executing statements correctly, if you plan things right, 
AppleScript will throw errors as anticipated. 

517 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

518 

Take for example the alias type file reference. lf you put the word "alias" before a path
name of a nonexisting file, AppleScript will throw an error, every time! That means that we 
can use that as a way to check if a file exists or not. 

Following is a handler that should be in every scripter's library. lt returns true if the file 
path you pass to it exists and false if it doesn't. 

Script 15-9 

on file_exists(the_path) 
try 

alias the_path 
return true 

on error 
return false 

end try 
end file exists 

ln the preceding script we count on the fact that the script will throw an error if the path we 
used with the alias file reference is invalid. The error is thrown like clockwork, we trap it, and 
when we do, we gracefully return the value false to the statement calling the handler. 

Script-wide try statement 
One of the projects l'm working on is a bunch of scripts Sal wrote for Showtime Networks. 
The scripts automate the creation of the Upcoming shows menus for about ten of 
Showtime Networks's affiliate stations. Sal initially created the scripts for them as a PR cam
paign for Showtime and it really worked weiL lt also worked weil for me to inherit the proj
ect, since besides billing for the time, I got to learn a Iot from Sal's AppleScript mastery. 

One of the neat features in these scripts was that, beside the localized error trapping that 
was implemented throughout the script, every script had one big try statement that cov
ered it from head to toe. 

The purpese of the on error handler wasn't to notify the user that something wrong went 
down. The script then displays the error message in a nice dialog box instead of the typi
cal error message AppleScript displays in case of unhandled errors, with the dreaded Edit 
button that, no matter what I tell them, users always seem to want to dick. The 
AppleScript application generic-style error message dialog box is shown in Figure 15-3. 

An ltem wtth the same name 
already exlsts ln the 
dastlnatlan. 

Flgure 15-3. AppleScript's 
generic error message dialog box 
with the dreaded Edit button 



TURN ERRORS IN YOUR FAVOR 

Sal's script-wide try statement worked weil, but I needed a way for the user to know 
exactly where things went bad. So I came up with the following solution: I added a global 
variable called script_location and assigned a different number to it throughout the script. 
Every two or three lines of real code, l'd add something like this: 

set script_location to 64 

At the end, part of the job of that script-wide on error handler was to report to me not 
only the nature of the error, but that script location variable, which allowed me to pin
point the exact location of the error. 

Scripts in which I implement this strategy do become about 40% Ionger in terms of lines, 
but the execution doesn't suffer: on a 1 GHz G4 Mac, AppleScript can assign an integer to 
a variable 500,000 per second. 

Logging errors to a file 
An even better error hunting technique I use is to write the script's activity to a text file. 
Since by doing this every second or third line of the script really will hamper performance, 
you will only want the user to implement it when there's a persistent error. Find a way for 
the user to flag the script that should log errors. lf you have an interface, then you can add 
a little check box caller "log activity." Otherwise, if your script has a dialog box that 
appears at the start, you may want to add a button there called Settings. Clicking this but
ton will display another dialog box that will allow users to turn logging on for the follow
ing run of the script. This will turn a tog_error global variable to true, which will then tell 
alt the handlers in the script to log their activity. 

The idea with logging activity is to create a text file on the desktop bearing the date and 
time, and add some text to that file every few lines. The text should describe the location 
and include some of the actual values used in the script. This can provide clues for the error. 

I tell my clients to e-mail me that resulting text file, which comes in very handy in reveal
ing the cause of the error. 

Since you will be utilizing the error logging feature again and again, it is a perfect candi
date for a handler with a couple of parameters such as line number, the part of the script 
it's called from, and maybe values of a few variables coerced into a string. 

A handler call is much easier to embed multiple times in your script. 

Generating errors 
Having spent the last portion of the book trying to contain and control errors, why in the 
world, in our right mind, would we go around creating them ourselves? 

519 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

520 

Weil, in some situations du ring the script's execution, you will realize that the user entered 
the wrong type of data, a file that was supposed to be found was not, or other items that 
your script could potentially deal with, but you feel that instead they call for the termina
tion of the script. 

To throw an error yourself, you have to go back to take a Iook at the few parameters that 
make up the error object. 

The error message and error number are really the parameters that are usually used for 
throwing errors. The other parameters are offending object, expected type, and partial 
result. 

To throw an error, add the following syntax to your script: 

error error_message_string number error_number 

Or, using Iiterat expressions: 

Error "E.T. could not phone home: wrong number" ., 
number -91001 offending object phone 

Figure 15-4 shows the error dialog box that this error, unhandled, will display. 

E.T. cauld not phone home: 
wrong numbar 

Flgure 15-4. The error message 
shown in an AppleScript 
application error dialog box 

Throwing your own errors is mainly a good idea if you deploy a script-wide error captur
ing strategy. This way this error will be logged somewhere and the dient will get some 
feedback on what went wrong. 

Using errors for string coercion 
Several classes in AppleScript, such as records, for instance, just wouldn't coerce into a 
string. To force them to coerce, just force an error whose description will include the value 
you want. Next, trap the error's message (which is very much a string) and parse-out the 
values you want. 

For instance, here's how you get a record as a string: 



TURN ERRORS IN YOUR FAVOR 

Scrlpt 15-10 

set my_records to {dog: 11Rufus 11 , cat: 11 Fluff11 } 

try 
my_records as string 

on error error_message 
end try 
--> Can't make {dog: 11 Rufus 11 , cat: 11 FlUff11 } into a string. 
set text item delimiters to 11Can't make II 

set record_text to item 2 of text items of error_message 
set text item delimiters to II into a string. 11 

set record_text to item 1 of text items of record_text 
set text item delimiters to ·~~ 
record text 
--> {dog: 11 Rufus 11 , cat: 11 FlUff11 } 

Notice how we parse the record out of the error message. This is a perfectly valid form of 
tricking AppleScript into giving you what it doesn't want to give you. Now you just have to 
find a reason to get a record as a string ... 

List of error messages 
The following part lists all AppleScript-related error messages that don't belong to third
party scripting additions or scriptable applications. The Iist is divided into sections: 
"Operating system errors," "Apple event errors," "Application scripting errors," and 
"AppleScript errors." 

Operating system errors 

An operating system error is an error that occurs when AppleScript or an application 
requests services from the Mac OS. They are rare, and more important, there's usually 
nothing you can do about them in a script. A few, such as "File <name> wasn't found~ and 
"Application isn't running." make sense for scripts to handle. 

0: No error. 

-34: Disk <name> is full. 

-35: Disk <name> wasn't found. 

-37: Bad name for file. 

-38: File <name> wasn't open. 

-39: End of file error. 

-42: Too many files open. 

-43: File <name> wasn't found. 

521 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

-44: Disk <name> is write protected. 

-45: File <name> is locked. 

-46: Disk <name> is locked. 

-47: File <name> is busy. 

-48: Duplicate file name. 

-49: File <name> is already open. 

-50: Parameter error. 

-51: File reference number error. 

-61: File not open with write permission. 

-1 08: Out of memory. 

-120: Felder <name> wasn't found. 

-124: Disk <name> is disconnected. 

-128: User canceled. 

-192: A resource wasn't found. 

-600: Application isn't running. 

-601: Not enough room to launch application with special requirements. 

-602: Application is not 32-bit clean. 

-605: More memory is needed than is specified in the size resource. 

-606: Application is background-only. 

-607: Buffer is too small. 

-608: No outstanding high-level event. 

-609: Connection is invalid. 

-904: Not enough system memory to connect to remote application. 

-905: Remote access is not allowed. 

-906: <name> isn't running or program linking isn't enabled. 

-915: Can't find remote machine. 

-30720: Invaliddate and time <date string>. 

522 



TURN ERRORS IN YOUR FAVOR 

Apple event errors 

An Apple event error is an error that occurs when Apple events sent by AppleScript fail. 
Many of these errors, such as "No user interaction allowed," are of interest to users. Also 
of interest to users are errors that have to do with reference forms, as weil as errors such 
as "No such object." 

-1700: Can't make some data into the expected type. 

-1701: Some parameter is missing for <commandName>. 

-1702: Some data could not be read. 

-1703: Some data was the wrong type. 

-1704: Some parameter was invalid. 

-1705: Operation involving a Iist item failed. 

-1706: Need a newer version of the Apple Event Manager. 

-1707: Event isn't an Apple event. 

-1708: <reference> doesn't understand the <commandName> message. 

-1709: AEResetTimer was passed an invalid reply. 

-1710: Invalid sending mode was passed. 

-1711: User canceled out of wait loop for reply or receipt. 

-1712: Apple event timed out. 

-1713: No user interaction allowed. 

-1714: Wrong keyword for a special function. 

-1715: Some parameter wasn't understood. 

-1716: Unknown Apple event address type. 

-1717: The handler <identifier> is not defined. 

-1718: Reply has not yet arrived. 

-1719: Can't get <reference>. Invalid index. 

-1720: Invalid range. 

-1721: <expression> doesn't match the parameters <parameterNames> for 
<commandName>. 

-1723: Can't get <expression>. Access not allowed. 

523 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

524 

-1725: lllegallogical operator called. 

-1726: Illegal comparison or logical. 

-1727: Expected a reference. 

-1728: Can't get <reference>. 

-1729: Object counting procedure returned a negative count. 

-1730: Container specified was an empty Iist. 

-1731: Unknown object type. 

-1750: Scripting component error. 

-1751: Invalid script id. 

-1752: Script doesn't seem to belong to AppleScript. 

-1753: Script error. 

-1754: Invalid selector given. 

-1755: Invalid access. 

-1756: Source not available. 

-1757: No such dialect. 

-1758: Data couldn't be read because its format is obsolete. 

-1759: Data couldn't be read because its format is too new. 

-1760: Recording is already on. 

Application scripting errors 
An application scripting error is an error returned by an application when handling stan
dard AppleScript commands (commands that apply to all applications). Many of these 
errors, such as "The specified object is a property, not an element," are of interest to users 
and should be handled. 

-1 0000: Apple event handler failed. 

-1 0001: A descriptor type mismatch occurred. 

-10002: Invalid key form. 

-10003: Can't set <object or data> to <object or data>. Access not allowed. 

-1 0004: A privilege violation occurred. 



TURN ERRORS IN YOUR FAVOR 

-10005: The read operation wasn't allowed. 

-1 0006: Can't set <object or data> to <object or data>. 

-1 0007: The index of the event is too !arge to be valid. 

-1 0008: The specified object is a property, not an element. 

-10009: Can't supply the requested descriptor type for the data. 

-1001 0: The Apple event handler can't handle objects of this dass. 

-10011: Couldn't handle this command because it wasn't part of the current 
transaction. 

-1 0012: The transaction to which this command belonged isn't a valid transaction. 

-1 0013: There is no user selection. 

-1 0014: Handler only handles single objects. 

-10015: Can't undo the previous Apple event or user action. 

AppleScript errors 

An AppleScript error is an error that occurs when AppleScript processes script statements. 
Nearly alt of these are of interest to users. For errors returned by an application, see the 
documentation forthat application. 

-2700: Unknown error. 

-2701: Can't divide <number> by zero. 

-2702: The result of a numeric operation was too !arge. 

-2703: <reference> can't be launched because it is not an application. 

-2704: <reference> isn't scriptable. 

-2705: The application has a corrupted dictionary. 

-2706: Stack overflow. 

-2707: Internat table overflow. 

-2708: Attempt to create a value !arger than the allowable size. 

-2709: Can't get the event dictionary. 

-2720: Can't both consider and ignore <attribute>. 

525 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

526 

-2721: Can't perform operation on text Ionger than 32K bytes. 

-2729: Message size too large for the 7.0 Finder. 

-2740: A <language element> can't go after this <language element>. 

-2741: Expected <language element> but found <language element>. 

-2750: The <name> parameter is specified more than once. 

-2751: The <name> property is specified more than once. 

-2752: The <name> handler is specified more than once. 

-2753: The variable <name> is not defined. 

-2754: Can't declare <name> as both a local and global variable. 

-2755: Exit statement was not in a repeat loop. 

-2760: Tell statements are nested too deeply. 

-2761: <name> is illegal as a formal parameter. 

-2762: <name> is not a parameter name for the event <event>. 

-2763: No result was returned for some argument of this expression. 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

Compile errors 

Compile errors are errors that occur while the script tries to compile. Compiling scripts is 
what happens before the script even runs. Typical compile errors are aliases that point to 
a nonexisting file, two variables in a row, not using a tell block when using application
specific terms, etc. 

Runtime errors 

Runtime errors are errors that only happen while the script runs. An error that is thrown 
while the script is running has a few components that are either used by the scripter to 
debug the problern du ring development, or are used by the script itself to determine how 
it should precede, in case the error is trapped. Untrapped errors will cause the script to 



TURN ERRORS IN YOUR FAVOR 

stop, and usually AppleScript will display a dialog box containing the grim details of the 
error to the user. 

The error components are error text, error number, offending object, and expected type. 

Trapping errors 

Errors are trapped with the try block. Any runtime error that occurs in a statement inside 
a try block will not stop the script. Following is the basic try statement block: 

try 
set x to 2 + "five" 

end try 

You can specify to the script what to do in case there's an error anywhere within the try 
block by adding the on error line to the try statement, like this: 

try 
set x to 2 + "five" 

on error 
set x to o 
display dialog "Couldn't get the value of x!" 

end try 

You can get the error components by placing variables after the on error line, like this: 

try 
set x to 2 + "five" 

on error error_text number error_number from offending_object to ~ 
expected_type 

display dialog "There was an error, and here is what happened:" & ~ 
return & error text 

end try 

Generating errors 

You can use the error command to throw errors at any point during the script, like this: 

error "Something happened" number 999 

Although I only used the error text and number components, the other two can be used 
as weiL 

Be aware that negative error numbers are reserved by Apple. 

Details previously . . . 

The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here, refer to earlier sections in this chapter. 

527 

-



App eEvent timec:J out. 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

530 

Whenever AppleScript sends a command to a scriptable application, it waits in order to 
get some communication back from the application. This communication may be infor
mation your script wanted from the application or an indication that a command has exe
cuted properly. 

There are two issues related to the exchange between AppleScript and the scriptable 
application: how long should AppleScript wait for a response, and should AppleScript wait 
for a response in the first place? These two issues are handled in two ways, either by 
AppleScript's default behavior or by the means of two control statements: application 
responses and timeout. 

These control statements act as wraps to code, as shown here: 

or 

considering/ignoring application responses 
tell application ••• 
.. • code 
end tell 

end considering 

with timeout of 300 seconds 
tell application ••• 
• • • code 
end tell 

end timeout 

Any code within the wrap will behave according to the instruction in the first line of the 
wrap. See details about the two statements in the upcoming sections. 

Application responses 
The application responses control statement controls whether or not AppleScript waits to 
see what response the application returned after AppleScript sent it a command. 

By default, when you use AppleScript to tell an application to do something, AppleScript 
won't continue the script until it hears back from the application. While this is usually OK, 
there are times when you would want to send a command to an application and move on 
with the script. 

lnstructing AppleScript to ignore application responses will cause AppleScript to send the 
message of command to the application and ignore any error it may generate and any 
result that this command may return. Using this feature means that you either trust the 
application to complete the appointed task, or that you have other ways to verify that the 
task has been completed. 

The following script teils Photoshop to play an action but does not hang around to see 
how things worked out: 



OTHER CONTROL STATEMENTS 

tell application "Photoshop CS" 
ignoring application responses 

do script "Convert folder to JPG" from "Conversion action set" 
end ignoring 

end tell 

ln the following script, we ask Acrobat Distiller to distill a PostScript file. Although we tel! 
AppleScript to ignore any responses from Acrobat, we do go right away to check if the file 
has been generated. 

set destination_pdf to "Macintosh HD:Users:hanaan:Desktop:final.pdf" 
set dest_posix to POSIX path of destination_pdf 
set source_posix to "/Users/hanaan/Desktop/temp_document.ps" 
tell application "Acrobat Distiller 6.0.1" 

ignoring application responses 
Distill sourcePath source_posix destinationPath dest_posix 

end ignoring 
end tell 
tell application "Finder" 

repeat until exists file destination_pdf 
exit repeat 

end repeat 
end tell 
display dialog "PDF Done!" 

Yes, Acrobat Distiller 6 now uses the command distill instead of open, and if you want it to 
take you seriously, you better supply it with POSIX paths for source and destination file 
paths. 

Application responses and subroutines 

The ignoring application responses command works through subroutine calls as weil as 
when calling applications directly. 

ln the following script we call a delete file subroutine, but we ask it to delete a nonexisting 
file. The subroutine will usually generate an error in this case, but the ignoring application 
responses clause surrounding the subroutine call still tell AppleScript to proceed without 
waiting for a response from the Finder. 

ignoring application responses 
delete_file("lala:bimbim") 

end ignoring 
on delete_file(file_path) 

tell application "Finder" 
delete file file_path 

end tell 
end delete_file 

ln the preceding case, ignoring application responses acts as error trapping as weiL 

531 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

532 

Timeouts 
By default, when AppleScript sends a command to an application, it waits 120 seconds for 
a response. lf the application returns no response by then. AppleScript throws a timeout 
error. 

While ignoring application responses asks AppleScript to not wait for a response from an 
application it sends a command to, the timeout cantrot statement asks AppleScript to 
hang araund a bit Ionger than the default 120 seconds, or to cut it short and wait for a 
shorter amount of time. 

The example script that follows will throw a timeout error since the Finder took Ionger 
than 120 seconds to perform the duplicate command: 

tell application "Finder" 
duplicate disk "Macintosh HD" to folder "BU" ., 

of disk "Backup Volume" replacing yes 
end tell 

Figure 16-1 shows the timeout error generated by the application script running the pre
ceding script. 

AppleEvent tlmecl out. 

Flgure 16-1. The timeout error generated by a command that took Ionger 
than the allowed timeout, 120 seconds by default 

lt is very important to understand that even though AppleScript gives up on the applica
tion and throws a timeout error, the application will still continue to perform the task 
assigned to it. ln the case of the preceding script where we duplicate the entire hard drive 
to the backup folder, the duplication will still continue despite the fact that the script that 
initiated the command has already errored-out and stopped. 

Setting a new timeout value 
lncreasing (or decreasing) the amount of time AppleScript allows an application to per
form a task is done with the timeout cantrot statement: 

with timeout of 300 seconds 
--do some operation shorter than 5 minutes ••• 

end timeout 



OTHER CONTROL STATEMENTS 

The following script allows up to 20 minutes for a script to resize an image in Photoshop: 

With timeout of (20 * minutes) seconds 
tell application "Photoshop CS" 

tell document 1 
resize image resolution 120 resample method none 

end tell 
end tell 

end timeout 

Trapping the timeout error 

Even though we allow for extra time, that time may still not be enough. ln this case you 
may want to provide extra protection by placing the timeout block inside a try statement. 

The following script Iets the user choose a file. lt will allow the dialog box to remain up for 
one hour before exiting the script. The problern is that even though the script has 
stopped, the Choose file dialog box is still displayed. To deal with this issue, we will first 
verify that the error indeed is a timeout error (error -1712). lf it is a timeout error, we will 
use Ul scripting to gracefully dismiss the dialog box. 

The script is as shown here: 

1. try 
2. with timeout of 3000 seconds 
3. tell application "Finder" 
4. choose file 
s. end tell 
6. end timeout 
7. on error number the_error_number 
8. if the_error_number is -1712 then 
9. tell application "Finder" to activate 
10. tell application "System Events" 
11. tell application process "Finder" 
12. click button "Cancel" of window "Choose a File" 
13. end tell 
14. end tell 
15. end if 
16. return 
17. end try 

533 



_;:;=.::._ ______ c_ompllo 

-execute the d•v of tlle party 
bab .. cake("Chocolate cake") 
wash..dlsht.s() 
buy..(oo~Chfps"J 
buy..(oo/M"Soda"J 
stnd .. lnvttatlons() 

You can reach 
my cell at: (212) 

else 

cake" 
-bake chocofate cake 

-bake Olher cake 
end lt 
bakt .. cakt 

wash..disl>ll{) 
repnt wtth rM,..dlslr ln dlsh..Usr 

•• wasn dlsh thf .. dish 
end repeat 
wash..dlsh6 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

536 

While subroutines aren't the first thing you create when you learn AppleScript, they are 
the one facet of scriptwriting that will have the most impact on your scripts. Subroutines 
are your tool for organizing scripts, making them efficient and giving you a perfect way to 
store and reuse your code. 

What are subroutines? 
Subroutines are bits of code that perform a certain task. Rather than being a part of the 
main body of the script, subroutines are organized away from it, and are called, or carried 
out, from the main body of the script. 

Subroutines are commands that you write yourself. What is any other AppleScript com
mand? A bunch of code that executes somewhere else in the system. A command you use 
in AppleScript can trigger a few or many lines of code, depending on its complexity. 

Your subroutines aren't much different, it's just that subroutines are commands written 
using AppleScript, which means that you can easily write them and use them yourself. 

To better understand subroutines, I want you to imagine making a Iist of tasks before 
throwing a party in your house. The Iist may include baking a cake, washing dishes, buying 
chips, and sending invitations. While this Iist is a great overview, it doesn't offer any detail. 
lf the Iist actually included all the details of baking a cake or Iooping through dishes in the 
sink and washing each one, the Iist would no Ionger be a snapshot you could Iook at to see 
what needs to be done. For items that do require directions, such as the exact steps for 
baking the cake, which you'll most likely need, you know where to go. So when the day of 
the party finally arrives, you pick your Iist, and Iook for directions. Each item on the Iist, 
instead of being the specific instructions for the task, calls your attention to the task, 
whose details can be looked up somewhere else. 

The same happens with a script that uses subroutines. The script in Figure 17-1 shows the 
party plan in the Script Editor the way you would organize it as a script with subroutines. 

By looking at the script in Figure 17-1, you can easily differentiate between the master 
plan and the fine details. 

Later on, as you gain experience, you can start spreading commonly used subroutines 
to different script files called script libraries. These libraries may have subroutines that 
all perform related tasks. ln the preceding example, we could have a "baker" script library. 
ln this case, we would use this line to bake the cake: tell baker to bake_cake(''chocolate 
cake"). 



DEFINING AND CALLING SUBROUTINES 

Compllt 

-~X~Cut~ II day 0' IM party 
bak(..calu!(''Chocolate cake") 
wash_dishtl() 
buy_foo~lps") 

buy_{oo,;Ooda") 
suuUnvirorlonl() 

··Subroon""~ 

10 bok(..COk~COk(..IVpe) 

17-01 

II cak(..rype ls "Chocolate cake" IhM 
.. bake chocolat c. e 

else 
··b. ~e oot r cake 

end II 
end bok(..cakt 

10 wash..dlshtj() 
repeal wtlh rht..dlsh ln dish../Jsr 

•• wash d1sh 11>e .drsh 
end repea1 

end wosh..dlslres 

10 buy_foorl..rht../runl 
.. go to ~em sie 

end buy_footl 

Dtscrlptlon IIA!su EWnt lo9 , 

Figure 17-1. The partyplan as a script 

Subroutines have tobe called in order to 
work 

On their own, subroutines don't do a thing other than occupy bytes in your script file. A 
subroutine is only used when it is called from an active part of your script. That active part 
may start at the run handler (see the section "The run handler" later in this chapter) and 
continue through any subroutine that is called. Subroutines may call each other as weil, 
which means that one subroutine will contain a call to another subroutine. 

lmagine a job site without a foreman. You have a carpenter, electrician, landscaper plumber, 
and framer, but no one to take charge and say "OK, we start by digging a big hole ... " This 
foreman will assign tasks to the other workers. Each worker may then, based on their func
tion, assign tasks to other people on the site. As soon as alt the tasks the foreman had in his 
Iist have been completed by alt the workers, the job is considered done, and they can alt go 
and have a drink (no matter what time of day it is . . . ). 

537 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

538 

This job site with no foreman is the same as a script with a bunch of handlers but with no 
run handler (or other executing handler such as the open handler, but more on that later 
on as weil). 

The foreman may even come in, say, "OK, start," and leave. I created scripts like that; 
here's how they Iook: 

go() 
on go() 
--perform all commands •.. 

end go 

ln this case, the go subroutine call is the only line in the run handler, but it's enough to 
ignite the script and get it going. 

Your first subroutine 
Before we go on about that subroutine thing, let's create one simple subroutine and a sub
routine call. 

We will create a little subroutine that displays a dialog box. At this point, the dialog box 
will display some Iiterat text and not different text every time, as it could. 

Figure 17-2 shows the most basic form of a subroutine. 

··SYbroutlne catl 
say_ht.IJoO 

··SYbrwtine defin.uon 
to say_ht.IJoO 

display doaiog "Hello!" 
tnd say_~ 

lbunon returned:"'OK1 

Oucrlptlon 

0 

Flgure 17-2. The most 
basic form of a 
subroutine 

By looking at the script in Figure 17-2, you clearly can see the two components that make 
up any subroutine: the subroutine definition and the subroutine call. 



DEFINING AND CALLING SUBROUTINES 

While the positioning of the subroutine call in your script is pivotal, the subroutine defini
tion can live almost anywhere in your script, or even in other scripts. 

Why is the position in your script from which you call the subroutine from so important? 
Simple: the subroutine call is actually the command that executes the subroutine. lts posi
tion in the script is as important as the position of any other command: it determines 
when in relation to the script it executes. 

Subroutines can't be placed inside other subroutines. 

The run handler 
The run handler is any part of the script that is not a subroutine (or a script object, but 
more on that somewhere else ... ). 

The run handler is the piece of code that actually executes when you run the script. lf your 
script is saved as an application, after the run handler has completed executing, the on 
quit handler executes, if there is one, and then unless the quit handler stopped the quit
ting process, the script application quits. 

There can be only one run handler per script, but some scripts may have no run handlerat alt. 

l've never seen no run handler! 
You may be wondering how come you already wrote a bunch of scripts, but none of them 
have anything that Iooks like a run handler. This is because the run handler doesn't have to 
be explicitly defined. lnstead, AppleScript assumes that any code that is not a part of any 
other handler is a part of the run handler. 

The scripts in Figures 17-3 and 17-4 are identical; it's just that the one in Figure 17-4 explic
itly defines the run handler, and in the script shown in Figure 17-3, the run handler is implied. 

Compllt 

dlsplay dlalog Tm runnlng, no math!r wllatl' 
beepj 

Ooscrlptlon 

0 

Flgure 17-3. The script 
has a run handler, but 
it is implied. The entire 
script shown is part of 
this run handler. 

539 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

540 

Record Run Complle 

oj. run 
dosplay diilog 1'm runnlng. no matter wha1!" 
beep 

end run 

Now, try this: 

display dialog "You can run •.• " 
on run 

display dialog "But you can't compile" 
end run 

Flgure 17-4. The run 
handier is explicitly 
written out. 

Why won't this script compile? The first displaydialag command is inside the implied run 
handler and the second dialog box command is in the declared run handler. Two run han
dlers don't get along. 

When should you explicitly use the run handler? 

While in many situations leaving the run handler implicit (not actually wrapping the code 
with run/end run) is OK, there are situations where you'd want to explicitly identify the run 
handler. 

You would usually want to add the run handler when the script has some other unusual 
execution method. For instance, if the script is a droplet application, it will have another 
unique handler called the on open handler. This handler will be executed when a file is 
dropped on the script application. While for the most part the user will make use of the 
script by dropping a file on it, you may want to have some code in the run handler that will 
execute if someone double-clicks the droplet application. 

The following script defines both the run handler and the on open handler in the same 
script. lf you drop a file on the script application, it will show you the file's type, as defined 
in the on open handler, and if you double-dick the script application, you will get instruc
tions, as defined in the on run handler. 



DEFINING AND CALLING SUBROUTINES 

Script 17-1 

on open these_items 
set the item to item 1 of these items 
set the=item_type to file type of (info for the_item) 
display dialog "You dropped a file of type \"" & ..., 
the_item_type & "\"" buttans {"OK"} default button 1 

end open 
on run 

display dialog ..., 
"Drop something on me and I'll tell you what type it is!" ..., 
buttans {"OK"} default button 1 with icon note 

end run 

We will discuss the on open handler in the Chapter 23, which covers droplets. 

What are parameters? 
Parameters, also referred to as arguments, give us the ability to explain to the subroutine 
how we want the different commands and statements executed. 

When you stand at a coffee shop counter, asking for coffee may be the statement you use. 
The parameters are the main details you provide about how you like your coffee: "l'd like 
a large coffee, black with one sugar." There are three parameters in the "make coffee" 
subroutine: size, whitener, and sweetener. Anywhere you get coffee in the country you can 
add those parameters to the "make coffee" statement and people will understand, even 
though the exact way they'll go about making it may be different. 

Following is the "make coffee" subroutine the way AppleScript would have it: 

The subroutine call: 

make_coffee(Large, none, 1) 

The definition: 

to make_coffee(size, whitener, sweetener) 
put size cup on counter 
fill with coffee 
if whitener is not none then add whitener 
add sweetener number of sugar baggies 
stir 
return cup of coffee 

end make coffee 

541 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

542 

What's the result? 
ln AppleScript, you may want your subroutines to return a value, or you may not. 

A subroutine whose job is to close alt open documents in lnDesign may return no result. lt 
will always just close any open documents and that's that. You may want to test whether 
the operation was successful and return a true or false, or you may return the number of 
documents you closed. This is entirely up to you. 

AppleScript by default will return the result of the last statement the subroutine executed, 
even if you don't want to use it. To make it clearer which result the subroutine is return
ing, or to return a result in the middle of the subroutine, you can use the return command 
followed by the value you want to return. 

The best way to capture the result of a subroutine is to assign the calling statement to a 
variable. This way, the result that the subroutine returns will be assigned to that variable. 
Let's Iook at a few examples. 

The following four subroutines will return the sum of the two parameters: 

First variation: 

on add_up(a, b) 
return a + b 

end add_up 

Second variation: 

on add_up(a, b) 
a + b 

end add_up 

Third variation: 

on add_up(a, b) 
set the sum to a + b 
return the sum 
--any line beyond the return line will be ignored 

end add_up 

Fourth variation: 

on add_up(a, b) 
set the sum to a + b 

end add_up 

All four subroutines will act exactly the same way. Notice that the second and fourth sub
routines don't explicitly use the return command, but AppleScript still returns the result of 
the last statement. 



DEFINING AND CALLING SUBROUTINES 

To call this subroutine, we will need to ensure that the result of it goes somewhere. The 
easiest way is to assign the call to a variable. 

set the_sum to add_up(3, 7) 
--> the_sum = 10 

Returning a result midway 
There are two reasons why you would return a result in the middle of a subroutine execu
tion. One is if you trapped an error and the other is the use of a conditional statement 
(if-then): 

Script 17-2 

on do_math(a, b, the_operator) 
if the_operator is "+" then 

return a + b 
else if the_operator is "-" then 

return a - b 
else if the_operator is "*" then 

return a * b 
end if 

end do math 

Returning results from subroutines 
ln other programming languages there are two kinds of subroutines you can define. One 
type of subroutine performs an action, and the other one performs some calculations and 
returns a result. ln AppleScript we use subroutines for both purposes. We can have a sub
routine that simply goes and performs an action where a result isn't needed. but other 
subroutines make themselves useful by performing some calculations based on parame
ters you provide, and return the result of those calculations. 

ln AppleScript, every subroutine you run can return a result; actually, most of them do 
even if you're not aware of it. This happens because a subroutine in AppleScript returns 
the result of the last statement that ran in the subroutine. 

Let's start with a simple example. The following subroutine returns the sum of the two 
parameters you sent it: 

on sum_it_up(a, b) 
a + b 

end sum_it_up 

Now we can call this subroutine: 

sum_it_up(S, 12) 
--> 17 

543 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

544 

The result of the subroutine call is 17 because the result of the last statement of the sub
routine was 17. 

We do, however, have a clearer alternative in dealing with subroutine results. To explicitly 
return a result from a subroutine, use the return command. 

on sum_it_up(a, b) 
set the sum to a + b 
return the sum 

end sum_it_up 

Collecting results from subroutines 

So we've just seen how generaus subroutines are in returning results. What we need to do 
now is collect these results so that we can put them to use later on in the script. We do 
that by assigning the subroutine call to a variable. This variable is then assigned the result 
of the subroutine. Here's an example: 

on cubic_feet(ft_tall, ft_wide, ft_long) 
return ft_tall * ft_wide * ft_long 

end cubic feet 

Now, we're going to call the subroutine, but we will make sure that the result it returns is 
assigned to a variable. 

Set this_room_volume to cubic_feet(8 , 12 , 10) 
--> this_box_volume = 960 

Can a subroutine return more than one result? 

By the AppleScript rules, a subroutine may return only one value as a result. This would 
have been too restrictive, since many subroutines you create produce more than one 
result you want to ·return to your script. 

So, any thoughts yet on how to bypass this issue? Try returning the result in a Iist or a 
record. 

All you do is collect the different values you want to return into a single Iist or record and 
return that Iist or record. 

ln the example that follows we will accept a full name as a string, and return the first name 
and last name separately. 

To return the value to the calling statement, we will use a record. 



DEFINING AND CALLING SUBROUTINES 

Scrlpt 17-3 

on split_name(the_name) 
set first_name to first word of the_name 
set last name to last word of the name 
return {first_name:first_name, la~t_name:last_name} 

end split_name 
set name_record to split_name("Paul Revere") 
-->{first_name:"Paul", last_name:"Revere"} 

ln the preceding example we returned a record as a result. Personally, I like to use lists 
because they are more flexible. 

The advantage of a Iist in this case isthat you can map the result directly to individual vari
ables. Here is how we do that: 

Script 17-4 

on split_name(the_name) 
set first name to first word of the name - -
set last name to last word of the name - -
return {first_name, last_name} 

end split_name 

set {first_name, last_name}to split_name("Paul Revere") 
--> first_name = "Paul" 
--> last_name = "Revere" 

As you can see in this example, since the subroutine returned a Iist with two items, and the 
Iist we assigned the result to has two items, each item from the Iist was assigned to the 
corresponding item in the subroutine's returned result. 

Now this is as close as it gets to returning multiple values. 

Another thing that makes it easy to use is that the Iist of variables we used in the return 
statement inside the subroutine is the same as the Iist we assigned the subroutine to in the 
calling statement. 

Subroutines' results can be used in an operation 
statement 

just like many other commands, you can call subroutines directly inside other statements 
without first assigning their result to a variable. 

For example, let's create a little subroutine that formats a phone number. just for this 
example we will keep it very simple. Here's our subroutine: 

545 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

546 

Script 17-5 

on format_phone(the_number) 
set x to II ( II & -. 

(characters 1 thru 3 of the_number) & 11 ) II & .., 
(characters 4 thru 6 of the_number) & 11 - 11 & -. 
(characters 7 thru 10 of the_number) as string 

return x 
end format_phone 

Now, let's create a statement that will make some use of that subroutine. 

Script 17-6 

set the_message to -. 
11 You can reach my office at: II & format_phone( 11 800555123411 ) & -. 
II or on my cell at: II & format_phone( 11 212555123411 ) 

display dialog the_message 

As you can see in Figure 17-5, the preceding statement incorporated two calls to the 
format_phone subroutine. The downside is that the formatted results don't get stored 
anywhere, but it may not be a problem. 

You can ruch my office at: (800) SSS-1234 or on 
my cell at: 1212) SSS- 1234 

Flgure 17-5. The dialog box produced by the two scripts 
using the format_phone subroutine 

The other, more elaborate option would be the following: 

Script 17-7 

set formatted_number_1 to format_phone( 11 800555123411 ) 

set formatted_number_2 to format_phone( 11 212555123411 ) 

set the_message to -. 
11 Vou can reach my office at: II & formatted_number_1 & -. 
II or on my cell at: 11 & formatted_number_2 

display dialog the_message 

Classes don't often mix 
Another important consideration to make, especially if you value scripts that run their 
course, is for the person writing the subroutine call to know the intended dass of the dif
ferent parameters. For instance, what if the subroutine definition expects a string parame
ter for location, but the subroutine call provides a file reference or alias? ln this case the 
subroutine will throw an error. 



DEFINING AND CALLING SUBROUTINES 

ln the following example, the path to command returns an alias, but the subroutine 
expects a string: 

create_folder(path to startup disk) 

Subroutine definition: 

on create_folder(folder_location) 
tell application "Finder" 

make new folder at container folder_location 
end tell 

end create_folder 

The command the Finder will try to execute here is 

make new folder at containeralias "Macintosh HO:" 

This is sure to fail. 

The two kinds of AppleScript subroutines 
ln AppleScript we can define and call two types of subroutines. While the functionality of 
the two types is similar (you can do in one everything you can do in the other), each 
provide advantages you will want to consider. 

The two main differences between the two subroutines types is in the way the parameters 
are organized and the ease of use. The subroutine types are named after their parameter 
organization: one is called positional parameters subroutine and the other is called Iabeted 
parameters subroutine. 

The easier-to-use subroutine type is positional. When defining and using positional 
subroutines, you decide on the parameters and on the order of the parameters. The sub
routine will work properly only if the right values for the parameters are provided in that 
predefined order. While a bit limiting, this style of subroutine is very easy to pick up and 
start using. 

labeled parameters are more complex but provide you with greater flexibility in how the 
subroutine is called and a more command-like Iook. 

Using the Iabels in the Iabeted parameter subroutine gives you an easy way to always 
remernher what each of the parameters stand for. For instance. imagine the following call 
to an imaginary subroutine: 

Do this thing("l:OO PM" true true "AAA" 100293) - - , , , J 

just what are alt these values stand for? Does the string "AAA" stands for roadside assis
tance, or for the type of batteries the subroutine needs in order to work? 

547 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

548 

Now try this: 

Do_this_thing from "1:00 PM" with do_it_right and ., 
clean_up_after given battery_type:"AAA", number_to_use:100293 

Ah! Now we can Iook at the subroutine call and see exactly what the different parameters 
mean (giving it makes sense to us ... ). I can't count how many times l've looked at sub
routine calls I created in the past and had no clue what the different parameters did until 
I dug back into the subroutine definition. 

Positional parameter subroutines 
The claim to tarne of positional parameter subroutines is that you can start using them 
quickly and they don't get any more complicated than what can be described in two para
graphs. 

To understand positional parameter subroutines, imagine a cargo train where the cars 
aren't marked. The person loading the train knows in what order to organize the cars, and 
the person unloading is aware of the same order. lf the first car is supposed to contain 
tumber and it contains straw instead, then your script will most likely end up trying to 
build a house of straw. 

That's right: what's important in positional parameter subroutines is the order, or position, 
of the parameters. 

From the dictionary 
Following is the dictionary definition of the positional parameter subroutine. 

Subroutine definition: 

( on I to ) SubroutineName ( [ paramVariable [, paramVariable ] ••• ] ) ., 
[ global variable [, variable ] ••• ] [ local variable., 
[, variable ] ••• ] [ statement ] ••• end [ subroutineName ] 

Subroutine call: 

SubroutineName ( [ parameterValue [, parameterValue ] ••• ] ) 

Defining and calling positional parameter subroutines 
We will start by looking at another simple example of a positional parameter subroutine. 
The purpose of our subroutine will be to create a fotder somewhere on the hard drive. 



DEFINING AND CALLING SUBROUTINES 

let's start with the naked command: 

tell application "Finder" 
make new folder 

end tell 

Now, let's add a subroutine wrapper for it. Forthat we will need the subroutine identifier. 
The subroutine identifier is a type of variable that will be used as the command name 
when we want to call the subroutine. 

Here is the basic subroutine definition: 

Script 17-8 

on create_folder() 
tell application "Finder" 

make new folder 
end tell 

end create folder 

The empty parentheses after the subroutine identifier createJolder are required. They are 
the now-empty home of any parameters the subroutine may use. 

To call this subroutine we can use this line: 

create _ folder () 

Note that in this case the call is identical to the definition with the exception of the word 
"on" (which can also be "to") before the identifier. 

lf the definition exists anywhere in the script, but not inside another subroutine, it will be 
executed whenever the call statement appears. 

Adding parameters 

As it is right now, the subroutinewill create a fotder named Untitled Folder on the desk
top. This can't be what we want the script to do. What we want is to be able to specify a 
different location to the script, and possibly a different name for it as weiL 

As we talked about earlier, the important thing in adding these parameters to the subrou
tine is deciding on their order. We will do location followed by name. 

Following is the new subroutine definition and call with the addition of these two parameters: 

Script 17-9 

on create_folder(folder_location, folder_name) 
tell application "Finder" 

make new folder at container folder_location ~ 
with properties {name:folder_name} 

end tell 
end create folder 

549 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

550 

Then, to call the subroutine from anywhere in our script, we can use 

create_folder("Macintosh HD:", "My Stuff") 

The result will be a fotder named My Stuff placed at the root directory of the drive 
Macintosh HD. 

When referring to the startup disk, it is almost always better not to use a Iitera/ 
expression such as the string "Macintosh HD:~. lf you are inside the Finder's teil 
block, oll you have to do is use the term "startup disk. ~ Outside the Finderblock 
you have to use the path to scripting addition command /ike this: path to 
startup disk. 

Labeted parameter subroutines 
Somebody please tell me, why? Positional parameters are so easy to use, they do every
thing we want, and they always work the same. So why complicate things by introducing 
Iabeted parameters? And if we don't figure them out, is anything wrong with us? Now you 
may not want to tie your self-esteem to your mastery of Iabeted parameters, because after 
all, if you never knew they existed, you could still script happily ever after. Nevertheless, 
they can be pretty cool. 

While positional parameters are recognized only based on their position, labeled parameter 
subroutines have a couple of unique ways to recognize parameters. For starters, Iabeted 
parameter subroutines do away with the parentheses. lnstead, they use a combination of 
special keywords and user-defined Iabels to define the subroutine, and a command-like 
treatment of Boolean values for calling the subroutine. 

ln order to understand the structure of Iabeted parameter subroutines, we will start with 
the very basic and move on to more complex features later on. 

The definition and the call 

The main struggle in subroutines is for the subroutine definition, the part that actually 
does the work, to properly use the parameters the user wants to feed it. This feeding of 
parameters to the subroutine happens in the subroutine call: the part that teils the script 
to execute the subroutine. 

Hence, our main effort here will be finding a way to pass values from the call to the defi
nition. 



DEFINING AND CALLING SUBROUTINES 

From the dictionary 

Following is the definition of the Iabeted parameter subroutine. 

Subroutine definition: 

( on I to ) SubroutineName ~ [ [ of I in ] directParameterVariable ] 
[ subroutineParamlabel paramVariable ] ••• 
[ given label:paramVariable [, label:paramVariable ] ••. ] ~ 
[ global variable [, variable ] ••• ] [ local variable [, variable ] ••• ] ~ 
[ statement ] ••• end [ SubroutineName ] 

Subroutine call: 

SubroutineName ~ 
[ [ of I in ] directParameter ] ~ 
[ [ subroutineParamlabel parameterValue ] ~ 

I [ with labelForTrueParam [, labelForTrueParam ] ••• ~ 

[ ( and I or I , ) labelForTrueParam ] ] ~ 
I [ without labelForFalseParam [, labelForFalseParam ] ••• ] ~ 
[ ( and I or I , ) labelForFalseParam ] ] ~ 
I [ given label:parameterValue ~ 
[, label:parameterValue ] •.. ] ••• 

Start with the basics: Subroutine parameter labels 

We start our Iabeted parameter subroutine discussion with the subroutine parameter 
Iabels. The subroutine parameter Iabels are 21 reserved words that you can use as Iabels to 
parameters. let's Iook at the 21 words and at how we can use them. 

The 21 Iabels are about, above, against, apart from, around, aside from, at, below, beneath, 
beside, between, by, for. from, instead of, into, on, onto, out of, over, since, thru (or through), 
and under. 

We use these Iabels in both the subroutine definition and subroutine call in a coordinated 
way, which allows us to determine what values supplied by the subroutine call match up 
with which variables in the subroutine definition. 

All 21 Iabels function the same, but you should choose them based on how weil they fit 
into the context of the subroutine. The people who thought them up must have wanted 
your script to read more like a poem. 

Say we have a subroutine that will return the highest number in a Iist of positive integers. 
The subroutinewill require one parameter that is the Iist of integers. Out of the 21 Iabels, 
I chose the out of Iabel to be most fitting for the subroutine parameter Iabel assignment. 
Here is what my subroutine Iooks like: 

551 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

552 

Script 17-10 

to find_highest out of the_list 
set highest_for_now to o 
repeat with the_item in the_list 

if the_item > highest_for_now then 
set highest_for_now to the_item 

end if 
end repeat 
return highest_for_now as number 

end find_highest 

To call the subroutine I will use the following line: 

find_highest out of {1, 4, 12, 5} 

Let's compare the calling line with the first line of the subroutine definition, but let's 
change the subroutine identifier and Iabel: 

Definition: 

to (name) parameter the_list 

Ca II: 

(name) parameter {1, 4, 12, 5} 

As with positional parameters, the name Iets the call locate the definition from all the 
other subroutines, and the parameter Iabel specifies which variable inside the subroutine 
definition the parameter value will be assigned to. ln the preceding example, you can 
clearly see that the value of the variable the_list in the subroutinewill be {1, 4, 12, 5}. 

Now let's try that with one more subroutine parameter. We will add a top number. This 
time, the subroutine will just return a Boolean value: true if the top number is higher than 
the highest number in the Iist, and false if the Iist contains a higher number than the top 
number we supply. 

To make life easier for yourself, try to ignore the English meaning of the subroutine parameter 
Iabels (those 21 pesky words); instead just think about them as parameter 1, parameter 2, etc. 

Here's the second subroutine definition: 

Script 17-11 

to find_highest above the_top out of the_list 
set the_top_is_highest to true 
repeat with the_item in the_list 

if the_item > the_top then 
return false 

end if 
end repeat 
return true 

end find_highest 



DEFINING AND CALLING SUBROUTINES 

And the call: 

find_highest above 16 out of {1, 4, 12, 5} 

Making up your own Labels 
So far you had the chance to make up words for your variable and subroutine identifiers. 
Now you get a chance to Iabel your parameters with your own words. All this means is that 
if you want, you can replace the 21 Iabels reserved by AppleScript with your own, hope
fully a bit more descriptive terms to what the job of the parameter is. 

There are three differences, however, from using the subroutine Iabel parameters: you have 
to precede the use of your own labeled parameters with the word "given," your parameters 
must be separated by a comma, and you have to separate your Iabels from the variable (or 
value in the subroutine call) with a colon. A bit confusing, but together we can do it! 

Let's start with a simple single-parameter subroutine. Our subroutine will take a word and 
return the reverse of it (word -+ drow). 

We will need to invent three words for this subroutine: the subroutine identifier is going to 
be reverse_word, the parameter Iabel will be reversing_word, and the identifier of the 
actual variable used in the subroutinewill be word_to_reverse. 

Here is how our subroutine definition willlook like: 

Script 17-12 

to reverse_word given reversing_word:word_to_reverse 
set word_characters to characters of word_to_reverse 
set reverse list to reverse of word characters - -
set new_word to reverse_list as string 
return new word 

end reverse word 

This really isn't as bad as it seems. You already know about the subroutine identifier and 
the parameter variable. All we did was added our own Iabel to the parameter. 

Here is the call for that subroutine: 

reverse_word given reversing_word:"play" 
--> result: "yalp" 

Now let's try it with two parameters. The following subroutine will (yet again) calculate the 
area of a rectangle. Our parameters will be the width and height. Here we go: 

to get_the_area given width:w, height:h 
return w * h 

end get_the_area 

What's nice in this situation is calling the subroutine. The parameter Iabels make it very 
easy to remember what the values stand for. 

get_the_area given width:12, height:s 
553 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

554 

Calling subroutines with Boolean parameters 

Another unique feature of the Iabeted parameter subroutines is the ability to specify 
Boolean values like you would in any other AppleScript command, using the with and 
without Iabels. 

As an example we will create a subroutine that trims tabs and spaces from strings. As for 
parameters, we will have four Boolean parameters and one direct parameter. 

The direct parameter is the first parameter used in a subroutine definition. The Iabel of the 
direct parameter is either in or of, and it always has to be the first parameter. Our direct 
parameter will be the actual string we want to trim white text from. The four Boolean 
parameterswill be fromJront, from_back, trimming_spaces, and trimming_tabs. You can 
assume that for the subroutine to do anything, either one of the first pair and either one 
of the second pair of parameters must be set to true, but that's beside the point. 

Now let's inspect the subroutine. Mainly pay attention to the first line in the definition and 
to the subroutine call. 

The subroutine definition: 

Script 17-13 

1. to trim_characters of the_text~ 
2. 
3. 
4. 
s. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

given from_front:f, from_back:b, trimming_spaces:s, trimming_tabs:t 
--assemble trim characters list 
set trim_character_list to {} 
if s then set end of trim_character_list to space 
if t then set end of trim_character_list to tab 
repeat (count trim_character_list) times 

repeat with the_character in trim_character_list 
--trim from front 
if f then 

repeat while the_text ends with the_character 
set the_text to characters 1 thru -2 of the_text ~ 

as string 
13. end repeat 

end if 14. 
15. 
16. 
17. 
18. 
as string 

--trim from back 
if b then 

repeat while the_text starts with the_character 
set the_text to characters 2 thru -1 of the_text ~ 

19. end repeat 
20. end if 
21. end repeat 
22. end repeat 
23. return the_text 
24. end trim characters 



DEFINING AND CALLING SUBROUTINES 

Notice that this is a normal Iabeted parameter definition. We have our Iabels marking the 
four Iabeted parameters and we're ready to call the subroutine. 

ln the subroutine call, we're not going to supply values to the parameters in the fashion we 
learned earlier, which would go something like this: 

trim_characters of the_text given ~ 

from_front:true, from_back: true, trimming_spaces: true, 
trimming_tabs:false 

lnstead, we will treat the Boolean parameters like we would treat them in any other com
mand, using the with and without keywords. 

trim_characters of the_text with from_front, from_back, ~ 

trimming_spaces and trimming_tabs 

ln the preceding call, all four Boolean parameters received a true value. ln the call that fol
lows, we will assign a false value to the trimming_tabs and tromJront parameters: 

trim characters of the text ~ - -
with from_back and trimming_spaces without from_front and ~ 

trimming_tabs 

Whose subroutine is it anyway? 
First we learned about AppleScript commands and application commands. Then we saw 
that we can create our own commands, which is OK as long as we make up names for 
them such as do_this_thing_now. 

Now, let's take it a step further. 

lt all starts when you want to call your subroutine from inside an application tel/ block. 
let's assume that you created a subroutine for Valentine's Day called foreplay. lf you call it 
from outside any tel/ block, all is weiL But as soon as you try it from say, inside the Finder's 
tel/ block you get the following error: "Can't continue foreplay." Ouch! A second ago you 
were fine, but now we're trying it from the Finder and you can't? That hurts. 

Don't worry, all the script is experiencing here is a bit of uncertainty on top of some per
formance anxiety. See, when you called the foreplay subroutine from inside the Finder's 
tel/ block, AppleScript looked to see if the Finder had a foreplay command in its diction
ary. Since there was none, AppleScript couldn't continue. Next time, try to specify whose 
foreplay you're trying to perform. You do that with the my precedence word: 

tell application "Finder" 
my foreplay() 

end tell 

555 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

556 

Preceding the subroutine call with the word "my" teils AppleScript to Iook for the com
mand in the script itself and not in the application that is the target of the tell statement 
you're in. 

The other options relating to the matter is addressing script objects instead of the current 
script. lf you have loaded a script into a variable, there are two ways you can use to exe
cute the subroutine. For example, let's say that we have used the Ioad script command to 
Ioad a script file containing a figure_average subroutine to the variable math_whiz. We 
can either say 

Tell math_whiz to figure_average(the_list) 

or 

math_whiz's figure_average(the_list) 

The secend option is more in line with what would be my figure_average(the_list) if the 
figure_average had been apart of the script and not loaded in. 

Much more on that in Chapter 18. 

Redefining AppleScript commands 
You can redefine AppleScript and scripting addition commands. The code in your new def
inition will replace the code that usually runs when the command is called. For instance, 
let's try to meddle with the choose from Iist command defined in the Standard Additions. 

ln your script, type the following: 

Script 17-14 

on choose from list thelist 
display dialog ''I'll choose for you" buttans {"OK"} 
return some item of thelist 

end choose from list 
choose from list {1, 2, 3} 

ln the preceding script, we changed the functionality of the choose from Iist command. lf 
it is called from anywhere in the script, instead of allowing the user to choose, the script 
willlet the user know that it will choose an item from the Iist, and indeed proceeds to pick 
a random item from the Iist using the some item fittering statement. 

ln the same situation, we can possibly add to the command, and then tell AppleScript to 
continue with the original command at some point. Look at the following script: 

Script 17-15 

on choose from list thelist 
display dialog "Should I choose for you?" buttans {"No", "Yes"} 
if button returned of result is "No" then 

continue choose from list thelist 



DEFINING AND CALLING SUBROUTINES 

else 
return some item of thelist 

end if 
end choose from list 
choose from list {1, 2, 3} 

ln the preceding script, AppleScript first offers to make the decision for the user. lf the 
user declines, then the script will tell AppleScript to continue to execute the command the 
way it was designed originally. 

Subroutines and variables 
We talked a Iot about variables being the memory of AppleScript. lf you store a value in a 
variable, you can later use it anywhere in the script. 

Weil, this is almest all true. 

As a refresher, in AppleScript we have two main kinds of variables: global variables and 
local variables. The main difference between the two comes to light when we work with 
variables. 

Declaring variables 
Although it is more organized and proper, you are not required to declare local variables. 
Only global variables require proper declaration. 

You declare variables anywhere in the script's run handler, which mostly means that 
declaring global variables from inside other subroutine definitions will simply not work. 

To declare a global variable, type the variable identifier following the word "global": 

global the_name 

You can also declare multiple variables in the same statement, as follows: 

global x, y, z 

although I think it is better to declare global variables one at a time, because this way you 
can add some comment for each variable in regard to its function. 

The scope of local and global variables 
ln short, local variables are only good inside the subroutine they're used in, and local vari
ables that were defined in the run handler (the main part of the script) have no meaning 
inside the subroutine definition. 

Global variables, on the other hand, are good throughout any part of your script. 

557 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

558 

Let's Iook at an example. 

ln the following script we will have a subroutine that calculates the area of a rectangle. We 
will also use a local variable, which we will start by only declaring in the body of the script 
and not in the subroutine. 

Script 17-16 

local the_width, the_height --not needed, but nice 
set the_width to 3 
set the_height to 5 
set the_area to get_area() 
--subroutine definition: 
on get_area() 

set the_area to the_width * the_height 
return the area 

end get_area 

What happens when we run the script? We get the following error: 

The variable the_width is not defined. 

But how can that be when we had both variables defined in the script? Yes, but as soon as 
we started executing the subroutine, the local variables we declared and assigned values 
to were no Ionger valid. 

So what are our options? First, let's Iook at global variables. 

Let's run the same script with a slight modification: instead of declaring the variables 
the_width and the_height as local variables, we will declare themasglobal variables. 

global the_width, the_height --Now it's needed, but is it nice? 

Now that the variables are global, their reach, or in programming terms, their scope, spans 
the run handler and any other subroutine you defined. 

Using local variables nevertheless 
To use local variables in subroutines, alt you have to do is pass them as parameters, like 
this: 

Scrlpt 17-17 

local the_width, the_height --not needed, but nice 
set the_width to 3 
set the_hight to 5 
set the_area to get_area(the_width, the_height) 
on get_area(the_width, the_height) 

set the_area to the_width * the_height 
return the_area 

end get_area 



DEFINING AND CALLING SUBROUTINES 

They don't have to match the identifiers used in the subroutine itself, but they may. The 
subroutine definition may as weil be 

Script 17-18 

on get_area(x, y) 
set z to x * y 
return z 

end get_area 

Don't yield to global temptation 
lt may be a wasted effort to try and explain that even though a couple of global variable 
declarations can spare you a Iot of effort in passing parameters to subroutines, they can 
cause headaches later on. Nevertheless, l'm going to try, so here we go: 

First, so you don't say no one ever told you: AppleScript global variables should not be 
used as a replacement to passing parameters in subroutines because you're too lazy to 
keep track of your parameters. 

Global variables should be reserved for only the truly global values in your script. For 
instance, the path to the main fotder in the automation solution you're creating, the vari
able whose value is the loaded script with many of the subroutines you use, and other 
such values that are used throughout the script-items whose usefulness covers many 
parts of the script, are used by many subroutines, and are global in nature. 

lf you overuse global variables, your scripts will become impossible to break apart later on, 
which will make reusing parts of them or different subroutines very difficult. Above alt 
others, you as a scripter should know something about the importance of reusing your 
coded effort. 

Scope of properties 
ln the eye of a subroutine definition, script properties are identical to global variables. You 
can declare a property once, and that value will be attached to that variable throughout 
the script, including subroutine definitions. 

Storing individual subroutines 
The identifier you use when you specify a subroutine automatically turns into a variable 
whose value is the content of the subroutine. 

As an example, we will use the split name subroutine we created earlier. 

After the subroutine is defined, we can ask the script for the dass of the variable 
split_name. 

559 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

560 

Script 17-19 

on split_name(the_name) 
set first_name to first word of the_name 
set last name to last word of the name - -
return {first_name:first_name, last_name:last_name} 

end split_name 
class of split_name 
--> handler 

OK, so the variable has a handler value, what can we do with that? Watch: 

set script_file_path to (path to scripts folder) & "script.scpt" as 
string 
store script split_name in file script_file_path 

What will the two preceding lines do? They will create a compiled script file containing the 
split_name script. Figure 17-6 shows the resulting script file opened in the Script Editor 
application. 

set {lrsLnom~ to ßrst word or rM..nom~ 
set /Qsr_no_ 10 last word or rM..nolllf! 
n!tum ((lrsr_nome:(irst_r!OIIH!, /Qsr_nont;/Qsr_nome) 

, Doscriptlon ! RHUI! ! Evont Log , 

C> 

Flgure 17-6. A 
subroutine that was 
stored as a script is 
open in the Script 
Editor application. 
Notice that the on 
wrapper is gone. 

Moving script parts to subroutines 
One way that subroutines are created in your script is when a portion of your script 
"evolves" into a subroutine. 

lt happens in the process of writing a script. You suddenly realize that the chunk of script 
you just created can be its own little thing. You may be able to use it somewhere else in 
the script, in other scripts, or maybe you just figured that it takes too much space in the 
body of the script and you want to move it out of the way. 



DEFINING AND CALLING SUBROUTINES 

What you need to do first is identify all the variables that this part of the script depends 
on. Some variables may be created inside the part you're trying to move, so you don't have 
to worry about them for the start. 

After you have some idea of which variables you will need to pass as parameters, you can 
move the entire part of the script to your subroutine area and wrap it in an on ... end sub
routine wrapper. 

This would also be a good time to create the subroutine call. lf the result of the portion of 
the script you're porting into a subroutine returned a value result as a Iist, a number, or a 
few values, you will want to define this result as either a single variable or a Iist containing 
the different variables you want to return to the main script. 

This Iist of variables can be used twice: once as the Iist you assign the result to when you 
call the subroutine, and once in the last line of the subroutine, which returns the value to 
the calling line. 

ln the following example, we will start with a script that part of gets the creation date and 
URL from a file's specifications. Then we will take the part of the script that gets the file 
properties and convert it into its own subroutine. 

First the script itself: 

Script 17-20 

--some statement ••. 
--some other statement .•• 
set theFilePath to choose file 
set theFilePath to theFilePath as string 
set file_properties to info for file theFilePath 
set file_creation_date to creation date of file_properties 
set file_modification_date to modification date of file_properties 
set file_age to file_modification_date - file_creation_date 
set days_old to round (file_age I days) 
--do something with days_old variable ••. 

By looking at the script I can identify that the part I want to convert info a subroutine uses 
a few parameters but really requires one variable to start, which is the variable theFilePath. 

The subroutinewill return the days_old variable to the script. 

lt's important to check if the other variables used in that part of the script (like file_age, 
file_modification, etc.) are used later on in the script. lf they are, you will need to have the 
subroutine return their values as weil. 

561 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

562 

Following is the new part of the script and the subroutine definition: 

Script 17-21 

--some statement ••. 
--some other statement .•. 
set theFilePath to choose file 
set theFilePath to theFilePath as string 
set days_old to get_file_age_in_days(theFilePath) 
--do something with days_old variable ... 
on get_file_age_in_days(theFilePath) 

set file_properties to info for file theFilePath 
set file_creation_date to creation date of file_properties 
set file_modification_date to modification date of file_properties 
set file_age to file_modification_date - file_creation_date 
set days_old to round (file_age I days) 
return days_old 

end get_file_age_in_days 

Creating your own programming language 
Although alt of us AppleScript users use AppleScript for programming, we alt use it slightly 
differently. These differences come to light when we see the applications we use and the 
type of tasks we automate. lt is safe to say that many scripters have a specialty beyend 
scripting, and that the AppleScript scripting language is a tool we use to perfect whatever 
else we do. 1 write scripts, but my true specialty is publishing workflows. A system admin
istrator may use AppleScript, but his true function is to administer Macs. 

After working with AppleScript for a while you will realize that you use the same types of 
functions that relate to your area of expertise. Your next step then is to create your own 
language that makes scriptingyour tasks easier. 

No, l'm not suggesting you learn C++, put on rags, and walk barefoot from city to city 
preaching the new code. All I want you to do is start doing a few little things to make you 
into a better scripter: 

Start collecting functions. Every collection starts small. My collection started with the sub
routines I downloaded from the AppleScript website. 

I collected them into a file, renamed them to fit my subroutine naming style, and saved 
them in a script file. I slowly added little subroutines to that file and started loading that 
file to every script I created. 

Soon enough I realized that a large chunk of the volume of my scripts was code I called 
from my subroutine library. By now I have over ten libraries, each with its own function, 
and most of the boring side of my coding is taken care of by dragging and dropping sub
routine calls. 



DEFINING AND CALLING SUBROUTINES 

For your naming convention, start with the !arge object such as the name of the applica
tion you're talking to and go from there. Give your subroutines long, clear names. 
Shorthand is great at the time of writing, but a month down the road the subroutines Iook 
like someone else wrote them, died, and never left the instructions. 

So you see? Once you have many of these subroutines collected in one or more files, also 
referred to as script libraries, your main scripts will mostly use commands you created ear
lier (your subroutines) instead of AppleScript or scriptable applications commands. 

Working smart with subroutines 
The following few paragraphs contain tips for creating and using subroutines. Subroutines 
can be a boon for efficient script writing, and with the right organization, you will be able 
to spend more time on the function of the script and less time on messing with syntax. 

Organizing scripts with subroutines 
One of the brilliant factors subroutines add to your scripts is organization. They allow you 
to tell the story of your script in your language, rather than in a programming language. 

You know those people who tell a story about something they did, but feel compelled to 
go into every last detail regarding each thing, until you lose the whole story? Weil, without 
subroutines, AppleScript can be like that too. As you read through a script and try to 
understand it, you don't want to be bothered with the 50 lines of script that made a cer
tain function of the script work. What you want is to quickly get a generat idea of the 
script's organization, what happens in what order, and the basic branching that make up 
the script. That's true: out of 100 if-then statements and repeat loops in a given script, only 
a few actually play a part in the structure of the script and should be included in the main 
body (or, the run handler, as you'll see later on). 

So how do we organize a script with subroutines? We think logically as we write the script. 
We also periodically read the script back, and pretend it's a story we're telling someone. lf 
it sounds a bit heavy on the details, we may want to corral the code that has that extra 
detail we don't want to have in the main body of the script, and we turn it into a handler. 
We'lllook at how to do that later on. 

Reusing code with subroutines 
Another big function of subroutines, if not the biggest one, is reusing code. The idea is 
that a subroutine is a closed nugget of code that, given the expected parameters, will per
form reliably and return the expected result. Not the same result every time, but a result 
within the expected range. 

Once you have such a subroutine, even if it has been written for a specific purpose, you 
may find that you can use it in other scripts. Another way to instantly know that a piece of 
a script will make a good subroutine is if you start copying chunks of script from one part 
of the script to another. lf the same code, or similarly structured code, exists in more than 
one part of the script, you may want to consider turning it into a subroutine. 

