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INTER-UNIVERSITY ELECTRONICS SERIES

SERIES PURPOSE

The explosive rate at which knowledge in electronics has expanded in
recent years has produced the need for unified state-of-the-art presenta-
tions that give authoritative pictures of individual fields of electronics.

The Inter-University Electronics Series is designed to meet this need
by providing volumes that deal with particular areas of electronics where
up-to-date reference material is either inadequate or is not conveniently
organized. Each volume covers an individual area, or a series of related
areas. Emphasis is upon providing timely and comprehensive coverage
that stresses general principles, and integrates the newer developments
into the over-all picture. Each volume is edited by an authority in the
field and is written by several coauthors, who are active participants in
research or in educational programs dealing with the subject matter
involved.

The volumes are written with a viewpoint and at a level that makes
them suitable for reference use by research and development engineers
and scientists in industry and by workers in governmental and university
laboratories. They are also suitable for use as textbooks in specialized
courses at graduate levels. The complete series of volumes will provide
a reference library that should serve a wide spectrum of electronic
engineers and scientists.

The organization and planning of the series is being carried out with
the aid of a Steering Committee, which operates with the counsel of an
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Advisory Committee. The Steering Committee concerns itself with the
scope of the individual volumes and aids in the selection of editors for
the different volumes. Each editor is in turn responsible for selecting his
coauthors and deciding upon the detailed scope and content of his par-
ticular volume. Over-all management of the Series is in the hands of the
Consulting Editor.

Frederick Emmons Terman
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PREFACE

This book is addressed to anyone with some knowledge of electricity,
electronics, and circuit theory who wishes to become familiar with the
great variety of electronic instruments and measuring systems available
today and with the kinds of measurements they can make. Because the
field has grown so big and exhibits such diversity, we have had to omit a
great deal of material both of a fundamental nature and of a specialized
nature. For example, there is no chapter on dc measurements as such,
although many instruments used in d¢ measurement are described fully
in other chapters. At the other extreme, tremendously complex data
telemetry systems such as are used in the space program are not treated,
though many of the components of such systems are. Thus, we have
tried to steer a course that avoids both the obvious and the esoteric,
hoping thereby to provide a more generally useful book with wide appeal.

Several years ago I was beguiled by the publishers into contracting to
write this work. Their arguments were persuasive: the advent of the
transistor had obsoleted existing books on the subject, the art had
advanced greatly since these works were written, I had personally been
involved with much of that advance, etc. Overcome by this suasion, I
agreed to accept the assignment. My attitude at the time seemed
euphoric, but now appears to me to have been more one of conceit, for as
I approached my task closer, it loomed ever larger, and soon humbled me
into a state of paralysis. After a long time during which I tried to delude
myself that I could simultaneously write a book, be president of the
IEEE, and carry out my regular job, a time during which my sense of
guilt steadily grew, I had the good fortune to have John Cage offer his

xv
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services in recruiting other writers and in compiling and consolidating
their efforts. This book never would have materialized without their
contributions and without John’s steadfast attention to details and to
schedules.

It is not the book I would have written, but it is, I think, a good book
and in many ways superior to what I might have produced, given the
time. For the sake of all those who have contributed I hope you and

many, many others will find it valuable.
B. M. Oliver



FURTHER PREFACE

As our technological civilization develops, both the amount and the
complexity of measurement proliferates. I think it is axiomatic that the
instrumentation art must grow faster than the science and engineering
activities in which measurement is necessary. The mercurial growth of
electronic measurement and instrumentation for use in electronics and in
electrical engineering certainly supports the axiom.

This inevitable growth in instrumentation presents a problem to the
engineering or science student, to the young practicing engineer whose
skill in measuring his working parameters is already obsolescent, to the
manager who is keenly aware of the role played by clever measurement
techniques in technical progress. Before these people can participate in
the surge of progress, I think they must learn about the principles and the
creative combinations of ideas in modern instruments. Then they can
use the instruments skillfully and even conceive new instruments. This
book is intended to help these people.

Consider Chap. 4, “Measurements of, with, and in the Presence of
Noise.” Without an understanding of this material, how can an engineer
or scientist penetrate very far in any discipline involving variable
quantities? Orlook at Chap. 5, “Signal Analysis by Digital Techniques.”
What an important instrument is one that adequately displays the
Fourier transform of a function of time, even when the interval of
integration is not infinity! Or Chap. 16: Do you really understand
spectrum analyzers?

Several years ago, McGraw-Hill suggested that B. M. Oliver, Vice

xvii
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President for Research and Development of the Hewlett-Packard
Company, was one of the people who could be logically chosen to write a
comprehensive reference book on electronic measurement and test
Instruments. However, it was apparent that the book would cover so
many subdisciplines, require information from so many specialists, and
require so many hours that it could not be fitted into Oliver’s activities.
It was suggested that I work with him to achieve an acceptable time
schedule. I knew from experience that working with Barney Oliver in
any capacity would keep the cerebral vascular system healthy and
transform senescence, as Shakespeare said, into “the silver livery of
advised age.”

It has been equally rewarding to work with the many specialists whose
names appear with the chapter headings. To combine the notes and
papers of more than thirty-five experts with some degree of continuity
was educational, to say the least. These people were busy (and often
nonaspiring as authors) but real authorities all the same.

We lacked space to treat measurement specifically in the fields of
medicine, chemistry, and other nonelectrical disciplines. These subjects
will require separate books.

I'shall not discuss the plan of the book further in the Preface. Chapters
1, 2, and 3 serve that purpose well. However, I must express my great
appreciation to Miss Helen Azadkhanian for her very patient preparation
of the manuscript, to Mrs. Downs for her help with some of the drafting
problems, and to my wife, Mildred, who graces everything with beauty
and love.

John M. Cage
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CHAPTER ONE

BASIC PRINCIPLES

Bernard M. Oliver

Hewlett-Packard Company
Palo Alto, California

Although the measurement of simple physical quantities dates from
ancient times, measurement as a precise art is only a few hundred years
old, and many of the quantities we measure today were not even known to
exist or were at best ill understood a century ago. Even so fundamental a
dimension as time was measured extremely crudely with sand and water
clocks until Galileo’s observations on the pendulum suggested replacing
these dissipative mechanisms with resonant systems in which cycles are
counted. Sinee that time, clocks have not changed in principle, though
their accuracy has been improved enormously as better and better resonant
systems were discovered. Today we use the atomic resonances of cesium
and hydrogen to measure time with an accuracy that corresponds to less
than a one-second error in thirty thousand years. No other physical
quantity can yet be measured with this precision. But while horology
may hold the current accuracy record, other areas too have greatly
benefited from the application of electronics to their measurement
problems.

Electronic measurements are of two kinds: those made of electronic
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quantities such as voltage, capacitance, or field strength, and those made
by electronic means of other quantities such as pressure, temperature, or
flow rate. Electronic instrumentation came of age in solving the mea-
surement needs of electronics itself, but in its maturity it is proving
remarkably adaptable to other fields. In this book we shall mainly
consider electronic instrumentation as a tool of its own trade. This
avoids a great deal of repetition and superficiality and at the same time
represents very little loss of generality, since the first step in measuring a
nonelectrical physical variable electronically is to convert the variable
to an electrical quantity.

1-1 The Role of Measurement

Science and technology are so intertwined with measurement as to be
totally inseparable from it. It is true that modern measuring instruments
are one of the fruits of science, but it is equally true that without the
ability to measure, there would be no science. When Lord Kelvin warned
that knowledge not expressible in numbers was ‘“of a meager and unsatis-
factory kind,” he was not expressing a fetish; he was identifying an essen-
tial aspect of scientific knowledge. The laws of physics are quantitative
laws, and their validity can only be established by precise measurement.
It is the insistence on quantitative agreement of theory with experimental
fact that distinguishes science from philosophy.

The careful astronomical observations of Tycho Brahe and the brilliant
analysis of his data by Johannes Kepler illustrate very dramatically the
contribution of accurate measurement to scientific progress. Plato, and
the Greek philosophers who followed him, believed that the heavenly
bodies, being perfect, were composed of the quintessence (literally the
fifth essence of matter as distinct from earth, fire, air, and water) and that
their motions must be eternal and perfect. Certainly the stars moved in
circles, and it was believed that the motions of the planets could be
described by an appropriate combination of uniform circular motions.
For two thousand years the resolution of planetary motions into circular
components was considered the most important problem in astronomy.
The heliocentric theory of Aristarchus of Samos (250 B.c.), the geocentric
theory of Ptolemy (a.p. 150), and even the heliocentric theory of Coper-
nicus (a.p. 1543), all adhered to the concept of circular motions. But
even though the Copernican theory greatly simplified the Ptolemaic
theory by eliminating the large epicycles that were really the result of the
earth’s own motion, neither theory predicted the exact positions of the
planets at all times. The error in both theories was often as much as
two degrees.

To Tycho Brahe, who was born shortly after Copernicus’ death, two
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degrees of error was intolerable. He decided that, before any correct
theory could be discovered, the actual positions of the planets over many
years would have to be measured with far greater accuracy than ever
before. With the financial support of Frederick II of Denmark he built
very large and rigid quadrants and other instruments for measuring
angles. These he mounted on stable foundations in his observatory,
which he named Uraniborg, or ‘“‘castle of the heavens.” Then he cali-
brated his instruments so that he could subtract their errors from his
observations. For twenty years he recorded the positions of the planets.
After the death of Frederick II he moved to Prague, where Kepler
became his assistant.

Kepler was assigned the task of computing the orbit of Mars from
Brahe’s observations. After four years of arduous work Kepler came to a
painful conclusion. No combination of the deferents and epicycles of the
Copernican or the Ptolemaic systems would fit the facts. The motion of
Mars could not be compounded out of regular circular motions as Plato
had believed. The best solution Kepler found disagreed with observa-
tions by only eight minutes of arc. But Kepler knew that Tycho Brahe’s
observations could not be in error by more than two minutesof are. With
an integrity rare even in scientists, Kepler saw that beliefs twenty
centuries old were doomed by an error only six minutes of arc too big to
be allowable.

Kepler then went on to discover his famous laws of planetary motion.
Eighty years later Newton showed that all these laws were a consequence
of his own laws of motion and his theory of universal gravitation, and
thus provided convincing proof of the latter. Shattered forever were
the crystalline spheres that carried the planets in their Ptolemaic orbits.
All the complex motions of the planets, which had puzzled men for ages,
were distilled into one simple little equation.

Nor does the story end here, for later and much more aceurate observa-
tions, with telescopes, showed that the orbit of Mercury precessed by 43
seconds of arc per century more than could be accounted for by perturba-
tions of the other planets. This in turn later provided the best confirma-
tion we yet have of Einstein’s general theory of relativity, which subsumes
Newton’s law of gravitation as a special case.

The role of measurement in unraveling the mysteries of celestial mechan-
ics is paralleled in other branches of science. Quantitative measure-
ments of the stoichiometry of chemical reactions established the existence
of the atom, and precise measurements in spectroscopy have helped
reveal its structure. Today, measurements of the trajectories of nuclear
fragments are gradually revealing the nature of the nucleus. X-ray
diffraction studies have taught us how crystals are built and have provided
important clues to the nature of deoxyribonucleic acid (DNA) and other
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organic molecules. The list is endless, for after Tycho Brahe, Galileo, and
Newton, science became experimental, and all experiments involve
measurement. Man finally learned not to impose his beliefs on nature
but, instead, humbly to ask questions of her and apply reason to her
answers.

New discoveries in science provided new instruments for the study of
nature and these studies produced new discoveries in a regenerative
buildup that has been accelerating for the last two centuries and continues
to accelerate today. Though much of physies has now been explored,
many mysteries still remain at both extremes of size: the nucleus and the
cosmos. The fields of particle physics and cosmology together with
molecular biology are the major frontiers of modern science. All depend
heavily upon instrumentation and measurement.

The science of optics produced the first major contributions to scientific
instrumentation: the telescope, the microscope, and the spectroscope.
When Galileo refined a Fleming’s spyglass and turned it toward the heav-
ens, a new era in astronomy was born. Later the spectroscope not only
revealed new elements on earth, but provided. the final, uncontrovertible
proof that the stars themselves, like our sun, are composed of these same
elements. The microscope showed the cellular structure of living matter
and the microorganisms that are the cause of disease.

Imagine how different human history might have been had Aristarchus
of Samos had a telescope and spectroscope, and Hippocrates a mieroscope!
What Grieek could have believed in the quintessence of matter having seen
the mountains of the moon and spectral lines of earthly elements in sun-
light? Or who could have insisted that all heavenly bodies revolved
around the earth, having beheld the satellites of Jupiter? How could the
deity have been so wasteful as to adorn the sky with stars not even visible
to man’s naked eye? What need for evil spirits if microbes cause disease?
The impact of such discoveries, had they been made by the Greeks, would
surely have greatly accelerated ecivilization and profoundly affected
theology. Indeed the western world might have been spared the dark
ages and the tortures of the Inquisition if only the Greeks had had better
instrumentation.

In recent years both astronomy and biology have taken new leaps
forward, again because of new tools, this time the result of progress in
electronics. The radio telescope has enabled astronomers to study the
matter between the stars in what was once thought of as simply space.
Quasars, perhaps the most distant objects in the universe, and pulsars,
believed to be star corpses composed almost entirely of neutrons, have been
discovered with radio telescopes. Meanwhile, the electron microscope
has revealed single strands of DNA and many of the fantastic transfer



Basic Principles 5

mechanisms in the living cell that use the genetic code to construct
proteins, antibodies, and enzymes. Living things too, it now seems
certain, obey the laws of physics and chemistry.

The role of science is to discover the laws of nature and how they operate
in complex systems. The role of engineering is to apply the discoveries of
science to human needs. Scientists make discoveries that increase our
understanding of the world. Engineers make inventions intended to
increase our productivity (and thereby our standard of living), our
mobility, and (it is hoped) our ability to survive. Instrumentation is a
branch of engineering that serves not only science but all branches of
engineering and medicine as well.

The precise measurement of dimensions, temperature, pressures, power,
voltage, current, impedance, various properties of materials, and a host
of other physical variables is as important to engineering as to secience.
Thus, mass production of goods that has produced our present affluent
society would be impossible unless their parts could be made so nearly
alike as to be completely interchangeable.

Eli Whitney, the inventor of the cotton gin, seems to be the first to have
eliminated the need for selective assembly. In 1798 he obtained a con-
tract to produce ten thousand muskets for the United States govern-
ment and decided to ‘“substitute correct and effective operations of
machinery for that skill of an artist which is acquired only by long practice
and experience.” It took Whitney two years, during which time not a
single gun was produced, to develop the machines, tools, and fixtures to
do the job. Washington officials became nervous at the delay, but finally
Whitney appeared before the Secretary of War and other Army officers
with boxes containing all the parts of his musket. While they watched in
amazement, Whitney assembled ten muskets, taking parts indiscrimi-
nately from the boxes. Afterward, in a letter to Monroe, Jefferson
wrote: “He (Whitney) has invented molds and machines for making all
the pieces of his locks as exactly equal, that take a hundred locks to
pieees and mingle their parts and the hundred locks may be put together
by taking the pieces that come to hand.”

Accurate measurement is needed too for economy of design. A bridge
several times stronger than needed to carry its heaviest possible load
serves no one better and costs more than one designed to survive this
worst load safely. For millions watching on television, the most dramatic
moment of the Apollo 11 mission occurred when Neil Armstrong first set
foot on the moon. But for many of the engineers who designed the
vehicles and the computer programs, the most dramatic moment occurred
two hours earlier when the lunar landing module set its feet on the moon.
At that moment, only ten seconds worth of fuel remained. Close timing
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indeed, and a tribute to the designers of the mission, for every pound of
spare fuel that did not have to be allowed for in the landing module
could be used to increase the payload of the lunar escape module.

Not only are instrumentation and measurement playing an increasingly
important role in our technological society; electronics is playing an
increasingly important role in instrumentation. The reasons for the
latter are that most physical quantities can be converted by transducers
into electrical signals and, once in this common form, they may be ampli-
fied, filtered, multiplexed, sampled, and measured. The measurements
are easily obtained in or converted into digital form for automatic analy-
sis and recording, or the data can be fed to servo systems for automatic
process control. Electronic circuits are unexcelled in their ability to
detect and amplify weak signals and in their ability to measure events of
short duration. The incorporation of electronic sensors and cireuits into
instruments has vastly increased our ability to measure and thereby our
ability to find nature’s answers to new questions.

Where science will take us in the future, no one knows. That is what
makes it such an exciting adventure. But one thing seems certain. If
social or political or ecological catastrophe can be avoided, science will
continue to probe with new and even more sensitive instruments
while the riddles of matter, of the origin of the universe, and of life are
being answered. Perhaps in time we may be able to construct a phi-
losophy in total accord with all knowledge. Or perhaps, as is more likely,
we shall no longer feel the need for philosophy. For what is philosophy
but intellectual speculation turned into belief, and what place is there for
speculation except to develop premises to be tested?

1-2 The Units of Measurement

Set into the stone wall of Saint Stephen’s Cathedral in Vienna are two
iron bars with protruding ends. One is about a yard long and the other
is about a meter long, but they are much older than either of these units
of measure. In medieval times Vienna was the western terminus of
caravans that carried the trade from the East, and these bars were used to
measure the width of silk cloth and other fabrics imported by the traders.
The church in those days was the keeper of physical as well as spiritual
standards and required the infidel to measure up to the former if not the
latter.

The measurement of quantities important in trade, such as length,
mass, and volume, is as old as civilization itself, but very few units of
ancient measure have been preserved. Today no one knows the exact
length of the stadium or of the cubit. So when we read that Eratosthenes,
in the third century B.c., having measured the angle of the sun’s rays in
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Alexandria at the moment the sun was directly overhead in Syene, and
knowing the north-and-south distance between these cities, computed the
circumference of the earth as 250,000 stadia, we can only admire his
genius, but we cannot check his result with certainty.

The measurement of angles is unique in that the unit is dimensionless;
no standard is needed, but only a numerical convention. Perhaps this
accounts for the longevity of the Babylonian system of angle measure-
ment, which is still in use today. In keeping with their sexaguesimal
(base 60) number system, the Babylonians divided the angle of an
equilateral triangle into 60 parts to get the degree. The degree was then
divided into 60 tiny, or minute, divisions, and these in turn were divided
into 60 second-order minute divisions, today called simply m¢nutes and
seconds. It is a pity that the Babylonians did not divide the circle into
24 parts, as we now divide the day, to obtain their basic units for then
these two traditional measures of time and angle, incompatible as their
subdivisions are with the decimal system, would at least be consistent
with each other and astronomers would not have to reckon with two
kinds of minutes and two kinds of seconds.?

As experimental science developed in the eighteenth and nineteenth
centuries, the need for commonly accepted units of measure began to be
felt. Without such standardization the intercomparison of results by
workers in different countries was much more difficult. After the
metricsystem was adopted in France in 1799, its measures of length and
mass were gradually accepted, along with the already established unit of
time, the second, as the units in which scientifie findings in mechanics
were reported. Even though many laboratories used different metric
units such as the meter-gram-second (mgs) system, or the millimeter-
milligram-second system, the integral powers of 10 relating these units
made conversion relatively easy. Gradually however, the centimeter-
gram-second (cgs) system became the universally accepted standard in
science in the late nineteenth and early twentieth centuries. Not only
were units standardized, but so were the symbols and names for the units
of the various physical quantities. This too helped make the equations
of science a sort of universal language easily understood by scientists
everywhere.

Electrical Units. The early history of electrical units was complicated
by the fact that the relations between electrostatics and electromagnetics

1 A new unit, the neugrad (or grad), equal to one four-hundredth of a circle, has been
introduced in Europe. It is subdivided decimally, but this is also possible with
degrees, and the virtue of dividing a right angle into 100 parts rather than 90 is any-
thing but obvious. Indeed it is more awkward to have common angles such as 30°
expressed as 3334 grad. If any change is to be made, let us choose the new unit to
be 15°!
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were not yet clearly understood. In both fields the importance of tying
electrical units to the earlier, well-established mechanical units of work
and force was appreciated. Thus workers in electrostatics chose the
coulomb relation for the force between two point charges ¢; and g, i.e.:

F o= 19 - (1-2-1)
er?

with ¢ taken to be equal to unity in vacuum as the starting point for
defining the unit of charge. Two equal charges that produced 1 dyne of
force at a distance of 1 cm were each a unit charge. Since ¢ was taken as
unity in vacuum, it was generally regarded as dimensionless and this gave
charge the dimensions of VM L3/T? = M"L*T-1in the electrostatic unit
(esu) system. Then workers in electromagnetics followed a similar route.
The unit magnetic-pole strength m, and m, was that which produced unit
force at unit distance in the relation

mims

F =
pr?

(1-2-2)

with m; = m, and p = 1 in vacuum. But sinee magnetic poles, unlike
charge, cannot be isolated in nature, this equation was replaced by the
theoretically equivalent relation involving currents I, and I,:

F 2ulid,
1 4

(1-2-3)

for the force F per unit length ! between two infinitely long parallel
conductors separated by a distance d. Again because p was considered
dimensionless, current, defined by Eq. (1-2-3), was assigned the dimensions
\/ML/T2 = M”L®T-!. Charge, being the product of current and
time, therefore had the dimensions M*L* in the electromagnetic unit
(emu) system.

The dimensions of the esu unit of charge were thus L/T times the
dimensions of the emu unit of charge, and the same was true for other
unitsin the two systems. Because the number of units in a given quantity
is inversely proportional to the size of the unit, we see that gemy = 2qesu,
where v is some velocity. Upon substitution-of the actual magnitudes,
v turned out to be the velocity of light, a fact which strongly suggested
to Maxwell and others that light is an electromagnetic phenomenon.

While both the esu and emu systems were being used by theoreticians
and scientific experimenters, still a third system of so-called practical
units, comprising the volt, ampere, coulomb, and watt, was developed for
use in engineering. In 1863 the British Association for the Advancement
of Science, which played a leading role in the early standardization of all
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basic units, defined certain of these practical units as decimal multiples of
the emu units, and so they remain today.

The dimensional disagreement between the esu and emu units for the
same quantities made it elear that ¢ in Eq. (1-2-1) and p in Egs. (1-2-2) and
(1-2-3) must not be considered dimensionless, and if not dimensionless,
why give them the value of unity for vacuum? This practice, while it
may have accelerated Maxwell’s unification of electric and magnetic
theory, also led to much confusion by coneealing the fundamental physical
difference between the electric field strength E and the electric displace-
ment density D and even more between the magnetic field strength H and
the magnetic induction B. As soon as it was realized that there was no
more reason for choosing ¢ and p equal to unity than for choosing v equal
to unity in Newton’s law of gravitation

MM,

F =4 o

(1-2-4)
(and thereby defining a unit of mass), the way was cleared for reconciling
the esu, emu, and practical systems. This was done by adopting the unit
of length as the meter, rather than the centimeter, and the unit of mass as
the kilogram rather than the gram, to give the present mks (meter-
kilogram-second) system.

In the process, one other defect of both the esu and emu systems has
been partially eliminated. Coulomb’s law involves spherical geometry.
Each charge experiences a force from the spherical electric field of the
other charge. Since by definition ¥ = ¢E, the field must be assigned
unit strength with unit charges at unit distance when using Eq. (1-2-1)
with ¢ = 1. This leads to assigning a total flux ® = 4xgq to a charge g,
and introduces the factor of 4 into a great many expressions involving
rectangular goemetry and plane fields. The same situation exists in the
emusystem. In 1882 Oliver Heaviside pointed out that a “more rational”
system of units would result if Eqgs. (1-2-1) and (1-2-3) were written as

9192
= 2192 1-2-
4mer? ( Ir)
F ulil,
I Btz 1-2-3
1~ 2nd (1-2-3r)

to take account of the spherical and cylindrical geometry respectively.
The 7 in the equation numbers designates the rational form. Had this
been done originally and € and y assigned the value unity for a vacuum, the
esu and emu units of charge would have been A/ 4x times as great. Heavi-
side and Hendrik A. Lorentz proposed such a system and used it in their
works. Modern practice is to write the equations in the above form,
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use the esu, emu, or practical units, and subsume a compensating factor
of 47 into € and wu. This is the origin of the 4#’s in the mks values of

01 10-°
® = 4re ~ 36r (-29)
do = 4z X 107 (1-2-6)

for the permittivity and permeability of free space; the remaining powers
of 10 and ¢ (the velocity of light) arise from the ratios of the esu and emu
units to practical units. As a result of the rationalization, the factors of
47 are missing from planar field equations written in mks units, but are
contained in g and ¢, which must always be included.

The assignment of dimensions to e and u in effect defines a new physical
dimension which can be taken as the ampere or as the coulomb, and gets
rid of the bizarre, irrational (and inconsistent) dimensions assigned to
charge in the old esu and emu systems. For example, by virtue of Eq.
(1-2-1) or (1-2-17r), € in the mks system has the units

coulomb? _ QT

= 1-2-7
(newton) (meter)? ML3 ( )

We have no reason to believe that charge can be constructed out of
mass, length, and time, and every reason to believe that charge is a qualita-
tively distinct physical quantity meriting a dimension of its own. Never-
theless, the introduction of this fourth unit into the absolute system of
units caused long and often acrimonious debate. The defenders of the
classical system of the three fundamental dimensions of mass, length, and
time seem not to have been bothered by the two different dimensionalities
of charge in the esu and emu systems. Further, they seemed unaware that
even three fundamental dimensions are unnecessary. If vin Eq. (1-2-4) is
taken as dimensionless and equal to unity as was done for ¢ and p in Eqs.
(1-2-1) and (1-2-3), a new unit of mass is obtained having the dimensions
L3T-?.  Had this beent done by Newton, then classicists who followed him
might have objected.violently to introducing a third ‘“fundamental’”’
dimension for mass.

As a matter of fact, even length and time can be eliminated by also
defining, say, Planck’s constant and the velocity of light as dimensionless
and equal to unity. One then has a system of units in which all the
variables in physical equations are pure numerics, and the unit size is set
by the requirement that certain prescribed physical measurements produce
identities. Such a system would obviate the need for including many
constants of proportionality, but at the same time would greatly obscure
the qualitative difference of the variables in all equations and prevent the
use of dimensional analysis in checking calculations.



Basic Principles 11

Sinee the number of fundamental dimensions in a system of units is thus
somewhat arbitrary, there is certainly nothing magic about the number
three and no good physical reason to exclude charge as a fundamental
dimension.

It should be understood that the size of a unit can be chosen independ-
ent of its dimensionality. We are free to pick any convenient size for
just the reason that it ¢s convenient, i.e., the quantities we need to express
involve neither inconveniently (and almost meaninglessly) large or small
multiples of our unit. The standard prefixes in three order-of-magnitude
steps help a great deal in this problem. In fact, the appeal of the metric
system resides not in the length of the meter, nor the mass of the kilogram,
but rather in the decimal subdivisions and multiples of these units.

The question arises: Is there a “natural” system of units? That is,
can we choose the size of our units of mass, length, time, and charge so as
to cause many or all of the physical constants to become integers or
rational numbers or, at the very least, numbers that have some physical
significance in terms of allowed degrees of freedom or the like? At
present the answer to these questions appears to be no. We can, for
example, define the mass and charge of the electron, the velocity of light,
and Planck’s constant as unity. But having done this, no further sim-
plifications occur. No other physical constants assume integer values.
Indeed there is one physical constant, the fine-structure constant, which
combines the velocity of light, Planck’s constant, the electronic charge,
and the permittivity of vacuum in the equation

#002 e? 1

The point is that « is dimensionless, so its value does not depend on our
system of units. The number 137.03602 . . . is a natural physical
number in the same sense that « or ¢ are natural mathematical numbers.
Sir Arthur Stanley Eddington believed that «~! had the integer value 137
and offered several hypotheses for why this might be true. More accurate
modern measurements have disproved his premise. Until future study
reveals the existence of a natural system of units, there appears to be no
reason to abandon the present mks system.

1-3  Standards of Units of Measurement

In order to make accurate measurements in different places that are
intercomparable, accurate standards are needed. The early standards
were all prototype standards: physical objects that defined the unit as one
of their physical properties. The standard kilogram and the standard
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meter bar are prototype standards. So was the earth itself, since the
second was taken to be 1¢g,400 part of the mean solar day.

Prototype standards have several defects: They can change with time,
they can be damaged, and like the stadium and cubit, they can be lost.
Metals abrade and creep from internal stress. The earth slows down from
tidal friction. The best standards appear to be atomic standards. So far
as we know, all atoms of a given isotope of a given element are absolutely
identical and invariant in their properties. In recent years two of our
fundamental units, the second and the meter, have been defined in terms
of atomic standards rather than their original prototype standards.

This conversion to atomic standards has been made possible by the
development of instrumentation techniques, specifically the interferometer
and the cesium-beam clock, that enable the atomic properties to be com-
pared with sufficient precision once and for all with the original prototype
standard. From then on the original prototype need be preserved only
for historical and sentimental reasons. So far, sufficiently accurate
techniques have not been devised to permit replacing the prototype kilo-
gram with an atomic reference standard, but that day may not be far off.

The present definitions of the base units of the international system of
units (Systéme International d’Unités, abbreviated SI) as adopted at the
1967 (and earlier) general conferences (Conférence Générale des Poids et
Mesures, abbreviated CGPJ) of the International Committee on
Weights and Measures (Comité International des Poids et Mesures,
abbreviated CIP)\I) are given below. Only the kilogram involves a
prototype standard. The kelvin and candela, while not exactly atomic
standards, involve only the reproducible properties of matter. These
two units are less basic than the others, but are included in the basic set
for convenience. The thermodynamic scale of temperature could in
principle be defined by specifying Boltzmann’s constant, while the candela
is a physical standard for a physiological quantity, since luminosity
involves the properties of the human eye.

Definitions of the Base Units of the International System (SI)

Meter (m), or metre. 'The meter is the length equal to 1,650,763.73 wave-
lengths in vacuum of the radiation corresponding to the transition between
thre levels 2p,o and 5d;s of the krypton-86 atom. (Eleventh CGPAI, 1960,
Resolution 6.)

Kilogram (kg). The kilogram is the unit of mass; it is equal to the mass of
the international prototype of the kilogram. (First and third CGPM,
1889 and 1901.)

Second (s). The second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium-133 atom. (Thirteenth CGPM,
1967, Resolution 1.) )
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Ampere (A). The ampere is that constant current which, if maintained in
two straight parallel conductors of infinite length and negligible circular
cross section and placed 1 m apart in vacuum, would produce between
these conductors a force equal to 2 X 1077 newton/m of length. (CIPM,
1946, Resolution 2, approved by the ninth CGPM, 1948.)

Kelvin (K). The kelvin, unit of thermodynamic temperature, is the
fraction }473.16 of the thermodynamic temperature of the triple point of
water. (Thirteenth CGPM, 1967, Resolution 4.)

Candela (cd). The candela is the luminous intensity, in the perpendicular
direction, of a surface at 690,000 m? of a blackbody at the temperature
of freezing platinum under a pressure of 101,325 newtons/m2.  (Thirteenth
CGPM, 1967, Resolution 5.)

The connection between the mechanical and electrical standards is
established by the definition of the ampere. Other choices are possible,
but the determination of the relatively large magnetic forces caused by
the passage of steady currents through coils of precise dimensions can be
made with great accuracy. Parallel conductors are not used in the
measurement. Rather, from the definition, the force between coils of
convenient shape and size can be computed, though even this is not
necessary. The discovery by Thompson and Lampard [1] of a class of
computable capacitors (Chap. 9) and the ability to measure frequency
with great accuracy allow the precise measurement of inductance. The
ampere can then be ‘“‘weighed” by knowing the law of variation of induc-
tance L with displacement x between two coils carrying current I, one
fixed and the other on one arm of a balance, by using the relation

1_dL
F=-p% 1-3-1
2 dzx (1-3-1)
Having determined the ampere, the remaining primary electrical units
may be given [2] the following definitions:!

Volt (V). The.volt is the difference of electric potential between two points
of a conducting wire carrying a constant current of 1 A, when the power
dissipated between these points is equal to 1 W,

Ohm (). The ohm is the electric resistance between two points of a condue-
tor when a constant difference of potential of 1 V, applied between these
two points, produces in this conductor a current of 1 A, this conductor
not being the seat of any electromotive force (emf).

Coulomb (C). The coulomb is the quantity of electricity transported in
1 s by a current of 1 A.

! Note that although we may have used the henry in determining the ampere, (a)
this was not necessary and (b) the reasoning is not circular since the ampere was
not used to determine the inductance in Eq. (1-3-1). Instead we used a computable
capacitor and the fact that wL = 1/wC for some w.
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Farad (F). The farad is the capacitance of a capacitor between the plates
of which there appears a difference of potential of 1 V when it is charged
by a quantity of electricity equal to 1 C.

Henry (H). The henry is the inductance of a closed circuit in which an
emf of 1 V is produced when the electric current in the circuit varies
uniformly at a rate of 1 A/s.

IWeber (Wb). The weber is the magnetic flux which, linking a circuit of
one turn, produces in it an emf of 1 V as the flux is reduced to zero at a
uniform rate in 1 sec.

Tesla (T).

The tesla is a flux density of 1 Wb/m?2

Although the ephemeral nature of prototype standards has led to their
abandonment as primary standards whenever possible, they remain the

basis for most secondary and working standards of measurement.

Thus

standard electrochemical cells of various types and Zener diodes are used

as voltage standards subject to occasional absolute calibration.

The

hierarchy of standards and the interlocking series of crosschecks by which

TABLE 1-1 Recommended Values of Physical Constants [3]
Units
Quantity Symbol Value mks cgs
Velocity of light. . ... .. ¢ 2.9979250 | 108 m/sec 10%° cm /sec
Electron charge........ e 1.6021917 [ 107 C 1072° emu
4.803250 | ............. 10710 esu
Electron volt..........0 ...... 1.6021917 | 107 J 10-12 erg
Equivalent to. ......[ ...... 2.4179659 | 1074 Hz
Equivalent to.......|] ...... 8.065465 105 m—?! 103 cm ™!
Equivalent to. ......[ ...... 1.160485 10¢ K
Planck’s constant...... h 6.626196 10734 J-sec 10-27 erg-sec
(€)~1(he/2¢).......... h/e 4.135708 1015 J-sec/C 107 erg-sec/emu
Avogadro’s number. . ... N 6.022169 1028 kmole™! 1023 mole™?
Atomic mass unit. ... .. amu 1.660531 10727 kg 10724 g
Electron rest mass. . ... m, 9.109558 1031 kg 102 g
mY 5.485930 10~* amu 104 amu
Proton rest mass....... M, 1.672614 1027 kg 10724 g
My 1.00727661 amu amu
Ratio of proton mass to
electron mass........ M,/m, | 1,836.109
Electron charge to mass | e/m, 1.7588028 | 10" C/kg 107 emu/g
ratio 5.272759 | ............. 1017 esu/g
Magnetic flux quantum | & 2.067854 10718 T-m? 1077 G-cm?
Boltzmann’s constant k 1.380622 1072 J/K 10718 erg/K
k/e 8.617087 105 V/K
Gravitational constant. .| v 6.6732 10~ N-m?/kg? | 10~¢ dyn-cm?/g?
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these are calibrated by standards laboratories in order to certify the
accuracy of a secondary standard against the absolute units is too lengthy
a subject to discuss meaningfully in this chapter or in this book. Our
purpose has been simply to give the reader some idea of the role and
importance of precisely defined universal units in measurement, and of the
rationale of our present system. '

For the convenience of the reader, Table 1-1, giving the most recently
determined values [3, 4] of some of the universal constants, is used to
conclude the present chapter. Reference 3 is particularly recommended
to the serious reader interested in examining the extremely meticulous
techniques required in the refinement of standards. An excellent bibliog-
raphy and many more constants are given in both references.
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CHAPTER TWO

SINE-WAVE TESTING
OF LINEAR SYSTEMS

Bernard M. Oliver

Hewlett-Packard Company
Palto Alto, California

The most traditional of all electronic measurements are those made on
supposedly linear devices or systems by using sine waves as test signals.
Measurements of impedance, of gain or loss, of phase shift, of group delay,
and of nonlinear distortion as well, all fall into this broad class. In spite
of the rapid growth in recent years of nonlinear systems, such as digital
computers, linear circuits and systems still play a major role in electron-
ics. Radio, television, communications, recording and reproduction,
data instrumentation, telemetry, and many other fields still rely heavily
on linear circuits to detect, amplify, and transmit information-bearing
signals. Linear-circuit theory is still an essential part of the electronics
engineer’s training, as is a knowledge of the significance and methodology
of sine-wave testing.

Later chapters fully treat the most important instruments and tech-
niques used in testing linear systems, but we feel the need to set the stage
first. ‘The present chapter defines and brings into focus those properties
of linear systems, the understanding of which is essential in the sound
practice of measurement. = This chapter also gives a mathematical picture
of the basic sine-wave measurement procedures or methods.

Only the fundamental aspects of transmission measurements will be
discussed here. The instruments are found mainly in Chap. 13, but
keep in mind that many of the chapters are pertinent for the engineer who

16
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would acquire a full technical understanding of the present art of sine-
wave testing.

2.1 Mathematical Background

Of all possible test signals, sine waves have the unique property that
their shape is unaffected by linear circuits or systems. In response to a
sinusoidal excitation all voltages and currents in a linear system will be
sinusoids of the same frequency, altered at most in amplitude and phase.
In addition, knowledge of the effect of a linear system on the amplitude
and phase of an applied signal at all frequencies (or at a sufficiently
closely spaced set of frequencies) completely defines the response of the
system to any input signal that does not drive the system out of its
range of linear operation. These facts enabled telephone repeaters,
radio-receivers and transmitters, and other systems to be built and tested
long before the oscilloscope became a practical test instrument. Only
oscillators, attenuators, filters, and voltmeters were used, and the care-
ful measurements made with these often resulted in better performance
than is obtained by the use of lavish test equipment today in the hands of
a careless engineer.

A system will be linear if it is composed entirely of linear devices,
that is, devices in which the voltage (or current) is directly proportional
to the first power of any integral or derivative of the current (or voitage).
With mesh or nodal analysis, such a system can be described by a set of
simultaneous linear differential equations with constant coefficients. If
one assumes that all circuit amplitudes are of the form

a.;(t) = A .'6“""

where « is the angular frequency of the forcing function (the applied
sinusoidal signal), then all nth derivatives of the amplitudes have the form

d"a.-
dtr

= (iw)"4e = (iw)"a;(t) (2-1-1)

and differentiation is replaced by multiplication with iw. This converts
the set of linear differential equations into a set of linear algebraic equa-
tions, which can be solved by using determinants and Cramer’s rule. The
4; so obtained are complex constants giving the amplitude and phase
factors by which the sinusoidal input is modified at the #th node or mesh.
The uniqueness theorem in the theory of differential equations states that
any solution to a set of differential equations that satisfies all boundary
conditions is the solution. Thus, the form-preserving property of sinus-
oidal signals can be demonstrated for lumped linear networks.

A more general approach is to define system linearity in overall oper-
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ational terms without regard to the internal details. The system may
in fact contain analog-to-digital converters, digital filters, pulse-code
modulators and demodulators, digital-to-analog converters, or any
number of nonlinear devices and still be considered linear, provided only
that within the required accuracy and over the desired amplitude range:

1. The Response Obeys the Superposition Principle. If an input fi(t)
produces an output ¢;(¢) and an input f2(¢) produces an output g:(f), then
the input afi(t) + bfs(t) produces the output agi(f) + bg:(t), where a and
b are constants.

2. The Response Is Invariant with a Time Translation. If the input
f() produces the output g(¢), then the input f(t — t,) produces the output
g(t — o). This simply says that the response does not depend upon the
time at which the input is applied.

We shall now show that if a device has these properties, its response
to any input can be calculated by Fourier transform methods and, further,
its response to a sine wave will be sinusoidal.

Let the response of the device to a unit-area impulse occurring at
t = 0 be k(). Then by property 2 the response to a unit-area impulse
occurring at t — r will be k(t — 7). Any actual input f(¢) may be thought
of as a series of impulses, the one at time 7 having an area f(r) dr. The
response to this input will be f(r)k(t — 7) dr. Hence by property 1 the
response to f(f) is

o) = [°f@kt — ) dr (2-1-2)
We now take the Fourier transform of both sides of Eq. (2-1-2) to obtain

Glw) = [, e [ j_: Fak(t — 7) dr | dt (2-1-3)
We next exchange the order of integration,

G = [T 5@ [ [, ke = e at] ar (2-1-4)
and then change variables, letting (¢ — 7) = u, to obtain

@) = [, feer | [ b du ] dr (2-1-5)

The quantity in brackets, denoted below by K(w), is the Fourier trans-
form of k(u). Since K(w) is not a function of r, we may remove it from
under the first integral, which then becomes F(w), the Fourier transform
of f(t). Thus

G(w) = K(w)F(w) (2-1-6)

and we see that for any system having the two properties given above, the
spectrum of the output is the product of the spectrum of the input and a
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system filtering function K(w), the latter being the Fourier transform of
the impulse response. The output time function g(t) is the inverse
transform of G(w).

Finally we note that if f(¢) is a sinusoid of frequency wg, then

F(w) = 8(w — wo)

and G(w) = K(w) 8(w — wo), which is the input sinusoid multiplied by
K(wo). Thus any system that has these two properties will have a sinus-
oidal response to a sine-wave input. For any input, each sinusoidal
component produces its own sinusoidal response K (w) times as large, and
the output is the sum of all these output sinusoids.

Distortionless Systems. A transmission system is called distortionless
if at its output and without change of shape, it reproduces any input wave
it may be required to handle. More precisely, we require that for any
input f(t), the output be g(t) = af(t — to), where a and f, are constants
representing respectively a change of scale and a delay. Thus

G(w) = ae0F (w)

and so from Eq. (2-1-6), K(w) = ae—% over the range of w for which
[F(w)| > 0. A distortionless circuit is therefore one whose frequency
response has a constant amplitude a and a linear phase 8 = wt, over the
frequency range of interest.

Circuits that do not fulfill these criteria are said to introduce frequency
distortion.! One of the great virtues of sine-wave testing is that it is so
simple to see if these criteria are met. Often, as in audio cireuits, phase
distortion (that is, phase shift not proportional to frequency) is relatively
unimportant. In most cases the circuits under test are minimum-phase
circuits or have an added constant delay, and so the phase distortion is
uniquely determined by the amplitude characteristic. Therefore, it is
usually only necessary to measure the latter.

2.2 Gain or Loss Measurement

Often the range of amplitude encountered in measuring the trans-
mission of a device is extremely large. Further, when devices are oper-
ated in tandem, the overall amplification or attenuation is the product of
the amplifications or attenuations of the individual units. For these
reasons it is convenient to express amplification and attenuation in loga-
rithmic units, which are of convenient size and can be added rather than
multiplied. At one time, and particularly in Europe, the neper, which is
the natural logarithm of the ratio of output power to input power, was

!In Germany and elsewhere this is sometimes called Linear distortion in contrast
to nonlinear distortion produced by circuit nonlinearities.
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used. Today the decibel® is commonly used as the unit of gain or loss.
The gain in decibels is defined as

output power

G = 10 log - (2-2-1)
input power
and the loss as
i t
L = —G = 10 log 22 POYEL, (2-2-2)

output power

The classical method of measuring gain or loss is shown in Fig. 2-1.
Sinusoidal signals from a test oscillator are fed through a calibrated
attenuator and the device under test to a detector. The detector is any
sort of power-indicating device with enough sensitivity to operate at the
output signal level involved. Thermocouple or thermistor power meters
have been commonly used (Chap. 16). The impedance of the detector
should be padded to equal the proper load resistance for the device under
test. The output of attenuator 1 should be padded so that it presents
the proper source impedance to the device under test. Also the output
of attenuator 2 should be padded to match the detector. These pad
losses must be added to the readings of the attenuators. The conve-
nience of having all connections at a common impedance level is evident.

Attenuator 1 is first adjusted to give a convenient reading on the
detector with the switches in position A. Then with the switches in
position B, attenuator 2 is adjusted to give the same reading of the
detector. The gain of the device is then

G =a —a (2-2-3)

where a; and a; are the settings of the two attenuators plus their asso-
ciated pad losses. This procedure is repeated at each new frequency.

The readings obtained do not depend upon knowledge of the absolute
level of the test signal or of the output signal. The law of the detector is

1 One-tenth of a bel, a unit named after Alexander Graham Bell.

Device
Aﬂem‘mor L | “under

Oscillator /7 / Detector

8 I ] B
Aﬂeném'ror

FIG 2-1 Classical substitution method for measuring gain or loss.
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immaterial as is its absolute accuracy. The accuracy of measurement
depends only on:

1. The absolute accuracy of the attenuators, which can be very high
since they are passive devices

2. The accuracy to which two readings can be matched with the
detector (repeatability and precision of the detector)

3. Freedom from harmonics in the source and nonlinearities in the
device under test

4. Sensitivity of the detector to harmonics

5. Freedom from overload, noise, hum, or any extraneous signal

With care, measurements accurate to about 0.01 dB (0.23 percent) or
better can be routinely made in this fashion, and millions of engineering
man-hours have been spent doing just this.

The advent of automatic level-control circuits made possible signal
generators whose output was calibrated and constant over the entire
frequency range, while the advent of feedback amplifiers made possible
vacuum-tube and transistor voltmeters and power meters whose cali-
bration is accurate to better than 1 percent over their frequency range.
With these it is possible to simplify gain measurements by using the
arrangement in Fig. 2-2. To get absolute measurements, the device
under test must face its proper source and load impedances and these
pad losses must be accounted for. However, with a signal generator
having a calibrated step attenuator and with a voltmeter or power meter
having an accurate decibel calibration over a range at least as large as
the attenuator steps, data can be taken mueh more rapidly than with the
substitution method shown in Fig. 2-1. With good instruments, readings
accurate to about 0.1 dB or better can be obtained.

With either of these methods a large number of points must be recorded
if an entire frequency characteristic is to be determined, particularly if
the frequency characteristic contains much fine structure. On the other
hand, broadband amplifiers can be checked quite rapidly with the
arrangement in Fig. 2-2 since it is often only necessary to verify the upper
and lower cutoff frequencies and to check the midband variations for
maxima and minima.

A further increase in measurement speed, particularly for complicated
or detailed frequency responses, is obtained by the system shown in

, Device Voltage
oo [ under ol SO
test meter

FIG 2-2 Direct method for gain and
loss measurement.
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Fig. 2-3. Here the signal generator is replaced by a sweep generator,
which between adjustable upper and lower frequency limits supplies a
sinusoid of constant amplitude whose frequency varies linearly or expo-
nentially with time. If the device under test has a bandwidth compa-

s Devéce Detector Y X-Y
weeper  f—gf under l—s{ and lo
test omphfi%r recorder
£= Kf\ X
or rTTTTT TR
E=Klog f Log !
/N [ ————
amplifier |
Lo J

FIG 2-3 Automatic plotting of frequency response.

rable with, or perhaps much less than, its center frequency, a linear sweep
of frequency with time is generally used, while if a frequency range of a
" decade or more is to be covered, an exponential sweep is commonly
chosen. If a wide range of output amplitudes is expected or if a direct
reading scale in decibels is required, the output signal is passed through
a logarithmic amplifier. The output of this amplifier is used to drive the
y axis of an zy recorder, while the r axis is driven by a signal proportional
to the frequency or the logarithm thereof. Some sweepers supply this
z-axis output. With others a frequency meter must be used to measure
the frequency being generated and to provide the z-axis signal. See
Chaps. 13, 15, and 16 for elaboration.

With the arrangement in Fig. 2-3, entire frequency characteristics can
be recorded in less than a minute, even very complex ones containing
many ripples. The arrangement is particularly valuable in loudspeaker
and microphone testing where long-delayed echoes often cause the fre-
quency characteristics to be very rich in detail. Measurements are
easily made over a frequency range of four decades (10,000 to 1) and over
a dynamic range of 60 dB or more to an accuracy of +1 dB or better.
If the total dynamic range is restricted to a few decibels or less, the scales
can be expanded and gain variations of +£0.1 dB or even +0.01 dB are
readily measured. For the highest accuracy, an attenuator may be
incorporated before the device under test and the overall gain adjusted
to be slightly less than 0 dB. Then by switching between two other
reference paths, one having 0 dB gain or loss and the other, say, 1 dB
loss, reference limits can be drawn on the same graph. The actual gain
of the device under test can then be interpolated graphically with great
accuracy, most systemic errors having been eliminated.

For high-frequency measurements, such as of intermediate-frequency
amplifiers, the sweeper can scan the frequency range very rapidly and the
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whole scan can be repeated 60 or more times per second. The zy
recorder is then replaced by an oscilloscope, and a true dynamic display is
obtained. The effect on the frequency response of any adjustment of
this device under test can immediately be observed. Since radio- and
intermediate-frequency devices often have relatively narrow bandwidths
compared with their center frequency, it is common practice in these
applications to use a linear frequency scale, to omit the z-axis signal,
and simply to synchronize the scope to the power line or to a trigger
pulse generated by the sweeper at the start of each sweep. Often the
sweeper will then include markers that produce pips on the scope traces
at cardinal frequencies.

Because of their great speed and adequate accuracy, sweep methods of
measuring frequency responses are commonly used in the laboratory
today and are almost exclusively used in the production testing of devices
that require adjustment or control of their frequency characteristics.
The great time saving and high uniformity of tested product more than
justify the cost of the added test equipment. Frequently, even further
automation of the test process is economically justified, and before long
the sweeper and the measurements it makes will often be computer
controlled as described in Chaps. 17 and 18.