563 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

564 

Think ahead 
When creating subroutines, it is good to consider not only the script you're working on 
right now, but the wider scope of scripts you've created and are likely to create. Think 
about making your subroutines as generat as possible without using any data specific to 
the subject matter your script is processing, but rather to the process it is performing. 

Think small 
Make your subroutines as small as you can (while keeping them Ionger than their own 
call). Small subroutines are much easier to reuse and integrate in other scripts. 

What I personally use is a set of about 15 subroutine library files that have hundreds of 
subroutines that deal with different subjects. Some of the subroutines are long, but most 
have fewer than ten lines of script. This makes it so that most of my scripts are made up of 
subroutine calls instead of commands. I name my subroutines deliberately and descrip
tively so that I can easily identify what the script is doing at any given time. 

Applications aside 
Another thing I like to avoid is littering my scripts with application tell blocks. I know, I 
know, a 200-line script that talks to seven applications is much cooler to Iook at, but once 
you've passed the "Iook, ma" stage, you may want to consider chucking commands sent to 
applications into different subroutines, and storing them alt in the same library. I have a 
library of commands for each application, and every time I use a new command, object, or 
property in that application, I turn it into a subroutine and add it to the library. 

Script Debugger makes placing library and subroutine calls easy with its clipping palette. 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

What are subroutines? 
Subroutines, also called handlers, are code-capsules that can be used by the main script 
multiple times. A subroutine that is not called by the main body of the script, also called 
the run handler, will never be executed. 



DEFINING AND CALLING SUBROUTINES 

The basic subroutine 

The basic subroutine starts with the definition line and ends with the end line. The defini
tion line starts with either the on or to, followed by the subroutine identifier, which is a 
term you make up to name the subroutine, and finally ends with the Iist of subroutine 
parameters. 

on do_something(parameter_1, parameter_2) 

The last line of the subroutine starts with end followed by the subroutine identifier: 

end do_something 

The body of the subroutine includes any statements that appear between the definition 
and end lines. 

on do_something(parameter_1, parameter_2, etc) 
--do this 
--do that 
end do_something 

Subroutines can have multiple parameters or no parameters at all, in which case the sub
routine identifier is followed by empty parentheses. 

on do_something() 
--do this 
end do_something 

Subroutine result 
A subroutine returns the result of the last statement to execute in the subroutine. To make 
subroutines more legible, the final statement uses the return command to return the final 
value. Not every subroutine returns a value, however. 

on calculate_numbers (a, b) 
set the result to a + b 
return the result 

end do_something 

To return more than one result, collect the different results in a Iist, and return the Iist as 
the result. 

Calling subroutines 
ln order to be executed, the subroutine has to be called from the main script, or from 
another subroutine, like this: 

do_something(parameter_1_value, parameter_2_value, etc) 

565 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

566 

lf the subroutine is called from inside an application tell block, you have to specify that the 
subroutine is not an application command, but rather a script-defined command. This can 
be done in one of the following ways: 

tell me to do_something() 
my do_something() 
do_something() of me 

Positional parameter subroutines 

The subroutine type seen previously is the positional parameter subroutine type. Each 
parameter is identified by its position within the other parameters. ln this type of subrou
tine, the order of the parameters in the subroutine definition and the subroutine call must 
be identical. 

Labeted parameter subroutines 

Labeted parameter subroutines are a bit more complex to create and call. For more infor
mation regarding Iabeted parameter subroutines, read the corresponding section in this 
chapter. 

Subroutinesand variable scope 

Any variable that is defined in one subroutine is only valid in that particular subroutine 
and not outside of it. To use a value of a variable from the body of the script in a subrou
tine that is called from the body of the script, the value has to either be passed as a 
parameter or defined as a global variable or a property. 

Details previously ... 

The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here, refer to earlier sections in this chapter. 



1----~--. 

propeny ti!Q/n_(oldu _parh : " 

on show. mDin_foldu.parl() 
dlsplay dlalog mairt.(oldu_parll 

end show. moirt.(older_pacll 

on OPfrt.ltmp/alt() 
sei remplllte..pariJ 10 ~ 

molrt.(oldu_parll & 'Templares 
tell applicatlon ,nDfoslgn CS" 

open flle rtmplate..parlt 
end tell 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

570 

Script objects are probably the most underutilized complex feature in the AppleScript 
language. This chapter explains the idea behind script objects and how to use them, and 
discusses real-world techniques for putting script objects to use in your projects. 

What are script objects and what are they 
good for? 

So, you got through the basics and are now ready for the serious stuff. 

Understanding script objects after creating many scripts is like understanding the solar 
system after living on earth. You have to imagine that each one of the scripts you created 
so far is not an entire entity, but rather an object that can be moved around, reproduced, 
and made to accept your commands. Not only can the script accept commands, so can 
any of its children, as you will soon see. 

lnitially, it is a bit difficult to see what's so great about script objects; after all, many, if not 
most, things can be done without them. ln fact, there are scripters who will never start 
using script objects but still create some very useful scripts. So what's all the hoopla about 
script objects? Weil, for a start, using script objects in your AppleScript will turn you from 
a scripter to a programmer; you are forced to deal with more advanced programming 
concepts. 

Don't get me wrong now, starting out with script objects isn't that complicated and can 
become a useful tool very quickly. Like many other things in life, though, it takes some 
time and practice to really make the best use of them. 

So what are script objects good for? let's Iook at a few situations in which they are 
invaluable. 

Simple: Loading script objects 

This method of using script objects is not only easy to use, but highly recommended. All 
you do here is Ioad a script to another script with the Ioad script command. 

While this method doesn't make use of the more advanced abilities script objects have to 
offer, it has an instant organizational benefit: you can now take all those handlers you keep 
on copying and pasting between your scripts, and give them a final resting place in one or 
more script files. These files, also referred to as script libraries, can be loaded into your dif
ferent scripts. You can then call the subroutines in the loaded script and execute them 
without them actually taking place and crowding up your actual script. ln effect, you will 
be writing your own commands and using them as if this were your own version of 
AppleScript (ah-cool!). 



Serious stuft: Replicating scripts 
When you get a bit more comfortable manipulating script objects, you can start preload
ing them into variables and calling them from your main script at will. One way of doing 
this is by loading script objects into a Iist. This allows you to use your script objects to 
manipulate and control any number of objects that can be controlled by a script. For 
example, you can use a Iist of scripts to work with a multidocument application in 
AppleScript Studio. Each document needs its own script with its own properties, but 
there's no way to know how many documents the user will create, so you start with an 
empty Iist, and for each document the user starts you add an item to your script Iist. 

Declaring, initializing, and calling script 
objects 

Script objects can be a rather complex matter to grasp, so we will start from the beginning 
and move along slowly. We will also try to stick to more doing and less talking. 

We will start with script objects by creating the script code first. Start a new script file and 
type the following lines: 

set x te "Helle" 
display dialeg x 

Now run the script. The outcome is, as expected, a dialog box. 

Next, let's turn this code into a script object. Wrap the two lines with the script wrapper, 
like this: 

script 
set x te "Helle" 
display dialeg x 

end script 

Now run the script. Nothing happens, but Iook at the result of your script: it's a script! 

Try to add the following line to the end: 

display dialeg (class ef result) 

The dialog box displays "scpt". As you may imagine, this stands for script (with the "ri" in 
the middle suspiciously taken off ... ). 

SCRIPT OBJECTS 

571 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

572 

Now, replace the last line with the last line of the following script: 

Script 18-1 

script 
set x to "Hello" 
display dialog x 

end script 
run result 

Aha! We got the script to run, but it's a bit awkward. Do we really have to ambush the 
script until it's done "passing through" just to capture it? Not really. What we have done 
previously is simply instantiate the script object, but we didn't leave ourselves a comfort
able way to use that script. 

What we will do next is give the script a name. 

Naming the script object will create a neat situation: the script name will become a vari
able that has the script assigned to it. Now here is the punch line: the script is assigned to 
the variable while the script compiles! This is cool because you can start calling the script 
(by name) right from the beginning of the script-it has instantiated itself. Here's how we 
name a script (I use the name "simon"): 

script simon 
set x to "Hello" 
display dialog x 

end script 

Now, we don't have to wait for the script to run as if it were a statement. lnstead, we can 
give it commands from the beginning and push the actual code of the script to the end, as 
we do in the following script: 

Script 18-2 

Tell simon to run 
script simon 

set x to "Hello" 
display dialog x 

end script 

Proliferating your script object 

So far we met script sirnon. While script sirnon is very nice and has great intentions, it acts 
a bit too much like a simple subroutine. What is the difference between telling sirnon to 
run and calling any subroutine with the same code? Not much. 

What we will do next, however, takes a script object. We will now give sirnon a couple of 
siblings: jack and judy. 

The way we will do that is by copying sirnon to the variables judy and jack. 



To make matters more interesting, we will also declare a property inside the script sirnon, 
and instead of a run handler, we will place the display dialog statement in a subroutine 
called say sornething. To start, let's Iook at the new sirnon script: 

Script 18-3 

script sirnon 
property x : "Hello" 
on say_sornething() 

display dialog x 
end say_sornething 

end script 

Now sirnon is a real script: it has a property and a subroutine like any script should. Let's 
see what we can do with it. 

We will start by copying sirnon to jack and to judy. Then, we will set the x property of jack 
and judy to two different values. After that, we will tell both judy and jack to call the 
say _sornething subroutine and see what happens. 

Here we go with the complete script: 

Script 18-4 

copy sirnon to jack 
copy sirnon to judy 

set x of judy to "Hi, I'rn Judy" 
set x of jack to "Hello, I'rn Jack" 

tell jack to say_sornething() 
tell judy to say_sornething() 

script sirnon 
property x : "Hello" 
on say_sornething() 

display dialog x 
end say_sornething 

end script 

ln the first two lines we copy sirnon tojudyandjack. How can we do that right at the start? 
Remember that sirnon was a script before the main script even started to run; sirnon was a 
script since the main script was compiled! 

The following two lines set the x property of judy and jack. Remember, the script that was 
sirnon is now two separate scripts, each with its own x property that we can set to anything 
we want. And since judy and jack are objects, we can set their properties at will. 

Lines 5 and 6 of the script actually call the say _sornething subroutine of judy and jack. As you 
can see for yourself when you run the script, each of them has something different to say. 

SCRIPT OBJECTS 

573 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

574 

So was what we just did parent and child scripts? Nope. They were more sibling scripts. To 
create a parent and child relationship between scripts, you need to actually tell the script 
who its parent is. More on parent/child script relationships and inheritance later on. 

Using subroutines to create script object instances 

So far we counted on the script objects being there, but we didn't really have control over 
when and where they became available. lt was nice to have the script objects already in a 
variable upon recompiling the main script, but it can be a bit of a drag as weil. 

What we'll see now is how to tell the main script when to make the script objects available. 
We do that by placing the script objects in a subroutine. This way, only when we call that 
subroutine does the script become available. 

Also, the script doesn't need to have a name. lf we give the script a name by placing an 
identifier after the word "script" in the opening line, this name will have no meaning out
side the subroutine scope. lnstead, when we call the subroutine containing the script, we 
must assign the result the subroutine returns to the variable we want the script to be 
assigned to. 

ln the following script we will instantiate one out of two script objects contained in sub
routines. During each execution of the main script, only one of the two script objects is 
needed. The following method will allow us to only Ioad the needed subroutine and not 
take up space in memory. 

ln the following script, we Iet the user choose whether the template that needs to be cre
ated should be created in QuarkXPress or lnDesign. The correct script is then loaded into 
the new_template_script variable, and that script is then executed using the run command. 

Script 18-5 

1. set application_selection to choose from list {"InDesign", "Quark"} 
2. set application_selection to item 1 of application_selection 

3. if application_selection is "InDesign" then 
4. set new_template_script to load_indesign_script() 
s. else if application_selection is "Quark" then 
6. set new_template_script to load_quark_script() 
1. end if 
8. tell new_template_script to run 

9. on load_indesign_script() 
10. script 
11. tell application "InDesign CS" 
12. make new document 
13. tell document 1 
14. 
15. 
16. 
17. 

save to file ... 
((path to documents folder as string) & "Template") 

with stationery 
close 



18. end tell 
19. end tell 
20. end script 
21. end laad_indesign_script 

22. an laad_quark_script() 
23. script 
24. tell applicatian "QuarkXPress" 
25. make new dacument 
26. tell dacument 1 
27. save in file ((path ta dacuments falder as string) ~ 
28. & "Template1") with template 
29. clase 
30. end tell 
31. end tell 
32. end script 
33. end laad_quark_script 

Another benefit of the preceding arrangement is that if the applications aren't running 
befare the script starts, the script will only launch the needed application. This also means 
that the applications needed for the script won't be forced to launch when the script is 
opened for editing. 

Another way to da the same thing is to have bath script objects in the same subroutine, 
but only return one af them as the calling statement's result. For that, we have to name 
the scripts: 

Script 18-6 

1. run laad_script("x") 

2. an laad_script(script_name) 
3. script x 
4. display dialag "Hi, x here" 
5. end script 

6. script y 
1. display dialag "Hi, y's the name" 
8. end script 

9. script z 
10. display dialag "Haw can z help?" 
11. end script 

12. if script_name is "x" then 
13. return x 
14. else if script_name is "y" then 
15. return y 
16. else if script_name is "z" then 
17. return z 

SCRIPT OBJECTS 

575 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

576 

18. end if 
19. end load_script 

Let's take another Iook at this script since it is a bit complicated. 

ln the load_script subroutine we do two things: first we define three scripts (named x, y, 
and z) and then we use the user parameter to decide which script to return. 

ln the calting statement we don't waste any time. Since we know that the result of the 
load_script variable is a script object, we use the run command to run that script in the 
same statement in which it is loaded. 

Script objects and instances 
Whenever you work with script objects, it is important to understand that the script object 
isn't an actual script, but rather an instance of that script. 

This altows you to Ioad the same script multiple times to multiple variables and use it 
slightly differently by setting the properties of the different instances to different values, 
and calting different subroutines in the different instances. 

Remember the scripts judy and jack from earlier in this chapter? They were both instances 
of the same script, simon. After becoming an independent instance, each of them had 
their properties set to different values, although the properties themselves were the same. 

Script objects, properties, and variables 
The way script objects interact with variables and properties depends on how the script 
object got created. Script objects that were defined in the main script have access to alt of 
the script's properties and global variables. They can also ask other script objects to share 
their property values and calt their subroutines. 

Properties and global variables are less available to scripts that have been loaded from 
files using the Ioad script command. 

ln fact, loaded scripts don't have any access to properties of the script that loaded them 
nor to subroutines and properties of other script objects. 

The only direction in which property-related interaction can happen is from the top down: 
the main script can get value from or set a property, and calt a subroutine from the loaded 
script, but that is alt the interaction that is allowed. 



Loading script objects from files 
Perhaps one of the most used and useful forms of script objects is the form that doesn't 
make specific use of the "object-oriented" aspect of script objects. lnstead, the benefit of 
loading scripts from files allows you to organize your scripts and increase code reusability. 

Loading scripts from files is very simple: you need to have a path to a compiled script file, 
and you have to have a variable identifier to which you want the script assigned. 

Script loading basics 
To avoid confusion, let's walk through all the steps: 

Start by creating a new script. ln it, type the following lines of code: 

Script 18-7 

display dialog "You can run but you cannot hide" 
on do_something_else(the_thing) 
display dialog "''m now "& the _ thing 
end do_something_else 

What we have done is created a script with a run handler that consists of a single display 
dialag statement and an additional subroutine that takes one parameter and consists of 
one display dialag statement. 

Next, save your script on your desktop and name it "my script.scpt". 

Close the file you've just created. 

Now, start a new script file and type the following: 

set script_path to ((path to desktop as string) & "my script.scpt") 
set my_script_variable to load script file script_path 
tell my_script_variable to run 

What you should pay attention to here is the Ioad command and the run command. The 
Ioad command Ioads a script and assigns it as a script object to the my_script_variable 
variable. 

ln the following statement, the run command expects to find a script object assigned to 
the my_script_variable variable, and it executes this script object's run handler. 

Now remember that the script you saved has more to it than just a run handler. lt also has 
a subroutine you defined called do_something_else. To call this subroutine we can either 
call it in the script object's tell block: 

tell my_script_variable 
do_something_else("cooking lunch") 

end tell 

SCRIPT OBJECTS 

577 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

578 

or in this form: 

my_script_variable's do_something_else("cooking lunch"} 

Either way, the result is that your main script has loaded a script file as a script object into 
a variable, and now you can call subroutines from that script object by using the variable 
it is assigned to. 

Forming script libraries 

The most common use people make of the Ioad script command is to organize subrou
tines in script libraries. What that means is having compiled scripts that don't contain a run 
handler at alt. lnstead, those script files contain collections of subroutines that you ·can use 
in any script. 

lf you don't yet have a script library you're using, then start one right now. Working with 
script libraries is easy and addictive, although it does require an ounce of discipline. lt 
forces you to evaluate every chunk of code you write. From now on, start writing scripts as 
small chunks that do one little thing after the other. lnstead of creating one long script 
that interacts with many applications and is made out of hundreds of script lines, break it 
up into units. 

Each nugget of code should have a small function and a name, such as finder_delete_jile 
or word_create_document. The smaller the subroutines you put in your library, the more 
they will fit into your scripts, and the more modular your scripts will be. 

Where should you save your library? 

Another important aspect of a library is where you save it. 

Of course, if you're writing scripts for yourself, the location of your library doesn't make 
too much difference. But sooner or later you will need to make your scripts available to 
other people or on other Macs. At that point, you must ensure that your script can always 
find the subroutine library, and that you don't go crazy with installation. 

The best solution is to find a fotder that you can later access using the path to command, 
preferably somewhere in the current user's library folder. Both Application Support and 
ScriptingAdditions folders are suitable. Placing your library in one of these folders 
allows your scripts to find them no matter which OS X computer they run on. For exam
ple, let's say that you named your script "command_library.scpt" and put it in the 
Applications Support fotder in the user's home folder. To Ioad that library, start your 
script with the following two lines: 

set library_path to ~ 
(path to application support from user domain as string) & ~ 

"command_library.scpt". 
set my_lib to load script file library_path 



Since every Mac OS X has an Applications Support fotder (and if it doesn't exist the com
mand itself will create it), you are safe. 

After that, alt you have to do is type my_lib's before the command name to properly call it. 

You still have to make sure that the computer the script is running on has your library in 
that folder. For computers running Panther, you can take advantage of script application 
packages. just save your script as a package, place your library file in the resources fotder 
in that package, and use the path to me command to access that resources folder. For a 
complete description, see Chapter 20, which explains how to instaU scripting additions. 

Script objects and variables 
Global variables and properties are good only in the script in which they are defined. lf you 
created a script that has a main_template property, and then loaded a script object into 
that script, the loaded script will not have access to the loading script's main_template 
property, or any other property, for that matter. 

The only connection these two scripts have to each other is from the loading script to the 
loaded script. That means that the loading script can set and get properties in the loaded 
script, but the loaded script has no way to speak to the script that loaded it. 

That means that if there's a property in the loaded script that has to be set based on a vari
able value in the loading script, only the loading script can make that assignment, not the 
loaded script. Here's an example: 

let's say that you have a script application you run, which we will call "main script." This 
main script application has to process different files and use different templates and fold
ers. All folders are located in a fotder structure that the application is part of. To make life 
easier, you have a property in the script called mainJolder_path, and you start the script 
by figuring out the main fotder path and assigning it to the mainJolder_path property. 

To make things a little clearer, Figure 18-1 shows the system's fotder structure. 

Mast~r Templat~.lndd 

Flgure 18-1. The multiscript systemfotder structure 

SCRIPT OBJECTS 

579 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

580 

Figure 18-2 shows the two scripts used by the system: the main application script called 
Main Script and the loaded script called Library.scpt. 

-Flgure outlhe milli folder path 
sei my_poth 10 path 10 me 
1ell appltai!On "Finder" 

Mam Scr1p1 

sei maltL(OidU_PQth to contalner of (contalner of my_par/tl as strlng 
end tell 

··Ioad ltbrary scrlpt 
set librory_path to ma IL(oldu_path & "SaiptS:" & 1.Jbrary.scpt' 
set llb to Ioad scnp1 file Ubrory_PQtlr 

··asslgn a value 10 lhe loaded scrtpfs maln.Jolder _path propeny 
stt /Jlls ma/fL(oldu_parh to my moltL(oldu_parh 

lills show_maln_(oldu. parl() 

propt'rty ma1tL(older_parh : 

on show.mo/fL(oldtr_PQI/() 

Ubrary.scpt 

dlsp~y d~log moitL(oliUr_path 
end show_ma11L(older_path 

IJ--------;===1 on opetLtemplatt() 
set templat~parh to ~ 

ma/IL(older_PQth & "Templ.ttes:· & "Mamr T@mpL.re.lndd" 
tell appllc.arlon ,nOeslgn CS" 

open flle templal~path 
end teJI 

end Df'efLitmplot~ 

Ruuk Ewnt Log 

0 

Flgure 18-2. The two scripts used by the system: the main application script called Main Script 
and the loaded script called Library.scpt 

The main script starts by figuring out the path for the main fotder path. This allows it to 
find the path to the script library and Ioad it to the variable lib. 

After an instance of the Library.scpt script is loaded to the lib property, the Main Script 
assigns the loaded script's mainJolder _path property. 

The final thing the Main Script does is call a subroutine from the loaded script, which illus
trates the fact the loaded script now has a value for the mainJolder_path property. 



lnheritance: When scripts start to have 
children 

So far we have discussed how to create instances of script objects and how to call subrou
tines and set properties in them. Now, it's time to take it one step further. 

Script object inheritance has ,more to do with inheriting traits than inheriting fortune. To 
better understand inheritance, imagine a book called Mac OS X Unleashed (so geeky, I get 
to pick any book, and here I go). You can read it because it has content. Now, imagine a 
second book: Mac OS X Unleashed II. However, when you open the second book to read, 
instead of contents, it says "Read the book Mac OS X Unleashed." 

Since you happen to have that book, you read it. 

ln the case of the books, the first book is the parent. The second book is the child, which 
has inherited everything from the first book. 

ln AppleScript, script objects can inherit attributes from other script objects in a similar 
way. You define a parent to a script with the special parent property. ln the example that 
follows we define the script wilma, and then we define the script pebbles with the wilma 
script acting as the parent: 

Script 18-8 

script wilma 
property hair_color : "red" 
property the_name : "Wilma" 
on say_your_name() 

display dialog "My name is " & the name 
end say_your_name 

end script 
script pebbles 

property parent wilma 
end script 

What we can do after defining the two script objects is call commands from the pebbles 
script as if it were the wilma script. Insert this line at the end of the script: 

tell pebbles to say_your_name() 

Now I know pebbles is pretty tiny, but there's no excuse for answering "My name is Wilma" 
when she was asked for her name. lf we figure out why she did that we may be able to fix 
it. Pebbles said that her name was Wilma because the script pebbles inherits not only the 
say_your_name subroutine, but also the the_name property and its value. 

One nice thing about script object inheritance is that you can choose which attributes 
(properties and subroutines) you want the child script object to inherit, and which ones 
you don't. ln this case, the say_your_name subroutine fulfills its purpose well, but the 
the_name property should be restated in the child script, which should do wonders for 
Pebbles's sense of self. 

SCRIPT OBJECTS 

581 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

582 

To do this we will add the same property with a different value in the pebbles script. We will 
also add the words "of me" after the variable (see line 5) to specify that the variable 
the_name in the handler refers to the version of the_name that is defined in the script that 
calls the say_your_name handler. As you will see in a moment, if this handler is called from 
the pebbles script, it will use the value of the_name that is defined in the pebbles script, 
even though the handler is located in the wilma script, because the handler is called from 
the pebbles script. ln other words, while the script is running. "me" means Pebbles, not 
Wilma, because pebbles is the current script. Using "of me" or "my" correctly when writing 
child scripts that inherit from parent scripts is critical to making them work correctly. 

Script 18-9 

script wilma 
praperty hair_calar : "red" 
praperty the_name : "Wilma" 
an say_yaur_name() 

display dialag "My name is " & the_name af me 
end say_yaur_name 

end script 
script pebbles 

praperty parent : wilma 
praperty the_name : "Pebbles" 

end script 
tell pebbles ta say_yaur_name() 

Now, Pebbles will answer correctly, because while the subroutine is inherited from her 
mom, her name is different. To see the subroutine work from the parent script as weil, try 
to change the last line of the previous script to 

tell wilma ta say_yaur_name() 

ln the preceding example, we saw that the pebbles script can redefine a property it inher
ited from the wilma script. 

The child script can also redefine a subroutine that exists in the parent script. When the 
subroutine is called from the child script, the new, redefined subroutine will be called, as 
expected. ln the following example, the say_your_name subroutine is defined in both par
ent and child scripts: 

Script 18-10 

1. script wilma 
2. praperty hair_calar : "red" 
3. praperty the_name : "Wilma" 
4. an say_yaur_name() 
s. display dialag "My name is " & the name af me 
6. end say_yaur_name 
1. end script 
8. script pebbles 
9. praperty parent : wilma 
10. praperty the_name : "Pebbles" 
11. an say_yaur_name() 



12. display dialog "Yabadabado!" 
13. end say_your_name 
14. end script 
15. tell pebbles to say_your_name() 

Oh, come on now, Pebbles, that's not your name! At this point, Wilma can't take it any 
longer. She needs to help Pebbles say what she wants to. To help that happen, we can use 
the continue command in pebbles's version of the say_your_name handler. The continue 
command teils the parent script to execute its own version of the called subroutine. To do 
that, add the continue command followed by the subroutine call inside the subroutine 
definition in the child script. 

on say_your_name() 
display dialog "Yabadabado!" 
continue say_your_name() 

end say_your_name 

Now things seem to work OK. The dialog boxes we get are "Yabadabado" for Pebbles fol
lowed by "My name is Pebbles". 

Got no life: Using inheritance to create a shoot 'em up 
game 

One example we will talk about (but won't get into too much detail on) is the use of parent
child script objects and the inheritance of properties and handlers from the parent script 
to the child script. 

The example I mentioned is an alien shoot 'em up game that makes a use of script objects 
to control every aspect of the game. ln this script, among the many defined script objects, 
a few define the alien spaceships. One script object is the base ship; it defines the basic 
shape and behavior of the alien ships. ln order to create variety, three other child scripts 
were created. Each one has a parent property, which defines the mother ship as its parent. 
The child scripts redefine some of the parent's subroutines and properties to create vari
ety. For instance, the score property is different from one alien script to the other to make 
sure you get a different score for shooting different aliens. 

Following is a small portion of the script that deals with the inheritance: 

Script 18-11 (excerpt) 

1. script masterAlien 
2. property currentSpot : 1 
3. property pointValue : o --assigned by individual children aliens 
4. 
s. on advanceAlien(columns) 
6. if alive then 
7. 
8. end if 
9. end advanceAlien 

SCRIPT OBJECTS 

583 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

10. on explode(alienPositioninlist) 
11. -- Explode alien ••• 
12. end explode 
13. 
14. on firstRow() 
15. set r1 to II • 

16. return r1 
17. end firstRow 

18. on secondRow() 
19. set r2 to II 

20. return r2 
21. end secondRow 
22. end script 

23. script greenAlien 
24. property parent : masterAlien 
25. property pointValue : 100 
26. on firstRow() 
27. if my cloaked then 
28. set r1 to continue firstRow() 
29. else 
30. set r1 to 110 011 

31. end if 
32. return r1 
33. end firstRow 
34. on secondRow() 
35. if my cloaked then 
36. set r2 to continue secondRow() 
37. else 
38. set r2 to 1100011 

39. end if 
40. return r2 
41. end secondRow 
42. end script 

43. script RedAlien 
44. property parent : masterAlien 
45. property pointValue : 200 
46. on firstRow() 
47. if my cloaked then 
48. set r1 to continue firstRow() 
49. else 
so. set r1 to II W II 
51. end if 
52. return r1 
53. end firstRow 
54. on secondRow() 
ss. if my cloaked then 

584 



56. set r2 to continue secondRow() 
57. else 
58. set r2 to "W W" 
59. end if 
60. return r2 
61. end secondRow 
62. end script 

The complete Script 18-11, the alien game script, can be found at the Downloads page on 
the Apress website (www. apress. com/book/ download. html). To play, change the TextEdit 
preferences to create text documents by default. 

Notice that the script named masterAlien has a point value of 0, but each one of the 
redAlien and greenAlien scripts define their own pointValue properties. Each of the two 
also defines the masterAlien script as its parent. 

Another example of inheritance can be seen in line 27. The redAlien script decides 
whether to use its own version of the secondRowO subroutine or whether to continue the 
parent's version of that same subroutine. 

Run script command 
The run script command is very neat. lt allows you to run plain text as if it were a string. 
Try this: 

run script "beep 3" 

You can also run text files as scripts. 

Following is a little script that allows users to type in their own script into a plain 
AppleScript dialog box. After users enter their script, AppleScript tries to execute it using 
the run script command. 

The script starts by collecting the user's entered text from a dialog box to a variable. After 
that, AppleScript tries to run the script and collect the script's result into another variable 
called script_result. 

The end is a dialog box that has the script text and the result. 

Script 18-12 

display dialog "Script:" default answer return & .., 
return & return & return & return & return 

set the_script to text returned of result 
try 

set script_result to run script the_script 
display dialog "Your script:" & return & ... 
the_script & return & "had this result:" & return & script_result 

on error script_error number error_number 

SCRIPT OBJECTS 

585 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

586 

if error_number is not -2753 then 
display dialag "Your script didn't run because:" & return & 

script_error 
end if 

end try 

Run script with parameters 

lf the script you're running with the run script command has parameters, you can supply 
those parameters with values. 

The following script runs a small script and uses the (are you sitting down?) with parameters 
parameter to send a value to the script's parameter. 

run script "on run (x) 
display dialag x 
end " with parameters {"Hi"} 

Fotder stock example 
ln the this section, we will explore a script that uses script objects to track independent 
movement of stocks. The movement is, as can be expected, random, so if AAPL gets lower 
than MSFT, just restart the script ... 

Before getting into the specifics of the script, let's take a moment to understand its struc
ture. 

The core of the script is a Iist (stock_script_list) in which each item is a script object rep
resenting one stock. 

The script object has a few properties and two subroutines: start_stock and update_stock. 
When the start_stock subroutine is called, the stock is initialized. For that reason we will 
call this subroutine only once at the start. The second subroutine, update_stock, changes 
the value of the stock and refreshes its view in the Finder window. 

The part of the script that deals with the script objects is made out of three distinct parts. 
First the Iist of script objects is created (lines 16 through 19). This is rather simple: the 
script loops once for each item in the symbol Iist, and each repetition an instance of the 
script stock is tacked onto the scripts Iist. 

The instances of the script object are created using the stock_instance subroutine. Since 
this subroutine returns an instance of the script object, I can add that object directly to the 
Iist (line 18). 

After I have gathered a Iist of instances of the same script object, I can start working with 
them. To start, I will call the start_stock subroutine in each instance. 



The start_stock subroutine holds the key to the future success of the stock. lt assigns ran
dom values to the variables that will determine if the stock's generat direction will be up 
or down. One of the parameters of that initialization subroutine holds the name of the 
stock. 

To call the start_stock subroutine in each instance, the script loops through the script 
object instances Iist (lines 21 through 26). 

Notice that in line 26 we address item I of stock_script_list. That's right: since every item 
of this Iist is an instance of a script object, I can tell it to execute a command defined in 
the script object definition. 

The third and final part of the script (lines 28 through 35) has two nested repeat loops. 
The outer one is an endless loop with no way out. That's right: if you don't stop the script, 
the stocks will go up and down forever. 

The inner loop is very similar to the last repeat loop. lt loops in the Iist of script object 
instances and calls the update_stock subroutine for each script object instance in the Iist. 

Script 18-13 

1. set folder_name to "stocks" 
2. set the_folder to (path to desktop as string) & folder_name & ":" 
3. tell application "Finder" 
4. if not (exists folder the_folder) then 
s. make new folder at desktop with properties {name:folder_name} 
6. end if 
]. 
8. 

set w to make new Finder window to folder "Stocks" of desktop 
tell w 

9. set toolbar visible to false 
10. set current view to icon view 
11. set bounds of it to {30, 10, 1000, 770} 
12. end tell 
13. end tell 

14. set symbollist to {"IBM", "AAPL", "MSFT", "AOL", "ARC", ., 
"AHT", "GLFD", "OXBC"} 

15. --Create stock scripts list 
16. set stock_script_list to {} 
11. repeat (count symbollist) times 
18. set end of stock_script_list to stock_instance() 
19. end repeat 

20. --activate each item in the list 
21. repeat with i from 1 to (count symbollist) 
22. set the_symbol to item i of symbollist 
23. tell item i of stock_script_list 
24. start_Stock for the_symbol out of the_folder beside i 
25. end tell 
26. end repeat 

SCRIPT OBJECTS 

587 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

588 

27. --advance each item in the list 
28. repeat 
29. repeat with i from 1 to (count symbollist) 
30. set the_symbol to item i of symbollist 
31. tell item i of stock_script_list 
32. update_stock for the_symbol out of the_folder beside i 
33. end tell 
34. end repeat 
35. end repeat 

36. on stock_instance() 
37. script stock 
38. property negative_change_max o 
39. property positive_change_max o 
40. property stock_value : o 
41. property start_y : 400 

42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
so. 

51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 

68. 
69. 
70. 
71. 

to start_Stock for the_symbol out of the_folder beside n 
set negative_change_max to random number from -15 to -10 
set positive_change_max to random number from 10 to 15 
set X to n * so 
set the_item to the_folder & the_symbol 
tell application "Finder" 

activate 
if not (exists folder the_item) then 

make new folder at folder the_folder ~ 
with properties {name:the_symbol} 

end if 
set position of folder the_item to {X, start_y} 

end tell 
end start Stock 

to update_stock for the_symbol out of the_folder beside n 
set reverse_trend to random number from 1 to 5 
if reverse trend = 1 then 

set temp to negative_change_max 
set negative_change_max to positive_change_max 
set positive_change_max to temp 

end if · 
set the_item to the_folder & the_symbol 
set X to n * 80 
tell application "Finder" 

update the_folder 
set the_change to random number ~ 

from negative_change_max to positive_change_max 
set stock_value to stock_value + the_change 
set Y to (-stock_value) + start_y 
set position of folder the_item to {X, V} 
if stock value < o then 



72. set label index of folder the_item to 2 
73. else 
74. set label index of folder the_item to 6 
75. end if 
76. end tell 
11. end update_stock 
78. end script 
79. return stock 
80. end stock_instance 

Alien invasion arcade game 
The alien invasion game is an arcade game I created using AppleScript script objects. Every 
aspect of this game is a script object: the scoreboard, the spaceship, the aliens, etc. 

The main use of script objects is the aliens themselves. They start as one mother-alien 
script object that produces children script objects with their own Iook and score. As the 
game moves on, more aliens are created. Each time an alien is created, an instance of one 
of the three alien "flavors" is added to a Iist. As the game moves on, every alien is 
advanced a bit. When each alien reaches the right side of the window, it is destroyed. This 
destruction is easy and very important. What we do is simply delete the item from the end 
of the Iist and off the alien goes to alien heaven. This helps us keep our memory use in 
check. 

I urge you to download the script and check it out. The script file is called "Script 18-11 
Alien Game", and you can find it among the hundreds of other scripts available for down
load with this book from the Downloads page on the Apress website 
(www. a press . com/book/ download. html). 

Case study: AutoGraph 
AutoGraph is an automated publishing system I created for clients in the financial field. 
Besides making some neat use of XML, SVG, and lnDesign Tagged Text, this system is made 
expandable by means of script objects. 

The system uses script objects in two ways-one is for the basic purpose of organizing 
functions away from the main scripts. ln fact, there are 11 such libraries, each one con
taining functions for a specific purpose. These script files (which I call engines) can be 
loaded independently to other scripts and provide functionality in the form of subrou
tines, each covering a slightly different area. One engine covers lnDesign commands, one 
Illustrator commands, one interacts with SQL, one creates SVG contents, etc. 

SCRIPT OBJECTS 

589 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

590 

The second form in which script objects are used in the system is for processing the actual 
graph-bearing pages. Each script file has the code to create a unique type of graph: one 
creates a pie chart, one a bar graph, etc. The challenge in creating this system was that I 
knew that even after the system started being put to use I would have to add more of 
these graph scripts, for about 40 more types of graphs, but I didn't want to have to change 
the main script or have to update it every time with a call to a new script. 

The solution was to make all the scripts share the same main subroutine. Each one of 
those graph-processing scripts has a subroutine called process with the exact same param
eters. The main script starts out by loading instances of all of the scripts into a Iist of script 
objects. lt also creates a sister Iist that contains a code name for each graph type in the 
same order in which they are stored in the script object Iist. 

As the main processor runs, it is fed data for each one of the graphs. From that data it 
figures out the graph's code name, and uses it to get the offset in the script object Iist of 
the script object that can produce that graph type. Now, the main script has the data for 
the graph and it knows where in the script object Iist it can find the script that can process 
that graph. All that happens next is that the main script calls the process subroutine for 
the correct script object and waits for it to finish running (see the schematic drawing in 
Figure 18-3). 

Main Script 

Script Name List I Mai n Script Process: I 
I "Bar Graph" I Start by creating the two 

lists on the left (script 
I "Pie Chart" l names list and script 

I 

:'I\ 
objects list) 

"Table A" 
Loop through data items Graph Data 

I "Table B" (Excel sheets, etc.) Graph Type: "Pie Chart" 
Data ... 

I "etc ... " I From the data, get the 
graph's type name (in this 
case, "Pie chart") 

Script Object List 
Find the offset of the script 

lsar Graph Scriptl name in the script names list 
(2nd i tem) 

!Pie Chart Scripth 

" 
Use that offset to target the 

lrable A Script I right script in the script 
object list 

lrable B Script I Once the correct script has 

IEtc ... I 
been identified, its 'process' 
subroutine is called 

Flgure 18-3. Schematic chart of the AutoGraphsystem 



The advantage of this setup is that as long as I create the new graph-processing scripts 
using the same method, one main process subroutine with the same parameters, I can add 
them to the system without having to make any changes to the main script. 

ln addition, all of the graph-processing scripts Ioad in these same "engine" library scripts 
for their own functionality. 

Power wrap-up 
This section summarizes the chapter in an intensive-reference style. Use this part to Iook 
up facts related to the chapter without the chatter. 

What are script objects? 

Script objects are special objects that contain a script. This script can then run independ
ently from the main script and keep its own properties and subroutines. 

Script objects can be scripts you Ioad from another file, or script objects you declare inside 
the main script. A script object that exists in the same script document as your main script 
has to be wrapped in a script block, like this: 

script sirnon 
property identifier : initial value 
on run 

--Statements 
end run 
on do_something() 

--Statements 
end do_something 

end script 

The preceding script has a run handler and a subroutine. lt doesn't have to have both. This 
script is also named (simon). You are only required to name scripts in this way if they are 
not initialized with a subroutine. 

ln the case of the preceding script object, the script object is instantiated when the script 
is compiled. 

Creating script instances with a subroutine 

You can place your script object in a subroutine. ln this case, the script object will not be 
instantiated when the main script is compiled. The script object will only become available 
when the subroutine in which it lives is called. Following is an example of a script object 
instantiated by a subroutine, and later called to run: 

SCRIPT OBJECTS 

591 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

592 

Script 18-14 

set rny_script_object to load_script() 
tell rny_script_object to run 

on load_script() 
script 

display dialog ''I' rn running!" 
end script 

end load_script 

Declaring script objects 

When named script objects appear in your compiled script, they become instantiated as 
soon as the script compiles. ln this case you do not need to instantiate the script and you 
can refer to it by name, as shown here: 

tell sirnon to run 
script sirnon 

display dialog ''I' rn running!" 
end script 

Replicating script 

Once you have a script object in a variable, you can make copies of it with the copy 
command: 

set script_l to load_script() 
copy scipt_l to script_2 

lf you use the set command instead of copy, you will end up with two variables referencing 
the same script object, instead of two separate copies. 

Script object and inheritance 

A script object can contain the property parent. The value of the parent property is usually 
another script. The script whose parent property is set immediately inherits alt the proper
ties and subroutines from the parent script (named as the value of the parent property). ln 
some rare instances, an application is the parent; for instance, when embedding 
AppleScript scripts into a FileMaker Pro script, you can omit the tell application "FileMaker 
Pro" block, since the implied application is FileMaker. 

The child script can redefine properties set in the parent script and also rewrite subrou
tines specified in the parent script. Such redefined subroutines can include the command 
continue followed by the name of the subroutine. This will cause the same subroutine to 
executf as it is defined in the parent. You can read much more about this earlier in the 
chapter. 



Loading scripts 

You can Ioad script into variables in other scripts by using the Ioad script command. The 
script you Ioad has to be saved as a compiled script. The loading script must assign the 
loaded script to a variable. This variable will then be used to give the script commands. 
Here's an example: 

set my_script to ~ 
load script file "Macintosh HD:Scripts:subroutine library.scpt" 

tell my_script to do_something() 

ln the preceding example, the subroutine do_somethingO is defined in the loaded script. 

Run script command 

The run script command takes a script in the form of a string and tries to run it as an 
AppleScript. See the following example: 

run script "on run (x) 
display dialog x 
end " with parameters {"Hello World"} 

ln this example the run script command runs a three-line script and passes it the string 
"Hello World" as a parameter. 

Details previously ... 

The last part of this chapter is a summary of the entire chapter. For more details on any of 
the items here. refer to earlier sections in the chapter. 

SCRIPT OBJECTS 

593 







APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

596 

Following the great success companies had automating tasks with AppleScript in pre-OS X 
times, Apple has taken the time to make AppleScript even better, faster, and easier to inte
grate into applications. As soon as the OS X diagrams started circulating in 1999, it became 
clear that the days when AppleScript was a mere extension, riding on top of the code, beg
ging for some CPU cycles were coming to an end. ln Mac OS X, we were in. 

The tight integration of AppleScript into OS X brought about some great stuff. For instance, 
applications created using Cocoa, Apple's new programming environment, are much easier 
to make into scriptable applications. Also, user interface element scripting (GUI scripting) 
became an integrated part of the OS, giving scripters access to almest alt Ul elements in any 
application. Other things didn't come as easily. For Finder recordability, we had to wait for 
several years until it finally emerged unannounced with OS X 1 0.3, also known as Panther. 
A bit earlier than that we saw the return of fotder actions, but they also only became reli
able with the Panther release. 

ln this chapter, we willlock at some of the AppleScript amenities included with OS X. Since 
the tatest version of the OS is 1 0.3, this is the tatest version that the first edition of this 
book covers. 

The script menu 
Yet another optional OS X user interface item is the script menu. OS X does not come with 
the menu installed because the stylish black and white icons at the top right of the menu 
bar were meant strictly for hardware controls such as monitor control, volume, AirPort, 
etc. The script menu, however, blends in quite nicely, and installing it yourself is very easy. 

_. c (Ch.ug~d) 

Open Scrlpts Folder 
Hlde Ubrary Scrlpts 

Tue 10 

Address Book Scrlpts 1> 
8aslcs 

ColorSync 

Finder Scrlpts 
Folder Actlons 

FontSync Scrlpts 

Info Scrlpts 

Internet Services 

Mall Scrlpts 

Navigation Scrlpts I> 

Prlntlng Scrlpts I> 

Scrlpt Editor Scrlpts I> 

Sherlock Scrlpts I> 

Ul Element Scrlpts I> 

URLs 1> 

01. logln to mall 

clun dlalog shot 

clun error shot 

clun screen shot 

MacSQL 

Mall Scrlpts 

Inside the AppleScript fotder that is in your 
Applications fotder you will find two small appli
cations: InstaU Script Menu and Remave Script 
Menu. 

After you double-dick the InstaU Script Menu 
application, the script menu will appear to the left 
of the icons on the right side of the menu bar. 
Figure 19-1 shows the open script menu. 

Flgure 19-1. 
The open 
script menu 



APPLESCRIPT AMENITIES IN MAC OS X 

Preinstalled script 

As you can tell from tooking at the menu shown in Figure 19-1 (or by gazing at your own 
script menu), you can see that it atready has quite a few scripts. There are actually two sets 
of scripts separated by a divider tine with scripts above the divider and scripts betow the 
divider. The scripts above the divider are those installed in the tocat domain's Scripts 
fotder at /Library/Scripts, and those betow the divide are those installed in the user 
domain's Scripts fotder at ~/Library/Scripts. The divider may not have anything betow 
it yet since the current user's Scripts fotder is empty (see the text that follows). 

The tocation of the scripts goes as follows: the preinstalled scripts are found in the 
Scripts fotder in the Library fotder from the startup disk. The user scripts shown in 
the menu are stored in the Scripts fotder in the user's Library folder. Actually, what you 
will be seeing, especially if you haven't ptayed around with the Scripts folders, is that 
there are no scripts in the script menu, onty folders. This is because the script menu points 
to the Scripts folder, and shows its contents with the folders and alt. where fotders 
become submenus and the scripts themselves the menu items. 

Other menu items 

The script menu contains two additional items on top of the scripts and script folders. The 
first item, Open Scripts Folder, simpty opens the system's Scripts fotder in the Finder. This 
allows you quick access to adding or removing scripts. 

The second item is toggted between Hide Library Scripts and Show Library Scripts. You use 
that in case you have your own scripts you use with the script menu and you don't want 
the scripts that came with your system to crowd the menu. 

Running and launehing scripts from the script menu 

To run a script from the script menu, simpty setect it from the menu. To launch a script 
using the Script Editor, setect a script from the menu while pressing the OPTION button. 

Getting the path of the current script 

just for the record, it is not currently possible to get the path to the running script, unless 
it is saved as an application. This subject comes up around the issue of alternative script 
running venues such as the script menu. 

Using the path to me statement in a compiled script running from the script menu will 
return the path to the System Events application. 

597 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

598 

Apple's sample scripts 
One of the things that makes working with AppleScript great is the AppleScript commu
nity. You would think that competition in this small field would cause an unattractive 
"every man for himself" atmosphere, but not here! ln the AppleScript community people 
are sometimes so eager to help you that they will share with you anywhere from chunks of 
code to entire scripts that will help you with your quest. 

Beside handouts here and there, the AppleScript website contains many sample scripts, 
mostly written with the deliberate teacherly style of Sal Saghoian, AppleScript's product 
manager. 

The first batch of scripts you have access to are the scripts in the Scripts fotder I just spoke 
of in the section "The script menu." Following you will find more resources for free scripts. 
While many of these scripts aren't exactly what you need, they make a great starting point, 
and you are encouraged to open them and copy portions to your own scripts. There are 
two main places on Apple's website to Iook for sample scripts; one is the applications page 
in the AppleScript web page: www.apple.com/applescript/apps/. From there, go to the 
application of interest and Iook for sample scripts. 

The following page also contains links to a great collection of utility subroutines: 
www.apple.com/applescript/guidebook/sbrt/. 

Fotder actions 
Fotder actions allow you to create hot folders on your Mac that respond to different 
events and trigger a script. You create a fotder action by attaching a script to a folder. Such 
a script may contain special event handlers that activate when the fotder opens, closes, 
moves, or when items are either added to or removed from the folder. 

Fotder actions are great for any hot-folder setup you need to create. lmagine any work
flow in which files need to be processed automatically, but a person has to trigger the 
automation by telling the script which file or files to process. While the same workflow 
could have been created using a script application saved as a droplet (with the on open 
command), fotder actions give you a wider variety of action-triggering events, and allow 
users to trigger scripts by dropping files into a folder, which may be more workflow-like 
than dragging and dropping files on an application droplet. 

Another difference between droplets and fotder actions is that dropping a file on a 
droplet triggers a script without moving the file anywhere. This may be good when the 
files are on the server, for instance, and the droplet is on the hard drive; using fotder 
actions will actually copy the files to the hard drive, a thing you may or may not want to 
have happen. 

ln pre-OS X, fotder actions worked reliably but with one problem: to trigger an action the 
fotder had to be open. lf you dropped a file into a closed folder, nothing happened, which 
for me was enough of a reason not to use fotder actions. ln OS X, on the other hand, 



APPLESCRIPT AMENITIES IN MAC OS X 

although it took a few version updates for fotder actions to return, and only become reli
able in OS X 10.3 (Panther), they do work on open and closed folders. 

Starting out with fotder actions 
ln order for fotder actions to work, a couple of conditions have to be met. First, you must 
have fotder actions activated on the Mac that the actions should run on. Second, you 
must attach a script with at least one fotder action event handler to a folder. 

Turning fotder actions on 
There are three ways to start up fotder actions. You can either run a script that will start 
them, use the Fotder Actions Setup utility, or use the contextual menu. 

To turn fotder actions on or oft using a script, Iook no further than the Scripts fotder in 
your user's Library folder. ln the fotder called Folder Actions, you will find, among oth
ers, two files named Enable Folder Actions. scpt and Disable Folder Actions. scpt. 
You can run these scripts from either a script editor or from the script menu. 

The scripts are very simple: 

tell application "System Events" to set folder actions enabled to true 

And to disable fotder actions: 

tell application "System Events" to set folder actions enabled to false 

The Fotder Actions Setup utility application also allows you to enable and disable fotder 
actions as shown in Figure 19-2. 

Folder Actions Setup 

I!!! Enable folder Actlons 

On Fol~B wlth Aa!ons On S<rlpt 

+ 0 ( Ed1tSo1pt } 

Flgure 19-2. The Fotder Actions Setup utility window. As you can 
see, this utitity allows you to do much more than just enabte fotder actions. 

599 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

600 

To turn folder actions on with the contextual menu, CoNTROL-click anywhere on the desk
top and choose Enable Folder Actions from the pop-up menu. Unless you have some other 
utility installed, the folder action menu items should be at the end. 

Can't find the fo/der action items in your contextua/ menu? Fotder action 
contextual menus are only starting to be available with the release of Panther. 

You can also show the Folder Action Setup utility by choosing Configure Folder Actions 
from the Finder's contextual menu. 

Your first folder action 
After you enable folder actions, you may want to get started by creating a folder action 
script, attaching it to a folder, and testing it. 

Let's start by creating a simple script that will change the Iabel of the items you drop in the 
folder. We will use the Folder Actions Setup utility to administer the operation. 

Step 1: Create your script 
Start a new script with Script Editor. Your first lines will be the event handler that is trig
gered when a file is added. 

Type into the script window the script lines shown in Figure 19-3. 

• 19-03 

-------'C--'-ompil• 

on addlng foldu 1~m• to rhls_(oldu ~lter receMng dro~d_ltlllts 
nt l~_dropped_(ik_path to ltem 1 of dropped_tr~ms 
set 1/w...ll>beUndex to random number from 1 to 6 
tell appiKatlon "Finder'" 

oet l.tbel lndex of tM...dro~_(tk_path to rM...II>bd..lndex 
end tell 

end ~dd1ng folder ltems to 

Flgure 19-3. The event handler that gets activated when files are 
dropped into the folder 

Let's try to analyze the script shown in Figure 19-3. 



APPLESCRIPT AMENITIES IN MAC OS X 

The script's one handler is the adding fotder items handler. This handler will be called auto
matically when any file or fotder is added to the fotder that this script is attached to as a 
fotder action-that is, after we turn the script into a fotder action and attach it to a folder. 

Step 2: Create your hot fotder 

]ust how hot is the hot folder? The term "hot foldern refers to folders that aren't 
passive. Unlike with other folders, when you interact with hot folders, something 
happens. The term is used in workflow-related processes where files are treated 
in different ways based on the folder they are dropped in. 

Create a fotder on the desktop and call it My Hot Felder. This will be the fotder that will 
be the target of the fotder action events. 

Step 3: Save your script 
ln order for your script to become fotder action material, you need to save (or move) it to 
the Felder Action Scripts folder. This fotder is in the Scripts fotder that is in your 
Library folder. 

Step 4: Activate fotder actions 
lf it's not already running, start up the Fotder Actions Setup utility. lt should be in the 
AppleScript fotder in your Applications folder. 

Once the utility is started, check the Enabte Fotder Actions check box, also shown in 
Figure 19-2. 

Step 5: Attach the folder action to your folder 
There are a few of ways to add a fotder item to a folder. You can use a script or the 
Finder's contextual menu. Here, we will use the Fotder Action Setup utility. 

To attach the fotder action script you created, you start by adding the fotder to the fotder 
Iist, and then you attach the script to it. 

ln the Fotder Action Setup utility application, dick the + button under the fotder Iist on 
the left. 

This will bring up the Choose Fotder dialog box. Choose the hotfotder you created on the 
desktop and dick OK. 

The fotder will appear in the fotder Iist. 

Next, dick the fotder in the fotder Iist, and then dick the + button under the scripts Iist on 
the right. 

This will present you with a Iist of scripts currently in the Felder Actions Scripts folder. 
Choose your script and dick OK. 

601 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

602 

A couple of notes 
Notice that you can check and uncheck folders in order to activate or deactivate them. 
Also, each hot fotder may have more than one script attached to it, and the scripts can be 
activated and deactivated individually with the check boxes. 

You can only see your scripts in the Iist when a fotder is selected in the fotder Iist. 

Where are fotder action scripts stored? 

Fotderaction scripts are stored in the Folder Action Scripts fotder in the Scripts fotder 
of either your user library or the Library fotder in the local library fotder (in the startup 
disk). Out of the box, the Folder Actions Scripts fotder already exists in the local 
domain, and it contains several samples of fotder action scripts you can open and play 
with or attach to folders. 

Using the contextuat menus with fotder actions 

After some struggle, the fotder action feature finally made it to the Finder's contextual 
menu in OS X 1 0.3. By default, the bottom of the menu has the options disable (or enable) 
folder actions and configure folder actions. 

When you CoNTROL-click a folder, however, you get more options, and yet even more 
options (as shown in Figure 19-4) if the fotder has a fotder action script attached to it. 

Color Label: 
I( 

Movt to Trash 

Dupllcatt 
Make Alias 
Crute Archive of "Hot folder· 

Copy "Hot foldtr" 

Dlsable Folder Actlons 
Conftgure Folder Actlons ... 
Artach a Folder Action ... 

Edlt a Folder Action ~ 

Stufflt ~ 

Flgure 19-4. The contextuat menu after CoNTROL-clicking a fotder with a 
fotder action attached to it 



APPLESCRIPT AMENITIES IN MAC OS X 

Using scripts to manage fotder actions 

You may be in a situation where you need to be able to set up multiple Macs with some 
fotder action functionality. lf you want to use scripts to automate the process of creating 
fotder actions, you should open up and check out the scripts that come with the Mac in 
the /Library/Scripts/Folder Actions folder. ln it you will find scripts for enabling and 
disabling fotder actions as well as attaching to and removing fotder actions from folders. 
All scripts, of course, are open, and you're encouraged to copy parts of them into your 
own scripts. 

One of the features used in the fotder action-related scripts is the path to command: 

path to folder actions scripts 
--> alias "Macintosh HD:Users:hanaan:Library:Scripts:Folder Action ~ 

Scripts:" 

Fotder actions events 
While the obvious thing to do with fotder actions is to perform some action when items 
are added to the folder, fotder actions provide you with four other events that can trigger 
handlers in your scripts. The five events in total are: 

1. Adding items to a folder. With this event you get access to the path to the fotder 
itself along with references to the items that were added as a Iist. 

2. Removing items from a folder. 

3. Opening a folder. 

4. Closing a folder. 

5. Moving a folder. 

Scripting the user interface 
When applications have good AppleScript support, a working object model, and a solid 
dictionary, scripting the graphic user interface (or GUI as I will refer to it here) is simply not 
needed. GUI scripting is used to plug holes in the scriptability of your system, including 
applications, utilities, and any other thing you'd want to automate. 

Although GUI scripting is a bit of a newcomer to the AppleScript scene, it works really well 
and in a way is very satisfying, mainly because it allows you to automate almost any feature 
that can be invoked from the user interface. lt can also be a bit frustrating, since the script 
sometimes works faster than the user interface and therefore trips over itself. This situa
tion, however, is easily remedied with a small delay in the script. 

Despite any issues it may have, GUI scripting is a very welcome addition, and in many cases 
the only option you have to bridge the scriptability gaps in the applications you use in your 
process. 

603 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

604 

GUI scripting also Iets you get and set attributes of a Ul element that are not defined in the 
System Events dictionary, and it also Iets you perform actions that aren't defined in that 
dictionary, using technical terms defined by Apple and by third-party applications to sup
port Apple's Accessibility technology-for example, get value of attribute "AXPosition" of 
window 7 or perform action "AXRaise" of window 7. The Finder responds to several new 
technical terms of this nature, and GUI scripting can use this technique to get at them. You 
can use tools like Apple's Ul Element lnspector and PreFab Ul Browser to learn what these 
technical terms are. 

Enabling Ul scripting 

By default, running scripts that make use of Ul commands won't work. To enable Ul script
ing on any Mac, this Mac has to be running Mac OS X 10.3 Panther and has to have a little
known check box checked in a System Preferences panel. 

To enable GUI scripting, launch System Preferences, and in the Universal Access panel, 
check the Enable access for assistive devices check box at the bottom of the window. You 
can leave it turned on all the time without ill effect. 

GUI scripting dictionary 

The GUI scripting commands and objects are defined in the System Events dictionary, 
under the Processes suite. 

The Processes suite defines five commands and many elements. 

The five commands are click, perform, key code, keystroke, and select. 

The Iist of elements is a bit longer. lt contains 45 elements, all of them being subdasses of 
the element named Ul element. Even a window is a Ul element. On top of that, each Ul 
element has many elements and properties of its own. The values of many of the proper
ties can be set using AppleScript's set command. 

Although there's some logic that can apply to the hierarchy of the elements, such as a 
window element can contain a button element, but a button cannot contain a window, 
and a menu bar contains menus that contain menu items, the dictionary doesn't hint at 
any of that. ln the eyes of the System Events dictionary, all elements are equal under the 
Ul element super dass, of course. 

All this means that figuring out which element in the Ul of a given application contains 
which other elements is very difficult. Unless, of course, you have the right tool. 

Only after you discover the cryptic nature of Ul elements can you understand that with
out a tool such as Prefab's Ul Browser (created by Bill Cheeseman and available at 
www.prefab.com/uibrowser/), you wouldn't get very far. A less powerful but free utility 
called Ul Element lnspector is available from Apple. 



APPLESCRIPT AMENITIES IN MAC OS X 

Some object structure 

Even though the dictionary isn't any help when it comes to the Ul object model, we can try 
and shed some light on the situation. 

ln GUI scripting there are two main types of objects that contain all others: windows and 
the menu bar. Windows, then, can contain all elements that belong in a window such as 
text fields, buttons, and pop-up buttons. Menu bars can contain menus, and menus con
tain menu items, etc. 

lt is also important to note that any object (such as a table) that appears to have a scroll 
bar, really doesn't. ln reality, the scroll bar is part of a scroll view in which the object 
resides. 

What can you do with GUI scripting? 

Having only five commands makes it seem as if your options are limited; however, what 
you can do in this case has more to do with which object you perform the command on 
than with the command itself. On top of that, every Ul element has many properties that 
can be set with AppleScript's set command. This by itself will account for a Iot of what you 
can do with GUI scripting. 

Before we see how to dig out the object you want from a pile of Ul elements, let's Iook at 
four out of the five commands. 

dick 
The dick command makes the Ul element behave as if you clicked it with the mouse. This 
applies to buttons, text fields, menu items, etc. 

lf you were going to the desert and could take just a single Ul command with you, dick 
would be it. Most Ul tasks you will perform will boil down to clicking some Ul element. lt 
is finding that element that will pose the challenge. 

perform 
The perform command is a bit different than dick, but can sometimes have the same 
effect. 

The perform command will perform the action associated with a particular Ul element. 
You us~ perform instead of dick when the Ul element whose action you want to execute is 
not one you can dick, such as a text field. Clicking a text field will place the insertion point 
in it but will not perform any action that is built into it. Another example is that a window 
element may perform the raise action, which brings it to the front of other windows in the 
application. 

605 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

606 

keystroke 
The keystroke command allows you to simulate the action of a user typing on the key
board. All you have to do is follow the keystroke command with a string yoti want System 
Events to type on your keyboard. 

This command comes handy in two situations: one is when you want to type text, and the 
other is for when you want to execute a keyboard shortcut with the CoMMAND key (or 
other). 

There are two ways to use modifier keys with your keystrokes. You can use the using argu
ment to use the modifier key just for the next keystroke, like this: 

keystroke "n" using command down 

Be sure to use a lowercase Ietter when sending a keystroke as a CoMMAND-key 
equivalent. Otherwise, GUt scripting will think you are also holding down the 
SHIFT key and it won't work as expected. 

Or, you can toggle modifier keys up or down with the key down and key up commands. lf 
you use the key uplkey down option, you will have to add a line of code before and after 
the keystroke command, like this: 

key down command 
keystroke "n" 
key up command 

This method works OK, until the script stops for any reason after the key down but before 
the key up command. lf that happens, your keyboard's modifier key will be "stuck," like 
caps lock. To undo that, you will have to find a way to run a script that will unpress the 
modifier key. This may be difficult since you can't actually type anything with, say, the 
CoMMAND key stuck in the down position. 

Having the following script under the script menu can prove useful: 

Script 19-1 

tell application "System Events" 
key up command 
key up shift 
key up control 
key up option 

end tell 

On the other hand, if you want a coworker to be caught off guard, go to his/her Mac and 
run this script: 

tell application "System Events" to key down command 

Then, to add insult to injury, pass by that coworker's desk and fix it for hirn/her. 



APPLESCRIPT AMENITIES IN MAC OS X 

key code 
The key code command is a bit like keystroke, but instead of typing based on a character, 
it uses the hardware-based integer key code of a particular key. 

This method has the advantage of allowing you access to keys that aren't characters, such 
as the DELETE key, the arrow keys, and the function keys on the top row of your keyboard. 

You can use the using modifier down as with the keystroke command. 

For what it's worth, though, key code 123 through 126 are the arrow keys and code 51 is 
delete. Utilities such as Prefab's Ul Browser can show you the key code of any key you 
press. 

The following script will start a new document in TextEdit, type the word "Apple", and 
then go back one character, and select the one before last by using the left arrow with the 
SHJFT key: 

Script 19-2 

tell application "TextEdit" 
activate 

end tell 
tell application "System Events" 

keystroke "n" using command down 
keystroke "Apple" 
key code 123 
key down shift 
key code 123 
key up shift 

end tell 

ln a few pages we will Iook at using the set command to set the value of Ul elements. 

Using Ul Browser to locate elements 

Werking with GUI scripting is working with Ul elements, and the only sane way to do that 
is by using Prefab's Ul Browser (www.prefab.com). 

The reason why you need a Ul browser is because when the Mac GUI was created, it wasn't 
created with your scripting it in mind. lt is a bit messy, and finding your way around means 
wasting a Iot of time. For instance, if you want to know what's in the first column of the first 
row of Apple's mail, you have to use the following syntax: 

value of text field 1 of row 1 of table 1 ~ 
of scroll area 1 of splitter group 1 of group 1 of window 1 

So if you don't yet own Ul Browser, go to www. prefab. com and down Ioad a demo. The ver
sion l'm using is 1.2, and it works with.Panther. 

607 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

608 

The Ul Browser interface 
Using Ul Browser is very simple. You start by picking the application whose interface you 
want to script from the Target pop-up menu. This pop-up menu shows all open applica
tions and also allows you to choose an application. 

Figure 19-5 shows Ul Browser with the Target menu exposed. 

Once you choose an application, the main browser view shows you the main set of Ul ele
ments. These usually are the menu bar and the main open windows. 

Ul Browsu 1.2 - None 

Dock 

Adobe l'tlotost>op es 
flnder 
IChot 
rTunl!5 

Microsoft Ward 

Flgure 19-5. Ul Browser with the Targetmenu exposed 

ln our first Ul exercise, we will create a search script for Preview. We will first Iook at a sim
ple script that enters a search string into the search field. Then, we will develop it further 
to catalog the search results it will pick right off of the interface. 