2-3 The Measurement of Phase

Unlike voltage or current or power, which can easily be measured
directly in a single signal, the measurement of phase shift inherently
involves a comparison of two signals. It is meaningless to speak of the
phase of a signal except with respect to another signal. Thus the typical
phase measurement involves at least the complication shown in Fig. 2-4.
The input and output waves of the device under test are monitored by
bridging amplifiers or other means that do not affect these waves. The
two sinusoids thus obtained are then compared in some sort of phase
detector or comparator.

. Device
Signal 3
generator ‘#22?" — Load
Amplifier ;Amplifier
Phase "
detector

FIG 2-4 Phase measurement.
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Phase comparisons can be made to an accuracy of about +1° by using
an oscilloscope with identical X and Y channels. The reference signal
is ordinarily applied to the X channel and the phase-shifted signal is
applied to the Y channel. Thus,

sin wt

sin (wt + ¢)

x

y (2-3-1)

Il

If ¢ = 0, a 45° straight line should be displayed. It is a good idea
to apply the same signal to both channels simultaneously and adjust the
gains (and, if necessary, the phase shift in one channel) to get a 45°
straight line before making a measurement. With either signal removed,
10 divisions of peak-to-peak deflection should be produced in the direction
of the remaining signals. Then, with both signals applied, the phase can
be estimated from the y or x intercepts of the resulting ellipse. When
z = 0, then y = sin ¢, and when y = 0, then z = sin (—¢); so all inter-
cepts should be equal, and the phase is + sin~'y or # sin~'z. When
¢ =~ (2n — 1)90°, the z and y intercepts become very insensitive to small
changes in ¢, and so the accuracy is very poor.

A better method is to measure the minor axis of the ellipse. For
[¢] < 90°, this will lie on a line at —45° as shown in Fig. 2-5, while for
|¢| > 90°, the minor axis will be along a +45° line. If we call the peak
z and y deflections unity, it is easy to show that the intercepts on the line
at —45° and +45° are respectively

w=2 sin%s (2-3-2)

&

v =2 cosg (2-3-3)

Thus scales like those shown in Fig. 2-5 can be constructed to read the
minor axis. The ellipse always crosses these lines at right angles, which
removes one source of reading error, and the minor axis is a sensitive
function of ¢ for all ¢.

Another method of using an oscilloscope to measure phase shift is to
synchronize the sweep externally with the reference signal. By also
looking at the reference signal on the y axis at the same time, the level
and slope controls can be adjusted to put the positive-going intercept at
the origin or at one end of the horizontal axis. Also, the sweep speed can
be adjusted to make one-half cycle correspond to nine major divisions.
When the phase-shifted signal is then applied to the y axis, its positive-
going z-axis intercept will give the phase shift in units of 20° per major
division. Obviously care must be taken to position the signals vertically
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so that the positive and negative peak values of deflection are of equal
magnitude. This method has the advantages that the phase scale is
linear and that there is no ambiguity concerning the size of the phase shift.

The use of oscilloscopes to measure phase is neither rapid nor very
accurate, but has the great virtue that no special equipment is needed.
‘When a great many or accurate phase measurements are to be made, other
methods having higher inherent accuracy, faster readout, and greater
immunity to noise and waveform distortion should be used (see Chap. 6).

Phase Detectors. A very common form of phase detector is the diode
ring modulator or synchronous detector shown in Fig. 2-6. Many modes
of operation of this device are possible, depending on the input signal
levels and waveforms and the source and load impedance. If the diodes

704
60+

50

® 40+

o %
A 304 %

20

70

50—
50~
40
30
20-
10+
104°
20
30
404
50
60-)
70
90

IS
10

30
V/
‘o 40

(2] 50 L)

70
901

FIG 2-5 Elliptical cathode-ray oscilloscope display for phase
measurement.
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are ideal solid-state devices so that their current is

i = I(etVT — 1) (2-3-4)

]

where V' = voltage across the diode

¢ = charge on an electron

k = Boltzmann’s constant

T = temperature, °K

I, = saturation current when V is negative
and if B = 0, then with small signals applied, it is a simple matter to
solve for the short-circuit output current 4, since with R, = 0, the volt-
ages applied to the diodes are specified by the input signals. If the
reference input is e; = E, sin wit and-if the signal input is

e = Ep(wit + ¢)

then the short-circuit current will be

]

T = 2E1E2 (#)2 I,{COS [(wz - wl)t + ¢]
— cos [(we + wi)t + ¢]}  (2-3-5)

The internal impedance of the device consists of the four diodes in par-
allel and is

1/6 —1 1kT
=-(2 == 2-3-
R 4(61) v=0) 4 ql, (2-3-6)
giving an open-circuit output voltage
E\E
€0 =" 2%% {eos [(w2 — wi)t + ¢] — cos [(w2 + w)t + ¢]}  (2-3-7)

These equations hold provided E; and E, are substantially less than



Sine-wave Testing of Linear Systems 27

kT/q = 25 mV so that powers of q(E{ + E;)/kT higher than the second
may be neglected. Then only the sum and difference frequencies appear
in the output. If the former is eliminated by low-pass filtering and
if we = wy, then Eq. (2-3-7) becomes
E\E, q
9 LT cos ¢ (2-3-8)
and we see that the output voltage is proportional to the cosine of the
phase difference and to the product of the two input amplitudes. In
order for the internal impedance to be reasonably low, diedes having low
barrier heights (large 7,) must be used. The dependence of ¢; on both
E, and E., the rapid dependence of R, on temperature (that is, on I,),
and the low output signal levels produced make the unballasted (B = 0)
diode ring modulator a poor choice for phase detection, although in many
applications it makes an excellent mixer, demodulator, or single-sideband
detector.

The diode ring modulator can also be used at high signal levels by
incorporating the ballasting resistors R, whose resistance is much larger
than the forward resistance of the diodes. If the reference carrier is now
made very large compared with the other input or made a square wave
whose amplitude is only slightly larger than the peak signal amplitude,
the modulator acts like a synchronous reversing switch. For example,
when e; is positive, the lower diodes conduct and the upper diodes are
back biased. When e; is negative, the reverse is true. Thus, the output
is taken alternately from one-half or the other of the signal transformer
secondary, and the instantaneous output open-circuit voltage is as shown
in Fig. 2-7. The low-frequency output is obtained by integrating over
a half cycle and is very nearly

€y =

2
eo = = E, cos [(wy — wi)t + ¢] (2-3-9)
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FIG 2-7 How the circuit in Fig. 2-6 can be a synchronous
reversing switch.
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where we assume |w: — wi| < ws, w1 and neglect any frequencies above
|ws — wi1]. The internal impedance is B/2. With this mode of operation
the output is independent of the reference carrier amplitude, and E, can
be several tens or even hundreds of volts if desired. Diodes having
negligible reverse saturation current can be used, and the operation can
be made very stable and independent of temperature. As a phase
detector, of course, w: = w; and e, = (2/7)E, cos ¢. If a calibrated out-
put is desired, E, must be held constant.

Many other kinds of phase detectors have been devised. Another
common type generates two trains of pulses representing, say, the posi-
tive-going intercepts of the two signals. The pulses in the signal train
set a flip-flop to the “1”” state and the pulses in the reference train return
it to the “0” state. The duty cycle of one side of the flip-flop is thus
directly proportional to the phase shift. This type of detector has the
advantage of a linear scale, but is disturbed by noise when reading phase
shifts near 0 (or 360°), whenever the time jitter of one or both series of
pulses switches the duty cycle randomly between 0 and 1 and causes a
noisy erroneous reading.

Phase detectors are commonly used as null detectors to tell when the
two waves have, say, exactly 90° of phase shift. The exact reading of the
true phase is then taken from the scale of a calibrated phase shifter in the
reference (or signal) channel required to establish the 90° condition. If
desired, the output from the phase detector can be used to drive the phase
shifter and produce an automatic balance.

Many different kinds of phase shifters have been developed to produce
phase shifts of up to 180 or 360° or even continuous phase shifts of
unlimited amount. But except for the microwave rotary phase shifter,
almost all these are single-frequency or at most narrow-band devices.
Both because of this and because phase detectors themselves operate
most accurately at one frequency, it is common practice to heterodyne the
waves (whose phase is to be compared) to a common intermediate fre-
quency at which all measurements are made. Thus gain- and phase-
measuring instruments have traditionally been dual-channel superhet-
erodyne receivers having linear stable mixers and intermediate-frequency
amplifiers, and often with provision for locking the local oscillator to the
signal, to obtain two intermediate frequencies whose amplitudes are
proportional to the input signals and whose phase relationship is the
same as that of the input waves.

Recently a new type of amplitude- and phase-measuring device has
been introduced, the vector voltmeter. The vector voltmeter uses two
samplers (see Chap. 11 for a discussion of samplers) to sample the two
waves whose amplitudes and relative phase are to be measured. The
sampling pulses have a repetition rate offset from the signal frequency f
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FIG 2.8 Vector voltmet L] t

by a constant frequency fo as shown in Fig. 2-8, and usually f, < f. In
this way two waves, both of frequency f,, are generated whose amplitudes
and relative phase are the same as the original waves of frequency f. The
samplers can be regarded in fact as very broadband, unity-gain mixers.
The offset sampling frequency can be obtained by using the output of a
discriminator fed by the sampled wave in the reference channel, or of a
phase detector fed by the same wave and by a local oscillator of fixed fre-
quency fo, to control the frequency of a voltage-tunable oscillator from
which the sampling pulses are derived.

Vector voltmeters are typically wideband devices covering a 1,000
to 1 frequency range and accommodating inputs from a few microvolts
up to about 1 V without the use of input attenuation. They allow volt-
age ratios to be measured over a 70 to 80 dB range within a few tenths of
a decibel and also the phase to be measured to an accuracy of about 1°.
Because of the self-locking feature, the tuning of the local oscillator can
be made automatic in each frequency range. As a result, vector volt-
meters are essentially as easy to operate as simple voltmeters. Their
introduction has greatly simplified the laboratory measurement of phase
in the frequency range of from 1 to 1,000 MHz.

2-4 Automatic Network Analyzers

More recently the sampling principle used in the vector voltmeter
has been used in a new class of instrument called a network analyzer.
With the ability to measure the amplitude ratio and relative phase of
two signals over a wide frequency range, it becomes a simple matter to
measure impedances and transmissions and, with the help of directional
couplers, reflection coefficients and return losses over a wide frequency
range. It isalso easy to display the results of a swept frequency measure-
ment either in terms of real and imaginary parts, or of gain and phase, or
in polar form as on a Smith chart.

A network analyzer is basically a combination of a swept-signal source
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whose output frequency is offset to develop the sampling pulses and a
vector voltmeter whose outputs are processed for dynamic display on an
oscilloscope. These analyzers are especially important in microwave
measurements, and their applications are treated thoroughly in Chap.
17. There, the emphasis is upon the determination of s parameters of
microwave networks.

Finally, by making all the components programmable and under the
control of a computer, one achieves the goal of the automatic network
analyzer. With appropriate software the computer can be instructed in
a convenient language to perform any or all of a series of measurements
and to plot or tabulate the results. Alternatively, in production testing,
the system can be programmed to accept or reject devices on the basis of
specified tolerance limits and to print out, if desired, the reason or reasons
for rejection. Computer-controlled testing can be carried out at very
high speeds. KEach test signal need only be applied long enough for
initial device and system transients to die out, whereupon the readings
are taken and the computer stores the data and immediately moves on
to the next test.

Not only does computer control greatly increase the speed of measure-
ment; it can increase the accuracy as well, as discussed in Chaps. 17
and 18.

2.5 Measurement of Delay Distortion

If a function f(¢) is delayed by an interval r, every sinusoidal component
of f(¢t) is delayed by 7 and therefore shifted in phase by an amount —wr.
A distortionless delay therefore multiplies the input spectrum F(w) by
a phase shift proportional to frequency to give an output spectrum
G(w) = F(w)e ™. The corresponding time function is

1 L]
git) = — G(w)e™t dw
2 J -

= % /—: Flw)ewt do = ft — 1) (2-5-1)

since the second integral is the inverse transform of F(w) with ¢ replaced
by t — 7. Delay is thus related to the slope of the phase characteristic.

Suppose the phase characteristic of a device is ¢(w). In real physical
devices ¢(w) will be an odd function of w, that is,

&(w) = —¢(—w)
and ¢(0) = 0. Also d¢/dw = ¢'(w) = ¢'(—w) is an even function.
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Around any frequency wo, the function ¢(w) can be expressed in a Taylor
series

#(w) = ¢(wo) + ¢'(wo)(w — wo) + - + -

2-5-2
(—w) = —dlwn) + ¢ (wo)(e — wo) + - - - (2-5-2)
Now the spectrum of the pulse
2 . \
) = 2508 it (2-5-3)
T &t

has the value unity for —we — 6§ < w < —wo + 6 and
wp— 0 < w<w+ 8

and is zero everywhere else. If such a pulse is applied to a device whose
transmission K(w) = €, the output spectrum G(w) will be ¢¢« between
the frequency limits given above and zero elsewhere. If § << w,, we can
represent ¢(w) over these narrow intervals by Eq. (2-5-2). Upon taking
the inverse transform we find, for the output wave,

_ 26sin 8(¢ + ¢)

g(®) 5 &) cos [wot + ¢(wo)] (2-5-4)

or if we let
ey o 9 -5) .

r=—¢ =" (2-5-5)
Eq. (2-5-3) can be written

o = BRI ot — 1) + a0l (2-5-6)

ot —7)
where
d¢
0 = P(wo) + wor = P(wo) + wo% oo (2-5-7)

and is the phase at which the tangent to ¢(w) at w = wg intercepts the
@ = 0 axis as shown in Fig. 2-9. The function g(¢) is f(t) delayed by an
amount d¢/dw oman and with the phase of the cosine term shifted by an

additional amount ¢o. In particular, the envelope term sin 6t/8t is
simply delayed by a time 7, and for this reason

_ dé(w)

7(w) = dw

(2-5-8)

is called the envelope delay or group delay.
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FIG 2-9 Sample plot of phase shift versus w.

Unless r(w) is a constant, wideband signals will suffer different delays
for different frequencies in their spectra, and delay distortion will occur.

For a “short’”’ transmission system where both the input and output are
available in the same locale, the phase characteristic can be measured and
the variations in its slopes can be computed to determine the delay
distortion. For “long’’ circuits, such as transcontinental telephone or
television circuits,a direct method is needed for measuring the variation
in delay with frequency by means of signals sent over the circuit, or a
pair of circuits. The classical method is to send two pairs of frequencies,
the components of each pair being separated by the same frequency
difference Aw and having the same relative phase at the same time. An
appropriate method of doing this is shown in Fig. 2-10. If the outputs
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of the oscillators are

e = El (o0 ] (wlt -+ al)

A
es = Ea cos ?“’t (2-5-9)
ez = E, cos (wst + a3)

then the output of balanced modulator 1 is
A
kE]EA cos (wlt + al) (o] ?w 4
and comprises the sine waves

A .
e1s = E cos F(wl — ~£)t+ ay
L 2 ]

and (2-5-10)

i A
ew = E cos (w1+-?w)t+a1
while the output of balanced modulator 2 comprises the sine waves

- .
e = K cos (wz—%)t‘*'az
- - (2-5-11)

i

If either of these pairs is applied to a phase detector, the output
wave contains the difference frequency cosAwt and the sum frequency
co3 2(wit + a1) or cos 2(wyt 4+ a2). The sum frequency can be removed
by filters. Thus, as generated, the difference frequencies are in phase.

If the four signals are now sent over a transmission circuit having a
phase characteristic ¢(w), the phase ¢(w; — Aw/2) will be added to the
argument of €1, ¢(w1 + Aw/2) to the argument of ez, etec. Thus the
two difference frequencies as developed by phase detectors at the
receiving end will have the form

[ Aw
en = E cos (wz+7)t+az

cos (Awt + Adr)
and (2-5-12)
cos (Awt + Adz)

where
A = ¢(w; + Aw) — ¢(wi — Aw) 1=1,2 (2-5-13)
Ad: = A d—"” = —Awr(ws) (2-5-14)
dw
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Thus the difference in delay at the frequencies w; and w, is found by
measuring the phase differences of the two difference frequencies at the
receiving end,

Ar=r,— 7 = _"A¢l - £ (2-5-15)

Aw
At the receiver, both pairs of frequencies are usually heterodyned down
to the same frequencies w; + Aw/2 before phase detection, regardless
of w1 and w,. This permits identical phase detectors to be used. By
holding either w; or w; constant and changing the other, a plot of delay
distortion versus frequency can be obtained. It will be recognized that
the measurement is basically a comparison of two differential phase shifts.
The value of Aw determines the size of the differential used and is a scale
factor in the measurement. The quantity Aw must be chosen small
enough not to obscure any significant detail in the delay characteristic.
The exact expression for A¢; is not Eq. (2-5-14) but
wit Aw/2 wit+Aw/2
A¢; = j:.,.-jm.,/g %dw = — m_+M/; {w) dw (2-5-16)

The actual measurement obtained is the convolution of the true delay
characteristic and a rectangular “window’” or scanning aperture of
width Aw.

It is apparent that one difference frequency merely serves as a time
reference against which to compare the phase of the other difference
frequency. No absolute measure of total delay is obtained or desired.
If one pair of frequencies is swept rapidly and periodically across the

cos[Aw+ p(&r)] Prase sin[p(d#)-F]
detector e

sin(Aw+$)——>1

VIO je— LPF

FIG 2-11 Another arangement for
group-delay measurement.

frequency range of interest, then after phase detection, the difference
frequency will have the form

cos [Awt + ¢(wt)] (2-5-17)

where @ is the rate of sweep. If now a local oscillator of frequency Aw is
phase locked to this wave by using a locking loop that does not transmit
the repetition frequency of the sweep or any harmonics, as shown in
Fig. 2-11, then the output of this oscillator is sin (Aw + ¢), where & is
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the average value of ¢(ot). The output of the phase detector (excluding
sum frequencies) is now of the form sin [¢(wt) — @] and if the argument
is kept small, is a linear representation of r(wt) — 7. In this way only
two frequencies need be sent over the test circuit, and a dynamic display
is obtained.

In frequency-modulation (FM) communication circuits the transmitted
signals must contain no amplitude modulation (AM), for the system
limiters would remove AM. Thus instead of sending one or two pairs
of signals as indicated above, one transmits one or two waves frequency
modulated with a low index. If two waves are transmitted, the phases of
the two received modulations are compared. If only one wave is sent,
the carrier frequency is swept and the phase modulation of the received
modulation frequency is observed as above.

2.6 The Measurement of Loop Gain

A very commonly needed measurement, and one too often neglected,
is that of the loop gain of a device having negative feedback. Knowledge
of the loop gain over the frequency spectrum of the input is important
because the magnitude of the loop gain gives a direct measure of the
effectiveness of the feedback in suppressing distortion in amplifiers and
modulators, voltage (or current) variations in regulated power supplies,
and tracking errors in servomechanisms, to cite a few examples. Of
equal or even greater importance is a knowledge of the shape of the loop
gain and phase characteristic in the viecinity of gain crossover, that is,
over the frequency range extending a decade or so on both sides of the
frequency at which the loop transmission has a magnitude of unity
(loop gain = 0 dB). Such knowledge enables the designer to predict
with certainty the stability margins of the system and hence its immunity
to changes in circuit element values or source and load impedances.
Unless these stability margins are known to be adequate, there is no
assurance that a stable prototype system can be reproduced in quantity
with components having realistic tolerances or can remain stable under
change of these components with temperature and time.

The subject of the stability of feedback systems has been treated
extensively in the literature [1-3] and will not be discussed at length
here. We shall only remark that to be stable, the system determinant
(which forms the denominator of all transmission or immittance
expressions for the system and is found by mesh or nodal analysis) must
contain no roots in the right half of the complex frequency plane, that
is, no roots for which the real part is positive. Such roots represent
exponentially growing normal modes, oscillations that increase in ampli-
tude instead of dying out with time. Although the roots of the system
determinant can be found fairly readily today with computers, and their
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loci under changing system parameters can be determined, and although
such plots have become fashionable in the study of system stability, in
most cases this labor is unnecessary. As Nyquist showed long ago [4],
the system determinant of a single-loop feedback system will contain
no roots in the right-half plane if the complex plot of the loop gain from
o = 0 to w =  does not enclose the point 1 4 jO. Bode [3] has gener-
alized Nyquist’s criterion to multiloop systems.

Since the phase shift of a network is proportional to the weighted slope
of the plot of gain versus log frequency in the vicinity of the frequency
in question, Nyquist’s criterion will be satisfied if the loop gain does not
decrease too rapidly with frequency near gain crossover. Generally
speaking, the slope should be less than 9 dB per octave or 30 dB per
decade.

If one plots the locus of the complex loop transmission for all frequen-
cies (Nyquist diagram) and also the loop gain and the loop phase as
functions of frequency (Bode plots) in the vicinity of gain crossover, a
great deal of information about the system stability can be found. Since
the external transmission of the feedback system is

P

e (2-6-1)
where y = forward system given without feedback

uB = loop gain
and since |1 — uB| is the length of the vector from the point 1 + jO to
the curve of u8 in the Nyquist diagram, the extent by which the length
of this vector falls below unity at any frequency is a measure of the gain
increase produced by feedback at that frequency. On the Bode plots,
the phase of uB at gain crossover (that is, the amount by which the net-
work phase shift falls short of 180°) is called the phase margin. It is
a measure of how much the phase shift can increase before instability
occurs. Similarly the amount by which the loop gain is less than 0 dB,
when the phase of ug is zero, is called the gain margin, and it tells how
much the loop gain can be increased before instability occurs. A system
in which |1 — ug| never decreases below about 0.7 and in which the phase
margin is at least 45° and the gain margin is at least 10 dB is generally
considered to have satisfactory stability margins.

The direct way to measure loop gain is to break the loop at a con-
venient point, apply a signal to the proper side of the break, and measure
the signal that appears on the other side of the break with the latter side
terminated in the impedance it normally faces. Thus in Fig. 2-12 the loop
has been broken at X, and the shunt impedance Z;, normally presented
by the B circuit, has been added. The loop transmission, uB, is then
given by the magnitude and phase of Eo/E,;. Obviously a vector volt-
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meter (or a network analyzer) is extremely convenient for this measure-
ment. However, if the loop contains no nonminimal phase structures,
only the magnitudes of E; and E, need be measured, since in principle
the phase can be inferred from the loss-phase relationships [3].

FIG 2-12 Elementary method for the
measurement of loop gain.

When the loop gain of a system is very high, and particularly if (as
is often true) the loop gain is high at de, the direct measurement of loop
gain with the loop broken is difficult if not impossible. In a system with
large de loop gain, the feedback at zero and very low frequencies is often
essential to compensate for small bias changes with supply voltages and
temperature that occur in the low-level stages. With the loop open,
these drifts rapidly drive the output stages out of their operating range.
In systems with very large ac loop gain, the output stages may be over-
loaded with noise caused by the greatly increased external gain with the
loop open. When these conditions prevail, various artifices must be
used to obtain a loop-gain measurement.

The simplest artifice is to break the loop into two or more sections so
that no section contains excessive gain. The transmission of each of the
sections, properly terminated at its output with the impedance normally
presented, is then measured and the overall transmission, gain and phase,
are then computed. The principal difficulty with this method is that of
finding two or more points where the loop can be broken and where the
impedance normally faced is simple enough to be simulated easily with
sufficient accuracy.

In systems with high loop gain at de, the loop gain at moderate and
high frequencies can usually be measured by opening the loop at these
frequencies, but leaving it closed at dc and very low frequencies. As
shown in Fig. 2-13, this can be done by inserting an additional RC low-
pass filter in the feedback path. If the test signal source has negligible
impedance and if X. << B/|l — uf| over the frequency range measured,
then the filter provides a new stable gain crossover at low frequencies
above which the loop is effectively open. Actually, it is not necessary
that the loop transmission be reduced to less than unity over the fre-



38 Electronic Measurements and Instrumentation

FIG 2-13 Loop-gain measure-
ment with loop still closed at low
frequencies.

quency range to be measured. It is only necessary that the resultant
loop-gain characteristic with the added filter in place be stable. Then the
loop transmission is given by the ratio of £, to £, (not Eo). For accurate
measurements far beyond gain crossover where [u8| < 1 it is also impor-
tant that R > |Z,|. Note that if R = Z,>> X., the element Z; may
be omitted. ‘
Another, and often a very convenient method of measuring loop gain
is to leave the loop gain unaffected at any frequency and simply inject
a test-signal voltage in series with the loop, as shown in Fig. 2-14. In
order not to disturb the normal loop gain, the source impedance of the
generator should be small compared with |Z; 4+ Z,|, and the shunt
admittance to ground should be small compared with [1/Z, + 1/Z,|.
This is easily accomplished by obtaining the test-signal voltage E, from
an isolated secondary winding (often a single turn is enough) of a step-
down transformer whose primary winding is driven by the test oscillator
or signal generator. For a given value of E,, the voltage E; in Fig. 2-14
will differ from that in Fig. 2-12 because the currents taken from the out-
puts are different. In Fig. 2-12 the current supplied to the termination
Z,is Iy = Es/Z, = uBE/Z,. In Fig. 2-14 the current supplied to the

FIG 2-14 Loop-gain measurement by
placing a test voltage in series with the
loop.

actual circuit is I7 = E./Z;. Since in Fig. 2-12 the ratio E./E, = u8,
we have for the configuration of Fig. 2-14

E; = uBE, + (I — I)Z,
Z

= uBE; + (ug — 1) Z—'ZE‘
1
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and therefore

_ BB+ 2%

a 1+ Z:/Z,

(2-6-2)
Very often an injection point can be found where Z,/Z, is less than, say,
10—3  This allows the loop gain to be taken as simply E,/E, over the
frequency range of interest and well beyond gain crossover.

- Rather than inject a voltage in series with the loop, a current can be
injected into a node of the loop as shown in Fig. 2-15. Here the generator
impedance must be kept large compared with |Z:Z,/(Z, + Z,)| in order
not to disturb the stability. In this case it is the currents 7, and I.
that are measured by using current probes. By an analysis parallel
to that for the injected voltage case, it can be shown [5] that

uB = le/Zz I./1, (2~6-3)
+ Z./Z,
Aside from the sign difference in the numerator, which arises from
choosing the positive directions of I, and I, to be opposite, Eq. (2-6-3)
is the dual of (2-6-2) and is especially useful when Z,; < Z,, for then
uB =~ —I/I.. '

In making loop-gain measurements, it is prudent to scan the frequency
region for at least two decades beyond gain crossover to make sure that
no unsuspected resonances or transmission paths restore the loop gain
and cause parasitic oscillations far outside the desired band. An
unstable feedback loop will oscillate at a frequency near the measured
frequency of gain crossover, but many a well-shaped stable loop has been
known to oscillate at a far different frequency. Accidental internal local

. == .

FIG 2-15 Injection of a test current to
measure loop gain.

feedback paths are often the cause. In fact, it is imperative first to
determine that no parasitic oscillations are present with the loop open,
for loop gain measurements made on a system already overloaded from
parasitic oscillations are meaningless for design puposes.
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2.7 The Measurement of Nonlinearity

Since the response of any linear system to a sinusoid is a sinusoid of
the same frequency, and since superposition holds, only those fre-
quencies applied at the input will appear in the output. No new fre-
quencies are generated by a stable linear system in response to an input.
If the output contains frequencies not present in any input, the system
is either unstable or nonlinear. Assuming the system is stable, the
amplitude of the new frequencies in the output is then a measure of the
nonlinearity.

Common sources of nonlinearity in electronic circuits include the non-
linear current-versus-voltage relations of active devices (diodes, tran-
sistors, and vacuum tubes) and nonlinear effects in ferromagnetic and
ferroelectric devices. In FM systems, there are band limitation, phase
nonlinearity, and nonlinear discriminator characteristics. In electro-
mechanical systems, static friction, couloumb friction, backlash, non-
linear compliances, and nonlinear motors are common offenders.

There are three broad classes of nonlinearities: (1) those for which
the transfer characteristic of the nonlinear element is quite linear for
small signals and becomes increasingly nonlinear as the level increases,
as is true for a class-A amplifier; (2) those for which the transfer charac-
teristic has a dead zone or a highly nonlinear region near the origin and
becomes fairly linear at higher levels, as is true for an overbiased class-B
amplifier or a mechanical system with static friction; (3) those for which
the nonlinearity is “fine grained” and present at all levels, as in a quan-
tized pulse code modulation system. Most analyses of distortion
treat only the first class and yet the second and third classes are often
encountered.

When the transfer characteristics of all nonlinear elements in the system
are single-valued functions, and a signal of the form

@) cos wit + az €os wsl (2-7-1)

is applied as an input, the output will in general contain all frequencies
of the form

puwr + qw (2-7-2)

where p and ¢ are positive or negative integers. The transmitted output
components are those for whichp = 1,¢ = 0,andp = 0,¢ = 1. Those
for which p (or q) > 1 and ¢ (or p) = 0 are the harmonics of w; (or ws).
The component for which p and ¢ are zero represents signal rectifica-
tion. Finally, those components for which p, ¢ % 0 are called inter-
modulation products.

When the transfer characteristic can be expanded in a simple power
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series about the operating point, there will be a fixed relationship between
the amplitudes of the harmonies (or self-modulation products) and the
intermodulation products of the same order, as generated [6]. However,
the relative amplitudes as they appear in the output will be affected by
the frequency disecrimination of intervening networks. -For example,
the third harmonic 3w, and the intermodulation produet 2w; — w, are
both of order n = |p| + |¢| = 3 and arise from the cubic term in the
power series for the transfer characteristic. But if w, is near the top
of the band, 3w, may be scarcely detectable in the output; whereas if
w; =~ we/2, then 2w; — w; will be a low frequency and may appear
strongly in the output.

Common measures of distortion are:

1. Amplitude of individual harmonies relative to the fundamental
(single-frequency input)

2. Amplitudes of individual intermodulation products relative to the
amplitudes of the inputs (often of specified ratio) producing them

3. The total rms distortion, or the ratio of the power ‘‘scattered”
into other frequencies to the power at the desired frequency or frequencies

4. The power scattered into a particular frequency band by signals in
other bands

Which of these (or of many other possible) measures is “best” depends
entirely upon the application. In sound reproduction, any harmonics or
intermodulation products falling in the audible spectrum constitute
distortion and measures 1, 2, and 3 are commonly used. In radio trans-
mitters, certain harmonics of the carrier or intermodulation products
between two carriers may cause severe local interference, while other
products may be harmless. Here 1, 2, or 4 might be appropriate mea-
sures, but 3 would not.

Measures 1 and 2 require a selective detector sensitive to a narrow
band of frequencies and capable of being tuned over the frequency range
of interest. This permits particular harmonics or intermodulation
products to be selected and measured. Such tuned detectors are com-
monly called wave analyzers, and these instruments are discussed further
in Chap. 16. Measure 3, on the other hand, requires a detector sensi-
tive to all frequencies except those in the input. Usually the detector
(or instrument) has zero response at a single frequency and is tuned to
reject the single input frequency. Such instruments are called dis-
tortion analyzers. In all cases it is important that the spurious frequency
output of the signal source be less than the level of the distortion to be
measured.

Almost all distortion measurements (save perhaps the direct measure-
ment of a transfer characteristic) utilize the fact that stable linear systems
generate no new frequencies that are not present at the input. How-
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ever, it is not necessary to use sinusoidal test signals to exploit this prop-
erty. Noise passed through a band-rejection filter is often used to
measure intermodulation in multichannel communication circuits. At
the receiving end, the power in the frequency band rejected by the input
filter is measured. This method has the advantage that the test signal
simulates the statistical properties of the actual signals quite well, and
this gives a more meaningful measure of distortion in many cases. Chap-
ter 14 discusses the application of this approach in testing transmitters
and receivers.

2.8 Precautions in Sine-wave Testing

In spite of their apparent simplicity, sine-wave measurements are
prone to errors that can invalidate the data. To avoid these requires
vigilance and frequent checks to ascertain that (1) the reading obtained
is in response to the desired signal only and (2) the system is being
operated in its linear range. Usually the output reading in a sine-wave
measurement is taken from a voltmeter or other wideband device
responsive to noise, hum, interference, and harmoniecs, as well as to the
desired signal. A tuned detector will avoid many of these problems,
but at the cost of an extra adjustment per reading. Even with a tuned
detector, troubles can arise from system overload. The following pre-
cautions will avoid the great majority of gross errors in steady-state
measurements:

1. Observe the Qutput on an Oscilloscope. Ascertain that the output is
sinusoidal, that there are no appreciable extraneous signals present,
and that the signal is well above the noise level. Alternatively, carry
out tests 2 and 3.

2. Make Sure There I's No Qutput with No Input. Remove the applied
input, and make sure the output drops to a negligible value. This
ensures that the output is not caused (or augmented) by noise, hum,
interference, or parasitic oscillations.

3. Make Sure That Doubling the Input Doubles the Output. This
ensures that the measurement is being made at least 6 dB below the onset
of appreciable overload. This test should be made at frequencies where
the output or the required input is greatest and at any other frequency
where overload is especially likely.

4. Test for Spurious Responses. In measuring frequency-selective
devices, harmonics of the source or harmonics and intermodulation
products generated in the device can cause outputs when a fundamental
(or desired conversion product) is being transmitted. The use of tuned
detectors, so that both the input and output frequencies are specified,
is a great help in avoiding this problem. Alternatively, appropriate
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filters in the input and output can be used. Often the spurious nature
of a response can be ascertained by changing the input by, say, 1 dB and
observing if the output changes by 1 dB or more. If more, the (integer)
ratio of the two gives the exponent of the input signal in the modulation
product term.

5. Terminate!  Many steady-state measurements are in error by 6 dB
or even a much greater amount because of a failure to observe proper
termination practice on the signal generator and other devices involved.
Take care to ensure that all impedances presented are normal and that
they do not change as attenuators are changed.
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CHAPTER THREE

SQUARE-WAVE AND
PULSE TESTING OF
LINEAR SYSTEMS

Bernard M. Oliver

Heuwlett-Packard Company
Palo Alto, California

Although sine-wave measurements can completely and accurately charac-
terize a linear system, a single measurement at one frequency will not
do so. Rather, an array of steady-state measurements or a swept-
frequency measurement must be made. And although these measure-
ments may tell all about a device, they may tell it in a roundabout way.
For example, what is often important about a linear system is its response
to transient signals. While the transient response may be inferred from
the steady-state measurements, or may be computed by using Fourier
transform techniques, a much more direct approach is to apply a kind
of standardized transient and observe the response. The ‘“‘standard tran-
sients’” most often used are step functions, square waves, and impulses.

Square-wave testing first became widely used in the testing of video
amplifiers and other circuits designed to handle television waveforms.

44
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Since abrupt transitions from one brightness level to another are common
in a picture arfd since the ability of a system to reproduce such changes
faithfully is an important measure of the picture quality obtainable, it
was natural to employ step functions as test signals in video engineering.

The spectrum of an isolated impulse is a constant F(p) = A, where 4
is in the area of the impulse. The spectrum of an isolated step function
is F(p) = a/p, where a is the amplitude of the step and p = iw. Both of
these expressions hold up to frequencies on the order of the reciprocal
of the impulse duration or step-function rise time. If the impulse dura-
tion or step rise time is short enough, then a single impulse or step will
contain all frequencies that would be used in a steady-state measurement,
and in known amounts. In a sense, the impulse or step performs a
complete characterization by applying the whole spectrum to the device
in the form of a single signal.

A train of impulses or a square wave (which may be regarded as a series
of alternate positive- and negative-going steps) does not have the con-
tinuous smooth spectrum of the isolated event, but rather, being periodic
in nature, contains only frequencies that are harmonics of the repetition
rate. Such a test signal samples the response of the device at these
frequencies only. Any anomaly lying completely between zero frequency
and the fundamental or between any two harmonics will not be observed.
Just as care must be taken to spot the test frequencies closely enough in
a steady-state measurement, so one must use a low enough repetition
rate in pulse testing if fine detail in the frequency domain is to be properly
represented. The criterion is very simple: To simulate isolated impulses
or step functions the repetition rate must be low enough to allow the
transient from each event to reach its final value (within the desired
accuracy) before the next event oceurs. The term final value may refer
only to the completion of that portion of the transient we are interested
in. For example, in looking at the rise time of a video amplifier that
does not transmit de, we ‘might use a fast repetition rate, whereas to
see the decay from the low-end cutoff would require a very low repetition
rate.

Step functions or square waves, because of their greater energy at the
low end of the spectrum, tend to display phenomena associated with
low-frequency cutoffs more conspicuously than do trains of impulses.
This is especially true for wideband devices where the high-end cutoff
frequency may be several thousand times the low-end cutoff frequency.
The maximum height of impulse or step is limited by the overload of
active elements in the system. The duration of a test impulse should be
short compared with the period of the highest frequencies passed by the
system. The wider the frequency response of the system, the smaller
the area of impulses that are suitable test signals. The ideal zero-rise-
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time step can be approximated as closely as desired without incurring
overload, but as an impulse is shortened, its amplitude must be increased
to hold the low-frequency energy content constant, and overload soon
becomes a problem. For these reasons, step functions and square waves
are often preferred to impulses.

3-1 Tools and Techniques

The time scales involved in the transient testing of linear systems
range from days to picoseconds. Naturally the appropriate instru-
mentation depends greatly on the time scale. For very slow phenomena
such as the warm-up curve of a furnace upon application of a step func-
tion of power, the “‘signal generator” is the power switch and the output
may be a series of readings of a thermocouple recorded manually. No
special instrumentation is needed. For somewhat faster phenomena or
for repeated measurements, a strip-chart recorder or zy plotter might be
used to record the transient. For all these relatively slow phenomena, a
single transient suffices for the entire measurement.

For faster phenomena, the output is usually displayed on an oscillo-
scope and the transient is repeated, usually at a rate high enough so that
persistence of vision or fluorescence produces a steady picture. For these
faster phenomena, special waveform generators with fast rise times
have been developed.

Modern square-wave and pulse generators and modern oscilloscopes
allow rise times as short as a few tens of picoseconds and as long as a
few tens of seconds to be displayed and recorded. Considerable overlap
exists between high-speed recorders and the slower ranges of oscilloscopes.

When the time scale is such that the transient is repeated at a few times
per second at least, square-wave or impulse testing becomes a very con-
venient dynamic measurement. A network or circuit under test may be
adjusted while the transient response is being observed. In this way the
desired transient response can be obtained far more quickly and directly
than by using sinusoidal measurements. Further, in some devices, differ-
ent elements affect distinctly different parts of the transient so that
identification of a defective or misadjusted part is obvious from inspection
of the response. This is especially true in testing systems where the delay
is large compared with the rise time, as in time-domain reflectometry
(see below).

In the transient testing of linear systems it is just as important to test
for system overload as in sine-wave testing and, although an oscillo-
scope will ordinarily be an integral part of the test, the response may not
reveal that overload is present. In sine-wave testing, the output should
be a sine wave and departures from this familiar shape are readily spotted.
It is not as easy to detect system overload or nonlinearity in the impulse
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or step-function response. When using square waves or step functions,
system saturation may in fact produce a response that looks ideal, whereas
the actual linear response may be very different. A quick test for
freedom from overload is to double the input amplitude and verify that
the output response doubles in amplitude without change of shape.

Finally, it should be noted that since impulses, steps, and square waves
carry the system very quickly through a portion of the transfer charac-
teristic, these tests may not reveal certain types of nonlinearities such as
crossover distortion in push-pull class-B amplifiers. It is therefore
desirable to supplement square-wave or pulse tests with an inspection of
the transfer characteristic, by using a sine or triangular wave of moderate
frequency as the system (and z-axis) input, or with a full-scale test of
harmonic and intermodulation distortion (see Chap. 2).

3-2 Relations between Transient and Sinusoidal Responses

It is very convenient to be able to associate a given impulse or step
response with the corresponding frequency response, for then the tran-
sient response that will be produced as a result of a given system gain and
phase characteristic can be predicted, and vice versa. To do this, one
must be familiar with the step and impulse responses produced by certain
elementary frequency functions, such as simple poles and zeros or complex
pairs, commonly found in networks and other linear systems.

Since the spectrum of an impulse is a constant, the impulse response
of a linear system is, from Eq. (3-2-1), a pulse whose speetrum has the
amplitude and phase characteristic of the system under test. The impulse
response £(t) is a constant (the impulse area A) times the inverse Fourier
transform of the frequency response K (w),

k(@) = % /_: K (w)e de (3-2-1)

A unit step may be regarded as the integral up to time ¢ of a unit-area
impulse,

u(t) = fi., 5(\) dA (3-2-2)

Inversely the unit-area impulse may be regarded as the derivative of a
unit step. Integration in the time domain corresponds to multiplication
by 1/p in the frequency domain, and so the spectrum of a unit step is
1/p, as stated earlier. The step response is therefore the inverse Fourier
transform of K(w)/iw, or

s(t) = % f_".. B©) s g, (3-2-3)

w
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FIG 3-1 Ways of obtaining the step-function response

Now integration and differentiation can be accomplished (over a finite
frequency range) by linear filters. The system under test is a linear
filter. In a transmission system the order in which linear filtering is
accomplished is immaterial, except for possible noise added at inter-
mediate points. Thus, as shown in Fig. 3-1, we can obtain the step
response of a system directly as in (@), or by integrating an impulse to
obtain a step-test signal as in (b), or by integrating the impulse response
as in (¢). Similarly, in Fig. 3-2, we can obtain the impulse response
directly (a), or by differentiating the input step to get an impulse-test
signal (b), or by differentiating the step response (c).

In all cases the step response is the time integral of the impulse
response, and inversely the impulse response is the time derivative of the
step response.

] Impulse
Unit Impulse System resguonse
(a) impulse. > under Scope
generator test
. Impulse
Unit Impulse System response
() step Step | pifferentiator e under s Scope
generator test
X Step Impulse
Unit System response response
fc) step Step under po Differentiator 5P Scope
generator test

FIG 3-2 Various ways of obtaining the impulse response.
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Table 3-1 shows the step and impulse responses produced by a variety
of commonly encountered frequency response characteristics. The
frequency responses are shown graphically with either linear or loga-
rithmic (decibel versus log frequency) scales as best suits the nature of
the function. Familiarity with these function transform pairs facilitates
estimation of the transient responses that will be associated with a given
frequency response, and vice versa (see pages 50 to 55).

3-3 Response to Generalized Inputs

The impulse or square-wave response of a linear system characterizes
that system just as completely as the complex amplitude-versus-fre-
quency response, in the sense that given either, one may in principle
calculate the response of the system to any input. Since the impulse
response and the complex amplitude-versus-frequency response are (aside
from a factor representing the area of the impulse) a Fourier transform
pair, both functions contain the same information.

If the frequency characteristic of a linear system is known, the classical
method of computing the response to a particular input is to find the
spectrum (that is, the Fourier transform) of the input, multiply the input
spectrum by the frequency characteristic of the system, and take the
inverse Fourier transform of the product. This is the procedure labeled
indirect route in Fig. 3-3. In this approach the system is thought of

Time domain Frequency domain
|
€1
Input time Direct Spectrum
function :> Fourier of input
fl(t+) transform F(w)
5 T
Q
& D Tl
Convolution 2 ! &, | Multiplication
with impulse 3 | > | by frequency
response of  b-—-~-———|-————54 characteristic |-
system: (1) g | £ | of system:Afw)
(scanning) = | :'b (filtering)
*g J\L ! ]\/l
S Output time Inverse Spectrum
3 function K— Fourier @ of output
glt) transform Gl Fak(w
|
4

FIG 3-3 Two ways of computing the response of a linear system
to an arbitrary input.
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TABLE 3-1
Step response System freq. characteristic Typical network
c
' r
e-wor & R e

CASE 1. This is the typical simple low-frequency cutoff such as might be produced by a
series d shunt r combinati The step response shows an abrupt rise to
unity followed by an exponential decay. Usually encountered in amplifier interstages
and so-called “differentiating networks.” In interstages, fo is typically a few cycles; in
differentiating networks, fo may be as high as several megacycles in which case the step
response is very nearly an impulse

Step response Svstem freq. characteristic Typical network
A2 (6 R2 Vsant
o p - Jew| o
RN R T i — P’
| P O i
ik e T 1 Cif> Cz e
i L, e
(log) Yoy . G |62
| L L Thtfe
togh wyez wo RFRE+CR

CASE 2. Rising simple step in the Jfrequency characteristic. Step response rises initially
to amplitude determined by high frequency t ission, falls exp tially to level
determined by low freq y (or d-c) ¢ issi

This is commonly encountered in improperly compensated resist -;-pncity dividers,

such as scope probes, d-c amplifier interstages.
Step response System freq. characteristic Typical network
; r P ;»w‘C_u\ ~ ” 1a CR
crcef Sy E1 _ A2 ) wer 114G P+Wo CpC; == & 1R<C2 Rz
a &*ﬁz’(qwz mﬁz)’ (log) ‘1 ) |72 1Celee
(log) , ._PtRe 1 .
9 Yo g mdctc) Gy !

CASE 3. The counterpart of case 2. Here it is the high freq y transmission that is

deficient.
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Step Function Response. of Typical Networks

Step response System freq. characteristic Typical network
I}—o
A
-/m K R TC
LN I
(log) Wo gm

CASE 4. Typical simple high-frequency cutoff such as is produced by a parallel RC
combination. The step response rises exponentially to the final value determined by the
low frequency (or d-c) transmission. Commonly encountered in simple (not ““peaked™)
interstages, and wherever shunt capacity (as from connecting cables) loads a resistive source,

Step response System freq. characteristic Typical network

n—

aal

€2
R IC R 1I i
CASE 5. Two simple RC high-frequency cutoffs in tandem. Typical rise characteristic
of two-stage resistance coupled amplifier without *'peaking.” Principal differences
compared with case 4: (1) longer rise time for same w, (2) zero slope at £ = 0. For
each additional high frequency cutoff one more derivative of step response vanishes at

t = 0. Thus, if high freq y tansmission falls (ultimately) at 6n db/octave, all
derivatives of step response up to the nth are zero at¢ = 0.

11, e o’]

Step response System freq. characteristic Typical network
n_—

- 6dB/Oct I\ -2 e
Al(1+wetle™ @] | 4 , — |

ot o) T 1 wo Ro
(o) < (Ff%)g "I‘["(pwo)z] IC 1

Pl -
= (log) @o 2uws ’;f;f;fo

CASE 6. Phase-compensated low end cutoff. Step function response falls to zero
eventually, but initial slope is zero. As a result square wave response shows little or no
tilt. May be produced in a single network, or by two networks (cases 1 and 3) in tandem.
Often found in video amplifiers.



52 Electronic Measurements and Instrumentation

Step response System freq. characteristic Typical network

A A
All1-woNe-woT]

(log)

l(qu) 7 Worge
Ry R

CASE 7. Two simple low frequency cutoffs (case 1) in tandem. Typical low frequency
transient response of single-stage resistance-coupled amplifier with input blocking
capacitor or two-stage amplifier with no input blocking capacitor. Principal differences
compared with case 1: (1) faster initial rate of fall for same «,,(2) response goes negative,
crossing axis at ¢ = 1 /w,.

With each additional low-end cutoff one additional axis crossing is produced. Thus,
if the low end response falls off (ultimately) at 6ndb-/octave, there will be n — 1 axis
frotsings. They do not occur at regular intervals—each successive half cycle takes
onger.

Step response System freq. characteristic Typical network

2 \A%'(e“hf_e%")

(log) w2

CASE 8. Simple high- and low-frequency cutoff. The step response rises exponentially
at a rate determined by high frequency cutoff, then falls exponentially at a rate determined
by low frequency cutoff. Typical plete resist coupled interstage response. If
ws/wy, > 1, then on a slow time scale response looks like case 1, on a fast time scale
response looks like case 4. If w; = w; = wo, we have the case of a critically damped

RLC circuit. The resp then b wob €Wk,

Step response System freq. characteristic Typical network

B /w,,z-dz R<< é—- R+ %

Ql-----=—- F. =~ &
e
s i
L 7."\ &2
log) ¥ A i
llog) . wo i 1

CASE 9. Typical damped oscillation. The dotted lines in the frequency characteristic
are the asymptotes which the actual characteristic approaches for w/wo << 1 and w/wo >> 1.
The peak of the resonance curve is Q times as high as the intersection of these asymptotes.
For reasonable Q's, such that 8 ~ w,, the Q of circuit may be readily found from the fact
that the envelope of oscillation decays to 1/¢ in @/ cycles. Thus Q = wn where n is
the number of cycles to the 1/¢ point.

Lo g-a 5in Bt
B
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(Continued)

Step response System freq. characteristic Typical network

/—

% Lp
-y Ao
iy
W Ti /\ a=2
' 0 Ro

CASE 10. Small resonance in an otherwise Hat characteristic. Resp ists of unit
step due to Aat transmission plus damped oscillation due to resonance. Initial amplitude
of oscillation is related to amplitude of hump in frequency characteristic as indicated in
figure. For the same amplitude of hump, increasing the Q decreases amplitude of oscilla-
tion but oscillation persists longer. If hump is near top of band, time scale will be such
that initial rise of response will not appear so abrupt, but will blend with oscillation to give
response like that of over-peaked interstage. Midband reso such as shown in this
case often occur as a result of stray feedback paths or stray coupling, or from attempting
to bypass electrolytics with small mica capacitors. (Electrolytics become inductive at

high frequencies.)