Using Ul Browser 
We will start by opening a text PDF file with Preview. Try looking through the developer 
documentation for one. 

Next, we choose Preview from the Target menu. lf you already have, you may want to 
refresh your screen. I also expanded the path to element disdosure triangle to show the 
path. 

Next, dick the window element in the first browser block, and continue dicking the 
objects listed in the subsequent browser sections. lf you check the very helpful Highlight 
check box, Ul Browser willliterally high light the interface element with a yellow rectangle. 

After we select the window, we dick drawer 1, then text field 1. This is the search text field. 
We need to use the keystroke command to type something into that field. 

To do that, we first need a tell block wrapper. 

ln Ul Browser, choose Tell Block Wrapper from the AppleScript menu. Then, copy and 
paste the result in a new script window in Script Editor. 



APPLESCRIPT AMENITIES IN MAC OS X 

You can set the U/ Browser pre(erences to automatica/ly copy the script andlor 
place it in Script Editor for you. 

Although the tell block we get from Ul Browser verifies that Ul scripting is turned on, I will 
narrow it down to the bare script. 

Targeting processes 
ln Ul scripting we don't tell applications what to do. lnstead, everything we do happens 
under the System Events application. We tell different processes of System Events what to 
do. Following is a typical tell block to start oft a Ul scripting script: 

Script 19-3 

tell application "Preview" to activate 
tell application "System Events" 

tell application process "Preview" 
-- place script statements here, 

end tell 
end tell 

Targeting the Ul element 
After you clicked the last text field element, choose from the AppleScript pop-up menu 
set value of selected element. This will give you the following script line: 

set value of text field 1 of drawer 1 of window "file name .pdf" to ... 
"<string>" 

We will copy this line into our script. but since we will work more with this window, let's 
separate it and give it its own tell block, like this: 

tell window 1 
set value of text field 1 of drawer 1 to "iPod" 

end tell 

Notice that I also switched the search string to a word I knew existed. 

Now, we need to dick the Search button. ln the Ul, the Search button is found inside the 
text field, and therefore will be shown in Ul Browser in the browser column to the right of 
the text field, as shown in Figure 19-6. 

609 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

610 

,.,." .. b)f 1 

" 

..rN~·~cratrudw.pd/1(' dt~r 1 

tormn 11.1nan· m '"''., 1 
...,.". ........ (2) 

W.t.uu "l.nwn• ()) 
(l'fnll;tfo1 I 
...,."....,....,. (4) 

111\.lOt. "IDOdmnt-rtldtr.Ddf"" C 

"'VW.C'tll ,.,.,_, 

-klkr 1'!11Vew· 
window~-~(8"oqoso'(l) 

d,....ll . ... ,.ld. 
bul!Dn ~HaiC1• 11) 

Rtf1nn.a u W•«'"4 Ehn.- \.J:~ 

Gct A<1icns of Sclu.~j OciN:l'll 
Gtl Aru1blnts ot St:ltee:~ Otmt.'ll 

C.et uu afW«tt4 Elcmut \.X" 
Wt t t \: ,J 

"' 
kt ._ .... , ~t\: .. tnJ Ue~r-c• '.:Mi 
~VUTHI~ u 

'*n11.. H' (•"'rt 1:• 
Sond 0. {.., Codo 

Flgure 19-6. Ul Browser's main browser with the Search button element selected 

Following is our script so far, after we pasted the new click line into it and worked out the 
window's teil block: 

Script 19-4 

tell application "Preview" to activate 
tell application "System Events" 

tell application process "Preview" 
tell window 1 

set value of text field 1 of drawer 1 to "iPod" 
click button "search" of text field 1 of drawer 1 

end tell 
end tell 

end tell 

This script is supposed to find the occurrence of the word "iPod" in the front Preview doc
ument. 

Getting fancy with table data 
As in many other applications, Preview makes a use of a table. The table we're interested 
in is the one containing the search results. 

After digging a bit with Ul Browser, we discover that the table object is 

table 1 of scroll area 1 of group 1 of drawer 1 



APPLESCRIPT AMENITIES IN MAC OS X 

and that it has rows. and every row has two text fields. 

lf we just want a Iist of pages the text appears in, we can use the following line: 

value of text field 1 of every row of table 1 ~ 
of scroll area 1 of group 1 of drawer 1 

You could also go row by row and validate the text as you go. 

The Services menu 
One of the nice features that OS X introduced is the Services menu. The Services menu is 
actually a submenu off of the Application menu. lt allows software vendors to make their util
ities available from within any application. You can see the Servicessubmenu in Figure 19-7. 

File Ed t 

About TextEdlt 

Preferences ... x. 

Hlde TextEdlt XH 
Hlde Others \:XH 
ShowAll 

Qult TextEdlt XQ 

Format Wlndow Help 

BBEdlt 
Finder 
Grab 
Import Image 
Mac:SQL 
Mall 
Makt New Stlcky Note 
Open URL 

• • ... 

• ... 
OXY 

-- ----

Search Wlth Google 0 XL Make New App~rlpt 
Send File To Bluetooth Oevlce... OXB Run as AppleSCrlpt 
Speech • ;..-----••!11!1!': 
Summarlze 
TextEd II 
Vlew in JavaBrowser 

Flgure 19-7. The Services menu with the Script Editoroptions shown 

Some great services are Mail's Send Selection service, Search with Google service, and one 
of my favorites, Script Editor's three available services. 

The services that get installed with Apple's Script Editor are Get Result of AppleScript, 
Make New AppleScript, and Run as AppleScript. 

These services mean that you can highlight any text from an application that supports 
services, and try to perform the action you chose. 

To try it, open TextEdit, type 12 * 7, highlight it, and choose Services-+ Script Editor-+ Get 
Result of AppleScript. This will replace the selected text with the result. 

611 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

612 

lf you choose Make New Script, the text you highlighted becomes a new Script Editor 
script. 

Digital hub actions 
Digital hub actions can be set in the CDs & DVDs pane of System Preferences. The idea is 
that you can specify a script (or other action) that will be executed when different kinds of 
CDs are inserted into the Mac. This feature can be invaluable to people in the imaging, 
video, and graphics fields that have to deal with CD or DVD media on a regular basis. For 
instance, a script can be set to open a picture CD and process all the pictures, etc. 

Example scripts can be found at www.apple.com/applescript/digitalhub/. 

Figure 19-8 shows the CDs & DVDs pane of System Preferences. 

Wh~n you ln~ert • plctur~ C <I Open !Photo 

When you ln5ert a video OV Open other appllcatlon .. . 

lgnore 

Flgure 19-8. The CDs & DVDs pane of System Preferences 



Piease make your selectlon: 

Bill 
Sara 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

616 

Scripting additions, also referred to as OSAX (or osax), their technical term, are special 
little programs that add functionality to AppleScript. Usually written in a programming 
language such as C++, scripting additions take a bit more programming experience than 
possessed by the average scripter. 

The acronym OSAX comes (rom the creator type and now. in Mac OS X. the file 
extension of o scripting addition, which is . osax. lt stonds (or Open Scripting 
Architecture eXtension. 

There are three main reasons to get scripting additions: they may make your scripts run 
faster, they may make your . development cycle shorter, and they may allow you to do 
things that vanilla AppleScript simply can't. 

While there are those mega-additions that are widely used, most scripting additions are 
created by people who simply need their functionality and know how to create them. 
Many scripting additions are available as free downloads. You can find most. if not all, of 
them on www.macscripter .net and www.osax.com. 

Scripting additions and the AppleScript 
language 

When scripting scriptable applications, any command that is defined in the application's 
dictionary can only be compiled correctly and executed from inside that application's tell 
block: 

open file "Macintosh HD :Jobs :1234.indd" 
tell application "InDesign CS" 

open file "Macintosh HD :Jobs:1234.indd" 
end tell 

ln the preceding script, since the first open statement is outside of the tell block, it will not 
run as intended. 

The commands and classes defined in scripting additions, on the other hand, become inte
grated into your AppleScript scripts in a more natural way. You can script for a long time 
and not know that certain commands you use are not a part of AppleScript, but rather 
defined in the Standard Additions dictionary. 

The fact that scripting additions Iack a tell block forces developers to use the same com
mand and dass name universe with other scripting addition developers, and with 
AppleScript itself. 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

Scripting additions and Mac OS X 
While scripting additions are supported by AppleScript shipped with Mac OS X, not many 
developers upgraded their additions. This phenomenon can be explained based on several 
factors. 

One of these factors is the introduction of UNIX shell scripting in Mac OS X in generat and 
shell scripting integration with AppleScript using the doshell script command. Much of the 
functionality that scripters used to rety on additions for is now availabte freety with differ
ent shell commands, which can be invoked right from AppteScript. Shell commands are 
fast, retativety easy to master, and are protific in the variety of commands they offer. 

Another contributing factor to the stow coming of new additions was that AppteScript was 
very stow und er OS 9, making scripting additions very important. Using a scripting addition 
command instead of writing a vanilla AppteScript handter that will do the same thing coutd 
speed up execution by seconds or even minutes. Nowadays, however, AppteScript (and the 
Mac it runs on) is so fast that speed is not really an issue. 

lnstalling scripting additions 
Scripting additions simpty need to reside in a ScriptingAdditions fotder in one of your 
Mac's three domains in order to work. More specifically, these fotders are as follows: 

• System domain, to which you don't have write access: 
/System/Library/ScriptingAdditions/. 

• Locat domain, which makes a scripting addition availabte to alt users: 
/Library/ScriptingAdditions/. 

• And finally, the user domain, which is where you can place scripting additions that 
will be avaitabte to you only: /User/Library/ScriptingAdditions. 

Note that the ScriptingAdditions fotder in the user domain may have tobe created by 
you. The name of the fotder has no space between the two words. 

The icon of scripting additions is an unmistakabte Lego cube, shown here: 

617 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

618 

Standard Additions 
Standard Additions are a collection of scripting additions that come preinstalled with 
AppleScript. They can be found in the system's domain ScriptingAdditions folder: 
/System/Library/ScriptingAdditions/StandardAdditions.osax/. 

The commands in Standard Additions vary. Their collective theme is to extend scriptability 
to areas that AppleScript doesn't touch and aren't covered by the Finder or System Events 
dictionaries. 

You can see the definitions of the commands and classes used in Standard Additions by 
selecting Open Dictionary from the File menu in Script Editor, and choosing Standard 
Additions from the Iist, as shown in Figure 20-1. 

( Browse ... ) 

Open Dlctlonary 

Cluslc Appllcotlon 

striptlng addltlon 

Oasslc Appllcodon 

Appllc>tlon 

Appllcotlon 

Appllcotlon 

( Cam:el ) 

Figure 20-1. 
Choose Standard 
Additions from the 
application Iist in 
the Open Dictionary 
dialog box. 

ln this section I willlist the Standard Additions along with a short description, but will not 
get into a detailed explanation. The reason is that the book is structured around usability, 
not around the programming language structure. Therefore, the full explanation of each 
command in every one of the Standard Additions can be found in the appropriate part of 
the book. 

Standard Addition commands are divided into nine suites based on functionality: user 
interaction, file commands, string commands, clipboard commands, file read/write, script
ing commands, miscellaneous commands, fotder actions, and Internet suite. 

Following is the description of the Standard Additions that come preinstalled with every 
Mac, organized by suite. 

User interaction 

Some of the scripting additions that are described next are also explained in detail in 
Chapter 12, which discusses user interaction. 



SCRIPTING ADDITIONSAND EXTENDIBILITY 

beep 
Sounds a beep or a number of beeps. 

beep 3 

choose application 
Displays the Choose Application dialog box shown in Figure 20-1. Returns either the name 
of the application or a path to it. 

set application_path to choose application as alias 
--> alias "Macintosh HD:Applications:Adobe InDesign CS:InDesign 
CS.app:" 

choose color 
Displays the Choose Color panel. After the user chooses a color, the command returns a 
Iist of three integers specifying the 16-bit color values in red, green, and blue. 

The following script will start with a default white color and return red: 

set color_specs to choose color default color {65535, 65535, 65535} 
--> {65535, o, 0} 

Figure 20-2 shows the Colors dialog box displayed during the execution of the choose 
color command. 

Flgure 2D-2. The Colors 
dialog box shown during 
the execution of the 
choose color command 

619 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

620 

choose file 
Displays the Open dialogbox and allows the user to choose a file. The script can restriet the 
user to choosing files that are of specific file types. The result is either an alias or a string. 
Figure 20-3 shows the Choose a File dialog box displayed by the following script line: 

set the alias to choose file without invisibles 
-->alias "Macintosh HD:test.xml" 

7/1/04 

~/1.//UJ 

l/25104 
9{27103 

O'eu 9/27103 .. O:rlx ICA Cllo I 6/10103 
OVDMII.yer 9/27103 

I> tJ FlleNa<« DM!:Io3« 6 B/~103 

1> iJ llleNa<<t l'n> 7 4/27104 
"on1 Book 12;11/03 .. for Mac OS~ 12 j l4{0;1 

0 GaaQf&nd ~/2U04 

• GraphicCon .. r:e• 9/17/0l 

Flgure 20-3. The Choose a File dialog box 

choose file name 
Displays the Save dialog box. This command allows you to choose a location and specify a 
file name. lt works for choosing a file that you want your script to create. Figure 20-4 
shows the Choose File Name dialog box displayed by the following script line: 

set the_alias to choose file name with prompt "Save ••• " 
-->file "Macintosh HD:Users:hanaan:Desktop:job report.txt" 

Choose File Name 

~cify nl!w flle n.~me .u~d louUon 

Flgure 211-4. The Choose File Name dialog box 



SCRIPTING ADDITIONSAND EXTENDIBILITY 

choose folder 
Much like choose file, but will only allow the user to choose a folder. 

choose from list 
Displays a simple dialog box containing items from a Iist. The user can then choose no 
items or one or more items, based on different parameters. Following is a script line that 
shows the dialog box in Figure 20-5. 

set chosen_name to choose from !ist {"Al", "Bill", "Sara"} 
-->{"Al"} 

Piease make your selectlon: 

Flgure 2G-S. The choose from Iist dialog box 

choose URL 
The choose URL command allows the user to choose a URL from Apple's URL browser. Can 
be used with the mount volume command. 

delay 
Delays the script by the specified number of seconds. 

display dialog 
Who knew that the good old display dialag command isn't a part of AppleScript, but 
rather defined in the Standard Additions? 

dass dialog reply 
A record containing the result of the displaydialag command. May contain information 
about the buttons returned from a dialog box, the text user typed in, or whether the dia
log box gave up or not. 

say 
Speaks any text you provide using any one of Apple's built-in speech voices. 

Note that the voice names are case sensitive. 

621 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

622 

File commands 

Some of the file-related scripting additions shown here are described in detail in Chapter 13, 
which is dedicated to working with files. 

info for 
The info for command is very useful for getting information about files, folders, disks, and 
any other Finder item in your system. 

The command will return the file information dass record containing the file's name, type, 
creator, name extension, size, creation, modification dates, and more. 

list disks 
Returns a Iist of the currently mounted disks. 

list folder 
Lists the names of all items in a folder. The Iist may or may not contain invisible files. 

set my_item_list to list folder 

mount volume 
This command is loved by Mac administrators everywhere! lt allows you to mount a vol
ume with or without a user name and password. lf you don't provide login information, 
you will be prompted to enter it every time. 

mount volume -. 
"afp://user_name:pass_word@server_name/volume_name/" 

path to 
The path to command is useful for getting the path to one of many special folders on your 
Mac. 

Not only can you get the path to that specific folder, but when possible, the command will 
also create one if it doesn't exist. 

When you use the path to command, you need to also specify the folder's domain, for 
instance, when you want the path to the Fants folder, you have to decide if it's the Fants 
folder in your Users folder, in the system, or in the local drive's Library folder. Here's how 
it works: 

path ta fonts folder from user domain 
--> alias "Macintosh HD:Users:hanaan:Library:Fonts:" 
path to fonts folder from local domain 
--> alias "Macintosh HD:Library:Fonts:" 
path ta fonts folder from system domain 
--> alias "Macintosh HD:System:Library:Fonts:" 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

Following are the other paths to command parameter values: 

application support 
applications folder 
desktop 
desktop pictures 
folder 
documents folder 
favorites folder 
folder action 
scripts 
fonts 
frontmost 
application 
help 
home folder 
internet plugins 
keychain folder 
library folder 

Class file information 

modem scripts 
movies folder 
music folder 
pictures folder 
preferences 
printer descriptions 
public folder 
scripting additions 
scripts folder 
shared documents 
shared libraries 
sites folder 
startup disk 
startup items 
system folder 
system preferences 
temporary items 

trash 
users folder 
utilities folder 
voices 
apple menu 
control panels 
control strip 
modules 
extensions 
launeher items 
folder 
printer drivers 
printmonitor 
shutdown folder 
speakable items 
stationery 

This dass includes the specifications of the file information record you get when you use 
the path to command. 

Example: 

info for alias "Macintosh HD:Users:hanaan:Desktop:results.doc" 
--> {name:"results-all-l.doc", creation date:date "Tuesday, March 9, ., 
2004 2:06:41 PM", modification date:date "Tuesday, March 9, 2004 ., 
2:06:41 PM", icon position: 
{o, o}, size:2.71134E+S, folder:false, alias:false, ., 
name extension: "doc", 
extension hidden:false, visible:true, package folder:false, ., 
file type: "W8BN", 
file creator:"MSWD", displayed name:"results-all-1.doc", ., 
default application: 
alias "Macintosh HD:Applications:Microsoft Office X:Microsoft Word", ., 
kind: 
"Microsoft Word document", locked:false, busy status:false, short ., 
version:"", 
long version: '"'} 

String commands 
Some of the file-related scripting additions shown here are described in detail in Chapter 3, 
which is dedicated to working with text. 

623 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

624 

ASCII character 
Returns the character associated with the ASCII code you provided. Example: 

ascii character 38 
--> "&" 

ascii number 
The opposite of ascii character, the ascii number command takes a single character as an 
argument and returns the ASCII number associated with that character. 

The following line of script will return the ASCII number of the tab character. 

ascii number tab 
--> 9 

offset 
The offset command takes two strings as parameters. lt returns the position of the second 
string in the first string. 

offset of "far" in "how far is it" 
--> 5 

The string "far" starts at the fifth character of the string "how far is it". 

summarize 
Returns a summary of a long string, using a specified number of sentences. Can also 
summarize a text file. 

summarize file "MacHD:My Life Story.txt" in 1 

Clipboard commands 

Some of the file-related scripting additions shown here are described in Chapter 14 in 
detail. which is dedicated to working with the clipboard. 

set the clipboard 
Sets the content of the clipboard to anything a variable can hold. Here are a couple of 
examples: 

set the clipboard to "Some text" 
set the clipboard to (read file "Macintosh HD:Picture l.pdf") 

the clipboard 
Returns the contents of the clipboard. 



SCRIPTING ADDITIONSAND EXTENDIBILITY 

clipboard info 
Returns information about the clipboard. The result can be quite cryptic at times. 

The following example shows that the clipboard contains a styled string of six characters: 

clipboard info 
--> {{scrap styles, 22}, {string, 6}} 

File read/write 

Some of the file-related scripting additions shown here are described in detail in Chapter 13, 
which is dedicated to working with files. 

open for access 
Opens a file for access to reading it or for writing to it. This command returns an integer 
that is a reference to the file. That integer can then be used with the five other file com
mands. 

You can open for access files that do not exist yet, which will in turn create the file for you. 

open for access file "Macintosh HD:test.xml" 
--> 1568 

The integer result is a sequential number generated by the system. lt does not refer to the 
file after the script is through executing. 

lf you want to write to a file, use this command: 

open for access file "Macintosh HD:my text.txt" 

close access 
After you opened a file for access, you should close it back up. 

close access file "Macintosh HD:my text.txt" 

Or, if you have the associated integer returned by the open for access command, you could 
also use it as a parameter. 

read 

set file_reference to open for access file "Macintosh HD:test.xml" 
set the text to read file reference - -
close access file reference 

As seen previously, the read command reads the content of any file to a variable. 

625 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

626 

write 
Writes any data to a file. ln order to use this command, you must open the file for access 
with write permission. The following script writes the contents of the clipboard to a file: 

Set the_path to "Macintosh HD:clipboard" 
set file_reference to open for access ~ 

file the_path with write permission 
write (the clipboard) to file_reference 
close access file_reference 

get eof 
EOF is the acronym for end of file. The get eof command returns the number of bytes in 
the specified file. 

get eof file "Macintosh HD:test.xml" 
--> 524 

set eof 
Sets the end of file of a file. This command can wipe out the contents of a file by setting 
the EOF to zero: 

set eof file "Macintosh HD:test.xml" to o 

Scripting commands 

Some of the file-related scripting additions shown here are described in detail in Chapter 18, 
which is dedicated to working with script objects. 

Ioad script 
Loads a compiled script from a script file to memory. 

store script 
Stores a script in a file as compiled script. 

run script 
Executes a string as an AppleScript. 

run script "5+5" 
--> 10 

scripting components 
Returns the scripting components installed on your Mac. 

scripting components 
--> {"JavaScript", "AppleScript Debugger", "AppleScript"} 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

Miscellaneous commands 

Some of the file-related scripting additions shown here are described in detail other chapters. 

current date 
Returns the current date and time in AppleScript's date format. This command likes to be 
wrapped in parentheses when used in a statement. 

Set now to (current date) 
--> date "Wednesday, March 10, 2004 7:25:27 AM" 

set volume 
Sets your Mac's volume to a value from 0 to 7. 

set volume o 

system attribute 
Used by experienced programmers to call what is known as the Gestalt command. The 
command takes a selector code that is usually a four-character code and an optional inte
ger, and returns the corresponding piece of information regarding the system's hardware 
and software. 

For example, to get the version of Mac OS X that is running on your computer, use this 
script statement: 

system attribute "sysv" 

The resulting value will be the ten-based number 4147. That number translates into the 
hexadecimal number 00001033, which indicates that the current system version is 10.3.3. 

There are many resources that Iist the different descriptors and the results they return. 

time to GMT 
Returns the number of hours the current location is from Greenwich mean time. The 
result is in seconds, of course. 

time to GMT 
-->-18000 
(time to GMT) I hours 
-->-5.0 

random number 
Returns a random number. You can specify a range, or get the default result, which is a 
random number between 1 and 0. 

random number 
--> 0.918785996622 
random number from 1 to 100 
--> 39 

627 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

628 

round 
Rounds a given real value. 

round 5.2 rounding up 
--> 6 
round 5.2 rounding as taught in school 
--> 5 

do shell script 
Performs a UNIX shell script. One of the new commands with the most explosive use, the 
doshell script command gives you unparalleled access to commands available in the UNIX 
operating system under the Mac OS X hood. 

For instance, the shell script command wc returns the number of lines, words, and bytes 
(characters) in a text file. Here's how we can use this functionality from AppleScript: 

do shell script II wc /some_file.txtll 
--> II 66 158 1448 I some_file. txtll 

lt is your responsibility to parse the test, however. 

copy (words 1 thru 3 of result) to {line_count, word_count, 
character_count} 
--> { 11 66 11

, 
11 158 11

, 
11 1448 11

} 

Ah. this is better ... 

Still think that do shell script is just for geeks? Weil, you may be right, but now you may 
also want to become one ... 

dass: POSIX file 
This command works upon compiling when you give it a Iiterat path to a file. lt converts a 
UNIX path into an AppleScript file reference forthat same file. 

Fotder actions 
The fotder action commands are a part of the Standard Additions, but they are not really 
commands-they are event handters used with AppteScript's fotder actions feature. 

To tearn more, see Chapter 19. 

opening fotder 
The event that is executed when the fotder is opened. 

closing folder window for 
The event that is executed when the fotder is closed. 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

moving fotder window for 
The event that is executed when the fotder window is moved. 

adding fotder items to 
The event that is executed when an item or items are added to the folder. 

removing fotder items from 
The event that is executed when an item or items are removed from the folder. 

Internetsuite 
The Internet suite of commands is a collection of lnternet-related commands. 

open location 
Opens a URL with the default web browser. 

open location "http://www.apple.com" 

handle CGI request 
This command allows you to use AppleScript to create CGis that can run with Mac OS X 
web server. 

lnternet-related classes 
There are four lnternet-related classes that allow you to break down various Internet 
address types into components. 

The first is the URL dass. 

set my_url to "http://www.apple.com" as URL 
--> {class:URL, scheme:http URL, path:"http://www.apple.com", ~ 
host:{class:Internet address, DNS form:"www.apple.com", port:Bo}} 

The other three are the Internet address dass, Web poge dass, and FTP item dass. 

Third-party scripting additions 
Until now we looked at the scripting additions that are put out by Apple and are yours for 
free. ln this section we will Iook at some third-party scripting additions. Although there are 
many third-party scripting additions on the market, only a handful of them ever got 
upgraded to work with OS X. Nevertheless, the ones that did make the transition are worth 
looking over. 

629 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

630 

Where to find third-party scripting additions 

The one-stop place to shop (or more likely, browse) for scripting additions is 
MacScripter.net (www. macscripter. net, or www. osax. com). The folks at MacScripter.net 
are mostly volunteers who put a good bit of effort into a well-organized and fresh 
AppleScript website. Among other things, they boast the most complete and up-to-date 
searchable collection of scripting additions. 

Following are some of the scripting additions that made it to OS X and are worth looking at. 

ACME Script Widgets 

ACME Script Widgets by ACME Technologies (www.acmetech.com) has been araund for 
over ten years, and is one of the most successful commercial scripting additions out there. 

ACME Script Widgets is known for its sorting, string replacement, and Iist manipulation 
commands. 

Following is a brief description of some of the commands included with ACME Script 
Widgets. 

ACME replace 
ACME replace makes string replacement a snap. While it is not that difficult to create your 
own text-replacement handler using AppleScript, this command can do it for you faster and 
with some additional features. Here's a simple example of the ACME replace command: 

Acme replace "Boston" in "Go to Boston by train" with "New York" 
--> "Go to New York by train" 

Using different parameters you can choose whether to replace all occurrences and 
whether the search is case sensitive or not. 

change case 
lf you need to change the case of text in your scripts on a regular basis, this command just 
might be worth the price of admission. The change case command allows you to change 
the case of text in a string to uppercase, lowercase, title case, sentence case, or to toggle 
the current case of each Ietter. 

change case of "THAT DAMN CAPS-LOCK KEY DID IT AGAIN." to lower 
--> "that damn caps-lock key did it again." 

Satimage 

Satimage is a French company that is responsible for the development of SMILE, the free 
AppleScript script editor. Another thing Satimage developed and keeps on improving is a 
great set of commands bundled in the Satimage scripting additions. 



SCRIPTING ADDITIONSAND EXTENDIBILITY 

My favorite two commands in the Satimage collection are the find text and format com
mands. 

find text 
What separates find text in Satimage from anything you could easily do yourself is the use 
of regular expressions. Sure, we can create a handler that replaces one word with another, 
but regular expressions take text replacement to a whole other Ievel. 

You can read more about it in Chapter 28. 

format 
The format command can also save you a Iot of frustration in formatting numbers. You can 
use it to format numbers and return them as strings with the right number of decimal 
places, commas, parentheses, etc. 

format 1234.5678 into "#,###.00" 
"1,234.57" 

ScriptOB 
ScriptOB is a scripting addition written from scratch for OS X. lt is put out by Custom Flow 
Salutions (www.customflowsolutions.com), which is a company operated by yours truly. 

ScriptOB's main goal was to give scripters a set of built-in database commands and tools. 
The scripting addition doesn't use a database file to maintain the data, but rather keeps 
the whole database in memory. 

The purpose of such a database is to assist you in manipulating data in a table-like struc
ture during script execution. 

As scripters, we constantly make lists, some of them synchronized with each other to form 
sorts of tables, and then we loop through to get the data we need out of them. ScriptOB 
allows you to take these lists, or data from text files or FileMaker Pro XML files, and man
age them like a database. 

See Chapter 26 for more about ScriptOB. 

Missing additions and garbled scripts 
Anytime you're counting on a third-party addition, you should also count on the day that 
you (or someone else) will open the script on a Mac that doesn't have those scripting 
additions installed. 

ln that case, needless to say, the script will error out on the lines that rely on the scripting 
addition's commands. Your script will compile; however, instead of the scripting addition 
commands you will see the Apple Event four-letter codes. 

631 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

632 

lf it's important to you not to get an error in these cases, you can check to see if the script
ing addition is installed. You can do that by looking for it in the various scripting addition 
folders in the system. You can do that using the scripting additions folder object of the 
domain object defined in the System Events dictionary. 

Script 20-1 

on is_sa_installed(sa_name) 
set sa_installed to false 
tell application "System Events" 

set sa_folder_list to scripting additions folder of every domain 
repeat with the_sa_folder in sa_folder_list 

try-- the_sa_folder may be missing value ••. 
if exists (file sa_name of the_sa_folder) then 

set sa_installed to true 
exit repeat 

end if 
end try 

end repeat 
end tell 

end is_sa_installed 

Scripting additions and script portability 
just as we like to travellight, so do our scripts. They just don't like to have too many strings 
attached. lf you use scripting additions in your script, installing your script may not be as 
easy as copying it over anymore. Now, if the scripting addition is not available on the Mac 
your script is trying to run on, the script will return an error when it gets to the line where 
a command from that scripting addition is used. 

This situation became a bit more manageable in Panther with the introduction of script 
bundles. With script bundles, you can save your script as a bundle that can contain other 
files such as scripting additions. This way, you can start the script by installing a scripting 
addition that is embedded into the actual script package. 

Let's pretend that you need to create a script application that makes a use of the ScriptOB 
scripting addition. 

Start a new script and type 

display dialog "test" 

Now, save the script as an application bundle, as shown in Figure 20-6. 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

Flgure 20-6. Saving a script as a bundle 

After the script is saved, go to the Finderand locate it. CONTROL-click it and choose Show 
Package Contents, as shown in Figure 20-7. 

Flgure 2G-7. Choose Show Package Contents from the contextual menu. 

Figure 20-8 shows the contents of the package. 

,. RA!sources 
applet.lcns 
applet.rsrc 
descripUon.rtfd 
lnfoPtlst.strings 

• IJ' Scr prs 

My Script Apphcatton 

Flgure 20-8. The contents of tlte package 

& Oa.e Modlfled 

Today, 4:36PM 
Today, 4:36PM 
Today, 4:36PM 
Today, 4:36 PM 
Today, 4:36 PM 
Today, 4:36 PM 
Today, 4:36PM 
Today, 4:36 PM 
Today, 4:36 PM 
Today, 4:36 PM 
Today, 4:36 PM 

The file main. scpt in the Scripts fotder is your compiled script. 

633 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

634 

Back to scripting additions. You can actually copy the scripting addition (given your license 
allows you to) to the Resources fotder of your application bundle, and it will be distrib
uted with your script application. 

What you need now is a script that will check if the scripting addition is already installed, 
and if not, instaU it. 

First, test the path to me command. Open the script application in Script Editor and 
change the script to 

set my_path to path to me as string 
display dialog my_path 

Now save the application and double-dick it. 

The dialeg box should show you that the path to the application actually Iooks like a path 
to a folder. 

Other faceless scriptable utilities 
Another method of adding functionality to AppleScript is by using faceless scriptable 
applications. These applications are similar to scripting additions in their functionality. The 
main differences are that these applications can reside anywhere on your hard disk, and to 
use their commands, you have to refer to them using a proper tell block. 

ln this section we will explore three such faceless applications. All three are not only free, 
but come preinstalled with every Mac, so you don't run a risk that someone won't have 
them installed. 

URL Access scripting 
Although this little application has only two scriptable commands, it is a great one! lt 
allows you to use AppleScript to down Ioad files from the Internet. 

ColorSync scripting 

lf you use ColorSync on a regular basis to assign profiles to images or detect profiles, you 
may want to take a good Iook at this little utility. 

ln the Library/Scripts/ColorSync fotder you will find 18 scripts that make use of 
ColorSync scripting. I urge you to open them and figure out how they work (it is a bit 
beyend the scope of the book). 



SCRIPTING ADDITIONS AND EXTENDIBILITY 

Image Event scripting 

Image Event scripting is another scriptable utility that has only a handful of commands and 
classes, but can be invaluable when you don't want to use a full-blown application such as 
Photoshop or Image Converter to perform basic operations such as rotate, flip, and resize. 

One of the things Image Events is great for is not changing images, but rather getting 
information from images. You can open a file and then use the properties in the image 
dass to get that image's bit depth, resolution, size, color space, file type, and more. This 
can prove invaluable in publishing workflows. 

The following script changes the comment of a chosen file into a description of the image 
containing resolution, file type, bit depth, etc. 

Scrlpt 2G-2 

1. set image_file_path to (choose file) as string 
2. tell application "Image Events" 
3. try 
4. set my_image to open file image_file_path 
5. on error 
6. display dialog "The file you picked couldn't be analyzed" 
1. return 
8. end try 
9. tell my_image 
10. copy dimensions to {the_width, the_height} 
11. set file_type to file type 
12. set color_space to color space 
13. set bit_depth to bit depth 
14. set res to resolution 
15. end tell 
16. end tell 
17. set the_comment to "Image information:" & return & ., 
18. "File type: " & file_type & return & ., 
19. "Width: " & the _ width & ", height: " & the _ height & return & ., 
20. "Resolution: " & res & return & -. 
21. "Color space: " & color_space & return & -. 
22. "Bit depth: " & bit_depth as string 
23. tell application "Finder" 
24. set comment of file image_file_path to the_comment 
25. end tell 

The main things to notice in the preceding script is that the open command returns a doc
ument reference. After that, we can get information from that document by referring to 
its properties. 

635 





APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

638 

One point I have made again and again throughout the book is that the AppleScript 
language is pretty small on its own. lt has merely five commands and a handful of objects 
and properties. What gives life and substance to AppleScript is the scriptability of various 
applications and scripting additions. 

As you become an experienced scripter, you will learn specific statements that relate to 
specific applications that you need to script. Also you will learn the common structure 
applications share, which will help you tackle new scriptable applications. 

ln this chapter, we will Iook at how to attack a new application you want to start scripting. 
We will start with the structures of objects, elements. commands, and parameters, and 
move on to understanding dictionaries and using the whose clause. 

Scripting dictionary basics 
Every scriptable application has a scripting dictionary that exposes all of the application's 
commands and classes available for use with AppleScript. To view an application's diction
ary, go to the Script Editor application and choose File -+ Open Dictionary. Then, choose 
the application whose dictionary you want to open and dick Open. 

You can also drop the application's icon over the icon of the Script Editor application. 
These two methods also work with Script Debugger. 

The nicest way, however, to keep track of your scriptable applications and their dictionar
ies is by using the new library window in Script Editor 2.0 (or later). The library palette, 
shown in Figure 21-1, lists scriptable applications whose dictionaries you like to view often. 

Syst~m Events 
tnxtEdlt 

0 

Flgure 21-1. The 
Library window 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

You can add applications to the Library window with the + (plus) button and open an 
application's dictionary with the third button whose icon Iooks like books on a shelf. 

A similar feature has existed long before in Late Night Software's Script Debugger. 

ln any means shown previously, you can open scripting dictionaries of both applications 
and scripting additions. 

Figure 21-2 shows the dictionary for FileMaker Pro . 

.-eee Ii! AleMalter Pro 

~ i R«aulrod Sulto Subsei of the Core, Table, and Database suites: Subset of Ev1nts 
YURl SuiiA! 

' support1d by other Applü:ations yCommonds !i 
gotUflL 

1: CIM!! fikMakcnrriDt; A FileMaka Ript 
yClusos 

l'lunl form: r FlloM>ke.r scrlp Fli~Maker scrlpts 
•ppllurion Prop<nJos: 
cell ben type rype dan lr/01 •· Tho be<! ducrlptor rype ~ I daW.ue dass rype dass lrlol ·· Tho dass 
document ddaulttype rype c~u 11101 ·· Tho det.lult descrlptor rype 

fi 
fleld name lmernatlonal!el<l lrlol •· Tho II;IIM of lhe FT~Maker Scr1pt 
l•yout 10 rul IM>J ·· The unlque ID or tho FileMaker Sulpt 
reconl [.' 
rtpt:titlan Oass apolkallop· Tbe PAAijg!tjon 

h ~bio Plunl form: 

wlndow appllcallons 

yCommands l!ltlllfiiiS: r: ci.Hs Info 
document by numertc: lndu. by 1111110 
wlndow by numrrlr lndu , by """"' t· 

clos~ database by rwnr. by numerlc: lndu 

Ii copy . 
menu by 111111t. by nummc 1oc1a 

count l'ropl!t1loo: 
at.att but type typt dass IM>I •• Tho best descrlptor type 
Cut dass typt dass IM>I ·· Tho dass 
<W&slze default type rype dass 1®1 •• Tho default descr1p!or type I' 
deltte frontman boolean lrlol - ls lhls lhe fron1mos1 applicatlon7 

!:" 

do mtnu name Internationaltext lrlot - Tho name of lhe applicatlon 
do scrlpt verstun verslon lr/01 .. The verslon of the appllcatlon 
dupllwe 
ovent lnlo Oass er!! · A ficld n!uc in a rccord or ß!!IIIC5t F exlm Plural form: 

getd•u alls I' 
Optß f!kmeru.: ,, 

11!petltlon by oumalt loda ,...,. 
l'roptrtle:l : 

print bo5ttypo rype class lrlol .. T~ b~S( d~scrlptor lype ,,; 
qult dass rypt cla.ss 1</DI - The da.s 
rodo delault type typ@ dass lrlot - The ddault d"'crlptor IYP~ r:· 
s.ave: cholces Un lrlot - Tho valuo tist for !ho cell ":P se.1 dara 

:J 
formula nrlng lr/01 - T~ celrs cakulatton formula 

show lock unlocked/shared lock!exdusllle lock lrlol ·· T~ lock Status of tho ceU 
~ I Ort nome strlng lr/OJ - Tho celrs name -- ~~·"" 

Flgure 21-2. The dictionary for FileMaker Pro 

While a scripting dictionary is an invaluable source of information, you still need additional 
documentation in order to script a given application. This is because while the dictionary 
lists alt of the application's related commands and classes (object types), it doesn't explain 
the connection between them. For instance, while the iTunes dictionary will reveal the 
Make command and the Track dass, you still can't use AppleScript to create a track-for 
that you need a recording studio. 

639 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

640 

Nevertheless, whenever you get any new application, the first thing you do is drop it on 
the Script Editor (or Script Debugger) icon to see if it is scriptable. Figure 21-3 shows the 
disappointing dialog box you get when the application you just got is not scriptable. 

Open Dlctlonary 

Un.Jble !o rud the dlctlol\afy of the •pplic•tion or 
Oll!en•lan blauu it I< not scriptüle. 

Figure 21-3. 
The dialog box you 
get when you try to 
open the dictionary 
of a nonscriptable 
application 

The Script Editor dictionary viewer window dearly separates between dasses and com
mands. Classes are in effect the objects we work with. 

ln the following sections we explore commands and dasses and the way they appear in the 
application dictionary. 

Look, look again, and then look some more 
While companies that put out scriptable applications try to make the commands and 
property names as descriptive as possible, sometimes the names can be a bit misleading. 
The property or command, despite having a funny name, can be exactly what will fill in 
that gap in your script. Before searching the Web or posting messages on Apple's 
AppleScript Users Iist in search of an answer, explore the dictionary. Any property or com
mand that appears to not have any obvious purpose might be the one you need. 

Try to teach yourself a new property or command every week by reading the dictionary, 
looking up information from the Net, and reading the scripting reference forthat applica
tion. Doing this will help you keep moving forward. 

Things (objects) and things to do 
(commands) 

An application's scriptability is made out of two realms: objects and commands. 
Commands are generally things you tell the application to do, and objects are the things 
that will change in the application after you give certain corrimands. 

For instance, the open command is designed to open a document in the application. After 
it runs successfully, a new instance of the object of dass document is available. This object 
is an instance of the dass document, it has alt the document dass properties, and as you 
are aware, you can have multiple such objects. We'll Iook at objects, dasses, and proper
ties in the section ahead. 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

The object model 
A well-thought-out object model in an application is what separates applications with 
good AppleScript support and not-so-good AppleScript support. Even though most appli
cations have some sort of a built-in object model, it takes a good amount of effort on the 
behalf of the development team to translate this object model into an AppleScript object 
model. 

While different applications have different types of objects (the Finder has files and fold
ers, lnDesign has pages and text frames, etc.), most applications' object models follow the 
same structure. 

To understand this structure, imagine a large office building. The building is divided into 
floors, each floor into offices, and an office may have desks and people in it. Every object 
has a specific address that anyone in the building can use to find it. For instance, the 
receptionist's desk can be found in the third office of the front office row on the second 
floor. The office also has a name: "Reception". So you could say, "the reception office on 
the second floor." The diagram in Figure 21-4 can help you visualize it. 

Flgure 21-4. The office building described as an object model 

Notice that we used both the numerical position of the desk and its name to identify it. 
locating objects in order to script them is the first order of the day. 

641 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

642 

Scriptable applications use a similar method of addressing their objects: the Finder has 
disks that can contain files and folders. Folders can have files or more folders. ln lnDesign, 
we have a document that contains pages. The pages may contain, among other things, text 
frames that can contain words and characters. ln FileMaker we have a database that can 
have tables with fields and records. Addressing the objects in these applications is also 
similar to our building example: in the Finder we can refer to the file report. txt in the 
third fotder of the disk Server; in lnDesign we can refer to the fifth text frame on page 2 
of the document Annual Report. indd, and in FileMaker we can talk to cell Last Name of 
record 5 of table Contact of database 1. All are different types of objects, but the object 
model is pretty much the same. 

On top of addressing, each object in an application has three other sides to it. An object is 
made up using the DNA of a specific dass; an object can have properties that describe the 
object such as size, name, etc.; and an object can have elements. Elements are the objects 
that the object in question contains. 

ln scripting dictionaries, dasses (object definitions) are listed separately from commands, 
and they are also structured a bit differently. 

Every dass shows a little description followed by the Iist of other dasses that may be an 
element (see the "Elements" section later in this chapter). The Iist of elements is followed 
by a Iist of properties. 

Classes 
A dass is what defines how an object should behave. Every object is the product of a dass. 
ln nature, we are alt objects derived from the human dass. When we are born, we get 
human traits such as an upright posture and a disposition towards talking too much. When 
you create an object, say, a document in lnDesign, this document is an instance of the doc
ument dass and it takes alt its characteristics from that dass. 

Classes can also have subdasses. ln the Finder, for instance, there's a super dass calted 
"item". This item dass has subdasses such as files, folders, and disks. Each one of these sub
dasses inherits alt of the traits of the item dass, and then adds some on its own. For 
instance, a file dass has a file type property but the folder subdass doesn't. 

Properties 
Properties are the object's traits. lf your car was an object in the application of your life, its 
properties would indude the car's color, manufacturing year, make, model, plate number, 
etc. Unlike elements in an object, every object may have only one value for a given prop
erty, even though that one value can be a Iist or a record containing many values. Your car 
can't have more than one plate number or multiple model names (this is a Toyota Camry, 
and ... Celica). 

An lnDesign image object's properties may indude the rotation angle, resolutions, and 
bounds, while a file on the Finder may have properties such as the size, creation date, 
and icon position. 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

The more properties listed in dictionary under the different dasses, the better the script
ing support is. Every listed property stands for another feature you can script in this appli
cation. ln lnDesign CS, for example, the application dass and document dass have 
combined over 1 00 properties, while FileMaker lists about 13. Granted these are different 
applications, but when lnDesign was designed, there was a deliberate attempt to make it 
the most scriptable application it can be, which makes it a favorite among scripters. 

Foltowing is a Iist of properties of the playtist dass as specified in the iTunes dictionary: 

duration integer [r/o] -- the total length of all songs (in seconds) 
index integer [r/o] -- the index of the playlist in internal 

-- application order 
name Unicode text -- the name of the playlist 
shuffle boolean -- play the songs in this playlist in random order? 
size double integer [r/o] -- the total size of all songs (in bytes) 
song repeat off!one/all -- playback repeat mode 
time Unicode text [r/o] -- the length of all songs in MM:SS format 
visible boolean [r/o] -- is this playlist visible in the Source 

-- !ist? 

Notice that each property in the Iist represents a true attribute of an iTune playlist. 

Also notice that the name of each property is foltowed by the expected value type (shown 
in italics). That value type specification is helpful, but is not always a complete disdosure 
of alt data types or values expected. Sometimes figuring out the property value takes some 
investigation. The best way to figure out the value of a particular property is to investigate 
an existing object. Whether it's a fotder in the Finder, an image document in Photoshop, or 
a track in iTunes, open it, make it active, and ask to see its properties. The properlies prop
erty will return, in most cases, a record with alt of the properties of a given object. 
Examining the properlies property of an object can prove to be an endless source of edu
cation. You can compare the result with the dictionary to learn even more about the 
scriptability of a particular object. 

The best way to explore an object's properties (and elements, for that matter) is by using 
Late Night Software Script Debugger's Explorer window shown in Figure 21-5. The differ
ence between the Explorer window and the dictionary is that while the dictionary shows 
dasses, which are object prototypes, the Explorer window shows actual objects that cur
rently exist in the application along with their properties, property values, and elements. 

643 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

644 

... Y .... YS 

'9' aco.-ts 
.......... tl 
... .ooount2 
,. .ooount3 
... . ........ . 

cl4~s 

... Pl'fiP"ti#S 

... litl/wr'y-...t 

"'""""' .""ty lW* ".,. .. , "-
.""ty _".,...., "

.""tytr-fr...-y 

.""ty}<mk-onq<~/t 

.""ty_".,.....,.q<J/t 

port --hdM .."""" ~ttifl91th!IMII 

mow *"fWJ I'MS~s tb Vnh 
<d#SSSI 

... CHtt .............. . 

... smtp nrYH''S 

... t1M~ls ...... .,_ ... 
• Jd.ap HrY.rs 
... 111.11I11Mncu 
.. OLD m•ssa .. Hltt.,..s 

... IIIIU:t: ... Y~YH'S 

... ,., acc•nU: ... ..... 

... siga•t~~~ru 
hosttir>ID'}octMtyCfl 

porls ir> ID'} octMty "" 
ID'J•II_..tocflotlty 

... ID'}mHS09H 

Rntp str'VIf" "'smtp .. wt.OOK.ntt" 

"JoNnno" 

"Aoccult pui'W'Onk: otn onty bt J.tt , not ,.,ld."' 
pop 

Otltmotnts 

2 tltnwnts 

1 tltmtnt 

I tltmtni 

0 tiHntnlJ 

6:$ tllmtntJ 

0 tltmtntJ 
I tl!tmtnt 

2 tltmtfltJ 

~tlf.mtnts 

2tleomtntJ 

& 

• lktofO i'ttm:J 
------------------~· 

Flgure 21-5. Late Night Software's Script Debugger has an Explorer window, which allows you to 
explore objects, properties. and object elements in an expandable outline view. This window is one 
of the many features that make Script Debugger worth the price. 

Let's take another Iook at the properties Iist shown previously. Some properties have [r/o] 
after them, for example: 

duration integer [r/o] -- the total length of all songs (in seconds) 

The r/o stands for read only, and indicates that the value of the property can only be read, 
not set. ln some situations. it is the software developer's discretion-the developer simply 
decided that you shouldn't be able to change that specific property, and usually for a good 
reason. For instance, creation and modification dates are read only, or in applications deal
ing with images, the image size property is read only since you can't simply change the 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

byte size of an image. Other times, the property simply doesn't !end itself to your manip
ulation, like the duration property shown previously; will changing the duration property 
of a playlist really change the length of time it takes to play the songs? 

Another typical type of property value is song repeat. 

song repeat off/one/all -- playback repeat mode 

Notice that the possible values can be off, one, or alt. These are not strings but rather spe
cial application code words. You probably want to avoid using these words as subroutine 
or variable identifiers. Many application dictionaries make use of special values such as 
these, so Iook out for them. 

Working with properties 
When it comes to scripting object properties in applications, there are two commands that 
do most of the talking: set and get. 

The get command allows you to get properties from objects, even if you don't ever spell the 
command out. Whenever you want to use any object property in your script, such as the 
width of a Photoshop image or the modification date of a file in the Finder, you have to use 
the get command. This can get a bit confusing. though. Let's Iook at the following statement 

Script 21-1 (includes the following two scripts) 

tell application "Finder" 
set the_size to physical size of file the_pdf_file_path 

end tell 

By looking at the preceding statement, it appears as if we used the Finder's set command. 
ln fact, we used the get, not set, command. We know this because we got the physical size 
property of the file. We could have written the statement in the following way, which 
would have exposed the usage of the different commands: 

tell application "Finder" 
--Use the Finder's get command: 
get the physical size of file the_pdf_file_path 
--Use AppleScript's set command: 
set the_size to the result--apl command 

end tell 

See, in the first example, the set command was just AppleScript setting its variable to the 
value that was returned by the Finder's get command. 

Special property values 
While the values of many properties adhere to AppleScript's own data types such as text, 
number, Iist, etc. many properties don't. lnstead of using AppleScript's built-in data classes, 
these properties use constants defined in the application dictionary. Take for instance 
lnDesign's local display setting property used by different page items. There are four pos
sible values to that property. By looking in the lnDesign dictionary you can tell that the 
possible values are high quality, typical, optimized, or default. These aren't strings, but 
rather keywords that are a part of lnDesign's scripting terminology. 

645 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

646 

You can get it, but not set it 
Objects in scriptable applications are divided into two categories: read only and editable. 
As you may imagine, the object model of an application doesn't always Iet you change 
every property of every object. For instance, the creation date property of a file object in 
the Finder can't be changed. Some other properties can't be changed simply because the 
developers decided that they shouldn't be. 

Read-only properties are marked [r/o] in the dictionary, but if you really need to be able 
to change a read-only property, try to change it anyway; although rare, it is possible that 
the dictionary information is not fully accurate. 

Create object with properties 
An understanding of a class's properties can come in handy when creating an object from 
that dass. ln many situations, when creating an object, you can use the with properlies 
parameter of the create or make command in order to specify the properties you want to 
start with. This method isn't always allowed, but is much faster than the alternative of 
changing properties once the object has been created. 

The most common example of creating an object with properties is probably creating a 
fotder in the Finder. 

Script 21-2 (includes the following two scripts) 

tell application "Finder" 
make new folder at desktop with properties~ 
{name:"my files2", labe! index:l} 

end tell 

Notice that while we set two legal properties to the fotder while creating it, the Finder 
chose to use the name property but completely ignore the Iabel index property. 

To add the Iabel to the fotder after the fact, we can use the rule of thumb that when you 
create an object with the make or create command (in most applications), the result of 
that operationwill be a reference tothat object. Knowing that, we can complete the oper
ation by setting the Iabel index to the resulting value of the Finder's make command. 

tell application "Finder" 
set myFolder to make new folder at desktop with properties ~ 
{name:"my files"} 

--myFolder is: 
folder "my files" of folder "Desktop" of folder "hanaan" ~ 

of folder "Users" of startup disk 
set labe! index of myFolder to 1 

end tell 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

Elements 

The elements listed in the dictionary under a specific dass are not elements of an actual 
object, since the dass is not an instance of an object, only its definition. The element list
ing is there just to Iet you know that objects created after this dass could contain elements 
of the listed dasses. 

For instance, the dass fotder in the Finder's dictionary lists the following elements: 

item by numeric index, by name 
container by numeric index, by name 
folder by numeric index, by name, by ID 
file by numeric index, by name 
alias file by numeric index, by name 
application file by numeric index, by name, by ID 
document file by numeric index, by name 
internet location file by numeric index, by name 
clipping by numeric index, by name 
package by numeric index, by name 

The text after the word "by" in each element's description shows the possible ways to ref
erence an object from this dass. For instance, the file dass shows that it can be referenced 
by index and by name. This means that if you want to do anything with this fotder in a 
script, you must either know its name: 

folder "Jobs" 

or know its order in the Iist 

folder 3 

Notice that the fotder class itself is also on the Iist, because folders in the Finder may con
tain other folders. 

Hey, you! Referencing objects 
Even the best-placed command with perfectly positioned parameters isn't very useful if 
you can't direct it at the right object. 

Targeting objects can be tricky at times, but there are a few things you can do to make it 
better. 

For starters, you have to understand your application's object model. An application with 
a solid object model makes it easier to identify objects. 

Generally, there are three ways to talk to objects directly: by name, by index, and if you're 
lucky, by ID property, if the object's dass has one. 

647 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

648 

Starting with the parents 
Every object is an element of another object, other than the application itself, of course. 
Armed with this fact, you can go araund asking different objects to identify its element 
objects. This can go a lang way to finding the object you're looking to work with. Whether 
it is asking for every item of a fotder in the Finder or every text frame in an lnDesign page, 
the result will be a Iist in which each item is an object. 

After you got the Iist, you can either loop through it in order to target each object, or bet
ter yet, command them alt to dance at the same time. Whenever you can avoid Iooping 
(and you can't always), the faster your script will work. 

Foltowing are a few scripts that target a bunch of objects together: 

Script 21-3 (includes the following two scripts) 

tell application "Finder" 

or 

tell every file of the desktop 
set label index to 2 

end tell 
end tell 

tell application "InDesign CS" 
tell page 1 of active document 

set strake weight of every graphic line to 4 
end tell 

end tell 

You can either narrow down or expand your object coltection by referring to higher- or 
lower-level dasses. For instance, in the Finder, referring to "items" of a specific fotder 
encompasses alt items induding folders, files, applications, etc. You can narrow it down to 
files, which will not indude any containers such as folders, or even further by referring 
to specific file types such as application files or document files. 

The dictionary shows you which dass is on top by listing a special property calted 
inheritance. This property shows the super dass to which the dass you're looking at 
belongs. 

Figure 21-6 shows the Finder's dictionary with two dasses highlighted: file and folder. You 
can see that the file inherits alt of its properties from the item dass, and the fotder inher
its its properties from the container dass, which in turn also belongs to the item dass. 



THE FUNDAMENTALS OF AUTOMATING APPLICATIONS 

.,. Flndor 8aslcs 
Tflndult~ms 

~•m 
TCommonds 

add to fovorltu 
dunup 
ejoct 
ompty 
trase 
revtal 
updote 

TCOI1ta1Mrs •nd foldor> 
YCIHsos 

Tfllu 

conta.lner 
d .. ktop-objoa 
dlsk 

tra.sh-objea 

TCI;usos 
ol~s ßlo 
oppllcatlon m. 
cllpplng 
documont flle 
lolt 

Internet locatlon fito 
pockoge 

.,. Wlndow d•ss•s 

.,.legK'f sultt 

.,. Type ~flllltlons 

CJap fpldrr: A fol<kx 
Plunl fonn: 

foldus 
fl<m<nl.: 

ilem by nwnmc lnll<!>. by n.>me 
con!aln.rby nwnmc lndu. by """"' 
fotder by IWl1llric Index. by ..".,_ by 10 
fllebynu....-lrln<kll.bynomr 
alia• flle by nwnmc inde>. by ..",. 
applkatlon flle by nUJMri< ln<kll. by nome. by ID 
document flleby llll....-lrinde>.byiWßO 
lntemetloatlon flle by IWl1llric inde>. by....,. 
dlpplng by nwnmc Index. by nome 
package by nummc lnde>. by .,..". 

Propmle<: 
<lnherltance> contal~r lrlol - •nherlts some of lts propenles from !he 

contaiMr dass 

Ow !ilr· A file 
Plrmd fann: 

flies 
l'n>ponlos: 

<lnh•rlu.nco ltem lrlol - lnherlts some of 1ts propertles from the ltem class 
rlle IVIH' type dass ·• the OSType klentlfying the type of data conta ned in 

the item 
cre.J.tor type type das• - the OSType klentlfylng the apphallon that ueated 

!he ltem 
natlonery boolean • ls the file • statlonery pad? 
pn>duct wrslon Unicode text l•lol •• the verslon of the product (visible at the 

!op ol the "Get Info" W1ndow) 

ver5lon Unk:ode text lrlol •· the verslon of the file (VIsible at the bottom of 
the "Get Info" v.indow) 

Flgure 21-6. The Finder's dictionary with two classes highlighted: file and fotder 

"Whose" hot and who's not . . . 
This kind of wholesale-object manipulation is fast and powerful, but wait, there's more! 
You can push it even further by isolating the objects you want to work with even more 
using the whose clause. 

The whose clause allows you to only work with the objects that share specific properties. 
For instance, what if we want to change the line weight of the lines like we did previously, 
but only to lines that are thinner than half a point? Here's how we can do that: 

Script 21-4 (includes the following two scripts) 

tell application "InDesign CS" 
tell page 1 of active document 

tell (every graphic line whose stroke weight ~ o.s) 
set stroke weight to o.s 

end tell 
end tell 

end tell 

649 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

650 

We can also combine properties, as you can see in the following script, which deletes spe
cific files from a folder: 

tell application "Finder" 
tell every file of the desktop 

delete (every file whose size < 1000 and ~ 
name extension is not "pdf") 

end tell 
end tell 

Activating applications 
When scripting different applications, you will have to decide if the applications should be 
in the foreground or background when the script runs. The basic rule is that applications 
perform better in the background, not in the foreground, and that you should bring your 
script to the foreground for maximum performance. Applications perform better in the 
background since this way the Mac OS doesn't allocate any of the application's processing 
time to the display tasks, which can slow things down quite a bit. Since the script itself has 
no display tasks or user interface, it does better in the front. 

There are a few issues that need consideration here, starting with screen redraw. While it's 
really cool to see an application jumping around while processing documents at the speed 
of light, it does run slower this way. lf speed is a critical issue, which it isn't always, then 
you will be served weil by timing your script in the foreground and background and com
paring the results. 

There are some commands, such as copy and paste, that require that the application be in 
the foreground, so you don't really have a choice there, but you can perform the opera
tion and then send it back again. 

What I usually do is create a should_activate property. Then, instead of just using the acti
vate command, I do this: 

tell application "Some Application" 
if should_activate then activate 

end tell 

This way, when l know some VP will be checking out the system, I turn this property on, 
and alt hell breaks loose on the screen. The system may run a few paces behind the usual 
speed, but no one cares at this point. 



My Stript 

ao euJ<I<_:r('#t.c.&Cfil 
IDQI fi'.c..#z<. tr.c.datc fik..rvr< 
tellopplco:IC• "F •dor 

•ot 1/k..li<: to slz1o "' IIIC 
set rJe •c to ~::r~• an d11te 
••• 'lk..I)J>< to rjo t\'lll oHio 

.... t•ll 

Qw pppliqtisp; Tm ;mplic.atkn 
Phnll"om: 

>ppllrar inn< 
Elomeo!<: 

document •Y aurll!tk b\lox. ~"""" 
"'lndowby ''""'"' indn.lrJ rwnr 
databa .. 1>7 111111<. b) m•:nn: lndu 
menu by ..-. ~· nunnr lrdel 
~ 

Den 1YJl'! l'flle dass 1'"'1 • n... ~en 
du> typt Ud» 1~1 • Tl!~ <4» 
delault 'YP" l'fPC da.u 1•.., n.. 
frant-.o.Jt baolf:an (r..o) ~ f\1! 
noune. tn~,.t\Oltior..o:al t~,.t (rlo) T~ 

v.n:lon vardon [riCJ - l"M YW"SlOn of 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

654 

Debugging your scripts is not something you do as the final step of script writing. You 
should do your debugging while you're writing the script, every step of the way. As your 
mom always told you: it is better to clean up as you go along. 

While there are many tricks to debugging, there's no better overall way than to do it with 
Script Debugger (www.latenightsw.com). I know, it does cost about US$190, but if you 
spend a good chunk of your time writing scripts, it will pay for itself. lt is currently the only 
script editor written for Mac OS X that gives you step-by-step debugging. 

Script Debugger, as the name suggests, has useful tools for debugging scripts. The main 
debugging feature, and the one Script Debugger is most known for, is the ability to run 
through the script step by step and set breakpoints where the script pauses. We will get back 
to some Script Debugger debugging techniques later on in the chapter. ln the meanwhile, 
let's Iook at some other ways you can get the bugs out of your scripts with any script editor. 

Don't try to understand the problem, just 
solve it! 

Fixing scripts does not always require you to know what caused them to break. Fixing 
scripts requires you to know where they break, and what part of the script isn't working 
anymore. This way you can find a way around the problern without ever fixing it. 

My clients always crack up when they ask me what the problern was and my reply is, "I 
don't know, but I did make the script work again." 

Of course, understanding the source of the problern can be extremely beneficial, but it 
may be far beyond your reach-for instance, say the dient is switching servers and sud
denly the script can't delete files. You can't ohange the server's behavior, but you can 
provide a workaround. Also, if a specific application acts buggy when you script one of its 
features, you don't have to get to the bottom of it and spend a week on the phone with 
the developers of this application. File a bug with the developer and then find a suitable 
workaround for your script. 

Don't confuse user errors with bugs 
There aren't many scripts that don't rely on any user action whatsoever, and as long as the 
user's action is required, some user at some point will cause your script to break. With 
complex scripts, it can be difficult to figure out whether the script broke or some file the 
script is expecting or other required element is not in place. 

Although it may be tempting to get right into your script and find a workaround, you 
should stop and think. lf the script has been operating successfully for some time, it is 
most likely still working OK, and the user is probably the cause. lf fixing the script is not 
needed in this case, you may want to trap the error and ensure that the next time this spe
cific error-causing condition occurs again that the user is notified gently with a dialog box. 
See more on capturing errors in Chapter 15. 



DEBUGGING SCRIPTS 

Values are a window to your script 
statements 

When you write a script statement, there's a chance that somewhere in that statement 
there's a bug. The bug can be in one of two Ievels: it's either a syntax error that will prevent 
the script from compiling or a runtime error. The first error type is in a way nicer, since 
AppleScript Iets you know right away where the issue is. Runtime problems are a different 
issue altogether. The script's syntax is OK, but somewhere along the line, the code was 
unable to run. lmagine telling AppleScript to delete a file that doesn't exist, or trying to get 
the value of the fifth item in a four-item Iist. The script may be weil written, but what it tries 
to do is impossible. 

Script bugs revolve around two areas: application objects and AppleScript values. 

Assuming that alt application objects exist, and the problern is somewhere in your script 
logic, the only way you can spot the problern is by examining the values that contributed 
to the problematic statement. 

To do that, we will Iook at a few ways of exposing values while the script is running. We will 
be relying on the fact that even though values that commands return aren't visible to us 
while the script is running, they do exist and can be exposed. 

Using the return command 
The first value-exposing debugging method we'll use is the return command. Using the 
return command allows us to return any value currently set in the script. The downside is 
that it will also stop the script right then and there. Using return within subroutines doesn't 
work the same, since it will simply return the value from the subroutine to the main script. 
However, using return is nice because it will return the value in a pure AppleScript format 
for us to examine. 

To use the return command for debugging, create a new line somewhere in the middle of 
your script, before the place where the error happens but after the place where the value 
in question has been created. let's assume that we have the following script that is sup
posed to remove some text from the name of files. Since alt the files in the fotder are 
named by another script, we can count on them being of the same length. Here's the start 
of our script: 

Scrlpt 22-1 

set file_name_list to list folder alias the_jobs_folder 
repeat with the_file_name in file_name_list 

set new_name to characters 1 thru 12 of the_file_name as string 
tell application "Finder" 

set name of file (the_jobs_folder &the_file_name) to new name 
end tell 

end repeat 

655 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

656 

When we run our script, we get an error. We realize that there's some issue with the file Iist 
the script is using, so we add a line of script returning the value of the file_name_list after 
it has been created. 

set file_name_list to list folder alias the_jobs_folder 
return file_name_list 
repeat with the_file_name in file_name_list 

set new_name to characters 1 thru 12 of the_file_name as string 

By looking at the Iist in the result panel of Apple's Script Editor window (shown in Figure 
22-1), we can clearly see that the Iist includes the OS X-generated . OS_ STORE invisible file. 
We then trace the problern to the statement that assigned the file Iist value to the 
file_name_list variable. The solutionwill be to add the withaut invisibles parameter to the 
List folder command. 

set tlle.Job_foldu to "M~dntosh HD:jobs:· 
set (lle_Mme..Nsc to ßn folder ~li.u Clle.Job_folder 
retum (Ue.Mme..IIJC 
reput wlth cht._(Ue..Mm• ln (1Je_1111me...Nsc 

set new_Mme to characters I thru 12 of cht,_(llc_Mme u mlng 
tell appllcatlon "FFnder'" 

set ~me of flle (clle.Job_foldu & cht,_{/k..1111mt) to 

end tell 
end repeatf 

r.os_Store·. job_l203200+2096.pdf', ")otU 2032004-2097 .pctt•, 
job_ l Z03Z004-Z098.pdf', "job_ l Z03ZOO+Z099.pclt1 

Flgure 22-1. 
The return 
command stops 
the script and 
places the value of 
the file name Iist 
in the result panel 
in Script Editor. 