€ je—
-}

Step response System freq. characteristic Typical network

/ —-

i I B
R
A A:___
wo

CASE 11.  Similar to case 10 but here there is a resonant dip. Note that the effect of a
complete null (A = 1) is no worse than that of s 6 db hump. The pilot separation filters
used in coaxial television systems produce this type of dip —a complete null. Because
their Q is so high (several thousand), the disturbance they produce, while it persists for a
long time, is of such low amplitude as to be invisible in the picture.

Step response System freq. characteristic Typical network
[+

2 s
z*zo I-—— [———
1- Fre- Zo
2 | € Zo >Z,
) 5
X £
* 20 (Linear)

CASE 12. Positive echo. Associated freq y characteristic has nearly sinusoidal
tipple in amplitude and phase. Frequency interval between successive maxima or
minima is reciprocal of echo delay. The longer the delay, the closer the ripples. Com-
monly encountered in systems having faulty or misterminated delay lines. Also in
measurements where multipath transmissions can exist such as acoustic measurements.
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Step response

System freq. characteristic

Electronic Measurements and Instrumentation

TABLE 3-1

Typical network

1
z
p 28
Zi2
J X

|

1

|

o 7

near)

30 (Linear)

Z<Zs

CASE 13. Negative echo. Ripples same frequency as in case 11 but phase-reversed.

Step response

System freq. characteristic

Typical network

&
< '
z g e % Z 20
0 0 1 B 3 I
f ¥ +

CASE 14. Rectangular pulse response.

echo.

Minima of frequency ripples have now b
characteristic is that of rectified sine wave.

Qh

nulls. p

Can be considered to be a 1009, negative
of amplitude
Phase characteristic is sawtooth decreasing

from 7/2 linearly to —=/2 and jumping back to =/2 at each null. Such a characteristic
can be obtained by using a delay line as shown with the near end terminated and the far

end shorted.

Step response

System freq. characteristic

Typical network

&
i =N\ TR
' - - ~-—- N | & ° “Zo
| kar-i ||
t (Linear) r
CASE 15. “Differentiated echo.” This is the sort of disturbance produced when a delay

line is terminated in such a way that the reflection coefficient increases with frequency.
Typical causes are (1) series inductance or shunt capacitance in the termination of a smooth
line, (2) termination of a constant-k filter in simple resistances. With both ends matched
at low frequencies the transmitted echo involves two reflections both of which increase with
frequency and so tends to be *'doubly differentiated" and smaller.
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(Continued)

Step response System freq. characteristic Typical network

Matched
constant - K
filter

1
foz—f

CASE 16. Rise characteristic (qualitative only) of a low pass filter without phase
correction.  Following the initial smooth rise there is a ripple whose apparent frequency
approaches the cutoff frequency after several cycles. With an increasing number of

tions this rippl in amplitude and duration. The “ringing sound" so often
attributed to sharp cutoff filters is not due to exaggeration of freq ies near cutoff nor to
the sharp cutoff per se, but rather to the delay distortion which exists near cutoff causing
those upper frequencies which are passed to arrive too late and thus be separately audible.
The effect is noticeable only in extreme cases and with proper delay equalization the effect
disappears.

Step response System freq. characteristic Typicat network

Idea!
low-pass
filter
(phase equolized)

£

CASE 17, The “ideal” low pass filter passes all frequencies below fo with the same
amplitude and delay while attenuating completely those above fo. Its step response is the
sine integral. This function differs from zero (except at discrete points) forall ¢ > — o,
Hence the ideal filter cannot be realized without infinite delay. A practical approxima-
tion will have a finite delay and its step response therefore will execute only a finite number
of wiggles before the main rise. Here again, the ripples in the step response do not
indicate high freq y enh t, but are the **Gibb's effect’’ encountered in Fourier
series, and are properly called band elimination ripples.

Step response System freq. characteristic Typical network
1
Yz ! - Ideal
1 hi - pass
2 filter
1 ( phase equalized )
: %

CASE 18. The ideal high pass filter. By superp h p of this filter is

ition the
obtained by subtracting the response of the ideal low pass filter from an equally delayed
unit step.
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as a filter that alters the relative amplitudes and phases of the components
in the input spectrum.

When the input spectrum consists of at most a few discrete components
or can be expressed in a simple analytical form, and when the system
frequency response is also simply expressed analytically, this indirect
route may be the shortest and best route to take. On the other hand,
when the system impulse response and the input wave are more simply
expressed as functions of time than of frequency, it may be simpler to go
from input to output directly by means of the convolution integral

9 = [, 1@k = ) dr (3-31)

(In Sec. 5-1, convolution is reviewed, and Sec. 5-3 shows how the integral
is solved digitally.)

When two functions are convolved, one of them—in this case k(r)—is
reversed in time (r — —7) and displaced (—r —¢ — 7). The integral
of their product is then found as a function of the displacement. The
process is shown graphically in Fig. 3-4, where f(¢) is shown in (a) as a
rectangular pulse and k() is shown in (b) as a decaying exponential.
In (c), k(¢ — 7) is shown with f(r) scanned as ¢ varies. Since f(r) is a
constant for 0 < 7 < t, and is zero otherwise, the integral of the product
in this case is proportional to the shaded area in (c). The output wave
is shown in (d).

Convolution will be recognized as the mathematical description of the
process that occurs when a motion picture sound track scans past the

—l_/fm
(a) o £ - t —
\L
) ] }
Kk(t-7) |,
(c) — r >

e

gl(t) <
(d) ___N b o—

O t
FIG 3-4 The convolution of two functions.
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slit in the sound head. Convolution may thus be thought of as a gen-
eralized scanning operation. In the frequency domain a network filters
the input spectrum to produce the output spectrum. In the time domain
the same network scans the input wave with the filter impulse response
reversed in time. Multiplication in one domain corresponds to convo-
lution in the other, and in this sense convolution is as fundamental a
mathematical process as multiplication and should be just as well under-
stood by the engineer.

In predicting the response of a system to a given input, it is the system
impulse response that must be convolved with the given input. This fact
gives the impulse response a unique position among. system transients.

3.4 Effect of Low-end Cutoffs on Square-wave Response

In testing ac-coupled amplifiers it is often inconvenient and of little
value to use a square wave of such low frequency that the response to
each transition is completed before the next transition occurs. Not
only is the response often difficult to view, but the distortion to typical
signals may be far less directly presented than with a higher frequency.
For example the low-end cutoff of a video amplifier may be on the order
of 1 or 2 Hz, but the 60-Hz square-wave response shows directly the
distortion that the amplifier will introduce into a picture that has the
top half bright sky and the bottom half dark ground. If the frequency
of the test square wave is so high that little distortion is produced, the
transients from the successive steps will be highly overlapping. Never-
theless, the frequency response is easy to infer because only the funda-
mental and lowest harmonics of the square wave are altered in amplitude
or shifted in phase.

Assume the low-end cutoff consists of a single real pole so that

14
P+we

K(p) = (3-4-1)

The square-wave response in this simple case can be computed exactly.
As shown in Fig. 3-5, the response to the step of height 2 at ¢ = 0 is 2e¢¢,
while the response to all prior signals is —ae¢. Thusfor0 <t < T/2,
f(t) = (2 — a)e¢. Because a = f(T/2) = (2 — a)eT/2, we find that
a=2/(1L+exT? and 2 —a = 2/(1 + e="'?). As wl/2—0,a—0
and 2 — a — 2. Thus in the limit, a low-frequency cutoff can double
the peak-to-peak amplitude needed for a square wave.

Now let us see if we can infer the shape of the output wave from the
frequency response characteristic well above the low-frequency ecutoff.
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2-a
(2-g)e~wot
1 r,_ 14
a
772 T T2 T

A1

—-1 -1 L4
(a) Input (b) Output

FIG 3-5 Square-wave distortion produced by simple-pole low-end
cutoff.

The input wave may be written as

mh

.
J@t) = E b, sin 21r)l£ b, = — n odd (3-4-2)

=0 n even

The amplitude and phase of K(w) are

1 1 wo?
M Tee e (49)
and
6 = tan—1 = ~ £° (3-4-4)
w w

where the approximations apply for we/w << 1. Thus the output wave is
. t

g(t) = z |K.[bn sin (21rn L. 0) (3-4-5)
p T

Let us consider separately the effects of phase and amplitude distortion.

This means ignoring some crossproduct terms of order wo'/w*, but these
we are ignoring anyway. For the phase distortion we set |K| = 1and get

. 2mn . 2mn
go(t) = Zb" <cosesm%nt+sm Bcos—;-,—t)

T\? ' 2
~ zb,, [[1 - %(wo—>:lsin21r7nt + Mcosﬂz' (3-4-6)

2rn

= f(&) + 8,(t) (3-4-7)
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where

4 [woT 21n 2 (on)2 . 2mn :I
5t) = Y | — (= e mLilgy
(1) Z [wn (‘21rn) cos T mn \2mn st T

The first term under the summation above is the Fourier series for a
triangular wave of amplitude w7 /2, while the second term is the Fourier
series for a wave consisting of confluent parabolas and of amplitude
(woT/8)% as shown in Fig. 3-6a. For the amplitude distortion we set
6 = 0 and get

galt) = an [1 - %(%%)2] sin 2%’% (3-4-8)
which is the same as the first term of Eq. (3-4-6). We therefore have
ga(t) = (&) + 8.(8) (3-4-9)
where
8.(t) = ) — 2 (ﬂ)z sin 2-7r—nt (3-4-10)
“ wn \27xn T

which is identical with the second term of é,. Thus 3, merely doubles
the curvature of §,.

The principal distortion of the square wave is caused by the phase
shift of the fundamental and lower harmonics. The reason of course is
that for w > wo, [K| — 1 = —1Y4(we/w)? while 8§ — wo/w. The amplitude
departure from unity is therefore smaller and disappears more rapidly
with increasing w than the departure due to phase shift.

Qutput
Input Input
¥ L r
—
1st 2nd Output
N tem t;_"" /'/\\
== \}\ = = 7/ —= \}\ = — = ——
&x //
sorti TN / Bart)
—) / T

(a} Positive phase shift (b) Decreased omplitude

FIG 3-6 Comp t distortion of sq wave produced by single
pole.
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(a) Low- frequency phase leading (b) Low-frequency phase lagging

(c) Low-frequency amplitude down (d) Low-frequency amplitude up

(e) RC cutoff (a+c) ( ¥) Result of phase compensating (&)
FIG 3-7 Various forms of low-freq Yy sq ve distortion.

The value of the preceding analysis lies lIkl the ease with which more
complicated low-frequency cutoffs may be analyzed and equalized.
Suppose the low-end characteristic consists of n poles and m zeros. Then
to the same degree of approximation that we have been using,

m n
% et — Y wpt
Kl —1~%=  J=1 3-4-11
K| 702 ( )
n ) m s 2 Wp; — Z Wz
6 = Z tan—1 <2 _ Z tan—1 2% & iZL i=1 (3-4-12)
i=1 w i=1 @ @

where w,, is the frequency of the jth pole and w,: is the frequeney of the
ith zero, and so long as the fundamental of the square wave is well above
the frequency of the highest-frequency pole or zero, the total phase and
amplitude distortion may be predicted just as simply as for a single pole.
Figure 3-7 shows qualitatively the types of square-wave distortions
produced by various frequency response departures.

If both poles and zeros are present and if

n m
Y wp = ‘; Wri (3-4-13)

i=1
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then the linear term in the expansion of tan—! @ disappears, which leaves

n m

3 3
z Wp;” — E Wzi
i=1

1 = .
6 =< =1 + higher-order terms
3 w?

The departure due to phase shift is now smaller and disappears more
rapidly with increasing w than the amplitude departure [K| — 1. This
is the principle of low-frequency phase compensation frequently used in
ac-coupled broadband amplifiers. The residual distortion of a square
wave is a slight enhancement of the fundamental as shown in Fig. 3-7f.
The commonest form of phase-compensated interstage is one for which
n=2and m =1 and w, = 2w,

3.5 Time-domain Reflectometry

Time-domain reflectometry is a special form of impulse or step-function
test in which the signal viewed is the series of reflections produced by
imperfections in a transmission system or delay line. In earlier fre-
quency-domain reflectometers in which either the standing wave ratio
(swr) or the reflection coefficient is measured as a function of frequency,
the interpretation of the results for what might be causing the reflections
is often quite difficult, especially when many reflections are present. In
time-domain reflectometer, by contrast, the various echos are spread out
in time just as in a radar display, and distance along the time axis cor-
responds to distance down the transmission system. Touching the line
with a probe produces another reflection, and by sliding the probe along
until the probe reflection coincides with other reflections already present,
the sources of these may be located physically. In short, one can literally
put his finger on the trouble.

Figure-3-8 shows the elements of a typical time-domain reflectometer.
The fast-rise-time generator emits an impulse or step simultaneously

Fast
oscilloscope
High—
impedance
Sync T-connector probe
Fast - 75 2o Zo System
pulse or step 3 {_} R under
generator L test
le
1 £o £

FIG 3-8 A typical time-domain reflectometer.
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with the start of the oscilloscope sweep. If the group velocity of the
cable is v, then at a time ¢, = 1o/v later, the incident pulse or step is picked
up by the sampling probe of the oscilloscope. The pulse continues on
to the test system, and at a time no less than 2I/v sec later, the first
reflection appears. This reflection continues on to the pulse generator
and if the latter matches the cable, is absorbed there. Otherwise the
reflection will reappear on the oscilloscope 21,/v sec later. Regardless
of generator match there is therefore a period 2l,/v sec long during which
system reflections may be viewed without spurious reflections appearing.

Although the time-domain reflectometry method had long been used
to locate faults on telephone lines, the method came into widespread
laboratory use only after the development of the sampling oscilloscope
and fast-rise-time pulse generators made it possible to resolve time
intervals of the order of 30 psec and therefore to locate reflections to
within about 0.5 mm. In addition, the large dynamic range of the
sampling scope made it easy to detect reflections as small as 1 part in
10~* of the incident signal. This is the reflection produced by 0.01
in series or 4 M@ in shunt with a-50-Q line. This resolution and sen-
sitivity combine to make time-domain reflectometry a powerful measure-
ment technique.

In addition to locating reflections, the time-domain reflectometer
display gives a good deal of information about their nature and probable
causes. Knowing the kind of reflection produced by various typical
mismatches and discontinuities, one can in most cases readily identify
the cause of each reflection. The voltage reflection coefficient (in the
frequency domain) is

Z— 2, Yo—7Y
= = 3-5-1
Pt 7Yz, Y. +7Y (3-5-1)

where Z, (or Yo) and Z (or ¥) are the impedance (or admittance) of line
and load respectively. Any discontinuity may be regarded as a termi-
nation consisting of the discontinuity in series with Z, or in shunt with Y.
Thus if the series discontinuity is AZ, we have Z = AZ + Z, and

AZ AZ

° = et oz~ 22,

(3-5-2)

while if the shunt discontinuity is AY, we have ¥ = AY + Y, and

o = __—AY ~ — AY (3-5-3)

The reflected amplitude as a function of time for a unit-area impulse-
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Termination Waveform
Resis'f‘olc;_" "_2 . —Z.-?
(a)] - akd i 4
AT 3R EBE——%2
Capacitance
(b) "—F:lﬁ_ 5= FIG 3-9 The reflections pro
2 Cl1 1 e %C - i -
i 2-2e duced by simple resistive and
Induc’f_alcs_ﬂ : » _Zot reactive terminations.
e L
CNZFT 3
test signal is
1 re N
u(t) = 5‘;/_” p(iw)e™ dw (3-5-4)
while the reflection for a unit-height incident step is
1 tw) |
v(t) = o f % et dw (3-5-5)

Rather than include the added phase factor e in the reflection coef-
ficient, we choose simply to remember that the reflection as calculated
must be delayed with respect to the incident impulse or step by the round-
trip delay r = 21/v.

By using the above expressions, the reflections for several common
types of terminations and discontinuities have been calculated and are
shown in Figs. 3-9 and 3-10. The figures assume a zero-rise-time step
generator and oscilloscope. The actual display will be the result of con-
volving the responses shown with the derivative of the test step signal
as seen in the oscilloscope. The principal effect of this convolution is
that very small series inductive or shunt capacitive discontinuities tend
to reproduce as small humps or dips having the shape of the derivative of
the step response rather than the exponential shapes shown in Fig. 3-10¢
and d.

Discontinuity Waveform Discontinuity Waveform
Series rt,;;ismnce Shunt copacitance e 27
~ - ZoC
@/ AN s
2 Z—~ .ll \Rfﬁ <2 CT 2— J—]l\/’_
Shunt conductance Series capacitance

s
® C+27% A _
) b GE % | ] Ve (4 (e) =7 Z5 _‘J r

2-¢ 2ZoC

Series inductance Shunt inductance Zo
L e 2t

e ] R PR U By el I S

(c)

FIG 3-10 Typical reflections produced by simple discontinuities.
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If the device under test presents a resistance R, then the reflection
coefficient is p = (R — Zy) /(R + Z,) and the height of the trace after the
echo appears is

2R

h(t) =1 t) =
O =1+460) = 575
This is the scale law of the simple shunt ohmmeter and it is shown in

Fig. 3-11. If now the device being tested is a piece of transmission line

(3-5-6)

Zo

l 2R
ZT R R+2o

FIG 3-11 A simple ohmmeter with a
2-V battery produces the same relation
between terminal voltage and resistance
R as a transmission line excited by a
unit step.

of variable impedance, what will be seen if the impedance variation is
not too great is a profile of the impedance versus distance, the vertical
scale being the ohmmeter scale with Z, in the center.

Time-domain reflectometer displays are not unique. For example,
the impedance profile of a line whose impedance increases with distance
can resemble very closely the reflection from a line with series resistive
loss. Further, when two or more strong reflections are present, multiple
reflections can confuse the picture. Fortunately the common types of
discontinuity produce distinctive responses. If, as is usually the case,
the object of the measurement is to get rid of the discontinuities or to
reduce them to tolerable values, these defects of time-domain reflec-
tometry do not cause much trouble. If one eliminates the first reflection
first, then the next, and so on, multiple reflections can be ignored since
they always occur later than the echo of interest. As each strong reflec-
tion is eliminated, its multiple reflections disappear too, so that in the
end a clear, simple picture results.

Naturally, resonant elements or narrow-band filters will cause ringing
on time-domain reflectometer display. Such devices are much more
readily tested in the frequency domain. A good general rule is to test
a device in the domain in which its properties are best localized and most
simply described. Thus steady-state sine-wave measurements and
impulse tests in the time domain are not so much competitive methods
as they are supplementary. When frequency-domain measurements
prove difficult, time-domain tests are often simple, and vice versa.



CHAPTER FOUR

MEASUREMENTS OF, WITH,
AND IN THE PRESENCE
OF NOISE

Gordon Roberts

Engineering Manager, Hewlett-Packard, Ltd.
South Queensferry, West Lothian, Scotland

In communications and measurement, noise is any random function of
time. That is, noise is a random process in which future instantaneous
values cannot be predicted, no matter how long the noise has been
observed in the past. However, noise can be described statistically, as
reviewed below.

Noise is present in every electrical circuit except at a temperature of
absolute zero. It is also present in all measuring instruments, since
they are merely specialized electrical circuits. From the measurement
point of view, one is interested in noise in three basic ways:

1. The measurement of the statistical properties of a noise signal
2. The use of a noise test signal having accurately known statistical
values to characterize the behavior of a circuit or system

65
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3. The accurate measurement of a signal in the presence of unavoidable
noise

4-1 Mathematical Background

Simple deterministic signals can be completely specified by a small
number of parameters. For example, a dc signal is specified by only one
parameter. A step function is specified by two parameters: amplitude
and time. And a sine wave is specified by three parameters: amplitude,
frequency, and phase.

Random signals, on the other hand, cannot be completely specified by
a finite number of parameters [1]. However, we still need some way of
describing them, and so we resort to statistical descriptions that tell us
about the average behavior of the signals.

For many practical purposes, a knowledge of the average behavior of
a waveform is more useful than an exact detailed description. For
instance, the mean square value of a waveform is easier to handle than
a list of amplitudes of the individual Fourier components, Other com-
monly used statistics of random signals are the power spectrum and the
probability density function.

Much of the mathematical background used to describe random data
was originated by statisticians for the purpose of classifving the discrete
events that arise in a population census. The techniques have been
extended by engineers to cover continuous as well as discrete phenomena,
and to include random pulse trains and the properties of binary digital
sequences. Before we can begin to use statistical techniques in measure-
ment, we must first define some of the terminology. Then the important.
measurement procedures will be described.

Ensemble. Let us start by considering the continuous funection of time
represented by the waveform x,(f), Fig. 4-1. This could for instance be
the variation in power-line voltage, with respect to the specified value,
in a particular building in a city. Other waveforms ry(2), r3(t}, and so
forth, could represent line voltage recordings taken at other points in the
city. Such a family of similar sets of data is called an ensemble.

The average value of all the waveforms at some instant in time {; is
called an ensemble average, and it is written

1 n
(0) = = k(t1) (4-1-1)

The value of the ensemble average will, in general, depend upon the
instant of measurement. This can be visualized in the case of an
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ensemble of line voltage variations. In general, the ensemble average
voltage will be low when the load on the power system is a maximum.
A system or ensemble that behaves in this way is said to be nonstationary.

Another nonstationary ensemble can be constructed by taking a record
of a single repetitive signal, say the daily fluctuation of power-line voltage
at one location, and cutting it into separate records, each 24 h long.
The separate pieces are then assembled side by side, as in Fig. 4-1, and
synchronized to an artificial time zero. It is now possible to take
ensemble averages, as in Eq. (4-1-1) and determine the average line
voltage at midnight, 0100 hours, 0200 hours, and so forth.

This type of ensemble averaging forms the basis of a powerful measure-
ment technique known as signal averaging (Chap. 5). It can be used
whenever a repetitive waveform is hidden in noise, provided that it is
possible to synchronize the separate samples to the artificial time zero.

A stationary ensemble is one for which the ensemble average is invariant
with shift of the observation time, or when

u,(tl) = M.z(tz) for any i, 123 (4-1-2)

The velocities of individual gas molecules in a constant-temperature
enclosure would be members of a stationary ensemble, or the noise
currents from a collection of noise diodes having well-stabilized mean
currents. In practice, truly stationary conditions are unusual, but for
engineering purposes, it is often permissible to assume that stationary
conditions exist over a period of time that is long with respect to any
experiments.

Time Average. In engineering practice, we do not often have an
ensemble of random variables from which we can compute ensemble
averages. Instead, we more frequently have a single record for a long
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period of time. We compute another kind of average value, the time
average.

R 1 7
wa(h) = lim o ﬁ, () dt (4-1-3)

This average gives us specific information about the kth recording, but
we cannot deduce anything about the time averages of other similar
recordings except in certain special cases. For instance, in our previous
example of an ensemble of line-voltage records taken at different points
in a-city, the time averages at different points are likely to be quite
different, since each depends on local conditions, feeder lengths, and
transformer tappings.

Ergodic Systems. Under some conditions, however, we find a stationary
ensemble in which the time average taken from any record is equal to the
ensemble average taken at any time. Whenever time averages are equal
to ensemble averages, we say that the system is ergodic. An example of
an ergodic ensemble would be the thermal noise signals generated by a
collection of identical resistors in the same constant temperature
environment.

Note that an ensemble must first be stationary before it is ergodic.
In an ergodic system, then,

N
Jiv Z Zn(t) = 1im,-11; ﬁ) T 2(t) dt (4-1-4)
m=1

Tow
or in words,
Ensemble average at time ¢; = time average of the kth record
for any time instant #; or for any recording zx; or in symbols,
w(t;) = po(k) for any j, k (4-1-5)

The ergodic hypothesis is a convenient aid in analysis, and it can
often be justified by reasonable assumptions about the physics of the
system. It allows an engineer to make predictions about hypothetical
experiments, when the only information he has available is one recording
from a single experiment.

Many systems are known to be nonstationary, and hence nonergodic,
and special mathematical treatment is needed in these situations [2].
Easily recognized nonstationary effects are time-varying mean-square
values and time-varying spectral properties. Speech is a good example
of nonstationary data exhibiting these effects.
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Mean-square Values. We have seen that there are two ways to measure
average amplitudes from an ensemble of random data recordings. The
ensemble averages and time averages will in general be different unless
the system is ergodic. Similarly, the mean-square value can also be
measured in two ways, across the ensemble or as a time average.

The mean-square value taken across the ensemble at time ¢; can be
written as

N
1
2(t) = — 2(¢. -]1-
) = 5 k; 2(t) (4-1-6)
and the time averaged mean-square value of the kth recording is
. 1 r7
W®=gﬁ?ﬁn%ﬂ (4-1-7)

In electrical engineering, we are familiar with the concept of separating
the de component or mean value u from the ac component or fluctuating
component of a waveform. In random-data analysis, we must dis-
tinguish between the mean-square value y? of the total signal (de¢ plus
ac) and the mean-square value of the fluctuating component alone, given
by the symbol ¢2.. Thus we have

9t = 4o (4-1-8)

The subscripts z or k have been omitted here, since the relationship
is the same for both ensemble averages and time averages. In the
following treatment whenever subscripts are omitted, it may be assumed
that the signals are stationary and ergodic, and that time averages may
be used.

Power Spectrum. The power spectrum of a signal tells us how the
power contributed by the separate frequency components of the signal
is distributed over the frequency spectrum. A periodic waveform has
a spectrum consisting of discrete frequencies, which coincide with har-
monics of the fundamental frequency fo = 1/T, where T is the period
of the waveform.

The (amplitude)? or power! of each component can be represented by
a line of the appropriate length on a graph, as in Fig. 4-2.

The total power of a signal, or the mean-square value of the signal,
o2, is equal to the sum of the individual power contributions from each
frequency component. For a given total power in the signal, the power

1 Power should be measured in watts, but it is common practice in noise theory to
consider (amplitude)? as the unit of power. For electrical signals the mean-square
voltage is often referred to as the power of the signal. This inconsistency can be
reconciled by assuming a 1-Q load resistor.
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contributed by an individual component must decrease as the number of
components increases.

A random signal may be considered a periodic signal with infinite
period. In the spectrum of a complex random signal, the frequency
separation 1/T approaches zero and the power spectrum must have an
infinite number of lines, all of infinitesimal amplitude. Thus, the power

fo 2fy Frequency, Hz

FIG 4-2 Power spectrum of a periodic
signal, period T sec.

spectral components shrink to zero for a random signal, but this difficulty
can be overcome by considering the spectral power density, which we
shall call power density spectrum. Analogously, the concepts of mechanics
are usually introduced by talking about “particles” of zero dimension
but finite mass. Later we extend these concepts to real physical objects,
which have distributed mass, such as rods having so many grams per
centimeter of length. To do this, we introduce the concept of density.
In an exactly analogous way, when we talk about random signals (or
any real signal having finite duration), we cannot truly say it has so
much power at a certain frequency, but only that it has so much power
per unit of bandwidth at that frequency.

Power Density Spectrum. It is important to notice that the power
spectrum is not the same as the power density spectrum. The former
is just the square of the amplitude spectrum and has units of (volts)2.
The latter has units of (volts)? per hertz. The power spectrum is used
to describe signals having a finite number of discrete frequency com-
ponents, but its ordinates shrink to zero for a random signal. The
power density spectrum, however, does not disappear.

A power density spectrum is shown in Fig. 4-3. The total area under
this curve gives the total power contained in the signal. The power
contributed by all frequency components in any band, say from f; to
fa is equal to the area under the power density curve between f; and f.
(shaded area in Fig. 4-3).

Power density spectra can be measured experimentally with a narrow-
band, constant-bandwidth wave analyzer containing, or followed by, a
square-law meter with a long averaging time.



Measurements of, with, and in the Presence of Noise "

White Noise. Noise having equal power density at all frequencies is
called white noise, by analogy to white light, even though equal density
is not true of the light we conventionally call white! Truly white noise,
which has infinite bandwidth and therefore infinite power, is never found
in physical systems, which always have finite bandwidths. We usually
call noise white if it has a flat power density spectrum over the band of
interest.

Probability Density Functions. The power density spectrum tells us how
the energy of a signal is distributed in frequency, but it does not specify
the signal uniquely, nor does it tell us very much about how the amplitude
of the signal varies with time. The spectrum does not specify the signal
uniquely because it contains no phase information. Two periodic signals
have the same power spectrum if they both contain the same frequency
components at the same amplitudes. But if the phase of just one com-
ponent of one signal is shifted with respect to the phase of the corre-
sponding component of the other, the two signals can have drastically
different waveforms.

A statistic of a signal that gives waveshape information and is inde-
pendent of the spectrum is the probability density function, or pdf (see
Fig. 4-4a).

The area under a pdf between any two amplitudes z; and 2. is equal
to the proportion of time that the signal spends between z; and ..
Equivalently, this area is the probability that the signal amplitude at
any arbitrary time will be between z, and z,. The total area under a
pdf is always unity. In general, the pdf and the power spectrum or
power density spectrum are two different unrelated properties of a
signal.

Refer to Fig. 4-4b for a simple circuit to measure the pdf of a signal.
The z,-to-z; gate is a circuit of biased diodes that transmits the high-
frequency-clock frequency only when z; < z < z,. If x; — z1 is kept

Power density, V¥ Hz

AN

f1 f2  Frequency, Hz

FIG 4-3 Typical power density spec-
trum for a random signal. The total area
under the curve is the mean-square value
of the signal, usually spoken of as power
in noise theory. Shaded area is power
in the frequency band from fi to f3.
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FIG 4-4 (a) Probability density function. The shaded area is
equal to the proportion of time spent by signal between z, and z..
(b) Block diagram for measuring pdf.

constant as the two quantities are varied in steps over the amplitude
range of z, the number of accumulated counts in T sec is proportional to
the pdf at given values of 2; and z.. The pdf curve can be plotted from
the measurements.

Accurate measurement of the pdf of a signal requires a long averaging
time at each amplitude level [see Eq. (4-2-8)] so that pdf measurement
by this simple technique is very slow and tedious. More elaborate
instruments having 100 or more parallel channels can give an on-line
display of the complete pdf curve in a very short time.

The Gaussian PDF. The most familiar pdf is the bell-shaped gaussian
or normal curve, Fig. 4-5a, which is characteristic of many naturally
occurring random disturbances. Gaussian means that a curve has the
shape y = e, Probability density functions must all have unity area,
and thus a gaussian pdf must be normalized, i.e.,

p(x) = e/ (4-1-9)

oV 2n

where ¢ is the rms value of the signal.
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The curve falls away rapidly for large values of amplitude, and for
many practical purposes, it may be assumed that the function is confined
to a range of amplitudes within + 3.

A frequent practical problem is to estimate the probability of finding
a random signal above a specified amplitude level z;. The probability
of exceeding the amplitude z; is equal to the shaded area of Fig. 4-6a
and is plotted in Fig. 4-6b as a function of z1/e. The study of the
probabilities of infrequent events is especially relevant in a noisy digital
data transmission system, for instance, where the probability of an error
is equal to the probability that the noise will exceed the threshold level.
Figure 4-6b shows how the probability decreases rapidly as the threshold
is increased.

It is important not to confuse the gaussian pdf with the output of a
so-called gaussian filter. A gaussian filter has an impulse response shaped
like e and a frequency response shaped like e=+”. The output of a
gaussian filter may indeed have a gaussian pdf. But an arbitrary signal
having a gaussian pdf may have a power density spectrum which bears
no resemblance to the frequency response curve of the gaussian filter.

It is also important to recognize that gaussian noise does not have
to be white noise, and vice versa. The pdf and the power density
spectrum are independent.

Other PDFs.  Although the gaussian pdf is so very common in natural
disturbances, it is not the only probability distribution of importance in

plx)
Signal with
zero mean

(a)

-X

Shaded areg is
equal to this
height
FIG 4.5 (a) Gaussian pdf, and (b)
cumulative distribution function.
(b)
P(-0)=0

- 0 +x
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engineering applications. A sine wave, for instance, has a pdf which is
noticeably different from the gaussian shape, as shown in Fig. 4-7.

1
"(A2 _ 12)%
0 lz| > A (4-1-10)

4€)) lz] < A

{

The Rayleigh distribution is important in communication problems,
since the envelope of a narrow-band gaussian signal has a Rayleigh pdf.
Other pdf’s are given in Table 4-1.

Cumulative Probability Distribution. The cumulative pdf P(z) is the
integral of the density function (Fig. 4-3b) or

P(z) = /_: p(w) du (4-1-11)

and is often preferred in practical situations, such as when the signal is
quantized into discrete amplitude levels. These signals have pdf’s
consisting of narrow spikes. The cumulative probability distribution
function, however, consists of a staircase function as in Fig. 4-8. The
P(z) curve of a random quantity is also very useful in finding the prob-
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FIG 4-8 Probability density and
distribution function for a quan-
oix) tized signal.

Plx]—>

0 x

ability of that quantity’s being either less or greater than some specified
value. The maximum ordinate of P(z) is always unity, and the deriva-
tive of P(z) is p(x).

Mean Values and Mean-square Values from PDFs. The pdf can be used
to calculate the mean value, the mean-square value, or any other statistical
function -of the amplitude of a random signal. For instance, the mean
value u, may be written

e = /_": 2p(2) dz (4-1-12)

In this expression, the mean value is obtained by adding together all
possible values of x from minus infinity to plus infinity, each amplitude
x being weighted by a factor p(z) dz, which is the probability that that
particular value of z will occur within the infinitesimal interval dr.

Similarly, the mean-square value of a signal can be computed from the
pdf

+ o
v = /_n 22p(z) dz (4-1-13)
where y.? is the mean-square value of the total signal, de plus ac, and is

Va? = s + 0,2 (4-1-14)

Correlation Functions. A useful statistic because it tells something about
the time or phase relationship between two signals (random or not) is
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FIG 4.9 Correlation functions show time relationships between
signals. They can be computed by multiplying one signal by a
delayed version of the other and averaging the product.

their crosscorrelation. The crosscorrelation function for two signals z(f)
and y(¢t) is defined as

R,y(r) = \Tl‘x_r,r:° %LT z(y( + 7) dt (4-1-15)

This may be interpreted as the time average of the product of two
signals, with one of the signals shifted (advanced) in time by 7 sec.
The result R,,(r) is a function of the relative time shift 7.

In a stationary system, we obtain the same result whether we time-
advance one signal y(¢) or time-delay the other signal z(¢). Alternatively
then we may write

Ryy(r) = Tlgxl % AT xz(t — 7)y(t) dt (4-1-16)

Time delays are physically realizable, so that the second equation is
the one used as the basis for computation or instrumentation [3].

A block diagram of an instrument system that performs this calcula-
tion approximately is shown in Fig. 4-9. One signal is multiplied by a
delayed version of the other, and the produect is averaged. The result
is a function of the delay r. In physically realizable systems the result
also depends on the averaging time T. Ideally T should be infinite, but
this would mean that it would take an infinite amount of time to get an
answer. Fortunately the statistical variance caused by using finite T
can usually be made acceptably small by making T fairly large.

If y(t) = x(t), the crosscorrelation function becomes the autocorrelation
function of z(t), defined as

R..(r) = zl'l_{ri -;—, AT z(t — m)z(t) dt (4-1-17)

Some important properties of autocorrelation and crosscorrelation func-
tions may be listed:
1. The autocorrelation function is an even function of 7.

R..(r) = Rp(—17)
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2. The autocorrelation function for zero 7 is equal to the mean-square
value of the signal 0,2, and must be positive. If the signal has a finite
mean value, then the whole autocorrelation function is sitting on a
pedestal, amplitude u,®. The zero delay point is now equal to

‘pzz = [1,12 + 0-12

3. The autocorrelation funection has an absolute maximum at zero
delay, or
Rzz(o) Z Rzz('r)

4. A periodic signal x(¢) has a periodic autocorrelation function.

5. The autocorrelation function of a random signal vanishes as 1 — o

6. The crosscorrelation function need not be symmetrical in r.

7. R.y(r) = Ry(—7). The order of the suffixes is important.

8. The autocorrelation function of the sum of two uncorrelated signals
is the sum of the autocorrelation functions of the two signals. If

2(t) = z(t) + y() and Ra(r) =0 for all 7
then
Ru("') = Rzz("') + Rw("')

Relationship between Autocorrelation and Power Density Spectrum. The
autocorrelation function gives some indication of the relationship between
signal samples taken r sec apart, and it is to be expected that this will
depend in some way on the bandwidth of the signal. For instance, if
the autocorrelation function indicates that there is still good correlation
between samples taken 1 msec apart, then the random signal is unlikely
to have significant frequency components above 1 kHz. In general, a
wideband signal has an autocorrelation function confined to small values
of delay, and vice versa. For example, the autocorrelation function
of white noise is just a single delta function at + = 0; this means that any
two samples of the same (infinite bandwidth) white-noise signal are
uncorrelated as long as there is a nonzero time interval between them.

A precise relationship exists between the autocorrelation function and
the power density spectrum. They are in fact a Fourier transform pair.

S{) = [_+: ER(r) cos 2nfrdr (4-1-18)
R@) = [ "7 8(f) cos 2afrdf (4-1-19)

where S(f) is the theoretical two-sided power density spectrum. It is a
real, nonnegative, and even function, defined for both positive and
negative frequencies.

In the literature dealing with power spectra, we find a confusing
assortment of definitions and conventions for the power spectral density
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function. The variations arise mainly because of the alternative use of
w for the frequency parameter. This accounts for the appearance of
fuetors of 2w.  In addition, the theoretical treatment usually defines the
spectrum for both positive and negative frequencies, so that to find the
total power, it is necessary to integrate from — « to + = along the
frequency scale. In a practical situation, however, the negative fre-
quencies have no real significance, and it is more convenient to define
a practical power density spectrum G(f), which exists for positive fre-
quencies only,

G(f) =28(f) forf>0
=0 otherwise (4-1-20)

The total power of the signal is obtained by integrating the area under
the G(f) curve of positive frequencies only, Fig. 4-3. The practical
power density spectrum G(f) is physically realizable in that it can be
measured experimentally with a wave analyzer having a true mean-
square voltmeter.

Equations (4-1-18) and (4-1-19) can now be rewritten

G(f)
R(r)

4 /0 * R(r) cos 2nfr dr (4-1-21)
/0 ® G(f) cos 2nfr df (4-1-22)

where G(f) is a one-sided physically realizable power density spectrum,
defined for positive frequencies only, measured in (volts)? per hertz.
Table 4-1 contains a selection of commonly used pairs of spectra and
autocorrelation functions.

Since the autocorrelation function is the Fourier transform of the
power density spectrum, it gives us no information that is not contained
in the spectrum. In particular, there is no information about the phase
of periodic components. However, it is an extremely useful function,
and it is often simpler to compute than the power density spectrum,
especially at low frequencies.

Relationship between the Crosscorrelation Function and the Cross-power
Spectral Density Function. The Fourier transform of the crosscorrelation
function R,,(r) yields a complex function of frequency S.,(f) called the
cross-power spectral density function. The relationships are

+e .
Sa(f) = /_m R.,(7) exp (—j2xfr) dr (4-1-23)
+w .
Ru(r) = f _. Sa(f) exp (j2nfr) df (4-1-24)
We can again define a function G,,(f) for positive frequencies only,

Gu(f) = 28,,(f) [ > 0, otherwise 0 (4-1-25)
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The real and imaginary parts can be separated as follows:

qu(f) = sz(f) "'jQzu(f) (4‘1'26)

where C.,(f) is called the cospectrum, and Q.,(f) is called the quadrature
spectrum.

4-2 Measurement of Noise

Many measurements of noise and random phenomena involve aver-
aging. The properties of the noise that we wish to measure may be
simple quantities like the mean value and the rms value, or we may be
interested in much more complicated functions like pdf’s or functions
of two variables like crosscorrelation functions. In the measurement
of these quantities, averaging is used.

The mathematical theory suggests that averages (integrals) should
be taken over infinite time to get precise results, but averages taken
over finite intervals can yield results sufficiently accurate for practical
purposes [4]. We must now look at the averaging process and see what
errors are involved when the averaging time is limited to finite values.
This matter is also treated in connection with digital analysis of signals
in Chap. 5.

The result of an experiment designed to measure some parameter of
a random signal is called a statistical estimate. An estimate of the mean
value of a signal is written @, the caret over the p indicating that it is an
estimate. The estimate of the mean value of the variable z(t) measured
over a period of T sec would be written

1 r7
p=7 2(t) dt (4-2-1)
In general, we try to use an estimator that approaches the true value
as the integration time is increased, so that in the limit, as T — o, the
expected value of the estimator becomes equal to the true value, or

E(p) = ps (4-2-2)

In this situation, the estimate is said to be unbiased.

In measurements of random noise taken over finite averaging times,
the estimates will differ from the true value. This error can itself be
considered a random variable and will have some pdf associated with it.
A knowledge of the distribution allows predictions to be made about the
probable magnitude of error in a measurement, or alternatively about the
averaging time necessary to reduce the error to an acceptable level. In
most of the situations that concern us, the errors have a normal gaussian
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probability distribution with respect to the correct value. The mean-
square value of the error taken over many experiments is called the
variance of the estimate, and its square root the standard deviation. For
example, in the case of & measurement of the mean value . of the signal z
we can write

AMean-square error in measurement of g, = E[(g, — u.)?

variance (u,)

(standard deviation)?
(4-2-3)

1

If a noise signal has a gaussian distribution, then we can say that 68
percent of our measurements have an error of less than one standard
deviation, and 95 percent of our measurements will have an error less than
two standard deviations. This is what we mean when we talk about
confidence limits. ¥or instance, 95 percent confidence limit occurs when

Actual error < 2 standard deviations (4-2-4)

Mean-value Estimates. The error of the estimate of the mean value of a
gaussian random signal will itself be a gaussian random variable, and in
the case of band-limited gaussian noise, the variance is given by

0.2

Var (a,) = 3BT

= (standard deviation)? (4-2-5)
where B is the noise bandwidth, ¢, is the rms value of the fluctuating
component of the noise, and T is the time interval of averaging. Some
care is required in using Eq. (4-2-5); it is an approximation with the
assumption that BT >> 1 and that averaging is done by the true integra-
tion method rather than by using an RC filter.

Example

There is 10 mV of de hidden in 100 mV rms of band-limited gaussian noise with
a flat spectrum up to 1 kHz.

If an integrating voltmeter is used, what averaging time is necessary in order
to yield a 99 percent accurate result with 95 percent certainty?

From Eq. (4-2-4) for 95 percent confidence, actual error < 2 standard devia-
tions < maximum allowable error.

From Eq. (4-2-5),

2

Uz
Standard deviation =
andar eviation J2BT

(100 mV)?
2 X 10°T
T > 2 X 10%sec = 33 min

<0.01 X 10 mV
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If the noise has a flat spectrum down to zero frequency, the ratio ¢,%/B
is the zero-frequency power spectral density G(0), where G(f) is the physi-
cally realizable single-sided power density spectrum. We can write

ot G(0)
2BT 2T

Var () = (4-2-6)

From this we see that the important parameters in determining the
variance are the averaging time T and the power density spectrum at low
frequency G(0). The actual bandwidth and rms value of the noise are
irrelevant, provided that BT >> 1. The variance is caused by the very
low frequencies in the spectrum, and prefiltering to reduce the high-
frequency energy has no beneficial effect, providing the filter bandwidth
B>1/T.

If the cutoff frequency of the filter is lower than the reciprocal of the
integration time, then the averaging process is controlled mainly by the
characteristics of the filter [5].

Integrating Digital Voltmeters. Many digital voltmeters (DVMs) are
available with the ability to measure the true average of the input voltage
over a fixed measuring period. The major advantage of this type of
analog-to-digital conversion is its ability to measure accurately in the
presence of large amounts of superimposed noise. The integration period
is usually one period of the power-line frequency, or in some instruments it
may be extended up to 1 sec or longer. When the integration period is
synchronized to the power-line period, the instrument provides very high
rejection of unwanted noise at power-line frequency and its harmonies.
Much longer integrating periods are required to reduce the effects of low-
frequency white noise.

Example

What is the maximum amount of white noise permissible at the input to an
integrating DVM if the integration period is 1 sec, and the maximum error is
not to exceed 1 uV?

Assuming 95 percent confidence limits, from Eq. (4-2-4) we have standard
deviation of error < 14 maximum allowable error

’ o? <
2BT —

< 5 X 10713 V2/Hz

X 106

N =

a?
B
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This is the maximum power density that can be tolerated at very low frequencies
in order to achieve a measurement error of less than 1 uV. This noise power is
equivalent to 7 uV rms of white noise in the bandwidth from 0 to 100 Hz (e.g.,
Johnson noise from a 30-MQ resistor at 27°C).

In the above example, if the signal being measured by the integrating
digital voltmeter were derived from an amplifying device, the 7 xV rms
of white noise could easily come from the amplifier. The example points
up the fact that even very accurate instruments cannot be accurately
used without proper attention to noise in many situations. A smoothing
filter can be used to reduce noise fluctuations, as described below, but
In some respects this is really equivalent to increasing the time of
integration.

Mean Square Value Estimates. The measurement of the mean square
value of a random signal is subject to statistical errors similar to those
in the mean value estimate. For the case of bandwidth-limited white
noise with zero mean value, the variance of the estimate of the mean
square value 0,2 is given [3] approximately by

at

Var [o.7] = 25 (4-2-7)

For a 1 percent maximum error with 95 percent confidence, this
demands that the bandwidth time product BT must exceed 4 X 104,

For small errors, the percentage error in root mean square values is
half the percentage error in the mean square value; e.g., a measurement
that gives a +1 percent error in measurement of mean square value
implies an accuracy of + 14 percent in terms of rms measurement.

Averaging by Integration or by Exponential Smoothing. Evaluation of
statistical parameters by integration over a finite period T is convenient
in off-line batch processing situations, but for on-line work, some sort of
continuous averaging is often preferred. On-line processing is appropri-
ate whenever the statistics in question are likely to change with time, or
whenever the result of some parameter adjustment must be observed.
Exponential smoothing is perhaps the most convenient, either by analog
or by digital techniques. The simple single-pole RC smoothing filter is a
familiar example used in many analog measuring instruments.

In the measurement of statistical quantities one must choose a smooth-
ing time constant. The choice is a compromise between a long time con-
stant to reduce statistical variance and a short time constant to make the
output settle quickly; or in the case of nonstationary situations, where
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the statistics may be changing with time, the smoothing time constant
must be sufficiently short to allow the output to follow the variations.

For a given statistical error, the smoothing time constant should have a
value equal to about half the integration time [4] indicated in the previous
paragraphs. Note that the actual time required for an exponential filter
to settle down after switch-on is about 4 or 5 filter time constants, which
is about twice the time required for the integrator to do an integration.

Variance of PDF Estimates. The probability density function p(z) of a
random signal may be estimated by observing the proportion of time spent
by the signal between the amplitude levels z — W/2 and z + W/2. The
choice of the window sampling width W affects the resolution obtainable
in the measurement. A wide window is unable to resolve rapid changes in
p(z) and introduces a bias error. On the other hand, a narrow window
gives a good resolution, but the amount of information collected is corre-
spondingly smaller; therefore, the statistical error of individual estimates
increases. [Exact analysis is difficult, but for band-limited gaussian white
noise, the normalized standard error of the estimate can be approximated
by the empirical expression

_SD[p@] _ 07
p(z) VBTW5(z)

(4-2-8)

where B is the signal bandwidth in hertz, T is the averaging time in
seconds, and W is the sample window width as a fraction of the rms value.

A good practical compromise on W is to approximate the pdf by a
histogram of 30 bins over the range + 3¢, the width of each bin being 0.20.
This is narrow enough to reduce bias errors to about 1 percent, and the
statistical errors are reduced to manageable proportions. Under these
conditions, a bandwidth-and-time product BT of 60,000 will reduce the
standard error to less than 10 percent for all amplitudes up to +3o.

Variance of the Estimate of a Correlation Function. Estimates of correla-
tion functions obtained by averaging over a finite interval have statistical
errors depending on the statistical properties of the signals and the length
of the averaging time. The mathematical expression for the magnitude
of the errors is a complicated function of the signal statistics and the
averaging times, and for large T the expression is given by

Var [Ru®] = 7 [ (Rul)Ros(w)
+ Roy(u + )Ry (u — 1)) du (4-2-9)

In the particular case in which z and y are gaussian band-limited signals
with identical bandwidths, Eq. (4-2-9) simplifies considerably to give the
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following expressions for the variance of auto- and crosscorrelation
functions:

Var [Rul)] = 52 [Rus(s) + Rur(O)) (4-2-10)
Var [Rzu(T)] = iB}—T [R:*(7) + R..(0)R,,(0)] (4-2-11)

where B is the effective signal bandwidth in hertz and T is the averaging
time in seconds.

Practical Implementation of Correlation Measurements. Given two signals
z(f) and y(t), how can we measure the crosscorrelation function described
by Eq. (4-1-16)? To repeat,

R.(r) = }'Lnl %LT z(t — 7)y(t) dt (4-1-16)

The first obvious problem is that the averaging time T must be finite
in any practical measurement. The errors introduced by short averaging
tirnes have been discussed in the previous section.

To make practical use of correlation-function measurements, it is
necessary to mechanize the mathematical operations involved. Two
approaches are possible. The first approach consists of direct computa-
tion of the integral in Eq. (4-2-12) by a variety of techniques.

Ra@) = 7 [\ 2t = Do) @ (4-212)

The second approach is an indirect attack on the problem and relies
on the fact that correlation functions and power spectra are Fourier
transform pairs. The (cross) power spectra are first measured, and then
the Fourier transformations are made.

Analog Methods. An approximation to the integral expression (4-1-16)
can be achieved by analog computation over a finite time interval [as in
Eq. (4-2-12)), statistical errors being introduced because of the short
averaging time. Further errors will be introduced by the analog imple-
mentation of the time delay and by the multiplication operation. These
errors will depend on the particular hardware used and may be a few
percent, even in good analog equipment.

Digital Methods. Many of the accuracy problems of a purely analog
system can be avoided by using digital or hybrid techniques, and to do
this, the signals must be time sampled, so that the continuous integration
of Eq. (4-2-12) now becomes a summation

N
Ra®) = Y 208t~ (G A1) (4-2-13)

i=1
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Samples of y(f) taken every At sec are multiplied by samples of x(t)
taken r sec earlier. It might be thought that the choice of sampling
interval At would be determined by the bandwidth of the signals, but this
is not so. In statistical measurements such as this, we are not trying to
reconstruct the signal from the samples, and therefore, as suggested by
Shannon’s sampling theorem, it is not necessary to have a sampling rate
greater than twice the highest signal frequency. The samples in Eq.
(4-2-13) may be taken indefinitely slowly so long as each pair of samples
is separated by the correct interval of 7 sec.

It is even possible to take the pairs of samples at irregular (i.e., random)
instants in time and still obtain the correct result. For this situation

N
Raf) = = 2 — Dyt (4214
i=1

The sampling instants t; can occur indefinitely slowly and at irregular
intervals; all that is necessary for a good approximation is that we take
enough independent samples, that is, N must be large. For high-fre-
quency performance, it is of course necessary that the sampling windows
be narrow compared with the required resolution in r. This is easily
achieved, and on this principle successful correlators can be built with a
high-frequency performance similar to that of a modern sampling
oscilloscope.

Analog-to-digital Conversion. In a correlator employing entirely digital
techniques, it is necessary to convert both channels of data into digital
form. The question of resolution in the quantizer deserves special atten-
tion since it affects the cost and the speed of computation. It has been
shown [5] that the accuracy of correlation function measurements need
not be impaired by coarse quantization. Under suitable conditions, it is
even possible to quantize one channel to one-bit accuracy (sign only)
without degrading the results.

The justification for using coarse quantization in a correlator depends
on the fact that under suitable conditions the quantization noise, or errors,
in an analog-to-digital converter is uncorrelated with the input signal.
Because of this, the quantization noise behaves like an uncorrelated back-
ground disturbance and merely increases the variance on the resulting
correlation function (Appendix 4-B). Signals having sharp discontinuities
in their pdf’s cannot use this technique successfully ; however, the difficulty
can be overcome by the addition of gaussian random noise to the input
signal before digitization. This “dither” noise must be uncorrelated with
the input signal. It has the effect of apparently linearizing the quantizer
nonlinearity (see Chap. 5).
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Spectral Measurements. The measurement of the spectral properties of
random noise is subject to a number of errors that reveal themselves as
variance on the measured values, imperfect frequency resolution, and
image effects that cause components at one frequency to affect measure-
ments at another frequency. The errors depend on the length of record
and on the technique employed.

The power density spectrum of a signal can be measured by analog
techniques with a wave analyzer (narrow-band filter) having a true rms
voltmeter. When the signal is gaussian random noise, the measurement
will exhibit a statistical error depending on the bandwidth By of the wave-
analyzer filter and on the averaging time 7. The variance of the estimate
will be

GA(f)
B,T

Var [G.(f)] = (4-2-15)

Note that the statistical error in power spectral measurements is inde-
pendent of the frequency being analyzed. It depends on the bandwidth
By, not the center frequency of the filter.

Digital techniques allow the power density spectrum to be computed
directly from the signal waveform, and the task is greatly simplified by
using the fast Fourier transform algorithm described in Chap. 5. When a
suitable computer is available, this is a very convenient method of analysis.

The third approach to power spectra is by way of correlation functions
and exploiting the fact that they are Fourier transform pairs. In many
practical situations, it is easier to measure the correlation function than
to compute the power spectrum directly.

4-3 Measurements with Noise as a Test Signal

Random noise can be used as a test signal in many practical situations.
There are two quite separate circumstances under which it is appropriate
to use a random test signal. In the first, a random signal can be used to
simulate the real-life operating conditions of a practical system in order
to determine its overall behavior. The second use of random signals is
as an alternative to sine waves in order to collect data about the dynamic
behavior of the system. Let us look more closely now at these two quite
separate applications of noise.

A random signal is often the most appropriate test signal to use in
order to simulate the actual working conditions of a system. This is
especially true when nonlinear effects are present. Under these condi-
tions, a knowledge of the response to a sinusoidal signal does not enable us
to predict accurately the response to any other waveform. For instance,



88 Electronic Measurements and Instrumentation

in a frequency-division multiplexed telephony system, one of the sensitive
indicators of performance is the so-called noise-loading test. The objec-
tive is to estimate the spurious background noise introduced into a tele-
phone channel by intermodulation distortion and conversations in other
channels in the system. The conversations in all channels except the one
under test are simulated by applying broadband gaussian white noise to
the system. The channel under test is kept clear by a bandstop filter.
At the receiving end, a bandpass filter examines the vacant channel for
any indication of background noise. This is an example of a test situation
in which it would be inappropriate to use sine waves to simulate the
practical working conditions.

Similar situations arise at much lower frequencies in the analysis of
nonlinear control systems where it is necessary to simulate actual working
conditions by the use of low-frequency random test signals. In these
situations, the low-frequency random effects requiring simulation might
be air turbulence in the case of aircraft, or target evasive action in the
case of missile control systems design.

In all these tests that attempt to simulate real working conditions, the
chosen technique depends on the detailed requirements of the system
being tested, and no general method is applicable to all situations (for
noise figure tests on communications systems, see Chap. 14).

When noise is used as an alternative to sine waves or other deterministic
test signals for the evaluation of the dynamic properties of a system, the
same mathematical treatment can be applied in all situations, and it is
generally assumed that the system under test is linear. The method
involves the crosscorrelation between the input and output of the system
and yields information about the dynamic performance of the system.
In the noise-testing method, all frequencies of interest are applied randomly
and more or less simultaneously to a network, and the instrument system
computes the response that the network would have to a unit impulse.
Of course, it is impossible to measure all frequencies simultaneously in an
instant; this fact is associated with the necessity for an adequate averaging
time in the measurement of any statistical quantity.

To summarize, the characteristics of a linear network can be measured
in three basic ways. A sine generator and appropriate voltmeters can be
used to measure frequency response. An impulse or step function can be
applied to the network and the output waveform analyzed. Third, a
noise signal can be applied and a measurement made of the crosscorrelation
between that test signal and the network output. The relative accuracy,
speed, and convenience of the methods depend upon the problem and
upon the sophistication of the instruments employed.

The characterization of linear networks by steady-state frequency
response and by transient response measurements is well established, but
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the statistical methods are not so well known. The main areas of applica-
tion for statistical measurements by using random test signals follow:

1. For simulating actual working conditions, especially when nonlinear
effects are present

2. In slow systems having long time constants

3. In noisy situations which would require very long averaging times
even with sine waves

4. For short-lived or expensive test runs

Evaluation of System Performance by Crosscorrelation. A linear system
can be completely described by its response k(t) to a unit impulse function

x(t) nir) y(t)

FIG 4-10 System with arbitrary input
z(t). The term h(?) is the response to a
unit impulse.

s(t), and the response y(t) to any arbitrary input £(¢) can then be calculated
by using the convolution integral

y® = [T bzt — u) du | (4-3-1)

In the situation we are considering (Fig. 4-10), the problem is to deter-
mine h(t), the system impulse response, when both functions z(t) and y(¢)
are random and not known explicitly. Under favorable conditions the
problem can be solved easily by crosscorrelating the input and output of
the system, and the method provides a rapid means of evaluating the
system response, especially in the presence of unwanted background
disturbances. The crosscorrelation between input and output can be

R (T
Multiply Average

FIG 4-11 Measurement of the cross-
correlation between the input and output
of a system.

evaluated in the configuration shown in Fig. 4-11. Substituting Eq.
(4-3-1) in (4-1-16), the crosscorrelation function R.,,(r) can be expressed as

R.y(r) = lim % [OT 2(t — 1) /_*: h(w)z(t — u) du dt (4-3-2)

T
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When the input z(f) is white noise, the expression is simplified and reduces
to
Ruy(r) = 15G2(0)h(r) (4-3-3)

where h(r) is the impulse response of the system under test and G.(0) is
the power density of the white-noise spectrum. Thus we see that the
measured crosscorrelation funetion is proportional to the system impulse
response, which we are trying to determine. For this relationship to be
true, it is sufficient that the spectrum of the test signal z(f) be flat and
much wider than the passband of the item under test (see Appendix 4-A
for full treatment).

n(t)

x(t) "___ﬂ y(t) 2(t)=y(t)
L +n(t)

FIG 4-12 System output contaminated
with unwanted noise.

Effects of Background Disturbances. In most practical situations, the
system output signal y(t) is not visible directly; it is usually contaminated
by some unwanted background noise n(t), as in Fig. 4-12. The visible
output 2(t) = y(t) + n(f) is the only signal available for analysis. Under
these conditions, the crosscorrelation function measured between the
input z(¢) and the visible output z(¢) can be shown (Appendix 4-B) to be

Ru:(r) = 33G:(0)h(r) + Rzu(r) (4-3-4)

This is a similar result to the noise-free situation, Eq. (4-3-3), except for
the second term R,.(r), which is the crosscorrelation function between the
input signal and the disturbing noise. If the background noise is unrelated
to the input signal, i.e., uncorrelated, then the crosscorrelation R.,(r) will
be zero. This is true in many practical situations, especially when the
input signal z(¢) is obtained from a random-signal generator.

Under these conditions, the measurement is unaffected by the presence
of the background noise. This result demonstrates one of the unique
advantages of correlation measurement techniques, namely, the ability to
extract accurate information from a noisy system. The background noise
increases the variance of the result, but the statistical errors can be
reduced by increasing the averaging time.

Measurement by Normal Background Signals. In most practical systems
under operation conditions, especially complex process controls, natural
background disturbances are always present at both the input and output
of every element in the system. It is often possible to use these distur-
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bances as test signals in order to learn something about the dynamics of
the system. Under favorable conditions (when the signal spectrum at
input is flat and wider than the passband of the element), erosscorrelation
analysis between the signals appearing at the input and output of an
element yields the result

mm)=ﬁfhwm4f—mdu (4-3-5)

regardless of the origin of the signal z(f). If the spectrum appearing at
the input to an element is flat across the passband of the element, then the
input may be considered white noise, and the simplification of Eq. (4-3-2)
applies, which gives the impulse response directly,

Rey(r) = }5G.(0)h(r) (4-3-6)

Injection of Test Signal into Operating System. Unfortunately, the signals
that exist naturally within a system are often nonwhite and we are faced
with the task of solving Eq. (4-3-5) for the function h(u). Even when
computing facilities are available, the errors in computing A(u) can be
considerable if the input signal does not have favorable statistics. A far
better solution is to inject an artificial random disturbance having suitable
white-noise characteristics. The total signal entering the item under test
then has two components, the artificial disturbance s(t) plus the inevitable

x(t) vt
s(t) F~~—__\ Ry D
—_— ~—Y Crosscorrelate

FIG 4-13 Injection of an artificial dis-
turbance s(t) into a system under operating
conditions.

background disturbance x(t), Fig. 4-13. The crosscorrelation measure-
ment is then made between the output y(f) and the random test signal
s(?). In this way, the statistics of the background disturbance z(¢) can
be eliminated, and it ean be shown (Appendix 4-C) that

R (r) = }$G.(0)h(r) (4-3-7)

Statistical Etrors in Measurement of Impulse Response by Using a Random
Test Signal. The crosscorrelation function between input and output of
an element yields the impulse response, provided that the input is white
noise and that the average is computed over a long enough period to
reduce the statistical errors to an acceptable level.

Two situations must be considered. One is the ‘“noise-free” situation
in which the visible system response is due entirely to the clean random
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test signal applied to the input. The second situation includes the effects
of spurious background noises introduced at the input or the output of the
system.

In the noise-free situation, the estimate of the crosscorrelation function
between input and output of a system having an impulse response h(f)
can be obtained directly from Eq. (4-2-9):

Var [Ru®)] = 0,* 5 G.(0)
o5 (GO [ ke + ke — ) du (458)

This expression cannot be simplified in the same way as Eq. (4-2-9) since
the bandwidths of the two signals z(¢) and y(¢) are not identical. In fact,
one requirement is that the bandwidth of z(f) should be much wider than
that of y(t). Further simplification is not possible without precise knowl-
edge of the system impulse response h(t) but it is possible to put an upper
bound on the variance.

Var [RB.y(7)] < 0,2 2T — G.(0) + G’:(O)G,,(O)B’ (4-3-9)

where B’ is the effective statistical bandwidth of the system.

When the system is subject to spurious background-noise disturbances,
there is an additional effect. The crosscorrelation function averaged over
a long period has a component R..(r), owing to the crosscorrelation
between the input z(f) and the background noise n(t), which approaches
zero, i.e., the noise is uncorrelated. However, for short integration
periods, the term does not necessarily reduce to zero. The total variance
of the estimate, therefore, consists of two components

Var [R..(r)] = Var [R.,(r)] + Var [R..(r)] (4-3-10)

where 2(t) = y(t) 4+ n(t) is the visible system output.
The first right-hand term is the same as Eq. (4-3-8), and by using Eq.
(4-2-9), the second term can be written

Var [Ren(r)] = / Roo(w)Roun(u) du (4-3-11)

Exact evaluation demands precise information about the test signal z(f)
and the background noise n(t). However, three special cases can be
considered:

1. Noise bandwidth much less than the signal bandwidth. Whenever the
background noise is introduced into the measurement at a point before
the system under test, then the observed noise bandwidth at the output
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will be determined by the system bandwidth. Under these conditions,
we can expect that the observed noise bandwidth will be much less than
the test signal bandwidth, in which case

7,.2G.(0)

Var [R..(7)] = o7

(4-3-12)

where G,(0) is the single-sided power spectral density of the random test
signal at zero frequency.

2. Noise and signal bandwidths identical. From Eq. (4-2-11) we obtain
0,20,
2BT

where B is the bandwidth of both the signal and the noise.
3. Noise bandwidth wider than the signal bandwidth.
0:G.(0)
2T

Var [R..(r)] = (4-3-13)

Var [R..(7)] = (4-3-14)

4.4 Measurements with Pseudorandom Test Signals

The spectrum and the pdf are two important statistics of random noise
that often make it attractive as a test signal. However, the very random-
ness or unpredictability of noise causes the results of measurements to
exhibit statistical errors. Fortunately, the randomness itself is not an
essential feature for a signal to exhibit a flat wideband spectrum or a
gaussian pdf. It is quite possible to synthesize a nonrandom signal having
an ideal flat spectrum and a gaussian pdf. In fact, the signal may be
periodic. Unlike truly random noise, a periodic test signal does not
introduce statistical errors into the measurement, provided that the
measuring interval is an exact multiple of the signal period. A periodic

+a T
|1 0‘0 1 1|O|1|0|111||‘10‘0‘0L1_I0’
~-a— ! +—t—t

—
AT

FIG 4-14 A clocked binary sequence.

signal having noiselike properties is called pseudorandom noise; it is becom-
ing increasingly popular as a substitute for random noise in many
applications.

Pseudorandom Binary Noise. Pseudorandom noise can be synthesized
to have a variety of pdf’s, but the simplest example is binary noise, some-
times called a random telegraph signal, illustrated in Fig. 4-14.
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FIG 4-15 Autocorrelation function of

clocked random binary sequence.

The signal is restricted to changeovers that coincide with a regular
clock-pulse period AT, and the probability of changeover is always 15.
In a pure random binary signal, the pattern never repeats and the auto-
correlation function has the simple form of Fig, 4-15.

This follows quite simply from the fact that successive “bits” in the
pattern are completely independent (probability of changeover is 14).
Therefore, for any time shift greater than AT, the average product must
be zero. There is a linear transition from a2 to 0 in the first time shift AT.

Such a signal has a continuous power density spectrum of the form of
(sin z/x)? (Fig. 4-16), with the first null at the clock frequency of 1/AT.

Measurements involving this random binary signal would exhibit all
the stalistical errors previously mentioned, unless, of course, averages
were taken over infinite time.

In a pseudorandom binary signal (see Fig. 4-17a), the sequence
repeats after a finite number of clock pulses, N. The pattern is so arranged
that the autocorrelation funection still has a triangular peak and a flat
baseline. The autocorrelation function is of course cyclic with other
identical peaks every N AT sec (Fig. 4-17b).

The power spectrum of this signal now exhibits a line spectrum with
the fundamental at 1/Nth the clock frequency (Fig. 4-18), but the envelope
of the lines still follows the (sin z/z)? envelope.

Many binary sequences exhibit these ideal properties, but there is no

Power
density4

Log (V3/Hz)

FIG 4-16 Power density spec-
trum for a pure random binary
| I;OO signal.
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FIG 4-17 (a) Pseudorandom binary
correlation function.

(a)

q and (b) its auto-

known technique for generating all possible sequences. One technique,
however, has found widespread use and can generate sequences of length
2» — 1 using an n-stage shift register with feedback [6]. The following
example (Fig. 4-19) shows how a three-stage shift register can generate
the repeating pattern of seven bits (Fig. 4-17) having the ideal auto-
correlation-function properties. Feedback taken from the second and
third stages through an exclusive or gate (output equals 1 if inputs are
unequal) supplies the input to the first stage.

This type of pattern generator has been well documented [7], and tables
of feedback connection for various pattern lengths have been published [8].

Log V2

» Log frequency
%
N

FIG 4-18 Power spectrum of a p binary seq
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Output

Initial contents 1 o] [¢]
Afteristshift O 1
After 2d shift 1 (0] 1

Qutput repeats
) fter 7 sh
After3dshift 1 1 fo | gfterTsnft
After 4thshift 1 1 1 FIG 419 A three stage shift

register generates a seven-bit

After Sthshift pseudorandom pattern.

0
After 6thshift O o] 1

After 7th shift 1 [¢] (o]

Contents = original contents

Let us examine the properties of a pseudorandom binary sequence
generated by a shift register [6]:

1. The sequence always has an odd number of bits in the pattern,
N =2» — 1.

2. All possible patterns of 1s and Os that are n bits long oceur just once
in a complete pattern length, except the “all-zeros” pattern, which never
occurs. Hence, there are.2* — 1 steps rather than 27, and there is slight
inequality in the number of 1s and Os in the complete sequence. (There
is one more 1 than there are 0s.)

3. A symmetrical analog waveform generated from such a sequence
has a slight offset in its de component because of the one-bit inequality
between 1s and 0s. The offset is insignificantly small for long sequences,
being 1/N times the rms value of the waveform.

4. The autocorrelation function has a constant value (almost zero) for
time shifts greater than AT, and the pattern repeats every N AT sec.

5.- The power spectrum has lines spaced f./N Hz apart, the fundamental
being f./N. The envelope of the lines follows the (sin z/x)? curve, the
first null being at the clock frequency.

6. Because the pseudorandom waveform is periodic, complete informa-
tion about any statistie of the signal can be obtained by averaging over
a time interval of one fundamental period equal to N AT sec. There will
be no statistical error.

A pseudorandom binary signal is a useful alternative to a wideband
random white-noise signal whenever the form of the pdf is not important,
i.e., a pseudorandom binary signal has ideal speetral properties, although
its amplitude probability distribution is not typical of natural random
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noise. This kind of noise, however, is particularly useful in many process
control applications, where the actuating signals are often of an on-off
nature.

In the practical implementation of correlation measurements, a binary
signal eases the problem of providing the time delay. Shift-register
stages are ideal for the purpose. Alternatively, the shift-and-add prop-
erty [8] of a pseudorandom binary signal allows a “‘phase-shifted”’ version
of the original pattern to be generated by simple logical operations. This
is usually simpler than providing true delay.

Pseudorandom Gaussian Noise. In many applications both the spectrum
and the pdf of the test signal are important, and in general, the required
pdf will be gaussian. How can we generate a pseudorandom binary signal
having a gaussian pdf? This is easily achieved by passing a pseudoran-
dom binary signal through a low-pass filter with a cutoff frequency at
about one-twentieth of the clock frequency. The resulting waveform has
a pdf that closely approximates a gaussian distribution for all signal
amplitudes up to about 3.5 times the rms value, and could be improved
for even higher signal amplitudes by decreasing the filter cutoff frequency
still further. However, a crest factor of 3.5 is usually considered ade-
quate. It should be pointed out that the length of the pseudorandom-
binary signal sequence has a profound effect on the distribution, short
sequences giving very poor approximations to gaussian. Tor a 20: 1 ratio
between clock frequency and filter cutoff, sequences shorter than 8,191
(213 — 1) show noticeable departures from the gaussian distribution.

4.5 Measurement in the Presence of Noise

We find that all physical measurements are ultimately limited in
accuracy by the presence of background noise, either in the phenomenon
being measured or in the instrument making the measurements. The
phenomenon being measured might be a well-behaved function such as a
sine wave, a de quantity, or the shape of a transient, and under noise-free
conditions, the measurement would be extremely simple and accurate.
The presence of background noise, however, introduces an unpredictable
error.

Other measurement problems are associated with the determination of
the statisties of a random variable, and even in the absence of background
disturbances the results will exhibit statistical variance because of the
essential random nature of the quantity we are trying to measure. An
example would be the measurement of the crosscorrelation function
between two random variables. The presence of background disturbance
adds a further component of error to the measurement.

We are therefore able to recognize two quite separate measurement
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problems: (a) the measurement of deterministic phenomena in the presence
of background noise, and (b) the measurement of random phenomena in
the presence of background disturbances.

Measurement of Deterministic Phenomena in the Presence of Background
Noise. Measurement in this class can be achieved by averaging, by
frequency-selective filtering, or by correlation.

Measurement of de in the presence of noise can be achieved by pure
integration or by low-pass filtering. The variance for both situations
is dealt with in Sec. 4-2. As a general rule, we could say that pure
integration gives a result to within a specified error in about half the time
required for exponential smoothing. The smoothing filter has the
advantage of giving a continuous reading in a simple manner, which
may be a distinet advantage for the continuous monitoring of a signal.
A continuous-running average is usually more difficult to obtain by
instrumentation.

Measurement of Sinusoids in the Presence of Noise. A bandpass filter
followed by a linear detector is the simplest way to measure the ampli-
tude of a sine wave in the presence of noise. The method is accurate
if the peak sine-wave amplitude is greater than three times the rms noise
level. This corresponds to a signal-to-noise ratio of about 6 dB.

Acos 2w ft
Filter Linear envelope
t detector () +A4
nlt) vit) '—l x(t) 2Zi |E | -y
—> 5 -«

FIG 4-20 Detection of sine wave in noise, by linear detection.

See Fig. 4-20. If the sine wave is 4 cos wt and the noise n(t) is gaussian
with a uniform power density spectrum of G, W/Hz, the following
relationships are true:

V() = A cos wt + n(t) = filter input
B, = filter bandwidth in hertz (+B/2 about center frequency)
z(t) = w(t) + A cos wt = filter output
w(t) = band-limited version of n(t)
then
aw? = G.B; = noise power at filter output

The output of the linear envelope detector consists of two components:
a dc component proportional to the peak sine wave, and a gaussian noise
component z(¢) having zero mean value. The problem is now one of
measuring dc in the presence of noise. Averaging for a very long time
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will smooth out fluctuations due to z(f), but for finite averaging times,
the estimate A of the true sine wave of amplitude A will exhibit statistical
errors, the variance from Eq. (4-2-5) being

o2

Var (4) = BT

(4-5-1)

where B, is the effective bandwidth of z(t), and T the true averaging time.
(The effect of exponential smoothing instead of pure integration is dealt
with in Sec. 4-2.) In this particular case, the bandwidth of the detector
noise output B. = 1/2B, and the rms noise output o; is the same as the
rms noise input g, so that

2

Var (4) = ;;T (4-5-2)
Now the mean-square noise component out of the filter is

0 = B,G, (4-5-3)

Var (4) = Gn (4-5-4)

T

This result seems to show that the variance on the estimate of the sine-
wave amplitude due to the wideband noise is independent of the bandwidth
of the bandpass filter, and depends only on the averaging time. The
result is approximately correct, providing that the filter is sufficiently
narrow to ensure, say, a sine wave—to—noise ratio of 6 dB at its output,
and T > 1/B. For noisy signals, the analysis is much more complex [9].
Detection of a Sine Wave in Noise by Crosscorrelation with a Reference
Sine Wave. A sine wave hidden in noise can be detected by crosscorrelat-
ing the noisy signal with a clean version of the sine wave available locally.
Both magnitude and phase of the hidden signal can be determined. In
communications and radar applications, this is known as coherent detection.
If 2(f) is the noisy signal,

z(t) = A sin (ot + ¢) + n(t) (4-5-5)

Then the crosscorrelation with a reference sine wave gives

R.o(r) = A sin w.(t — m)[4 sin (0t + ¢) + n{0)] (4-5-6)

2
% cos (wer — ¢) + A sin w.(t — 7)n(?) (4-5-7)
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The second term, Eq. (4-5-7), is recognized as the crosscorrelation between
the noise and the sine wave

2

= 5 cos (o — ) + Rul®) 4-5-8)

Now, in general, the term R,.(r) will be zero if the noise n(f) is truly
random, so that the crosscorrelation R..(r) exhibits only the periodic
term of amplitude A?/2 and phase —¢. This result is true when averages
are taken over very long times, but for averages taken over a finite time,
the statistical error, from Appendix 4-D, is

—~~ 2,
Var (R,.(7)) = A4g"
_ 8D [estimate of (A42/2)] _ &
€= A2/2 “ Naer (4-5-9)

where @, is the power density of the noise in the region of f..

Detection of a Sine Wave in Noise by Autocorrelation. One of the most
dramatic demonstrations of the power of correlation techniques for
analyzing noisy signals is the detection by autocorrelation of periodie
signals hidden in random noise. Again refer to Fig. 4-20. The technique
relies on the fact that the autocorrelation function R..(r) of a periodic
signal s(t) will itself exhibit periodicity over all values of 7, whereas the
autocorrelation function R,.(r) of random noise n(t) will vanish for large .
If a signal z(t) is the sum of a periodic signal s(t) = A cos wt and random
noise n(t), we have z(f) = s(t) + n(t) and R..(r) = Rulr) + Raunl7).

3

Mean square |
of noise

R (T

ﬁgif ) ”_Zf
JaNWAY

; M B

FIG 4-21 Autocorrelation detects a sine wave hidden in random
noise.
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However, R,.(r) = 14A? cos wr, and for large 7, R..(r) — 0. Thus,
R..(r) = Y4A%cos wr (4-5-10)

for large 7.

We see therefore (Fig. 4-21) that by observing the autocorrelation func-
tion for large 7, it is possible to determine both the amplitude A and the
frequency w of the sinusoid.

APPENDIX 4-A

Determination of Impulse Response by Crosscorrelation

. 1 r7
R.y(r) = Tll.m., 7 Jo z(t — nyt) dt

i

lim 5 et = 0 [T et - w duds (4-A-1)

Interchange order of integration
Ru() = [ hw) [ lim % Jo" a = nxe =) dt] du (4-A-2)

The second integral is seen to be the autocorrelation of z(f) with argument
(r—w)
Ruy(r) = [_+"’ h(u)R.s(r — u) du (4-A-3)
Now, if we choose the bandwidth of the noise to be much greater than the
system passband, then in Eq. (4-A-3), A(u) will be a relatively slowly changing
function in comparison with R..(+ — u). The term h(u)will be almost constant

over the small range of values of u around w = r for which R .(r — u) has
significant values. The integral then becomes

Ruy() = h) [ 77 Resls = w) du (4-A-4)

Comparing this with Eq. (4-1-21), we see that the integral term gives us the
power spectral density for f = 0; hence

R.y(r) = 6h(r)G(0) (4-A-5)

where G.(f) is the physically realizable, one-sided power density spectrum, and
G.(0) is the value of this function in (volts)? per hertz, at very low frequencies.



102 Electronic Measurements and Instrumentation

APPENDIX 4-B
Effect of Contaminating Noise at Output of System

Crosscorrelation between the input z(f) and the observable output z(¢),

. 1 rT
Rulr) = lim 5 ﬁ) x(t — )2(t)
- lim % [/OT a(t — ny(t) dt + AT 2t — )n(t) dt]
Rou(s) = f:‘; h(W)Ryo(r — u) du + RBou(r) (4-B-1)

If z(¢) is white noise,
Boo(r) = 14G.(0)h(r) + Ran(r) (4-B-2)

If background noise n(t) is uncorrelated with test signal (), then R,,(r) = 0 for
all . Hence,

Rzz("') = }éGa: (O)h(”') (4"B-3)

That is, the result is unaffected by the presence of an uncorrelated background
disturbance.

APPENDIX 4-C
Effect of Background Disturbances at Input to a System

The term z(t) is a background disturbance and s(f) is an artificially injected
test signal.

Rofr) = lim o [Tt~y e (4-C-1)

T o
y(¢) = response due to z(t) + response due to s(t)
= /_“’ "Wzt — w) du + /:, h@)st — v) dv (4-C-2)

Making the substitution for y(f) and using a similar argument to that used in
Appendix 4-A, we have

R = [ 77 hRuG = w du+ [T ARG — ) do (4-C-3)

If s(¢) and z(t) are uncorrelated, then R,.(s) is zero for all r, and if s(t) is white
noise, the second term is simplified. We then have

Rw("') = }éGa(O)h("') (4-C-4)
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Crosscorrelation between the output and an injected white-noise test signal yields
the system impulse response, regardless of the presence of an uncorrelated
disturbance at the input.

APPENDIX 4-D
Statistical Errors in the Detection of a Sine Wave in Noise by
Crosscorrelation

When the frequency of the sine wave is known, its amplitude and phase can be
measured by crosscorrelating with a clean reference sine wave, even in the presence
of large amounts of background noise. Statistical errors are involved when
averages are taken over short intervals, and these may be analyzed as follows:

Let the noisy signal () consist of a clean sine wave s(¢) hidden in a background
of band-limited gaussian noise n(f) having a flat spectrum up to B Hz. The
frequency f. of the sine wave is less than the maximum noise frequency. We can
write

s(t) = A sin 2nf4 (4-D-1)
z(t) = s(t) + n(0) (4-D-2)

where n(t) is gaussian noise with spectrum flat to B Hz, B > f.. The operations
in crosscorrelation are indicated in Fig. 4-D-1. The statistical errors can be

Reterence sine wave
s(t)=Asnwet

X(t)

FIG 4-D-1 Diagram of. the operations
in crosscorrelation.

estimated by examining the statistics of the signal y(t) at the output of the
multiplier,

y@&) = s@®)[st — 7) +n(t — )] (4-D-3)
y(®) = A?sin 2rftsin 2nf.(t — 1) + n(t — ) A sin 2f (4-D-4)

If we take the average of y(t) over an interval of T sec, there will be three
components:
A mean level equal to the average of product

A2
sit)sit — 1) = > cos 2rf,r
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Gnl(F) .
% Ga(1)
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-(B-f;) A B+r
G, (f)
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V‘/HZ FIG 4-D-2 Powerdensity spectra
2
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A ripple component due to s(t)s(t — ) at frequency 2f,. This will be completely
smoothed out by averaging time T.

1
>~
fc

A component due to modulation products between noise n(t) and sine wave s(z).
Noise in the band around the frequency f. contributes to the variance in the
estimate of R,.(r).

Only the first term gives rise to a de component, and this is equal to the true
value of the correlation function R,.(r) which we are trying to measure.

The problem is to evaluate the variance on the estimate of this mean value
caused by the second and third terms, but since the second term is negligible, we
shall concentrate on the third term. By using Eq. (4-2-5), the variance of the
result can be written

Var [R,.{r)] = var (8,) = 26;"72' (4-D-5)

where o, is the rms value of the random-noise component of y(f) and B is its
equivalent bandwidth, and this can be written in terms of the low-frequency
power spectral density

G,(0)
2T

Var [R,.(r)] = var (g,) = (4-D-6)
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The magnitude of G,(0) can be deduced from a consideration of the power
density spectra of n(¢) and y(t). These are indicated in Fig. 4-D-2.

We can now compute the variance in the estimate of the mean value of y(¢f).
AG,
4T

Var (&,) = (4D-7)

where G is the power density of the original noise at frequencies in the region of
the carrier frequency f..

. A2,
V. wz(1)] = 4-D-
ar (B ()] = 7 (4-D-8)
The normalized error
. _ SDIR.()] _ [ Ga (4-D-0)

R.(x)  Narr
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CHAPTER FIVE

SIGNAL ANALYSIS BY
DIGITAL TECHNIQUES

Ronald W. Potter

Hewlett-Packard Company,
Santa Clara, California

The theoretical aspects of signal analysis have been covered extensively
in numerous texts and papers. However, the implementation of many of
these operations on real data has not been studied so thoroughly. There
are many restrictions imposed by “nature” that have a profound effect
on the results of real-data analysis. For example, one restriction is the
requirement of a finite observation interval. This chapter will discuss
implications of these restrictions in the analysis of both random and
coherent data. Data are assumed to be in digital form to facilitate the
various operations that are normally required in signal analysis. The
continual increase in availability and types of computer facilities and
the decrease in cost are accelerating the development of digital instru-
mentation for signal processing.

In the context of this chapter, a signal is simply a function of a single
real variable, usually time. The signal may be random, coherent, or
mixed. It is generally desired to extract information from this signal in
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some recognizable form. The various techniques that are available for
this purpose comprise the tools for data analysis. The basic theory is
assumed to be familiar and hence will be reviewed rather briefly.

It must be recognized that all signal analysis is done with a finite
amount of data. Also, the data are available over some effective time
interval, and there is a limit to the time resolution that can be obtained.
The quotient of these two numbers (interval/resolution) is the number
of data points available. Similar limits on range and resolution apply to
the ordinate of each data point. The various analysis techniques may
reduce or alter the data, but obviously cannot provide new information.
Furthermore, the information content may be quite small in comparison
with the amount of data available (in random noise, for example). Thus,
it is necessary to recognize the uncertainty or statistical variation of each
ordinate value, and it may take vast amounts of data to yield information
with a small degree of uncertainty.

The Fourier transform and various statistical operations (such as
averaging) constitute the basic tools that will be used. It is very con-
venient to have data in digital form for the implementation of these
operations because arithmetic can be performed with arbitrary aceuracy
and data may be stored indefinitely. The digital approach also makes
the various resolution and range limitations more explicit and helps to
emphasize the finite amount of available information.

In order to place signal analysis in its proper context, consider some
practical applications before delving into the theoretical details. Con-
sider a vibrating structure such as an engine mount, a space vehicle, or
a bridge, dam, or building. The designer must know the natural resonant
frequencies and the sharpness (or @) of these resonances. These quantities
are usually very difficult to calculate and so must be measured. The
excitation source may be a coherent signal such as a rotating eccentric
weight attached to the face of a dam, or it may be a single transient
such as a hammer blow. In some applications the source may be random
noise such as turbulent air flow or a shake table driven from a random-
noise generator. In many of these applications the source of exeitation
cannot be controlled by the user, which makes a study of the source char-
acteristics another very important application. There may be many
sources that contribute to the response at a particular point in a system.
For example, how much of the vibration felt by an automobile passenger
is caused by road roughness and how much originates in the motor or
drive train? The use of crosscorrelation or cross-spectrum techniques
allows the various sources and their propagation paths to be studied.

It may be desirable to test a control system with a prescribed driving
funection such as a pulse or random noise. The Fourier transform of the
output waveform can be divided by the transform of the input to obtain
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the system transfer function. Again, it is possible to simulate different
transfer functions and then to evaluate the performance with different
excitation signals.

In many situations the transfer function of a particular device or system
causes a ‘“‘smearing’”’ of the true waveform and hence introduces a resolu-
tion limitation. In this case, a deconvolution or inverse-filtering tech-
nique can often be used to recover some of this “lost” resolution. - Thus,
the resolution of devices such as the gas chromatograph, the nuclear
scintillation detector, and the sampling oscilloscope can be improved by
using this technique. A similar scheme can be used to improve seismo-
graphic records that are obtained during exploration for oil or gas deposits.

The power spectrum “signature’” of a device can be used for identifica-
tion purposes. For example, underwater noises can be used to locate
schools of fish or to identify ships and submarines.

Signal averaging has been used with considerable success in studying
brain waves, heart waveforms, and pulsar signals from space.

5.1 Fourier Transform—Review of Basic Theory (1, 2, 3,]

Definition of continuous transform:
F(s) = f_: F()ei2ret dt direct transform (5-1-1)
f@) = f_: F(s)es? st ds inverse transform (5-1-2)

It is useful to think of ¢ as time and s as frequency. Note that ¢ and s
have reciprocal dimensions. F(s) has the dimensions of #f(t) or s~If(f).
Thus, if f(¢) is in volts, F(s) will be in volts per hertz.

Denote transform pairs with a double arrow. The shifting and scaling
relation is given by

f (‘;b‘f) > be-i2mesF (bs) (5-1-3)

where f(t) < F(s).

Contraction of the ¢ axis by a factor b results in expansion of the s axis

by b, but also introduces a multiplier of b which preserves the area in the

s domain. Displacement of the t axis by a results in a helical twist about

the s axisin the transform domain. The pitch of the helix is —2mra rad/Hz.
Convolution is defined as follows:

he) = [T, 50g(t = N dx (5-1-4)

Let f(t) « F(s), g(t) «> G(s), and h(?) <> H(s). Then H(s) = F(s)G(s).
Thus convolution in one domain corresponds to multiplication in the
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other domain. It is very useful to develop a “feel’” for the convolution
process. As indicated in the definition, g(t) is replaced by g(—t) and
multiplied by f(¢) for various displacements. The value of A(f) is simply
the area under the product curve for a particular displacement. Thus it
should be obvious that a rectangle convolved with itself is a triangle.
Any waveform convolved with a delta function is simply a replication of
the original waveform. \

From the defining equations for the transform the following relations
can be obtained:

F(0) = f_”, fdt and  fO) = f_: F(s) ds (5-1-5)

Thus, the area under f(f) is simply the value of its transform at the origin.

From this it can be deduced that the convolution operation multiplies

areas. The area under i(f) is the product of the areas under f(¢) and ¢(t).
Integration and differentiation operations are

D™F (s) & (—22xt)"f(1) DWft) & (i2ws)"F(s) (5-1-6)

D®™ is the nth derivative operator. Integration is obtained when = is
negative. Integration constants must usually be added.

By combining the various relationships previously defined with the
commonly known transform pairs shown in Table 5-1, it is often fairly
simple to deduce the transform of a particular function. The transform
of a real function always produces a real part with even symmetry and
an imaginary part with odd symmetry.

In practice, however, there are two reasons that the Fourier transform
as defined above cannot be calculated:

1. Integration intervals must be finite.
2. Abscissa resolution is finite.

TABLE 5-1 List of Common Transform Pairs

F(s) f@
1 a(1) Unit delta function
I1I(s) 111() Infinite train of unit delta functions with unit

spacing
sin rs . . .
o () Rectangle with unit width, height, and area
kg
e’ e Gaussian with unit height and area
] [6(S) - i] U@ Unit step
s

;[6(3 +1) —8(s — 1)] |sin 2nt
14[8(s + 1) + 8(s — 1)} | cos 2=t




110 Electronic Measurements and Instrumentation

As derived below, finite integration in one domain implies finite abscissa
resolution in the other domain. Assume that ¢ is restricted to the range
0 <t < T. Since there is no available information outside of this range,
an uncertainty has been introduced. This restricted function can be

(1)
P I i Ir‘w P U W
/ \ / \ / \
! \\ ! \\ / \\ Or igi"‘m \ A \\
-3a -20 -a 0 7o 20 3a

FIG 5-1 A function convolved with an infinite train of delta
functions.

convolved with an infinite train of unit delta functions a—!11I(t/a) spaced
a units apart without affecting the interval 0 <t < T, provided a > T
(see Fig. 5-1). Thus F(s) can be multiplied by III(sT) without altering
the original information. These samples are spaced As = 1/T apart.
A similar argument will show that finite time resolution At dictates a
band-limited frequency funection not exceeding +1/2At. These restric-
tions imply a finite number of data points, N = T/At = 1/(As At).

Introducing the functions III(s/As) and III(t/Af) into the Fourier
transform definition causes the variables ¢ and s to take on discrete values
(t = n At and s = m As) and converts the integrations over infinite inter-
vals into summations over finite intervals. The resulting discrete Fourier
transform definitions are given below, with N At As = 1.

F(m As) f(n At)e=#rmniN (5-1-7)

N-—-1
=AY
n=0
N-—1
fin A = As Y,
m=0

F(m As)ei2rmnIN (5-1-8)
Now the Fourier transform simply becomes the product of a vector f(n At)
and a matrix e~"*/¥ to yield a vector F(m As) in the transform domain.
A conjugate matrix is used for inversion. This is the classical way of
calculating the transform, but it requires a very large number of arithmetic
operations. In contrast, the Cooley-Tukey algorithm [4, 5] is much more
efficient and will be described very briefly.t

If N is factorable, then m and n can be written as the sum of several
indices, each corresponding to a factor. Thus, the single large summation

t Though the following few paragraphs will not enable the reader to use the algo-
rithm in computations, it will give him a brief introduction to the procedure. Con-
sult the references [4, 5] for detailed instructions.
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is decomposed into several small summations. Similarly, the exponential
matrix is broken into the product of several smaller matrices. The most
efficient factorization occurs when N is an integer power of 2. Define a
new set of indices as follows:

: R—1
n= 3 k2 (5-1-9)
r=0
where N = 28
R—-1
m= 3 j2 (5-1-10)
r=0

where j, and k, are binary variables.

The product mn contains terms that are multiples of N. These terms
simply introduce a factor of unity and hence may be ignored. The
resulting expression for mn/N is given below.

mn R—1 R—s-1

v - > Y dk2rn (5-1-11)
s=0 =0

The discrete Fourier transform may now be written as follows:

1 1
F(joji, « .« . yjr-1) = A z

ko=0 ki=0
1 R—1 R—-s—1
oy, -« Jaed) [T [T even (5-1-12)
kr1=0 3=0 r=0

where
ij = jrk,2a+r—R

A study of mn/N will show that each time k, is summed out of the expres-
sion it is replaced by jr—.—;. Thus the least significant indices of n are
replaced by the most significant indices of m. After R summations, the
k indices have been summed out and replaced by the j indices. Since the
significance of the indices has been reversed, the transform data will
not be ordered properly and thus must be reordered. A study of mn/N
will show that after each summation there are additional multiplying
factors that must be applied. Some of these must be applied before the
next summation, while the application of other factors is optional. This
algorithm essentially allows a one-dimensional transform to be calculated
as an R-dimensional transform. However, the R dimensions are not inde-
pendent since the original data points are ordered. The multiplying
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factors after each summation are necessary to preserve the ordered rela-
tionship between the points.

The discrete Fourier transform is not the same as the continuous trans-
form, and the resulting frequency functions may be considerably different.
As indicated previously, sampling in the time domain with an interval
At requires that the frequency spectrum be band limited to +1/2At.
Thus the minimum sampling rate (Nyquist rate) is twice the highest
frequency present. If sampling is done slower than this, there will be an
overlap of adjacent replicas of the true spectrum and “aliasing” will
occur. In some cases this overlap is actually desired, although in most
cases it is considered an aliasing error. Sampling in the time domain
with an interval At actually causes a superposition of all frequency intervals
spaced 1/At apart. Thus all frequencies above the Nyquist rate will be
heterodyned into the base band. These “image” frequencies cannot be
distinguished from the true base-band spectrum.

Another very important anomaly introduced by the discrete transform
is the finite time window and resulting frequency line shape. A rectangu-
lar time window of width T produces a sin xsT /s line shape in the fre-
quency domain. Thus the true spectrum is convolved (smeared) by this
line shape. This convolution is effected before quantization along the
frequency axis. Thus, if the original data are periodic such that there is
an integer number of periods in the time window, the line shape does not
appear because frequency samples occur at zero crossings. However,
if there is an odd number of half cycles in the time window, frequency
samples occur at the peaks of the sin #sT /s line shape and a hyperbolic
line shape 1/xs occurs. Thus a single frequency waveform may transform
into a broad band of frequencies. This leakage from one frequency into a
band of adjacent frequencies is usually very undesirable. The cure is to
reshape the time window to produce a line shape with smaller side lobes.
This technique will broaden the main lobe and hence reduce frequency
resolution, but it reduces the interference of one frequency with its
neighbors. Various time windows and line shapes will be evaluated later.

References 1 through 5 are useful for the discussion to this point in the
chapter.

5.2 Statisticc—Review of Basic Theory [6, 7, 8]

A random variable is normally described by its pdf. Consider arandom
. b z
variable z and its probability density function p(z). Then ﬁ e p(x) dz

is the probability of finding = between b and b + Ax. Obviously, the
total area under p(z) is unity. In a similar way, it is possible to describe
multidimensional pdf’s of several random variables.
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The characteristic function of a random variable is simply the Fourier
transform of its pdf.

F(s) = f_: p(a)e?r= dz (5-2-1)
p(z) = [ _: F(s)ei?= ds (5-2-2)
Note that F(0) = /_"” p(z) dz = 1.
Differentiation of Eq. (5-2-1) n times and evaluation at s = 0 gives
Fw(0) = [ (—i2n2)"p(a) dz = (—i2n)"z" (5-2-3)
where z* is the nth moment of p()

_ F(n) 0 ®
" = (-—’i2(1r;" = /_.. z"p(x) dx (5-2-4)

Thus, the moments of p(z) can be easily calculated from the derivatives
of the characteristic function. Similar equations apply for multidimen-
sional distributions. "

The cumulative probability distribution is defined as

P(z) = /j” p(V) dA (5-2-5)

This expresses the probability that the random variable is less than some
value z. The expression P(z) is used to obtain limits within which the
random variable will be found a prescribed percentage of the time.

By using the characteristic funection, it is easy to show that the proba-
bility density of the sum of several independent random variables is
simply the convolution of their respective probability densities. Define

as the sum of » random variables. Then

p(x) = p1(x1) * paxa) * -+ * PalZa)

where pi(z:) is the probability density of the random variable z;, and the
asterisk denotes convolution.

A random process can be described simply as a random variable that
changes with time. Thus, in addition to the description of a random
variable, it is necessary to describe the dynamics of the process as a
function of time. The study of a single random record has limited value;
therefore, the concept of an ensemble of records of a random process must
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be introduced. Consider an arbitrarily large number of random records
being produced simultaneously from different but identical sources.
These data may be recorded in a multichannel memory for further study.
The ensemble properties may be studied for each time value, or the time
properties may be studied for each record in the ensemble.

A stationary process is one in which the ensemble statistics (pdf and
moments) are independent of time. Otherwise it is called a nonstationary
random process. A stationary process is ergodic if the ensemble statistics
are identical with the time statistics. This means that ensemble averages
are the same as time averages. Most of the theoretical work in this field
is based on stationary (and usually ergodic) processes. However,
nonstationary processes very often occur in practice.

The dynamics of a stationary random process are described by a power
density spectrum or its Fourier transform, the autocorrelation function.
It should be emphasized that the power density spectrum is not related
to the pdf, and one cannot be derived from the other. It is possible that
the pdf will be different in each frequency interval of the power density
spectrum. The power density spectrum is an ensemble average of the
power density of each time record. If the process is ergodic, an average
of power densities calculated for different times may be used in place of an
ensemble average.

5.3 Signal Analysis

The extraction of meaningful information from an arbitrary signal is
more of an art than a science in many cases. If nothing is known a
priori about the signal, then several measurement techniques must
generally be tried and the properties of these measurement processes must
be known in order to interpret the results correctly. The questions
arise: How many power density spectra must be averaged to allow a
preseribed accuracy in the detection or measurement of a coherent signal
buried in noise? What is the frequency-domain equivalent of linear
signal averaging? What are the problems encountered in inverse filtering
or dezonvolution? These questions and others of a related nature will be
discussed, along with the various measurement techniques that have been
found to be useful.

Histograms. One of the simplest statistical measures is the amplitude
probability density, or amplitude histogram. The general technique is
to digitize the instantaneous amplitude of a signal and then to increment
the count in a memory cell whose address is given by this signal ampli-
tude. The statistical significance of the number in each memory cell is
dependent on the magnitude of the number. This relation will be
derived below.
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It is important to note that the differential linéarity of the analog-to-
digital converter is very critical in histogram applications. To under-
stand this, denote the voltage resolution of the analog-to-digital converter
by AE. Ideally each AE would be identical, but in practice there is some
variation in AE from one voltage level to another. A typical probability
density is shown in Fig. 5-2.

p(AE)

L A
el

FIG 5-2 Probability density functi
of analog-to-digital converter sampling
error.

Define AE,, (Fig. 5-2) as the maximum deviation from AE (mean value
of AE). Then the differential linearity is n = AE./AE. In histogram
measurements the amplitude in each channel is directly proportional to the
channel width AE, and thus the histogram plot will have an amplitude
distribution that is the same as shown in Fig. 5-2. For example, 1 percent
differential linearity will produce 1 percent amplitude variation in the
histogram distribution.

Assume that N memory channels are used to accumulate an amplitude
histogram. Define ¢ as the probability of finding the input voltage in
some particular memory channel. The probability density pi(m) for m
counts in a particular channel after only one count has been recorded is
shown in Fig. 5-3. (The probability is the area of the delta function.)