One pitfall with using this form of debugging is that you may forget the return command 
in your script. This is not very likely, but if it happens, your script will stop in the middle, 
and this time it is going to be your fault . . . 

Dialog boxes to the rescue 
One of the most basic forms of debugging is the use of the display dialag command. All 
you do is display a dialog box showing the value in question. 

The display dialag command is best for debugging string values, or other values that can 
be coerced into strings such as numbers, Booleans, and dates. 



DEBUGGING SCRIPTS 

For the most part, you can just insert a line of code that Iooks like this: 

display dialag variable_in_questian 

with the identifier of the real variable you want to test, of course. 

The main advantage dialog boxes have over the return command we looked at before is 
that after you dick the OK button, the script goes on. This allows you to check multiple 
items in the same debug session. Also, the dialog box gives you as much time as you need 
to make notes or do some good old thinking before you're ready to move on. 

Using the dialog box debugging technique is great for checking the value of variables that 
change in a repeat loop. While the loop is crunching statements with slightly varying values 
in every repetition, a dialog box on every loop can reveal a Iot of what's going on in there. 

lf you like the idea of debugging with dialog boxes, you may want to facilitate it a bit. The 
first thing you will need is a debug property. This property will be set to true when you're 
debugging and false when you're not. lt is mainly a fail-safe mechanism to make sure you 
didn't leave any dialog box surprises for the script end users. 

The subroutine itself should have a very short name, like msg (short for message, and a bit 
like the msgbox VB command). 

The contents of the subroutine can be very simple. 

an msg(the_value) 
if debug then display dialag the_value 

end msg 

lf you want to get a little more fancy, here is a beefed-up subroutine that uses dialog 
boxes for debugging all sorts of values: 

Script 22-2 

1. praperty debug : true 
2. msg({1, 2, 3, 4}) 

3. an msg(the_value) 
4. if debug then 
s. set the_class ta class af the_value 
6. set the_class_string ta the_class as string 
1. if the_class is in {integer, real} then 
8. display dialag the_class_string & return & the_value 
9. else if the_class is string then 
10. display dialag the_class_string & return & 11 \ 1111 & ., 

the_value & 11 \ 1111 

11. else if the class is date then 
12. set the_string_value ta the_value as string 
13. display dialog the_class_string & return & ., 

lldate \ 1111 & the_value & 11 \ 1111 

14. else if the_class is list then 
15. set text i tem delimi ters to 11 , II 

657 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

Flgure 22-2. 
The debugging 

subroutine handles a 
Iist that was passed 
on to it for display. 

658 

16. set the_string_value to the_value as string 
17. set text item delimiters to 1111 

18. display dialog II List of II & ( count the _ value) & ., 
II itemsll & return & 11 { 11 & the_string_value & 11 } 11 

19. else 
20. try 
21. set the_string_value to the_value as string 
22. display dialog the_class_string & return & ., 

the_string_value 
23. on error error _ text 
24. display dialog IlDebug error:ll & return & ., 

the_class_string & return & error_text 
25. end try 
26. end if 
27. end if 
28. end msg 

The preceding subroutinewill give you a slightly more descriptive dialogbox based on the 
dass of value you're testing. Figure 22-2 shows the dialog boxthat will be displayed if a Iist 
is passed to the subroutine. 

eoa ~ fUe~ker Pro 
-- --, 

Rcqulr~ Suit e Sabset of lbt Core, Table, and Database sultes: Subset of Evtnts ~::. 
TURL Suttlf 

TCommanch sopporttd by otlur.4.ppliratio11S 1:1 

gctURL i ' 
Clll'li [lr.'l•k~l IIIIIRI: A Elltt!:lal"l srili n yCia.su Phr.lrom: 

Fllc.Mckc:f acrip fllfMikfr l<rfpi'S 
[1: .appllat lon l'lt"periiOS: ... k>l IYI"' lyp e <.ld» (r/01 Tlre l~~l dc:lloUIJlU lfVt lh datllbuc dii.u type .:: .. sJ I•"' I Tl-.e dus 

doc.u,..uc def•ult lype type dass (riO The dela<ft deocrlotor t/l)t 
Reld name ln:cr~dor.al te).t (r~J Th~ """'~ of lhe !1~Mok~r 5<1p: 
lapu·t 10 r .. l )riO · The unlq .. 10 d t"- FiltM>ktr Sctl>t 
rc:mrc' 
nFetf:lon ~~- I I!UidiDIU 1m IZRiis:llii::D 
tablc Phr.llrorm..: 

wlr d010t ~pplfratinn~ 

TComm.ands l!km<lß: 

d&JJ klfQ dowmentlly •u..n< lr>.lex. b)"""" 

do,. wlndow by '"morr lr>:lel • • nune 
:.• datab;ue rwne. b) nt.me:l< ...,." 

copy - menuby.....,, by nu,..."rlr<lel 
cCH~nt Pnptnb: r, 
crute beSttYpt IYP! daSS trA> I Tbe )tst OeSCriJIQr r(l)t 
CUt da>> IYP• ~ld •> (rAit ,,., ~14•• 
d•ta sl.r.e delauh type type da» I•Ju Th• de'a<ft de><n>tco W• 
delr:t~ lronuno>l b ool<an (r.ol s this m• fro11tnl0St applca:io11> :; 
domc.nu •~on~ ln:ern;~dor"l te>t lrlol Thc 'l.liT'Ie ofth<: .l3P ic.;~tJcn 
do safp' verslon wrslon ( ~'ol - TM ver•oon of :M appl u:lon 

' : d u piiQle 

cYCntinfo ~lws:dli A d~ld ~al~ iD 'lm!cd Rt waaca ' 
ubts Pllnlfom: 

gctdN t-11• ,: , 
open Elanrau: 
pe.Hc repetltlon 'Y rumerlc !nkx : 
prl• t 

l'ttpeniel; 
;: best type IYP! d as.s fr.O] ·· The lell d.scriDTGt" r/l)t 

quk <lass type ~lass (rl<·l · lhf Cil55 
~ delault type type da.ss fr.O 1 he oe•al.lt aescmtcr r11>t .. ~ ChOICtS IlSt tr.nf •• Th! Viihit I SI IO< ~ cell 

~ K1. dlll:a -: lurmul• >Uirog (1101 ·· Tl" «II> <dk.UI<IkllluiOIU<& 
show loc~ unloc~ed/s"-red lodc/ .. <lusM: l«k J•A>I ·• n .. l«k st•tu> d tbe cell • 
>on . oame wtng )>'Of •· Tht! celrs r11 me 



DEBUGGING SCRIPTS 

Error messages tell a story 
A mix between the return value and the dialog box methods is the error method. Simply 
throw the value as an error. Say you want to see the value of the variable myJile_list in 
the middle of the script's execution; simply type the following: 

error my_file_list 

AppleScript will display the value of the variable myJile_list in an error message. 

This method is very useful when you want to test your script when it is running as an appli
cation. ln such cases, the return value method simply won't work. 

Using the event log 
The event log is the one debugging feature actually built into AppleScript. 

Debugging with the log includes the use of the event log window in Script Editor (or Script 
Debugger), and the use of three log-related commands: log, start log, and stop log. 

Let's start with the event log itself. When the event log pane is open in Script Editor, 
AppleScript Iogs the running statements and their results. Figure 22-3 shows a simple 
script and the results that the event log has captured. 

22-03 

Compllt 

setxto S 
dlsplay dlalog 'An you wrlllng thls downr 
set y to x • 12 
I 

tell currem applkation 
d lsplay dlalog 'Are you wrltlng thls downr 

(bunon returned :'OK1 
end teil Flgure 22-3. 

A simple script and 
the results that the 
event log has 
captured 

Anything missing? The event log skipped some value assignments. The first and last state
ments, or results, aren't shown in the event log. The event log only Iogs events that are 
external to AppleScript. Statements that are taken care of inside AppleScript, such as set y 
to x * 12, arenot logged. 

659 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

660 

Logging anything 

While the event log in AppleScript will skip internal statements, you don't have to. You can 
force anything to be added to the event log by using the log command. 

The log command, followed by a value, will add the given value to the log, wrapped in 
comment brackets: (*value*). 

The value is wrapped in a comment because anything that appears in the event log is actu
ally legally compiled AppleScript code. 

Figure 22-4 shows how we can force the result of x * 12 to appear in the log. 

Loghistory 

setxto 5 
dlsplav dialag 'An you wrltlng lhls down?" 
setytox 'l 2 
log~ 

t~/1 ~urr~nt applk:adon 
dfsptav dialag 'An you wrltlng lhls downr 

{button r~ru""'d :'OK, 
(•6o·> 

@nd [@/1 

Flgure 22-4. By using the log command, we can force the 
result of x * 7 2 to appear in the log. 

Apple's Script Editor version 2 actually creates a history for the event log. You can check 
out the event log history by choosing Event Log History from the Window menu. 

Figure 22-5 shows the Event Log History window. The left column allows you to select the 
script whose log you want to see, and the right side displays the actuallog. 



DEBUGGING SCRIPTS 

Event Log History 

Log Events and Results 

Time 

Yttll current oppllu~an 05:22:01 
1!'dl>pl•y dl•log 'A<o yau 05:22:01 

(bunan ~turned:"Ot 05:22:01 
('60') 05:22:01 

... 21-~ 05 :22:00 

... 21-~ 

... 21-~ 

... 21-~ 

... 21-03 

05:21 :59 
05 :21 :56 
05 :21:25 
05:20:39 

Opclon> 

tell current applkatlon 
dlsplay dlalog 'Are you wrltlng thls 

downr 
(button returned:"OK1 

('60') 
end tell 

Flgure 22-5. The event log hi5tory in Script Editor 2 

Debugging with Script Debugger 
As mentioned, Script Debugger is the best debugging tool for AppleScript. lf you own 
Script Debugger, then check this section out for a few debugging how-to's; if you don't, 
read on and consider getting it. 

Script Debugger doesn't really allow you to debug AppleScript. lnstead, it converts your 
entire script into a special debugging language called AppleScript Debugger. This language 
is similar to AppleScript in any respect having to do with running the scripts, but you have 
to switch back to normal AppleScript before deploying your script in any way. 

The Script Debugger script window 

The most notable part of the Script Debugger script window is the Properties panel, shown 
at the top right of the window in Figure 22-6. This window shows alt of the script's prop
erties, variables, and their values. 

661 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

662 

'0 ~ 22-06 

• Dooalpl-.~ -- TA\ .:rr u :T ~ 
I Q Oescrlption J Cl Ubrarles 

Varl•blt/Property V.lut t: 
r#ftllt fb >IT~'nn#r""'<n-\Cllll1~\Brdiv • .l4'4,l!XM IOJO~It1\IIE:-=-~: .. - .. .... lptlljlpltS..Ipl» ~ ... .w-..lot tcsorlpt lljlpltSorlpt» 
(ll,t...,c.ol,l'lt 12 

filt...d>lt -.y, .-,lyS, 20041>19:06 PM" .. fllt_ltJt ltt-tofl2•tHN 

filt..J\MTOO ~ ....,lnolov f2000Strv.,. ..ASO=.drn9" 
f\lil_plth I{ ~~tosh II):I.JArs :btftMn:DH:ktop ~r.do..-aooos.rvtr -AS022S#n9" .. filt...JI:r:t 11stof2 items 
fllt- lypt "dt..,.. .. 

r'tWI...str"irl9 foo' 'lilti'O\ISa~\IT~ ....... \?1<11"'"""\tO.OOI~.~·.:ro.IO:lO~"ti\llE 
lllt-"tsfrtop tr "MoolnlodiHO:O.....:IIanaan:Dtsktop :" 

set repon_stri!JJ to "Name" & tab & "Size• & tab & "Date" & tab & "Type• & retu rn 

~ set rh(..dukrop to IPatn to desktopJ as string 
set fl/e.../lsr to Iist fot der alias rh(..dukrop •lthout Invisibles 
Set flk_courr to cc unt (ik._Usr 

tell apphcatlcn "Find•~ 
reput •lth lfro m l to {lk._courr 

oet {lk..~ to lt om I of flk_llst 
ut fdt_parh to rh(..dukrop & (lk_trllM. 
lf class of ~•m {lk._parh I• document nie then 

oet {lk..s/ze to slze of flle flk_parh 
set {lk._dore to croatlon date of tue {lk._parh as strlng 
•et {1/t...rype to fll e rype of ßle fl/e...parh 
lf (llt_typt I• mlulng value then set flk_rype to "777'f 
set {llt_slze to !{ilt_stu I 1024/ 1 024) & "MB" 
•et rtp<Jrt_str/rrJ to TtJKJrt.strll&& flk_mrM& tab 
set rtp<Jrt_strlrrJ to TtJKJrt.ttrllfl& (lk_slu& tab 
oet rtp<JrCstr/rrJ to TtJKJrt.Slrilfl& flk_dott& tab 
•et rtp<Jrt_srr/lfl to rtp<Jrt_strllfl& fllt_type& return 

end lf 
end reput 

end tell 
rqort_str/lfl -. l.no: lZ Slu : 963 bytt> -~ • ~== 

' 

Flgure 22-6. Script Debugger's script window with the Properties panel open at the top 

Beside the value, you can see what type of string the value is by the little icon to the left 
of the value. Unicode text has a little globe with a T next to it, and styles text has a red, 
blue, and green "abc" icon. 

This properties and variables Iist is great when you want to take a glimpse into the script's 
current state. The top value shown is always the result variable. This one comes handy 
when stepping through the script during debugging. 

Script Debugger's debugging mode 

Next, we will convert our script to AppleScript Debugger language. You do that by choos
ing Enable Debugging from the Script menu. 



DEBUGGING SCRIPTS 

When the script is in Debugger mode, the Properties panel turns into the Debugging 
panel. 

The most notable addition to the main scripting window is a row of diamonds to the left 
of the script. Each diamond represents a potential breakpoint next to a line of code. 
Clicking that diamond turns it red, and indicates that the script should stop at this line next 
time it runs. The script's "playback head," shown as a blue arrow, stops at the line with the 
breakpoint before this line is executed. 

Figure 22-7 shows Script Debugger's script window in AppleScript Debugger mode. 

600 :t. 22-07 

·-~ ... - 0 16.\ ... 110 .,.j 0 

I Q Descriptlon I Cl Ubrari~s 
"'""' 

11!1!---- 11!1!-I.Dall 
Handlonull<d Vorillblo/Proporty • V.1.lue 

Run(lrnpllolt) ,_,,. "TEXT 

' ~. : ~ : )OJOLro90't .. - • ....... A4>1o .. llcriph• .. ~ .... • ....... A4>1olollcripl• 
o r.a......s.t• "'&nloy .... ". • . :!004 10 .30~ .,..,. i! 
o m ... ~th f&c. "Macnt~nh }1)-vu.rsl\Mw.n .O.d..top :mul\_.1-...tton t.lblit" 

o t.a.....ttr:• 16420 
0 ßlo_typo "'TEXT" ;, 

0 roport..slrrog '"NMnt\tStu\tD•te\tTYJMV· t:: 

.l 

0 set rtPOrt.Jfrlf"(J to "Name" & tab & "Size" & tab & "Date" & tab & "Type" & retum 

~ 0<' set.. rtPOrrf.rtPOrt. srrllfj 

o n ~t.rtJXJrt(rtJXJrt. rrrllfj 
0 set tht_dukrop to (path to desktop) u str1ng 

1:', 
0 set (i/e..lln to Iist folder alias rht_dulcrop •lthout InviSibles 
0 set {1/e...count to count file..lln 

0 teil appllcatlon "Fi ndef 
1: 

0 reput •lth I from 1 to (ile..cou/1 Ii 
0 set {lle..norM. to ltem I of (ilc._l/n 
0 set {1/e...path to tht_dukrop & rlk..-
0 if clan of 1tem {ile..path is document flle then 
0(> set 1{1/e..slu, {lle..datt, file..r'IPd to my get_(ilc._if(oi/1/e...pat/j 
0 lf {lle..!ypr. is missins value then set (ilc._rypr. to "7777' 
0 set (ile..rlu to (flle..rlu I 1024/ 1 024) & "MB" u stnng 
0 set rtJXJr!_strlf"(J to rtPOrt.Jtrif"(J& {lle..- & tab 
0 set rtPOrt.Slrif"(J to rtJXJrt_rrrlf"(J& (lk..slu& tab 
0 set rtPOrt.Strlf"(J to rtJXJrt.f!rif"(J& file..dat~& tab 1:· 
0 set rtPOrt.Sirif"(J to rtJXJrt.Slrlrtl & (ilt_rypr. & return 

1': end if 

i 
end reput I • 

end tell 

l:i 
end !/C_rtPOrt 

on ger_{llt_lf(oi/IJc.pat/l 

l:t 
loul (lk..slzt, {1/e._datt, {1/e._!ypr. 

0 ull appllcat1on "Findef 
0 set (lk..stz~ to size of lile file..path 1: 
0 set (lk._date to creatlon date of flle {lle..path ..s str1n!l 
0 set flk._rypr. to flle type of file {1/e._path I! 

end tell 

I' K •• 
return l{lk...slzt, (lk,_datt, file..typd 

end ~r_{llt_lr(o 

""'. l.Ow. 15 Silr. zx 
_.,...,_.. 

~ <= 

Flgure 22-7. Script Debugger's script window in AppleScript Debugger mode 

663 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

664 

The left side of the debugging panel is now a Iist of handler calls. When the playback head 
is stopped inside a subroutine, then that subroutine is selected in the Iist, and all of its vari
ables show in the property area to the right. 

By default, only the values of the local variables passed as arguments to the subroutinewill 
be shown in the Iist. lf you want to examine values of other local variables, you have to 
declare them as local variables at the top of the subroutine definition. After doing so, 
these declared local variables and their values will appear in the yellow-shaded area in the 
Properties panel. 

Script stepping 
When in AppleScript Debugger mode, Script Debugger allows you to perform four addi
tional script-navigation commands beside the usual run and stop. The commands are 
pause, step into, step over, and step out. 

The pause command (CoMMAND+SHtFr+. [period]) is good for scripts that run for a long 
time and you want to pause just to see where you are. Otherwise, there's no way to use 
this command in order to pause at an exact point. 

Stepping is really where things heat up. The step into (COMMAND+l) and step over 
(COMMAND+Y) commands allow you to execute one line of script at a time. The difference 
is that step into will go into subroutine calls and step through every line there, while step 
over will skip the subroutine call and move right on to the next line. 

The step out command comes in handy if you happened to have stepped into a subroutine 
but you want to get out of it. 

ln any case, the blue arrow will always show you where you are, and the result variable at 
the top of the Properties panel in the script window will always show you the result 
returned from the last line the script executed. 

Divide and conquer 
One of the best ways to avoid bugs is to make sure you don't introduce them into your 
scripts in the first place. To do that, don't write new code directly into your already over
complicated bowl of spaghetti code, but rather test your new code on the side first-just as 
you would crack an egg into a small bowl before adding it to the mix, just in case it is rotten. 

lf you create little script chunks on the side, and only integrate them into the main script 
once they are tested, you will have much less of a need to go around fixing bugs in your 
script. 

This also goes for debugging. lf there's a problern in the script, try to isolate it, copy the 
code to a different script window, and try to resolve it there. Besides having less code to 
deal with, you can quickly try a few seenarios without messing with that mammoth script. 



DEBUGGING SCRIPTS 

When your scripts are used by clients 
Ho, the joy of writing scripts for cash. The problern is that those scripts never seem to for
get their creator, and they call out to him from all around the globe. Yes, once you created 
a script that is used by someone, they will hunt you down whenever anything goes wrong. 
I still have clients I wrote scripts for years ago calling me with questions about them. 

The best defense against being swamped with fixing old scripts is to create good scripts to 
begin with. Not that good scripts don't break-they do-but the trick is to know exactly 
where they stopped, even years after you created them. 

Error log 

The best way I know to allow me to troubleshoot scripts remotely (other than Timbuktu, 
of course) is to give the script the ability to create a log that records its activity. This log 
can be triggered somehow by the dient, and when triggered, will create a file where it will 
add lines of text each time certain things happen in the script. 

This may sound like overkill, but truly, once you create the log subroutine, you can put it 
to use in any script you create. 

The most important thing in the log subroutine construction is to not make the mistake of 
creating a string variable, adding log text to it, and writing it to a file at the end. What will 
happen is that the script will stop in the middle due to the bug, the string variable with all 
that good log info will be erased from memory, and you will still be clueless. 

lnstead, use write log_test to the_file at eof. This will ensure that each line you want to log 
will be added to the end of the text file right away. 

665 

-





APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

668 

While any script you write using AppleScript still Iooks the same and generally utilizes the 
same system resources in order to run, there are a few different ways that the Mac makes 
that AppleScript functionality available to you. 

The most common forms used to save and run scripts are as a script application, a script 
droplet, and a compiled script. This chapter will Iook at the different ways we can put 
scripts to work. 

Most of the options for saving scripts can be found in the Save dialag box of whichever 
script editor you're using. Figure 23-1 shows Apple's Script Editor's Save dialag box. 

Untltled 

Scrlpt 

Where: ~[i~~········· Scrlpt Bundle 
Appllcatlon Bundle 

.t Text 

Options: Run Only 

~StavOpen 

Flgure 23-1. Apple's Script Editor's Save dialogbox 

The following table shows the different file formats available for saving AppleScript files. 

Type Descrlption Options Features Name lcon 
Extension 

Application Anormal Run Only .app 
application that Stay Open 
runs when you Startup Screen 
double-dick it run rne 

Droplet An application Run Only Allows your .app 
application containing the Stay Open script to 

on open handler Startup Screen process files 
dropped on it drop rne a ftle 

Application An application Run Only Can also be .app 
bundle saved as a Stay Open saved as a 

Cocoa bundle Startup Screen droplet by 
including the 
on open handler; Bundle 

bundle can hold 
any files such as 
templates, etc. 



A SCRIPT BY ANY OTHER NAME ... 

Type Description Options Features Name lcon 
Extension 

Compiled The native Run Only Can also be run .scpt 
script AppleScript from the Script 

file format menu or other 
Can be executed "script runner" Bask.scpt 

from within the utilities 
script editor or 
loaded into 
other scripts 

Compiled The same as Run Only Script bundle .scptd 
script compiled script, can hold any 
bundle but uses Cocoa's filessuch as 

bundle format templates, etc. basic bundle.scptd 

Textfile An ASCIItext Line Endings Opens without .applescript 
file that contains requiring 
the noncompiled referenced 
version of applications to plain ttxt.applescnpt 

the script be open 

Compiled scripts 
A compiled script file is AppleScript's default file format-it is used when you save a script 
you started writing in order to open it the next time and continue writing. 

What is the difference between a compiled script and plain text? When you compile the 
script, a few things happen. The first thing you may notice is that the script text gets format
ted based on the AppleScript formatting settings you specified in Script Editor's preferences. 

Another thing you may have noticed is that if AppleScript didn't recognize any of the 
applications you used in the script, it asks you to locate them, and then it launches them 
in order to compare the commands and classes you used in this application's teil block 
with the ones defined in the application's dictionary. ln the compiled script, AppleScript 
actually includes a sort of an alias to that application, which allows it to recognize that 
application even if it is renamed, moved, or even upgraded. That's right, if you created a 
script a year ago with Illustrator 10, and you're opening it now, AppleScript may recognize 
Illustrator CS as the target. 

AppleScript also converts the syntax from AppleScript's hallmark English-like syntax into 
what appears to be cryptic text that is actually tokens that can be understood only by the 
OS Scripting Component. The simple script display dialag "Hello" generates the following 
compiled script text (when opened with BBEdit): 

669 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

670 

FasdUAS 1.101.10 

1·, 
r·N·,·N.sysodlogaskrTEXT 
m\\ Hello·,·,·· •• •·•· 
.aevtoappnullÄe**** ···-·
-~-·.aevtoappnullÄe**** 
k"l·l·-·-
\·u·O.sysodlogaskrTEXT"~\tjascr 
'fjfj;t 

From a system standpoint, forcing you to compile a script before saving it can prevent 
many runtime issues such as syntax errors, missing applications, etc. lt also brings the script 
one step closer to the language understood by the OS Scripting Component. 

Having said alt that, the reverse is also true: Script Editor acts as a decompiler. Whenever 
you open a script with Script Editor, it has to decompile the script, locate alt the refer
enced aliases and applications, and apply the AppleScript formatting. 

Another function of compiled scripts not saved as applications but rather as scripts is that 
they can be loaded into other scripts and act as subroutine libraries. As discussed in 
Chapter 20, loading scripts into other scripts is fairly easy and can help you reuse your 
code in an efficient way. 

Script applications 
What's easier to use than a script application? You write AppleScript code, test it, and save 
it as an application. All the user has to do is double-dick it. When the script is done exe
cuting alt the code in the run handler, it quits. 

A script application has two events that execute: run and quit. 

When you launch an application, the first thing that happens is the immediate execution 
of the run handler. Since you may have not included an actual run handler, any code that 
is not a part of any other handler is by default part of the run handler. Once the run han
dler runs to the end, the program executes the quit handler, is specified, and then quits. 

There is another handler used by the script application: on idle. The on idle handler only 
gets executed if you have saved the script application as a stay-open application. 
Otherwise, there's no idle moment for the on idle handler to be called. More about the on 
idle handler and the idle event later on in this chapter. 

Droplets 
Droplets are script applications with a twist: they can process files that are dropped on 
them. Using droplets allows you to create script applications that apply certain processes 
to dropped files. 



A SCRIPT BY ANY OTHER NAME ... 

To turn an application into a droplet application, simply indude the on open handler 
somewhere in it. The one parameter of the on open handler is a variable that will contain 
the paths to all of the files and folders dropped on the droplet. That means that the on 
open handler doesn't actually do anything; it doesn't move the dropped items to any par
ticular place, unless, that is, you write the script to do that. All that happens is that your 
script gets a wakeup call with a reference to a bunch of files: "Hey, wake up, here are the 
files you will be processing ... " 

Following is a small (and rather crude) example of the on open handler. The example, 
which appears in Figure 23-2, shows a script that teils you how many files and how many 
folders were dropped on it. The only purpose of it is to show the basic Operation of the on 
open handler and the function of its parameter. 

on open IM...Items_/Jsr 
set (oldu_counr to 0 
set flk_count to 0 
set ltem_count to count tM...Items_Usr 
..,peat wlth tM._Item ln rloc..ltems_list 

lf folder of (Info for tM...Irem) then 
set (oldu_counr to (oldu_counr + I 

else 
set f/k_counr to (lk_coum + I 

end lf 
end ..,peat 
dlsplay dlalog 'You dropped - & ~ 

(oldu_counr & • tolder and • & ~ 
f/k_counr & • fi~s· 

end open 

on run 
display dlal0<;1 'Drop lllts and folders on lhls korf 

end run 

Flgure 23-2. 
The basic droplet 
application script 

Notice a couple of things about the script in Figure 23-2. I named the variable the_items_list, 
and it can have any identifier name you want (as long as it adheres to variable naming rules, 
of course). 

ln the script, I use this variable as I would use any other Iist. This time, l'm Iooping through 
the items in the Iist. 

Also notice that there's a run handler. While not required, it is nice to have something hap
pen when some unsuspecting user tries to double-dick the droplet. Remember, the 
droplet is just an application and will execute the run handler if double-dicked. 

You can find some more templates and examples of droplets on the AppleScript web page. 
Go to w...w.apple.com/applescript/resources/, dick Essential Subroutines, and then 
dick Finder Droplets. There are some cool droplets you can copy and use. 

671 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

672 

Stay-open applets 
So far we looked at normal applications and at droplet applications. The third kind of 
application we willlook at are script applications that don't quit when they are done exe
cuting the run handler, and instead become idle and wait. 

While a normal script application can only make use of the run and quit handlers, the stay
open application has two more: reopen and idle. 

Let's Iook at a brief description of all these event handlers before we get into some more 
details regarding the idle handler and its function. 

The handlers listed next are not really handlers you call, but rather handlers that respond 
to natural events in the life of a script application. The code inside the event handlers will 
execute, or be called, when the specific event occurs. 

run 

The run event handler is called once after the script application is launched, and never 
again. You can use this handler to initialize values, give instructions, or anything else that 
the application has to do once. After the run handler has completed, the on idle handler 
will be called. 

reopen 

The reopen event handler will be called when an already-launched script application is 
relaunched using the dock or by double-clicking it again. 

quit 
The quit event handler is called when the user chooses Quit from the File menu of the 
script application's menu, and when the scripter calls the quit handler (done by using the 
quit command). 

lf you include an on quit event handler in your application, you are in effect taking over 
the quit command. That means that the application will not quit; instead it will do what 
you ask it to. 

You can use the continue command to Iet the script finish the self-destruct sequence, but 
you don't have to. 

The following on quit event handler asks the user if s/he's sure s/he wants to quit, and only 
quits if the answer is yes: 

on quit 
display dialeg "Are you sure you want to quit?" buttans {"No", "Yes"} 
if button returned of result is "Yes" then 

continue quit 



A SCRIPT BY ANY OTHER NAME ... 

end if 
end quit 

ln the preceding example, if the user quits the application but then clicks the No button, 
the application will remain open. 

idle 
The on idle event handler is really where the bulk of the script happens. As we saw earlier, 
the run handler executes once at the start, the quit event handler executes once at the 
end, and the reopen handler is really a "just in case" handler. 

The idle event, however, happens all the time. Does that mean that the on idle event acts 
like a huge repeat loop? Weil, sort of. The on idle event handler is a repeat loop by func
tion, but you can tell it to cool oft for a given period of time before it starts again. You do 
that with the idle event's version of the return command. 

At the point where you want the handler to be done executing code for a while, use the 
return command, followed by a number of seconds you want to wait until the next time 
the idle event handler is called. 

For instance, the following script, if saved as a stay-open application, will remind you to 
take a break every 15 minutes: 

on idle 
tell me to activate 
display dialeg "Time to stretch!" giving up after 30 
return (15 * 60) 

end idle 

ln the preceding script, the on idle event handler will happen once to start; during that run 
it will activate the application, then it will display the dialog box, and then it will instruct the 
script application to invoke the idle event when 15 minutes ( 7 5 * 60 seconds) have passed. 

Call handlers from other scripts 
Another cool thing about stay-open scripts is that you can call their handlers from an out
side script while they are running. 

Let's say that the stay-open script application shown in Figure 23-3 is running. Another 
script can call its tell_time subroutine like it would call a command defined in any other 
application. 

tell application "My Clock" 
activate 
tell_time() 

end tell 

673 

fDI 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

674 

on cdUimtO 
dlsplay dlalog (Time m1ng of (current date)) 

end re/l..rlnNj 

Bundle up 

Flgure 23-3. 
The script of the 
My Clock script 
application 

ln Panther, you can now save both compiled scripts and script applications as application 
bundles. Bundles are the format used for alt Cocoa applications, and more recently Carbon 
applications as weiL lt is more of a fotder than an application, however-it Iooks like an 
application and behaves like one when you double-dick it, but it can be opened like a folder. 

To open it like a folder, CoNTROL-click the bundle with the mouse, and choose Show 
Package Contents from the contextual menu. 

Once you show the bundle's content, you can browse the application's fotder structure. 

Saving scripts as bundles makes much more sense with applications than with compiled 
scripts, mainly because there's no way for a compiled script to figure out its own path, 
making any use of the package's fotder structure worthless to the script (unless it is in a 
fotder known to the system through the path to command). 

Bundles can come in very handy when your script needs to use external files such as tem
plates, icons, sounds, scripting additions, or some text files containing data the script needs. 
After saving the script, place these files inside the Resources fotder inside the bundle, and 
refer to it using the path to me statement: 

set template_path to (path to me as string)&"Resources:Template.indd" 

Locking scripts with run only 
Unless you are saving your script as text, you can choose the Run Only save option to lock 
the contents of your script. Doing so will strip your script from the data it would later use 
to be decompiled and read by a script editor. 

This feature may have severe consequences: if the locked script is the only version of your 
script, you will never gain access to it, other than for the purpose of running it. lt is always 
advised to save a copy of your scripts as text for backup or you risk losing them. You 
should also consider saving scripts as run only right before deployment. 



A SCRIPT BY ANY OTHER NAME ... 

I personally never lock any of my scripts. As a consultant, I want my clients to open my 
scripts and Iook at them. All they can say is, "Wow, we better not touch that stuft!" For me, 
locking a script would be like Apple locking the containers of their computers so you 
couldn't open them. 

There are, however, some situations where saving scripts as run only is a good idea. The 
obvious reason is protecting your scripting secrets, especially if your scripts are distributed 
to a mass audience. Another reason is to prevent the users of the scripts from messing 
them up intentionally or unintentionally. 

Startup screen 
When saving a script application, you can check the Startup screen check box, found in the 
Save dialog box. The next time the application runs, the text you typed in the description 
panel of your Script Editor script window will display in a rather crude dialog box that 
resembles more of an error dialog box than a welcome window. 

Figure 23-4 shows the script's description panel, the options of the Save dialog box, and 
the dialog box displayed by AppleScript when the script application is launched. 

on ftlt..flmf() 
dlsplay dlalog (dme strlng of (currenl dale)) 

end ttlt.flm~ 

0 

All ronts 

F-tites 

ReantlyUsod 
Ch n~Me 
Ouslc 
FlxtdWidth 

Fun 

m>•nest 
Kort~,n 

Modem 

famlty 

Kino MT 

UHtl Pro 

USon9 Pro 
Ludda Bl.lddtntr 

Luclda lrlght 

Luclda Calll9raphy 

Luclda Grand• 

Flgure 23-4. You can add formatted text to the description pane in the Script Editor script window. 
This text will be displayed when the script application starts up. 

675 

tDI 



databast englne.scpt 
ftle engine.scpt 
lndulgn englne .scpt 
lnt•rf•c• englne.scpt 
pdf englne.scpt 
roportlng •nglne.scpt 

end lf 
-·····END chango 

else 
-text column 
setend of robPosltlanUst 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

678 

Once the euphoria of running your first script settles (hold on, it has been eight years and 
l'm still not over it ... ) there are a few things you can do to turn yourself from a mere 
scripter into a lean, mean, scripting machine. This chapter is dedicated to taking you 
through a few good practices that can help you turn scripting into more of a business, not 
from the business part, but more from the product-management viewpoint. When you 
script, someone benefits from your scripts financially. I get there by applying the simple 
"time is money" rule. lt is amazing that, even with the immense time savings a single script 
can account for, there are things you can do to improve things for yourself as the 
scriptwriter. 

There are no bad scripts, just bad scripters 
Weil, not really-catchy title though! What makes a script "bad" is when the scripter thinks 
of the code s/he is writing as a dead end. When you are a painter, every stroke of oil you 
put on the canvas is a dead end-it will serve the rest of its life as a part of that painting 
on that very canvas. An AppleScript statement you write, on the other hand, can be much 
more. lf you work it right, much of your code can be reused in other scripts. Any part of 
any script is a potential part for future scripts you would write. lf you feel that you spend 
a good part of your scripting time copying, pasting, and modifying script chunks from one 
script to another, you are on the right track, but on the wrong train. This chapter discusses 
some of the code optimization and other healthy scriptwriting habits that can make you a 
better scripter. 

Naming conventions 
One more sign of becoming a grown-up scripter is understanding the importance of nam
ing conventions. Usually that understanding hits you when you should have already come 
up with a system and are now struggling with the tindiehange feature in Script Editor or 
Script Debugger to try and make sense of thousands of variables you named when you 
didn't know any better. 

Before l go into detail and lay out a comprehensive naming convention system, let's Iook 
into some of the simple things you can do. 

First and foremost, you have to follow AppleScript's rules for naming variables and subrou
tines (also called identifiers). These are defined in detail in Chapter 8 and Chapter 17. These 
include not starting an identifier with a digit, and not inserting any spaces or other special 
characters. One special character that is allowed and used quite a bit is the underscore (_). 

There are in fact two main forms of naming identifiers: one is the intercap method, where 
the words are not separated, but each word starts with a capitalletter: 

totalPageCount 

or 

TotalPageCount 



HEALTHY SCRIPTWRITING PRACTICES 

The other is the underscore method, where the words in the identifier are separated by 
underscores: 

total_page_count 

ln this chapter we will assume that you know the basic naming rules defined by 
AppleScript, and that what I refer to here as "wrong" may actually be a legal variable or 
subroutine name. 

A comprehensive naming convention system 
For any type of conventions relating to AppleScript, there's one source of information I 
always go back to: Mark Munro. Mark is the founder and president of Write Track Media 
(www.writetrackmedia.com), and has created some incredible automation systems for the 
Associated Press, Sony Music, and others. Mark is obsessed with the process of script writ
ing and has dissected and categorized every aspect of his scripting process. 

Among other things, Mark has come up with the following description of his naming con
ventions for subroutines and variables. 

Naming subroutines 
Write Track Media's standards for naming subroutines are discussed in the following sections. 

Basic formula 
The basic formula for subroutine naming is as follows: 

«Group»«Entity»«Action» 

«Group»«Entity>>«Action»«Attribute» 

Group is typically the application or functional group the subroutine deals with. lf the sub
routine deals with a single application and contains code that is as generic as possible, it 
should get the application name (finder, filemaker). lf instead it deals with a single type of 
process that may involve several different applications, it should get the function name. 
For routines that are not typically open-ended enough to be harvested, I tend to make the 
group be the dient name or code to help distinguish these routines as being exclusive to 
the client's project. The primary group serving as the first part of the name helps to keep 
you thinking in a structured way, encouraging you to keep a subroutine focused on one 
primary task or function. lt also aids in sorting the subroutines when viewing them in a Iist. 

679 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

680 

The Entity (or noun) is the item or thing upon which action will be taken. This can be 
something straighttorward such as a fotder or a (ite in the Finder, a record or a database in 
FileMaker, or it can be something more complex like a department (accounting). While 
many people tend to want to put the action in the second place and the entity in the third 
place (detete fotder rather than fotder detete), l'd advise against it. Why? Sorting a Iist by 
entity first and action second makes it far easier to locate the subroutine you want. lf you 
have any questions on this, or would like to discuss it further, ask me. I can post examples 
of this issue in a separate e-mail. 

The Action is the type of processing that will be undertaken upon the Entity. 

The Attribute is an optional naming position that is reserved for identifying the attribute of 
the Entity that will be modified in a manner described by the Action. For example, you 
might say finderFotderSetNameO to denote which of the folder's properties will be 
changed. The attribute can also be an item that is further down the hierarchical chain. For 
example, you might say finderFotderCreateFile to indicate that you are going to create a 
file within the folder. The file is not really an attribute of the fotder exactly ... but this 
position in the naming formula can be used this way. 

Simple examples: 

fitemakerFietdGetDataO 

fitemakerFietdSetDataO 

fitemakerRecordDeteteO 

finderFotderDeteteO 

finderFotderOpenO 

finderltemCopyO 

finderltemDeteteO 

finderltemMoveO 

More complex examples: 

catendarDatesCreateO 

clientDataParseO 

Complex formulas 
Sometimes the preceding basic formula is not sufficient to convey alt the information nec
essary about the activity within a subroutine. Therefore, there are some additional rules to 
guide the exceptions. This is especially true with complex applications such as desktop 
publishing. With Finder or FileMaker routines, you are typically changing one attribute of 
a primary item. For example, you might change the name of a file or its file type. ln 
FileMaker Pro you might change the contents of a cell. 



HEALTHY SCRIPTWRITING PRACTICES 

ln QuarkXPress, however, you may need to change the leading of some text of a paragraph 
of the contents of a text box, etc. More Ievels of hierarchy in the Entity and Attribute 
involved require more. 

When required, you can simply add another Ievel: 

«Group»«Entity»«Action»«Attribute»«SubAttribute» 

An example of this might be quarkTextSetParagraphTabsO. 

Another example of a complex exception is a combination of items. This is somewhat 
rare but can be accommodated by simply adding a conjunction as follows
finderFolderSetNameAndLabelO. 

Remember, the idea is not to Iimit your description . . . just to make it as formulaic as pos
sible. lf you need to be more specific, just add additional words to the end of the basic for
mula-while trying to keep the basic formula intact. A crazy example might be 
quarkDocumentReplaceWordsStartingWith TECWith TECSo(tO. 

Case sensitivity 
I always make the Group (the first part) lowercase. All other parts of the name are title 
case. I avoid using an underscore to separate naming sections because it removes the pos
sibility of double-clicking the name to select it. 

Properly named subroutines: 

finderAppActivateO 

finderFolderCreateO 

finderFolderDeleteO 

lmproperly named subroutines (though legal by AppleScript): 

FinderAppActivateO 

finder Jolder _ deleteO 

FINDERFOLDERCREATEO 

Stay consistent 
lf one subroutine creates a new record in FileMaker and another creates a text file in the 
Finder, it can be helpful to use the same action term such as Create or Make. When you 
start mixing these terms, it can become a little confusing. I know, because this is one area 
in which I have had difficulty staying consistent. 

681 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

682 

Single words 
Each part of the formula should be a single ward. This is especially important with automated 
harvesting, when you want to pull out the application name, and for sorting considerations. 

Spell it out 
Avoid what I call "hyper-abbreviation." This is a remnant from the days when memory was 
limited and every byte of space was like gold. People write docChgeClrO instead of 
documentChangeColor or, worse, setrOD instead of SetTimeOfDay. Abbreviations like this 
will always come back to haunt you, since you are very likely to forget the initial meaning 
of the abbreviation. As a rule, try to spell everything out except for very common things 
that are actually lang. lf confronted with a lang ward, try using a different ward before a 
cryptic abbreviation. 

Avoid "cute" expressions 
I always try to avoid "cute" expressions. lnstead, I try to keep things very serious and pro
fessional. cdPLayThatFunkyMusicO might show your personality, but isn't cdPlayTrack 
more accurate, serious minded, and helpful to others as weil as to yourself in the future? I 
once saw a script with a subroutine called MakeHTMLWhoopieO. What the hell? 

Conclusion: 

Turn this --> into this 
setMyGroovyDesktopColorBlue() --> finderDesktopSetColor() 
MakeFileMakerRecordsSorted() --> filemakerRecordsSort() 
crunchSomeFunkyNumbers() --> numberCalculatePercentage() 

Naming variables 
Write Track Media's standards for naming variables are given in the text that follows. 

Variable naming formula 
Variables should always be named in an efficient manner without compromising a clear 
description of what the variable contains. lf a variable is too lang, it should be reworded in 
such a way so as to not lose the general meaning in a manner similar to editing a lang sen
tence. lf it is too short and will not be easily understood, it should be expanded a little. 
Most importantly, all variables should have a descriptive prefix that helps to quickly iden
tify the contents they hold or the type of window object whose name they contain. Same 
variable names require a "super prefix" to help establish their relationship to the script 
and their placement and usage within it. The basic formula for naming a subroutine is 

«Optional Super Prefix»«Prefix»«Description»«Etc» 



HEALTHY SCRIPTWRITING PRACTICES 

As with subroutine naming, lowercase the first prefix, title case the rest, don't include 
"cute" words, be descriptive without being too verbose, etc. The Description can be as 
many words as you need to describe the contents of the subroutine and can follow any 
pattern you choose. There are no current standards for how this part of the name should 
be configured besides generat brevity and clarity. 

Variable naming prefixes 

Prefixes allow you to easily distinguish the use and purpose of the variable. You can tell the 
variable's purpose simply by glancing at it. 

Primary variable prefixes 
Primary variable prefixes are used to denote the most basic type of data that is contained 
within a variable. You will find that once you start using these, you will be almost instantly 
hooked. Variables become more quickly recognized, and you can deal with your code 
more efficiently. 

bin: ldentifies variables that contain Boolean (true or false) values. 

data: ldentifies variables that contain some unknown data type, i.e., any data type. This is 
useful when receiving a value from a subroutine that could be a text string, a Iist, or a num
ber depending on the operations carried out. Typically this implies that you should check 
for the presence of certain values such as "Error" where y~u might be expecting a Iist. 

Iist ldentifies variables that contain any Iist values. While it can be used to identify lists 
containing sublists, it should not be used to denote records. 

name: ldentifies variables that contain a name of an item. 

num: Primary prefix that identifies variables containing numeric values. lf a number is con
verted to a string, this prefix should not be used. Rather, text should be used-e.g., 
textNumSeNerltems or textSeNerltemCount. 

path: ldentifies variables that contain a path to an item. Typically, for readability, this 
should take the form of pathTo«ltem» (pathToTemplate or pathToProjectFolder). 

rec. ldentifies variables that contain records. 

script ldentifies variables that contain a loaded AppleScript or script object. 

text ldentifies variables that contain any kind of text values including numbers that have 
been converted into text. path, name should be used in place of text to allow for more 
specific identification of certain types of text. 

Secondary variable prefixes 
Secondary variable prefixes are a little more specific than primary variable prefixes. At the 
moment they all deal with a more specific type of path or the path to a disk or mounted 
server volume. These are optional and can be interchanged with their primary counter
parts. 

683 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

684 

disk: A secondary type of text prefix for paths that can be used to identify variables con
taining text values indicating the path to a disk. lt should include the full path, i.e., Server 
Name:, and not just the name of the disk. This is slightly more specific than the path pre
fix, but either may be used. 

file: A secondary type of text prefix for paths that can be used to identify variables con
taining text values indicating the path to a file. This is slightly more specific than the path 
prefix, but either may be used. 

folder. A secondary type of text prefix for paths that can be used to identify variables con
taining text values indicating the path to a folder. This is slightly more specific than the 
path prefix. but either may be used. 

vol: A secondary type of text prefix for paths that can be used to identify variables con
taining text values indicating the path to a server volume. lt should include the full path. 
i.e., Volume Name:, and not just the name of the disk. This is slightly more specific than the 
path prefix, but either may be used. 

Variable super prefixes 
A super prefix is a prefix that goes in front of a primary or secondary prefix to help iden
tify additional information about the status of the variable. The remainder of the variable 
name should be formatted as if the super prefix were not present. 

c: Used for current item in any repeat statement. For example, if a variable contains the 
current item in a Iist it might be named cNameFile, cNumToProcess, or cPathToStatusFile. 

g: Used for all globals (except standard wtm template globals. which may not follow this 
standard). 

p: Used for all properties. 

db«DatabaseName»: May be used when a variable contains something relating to a data
base. The database super prefix has a slightly different rule in terms of the formatting 
of the rest of the variable. Rather than use a primary or secondary prefix after the super 
prefix, the name of the database should be used first. Then, following that, the type 
of data should be used and then the descriptor of that data. The formula is 
db«DatabaseName»«DataType»«Descriptor»-for example, dbContactsFieldFirstName or 
dbProjectsScriptBuildCatalog. At the present time, this super prefix is optional because it is 
aberrant from the normal standards. At some time in the future this prefix may be modi
fied to conform to the primary and secondary prefix requirements. 

Development variable prefixes 
dev: Used to denote a variable containing data that is only used when in development 
mode and should not be accessed or used in any way for the final release of a solution or 
product. 



HEALTHY SCRIPTWRITING PRACTICES 

Script templates 
Script templates are scripts you don't create from scratch, but rather from starter scripts 
that include basic code. 

No one can create AppleScript templates for you-in order to fit your needs they have to 
be created by you and perfected over time. lf you only sit down to create a template and 
can only come up with a few lines of basic common items, then this is alt you need for 
now. The idea is that items you add to your template are added because System Events 
have a need for them. 

Some items that can be useful in your templates are generat global variables and proper
ties. I have properties such as mainJolder and debug in my template. Your template can 
also include either subroutines or the Ioad script statement for loading your script library 
or libraries. 

As time goes by, you will develop a few templates for different needs. 

Storage solutions 
Using global variables and properties in your scripts is power you should not abuse. ln 
small scripts it may not be an issue, but as your scripts grow, the use of properties and 
global variables will cause your scripts to become entangled: you will either forget that a 
certain variable you use is global. or try to move a subroutine to another script and realize 
that you can't because it uses a global variable or property that you first have to isolate. 
Think about script properties as properties of the script, not a convenient method of pass
ing values (or not having to) between subroutines. Even if a few of the subroutines in your 
script make use of the same variable, it still does not make it a candidate for a property or 
global variable. lt may be a property of those few subroutines, and if it is, you should get 
them alt into a separate script file and Ioad them as a script object using the Ioad script 
command. Once these subroutines are isolated and have their own secret society, they can 
have their own properties inside that script object. 

lt's also important to realize that the values of global variables and properties are saved 
when the script quits and are read again when the script launches again. lf you store !arge 
lists or !arge script objects in global variables or properties, they can slow down the load
ing and quitting time of your script, and also bloat its size. 

Separate functions from commands 
This may sound funny, but the commands are not really the script's function. Getting din
ner ready is the function; then one of the commands is put pasta in pot. Big functions such 
as make dinner should be written as a series of subroutines calls, not applications com
mands. Furthermore, complex scripts should be broken down into two or more Ievels of 
subroutines, like this: 

685 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

686 

on make_dinner() 
make_pasta() 
buy_icecream() 
serve_food() 
eat() 

end make dinner 
on cook_pasta() 

boil water() 
cook_pasta() 
make_sauce () 
strain_pasta() 

end cook_pasta 
on make_sauce() 

cut mushrooms () 
cut vegs() 

end make sauce 

ln the preceding example, you can see how each subroutine is not littered with details; 
instead it gives an overview in the form of subroutine calls. Each subroutine Ievel contains 
just enough details to show a clear objective and steps, but if there are too many details and 
actual application teil blocks, then you may not be able to see the script for the statements. 

Commenting scripts 
You don't comment scripts in case some other scripter opens them a few years from now. 
You comment your script so that when you open it a few months from now you won't 
have to rack your brain trying to figure out what that absolutely brilliant code that doesn't 
seem to work anymore actually meant. 

For me personally, discipline and organization came with a great deal of pain and took a 
long time to be ingrained in my scripting, but I can say that I have been sloppy and I have 
been disciplined, and disciplined is better. I feel much better not wasting time dealing with 
my own scripts that I can no Ionger understand, descriptive variable names that don't 
make that much sense a month later, or rationale behind a certain subroutine. 

Comments can seem to be dumb: 

--This subroutine cleans blank data cells from the data for the page. 

or 

--This subroutinewas create to prevent files from being created if 
--the job is old 

But man, you can seem much dumber to yourself when you can't understand your own 
code, which happens quite often. 



HEALTHY SCRIPTWRITING PRACTICES 

Another important type of comment is one that dates itself. Every time I go back to an old 
script and make an adjustment, I comment out a copy of the old code, and add a visible 
comment such as this: 

--•••-- Changed by Hanaan on 4/12/2004. Reason: include date in 
-- report file name. 

This leaves a trail of evidence for what was a part of the original script and what other 
statements were added later on. 

Literat expressions can bring you down 
(dramatization) 

Even if you're certain that a specific value in your script will never change, you should still 
not embed it directly into the operations or statements it is used in. This will make your 
scripts much less debugging friendly. lnstead, just before the operation the value is used 
in, assign it to a descriptive variable name. 

Enhancing performance 
john Thorsen of TECSoft, the original AppleScript training company (www. tecsoft.com), 
claims that the value AppleScript automation adds to any workflow is so drastic that the 
actual speed in which the script runs doesn't really matter. After all, does it really matter if 
the process that used to take 3 hours takes 20 seconds or 30 seconds? 

While this is true, some scripts do need to perform as fast as possible, since after a while, 
people start comparing them to how fast they are, not how fast the manual process was. 
People forget quickly ... 

For instance, a script that processes jobs in a queue can process that many more jobs an 
hour if it is made to run faster. 

Following are some things to consider when trying to speed up your scripts. 

OS X, baby! 
lf you're still limping along with OS 9, you are running scripts stower than you could. I 
know that there are many other considerations for upgrading the OS, but if you're looking 
for reasons to upgrade, then you should know that due to the tighter integration of 
AppleScript in the OS, your scripts are likety to run faster on OS X. 

687 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

688 

Who's on top? 

One of the first considerations in the endless search for a faster script is which application 
is in the foreground and background. 

The rule of thumb is that applications for the most part run faster when they are not the 
foreground application. When applications run in the background, the OS doesn't feel the 
need to update their display and other Ul-related events that don't change the result of 
the script, but can slow down your script. 

So if the application you're targeting is in the back, which application should be the active 
application? Your script application, if you're using one. Activating your script using the tell 
me to activate statement can speed things up quite a bit. 

Faster syntax 

There are a few script writing methods that can help speed up your code: 

Adding items to lists 
When you have a Iist and you want to add an item to it at the end, you can do it in two ways. 

One way: 

set the list to the list & the item - - -
The other way: 

set end of the list to the item - -
Since adding items to a Iist usually happens multiple times inside a repeat loop, it is impor
tant that you realize the implication of the method you choose. 

ln the first way, adding items will take a bit more time, but the Iist will be cleaner, and 
working with it later on will be faster. The second method, where you tack on items to the 
end of the Iist, allows you to add items to a long Iist very quickly, but the Iist items will be 
scattered in memory and using the Iist will be slower. 

Using every ... whose vs. looping 
Chapter 21 discusses using the whose clause when fittering objects in applications. Using 
the whose clause instead of Iooping through objects can add a real time boost to the script 
execution. 

lmagine the following: 

Script 24-1 

tell every file whose name starts with "job" 
set label index to 2 
move to folder "jobs" 

end tell 



HEALTHY SCRIPTWRITING PRACTICES 

instead of this: 

repeat with i from 1 to (count files) 
if name of file i starts with "job" then 

set labe! index of file i to 2 
move file i to folder "jobs" 

end if 
end repeat 

Exit looping after a result is gotten 
While some repeat loops are meant to go through every item in a Iist or object in an appli
cation, the function of some repeat loops is to find a specific item or object and move on 
after it is found. 

lf this is the case, use the exit repeat statement to exit the loop right after you found the 
information desired. 

ln the following example, the repeat loop Iooks for a match in the Iist and returns the 
index in the Iist of the matehing item: 

Script 24-2 

repeat with i from 1 to (count the_list) 
set the_item to item i of the_list 
if the_item is equal to the_other_item then 

set item index to I 
--mission accomplished! 
exit repeat 

end if 
end repeat 

Reduce application interaction 
One thing that slows AppleScript down is interacting with applications. While we can't 
eliminate this interaction altogether, we can try to Iimit it. We do that by getting as much 
data from the application as we can in one visit, and then parsing that data in AppleScript. 

For example, when working with Excel, get the value of an entire range of cells and then 
loop through them and process that data in AppleScript, instead of going to Excel for the 
value of each individual cell. 

Using subroutine libraries 
Possibly one of the most efficiency-boosting practices you can follow is collecting subrou
tines in library files and loading these libraries into your other scripts. Libraries aren't spe
cial files, so you will not find a "Library" file format in the Save dialog box. A library is 
simply a compiled script that usually has no run handler, only subroutine definitions. You 
then use the Ioad script command to Ioad the file with the subroutine definitions into 
other scripts, which gives you access to alt their subroutines. 

689 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

690 

Many little chunks 

How you organize your scripts' code can help you make it more reusable and more effi
cient. One of the best ways to organize scripts is by means of subroutines. 

The more of your scripts that are made of many subroutine calls instead of long, drawn
out conditional Statements, repeat loops, and tell blocks, the better. Subroutines are really 
AppleScript commands that perform several smaller AppleScript commands, but are 
already tested and will always work. Using the same subroutines in multiple scripts can 
save you a Iot of time. 

When you write any script, you should always be asking yourself if the actual functionality 
you're scripting, as small or large as it may be, can be used somewhere else in any future 
scripts. lf yes, give it a name and declare a subroutine-it's a bit more work, but will pay 
for itself many times over. · 

Loaded at the start and out of the way 

lf you use many subroutines in your scripts, you may want to dump them alt in a separate 
file and Ioad them in. The main consideration for this process is where these external files 
should be kept so that your scripts can find and Ioad them every time. Other than that, 
using handlers stored in script objects is really a snap. 

Creating and managing your own script libraries 

Once you get over the initial mental barrier of using script libraries, you will want to facil
itate their use. 

As mentioned previously, the most important aspect is where those files should live. The 
two main options here are whether each script should be using its own set of libraries, and 
you should duplicate alt your library files for each "system" or find one place on the Mac 
where alt script libraries are shared by alt scripts. 

Even though it is more efficient to have a global set of script libraries, it may be easier to 
start out by having each "system" use its own set. This decision also has a Iot to do with the 
scope of your projects. ln my line of work, I create a few large systems for large clients, so 
for me it makes sense to have a separate libraries fotder for each system. However, if 
you work for the one company that will be using your scripts, it may be smarter to store 
alt your subroutine libraries in the Application Support folder, the ScriptingAdditions 
folder, or anywhere else that can be accessed with the path to command. 

Load objects upfront, keep in properties 

Loading a large number of handlers can be a bit time consuming. What you may want to 
do is have the scripts that are using the library Ioad them into script properties. Then, 
every time you run the script, you will only have to Ioad these scripts if the property that 
holds them is empty. 



HEALTHY SCRIPTWRITING PRACTICES 

Empty values: there are a few ways in AppleScript to indicate an empty vari
able: null, missing value, or forstrings and lists you can use "" and fl. 

Keep on top of things: Code buried in script objects 
can be time consuming 

Once you have multiple scripts calling subroutines that are buried in other script files, and 
these subroutine calls are embedded in lengthy repeat loops, you may want to watch out 
that you don't lose track of your subroutine calls. lt is fairly easy to forget a benign sub
routine call inside a loop, which then loops itself a few times, and in the process causes the 
script to complete thousands of unnecessary operations. 

Feedback 
Most people who will run your scripts are used to performing small commands and getting 
instant feedback from the Mac. Running a script that takes more than ten seconds without 
knowing if it is still working or not can be frustrating. Your scripts must keep even the 
most anxious user informed. 

Keep the users informed 

With scripts that are taking Ionger than one minute to run, which is rarer now that both 
AppleScript and the Macs it runs on are so much faster, your users may get agitated if the 
only feedback they get from your script is the occasional color wheel and a "done" dialeg 
message at the end. 

The best thing to do is create a little face-only application in Studio, as explained in 
Chapter 12, to be used by your script for the sole purpese of telling the user what generat 
process the script is going to. Time your processes in a way that the message updates every 
one to two seconds. 

This way, instead of the users thinking, "This is taking so long," they are finally made aware 
of the sheer volume of things the script is doing for them. 

The following script is a quick way to display a dialeg box over the process that happens in 
a different application: 

Script 24-3 

tell application "System Events" 
activate 
ignoring application responses 

display dialog "Moving files to server .•. " giving up after 3 
end ignoring 

end tell 

691 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

692 

Timing scripts 

You may want to make a habit of timing portions of your scripts. This can come in handy 
in finding and fixing hang spots. 

Timing scripts is easy. At the point in your script where the "stopwatch" should start, add 
the following line: 

set start timer to current date 

Then, at the end of the timed process, use this line: 

set run_time to (current date) - start_timer 

lt always makes a good impression to display the number of seconds a script took to run, 
especially if the process has been recently done manually. 

Delivering scripts to other sites 
Things can change dramatically once your children leave home. Managing scripts in other 
locations can be a drag, especially when they break for any reason, and your only source 
of information is a person with a distinct inability to form meaningful sentences. 

ln this case, a program like Timbuktu can be a real lifesaver; you can log in remotely and 
see the problern for yourself. 

When this is not possible, you will want to make solid arrangements regarding the support 
of your off-site scripts. Following are a few tips. 

Managing script preferences that the user can change 

While writing scripts for other people to use, you have to always keep in mind that some 
of the values you defined in your script will be subject to change. Font names, type sizes, 
fotder paths, user names-the Iist goes on. 

There are a few ways to manage these script user preferences. Pieking the format that 
works for you has to do with the frequency of the changes and the savvy of the users. 

For not-so-savvy users who need to change settings more frequently, you can use a dialog 
box startup screen. Every time the script starts, a dialog box is displayed letting the user 
know what is about to happen. The dialog box sneaks in a button called "Settings" that, 
when clicked, takes the user through a set of dialog boxes with text input or buttons that 
account for the different settings they can change. These settings are then stored in prop
erties for the next time the script runs. This is useful also for the first time the script runs 
when the user may have to initialize a few values. 



HEALTHY SCRIPTWRITING PRACTICES 

The option for sawier users with scripts that may need to change every few months is to 
simply place the well-named properties at the top of the script and teach those users how 
to open the script and change these properties. 

Updating and upgrading your solutions 

One aspect of deploying script solutions in other location or multiple systems that can 
become a nightmare is version control. Keeping track of script versions to track updates 
and system disparity can be challenging, and there is room for many things to go wrong. 

One thing that you have to do when version control becomes an issue is to sit down and 
work out a simple system for dealing with it. 

Should you lock your code? 

Locking your AppleScript code is done by saving your scripts as run only. They can still run 
and be loaded into other scripts, but they can never be opened. 

There are two reasons for locking scripts: the first is to protect clients from themselves. lf 
they can't open the scripts, they can't mess things up, and give you the work you dread most. 

The other reason for locking your scripts is to protect your code from unauthorized 
access. There is nothing that prevents any scripter at the installed location from opening 
your scripts and copying your subroutines into his/her own scripts. 

Nevertheless, I always leave my scripts unlocked. Yes, I do have clients who like to poke 
around in them, but I just explain the possible consequences, and they usually do it on a 
separate machine designated as a test environment. Another benefit it can give me is that 
I can use a person as a remote-controlled AppleScripter to help me fix scripts on site when 
they break. Besides, l'm an open source guy. Sharing code is what makes the AppleScript 
community so great, and I want to be a part of that. lf someone can open my scripts and 
actually learn something, more power to them. Of course, there's that whole competition 
thing, but really, what are the chances that a script I wrote will be used against me if it falls 
into the wrong hands? ln my eyes this is a very unlikely hypothetical situation. 

You may also use a combination by locking your generat cache of subroutines and leaving 
the main scripts unlocked for easy access. 

Adding a debug mode to your scripts 

One trick that can help you debug scripts from afar is making up your own debug mode. 
There are two reasons for running a script: to get things done with it (which is the reason 
why you wrote it in the first place), or to debug and fix it. There are several steps you may 
want the script to go through while debugging that you wouldn't want it to go through 
while doing live work. 

693 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

694 

You can facilitate this debug mode with a Boolean property called something like debug. 
Any part of the script that should only run while debugging can be conditional on the 
debug property being set to true: 

or 

if debug the log myVariable 

if debug then 
set log_text to "Now running subroutine 'main_process"' 
log_to_file(log_text) 

end if 

The debug property can be either set manually inside the script or externally. Earlier we 
discussed a settings button in a greeting dialog box for your script. Asking whether the 
user wants to turn on debugging can be one of the settings indicated there. 

Creating detailed text logs 
One of the debugging Operations I like to use in my scripts is the creation of a detailed 
runtime log. Every few operations I write a little blurb to a file describing the current posi
tion of the script. I later have the clients e-mail me that log file, which I use to quickly 
determine where the script had an error. 

Wrap-up 
Getting to be an experienced scripter is a funny thing: the more I work with AppleScript, 
the slower and more deliberate I become at writing the scripts, but due to that the systems 
I create are more solid and thought-out. I used to rush into things by writing scripts, but 
now I jot down diagrams and flow charts before I even get to the script editor. 