1-€ py(m)y (1-€)?
A /”'/I c [ /26(1-5)
4 m " 4€ m
o 1 o 1 2
FIG 5-3 Probability density after one FIG 5-4 Probability density after
count (see text). two counts (see text).

The probability density for m counts in a particular channel after a
total of two counts have been recorded is simply the convolution of p;(m)
with itself (Fig. 5-4). By generalizing this concept, it can be seen that
the probability for m counts in a particular channel after a total of n
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counts have been recorded is given by

pa(m) = (}n) (1 — o (5-3-1)

where

() = m

are the binomial coefficients. This equation represents a binomial dis-
tribution. For ne(1 — ¢) > 1, the above expression becomes gaussian:
1

” ~ — e (m—ne?/[2ne(1—e)] 5-3-2
Pa(m) [2rne(l — €)]* ¢ ( )

This equivalence is called the DeMoivre-Laplace theorem [9].

The mean is M = ne and the standard deviation is ¢ = Vne(1 — ¢).
The quantity o/m = [(1 — €)/ne]** is a good measure of the statistical
uncertainty. Note that this uncertainty depends on ¢ as well asn. For

= 1, all counts go into one channel and ¢ = 0. For ¢ < 1, the uncer-
tainty increases for a given value of n. The value of e may not be known
a priori, but it will become apparent as the histogram is formed.

Histograms are very useful to detect the presence of a coherent signal
buried in noise, particularly when the noise has a gaussian or other known
distribution. Amplitude histograms of coherent signals can often be
recognized. Define a coherent and periodic function z = f(¢f). It can
readily be shown that the probability density of z is given by

T T

p()_—f’f’(—t) fOI‘—“EStS'é (5-3-3)
where T is the period of f(f). Thus the probability density of a coherent
signal is inversely proportional to its slope. For example, define
z=f({t) =sint. Thenf/(t) =cost =1 —2)" T =2r,and —r <t <.
So, p(z) = 1/[r(1 — 2%)*] for —1 <z < 1. The range of z is covered
twice as ¢ ranges between +, and so p(z) includes this additional factor
of 2.

Signal Averaging. For ergodic random processes it is possible to obtain
an ensemble average by selecting records in time sequence. If the process
has some coherent signal, and if sampling is done in synchronism with
this eoherent part, then the ensemble average will increase the signal-to-
noise ratio. There are two aspects of this signal-averaging process to be
considered. One aspect is concerned with the statistical variation in each
memory channel of the sampled signal, and the other aspect is concerned
with the dynamics or time-frequency behavior of the process. Consider
first the statistical variation in each channel. All samples for a particular
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memory channel are drawn from the same population, whose probability
density can be described by Fig. 5-5. There exists some arbitrary proba-
bility density function p(z) with a mean % that represents the coherent
signal value for that particular channel, and a distribution about that

A

X

FIG 5-5 Probability density in one
memory channel of signal averager.

mean which represents random noise. Let ¢% be the variance of p(z).
The averaging process consists of summing n random variables from the
above population (for each memory channel) and then dividing by n to
obtain an average. If the samples are independent, the probability
density of the sum of these n random variables is simply p(z) convolved
together n times. This will produce a new mean n and a new variance
ne?.  The function p(xr) will also tend to become gaussian for large n
{central-limit theorem). Division by n will restore the mean to %, but
the variance is reduced to ¢?/n and the standard deviation is o/(n)*.
Thus the averaging process has reduced the noise voltage by \/1;, provided
al]l samples are independent.

The temporal dynamies of the signal-averaging process are best
described by deriving the equivalent filter of the process in the frequency
domain. Consider an arbitrary signal f(f) with a periodic component of
period . Records of length T will be sampled with a time window g(f)
and averaged into a memory. Successive records are taken in synchronism
with the periodic component of f(f) and are spaced kr apart, where k is
some positive integer (often unity). The resulting average of N time
records can be represented by

1 N-1
hO) = 5 RGN (5-3-4)
n=0

where t' = ¢ — nkr and g(f) = 0 outside the interval 0 < ¢t < T. Define
H(s) &> h(t), F(s) & f(t), and G(s) < g(t) as Fourier transform pairs.
Then H(s) becomes '

1 N-1
H(s) = I—V Z [F(S) * G(s)]e—ﬂrnkre
n=0

N-1
[F(s)  G(s)] ) emitenke (5-3-5)

n=0

_1
~ N
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where the asterisk denotes the convolution operation. The equivalent
filter for the signal-averaging operation is

N—1 .
1 ) 11— e—:21rNkrs
¢(s) = IV zo eitrnkrs = N m (5-3-6)
_ SinaNkrs g—in(N—Dkrs
N sin nkrs
sin 7 Nkrs
= — -3-7
14O = N in ks (5-3-7)

The function |¢(s)| resembles a comb filter with major lobes at s = m/kr,
where m 1s an integer (see Fig. 5-6). The quantity 1/kr is the rate at
which the various records of data are acquired. Thus all harmonics of
this data-acquisition rate are preserved in the signal averaging. There
are minor lobes at s = (m + 14)/Nkr, with an envelope (1/N) csc nkrs.
Further, |¢(s)| = 1 for s = m/kr (major lobes), and |¢(s)] = 1/N at the
midpoint between major lobes. Thus various frequencies are attenuated
by different amounts depending on their relationship with the basic data-
acquisition rate. There are N — 1 lobes, and the main lobe is twice as
wide as the side lobes. Thus as more records are averaged, the main
lobe narrows, more side lobes appear, and the attenuation between major
lobes increases. The following relation can be readily derived:

T . T 1
[ et ds = [ is()1rds = (5-3-9)

Thus, the power of initially white noise is reduced by 1/N by the averaging
process, although the noise is no longer white.

At the end of the chapter (Fig. 5-32) the effective transfer functions of
a signal averager are shown, as determined by a digital computer. Start-
ing with the top photograph, the value for N is progressively increased:
2, 4, 8, 16, 32. ‘

1 (s )l
1

/Lv CSC mkts

—_—
Repeat

|-

1 1 1
(l) KT l‘_/vﬁ_'r >
1

™ T

FIG 5-6 Equivalent filter for a signal averager with N = 5.
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Digitizing Errors. A digression will be made at this point to consider
the effects produced in converting an analog signal into a digital repre-
sentation. Consider a periodic record of period T sampled at Af intervals
80 that T = n At. Each sample is digitized in an analog-to-digital con-

Error £(#

FIG 5-7 Emor signal after sampling.

verter with a voltage resolution AE. Each sample may be in error by
+AE/2 or less, and Fig. 5-7 shows one possible appearance of the error
signal after sampling. Assume that the error in each sample is random
and independent of all other sample errors. The probability density

plE)
1
Y3
AE 8L £
2 2
FIG 5-8 Probability density of sam-

pling error.

(Fig. 5-8) of this random variable is rectangular. The variance of E is
(AE)2/12 and represents the total noise power. The autocorrelation
function is simply a train of delta functions spaced T apart, each having
an area of At (AE)%/12. The power density spectrum (Fig. 5-9) is there-

Power
density

A A

s (frequenc
o 0 il 1 quency)
T 24t
S XN,

FIG 5-9 Power density spectrum of sampling error.

fore flat with frequency and has an amplitude of At (AE)2/12. There are
n samples of the power density spaced 1/T apart, so that the total power
is (AE)?%/12. Suppose that an m-bit analog-to-digital converter is used
so that a full-scale voltage would have a magnitude E,, = +271AE. A
full-scale pulse of width A¢ would produce a flat power density spectrum
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of amplitude At E,2 = At (AE)? 20m—2, The power signal-to-noise ratio
at each frequency is 3 X 2. Thus for a 10-bit analog-to-digital con-
verter the signal-to-noise ratio is 64.98 dB. If a full-scale dc signal is
sampled, the power density spectrum would be a single sample point of
amplitude n At E.2. Thus the power signal-to-noise ratio is improved by
the number of sample points in the record. It must be emphasized that
the above results are only valid if the errors at the various sample points
are independent. When sampling coherent waveforms, this condition
may not be met. The worst case for coherent sampling occurs when the
error is constant over the record with an amplitude of AE/2. The power
spectrum is a single sample point of amplitude n Af (AE)%/4. The worst
power signal-to-noise ratio is 2?"/n at de.

There is a technique for reducing the noise caused by the digitizing
process, provided it is possible to average many signal records. The
scheme simply is to add a small amount of noise to the signal before
sampling, and then average the result to reduce the noise. If the desired
digitizing noise reduction is specified, the number of records that must be
averaged is determined thereby, and the amount of noise that must be
added to the original signal can be calculated. The algebra becomes
rather tedious for portions of the discussion which follows, and so in some
cases only the results will be shown. However, the general method of
attack will be explained.

Assume an arbitrary nonrandom input signal E(f), which is sampled at
some particular time ¢, (see Fig. 5-10). Assume that the true voltage at
tois E,. The pdf for this voltage (Fig. 5-11)is 6(E — E,). Next assume
random noise with probability density po(E) is added to E(f). 'The proba-
bility density of the sum of two independent random variables is the
convolution of their individual probability densities. The resulting dis-
tribution is shown in Fig. 5-12. The mean of py(E) is assumed to be

E(t)
PIE)  S(E-ES)
TN
t i
N—A 7 ~— | £s £
FIG 5-10 An arbitrary nonrandom input FIG 5-11 Probability density for
signal. voltage at ¢, in Fig. 5-10.

zero. In the sampling process the E axis is digitized into intervals of
width AE (analog-to-digital converter resolution). The value assigned
to the mth point is simply the integral of p(E) over an interval of width
AE centered on the mth point. Figure 5-13 should clarify this statement.

p(m AE) = 5(E — m AB) [ "7 po(n — E.) (5-3-9)

m
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The probability density after sampling then becomes

py(E) p(m AE)

m=—w
L

2 3(E — m AE) /_: m‘(x—_;;—w) po(h — E.) dx
(5-3-10)

where [M(E) is a rectangle of unit width and height centered at the origin.
Note that M(E) = M(—E). Thus the integral is represented by the con-

plE)

(E-Eg/
LA ; Pol E-Es
I ]
l tls £ _'l mDE I_‘_Es palias
FIG 5-12 Probability density for E(?) FIG 5-13 Digitized value (shaded area)
with random noise added. of p(E).
volution of [M(E/AE) and po(E — E,). Define
E
II{—) = -
(AE> AE _2,, 5(E — m AE)
Thus,
1 E E
E —— E—-E, — -3-
»(E) = B [m (AE) * o E)]III (AE> (5-3-11)
The characteristic function II,(s) is given by
AE
M(s) = I1I(s AE) *[ o(s) Snms AE 2E] (5-3-12)

where II,(s) <> po(E) are Fourier transform pairs. Thus the continuous
function within the brackets is reproduced about a train of delta functions
spaced 1/AE apart. Suppose that n records from the analog-to-digital
converter are averaged together. The probability density of the sum of n
independent random variables is the convolution of their individual
densities. The characteristic function is therefore the product of the
individual characteristic functions.

pa(E) = pi(E)*" (5-3-13)
where * denotes convolution

.(s) = I:*(s) (5-3-14)
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Writing Eq. (5-3-12) in a different way,

“ sin7 AE 2., )
() = ) ﬁz—no(zm)e-zw«m (5-3-15)

m=—o

where 2, = s — (m/AE). Note that IL(0) = Ie(0) = 1 and I1,(V(0) = 0.
Recall that the rth moment of E is given by

_ o0

7 - 100

(—12m)"

where II)(s) is the rth derivative of IT (s). Thusit is necessary to evaluate
at least the first two derivatives of II.(s) at s = 0.

LV (s) = nIIP=Y(s)IT, 0 (s) (5-3-17)
L) = (OO (s) + n(n — DIFHILOE)E (5-3-18)

® .
Z {azm COS a2y — Sin az,

(5-3-16)

M,V (s) = Io(2m)

azm?

T SIN a2m [Ho“)(zm) — i2rEsHo(2m)]l e—i2rEz, (5_3_19)
Aem
m
h m = § — —
where 2z s AF
a =1 AF
T AE m
It - _1ym 2% =) p—itemE, AR -3-20
11, (0) m;_” (=)m =1, <AE)e (5-3-20)
for m £ 0, and for m = 0,
IM(0) = MW (0) ~ i2xE, = —12+E, (5-3-21)

The second derivative is straightforward but involves considerable
algebra. Only the result for IT,? (0) will be given.

IO () = — (2nE,)?
% AE [AE m
=2 2 o[ ()

+ irE,II, (&) — MW (ﬁ)] eTIZTmEJAE  (5.3.99)

AE
for m = 0.
ML®(0) = —(20)B,2 — J5(r AE)* + 11,2 (0) (5-3-23)
for m = 0.
IL,Y(0) = nI,(0(0) (5-3-24)

1,2 (0) = nll®(0) + n(n — 1)[IL,V(0)]2 (5-3-25)
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The variance can be obtained by subtracting the square of the mean from
the second moment. In the s domain this gives

L) — [LYO)) = #ll®(©) — ol O] (5-3-26)

Thus the variance after summing is simply n times the variance before
summing. Notice that the moments before sampling are given by m = 0.
Thus the errors in the moments introduced by sampling are given by the
terms m # 0. The moments of E after sampling and averaging are

E=E,+¢ (5-3-27)
— _ 171 1
E? — (E)z = — [_ (AE)Z - Ho(z)(()) ] + 82 (5-3-28)
nl12 4n2
i v AE m
- — — 1)y — —_ —i2amE JAE 2.
; 2”;_“( 1) mno<AE>e (5-3-29)
for m # 0.
1 c AE [AE m
2 — _1Yym — | —— -
8 2na? m;ﬁ (=D m [ m 1o (AE)
m m —_—
—irE, ) _ n [ — —i2rmE,[AE E)? _9_
for m # 0.
— 1 o AE m 2
2 — — m___ _ —i2rmE JAE -3-
R e
for m # 0.

The errors caused by sampling are ¢ and §2. The quantity (AE)? = 0 for
all practical purposes. Notice that these errors are represented in
Fourier series form in the variable E,/AE. The errors depend on the
precise location of E, in the AE interval of analog-to-digital converter
resolution.

For most practical situations, the repeated convolution of probability
densities will eventually lead to a gaussian probability density (central-
limit theorem) so that it is reasonable to assume a gaussian distribution
for E. The moments have already been calculated; therefore, the dis-
tribution is given explicitly by

1

I nE
pa(E) = SE e—14(E-B iz ][ (E) (5-3-32)
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where 22 = E? — (E)2. The random variable E actually is a discrete
variable with an interval AE/n (the averaging process has reduced the
interval by n). However, p.(E) may be considered a continuous func-
tion for all practical purposes.

Define a confidence level A as follows:

E.+E,
4= [ . pa(E) dE (5-3-33)

where E, is a confidence interval. This means that the probability of
finding E in the interval E, — Ey < E < E, + E, is A. Normally 4 is
specified and E is calculated. For the gaussian distribution given above,
A can be written as

1 Eo + € Eo — €
A= 3 [erf (W) —l-' erf( ¥ty )] (5-3-34)

where erf (2) is the error function. Given A, then E, can be calculated or
determined from a table of the error function.

Consider a special case where the additive noise before sampling has a
gaussian probability density with zero mean.

Po(E) eiEl? (5-3-35)

1
B o(2r)*

where o is the variance and rms noise power. The characteristic function
is

IIy(s) = e—2oma)? (5-3-36)
The error in mean value caused by the digitizing process is
1 v E, i
- - z —1)m ik e—2<m"/w>* sin (2ﬂm AE) (5-3-37)

This is a Fourier series describing e in terms of E,. Tor ¢ = 0, this
becomes the series representation of a sawtooth waveform with period
AE and peak amplitude +AE/2. For ¢ 3> AE, the only term of signifi-
cance is m = 1. Thus,

€ ~ _ﬁ e—27a/AE)? gip (
™

E 8
a E') (5-3-38)

‘flmnx

= A_E’ e—2(7m'/AE)2 (5_3_39)
™

For example, suppose |e/max = 0.01(AE/2). Theno = 0.4587AE. Thus
two samples within the gaussian noise envelope will give a mean-value



Signal Analysis by Digital Techniques 125

error reduction of 100. The variance can be written as

2 '2_1i 2 2 Nii 2 2] — 2
E* — (B) [12(AE’) +a]+52~ [IZ(AE) +a] =3
(5-3-40)

1 AE\? E, E,
82 =~ - g Hox/AE) [(T) €os 2r N + 402 cos 2r AE

AE Es . E
— AE] (5-3-41)

sin 27

The expression for % assumes m = 1. Note that 82 is very small because
of the term e~2¢*/2B* and so0 will be neglected. Thus the mean and second
moment of the final voltage after sampling have been determined. For a
specified number of averages, n, and a specified confidence level A, how
much noise o should be added prior to sampling to reduce the digitizing
error to a minimum, and what is this minimum value? The optimum ¢
can be obtained by differentiating A with respect to ¢ and equating to
zero. The quantity |e/max is used in place of e. The result of differentia-
tion is )

coth (@) _€ _Z (de/d02>
)  E, E,\dZ/ds’

AE 1 a?
= = 2 - —(ra/AE)? -3-42
Ghren(+3:)]e (5-3-42)
Define
el E,
= 3 and k= @)%z
Then
2k2
z tanh ¢ = 5-3-43
1+ @2m)Y} s + (o'/AE")] ( )
where
z = nk, 1 —2(no/AE)?

x AE M2 + (o%/AEY)]

and

_ 5 (71)” !
T AEN2) [¥y + (e¥/AE)P
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The confidence level 4 can be expressed as

A =14 [erf (k + Z—Ik) + erf (k ~ -2%;)] (5-3-44)
Normally |z/2k| « |k| and so A may be approximated as follows:
IZ
A = erf (k) — W er* (5-3-45)

Assume that A is given, and evaluate an approximation to % by using
A =~ erf (k). Tor a given value of o/AE then, z is calculated by Eq.
(5-3-43). This is a transcendental equation, but it can be readily solved
on a slide rule with the D and Th scales. These values of k£ and z are
inserted in Eq. (5-3-45) to obtain a eloser value of k. Normally one
iteration is sufficient. By using the final values of k and z, it is possible
to calculate n and E:

1/x2\2 /1 a? )
=3 (F) Gt ) (5340
2
A% = % eI (5-3-47)

Because of the approximation m = 1, this method begins to lose accuracy
for o/AE < 0.4 (n < 100 or Eo/AE > 0.1). Curves of n and E,/AE ver-
sus o/AE are shown in Fig. 5-14. For example, if ¢/AE = 0.57 and
n = 105 then Eo/AE = 0.005. This represents a reduction in analog-to-
digital converter error by a factor of 100. Note that only a very small
amount of additive noise is needed prior to sampling.

Spectral Analysis. Perhaps the most important tool in signal analysis
is the Fourier transform. This is primarily true because the Fourier
transformation occurs so often in nature. Any time an observation
involves a linear summation of phasors of arbitrary amplitude, the
Fourier transform is included. Linear differential equations have solu-
tions using the transform of the driving function. Optical, electro-
magnetic, and acoustical far-field distributions are transforms of the source
function. A time waveform and its frequency spectrum are Fourier
transform pairs. The primary characteristic of the transform that makes
it so useful is related to the inverse nature of the transform variables.
Fine structure in a time waveform, for instance, becomes gross structure
in the transform domain. This implies a presentation of the data in an
entirely different form, and allows new observations which might other-
wise be hidden.

The nature of the discrete Fourier transform has already been discussed,
and the concept of a time window and a line shape have been introduced.
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FIG 5-14 Optimum values of noise, o/AE, and resultant error,

Eo/AE for a given number of averages, 7, for a confidence level A
of 0.99.

These are fundamental to the spectral analysis process and will be
investigated somewhat more thoroughly. The time window and its
associated line shape are Fourier transform pairs. A finite time record of
data is usually obtained by multiplying an infinite record by a rectangular
time window. However, the resulting sin xsT/xs line shape has serious
disadvantages. The side lobes only drop 6 dB/ octave, and hence adjacent
frequency channels interfere with one another (see Fig. 5-15a).
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In order to reduce this interference (often called leakage) between
channels, it is necessary to generate a line shape with smaller side lobes
[8]. In the time domain, this corresponds to a window whose transitions
are less abrupt than the rectangular ones. The data is weighted or
attenuated near both ends of the time interval. This will broaden the

‘h)

FIG 5-15 Results of Hanning on Fourier analysis: (a) Positive
frequency spectrum of sum of sine wave and second harmonic. Sine
wave has 25.5 cycles in time window. Second harmonic is 60 dB
below fundamental. MNote hyperbolic line shape and '‘leakage"
between harmonics. (b) Same as above except the Hanning opera-
tion was performed twice. Mote the separation between the two
harmonics. The vertical scale is 10 dB/em.
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FIG 5-16 Hanning line shapes.

main lobe of the line shape and thereby reduce resolution in the frequency
domain, but this is the price for better separation between adjacent
harmonics. There are many window functions that can be used, and
numerous shapes are described in the literature on this subject. Each one
has advantages and disadvantages depending upon the desired result.
In this chapter, only two will be discussed in detail: (1) the Hanning
window, and (2) the Chebyshev window. Hanning is useful because it is
$0 easy to implement, and the Chebyshev window is of interest because it
gives the narrowest main lobe for a given side-lobe amplitude.
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Separation Window

FIG 5-17 Definitions applying to a line shape in the frequency
domain.

The Hanning window is g(f) = 14[1 — (cos 2xt/T)] for 0 <t < T.
The corresponding sampled line shape is

G(s) = }38(s) — 248(s — 1) — Jad(s + 1)

Thus the Hanning window can be easily implemented by convolving the
frequency function with a triplet of delta functions with binary ampli-
tudes. Each Hanning operation attenuates the side lobes by at least
12dB/octave (see Fig. 5-16). The height of the window is unity, but the
area has been reduced by 2. This means that discrete spectral lines will
retain their area, but their amplitude will be reduced. Main-lobe width
is defined as the frequency interval between points on the main lobe that
have the same amplitude as the absolute magnitude of the largest
side lobe. Separation is defined as the ratio of maximum main-lobe
magnitude to maximum side-lobe magnitude. Figure 5-17 shows these
relationships.

Table 5-2 shows the main-lobe width, separation, and window area
for various Hanning operations. Graphs are included in Fig. 5-16.
Recall that As = 1/T is the spacing between adjacent points on the
frequency axis. The relative window area indicates the reduction in
height of discrete spectral lines, caused by the line shape’s smearing.
Note that the separation improves very rapidly in comparison with the
degradation of main-lobe width and window area.

TABLE 5-2
Function Separation, Main-lobe | Relative window area,
dB width dB

Rectangular window. .. .. ... 13.26 1.626/T 0

Hanning once.............. 31.47 3.743/T —6.02
Hanning twice.............. 46.74 5.782/T —8.52
Hanning 3 times............ 60.95 7.804/T —10.10
Hanning 4 times............ 74.61 9.818/T —11.26
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The Chebyshev window (Fig. 5-18) is more difficult to implement than
Hanning’s, but it does a better job. The name is used because of the
equal ripple side lobes of the line shape. The line shape is given by
cos [(xsT)? — a?}*

al,(a)

where r is the ripple factor, or separation between the main lobe and the
side lobes, and I (@) is the modified Bessel function of unit order. The

G(s) = a= cosh“‘% (5-3-48)

1.0 T T
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FIG 5-18 Chebyshev window.
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Graphs of this line shape (Fig. 5-19) for various ripple factors are included.

Table 5-3 summarizes the characteristics of this line shape.
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TABLE 5-3 Characteristics of Chebyshev Window

Ripple factor, | Separation, Main-lobe | Relative window area,
dB dB width dB
-20 20 1.906/T —1.40
—40 40 3.373/T —4.59
—60 60 4.839/T —6.38
—80 80 6.305/T —7.64
—100 100 7.771/T —8.62

The window height is unity and therefore the line-shape area is unity.
The line-shape height and the window area are (cosh a)/[ali(ea)]. The
peak ripple is 1/[al1(a)]. The window function includes delta functions
of amplitude 1/[2al,(a)] at each end of the window interval. The window
amplitude immediately adjacent to these end points is a/[21(a)].

A graph of separation versus main-lobe width (Fig. 5-20) is included for
comparison of various window shapes. Note that the Chebyshev line
shape gives considerably higher resolution for a given separation. The
Parzen window given by g(f) = 1 — 2|¢] is also shown on this plot. This
window has a relative area of —6.02 dB and a line shape given by

sin (1rs/2)]2

s

G(s) = 2[

The separation is 26.52 dB and the main-lobe width is 3.251/7. This is
twice the separation and half the resolution obtained with a rectangular
window.

The rectangular window is fine for signals that have an integer number
of periods within the window interval T, or for single transients which
decay within the T interval. A weighting function is only needed when
the waveform value at the beginning of the window is different from the
value at the end. This is particularly important for random data and for
coherent data of arbitrary frequency. All spectral lines are convolved
(smeared) with the line shape, and thus the amplitudes of narrow spectral
lines are reduced. The magnitudes of the various spectral components
are changed by this smearing operation, but the areas (and hence voltage
or power) under each line are preserved. It is difficult to accept the loss
in frequency resolution that these line shapes produce, but the only alter-
native is very poor amplitude accuracy because of poor separation between
adjacent frequencies (see Fig. 5-16).

One word of caution is in order concerning the cumulative effect of
line-shape side lobes. If the original data contain several discrete
frequencies, then the line shape will be convolved about each spectral
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line. It is possible for the line-shape ripple to add in phase in some
regions of the frequency domain. Therefore the resultant ripple may
greatly exceed the amount calculated for a single spectral line. The
Chebyshev line shape is particularly bad in this respect since the line-
shape ripple extends uniformly across the frequency scale.

Power Spectral Analysis. The power spectrum of a signal has some
properties that are often very useful. Since phase information is lost,
there is no need for sampling in synchronism with any signal. The
power spectrum is meaningful for random data as well as for coherent
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signals. Thus it is useful for searching unknown data to determine the
nature of any information that may be present. Since translation of the
time origin has no effect on the power spectrum, the spectrum is often
used as a “‘signature” to represent a particular process.

The power spectrum of a coherent signal is simply the square of the
magnitude of the Fourier transform of that signal. However, if the sig-
nal is random, it is necessary to accumulate an ensemble average of the
power spectra from many data records. If nothing is known about the
coherent nature of the signal, then a single power spectrum is essen-
tially meaningless. It is difficult to distinguish a coherent spectral line
from a random line with only a single record.

It is generally impractical to perform a true ensemble average since
this requires a large number of records from identical sources. Instead,
it is common to assume an ergodic process and to use many records taken
at different times from a single source. Unfortunately there are many
processes which are not stationary (and therefore not ergodic). A
typical example is so-called ‘“‘1/f noise” from semiconductors. These
nonstationary processes may prevent the power spectrum from converging
to a stable value at each frequency as various time records are averaged.

For ergodic processes the power spectrum does converge and the
“stability” of the result after a finite number of averages may be cal-
culated. As indicated previously, the process of averaging a random
variable leaves the mean unchanged but reduces the variance by the
number of points that are averaged. Thus, the first step is to calculate
the moments and probability density of the power spectrum at each
frequency point in the absence of signal averaging. In order to make the
mathematics more explicit, assume that both the real and imaginary
parts of the Fourier transform of the signal are independent gaussian
random variables. This will be the case if the original time-domain
variable is gaussian. Define the following:

z =24 y? (5-3-50)
where z and y are independent random variables representing the real and

imaginary parts of the signal spectrum, and z is the random variable
representing the power spectrum at each frequency.

fa(@y) = e—(1/26Y [z—B) (=7 (5-3-51)

2ma?

This is the joint probability density of x and y. Both variables have the
same variance o2, and their respective mean values are # and 7. These
mean values represent the coherent part of the Fourier transform at each
frequency. The probability density of z and the various moments will be
calculated.

f(2) dz = fr(z,y) dA (5-3-52)
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where f,(2) is the probability density of 2z, and dA is the area element in
the zy plane corresponding to the interval dz. In polar coordinates:

=rcosf,y =rsin g,z =r? dz = 2rdr, anddA = rdrdf = L4dz dé.
Thus,

x

1
= e (120D (2
o) = 17— v /

e(Vz/7) (Ecos 6+Fsin 6) ]9 (5_3_53)

Some algebraic manipulation allows the integral to be written in a
tabulated form. See ‘“Handbook of Mathematical Functions,” National
Bureau of Standards, page 376, Eq. (9.6.16).

1 /=
Io(w) = - Ji e con s dg (5-3-54)
Thus f.(z) can be written in closed form as
1 I .
fi2) = 292 I, (ZT @2+ ﬂ’)”) (2D T forz >0 (5-3-55)
g Ca

It is also possible to derive the characteristic function F,(s),
Fis) = [, f.eyeirme de (5-3-56)

From the same reference as above, page 486, Eq. (11.4.29), the following
integral can be derived:

© 2,2 1 2 2
ﬁ) o To(bo) du = 7 e (5-3-57)
Substituting z = w?, dz = 2w dw, and expressions for a and b,
1
= o= (EM4yY [i2xs/(1+idrals)]) -2
F.(s) T+ idnos e (5-3-58)

By successive differentiation it is possible to derive the various moments of
f.(2) that are of interest, as follows:

Area under f(z) = F.(0) =1 (5-3-59)
Mean value z = Ii’igi = i2 + §% 4 20?2 (5-3-60)
Second moment 2? = F. © = (2% 4+ 7%)*
—4x?
+ 802(z2 + 72 + o?) (5-3-61)
Variance 22 — (2)2 = 40222 4+ 72 + o?) (5-3-62)

The coherent signal power is £2 + 7? and the noise power is 2¢2 (since o?
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oceurs in both real and imaginary parts). Thus the mean of z is the total
power. The variance describes the statistical variation about this mean
value.

For the special case of £2 4+ 42 = 0,

1
f(2) = oy e—#/20" forz>0 . (5-3-63)
1
PO = e (5564)
zZ = 202 (5-3-65)
B 22 = 8gt (5-3-66)
2? — 22 = 4¢* (5-3-67)

Note that the standard deviation (square root of the variance) is equal to
the mean. Thisis a chi-squared distribution with two degrees of freedom.

The average of n records will normally have a gaussian probability
density (central-limit theorem) and a variance equal to the above value
divided by n. The mean is unchanged.

fz,.(zn) =

where

eVt (z,—8)[a,]? (5-3-68)
0. (2m)*

20
On = W (52 + 372 + o.z)}é

and
Z=23+ §® + 20°
Fz"(s) — 6—2(0‘”13)’ e—l’Zria (5_3_69)
2. =2 =34 2 + 20° (5-3-70)
JR— 2
2?2 — 3.2 =og,2 = s @+ 7+ o?) (5-3-71)
n
In ue _ 2r(L 4 r%)* _3.72
Zn " 1+ 2r2 (6-3-72)
where
ag
= —
(52 + gz)}é

The last equation expresses the ratio of standard deviation to mean value
of each point in a power density spectrum as a function of the noise-to-
signal ratio 7 of the original frequency spectrum and the number of
records, n, that are averaged. A graph of this function is included in
Fig. 5-21. Note that for large amounts of noise, the standard deviation
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a, of the power at each frequency is simply the mean power value divided
by Vn.

It is of considerable importance to determine the possible resolution of a
coherent spectral line buried in noise by using the power averaging tech-
nique. Consider a random variable w = 2, — 2., where z,, is the random
variable for noise alone (£2 4- 4> = 0). Then & = 2, — 2, = 2% + 7
and 0,® = 0a? + 0n® = (402/n)(3* + 7* + 202). Note that & represents
the strength of the coherent spectral line,
while 0,% is the variance about this mean Ot glt) | h(t)
value. Hence, if w is assumed to be a s/ 6(s) His)
gaussian random variable, confidence limits g 5.99 Generalized filter sit-
on the determination of #2 4 §2 can be uation.
readily established. For example, the prob-
ability is 0.99 that a coherent spectral line will exceed a neighboring
noise line if & = ko, for k = 2.327. This implies that n = 4k?r2(2r% + 1).
For unity noise-to-signal ratio r = 1, and n = 12k? = 65. Note that
for large values of n, the term r is proportional to the fourth root of n.

It may sometimes be more convenient to average the amplitude of a
frequency spectrum instead of the power. This solution is discussed in
the appendix to this chapter. In general, amplitude averaging is not
quite as efficient and is more difficult to interpret in comparison with
power averaging. '

Filtering and Convolution. The concept of filtering in the frequency
domain (or convolution in the time domain) is a very fundamental and
useful one. Consider an arbitrary system with an input and an output
signal, as shown in Fig. 5-22. The input signal F(s) is multiplied by the
system transfer function G(s) to obtain the output signal H(s). There
are three distinct measurement situations in which any two of these
signals are known and the third one is desired. These will be considered
one at a time.

1. F(s) and G(s) known. Find H(s).

This is a conventional filtering operation where H(s) = F(s)G(s). In
the time domain, this corresponds to convolution between f(f) and g(f).
The term H(s) is often called the cross spectrum between F(s) and G(s).
Only those spectral lines that are common to F(s) and G(s) will occur in
the output. Here G(s) can be any conventional analog filter function,
although many other filters that are physically unrealizable can be
readily implemented by the digital approach. For example, it is easy to
attenuate signal amplitude without introducing any phase shift. Ree-
tangular filters become very simple, and can be made very narrow to
select only one frequency.
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2. F(s) and H(s) known. Find G(s).

This is simply the measurement of the transfer function of a device or
system. The equation G(s) = H(s)/F(s) can be implemented digitally
with considerable accuracy. The division operation can introduce errors
if F(s) is not accurately known, so it is desirable to keep F(s) as large as
possible at all frequencies. This operation is called inverse filtering or
deconvolution, and it will be discussed more fully below.

3. G(s) and H(s) known. Find F(s).

This is the most general deconvolution operation. The equation
F(s) = H(s)/G(s) is analogous to the above situation, but the errors
introduced by lack of control of G(s) may now be very significant. This
operation is used to attempt the reconstruction of an original signal f(¢)
after it has passed through a known filter G(s). The technique can be
used to improve resolution in some measurements, or it can be used to
equalize a prescribed transmission path to allow recovery of the original
waveform.

The problem is simply that G(s) generally becomes very small or zero
for some values of s. For the regions where G(s) = 0, all information
about F(s) is completely missing and can never be recovered. Further-
more, even if G(s) = 0 but small, there is always ‘‘noise’” on both G(s) and
H (s) because of either random fluctuations in the data or finite resolution
of numbers within the measuring instrument. When G(s) falls below
this noise level, large uncertainties are introduced into the determination
of F(s). Insome situations G(s) may have local zeros which will introduce
local regions of uncertainty in F(s). Often it may safely be assumed that
F(s) is continuous across these uncertain regions. Although this tech--
nique must be used with care, it does allow the use of data beyond the first
zero of G(s).

It is necessary to differentiate between the expected and the actual
values of these frequency functions. Ior each value of s, all three func-
tions F, G, and H wil] be random variables with probability densities
pr(F), pe(@), and pp(H). The means of these distributions will be
denoted by F, G, and H.

The basic problem can now be stated: What is the “best” estimate of
F(s) obtainable from the actual quotient H (s)/G(s)?

The question of what constitutes a best fit to a noisy function is debat-
able and depends to a considerable extent on the application. In this
discussion, a linear mean-square estimate will be assumed, based on the
Wiener-Kolmogoroff theory. See Ref. 9, pages 400 to 405, for fur-
ther treatment. The technique is to pass the random variable

F(s) = H(s)/G(s)
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through a “matched” filter, denoted by ¢(s), whose shape is given by

_FeF* @)

'O = " For

(5-3-73)

where F is the mean and F * (s) is the complex conjugate of the variable
F(s). The bars denote ensemble averaging. Thus the best estimate of
F(s) in the context of this discussion is given by

PO = 52 4(s) = Foe) (5-3-74)

(s

The construetion of a matched filter requires some knowledge about the
function F(s). Essentially it is necessary to know either the coherent
part or the random part of F(s). Thus the construction of a matched
filter is something of a bootstrap operation. The output of this filter
tends to reinforce the assumptions used to create the matched-filter
function in the first place. Therefore, the results must be interpreted
with care. Assume that F(s) consists of a coherent part F(s) and a noise
part N(s),

F(s) = F(s) + N(s) (5-3-75)

where N(s) = 0. Then the total signal power is

[F(s)|2 = [F(s)|* + N*(s) (5-3-76)
and the coherent signal power is
F(s)F * (s) = |F(s)|? (5-3-77)
|F(s)|? N(s) ;
N — A (5-3-78)
*® = POl + N6 FOI + N

where N*(s) is the noise power. These equations all assume that the
noise is random and completely uncorrelated with the coherent signal
F(s).

The calculation of the noise power NZ%(s) will be considered next.
This is simply the variance of the random variable F, but F = H/G.
Thus it is necessary to calculate the variance of the quotient of two
random variables. For another discussion, see Ref. 9, pages 196 to 197.
The basic formula is

pr) = [ NpaOF)pe() dn (5-3-79)

where G and H are assumed to be independent random variables.
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Although this integral could be evaluated if necessary, only the first and
second moments are needed here.

F= [ Fpe(F)aF =
Jo5 LI [7 \Fpu(\F) d(F) dn - (5-3-80)
However,
a-= /_: NEpi(NF) d(\F)
Thus,
F=0 f L pe(n) dh (5-3-81)
In a similar manner,

F:=H? f ilpg()\) a (5-3-82)

Note that only the first and second moments of H are needed, although
for G the entire density funection is required.

Consider a practical example where the uncertainty in G is caused by
digital roundoff errors. "Assume a rectangular probability density for ¢
as follows:

pe(G) = (G o G) (5-3-83)

’I‘he distribution is of width a, centered at G. Further, assume that
G > a/2. Then

- Gezd\ _ 2H L, a .
F=H fG o= T tanh e (5-3-84)
— G+a/2 dN H?
2 = 5-3-85
F* = H? Goer ane TGP — Lyt (5-3-83)
The noise power is given by the variance of F, that is, Nz(s) — Fe,
Thus the matched filter can be written as
Fr 4R a \?
== G? — (t h—1 —_> 5-3-86
#6) = o =~ (@ = et ranb (5-3-86)

Assume that the original input function f(f) was a very narrow pulse or
delta function. Then F(s) = constant. Also assume that H? = H?, so
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FIG 5-23 The matched filter
function ¢(s).

So

that H is noise free. Then,

a\? - _a
o(s) =1 — (T) forGd > 5 (5-3-87)
Now let g(t) be a gaussian smearing function so that G(s) is given by
G(s) = ke riem? (5-3-88)
(s) =1 Y ome for k> 2 (5-3-89)
@(s) = % e or B
Define so as the zero of ®(s),
26\ ¥
So=5> ( 2 1in ;) (5-3-90)
2k
— = TN (5-3-91)
d(s) =1 — et29% for |s] < s (5-3-92)

The graph of this function is shown in Fig. 5-23.

FIG 5-24 (a) Output function: convolution of Gaussian “‘smear-
ing" function with pair of delta functions. (b) Gaussian “‘smearing”
function.



144 Electronic Measurements and Instrumentation

FIG 5-25 (a) Fourier transform of output function. (b) Fourier
transform of smearing function.

The photographs, Figs. 5-24 through 5-31, are oscilloscopic presenta-
tions of some of the operations described above. The displays were
obtained by digital instrumentation techniques.

The previous example illustrated the use of a filter designed to maximize
the signal-to-noise ratio of the resultant data. No attention was paid to
signal fidelity or transient response. The sharp corners at +s, in the
preceding example will cause a considerable amount of ringing on tran-
sients. Many other types of filter functions can be used, depending on
the particular application. For example, a simple rectangular filter

FIG 5-26 (a) Matched filter for optimizing quotient signal-to-
noise ratio. (b) Impulse response of matched filter.
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FIG 5-27 Real part of quotient of transforms of output and smear-
ing functions.

might be most useful if the coherent signal is sharply band limited, or if
transients are of no particular concern.

There is another type of filter that has some useful properties which will
be described in more detail. Consider the following Fourier transform
pair:

cos [2msa(¢2 — £2)**] > 15[8(s + so) 4 6(s — s0)]
11[2‘[%(802 — 82)%]

T 7Sido (50 — §7)%%

(5-3-93)

where |s| < so.
The time waveform has a peak amplitude of cosh (2rsety) at ¢ = 0 and a
uniform ripple of unit amplitude for all |¢| > ¢,. The area is wtol1(2mrsoto).

FIG 5-28 Imaginary part of this quotient.
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FIG 5-29 (@) Real part of quotient. (b) Imaginary part of quotient
by after multiplication matched filter.

Thus convolution with this function will introduce a preseribed amount of
ringing on transients. This time function minimizes the main-lobe
width for a particular ripple amplitude. The resultant frequency filter
is of finite extent, being zero for [s| > s,. For reference, see Ref. 3,
pairs 871.2 and 619.

Consider the previous example of gaussian smearing with a rectangular
noise distribution on G(s). What is the possible resolution improvement
for a given amount of ripple and for some initial signal-to-noise ratio?
There are various ways of measuring resolution, but the equivalent width
of the time function will be used in this discussion. This is simply the

FIG 5-30 (a) Original pair of input delta functions. (b) Recon-
structed input waveform.
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FIG 5-31 (a) Smoothed version of r tructed input waveform.
(b) Smoothing function with which output data was convolved.

width of a rectangle whose area and height are the same as the waveform
in question. The equivalent width of the assumed gaussian smearing
function is

1

wy = W (5-3—94)

Define a ripple factor » which is the ratio of peak ripple to main-lobe
height in the time domain.

r = sech 2mrsgfy
or
Zk 1%

1 1
= — -1 p— 2 -y =
8o = 2mty cosh .= b ( In ) (5-3-95)

The equivalent width of the filter function in the time domain is

I, (2msoto)

1ot -3-96
® cosh 2msoto (5-3-96)

wf = m
The signal-to-noise ratio of the original function G(s) is obtained by
dividing the signal variance (k? at the peak) by the noise variance a2/12.
This ratio in decibels is

2
R = 10 log 125
and
l 1 1%
so=b (“1—00 R —In 3) (5-3-97)
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Define a width-reduction (resolution-improvement) ratio as

wr (1_r)3'é r(cosh—11/r)I;(cosh— 1/7)
T2 ((In 10/10) R — In 3]*

A tabulation of w for various values of r and R is included (Table 5-4).

(5-3-98)

wg

(al ()

(c) (d)

(el
FIG 5-32 Effective transfer function of signal averager, calculated

by digital computer. Averager acts like comb filter for repetitive
waveforms. Since averager is timelocked to repetitive waveform,
freq y comp ts of waveform coincide exactly with centers of
comb-filter teeth. Width of teeth is inversely proportional to num-
ber of repetitions averaged.
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Note that the width reduction varies slowly with respect to both ripple
and signal-to-noise ratio. Also see I'ig. 5-32 for the computed transfer
funection of a signal averager.

5.4 Summary

Although the basic theory of Fourier transforms and statistics has been
reviewed, the main emphasis in this chapter has been on various factors
associated with the practical implementation of signal analysis. The use
of digital techniques allows a considerable improvement in accuracy and a
considerable increase in flexibility. Many of the errors in digital process-
ing have been discussed. There are digitizing errors in signal amplitude,
and there are errors caused by a finite integration time and by finite
abscissa resolution. The implications of these errors in the frequency
domain have been discussed. The importance of various averaging
techniques has been considered along with a few words about convergence
to a stable estimate. Filtering and inverse filtering (deconvolution)
were introduced and the problems encountered are illustrated with a
typical example. The concept of a matched filter has been discussed for
maximizing signal-to-noise ratio. The neglect of these errors can intro-
duce large anomalies in the results of digital signal analysis. It is there-
fore very important to know of the existence of these sources of error and
to ascertain their effects before signal processing is completed.

It should be noted parenthetically that all the errors and limitations
described above for digital signal processing have counterparts in signal
analysis by analog means. Results are still affected by finite integration
time and abscissa resolution, and the system still has noise. These
limitations are imposed by nature and cannot be circumvented.

In the past few years, enough has been written on this general subject
to fill several volumes, so a single chapter must, by necessity, be rather
sketchy. There are many important topics concerning signal analysis
by digital techniques which have not been mentioned here. IFor exam-
ple, there is much more to be said about time windows and frequency line
shapes. Conditions for the stability of a power spectrum estimate, and
the variance of this estimate, are very important. The coherence fune-
tion, along with the concepts of partial and multiple coherence, has not
even been mentioned [12]. The importance of trend removal from the
original time record prior to processing has been ignored. A technique
of overlapping adjacent time records [13] is of fundamental importance in
gleaning the maximum amount of information from a given time record.
Digital filters are becoming very popular, and considerable literature can
be found on this subject [14].

A considerable amount of work has been done on algorithms for per-
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forming some of the basic operations such as the Fourier transform. Of
course, there is a wide-open field in the study of nonstationary processes
and techniques for measuring their characteristies.

References 15 to 17 are very useful for further information in this
general field.

APPENDIX

Amplitude-Spectrum Averaging

Define two independent gaussian random variables z and y, each with the
same variance o2, Consider z and y as the real and imaginary parts of a frequency
spectrum. Define two new random variables

2= Va4 y? 0<z<

¥ —r<w<mw

w = tan~
where z represents the magnitude and w represents the phase angle of a particular
spectral point. Note that = zcosw and y = zsin w. The area element is
dA = zdzdw. Thus the joint probability density is

Dao(2,w) = _E_ e—(1/202) [22+F2+52—22% cos w—227 sin w]
2ma?

The marginal probability densities are

z (z\/x2+y2

P = 7 puew)do = 21y )e—wwnz“man
. -

o2

«© 1 — -
Po@) = [ palew) d = =11+ Vir w1 + erf ey
m

where u = (1/V2 0)(Z cos w + § sin w), and Io(£) is the modified Bessel function
of order zero. Note that p.,(2,0) # p.(2)p.(w), so z and w are not independent.
Since p,(w) is not needed in this discussion it will be ignored. For the special
case when z = § = 0,

F4
o2

Pa(Z) = e—He(z/o)?

o

is a Rayleigh distribution, where z = ¢ \/172, and z2 = 252 Thus the variance
is [2 — (w/2)]e2. The moments for the general case are

o = ﬁ]w 2mp.(2) dz
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This integral is of the form [10]

/m t+—1] (at)e= @D dt = f[}_f("_‘*’_”ll i ’ F E’ 1, ﬂ
0 2p«T (v + 1) \2p/1 2" 4p?

where F,(a,b, £) is the confluent hypergeometric function [11], I'(u) is the gamma
function, and I,(£) is the modified Bessel function of order ».

Tla+n) ,,

XFI ,1, =
@9 = L T

Thus
—_ 72 772
am = (V2o)mT(L + dgm)e-ien@in,py (1 + 14m, 1, m)

Even-order moments can be expressed in elementary form:

Fai(1,1,E) = et SO 20 =1 area under p,(z)

P2, LE) = (§+ et so 2P =3"+§ + 207

Unfortunately the calculation of the mean is not so easy.

r 3
7 = —e & F -2 1’
z a\/2e 1 1(2 E)

where
E _ 1 _ :22 + ,!72
2r? 202
For £ — =,

1F1<§:1,£)—>2\j£e5(1+—1—) and Z— \/132-}-1724—02
2 T 4¢

3 =
1F1(§)1,£)=1 and Z=O'AJ

This first moment is readily calculated on a computer.

Analogous to the technique used in discussing power averaging, define a new
random variable w = z — zo, where zo is the random variable for noise alone
@2+ 42 = 0).

— Z0 = (TJ‘%. [e—f lFl (%y I,E) - 1]

naw2=z_2—zz+(2—’§’>af=52+y2~—22+( —’Er)cr2

I

w[

@ =
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Letw = ko, where kis selected as before to achieve some probability of recognizing
a coherent component against a noise background. For a prescribed value of k,
it is useful to plot the required number of signals averaged, n, against r. Figure
5-33 illustrates this relationship for both power and amplitude averaging for
various values of k. Note that n is proportional to k2 so curves for other values
of kareeasy to construct. The relative efficiency of these two methods is apparent.
Amplitude averaging requires a value of n = (16/7) — 4 = 1.093 times larger than

100,000
10,000
Probability
0.999 (k=3.09)
1,000 Probability |
0.99 (k=2.327)
Probability
0.9 (k=1.2817)
100 /ﬂ 8743
0.764
————— Power averaging
— — — — Amplitude averoging
10
v/
/2
/
/
/
/
10 v
-15 -10 -5 [¢] 5 10 15 20

r,dB

FIG 5-33 Required averaging (n) to resolve a coherent signal
mixed with Gaussian noise within a prescribed probability (noise-to-
signal ratio is 7).
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36 /)

2.8 Signal + noise /
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[ %2432
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0.8
04
0
o] 04 08 1.2 16 2.0 2.4 28 3.2 36
'-2+-2
¥ = \/2—?= - cry

FIG 5-34 Amplitude of noisy spectral line compared to amplitude
of coherent component.

power averaging for the same resolution probability as long as n is large. The
two methods of averaging are equivalent for » = 1.092 (0.764 dB).

The interpretation of a power average is straightforward because the coherent
signal amplitude is equal to the difference between a dominant spectral line and
the noise base line. The interpretation of an amplitude average is more difficult
and is best described graphically (see Fig. 5-34). The coherent amplitude is
asymptotically proportional to the amplitude of a spectral line for small amounts
of noise, but departs significantly from this proportionality as the noise increases.
Thus it is difficult to compare directly the coherent amplitudes of signals mixed
with noise. For these reasons the power averaging approach is generally preferred.
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CHAPTER SIX

FREQUENCY AND TIME
MEASUREMENTS

Alan S. Bagley

Manager, Santa Clara Division
Hewlett-Packard Company, Santa Clara, California

The frequency of a repetitive signal, which is the number of cycles per
unit of time, is one of the chief variables of interest in electrical com-
munications, in the measurement of physical quantities, and in many
natural phenomena. Very sophisticated instruments and techniques
have been developed for precise frequency measurement. Frequency!
and time are interdependent, and both are treated in this chapter. Some
instruments are designed to measure both quantities, but many tech-
niques are so specifically contrived to measure one or the other that these
techniques are described separately here. There are sections dealing
with the measurement of frequency, the period of a repetitive wave, and
time interval on a one-shot basis.

Several chapters have emphasized the necessity for an accurate “stan-
dard of reference’” in' making an accurate measurement. The reference

1 The unit of frequency, the hertz (abbreviated Hz), is of course a derived unit
equivalent to one event per second.
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standard seems particularly important in time and frequency measure-
ments, along with the precise comparison of the unknown with the
reference that is chosen. The development of good standards for both
frequency and time interval—as well as historical or epochal time instants
—has been an exciting adventure in natural philosophy.

6-1 Time Definitions and Standards

For many centuries, the rotation of the earth about its axis, viewed
with respect to the sun, was used to set up a uniform time scale. Astron-
omers gradually increased the precision of their observations and found
that the rotation of the earth was not really uniform. Even after they
applied every correction known to them, they found unpredictable
irregularities and long-term drifts. However, long after astronomers
became aware of these variations (until 1956) the second was defined as
146,400 part of an average rotation of the earth about its axis with the sun
as the reference direction.

During the past two decades, largely through the coordinating efforts of
The International Committee on Weights and Measures, time scale
definitions have proliferated, although much of the basic work was done
earlier. The brief statements below of the time definitions should be
good background knowledge for the serious student.

The reader should remember the two separate problems present in
timekeeping. One is the determination of the epoch, or the instant of
time in history, and the other is the determination of time interval,
which depends upon a satisfactory time unit, a standard second of time.
The engineer’s interest is usually focused on time interval, and the preci-
sion of definition of the second has inereased about 10° fold during the
past three decades, but it should be noted that the determination of
the epoch, with respect to other fairly recent epochs, still is important
to the engineer. A part of our defense systems depends upon this
determination.

Ephemeris time is based upon the earth’s orbital revolution around the
sun. In 1956, The International Committee on Weights and Measures
defined the unit of ephemeris time as follows: ““. . . the second is the
fraction 1/31,556,925.9747 of the tropical year for January 0, 1900 at
12 hours Ephemeris Time’’ [1]. (To the astronomer, that epochal instant
oceurs at noon on the first day of January.) A tropical year is the time
interval, taken symmetrically about a given epoch required for the sun
to increase in mean longitude by 360°, measured along the ecliptic from
the vernal equinox.

The second of ephemeris time was an improvement over the second as
previously defined. Theoretically it was invariable, but astronomers
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could not realize, or establish, the definition with sufficient accuracy to
make it serve the purpose of a universal day-to-day standard.

What was needed was an invariable time interval in nature that could
be observed and measured by available electronic instruments with
great precision. This requirement, coupled with recent complex develop-
ment in the electronic arts, led to the use of transitions that occur spon-
taneously and continually in energy states in atoms. In 1964, using the
atomic transitions, the International Committee adopted a new standard
that is called atomic time and is based upon a specific hyperfine transition
in cesium 133. The definition is:

‘The standard to be employed is the transition between the two hyperfine
levels F =4, mF =0 and F = 3, mF = 0 of the fundamental state %8y of
the atom of cesium 133 undisturbed by external fields and the value 9,192,631,770
hertz is assigned.’

Atomic time is far more readily observable than ephemeris time, for an
electronic instrument with the capability of counting out the required
number of transitions in cesium vapor can be set up anywhere on earth
(or outer space). In a recent check of time scales kept by laboratories in
six countries over a period of nearly 2 years, the maximum observed
difference was about 100 usec. Atomic frequency thus serves as a basis
for a precise physical time scale.

While the atomic definition of the second has served well to give
accurate, immediate time scales and intervals, some procedures, such as
precise navigation and satellite tracking, require correlation with the rota-
tion of the earth. Several other time-of-day scales have been devised as a
result of these requirements. One of the first was mean solar time, based
upon the average interval for all solar days during the year. The mean
solar second is 1§g,400 of a mean solar day. This definition avoids the
day-to-day variations caused by the tilt of the earth’s axis and by orbital
eccentrieity.

As corrections were progressively made for more and more of the
cyclical irregularities in the earth’s rotation, various versions of universal
time evolved.  One such scale is still in wide use, although it still has some
unpredictable and secular variation.

Sidereal time is still another scale. Its day is based upon the rotation
of the earth with respect to the stars rather than the sun. Strictly speak-
ing, the sidereal day is the interval between successive transits of the
first point of Aries over the upper meridian of any place, and it is about
23 h, 56 min, and 4.09 sec.

6-2 Standard Frequency and Time-Signal Broadcasts

There are government time observatories or laboratories in many of the
major countries of the world. It is sensible, and indeed essential, to
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maintain extremely accurate frequency standards in these laboratories.
To make the work of the laboratories widely available is obviously
desirable, and radio has been used since the early days of radio broad-
casting to disseminate standard time and frequency information. These
transmissions make possible the setting of secondary standard clocks and
oscillators to an accuracy of a millisecond or thereabouts in time of day
and an accuracy in frequency of 1 part in 107 to 10!}, depending upon
carrier frequency, propagation path, and the kind of instrumentation
used.

Frequency and time transmitters are divided into two classes, according
to carrier frequency. The high-frequency stations broadcast at fre-
quencies between 3 and 30 MHz, and the low to very low frequency
stations mainly use the spectrum between about 10 and 75 kHz. A few
entertainment stations, such as the one at Droitwich, England, have
their carriers very stably regulated by government frequency standards.
Further information on the signals available in the United States can be
obtained from the National Bureau of Standards (Frequency and Time
Broadeast Services), Boulder, Colorado 80301.

In addition to the regulated carrier frequencies, these special broadcast
stations emit various combinations of standard audio modulations, pulses,
“ticks,” and breaks to aid in timekeeping and frequency comparison.

A constant propagation time could be taken into account in standard
broadcasts, but all propagation times vary. The variations are especially
troublesome in the high-frequency range, where the paths include one or
more reflections from the ionosphere. As the reflecting layers drift up
and down, a doppler-effect frequency shift is observed at the receiver, the
magnitude of which depends upon the velocity of layer movement.
Frequency shifts of the order of several parts in 107 can easily occur in
high-frequency systems. The stability of very low frequency (VLF) sig-
nals is much better, since the propagation is mainly by ground wave.

Actually, one should think of two effects. One is the change in instan-
taneous frequency caused by doppler effect as the path length changes.
The other is a variable time delay depending on different propagation
path lengths.

A basic scheme for comparing a local frequency standard with the broad-
casts from a master station is shown in Fig. 6-1. Observe that frequencies
are not compared directly. Instead, the master station transmits a
sharp pulse or tick of modulation once every second, or more specifically,
after every nth cycle of the carrier frequency, where n is the nominal
frequency in hertz. Similarly, a tick is derived from the local frequency
standard to be studied; if the error in the local standard were zero, the
ticks produced by it would be at intervals of exactly 1 sec. The com-
parison instrument can be an oscilloscope, the sweep being triggered by
the local ticks and the master ticks being applied to the vertical amplifier.
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Antenna Receiver Master 1-sec ticks
————————{ for master
station
Comparison
instruments
Local Frequency Local 1-sec ticks
frequency divider
standard ond clock

FIG 6-1 Frequency and time comparison system.

The advantage of the method in Fig. 6-1 is that extremely small errors
in frequency can be measured if the relative drift in the timing of the two
ticks is observed long enough. Of course, one measures only the average
frequency by this method, and short-term stability must be determined
separately.

In the VLF range, the fact that very low carrier frequencies cannot be
modulated and demodulated accurately with sharp pulses leads to the
use of phase comparisons with the VLF stations. Several methods are
employed for phase comparison, but the block diagram in Fig. 6-2 shows
one of the best schemes. This comparator provides for phase com-
parison between the 60-kHz signal from National Bureau of Standards
station WWVB and a local frequency standard. Such comparisons
serve for calibrating high-quality frequency standards or for monitoring

60 kHz
preomplifier 60 kHz
) amplifier

Antenna
input

_ Servo- . o Signal levei
Phase Relative 9
jocked o— co‘ong%l_‘lezd signal level {rear panel)
100KHZ | oeciliator A
100 kHz 20 Phase | phase lock adjust
7 KHz X3 60 kHz ]comparison
divider multiplier
16-2/3
705 50 ro—p Linear
i di/\)iger | phase To recorder )
Local H 'Lmﬁond)Jl i comparator] (phase comparison)
frequency 1 —— ! ; Phose comparison
standard /5 X3 L_of}nlﬁroselconds _—o(reor panel)
dvider [25 BokHz e
kHz

FIG 6-2 Simplified block diagram of a VLF comparator system.
(Hewlett-Packard Co. Model 117A)
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atomic-frequency standards. The VLF comparator thus provides a link
between house frequency standards and the United States frequency
standard.

The VLF comparator {2] in Fig. 6-2 is a complete system (exclusive
of local standard). The instrument phase-tracks a voltage-controlled
oscillator with WWYVB. The local frequency standard is then com-
pared with the phase-tracking oscillator. The comparator’s strip-chart
recorder makes a continuous recording of the phase difference, measured
in microseconds.

Again refer to Fig. 6-2. For reasons that will be clear later, it is desir-
able to convert the amplified 60-kHz signal from WWVB into two phase-
locked, constant-amplitude signals at 20 and 60 kHz. A closed loop
is used to lock the phase of a 100-kHz oscillator, the output frequency
of which is divided by 5 and multiplied by 3 to return to a 60-kHz signal,
which is phase compared with the received signal. The dc output of the
phase comparator is used to close the control loop.

The local frequency standard, which is normally at either 100 kHz or
1 MHz, is also converted to 20- and 60-kHz signals by multipliers and
dividers. Then the signals derived from the local standard and the
received standard transmission are fed to a linear phase comparator, which
produces a voltage proportional to phase difference. This phase difference
is either read on a meter or fed to a self-contained strip-chart recorder, or
both. The time derivative of the recorded output (the slope of the trace)
is proportional to frequency difference. If the two 20-kHz derived signals
are phase compared, rather than the 60-kHz signals, the full-scale output
of the linear phase comparator obviously denotes three times the time
interval between master and local standards.

The phase-locked 100-kHz output serves as a convenient local-standard-
frequency generator in itself, even when no local oscillator of good
quality is available.

In the continental United States, frequency-standard comparisons to an
accuracy of a part in 101 can be approached in an 8h period. A 24-h
period may give 2 parts in 10!}, and a 30-day period may give accuracies
of parts in 1012, The local standard being calibrated must of course be of
a stability commensurate with the realization of such high accuracies.

National Bureau of Standards station WWVB at Fort Collins, Colorado,
is phase locked to the United States frequency standards and is kept to
within a tolerance limit of +£2 X 10-1%. The WWYVB carrier frequency
is referenced to the atomic second rather than to the second of universal
time.

Since station WWVB is amplitude modulated with binary-coded time
signals, the addition of an external strip-chart recorder to the phase-
comparator instrument makes it possible to obtain a recording that tells
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the day of the year, the hour, the minute, and the correction in milli-
seconds to arrive at UT2.
Detailed information on time and frequency comparison instruments

can be obtained from the following sections and from various references
[3,4].

6-3 Time and Frequency Standards

This section will present some of the theoretical and practical aspects of
fluctuations in frequency standards and discuss the measurement of these
fluctuations, or noise. The noise sources will be identified and evaluated.
While this material may appear to be highly specialized for the electronics
engineer, its comprehension at a technieal and quantitative level is essen-
tial if the engineer becomes involved in complex communications systems,
precise navigation, space systems, or even the intelligent use of time and
frequency instrumentation.

Some of the design requirements for frequency standard instruments are
also presented.

The following analytical treatment is taken directly from a paper by
Cutler [5].

Analytical Treatment. The signal from an oscillator may be described by
F@® = A(t) cos [wet + ®(2)] (6-3-1)

where f(t) represents a voltage or current, 4 (¢) and ®(t) are slowly varying
functions of time, and w is a constant. A () is the amplitude of the signal
and is assumed not to contribute to frequency fluctuations. The time
origin and w, are chosen so that ®(¢) has zero time average and
|®()] < C < « for all time ¢, where C is some positive constant. These
conditions simplify the mathematics (but will have to be relaxed later).
The instantaneous angular frequency is

w(t) = %[wot + )] = wo + @) (6-3-2)

In all that follows we shall refer to angular frequency as frequency. The
average frequency is

(@) = lim T- / "2 ot dt

T =7/2
et Bim 22 = (=T/2)
T—w T
= wo (6-3-3)

Therefore, () is the instantaneous phase angle of the oscillator with
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respect to an ideal oscillator of frequency wo. Let &(t) = Q(t). The
frequency departure averaged over time 7 is

t+7/2

@) = &) = [ d@) dr

el e

where (Q) signifies the average (time or statistical) of @ and (Q.(?)) signifies
the finite time average at time ¢,

t+71/2 , ,
@) =+ ﬁ e dt (6-3-5)
The phase averaged over time 7 is
@,(t) = t‘f/; 2a(t') dt’ (6-3-6)

The phase difference over time r is

AD () = & (t + ;) ) <t - ;) = (@,(t)7)

Now consider that
Ro(r) = <¢ (t + %) ® (t - %>>
. T/2 T T
= —1 Z —_— -3-
lim 7 /_T/2¢I>(t—i-2>d>(t 2)dt (6-3-7)
is the autocorrelation function of the phase. Similarly, Ro(r) is the
autocorrelation function of the frequency departure. Writing these both

as functions of r only implies that ® and Q are stationary in the wide
sense [6].

Sa(w) = [_‘: Ra(r) exp (—ior) dr
=2 ﬁ) * Re(r) cos wr dr (6-3-8)
Ro(r) = %r /_‘”w Sa(w) exp (wr) dw

= g1 ﬁ)” Se(w) cos wr de (6-3-9)

50 that Se(w) and Rs(r) are Fourier transforms of each other [7], where
Sa(w) is the power spectral density of the phase (we use the two-sided
power spectrum). In the same way Ra(7) and Sgo(w) are Fourier trans-
forms of each other, where Sg(w) is the power spectral density of the
frequency departure.
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A useful measure of fluctuation is the standard deviation o.
o(X) = (X — (X)) = (X2 — (X))* (6-3-10)

The standard deviation of the various quantities defined earlier can be
written in terms of the autocorrelation functions:

Standard deviation of average phase,

2 r 4 4
@@ = |2 [ Rate) (1 - D) o (6-3-11)
T T
Standard deviation of phase difference,
o[a®,(1)] = {2[Rs(0) — Ras(r)]}* (6-3-12)
Standard deviation of average frequency,
o(@(8) = r{2[Rs(0) — Ra(r)]}* (6-3-13)
Standard deviatiqn of average frequency departure,
Q.(t 1 y
o L o) — Re( (6-3-14)
wo woT
The last two may equally well be written in terms of Ro(r):
T 4 ;é
(2 (t)) = [g ﬁ) Ro(+) (1 - 1) d-r’] (6-3-15)
T T
Q,(¢ 2 s ! e
& _ 1 [— [y Bae) (1 - ’—) dr'] (6-3-16)
wo wWo LT T

Also, we have:

Standard deviation of phase,
ole()] = [Ro(0)* = [ A” Sa(w) du | (6-3-17)
Standard deviation of frequency,

U[Q(t)] = [RQ(O)]% = [‘II'_1 /l;m Sn(w) dw:ré
=[ [T es@ ]t 6

The preceding formulas hold for wide-sense stationary random processes
or for time functions that have stationary means and autocorrelation
functions that depend only on the time difference r.

Measurement Techniques. A general system for making measurements
of some of the standard deviations described above is shown in Fig. 6-3.
Two signal sources, slightly offset in average frequency, feed two identical
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FIG 6-3 Multiple period measuring system for oscillator deviations.

channels through optional frequency multipliers to a phase detector.
The difference frequency contains all the phase information and is used to
trigger the Schmitt trigger at the zero crossings. The period (or multiple
period) of the sharp leading edge of the Schmitt trigger is measured by
the counter and displayed by the analog recorder, and each measurement
is printed out on a digital recorder.

The theory behind this technique is as follows: Oscillator 1 has output

Vl(t) = Al(t) COS [wlt + (pl(t)]
Similarly, oscillator 2 has output
Vg(t) = Az(t) Ccos [wzt + Qz(t)] (6-3'19)

In the frequency multipliers the amplitude changes get removed by limit-
ing processes (if we have good design, there can be little conversion of the
amplitude changes to phase changes). After multiplication, the signals
are

Vi) = A; cos [nwit + nd(l)]
Va(t) = A, cos [nwst + ndy(t)]

It is well known that both the instantaneous phase and the average fre-
quency are multiplied by the factor n (provided the multiplier has suffi-
cient bandwidth to encompass the full spectrum of the nth harmonic).
The phase detector behaves as a multiplier. Its output is

Vo) = Vi) Vi(t) = 16414, cos {n(ws + w2)t + n[®:1(f) + 3:(1)]}
+ 144,4; cos {n(wr — wi)t + n[®,(t) — ®2(5)]} (6-3-21)

(6-3-20)

The sum frequency is filtered out, which leaves only the difference fre-
quency term. If the two signal sources have exactly the same statisties
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for ®,(t) and ®,(f) but are uncorrelated, then all the fluctuation can be
assumed to be in one channel and to be /2 times as large as that channel
alone, while the other channel can be assumed to be perfect. Let

w1 — wp = Aw (6-3-22)
Then the signal which feeds the Schmitt trigger is
Vo(t) = 15414, cos [n Awt + nd(t)] (6-3-23)

where ®(t) = $;(f) — ®2(t). The Schmitt trigger gives a sharp pulse out
each time the signal crosses zero going in, say, the negative direction.
This occurs for ¢ such that

n Awt + n®(t) = Yor + 22 M

where M is any integer. Suppose the counter is set to count N periods
and the gate opens at ¢, such that

n Awto + n@(to) = %7!'
The gate will close at ¢, + 7 to make
nAw(to + 1) + nd®(ty + 1) = Y1 + 22N

Subtracting the first from the second, we get

nlAwr + ®(ty + 7) — ®(t0)] = 2zN (6-3-24)
Let
2rN
T=— — Ar =19 — Ar
n Aw
o= 2N (6-3-25)
n Aw
Then
Dty + ) — ®(ty) = Aw Ar (6-3-26)

Since 7 is not constant, the time difference Ar between successive measure-
ments is not constant, but if Aw Ar < 1 and $(to) Ar < 1, then only very
small error is caused by replacing ®(¢o + 7) with &(t, + r5). The process
of averaging over many measurements helps here. The multiple-period
technique thus measures essentially ®(¢ + 7o) — ®(t) = A®ro(t). There-
fore,

A%, (1) ~ Aw Ar (6-3-27)

Almost any desired averaging time 7 can be obtained by varying N, n,
or Aw. By making many measurements of 7 in succession, the standard
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deviation can be estimated as

o[A®, (1)] = Aw a(AT)

~ fo [m= if, — (m 2 )] (6-3-28)

where 7; is the 7th measurement and m is the total number of measure-
ments, which should be large (about 100) to give a good estimate. It is
wise to remove the drift during the observation time by subtracting the
best straight line based on a least-squares fit from the data. Form = 100,
this leads to

100

o[A%,,(1)] = Aw {ggggl—xme [ 999,900 Z 2 — 40,602 (z )’

—12 (zm) +1,212 (Zm) (E f)]} (6-3-29)

The order of the data must be preserved for this formula. The other
quantities of interest, such as Eqgs. (6-3-13) and (6-3-14), may be esti-
mated from Eq. (6-3-29) in an obvious way. The subtraction of the best
straight line corresponds to filtering out the low-frequency fluctuations.

Equation (6-3-29) is difficult to apply, but it is given for information.
The subtraction of the best straight line for the data involves the sub-
stitution of a variable 7/ = 7, — (a + b?) and the determination of the
constants @ and b to minimize the variance. For a more detailed discus-
sion and a good bibliography, see Ref. 17.

Figure 6-4 shows a block diagram of a versatile system which allows
the two oscillators to have zero offset. This feature allows the system
noise to be evaluated by feeding both channels from one source. The
offset is obtained by the frequency synthesizer, whose fluctuations do not
degrade the measurement much since the oscillator fluctuations have
been multiplied by 1,840 times in the 20-MHz difference frequency before
the comparison is made. Figure 6-5 shows some typical results obtained
with this system.

From a practical standpoint the multiple-period system gives good
results over a range of = from about 102 sec upward.

Quartz Frequency Standards. The piezoelectric effect in certain crystals,
particularly quartz, has long been used to stabilize the frequencies of
oscillators. A mechanical force applied properly to a quartz crystal pro-
duces an electrical charge; an alternating potential across the crystal
produces mechanical motion. This reciprocal relationship allows a sharp
mechanical resonance in a crystal to be viewed as if it were a high-Q elec-
trical resonance when two electrodes are mounted on or near the crystal
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FIG 6-4 Versatile multiple-period measuring system.

surfaces. Limited space allows only a brief discussion of quartz-crystal
technology, and the reader who wishes to study further should consult
specialized references [8, 9, 10].

There are many forms in which quartz can be cut and mounted to serve
as a resonator. The objectives are to obtain high Q, stability of resonant
frequency versus age and temperature variation, reduction of unwanted
oscillation modes, and freedom from the effects of mechanical shock and
vibration. Even after the quartz has been well cut and properly mounted,
it is necessary to enclose the crystal in a temperature-controlled oven to
achieve good performance as a frequency standard. Very elaborate
ovens with continuous feedback temperature control have been developed
for the purpose.

For greatest frequency stability, the design of the oscillator goes beyond
consideration of the crystal and its holder. Figure 6-6 is a representation
of a quartz resonator connected in a Pierce oscillator configuration, a
circuit that is frequently employed. Since the resonator appears electri-
cally as a series resonant circuit of extremely high @, shunted by C, (the
total capacitance of holder and electrodes), either the pole or the zero
lying near the mechanical resonant frequency can be used to determine
the operating frequency of a suitable oscillator.

Every impedance shown in Fig. 6-6 affects the oscillator frequency
slightly, even though the resonant @ is of the order of 10¢ to 10”. The
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oscillating frequency is simply the one at which the phase shift around the
feedback loop is zero. Even though the phase changes extremely
rapidly with frequency in the vicinity of mechanical resonance, varia-
tions in Cy, C, C4, the input and output impedances of the amplifier, and
small changes in phase shift through the amplifier all produce small
changes in oscillator frequency. Therefore, all components in the circuit
must be carefully selected for long- and short-term stability, and both
Z; and Z, should be made as high as possible.

The frequency of oscillation varies slightly with the driving power into
the crystal. It is best to control driving power automatically to about
1 uW, and variations in driving power are typically held to less than
0.01 percent. Obviously, power-supply voltages must be regulated to
avoid fluctuations in driving power or spurious phase shifts in the active
cireuits.

To be complete, the circuit in Fig. 6-6 should show the output circuitry
(that unavoidably loads the oscillator) and stray feedback from output
circuits to the oscillator proper. Since in some cases present commercial
oscillators achieve stabilities better than +5 X 10! per 24 h, it should
not be surprising that extreme attention is given to these seemingly minor
factors. The design of modern electronic instruments is as demanding
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FIG 6-5 Measurements with multiple-period system.
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of creativity, care, and theoretical considerations as any design problem
in electronies.

Atomic Frequency Standards. The reader may not havestudied quantum
mechanics, upon which atomic frequency standards are technically based,
but the presentation here will require only a few elementary principles.
The chapter by Alan Bagley on Frequency and Time Measurements in
Vol. 23 of the “Handbuch der Physik,” edited by S. Fligge-Freiburg [11],
gives a more thorough presentation, still not requiring advanced knowl-
edge of quantum theory.

The energy levels in an atom can assume only a limited number of
discrete levels, and transitions between two levels either give up or require
the added energy difference between those two particular levels. Further-
more, there is a unique electromagnetic frequency related to each transi-
tion. The frequency is determined by the familiar relationship E = hy,
where E is the difference in energy between the two states, i is Planck’s
constant and » is the frequency. In other words, if energy at frequency
v is applied to an atom when the above relationship is satisfied, one
quantum of that energy has the capability of effecting a sudden shift in
energy level.

In a passive atomic resonator, transitions are induced by driving the
atomic device with a signal derived from a quartz oscillator, which in
turn is stabilized to produce the proper driving frequency. The active
resonators are microwave masers, such as atomic hydrogen masers, which
produce stimulated emission in the microwave range.

The principal passive standard (and the present basis for the United
States frequency standard) is the cesium-beam resonator. For this
standard, the quantum effects of interest arise in the nuclear magnetic
hyperfine ground state of the atoms. A particularly appropriate transi-
tion occurs between the (F = 4, mg = 0) and (F = 3, my = 0) hyperfine
levels in the cesium-133 atom, arising from electron-spin—nuclear-spin

Z; —» | «— 7,

Crystal and holder

1 |

| o :

|
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interaction [11]. This transition is appropriate for frequency control by
reason of its relative insensitivity to external influences such as electric
and magnetic fields and of its convenient frequency (in the microwave
range, 9,192+ MHz).

Figure 6-7 is a simplified sketch of the cesium tube. Cesium atoms
having all the permissible quantum-energy levels are slowly evaporated
from an oven and collimated by slits into a beam. The state selector
magnet A, with its vertical field, deflects each atom through an angle
that depends upon the energy level of that atom. Only those atoms
having the so-called ¥ = 4, mp = 0 state are permitted to form a beam
through the reaction cavity of the tube, where a microwave magnetic
field having a frequency of 9,192.631770 MHz has exactly the correct
energy per quantum to flip the state of the atoms to F = 3, mp = 0.
Actually only a portion of the atoms are converted, but enough so that
they can be sorted by the magnet E and made to impinge upon a hot wire
that ionizes them. The resulting free electrons strike the first dynode of
an electron multiplier and produce a dc component of output current.

If one plots output current versus excitation frequency, a very sharp
resonant peak is found having a @ as high as 2 X 10%. Figure 6-8 shows
in a very simplified way how a crystal oscillator is controlled to produce a
submultiple of the required excitation frequency. The driving signal, at
9,192+ MHz, is phase modulated by means of an audio oscillator. If
the driving frequency is exactly at the resonant peak of the cesium tube,
the output I5 contains only harmonics of the audio frequency and none of
the fundamental. The phase-sensitive detector has a de output propor-
tional to the departure of the driver from the desired frequency, and the
polarity of this error signal indicates whether the drive frequency is too
low or too high. After high-frequency components in the error signal are
removed by an integrating circuit, the signal is used to control and correct
the operating frequency of a quartz oscillator running at about 5 MHz.
A small, steady magnetic C field throughout the whole cavity area has
been found to limit the atomic level transitions to the correct ones. Of
course, the time constant of the integrating circuit also determines the
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FIG 6-7 Schematic of cesium beam resonator.
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FIG 6-8 Control scheme for a cesium beam resonator.

bandwidth over which the quartz flywheel, with its good short-term
stability, is controlled.

The cesium-beam resonator exhibits excellent long-term stability.
A good portable commercial instrument (Hewlett-Packard model 5061A)
has a specified accuracy of +1 X 10-1, and a laboratory model at the
National Bureau of Standards is even better. Atomic hydrogen masers
produce less high-frequency noise in their outputs and are sometimes
used when a spectrally pure signal is required. Other gas cells, such as
ammonia and rubidium, have also been tried for masers and have some
merits as frequency standards [12, 13]. Rubidium is also used in a passive
gas cell with optical pumping.

6-4 Frequency Measuring Instruments

In the exciting history of electronic instruments, two types that have
become commonplace are oscilloscopes (Chap. 11) and digital instru-
ments based upon circuits that count pulses.

These counter circuits are constructed of devices or subeircuits that are
n stable, usually bistable. If bistable circuits (flip-flops) are connected
in tandem, a binary counter is formed, as in Fig. 6-9. Each flip-flop in
this case is toggled from one output state to the opposite one when a

¢} 1 (¢} 1 0 1 [o] 1
l I I |

b———sout
AN L e ; FF 7 FF r FF

1 2 3 4

FIG 6-9 Basic binary counter diagram.

negative-going pulse is applied to the 7' input. Assuming that the state-
indicating outputs 0 and 1 are most positive when ‘“on,” it follows that
each flip-flop is toggled when the state of the previous one flips from 1 to 0.
If all states are O initially, 16 negative input pulses are required to pro-
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duce 1 negative output pulse, or in other words a scale-of-16 counter
results.

However, a decade counter is easily made by feeding pulses between
certain flip-flops in a binary counter with a scale of 16, as in Fig. 6-9, in
addition to the pulse signal paths shown in that figure. This causes the
flip-flops to change state in a more complicated sequence than in the
straight binary fashion. A pulse signal emerges from FF4 after every
tenth input pulse, and the total count stored in the unit at any given
time is determined by the combination of conduction states among the
flip-flops. By means of coincidence circuitry, the stored count operates
a visual digital display. The whole assembly is called a decade-counting
assembly.

A detailed treatment of the circuitry in a modern solid-state electronic
counter is available in the service manuals of commercial counters [14].

Obviously, several decade-counter circuits can be put in tandem to
produce a decimal counter. With two additional components, the
manually controlled totalizing counter in Fig. 6-10 is formed. One of the
additions is a gate circuit that either transmits pulses or prevents their
transmission, depending upon the application of an electrical start-stop
signal. This main gate is usually an arrangement of diodes or transistors
very familiar to computer-circuit designers. The pulses, waves, or elec-
trical “‘events” to be counted are fed to an amplifier and a trigger circuit
that produces pulses of uniform and optimum shape, one pulse for each
cycle or event of input. The counter counts pulses as long as the main
gate is opened, and the total count is stored and displayed on the instru-
ment panel until the counter circuits are reset electrically to zero. This
is a very simple arrangement, and as additional components are added,
an extremely versatile instrument emerges.

The most important additions are:

1. An internal time-base oscillator having good frequency stability. In
simple, inexpensive instruments the time-base signal can be the ac power-

Decimal counters
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frput Schmitt
Sensitivity ?

Startstop signal
(manual control )

FIG 6-10 Manually controlled totalizing counter.
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line voltage, but generally a quartz-crystal oscillator is used. The
required quality of the quartz resonator and the sophistication of the
constant-temperature oven and associated electronic circuitry depend
upon the target specifications of the instrument. Short-term stabilities
of better than 5 parts in 10!! and aging rates better than 5 parts in 100
per day are available in commercial counters. The exact frequency of
time-base oscillators can be set to an external house-frequency standard
in most instruments of quality.

2. Counting circuits that divide the crystal-oscillator frequency by powers
of 10. When the decade divider is connected into the system as in Fig.
6-11, along with a trigger circuit to develop pulses with optimum shape
for fast, accurate control of the main gate, the gate can be opened for
very accurate intervals of time that can be set in decade steps. In the
figure, if the oscillator frequency is 1 MHz, the gate can be opened for
precisely 10—%, 10—, 10~%, 10-2, 10—}, 1, or 10 sec.

Frequency Measurements. Figure 6-11 is a simplified block diagram
of an electronic counter with its function switch set to measure the fre-
quency of the input signal.

The input signal is first supplied to a signal shaper which converts the
input signal (CW or pulses) to uniform pulses. The output of the shaper
is then routed to decade-counting assemblies through a gate controlled
by the counter’s time base as shown in Fig. 6-11. The number of pulses
totaled in the decade-counting assemblies for the selected period of time
represents the frequency of the input signal. The frequency counted is
displayed on a visual numerical readout, with a positioned decimal point,
and is retained until a new sample is taken. The sample-rate control
determines the display time of the frequency measurement being made
and initiates the counter reset and the next measurement cycle.

The time-base selector switch selects the gating interval, positions the
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FIG 6-11 Basic electronic frequency counter.
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FIG 6-12 Function switch set to *‘Period.”

decimal point, and selects the appropriate measurement units. For
simplicity, the last two switching actions are not shown in the figure.

In the event that frequency measurement of low-level signals (down
to 1 mV rms) is desired, a wideband amplifier can be placed ahead of the
input terminals in Fig. 6-11. In some counters, such as the Hewlett-
Packard model 5245, preamplifier plug-ins are readily available. A
front-panel meter indicates whether the input level is adequate for the
measurement.

Since the gate may open at any electrical angle of the frequency being
measured and close at some other arbitrary angle, there is always an
ambiguity of plus-or-minus one count or cycle. This is a fundamental
limit on accuracy.

Period Measurements. Period P = 1/f, where fis frequency ; therefore,
period measurements are made with the counter functions arranged as
shown in Fig. 6-12. The unknown input signal controls the main gate
time, and the time-base frequency is counted in the decade-counting
assemblies. The input-shaping circuit commonly selects the positive-
going zero axis crossing of successive cycles as trigger points for opening
and closing the gate. As in frequency counting, the measurement is
automatically repeated at a rate that is manually variable in commercial
instruments, or the measurement may be made on a one-shot basis.

Period measurements allow more accurate measurements of unknown
low-frequency signals, because of increased resolution. For example, a
frequency measurement of 100 Hz on a counter with 8-digit display and a
10-sec gate time, will be displayed as 0000.1000 kHz. A single period
measurement of 100 Hz on the same instrument, with 10 MHz as the
counted frequency, would be displayed as 0010000.0 usec. Thus, resolu-
tion is increased by a factor of 100. The accuracy here is also affected by
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the +1l-count ambiguity, + the time-base accuracy, + the trigger
error.

Time-interval measurements are similar to period measurements, with
the added capability of setting trigger levels for the gate (Fig. 6-12) to any
desired amplitude. Also, two different inputs can be used to start and to
stop the counting. Alternatively, the time interval between two setable
levels on one waveform can be measured.

Phase measurement is a special time-interval measurement. Usually,
it is made by measuring the time between zero crossings of two voltages of
the same frequency. Accuracy is usually limited by the inability to
trigger the gates precisely at zero crossings.

Multiple-period Averaging. The effects of the +1-count ambiguity
and the trigger error can each be reduced in decade steps by using multiple-
period averaging (Fig. 6-13). In one leading high-frequency counter, for
example, the function selector switch is ganged to the decade-divider
assemblies so that the input signal can be scaled in decade steps by factors
up to 100,000 to reduce trigger error. The +1-count ambiguity is also
reduced by a factor of 10 for each decade of scaling selected for the input
signal. In the low-frequency measurement example above, the counter
would display 10000.000 wsec for a 100-period average. The function
selector switch automatically shifts the decimal point in the display to
show the correct reading for a single period.

Ratio Measurements. The ratio of two frequencies is determined by
using the lower-frequency signal for gate control while the higher-fre-
quency signal is counted, as shown in Fig. 6-14. With proper transducers,
ratio measurements may be applied to any phenomena that may be
represented by pulses or sine waves. Gear ratios and clutch slippage, as
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FIG 6-13 Armangement for multiple period averaging
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FIG 6-14 Function switch set to measure the ratio of two fre-
quencies.

well as frequency divider or multiplier operation, are some of the mea-
surements which can be made by using this technique.

Accuracy is + 1 count * trigger error. The accuracy may be improved
by using the multiple-period averaging technique by counting the higher
frequency for 10” cycles of the lower frequency.

Rate Measurements. With a preset counter or a counter with a preset
plug-in, frequency measurements can be normalized automatically to
rate measurements by appropriate selection of the gate time. The
counter will then display a readout corresponding to the desired engineer-
ing units. For example, the Hewlett-Packard 5214L preset counter can
be set to a gate time of 600 msec to cause an input from a 100 pulse per
revolution tachometer to be displayed directly in revolutions per minute.

High-frequency Measurements. Accurate high-frequency measurements
can be made above the normal range of an electronic counter by using
heterodyne converters, transfer oscillators, or automatic dividers, and for
frequencies up to 500 MHaz, prescaling is available. The unique capa-
bilities of each will now be briefly described.

Heterodyne converters enable a counter to measure the average values
of continuous wave (CW) signals (even when FM’d to a certain extent)
and have a resolution of about 1 Hz/1 sec of counter gate time. For a
good example of such a converter, refer to Fig. 6-15. The tuning control
selects the 200-MHz harmonic that gives a beat-frequency output which,
after prescaling by a factor of 4, is within the 50-MHz counting capability
of the counter. At the same time, the counter gate time is extended by a
factor of 4 so that direct readout is achieved. The frequency reading on
the counter is then added to the setting on the tuning dial to give the
unknown frequency. .

Transfer oscillators, on the other hand, are more versatile. They can
measure FM or pulsed signals, as well as CW signals, over a very wide
frequency range and can produce N-hertz resolution in 1-sec counter gate
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time, where N is the harmonic number, but require calculations (and
perhaps two measurements) and thus need more operator skill and time.
Note that accuracy may be less when measuring the carrier frequency of
pulsed signals.

In operation, the transfer oscillator generates a variable frequency,
which is adjusted so a harmonic of that frequency’s zero beats with the
unknown CW signal (see Fig. 6-16). The transfer oscillator frequency is
then measured on the counter and multiplied by the appropriate harmonic
number to give the unknown frequency. In the Hewlett-Packard
2590B, zero beat is obtained by an automatic phase-lock loop after one of
the nearest subharmonics has been manually tuned. Measurements to
15 GHz are possible with the 2590B model, and to 40 GHz with the
Hewlett-Packard 540B with related instruments. The figures are some-
what misleading unless it is realized that the mixer, harmonic generator,
and oscillator are common components for both instruments.

Automatic frequency dividers provide automatic measurement and
direct readout of a wide range of CW frequencies, and typically furnish
1,000-Hz resolution in 1 sec. Prescaling is accomplished by frequency
division of the input signal. If the gate time is extended with the scale
factor, the correct frequency will appear on the counter readout. Because
the prescaler is a wideband instrument, it is more susceptible to noise than

Unknown
tnput 3-12.4 GHz

}

Tuning Balanced
covity Selected mixer
harmonic
All harmonics 200 MHz steps
of 200 MHz from 3 t012.4GHz |1-212 MHz
Harmonic Video
generator amplifier
Tuning 1-212 MHz
meter
0.25-53MHz
'Q MHz | Multiplier Prescaler TO counter
signal (X20) (+4) input

Gatetime o . i
extender From time base
(x4) ——————To counter gate

FIG 6-15 Heterodyne scheme to count higher frequencies.
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FIG 6-16 Use of a transfer oscillator to measure higher fre-
quencies. (Courtesy of the Hewlett-Packard Co.)

tuned instruments like the heterodyne converters. An adjustable trigger
level control on the presecaler can be used to discriminate against unwanted
signals. The accuracy of the prescaler is the same as that of the counter,
although the measurement takes 2, 4, or 8 times as long in time, depending
upon the scale factor.

6-5 Frequency Synthesizers

A great deal of the information in this section was excerpted, with per-
mission from the publisher, from a paper by V. E. Van Duzer [15]. It
could be argued that a frequency synthesizer should be classified as a
signal source rather than as a time-and-frequency instrument, but the
emphasis in synthesizers is on precision and stability as much as on vari-
ability. The instrument, in the best designs, is essentially a variable
Sfrequency standard.

Sources having variable frequency, precisely setable and with stabilities
comparable with those of good frequency standards, are valuable in highly
developed communications work, radio distance sounding, radar, doppler
systems, automatic and manual testing of frequency-sensitive devices,
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numerous timing situations, spectrum analysis, stability studies, and
many other areas.

Frequency standards have already been discussed. Their availability
and excellent performance stimulated a search for ways to translate their
stability to any desired frequency. This translation, when the operation
is something more than a single fixed operation, is commonly known
as frequency synthesis. Hence, a variable-frequency synthesizer is an
instrument that translates the frequency stability of a single frequency,
usually one from a frequency standard, to any one of many other possible
frequencies, usually over a broad spectrum. Such an instrument may
provide any one of thousands, even billions, of frequencies. In everyday
usage the word variable is usually omitted from the name, and the instru-
ments are merely called frequency synthesizers.

The two basic approaches to frequency synthesis are known as direct
(or true) and indirect. Direct synthesis simply performs a series of arith-
metic operations on the signal from the frequency standard to achieve the
desired output frequency. The indirect method uses tunable oscillators,
which are phase-locked to harmonics of signals derived from the stan-
dard [16).

The direct-synthesis approach has the pronounced advantages of per-
mitting fine resolution and fast switching in the same instrument and
fail-safe operation and an extremely clean output signal as well. This is
the type of instrument to be discussed in this section.

Basically this system started with a stable oscillator or frequency
standard that provided a signal of frequency fo, say 1 MHz. Frequency
multipliers and dividers were used to give such frequencies as 0.1 MHz
and all integral multiples of 1 MHz from 1 to 10. The 0.1-MHz signal
and the 10-MHz signal were also multiplied by integers from 1 to 10.
Now, if 23.6 MHz were desired, the 20-, the 3-, and the 0.6-MHz signals
could be applied to suitable modulators to give the sideband sum of
23.6 MHz.

The above approach sounds very simple, but none of the signals men-
tioned is pure, and besides, modulators (or mixers) always produce
unwanted sidebands or other spurious frequencies. Therefore, the sepa-
ration of the desired frequency from the unwanted ones is a serious prob-
lem, especially when one wants to select one of many output frequencies
spaced closely together. As a rule of thumb, it has been considered
impractical to filter out spurious components that fall within 10 percent
of the desired output frequency. This difficulty has stimulated many
searches for better methods of multiplication, division, mixing, and
filtering. A good summary of early work is given in Technical Report
2271 of the United States Army Electronics Research and Development
Laboratory, Fort Monmouth, New Jersey. If still in print, it can be
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obtained from the Office of Technical Services, U.S. Department of
Commerce, Washington, D.C.

For tutorial purposes, it is thought best to deseribe a modern synthe-
sizer with the capability of providing an extremely large number of fre-
quencies and high output quality.

The design objective is to obtain a very large number of switchable
frequencies from a single stable signal, frequencies arranged in decimal
fashion, as on the keyboard of an adding machine. One synthesizer, for
example, provides frequencies from 0.01 Hz to 50 MHz in digital incre-
ments as fine as 0.01 Hz—a total of 5 billion discrete frequencies. At
any frequency the output is a spectrally pure signal. Any nonharmonic
spurious signal is more than 90 dB below the desired signal (see Fig. 6-17).
The output frequency can be selected by front-panel pushbuttons or by
remote electronic control. When the frequencies are electrically pro-
grammed, switching can be accomplished in less than 1 msee.

A simplified block diagram of the overall instrument is shown in Fig.
6-18. The driver contains a frequency standard, a spectrum generator,
and appropriate selection networks to provide a series of fixed frequencies

FIG 6-17 Frequency synthesizer with output from 0.01 Hz to 50
MHz in 0.01 Hz increments. (Hewlett-Packard Model 5100A)
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FIG 6-18 Basic circuit arrangement for the frequency synthesizer
shown in Fig. 6-17.

between 3 and 39 MHz to the synthesizer unit. The synthesizer unit
contains harmonic generators and suitable mixers, dividers, filters, and
amplifiers to derive the desired output frequency as a function of the fixed
frequencies.

The fine-resolution portion of the instrument is particularly interesting
and also serves to illustrate the method of synthesis used. As shown in
the right-hand portion of Fig. 6-18, there are seven identical mixer-
divider units, each of which corresponds to a place, or decimal position,
in the final output frequency number. In each of these units, and in the
eighth unit as well, a frequency of 24 MHz is used as a carrier input, as
shown.

In the right-hand unit, which produces what ultimately becomes the
highest resolution digit (102 Hz), the 24-MHz carrier is added to a
3.0-MHz frequency in frequency adder A to produce 27.0 MHz. In B
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the 27.0-MHz frequency is added to a frequency of from 3.0 to 3.9 MHz,
depending on the setting of the panel pushbutton or remote-control cir-
cuit. Selection of a 2 in this particular digit position, for example, elec-
tronically selects a signal of 3.2 N[Hz from the driver.

The output of B is a frequency of 30.0 to 30.9 MHz, which is divided in
C to produce 3.00 to 3.09 MHz. This frequency is applied to the second
unit, where it adds with the 24-NHz carrier as before, and the process
repeats. If the process is followed through, it will be seen that the fre-
quencies noted in the block diagram are obtained at the outputs of the
various adders and dividers. In essence, each mixer-divider unit, through
a frequency-division process, moves a given digit one place to the right
for the final frequency of between 30,000,000.00 and 30,999,999.99 Hz,
depending on the output frequency selected.

In the following two operations the signal is added to a frequency of 330
MHz, and the resultant is again added to an appropriate frequency
between 30 and 39 MHz to yield a frequency of between 390 and 400
MHz. One of the five frequencies from 350 to 390 MHz is then subtracted
from this to yield the desired 0.01-Hz to 50-MHz output frequency. A
good way to start understanding the operation of the circuit is to observe
that a frequency change of 0.1 MHz in the input to unit 1 produces a
change of 0.01 Hz at the output of the whole system, because of the
repeated division by 10.

The design of the synthesizer described resulted from a long effort to
optimize performance for a reasonable cost. The design is therefore
arbitrary to some extent, and other choices of frequencies and mixing
methods are possible.

Applications of Synthesizers. If in the digital frequency synthesizer we
have a frequency standard whose output frequency can be selected by
either manual or electronic command to very high resolution in less than a
millisecond, such an instrument constitutes a most powerful tool. In
communications work, for example, the synthesizer’s excellent spurious-
frequency performance makes it well suited to use as the master oscillator
in a transmitter and as the local oscillator in a receiver. If the transmitter
and the rf section of the receiver are untuned, an extremely fast switching
system can be used to change the local oscillator (synthesizer) frequency
to achieve communications systems of high performance.

Again, the synthesizer can greatly facilitate surveillance work if it is
used as the local oscillator in a receiver designed to determine accurately
the frequencies of remote transmitters. The ease and speed with which
the synthesizer frequency can be changed allow monitoring of a
multiplicity of channels with a single receiver by sequencing the local
oscillator (synthesizer) through the desired channels.

Sequencing the synthesizer output through a group of desired fre-
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quencies also permits a single instrument to operate as an automatic
calibrator for a multiple-frequency setup such as a multiple-transmitter
installation. The arrangement can provide for phase-locking the
transmitter frequencies to the synthesizer by a circuit with a time constant
long enough to maintain the transmitter frequency for the duration of the
sequencing cycle.

The effective use of the microwave spectrum for communications
requires frequency sources with extremely good fractional frequency
stability so that the receiver bandwidth can be minimized. With a
3-kHz information bandwidth at 10 GHz, a frequency stability of 3 parts
in 10% for a duration of a message is desirable for double-sideband work.
For single-sideband work the requirement is about 1 part in 10? for the
same conditions. Obviously, a synthesizer must be used in such a com-
munications system to make it practical.

Determining the velocity of distant space vehicles through doppler
frequency measurements involves operation at z-band with receivers
having intermediate-frequency bandwidths of but a few cycles to minimize
noise levels. As the vehicle velocity changes, the receiver’s local oscil-
lator frequency must be changed to keep the received signal in the center
of the intermediate-frequency bandwidth. Here again, the synthesizer is
ideal because of its stability and because its frequency can be changed in
known and selectable increments.

Finally, the synthesizer is indispensable for automatic testing schemes
in which signals having specific frequencies must be rapidly programmed
into a test setup.
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CHAPTER SEVEN

DIRECT-CURRENT
INSTRUMENT AMPLIFIERS

From Notes by

Paul Baird, Bill Kay, Craig Walter,
and Richard Y. Moss, Ii

Hewlett-Packard Company, Loveland, Colorado

Amplifiers of many kinds are used in electronic instruments. Also,
instruments are used in many ways to make measurements on amplifiers.
It is not feasible to present a full treatise on amplifier design in this volume,
but some of the de amplifiers in instruments have such special require-
ments that this chapter will be devoted to them.

The principal methods for making measurements on amplifiers by means
of electronic instruments will be presented in Chap. 13, along with a
short discussion of the characteristics that need to be measured.

Whether they are in instruments or not, amplifiers are employed for
one or more of the following reasons: (1) to increase the power available
in an electrical signal, (2) to amplify voltage or current levels where
power per se is not of great concern, (3) automatically to limit the voltage
or current that can be delivered to a load, (4) to provide a prescribed

186
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transfer function, either linear or nonlinear, between a source and a load,
(5) to provide the desired load impedance on a source or the desired
source impedance for a load, and (6) to attenuate or reject the common-
mode component of voltage on a pair of conductors (the common-mode
voltage is the average of the voltages on the two conductors at each instant
with respect to ground or some designated reference potential). Ampli-
fiers are frequently used as active filters, but this is a special use under
item 4. '

In instruments, de amplifiers are most commonly used for reasons 2
and 5 above. When a signal is very small, as a voltage, as a current, or
as both, one needs amplification. Whether one needs a high voltage gain
E./E,, a high current gain I,/I,, a high transconductance I./E,, or a high
transimpedance Er/I, depends upon the natures of the signal source and
load to be driven. The simple Thevenin and Norton equivalent circuits
in Fig. 7-1, using an amplifier with a common ground terminal, will help
to clarify this situation. The symbols are defined on the figure. If a
signal is most accurately described by its Thevenin equivalent voltage E,
even when Z, is variable, then Z; of the amplifier should be high compared
with Z,. If the signal is most accurately deseribed as a current I,, regard-
less of variations in Z,, then one desires Z; << Z,. Similar considerations
determine the desirability of Z, > Z1 or Z1 > Z..