Furthermore, I can appreciate the time I spend on writing better scripts when I have to 
refer to some of my older work. lt spreads out on a sort of an evolutionary timeline, with 
older scripts looking a bit childish and "bad habits" slowly disappearing from them the 
more current they are. 

The takeaway from here is that it's OK to take your time and plan things out as soon as you 
feel on top of things enough to do so. Channel your new-project excitement not through 
writing new code but through figuring out the best way to lay out that code and what 
things did or did not work for you in the past. Soon enough, this by itself will become the 
exciting part of the project. 



When: Thuraday. April 29. 2.004 10.00 AM-1 
(US & Canada). 

Where:Meedng room 12,6111 ftoor 

·-·-·-·-·-·-·-·-·-· 
Weekly meedng 10 assess prognw. 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

698 

ln OS X's first year or two of existence, things were a bit hectic. Apple Computer was in the 
midst of its largest OS rollout ever, and it was scrambling to get applications out to hungry 
users. Us AppleScripters, we were just happy that AppleScript was going strong in OS X 
and improvements were made on a monthly basis. What we didn't like so much was that 
none of the shiny new applications called iApps were scriptable. Now, a few years later, 
things have changed for the better: not only are iTunes, iPhoto, iCal, Mail, and Address 
Book are all scriptable, but the implications are that scripters now have access to the data
bases used by Apple to manage contacts, music, and mail. 

The subject of this chapter, as you can imagine, could fill its own little book. Therefore the 
intention here is not to cover every aspect of scripting Apple's applications, but rather to 
give you a solid start in scripting the five most important ones: iTunes (and the iPod), 
iPhoto, Mail, Address Book, and iCal. 

iTunes + iPod 
Starting with version 3, iTunes became a scriptable application with a solid dictionary and 
a fine object model describing tracks and various playlist types. 

Scripting iTunes falls under two categories: maintenance scripts and usability scripts. 
Maintenance scripts are great for using every so often to clean up your library and man
aging your tracks and playlists. With the ability to have thousands of tracks, some from 
CDs, some from the music store, and some, weil, from less respectable places, AppleScript 
can be a saving grace when you want to organize the iTune part of your life. 

The other type of scripts can help you enjoy music on a day-to-day basis. You can easily 
create little AppleScript Studio utilities that control iTunes and perform tasks that would 
require several steps in the iTunes interface. 

Examples from Apple 
As always, you can find related sample scripts on Apple's AppleScript web page. Go to 
Apple. com/applescript, dick scriptable applications, and then dick iTunes. You will find a 
collection of about 30 scripts you can use and mainly open up and learn from. 

iTunes scriptable objects 

iTunes has a well-designed object model, a quality that can make scripting a given applica
tion easier. When examining the iTunes dictionary, you will see that there are more objects 
than commands, which is also an attribute of a well-crafted scripting environment. To 
complement how we think about music organization in general, iTunes has two main types 
of objects: playlist and track. Most other object types are variations of these two. ln fact, 
there are five types of playlists and five types of tracks. 

Before accessing these known goodies, you will have to go through an object cla~s known 
as source. The source you will work with most is the library source. ln the library source 
you will find your playlists and in there, your tracks. 



SCRIPTING APPLE APPS 

Other sources may be very useful as weiL lf an iPod is connected to your Mac, for exam
ple, it becomes its own source with playlists and tracks. Some other source types are audio 
CD, MP3 CD, and shared library. 

The library source, however, doesn't have direct access to all your tracks, as you may imag
ine: these tracks, which amount to every track iTunes is aware of, are elements of a special 
playlist named Library as weiL So, in order to work with a particular track that is not part 
of what iTunes defines as a user playlist, you will have to go through the special playlist of 
type library playtist, called "Library." ln the following example we play a random song from 
the library: 

tell application "iTunes" 
play some track of playlist "Library" of source "Library" 

end tell 

Source Library has many playlists, which include your user playlists, but it has only one playlist 
of the subdass library playlist. That means that the following script would work as weil: 

tell application "iTunes" 
play some track of library playlist 1 of source "Library" 

end tell 

Working with tracks and playlists 

One action you can't perform in iTunes is create a track. For that, you will have to wait 
until GarageBand is scriptable. You can, however, create new playlists. To add tracks to a 
playlist, you don't use the add command, but rather the dupticate command. The add 
command is used to add song files to the library or directly to a playlist. 

The following script allows the user to type in a keyword. lt then creates a new playlist 
based on that word, and duplicates (adds) to that new playlist every track whose name 
contains that keyword. 

As an example, I used the word "Yellow." See Figure 25-1 for the resulting playlist. 

Script 25-1 

display dialog "Enter a key word" default answer "" 
set track_criteria to text returned of result 
tell application "iTunes" 

set my_playlist to make new playlist 
set name of my_playlist to "Songs with " & track criteria 
tell playlist "Library" of source 1 

duplicate (every track whose name contains track_criteria) ~ 
to my_playlist 

end tell 
end tell 

699 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

700 

6:45 Rlckle L .. )OIIH 

3 SOflliS. 11.6 minutts, 13.5MB 

Flgure 25-1. The playlist created by the preceding script 

Scripting the equalizer 

iTunes allows us to control the equalizer using AppleScript. The equalizer contains proper
ties for each one of the 12 bands, and one for the preamp, which is the leftmost slider in 
the equalizer. 

Although it could be nicer if every band in the equalizer was an element of the equalizer, 
it makes sense to have them as properties since the number of bands can't change from 
one preset to the other. 

The following script will be music to your ears, especially if you value alternative forms of 
music. lt will, until stopped, change the bands of the manual equalizer preset to random 
numbers from -12 to 12. 

Script 25-2 

tell application "iTunes" 
activate 
set current EQ preset to EQ preset "Manual" 
repeat 

tell EQ preset "Manual" 
set preamp to random number from -12 to 12 
set band 1 to random number from -12 to 12 
set band 2 to random number from -12 to 12 
set band 3 to random number from -12 to 12 
set band 4 to random number from -12 to 12 
set band 5 to random number from -12 to 12 
set band 6 to random number from -12 to 12 
set band 7 to random number from -12 to 12 
set band 8 to random number from -12 to 12 
set band 9 to random number from -12 to 12 
set band 10 to random number from -12 to 12 

end tell 
end repeat 

end tell 



SCRIPTING APPLE APPS 

iPod scripting 

No, the iPod is not scriptable. Apple does provide some iPod-related scripts from its web
site, but most of these simply help manage the iPod notes, etc. 

iTunes' iPod-related command is the update command, which updates the track contents 
of a connected iPod. 

As discussed previously, when an iPod is connected to your computer, iTunes regards it as 
another source. 

Mail 
Scripting Mail can be fun, but also a bit frustrating due to the obvious omission of certain 
functions, such as accessing attachments. 

The structure of Mail's object model is very simple: we have accounts, mailboxes, and mes
sages. Each account has mailboxes, and mailboxes can contain both messages and other 
mailboxes. 

This script lists the mailboxes of the first account: 

tell application "Mail" 
return name of every mailbox of account 1 

end tell 
--> {"INBOX", "Drafts", "Sent Messages", "Deleted Messages", "Junk"} 

Mailbox es can also be elements of the application itself without having to beleng to a spe
cific account. Any mailbox in Mail that is created "on your Mac" can be accessed directly, 
like this: 

Script 25-3 

tell application "Mail" 
tell mailbox "lists" 

tell mailbox "applescript-users list" 
count messages 

end tell 
end tell 

end tell 

Unlike the account dass, which can be manipulated quite a bit with AppleScript, the 
mailboxdass contains only one writable property, which is name. The account dass allows 
you to manipulate the account attributes set in Mail's account preferences. 

701 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

702 

Referring to a message 

To get information from a message, you have to specify its account and mailbox. let's say 
that l'm canceling my e-mail account with my service provider. I will want to notify every 
person who sent me mail to that address. Here's how I cail get a Iist of their addresses: 

Script 25-4 

tell application "Mail" 
tell account "Flybynight.net" 

tell mailbox "INBOX" 
set address_list to sender of every message of it 

end tell 
end tell 

end tell 

lf the message is in the "On your Mac" special account, you can just use the mailbox path 
without specifying the account, like this: 

Script 25-5 

tell application "Mail" 
tell mailbox "lists" 

tell mailbox "applescript-users list" 
count messages 

end tell 
end tell 

end tell 
--> 12374 

Creating a message 

Creating a message is pretty straightforward; you use Mait's dictionary to figure out the 
different properties, and assign their values in the newty created message. Foltowing is an 
example of a script that creates a new e-mail message: 

Script 25-6 

set the_subject to "Hello there" 
set the_body to return & "Please read the attached file" 
set the_file_path to (choose file) 
tell application "Mail" 

set new_message to make new outgoing message ~ 
with properties {subject:the_subject, visible:true} 

tell new_message 
set content of it to the_body 
--add recipients 
make new to recipient at end with properties ~ 

{name:"George", address:"george@cox.net"} 
make new cc recipient at end with properties ~ 

{name:"Georgia", address:"georgia@cox.net"} 



SCRIPTING APPLE APPS 

--add attachment 
tel! first paragraph of content 

make new attachment at end with properties ~ 
{file name:the_file_path} 

end tel! 
end tel! 

end tel! 

The preceding message has two recipients. Although recipients is a dass, when we add 
recipients to a message we have to specify if they are to, cc, or bcc recipients. 

Notice that when we create the attachment, we point at the first paragraph. This is 
because the attachment dass is not an element, but rather a text item. lt is used primarily 
for creating new messages, and not for manipulating attachments that are part of existing 
messages. A bit clunky, but it works. 

Message headers 
For some, message headers are the inexplicable gibberish text that appears above any 
e-mail message you get. For others, it is a treasure of information, tracing the e-mail mes
sage path from its origin, through each mail server. all the way to its destination. Apple 
made a nice effort to break each header into its own element, giving you fairly clean 
access to the information. 

One thing you can extract from headers, if you care to, is the IP addresses of the different 
servers the message traveled through. 

To do that, you first have to get a Iist of all the headers, and then parse out the lP address 
from the content of each header. 

Here is how it can be done: 

Script 25-7 

tel! application "Mai!" 
set the_message_selection to selection as !ist 
set the_message to item 1 of the_message_selection 
tel! the_message 

set header_list to content of every header of it ~ 
whose name is "received" 

end tel! 
end tel! 
set ip_address_list to {} 
repeat with header_text in header_list 

set ip_address to extract_ip(header_text) 
set end of ip_address_list to ip_address 

end repeat 
set text item delimiters to return 
set ip_address_list to ip_address_list as string 
set text item delimiters to "" 

703 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

704 

display dialog "This message visited the following IP addresses:" ., 
& return & ip_address_list 

on extract_ip(header_text) 
set ip_start to (offset of "(" in header_text) + 1 
set ip_end to (offset of ")" in header_text) - 1 
set ip_address to characters ip_start thru ip_end ., 

of header_text as string 
if ip_address starts with "[" then 

set ip_address to characters 2 thru -2 of ip_address as string 
end if 
return ip_address 

end extract_ip 

String utilities 

For your convenience, Mail's dictionary includes two string-related commands that can be 
very helpful when you need them. These are extract name from and extract address from. 
These commands will accept a full e-mail address containing the full name and the address 
in brackets (<>). Here are two examples of how they work: 

set the_full_address to "Mickey T. Mouse <mickey@disney.com>" 
extract name from the_full_address --> Mickey T. Mouse 
extract address from the_full_address --> mickey@disney.com 

Address Book 
One of the hidden jewels scripters got with OS X is the ability to script Address Book, the 
contact management software. The reason why it is so nice is that we get access to the 
operating system's contact database. This database is used by other Apple applications such 
as Mail, and is open to any developer who wants to make use of it, including you and I. 

What makes Address Book scripting so nice is the well-structured object model, which 
reflects the database structure itself. The structure of the object model in Address Book is 
open and flexible. lt does not Iimit you to a specific number of addresses or phone num
bers per person. lnstead of numbers and addresses being properties of the person, they 
are elements. As you are aware of, properties have to be predefined, while we can add as 
many elements as the application allows. 

The main entry in Address Book is a person. A person may have contact info elements and 
address elements. 

Contact info elements are phone numbers, e-mails, related people, and other type of con
tacts that can be described in a label-value pair. For instance: 

Work phone: 401-555-1212 



SCRIPTING APPLE APPS 

The Iabel is Work phone and the value is 401-555-1212. 

Addresses are similar, but contain more specific properties such as city, state, etc. 

This structure allows the Address Book to contain entries without any phone number but 
with three e-mail addresses, and others with no e-mails, but several phone and fax num
bers, and any mix in between. 

ln the script that follows, I created a little utility that allows you to quickly Iook up contact 
information by a person's first or last name. The script taps the contact database structure 
and only shows the available phone numbers and e-mail addresses. 

The script will start by letting the user pick a character from the alphabet. Then it will get 
the full name of all entries in the Address Book database whose either first or last name 
starts with the chosen character. 

Once the name was chosen, the script will show the e-mail and phone numbers of the 
chosen contact, and create an e-mail message for that person if the user wants. 

Let's Iook at the complete script and then dissect it line by line: 

Scrlpt 25-8 

1. set character_list to characters of ~ 
II ABCDEFGHIJKLMNOPQRSTUVWXYZ" 

2. set chosen_character to (choose from list character_list) as string 
3. set name_list to {} 
4. tell application "Address Book" 
5. tell (every person whose last name starts with chosen_character) 
6. set name list to name list & name of it - -
7. end tell 
8. tell (every person whose first name starts with chosen_character) 
9. set name_list to name_list & name of it 
10. end tell 
11. end tell 
12. if name_list is {} then return 
13. set chosen_name to (choose from list name_list) as string 
14. tell application "Address Book" 
15. tell (every person whose name is chosen_name) 
16. set chosen_person to item 1 of it 
17. end tell 
18. tell chosen_person 
19. set email_label_list to label of every email 
20. set email_value_list to value of every email 
21. set phone_label_list to label of every phone 
22. set phone_value_list to value of every phone 
23. end tell 
24. end tell 
25. if email_label_list is {} and phone_label_list is {} then 
26. display dialog "The contact you selected has no email or phones" 
27. else 

705 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

706 

28. set the_message to "Contact information for " & ..., 
chosen_name & ":" & return 

29. if email_label_list is not {} then 
30. repeat with i from 1 to (count email_label_list) 
31. set the_label to item i of email_label_list 
32. set the_value to item i of email_value_list 
33. set the_message to the_message & the_label & ..., 

" email: " & the_value & return 
34. end repeat 
35. end if 
36. if phone_label_list is not {} then 
37. repeat with i from 1 to (count phone_label_list) 
38. set the_label to item i of phone_label_list 
39. set the_value to item i of phone_value_list 
40. set the_message to the_message & the_label & ..., 

" number: " & the_value & return 
41. end repeat 
42. end if 
43. end if 
44. if email_label_list is {} then 
45. display dialog the_message buttons {"Thanks"} default button 1 
46. else 
47. display dialog the_message buttons {"e-mail", "Thanks"} 
48. if button returned of result is "e-mail" then 
49. tell application "Mail" 
so. activate 
51. set newMessage to make new outgoing message ..., 

with properties {visible:true} 
52. tell newMessage 
53. make new to recipient with properties ..., 

{name:chosen_name, address:item 1 of email_value_list} 
54. end tell 
55. end tell 
56. end if 
57. end if 

After the user picks a Ietter from the alphabet, the script needs to create a Iist of names 
that start with that Ietter. This is done in two steps; in lines 5 through 7 the contacts whose 
last name starts with the Ietter are added, and in lines 8 through 1 0 the names that start 
with the first name are added. 

ln the Address Book dictionary, the person dass has several name-related properties 
assigned to it: first name, middle name, last name, nickname, maiden name, and then pho
netic first, middle, and last names. That makes nine different name options; better safe 
than sorry, I guess. Actually, there are only eight name-related properties you control. The 
property name is a read-only property that is comprised of the first, middle, and last name 
properties. 



SCRIPTING APPLE APPS 

Once we collect the Iist of names, the user gets to pick the one s/he wants. That happens 
in line 13. 

ln lines 15 through 17 we get the reference to the person based on the full name the user 
picks from the Iist. Note that if there are two identical names, the script will arbitrarily pick 
the first one. just make sure you fix that little issue before you package this script and seit 
it as shareware. 

Once we assign the person to a variable, we can collect the phone numbers and e-mails 
assigned to that person. As we've seen earlier, the contacts database is a simple relational 
database in which the phone numbers and e-mail records are related to the person 
records. 

Since we need both the Iabel and the value of the e-mails and phone numbers, we collect 
both. This is done in lines 18 through 23, where we create two sets of Iist pairs: one pair is 
the e-mails Iabellist and the e-mail values Iist, and the other one has the phone Iabel and 
values Iist. The Iist pairs are only virtual, of course. The way the script is structured ensures 
that the e-mail Iabels Iist has corresponding items to the e-mail value Iist, but the lists 
themselves are completely independent. 

Between lines 29 and 43 we collect the data for the string variable we call the_message. 
This variable will be used to display the collected information to the user. 

At the end, if the script has detected one or more e-mail addresses, it will display a dialog 
box that has an email button. lf the user dicks that button, the script will create a new 
e-mail message in Mail with the selected person's e-mail address. 

iCal 
The next iApp I will cover is iCal. iCal also has a small but well-crafted scripting dictionary. 

ln iCal we have calendars that can have to-do's and events. A to-do is a simple object with 
mostly a completion date, a due date, and a summary. Events, however, are more complex. 
Unlike to-do's, members of the event dass can have their own attendee and various alarm 
elements. 

Calendars in the iCal dictionary correspond to the different named calendars you can 
specify in iCal. Each calendar has todo dass elements and event dass elements. ln iCal's 
window, you can identify which events belong to what calendars by their color. 

While iCal can have multiple calendars, they areoll seen, by de(ault, in the same 
calendar window. 

707 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

708 

Calendars 
The calendar dass is the core element of the iCal application. Any event you want to 
manipulate or create has to belang to a calendar. 

To create calendars in iCal, you have to explicitly specify where you want the new calendar 
created. 

Result: 

tell application "iCal" 
make new calendar at end of calendars ~ 

with properties {title:"Sports"} 
end tell 

calendar 9 of application iCal 

The calendar dass's title (there is no calendar name property) is the only property that is 
not read only. 

You can set the tint property of the calendar, but it will have no effect. 

Events 

As you can imagine, one of the most useful dasses in iCal is the event dass. Events are 
what make the calendar useful in the first place: dinner party Tuesday at 6, sales meeting 
Friday at 3:00 to 4:30 p.m., etc. 

The event dass has a few obvious properties such as start date and end date, both of which 
accept AppleScript's date value. You can also set the summary to the text you want dis
played in the iCal window. 

Following is a simple script that creates a new event and assigns it a few basic properties: 

Script 25-9 

tell application "iCal" 
tell calendar 1 

set new_event to make new event at end of events 
tell new event 

set start date to date "Monday, May 3, 2004 4:00:00 PM" 
set end date to date "Monday, May 3, 2004 4:30:00 PM" 
set summary to "Feed ferret" 
set location to "Providence" 
set allday event to false 
set status to confirmed 
set recurrence to ~ 

"FREQ=DAILY;INTERVAL=2;UNTIL=20040531T035959Z" 
end tell 

end tell 
end tell 



SCRIPTING APPLE APPS 

Let's Iook at the four event properties set in these examples. 

The first two properties are start date and end date. These are probably the most impor
tant properties that define the date and time boundaries of the event. 

The summary and location properties are two strings that provide information about the 
event. 

The event's status property can be none, confirmed, tentative, or cancelled, and the all-day 
event's value is a Boolean that determines whether the event appears as a single-day block 
or as a multiday banner that can be stretched around in the iCal Ul. 

The recurrence property is where Apple engineers could have definitely spent more time. 
Right now, as of iCal version 1.5, the recurrence property is an ugly string that includes 
information about the recurrence frequency, intervals, and duration of the event's recur
rence. lt also has a bug that makes the property appear with a colon at the start, but this 
can be ignored. Here is an example of the string again: 

FREQ=DAILY;INTERVAL=2;UNTIL=20040531T035959Z 

The string has three properties in it, which are shown next along with their possible values. 

Frequency 
Represented with FREQ, this can be followed by the value DAILY, WEEKLY, MONTHLY, or 
YEARLY. 

Interval 
lf the frequency is set to DAILY, for instance, INTERVAL specifies how many days between 
event occurrences. ln the preceding example, the intervals are 2, which means that the 
feed ferret event will recur every two days. 

Duration 
Duration can either be the word "UNTIL" followed by a funny date-time string, or the word 
"COUNT' followed by the number of occurrences that will happen before the event repe
tition expires. ln the example I used the following UNTIL value: 20040531T035959Z. lt 
means that the event will stop recurring on May 31, 2004 at 3:59:59 PM. lt appears that the 
time in the UNTIL portion of the string is always one minute to four. 

An UNTIL duration of -1 indicates that the event never expires. 

Event elements 
The event dass can have elements of its own. An event can have attendees, and four types 
of alarms: open file alarm, sound alarm, display alarm, and mail alarm. We will not get into 
these in detail right now, but the script in the next section should shed some light on their 
use and creation. 

709 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

710 

New event based on Mail 

ln this sample script we will parse an e-mail that is sent by Microsoft Exchange Server when 
a new meeting is scheduled. We will take the text from the e-mail message and attempt to 
convert it into a new event in iCal. 

The script is broken down into three parts: getting the information from Mai!, extracting 
the dates and other information from the message, and finally creating the new event. 

Piease note that due to bugs in iCal 1.5 scriptability, the last portion of the script, which 
adds the attendees to the event, doesn't work, but should work once iCal is fixed (hope
fully by the time you read this). 

Let's Iook at the finished script and then examine certain portions of it. 

Script 25-10 

1. --Get message information from Mail 
2. tell application 11 Mail 11 

3. set selection_list to selection 
4. set my_message to item 1 of selection_list 
5. tell my_message 
6. set attendee_count to count every recipient 
7. set attendee name list to ~ 

name of every recipient -- of my_message 
8. set attendee_address_list to ~ 

address of every recipient -- of my_message 
9. set message_subject to subject -- of my_message 
10. set message_text to content --of my_message 
11. end tell 
12. end tell 
13. --parse text 
14. set message_paragraph_list to paragraphs of message_text 
15. repeat with the_paragraph in message_paragraph_list 
16. if the_paragraph starts with 11 When:ll then 
17. set time_string_end to offset of 11

(
11 in the_paragraph 

18. set when_string to characters 7 thru (time_string_end - 2) ~ 
of the_paragraph as string 

19. set date_word_list to words of when_string 
20. set text item delimiters to space 
21. set date_string to items 1 thru 4 of date_word_list as string 
22. set time_start_string to items 5 thru 7 of date_word_list ~ 

as string 
23. set time_end_string to items 8 thru 10 of date_word_list ~ 

as string 
24. set text item delimiters to 1111 

25. set start_date to date (date_string & space & ~ 
time_start_string) 

26. set end_date to date (date_string & space & time_end_string) 
27. else if the_paragraph starts with 11 When:ll then 



SCRIPTING APPLE APPS 

28. set where_string to characters 8 thru -1 of the_paragraph ~ 
as string 

29. else if the_paragraph starts with "*-" then 
30. exit repeat 
31. end if 
32. end repeat 
33. --Create event in iCal 
34. tell application "iCal" 
35. set my_cal to calendar 1 
36. set new_event to make new event at end of my_cal ~ 

with properties ~ 
37. {summary:message_subject, start date:start_date, ~ 

end date:end_date} 
38. tell new event 
39. make new mail alarm at end of mail alarms ~ 

with properties {trigger interval:-30} 
40. --make attendees 
41. repeat with i from 1 to attendee_count 
42. set attendee_name to item i of attendee_name_list 
43. set attendee_address to item i of attendee_address_list 
44. set new_attendee to make new attendee at end of attendees 
45. tell new_attendee 
46. set display name to attendee_name 
47. set email to attendee_address 
48. end tell 
49. end repeat 
so. end tell 
51. end tell 

ln the first portion of the script, between lines 1 and 12, we extract information directly 
from the mail message. Figure 25-2 shows the original mail message that we got. 

Fmn: .W.Ulii!Rl0.911m 
~t: Projec:tm~mee~ 
D•te: April27,20042:50:46 PM EDT 
To: Jane®att.com, dralce®att.com, bob@att.com 
Ce: joe@att.com 

When: lhui'Sday, Aprll 29,2004 10:00 AM--11 :00 AM (GMHl5:00) Eastem llme 
(US & Canada). 

Where: Meettng room 12,6111 ftoor 

... _.,,...._ .. _._._._ ... _ .. _ .. 

Weekly meeting 10 assess progress. 

Flgure 25-2. The original mail message we need to parse 

The information extracted is the message subject that we will use as the summary of our 
event, the Iist of recipients that will be used to add attendees to the event, and the body 
of the message from which the start and end date for the event will be extracted. 

711 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

712 

ln the second part, lines 13 through 32, we parse out the information we need from the 
mail message. There are many ways to do that, but the result has to be pretty much the 
same. We need to end up with three pieces of information for the iCal event: start time, 
end time, and location. 

The way I tackled it in the script is by breaking the message into paragraphs and then 
examining each paragraph using a repeat loop. 

lf the paragraph starts with "when:". then I know it has the date info; if it starts with 
"Where:". then it has the location. 

More specifically, I parse out the date information from the "When:" paragraph in two 
steps. I start by getting alt the text from the seventh character to the first instance of a 
parenthesis. 

The fullline is as follows: 

When: Thursday, April 29, 2004 1 0:00 AM-11 :00 AM (GMT-05:00) Eastern Time (US & 
Canada) 

But I needed this: 

Thursday, April 29, 2004 10:00 AM-11 :00 AM 

The problern I had then is that the date included both the start time and end time. I solved 
that by getting the words only (line 18). and then attached them to new dates (lines 
21-23): for instance, the date is always words 1 through 4. This situation works as long as 
the number of words is constant, and it appears to be. 

The final part of the script is to create the event (lines 33 through 51). We create the 
actual event in lines 36-37, where we assign the summary and different date properties 
during the creation process. We also assign the result of the create command to the vari
able new_event. 

ln lines 38-49 we add the elements to the event. We start by adding a single e-mail alarm 
element. and then we loop through the Iist of attendee e-mail and name lists to add them 
as attendees to the event. 

Use iCal to schedule scripts 
Another neat thing you can do with iCal is to schedule the launehing of scripts. To do that, 
create a new event in iCal and set the start date, time to the date, and time you want the 
script to execute on. Then use the open file alarm and specify the script file you want to 
execute. 



SCRIPTING APPLE APPS 

iChat 
iChat is a small application, so it's not surprising that there are only three dasses and three 
commands defined in the iChat suite. 

iChat classes 
Besides the application dass, iChat has an account dass and a service dass. 

Different account elements in the iChat application correspond to different people you 
chat with. Accounts can be referenced either from the service they belang to or directly 
from the application. 

There are only a handtut of properties in iChat, as you may imagine, and most can't be 
changed. ln fact, the only two significant properties belang to the application dass, and 
they are status and status message. All properties of the account and service dasses are 
read only. 

One of the properties scripters like to have fun with is the status message property. This is 
the message that appears both at the top of your iChat window and as your status on your 
buddies' iChat windows. 

The property is very simple; you can simply set it to any string. 

tell application "iChat" to set status message to Honey, I'm Horne" 

The script that follows acts as an iChat status message agent. lt is saved as a stay-open 
application and makes use of the on idle handler. 

The script will check to see the current track name and playlist name and alternate them 
every five seconds as the status message. This way your buddies can know you're available, 
and know what song you happen to be listening to at the moment. Here's the script: 

Script 25-11 

1. property flag : true 
2. property original_message 
3. on run 
4. tell application "iChat" 
s. set original_message to status message 
6. end tell 
1. end run 

8. on idle 
9. try 
10. tell application "iTunes" 
11. set this_track to name of current track 
12. set this_playlist to name of current playlist 
13. end tell 
14. set status_message to "Available and listening to " 

713 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

714 

15. if flag then 
16. set status_message to status_message & ~ 

"track: " & this track 
17. else 
18. set status_message to status_message & "playlist:" & ~ 

this_playlist 
19. end if 
20. on error 
21. set status_message to "Available and listening to nothin "' 
22. end try 
23. tell application "iChat" 
24. set status message to status_message 
25. end tell 
26. set flag to not flag 
21. return 5 
28. end idle 

29. on quit 
30. tell application "iChat" 
31. set status message to original_message 
32. end tell 
33. continue quit 
34. end quit 

The script uses two properties: original_status and flag. The flag property changes from 
true to false to indicate to the script whether the next status should be the name of the 
playlist or the track. 

The original_status property is set in the on run handler, which executes once when the 
script application is launched. lt holds the original status message. This original message is 
reinstated in the on quit handler, which is called when the script application quits. 

A minimal amount of error handling is there in case iTune has no playlists open at the 
time, or no selected track. 

Also notice that if you want your script application to be able to quit, you have to end the 
code in the on quit handler with the continue quit line. Otherwise, the quit operation will 
be stopped by your own quit handler. 



O~n Odn. Filt Rtferences 
O~n O.ftne Vah"' Um 
Opr.n AndJ~pLI<t 
Opr.nHelp 
OpenRf:mote 
Open ScripiMner 
OpenSiwi"9 

Ni.sull.aneouJ 
YlowCunorn m.lag 
"''ow Toolbors 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

718 

Take a piece of paper and make a simple shopping Iist: one column for the items you need 
and one column for the number of items you want. Did you just create a database? I think 
you did: you can sort it and find items in it, you can cross-reference items in the store's 
price Iist, which makes it a relational database, and you can add it to a Ionger Iist of alt the 
shopping you've ever done. OK, so it's not that fast or efficient, but it has data organized 
in fields and records. 

There are three factors that make a database what it is: the data structure, which is basi
cally the fields and field definitions, the data itself, and the functionality, such as sorting, 
searching, and exporting. 

AppleScript itself has no built-in database tools, but there is a bit you can get done with 
lists. For instance, you can collect data in two or more corresponding lists whose data 
relate item for item. Later on you can loop through those page items as if each Iist were a 
field and each set of items across the lists (item n of every Iist) for a single record. While 
this works for basic operations, it will fall short when you need to sort the data or perform 
less-than-sluggish searches. 

ln this chapter, we will Iook at three ways AppleScript can connect to or be used as a data
base. 

We will start with scripting FileMaker Pro 7, then move on to connecting to SQL databases 
using MacSQL, and finally Iook at a scripting addition that acts as a built-in database 
engine for AppleScript. 

Automating FileMaker Pro with AppleScript 
FileMaker Pro is one of the oldest and most loved applications used on the Mac. lt started 
out through Claris, an Apple subsidiary, and is now created and sold by FileMaker lnc. 
(www. filemaker. com). FileMaker Pro is known for its ease of use, robust scripting, and Iay
out tools, which give developers the ability to develop database-driven applications quickly. 

Out of the 50-something properties of the 12 or so classes that are defined in the 
FileMaker Pro dictionary, only one meaningful property is not read only. That property is 
the celtValue property, which allows you to access the data in the cell. Some other prop
erties can be set as weil, such as the window's bounds, and a couple of others, but nothing 
in the structure of the database such as field definitions, Iayout elements, object names, or 
FileMaker scripts is scriptable. So why do I even bother with it? Weil, the beauty of script
ing FileMaker Pro is not really in how we can control the database itself, but rather how we 
can use the already established database to help us with script execution. As a scripter I 
like the fact that I can use FileMaker to put tagether a back-end database for my script 
with minimal effort. I can give the users a nice user interface, set up reports and control 
security in a jiffy, and best of alt, have full access to the underlying data. 

While this section describes the important aspects of FileMaker scripting, it is by no means 
a comprehensive guide. FileMaker Pro does come with a database that explains the differ
ent events and commands available to scripters. 



SCRIPTING DATA AND DATABASES 

Versions 

FileMaker Pro was never known for comprehensive AppleScript support; however, it gave 
scripters consistent support through the years. Even now with the introduction of the all
new FileMaker Pro 7, the scripting dictionary remains virtually unchanged. 

One thing that did change with FileMaker Pro 7 is the introduction of the tobte dass. Up 
to now, FileMaker's tables were synonymous with database files. Now, however, database 
files can have multiple tables, so the tobte dass is an element of the dotobose dass, along 
with Iayout. 

Having multiple versions of FileMaker Pro on the same Mac, alt with the same exact name, 
may be a problem. To ensure that your script editor points to the right version of 
FileMaker, you can change the name of the application to FileMaker Pro 7, or change the 
name of the old one. 

The FileMaker object model and the commands you 
can use 

The FileMaker Pro object model is very simple, as described previously. ln the following 
text, I get into it in more detail. 

Databases, documents, and windows 
The top objects inside the opplicotion dass are dotobose, document, and window. There's 
also menu, but we will not deal with it here. 

The dotobose and document dasses are almost the same thing: they both represent the 
container of alt the tables, fields, Iayouts, records, and cells. The difference between them 
used to be such that the dotabase dass contained every record, and the document dass 
contained only the found set of records. Now, things are a bit different, since neither the 
dotobose object nor the document object contains records; only Iayouts and tables con
tain records. ln the new FileMaker 7, to get the found set you have to work with Iayouts 
versus tables. Read on. 

This used tobe easier to deal with in pre-FileMaker 7 versions.ln FileMaker 7, not only can 
a file have multiple tables, but you can also have multiple windows open. That means the 
following: 

To access records in a database, always use the tobte object; otherwise FileMaker will only 
allow you to access the data in the first table. 

tell application "FileMaker Pro"-- 1.0 
get records of table "contacts" of database 1 

end 

lf you want to refer to databases by name, use the database's file name. 

719 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

720 

To get access to the found set, on the other hand, we have to use the window dass. lt can 
be any window or a window of a specific document: 

tell application "FileMaker Pro"-- 1.0 
get records of current layout of ~ 

window "contacts" of document 1 

end 

Remember, the found set of a database is circumstantial and changes all the time, so you 
have to make sure you're referring to the right window that contains the found set you're 
looking for. 

Tables and layouts 
The next Ievel of object dasses contains the table and Iayout dasses. The difference 
between them is in the context of the data you can get from them. You refer to the table 
to get full access to all the fields in that table, and to the data in every cell of every record. 
The Iayout, on the other hand, gives you access to the same information the user can see 
on that Iayout. To better access a Iayout, you have to specify the window the Iayout is in. 
since different windows can now show the same Iayout with different found sets of records. 

Let's Iook at two scripts that should illustrate the difference between a table and a Iayout. 
First we will get the data from a date field and a number field from the table they are in, 
then we will get the same values from the Iayout. ln our example, the data returned is the 
same from the Iayout and from the table. 

Here's the script for getting data from a Iayout: 

Script 26-1 

tell application "FileMaker Pro" 
tell document "Inventory " 

tell window 1 
tell layout "equipment" 

go to it 
tell current record 

set the_date to get cellValue ~ 
of cell "date purchased" 

set the_cost to cell "value" 
end tell 

end tell 
end tell 

end tell 
end tell 

ln the Iayout, the order of the fields is determined by the way they are organized graphi
cally on the page, and you can only access the data of the cells that exist on that Iayout, 
induding related fields. ln a table, the fields are always ordered by their creation date. This 
is not an issue, however, if you ask for the value by field or cell name. 

You can use the Iayout dass with the show and go to commands for changing the currently 
displayed Iayout. You can't show or go to a table. 



SCRIPTING DATA AND DATABASES 

Now here's the script for getting data from a table: 

Script 26-2 

tell application "FileMaker Pro" 
tell document "Inventory" 

tell table "equipment" 
tell record 1 

set the_date to cell "date purchased" 
set the_cost to cell "value" 

end tel! 
end tell 

end tell 
end tell 

Also note that the table dass does not support the current record object. There is no cur
rent record, because for a table all records are just as current. Thus, the following line will 
error out: 

current record of table 1 of database 1 

Layout 0 
Layout 0 is an object used in earlier versions of FileMaker Pro and is still there, but will give 
you access only to the first table in the database, so avoid using it. 

Records, fields, and cells 
ln FileMaker Pro you can get and set the data of a cell or of an entire record or field at 
once. 

While the cell dass has a cellValue property, just referring to the cell object returns its 
value, as can be seen here: 

Script 26-3 

tell application "FileMaker Pro" 
tell document "applescript test" 

tell record 3 of table "equipment" 
cell "value" = cellValue ~ 

of cell "value" --> true 
end tell 

end tell 
end tel! 

Getting either the cell or the cellValue of the cell always returns a string, no matter what 
field type the data comes from. 

The following script sets the value of a cell in a table. The script first does a virtual "find" 
by changing only the records that match certain criteria. 

721 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

722 

Script 26-4 

tell application "FileMaker Pro" 
tell database "Inventory" 

tell table "equipment" 
tell (every record whose cell "type" -. 

is "222") 
set cell "model" to "AB-222" 

end tell 
end tell 

end tell 
end tell 

The preceding script represents more than merely a way to set data. ln fact, this is 
AppleScript's simplistic answer to relational database searching. More on that later in the 
"Using the whose clause to retrieve relational data" section. 

You can also set or get data of an entire field or record. 

When you work with the table object, you will have to be aware of the order FileMaker 
uses when it sets and returns data. 

As explained earlier, the field order in a table is the field creation order and the record 
order is the record creation order. There's no way to change that order, even by sorting 
the records. 

When you get data from the Iayout instead of the table, the records will be returned from 
the found set in the current sort order. That means that although the table object is more 
flexible and has greater access to the data, it may be beneficial sometimes to use the 
Layout object to get or set the same data, since you can set the sort order and found set 
before you change or get the data, and this way have more control over what you do. 

The following script first does the AppleScript version of the find command and then sorts 
the data before retrieving the data: 

Script 26-5 

tell application "FileMaker Pro" 
tell table "equipment" 

show (every record whose cell "type" -. 
is "222") 

end tell 
tell layout "equipment" of window 1 

sort by field "value" 
set value list to field "value" 

end tell 
end tell 

ln the preceding script, the show command acts as the find command. The actual find 
command in FileMaker Pro's AppleScript dictionary will perform a find using the most 
recent find settings. 



SCRIPTING DATA AND DATABASES 

Notice that for the show command we turn to the table object, not the Iayout object. 
Remember, the Iayout object only knows about the currently found set. so it will show the 
records that fit the criteria you set, if they are atready in the found set. Even if you use the 
fotlowing line, FiteMaker will not show alt the records in the table: 

show every record of layout "equipment" 

To show alt records in the table, you will need to do the following: 

show every record of table "equipment" 

To sort records, on the other hand, you have to use the Iayout command since the table 
object doesn't handle the sort command. 

just as you get data from the database a whole field at a time, you can also insert data a 
field at a time. 

The fottowing script sets the cett "serial number" of every record in the found set to values 
from a Iist. The vatues will be applied to the records in the order they happened to be 
sorted in at the time. 

Script 26-6 

set serial_list to {"AB-222", "AB-223", ., 
"AB-224", "AB-225", "AB-226"} 

tell application "FileMaker Pro" 
tell layout "equipment" 

set field "serial number" to serial_list 
end tell 

end tell 

lf the second teil block had been directed at the tobte object instead of the Iayout object, 
then the data in the field would apply to the records in the table, starting from the first 
one in the creation order, going up until the last record, or the last item in the Iist 
(whichever comes first), completely ignoring the found set and the sort order. 

set data 
Untike the set command, set data doesn't change any data property, but rather sets the 
data of a cetl, record, or field to either a singte vatue or a Iist of values. Using set data of 
(cell/record!field) is the same as simply setting the object itsetf to the string or Iist vatue. 

Finding data quickly with the whose clause 

We alt know the find command in FiteMaker, and have used it many times. When writing 
scripts for FileMaker, however, you may want to avoid using either the dictionary's find 
command or any reference to a FileMaker script that performs a find command-not nec
essarily because they don't work, but rather because there's a better way to refer to the set 
of records you want to work with. That way is AppleScript's powerful fittering whose ctause. 

723 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

724 

For most Operations such as get data and set data, you don't even need to actualty find the 
data and display the found set, but rather isolate the records you want to work with inside 
your script. The whose clause is great for that. 

As you've seen previously, you can use a single whose clause to retrieve complex sets of 
data. Here's an example: 

Script 26-7 

tell database "campaign" 
tell table "donors" 

tell every record whose ~ 

(cell "State" = "RI") and ~ 
(cell "Income" > 100000) 
set address list to "address" 
set phone_list to cell "tel01" 
set name list to cell "full name" 

end tell 
end tell 

end tell 

The preceding script allows us to get data very quickly from a very specific set of records with
out any interface changes, running any scripts, or invoking any FileMaker find commands. 

Using the whose clause for fittering records is great in many cases, but FileMaker still may 
have search criteria that performs fittering functions not available in AppleScript, such as 
searches for duplicates and searches for japanese characters. 

Using the whose clause to retrieve relational data 
Using the whose clause search techniques you saw previously, you can perform complex 
relational searches with minimal effort, and without having to set up or refer to any 
FileMaker Pro relationships. 

The idea is to first find the key field, and then use the value in that key field to find related 
files. For example, let's say that we have a contacts database. ln that contacts database we 
have two tables: people and numbers (much like the Address Book application). The num
bers table contains alt the fax and phone numbers for alt the contacts, and every number 
is linked to the contacts with the person id field. Each number has four fields then: num
ber id, person id, number Iabel, and number value. 

Now let's imagine that I have a person named john L. Smith from Boulder, CO, and I need 
to get alt of the numbers related to his record. Alt I have to do is find the value of the per
son id field in the people table, and then find alt the records in the numbers table that 
have that same number in that table's person id field. Here's how the script goes: 

Script 26-8 

tell application "FileMaker Pro" 
tell table "people" of database 1 

tell every record whose~ 
(cell "first name" = "John") and~ 
(cell "middle name" starts with "L") and~ 



SCRIPTING DATA AND DATABASES 

(cell "last name" = "Smith") and-. 
(cell "city" = "Boulder") and-. 
(cell "state" = "CO") 

set person_id to cell "person id" 
end tell 

end tell 
tell table "number" of database 1 

tell every record whose-. 
(cell " person id " = person_id) 
set person_number_list ... 

to cell "number" of it 
end tell 

end tell 
end tell 

Running AppleScripts from inside FileMaker 

{ 
'I 

FileMaker Pro allows you to run AppleScripts that are embedded in FileMaker scripts. To 
do that you use the Perform AppleScript script step in a FileMaker Pro script. 

Figure 26-1 shows the dialag box in FileMaker that allows you to specify the AppleScript 
script you want to run. 

This script step is used to execute AppleScript code in the middle of a FileMaker script. 

V~ew all bv cat!gory----:' 

O~n O..nnt Oa!Obue 
O~n O.flnt Fllt RtftrtncH 
0~ O.ftne VaiiJO U.u 
ODtn Find/Replatt 
O~n~lp 
OpenRemalt 
Open Scrtpdllaktr 
Open Sharlog 

MlsceßantouJ 
sh-Custom Olalog 
AJI-Toolbon 
kt.p 
Spuk 
OlaJ 1'1one 
O~nURL 

Str>d Wall 
~rfotm AppltScript 
ExtCI.Ct SQl 
~n<l tvtnt 
Comrnnt 
r1u1h cacht 10 Olltc. 

Exlt Applic:otlon 

Ed•t Scrlpt 

-- ------------------------~ Scr.pt N<m~ N~w Scrlpt I 
-- -- --- -.J 

• PorfOJm ApploScript 0 

"i>etform AppleScrlp( Opllonl 

Sptdfy the AppleScrlpt rou want to ptrfor,., You an tntor ntlvt scrfpt ttxt, >r ••• 
a W<UIOIIOn to s~<lfy a ltld ot a alculatt>n, Wlol<h rttumo a valid Appltlcrlpt. 

O ealculated AppleScrlpt , Sp!Clfy , 

Native AppleScrlpt 

~ lndiCate Neb com~;ltlb lty ~ ltun scr~ I ( Clear All ) ( Clur ) { Ouphca~e }i' 
I ' ~ 

l 
! 

I 

r 

' 

i 

Flgure 26-1. 
The Perform 
AppleScript 
script step in a 
FileMaker Pro 
script 

725 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

726 

As you can see in Figure 26-1, there are two ways to perform AppleScripts from FileMaker 
scripts. You can either specify a calculation, whose text result is a valid AppleScript script, 
or dictate the actual script text. 

lf you dictate the actual AppleScript text, FileMaker will attempt to compile your script 
and check your syntax when you dick the OK button. You will only be able to exit the dia
lag box if the script you entered compiles, or if you cancel out. However, FileMaker will 
not fill in any shortcuts you used as script editors do. For instance, if you used tell app ... 
instead of tell apptication, that is the way your script will remain. 

ln the case of calculated fields, FileMaker compiles the script right before execution, since 
the script can change any time leading up to that point. 

lt is almost always preferred to use calculation fields rather than just entering or pasting 
the script text. lf you choose to enter or paste the native AppleScript text right into the 
provided box, you will have to dig up that FileMaker script step every time you want to 
make a change. On the other hand, using a calculation to specify the AppleScript text 
allows you to refer to a field that contains the AppleScript script text. 

See the next section for a few tips regarding the use of calculation fields with Perform 
AppleScript script steps. 

Working smart with FileMaker 

There are several ways you can make scripting FileMaker easier and cleaner. Here are a few 
ofthem. 

Default application 
When running AppleScript scripts from a FileMaker script step, FileMaker is considered 
the default application. That means that if you choose, you don't have to use the tell 
apptication "FileMaker Pro" line. 

I recommend that you do, though, in order to make your scripts also usable outside the 
context of a FileMaker script. 

Get the data and run 
While AppleScript interaction with applications such as FileMaker Pro is necessary to get 
the work done, you want to Iimit this interaction to the minimum. This can speed up your 
script and make it more efficient. 

The way I like to interact with FileMaker is by first getting all the data I need from it using 
as few commands as possible, and then using that data in my script. 

lt is better to Iet AppleScript access the data using the table object and make heavy use of 
the whose clause in order to filter the record set you want to use. 



SCRIPTING DATA AND DATABASES 

Work from behind 
AppleScript scripts that interact with FileMaker Pro work much faster when FileMaker is in 
the background and the script is in the foreground. This is somewhat true for many appli
cations, but makes a big performance difference in FileMaker. 

The best way to put FileMaker in the background is to send the script the activate com
mand, like this: 

tell me to activate 

Use a dedicated AppleScript scripts table 
One structural piece I include with some solutions is a separate FileMaker table I call 
"AppleScript". ln that table, each record contains the text for a different AppleScript script 
used by the entire database. This allows me easy access to the scripts from a centrallocation. 

External debug check box 
One thing that FileMaker is not that good at is debugging AppleScript scripts. For that rea
son I deploy a scenario that allows me to halt any FileMaker script at the point where the 
AppleScript script has to take over. 

To do that, I need to add to the AppleScript scripts table an additional field, which I call 
"debug". The debug field is formatted as a check box with a single value. This field acts as 
a flag that determines whether FileMaker should execute the actual text in the field con
taining the AppleScript text or execute a simple AppleScript that calls yet another 
FileMaker script that halts all FileMaker scripts. This sounds complex, but it isn't really. All 
I want to do is be able to check the debug check box and have the FileMaker script halt 
instead of having the actual AppleScript execute. This allows me to check that box and run 
the script from Script Debugger, where I can debug it more easily. 

This method is good, but it requires FileMaker to search for the record containing the 
AppleScript you want to run and copy it to a global field that FileMaker can then execute 
using the Perform AppleScript script step. 

Calling external libraries for easy debugging 
Even better than the dedicated AppleScript table I described previously is the method of 
loading an external AppleScript file and running it. This way is great especially if you are 
supporting different solutions remotely. You can work on improving the scripts on a test 
environment and then send the improved AppleScript files to the live location and have 
the administrator there instaU them in the external scripts folder. 

Read and write commands 
Due to the fact discussed previously, that FileMaker acts as the default application when 
you run AppleScript scripts from inside FileMaker, some commands don't compile. The 
read and write commands, for instance, don't compile unless you place them in another 
application's tell block, such as the Finder. 

727 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

728 

Scripting Runtime Labs' MacSQL 
ln many cases your AppleScript scripts have to connect to different enterprise SQL data
bases. These databases span Microsoft SQL Server, MySQL, Oracle, FrontBase, OpenBase, 
Sybase, and others. 

When your AppleScript solution calls for integration with an SQL database, one product 
stands out: Runtime Labs' MacSQL (www.runtimelabs.com). 

MacSQL is a simple program that gives you GUI access to many flavors of SQL databases, 
including the few I mentioned previously. On top of helping you create queries and view 
the schema of the SQL database, MacSQL is AppleScript-able to a point that you can 
perform any SQL command with AppleScript code. You will, of course, have to have the 
proper SQL statements that will get the job done, but these are usually easy to get. The 
best thing to do, if you are not familiar with SQL syntax, is to find a good reference book 
that details the syntax of the specific SQL flavor you're using, and ask someone from IT to 
help you get a handle on the SQL statements you need. 

Getting connected 

The biggest challenge you will face when scripting an SQL database with MacSQL is the ini
tialstage of getting access to your database. Once you're over that part, it's usually smooth 
sailing. 

To get connected, you will need database access settings such as the host, database name, 
and user login information. 

Start by choosing New Connection from the File Menu. 

ln the New Connection dialog box, shown in Figure 26-2, choose the database type you 
will be working with. Once you do that, MacSQL will display the fields you need to fill in 
order to establish a connection with your database. Write down the settings you will 
require and ask someone from IT for the values to enter. 

Databan Type: 

SQLServer 

Hast_ Port: 

Userld : 

Database. 

Figure 26-2. MacSQL's New Connection dialag box 



SCRIPTING DATA AND DATABASES 

After some back and forth action with IT, you will hopefully be able to establish connec
tion with the database. This connection will represent itself in the form of a MacSQL doc
ument. Save this document to the hard drive and keep a note somewhere with the settings 
the administrator gave you. 

This document you saved is your new best friend. Every time your script needs to connect 
to that database, all you have to do is open that document. Then, you will direct any SQL 
statement to MacSQL's front document object, which has all the settings. 

Speed 

I always knew that SQL databases were generally very fast, but what surprised me was just 
how fast I could execute SQL commands with AppleScript in the middle. lt would execute 
tens of operations per second, which may sound very slow in SQL terms, but usually fast 
enough for AppleScript projects that don't need to access the database that often. 

Simple select command 

lnteracting with SQL databases with MacSQL is a bit more complicated than just using the 
do query command. Following is a script that gets data from two fields from the entire 
contact_table table. We will Iook at the script and then analyze it line by line: 

Script 26-9 

set query_text to ~ 
"SELECT contact_first_name, ~ 

contact first name FROM contact table" - - -
tell application "MacSQL" 

tell front document 
do query query_text with prefetching results 
set the_result_set to last result set of it 

end tell 
set theData to value of ~ 

every row of the_result_set 
delete the_result_set 

end tell 

The first line of the script is simply the string that makes up the SQL command. Usually, you 
will be concatenating strings in AppleScript to get to the final SQL statement you want. 

Next, we will talk to our front document. Remember, this is the document we saved in the 
"Getting connected" section. This script assumes that this document is open. 

ln the following line, we do the query. We supply the do query command with one string 
parameter that contains the raw SQL command. The SQL statement we use has been put 
in the variable query_text in the first line of the script. 

729 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

730 

The result of a successful do query command is a result set. A result set is a MacSQL dass 
that can contain rows and columns (more on that later). ln this script we simply set the 
variable the_data to every row of the variable the_result_set, which contains the result set 
that was returned by our do query command. 

Now, the value of the variable the_data is a Iist of lists, and it contains alt the data we 
fetched from the SQL table. 

The last line before the end tellline deletes the result set. This is essential housecleaning. 
lf you don't delete the last result set in some way, MacSQL will jam after a couple of queries. 

More on result sets 

The result set is not like a Iist, and is not always as straightforward. Sometimes, the rows of 
the result set are indeterminate, so you can't really get every row of it. What you do in that 
case is loop an unlimited number of times, and get the next row of the result set until the 
script errors out. You should, of course, trap that error. 

ln our script we used the prefetching results parameter with a true value, which made sure 
that the value of every row of the result set could be extracted in one step. 

Following is one of the sample scripts that come with MacSQL, which forces you to loop 
through the rows, and then through the items in each row for the purpose of generating a 
tab-delimited string. 

Script 26-10 

set theQuery to "select * from foo" 
tell application "MacSQL" 

set theSession to front document 
tell theSession to set numRows ~ 

to do query theQuery 
set rs to last result set of theSession 
set the data to "" 
set rowNum to 1 
try 

repeat 
set ro to value of row rowNum of rs 
set rowNum to rowNum + 1 
set the_data to the_data & first item of ro 
set ro to rest of ro 
repeat until ro is {} 

set the_data to the_data & tab & ~ 
(first item of ro) 

set ro to rest of ro 
end repeat 
set the_data to the_data & return 
--the last five lines could have been: 
-- set the data to the data & ~ - -

tab delimited values of ro 



SCRIPTING DATA AND DATABASES 

end repeat 
on error err 
end try 
delete rs 

end tell 

While this is a good example of the row and result set objects, know that each row object has 
not only the value property whose value is a Iist, but also the tab delimited values and 
comma separated values properties, which contain the string versions of the data in the row. 

When working with Microsoft SQL Server, for instance, you have to use the with prefetching 
results parameter, as I did in my examples. 

Clean up or go overboard 
As discussed previously, deleting the last result set is essential. lf you don't, you will get the 
error "connection pool Iimit reached." 

ln the next section, note in the subroutine in Script 26-11 that the script attempts to 
delete the result set if there has been any error in the script. lf the error occurred after the 
result set has been established but before it has been deleted, then you will eventually get 
that "connection poollimit reached" error. 

MacSQL subroutines 
Following are two subroutines I created for my own use. They use a document pointing at 
a Microsoft SQL Server database. 

The first one returns data that the SQL statement gets from the database, and the other 
one sets data, so it doesn't need to return anything other than true or false to indicate 
success or failure. 

Following are the subroutines, each with a sample subroutine call. 

This script gets data from MacSQL: 

Script 26-11 

set query_text to "SELECT II & field_l & ., 
II II & field 2 & II FROM II & theTable , -

set the_result to sql_query_insert(query_text) 

on sql_query_select(query_text) 
try 

tell application "MacSQL 11 

set theDoc to front document 
tell theDoc to set numRows to ., 

do query query_text ., 
with prefetching results 

731 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

732 

set rs to last result set of theDoc 
set theData to value of every row of rs 
delete rs 

end tell 
return theData 

on error err 
--display dialag err & return & query_text 
try 

delete rs 
end try 

return false 
end try 

end sql_query_select 

And here's the Insert command: 

Script 26-12 

set query_text to ~ 

"INSERT INTO " & theTable & ~ 
" ("& field_1 &", "& field_2 & ") ~ 
VALUES ('" & value_1 & '", " & value_2 & ")" 

set the_result to sql_query_insert(query_text) 
on sql_query_insert(query_text) 

try 
tell application "MacSQL" 

set theDoc to front document 
tell theDoc to set numRows to ~ 

do query query_text ~ 
with prefetching results 
set rs to last result set of theDoc 
delete rs 

end tell 
return true 

on error err 
try 

delete rs 
end try 
--display dialag err & return & query_text 
return false 

end try 
end sql_query_insert 



SCRIPTING DATA AND DATABASES 

ScriptOB 
ScriptOB (www.applescriptdb.com) is a new scripting addition that gives you powerful 
database capabilities within AppleScript. lt is created by Custom Flow Solutions, which I 
own, and is sold as a commercial product; it is also possible to down Ioad a demo of it from 
the preceding URL. 

Although you can export and import a ScriptOB database to a file, the purpose of it is 
really to be used in memory. The ScriptOB object is a part of your script, and any Opera
tion you perform on it returns the ScriptOB object as the result. 

You would use ScriptOB to replace any data in your script that needs to be stored in a 
more comprehensive manner than a Iist or a record. Among other things, it replaces all 
those clunky routines you have for sorting lists and finding items in lists, although this is 
only the tip of what ScriptOB can do. 

All commands in the ScriptOB suit start with the letters "OB". This makes some commands 
read a bit funny, but ensures that the commands don't collide with other scripting addition 
or AppleScript commands. 

ScriptOB is also fully Unicode compliant, so databases can contain text from different lan
guages without any special setup. 

ln this section we will Iook at some of the capabilities of ScriptOB and see why it should be 
a staple in anyone's tool ehest. 

Classes and commands 

ln ScriptOB there are custom classes that represent a database, a field, a record, and other 
smaller related objects. The ScriptOB is the main object in the scripting addition. lts main 
properties are DBName, DBFields, and DBData. 

The DBFields property is a Iist made of field definitions. You specify those definitions when 
you create the database. 

Creating a database 

There are two ways to create a ScriptOB database: you can either create it from scratch or 
Ioad an existing file. The file can be a tab-delimited text file, or an XML file exported from 
either ScriptOB or FileMaker Pro. ScriptOB can also export data to these formats. 

The script that follows creates a simple database called "contacts" with three fields: first 
name, age, and date of birth: 

set field list to ~ 
{{"first name", string}, {"married", boolean}, ~ 
{"age", integer}} 

set my_db to DB create with properties ~ 
{DBName:"contacts", DBFields:field_list} 

733 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

734 

This is the resulting database object: 

{class:ScriptDB, DBName:"contacts", ..., 
DBFields: { {DBFieldName: "first name", 

DBFieldClass:string}, {DBFieldName:"married", ..., 
DBFieldClass:boolean}, 

{DBFieldName:"age", DBFieldClass:integer}}, ..., 
DBData:{}} 

While the resulting dass is a bit complex, it is very easy to extract data out of it when you 
need to. 

ln the result, each field is no Ionger a simple Iist, but rather a record. This, however, 
shouldn't concern you at this point. 

Database management and variables 

Almost every operation you perform with ScriptOB returns the modified ScriptOB object. 
That means that after we use the DB add record command, the result of the statementwill 
be the same database object with some records added. 

As with other AppleScript statements, if you keep on assigning the result to the same vari
able, you will write over the last version of the database. 

ln the preceding example, we assign the resulting database to the variable my_db. From 
now on, whenever we want to perform any operation on that database, we will need to 
use the my_db variable. 

Adding data to our database and deleting it 

We can either add one record at a time, one field at a time, or multiple records at once. 

To add a single record, we use the DB add record command. The following statement adds 
a single record to our database: 

set my_db to DB add record ..., 
{"James", true, 28} to db my_db 

The DBData property of the ScriptOB object will now be 

DBData:{{"James", true, 28}} 

You can also add multiple records with the DB add records command. You use the DB add 
records command the same way, only you supply a Iist of lists, with each Iist a record, like 
the one shown here: 

{{"James", true, 28},{"Joan", false, 24},{"Mario", false, 15}} 



So let's assume that we added these three records to the database. To delete a record, we 
can use the DB delete records command. The DB delete records command can be very sim
ple, but also very powerful. ln the following statement we delete the second record from 
the database: 

set my_db to DB delete records from db ~ 

my_db number 2 

To delete multiple records by their number, simply supply a Iist of records. 

But what if you want to delete records based on their data? For instance, what if you want 
to delete alt records of people under 18? Here's how you'd do that: 

set my_db to DB delete records from db my_db ~ 
where {field(age), "<", 18} 

Finding data 

ScriptOB allows you to find data subsets that can be returned as a Iist of lists, as a new 
ScriptOB object, or as row numbers, representing the rows that the matehing data exists in. 

All that is done with the DB get data command, which has some unique parameters for 
maximum flexibility. 

Narrow the field 
The first way to restriet your search is by specifying the records and/or fields you want the 
data from. This may be alt you need to do. 

For instance, if you want just the second record, you can write 

DB get data from db my_db in records 2 

For record ranges, use a string with dashes to specify a range and comma to separate ranges. 

DB get data from db my_db in records ~ 

"20-30, 45-55" 

This can be very useful since you can use AppleScript to create the range string on the fly. 

Use the fields parameter to restriet the returned result to specific fields: 

DB get data from db my_db fields "age" 
--> {28, 24, 15} 

Or specify multiple fields by name or position: 

DB get data from db my_db fields {1, "married"} 
--> {{"James", true}, {"Joan", false}, {"Mario", false}} 

735 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

736 

You can also mix the in records and fields parameters, like this: 

OB get data from db my_db in records "1,2" fields {1, "married"} 
--> {{"James", true}, {"Joan", false}} 

Search by criteria 
The most powerful search option is the use of the where parameter. The where parameter 
takes an argument in the form of a Iist. This Iist may seem a bit awkward at first, but it 
does give you some great flexibility for finding data in your ScriptOB database object. 

The Iist is made of fields names, operators, values, and Boolean operators such as OR and 
AND. Following are a few examples of searches: 

OB get data from db my_db where {"field(age)", "<", 55} 

And also: 

OB get data from db my_db ~ 
where {{"field(married)", "=", false}, "ANO", ~ 

{"field(age)", ">", 18}} 

Now, match that with the previous parameters in records and fields and you can pinpoint 
any data in your lists. For instance, to get the name of the only single person over 21 in our 
database, use the following search: 

OB get data from db my_db ~ 
fields "first name" ~ 
where {{"field(married)", " " false}, "ANO", ~ 

{"field(age)", ">", 18}} 
--> {"Joan"} 

Search result formats 
When you perform a search, you can ask for the data either as a Iist of lists, a Iist of row 
numbers, or as a ScriptOB object. To specify the result, you use the as parameter. The as 
parameter can have the following values, which correspond to the items mentioned previ
ously: as database, as data only, or as row numbers. 

When you ask for the result as data only, which is also the default, you have the choice of 
transposing the data. 

lf the result would have been 

{{"James", true}, {"Joan", false}, {"Mario", false}} 

then asking for it transposed would return 

{{"James", "Joan", "Mario"}, {true, false, false}} 



SCRIPTING DATA AND DATABASES 

Sorting data 
The DB sort command sorts the records in your database object. You can sort by any num
ber of fields, and refer to them by name or number. 

Here is an example of a database sorted by the first name field: 

set my_sorted_db to DB sort db my_db by "first name" 

ln order to sort by descending order, you can put a minus sign before the field name or 
number. lf you specify fields by name, then the minus sign has to be inside the quotes, like 
this: 

set my_sorted_db to DB sort db my_db by "-first name" 

You can also supply a Iist of fields to sort by. 

set my_sorted_db to DB sort db my_db by {2, "-first name", -3} 

The preceding example will sort first by the second field, then by the field first name in 
descending order, and then by the third field in descending order. 

Adding and deleting fields 
When we write scripts, we keep a Iot of the script data in lists. The lists we use conform 
more to database fields than to records. Each Iist has a name that describes the data inside 
of it, like a field name would describe the contents of the field in the database table. 

This is why it is very useful to be able to add fields to and delete them from a ScriptOB 
object. 

Let's say that we created the database with three records that Iook like this: 

{{"James", true, 28}, {"Joan", false, 24}, {"Mario", false, 15}} 

The data here is really three fields: first name, married, and age. To add the gender field, 
we can use this command: 

set my_db to DB add field to db my_db with data {"M", "F", "M"} 

This will result in the following data: 

{{"James", true, 28, "M"}, {"Joan", false, 24, "F"}, ~ 
{"Mario", false, 15, "M"}} 

lf we want to, we can get the data transposed, like this: 

{{"James", "Joan", "Mario"}, {true, false, false}, ~ 
{28, 24, 15}, {"M", "F", "M"}} 

737 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

738 

We can also specify a default value, in case the Iist is not long enough, or we provide no 
data at all. 

To delete a field, use the DB remove field command, like this: 

DB remove field "married" from db my_db 

Working with files 

ScriptOB allows you to save and Ioad database files. You can use either XML or tab
delimited formats. The DB save and DB Ioad commands allow you to specify the format 
and delimiters for the text file. The neat thing is that ScriptOB uses a FileMaker Pro
compliant XML format, so you can Ioad XML files exported by FileMaker Pro and have all 
the field formats preserved. You can also export the data from ScriptOB in XML, and then 
import that XML file right into a FileMaker database, or just open it with FileMaker Pro. 





APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

742 

This chapter contains fewer actual scripting examples and more generat discussion regard
ing the design and execution of workflow automation systems. 

Building a hot fotder API 
ln this section we will discuss a neat AppleScript system architecture that uses script 
objects to achieve a truly scalable solution. While I have created several successful systems 
that make use of the methods described here, there is no single available script that illus
trates its points. The information in this chapter is affered as a basis for you to create your 
own systems. 

I call it an API because the idea is to create an AppleScript-based system that is not only 
flexible, but also a system to which you can add an unlimited number of scripts and 
processes that integrate with it, without having to tell the system about those scripts. 

For example, let's say that we created a system that uses data from a FileMaker Pro data
base to produce simple printed material such as postcards and mailers. The system is set 
up in a way that the information in the database and a template is alt the system needs to 
create a finished product. The system may include a main script and a library or two of 
subroutines, and have the capability to produce three types of products for printing pur
poses. So it's now a few months after the system started working, and it's a success, saving 
the company time and money. You are now asked to upgrade the system to produce more 
types of products. What you have to do is open the "guts" of the script and add a whole 
new part that can process the same basic information but for a slightly different purpose. 
This development cycle means that the system has to be debugged again, and worst than 
that is the fact that you know that more product types will be added later on. 

What if instead of just charging ahead with the system, you sat down and imagined alt the 
different products the system could have possibly produced? l'm not saying you should 
predict the future, just try to anticipate it. Could the system possibly be used for produc
ing static web content? What about presentation slides? There are so many options that 
you're going to pop. lnstead of planning for everything, try to plan for anything! You can 
do that with a system that acts as a processor, but can have different scripts link to it. The 
centrat processor of the system is in charge of the workflow, and has facilities for getting 
the data and interacting with the publishing applications. That main processor, however, 
would not create any actual products. This will be the job of the specific product scripts. lf 
the system is weil designed, you will be able to create additional product-specific scripts 
without having to tinker with the main script. 

The anatomy of the homegrown API 

At the heart of our system lies the concept that the main script Ioads and runs other 
scripts whose exact purpose isn't known to it. lt figures out which script to Ioad based on 
some settings, but it never actually becomes aware of the scripts' purpose, and has a lim
ited knowledge of their output. How can we do that? Let's start with defining the main 
purpose of the system and making up a Iist of three products our system would create. 



AUTOMATING MEDIA WORKFLOW 

The system's purpose is to turn dient information into one-of-a-kind marketing pieces. The 
first three products our system will create will be a postcard, a flyer, and a custom e-mail. 

Your next task is to design the products themselves. As you do, you will notice that alt 
products use the same generat data set, taken from the same database. Since they alt use 
the same data, one of the jobs of the system could have a subroutine library for getting 
the data for the different product scripts. 

As you work on your products, you will figure out which functions belong with the "sys
tem" and which ones belong with the actual product script. 

Linking the product scripts to the system 

So how will the system know which product script to call and when? Weil, the "when" part 
depends on the specific workflow. ln our particular situation, we need to make the opera
tor make two choices: the type of product and the person the product will go to. The Iist 
of alt the people is found in the FileMaker database, so it makes sense that we initiate the 
process from there. We could also build a hot fotder workflow, but there aren't really any 
files to process beyond the templates that the system knows about. 

Our next task is to figure out how the system will know which product we want to create. 
Knowing this will allow the system to choose the correct template and call the right product
specific script. But wait, we decided earlier that a truly expandable system can't know 
about the different product scripts, since we don't want to have to change the main script 
for every new product. 

There are a few solutions for this. One solution is to have a product table in the system's 
FileMaker database. This way, every time we add a new product that the system can 
process, we can add a record to that table. Another way is to have a fotder for each 
process. Deciding how to name the fotder is the unexpected place where things turn inter
esting. This is because every product will have a short code name: postcard_01, 
text_emaii_01 , etc. This code name is going tobe the thing that will tie the product scripts 
with the system. The system will not know how many or what products there are, but it will 
know that when a request comes in for a product of type postcard_03, it needs to open 
the template in the fotder named postcard_03 folder, and most importantly, run the 
script named postcard _ 03. scpt from the product scripts folder. 

Now we have a solution: the code name for the product will drive the system to the 
appropriate template and the appropriate script file. This will allow us to add more prod
ucts to the system later on without changing the main processor script, but have that main 
script and associated subroutine libraries for common functions. 

743 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

744 

Separate 1/0 from process 
1/0 stands for input-output. Essentially, the description of most systems could be this: "The 
process that turns the input into the output." You start with data, a few templates, and 
some settings, and you end up with a booklet, a job ticket, a clean folder, or fotder full of 
processed files, etc. 

When designing a workflow system, it is important to not only identify the four aspects of 
the system, but also know how to separate between them. 

The four aspects are input, output, process, and workflow. 

lt is easy, especially for beginners, to start hacking at a problern with a small script and 
slowly build it up until it is a code monstrosity that mixes the Excel sheets you use for the 
data, the dialag boxes that allow the users to input settings, and the lnDesign documents 
that make up the final product. 

ln my early years I used to create systems much faster, without really thinking the process 
through. Of course, I didn't have the experience that would allow me to think it through, 
so I learned the only way I knew how: from my many mistakes. These mistakes, however, 
were not the types of mistakes you find out right away, but rather later on when the proj
ect starts to get out of hand. 

Back again to the four aspects of the system. The easy-to-understand part is input/output. 
Any job requires both data and settings. The data is the raw material, the numbers that will 
go into the catalog, the dient job that has to be cleaned up, etc. At the start of the process 
you will need to convert this data into AppleScript data, such as lists, records, and other 
data types, all neatly stored in variables. The wrang way to do this is to sort of go and get 
the chunk of data you need when you need it in the script. The reason is that at some 
point, the source of the data will change: the company will move away from Excel to SQL 
tables, from paper forms to PDF forms, from no database to a FileMaker Pro database, etc. 
What you want it to be able to do is "detach" the old data connection from your system 
and "deck" the new one. The process that uses this data will not have to change since your 
new data source will feed the same AppleScript lists and other variables. 

The same concept goes for your output. Now all you have to produce is, say, an Illustrator 
page with some data in a graph with a title, placed as a PDF in an lnDesign page. Next year, 
however, the web team will get hooked on your automation genius, and you will need to 
output the same pages as GIFs for the company web site. lf your system is weil separated, 
this may not be difficult to do, but tearing apart the spaghetti code of an amateurish sys
tem can be a disaster. 

Another aspect we mentioned is workflow. The workflow is the way in which the input and 
settings make their way through the process to become the output. The workflow may 
answer questions such as these: ls the original file dropped on the script? Will the script 
watch a fotder for incoming job files? Will the users go to the company intranet and dick 
a button that will start the process? Or all of the above? lf the workflow piece is separated, 
your job of adding triggers and workflows become much easier, and many times it makes 
sense to have the same process triggered by different ways, and therefore creating differ
ent workflows. 



AUTOMATING MEDIA WORKFLOW 

Variable-data systems 
How do you define a variable-data system? For starters, it needs to use data that varies 
from one cyde to the next. So what about a script that takes data from a text file to cre
ate a personalized mailer-is this a variable-data system? Well, besides not really being a 
system, it does come dose. 

Although variable data is a term more often associated with big expensive systems, there 
are compelling reasons for using AppleScript for the same purposes. ln the following 
sections I outline some of the reasons why AppleScript can beat almost any dedicated 
variable-data system. 

Cost 
When you write an AppleScript system, you only write the code you need, and you write it 
to fit a specific need in a controlled environment. This makes for a shorter development 
cyde with a small team, usually with no more than one or two developers. These develop
ers can easily undersell any large system while still making good money. 

Another reason why AppleScript development is eheaper is that many large variable-data 
systems indude their own integrated page Iayout and database programs. These programs 
cost a Iot of money to develop, a cost that is added to the total cost of the system. ln 
AppleScript, we automate the applications the dient already owns. 

Results are open 
While any automated variable-data system can get most of the job done in a very short 
amount of time, no system can ensure that the products it produces are 100% finished. 
There are always some tweaks that the designers need to apply to make it perfect. 

One of the downfalls of these monster proprietary systems is that their file format usually 
isn't compatible with QuarkXPress or lnDesign. This means that to make tweaks designers 
either have to use the system's own Iayout program or start the job over, and l'm not sure 
which is worse. 

ln an AppleScript system, the page Iayout system is the same system the designers use for 
anything else, so any job the system finishes can be tweaked in its native format. 

This page Iayout integration also means that the automated process can pick up and Iet go 
at any point in the process. 

Custom fit without compromise 
No matter how flexible a proprietary system is, the dient's needs will always have to be 
compromised to fit the system. With AppleScript, the system is made from scratch to fit 
the dient needs. With AppleScript, anything is possible as long as the dient is willing to 
either pay for it or have someone learn how to create it internally. 

745 



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

746 

Data vs. information 

Another important thing to understand in regard to variable-data systems is the difference 
between data and information. 

The data is the raw text and numbers that make their way from the data source to the 
product. Data is the number representing the item's price, which starts in a database 
somewhere and ends up in a catalog page. 

By information, I mean the options that make the product what it is-for instance, 
whether to use the logo with the company name, the plain logo, or no logo at all. Any 
information that is used by the script to make decisions should be treated differently than 
data. This information is usually represented by check boxes, pop-up menus, and other 
form controls, unlike data, which is usually entered into text fields. These settings are usu
ally set by other people, and not as often as the actual data. 

lt is important, as you write the script, to think through any constants you embed in the 
script. Some of these constants are perfect candidates for settings that can be pulled out 
from the script and be made available from an interface. lt is easy to bury constants such 
as font names, style names, master page names, etc., in your script, but sooner or later you 
will have to either dig them out, or be forced to open the script and change it on a regu
lar basis. 

Find and replace routines 

The center of any variable-data system is the ability to find variable text in a graphic doc
ument and replace that variable with the final data. These search-and-replace Operations 
are functions you want to perfect and save in a subroutine library that is available to all 
scripts. This will allow you to keep the variable-data functions of the system in a centrat 
location, which can make the system easier to manage. 

Years ago, to create a search-and-replace routine in AppleScript, we had to go through 
statementssuch as tell everyword ofevery textbox ofevery page whose content = the_vari
able toset text of it to the_data, or something like that. Today, at least in regard to the 
Adobe applications, the search-and-replace features are highly scriptable. ln lnDesign, for 
example, you can perform searches and change literally any aspect of the text you found. 
You can search for text that has specific type styles attached to it, and replace it with dif
ferent text and different attributes. 

Adding a nonscriptable application 
When automating a workflow that includes scripting applications, one of the big factors in 
how easy the process will be depends on how good and complete the dictionaries of these 
applications is. The 20-80 rule works here: 80% of the process takes 20% of the time to 
develop, and the final touches take the Iongest 



AUTOMATING MEDIA WORKFLOW 

One of the things that can get the best of any scripter and stretch any project's timeline is 
a missing command parameter or object property. lf an option is available in the Ul, it 
should be available in the scripting dictionary. lf it is not, the scripter's job has just been 
made more miserable. 

One of the last-resort options for such missing items is Ul scripting. Ul scripting allows you 
to use AppleScript to control almost any aspect of the Mac's user interface. Ul scripting is 
great when the application comes up with unwanted dialog boxes, features that are not 
scriptable. lt is also great for automating applications that are downright unscriptable. 

While Ul scripting can be a bit convoluted, much like the underpinnings of the user inter
face itself, PreFab's Ul Browser (www.prefab.com/uibrowser) makes it much easier to deal 
with. Read more on scripting the user interface in Chapter 20. 

747 





APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

750 

This chapter was contributed by Emmanuel Levy from Satimage-software of Paris, France, 
creator of Smile. 

Smile is an integrated development environment (IDE) for writing and executing scripts, 
and much more. Smile can be downloaded from www.satimage.fr/software. 

Smile's integrated engine architecture 
Smile can perform lots of different tasks for you, some of which you couldn't even think 
of without Smile. Yet the interface of Smile Iooks simple-the menu lists are not especially 
long, the windows do not carry a Ioad of buttons and pop-ups-and Smile is not a huge 
download: how does that fit? 

The reason is that most of Smile's features-including some of the more powerful-are 
not given an interface. They are just sitting here in the terminology, waiting for you to call 
them in a script. 

However, Smile does have an interface: Smile's interface is designed in the first place to 
help you edit and test your scripts with efficiency. For instance, if you are writing a script 
to process text files, Smile Iets you test it in a text window first. And when you make a 
graphic document, you view the graphic in a window as you are building it; the special 
thing is that the window does not show any tools palette. 

Smile's technologies 
Smile's architecture enables it to offer a particularly wide range of well-implemented 
technologies. lndeed, when you work with Smile, you work simultaneously with the fol
lowing: 

• An editor (and runner) of scripted Aqua interfaces 

• A text editor supporting styled text and Unicode • 

• A text search-and-replace tool supporting text and Unicode 

• A regular expression engine supporting text and Unicode 

• An XML engine 

• A graphic generation engine capable of producing high-quality vectorial PDFs, JPGs, 
and movies 

• A scientific environment with fast computational libraries on numbers and on 
arrays of numbers 

* Specifically, styled text refers to styled Mac-Roman ASCII and Unicode refers to UTF-8 and UTF-16. 
This being said, Smile can convert between the various high-ASCII encodings such as 150-8859-1, the 
"PC" encoding. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

• A data visualization environment with the finest features: ready-to-publish vectorial 
PDF production, default settings of professional quality, 1 D-20-30 plots, 3D objects 
library, easy animations, easy customization of figures using the graphic generation 
engine, Unicode support, and more 

• An industrial interface able to handle RS232 serial communication and some digital 
1/0 USB devices 

Since you control everything by script, you can use any of the preceding technologies in 
any automated process. 

Smile's shell 
ln order to operate the various technologies available in Smile, you communicate with 
your machine through the AppleScript language. To that effect, Smile includes a unique 
command-line interpreter for AppleScript. Smile's command-line interpreter is somehow a 
modern version of the Terminal window. 

lt may be worth insisting that Smile's AppleScript shell is something other than a script edi
tor. Smile does include a script editor for AppleScript, but here we are concerned with the 
AppleScript shell, an interactive command-line environment. 

ln fact, even if you use none of Smile's own power, you may choose to use Smile's 
AppleScript shell as the environment in which to control your machine-the Finder, the 
shell commands, the OSAX, and your preferred applications. 

About this chapter 
Not any language could have made Smile possible, only AppleScript. You may want to read 
a few lines about what makes AppleScript so special in the next section, "The perfect com
plement to AppleScript." 

When you use Smile, you work in its AppleScript shell. This implies being familiar with the 
command-line interpreter, which the "Get familiar with Smile" section presents and 
demonstrates. lf you want to run the script samples or the tutorial, please read that sec
tion first. 

lf you are curious about one or several of Smile's main technologies, read the presenta
tions and test the samples provided in "An introduction to Smile's technologies." 

lf you want to experiment-er if you have some PDF forms to fill-read "A tutorial: mak
ing a tool to write text over an existing PDF document." This tutorial demonstrates step by 
step a project in which you will make a tool intended to fill PDF forms. 

751 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

752 

The perfect complement to AppleScript 
Apple presents AppleScript as the language of interapplication communication. AppleScript 
is that, and it is more than that. Here are a few of the specificities of AppleScript at work in 
Smile that you may not be aware of at first. 

AppleScript is an interpreted language. ln AppleScript you can compile and execute in one 
operation a line, or a block of lines. You use this in Script Editor, yet you may regret that 
you cannot run "more lines." lnstead you must run all lines every time. This is because 
Script Editor does not implement a persistent context. 

AppleScript supports persistent contexts, which Smile uses. Smile embeds you in a context 
that augments as you work. You can see the benefits right away, and also in the long term: 
once a routine is programmed, it is straighttorward to include it in the context as a library. 
Smile's context is itself a script, and you can dynamically Ioad new handlers into that con
text-by the simplest means. 

AppleScript is somehow auto-referential. Any script, be it running or not, is itself an object 
(it owns handlers and properties) and is scriptable too. A script can send commands to 
another script and change its properties. Furthermore, be it running or not, a script retains 
its current state. 

An AppleScript program supports handling quantities belanging to any dass, including 
classes that did not even exist at the time the program was written. For instance, it seems 
natural to the AppleScript user that the same commands that used to work with ASCII now 
work transparently with Unicode text. 

Get familiar with Smile 
This section will get you a bit more familiar with Smile and some of its components. 

The download 
Smile is available in two possible distributions: the standard edition (free) and the full 
edition (which includes Smilelab). I recommend that you download the full edition, since 
the full edition is required for some of the script samples. The full edition requires a paid 
registration; however, if you download the full edition and you do not register, Smile will 
run in demo mode, which is enough for testing the samples that follow. 

Then you can experiment with the samples and if you wish you can practice with the tuto
rial that I provide in the last section. 

To download Smile, do the following: 

You may first want to visit Smile's home page at www.satimage-software.com/en/ 
smile. html. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

Download the full edition of Smile at www.satimage-software.com/en/downloads_ 
software. html. 

InstaU the software as instructed in the Read me file. lnstalling the software may include 
installing scripting additions. Do instaU them as described in the Read me file. 

The script samples that I present later in the chapter were gathered into one text file, 
available at www.apress.com/book/download.html or at www.satimage-software.com/ 
downloads/hr_book_samples.html. 

Download the file. lf the file does not expand by itself once downloaded, double-dick its 
icon: it will expand into a (Smile) text document named hr_book_samples. 

The AppleScript command-line environment 
Smile's primary tool is its unique AppleScript shell: any text window is an interpreter for 
AppleScript; pressing the ENTER key executes the current line or the selected lines. To run a 
single line, you do not need to select the line: when no text is selected, the ENTER key runs 
the line where the insertion point is located, and then the insertion point moves to the 
beginning of the next line, making it natural to run a script line by line (see Figure 28-1 ). 

text window 
te ll applic: .. tion • rincier" to set x 
~lsp lay dlalo9 ""Tht- siw~p dlsk"s ume ls .. & x 

Console 
• Macintcsh HD " 

Figure 28-1. When you press ENTER after having entered a line in a new text window, 
the line gets compiled and then executed in the same operation, and the result of the 
script prints in the Console. 

Next, launch Smile by double-clicking the saucer icon in I Applications/Smilexyz/ ("xyz" 
stands for the version number). 

753 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

754 

lf this is the firsttime you are launehing a copy of Smile, the Worksheet-Smile's auto-sav
ing text window-proposes several script lines that you can run on the fly. You may prac
tice a moment with those, and then proceed. 

Double-dick the icon of hr_book_samples. Click somewhere in the first uncommented line: 

tell application "Finder" to set x to name of startup disk 

Now the caret is blinking somewhere in the line. Press the ENTER key: this is the key that 
stands for "OK" but is not the key for inserting a carriage return. The result (the record 
returned by display dialog) by default prints in the Console-Smile's never-saving text 
window. 

Now the caret is blinking at the beginning of the following line: 

displaydialag "The startup disk's name is " & x 

Press the ENTER key again. As you can see, Smile remembers the value of x, which you 
would not expect if you were working in a regular script editor. 

The preceding example was possible because Smile maintains a persistent AppleScript 
context. When you run one line or a block of lines in the AppleScript shell, i.e., in a text 
window, the variables and handlers remain defined until you quit. They are available at a 
globallevel, i.e., to any script running from any text window. Get familiar with this. 

Now type in these two lines: 

set pdf_url to , 
"http://www.satimage-software.com/downloads/mc0306.pdf" 

set pdf_file to ((path to desktop) as text) & "mc0306.pdf" 

Click anywhere in the first line, in order to put the insertion point in that line. 

Press the ENTER key twice. Now pdf_url and pdf_file are defined: unless you assign them 
different values later, their contents are preserved. 

lf your computer is connected to the Internet, you can now execute the following line. 
Choose to copy it first in a new text window: you can check that all text windows share the 
same context. 

tell application "URL Access Scripting.app" , 
to download pdf_url to file pdf_file replacing yes 

This will download a PDF file that the tutorial discussed later will use. As long as the command 
executes, the script is suspended: the insertion point will blink again once the download is 
complete. As you see, the tatest line makes use of the variables that were defined in a previ
ous run. Actually, the tutorial willlater use the pdf_file variable again. 

Such variables compiled on the fly in text windows live in a script that is permanently avail
able (persistent). This is called Smile's "global context." 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

An introduction to Smile's technologies 
This section will introduce you to the different technologies embedded into Smile. 

Smile's custom dialog windows 
Smile includes an editor-and a runner-of graphical interfaces, known as Smile's custom 
dialog windows. Later (in the tutorial), 1'11 show you how to create a graphical interface, 
but I suggest that you experiment rapidly now with custom dialog windows. ln fact, you 
are going to make your own user interface in less than one minute. 

To create the user interface, do the following: 

Select File ..... New dialog. This opens a new dialog window, and also the Controls palette 
(actually, a Smile dialog window itself). 

Click the button entitled New button in the Controls palette and drag it to the empty dia
logwindow. 

Close the Controls palette. 

Double-dick New button and change its name to "Date & time". 

The interface of our first dialog window is final; let's program it now. Click anywhere in the 
dialog window (far from the button) with the CoMMAND and OPTION keys pressed. This 
opens a new colored window, the window of the dialog's script. 

By default the dialog window's script contains two empty handlers: prepare and click in. 
Remove the prepare handler. ln the click in handler insert the following line: 

dd(current date) 

Now your handler Iooks like this: 

on click in theDialog item number i 
dd(current date) 
end click in 

Next, select File ..... Save to save the script, and then File ..... Close to close the script's window. 

Select Edit ..... Edit mode to toggle your dialog window from edit mode into normal mode. 

Optionally, you can save the dialog window to disk: select File ..... Save and provide a name. 
The dialog window and script are shown in Figure 28-2. 

755 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

756 

untltled 1 

newbunon 

untltled l.Scrlpt 

!Qndlers 
on c..Liok in t.beDia.J.og it•• n1.1:11hRr 1 

cld(=ont uto) 
•nd click in 

Monday, February 19, 2007 4:22:37 PM 

Flgure 28-2. The simplest working dialeg window ever: one button, one line of script 

You can now test your first dialog window by clicking the button. Doing this will send the 
click in event to the dialog window, which will execute your script line. 

Note that your script uses dd, a term not included in the native AppleScript. Smile's buHt
in libraries includes a number of handy terms, which are documented in the Help menu. 
To get information about a specific term such as dd, select the term and then select Edit-+ 
Find definition (or press CoMMAND+SHtFT+F). Finddefinition is also available in the contex
tual menu. 

Regular expressions 
Smile offers an AppleScript implementation of the regular expressions, which supports 
both ASCII text (Mac-Roman) and Unicode. 

Regular expressions (known as "grep" in the UNIX systems) are the basic tool for most text 
processing tasks, such as extracting a given substring or finding all the e-mail addresses 
contained in a file, so they are useful at one step or another in a wide range of situations. 

The Find dialog window understands the regular expressions: the Find dialog window is the 
best place to test a regular expression on text windows before using it in a script. The same 
Find dialog window works both in the text windows and in the Unicode windows. 

Next, we will try the Find window: 

1. Select Edit-+ Find. This will open the Find dialog window. 

2. Enter "[0-9]+" as the Find: string. 

3. Enable the regular expression check box. 

4. Click Find. 

This will find the next sequence of several ("+") digits ("[0-9)") in the front window. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

The script to perform the same task implies using the find text command. Make sure that 
the window just behind hr_book_samples is a text window, and execute the following line: 

find text "[0-9]+" in window 2 with regexp, string result ~ 
and all occurrences. 

Figure 28-3 shows an example of a regular expression script statement that Iooks for non
latin text. 

umcode wtndow 

600 textwlndow 
ufind text " \\~Bas,cl.arin}+ " in window 2 with regexp and smng resu lt 

- ·~ ; ~ ·· 
~ \ 

·- .. ~ 

Figure 28-3. in Smile, the regular expressions understand Unicode. 

lf you are curious to experiment further with regular expressions, you will want to have the 
Iist of the regular expressions' metacharacters handy: you will find one in the pop-up in 
the Find dialog window, on the right of the regular expression check box. 

Satimage's website provides the exhaustive documentation of the regular expressions. You 
can find it in www.satimage-software.comlenlsmile.html. 

The graphic engine 
Smile includes an AppleScript PDF graphic library. 

This is the facet of Smile that you will get a chance to explore in the tutorial. let's get a 
small taste of it first: 

ln the hr_book_samples window, select the following block and press the ENTER key: 

Script 28-1 

set c to {250, 250} 
set r to 100 
set i to first character of (system attribute "USER") 
BeginFigure(o) 
SetPenColor({1 I 8, 1 I 4, 1 I 2}) 

757 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

758 

SetFillColor({1 I 4, 1 I 2, 1, 1 I 2}) 
CirclePath(c, r) 
DrawPath(3) 
TextMoveTo(c) 
SetTextSize(1.5 * r) 
SetTextFont("Courier") 
SetFillGray(1) 
DrawString("[h]" & i) 
DrawPath(o) 
EndFigure() 

Here we are using Smile's graphic library (whose file name is Graphie Kerne!). 

BeginFigure(O) prepares a default graphic window for drawing. 

SetPenColor and SetFillColor Iet you specify a color, either as RGB or as RGB-alpha (alpha 
being the opacity). 

ln PDF you define shapes ("paths"), and then you draw them-usually in "stroke" mode or 
in "fill" mode, but there are other options. Here CirclePath defines a circular path, with the 
center and radius as specified in pixels (1 pixel equaling 1n2 inch), and then DrawPath 
draws it, using the current graphical settings such as the pen color and fill color. 

Finally, EndFigure is what terminates the PDF record and displays the final graphic in the 
default graphic window. 

Running this script will create the image shown in Figure 28-4. 

4 • 

Flgure 28-4. 
The image created by the 
preceding script. By default, 
saving a drawing in Smile makes a 
PDF document. Alternatively, you 
can produce JPGs, BMPs, PNGs 
(often an optimal solution for 
synthetic graphics), etc., and 
QuickTime movies. 

Again, if you are curious about a particular term, select the term, then press 
CoMMAND+SHtFT+F (Edit -+ Find definition). To open the documentation for the graphic 
engine, use the Help menu and follow the hypertext links. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

Smilelab 
Smile includes graphical objects for numerical data visualization and additional libraries 
that sum up to what is named Smilelab. 

The graphical objects can make curves, plots, color maps, 30 surfaces, etc., to represent 
numerical data, and for making them into PDF-vectorial-graphics. 

Smile also has a set of mathematical functions that allow you to program in AppleScript 
C-fast computations on numbers and on arrays. 

Next, we will generate some data and then plot it. The results can be seen in Figure 28-5. 

A random walk of 1000 steps 

20.0 

0 

-20.0 . . . . 1/2 -- - --- - -- - - - - - ~ ..•.. - .... 
: -n : 

0 200.0 400.0 600.0 800.0 1000.( 

n 

Flgure 28-S. ln many situations the default settings are perfectly adapted, which makes scripts 
shorter. 

(The script that follows requires the full version of Smile. Demo mode is enough.) 

759 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

760 

ln the hr_book_samples window, consider the following script. 

Scrlpt 28-2 

create data 
set n to 1000 
set x to createarray n 
set y to runningsum (randomarray n range {-1, 1}) 
set y to multlist y with sqrt (3) 

-- display data as a curve 
set c to QuickCurve(x, y, o) 
set v to c's container -- the curve belongs to a plot 
set w to v's container -- .•• which belongs to a window 

-- display equations as curves 
set cl to QuickCurve(x, 11 Sqrt(x) 11 , v) 
set c2 to QuickCurve(x, ~~-sqrt(x) 11 , v) 

-- customize appearance 
set name of v to 11A random walk of II & n & II stepsll 
set legend kind of v to 3 
set legend abscissa of v to n I 2 
set legend text size of v to 14 
set legend fill color of v to {1, 1, 1, 1} 
set label text size of v to 14 
set xlabel of v to 11 0 11 

set name of c to 11 \\Sigma_{i=1 •• 11 & n & 11 }\\ Rnd_i 11 

set name of cl to lln"{l/2} 11 

set name of c2 to 11 -n"{l/2} 11 

draw w 

Run the script block after block. You run a block by pressing the ENTER key once the lines 
are selected. 

Block 1 creates the data. Smile introduces a data type equivalent to an AppleScript Iist of 
numbers such as {1.0, pi, 300}, the array of reals. Computations on arrays of reals are fast, 
and arrays of reals have virtually no size Iimit (AppleScript native lists are not adapted for 
extensive calculations). 

createarray is one way of making a new array of reals. By default createarray n creates an 
array of the n-first integers. The dictionary shows that createarray accepts optional param
eters. To view the entry for createarray in the dictionary wtiere it belongs (namely, the dic
tionary of the Satimage OSAX), select createarray and then press CoMMANo+SHtFT+F (or 
select Edit-+ Find definition, or use the contextual menu). 

As its name suggests, randomarray returns an array of reals containing random numbers in 
the given range [-1 .. 1 ]. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

y contains', as its item of rank k, the sum of the previous k random numbers. This is called 
a random walk (on the line): after k steps, the random walker's position may be any value 
between -k and k. 

Block 2 will display the random walk as a curve: position vs. time. QuickCurve belongs to 
QuickPlotlib, a library included with Smilelab: CoMMAND+SHIFT+F opens the documenta
tion for QuickCurve. 

As you see, the curve you made lives in a plot view, which in turn requires a graphic win
dow to exist. 

Which dass of objects may contain what other dass of objects is part of the information 
that the dictionary supplies: select Smile-+ Smile dictionary, and then use the Indexmenu 
in the dictionary's toolbar to view the entry for curve. Be aware that the entry for a given 
dass shows which dasses of objects it can contain (its elements), not which dass of object 
can contain itself (its container). 

Scientists know that a random walk (with n steps chosen randomly in [-1 .. 1]) will essen
tially scale like -.Jn. Let's confirm the fact and plot the two curves --.Jn and +-.Jn: this is what 
the two lines in block 3 do. You may run the script several times: you will observe differ
ent draws. Also, you can increase n. 

Finally, the fourth block is about cosmetic settings: each visual feature of an object can be 
adjusted by setting the corresponding property to the desired value. The Iist of the prop
erties of an object of a given dass is provided in the dictionary, in the entry for that dass. 
To view the entry for a given dass, you do like you do to view the entry for a given com
mand: select the class's name, for instance plot view, and then press CoMMAND+SH!FT+F. 

Smile is one of the few software packages that implement AppleScript's properlies prop
erty feature, intended for setting multiple (and getting all) properties in one instruction. 

Here's an example: 

set properties of v to ~ 
{name:"A random walk of " & n & " steps", ., 
legend kind:3, legend abscissa:n I 2, legend text size:14, ., 
legend fill color:{1, 1, 1, 1}, label text size:14, xlabel:"n"} 

This can be used as a shortcut for the following: 

set name of v to "A random walk of " & n & " steps" 
set legend kind of v to 3 
set legend abscissa of v to n I 2 
set legend text size of v to 14 
set legend fill color of v to {1, 1, 1, 1} 
set label text size of v to 14 
set xlabel of v to "n" 

* Except for a scaling factor, which I do not mention for the sake of simplicity. 

761 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

762 

A tutorial: Making a tool to write text over 
an existing PDF document 

As a first experience, we'll make a program in Smile to add some text to a PDF. Usually, this 
is done with Adobe's Acrebat software, which is not free. 

So that we can test on a real document as we develop it, we have been given dearance by the 
state of California to use one of their forms from the Department of Health Services. 

However, you may use any other PDF document as well. 

Preparing the scripts 
lf you have run the first samples, the PDF file is already on the desktop, its path is stored 
in the pdf_file variable, and you can skip the following action. 

Otherwise, or if you have quit Smile since, and if your machine is connected to the 
Internet, execute the following lines to download the PDF file to the desktop: 

set pdf_url to ., 
"http://>tMN.satimage-software.com/downloads/mc0306.pdf" 

set pdf_file to ((path to desktop) as text) & "mc0306.pdf" 
tell application "URL Access Scripting.app" to ., 

download pdf_url to file pdf_file replacing yes 

lf you want to use another file, store its path (as a string) into the pdfJile variable. Here you 
may want to know that dropping a file into a text window inserts its path in the window. 

Now we'll open the PDF file in Smile (see Figure 28-6). lf we double-dick the file's icon, 
Finder will choose to open it in Acrebat Reader or in Preview; let's explicitly tell Smile to 
open it. Execute the following line: 

set w to open pdf_file 

As you can see in the Console window, the result returned (the value of w) is a graphic 
window. Let's get some information about that object dass. Select graphic window, and 
press CoMMAND+SH!FT+F; this displays the entry for the graphic window dass. For our proj
ect we focus only on the two properties back pdf and front pdf. those are where the 
graphic window stores PDF data. 

Class graphic window : (inherits from window) a window ., 
where you can draw pictures of various kinds by script, ., 
and that you can save as a PDF file or as a tiff file. 

Plural form: 
graphic windows 

Properties: 
frame a list of small real -- {x origin, y origin, width, height} [ ••• ] 

[ ... ] 
back pdf string -- The PDF data for the background of the window. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

-- Can be set to a file, to some Graphie Kernel output or to raw PDF 
data as string. 

front pdf string -- The PDF data drawn after the baekground and the 
graphie views of the window. Can be set to a file, to some Graphie 
Kernel output or to raw PDF data as string. 

l lllfOIIIftt. ...... -. .... .=: • .,.==---- --';:o:::::o•-:;:-=------
~--------------------~~==~----
-~~".........-~_ ..................... ~~-. ... ~II{.....U ---------..... ,.._.. .......... __. ..... __.._. 
·~-- ............ ~~ . r=.....~ :.:.:::....-::.= ... n. .. .,.. ----- ............ CIUbMr 
· ~ ................... ~ ................................. ....., ........ ........,.... ....... ~."--~~ .......... ~ 
·~ ... ---...... ...."..., __ ..,.. 
·~ ... ON'tttll...,_., llll(llif.lt ol~ .,._-~---·-----l"IIIIIIIIIIP .. ~ .. --,___. ....... ,_ .. ~ .. 
: =:,-;:.::=---..::::...~. 
••IICDI~ ... ....._ • ...._.~ 
........ ....._.......,. ....... ......C.. .......... M~MIII 
....... ... m...- .. .. ~~·--~-.~~~~-

~~-----------------------------
..,.., 'ii11eo.uwo~M~~Mtiililiii0 UiJW~WIMiiifii _, __ ~.".-- .... --,.,·-~--m.n• 
n.e~MMU" • 
....... _. _ _..~-~t.rtl ... ~ ..... -----~ ..... ~ ... ..,... .................. .~~~~ ........ 
...--.~ 

., ..... ~~-- ... ---~~~~~------~ . , ._ .... 1!1 ...... 011 .. ~ . ... 

· · ------- ~-.--~~·-~~~~~ .... ,...IIIIIQIIIIIIII ... -•CIB!ftl'lt•r-• 
. ..... _c.......,_ .. ~._. ...... ~ ................... ~ el_._.,.., _ _..._.fll!IUII • ...,..IIIIII- ...... --. ......... .._..,. .... ....,_.., --. , _...,.llfl_lll!~----
n.~-~ .... ...,~ ......... .,.. ....... ._ ... GIIII~_... ... ~~..--. 

t r --· .. 
Flgure 28-6. Smile 
opens PDF files in 
graphic windows, 
where you can make 
custom graphics. 

Making a PDF drawing eonsists of filling the back pdf and/or the front pdffields of a new 
graphic window with PDF data (a string, aetually). Here is an exeerpt of the PDF data in the 
file you just opened: 

%PDF-1.3 
%fÄÜÄiß0 -ffl 
2 o obj 
<< /Length 1 o R /Filter /FlateDeeode >> 
stream 
xu+T_T(_c}~\C_öld~_u_ 
endstream 
[ ... ] 
xu•Ok"-~m&'O =:ÜIOrnöwrEi,AaO"_KI*)WMYgiÄ_ ••• _tH_ÄO_>IAk_Ia~-ÄÄ*K[ __ l~ 
[ ... ] 

763 

-



APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X 

764 

You see, PDF is not as intuitive as AppleScript. Thus, you will not make PDF data directly; 
rather, Smile's graphic library will. You will use natural commands such as MoveTo, LineTo, 
and DrawString, and Smile's graphic library will make them into a regular PDF. 

When you program the graphic library, you use the documentation, which is available in 
three forms: 

• The hypertext documentation for all commands is available via the Help menu. 

• A PDF document is included in the download: "Smile-Scripted graphics" (includes 
guide and reference). 

• A chapter in the online documentation is available from Smile's home page 
(includes guide and reference). 

However, to enjoy the tutorial, you do not have to use the documentation: the tutorial 
includes all the information you need. 

To have Smile generate the PDF and provide it into the back pdf property of a given 
graphic window w, your script proceeds in three steps. First, you initiate the PDF with 
BeginFigure(w), and then you include the graphic commands specific to your graphic. 
Finally, you close the PDF with EndFigureO. This is the instruction that will notify Smile to 
compile the graphic commands into PDF data and to Ioad the PDF data into the back pdf 
field of w so as to have the window display your graphic. 

When we open the PDF file mc0306. pdf, Smile Ioads the PDF into back pdf. On our side, 
we do not want to replace the original graphic, but rather we want to draw over it. Here 
we have to use the foreground layer, the front pdffield of the window. The instructions are 
the same as for drawing in the background layer, except we must call BeginFrontFigureO 
and EndFrontFigureO instead of BeginFigureO and EndFigureO. Let's give it a try and 
draw a line from one corner to the other, over the opened PDF. Here we'll use very basic 
graphic commands: MoveTo and LineTo. Both want a point as their argument, a Iist {x, y} 
of two numbers (MoveTo moves the pen without drawing; LineTo defines a line starting 
from the current pen location). The scale is one pixel (1 pixel = 1/72 inch = 0.35 mm). x/y
coordinates increase rightwards/upwards. 

BeginFrontFigure(w) 
LineTo({o, o}) 
MoveTo({6oo, 840}) 
EndFrontFigure() 

As usual, select the text, press ENTER ••• ouch! Nothing happens. 

This is because our program does not draw! All it does is define a shape (a "path")-here, 
the diagonal line. lndeed, after having defined a path we have to draw it this is what 
DrawPath is for. The parameter of DrawPath will specify whether to draw the stroke of the 
path or not, whether to fill the path or not (which makes little sense for our line, of 
course), and proposes more options such as using the path, not to draw but as a mask. The 
most often used values are DrawPath(3), which draws the stroke and fills the path, and 
DrawPath(2), which draws the stroke only. 



SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT 

Usually, before firing a DrawPath command, you specify the pen and fill settings you want 
it to use. Here we'll use the default settings: by default the pen and the fill color are black 
and the pen size is 1 pixel. 

BeginFrontFigure(w) 
MoveTo({o, o}) 
LineTo({6oo, 840}) 
DrawPath(2) 
EndFrontFigure() 

Select the text, press ENTER. Here we are: evidently a diagonal is barring our page (see 
Figure 28-7). 

olPI'OINliiiEHT OF REPRESENTAnVE 
..,._L ~-~IY•"' IC -
M..,..~,...._,....,~. --• .-.c~..,.,.......,..nMr~b- 0' -
.... ~'"NIIIIYII'&&At .. MIIillll--- ! U:. 