So far, the situation seems very simple, for shunt or series feedback can
be used to modify Z; and Z, over wide limits while stabilizing the desired
transfer gain. The common problem, however, is that de signal sources
can be at such low levels that amplifier noise and drift in operating points
degrade the accuracy of measurement. This chapter describes some of
the methods used to deal with drift and noise while simultaneously achiev-
ing the desired gains, bandwidths, and impedance relationships. The
role of bandwidth in the design of de instrument amplifiers is important;
the bandwidth is of course never zero, since a signal must vary to contain
intelligence.

FIG 7-1 Thevenin (a) and Norton
(b) equivalent amplifier circuit
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The most straightforward way to make the frequency response of an
amplifier extend down to 0 Hz is to couple the stages conductively. The
resulting amplifier is said to be direct coupled and besides being straight-
forward in concept, it can have essentially the same upper frequency
range as one with capacitor coupling. An example of a direct-coupled
amplifier will be given in Sec. 7-1 to show some of the design
considerations.

However, it is difficult and expensive to keep the quiescent operating
potentials in the direct-coupled amplifier from drifting with age and tem-
perature. Also, many input stages, such as electron tubes and transistors,
exhibit excess random noise as the frequency approaches zero. In some
applications it is appropriate to use either periodic resetting of the
operating point or modulation (chopping) of the input signal. Chopping
converts the frequency band of the input information to some ac carrier
band and avoids the use of direct coupling. Resetting and chopping will
be presented later in the chapter.

7-1 Direct-coupled Amplifier Considerations

The most common means of amplifying de voltages, excluding amplifica-
tion of extremely low level signals of the order of 1 uV, is the direct-coupled
amplifier. The amplifier can be either inverting (operational) or
noninverting,

If, in addition to the requirement of accurate low-level amplification,
the amplifier is required to have moderate bandwidth (20 kHz at a gain of
40 dB), wide dynamic range (0 to +15V) at the input, extremely high
input resistance (10%° @), very low offset voltage and current (<1 xV and
1 pA at the amplifier input) and remain relatively insensitive to its environ-
ment (power supplies, source and load impedances, temperature, and
humidity), then its design is greatly complicated.

Chopper stabilization as a technique does not normally satisfy the
bandwidth requirement. Such amplifiers are normally relegated to
amplification of very low frequency voltages near 0 Hz. To amplify the
higher frequencies, an ac-coupled amplifier can be paralleled, but this is of
course more complicated and more costly.

Up-conversion to a much higher frequency carrier (megahertz) would
accomplish amplification of the frequency range required, but amplifier
accuracy and de stability (variation of the offset voltage and current at
the amplifier input with time and temperature) are difficult to achieve
with available chopping devices at high frequencies.

Amplification by means of a direct-coupled amplifier, then, remains the
simplest and least-expensive means for satisfying the requirements previ-
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ously listed. The following few pages detail a case history of the design
and evaluation of an amplifier with common ground used to provide signal
processing from a measurement transducer to a moderate-speed (15-kHz
bit rate) analog-to-digital converter. The analog-to-digital converter in
this case was actually a digital voltmeter.

Basic Configuration. To achieve accurate and stable gain, and high input

Differential
amplifier

FIG 7-2 Basic configuration of the
direct-coupled amplifier.

impedance, a noninverting configuration with voltage feedback was
chosen. The amplifier shown in Fig. 7-2 is basically a good differential
amplifier with the noninverting gain K, made as close as possible to the
inverting gain K,. The desirability of this arrangement will become clear.

As already noted, one of the chief design problems is to reduce
sensitivity to environment. Such a reduction in sensitivity to envi-
ronment will not be achieved, however, unless the fractional changes in
both forward gains, as a function of input level, time, or temperature, are
identical. That is to say, the differences in the gains must be small or the
common mode rejection (CMR) ratio must be low to obtain ultimate
benefit from the feedback. The definition is

voltage gain, common inputs

CMR = - n —
voltage gain, differential inputs

_Ki— K, Ki—K,

=

K, K,

Input Stages. A matched pair of field-effect transistors (FETs) was
chosen as the differential input stage. The FET offered both the high
input resistance and the small leakage current required. Bipolar devices,
though not necessarily limited by their lower input resistance since their
input resistance is boosted by the amplifier feedback, have considerably
more leakage current—the transistor base current is typically 100 to 1,000
times more than the FET gate leakage current.

The FETs are operated in a balanced common-drain configuration to
achieve minimum sensitivities of the input offset voltage to power supply,
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device parameter, and temperature variation (the input offset AVgg is the
required difference in voltages at the input terminals required to give zero
differential output). Figure 7-3 is a simplified diagram of the circuit
arrangement. To further reduce offset variations caused by temperature
fluctuations, the FET environment is temperature controlled at a tem-
perature higher than the maximum expected ambient. Although this
does increase the gate leakage current, it also keeps it constant.
Minimum sensitivity of gain to device parameter variation is also
achieved.

The common drain must be made to track or bootstrap the input volt-
ages to maintain Vpgs constant with input level. If this is not done, the
offset voltage AVes will change as a function of level because of the chang-
ing FET bias. The back-biased breakdown (Zener) diode in Fig. 7-3 acts
as if a battery were connected between the emitters of transistors Q2A
and Q2B and the two drain terminals; and since the base-to-emitter volt-
ages are very small, Vps for both FETs is kept nearly constant, even
though a large common mode input may exist.

Current sources for the active devices are used to reduce the effects
of varying power-supply voltages and bias the FETs in such a way as to
keep Vps and Ips fixed while Vs varies. Actually, the current sources
in the amplifier being described are active circuits. A very high value
of resistance could be used to create a constant current source, but this
approach would require higher power-supply voltages.

Although the FETs used had much less gate leakage current than the
base current of a transistor, it was still much larger than desired. A

+£
Current Constant
comp current source
network

0, D,
A T N Bootstrap
o £ ‘ zener _ "
Noninverti Q1A /\ (voltage Q1B Inverting
verng Vos, shifter) input
input 574 1 .= ] shite
o-—-L V$$| 1 S2 _]__-°
+ JDS'l [

-£

FIG 7-3 Input portion of direct-coupled amplifier.
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constant current source bootstrapped to the drain potential achieved
good compensation without lowering the incremental input impedance.

Because the amplifier does dissipate power, albeit small, temperature
gradients exist across and through it. The temperature differences,
although typically only a few degrees, may cause severe problems because
of thermoelectric effects in various parts of the amplifier. Typically,
transistors that are hermetically packaged are sealed in an envelope made
of Kovar. The leads are also Kovar—penetrating the envelope header
through glass. Kovar is used because its coefficient of thermal expansion
is nearly equal to that of glass, a match that is made necessary by the
elevated temperatures used to bond glass to Kovar and thereby to obtain
hermeticity. A thermocouple junction is formed wherever the Kovar
lead connects to a dissimilar metal. Since copper is used almost exclu-
sively for the conductors on printed circuit boards, Kovar-copper thermo-
couples exist wherever transistors are soldered to the board. If these
junctions are at different temperatures (caused by the aforementioned
gradients), different voltages will exist across them. These voltages will,
of course, change whenever the temperatures of the junctions change.

If one assumes the voltage generated between two of these couples,
separated by 1°C, to be 150 uV, then temperature fluctuations as small
as 0.01°C can create measurable and very troublesome errors. Great
care must be taken with the physical layout of the input stages to ensure
either the exclusion or the stability of these temperature gradients. The
amplifier input stages must be so isolated that surrounding air is not
allowed free movement.

These effects are particularly troublesome when an attempt is made to
evaluate the actual temperature coefficient of the offset voltage. The
amplifier is placed in an oven and its temperature varied. Adequate time
must be allowed for the stabilization of temperature gradients. Even
in a small environmental chamber this time can be hours. The voltage
must be continuously monitored to ensure stabilization.

The amplifier environment must also be rigidly controlled when sta-
bility and noise measurements are being made, so that variations in offset
are truly caused by aging rather than by temperature.

In Fig. 7-2 the gain of the amplifier with feedback is

K, 1]
KI=E0 E.'= —_— R — 7-1-1
= T Rs T BlEed, D
where K; = noninverting gain
K, = inverting gain
B = Rz/(R1 + Rz)

The gain is set accurately by adjusting 8.
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If aging or some environmental change causes K; and K, to change,
the relative change in K’ is

AK’ _ (14 Ksf) AK; — KiB AK, 1 + K8

K’ 1 + K.B)? K,
1
= (AK: + K:f AK, — K8 AKs) (112
K0+ KB) (AK, 2B AK, 18 AK3) ( )
I Kb > 1,
AK' AK/K, | AK: AK,
K~ kK8 'K K @19
and if AK[/Kl = AKz/Kz,
AR’ 6K 1
K~ K K8 s

where K = K, = K.

Gain Stages. Two differential transistor amplifier stages provide the
forward gain of the whole amplifier, as shown in Fig. 7-4. The common-
drain FETs in Fig. 7-3 act only as differential impedance transformers

e
— ) ___Inverting
Noninverting L« _ input
input
Rias
/ oV To output
) Ca L ~ drivers
@® a4 =
CR,
-£

FIG 7-4 Gain stages.
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with voltage gain slightly less than unity. Observe that Q2A and Q2B
in Fig. 7-4 are the transistors shown in Fig. 7-3; they are repeated for
clarity.

Both n-p-n and p-n-p transistor pairs are used in complementary
fashion to make the operating voltage at

the output approximately ground potential. ° 1 i) ¢
These pairs must be well matched to produce ge (1 e
low drift and good CMR. The pair Q2A and "

Q2B are especially critical since they operate
at input signal level. The Q3 pair is less
critical in regard to matching. For detailed
analysis of transistor amplifiers, see recent specialized books and
papers [1].

Noise considerations (and the limits on power-supply voltages)
indirectly limit the gain of Q2. The two major contributors to amplifier
noise (excluding the 1/f noise of the FETs) are the equivalent-noise volt-
age of Q2 and the equivalent-noise current of Q3. This noise voltage Ew,
referred to the input and assuming no correlation, is given by

InqsR
Ex? = E?«Qz + ( NQ3livL
Kq.

FIG 7-5 Simplified common
emitter circuit,

2
) = En%: + (Inqsr'eqa)? (7-1-5)

with the assumption Ry < riq, (Fig. 7-4), and where 7, and r. are the
equivalent resistances in the simplified common-base cireuit of Fig. 7-5.
The forward voltage gain of the amplifier is

- RLQ3 RL
= 7 W
2r,q3 Teq2

(7-1-6)

where B <« 2Bqsr.q; and 8 = a/(a — 1).

Since 7,q, is almost inversely proportional to the emitter-bias current
Igqs, an increase in this operating current will apparently increase the
gain and decrease the total noise. This improvement is limited, however,
by power-supply voltage, since for a given Ry, the voltage drop across it is
proportional to the current in Q2. Once Ry and r,q, are determined by
the practical limitations, then

CR,

Ve, = IpqeRL = — (7-1-7)
chz
and
, CR
Teaz = V: = C'Ry (7-1-8)

where C = qug?"Qg.



194 Electronic Measurements and Instrumentation

Therefore,
Exn* = Eyq, + (IngsC'Ry)? (7-1-9)
and
RLQ3
K = -1-
20, (7-1-10)

The resistance R cannot be made vanishingly small, however, for as R,
decreases, r,q, must decrease (and Irqe. must increase) to maintain K.
Unfortunately, E%q, is a very strong function of Igqs, increasing with
increasing Irq.. For fixed supply voltages, then, there is an optimum
value for Ry,

The RC pairs (R, and C}, R, and C,) shown in Fig. 7-4 are used to shape
the amplifier frequency response. The size of capacitor used is primarily
limited by the slewing rate required. The slew limit is the maximum rate
of change of signal de/dt.,, which the amplifier can follow linearly. Slew
limiting oceurs when the current required to produce a voltage across a
capacitor, ¢ = C(de/dt), exceeds the maximum current available. If the
current has been fixed by gain and noise considerations and the signal
voltage and frequency required are known, the maximum capacitor size is
determined. This presents a real restraint on the size of C'; because of the
large voltage swings required (415 V). Therefore Cy was determined by
slew rate considerations; R, R,, and C; were then chosen to achieve the
desired frequency response.

The transition from a balanced or differential configuration to a single-
ended one is effected through Q4. Such a stage is necessary to achieve
both the high gain and the power-supply rejection required. Diode CR,
provides a first-order correction to change in the base-emitter voltage of
Q4, caused by temperature.

Output Stages. Cascaded complementary emitter followers are used to
couple from the collectors of Q3A and Q4 to the output. This configura-
tion provides both the high input impedance required for the output stage
(>10 MQ) and relatively good linearity near zero voltage. The resistors
in the collectors and emitters of the cutput transistors limit the output
current and thereby provide short-circuit protection. The design of this
stage is fairly straightforward and will not be discussed here. See Fig. 7-6
for the simplified schematic.

Overvoltage Protection. In any measuring environment in which mea-
surements are not rigorously controlled and monitored, the possibility
exists of damaging the amplifier through input overvoltage. To prevent
damage to the amplifier (and perhaps to the signal source), dynamic
protection must be provided. See Fig. 7-7.



Direct-current Instrument Amplifiers 195

Signal from
gain stages

3 Load

A

FIG 7-6 Output stages.

When the dynamic range of the amplifier is exceeded, the diodes will
conduct. Current limiting is provided by the resistor in series with the
input. The top pair of diodes do not significantly degrade the input
impedance because of bootstrapping by the loop gain. The primary
disadvantage is an increase in noise (the thermal noise of the resistor).

Open-loop Gain Measurement. Open-loop gain measurements on dc
amplifiers are usually exceedingly tedious and difficult because of the
absolute magnitude of K (>100 dB). The output swing is limited and
may be exceeded because of voltages generated by noise, thermals, or
component temperature sensitivity at the amplifier input. (If the ampli-
fier voltage gain is 120 dB, then 1 xV at the input will generate 1 V at the
output. If the amplifier is relatively broadband, its noise, referred to the
input—tens of microvolts, peak to peak—may be large enough to saturate
the amplifier output.) Such open-loop gain measurements are necessary
if accurate determination of the frequency response and the shaping
needed to ensure stability are to be made.

Protection ~ Noninverting

resistor input
frpar
\ L
Overload I Invert
current | input
R
| Breakdown FIG 7-71 Protection against ex-
| diodes 1 cessive input voltages.

||.—



FIG 7-8 A test amangement for
measuring forward gain.

Within the assumptions noted, the method shown above (Fig. 7-8) is
both accurate and relatively effortless.

Let K, = K, = K. The transfer from the amplifier input to its output
is given by

Z,

-K—=* _E 7-1-11
Zi+ 7, " ( )

Because of the feedback current through Z 2, then E; < E;, and

E;—E, E,—E,
~ 7-1-12
A 7 ( )

Z, Z,
E = —+1})-=¢E, 7-1-13
B(2+1) -2 (7-1-13)

Adding Egs. (7-1-11) and (7-1-13),

E, Z, Z\Z,
e I T L 7-1-14
Bz 'Y L2y (T-1-14)

Let Z1 = Zg, (Za + Zq)/Z4 = 100, and K = 200. Then

L _K (7-1-15)
E, 100
and
E;
= 100 = 7-1-16
K = 100 A ( )

Output Sensing. A common measurement error oceurs when measuring
gain accuracy or linearity if the resistance in a length of wire, of any size,
is neglected. Any resistance in series with the output of the amplifier
(and with its load) will account for some voltage drop and thereby reduce
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the output voltage and introduce an apparent error in amplifier gain. A
few milliohms can result in significant errors when extremely accurate
(0.001 percent) gain is required.

As shown in Fig. 7-9a, the lead resistance R is not included in the feed-
back loop when remote output sensing is not employed. In b, however,
the output terminals are made the reference terminals for the voltage
feedback and also the ground returns of both the amplifier and the input
signal. In this arrangement, R simply becomes part of the output
resistance of the amplifier, which is reduced in effect by a factor of
1 4+ BK by the feedback.

Results. Typical operating specifications for the amplifier as previously
described are given below, and a circuit diagram is shown in Fig. 7-10.

GaIN: X1 to X100
GAIN ACCURACY: +0.005 percent
LINEARITY: £0.001 percent, 0 to +15V
ZERO DRIFT REFERRED TO INPUT:
Offset voltage <0.5 uV/°C, 0 to 60°C
Input current <1 pA/°C, 0 to 60°C
NOISE REFERRED TO INPUT: 0 to 20 kHz, <8-uV rms
INPUT RESISTANCE: >10'° Q
BANDWIDTH, 3 dB:
0 to 20 kHz for X100 gain setting
0 to 1 MHz for X1 gain setting
SETTLING TIME: <50 usec to within 0.01 percent of final value
ouTPUT: +15 V max, 0 to 10 mA
POWER SUPPLY REJECTION: > 90 dB for either supply

7-2 Direct-current Amplifier with Automatic Reset

Earlier in the chapter it was said that a chopper amplifier could have
very low drift, but that a direct-coupled amplifier has advantages when
large bandwidth is required. The frequency response, or transfer func-
tion, of a direct-coupled amplifier is easily adjusted for best stability and
overall response when feedback is used. In contrast, a chopper amplifier,

Vv -
—H—

(a) ()
FIG 7-9 Hiustration of remote output sensing.
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Gain stages
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input
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30V QOutput
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Current comp. Q2 current  FET current  Single—ended Output drivers
network source sources transition

FIG 7-10 Complete amplifier diagram.

Sec. 7-3, has a narrow bandwidth and a rather complicated transfer func-
tion. It can be paralleled by an ac amplifier to extend the bandwidth,
but when feedback is then used to obtain a flat frequency response, some
severe problems appear in stability, transient and overload response, and
intermodulation with the chopping frequency.

To generalize, the advantages of the chopper amplifier are (1) that the
noise of the amplifier is basically determined by the noise of the active
input devices at the chopping frequency rather than at de, (2) that the
active devices can be ac coupled to the input circuit, which greatly reduces
leakage currents, and (3) that the voltage offsets of the amplifier are
determined by the chopper itself plus the offsets generated by thermal
junctions in the input circuitry. However, the development of FETs
with little low-frequency noise (10 nV/Hz" at 10 Hz) and also low leakage
current (10 pA) has changed this situation to some extent.

Slow drift is still a problem in direct-coupled amplifiers, but in some
applications automatic reset can be used, as described below, to make the
direct-coupled amplifier compete with the chopper amplifier in drift
stability. :

The Basic Circuits for Automatic Reset. United States patent number
2,994,825 describes means for automatically resetting the operating point
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Photoconductor
Light pulses

FIG 7-11 Basic automatic-reset
amplifier.

of a direct-coupled amplifier periodically on a time-sharing basis. The
measurement of the input signal is briefly interrupted every ¢, sec while
the amplifier operating conditions are quickly reset to make the output
voltage zero when the input is zero. In other words, the drift is balanced
out.

In a sense, the amplifier is no longer truly direct coupled, since the signal
is briefly interrupted, but in some applications this is no disadvantage.

The original circuit, simplified, is shown in Fig. 7-11.  While the input
voltage is being amplified, with switch S, in the upper position, the photo-
conductor is dark and virtually an open circuit. The charge on capacitor
C remains practically constant during this interval. Occasionally, when
it is permissible to interrupt the amplifying process, the main input
terminal of the amplifier is connected to ground by S, and the output is
fed back degeneratively through the illuminated photoconductor to C,
which is connected to the other input terminal of the differential
amplifier. ‘

During reset, the conditions shown in Fig. 7-12 are approached. The
offset voltage Eos (the voltage that would be required across the input
terminals to bring the output to zero) is represented by an equivalent
battery, and the photoconductor is illuminated to have a resistance R of
about 1,000 Q. If an ideal amplifier and no initial charge on C are

—o-T1>%

I+
Eos-£e ’EC

FIG 7-12 Reset amplifier (steady-
state conditions) during the reset
interval.
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assumed, the voltage across C as a function of s, the Laplace operator, is

Eos
Bel®) = T KK + sBC/K (7-2-1)
which gives
ec(t) = Eos (1 — eQ+RHIEC) (7-2-2)

1+ K

as a function of time. If K 3> 1, the voltage across C' approaches Eog
exponentially with a time constant of RC/K. After a few reset cycles,
the offset voltage is almost perfectly balanced out by the voltage across
C, which is stored during the interval of amplification.

Since K is high, sudden offsets or input noise can easily drive the
amplifier into nonlinearity in the effort to satisfy Eq. (7-2-2). To prevent
saturation and the ensuing slow recovery, and to improve operation in
other ways, the circuit in Fig. 7-13 was developed. The resistor R, con-
trols the charging rate of C and limits the rate to a value that avoids
amplifier saturation. Now C responds only to the low-frequency com-
ponents of input offset; if it responds to input noise and the switch opens
at times that are arbitrary with respect to the noise variations, then the
voltage to which C charges has a random variation. Instead of the
photoconductor, a fast reed switch S; is commonly used to give a very
low switch resistance and lower switch offset voltage. During the
amplifying phase of operation, S; is open and S, is closed, which estab-
lishes feedback through R; and R: to stabilize gain without interfering
with the purpose of C.

The switches S, and 8; in Fig. 7-13 are outwardly equivalent to S; in
Fig. 7-1, but they were physically designed to have less thermal error.

One suitable application for the automatic-reset de amplifier is in
oscilloscopes, where reset can be accomplished during the time between
individual traces of the pattern. Another application is in analog-to-
digital converters, where the conversion is done periodically.

A commercial amplifier using the reset technique has the following per-

S "
£ —
| S2 _ £o
'I.r 53
T¢ S M FIG 7-13 Modified reset ampli-
$e fier in reset mode.
SRz
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formance characteristics:

Noise (de¢, 30 Hz) < 1 uV peak-to-peak

Response time to 0.004 percent < 2 msec (gain = 1 and small signal levels)

Response time to 0.004 percent < 25 msec (gain = 1, V; = 10 V) (limited
by slew rate)

Offset drift < 5 uV for 3 months

Offset stability with temperature < 0.2 uV/°C (—20 to +55°C)

Leakage currents < 25 pA

Dynamic range (input voltage = +15V) (gain = 1)

Gain accuracy = 0.001 percent of level

Input impedance > 101°Q

A word of explanation is needed at this point in regard to response time.
When an amplifier is used to measure the sudden application of a small de
signal, and one wishes to read the measurement with maximum accuracy
as soon as possible, response time is a more convenient concept than fre-
quency response. Such a situation occurs in low-level digital voltmeters
with resolutions of five or six digits and reading rates of perhaps 15 sec™™.
In this case, it is quite probable that the output of the de¢ preamplifier
must settle to within 0.004 percent of its final value within about 15 msec.

As implied in the performance characteristics above, the response time
depends in large measure upon whether or not the preamplifier is saturated.
If the amplifier is operating linearly, the response to a step function can be
easily calculated from the transfer function. However, if a stage of the
amplifier saturates because of a step-function input, the steady-state value
of which would not cause steady-state saturation, the difficulty is that the
saturating stage cannot supply the current required to charge a capacitive
load at the desired rate of change of voltage. The rate at which the out-
put of the amplifier can reach the correct level during saturation is called
dynamic slewing rate. This matter is discussed more fully in Chap. 13, a
general treatise on amplifier measurements.

7-3 Differential Amplifiers

Figure 7-14 shows an amplifier with two input terminals, neither one of
which is connected to the system ground. If thisis a differential amplifier,
the useful (or differential) gain is

AE,
K=——— 7-3-1
A(E, — E») ( )
and the common-mode gain
Keu AE, (7-3-2)

T AE: + By
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o !
X1
FIG 7-14 Elementary , differential am-
plifier.

is made as small as possible. In other words, the noninverting gain | K|
is made nearly equal to the inverting gain |K,|. Several differential
amplifiers have been shown in diagrams earlier in the chapter, but the
second input terminal has been used for convenience in a feedback scheme;
the emphasis has not been upon amplifying a differential signal accurately
in the presence of a common-mode signal.

However, the differential configuration is used for rejection of common-
mode voltages. It is also useful for reduction and stabilization of input
voltage offsets. For the latter purpose, the designer attempts to make
the offsets of two nearly identical input devices affect the output in oppo-
site directions and thereby cancel. The progress of integrated-circuit
technology has played an important role in improving differential ampli-
fiers because it has produced well-matched active devices in close proxim-
ity to one another so that the cancellation of environmental effects is more
nearly perfect.

It is generally difficult to realize the desired overall characteristics with
only one open-loop differential “block” of integrated circuitry, and so
instrumentation amplifiers often utilize several interconnected blocks.
One possible approach is shown in Fig. 7-15. In this circuit, A;, 4., and
Aj are integrated-circuit amplifier blocks with negligible input currents.
All are inverting, as shown by the minus signs, and the corresponding volt-
age gains are —K;, —K,, and — K, which are all assumed to be of the

Cr

It
1t

Ry
WA

v
S il SIS

£ Rq £p

J FIG 7-15 Differential amplifier with
three integrated-circuit blocks.
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order of 108, It is easy to derive the relationship

KE;

[=o— "
R,(1 +K) + R:

(7-3-3)

where Ry, is the equivalent load resistance on 4;. K = K; = K, and the
other symbols are shown in Fig. 7-15. Since K > 1 and Bp K KR,
because of the shunt feedback around Aj;,

I~ % (7-3-4)

The arrangement of 4; and A, is called a transconductance amplifier, and
the common-mode gain would be zero if the two blocks were perfectly
balanced.

The transimpedance connection of Aj; responds to input current
according to the equation E, = —IR;, and thus the gain of the whole
amplifier is

E, Rs
Ki = E = R, (7-3-5)

The gain and bandwidth can be controlled independently since the gain
may be varied by changing R, and the bandwidth is determined primarily
by R /C i

A different closed-loop connection is shown in Fig. 7-16. This con-
figuration uses a total of four amplifier blocks rather than three, but the
requirements on each are not as severe, making the circuit more compatible
with integrated-circuit technology. The operation is as follows: Blocks
A, and A, respond only to the differential input signal E;, which produces

FIG 7-16 Improved differential amplifier with four integrated-
circuit blocks.
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a balanced output voltage

_ (2R, + Ry)E:

E
1 .

(7-3-6)
This signal is amplified a second time by A4,, according to the formula
E, = —R.E,/Rs, so that the overall voltage gain can be given as

E, _ (2R + R)R.
Ei R2R3

While gain and bandwidth now depend upon a larger number of com-
ponents, reasonable switching ease and stability are not hard to achieve.
The function of 4, is to reconstruct the common-mode voltage by means
of summing resistors R; and to drive the power common and guard shields
of 4; and A4, to prevent deterioration of the intrinsic CMR (common-
mode rejection) by stray capacitances. In the configuration of Fig. 7-15,
the CMR depends primarily upon the minimum values of the open-loop
gains of A, and A,, while in the configuration of Fig. 7-16, the CMR
depends primarily upon the matching of the R3’s and R4’s to each other.
While this may be construed as either an improvement or a disadvantage,
depending upon circumstances, it is also possible to match the Cy's and
achieve lower CMR at higher frequencies than is possible with the Fig.
7-15 circuit. Remember CMR = K../K,.

A comparison between the performance characteristics of differential
amplifiers and chopper-stabilized amplifiers is made at the end of the
chapter. Power-supply considerations limit the amplitude of ecommon-
mode voltage to about +10 V in differential amplifiers.

(7-3-7)

7-4 Chopper Amplifiers

Frequently the most troublesome problems of the de amplifier are (1)
the requirement of a finite input to bring the output to zero (zero offset),
(2) a slow variation of the output when the input is constant (drift), and
(3) an unpredictable current in the input leads (leakage current). One
important technique for reducing these effects is to make the dc signal
modulate an ac carrier so that amplification can be done without direct
coupling, and then the amplified, modulated carrier is demodulated to
regain a de signal.

While this technique has been stated in general terms, the modulation
method commonly used is to switch the input of an ac amplifier repetitively
between the de source and some reference potential such as ground. Fig-
ure 7-17 illustrates the method. The repetitive switches are called
choppers. If the input chopper were ideal, the de signal would be con-



Direct-current Instrument Amplifiers 205

verted into a square wave with amplitude equal to E; and fundamental
frequency f.. The ac amplifier may amplify either the full square wave
or else just f. and partially the modulation sidebands. For qualitative
understanding, it is easy to think of the output of the amplifier as a square

/Chopper switches

f ran JH‘-)
£;(dc) 3 nn

l_é‘g (dc)

FIG 7-17 A basic chopper amplifier.

wave that is sampled synchronously by another chopper and then is filtered
to produce a dc output.

Chopper Switches. The most commonly used chopper or modulating
switch is basically a mechanical relay, driven magnetically. However, a
good chopper is a very highly developed device that minimizes several
severe problems. ¥irst, consider the choice of chopping frequency f..
For two reasons it is desirable for f. to be as high as possible: (1) The band-
width of the dc system is seldom greater than 0.1f., because of demodula-
tion and filtering, and (2) many amplifying devices exhibit excess noise
voltage that rises at a rate of approximately 3 dB/octave as frequency is
decreased below about 500 Hz. The sampling theorem tells us that “in
order to recover a continuous time series from its samples, except for a
time delay, the sampling rate must be greater than twice the highest fre-
quency in the continuous time series” [2]. In practice, 0.1 to 0.2f. is a
usable bandwidth. In addition, a time delay in transient response as
great as Y4 f. can exist [4].

Since the mechanical-chopper switches are driven magnetically, it is
difficult to keep from inducing voltages in the switch conductors that
appear as offset and noise after demodulation and can even cause currents
to flow back into the source of the dec signal.

Jitter in the switching cycle and bouncing of the switch contacts are
additional sources of noise. Also, the voltages across the thermal junc-
tions within the choppers cannot be perfectly balanced to zero. Some
thermal drift and offset remains. Still, mechanical choppers are used in
amplifiers with bandwidths of about 10 Hz and noise referred to input of
about 0.2 4V when used with signal sources having only a few ohms of
internal resistance.

A conventional amplifier circuit with only one chopper switch (SPDT)
is shown in Fig. 7-18. For simplicity, the chopper in this circuit is usually
driven at line frequency, but it is then possible for line frequency interfer-
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:T-—ANTN\'——M—D—ﬂ—-AN»—‘[m
T
£, FIG 7-18 Direct-current ampli-
] L | fier with one chopper device for
> - both modulation and demodula-
$ tion.
Chopper

ence and harmonics thereof, in either the input circuit or the ac amplifier,
to produce an unpredictable de output.

One improvement in the chopper amplifier for use with low-impedance
sources and high common-mode voltages is to employ a full-wave system
rather than the half-wave design described above. Such a configuration
(Fig. 7-19) commonly makes use of a transformer to perform this function;
instead of connecting the input signal to ground for one-half cycle, the
input signal is inverted and used. Now the amplifier is connected to the
signal nearly all the time and impedance adjusting is possible so that lower
noise figures can be realized, but another precision component has been
introduced which produces additional advantages and disadvantages.

One totally new advantage is the separation of the input and output
ground paths, which results in improved performance where ground
potential differences occur. The disadvantages include severe trans-
former design and shielding problems; frequency limitations; and if the iso-
lation feature is used, the dependence upon the transformer losses as a
limiting factor in accuracy since there cannot be any overall feedback to
the isolated input except through another set of transformer windings and
choppers.

PSS

FIG 7-19 Direct-current amplifier with
full-wave choppers and transformer isola-
tion.

Other Choppers. Several nonmechanical devices are widely used as
modulating switches to convert de signals into ac signals in chopper ampli-
fiers. Photoresistors (photoconductors) were first used successfully in



Direct-current Instrument Amplifiers 207

1957 as light-actuated switches in a stable de microvoltmeter with 10 xV
full scale [3]. The circuit of the microvoltmeter is basically similar to the
one shown in Fig. 7-17, with much series feedback to stabilize the gain
and increase the input resistance, which is greater than 100 MQ. Pho-
toconductors had long been used in* erude switch applications, but
early devices had far too high a generated photovoltaic potential and were
far too slow in response time for use in chopper circuits at the microvolt
level.

A carrier or chopping frequency of 50 Hz is used in the microvoltmeter
described above. Direct-current amplifiers using higher chopping fre-
quencies have been designed since 1958, but faster photoconductors having
lower resistance with illumination (Rox) would bring even further
improvement in these amplifiers. Conductance is roughly proportional
to light intensity on the photoconductive surface, but for practical reasons,
Ron is seldom less than 1,0009.

Transistors are excellent and fast switches for some chopper applications.
The simplest circuit is shown in Fig. 7-20 with a single transistor used as a
series switch. During the half cycle of the drive voltage E; when the base
of the p-n-p transistor is driven positive with respect to the emitter, very
little current flows anywhere in the device, regardless of whether the input
is positive or negative. On the other hand, when the base is driven
negative, a current flows from emitter to base, and the emitter becomes a
fraction of a volt positive with respect to base. Now, a collector current
will flow if the input is made either positive or negative. As long as the
collector current is restricted in magnitude, the collector-base junction will
remain forward biased so that the net collector-to-emitter voltage is quite
low. The main difficulty with this simple circuit is that an offset occurs
in the E, versus E; curve, and the offset drifts with temperature.

¥

+or U or qnr

= T

| ¥ !
£ (o) \ RS o

FIG 7-20 Transistor used as a chopper
switch.

The offset error is reduced by inverting the transistor, which reverses
the functions of emitter and collector. Even better reduction of offset is
made by using two transistors in a circuit in which their offsets tend to
cancel, as in Fig. 7-21.
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In any chopper circuit, keeping the active chopper elements at constant
temperature reduces drift. If two elements are used to cancel drift, it is
important to keep the two at the same temperature, and a good way to
prevent temperature differentials is to make both elements a part of the
same integrated circuit. The most common chopper device of this sort is
an integrated double-emitter bipolar transistor.

. £ .
| Tt
El(dC)’ f /?L% Er

FIG 7-21 Bilateral transistor chopper.

The FET has virtue as a chopping switch because of its low offset volt-
age and low driving power. Some of the characteristics of chopping
devices are compared in Table 7-1.

Another modulating device that is used in amplifiers requiring extremely
high input impedance is the vibrating capacitor, the capacitance of which
is made to vary periodically by mechanically oscillating the position of one
of its plates [5]. The input voltage is applied to the capacitor through a
high resistance so that the charge remains nearly constant over a cycle of
vibration. The ac output voltage is proportional to charge multiplied by
variation in capacitance, and currents as low as 107 A can be resolved.
However, drift and noise are greater than in most low-impedance choppers.
Although this type of chopper is well suited to resolving extremely low
currents, it is not well suited to resolving extremely low voltages.

TABLE 7-1 Characteristics of Some Chopping Devices

Sms Vos, Ios, Rox, Rorr, Vorr
Device Hz \' A Q Q v
Mechanical 102 10-¢ 1010 10! 10° 30
Photoresistive 3 X 102 10— 10—1 104 10¢ 50
Inverted Qt 10¢ 10~ 10— 25 108 5
Integrated double Qf 10¢ 10—+ 108 50 108 20
FET 108 10-¢ 10-* 102 108 20

t Inverted transistor.
1 Two transistors on one integrated-circuit chip.
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CHAPTER EIGHT

VOLTAGE AND CURRENT
MEASUREMENTS

From Notes by

Paul Baird, Arndt B. Bergh, Robert L. Dudley,
William McCuliough

Hewlett-Packard Company
and by
Charles O. Forge

Durrum Instruments
Palo Alto, California

Along with impedance and power, the basic variables measured electron-
ically are voltage and current. Chapter 1 has discussed the system of
units for these quantities and their standardization. It was shown that
standardization requires extreme attention to accuracy and therefore
special measurement and comparison techniques. While these techniques
are basic and essential to the electronic arts, they will not be treated
further in this book.

This chapter will treat several subjects relating to voltage and current
measurement that do not logically fall elsewhere. First, the topic of de

210
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digital voltmeters (DVMs) deserves a place of its own, because these
instruments have become extremely accurate and versatile, and fairly
inexpensive, during recent years. They interface well with other digital
instruments, including computers, and therefore are important in the
growth of instrument systems (Chap. 18).

Then, the measurement of ac voltages of countless waveforms requires
the thorough understanding of some technical principles. These will be
developed.

The chapter will conclude with a brief discussion of some important
instruments that measure either ac or de currents in conductors, without
breaking into these conductors or measuring the voltages across known
impedances.

8-1 Introduction to DVMs

Digital voltmeters are measuring instruments that convert analog volt-
age signals into digital presentations. The digital presentation can take
the form of a front-panel readout or an electrical digital output signal.
As the name implies, any DVM is capable of measuring analog dc voltages.
However, with the appropriate signal conditioner preceding the input of
the DVM, many other quantities can be measured. Some of these are ac
voltage, ohms, de and ac current, temperature, and pressure, and there are
many others. The common element in all these signal conditioners is a
de output voltage proportional to the level of the unknown quantity being
measured. This de¢ output is then measured by the DVM, and appro-
priate annunciation in the digital presentation indicates the quantity being
measured.

Digital voltmeters have made significant contributions in the field of
electronic instrumentation since their introduction more than 15 years ago
and are enjoying a growing popularity as bench instruments and systems
components. Among the many factors that distinguish DVMs from
other voltage measuring instruments are speed, automatic operation, and
programability. Although there are instruments such as precision dif-
ferential voltmeters that can be more accurate than most DVMs, few
instruments bring to bear on the measurement problem the same combina-
tion of speed and accuracy as does the DV M.

Automatic operation and programability are features of many DVMs
that make them useful in systems applications where the need is for great
versatility in measurement capability, high speed, and computer controlla-
bility. Many of these features are expensive, however. In measurement
situations where speed, convenience, and automatic operation are not high
in priority, instruments of less cost than the precision DVM would be
better solutions to the measurement problems.
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There are several varieties of DVMs. They differ in the following
ways:

. Number of measurement ranges
. Number of digits

. Accuracy

. Speed of reading

. Normal-mode noise rejection

. Common-mode noise rejection

. Digital outputs of several types

O O N e

The basic measurement range of most DVMs is either 1.00 or 10.00 V.
However, with the appropriate preamplifier, measurements can be made
to the nearest 0.1 uV. The number of digits commonly varies from three
to six. Most DVMs have a certain amount of overrange capability,
which is indicated by an additional leading digit, usually 1. This digit
should not be confused with a full decade.

The accuracy of most DVMs is commensurate with their resolution;
i.e., a three-digit instrument could hardly claim an accuracy better
than +0.1 percent since this is the basic resolution of the instrument.
Accuracy much poorer than +0.1 percent would be a poor compromise,
too. The ultimate in accuracy for short periods of time in controlled
environments can be as good as within an error of +0.0015 percent of
reading or +0.0002 percent of full range in a six-digit' instrument.

The maximum speed of reading and the period of digitizing are inter-
related. Some DVMs are able to digitize in 1.0 msec (or even much
shorter time intervals) and hence could make up to 1,000 readings per
second. However, capacitance of the input, whether it is stray or part of
a filter, may limit the useful measuring speed from inputs with high
source impedances to 100 readings per second or below. Besides, it is
impossible to follow the visual readout at high reading speed. At high
reading speed, the difference between a DVM and an analog-to-digital
converter may be as simple as the presence or absence of visual readout.

Noise rejection is a subject that will be treated in more detail later in
this section. Normal-mode noise rejection is usually achieved through
input filtering or through the use of the integration technique. Com-
mon-mode rejection is achieved through the use of guarding or other
ways of obtaining differential response. Digital outputs are usually in the
form of four-line BCD code, but there are 10-line outputs or single-line
serial outputs. )

Probably the greatest single distinction between types of DVMs is the
method used in converting the analog de¢ signal into a digital presenta-
tion. During the short time that DVMs have existed, many different
techniques have been developed by which this conversion takes place.
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In general, these techniques can be divided into two main types: integrat-
ing and nonintegrating. The main nonintegrating types of DVM
techniques are:

Potentiometric
Servo
Successive approximation
Null balance
Ramp
Linear
Staircase

Those that are integrating in nature are:

Voltage-to-frequency converter
Potentiometric to integrating
Dual slope

8-2 Nonintegrating Types of DVMs

Potentiometric. Stripped of all complications, the operation of the
potentiometric technique is similar to that of the differential voltmeter.
Figure 81 shows this arrangement in its simplest form. The linear
divider is adjusted until the null indicator shows equality of the input
voltage and the output voltage of the divider. Assume that the internal
reference is equal to 410 V and the divider is set to a ratio of 0.50020 at
balance. The unknown voltage at the input is equal to

Vi = Vg X setting of divider
+10.00 X 0.50020
= +5.0020 V (8-2-1)

The range of voltage that can be measured in this fashion is dependent
upon the value of the reference voltage. In Eq. (8-2-1), it can be seen
that this range could be increased by increasing the value of V. since
the maximum setting of the divider is 1.00000. Further, the sensitivity

Linear
divider

Internal
reference

Null
indication

<

FIG 8-1 Simplified differential-
voltmeter block diagram.
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of the measurement is dependent upon the resolution of the linear divider.
If it can divide with six-digit resolution, the resolution of the measurement
is six digits and the maximum sensitivity is 10 uV. The sensitivity of
this measurement is also dependent on the characteristic noise of the null
indicator. These limitations can be partially overcome with the addition
of an input amplifier and attenuator. The attenuator allows voltages
higher than the internal reference to be measured, while the amplifier
increases the sensitivity of the system and allows full-scale voltage ranges
less than the internal reference. Voltages with negative polarity can be
measured by reversing the connections between the internal reference and
the linear divider.

Figuie 8-2 shows the use of a servo system in automating this potentio-
metric technique. Here is a servo system composed of a differential
amplifier, a motor, and the linear divider. The amplifier senses the polar-
ity of the unbalance and drives the motor in such a direction as to reduce
the unbalance to the level of some error signal. This level can be
decreased by increasing the gain of the system—usually by increasing the
gain of the amplifier. The accuracy of this system is dependent upon the
internal reference, the linearity of the divider, friction, and the drift
stability of the error amplifier. In this type of system, the divider is
usually a multiturn potentiometer and is the main influence in determining
the accuracy of the system. Attached to the shaft of the motor and
divider is a mechanical readout which in effect indicates the position of
the shaft of the divider. Because of the limitations in linearity of the
potentiometer, the resolution of this system is usually a maximum of
three digits.

This type of servo DVM is very economical in obtaining a digital
readout of an analog input signal. Some of the disadvantages of this
technique are its relatively slow speed and mechanical wear.

In the successive-approximation technique, the linear divider of the
servo technique is replaced with a digital divider or digital-to-analog
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converter and the servo motor is replaced with electronic logic. The
readout in the successive-approximation technique is electronic and is
usually driven by the logic of the system.

Figure 8-3 shows a simplified block diagram of a suceessive-approxima-
tion technique. This system is clocked (programmed) and usually fol-
lows a definite sequence of events. The digital-to-analog converter,
under the control of the logic and sequencer, generates a set pattern of
output voltages usually starting with the most significant digit of the
measurement. As an example, assume that the input voltage is +3.7924
V. Further, assume that the code of the digital-to-analog converter for
this particular example is 8 4 2 1, and the basic range of the instrument is
10.00 V. The sequence of events for this measurement is as follows:

1. Following the previous reading, the digital-to-analog converter is
reset to O V. At the start of the next reading, the logic and sequencer
cause the digital-to-analog converter to generate +8.000 V.

2. At this point in time, in synchronism with the logie, the input
switch S; is connected to the output of the digital-to-analog converter.
The capacitor C charges to the 8.0000 V being generated by the converter.

3. The next event finds S, connected to the input voltage. The com-
parison amplifier now senses the direction of current flow at its input.
If the input voltage is higher than that being generated by the digital-to-
analog converter, the current will flow into the amplifier. However, if
the input voltage is smaller than that being generated by the converter,
the current will flow in the opposite direction.

4. In the example at hand, the comparison amplifier senses that the
input voltage is smaller than the output of the digital-to-analog converter.
A “high’ decision is issued to the logic circuitry, and the 8.000-V condi-
tion in the converter is reset.

5. Next, the switch is returned to the output of the digital-to-analog
converter, and the logic programs the converter to generate +4.000 V.
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1| e
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FIG 8.4 Digital-to-analog voltage seq in ive-approxi-
mation measurement.

6. By comparing this voltage with the input, the same decision is made,
since +4.000 V is still larger than the input voltage.

7. The digital-to-analog converter is next asked to generate +2.000 V.
Capacitor C, charges to this level, and S, switches to the input voltage.
This time, the current through C, flows opposite to the direction it had
during the last two comparisons, and a “low’ decision is issued to the
logic.

8. Upon receipt of a low decision from the comparison amplifier, the
voltage which was being generated by the digital-to-analog converter is
retained, and the next incremental voltage is added to this amount. The
special nature of the digital-to-analog converter makes this possible.

9. The next step has the digital-to-analog converter adding 1.00 V to
what it has retained from previous decisions, in this case 2.000 V for a net
output of +3.000 V.

10. Here again, a low decision is obtained, and the 3.000 V are retained
in the digital-to-analog converter. The sequence now concentrates on
the next digit in exactly the same fashion, and decisions as have been
described above continue until the converter is generating +3.7924 V.

11. The last step in the measurement is the transfer of information
from the sequencer into the readout.

Figure 8-4 shows the digital-to-analog voltage sequence in the measure-
ment outlined above. As the figure illustrates, at each low decision after
an incremental change in the digital-to-analog converter output voltage,
this voltage approaches the value of the unknown voltage. The limit to
how close in value these two voltages can become depends upon the level
of noise in the input stages of the comparison amplifier and the stability
of the input switch. These limiting factors usually determine the number
of digits of resolution of the instrument.
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The successive-approximation technique has been used in instruments
with resolutions ranging from three to five significant digits. The speed
of this technique depends upon the type of switches used in the digital-to-
analog converter and comparison circuitry. If solid-state switches are
used, speeds up to many thousands of readings per second can be achieved.
This capability is needed in high-speed computerized measurement
systems. If electromechanical switches are used, such as reeds or relays,
speeds of a few readings per second can be achieved. The components in
this technique that determine the basic accuracy are the internal reference
supply and the digital-to-analog converter. These two items are common
to many different types of DV )Ms and will be covered in detail in a later
section.

The successive-approximation, or potentiometric, technique has been
used nonautomatically for many years in the standards laboratory to
achieve the highest possible accuracies while measuring dec voltage. The
manual adjustment of a precision divider until a null is reached is quite
simple, and yet it has stood the test of time in providing the ultimate in
dc measurement accuracy. There are some practical considerations,
however, which must be taken into account when applying this technique
to the design of a DVAL.  Any noise that is in series with the input signal
can cause incorrect decisions to be made by the comparison amplifier,
which results in an incorrect measurement of the average value of the
unknown. The usual solution to this problem is the addition of a low-
pass filter at the input to pass de information to the converter and atten-
uate ac components. Attendant on the use of an input filter is an increased
response time of the instrument. Thus, in many practical situations, one
may not be able to take advantage of the inherent high speed of the
successive-approximation technique because of the use of the input filter
to reduce the effects of noise. ’

The null-balance technique is virtually identical with that used in the
successive-approximation technique except for the logic. In the null-
balance technique, once a new voltage has been connected to its input,
this instrument goes through the same steps in achieving a balance.
However, once this balance is achieved, the digital-to-analog converter is
not reset to zero as in the successive-approximation technique. The null-
balance technique makes use of tracking logic. This means the digital-
to-analog converter is able to follow the input voltage for changes below a
certain selectable level. If the change in input voltage exceeds this level,
the digital-to-analog converter is reset to zero and a measurement similar
to that in the successive-approximation technique is made to achieve a new
balance.

In many instances, the same instrument can be programmed to work in
either the successive-approximation mode or the null-balance mode.
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FIG 8.5 Simplified linear-ramp DVM.

One advantage of null balance is increased speed, since for small changes
in the input voltage, a much smaller time is required to achieve a new
balance.

Ramp Techniques. One consideration in the design of a DVM is the
conversion of the analog dec signal into a quantity which is easily digitized.
Two quantities that are relatively easy to digitize are time and frequency.
The linear-ramp technique is essentially a voltage-to-time converter.

As the name of this technique implies, a linear ramp is used to convert
an analog dc signal into a front-panel digital presentation. Figure
8-5 illustrates a simplified block diagram of a linear-ramp DVM. The
heart of the system is the linear ramp itself, which in this case swings
from 412 to —12 V. This voltage swing limits the basic measurement
range of the instrument, which in this case is 10.00 V. The output of
the linear ramp is connected to two comparators. These comparators
are such that when one input becomes equal to the other, their output
changes state. Thus the input comparator compares the ramp with the
input signal, and when the two become equal, the output of this com-
parator changes state. Similarly, the ground comparator output changes
state when the ramp passes through 0 V on its swing from 4+12 to —12V.

The outputs of the two comparators are connected to logie circuitry,
which controls the gate between a local oscillator and a counter. Prior
to each measurement a reset pulse resets the counter to zero and sets the
logic to a specific state. This logic is such that after reset, the first signal
from either of the comparators will open the gate between the local oseil-
lator and the counter, while the next signal will cause the gate to close.
During the period the gate is open, the counter accumulates counts at a
rate set by the local oscillator.