. ..... ~~ .... CCV!I) .......... ~ 
t ~-IDillft,...natiM-~~ 
• Ciflf*oii~""-N~..,.,......",....,.I!IIIdii'MIIINI5t-
~~~N~·..,~ • =-.~:r::;::;:::::==~ "MI 

·~ INI: ... hllli'~pt':'ICiftUI:;Md
• t.U"'o• 0... CIOCI'f ot • iJHCiftc MUC4- tA K!Joorl ffOIJ'I lh (.:OWIIY

..................... w

Let's experiment with the other diagonal:

BeginFrontFigure(w)
MoveTo({6oo, o})
LineTo({o, 840})
DrawPath(2)
EndFrontFigure()

-·-

Flgure 28-7.
With five script lines
we programmed our
first graphic.

765

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

766

Our page is now barred with two lines, as you can see in Figure 28-8.

Flgure 28-8. By default, a new drawing in the foreground layer does not erase the
previous one.

However, the preceding program really suppressed the first line in the front pdf property:
the window is storing only the second diagonal. What happened is that Smile did not
refresh fully the window, it only superimposed the new drawing (see Figure 28-9). To
refresh the window request explicitly, use the following:

draw w

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

APPOINTMENT OF REPRESENTAn VE

............ ~r«

cc:-cc:::"<c~"'--""=CO:::-~
...._._. ~ lf'ld li'Ofn M a. .. ~01 $oc.l S•rcn. o.._.

~DMib\,...."",... toll"'i~
• ~ flltlllc.fll ~.Md w.m.aan ,..,.. .. ., fl'lllde"tt~,_, ltft'-l:ont iiD lhe c.ounfJ
~orii'WS...~ SOCWS......Dillt:illet&......_DMib\.

· ~~---~nthd!MtfN piOO!tM;.
• fttth't o.n. C:OP.f of • toeclf'tc notJ ol KUon hom lhe c:ou.trrt ••M"tf• ~lll•rtJf\• 11 1, •t 11\e re que&l cflll e _.....,_

,....,..JICCartt-.MOft~~~'*r. . .. ~"'J....,,......
ewhMUMiflp'~

• IMvtMCII'Ietpo..-MiedOf'lt.t.ldh~ ---.ad~.
• 1".,1"11111Kt~leuof ltloa) . MII
• INYnoi .. .-.Cf~l"''~.._.. .,_..~cfF1 IDmiW'O~.,.._ _...._
• l ~flllllbNn~or~,....pr:ackllblfore..,_Sooels.ony~
• I ~ MC, • • curnl'll 0' ilraro'Mf ~ 01 ~- ft 1he nhd 8U1u. f'IIOMIW trorl'l _
• ·-~"'IM''''IIIllbtdgoad.,...,.,.

Flgure 28-9. Smile is designed with scriptability in mind. ln a script, often you
do not want the display refresh at each step. This is why in several circumstances
Smile does not refresh spontaneously the display; you have to request so explicitly
with the draw verb.

Now let's experiment with the real thing: drawing text.

First we have to position the text. let's dick in the form, under the Name prompt: the
toolbar of the window displays the values for x and y-values close to 55 and 702, respec
tively (see Figure 28-1 0).

806
ll • SS.OOOOO V • 702 .00000

Flgure 28-10. The graphic
window's toolbar displays
information regarding the
location of the mouse pointer.

767

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

768

A command analogaus to MoveTo sets the position of the pen for writing: this is
TextMoveTo. The following script makes use of the simplest command for writing text:
DrawText (see Figure 28-11).

BeginFrontFigure(w)
TextMoveTo({ss, 702})
DrawText("John Smith")
EndFrontFigure()

APPOI
KCT10N L TO llli COIIPL.En1D av APPUC -John Sllltth

Flgure 28-11. By default the
graphic library's text drawing
routines start in Monaco 1 0.

We'll improve the Iook by using a sans-serif font: Arial is a standard one (see Figure 28-12).
The commands for setting the text font and size are SetTextFant (which wants a string as
its argument, the name of a font) and SetTextSize (which accepts any positive real num
ber). Our script is now the following; run it.

BeginFrontFigure(w)
SetTextFont("Arial")
SetTextSize(12)
TextMoveTo({55, 702})
DrawText("John Smith")
EndFrontFigure()
draw w

John Smith

APPOI

Flgure 28-12. Now the string
is in the right place with the
right font and size.

We still have one thing to do. Once a string is correctly placed and printed in the window,
and before we address another string, we have to merge the front graphic (the string) into

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

the background. Otherwise, our next attempt to draw in the foreground layer will just
remove the first string.

Appending a new graphic to an existing PDF is not merely concatenating two strings. You
have to use a specific command (provided in the dictionary of Smile, in the Smile drawings
suite) to merge the two graphics: addpdf. addpdf accepts input, either PDF data (a string)
or a file-which has to be a regular PDF file. Here we'll merge the PDF stored in front pdf
into the back pdf of the window.

addPDF (get front pdf of w) in back pdf of w at {0, o}
close back pdf of w

When you manipulate directly the front pdf or back pdf property of the graphic window,
you have to close back pdf/front pdf before any attempt to refresh the display.

Now that the string is in both layers, we can empty the front layer.

Beginfrontfigure(w)
Endfrontfigure()

Finally, let's check we did everything right by refreshing the display:

draw w

We have fulfilled our contract we have a (small) script capable of writing any text in any
location of a PDF, using any font. We can gather the lines once and for all in a new text
document: create a new text document, copy the lines that follow, and then save.

-- replace with actual document's path
set pdf_file to ((path to desktop) as text) & "mc0306.pdf"
set w to open pdf_file
-- run the following block as many times as needed,
-- adapting the parameters to suit
Beginfrontfigure(w)
SetTextfont("Arial")
SetTextSize(12)
TextMoveTo({SS, 702})
DrawText("John Smith")
DrawPath(2)
EndfrontFigure()
draw w

-- run the following block to validate the string once it
-- prints where and how you want
addPDF (get front pdf of w) in back pdf of w at {o, o}
close back pdf of w

Productivity sometimes means making the minimal effort required to have the werk done.
Here we are not implementing any error checking, user warning, or any of the bells and
whistles for an application that you would distribute: we just add a few comments to make
the program reusable later.

769

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

770

Rolling up the scripts into a graphical interface

ln this section, we will add a user interface to the script we created earlier.

lntroduction
Once you have made a task doable in Smile, you may want to make it available also to
nonscripters. This is one of the reasons why you would want to make a custom interface
to your script.

Smile makes graphical interfaces known as "custom dialogs." When you save a custom
dialag window, you get a document that will open in Smile when double-dicked: each
graphical interface can be seen as a separate application able to run in Smile's environment.

To make or to edit a custom dialag window, you use the documentation, which is available
in three forms:

• A summarized guide is provided in the built-in help: select Help-+ Smile help. and
then dick Custom dialogs.

• A PDF document is induded in the download: "Smile-GUI editor" (indudes guide
and reference).

• A chapter in the online documentation is available from Smile's home page
(indudes guide and reference).

However, to enjoy the tutorial, you do not have to use the documentation; the tutorial
indudes alt the information you need.

For a first experience of a custom dialag window, we'll keep it simple: we'll have the user
enter each quantity as a string, in text fields. So far we identified the following inputs: the
string itself, the font. the text size, and the location, which consists of two numbers, so we
need five text entry fields ("editable text boxes"), and as many "static text boxes" to Iet the
user know what to type there.

ln our tests, we obtained a reference to the graphic window (w) because we opened the
PDF file ourselves. ln a real situation, the user opens a PDF file and then uses (or does not
use) the custom dialag window to edit the PDF. So that the user will be able to target any
open PDF file (any graphic window), we'll add a sixth text field where the userwill type the
name of the window to target. Obviously we could design a more user-friendly way of tar
geting the desired window, but for the purposes of this example, let's restriet ourselves to
a very simple tool.

The user will trigger the actions with buttons. We won't update the window's display each
time the user changes any quantity in the text fields, but rather we'll have the user decide
when to show the result: a first button will display the new string with the current settings.
We also saw that we have to take a specific action to validate the current drawing before
editing a new string; we need a second button for that.

ln order to have the dialog window open at one dick, we'll install it in the User scripts
menu (the menu with a parchment icon). lnstalling a new item in the User scripts menu
really consists of copying it into a specific location in the user's domain, namely in
/User/<login>/Library/Application support/Smile/User scripts/.

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

This makes us ready to create our Smile tool. ln the first step, we'll build the interface, the
dialog window as the user will see it. Then we'll provide the scripts that will bring the dia
lag window to life.

Building the interface
The first action is to make a new dialog window. Select File -+ New dialog. This opens a
new dialog window, and also the Controls palette, from which you will copy the desired
widgets (see Figure 28-13). Note that the Controls palette is merely a dialog window itself.
lt is part of Smile's philosophy to define a limited number of window classes, so that you
script Smile more easily.

(ü.nc~l)

(new bunon)

new statlc text

new ed ltable tut

~ew menu : bt lt~m 91

o newradlo
bunon

o newcheck
box

new Iist dlalog ltem

set lts contaJned data
to a Iist of stnngs

new pdf holder

..
•

Figure 28-13. The Controls palette is where you find one copy of
each of the widgets you can instaU in your dialog window. The
Controls palette is in edit mode: you copy a widget into your dialog
window by drag-and-drop.

As you can check by pulling down the Edit menu, both windows are in edit mode, the
mode where you can make structural changes to the dialog window. This is because we
used File-+ New dialog. When you open an existing dialog window by the usual means, it
opens in running mode, the normal use mode: the Edit -+ Edit mode command Iets you
toggle the dialog window into edit mode and immediately make any change.

You can also check that, since the dialog windows are in edit mode, the menu bar displays
a Dialog menu with several commands to help with editing a dialog window.

771

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

772

Now we'll populate the empty new dialog window. Enlarge generously the new dialog win
dow. Click the new static text widget in the Controls palette, hold down the mouse button,
and drag the widget to the new dialog window, close to the upper-left corner. You have
installed your first widget.

Sooner or later we'll save the dialog window to disk; let's do so now. Select File Save,
and save the dialog window as "Add text to a PDF file" (our suggestion) in /User/
<login>/Library/Application support/Smile/User scripts/.

This changes the dialog window's name into the file's name. You can check that the User
scripts menu now offers one new item, with the name you supplied. Now, choose File
Save (or press CoMMAND+S) to save the dialog window from time to time as you would do
with any document.

Proceeding as we did for new static text, instaU a new editable text widget into the dialog
window. Place it to the right of new static text. lt is better that the two widgets do not over
lap: drag the new editable text widget sufficiently to the right, and/or resize the new static
text widget to a shorter size: select it with the mouse, and then move its frame's bottom
right corner.

lnstead of dropping more items, we'll duplicate the two existing items (see Figure 28-14).
Select them both, in the creation order (new static text, then new editable text), using the
SHIFT key. Or, deselect any item by clicking in an empty spot in the dialog window, and then
select Edit Select all. Now press COMMAND+D-or select User scripts More Smile com
mands Edit Duplicate. (Duplicate is better than Copy-Paste, because Duplicate
leaves the clipboard untouched.) The duplicated items are created with an offset of 20 pix
els to the right and to the bottom. You can move them with the arrows of the keyboard:
press the SHJFT key to have the items move by 20 pixels, and use the left and the bottom
arrows to align the new widgets with the first ones.

untltled 10

new su.tlc text lnew edltable text

Pl..:;ew::::....::S:.:::U.::.:II.:..c .:..:le.::::xt'-------"'31 bew edltable text

Flgure 28-14. New items are created with increasing indexes. The
Duplicate command creates new copies at an offset of (20, 20)
with respect to the original: use the arrow keys with the SHtFT key
pressed to align the copies with the original.

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

Repeat this step again four times (so as to end up with six copies of each).

Still using drag and drop from the Controls palette, create (for instance, both at the same
height, und er the array of text fields) two new button buttons. Now you can resize the dia
lag window so as to enclose exactly the widgets.

When we write the script for the dialag window, we'll refer to the widgets by their indexes.
A widget's index is the number that its frame displays in the bottom-right corner when
selected. Check that the indexes are in the natural order, that is, from left to right then
from top to bottom. The rightmost button in the bottom should assume the index 14. lf
you have more items, use Edit -+ Clear to suppress the extra widgets. lf the order is not
what it should be, proceed as follows. Unselect any item by clicking an empty spot. Then,
press the SHtFT key, and dick each item once in the desired order, so as to finally select
them all. Now, select Edit -+ Cut then Edit -+ Paste; the widgets will be pasted in the same
order as you selected them.

The contents of the editable text boxes will be handled by the script, but we have to name the
other eight widgets. For the editable text boxes we suggest the following names: "string to
display:", "text font", "text size:", "x (pixels):", "y (pixels):", and "current target", and for the
buttons: "refresh" and "validate" (see Figure 28-15). For each of the eight widgets to be
renamed successively, double-dick each so as to open its Control dialag window ("control"
here means "widget"), set its name to the desired string. and close the Control dialog window.

Add text to ~ POF flle

st11ng to dlsplay:

text font:

text slze:

x (plxelsl:

y (plxels):

current targer.

(refresh) (valldate)

Flgure 28-15. When a dialag window is in edit mode, the bottom-right
corner shows a grow box, which resizes the dialag window. Here no
grow box is visible. The dialag window was toggled into running mode,
the normal use mode.

You will not need another new widget for the moment: close the Controls palette.

The interface of the dialog window is now operational-if not fully finalized from the cos
metic point of view. I won't demonstrate more cosmetic-oriented features here. lt may be
enough to say that in addition to moving and resizing, you can, using the Dialog -+ Align
items menu item, copy the sizes from a widget to another and align and/or distribute the
widgets vertically and/or horizontally.

773

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

774

Programming the dialog window
Last but not least, we have to program our dialog window by providing it with scripts. All
the lines we wrote for our first test are still available, so our task will have much to do with
Copy/Paste.

ln Smile. when the user acts on a widget (for instance, typing a character in an editable
text box, or clicking a button), Smile notifies the script of the widget's container-the
dialog window; the widget itself is not notified. More precisely, the script of the dialog
window will receive the following event:

click in d item number n

where d is a reference to the dialog window itself (the owner of the script) and n is the
index of the widget that the user's action addresses. Thus, we won't write as many dick in
handlers as we have active widgets, only one.

The other handler that we have to write is prepare. When a custom dialog window opens,
Smile, just before making it visible, sends to its script the following event:

prepare d

where d is a reference to the dialog window. Any initialization should be performed in the
prepare handler. Most often, the job of the prepare handler is to prepare the appearance
of the dialog window and to assign initial values to the global variables that the script of
the dialog window may use. However, at this step we won't use global variables (proper
ties); the prepare handler will mainly reset the entry text fields.

Let's write the prepare handler first.

With the dialog window still in edit mode, select Dialog-+ Edit dialog script this will open
the script of the dialog window. (Aiternatively, do a CoMMANo+OPrtON-click in an empty
spot of the dialog window.) The name of the new (colored) window is the same as the dia
log window's name, with ".Script" appended. lt may be helpful to note here that the script
of the dialog window is different from, say, the script of an applet, in that it will never
"run": the script will receive events that it will handle in the handlers we'll write, but under
normal conditions it will never receive a run event.

Type or copy the following prepare handler into the script window:

on prepare theDialog
repeat with i from 2 to 12 by 2

set contained data of dialog item i of theDialog to 1111

end repeat
end prepare

(By default, the script of the dialog window already includes the first and last lines of the
handler, so you have only three lines to type. A script may not contain two handlers with
the same name.)

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

Now let's save the script into the dialog window. Select File -+ Save. lf you introduced a
typo, Smile throws an alert to notify you of a compilation error, and the script does not get
saved; fix the typo and try again.

ln Smile, you test as you develop: let's test our handler. Bring the dialog window to the
front, and then bring the hr_book_samples window to the front-the dialog is now the
second window. Execute the following line in the hr_book_samples window:

set d to window 2

This returns to d an absolute reference to the dialog window, which will remain valid even
when the dialog window is no Ionger the second window, and until it gets deleted. Now to
test the handler, execute the following:

tell d to prepare it

This should clear the editable text fields.

lf it does not, the first thing-if you are sure that the script was saved-is to instaU an
error output. lndeed, in the spirit of a behavior ready for automatic applications, an error
triggered in a prepare handler remains silent unless the scripter explicitly handles it. Here
is how you would instaU an error handler; on purpose we introduce a typo in the script
that follows.

To experiment with the error handler, bring back the dialog's script window to the front
and replace its content with the following lines:

on prepare theDialog
try

repeat with i from 2 to 12 by 2
set contained data of dialag item i of theDlog to ""

end repeat
on error s

FatalAlert(s)
end try

end prepare

Do not forget to save the script with File -+ Save to make the change effective. Now, as
you have done already, put the cursor in the following line and press ENTER:

tell d to prepare it

AppleScript attempts to run the prepare handler. But in the set contained data ... line, it
will choke on a variable that was not defined before: theDlog (the variable passed as the
argument to prepare is theDialog, not theDlog). This is a typical runtime error. AppleScript
thus jumps to the first line after the on error clause. There you see Fata/Alert; FatalAlert is
nothing but a shortcut that Smile defines for convenience, which is really one option of
display dialog (with a stop icon and one OK button).

Now correct the typo (replace theDiog with theDialog) and save the script with File -+ Save.

775

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

776

We are finished with the prepare dialog window; now let's program the click in handler. lt
is a good practice not to handle directly the event in the click in handler, but to write rou
tines that click in will call: AppleScript was thought to be a rather strongly procedural
language.

Reviewing our sequence of test scripts, we identify the block that draws the new front
graphic and refreshes the whole window, and the block that merges the current
front graphic into the background graphic. lt will be a good idea, as a visual confirmation,
to blank the "string to display" once the current front graphic is merged in the background
graphic.

Bring the script of the dialog window back in view if needed and type (or copy) the three
following new handlers. Remove the built-in sample click in handler, but keep the prepare
handler that you entered previously.

Script 28-3

on RefreshDisplay(d)
tell d

set s to contained data of dialag item 2
set text_font to contained data of dialag item 4
set text_size to contained data of dialag item 6
set x to contained data of dialag item 8
set y to contained data of dialag item 10
set w_name to contained data of dialag item 12

end tell
set w to graphic window w_name
BeginFrontFigure(w)
SetTextFont(text_font)
SetTextSize(text_size)
TextMoveTo({x, y})
DrawText(s)
DrawPath(2)
EndFrontFigure()
draw w

end RefreshDisplay

on MergeCurrent(d)
set w_name to contained data of dialag item 12 of d
set w to graphic window w_name
addPDF (get front pdf of w) in back pdf of w at {o, o}
close back pdf of w
BeginFrontFigure(w)
EndFrontFigure()
draw w
set contained data of dialag item 2 of d to '"'

end MergeCurrent

on click in d item number n
if n = 13 then

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

RefreshDisplay(d)
else if n = 14 then

MergeCurrent(d)
end if

end click in

Now your dialog window should Iook like Figure 28-16 (with possibly an additional try . ..
on error . . . end try structure in the prepare handler).

eee Add ttxtto a POF flle.Scrlpt , ~- :; ___ , E3

on prep&re theDialoq
repeat vith l fra. 2 to U by l

aet cont.ained dat.a of dialag it.e• i of tb.t»ialog to • •
end npeat

an.cl prep&r•

on Re&ubllispla,y(d)
t.ll d ••t. a ~ eont.ained dat.a of dialoq i te• 2 ••t. text. font to cont..ined dat.a of clialog it4• 4

••t text:siae to conuined daw of dielog ite• a
set x to cont..ined cl.t.& of ciialog ite• 8
aet y to oont.ainecl d&t.& of .U.&lot ite• 10
aet w_nae to cont..&inwcl clata of lli&l.og itew ll

oud l:ell ••t w to graphio wind.ow v n..e
BovinJ'nntrigure (w) -
Sot'l'e>CU'ont(toxt_font)
Setl!l'extsiae(Uxt •i••J
Tox-.Tol i><, y)"J
Draw'l'oxt(o)
DrowPatb(2)
lndhontriguro()
clrow w

ond ao&oobllioploy

OD JtorvoC\orront(d)
l:ell d

••t w n .. e to oontained d.at& of dialoq itew 12
ond l:ell -
••t w to graphic window w n.to~e
oddl'llr I vot front pdf of w) in book pdf of w ot i O, 0)
cloae baok pclf of w
Bo vtnrrontri guro (w)
EndrrontFiguro()
clrav w
t.ll d

aet cront.ained data of dialag it.e• 2 t.o ••
ondt.ll

ancl Marq.Cu.rrent

oa oliok iD d ic.e. nuaber n
if n • 1.3 tbon

Re &oobllisploy(d)
el•• if n • 14 then.

~t.(d)
ond if

end oliok i<l

' - ~~ .

Flgure 28-16. Our whole dialog window works with one script only,
and that script is not very long. Yet, our dialog window does not handle
any error, and its features are very basic.

Select File-+ Save to save the script, and select File-+ Close to close its window. Bring the
dialog window to the front and select File -+ Save. This will save to disk the changes that
we made to the dialog window, including the script we just wrote.

We are now ready to test and use our new Smile tool. lf it is still open, close the PDF file,
discarding the changes. lf it is still open, close the dialog window, too.

777

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

778

Now, open the PDF file in Smile like a user would do normally: drop its icon on the icon of
Smile, or use File-+ Open in Smile, or use a script as shown here:

open pdf _ file

Open the dialeg window. lf you followed the instructions verbatim, your new dialeg win
dow should be available as an item in the User scripts menu. Otherwise, just double-dick
the icon of the dialeg window in Finder.

Now we can use our new tool. Let's add a first string to the document; say we want to set
the Name info to "Bart Simpson". ln order to fill the x/y (pixels) information, dick the
graphic window at the location where "Bart Simpson" should print. The toolbar displays
the values for x and y-something like 55 and 702. Now you can fill the text fields in the
dialeg window, for instance, "Bart Simpson", "Lucida Grande", "13", "55", "702",
"mc0306.pdf". Do fill alt the fields; we have not installed any error handling, nor any sys
tem of default values.

To view the result, dick refresh. lf nothing happens, probably a field is not filled, or badly
filled-for instance, a Ietter in a numeric field.

lf some setting does not suit you, change it and dick refresh again, until you are satisfied
with the result. Then, to validate that first string, dick validate. This resets the "string to
display" to the empty string, suggesting that you can now work on a secend string.
Proceed for the secend string like you just did for the first string. lf the secend string is on
the same horizontal as the first one, keep the same value for y (pixels).

Obviously, reading the window's toolbar and copying its content manually into the dialeg
window is not productive. We should have the graphic window send the location of the
dick to the dialeg window.

When the user clicks in an active graphic window, Smile sends pick in to the graphic win
dow's script: we should instaU a handler for pick in in the graphic window's script. Let's
open the script of the graphic window. As for the dialeg window, we must first toggle the
graphic window into edit mode. The graphic window being the active window, select Edit
-+ Edit mode (or press CoMMAND+Y}, and then CoMMAND+OPTtoN-click the graphic window.
This will open its script; by default, the script is empty.

Type the following lines:

on pick in w at {point:{x, y}, step:i}
set d to dialog "Add text to a PDF file"
set contained data of item 8 of d to x
set contained data of item 10 of d to y

end pick in

(This is assuming that you named the dialeg window "Add text to a PDF file". Otherwise,
change the string in the script accordingly.)

Note that pick in passes a step argument. The value of step is 1 when the user presses the
button down ("mouse down"), 2 when the user is moving the mouse while the button is
down ("drag"), and 3 when the user releases the button ("mouse up").

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

For more sophisticated handling, for instance, if we wanted to implement constraining the
drag with the SHtFT key, we would use the value of step.

Also, if you Iook carefully at the script, you'll observe that we set the contained data prop
erty of an editable text field, not to a string, but to a number. This is something special to
Smile: since Smile targets the scientific audience, text fields can be filled with numbers,
and you can customize the way they will display numbers by setting their format property
(editable in the contextual menu in edit mode).

On the other side, reading the contained data property of an editable text field always
returns a string-unless you coerce the string to a number by specifying as real.

Select File -+ Save then File -+ Close to dose the script's window, and then select Edit-+
Edit mode (or press CoMMAND+Y) to toggle the PDF's graphic window back into running
mode.

Now dick and drag the mouse; the dialog window should display the mouse's location in
the x/y(pixels) fields.

Note that you can hide the toolbar; it does not display the coordinates when you drag the
mouse. This is because we did not supply a continue pick in [.. .] line in our handler, so our
handler overrides the standard behavior.

lf we expect that nonprogrammers will use our tool, we should have the script installed
auto-magically. We'll make a third button that will implement the pick in script in the tar
get graphic window. For this, toggle the dialog window into edit mode (Edit-+ Edit mode),
dick the validate button to select it, move it a little to the left with the left arrow key,
duplicate it (User scripts -+ More Smile commands -+ Edit -+ Duplicate), and align it
(arrow keys with or without the SHtFT key pressed). Double-dick the new button and name
it "auto dick".

Now let's program the new button. CoMMAND+oPTtoN-click the dialog window to open its
script (or select Dialog -+ Edit dialog script). Add the following handler to the script (in
addition to Re(reshDisplay, MergeCurrent, and dick in) at any location in the script.

Script 28-4

on InstallScript(d)
set w_name to contained data of item 12 of d
set w to graphic window w_name
set script of w to "on pick in w at {point:{x, y}, step:i}
set d to dialog \"" & name of d & "\"
set contained data of item 8 of d to x
set contained data of item 10 of d to y

end pick in"
postit ("Loaded")

smilepause 5
postit ("")

end InstallScript

779

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

780

ln this handler we use a sophisticated feature, scripted scripting. ln Smile you can dynam
ically provide a script to an object: you can set the script property of an object to a
string-provided the string is a compilable AppleScript source. Smile Iets you manipu
late-by script-scripts as weil as the individual handlers and properties of a script.

We have chosen to display feedback when the action is done: the floating Message win
dow will display "Loaded" for 5 seconds (postit ("") closes the Message window).

The handler uses a unique command of Smile's: smilepause. lnserting smilepause in a
script pauses the script (for the time specified, which can be 0) while letting the applica
tion be fully responsive. smilepause may be used for a wide variety of occasions. Here we
use it to have the message go away after five seconds, yet letting the user work normally
as soon as the action is done.

Of course we must have our new handler called when the user clicks auto dick. This is the
job of the click in handler, where we should instaU (before end if) the two following lines:

else if n = 15 then
InstallScript(d)

You can check that your script conforms to Figure 28-17, where the script is given as two
pages. The order of the routines is arbitrary. lf there is no error, select File -+ Save, and
then File-+ Close to save and close the script. Once the dialog is the front window, select
File-+ Save.

Now you can dick the new button and finish filling in the form if you wish, and then you
can save it with File -+ Save. Finally, you can view the file by double-clicking its icon.
Depending on your settings, this will open the file in Preview or in Adobe Reader (or
Acrobat Reader), and you can see the strings you have added. You can use a high magnifi
cation to check that you have vectorial graphics.

SMILE: THE APPLESCRIPT INTEGRATED PRODUCTION ENVIRONMENT

Add text to a POF flle.Scrtpt

••t • to oontained. data of clialoq ite• 2 ••t text_font. to aontained cl.at& o f dialag it.e• 4 ••t t.xt •i•• t.o aont..ainecl cU.t« of d.ialog it.e• e ••t x to-cont.ained dat.A of di&lov ite• 8 ••t y to oont.ainad data of di•loq it.e• 10 ••t. w_n .. e t.o cont•in&d d.at.. o f d.ialog it.e• U
ond tell ••t w t.o g:rapMo windov w a...:.•
Bo ginl'ront.riguro(w) -
Set'l'extl'ont.(text font}
Se~ot.Siae(text-•i••l
Tb Ufoyo'l'o(i•, it)
Dr&Wrext(•)
Dr-Path(2)
E:ndJ'rontrivur•l l
clr- w

oncl Rofroohllioplay

on Mlrg.Curr•nt(d)
tell d

aet w n .. • to Gont&i.D.•d. d•t.. of cli.alog it.a U
ond tell -
Iet w to ;raphia window w_nu;a
&ddl'DF I vot front pclf of W) in back pdf of w &t i O, 0 }
cloae baek pcl.f o f w
Boqinl'ront.riguro(w)
Endrront.riguro()
draw w
tell d ••t. oont&iu.cl cl.at.a of clialoo itew 2 to ••
ondtell

end Jt...r9eC\Lrrent

tn.tallSoript(d) ••t w n.aae to oont.d.ned d..a.t.a of 1 t•• 12 of d ••t w -t.o vrapbJ.o vindov v_Wllle ••t worlpt of w to •on pick in w at {'Point I -{x , y), •tepl it
oot d to clialo• \"" ' ..-o of d ' "\" ••t eont.ained cla.t.a. of i taa 8 of d to x ••t cont.ained d•t..a of ita• 10 of d to y

end piok in•
postit. (•.t.oa.ded•)
.. ilep•us• ~
pooti t l" " l

oncl tn.tallloript

oa pr•par• th.Diüog

pooUt I"")
ond tn.tallSoript

on proparo thoDialog

Add text to a POF flle.Scrtpt

ropoat wi th i froo 2 to 12 hy 2 ••t oont..t.ined d.t.t• of c:li.alag it..• i of theDialoq to ••
end repeat

1111clp.repare

OD cli ek in d: ita• :rt.ual.er n
if n • 13 thon

Rofroohllioplay(d)
el•e if D • 14 than

MorgoCurront(d)
el•• if D • 1-" tlan

tn.tallSoript(d)
ond if

ond click in

Flgure 28-17. The first page gathers our special handlers, which we call ourselves
in script. The second page gathers the event handlers, which handle the events
that Smile sends to the script.

781

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

782

Exercises
Obviously, we have made a working tool, yet a minimal one. What we should do now
depends mostly on who will be using the tool and how often they will use it.

Here are some standard improvements that you may want to implement later. All of them
can be implemented; for the sake of brevity, they are left as an exercise for you to do on
your own.

• Have the dialog window systematically work on the first graphic window (even if
the window is not the second window)-yet displaying its name as a visual feed
back. Or, instaU a Ioad window 2 button.

• InstaU a menu for the text font. For the text size, instaU the small arrows control.

• The pick in script should support the SHIFT key to pin one coordinate.

• The user should be allowed to type a numeric expressionsuch as "55+200" as x or y.

• InstaU a live check box for live update.

• Rewrite the whole program to use picture views instead of working directly in the
graphic window, so that alt texts remain editable until the user saves as PDF.

• Graphie windows support widgets that you can use like scriptable handles to an
object. Rewrite Adobe Illustrator using the widgets.

set
lf !folder of {Info ror alias thc..IJI'tlt!lthen

set thc..musa{lf to "Change aU
• & rewrn & t/te..poslx_path

d lspl.ay dl.alog tM..messa{lf bunons ·
default bunon "Yes·

set Challflf..OIC/oSUlO bunon
result

lf challflf..OIC/osuls "Yes" then
set shdl to sireil & "·R •

endlf
end lf
set shdlto shdl& thls_mod•
set sholl to shdl & • •• & the..IJI'Six..path &
try

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

786

The world of UNIX offers scripters an endless source of free scriptable applications. There
are so many free UNIX applications out there, each performing little commands and
actions. You can utilize most of these applications in your AppleScript solution by means
of the do shell script command.

ln this chapter, we explore one UNIX command and one such UNIX application. This
should give you some idea of what is involved in making use of UNIX in your scripts.

ln order to incorporate UNIX into your scripts, you have to be familiar with the UNIX-style
path names. Unlike the AppleScript path names that are colon delimited, UNIX paths are
slash delimited.

AppleScript path:

"Macintosh HD:Applications:Finder.app"

UNIX path:

"/Applications/Finder.app"

To learn more about the UNIX path and how to manipulate it with AppleScript, turn to
Chapter 13.

Changing permissions
One of the biggest headaches the UNIX integration brought to the Mac platform is per
missions. I know, it's all for the best, but it is still a pain.

Since this is not a UNIX book, and there are many UNIX books out there, I will not go into
it too deeply, but I do want to cover the shell command chmod, and how to integrate it
with AppleScript. chmod, which is short for change mode, changes the permlssion modes
of a file or folder. Besides the file you want to change, it takes a mode parameter, which is
a single code that describes the new permissions settings for the file.

Another important parameter is -R, which determines whether folders are processed recur
sively, and the same options you applied to the folder apply to all the files and folders in it.

The mode parameter itself is a bit more complicated, but we can Iook at one facet of it.

lmagine a three-digit number in which the first digit represents the owner, the second digit
represents the group, and the third represents anyone else. Now, let's Iook at one of these
digits, and see that the number 4 stands for "allow to read," number 2 stands for "allow to
write," and 1 is for "allow to execute." Now let's put a simple one together: the mode
number 444 means allow the owner to read, the group to read, and anyone else to read.

What if, however, we want to Iet the owner read and write? Well, read is 4 and write is 2,
so read and write is 6. The mode number in that case would be 644. You can refer to the
following table for a quick reference:

AUTOMATING UNIX APPLICATIONS

Permission Level

Read

Write

Execute

Read/Write

Read/Execute

Write/Execute

Read/Write/Execute

ModeNumber

4

2

6

5

3

7

Looking at the preceding table, you can tell why a popular choice is 777, which allows any
one to do anything. Also 775 is useful, as it prevents anyone other than the group and
owner from writing to the file.

To learn more about chmod, use the man page: type man chmod in the Terminal applica
tion. After a lengthy explanation of the command, you will find one bug mentioned. The
bug is that there's no perm option for the naughty bits. Now, does that mean that if the
bits are naughty their hairdresser appointment will be canceled? Couldn't resist

The script that follows is a droplet that loops through nine dialog boxes that represent the
nine options: owner read, owner write, owner execute, and the same for group and others.

After collecting the information from the user, including an administrator's password, the
script assembles a string that will be used as a shell script.

The script is followed by brief explanation at the bottom.

Script 29-1

1. on open the_item_list
2. set error_count to 0
3. try
4. display dialog .,

"Enter administrator password" default answer ""
s. set admin_password to button returned of result
6. on error
1. return
8. end try
9. repeat with this_item in the_item_list
10. set the_path to this_item as string
11. set the_posix_path to .,

POSIX path of alias the_path

12. set action_value_list to {4, 2, 1}

787

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

788

13. set action_list to {"read", "write to", "execute"}
14. set entity_value_list to {100, 10, 1}
15. set entity_list to {"owner", "group members", "others"}
16. set this_mode to o
11. repeat with e from 1 to (count entity_list)
18. set entity_name to item e of entity_list
19. set entity_val to item e of entity_value_list
20. repeat with a from 1 to (count action_list)
21. set action_name to item a of action_list
22. set action_val to item a of action_value_list
23. set the_message to "Allow " & entity_name & " to " & .,

action_name & space & return & the_posix_path & "?"
24. display dialog the_message .,

buttons {"No", "Yes"} default button "Yes"
25. set should allow to button returned of result
26. if should_allow is "Yes" then
27. set this_mode to this_mode + (entity_val * action_val)
28. end if
29. end repeat
30. end repeat
31. set shell to "chmod "
32. if (folder of (info for alias the_path)) then
33. set the_message to .,

"Change all enclosed files of " & .,
return & the_posix_path & " as well?"

34. display dialog the_message buttons {"No", "Yes"} .,
default button "Yes"

35. set change_enclosed to button returned of result
36. if change_enclosed is "Yes" then
37. set shell to shell & "-R "
38. end if
39. end if
40. set shell to shell & this_mode
41. set shell to shell & " I" & the_posix_path & "I"
42. try
43. do shell script .,

shell passward admin_password .,
with administrator privileges

44. on error
45. set error_count to error_count + 1

46. end try
47. end repeat
48 if error count is o then
49. set the_message to -.

(count the_item_list) & " files were processed" as string
so. else
51. set the_message to error_count & .,

" files out of " & (count the_item_list) & -.
" were not processed" as string

AUTOMATING UNIX APPLICATIONS

52. end if
53. display dialog the_message
54. end open

The preceding script is made of a few parts. The first part allows the user to enter a pass
ward. lt also starts Iooping through the files and folders dropped on the applet.

Next, the script loops through four lists, two in the outer loop and two in the inner loop.
Since there are three items in each Iist, the script loops three times.

Every loop represents a combination containing an entity (owner, group, or other) and a
permission context (read, write, or execute). ln each loop, a dialog box asks the user to
choose whether to allow or disallow permission. lt starts with owner read permission, then
owner write, etc.

ln line 27 of the script, the choices are collected into the mode number described earlier.

ln lines 32-39, the script determines if the current Finder item in the loop is a folder. lf it
is, then the user can choose whether to apply the settings to all of the contained files. As
you can see in line 37, this is done by adding the -R option to the chmod command.

ln line 41 the shell script string is assembled. Notice that the POSIX path is put in single
quotes. This is done to avoid having to escape, or in other words place a backslash before
the spaces in the file's path name.

ln line 43 the shell script is executed, which is really the purpose of the entire script.

Working with UNIX applications
There are many free UNIX applications out there, and you can figure out how to script
many of them with the do shell script command.

After you download any UNIX application, you will need to make sure that you have exe
cuting rights to that application file.

Use the preceding explanation to change the permissions on the file, or run this shell script

chmod 777 /path/to/unix/app

You can also use a free application called BatChmod (http: I /macchampion. com/ arbysoft/).
This little application can change the owner and permissions using a graphical user interface.

As a small example, I will show how to script a UNIX application called PDFfonts
(www.glyphandcog.com/). PDFfonts takes the path of a PDF file and returns detailed infor
mation about the fonts in that PDF file-whether the font is embedded, the font type, etc.
Following is a sample output from PDFfonts:

789

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

790

Name

lZJIIJ+Palatino-Roman

RJPWGN+Palatino-Bold

QBFQSP+Palatino-ltalic

Type Emb

CID Type OC yes

CID Type OC yes

CID Type OC yes

Sub

yes

yes

yes

Uni Object ID

yes 17 0

yes 23 0

yes 9 0

While the preceding table has been formatted, the real result from PDFfonts Iooks more
like this:

Name Type Emb Sub Uni Object ID

TZJIIJ+Palatino-Roman

RJPWGN+Palatino-Bold

QBFQSP+Palatino-Italic

CID Type oc yes yes yes

CID Type oc yes yes yes

CID Type oc yes yes yes

The meaning of the different columns is as follows:

17 0

23 0

9 0

• Name: The font name, including the subset prefix, which is the text before the "+".
• 'JYpe: The font type. This can be Type, Type 3, TrueType, CID Type 0, CID Type OC,

or CID TrueType.
• Emb: Whether the font is embedded in the PDF.
• Sub: Whether the font is a subset.
• Uni: Whether the PDF contains an explicit "to Unicode" map. For details, see

www.glyphandcog.com.

• Object JD: The font dictionary object ID, which includes the number and generation.

lt is up to you to parse it out into components and extract the information you want.

The script we willlock at is a small AppleScript interpretation of PDFfonts. We will create
a droplet that accepts a PDF file. The dropletwill tell us how many fonts there are and how
many are embedded.

To start, we will need to convert the path of the dropped file from a Mac path using colons
into a UNIX path with slashes. We'll do that with the POS/X Path property. We will also
place the path in single quotes in case it has a space in it.

Script 29-2

1. on open thePDF
2. set thePdfPath to item 1 of thePDF
3. set thePdfPath to POSIX path of thePdfPath
4. set shell_script_text to ~~~/Documents/pdffonts 111 & thePdfPath & 11111

s. try
6. set shell_result to do shell script shell_script_text

AUTOMATING UNIX APPLICATIONS

1. on error error_text
8. display dialog "Error" & return & error_text
9. return
10. end try
11. if shell_result is "" then
12. display dialog "No fonts were found"
13. else
14. set font_info_list to paragraphs 3 thru -1 of shell result
15. set font_count to o
16. set embedded font count to o
11. repeat with i from 1 to (count font_info_list)
18. set font_count to font_count + 1
19. set this_font_info to item i of font_info_list
20. set is embedded to characters 51 thru 53 of ~

this_font_info as string
21. if is_embedded is "yes" then
22. set embedded_font_count to embedded_font_count + 1
23. end if
24. end repeat
25. set the_message to "This PDF contains " & ~

font_count & " fonts, out of which " & ~
embedded_font_count & " are embedded."

26. display dialog the_message
27. end if
28. end open

ln lines 2-4 of the script we get the path to the dropped PDF, convert it to a UNIX-style
POSIX path, and construct the she/1 command.

Between the lines 5 and 13 we run the she/1 command and compensate for two possibili
ties: one is that the file dropped is not a PDF. This situation will be trapped as an error. The
other option is that there are no fonts at alt in the PDF, and in that case the user will be
notified as weil (line 12).

ln line 14 we create a Iist that includes all the paragraphs of the result, starting from the
third paragraph (paragraphs 1 and 2 are the title and underscore).

Once we have the Iist, we loop through each font information line and pick off the infor
mation we need.

After a short examination, I realized that the result is not a tab-delimited text, but rather,
every column has a System Events number of characters. The first column uses 37 charac
ters. the second 13 characters, followed by the 3 Boolean columns, each taking 4 charac
ters, and at last the 9-character font info column.

Using this information led me to the fact that if characters 51 through 53 say "yes", then it
means that the font is embedded (see line 20).

lf the current font is embedded. I add it to the count of embedded fonts.

ln lines 25 and 26 the final message is created and displayed.

791

-

Saturday all-cboy D

from 07/03/~ at 12:20 AM
tD 07/03/~ at 1:20AM

1111-t attendees None

fr
Stii..1UI None :

... ~ owryd;oy;
end Nr.w.r:

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

794

So far we dealt with the scripts themselves: how to write them, save them, and run them.
But what if you want a script to run automatically at any time of the day or night?

ln this chapter, I cover a few options for scheduling scripts to automatically run at any time
on your Mac.

iDo Script Scheduler
Perhaps the most well-known option for automating the launch of scripts is iDo Script
Scheduler by Sophisticated Circuits. You can buy it or download a demo from
Sophisticated Circuits' website: www.sophisticated.com.

iDo Script Scheduler allows you to select a script file and specify when it should run. Your
choices are Once only, Repeating, Day of week, Day of month, Hot key, and System idle.

The Repeating, Day of week, and Day of month choices are all variations of the Repeating
option. They allow you to specify in what intervals your scripts will run.

The System idle option Iets you set a number of minutes that the system can be idle
before your script executes.

Hot key is also a neat alternative to attaching key combinations to script execution.

You can have iDo Script Scheduler run scripts from many languages, including Perl, UNIX
shell, Python, and others. These scripts have to be identified with special file name exten
sions.

iDo Script Scheduler is a reliable and easy-to-use utility, and most of its windows and dia
lag boxes are self-explanatory.

The main window, shown in Figure 30-1, lists the scheduled events and allows you to add,
delete, or edit an event.

(New...) (Edlt...) (Deieie)

Flgure 30-1. The scheduled events in iDo Script Scheduler's main window

SCHEDULING SCRIPTS

Clicking the New or Edit button will bring up a simple Event window, which allows you to
set the trigger for the script and specify the script file. You can also specify parameters for
the script, but for that your script must be saved as a compiled script with a run handler
containing parameters, like this:

on run (parameter1, parameter2 .••)
--script
end run

Using iCal to schedule scripts
Another neat way of scheduling script execution is by using iCal.

To do that, create a new event in iCal and set the start date and time to the date and time
you want the script to execute on.

After you have the event, choose the Open file alarm, and choose the script file you want
to run. This can be either a compiled script or a script application. Set the alarm to execute
0 minutes before the event.

The example in Figure 30-2 will run the script "Backup user folders" every night at 12:20 a.m.

Saturday

• Aulo b•<kup

" ""'" backup

3

10

17

Autobackup
Offtee

&11-day 0

from 07/0l/04 at 12:20 AN
tt1 07/0l/04 at 1:20 AN

attanc!Ms NoM

.statut None ::

t<lpaat every day :
end Ne .. r:

alarm Open flle :
S..dwp use.r folders.scpt :
0 mlnutes btfore :

ca.lcndar • ~lt :

24 url None

31

Thls ...,nt will lallMh IM scrlpt "''
bKklng up tM: uH:r fokl~n

Flgure 3D-2.
The event shown
will run the script
"Backup user
folders" every
night at 12:20 a.m.

795

-

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

796

Managing stuck scripts
ln Chapter 22 we looked at many ways to avoid having our script error out. As much as we
try, however. we can never eliminate the possibility that our script will crash.

The consequences of your script hanging or crashing may be small; someone will eventu
ally find it and restart it. ln other cases, however. it may control an automated system that
processes critical jobs that people are waiting for, and has to be up 24n. ln these cases, a
crashed script has to be attended to immediately.

I encountered this situation in a recent project I worked on. The project was a system that
produces financial documents in a fully automated fashion. Users drop source files into
hot folders. and the finished PDF is e-mailed to them within minutes. Not only that, but
the system is used by the company's offices in Australia, Japan, and the UK, so it was criti
cal to have it start itself up if needed.

The solution for this problern was Kick-off, a hardware-software combination made by
Sophisticated Circuits. the company that makes iDo Script Scheduler. Kick-off is a part of a
family of products that allow you to control the computer power from scripts, among
other ways.

Kick-off connects between the power strip and your Mac's power cord. and also connects
to the USB port. You can configure it to restart your Mac in the event that a particular
script gets hung.

The way it is done is by using an application called PowerKey Daemon. PowerKey Daemon
is a scriptable utility that has a built-in timer. To use it, you include the command
tickleAppTimer with the number of seconds the timer should be set to, like this:

tell application "PowerKey Daemon" to tickleAppTimer 300

After the PowerKey Daemon gets the "tickte," it starts the timer. lf the timer expires,
meaning the number of seconds you set in the timer pass before you tickte the timer again
with tickleAppTimer, Kick-offstarts the restart sequence. First, Kick-off tries to restart your
Mac the nice way a specified number of times. lf it can't restart, the hardware part takes
over and the power to your Mac is stopped and then started again.

All you have to do is make sure that you have a startup script in the startup items that
restarts your system.

To make sure Kick-off doesn't restart your Mac after the script quits normally, add this quit
handler:

on quit
tell application "PowerKey Daemon"

tickleAppTimer o -- clear the timer before exiting.
end tell
continue quit -- let the script quit normally.

end quit

SCHEDULING SCRIPTS

UNIX cron
The UNIX cron and crontab commands allow you to schedule UNIX commands, including
the launehing of scripts.

The freeware application CronniX puts a graphical interface on the cron command, which
"allows scheduled execution of scripts, programs, applications-in short anything that can
be started from the command line. This includes OSX applications and AppleScripts." You
can download CronniX and read more about it at www.koch-schmidt.de/cronnix/.

Other such applications are MacAT (http: I /gimr. garvan. unsw. edu. au/gerham/macsos/
macat/index.html), piTime from piDog Software (www.pidog.com/piTime/), Scheduler 3
(www.macscheduler.com/), and T-Minus Ten from MK Software (http://
home.austin.rr .com/mk/tmt).

lf you aren't intimidated by UNIX, you may want to try to schedule your scripts with the
cron application, which allows you to schedule shell scripts on the Mac.

You can use the osascript shell command along with the path to the script you want to run.
osascript is a shell script command that will execute a script either from a file or from text.

To find out exactly how to use the cron application to create cron tabs, pick up a UNIX
book that deals with the subject.

797

hnon.ll File Shanng
Wird~ 5hanng
l'enonil Web Shartrg
kemott LOOn
nPACcess
Ap~le lt~rnlll4! Dnktup
llnn<>l"' IJII" lven I>

Prlrur S-.ulng

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

800

Did you know that you can use AppleScript to cantrot applications across the network or
across the world? This chapter discusses scripting remote Macs and remote applications.

Scripting remote Macs over IP
One of AppleScript's features is the ability to run script on one Mac that controls applica
tions on another Mac. This is done with Remote Apple Events over IP.

Beside a couple of extra lines you have to wrap your code with, the scripts themselves are
the same as if they were made to run locally.

Enabling Remote Apple Events
Before you can even start scripting remote Macs, the Mac you want to script has to be able
to accept them. By default, Macs are set to not allow access by Remote Apple Events. This
issue is crucial to security: imagine the risk if anyone who knew your IP address could can
trot your Mac from afar. Weil, they would also need you user name and password, but in a
multi-Mac environment those may not be the most difficult things to get.

To activate Remote Apple Events on any OS X Mac, check the Remote Apple Events check
box in the Services tab of the Sharing pane of System Preferences, as shown in Figure 31-1.

Figure 31-1.
System Preferences
Sharing pane where
you turn on Remote

Apple Events and
check the user's

Rendezvous name

Othtr onl):u:e:"J on 'IOUr l:x:al SJbntt can rtadl· 'tOIJ'f
C<fr.pulltr oJI HM~u•·RDstnthllls-co urJoul ~

~ Flrewall lnlerntt

Stlo:<.l " >tnrk.t 1u do•nye lt; ;elll-og;.

On SoNe• -----,

0 renanal fl lt Shanng
(1 Wonclows 5hann~

Personal Wtb Shar1rg
J.t mott I.Ogln

0 nPAcuss
Applt J.trn~lt Dnklup
ltrrwlt Ap~lt [..,,.b

Pn lll'<r 5, ._ring

(StDp)

Okk S.op 10 p--ncr1t l!ppllcatbnJ 01 ot-"u
corol)llltl5 froon '""''"~ ,.PDit tv>rts u
yn1w r-r""'llf•r

Allll"' t"''!nts rrom Mu OS 9
AIOin evtnrs trom b'n \4Jc as 9 Ud
\Iu rK X t'ftmrMrt•r.:

S«tPusword

CONTROLLING REMOTE APPLICATIONS

While you're in the Sharing pane, check out the user's Rendezvous name. lt is noted under
the computer name with the ".local" name ending. This name may come in handy later on.

Talking to machines

When you write scripts that run locally, the scripts run on the default machine, which is
your Mac-therefore specifying the machine is unnecessary. When scripting other Macs
over IP, however, you need to specify what Mac, or machine as it is referred to in the
script, you want to send events to.

The remote machine can be specified either by using its IP address or, if it is on your local
network, its Rendezvous name. You can find the Rendezvous name in the Sharing pane of
System Preferences, as noted earlier. The IP address can begatten from the Network pane
of System Preferences.

Once you figured out the IP address or Rendezvous name of the target machine, you can
compose the tell block. Let's say that you want the Finder of the target Mac to create a
folder. For argument's sake, we are talking to a Mac whose IP address is 1 01.2.3.4. We'll
need to tell the application Finder of the machine in this way:

tell application "Finder" of machine "eppc://101.2.3.4:3031/"
make new folder •••

end tell

The beginning of the machine name string is always "eppc://" followed by either the IP
address or the Rendezvous name. The IP address can be followed by the port number
3031, the port that is used for sending Apple Events over IP.

The tell block for a Mac on the same local network would be

tell application "Finder" of machine "eppc://rendezvous-name.local"

Authentication

And you thought for a second that OS X security would Iet you by without identifying
yourself? Not a chance. ln fact, even if the target Mac allows incoming Apple Events over
IP, you will still need to have a user name and passward of a user on that Mac with admin
istrator privileges.

You can embed the user name and passward for that Mac in your machine name string,
like this:

machine "eppc://username:password@101.2.3.4:30311"

or in the case of using the Rendezvous name:

machine "eppc://username:password@rendezvous-name.local"

801

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

802

lf you don't use the name and password, when you run a script for the first time you will
have to enter the login information in a dialeg box, and ask to keep it in the keychain.
While the first method of embedding login info in the machine name is a bit easier, using
the keychain is more secure, since the login info isn't hardcoded in a script somewhere.

terms from

While you can connect and talk to applications on remote Macs, you may not want to have
a live connection to them while you're writing and compiling the script. For that purpose,
we enclose any script that is aimed at a remote application with the using terms (rom

bleck. This teils AppleScript to compile the script intended to be execute by a remote
application, using terms from the same application locally. This makes our telt block Iook
like this:

Script 31-1

tell application "Finder" of machine "eppc://101.2.3.4:3031/"
using terms from application "Finder"

--script aimed at the remote Finder
end using terms from

end tell

Launehing applications

Another caveat of scripting remote applications is that if the application isn't running
when you target it with a script, your commands won't go through, even if you use the
launch command.

What you have to do is use the Finder on the remote machine to first launch the applica
tion file. and only then target it with commands. You use the Finder since it is almest
certain to be running.

Using aliases

The alias file-reference form is useful on the local Mac since it keeps track of files even as
they move or change names. ln scripting remote applications, however, using the alias
reference form can cause AppleScript to get confused. lnstead, store file paths in variables
as strings.

Controlling XML-RPC and SOAP
AppleScript has taken a bold step to integrate the XML-RPC and SOAP technologies into its
core language. XML-RPC and SOAP are web services, or types of applications that commu
nicate with users by means of XML.

CONTROLLING REMOTE APPLICATIONS

With AppleScript, however, you don't need to know or write any XML, since AppleScript
does all the communication with the remote application for you. What you do have to
know are the service's URL, function name, and some other parameters.

A few websites, such as XMethods (www.xmethods.com), Iist many such services along with
their settings. Converting that information into a fruitful AppleScript call is a different story.

You can use AppleScript to make a call to a SOAP service or an XML-RPC service. Both call
types are done using syntax similar to that for targeting any other application.

SOAP

The syntax for making a call to a SOAP service Iooks like this:

Script 31-2

tell application "http://url-to-soap-service"
call soap {method name: the_method, method namespace uri: uri}

end tell

lf the service requires parameters, you can supply them using the parameters item in the
call record shown previously. The parameter for a service that requires a single parameter
can be included as is, like this:

call soap {method name: the_method, method namespace uri: uri, ~
parameters: "02909"}

The preceding call needs to be a five-digit zip code as a string.

lf more parameters are needed, you can supply them as a record.

XML-RPC

The syntax for XML-RPC service calls Iooks like this:

tell application "http://url-to-soap-service"
call xmlrpc {method name: the_method, parameters: parameter_list}

end tell

Sample code

So you went to the XMethods website and found a service you want to test. lf you find
it difficult to marry the service specification listed on that website with the parameters
AppleScript needs, don't despair: you're not alone. Very little documentation exists on
taking just any service and calling it with AppleScript.

Following is an example of a service that uses no parameters but returns a record as a result.

803

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

804

I first Iist the service specifics exactly as they appear on the XMethods website, and then
the way the same information should be turned into an AppleScript statement.

The service, called getRandomBushism, simply returns a record with two items: the
bushism and the context.

On the website, the service's specifications are listed as follows:

Method Name: getRandomBushism

Endpoint URL: http: I /greg. froh. ca/fun/random _ bushism/ soap/index. php

SOAPAction: urn:Randomßushism#bushism#getRandomßushism

Method Namespace URI: urn:Randomßushism

Input Parameters:

Output Parameters:

return: Randomßushism

The AppleScript syntax for calling that service Iooks like this:

Script 31-3

tell application ~
"http://greg.froh.ca/fun/random_bushism/soap/index.php"
set {bushism_text, bushism_context} to call soap ~

{method name:~

end tell

"getRandomBushism", method namespace uri:~
"urn:RandomBushism", SOAPAction:~

"urn:RandomBushism#bushism#getRandomBushism"}

display dialog "Bush: " & bushism_text buttons {"context", "OK"}
if button returned of result is "context" then

display dialog bushism_context buttons {"OK"}
end if

Wrap-up
Even though AppleScript supports XML-RPC and SOAP calls natively, there's still a usability
gap that makes it difficult for any scripter to Iook up a SOAP or XML-RPC application on
the Web and quickly put it to use with AppleScript. Regardless ofthat fact, the promise of
such web services should keep you interested; they are slowly turning into a valuable, and
mostly free, resource for the scripting community. You can use these web services to get
weather information and stock quotes, verify e-mail addresses and credit card numbers,

CONTROLLING REMOTE APPLICATIONS

get ample data on places in the U.S. based on their zip code, and also find TV listings in
lceland, and obtain a Iist of famous people whose birthday is on a given date. This Iist is
endless and it keeps on growing all the time.

There are quite a few websites that Iist useful web services, which you can call
from AppleScript, as weil as XML-RPC and SOAP specifications, such as Xmethods
(www.xmethods.com) and Userland's XML-RPC's website (W'tt'W.xmlrpc.com).

Another place to find information and help is from Apple's AppleScript website
(W'tt'W.apple.com/applescript/resources/). From there, Iook for the XML-RPC and SOAP
references.

805

lf lfoldtr of (lnfo ror aliu the....pmh))
set the....messag~>. to "Change a.ll

• & rewrn & rhe....posix_pQth a.
dlsplay dlalog the....messa~ bunons {

defaurr button "'Yes"
set cha~lllfiCiosedto button

result
lf chan9t>.-111f1Ciostd ls "'Yes· then

stt shdl to shell & "·R •
end lf

end lf
set sMJ/to shd/ & rhls. mode
set shell to she/J & • .. & tht..postx_porh &
try

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

808

lf you use AppleScript for more than the occasional script you write for yourself, then you
are saving someone time and increasing their productivity. All that goodness translates
into money that someone is either saving or making. An AppleScript return on investment
study published a few years ago by GISTICS suggests that media producers saved over
$100 million du ring 1998 alone (for more info on this study, see the "Taking the next step"
section).

As the scripter, there are things you can do to get in on the action. You can do that by
either pushing your position as a scripter within your organization, or becoming an inde
pendent automation consultant and writing scripts for living, as I have been doing for
almost ten years. ln any case, you need to understand what makes AppleScript automation
unique, and how you can use it to dramatically improve workflows of companies that use
Macs for their business.

This chapter discusses some of the business aspects of AppleScript, and gives advice to
those who want to capitalize on this incredible technology.

Starting to make an impact
As in any other business, when you're just starting out, you have to stand out from the
crowd in order to be noticed. luckily for you, you are not trying to direct a major
Hollywood film or sell your paintings to a museum. What you're trying to do is write scripts
for your organization, and slowly get recognized, and then slowly get paid. What may
make this very possible is part of what makes AppleScript so great: you can make a sub
stantial impact without too much work.

Before jumping to asking for a budget or writing up a six-figure proposal for a project, you
have to remember a simple rule: what you can do for others always comes before the
reward you get back, or at least the monetary reward.

Rolling up your sleeves

To make it as a scripter, you can't sit areund waiting for someone to promote you to that
position; it has to be all you. lf there's very little automation going on in the company you
work for, then it is a typical company. You have to be the one that Iooks around for script
ing opportunities, and when you find them, don't ask if you should try to automate them,
just do it. ln your spare time, during lunch, or on your work hours-no matter what it
takes, find a problern or task that can be helped with scripting and work on solving it. Wait
as long as you can before revealing your work-the more complete it is when you show it,
the better oft you will be.

Now that you have something to show, make sure that you have a clean demo arranged in
order to show oft your script. Collect some basic numbers such as "This used to take three
hours, but now it can be done in six minutes," or something to that eftect.

Before long, you will find that little automation issues come to you: could you script this,
could you automate that ...

THE BUSINESS OF AUTOMATION

Taking the next step

lf you have what it takes to script and you decide that you want to take a more serious
crack at it, start by looking around your own company, but this time with a bit more
ammunition. To start, you have to be fully aware of the value and impact that scripting and
automating can have on your department and company. A good starting point is a return
on investment study published by GISTICS. To get the full study, go to Google and type
AppleScript ROI GISTICS; you will encounter numerous websites that have the full study
posted. Among other facts, the study claims that companies saw their investment in
AppleScript returned 2.4-4.3 times du ring the first year of adaptation; usually, the expecta
tion is to return the investment once within a few years. This information can help you con
vince your company, or other companies, to give you a nudge upwards on the pay scale.

joining Apple's Consultants Network

Apple's Consultants Network is a network of certified consultants that is maintained by
Apple Computer. The consultants are "skilled in the setup, use, and maintenance of Apple
products and solutions," and prospective clients can search for them by geographic loca
tion and area of expertise. The Consultant Network's website is at consultants. apple. com.

ln order to become a consultant, you need to pass a few tests and pay the membership
fee. Membership doesn't make sense for everyone, but if you're looking to become an
independent consultant, you should Iook into it.

Figuring out the value of automation
lt is quite difficult to figure out the monetary value of a scripting project, since it can
stretch across many areas in a company and have impact that is far greater than the time
saved by having AppleScript do the work instead of a person.

ln fact, the time saved estimates is where you have to be the most cautious. Let's assume
that you ran some tests and some numbers, and you've figured out that the catalog takes
20 hours to produce in the current manual workflow, but you can create scripts that will
produce it in 1 hour. Let's also assume, for argument's sake, that you are right. Will that
mean that the company can lay off 95% of the employees working on the catalog as soon
as the script is working? No. The company won't be able (and shouldn't want to) lay off
anyone for a while.

By manual workflow, I don't refer to X-Acto knives and tape, rather to workflow that uses
Macs, but is not (yet) automated.

809

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

810

The reality is that even with the type of drastic results you can get with AppleScript,
change is always slower. This is good in a way, since you can now avoid those nightmares
about having your coworkers lose their jobs because of you. ln reality, if you save your
company or department 1 0% of the workforce after a year, which can happen through
attrition and promotion instead of layoffs, you have done a great job. lt is important, how
ever, to have realistic expectations as far as the immediate impact your scripting work will
have on your department.

The broad impact
Let's get back to the catalog you are working to automate. lf you can shorten the produc
tion time from 20 hours to 1 hour, you can imagine that the production Iead time, which
is the amount of time you have to start the work before the catalog has to be ready, will
shorten by, say, 50%. Even though production sees a direct improvement of 95%, the Iead
time has to take into account much more than just the raw production. An improvement
of 50%, however, is huge. lt means that alt the information in the catalog can be much
more up to date, which is essential in some markets. The fact that a script will now be plac
ing the prices in instead of a person means that errors will be down drastically, which
means much less work for proofreaders and graphic designers. An automated process also
means that you in effect taught the Mac how to do alt the boring repetitive work, and that
alt those designers who spent days and nights correcting copy and retyping prices can now
concentrate on design instead.

The art of prototyping
Back to selling your work. One of the things you will come to realize is that with
AppleScript development, the 80-20 rule applies: you can finish 80% of the project in 20%
of the time. This by itself doesn't mean much, since you will have to spend the rest of the
80% of the time on the small things (believe me, it is unavoidable). Where you do take
advantage of it is that you can create a working prototype of the project in a very short
amount of time.

The key is to have a meeting with a prospective dient, be it in your company or as a con
sulting job somewhere else. ln that meeting, try to gain an understanding of the terms they
use and of their workflow. Pay special attention to the raw material, the documents, and
the final output: raw material being the data that they use to produce whatever it is they
produce, the material being their templates, etc., and the output being the finished job.
Try to take as much of it with you, with permission of course; sign a confidentiality agree
ment if you have to. Then, make a meeting with them a couple of weeks from that point.

At this point you should get busy: make sure you have a good prototyping tool such as
AppleScript Studio, FileMaker Pro, or FaceSpan to use for a basic interface. Now, create
some basic scripts that take their material and turn them into parts of the final product. I
like to have a dialag box come up at the end that says, "The process is complete, and took
23 seconds" or something to that effect. lt is very impressive for people at a company see
their product or part of it created automatically, and so fast.

THE BUSINESS OF AUTOMATION

ls it possible?
A question you will get again and again is whether one thing or another is possible to
automate. ln reality, anything is possible, as long as the dient is willing to pay for it. As far
as your experience goes, unless they're asking for things that are way beyond your ability,
you should assume that you can figure out how to get anything done, even if you haven't
done it yet.

Charging for automation
Automation is very valuable, and unless you're in the process of starting out and trying to
get any experience, you should charge good money for it. Along with charging money
comes the question of how much to charge.

To figure out how much to charge, you have to Iook at two variables: one is the value of
your services to the dient and the other is the value of your time. The ultimate situation is
where the difference between the two is the greatest-for instance, if you figure out that
the job will save the company approximately $200,000 over two years, and it will realisti
cally take you SO hours to create. Now, even if you figure your time is worth $250/hour,
you come out at $12,500. The ratio is huge. You can easily ask for $20,000 to $30,000, and
know that even at less than that you will do fine.

Another way to charge is for time. You can eh arge either hourly or by the day. Hourly, you
can expect $120-$225/hour, depending on whom you deal with. Although this may appear
to be less than what you get if you charge by the project, you are covered if you run over
your estimates. Charging by the day is also possible. Try not to place yourself under
$1 000/day, or $500-$700 or so if you're starting out.

Always keep in mind that the value of your work will be far greater than anything you will
ever dream to ask, so don't be afraid to ask what you want.

Scope creep
You may or may not have heard the term scope creep (also called feature creep), but the
problern is very real, and as a sole developer, you have to protect yourself from it. Scope
creep is bound to happen sometimes during development: dients periodically realize that
the system or script you're creating can do just a wee bit more than initially thought. They
approach you with the idea and see if they can squeeze it in.

Usually, these requests are small enough that you don't feellike you can say no to them. A
half-hour here or an hour there really isn't much, especially for a project of a particular
size. ln reality, the larger the project, the more you have to avoid this creep. Anything you
agree to will mean more benefit to the dient, more work for you, more features for you
to later support, and not any more reward. The only reward is that this dient now knows
that they can get more out of you for less money.

811

APPLESCRIPT: A COMPREHENSIVE GUIDE TO SCRIPTING AND AUTOMATION ON MAC OS X

812

Here's how I deal with scope creep: I start by defining what the system will do, and make
the description as tight as I can, not leaving open-ended items such as "may connect to
SQL database" or "could have intranet interface." Then, I encourage the dient to come up
with more features they want to add, but instead of agreeing to them, I write them down.
My point to the dient is this: we have to keep our eye on the target. After we're done, or
at some point during the development, we can Iook at all the proposed additions and
adjust the price accordingly. This way the additional features are added in a more organ
ized way, instead of just creeping in, and mainly you get paid more for adding them.

Another reason to avoid bloating the project is that as much fun as it is to be useful to your
dient, anything you agree to do, you own. By own, I mean owning the problem; if that fea
ture ends up being a problern in any way, you are stuck with having to solve it. lt doesn't
matter that you were nice enough to suggest it; you can't take it back without taking a hit.

Supporting your solutions
Another facet of creating scripts for dients is that those scripts depend on the dient's
environment remaining static. There are many things that can go wrong, and 99% of them
have nothing to do with you. For that reason, you have to be ready to support your scripts,
and the dient has to be willing to pay for this support.

The way I calculate the cost of support is by adding up the cost of the entire system,
taking 20% of that amount and spreading it over 12 months. lf the dient is more than
60-90 minutes away, I charge extra for being on site. Using this formula, if you had a
$24,000 project, the annual support agreement will be $4,800, which will be $400 a
month.

This should cover everything you have to do to make sure their system works. Having that
on your head also helps you create a system that is as maintenance free as possible.

Also insist that the dient will have one point person for contacting you in order to avoid
having a few people contacting you with the same prob lern.

INDEX

Symbols
$ character

characters seen as words, 82
% character

characters seen as words, 82
& (ampersand) character

see concatenation operator
I (forward slash) character

see forward slash (!) character
: (colon) character

see colon (:) character
see also file reference delimiters; file reference

forms/types
\ (backslash) character

see escape character
" (caret) character

see exponential (") operator
- (tilde) character

POSlX path property, 441
relative paths, UNIX, 486

~ character
continuation character, 25

_ (underscore) character
naming conventions/rules, 678

A
absolute paths, UNIX, 485
access errors

Apple event errors, 523
operating system errors, 522

account class, iChat, 713
account class, Mail, 701
ACME replace

third-party scripting addition, 630
ACME Script Widgets

third-party scripting additions, 630
activate command, 222

application performance, 650
add command, iTunes, 699
add field command, ScriptOB, 737
add record command, ScriptOB, 734
add_zero custom handler, 137
adding fotder items handler

creating fotder action script, 601
adding fotder window to event

scripting additions, 629
addition (+} operator, 276

string coercion, 266
Address Book application

name properties, 706
person class, 706
scripting Apple applications, 704

816

Adobe
Applescript. 4
incorporating scripting terminology, 6
lnOesign object model, 34

alarm dock script, 178
alert handler

display dialeg command, 357
alias dass

distinguishing AppleScript and Finder, 470
referencing objects, 238

alias reference form
aliasing non-existent files, 435
error if alias ref. not exist, 433
file reference form compared, 433, 435
file reference types, 431

alias references
deleting if extinct. script, 470
file references, 492
file-tracking example, 434

alias subdass
file dass, System Events, 473

alias value dass
choosing a folder, 374

aliases
choosing a folder, 374
how aliases work, 433
remote machine access, 802

alien spaceships game
illustrating inheritance, 583
use of script objects, 589

Alignment panel
FaceSpan for OS X, 421

allow multiple selections parameter
choose file command, 368

and operator
Boolean operators, 268

mixing Boolean operators, 270
truth table Iist, 268

ANO operator
ScriptOB OB get data command, 736

API (application programming interface)
building hotfotder API, 742
linking product scripts to system, 743
structure of, 742

Apple consultants network, 809
Apple event errors

application scripting errors, 525
error messages, 523

Applescript
AppleScript language, 7
automation, !arge scripts, 3
automation, small scripts, 2

coercing values, 265
automatically, 266

file format, 6
growth of, 4
integrated development environment, 750
integration, OS X and Applescript, 596
introduction, 2. 752
making an application scriptable, 4
redefining AppleScript commands, 556
variables, 21

AppleScript community
sample scripts, 598

AppleScript Debugger language
see under debugging

AppleScript error messages
see error messages

Applescript fotder
starting to script, 14

AppleScript language
scripting additions and, 616

AppleScript Studio
see Studio

application bundle
options for saving scripts, 668

application dass, FileMaker Pro, 719
application class, iCal, 89
application dass, iChat. 713
application commands, 492
application development

incorporating scripting terminology, 6
making an application scriptable, 4

application errors
AppleScript errors, 525
operating system errors, 522

application file subdass
file dass, Finder, 470

application objects
counting, 224
references, 236

implicit reference, 287
reference to operator, 285

application responses
application responses clause, 288
application responses control statement, 530
ignoring, 292, 530
timeout control statement, 532

application scripting error messages, 524
applications

attachable application, 7
droplet applications, turning into, 671
options for saving scripts, 668
performance, 650
reducing interaction, 689
remote applications, controlling, 800

script applications, 670
options for saving scripts, 668
stay-open applications, 672

types, 7
viewing application dictionary, 638

Applications Support folder, 578
Aqua toolbar, Script Editor, 28
architecture, Smile, 750
arguments

AppleScript errors, 526
handlers dealing with, 48

arrays
see also lists
createarray command, Smile, 760
randomarray command, Smile, 760

as (coercion) operator
see also coercing values
changing value dass, 64
coercing values, 263
coercing values dasses, 292
concatenating lists, 190
explicit coercion, 298
file reference types, 432
records, 21 0
referencing alias dass, 238
working with mail content, 88

as parameter
choose application command, 375, 427
path to command, Standard Additions, 482
reading and writing files, 451, 494
ScriptDB, 736
write command, 460
writing different data types, 495

ascii character command, 62
scripting additions, 624

ASCII characters, 68
ASCII commands, 112
ascii number command, 62

scripting additions, 624
ASCIIsystem

binary 8 bits, 58
getting ASCII value from character, 112
getting character from ASCII value, 112
Unicode text alternative values, 57, 59

assigning variables, 233
attachable application, 7
attributes

consideration dauses, 290
authentication

enabling remote machine access, 801
auto-referential, 752
AutoGraph case study, 589
automatic coercion, 298

INDEX

817

INDEX

automation

B

Applescript introduction, 2
business aspects of automation, 808

charging for automation, 811
feasibility of automation, 811
specification changes, 811
support costs, 812
working out value of automation, 809

large scripts, 3
small scripts, 2

back pdf property, Smile, 762, 763, 764, 769
background running

application performance, 650
FileMaker Pro, 727
script performance, 688

backslash (\) character
see escape character

BatChmod application
changing permissions, 789

BBEdit text editor
tab-delimited text files, 101

beep command
scripting additions, 619

before parameter
read command, 452, 494

begin(s) with operators
containment operators, 274

BeginFigure command, Smile, 758, 764
BeginFrontFigure command, Smile, 764
binary system

bits and bytes, 57, 58
blackjack script

using random numbers, 127
bln (boolean) variable prefix

naming conventions/rules, 683
boolean dass, 23
boolean operators, 133, 299

and operator, 268
comparison operators compared, 268
math with dates, 157
mixing boolean operators, 270
not operator, 268
or operator, 269

Boolean parameters
labeled parameter subroutines, calling, 554

boolean statements
checking boolean variable true or false, 316
complex boolean Statements, 311

buffer errors
operating system errors, 522

818

bundles
see also packages
options for saving scripts, 668
saving scripts as application bundles, 674
script bundles, 632
script file types, 6
scripting additions, 632
System Events dictionary, 471

business considerations
automation, 808

charging for, 811
feasibility of, 811
working out value of, 809

consultants network, 809
prototyping, 810
specification changes, 811
support costs, 812

buttonBar panel
FaceSpan projects, 41 0

buttons
dialog boxes, 349

buttons parameter
display dialog command, 423

by parameter/clause
repeatloops,328,340

counting backwards, 330
bytes

bits and, 57

c
c variable prefix

naming conventions/rules, 684
calendar class/object, iCal, 708

calendar subclass, 89
event object, 89

Cancel button
dialog boxes, 348

cancel button name parameter
choose from Iist command, 362

case clause
consideration clauses, 65
considering case clause, 289, 290

case sensitivity
identifiers, 21

cd command, UNIX, 487
CDs & DVDs pane

System Preferences, 612
cellValue property, FileMaker Pro, 718

getting/setting data, 721
change case command

third-party scripting additions, 630
characters

see also strings

ASCII system, 62
characters seen as words, 82

$ is special, 82
% is special, 82

variable naming rules, 234
characters command, 73, 77

lists, 197
check box matrix

FaceSpan projects, 404, 405
chmod command, UNIX, 786

-R parameter, 786, 789
choose application command, 375

as parameter, 375, 427
dictionary definition, 375
multiple selections allowed parameter, 427
scripting additions, 619
summary, 427
with prompt parameter, 375, 427
with title parameter, 375, 427

choose color command, 377
default color parameter, 378, 427
dictionary definition, 377
result of, 378
scripting additions, 619
summary, 427
when to use, 378

choose commands
choosing Finder items, 363

choose file command, 37, 363
allow multiple selections parameter, 368
basic form, 364
choose file name command compared, 369
default location property, 367, 426
dictionary definition, 363
getting file type, 366
invisibles parameter, 367, 426
multiple selections allowed parameter, 364, 368, 426
of type parameter, 365, 426
prompt parameter, 365
result of, 363
scripting additions, 620
summary, 425
tab-delimited text files, 102
when to use, 364
with prompt parameter, 426
without invisibles parameter, 367

Choose File dialog box
custom prompt, 365
tab-delimited text files, 103

choose file name command, 368
basic form, 369
choose file command compared, 369
creating new lnDesign file, 371
default location property, 370, 426

default name property, 426
dictionary definition, 368
getting file reference, 369
replacing existing file, 371
result of, 369
scripting additions, 620
summary, 426
using RTF files example, 465
when to use, 369
with prompt parameter, 370, 426

choose folder command, 372
basic form, 373
choosing a folder, 374
default location parameter, 374
deleting old files, 167
dictionary definition, 372
folder_path property, 374
invisibles parameter, 374
multiple selections allowed parameter, 374
parameters, 373
purpose, 372
scripting additions, 621
summary, 427
when to use, 373

Choose Folder dialog box
choose folder command, 372

choose from Iist command, 358
basic form, 359
cancel button name parameter, 362
default items parameter, 360
dictionary definition, 358
empty selection allowed parameter, 362, 425
FaceSpan projects, 404
multiple selections allowed parameter, 361, 425
OK button name parameter, 362
prompt parameter, 360
redefining commands, 556
scripting additions, 621
summary, 425
with prompt parameter, 425

Choose from List dialog, 359
basic form, 360
Cancel button, 359
changing title, 360
customizing buttons, 362
OK button, 359
restricting user selection, 361
specifying selected items, 360

choose URL command, 376
dictionary definition, 376
editable URL parameter, 377, 427
scripting additions, 621
showing parameter, 376, 427
summary, 427

INDEX

819

INDEX

CirdePath command, Smile, 7S8
dass dialeg reply, displaydialeg command, 621
dass property, date object, 1S4
dass property, Iist value dass, 193
dasses

boolean dass, 23
commands, sharing, 36
date dass, 181
date value dass, 146, 181
described, 642
elements, 31
inheritance, 3S

inheritance property, 648
subdasses, 3S
super dass, 3S, 40

Iist value dass, 193
listing items in specified dass, 193
number dass, 23
object model, 642
objects compared, 36
properties, 31
scripting dictionary, 31
su bdasses, 642
text dass, 23
value dasses, 22

dauses
application responses dause, 288
consideration dauses, 288, 302
elements in dictionary, 647
whose dause, 42

dick command
GUI scripting, 60S

dick in handler
programming dialeg window, Smile, 774

dicked event
creating Studio application, 388
handlers, FaceSpan for OS X, 401

dicked handler
FaceSpan projects, 408

dipboard
information about contents, 499
returning styled text, 498
saving to PDF file, SOS
setting dipboard contents, 498

GUI scripting, 499
to a string, 499
to the date, 499

dipboard dass
saving dipboard data to PDF file, SOS

dipboard commands

820

dipboard info command, 62S
copy command, 498
get dipboard info command, 499
parseint command, javaScript, S02

scripting additions, 624
set command, 499
the dipboard command, 498

dose access command
dictionary definition, 449
file-access commands, 4S1
leaving a file open, 4S1
reading and writing files, 449, 494

end of file error, 4S3
scripting additions, 62S

dose command, Finder, 47S
dosing fotder window for event

scripting additions, 628
CMYK document

converting to RGB Illustrator document, 498
Cocoa applications

Cocoa bundle, options for saving scripts, 668
FaceSpan for OS X, 392
file packages, 472
package references, 436
packages, 471
scripting dictionary, 4
Studio, 380

Cocoa programming, 380
coercing values

seealso as (coercion) operator
date to Iist, 294
file reference types, 431
illegal values, 293
integer to Iist, 294
integer to real, 294
Iist to record, 293
lists to other dasses, 294
real number to integer, 29S
real number to Iist, 29S
record to Iist, 293, 29S
record to string, S20
string to integer, 263
string to number

non-numeric string, 267
strings to other dasses, 29S
use of parentheses, 264
value dasses

date, 294
integer, 294
multiple-item Iist, 294
real number, 29S
record, 29S
single-item Iist, 294
strings, 29S
to which value dasses, 292

coercion
Applescript coercing values, 26S

coercion not possible, 266

learning the rules, 266
left-to-right operation evaluation, 266

automatic coercion, 298
coercing values, 263
colon-delimited file path names, 441
concatenating strings, 277
defined, 263, 298
explicit coercion, 298
Finder file references, 438
Iist values in repeat loops, 332
operations, 262
POSIX path references, 440
string addition, 266
styled-text data, 502
write command, as parameter, 460

coercion operator
see as (coercion) operator

colon (:) character
see also file reference forms/types
colon-delimited file path names, 441
converting : to I delimited path, 492
disk references, 436
file reference delimiters, 430
file references, 492
folder references, 436
Mac/UNIX file references, 439

ColorSync scripting, 634
combined characters

ignoring expansion clause, 66
comes before/after operators

see comparison operators
command line environment, Smile, 753
command line interpreter, Smile, 751
commands

activate command, 222
AppleScript commands, redefining, 556
calling from script library, 579
cd command, UNIX, 487
choose application command, 375
choose color command, 377
choose file command, 37, 363
choose file name command, 368
choose folder command, 372
choose from Iist command, 358
choose URL command, 376
classes sharing, 36
clipboard commands, 498, 499
close access command, 449, 453
copy command, 107,219,229
count command, 73, 113, 223
creating, 8, 45
current date command, 152, 182
display dialag command, 19, 75, 346
distill command, 531

duplicate command, 532
file-access commands, 449, 453
functions, separating from, 685
get characters command, 73
get clipboard info command, 499
get command, 225, 229
GUI scripting dictionary, 604
ignoring application responses command, 531
info for command, 159
introduction, 218
launch command, 228, 229
log command, 660
make command, 89
mount volume command, 490
objects understanding, 45
offset command, 1 08, 114
open for access command, 449, 453
path to me command, 251
random number command, 17, 40, 125, 141
read command, 448
records, 208
return command, 90
round command, 119,140
run command, 227, 229
save as command, 458
save command, 458
scripting addition commands, redefining, 556
scripting dictionary, 32
set clipboard command, 499
set command, 17, 107,219,229
subroutines, 536
target, 218
the clipboard command, 498
time to GMT command, 153, 182
write command, 455

comments, scripts, 686
comparison operators, 63, 271, 299

boolean operators, 133
compared, 268

comes before/after operators, 71
comparing dates, 158

comparing value classes of values, 273
comparing values of different classes, 273
dates, 183
equals (=) operator, 25, 271
greater than {>) operator, 71, 271
how comparisons are made, 68
less than (<) operator, 71, 271
Iist operators, 196
math operators, 142
not-equals (~) operator, 271
records, 209
string operators, 112

INDEX

821

INDEX

Compile dialeg box
making an application scriptable, 4

compile errors, 51 0
summary, 526

compiled scripts
options for saving scripts, 669

concatenation operator (&), 18, 112
concatenating lists, 282

adding item to Iist, 283
concatenating other value classes, 285
concatenating records, 281
concatenating strings, 277

concatenating string to itself, 278
creating simple HTML file, 278
creating tab handler, 279

escaping characters, 277
left operand not a string, 63
left-to-right operation evaluation

left operand is not string, 266
left operand is string, 266

lists, 190, 212
adding items to end of Iist, 301

Iooping concatenations, 280
records, 209

conditional statements
see also if statement
and operator, using, 268
basic syntax, 306
complex boolean statements, 311
errors, 516
multiple conditions, 309

improving script, 310
script for, 309

nested conditional statements, 312
not operator, using, 268
or operator, using, 269
simple conditional statements, 315
unnecessary conditional statements, 315

connection errors
connection poollimit reached, 731
operating system errors, 522

consideration clauses, 288, 302
see also ignoring clauses
attributes, 290
case clause, 65
considering case clause, 65, 289
evaluating accented words, 67
strings, 65

consideration errors
AppleScript errors, 525

considering case clause, 289
consideration clauses, 65
taking account of case example, 290

consultants network, 809

822

contact database, OS X, 704
contain(s) operators, 196, 209, 274
contained data property, Smile, 779
container dass, Finder, 469

desktop-object subclass, 469
disk subclass, 470
entire contents property, 481
fotder subclass, 470
home property, 469
startup disk property, 469
subclasses, 469
trash-object subclass, 469

container errors
Apple event errors, 524

containment operators, 274, 300
begin(s) with operators, 274
contain(s) operators, 274
does not (doesn't) contain operators, 274
end(s) with operators, 274
is in (contained by) operators, 274
is not in (not contained by) operators, 274
operators reversing operand checking, 276
start(s) with operators, 27 4
working with numbers, 275

contains operator
Iist comparison operators, 196
records, 209

content property, Mail, 86
contexts, Smile, 752
contextual menus

FaceSpan for OS X, 420
starting up fotder actions, 600
using with fotder actions, 602

continuation character, 25
continue command

script object inheritance, 583
control statements

application responses, 530
timeout, 532

Controls palette
creating user interface, Smile, 771

copy command, 107, 219, 229
application, front-most process, 498
assigning strings to a variable, 111
assigning values to lists, 221
assigning values to variables, 219, 220
creating variables, 232
script objects, 573, 592
setting clipboard contents, 498
using in applications, 221

copy command, Finder, 476
foreground running, 650

copying data
converting RGB Illustrator to CMYK document, 498

current selection in document, 498
from application, 498
returning styled text, 498

count command, 223
application objects, 224
getting string length, 73, 113
length property alternative, 223
Iooping, 224
records, 205
repeat with loop variable, 327

counter variables
repeat loops, 338, 342

create command
creating object with properties, 646

createarray command, 5mile, 760
cron/crontab commands, UNIX

scheduling scripts, 797
CronniX application, 797
current date command, 152, 182

calculating file age, 162
scripting additions, 627

current script variable, 258
custom buttons

dialog boxes, 349
display dialog command, 423

custom dialog windows, Smile, 755
custom prompt

choose file name command, 370

D
data

information and, 746
data variable prefix, 683
data errors

Apple event errors, 523, 524
data types

Iist data type, 211
database dass, FileMaker Pro, 719
databases

connecting to, 728
creating database, ScriptDB, 733
integrating with, 728
scripting, 718

date and time
arithmetic with dates, 156
calculating time difference, 159, 183

age, beware when calculating, 160
file age, calculating, 161

changing, 183
comparing

before or after, 158
is equal to operator. 157
not to the second, 158

comparison operators, 183
concatenating. 285
creating, 146
current date command, 1 52, 182
date constants, 183
date related constants, 156
deleting old files, 166

verification, 169
formatting time taken, 172
math with dates, 157

add to/subtract from, 165
modifying data and time format, 147
month, calculating last day of any, 166
relative to operator, 182
setting dipboard contents to date, 499
specifying, 181

dates and times, 150
statements containing datesnot compiling, 146
time differences, 153
time to GMT command, 153, 182, 627
user entering date script, 150

date and time errors
operating system errors, 522

date dass/object, 181
dass property, 154
converting date strings into, 148

user entering date script, 152
converting strings to, 89
date string property, 155
month property, 154
properties, 154, 182
short date string property, 156
time property, 155, 182
time string property, 156
weekday property, 154
working with mail content, 88
year property, 154

date operators
of operator, 182

date string property, date object, 155
date strings

converting into date objects, 148
date value dass, 146, 181
dates

coercing dates, 294
day property, date object, 182
days constant, 183, 258
db (database) variable prefix

naming conventions/rules, 684
DB add field command, ScriptDB, 737
OB add record command, ScriptDB, 734
DB delete records command, ScriptDB, 735
DB get data command, ScriptDB, 735
DB Ioad command, ScriptDB, 738

INDEX

823

INDEX

DB remove field command, ScriptDB, 738
DB save command, ScriptDB, 738
OB sort command, ScriptDB, 737
DBXyz properties, ScriptDB. 733
debugging scripts, 654

AppleScript Debugger language, 662, 664
checking multiple items. 657
display dialog command, 656
error log, 665
error messages, using, 659
errors and bugs compared, 654
Event Log History window, 660
event log, using, 659
externallibraries, 727
FileMaker Pro scripts, 727
forced logging, 660
from long ago, 665
Late Night Software Script Debugger, 5, 484
main causes of bugs, 655
practical advice, 654
remote management of, 693
return command, 655
Script Debugger, 661
testing code, 664
variables in repeat loops, 657
when to use script properties, 245

debugMode property, 245
dedaring variables, 233, 239, 256
default answer parameter

display dialog command, 424
default button, dialog boxes, 350
default color parameter

choose color command, 378, 427
default items parameter

choose from Iist command, 360
default location parameter

choose fotder command, 374
default location property

choose file command, 367, 426
choose file name command, 370, 426

default name property
choose file name command, 426

defaultlist property, FaceSpan, 415
delay command, 621
delete command

error referencing object, 237
Finder, 476

delete file subroutine
ignoring application responses, 531

delete records command, ScriptDB, 735
delimiters

824

see also file reference delimiters
built-in word delimiters, 82
colon-delimited file path names, 441

file reference delimiters, 430
Mac/UNIX file references, 439
using delimiters parameter, 451

Description tab, Script Editor, 29
descriptor errors

application scripting errors, 524
desktop-object subdass

container dass, Finder, 469
dev (development) variable prefix, 684
diacriticals

ignoring diacriticals dause, 65, 291
dialect errors

Apple event errors, 524
dialog boxes

acting as a form, 355
Cancel button, 348
changing title, 360
Choose from List dialog, 359
custom prompt, adding, 370
default button, 350
defining buttons, 349
getting text input, 351
mini-form, making, 354
multiple lines text field, making, 354
OS variations, 363
showing icons in, 351
Smile, custom dialog windows, 755

creating user interface, 771
programming, 774

text field !arger, making, 353
user-entered text, validating, 355

dialog command
user entering date script, 152

dialog reply record
dictionary definition, 347
display dialog command, 424

dialog statement
deleting old files, 172

dictionary viewer
FaceSpan for OS X, 419
viewing application's dictionary, 638

digital hub actions
user interface, OS X, 612

directories
changing directory, 487
relative paths, UNIX, 486

disk errors
operating system errors. 521

disk images
faking volumes with disk utility, 488

disk item dass, System Events, 471
disk item subdass

file dass, System Events, 472

disk references
using colon (:), 436

disk subdass
container class, Finder, 470

Disk Utility application
Volumes, 488

disk variable prefix, 684
disks

getting Iist using Finder, 481
display dialeg command, 19, 346

alarm clock script, 179
alert handler, 357
basic form, 347
breaking strings into characters, 75
buttons parameter, 423
canceling, 422
capturing timeout errors, 379
custom buttons, 423
debugging scripts, 656
default answer parameter, 424
deleting old files, 171
dialeg reply record, 347, 424
dictionary definition, 346
displaying for limited time, 222
FaceSpan projects, 404
getting text input, 351
giving up parameter, 222, 424
length of time displayed, 352
my_command handler, 47
records, 208
scripting additions, 621
summary, 422
user-entered text, validating, 355
using user-entered text, 352
with icon argument, 351
with icon parameter, 423

distill command, PostScript file, 531
div operator, 136, 142

calculating file age, 163
formatting time taken, 174
function, 276
number type output, 276

divide by zero error, 525
division (/) operator, 276
do query command, MacSQL, 729
do shell script command, 484

absolute paths, UNIX, 486
backslash (\) character, using, 487
file references, 492
POSIX path property, 440
POSIX paths, using, 442
scripting additions, 628
UNIX file commands, 484
UNIX paths, 492

UNIX scriptable applications, 786, 789
working directory, problern using, 487

document class, FileMaker Pro, 719
does not (doesn't) contain operators, 274
domain subdass

item super dass, System Events, 474
doMainProcess subroutine, FaceSpan, 409
DrawPath command, Smile, 758, 764
droplets, 670

application types, 7
changing permissions, 787
fotder actions compared, 598
run handler, 540
turning applications into, 671

duplicate command, 532
Finder, 476
iTunes, 699

E
editable text widget, 772
editable URL parameter

choose URL command, 377, 427
eject command, Finder, 478
elements

dasses, 31
GUI scripting dictionary, 604
object model, 647
references to object, 647
Ul browser locating, 607

else clause
if statement, 308
try statement block, 516

empty command, Finder, 476
empty Iist

Iist data type, 211
empty selection allowed parameter

choose from Iist command, 362, 425
end date property, iCal event, 708
end of file (EOF) commands

get eof commands, 454
reading and writing files, 453
set eof commands, 454
using when writing files, 455
write command, 456

end of file property, 454
summary, 495

EndFigure command, Smile, 758, 764
EndFrontFigure command, Smile, 764
ends with operator, 274

Iist comparison operators, 196
records, 209

ENTER key
RETURN key compared, 15

entire contents property, container class, 481

INDEX

825

INDEX

equals (=) operator, 64
comparing value dasses of values, 273
comparing values of different dasses, 273
comparison operators, 271
introduction, 25
Iist operators, 196
math with dates, 157
variations, writing in words, 272

error 128 user canceled
deleting old files, 172
try statement block, 513

error log
debugging scripts, 665

error messages
alias reference not exist. 433
Apple event errors, 523
AppleScript errors, S25
AppleScript-related, 521
application error dialog. 520
application scripting errors, 524
debugging scripts using, 659
end-of-file error, 453
generic error message dialog, 518
meaningless messages, 59
Operatingsystem errors, 521

error numbers, 515
errors

826

Apple event errors, 523
AppleScript errors, 525
application error dialog, 520
application scripting errors, 524
avoiding generic error message dialog, 518
capturing timeout errors, 379
coercing values to string, 520
compile errors, 510, 526
conditional statements, 516
connection poollimit reached, 731
error numbers, 515
errors and bugs compared, 654
generating errors, 519, 527
logging errors, 519
nested try handlers, 516
on error dause, 513
operating system errors, 521
runtime errors, 51 0, 526
structure of errors, 511
timeouts, 378
trapping Cancel button error, 514
trapping errors, 511

summary, 527
too much trapping, 517

user errors, 51 0
using to advantage, 517

escape character
backslash (\) character, 464
do shell script command using. 487
induding double quotes in string, 59
induding escape character in string, 60, 111
induding return character in string, 60, 111
induding tab character in string, 60, 111
strings, 277
using spaces, 487

event dass, iCal, 708
event elements, 709

event dass/object, iCal
application dass, iCal, 89
iCal dictionary, properties, 87
working with mail content, 87

event errors
Apple event errors, 523
AppleScript errors, 525
application scripting errors, 524
operating system errors, 522

event handlers
see handlers

event log, Script Editor, 28
debugging scripts, 659
Event Log History window, 660

events
fotder actions, 603
removing fotder items from event, 629

every dause
getting fotder contents using Finder, 480

every object
counting application objects, 224

Executable Settings dialog box
creating FaceSpan project, 398

exists command, Finder, 477
exit repeat statement

repeat loops, 324, 340
performance, 689

exit repeat statements
alarm dock script, 178

expansion
ignoring expansion dause, 291

explicit coercion, 298
making your intention dearer, 264

exponential (A) operator, 276
externallibraries

debugging FileMaker Pro, 727
extract address from command, Mail, 704
extract name from command, Mail, 704

F
FaceSpan for OS X, 392-422

Alignment panel, 421
auxiliary resources, 399

script library, 399
template collection, 400

Cocoa applications, 392
contextual menus, 420
creating a project, 392-399

adding resources, 393
attaching scripts, 396
debugging, 397
designing user interface, 394
editing credits page, 397
editing main menu, 395
saving, 398
setting up windows, 394
starting, 392
testing, 397
tutorial projects, 404

dictionary viewer, 419
downloads web page, 401
formatting, 421
handlers, 401
Object lnspector, 420
object orientation, 392
scripts, 402
Test Interface mode, 421
tutorial projects

adding user interface to existing script, 404
creating a project, 404
preliminary actions, 403
project creation guidelines, 418
quick-starting project, template for, 410
scripts from script library reducing code, 412

writing code, 401
feedback

scripts giving progress feedback, 691
fields parameter

ScriptOB DB get data command, 735
file dass, Finder, 470
file dass, System Events, 472-473
file errors

operating system errors, 521
file format, Applescript, 6
file information

calculating file age, 161
getting file information, 445, 493
info for command, 1 59, 493

file information dass
scripting additions, 623

file marker
open for access command placing, 453

file name extensions, UNIX, 443

file package subdass
file dass, System Events, 472

file packages, Cocoa, 472
file paths

colon-delimited file path names, 441
file read/write commands

scripting additions, 625
file reference delimiters, 430

I (forward slash), 430
: (colon), 430
Finder reference style, 430
Volumes, referring to, 430, 440

file reference forms/types, 492
see also colon (:) character
alias reference form, 431, 433, 435
alias references, 492
file reference form, 432

compilation Iimitation, 433
tell statement block, 433

file reference number, 449
file reference types, 432

coercing, 431
file-access commands using, 450

Finderfile references, 438
POSlX path reference, 439, 492
URL file reference, 442
using colon (:), 492

file references
applications commands, 492
do shell script command, 492
read command, 448
references to folders, disks, packages, 492
scripting additions, 492
setting reference, 435

file type of command
getting file type, 366

file types
getting file type, 366

file variable prefix, 684
file-access commands

dose access command, 449, 453
file reference number, 449
leaving a file open, 451
open for access command, 449, 453
Standard Additions, 449

file/folder names
using spaces in, 487

file/folder paths
see paths, file/folder paths

FileMaker Pro, 718
accessing records, 719
application dass, 719
cellValue property, 721
considering as default application, 726

INDEX

827

INDEX

counting application objects, 224
database dass, 719
debug check box, external, 727
dedicated AppleScript scripts table, 727
dictionary, 639
document dass, 719
fittering records, 724
find command

whose dause method compared, 723
finding data quickly, 723
found set, accessing, 720
getting/setting data, 726

Iayout dass, 722
table dass, 721

Layout 0 object, 721
Iayout dass, 720
object model, 719
Perform AppleScript script step, 725
read command, 727
retrieving relational data, 724
running AppleScripts, 725
scripting, 718
set command, 721
set data command, 723
table dass, 719, 720
versions, 719
whose dause, 723
window dass, 720
working in background, 727
write command, 727

FileMaker Pro 7 dictionary, 36
FileMaker Pro database

tab-delimited text files, 101
files

dealing with large numbers of, 488
deleting old files, 166

verification, 169
getting entire contents using Finder, 481
getting file reference, 369
listing files by file type, 200
loading script objects from, 577
picking invisible files, 367
replacing existing file, 371
script file types, 6
user specifying, 364
writing to unmovable folders, 251

fittering
getting fotder contents using Finder, 480

find and replace routines, 746
find command

Applescript version of, 722
FileMaker Pro

whose dause method compared, 723
Find dialag window

regular expressions, 756

828

find text command
Smile, IDE, 757
third-party scripting additions, 631

Finder
choosing Finder items, 362
dose command, 475
copy command, 476
creating files, 479
creating files, folders, windows, 477
delete command, 476
duplicate command, 476
eject command, 478
empty command, 476
exists command, 477
item existence, checking, 477
Iist disks command, 481
make command, 477
managing files in windows, 478
move command, 476
Name Extension pane, 443
object model, 469
open command, 475
packages, 471
references, 438
reveal command, 478
scripting, 468
select command, 478
shell script alternative, 488
tell statement block

calling subroutine from inside, 555
trashing items, 476

Finder dictionary
Finder references, 438
Script Editor, 32
System Events dictionary compared, 468
update command, 32

Finder object model
container dass, 469
file dass, 470
item super dass, 469

Finder reference style
file reference delimiters, 430

flag property, iChat, 714
fotder action commands

scripting additions, 628
fotder actions, 598

before you start, 599
creating fotder action script, 600

creating hot folder, 601
disabling, 599
droplets compared, 598
events, 603
starting up, 599

using contextual menu, 600
storing fotder action scripts, 602

using contextual menus with, 602
using scripts to manage, 603

Fotder Actions Setup utility
creating fotder action script, 601
starting up fotder actions, 599

fotder creation parameter
path to command, Standard Additions, 482

fotder errors
operating system errors, 522

fotder references
using colon (:), 436

fotder subdass
container dass, Finder, 470
file dass, System Events, 472

fotder variable prefix, 684
folders

Applescript folder, 14
building hotfotder API, 742
choosing a folder, 374
deleting, 19
getting contents

listing items in folder, 479
using Finder, 480

getting entire contents using Finder, 481
Iist fotder command, 479
listing, UNIX command, 484
removing fotder items from event. 629
writing to unmovable folders, 251

fotder _path property
choose fotder command, 374

font information
scripting PDFfonts application, 789

for parameter
read command, 452, 494
write command, 457, 495

foreground running
application performance, 650
script performance, 688

format command
third-party scripting additions, 631

Formats tab, Preferences panels
changing format of date object properties, 156
modifying data and time format, 147, 155

formatting
FaceSpan for OS X, 421

forward slash (!) character
converting : to I delimited path, 492
file reference delimiters, 430
Mac/UNIX file references, 439

found set
FileMaker Pro accessing, 720

from parameter, read command, 452, 494
front pdf property, Smile, 762, 763, 764, 766, 769
functions

commands, separating from, 685

G
g (global) variable prefix

naming conventions/rules, 684
get characters command, 73
get dipboard info command, 499
get command, 225, 229

dass properties, 31
properties, 645
result variable, 225
using in applications, 226, 227

get data command, ScriptDB, 735
get eof command

dictionary definition, 454
reading and writing files, 454
scripting additions, 626

get every word of command, 81
get info command

file name extensions, 444
GISTICS investment study, 809
giving up after parameter

display dialag command, 353
giving up parameter

display dialag command, 222, 424
capturing timeout errors, 379

global variables
creating variables, 232
dedaring, 256
dedaring in subroutines, 557
overuse of, 559, 685
scope, subroutines, 557

GMT
time to GMT command, 1 53, 182

go to command, Iayout dass
FileMaker Pro, 720

graphic engine, Smile, 7S7
programming, 764

greater than (>) operator, 71, 271, 272
GUI scripting

dick command, 605
enabling, 604
functionality, 605
key code command, 607
keystroke command, 606
objects, 605
perform command, 605
PreFab's Ul Browser, 747
scripting user interface, 603
setting dipboard contents, 499
System Events processes, 609
Ul browser, 607

GUI scripting dictionary, 604

INDEX

829

INDEX

H
handle CGl request command

scripting additions, 629
handler errors

Apple event errors, 523
AppleScript errors, 526
application scripting errors, 525

handlers
adding preceding zeros, 137, 176
add_zero custom handler, 137
arguments, dealing with, 48
calling from other scripts, 673
calling from tell block, 253
dick in hi[!ndler, Smile, 774
concatenating a string to itself

adding number of tabs, 279
creating commands, 46
dedaring local variables, 240, 256
described, 46
directing to script, 259
FaceSpan for OS X, 401
Iist insertion handler, 284
naming rules, 235
number handler, 134
on idle handler, 670, 673
on open handler, 671
parameter variables, 48
passing multiple values to, 243
passing variable values to, 242
pick in handler, Smile, 778
prepare handler, Smile, 774
quit event handler, 670, 672
reopen event handler, 672
returning results, 51
rounding handler, 124
run event handler, 672
run handler, 539, 670, 671
scripting, 9
scripts loading as required, 690
write command creating script log, 459

hard disk
script listing contents of, 486

has scripting dictionary property
application file subdass, Finder file dass, 470

hex numbers
parsing, 502

HexToNum subroutine
parsing styled-text data, 504

hidden button field
Studio application, 386

Hide Library Scripts item
script menu, 597

home directory path, 482

830

home property
container dass, Finder, 469

hot folders
creating fotder action script, 601

hours constant, 1 53, 183, 258
formatting time taken, 173

HTML tags
script working with, 280

hyphens
ignoring hyphens dause, 66, 291

iCal application
calendar dass, 708
dictionary, 87
duration, 709
end date property, events, 708
event dass, 708

event elements, 709
FREQ (frequency) value, 709
INTERVAL value, 709
location property, events, 709
object model, application dass, 89
recurrence property, events, 709
scheduling scripts, 795
scripting Apple applications, 707

creating calendars, 708
creating events, 708, 710
scheduling scripts, 712

start date property, events, 708
status property, events, 87, 709
summary property, events, 709
tint property, 708
title property, 708
todo dass, 707
UNTIL value, 709
working with mail content, 85

iChat application
account dass, 713
application dass, 713
flag property, 714
original_status property, 714
scripting Apple applications, 713
service dass, 713
status/-message properties, 713

icons
reducing size, 29
showing in dialog boxes, 351

IDE, Smile, 750
identifiers

case sensitivity, 21
naming rules, 21
object unique ID, 41

iDisk, mounting. 491
idle event

see on idle event handler
iDo Script Scheduler. 794, 796
if statement bioeklelause

seealso conditional statements
and operator, using. 268
checking boolean variable true or false, 316
conditional statement syntax. 306, 317
else clause, 308

try statement block, 516
if-then statement block, 307

omitting the word then. 316
subroutines returning value during execution, 543
using a one line statement, 315

if-then-else statement block. 307. 318
else clause. 308
multiple conditions script. 309
Variations in structure, 307

or operator, using, 269
unnecessary if statements, 315
using not operator, 268

ignoring application responses clause, 292, 531
ignoring clauses

application responses. 530
consideration clauses. 289
ignoring case clause, 65
ignoring diacriticals clause, 65, 67. 291
ignoring expansion clause, 66, 291
ignoring hyphens clause, 66, 67. 291
ignoring punctuation clause. 66, 291
ignoring white spaces clause, 66, 67, 290

illegal errors
Apple event errors. 524

Image Event scripting. 635
implicit reference

referencing application objects, 287
implicitly declaring variables, 256
in records parameter

ScriptOB DB get data command, 736
index reference form, 43

referencing characters in strings, 77
info for command, 159

dictionary entry, 445
file size. 454
getting file information, 445, 493
getting file type. 366
open command, Finder. 475
records, 208
reply record, 445
scripting additions. 622
using. 446

Info palette
creating Studio application, 384

information
data and. 746

inheritance
dass inheritance. 35
inheritance property, 648
script objects. 581. 592

input

alien spaceships game illustrating, 583
parent property. 592

designing a workflow system, 744
input dialog box

user entering date script. 151
insert command, MacSQL. 732
instances

script objects, 576
using subroutines to create. 574

integers, 118, 139
coercing integers, 294
converting integers into strings. 137
number dass, 23

integral division operator
see div operator

intercap method
naming conventions/rules, 678

Interface Builder
creating Studio application. 383

testing the interface, 387
interfaces, 5mile, 750
lnternet-related classes

scripting additions, 629
invalid xyz errors

Apple event errors, 523
application scripting errors. 524

invisible files
picking invisible files, 367

invisibles parameter
see also without invisibles parameter
choose file command, 367, 426
choose fotder command, 374

iPod
scripting Apple applications, 701

is contained by operator
Iist comparison operators. 197
records, 209

is equal to operator (=)
see equals (=) operator

is greater than (>) operator
see greater than (>) operator

is in (contained by) operators
containment operators, 274

is less than (<) operator
see less than (<) operator

is not equal to operator (~)
see not-equals (~) operator

INDEX

831

INDEX

is not in (not contained by) operators
Containment Operators, 274

it object
tell statement block, 439

it variable, 250, 258
item super dass

Finder object model, 469
System Events object model, 471, 473

domain subdass, 474
login item subdass, 474
user subdass, 473

iTunes

J

add command, 699
creating a track, 699
duplicate command, 699
iPod related command, 701
library source, 698
scripting Apple applications, 698

equalizer, 700
sample scripts, 698
scriptable objects, 698

update command, 701

javaScript
parseint command, 502

K
key code command

GUI scripting. 607
keychain

mounting volumes, 491
keystroke command

GUI scripting, 606
keyword errors

Apple event errors, 523
Kick-off

managing scripts, 796
kitchen timer

adding preceding zeros handler, 137
Knapp, Arthur J.

parsing styled-text data, 500

L
Iabel

FaceSpan projects, 406
Iabeted parameter subroutines, 550

briet description, 566

832

calling with Boolean parameters, 554
dictionary definition, 551
making up Iabels, 553

reserved words, 551
subroutine parameter Iabels, 551
subroutine types compared, 547

language element errors, AppleScript, 526
languages, AppleScript. 7
large scripts

automation, 3
Late Night Software Script Debugger, 5

exploring object's properties, 643
path to me, 484

launch command, 228, 229
remote machine access, 802

Layout 0 object, FileMaker Pro, 721
Iayout dass, FileMaker Pro, 720

changing currently displayed Iayout, 720
gettinglsetting data, 722
go to command, 720
show command, 720
sort command, 723

left to right operators
precedence rules, 295

length property
count command alternative, 223
records, 205

length property, Iist value dass, 194
length property, string dass, 73, 113
less than (<) operator, 71

comparison operators, 271
variations, writing in words, 272

libraries
script libraries

see script libraries,
subroutine libraries, 689

Library.scpt
main system folder, 580

line break character
inserting, 25

LineTo command, Smile, 764
linking errors

operating system errors, 522
Iist data type, 211
Iist disks command

Finder, 481
scripting additions, 622

Iist fotder command
commands producing lists, 198
invisibles parameter, 479
scripting additions, 622
Standard Additions, 479

Iist item errors
Apple event errors, 523

Iist operators, 195
comparison operators, 196

contains operator, 196

ends with operator, 196
is contained by operator, 197
starts with operator, 196

equals (=) operator, 196
Iist value dass

dass property, 193
length property, 194
properties, 193
rest property, 194
reverse property, 194

Iist variable prefix, 683
lists

see also arrays
adding items to, 190, 283

end of Iist, 301
performance factor, 688

assigning values using set and copy, 221
characters command, 197
commands producing lists, 197

Iist folder command, 198
comparing, 212
concatenating lists, 282
concatenation operator (&), 190, 212
containment operators, 275
counting number of items in, 223
creating empty Iist, 189
deleting item from, 191
described, 188
differences from records, 204
getting items from, 190, 212
going through items in Iist, 194
Iist insertion handler, 284
Iist of lists, 200, 212

creating, 283
listing files by file type, 200
listing items in specified dass, 193
multi-item lists, coercing, 294
properties, 213
reading text file into, 451
records, 213
repeat loops, 331, 332, 333, 341
rest property, 213
returning results from subroutines, 545
reverse property, 213
single-item lists, coercing, 294

Iitera! expressions
not embedding fixed values, 687

Ioad command, ScriptDB, 738
Ioad script command

forming script libraries, 578
loading script objects, 577
script objects, 570
scripting additions, 626

local variables
creating variables, 232
dedaring, 256
scope, 240

subroutines, 557
subroutines using, 558

location property, iCal event, 709
locking code

remote management of scripts, 693
log command/logging

debugging scripts, 660
logging errors, 519
remote management of scripts, 694
write command creating script log, 458

logical operators
see boolean Operators

login item subdass
item super dass, System Events, 474

loops/loop variables
see repeat loops

ls command
absolute paths, UNIX, 486
UNIX file commands, 484

M
Mac file reference

UNIX file reference compared, 439
Mac OS X

scripting additions and, 617
Mac path reference

colon (:), use of, 439
Mac-style path name

file reference delimiters, 431
MacAT application

scheduling scripts, 797
Macintosh HD

referring to startup disk, 550
MacSQL, 728

connecting to database, 728
do query command, 729
insert command, 732
New Connection dialog box, 728
result sets, 730
scripting, 728
select command, 729
subroutines, 731

Mail application
account dass. 701
extract address from command, 704
extract name from command, 704
mailbox dass, 701
message headers, 703
object model, 701

INDEX

833

INDEX

recipients dass, 703
scripting Apple applications, 701

creating message, 702
referring to message, 702

string commands, 704
working with mail content, 85

mailbox dass, Mai!, 701
Main 5cript

main system folder, 580
main window, FaceSpan, 408,409,416
make command

working with mail content, 89
make command, Finder, 477

creating object with properties, 646
to parameter, 478
with properties parameter, 478

Make 5criptable option
Compile dialog box, 4

math operators, 132, 142, 276, 300
see also numbers
comparison operators, 142
div operator, 136, 142
exponential (A) operator, 276
Iist of operator functions, 276
math with dates, 157
mod operator, 136, 142

me variable, 251, 258
calling handler from tell block, 253
my propertY. 254
path to me command, 483, 251

memory errors
operating system errors, 522

message errors, 526
message headers, Mai!, 703
message related errors

Apple event errors, 523
middle reference

referencing characters in strings, 78
minus(-) operator, 276
minutes constant, 183, 258

formatting time taken, 173
mod operator, 136, 142

calculating file age, 163
formatting time taken, 174
function, 276

modifier keys
keystrokes, GUI scripting, 606

modular scripts, 578
modulo division operator

see mod operator
month property, date object, 154, 182
mount volume command, 490

dictionary definition, 490
scripting additions, 622
using, 490

834

mounting volumes, 490
mounting an iDisk, 491

move command, Finder, 476
MoveTo command, Smile, 764
moving fotder window for event, 629
multiple selections allowed parameter

choose application command, 427
choose file command, 364, 368, 426
choose fotder command, 374
choose from Iist command, 361, 425

multiple values
passing to handlers, 243

multiplication table
script creating, 328

multiply (*) operator, 276
Munro, Mark

parsing styled-text data, 500
my property

me variable, 254
my qualifier, 419
my_lib

calling commands from script library, 579

N
Name Extension pane, 443
name properties, Address Book, 706
name variable prefix, 683
naming conventions/rules

breaking the rules, 235
good scriptwriting practice, 678

comprehensive system, 679
handlers, 235
identifiers, 21
intercap method, 678
Iist repeat loop variables, 331
object names, 41
script objects, 572
subroutines, 679
underscore U character, 678
using spaces in file/folder names, 487
variables, 233, 257, 682

nested conditional Statements, 312
try statement block, 516

nested loops
repeat with loop variable, 329

New Connection dialog box, 728
new editable text widget, Smile, 772
new static text widget, Smile, 772
not operator

boolean operators, 268
checking boolean variable true or false, 316
mixing boolean operators, 270
repeat until statement, 334
repeat while statement, 334

not-equals (;t) operator, 64, 271
comparing values of different dasses, 273
variations, writing in words, 272

num (numeric) variable prefix, 683
number dass, 23
numbers

see also math operators
commands

random number command, 12S, 141
round command, 119, 140

containment operators, working with, 27S
converting from +ve to -ve, 136
integers, 118, 139

turning into real numbers, 140
large numbers, 119, 140
number handler, 134
preceding zeros, 137
random numbers, 12S, 141
real numbers, 118, 139

turning into integers, 140
rounding numbers, 119, 140
turning into strings, 140

numeric operation errors, S2S

0
object errors, S24
Object lnspector, FaceSpan, 420
object model, 641

addressing, 642
Adobe lnDesign's object model, 34
dasses, 642
elements, 647
FileMaker Pro, 719
Finder, 469
properties, 642
school analogy, 24
scripting, 33
structure, 641

object orientation, FaceSpan, 392
object reference property, 238
objects

dass inheritance, 3S
dasses compared, 36
commands understood, 4S
definitions, 642
directing commands to, 24
GUI scripting, 60S
index reference form, 43
inheritance property, 648
object names, 41
properties, 36
range reference form, 43
read only and editable, 646

reference forms, 43
reference to operator, 28S
referencing, 647

relative reference, 44
relationship between objects, 648
unique ID identifiers, 41

of operator, 182
of type parameter

choose file command, 36S, 426
offset command, 108, 114

scripting additions, 624
OK button name parameter

choose from Iist command, 362
on error dause

try statement block, S13
on idle event handler

script applications saving scripts, 670
stay-open script applications, 673

on open event handler
script defining, S40
turning applications into droplets, 671

on quit event handler
script applications saving scripts, 670
stay-open script applications, 672

on run event handler, S40
stay-open script applications, 672

open command, Finder, 47S
saving dipboard data to PDF file, SOS

Open dialag box
choose file command, 364

open event
see on open event handler

open for access command
creating files, 479
dictionary definition, 449
file-access commands

file not exist, 4SO
granting privileges, 4S6
reading and writing files, 449, 494

placing file marker, 4S3
result section, 449
scripting additions, 62S
use of the integer resulting from, 449
using file reference, 4SO
using write command, 4S6
with write permission parameter, 4SO

granting privileges, 4S6
open location command

scripting additions, 629
URL file reference type, 443

Open Scripts Fotder item
script menu, S97

opening fotder event
scripting additions, 628

INDEX

835

INDEX

operands
elements of an operation, 266
Operations, 295

operating system error messages, 521
operation errors, 526
operations

Applescript coercing values during, 266
coercion, 262
defined, 262, 298
elements of an operation, 266
how operations work, 266
operands, 295

operators
as (coercion) operator, 64, 298
boolean operators, 268, 299
comparison operators, 271, 299

strings, 112
concatenation operator (&), 18, 112, 277, 301
Containment operators, 274, 300
date operators, 182
equals (=) operator, 64
Iist operators, 195
math operators, 142, 276, 300

div operator, 136, 142
exponential (") operator, 276
mod operator, 142

mixing operators, using parentheses, 295
mod operator, 136, 142
not-equals (;.o) operator, 64
of operator, 182
precedence

left to right operators, 295
operators without precedence, 295, 297
unary operators, 295, 297

reference to operator, 285, 301
relative to operator, 182
table of precedence, 295
variations in writing, 272

optional parameters
random number command, 17

or operator
boolean operators, 269
mixing boolean operators, 270
truth table Iist, 269

OR operator
ScriptOB DB get data command, 736

order of precedence
see precedence

original item property, alias file
script deleting aliases if extinct, 471

original_status property, iChat, 714
osx

836

contact database, 704
enhancing performance, 687

OS X user interface
see user interface, OS X

osascript shell command, UNIX
scheduling scripts, 797

OSAX (Open Scripting Architecture eXtension)
scripting additions, 616

OUtput
designing a workflow system, 744

overflow errors, 525

p
p (property) variable prefix

naming conventions/rules, 684
packages

see also bundles
Cocoa applications, 471
file packages, 472
Finder window, 471
package references, 436
System Events dictionary, 471

page Iayout system, 745
paragraphs, 83

breaking strings into paragraphs, 83
string parts, 113

parameter errors
Apple event errors, 523
AppleScript errors, 526
operating system errors, 522

parameter variables, 48
parameters, 541
parent property

script object inheritance, 592
parentheses

coercing values, use of when, 264
mixing Operators, 295
precedence rules, 295, 297
using for readability, 134

parents
relationship between objects, 648

parseint command, javaScript, 502
parsing

hex numbers, 502
styled-text data, 499, 502

paste command, Finder
foreground running, 650

path to command, 482
absolute paths, UNIX, 486
as parameter, 482
folder creation parameter, 482
saving script library, 578
scripting additions, 622
scripts managing fotder actions, 603

path to me command, 483
me variable, 2S1
script menu, S97

path variable prefix
naming conventions/rules, 683

secondary prefix alternatives, 684
paths, file/folder paths

AppleScript path, 786
home directory path, 482
Mac-style path name, 431
path to me, 483
POSlX file object converting, 441
startup disk path, 482
strings, 1S9
UNIX-style path name, 431, 786

absolute paths, 48S
relative paths, 486

user specifying path, 364
pause command

AppleScript Debugger, 664
PDF file

saving dipboard data to, SOS
tool to write text over, 762-781

PDFfonts application
scripting UNIX application, 789

Perform AppleScript script step
FileMaker Pro, 72S

perform command
GUI scripting, 60S

performance
applications, 6SO
enhancing, 687

permissions
changing permissions, 786

using graphical user interface, 789
chmod command, UNIX, 786
permission Ievel table, UNIX, 786

persistent contexts, Smile, 7S2
person dass, Address Book, 706
pi variable, 249, 2S8
pick in handler

programming dialeg window, Smile, 778
playlist dass, iTunes

properties, 643
plus (+) operator

see addition (+) operator
positional parameter subroutines, S48

adding parameters, S49
brief description, S66
calling, S49
subroutine types compared, S47

POSIX file command, 628
POSIX paths

- character, 441
absolute paths, UNIX, 486

coercing paths, 440
converting path delimiters, 441
converting path into file reference, 441
converting : to I delimited path, 492, 493
do shell script command, 440
examples, 441
file references, 439, 492
path property, 440
relative paths, UNIX, 486
scripting PDFfonts application, 790
using, 442

PostScript file
distilling, S31

PowerKey Daemon
managing scripts, 796

precedence
operator table of precedence, 29S
precedence rules, 29S, 296

left to right operators, 29S, 296
operators without precedence, 29S, 297
parentheses, 29S, 297
right to left operator, 29S
unary operators, 29S, 297

predefined variables, 247, 2S8
PreFab's Ul Browser

Ul scripting, 747
preferences

script preferences pane, 246
prefetching results parameter, MacSQL, 730
prefixes

naming conventions/rules, 683
prepare handler, Smile, 774
Preview application

saving dipboard data to PDF file, SOS
primary variable prefixes, 683
privilege errors

application scripting errors, S24
privileges

open for access command, 4S6
process

designing a workflow system, 744
progress, feedback on

scripts giving, 691
project, quick-start

FaceSpan projects, 41 0
prompt parameter

choose file command, 36S
choose from Iist command, 360

properties
dasses, 31
creating variables, 232
described, 642
get command, 64S
get properties command, 37

INDEX

837

INDEX

length property, string, 73, 113
my property, 254
object model, 642

exploring object's properties, 643
object names, 41
objects, 36
objects sharing specific properties, 649
playlist dass, iTunes, 643
property values, 645
read only properties, 39, 646
scope in subroutines, 559
script objects

availability for, 576, 579
dedare property inside, 573

script properties, when to use, 244
set command, 645
using dictionary to see, 36
value of records for scripting, 206
variable scope, 243
variables dedared, 256
whose dause, 649

property errors, 526
protocols

specifying Iist of protocols, 376
prototyping

working out value of automation, 810
pshFiles button, FaceSpan, 416
punctuation

ignoring punctuation clause, 66, 291
push button, FaceSpan, 407
push buttons, FaceSpan, 413

Q
quick-start project, FaceSpan, 410
quit event handler

see on quit event handler
quotes

induding double quotes in string, 59

R
-R parameter

chmod command, UNIX, 786
random number command, 16, 17,125, 141

commands, 40
optional parameters, 17
parameters, 125

with seed parameter, 127
scripting additions, 627

random numbers, 125, 141
blackjack script using, 127

randomarray command, Smile, 760
range reference form, 43

838

read command, 448
dictionary definition, 448
FileMaker Pro, 727
forward-only reading, 453
open for access command affecting, 453
parameters, 451, 494

before parameter, 452
for parameter, 452
from parameter, 452
to parameter, 452
to parameter, script using, 453
until parameter, 452
using delimiters parameter, 451

scripting additions, 625
summary, 493

read errors
application scripting errors, 525

read only properties, 39, 646
reading and writing files, 447

as parameter, 451
bytes/characters from current position, 452
commands, 448

dose access command, 449, 453
open for access command, 449, 450, 453
read command, 448
save as command, 458
save command, 458
write command, 455
write command creating script log, 458

end of file (EOF) commands, 453
get eof commands, 454
set eof commands, 454

EOF, using when writing files, 455
file not exist, 450
forward reading only, 453
from specified byte, 452
reading text file into lists, 451

summary, 493
text files, reading and writing, 460
to specified byte, 452
until stopper character reached, 452
write command creating script log, 458
writing RTF files, 460
writing sound files, 467
writing. how much and where, 456

real numbers, 118, 139
coercing real numbers, 295
large numbers, 119
number dass, 23

rec (record) variable prefix, 683
recipients dass, Mail, 703
Record button, Script Editor, 30
recording errors, 524
records, 204

as (coercion) operator, 210
coercing records, 295
commands, 208
comparing, 213
comparison operators, 209
concatenating. 209, 213, 281
contains operator, 209
count command, 205
counting items, 205
counting number of items in, 223
creating. 21 0
described, 189
differences from lists, 204
display dialeg command, 208
ends with operator. 209
getting items from, 205
info for command, 208
is contained by operator, 209
length property, 205
lists. 213
problems using, 206
returning results from subroutines, 544
scripting, value for. 206
self-describing, 208
starts with operator, 209

recurrence property, iCal event, 709
redundant code, scripting, 9
ref keyword, 236
reference errors

Apple event errors. 524
AppleScript errors, 525

reference forms
index reference form, 43
range reference form, 43
test reference form, 42
unique ID object identifiers, 42

reference to operator, 285, 301
referencing application objects. 285

example script, 287
setting file references. 435

references
seealso file references
alias dass, 238
application objects, 236, 647

implicit reference, 287
disk references, 436
elements. 647
Finder references, 438
fotder references, 436
package references, 436
tell statement block and, 288
variables holding, 257

regular application, 7
regular expressions. 756

relative paths, UNIX, 486
relative reference, 44
relative to operator, 182
remainder division operator

see mod operator
Remote Apple Events, 800
remote applications

aliases, 802
authentication, 801
controlling, 800
enabling remote machine, 800
launch command, 802
SOAP, 802, 803
using terms from block. 802
XML-RPC, 802, 803

remote machine errors
operating system errors, 522

remove field command, ScriptDB, 738
Rendezvous name

remote machine access, 801
reopen event handler

stay-open script applications, 672
repeatloops,322,326,339

adding preceding zeros handler, 138
alarm clock script, 179
basic forms, 323
blackjack game using random numbers, 130
breaking strings into characters, 73, 75
by parameter, 340
coercing Iist values, 332
count command, 224
counter variables, 338, 342
deleting old files, 167
exit repeat Statement, 324, 340

performance, 689
exiting using conditional statement, 315
going through items in Iist. 195
limiting use of, 338
listing files by file type, 202
lists, 331, 332, 333, 341
loop variables, 340
Iooping concatenations, 280
multiple condition statements, 310
number handler. 135
repeat forever, 323

exiting, 324
interrupting, 324

repeat until statement, 323, 341
arranging files in folders for archiving, 337
not operator. 334
one loop too many, 336

repeat while statement. 324, 341
not operator, 334

INDEX

839

INDEX

repeat with loop variable, 323, 326
changing increments, 328
count command, 327
counting forwards and backwards, 330
nested loops, 329

repeating set number of times, 323, 325, 340
user entering date script, 151
whose dause alternative, 338, 342

performance, 688
replacing parameter

duplicate command, Finder, 476
replication

script objects, 571, 592
reply errors

Apple event errors, 523
reserved words

labeled parameter subroutines, 551
variable naming rules, 234

resou rce errors
operating system errors, 522

responses from application
see application responses

rest property, Iist value dass, 194, 213
Result area, Script Editor, 16
Result History, Script Editor, 28
result sets, MacSQL, 730

deleting last result set, 731
prefetching results parameter, 730

result variable, 255, 259
get command, 225

results
handlers returning, 51
using result of previous line, 21

return command
debugging scripts, 655
subroutines, 542

returning results from, 544, 565
working with mail content, 90

RETURN key
default button as, 350
ENTER key compared, 15

return value, subroutines, 542
return variable, 248, 258
returns

induding return character in string, 60
induding returns in string, 111
return constant, 61

setting to other values, 62, 111
reveal command, Finder, 478
reverse property, Iist value dass, 194, 213
RGB Illustrator document

converting to CMYK document, 498
right to left operator

precedence rules, 295

840

round command, 119, 140
scripting additions, 628

rounding numbers, 119
rounding handler, 124
rounding to nearest, 120
rounding to significant figures

2 decimal places, 121
rounding in thousands, 121, 123

rounding toward zero, 120
rounding up/down, 120

row object
result sets, MacSQL, 731

RTF (Rich Text Format) files
basic formatting. 461
carriage returns, 461
colors, converting from 16-bit to 8-bit, 464
creating using AppleScript, 463
formatted text, adding. 462
header, 461
RTF reference, 461
specifying colors, 462
specifying fonts, 462
writing RTF files, 460

run command, 227, 229
loading script objects, 577

run event handler
see on run event handler

run handler
declaring global variables, 256
declaring property variables, 256
explicit use of, 540
implicit use of, 539
loading script objects, 577
local variable scope, 241
script applications saving scripts, 670
script defining, 540
subroutines, 91, 539
turning applications into droplets, 671

run script command
script object commands, 585, 593

with parameters parameter, 586
scripting additions, 626

runtime errors, 510
summary, 526

Runtime Lab's MacSQL
see MacSQL

s
Safari

package references, 437
Satimage collection

third-party scripting additions, 631
save as command, 458

save command, 458
save command, 5criptDB, 738
Save dialog box, Apple Script Editor

options for saving scripts, 668
say command

scripting additions, 621
Scheduler 3 application, 797
scheduling scripts, 794

iDo Script Scheduler, 794, 796
UNIX cron/crontab commands, 797
using iCal, 79S

scope
local variables, 240
properties of scripts, 243
subroutines, 557
variables, 22

script applications, 670
options for saving scripts, 668
saving as application bundles, 674
stay-open applications, 672

calling handlers from other scripts, 673
script bundles

see bundles
script commands, UNIX

POSIX paths, using, 442
Script Debugger

AppleScript Debugger language, 662
script-navigation commands, 664

debugging scripts, 661
deleting old files, 167
introduction, 654

script droplets
see droplets

Script Editor
Aqua toolbar, 28
checking syntax, 14
compiling, changes on, 15
described, 14
Description tab, 29
event log, 28
Finder's dictionary, 32
Record button, 30
Result area, viewing, 16
Result History feature, 28
scripting dictionary, 31
spaces, 30
tabs, 14
toolbar, 29
writing scripts, 5

script editors, 5
script errors, 524
script files, 6
script libraries

AutoGraph case study, 589
FaceSpan for OS X, 399

INDEX

FaceSpan projects, 412
modular scripts, 578
saving, where to save, 578
script objects forming, 578
subroutines, 536

script log
write command creating, 458

script menu, 596-597
script object commands

continue command, 583
copy command, 573, 592
Ioad script command, 570
run script command, S85, 593

with parameters, 586
set command, 592

script objects, 570-593
alien spaceships game using, 589
AutoGraph case study, 589
availability of properties, 576, 579
availability of variables, 576, 579
copying, 572
declaring, 571, 592
described, 591
forming script libraries, 578
inheritance, 581, 592

alien spaceships game illustrating, 583
initializing, 571
instances, 576
loading, 570, 593

from files, 577
naming, 572
packaging commands, 9
properties, dedaring inside, 573
referring to, 251
replicating, 571, 592
running, 571, 585, 593
script properties, when to use, 245
subroutines, 9, 572

creating instances of using, 574
using parameters, 591

script preferences
remote management of scripts, 692
script preferences pane, 246

script primary variable prefix, 683
script properties

overuse of, 685
programming dialog window, Smile, 780

script templates, 685
Script Widgets, 630
script-navigation commands

AppleScript Debugger, 664
scriptable applications

adding non-scriptable applications to workflow, 746
UNIX scriptable applications, 786

841

INDEX

scriptable utilities
ColorSync scripting, 634
Image Event scripting, 635
URL Access scripting, 634

ScriptOB
adding data to database, 734
adding fields, 737
commands, 733
creating database, 733
custom dasses, 733
OB add field command, 737
OB add record command, 734
OB delete records command, 735
OB get data command, 735
OB Ioad command, 738
OB remove field command, 738
OB save command, 738
OB sort command, 737
deleting data from database, 735
deleting fields, 737
finding data, 735, 736
loading files, 738
managing database, 734
saving files, 738
scripting additions. 733
sorting data, 737
third-party scripting additions, 631

scripting

842

seealso scripts; script examples
Apple applications, 698
application scriptability, 31

checking, 640
avoiding application tell block, 564
better script model, 8
creating commands, 8
databases, 718
FileMaker Pro, 718
Finder. 468
generalizing use of scripts, 564
handlers, 9
incorporating scripting terminology, 6
MacSQL, 728
making an application scriptable, 4
object model, 33, 641
recording scripts, 30
records, value of. 206
redundant code, 9
Smile, 5
starting to script, 14
storing scripts, 5
subroutines, evolving into, 560
System Events application, 468
try statement wrapping script, 518
UNIX applications, 789

POFfonts application, 789

user interface, OS X. 603
using UNIX in scripts, 786
writi ng scri pts, 5

scripting additions, 616
adding fotder window to event. 629
ascii character command, 624
ascii number command, 624
beep command, 619
choose application command, 619
choose color command, 619
choose file command, 620
choose file name command, 620
choose fotder command, 621
choose from Iist command, 621
choose URL command, 621
dass dialog reply, 621
dipboard commands, 624
dipboard info command, 625
dose access command, 625
dosing fotder window for event, 628
current date command, 627
delay command, 621
display dialog command, 621
do shell script command, 628
file information dass, 623
file read/write commands, 625
file references, 492
fotder action commands, 628
get eof command, 626
handle CGI request command, 629
info for command, 445, 622
installing, 617
lnternet-related dasses, 629
Iist disks command, 622
Iist fotder command, 622
Ioad script command, 626
Mac OS X and, 617
mount volume command, 622
moving fotder window for event, 629
offset command, 624
open for access command, 625
open location command, 629
opening fotder event, 628
OSAX, 616
path to command, 622
POSIX file command, 628
random number command, 627
read command, 625
reading and writing files, 448
redefining scripting addition commands, 556
removing fotder items from event. 629
round command, 628
run script command, 626
say command, 621

script bundles, 632
script portability. 632
ScriptDB. 733
scripting commands, 626
set eof command. 626
set the clipboard command, 624
set volume command. 627
Standard Additions and. 618
store script command, 626
string commands, 623
summarize command, 624
system attribute command, 627
the clipboard command, 624
third-party scripting additions. 630

ACME replace, 630
ACME Script Widgets. 630
additionsnot installed, 631
change case command, 630
find text command. 631
format command. 631
Satimage collection. 631
ScriptDB, 631

time to GMT command. 627
URL dass. 629
write command, 626

scripting commands, 626
scripting components command. 626
scripting dictionary. 31. 638

classes. 31
Cocoa applications. 4
commands. 32
dictionary quality. 33
Script Editor. 31
viewing application's dictionary, 638

scripts
see also scripting; scripts. examples
business aspects of automation, 808
commenting. 686
compiled scripts

options for saving scripts. 669
saving as application bundles, 674

controlling remote applications, 800
crashing scripts. managing. 796
debugging. 654
enhancing performance, 687

foreground/background running. 688
syntax. 688

FaceSpan scripts. 402
FileMaker Pro running. 725
hanging scripts, managing. 796
loading handlers as required, 690
locking with run only. 674
managing remotely. 692
managing scripts. 796
multiple conditions, 309

nested try handlers. 516
not embedding fixed values, 687
options for saving scripts, 668
progress. feedback on. 691
remote management of. 692
run-only versions. 7
sample scripts. 598
scheduling scripts. 712. 794

iDo Script Scheduler. 794, 796
UNIX cron/crontab commands, 797
using iCal, 795

script properties
scope, 243
when to use, 244

timing scripts. 692
Scripts fotder

script menu. 597
storing scripts. 5

scripts. examples
adding preceding zero, 176
alarm clock script. 180
aliased file. checking if moved. 434
aliases. deleting if extinct. 470
alien spaceships game, 583

complete script. 585
application objects. referencing. 287
application, prompting user to pick, 474
blackjack game. 128
Cancel button error, trapping, 514
coercing file reference types. 432
colors. converting from 16-bit to 8-bit, 464
dates

comparing, 1 58, 446
prompting user to supply, 1S1

delimiters. manually changing. 441
dialog-box-based text editor. 457
end of file. writing at, 456
file path exists, checking. S 18
file type. getting. 366
file version. selecting newer. 158
files !arger than, 1OMB. finding. 480
files without extensions. going through, 444
files, arranging in folders for archiving. 337
files, deleting old. 168

verification. 171. 172
files/folders, directing commands to, 438
folder actions managing using scripts, 603
folder. choosing a, 374
formatting time taken. 173, 174. 177
hard disk. listing contents of. 486
HTML file, creating simple. 278
HTML tags. working with, 280
lnDesign file. creating new. 371
kitchen timer. 137

INDEX

843

INDEX

last day of month, 178
Iist insertion handler, 284
lists

creating Iist of lists, 283
getting items from, 190
writing Iist to a file, 460

login item, creating, 474
login items, deleting, 475
mail message, working with, 91
math, dealing with the 118
month containing first Friday 13th, 154
multiplication table, creating, 328
numbers, working with, 134
parsing styled-text data, 504
permissions. changing, 787
repeat loops, 323
replacing colons with slashes, 98
replacing items, 476
rounding handler, 124
rounding to two decimal points, 122
saving dipboard data to PDF file, 506
sending in text format, 7
sorting text. 72
stock movements example, 587
tab insertion handler, 279
template creation, user choosing, 574
temporary files, deleting, 339
time difference to GMT. 153
time taken to run script, 153
timeout errors

capturing, 379
trapping, 533

URL property, getting, 442
user age calculation, 159

modification, 160
user entering date, 150
write command creating script log handler, 459

scriptwriting
good scriptwriting practice, 678
naming conventions/rules, 678

comprehensive system, 679
subroutines, 679
variables, 682

search and replace routines, 746
searching and replacing strings

text item delimiters, 98
secondary variable prefixes, 683
security

remote machine access, 800
select command, MacSQL, 729
select command, Finder, 478
selection property, Mail

working with mail content, 85
service dass, iChat, 713

844

Services menu
user interface, OS X, 611

set command, 17, 107, 219,229
assigning strings to a variable, 111
assigning values to lists, 221
assigning values to variables, 219, 220
avoiding unnecessary if statements, 315
dass properties, 31
creating variables, 232
FileMaker Pro, 721
properties, 645
script objects, 592
setting alias references, 434
setting dipboard contents, 499
setting file references, 435

set data command, FileMaker Pro. 723
set eof commands

dictionary definition, 454
reading and writing files, 454
scripting additions, 626

set the dipboard command, 624
set volume command, 627
SetFillColor command, Smile, 758
SetPenColor command, Smile, 758
SetTextFant command, Smile, 768
SetTextSize command, Smile, 768
shell command

scripting PDFfonts application, 791
shell scripts

do shell script command, 484
when to use, 488

shells, Smile, 751
short date string property, date object, 156

deleting old files, 171
should_activate property

application performance, 650
show command

Applescript version of find, 722
Iayout dass, FileMaker Pro, 720

Show Library Scripts item, 597
showing parameter

choose URL command, 376, 427
small scripts

automation. 2
Smile, IDE, 750

Apple5cript and, 751, 752
architecture, 750
command line environment, 753
command line interpreter, 751
createarray command, 760
creating user interface, 755, 770, 771
custom dialag windows, 755
downloading, 752
graphic engine/library, 757

graphical objects, 759
interface, 750
launching, 753
opening PDF file in, 762
randomarray command, 760
regular expressions, 756
scripting, 5
Smilelab, 759
technologies, 750
tool to write text over PDF, 762-781

Smilelab, Smile, 759
smilepause command, Smile, 780
SOAP

remote applications, 802, 803
Soghoian, Sal, 72
some reference

referencing characters in strings, 79
sort command, Iayout dass

FileMaker Pro, 723
sort command, ScriptDB, 737
sorti ng text, 72
sound files, writing, 467
source errors, 524
space

setting space constant to other values, 111
space variable, 249, 258
spaces

AppleScript, 30
escaping, 487
file/folder names, using in, 487
ignoring white spaces dause, 66
induding spaces in string, 111
setting space constant to other values, 62
space constant, 61

Standard Additions
choose application command, 375
choose file name command, 368
choose fotder command, 372
choose from Iist command, 358, 556
choose URL command, 376
display dialog command, 346
file-access commands, 449
info for command, 445
invisibles parameter, 479
Iist fotder command, 479
open location command, 443
path to command, 482
reading and writing files, 448
redefining commands, 556
scripting additions collection, 618
write command, 455

start date property, iCal event, 708
starting at parameter

write command, 456, 495

starts with operator
containment operators, 274
Iist comparison operators, 196
records, 209

startup disk
path, 482
property, container dass, 469
referring to, 550

Startup screen check box
saving script application, 675

start_stock subroutine
stock movements example, 586

statement errors, 526
static text widget. Smile, 772
status message property, iChat, 713
status property, iCal event, 87, 709
status/-message properties

application dass, iChat. 713
stay-open applications

calling handlers from other scripts, 673
script applications, 672

step into/- out/- over commands
AppleScript Debugger, 664

stock_instance subroutine
stock movements example, 586

store script command
scripting additions, 626

string dass
parsing styled-text data, 499

string commands
Mail, 704
offset command, 1 08, 114
scripting additions, 623

string operators
comparison operators, 63, 112
concatenation operator (&), 63, 112

string value dass, 57
strings

see also characters
assigning strings to a variable, 111
breaking up strings, 72

breaking into characters, 73
breaking into paragraphs, 83
length property, 73

case dause, 65
coercing strings, 295

illegal values, 293
coercing values to string

using errors, 520
combining lists, 94

text item delimiters padding, 95
concatenating strings, 277

concatenating string to itself, 278
concatenation operator, 18

INDEX

845

INDEX

consideration dauses, 65
converting integers into strings, 137
converting strings to date dass, 89
counting number of items in, 223
escape character, 277
getting string length, 113
joining strings, 62
offset of a substring, getting. 114
paths to files/folders, 159
referencing characters in strings, 77

counting from the end, 78
groups of characters, 79
index reference form, 77
middle reference, 78
some reference, 79

searching and replacing, 98
setting dipboard contents to, 499
special string characters, 59

induding double quotes in string. 59
string operators, 63
string parts, 113

paragraphs, 83
words, 80

tab-delimited text files, 101
text dass, 23
text item delimiters, 93, 113
text item delimiters property, 93
text, working with, 57

sorting text, 72
turning numbers into, 140
user-entered text. validating. 355

Studio application, 380
adding dialog elements, 385
buttons, 381

connecting to script, 387
hidden button field, 386
which button dicked, 391

dicked event, 388
Cocoa applications, 380
creating application

creating project, 381
editing dialog box, 383

elements, 381
name and edit dialog elements, 386

extracting user-entered values, 391
giving window AppleScript name, 384
showing dialog box, 390
testing application, 389
testing interface, 387
user dosing dialog box, 391
using custom dialog in script, 390
windows as dialog boxes, 381

styled-text data
described, 501

846

parsing, 499, 500, 502-505
hex numbers, 502
tutorial, 500

subdasses
dass inheritance, 35
item dass, Finder, 642

subroutines
basic structure, 538, 565
calling, 537, 565

from inside application tel! block, 555
collecting results from, 544
components, 90
creating instances of script objects, 574, 591
creating library of, 562
debugging, using dialog boxes for, 657
described, 536, 564
labeled parameter subroutines, 547, 550

brief description, 566
loading, 690
MacSQL, 731
moving scripts into, 560
multiple condition statements, 310
naming conventions/rules, 679

basic formula, 679
case sensitivity, 681
complex formula, 680
consistency, 681
cute expressions, 682
over abbreviating. 682
using single words, 682

organizing scripts with, 563
overuse of global variables, 685
overuse of script properties, 685
parameters, 541
positional parameter subroutines, 547, 548

brief description, 566
return command, 542
return value, 542

during execution, 543
more than one value returned, 544
no return value, 542

returning results/values from, 543
return command, 565

reusing code with, 563, 690
keeping subroutines small, 564

run handler, 539
scope

brief description, 566
properties, 559

scope of variables, 557
script objects, 9, 572
separating functions from commands, 685
simple example, 538
storing, 559

subroutine libraries, 689
creating and managing, 690

subroutine parameter Iabels, 551
types of, 547
using inside statements, 545
value dasses, 546
variables and, 557

subtract (-) operator, 276
summarize command, 624
summary property, iCal event, 709
super dass

dass inheritance, 35, 40
super prefixes

naming conventions/rules, 684
syntax

checking in 5cript Editor, 14
syntax coloring, 234

system attribute command, 627
System Events application, 468
System Events dictionary

file/folder references, 438
Finder dictionary compared, 468
Finder file references, 438
GUI scripting dictionary, 604
package references, 436
packages, 471

System Events object model, 471
disk item dass, 471
Finder items, dealing with, 471
item super dass, 473

domain subdass, 474
login item subdass, 474
user subdass, 473

system fotder
main system folder, 579

System Preferences
CDs & DVDs pane, 612

systems

T

page Iayout system, 745
variable-data system, 745

T-Minus Ten application, 797
table dass, FileMaker Pro, 720

accessing records, 719
cellValue property, 721
current record object, 721
gettinglsetting data, 721
sort command, 723
versions introducing, 719

table of precedence, 295
tabs

creating tab handler, 279
induding tab character in string, 60

induding tabs in string, 111
Script Editor, 14
setting tab constant to other values, 62, 111
tab constant, 61
tab variable, 249, 258
tab-delimited text files, 101

tags
script working with HTML tags, 280

Target menu, Ul browser, 608
targets

commands, 218
current target of tell bleck, 250

tell statement bleck, 24, 26
avoiding when scripting, 564
calling handler from, 253
calling subroutine from inside, 555
conditional Statement syntax, 306
current target of, 250
display dialeg command

length of time displayed, 352
it object, 439
references and, 288
timeouts within, 378
using info for command, 446
working with mail content, 85, 89

template collection, FaceSpan, 400
templates

script templates, 685
temporary files

script deleting, 339
terms from bleck

remote machine access, 802
Test Interface mode, FaceSpan, 421
test reference form

whose dause, 42
testing code, debugging, 664
text

see strings
text dass, 23
text field, FaceSpan, 406,414
text frames

value of records for scripting, 206
text input

getting, displaydialeg command, 351
using, display dialeg command, 352

text item delimiters, 113
text item delimiters property, 93

padding when combining strings, 94
replacing, 98
searching and replacing, 98
setting, 96
splitting strings with, 93
tab-delimited text files, 1 01

text variable prefix, 683
text view, FaceSpan, 414

INDEX

847

INDEX

TextMoveTo command, Smile, 768
the dipboard command, 498

parsing styled-text data, 500
scripting additions, 624

third-party scripting additions, 630
thru operator

getting items from lists, 191, 212
referencing character groups, 79

tickleAppTimer command, 796
Timbuktu

remote management of scripts, 692
time

see date and time
time property, date object, 1 55, 182
time string property, date object, 1 56
time to GMT command, 153, 182

scripting additions, 627
timeout control statement

setting new timeout value, 532
trapping timeout error, 533
wrapping code, 530

timeouts
capturing timeout errors, 379
default. 378
error creation, 378
extending period, 379
within tell bleck, 378

timing scripts, 692
tint property, iCal, 708
title property, iCal, 708
title, changing

dialeg boxes, 360
to parameter

make command, 478
read command, 452, 494

todo dass, iCal, 707
toolbar, Script Editor, 29
transaction errors

application scripting errors, 525
trapping errors, 511

summary, 527
trash-object subdass

container dass, Finder, 469
empty command, 476

try statement bleck, 512
alarm dock script, 179
deleting old files, 172
dictionary definition, 513
display dialeg command

848

user-entered text, validating, 355
if-else if bleck, 516
nesting try handlers, 516
number handler, 136
on error dause, 513

u

trapping errors, 512
trapping timeout error, 533
wrapping the whole script, 518

user entering date script, 1 52
using error numbers, 51 5

Ul browser
GUI scripting, 607
interface, 608
table data, 610
Targetmenu exposed, 608
targeting Ul element, 609
using, 608

Ul scripting
see GUI scripting

unary operators
precedence rules, 295

unequal operator
see not-equals (*) operator

Unicode text
ASCII system alternative, 59
described, 57

unique ID object identifiers, 41
UNIX

file name extensions, 443
listing folders, 484
name-related properties, 444
scriptable applications, 786
scripting UNIX applications, 789

UNIX commands
cd command, 487
chmod command, 786
do shell script command, 484, 492, 789
file commands, 484
ls command, 484
shell command, 791

UNIX paths, 492
file reference delimiters, 431

Mac file reference compared, 439
forward slash (!) delimiter, 439
P051X path reference, 439
scripting UNIX applications, 786

until parameter, read command, 452, 494
update command, Finder, 32
update command, iTunes, 701
update_stock subroutine, 586
URL Access scripting, 634
URL dass, scripting additions, 629
URL file reference, 442

open location command, 443
URL property, 442

user canceled error
operating system errors, 522

user errors
application scripting errors, 525

user interface
adding, FaceSpan projects, 404
digital hub actions, 612
script menu, 596
scripting, 603
scripts giving progress feedback, 691
Services menu, 611
Smile, creating, 755, 770, 771

user preferences
when to use script properties, 245

user related errors
Apple event errors, 523

user subdass
item super dass, System Events, 473
user properties, 473

user's library fotder
writing to unmovable folders, 251

user-entered text, validating
display dialeg command, 355

using delimiters parameter
read command, 451

summary, 493
using terms from bleck

remote machine access, 802

V
value dasses, 22

changing value dass, 64
coercing, 292
comparing, 273
concatenating, 285
subroutines, 546

value errors, 525
values

caring about type of value, 17
coercing values, 263
described, 56
passing handlers multiple, 243
value assignment, 107
variables holding, 257

variable errors, 526
variable-data system, 745
variables, 21

assign type of data to, 21
assigning, 233
assigning strings to a variable, 111
assigning values to, 220
creating, 232
current script object, 258

currently targeted object, 258
dedaring, 233, 239, 256

global variables, 256
subroutines, 557

described, 17, 232
holding references, 257
holding values, 257
it variable, 250, 258
local variables, 256
me variable, 251,258
naming conventions/rules, 233, 257, 682

breaking the rules, 235
development variable prefixes, 684
super prefixes, 684
variable naming formula, 682
variable prefixes, 683

naming identifiers, 21
parameter variables, 48
passing multiple values, 243
passing to handlers, 242
predefined variables, 247, 258

pi, 249
return, 248
space,249
tab, 249

property variables, 256
references to objects, 236
result variable, 255, 259
scope, 22
scope of properties, 243
script objects, availability for, 576, 579
script preferences, 246
subroutines and, 557
using result of previous line, 21
values not set, 258
when to use script properties, 244

version control
remote management of scripts, 693

version errors, 523
vol (volume) variable prefix, 684
volumes

Disk Utility application, 488
file reference delimiters, 430, 440
mounting volumes, 490

keychain, 491
mounting an iDisk, 491

relative paths, UNIX, 486

INDEX

849

INDEX

w
weekday property, date object, 154, 182
weeks constant, 183, 258

calculating file age, 163
where parameter

ScriptOB OB get data command, 736
white space

ignoring white spaces dause, 290
whose dause, 42

avoiding repeat loops, 338, 342
performance, 688

commands producing lists, 198
counting application objects, 224
delete command, Finder, 476
deleting old files, 167
FileMaker Pro, 723
getting folder contents using Finder, 480
objects sharing properties, 649
retrieving relational data, 724

widgets
referencing by index, 773

will finish launehing handler, FaceSpan, 415
window dass, FileMaker Pro, 720
with icon parameter

display dialog command, 351, 423
with parameters parameter

run script command, 586
with prompt parameter

choose application command, 375, 427
choose file command, 426
choose file name command, 370, 426
choose from Iist command, 425

with properties parameter
make command, 478

with seed parameter
random number command, 127

with title parameter
choose application command, 375, 427

with write permission parameter
open for access command, 450

without invisibles parameter
see also invisibles parameter
choose file command, 367
debugging scripts, 656

words, 80

850

breaking text into, 81
built-in word delimiters, 82
characters seen as words, 82
get every word of command, 81
string parts, 113
words of command, 81

workflow automation
adding non-scriptable applications, 746
building hot folder API, 742
designing a workflow system, 744

working directory
do shell script command, problern using, 487
relative paths, UNIX, 486

write command, 455
as parameter, 460
creating script log, 458
FileMaker Pro, 727
for parameter, 457
reading and writing files, 494
scripting additions, 626
starting at parameter, 456
using, 456

write command, Standard Additions, 479
writing files

see reading and writing files

X
XML-RPC

remote applications, 802, 803

y
year property, date object, 154, 182

1-59059-303-0 $29.99 [US] 1-59059-305-7 $34.99 [US] 1-59059-308-1 $34.99 [US] 1-59059-336-7 $34.99 [US] 1-59059-210-7 $34.99 [US]

1-59059-306-5 $34.99 [US] 1-59059-238-7 $24.99 [US] 1-59059-149-6 $24.99 [US]

1-59059-224-7 $39.99 [US] 1-59059-221-2 $39.99 [US] 1-59059-262-X $49.99 [US]
1-59059-236-0 $39.99 [US] 1-59059-372-3 $39.99 [US]

1-59059-314-6 $59.99 [US] 1-59059-315-4 $59.99 [US]
1-59059-304-9 $49.99 [US] 1-59059-428-2 $39.99 [US) 1-59059-399-5 $44.99 [US]

Usable Shopping Carts

'-.-;----·0·-··.--:·J··--
• f I •

~
~ •• f t I aB ;

~ •••• 1 ~ ''

1-59059-231-X $39.99 [US] 1-59059-408-8 $34.99 [US] 1-59059-355-3 $39.99 [US] 1-59059-381-2 $29.99 [US] 1-59059-409-6 $39.99 [US]

friendsofed.com/foru ms

J oin the friends of ED forums to find out more about our books, discover useful

technology tips and tricks, or get a helping hand on a challenging project. Designer

to Designerm is what it's alt about-our community sharing ideas and inspiring each

other. ln the friends of ED forums, you'll find a wide range of topics to discuss, so

Iook around, find a forum, and dive right in!

• Books and Information
Chat about friends of ED books, gossip about the
community, or even tell us some bad jokes!

• Flash
Discuss design issues. ActionScript, dynamic
content, and video and sound.

• Web Design
From front-end frustrations to back-end blight,
share your problems and your knowledge here.

• Site Check
Show off your work or get new ideas.

• Digitallmagery
Create eye candy with Photoshop,
Fireworks, Illustrator, and FreeHand.

• ArchivED
Browse through an archive of old
questions and answers.

Go to the friends of ED forums at www.friendsofed.com/forums.