It is obvious that there is a direct relationship between the slope of the
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ramp, the number of digits in the readout, and the frequency of the local
oscillator. Assume that the slope of the ramp is 10 V/50 msec. That
is, the ramp will travel from +10.00 V to 0/V in 50 msec. If a four-digit
readout is desired, then the frequency of the local oscillator must be

10,000 pulses

0.05 sec
200 kHz (8-2-2)

As Eq. (8-2-2) indicates, the resolution of the readout is directly propor-
tional to the frequency of the local oscillator. As an example, assume
that 8.792 V is applied to the input of the voltmeter in Fig. 8-5. When
the ramp passes through a voltage equal to the input voltage, the logic
causes the gate to open. When the ramp passes through 0 V, the logic
causes the gate to close, and at the end of the ramp, a signal is generated
which transfers the information in the counter to the front-panel readout.
With a local oscillator frequency of 200 kHz and a ramp slope of 1.0
V/5 msec, the following calculations demonstrate numerically how the
measurement evolves:

Gate period = 3.792 X 0.005

= 0.01896 sec
Number of pulses = 0.01896 X 200,000
3,792 pulses

As shown above, all that remains is the proper location of the decimal
point and indication of the quantity being measured. 1f the input volt-
age were reversed so that —3.792 V were to be measured, the first com-
parison would be supplied by the ground comparator. Remember, how-
ever, that the logic responds to the first signal from either comparator.
The second signal in this case would come from the input comparator,
and this would close the gate. Other logic has to observe which eom-
parator changes state first in order to determine the polarity of the input
signal and so indicate on the front panel.

It is obvious that the key elements in the accuracy of this technique
are the linearity and absolute slope of the ramp and the frequency setting
and stability of the oscillator. Offsets and drift in the two comparators
are also important in determining the overall accuracy of the linear-ramp
technique.

8-3 Digital Voltmeters with Counting Circuitry

The next technique to be discussed is classified as a ramp technique,
but in many ways the staircase- or digital-ramp technique can be con-
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sidered null balance or potentiometric in nature. This will become more
obvious as we proceed with a description of its operation.

A simplified block diagram of this technique is shown in Fig. 8-6.
The heart of the system is the digital-to-analog converter, which is the
source of the staircase or digital ramp. The digital-to-analog converter
is driven by the digital output of an electronic counter, which in turn is
driven by an oscillator. At the beginning of a measuring sequence, the
counter is reset to a zero-count condition by the control logic. Since the
digital-to-analog converter is digitally slaved to. the counter, it, too,
assumes a zero state and hence generates zero output voltage.

Next in the measuring sequence is the opening of the gate, located
between the oscillator and the counter, by the control logic of the system.
The counter begins accumulating counts from the oscillator and causes
the digital-to-analog converter to generate an output voltage equivalent
to the instantaneous count. As an example, assume that the instrument
under discussion is a three-digit voltmeter and is set to the 1.000-V range.
This means that as each new count is entered in the counter, the output
of the digital-to-analog converter increases by 1.0 mV. If the frequency
of the oscillator is 1 kHz, the “slope” of the digital ramp is 1 V/sec. The
ramp continues to build in value, 1 mV per step, until the null detector
determines that the ramp has exceeded the input voltage with its last
incremental increase. At this point the output of the null detector
changes state. This is sensed by the control logic and the gate between
the oscillator and the counter is closed. Following this gate closure, the
transfer pulse is generated by the control logic and causes the count in
the counter to be transferred to the front-panel readout.

It should be obvious now why the staircase-ramp DVM can also be
considered null balance in nature in that a null is eventually generated
at the input of the null detector. The reference supply and digital-to-
analog converter are the primary factors in the accuracy of this technique.
The operating speed is determined by the frequeney of the oscillator and
the number of digits the voltmeter has. Typically, this technique does
not yield speeds faster than 10 readings per second.
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Voltage-to-frequency Conversion. The next method to be discussed is
the voltage-to-frequency conversion technique, and Fig. 8-7 shows a
simplified block diagram. In this diagram, the input voltage causes a
current to flow through R; into the summing junction of the operational
amplifier. This current continues through C; and causes the output
voltage of the operational amplifier to depart from 0 V. If the input
voltage is positive, the direction of this change at the output is in a nega-
tive direction. If the input voltage is constant, the output moves at a
constant rate in a negative direction.

When this voltage reaches a value equal to — V, the comparator shown
in Fig. 8-7 changes state at its output. This triggers the pulse generator
to inject a fixed amount of charge into the summing junction of the
operational amplifier. The polarity of this charge is such that it tends
to restore the output voltage of the operational amplifier to 0 V. The
process described above continues to repeat itself, and a signal that looks
very much like a sawtooth is generated at the output of the operational
amplifier. If the input signal were doubled in value, the number of
“teeth” in this output signal per unit time would also double. Coincident
with each of these teeth is a pulse which passes through 7', and on to the
input of a control gate.

These pulses are allowed to enter the reversible counter when the gate
is opened, and this opening of the gate is the beginning of the measurement
cycle. The gate can remain open for any period of time, but typically
this time is either 0.1 or 1.0 sec. During this period of time, the reversible
counter totals these pulses. At the end of this period, the count stored in
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FIG 8-7 Simplified block diagram of voltage-to-frequency inte-
grating DVM,
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the reversible counter is transferred to the readout. The heart of this
system is the circuitry that converts the input signal into the train of
pulses to be counted. The accuracy of the system is totally dependent
upon the magnitude and stability of the charge fed back to the summing
junction of the operational amplifier by the pulse generator. The volt-
time integral of this input signal and the total of the volt-time areas of the
feedback pulses are kept in balance at the summing point by the rate at
which the feedback pulses are generated.

Two of the more typical ways to design a precise pulse generator use
either a transformer having a core of square-loop material or charge
transfer from precision capacitors. In the case of the transformer, an
excursion around the BH loop generates a precise amount of energy at a
secondary winding, which is connected to the summing junction of the
operational amplifier through a resistor. Where precision capacitors
are used, they are allowed to charge to a known precise voltage. This
charge is then transferred to the summing junction of the amplifier each
time the output of the amplifier reaches — V.

The diagram in Fig. 8-7 shows only one comparator-pulse generator
set. In actual practice there is another set to accommodate negative
polarity signals at the input of the voltmeter. If the input voltage were
negative, the output of the amplifier would go in a positive direction.
Another comparator determines when this signal passes through 4+ V and
triggers another pulse generator of opposite polarity. One important
requirement is that both pulse generators produce identical amounts of
charge each time they operate.

The need for a counter that has reversing capabilities should be dis-
cussed at this time. If an input signal were to change its polarity during
a measuring period, those pulses that are accumulated following this
must be subtracted from those that have been accumulated prior to this
occurrence. If the counter were not able to reverse, there would be a
folding over or rectification of the opposite polarity signals and a number
larger than the actual average voltage would be indicated.

The most likely situation where the input voltage polarity will change is
in the measurement of a low-level signal (a few tens of millivolts) in the
presence of larger amounts of superimposed noise. The ability to reject
such noise will be discussed in more detail later in this section. Because
of the integrating capability of this system, the average value of the
input signal is measured during the period of time the control gate is
open.

Figure 8-8 shows the ideal transfer characteristics of a voltage-to-
frequency converter. There should be a linear relationship between
voltage and frequency until a certain saturation frequency is reached.
The slope of this linear relationship must be the same for both positive
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and negative voltages. The decision of whether a pulse should be added
or subtracted is determined logically in the instrument; the source of the
pulse—whether it is from the positive or negative comparator—is one
input to the logic. The count present at any given time in the counter
must also be considered. There are four sepa-
rate conditions to consider:

Positive counting up (-) (+)
Positive counting down

Negative counting up "y "
Negative counting down

. . . i FIG 8-8 Transfer character-
An example of these conditions is given In istics of voltage-to-frequency

Fig. 8-9. In this example, it is assumed that converter.

an input voltage of 1.0 V causes the voltage-to-

frequency converter to generate a pulse train with a frequency of 100,000
Hz. The input signal shown in Fig. 8-9a is rather complex with levels
of +1.00, 0, and —1.00 V. Figure 8-9b shows the output frequency of
the pulse generator responding to positive input signals, while Fig. 8-9¢
represents the output frequency of the generator responding to negative
input voltages. Consistent with Fig. 8-8, the term negative frequency
does not apply here.

The timing of the control gate is shown in Fig. 8-9d. Figure 8-9¢ shows
the four conditions of count handling mentioned above. In the time
period from t = 0 to ¢ = 0.2 sec, the reversible counter is counting in a
positive up direction. From ¢ = 0.3 to t = 0.5 sec, the counter begins
counting in a positive down direction. This continues until the net
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count reaches zero, at ¢ = 0.5 sec. At this point, the counter begins
counting in a negative up direction until { = 0.7 sec. The counter now
has a net of —20,000 counts entered. During the period from ¢ = 0.8
sec to gate closure at ¢t = 1.0 sec, the counter begins counting in a negative
down direction. At the conclusion of the measurement, there is a net of
zero counts in the counter. This is as it should be, since the integral of
the input signal from ¢ = 0 to¢ = 1.0 secis 0. In this example, the time
at which the count reached zero (¢ = 0.5 sec) was indicated to the control
logic in order to reverse the state of the counter.

As was mentioned above, the accuracy of the voltage-to-frequency
converter—integrating DVM is dependent on the precision of the charge
that is fed back with each pulse and the linearity of the relationship
between voltage and frequency. Typically, the highest order of accuracy
obtainable in using this technique is to within 0.01 percent. The reading
speed is dependent upon the number of digits in the measurement and the
maximum rate of the voltage-to-frequency converter. If this rate is
100,000 pulses for an input voltage of 1.00 V, a five-digit reading
would require 1.00 sec, while a three-digit reading would require only
10 msec.

The operating speed of an integrating DVM with voltage-to-frequency
conversion can be increased by increasing the upper operating frequency
of the converter. This usually results in decreased accuracy and added
cost. A new technique has recently been introduced which uses voltage-
to-frequency conversion and provides five-digit resolution at a reading
rate approaching 50 sec~!. Figure 8-10 shows a simplified block diagram
of the interpolating-integrating DVM for this technique. For the first
16.67 msec of its operating cycle, it is very similar to the voltage-to-
frequency integrating DVM described above. However, during this
period the pulses generated are directed to the 100s decade: Each pulse is
equivalent to 100 counts. At the end of the 16.67 msec period, there may
be some charge remaining on the integrating capacitor C,. At this
point, S; switches to an internal reference whose polarity tends to reduce
the voltage on C;. At the same time, the gate feeding the 1s decade is
opened and passes pulses at a 60-kHz rate. This continues until the zero
comparator detects 0 V at the output of the operational amplifier. At
this comparison, the gate passing 60 kHz closes and the reading is
completed. '

The amplitude of the internal reference is such that it can remove all
the charge from a fully charged C, in the time it takes to enter 100 counts
into the last two decades at a 60-kHz rate. Since the internal reference
is a fixed value, the rate at which this charge is removed is also constant.
This type of voltmeter has the same basic aceuracy limitations as does the
noninterpolating voltage-to-frequency DVM. The pulse generator must
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generate precise amounts of charge per operation, and this amount must
be constant as the rate of operation changes. The determination of the
last two digits of the reading need have an accuracy of only 1 percent to
be consistent with their importance.

Potentiometric-Integrating DVM. Techniques discussed to this point
are either potentiometric or integrating in nature. It was pointed out
that the potentiometric DVM offers the highest accuracy, while the inte-
grating type provides inherent rejection of noise in series with the signal
to be measured. The next technique to be discussed is one that combines
the potentiometric and integrating schemes and takes advantage of their
best features. .

A simplified block diagram of this DVM is shown in Fig. 8-11. Each
measurement is composed of two separate and distinct sample periods.
During the first sample period, a straightforward voltage-to-frequency
measurement of the unknown is made. At this time in the measurement
cycle, the digital-to-analog converter is generating 0 V, and only the
unknown signal is impressed at the input of the voltage-to-current
converter. The resulting current flows into the current-to-frequency
converter, which generates a train of pulses, the repetition frequency
of which is proportional to the instantaneous value of the input
voltage.

These pulses are fed into the 100s decade of the reversible counter dur-
ing this period. At the end of the period, the count in the counter
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should equal the unknown voltage. At this point in the measurement
cycle, the information in the counter is transferred to the digital-to-
analog converter. The digital-to-analog converter is now called on to
generate a voltage exactly equal to that represented by the count in the
reversible counter. In the process of this transfer, the information is
retained in the counter. The input to the voltage-to-current converter is
now the difference between the input voltage and that voltage which the
digital-to-analog converter is generating. This difference should be
fairly small, but typically is not zero because of errors in the initial
voltage-to-frequency conversion and the reduced resolution of this
initial measurement.

At this point, the second sample period begins. The voltage-to-
frequency converter (combined voltage-to-current and current-to-fre-
quency converters) now generates a train of pulses, the frequency of
which is proportional to the instantaneous value of the difference between
the input signal and the output of the digital-to-analog converter. These
pulses are now entered into the 1s decade of the reversible counter. Any
carry pulses (every hundredth pulse) is fed to the 100s decade. At the
end of this second sample period, the information in the reversible counter
is transferred to the front-panel readout of the voltmeter.

The accuracy of this system is primarily dependent upon the reference
supply and the digital-to-analog converter. The accuracy is good, and
besides, the integrating capability of the voltage-to-frequency converter
provides rejection of noise superimposed upon the input signal. One
distinct advantage of this system is the reduced importance of the accuracy
of the voltage-to-frequency converter. The following example will help
to illustrate this.

Voitage/current
converter

Current / Control
Sensitivity frequency logic
control converter a E

I ] l1/1OSec

1760 sec

Digital
analog
converter

Ref.
supply

- 1/10 sec

Reversible counter

FIG 8-11 Potentiometric-integrating DVM.
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Example

Assume there is no error in the digital-to-analog converter, while the voltage-
to-frequency converter is in error +0.5 percent of level. Assume the input
voltage is exactly 1.000000 V. Because of the voltage-to-frequency error, the
number of counts that is entered during the first sample period is 1,000 X 1.005 =
1,005 counts. This causes the digital-to-analog converter to generate 1.005 V
during the second sample period.

Because of this difference, 500 counts should be subtracted during the second
sample period. However, because of the voltage-to-frequency error, 503 counts
will actually be subtracted. The netkresult is

1.005
—503
0.99997 V

As this example shows, even an error of 0.5 percent in the voltage-to-frequency
converter produces only a 0.003 percent error in the final reading. Actually, the
error of the voltage-to-frequency converter should be squared to determine its
effect on the overall accuracy. Hence, it contributes an error of only 0.005 X
0.005 = 0.000025, or 0.0025 percent. In actual practice, the accuracy of the
voltage-to-frequency converter is typically better than +0.1% of reading so that
its effect on a five-digit reading is negligible. This reduced importance of voltage-
to-frequency accuracy is the reason the first two decades of the reversible counter
are bypassed during the first sample period. Not only is the resolution of the
first three digits sufficient for this sample, but bypassing the first two decades also
speeds up the reading. By using a voltage-to-frequency converter with a maxi-
mum rate of 100 kHz, the first three decades can be easily filled in 16.67 msec.
However, if all five decades were used, a 6-MHz voltage-to-frequency converter
would have to be used, or a period of 1 sec would be required.

Because counts are fed into different decades during the measurement cycle,
the sensitivity of the voltage-to-current converter has to be changed. This is
accomplished by the variable resistor shown below the operational amplifier in
Fig. 8-11. The use of this means of controlling the sensitivity allows the basic
sensitivity of the current-to-frequency converter to remain unchanged during a
measurement cycle.

Dual-slope Integration. A recent innovation has greatly simplified the
conversion of an analog signal into a digital presentation. This is called
the dual-slope integration technique, and a simplified block diagram is
shown in Fig. 8-12. Basically, a DVM using dual-slope integration is a
voltage-to-time converter, but not in the same sense as the linear ramp
discussed earlier. The interpolation used in the interpolating-integrat-
ing DVM is dual slope in nature.

The input signal in Fig. 8-12 is integrated for a fixed interval of time.
During this time, charge builds up on Ci. The next step is to measure the
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FIG 8-12 Dual-slope integrating DVM.

time it takes to discharge this capacitor, with the use of a fixed reference
current. During the integration period, the rate of charge buildup on
the capacitor is proportional to the level of the input signal. However,
during the discharge cycle, the rate of discharge is fixed.

In the simplified block diagram shown in Fig. 8-12, the period of inte-
gration is determined by a 1-MHz oscillator and the counter. Just
prior to a measurement, the counter is reset to zero. At the beginning
of the measurement cycle, the gate between the oscillator and the counter
is opened by the control logic, and at the same time S, opens. Even
though 8; has been connected to the unknown signal, the charge on the
capacitor at the beginning of the measurement period is zero with S,
closed. As soon as S; opens, charge begins accumulating on C, at a rate
proportional to the input signal. This process continues until a carry
pulse is generated by the counter. The counter resets to zero as the
carry is generated. Since this is a five-decade counter and the counting
rate is 1 MHz, the carry pulse is generated 100 msec after the opening of
the gate. The carry pulse input to the control logic causes S; to switch
to the V. position. The counter continues to accumulate pulses from
the oscillator. The polarity of the reference voltage is opposite to that of
the input signal, so that charge accumulated on C 1 during the integrating
period is now removed by the reference signal. As soon as all the charge
isremoved, the output of the operational amplifier is at 0 V and this condi-
tion is detected by the zero comparator. This comparison signals the
control logic to close the gate between the 1-MHz oscillator and the five-
decade counter.

Some of the waveforms associated with dual-slope integration are
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found in Fig. 8-13. The input waveform is shown in Fig. 8-13a. The
solid line represents an input voltage of 1.000 V, while the dashed line
represents an input voltage of 0.5000 V. Figure 8-13b indicates the
waveform at the output of the operational amplifier. The slope of this
voltage during the 100-msec integrating period is shown to be proportional
to the level of the input signal. During the period following this integra-
tion interval, the slope of the output voltage is seen to be constant in
both cases as it is returned to 0 V. When the input voltage is 0.5000 V, it
takes only half the time to reach zero that it does with 1.000 V—hence
there is voltage-to-time conversion.

Figure 8-13¢ shows the instantaneous count present in the reversible
counter. During the integration period, the count steadily approaches
100,000 at a rate of 1 million counts per second. Since it is only a five-
decade counter, it automatically resets itself to zero on reaching 100,000
counts and continues counting at the same rate until zero comparison is
made at the output of the operational amplifier. As Fig. 8-13¢ shows,
there are 50,000 counts present when zero is reached for V; = 0.5000,
while there are 100,000 counts entered for V; = 1.0000 V.

The dual-slope technique puts the primary responsibility for accuracy
on the internal reference voltage. The value of R; or of C, is not signifi-
cant in determining accuracy. It is only required that they remain
stable during the measuring period. The frequency of the oscillator, f,
is similarly not important, provided it is constant. However, if line-
related frequencies are to be integrated to zero by this technique, the
period generated by the oscillator and counter should be some multiple
of the period of the line frequency.

1.00
Vi be—m _
(o] —>
(a) t
100 msec.
[¢] l > —>
S~ (32 t
Vo output ~
ampl
(6)
100,000 FIG 8-13 Dual-slope waveforms.
comt | 7 | SAm—————
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The reason that the values of R;, Cy, and the frequency are not impor-
tant in determining the accuracy is that they are used during both the
integration period and the measuring period. The following expressions
help demonstrate this:

1V, 17V,
VO op amp — 6—1 R—l Tintegrate = a Rll Tdischnrge (8-3"1)
105 accumulated counts
Tintegrace = —0 and Tdischarge = n
! f
Accumulated counts = — X 10° (8-3-2)

ref

Equation (8-3-2) shows that accuracy depends only on the internal refer-
ence voltage. .

One comment can be safely made regarding the various techniques used
to convert an analog signal into a digital output or presentation—Even
though it would appear that the concerted efforts of industry over the
past 15 years have discovered many techniques to make this conversion,
the next clever technique may be described in the technical journal you
read tomorrow.

8-4 Normal-mode Rejection

During the discussion of the theory of operation of integrating DV Ms,
reference was made to their ability to reject signals that are in series with
the input signal. These signals are called normal-mode or superimposed
notse signals. This type of signal can be caused by electromagnetic
pickup in the input leads to the DVM, or by an inherent component of
the unknown signal, i.e., ripple at the output of a power supply. Typi-
cally, the frequency of these signals is an integer multiple of the power-
line frequency, but in practice any type of disturbance may be present.

There are many applications where fast readings are required to char-
acterize the unknown signal adequately. The removal of superimposed
high-frequency components would be unacceptable. However, in the
following discussion, assume that only the average value of a signal is
desired.

In the description of the successive-approximation technique above, it
was observed that the reading is achieved only after a number of success-
ful decisions by the logic circuitry. Any incorrect decision along the way
can cause a completely erroneous reading of the unknown signal. Super-
imposed noise is the most common cause for bad decisions of this kind.
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If the de value of the unknown is somewhat above 8.000 V in value but
noise causes it to drop just below this level when the digital-to-analog
feedback is generating 8.000 V, the reading will be incorrect.

1t is obvious that the severity of such errors is more or less proportional
to the amount of noise present. The same is true of the linear- and
digital-ramp techniques. Superimposed noise can cause bad comparisons
between the input signal and the internally generated ramp. The usual
solution to such problems is the inclusion of a low-pass filter at the input
of the DVM. The presence of such a filter does reduce the amount of
noise presented to the digitizing circuitry, but it also increases the time
of response of such instruments. Any filter that reduces the amount of
noise significantly has a typical settling time on the order of 500 msee to
1.0 sec. This settling time has to be added to the digitizing time of the
instrument in determining the true reading rate.

All the integrating DVMs discussed above employ techniques that
make use of a specific period of time called either a gate length or an
integrating period. During this period of time, the signal present at the
input of the DVM is truly integrated and the average signal present is
indicated on the front panel. A good example of this is the waveform
used in Fig. 8-9. Although this example was used in conjunction with
the technique using voltage-to-frequency conversion, the same would be
true of the dual-slope technique.

Assume the input to an integrating DVM can be presented by

v(t) = Vi sin of (8-4-1)

In this example, it is assumed that there is no de¢ component present
in the input signal. In developing this general case, it will be assumed
that the integration interval begins at ¢ — {; and ends at ¢ — ts + T,
where T is the period of integration or the gate length. The average
voltage during this integration period is

Vi ru+r

V.v = T Jt

sin wt dt

V. t=t4+T
= — —- CO0S wt]
wT t=t

= — & [cos w(ts + T) — cos wti] (8-4-2)
wT
By expansion of Eq. (8-4-2), the average value is

Veo = ——% [—2sin ¥4 Qut: + «T) sin 34 («T)] (8-4-3)
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where V., can be maximized by choosing ¢, so that

sin 34 (2wt; + oT) =1 (8-4-4)
Substituting Eq. (8-4-4) in Eq. (8-4-3) gives the expression

2 1
Vav(max) = lTl sin 3 wT] 2t
w w=Zx,

Vi
= —— gin = fT 8-4-5
7R 7f (8-4-5)
As the frequency of the superimposed noise approaches zero, V,, (max)
approaches V,. In order to develop an expression for attenuation as a
function of frequency, it is necessary to establish the ratio of the value of
the signal at 0 Hz to its value at a specific frequency.

Vs _ =fT
(Vi/nfT) sinafT| sinxfT

(8-4-6)

A plot of Eq. (8-4-6) is shown in Fig. 8-14. As seen in this figure, infinite
cusps of rejection occur at intervals determined by fT = n, where
n=12,...,K. In thisinstance, the gate length is 1.0 sec.

By the appropriate choice of the integration interval, maximum rejec-
tion of line-related frequencies can be obtained. This is why many gate
lengths are 16.67 msec, 100 msec, or other multiples of 16.67 msec in
length. For use in Europe where the predominant line frequency is 50
Hz, 20.0 msec gate lengths should be used in place of 16.67 msec.
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FIG 8-14 Normal-mode rejection characteristics of integrating
DVM.
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8-5 Common-Mode Rejection'

Another type of disturbance which can cause errors in measurements
is made by common-mode signals. In Fig. 8-15, V5 and V, are common-
mode signals. In this figure, V3 is a normal-mode signal, while V1 is the
signal to be measured. There are many sources of common-mode signals.
If a floating measurement is to be made, the voltage on which the input of
the voltmeter is floating is a common-mode signal. These signals can
also be produced by ground currents, particularly where the source of the
signal to be measured is some distance from the instrument making the
measurement. In such a situation there are usually grounds used at
each point, and the separation of these points usually means they are not
at the same potential. The resistances R, and R: in Fig. 8-15 represent
high- and low-side resistance in the measuring circuit.

Figure 8-16 demonstrates the practical situation of a load-cell measure-
ment and the cell’s equivalent circuit. A load cell is composed of four
strain gages connected in a bridge arrangement with an isolated input and
output. Figure 8-16b shows the equivalent circuit of the load cell in
Fig. 8-16a.

All the other components shown in Fig. 8-15 are part of the measuring
instrument. The resistance R; represents the input resistance of the
voltmeter, while R, and C, represent leakages between the low terminal of
the instrument and power ground, and R; and C; represent leakages
between high and power ground. In most measuring systems, the imped-
ance determined by the parallel combination of B and C; is much larger in
value at all frequencies than is the impedance of the parallel combination
of Riand Ci. The reason for this is the fact that the high side is physically

! This discussion applies to instruments with floating, single-ended inputs.

Ry — Instrument High
M
{
=V |
! 3R, 3R Tcs
v | f
|
2 | Low
M
|
I R =:C
= Vs l 4 4
7 |l Power FIG 8-1 5. Noise .sign-ak and
| ground configuration of floating input.
L

-



234 Electronic Measurements and Instrumentation

+V 50080
——AA—— High
1

= Bridge unbaiance
voltage

High
1k _.\f/%,.__ Low
500 &
=V/2

x
ik

Low
(a) (6)

FIG 8-16 Load cell and equivalent circuit.

a wire or narrow conductor while the low side is a plane or large metal area
in close proximity to the power ground of the measuring system, which is
also a large surface. Because of this, the path for current through R, and
the parallel combination of Bs and C; will be neglected.

The disturbing fact about these paths is that current flowing through
them will tend to generate a voltage that is in series with the signal to be
measured. The most troublesome path of this nature is through R, and
the parallel combination of R4 and Cs. This current, of course, is due to
the common-mode voltages V; and Vi Common-mode rejection is
related to the ability to reduce the voltage developed across Bs. Given a
certain value of R, (taken nominally to be 1 kQ in industry), the only way
to increase this rejection is to increase the value of Z, (the parallel com-
bination of R4 and Cy).

In a well-designed floating instrument, R, may be as high as 10° Q
and Cs may be as large as 2,500 pF. These values lead to the following

CMRs:

9
Direct current: CMR = —20 log 1—2; = —120dB
Alternating current: CME = —20 log L/2nfe
10° |/-60Hz

108
—2010g 2 = _60dB
%8 108

In the above example, a dc common-mode signal of 100 V would
develop 100 uV across R, while an ac common-mode signal of 20 V at
60 Hz would develop 20 mV across R,. One can also think of CMR as a
reduction in the amount of a common-mode signal converted into a normal-
mode signal across Ro.

In many instances, the 100-uV dc signal or 20-mV ac signal would be
intolerable in a measurement. This is particularly true if low-level
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FIG 8-17 Configuration of Aoat-
ing and guarded input.

dc measurements are being made, as would be the case in many load-cell
applications. A technique called guarding has been incorporated into
many DV Ms to increase their ability to reduce and eliminate the effects of
common-mode signals. In its simplest form, a guard is a sheet-metal
box surrounding the circuitry associated with low and is insulated from
both low and power ground. A terminal at the front panel makes this
“box”’ available to the circuit under measurement.

Figure 8-17 shows the application of a guard to the measurement situa-
tion shown in Fig. 8-15. In Fig. 8-17, Z, and Z; have the same magnitude
as Z, in Fig. 8-15; i.e., the resistance is 10° @ and the capacitance is
2,500 pF. However, R in Fig. 8-17 is typically greater than 10! €,
while Cj is less than 2.5 pF. v

The resistance Rs and capacitance Cs do not physically exist; they can-
not be measured directly, but represent what leakage remains ‘“through”’
the guard when it is connected as shown in Fig. 8-17. In other words,
the proper use of this guard considerably lowers the effective leakage
between Lo and power ground; that remaining is indicated by the com-
ponents of Zs. The guard is actually driven by the common-mode
signal, as is Lo; hence there is virtually no current through Z, The
bottom side of Z, is essentially “bootstrapped” to low because the guard is
driven by the same common-mode signal as low.

The CMR for the guarded circuit is:

101

Direct current: CMR = —20 log T —160 dB
—12
Alternating current: CMR = —20 log 1/(2m60 Xlzf X 107

9
—2010g 2 = _120dB
10°
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This shows a considerable improvement over the unguarded situation.
Now the 100-V d¢ common-mode signal generates only 1 uV of normal-
mode signal, while the 20-V ac common-mode signal generates only 20 uV
of ac normal-mode signal.

Effective CMR. Effective CMR is a concept that combines the effects
of normal-mode rejection and CMR. It relates the effects of a common-
mode signal to the readout of the instrument rather than to the input.
Thus, if a certain instrument has a CMR of —120 dB at 60 Hz and has
50 dB of normal-mode rejection at the same frequency owing to an input
filter, its effective CMR would be —170 dB at 60 Hz. Figure 8-18a shows
a plot of the CMR of a guarded DVM with 160 dB of rejection at dc and
120 dB at 60 Hz. If this instrument is an integrating DVM with a
guard, its effective CMR would be that shown in Fig. 8-18b. In this plot,
it was assumed the gate length was 0.100 sec. As Fig. 8-18b shows, the
effective CMR ratio is never lower than — 145 dB, even as the frequency
increases above 60 Hz.

8.6 Principles of AC Voltage Measurements

Most ac measurements are made with ac-to-de converters, which pro-
duce a de current proportional to the ac input being measured and use

-160dB

-120dB

(a)

-160d8B
-1204d8

FIG 8-18 Effective CMR of in-
tegrating guarded DVM.

Log ¥
(b)
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this current for either meter deflection or application to the de circuitry
of a digital or analog multimeter. Converting the signal to dc as soon
as feasible minimizes the serious errors which otherwise could result from
frequency-selective circuits.

Most ac voltmeters are classified into three broad types: rms-respond-
ing, peak-responding, and average-responding. Those that are average
responding and peak responding are generally calibrated to read the rms
value of a sine wave. Only a small minority of voltmeters available to-
day are true rms-responding instruments, but it is expected that in the
future many more true-rms voltmeters will be introduced.

Voltmeters are ordinarily calibrated in rms volts because that is the
equivalent to a de voltage which generates the same amount of heat power
in a resistive load that the ac voltage does. For this reason, rms voltage
is synonymous with effective voltage, and the term is used predominately
in discussions of ac voltage without referring to the term rms.

The rms value of a waveform is defined as the square root of the aver-
age of the squares of the quantities being measured. Theoretically,
rms value can be found by measuring the voltage at equal intervals along
the waveform for one cycle, squaring the numerical value of the voltage
at each point, finding the average value of all the squared terms, and then
taking the square root of the average value. If there were n discrete
values Vi in a series of measurements, this could be expressed as

1 % &
Vime = (— > W) 4sn— o (8-6-1)
i)

If the quantity being measured is a continuous funetion of time, such as
would normally be found in a voltage waveform, the summation process
is replaced by integration. Then the rms value is expressed as

1 2 ,
Vems = (? N dt) (8-6-2)

where the measurement is carried out through the interval from 0 to T.
From this, the rms value of one-half cycle of a sine wave is found.

1 (= s
Vems = (— J5 (Ve sin )2 do) = O4(Vmur) ¥
T
= 0.707Vmax  (8-6-3)

The average value of an ac voltage is simply the average of the voltage
values measured point by point along the waveform; if there were n
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discrete values within this period, this would be described as

Va.v = - Vk (8-6-4)
n 121

If the quantity varies continuously, the average value is defined mathe-
matically as

1 r7
Ve = 7 ﬁ) vdt (8-6-5)

It should be noted that in an analog-metered instrument, the averaging
is performed by the inertia of the meter movement, while in a digital
instrument, this process is generally performed by a low-pass filter.

The average value of one-half cycle of a sine wave is

Var = lﬂ; Vmax Sin 6 d8 = 2 Viax = 0.636V pax (8-6-6)
T ™

The average value of an integer number of cycles of a sine wave really
is zero because the waveform has equal positive and negative values when
it is averaged for a complete cycle. However, in the case of average-
responding voltmeters, the average value of the sine wave is taken to
mean the average rectified value or the average without regard to polarity.

The use of average-responding rather than rms-responding voltmeters
is primarily a result of simpler construction and lower cost. It is justified
by the wide use of sine waves in electronic measurements. In calibrating
an average-responding meter, a pure sine wave with an rms amplitude of
1 V can be applied to the meter and the resulting pointer deflection on
the scale is adjusted to read 1 V. This is done by applying a constant of
proportionality to the meter called the form factor, which is defined as
follows:

rms or effective value

Form factor =
average value

The form factor of a sine wave is calculated as follows:

Vims  0.707V yax
= = = 1.11 -6~
Form factor V. 0.637V oov (8-6-7)

To determine the average value of a wave with the use of an average-
responding voltmeter, simply divide the reading on the voltmeter by 1.11.
To determine the peak value of a sine wave, multiply the reading on the
voltmeter by 1.414. Obviously, to get the peak-to-peak value of a sine
wave, one can multiply the reading on an average-responding voltmeter
by 2.828.
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8.7 Average-responding Detectors

A simplified version of the circuit used in a typical average-responding
voltmeter is shown in Fig. 8-19. The applied waveform is amplified in a
high-gain stabilized amplifier to a reasonably high level and then rectified
and fed to a de milliammeter calibrated in terms of the rms input voltage.
In a digital multimeter, the rectified current is filtered and then applied
to the de circuitry of the instrument. In the meter instrument, the
rectified current is averaged either by a filter or by the ballistic charac-
teristics of the meter to produce a steady deflection of the meter pointer.
Any de component in the applied voltage is excluded from the measure-
ment by an input-blocking capacitor preceding the high-gain amplifier.

The ac amplifier has a large amount of negative feedback, which ensures
gain stability for measurement accuracy as well as broadening the fre-
quency range of the instrument. Inclusion of the meter circuit in the
feedback path minimizes the effects of diode nonlinearities and meter
impedance variations on circuit performance.

It should be noted that the capacitors in the meter circuit tend to act as
storage or filter capacitors for the rectifier diodes and also coupling capac-
itors for the feedback signal. However, both capacitors could be replaced
by resistors and the circuit would work nearly as well with the inherent
meter inertia for filtering. The diodes act as switches to maintain uni-
directional meter current despite changes in the instantaneous polarity of
the input voltage.

Errors in the readings of an average-responding voltmeter can be
generally attributed to either the application of complex waveforms to the
detector (a distorted or nonsinusoidal input) or the presence of non-
harmonically related extraneous signals (hum and noise). It is not
uncommon that a small amount of hum is combined with the voltage to be
measured. When the frequency to be measured is relatively high with
respect to the hum frequency, a small amount of hum, of about 10 percent,
will increase the reading of the average-responding meter by about one-
half as much as it would increase the reading on a true-rms meter. This

I Stabilized

amplifier

FIG 8-19 Block diagram of aver-
age-responding detector.
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means a 10 percent hum will give a reading of approximately 1.0025
times the reading without hum, or an increase of only 14 percent.

The voltage of thermal noise is characterized by a gaussian probability
density function, p(v). Shot noise also has a gaussian probability
distribution if the average number of shots per second is much greater
than the bandwidth. Impulse noise behaves as shot noise only if the
impulses are totally independent and occur at random times. Rectified
gaussian noise as obtained from an envelope detector, however, does not
have a gaussian distribution.

We can calculate the indication of an average-responding voltmeter to
gaussian noise as follows [1]: The rectified de voltage V, from noise can be
shown as

Vo= [, Ilp@) dv (8-7-1)

If p(v) is symmetrical about zero, then
Vo =2 ﬁ;’ op(v) dv (8-7-2)
If the noise is gaussian, the probability p(v) dv that the instantaneous

voltage lies between v and v + dv is

p(v) dv = et dy (8-7-3)

o(2m)*

where ¢ is the rms noise voltage. Substituting this in the expression for
Vo gives

_ 2

T o(2m)%

20

Vo (2r)%

/(‘)n ve—V’/%’ dy = (8_7_4)

Since the meter is calibrated to read the rms value of a sine wave, or

1/ (2) %E max T
indica =1.11 = - 7
Vindicated Vo 2 /xErmen Vo 2@)% Vo (8-7-5)
where V, is the average or rectified value. Then,
%
Vindicated = 1r 20 = o(™) = (.8860 (8-7-6)

2(2)% (2r)% 2

Thus, average-responding meters read aproximately 11 percent, or 1dB,
low on gaussian noise provided that no overload occurs on the peaks.
The accuracy with which an average-reading voltmeter will indicate
the rms value of a wave with harmonic content depends not only on the
amplitude of the harmonic but also on its phase and order. In the case
of a fundamental wave and a single harmonic (generally second or third),



Voltage and Current Measurements 241

the waveform can be described as follows:
v = Vmaxlsin 0 4+ k sin (n6 + ¢)] (8-7-7)

where k is the amplitude of the harmonic as a percentage of the funda-
mental. We can solve for the average value by writing

Vmax
27

_ ﬁ " [sin 0 + k'sin (n0 + ¢)] do} (8-7-8)

Va.v =

{ [ lsin 0 + ksin (n + )1 do

which reduces to

Vay = Vimex {cos 6, — cos 6, + :ﬁz [cos (n8 + ¢) — cos (nh; + ¢)]
m
(8-7-9)

where 0, and 6, are zero crossing points determined by solving the following
equation:

sin @ + ksin (nf + ¢) = 0 (8-7-10)

The reading that will appear on an average-responding voltmeter is
obtained by multiplying Eq. (8-7-9) by the average-to-rms form factor
1.11. That is,

111V ax

™

Vrms =

{cos 6, — cos 6, + 2 [cos (nb; + ¢) — cos (nd; + ¢)]} (8-7-11)

It should be noted that waveforms with large amounts of harmonic
content may have more zero crossings than the fundamental. This is
particularly true of third-harmonic distortion of greater than about 30
percent, second-harmonic distortion greater than 50 percent and higher-
harmonic distortion. If this is the case, Eqgs. (8-7-8), (8-7-9), and (8-7-11)
must be modified to integrate the rectified waveform between zero
crossings.

The error in rms reading as a function of the harmonic phase is shown
in Fig. 8-20 for second-harmonic distortion and in Fig. 8-21 for third-
harmonic distortion. Curves are shown for 10, 20, and 30 percent
harmonic distortion in each of the two plots. It is interesting to note
that cyclic variation occurs in the error as the phase of the harmonic is
changed. (See Fig. 8-22 for phase orientation.) The maximum error
with second-harmonic distortion occurs when the second harmonic is in
phase or out of phase (180°) with the fundamental. The maximum error
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FIG 8-20 Error between true-rms and average reading X form
factor of wave with second-harmonic distortion.

in a signal with third-harmonic distortion occurs when the phase of the
harmonic is either in phase or out of phase (180°) with the fundamental.
Figure 8-22 shows the effect on the waveforms caused by second- and
third-harmonic distortion with the harmonic phase set to obtain the
maximum error in the voltmeter readings.

The true-rms value of a waveform with harmonic distortion can be
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FIG 8-291 Emor between true-rms and average reading X form
factor of wave with third-harmonic distortion.
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FIG 8-22 Distorted waveforms with largest time error in average-
responding detector: (a) in-phase second harmonic, (b) out-of-phase
second harmonic, (c) in-phase third harmonic, and (d) out-of-phase
third harmonic.

calculated by taking the square root of the sum of the squares of the rms
value of the fundamental and the rms values of the harmonies:

Vrms = [(Vrmsy fund)2 + (Vrms; 2Ild)2 + (Vrmsy 3I‘d)2 + c ']%
(8-7-12)

Table 8-1 shows the values read on a true-rms voltmeter of waveforms
with second- and third-harmonic distortion and the maximum percentage
. error obtained on an average-responding voltmeter.

An examination of Figs. 8-20 and 8-21 and Table 8-1 indicates a number
of interesting points. F¥rom Fig. 8-20 it can be seen that the condition
in which a second harmonic will cause the average value of the complex
wave to follow most closely the rms value is that the harmonic have a 90°
relation to the fundamental, that is, where the peaks of the harmonic

TABLE 8-1

Maximum 9, error
% Harmonic True rms voltage 2nd harmonic only 3rd harmonic only

1 0.7071 0.02 0.34
3 0.7074 0.032 - 1.03
5 0.7080 0.112 1.77
10 0.7106 0.485 3.8
20 0.7211 1.93 8.5
30 0.7382 4.2 13.8
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occur at the time the fundamental intercepts the zero axis. This is also
the condition often encountered in practice. A square-law term in a
transfer characteristic, for example, produces this phase relation for the
second harmonic. It can also be seen that for second harmonics of typi-
cal magnitudes (less than 10 percent), the average-reading meter will give
readings quite close to the rms. For a second harmonic of 10 percent
magnitude, for example, the error of the average-reading meter is less
than 1 percent.

It can be noted from Fig. 8-21 that a wave consisting of a fundamental
and third harmonic causes considerably greater variations in the readings
of an average-reading type of voltmeter than does a wave with second-
harmonic content. Whereas the reading of the meter on a wave contain-
ing second harmonie is always lower than the rms value, the reading with
a wave containing third harmonic can be either high or low for harmonic
contents up to as high as 75 percent.

Not only does the third harmonic cause greater variations in the meter
reading than second harmonic, but it also causes greater variations than
any other harmonic. The extremes of error with small amounts of odd
harmonics are given by the percentage of the harmonic divided by the
order of the harmonic. Small amounts of harmonic in this case can be
defined as percentages less than 100/n, where n is the order of the odd
harmonic.

It should be noted that for typical amounts of this worst harmonic, the
third, the accuracy of an average-reading meter is still good. Third
harmonies up to 10 percent, for example, can cause errors no greater than
5 percent.

When more than one harmonic is present in the applied wave, the
mathematics of each case becomes more complicated. As a result, no
analytical studies of these situations have been made. However, some
experimental data have been compiled for combined second and third
harmonics with various amounts of fundamental [2].

Two other cases of interest that can be easily investigated are the
differences between readings on an average-responding voltmeter and a
true-rms voltmeter with a triangular wave or a square wave applied.
A calculation of the average value of a triangular wave, shown in Fig.
8-23a, shows

(8-7-13)

The rms value of the triangular wave is

2 repdr \H 1
Vieme = (; L ?dt) - (8-7-14)
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(a)
FIG 8-23 Triangular and square
waveforms.
fo) T 2w
(b}

Multiplying the average value of the triangle wave by the form factor
1.11 and determining the error between the average-responding and true-
rms voltmeters,

1.11/2 — 1/@3)%

/@)% X 100

Percent error =

= —3.81 percent (8-7-15)

In a square wave the unique relation exists that the average, rms, and
peak values are all the same. Since an rms-calibrated, average-reading
meter indicates 1.11 times the average value, it will indicate 11 percent
high for the rms value of a square wave. Further, a square wave has
the lowest ratio of rms value to absolute-average value of any wave. It
follows, then, that an average-responding meter will never read more
than 11 percent too high.

8-8 Peak-responding Detectors

The primary difference between the peak-responding voltmeter and
the average-responding voltmeter is the use of a storage capacitor with
the rectifying diode. The capacitor charges through the diode to the peak

4 dc " dc
amplifier amplifier

(a) (b)
FIG 8-24 Peak-responding meters.

value of the applied voltage, and the meter circuit then responds to the
capacitor voltage.

Two of the most common forms of the peak-responding detector are
shown in Fig. 8-24. Figure 8-24a shows a dc-coupled peak detector, in
which the capacitor charges to the total peak voltage above ground refer-



246 Electronic Measurements and Instrumentation

ence. In this case, the meter reading will be affected by the presence of
de with the ac voltage. In Fig. 8-24b, an ac-coupled peak detector circuit
is shown. This circuit is closely related to the familiar dec-restorer
circuits found in the literature.

In both circuits, the capacitor discharges very slowly through the high-
impedance input of the de amplifier so that a negligibiy small amount of
current supplied by the circuit under test keeps the capacitor charged to
the ac peak voltage. The dc¢ amplifier is used in the peak-responding
meter to develop the necessary meter current.

The primary advantage of the peak-responding voltmeter is that the
rectifying diode and storage capacitor may be taken out of the instrument
and placed in the probe when no ac preamplification is required. The
measured ac signal thus travels no farther than the diode. The peak-
responding voltmeter, then, is able to measure frequencies up to hundreds
of megahertz with a minimum of circuit loading. In fact, peak detectors
with the circuit shown in Fig. 8-24b are being used in coaxial transmission-
line configurations to measure signals with frequencies of greater than
40 GHz. -

There are several inherent disadvantages of the peak-responding volt-
meter for many applications. One is the susceptibility of the peak-
responding meter to errors caused by harmonic distortion in the input
waveform. Another is the limited sensitivity of the instrument because
of the imperfect diode characteristics, which is discussed later. The third
disadvantage appears when the input waveform is not symmetrical.

If the input waveform is unsymmetrical, a different reading will occur
when the voltmeter leads are reversed. This is straightforward and
obvious for the de-coupled peak detector. One can envision a pulse
train’s being applied to the detector in which the peaks of a positive pulse
would be indicated on the meter. However, what appears when a nega-
tive pulse train is ac coupled to the peak detector? When a positive pulse
train is ac coupled to the detector, the ‘“dc-restoring” property of the
detector tends to restore the de¢ value lost in the coupling to the wave-
form. The output of the detector is then filtered to measure only the dc
value of the detected waveform. If a pure sine wave or any other sym-
metrical waveform were measured, the detected and filtered value would
be proportional to the peak-to-peak value of the waveform. For the
positive pulse train, the filtered value would be approximately equal to
the dc value of the original waveform. However, for the negative pulse
train, the output of the detector prior to filtering would appear to be a
positive pulse train with a duty factor approaching unity, as shown in
Fig. 8-25. The filtered output is obviously close to the peak value of
the input pulse train.

The limitation of sensitivity in the peak-responding detector is pri-
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marily caused by the nonideal characteristics of the rectifying diode.
Diodes, whether semiconductor or thermionic, have highly nonlinear
current-to-voltage transfer characteristics below 1 V. This nonlinearity

-__H*_ |__| dc value |dcva!ue
° 0

(a) (b)

FIG 8-25 Alternating-curent peak-detector output with pulse
train applied to input: (a) positive train; (b) negative pulse train.

is sometimes compensated for by a separate nonlinear meter scale on the
most sensitive range or by a differential technique with the nonlinearity
of another closely matched diode. However, accuracy is difficult to
achieve since individual diodes of a given type do not necessarily have
similar transfer characteristics. In Fig. 8-26 assume that the capacitor C
is sufficiently large that its voltage change during one cycle is negligible
compared with the voltage change at the output. The voltage at the
instantaneous output, v,, consists of a de value V, equal to the de voltage
across the capacitor, V,, and a series of ac terms related to the input
voltage and its harmonics caused by the nonlinearity of the diode. We
can write

v, = Vg4 V, sin ot (8-8-1)

The de¢ component of the output is determined by the amount of charge
added to the capacitor by the diode to replace that dissipated by the

ry f
Vo si} wt & 3 %R Tt

FIG 8-26 Alternating-current peak
detector.

resistor during the positive half cycle. The instantaneous diode cur-
rent is

i = I,(ew/™T — 1) = J,(e@/m D) (VatVosinun _ 1)
= I (D VotV,sinet _ 1) (8-8-2)

where n is a constant of proportionality determined by the diode manu-
facturing process. In many recently designed silicon diodes, n has been
experimentally found to be approximately 2. In the equation, g is the
charge on an electron, & is Boltzman’s constant, and T is temperature in
degrees Kelvin.
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The average current through the diode, I, is equal to the current lost
through the load resistor R during the positive half cycle; that is,

V.,

I = E =7 (e(q/NkT)(V +Vysinwt) _ 1) average (8-8.3)
or

Vo .

1B = (e(qV,InkT)e(qV,,lnkT) sin wt __ 1) average (8_8_4)
Rearranging,

Vo .
1+ Rl e2Vo/nkT = o(qV,/nkT) sin wt average (8_8_5)

we can expand the right side of Eq. (8-8-5) in a Bessel function form

ezsint = Jo(z) + 2jJ1(n) sin 0 + 2J5(x) cos 260 + - - - (8-8-6)
or
e=sin® = J (—jz) + 2jJ1(—jx) sin 0 + - - - (8-8-7)
Then for the d¢c component, we can write
V, qVa I.qV,
VInkT — 8-
(1 + RI,,) ° J"( nkT) kT &-88)

We can examine the peak detector under three separate conditions,
depending on the level of the input signal. For high-level signals, one
can intuitively predict a linear response to input voltage, since the diode
voltage is limited in the forward bias condition. In most cases, where
the resistance on the output of the detector is large (10 MQ or greater),
input voltages of greater than 1 V can be assumed to be linearly detected.
If the input voltage is less than 1 V, the detected voltage can be deter-
mined to a close approximation by using Eq. (8-8-8). However, for
input voltages less than 50 mV, the diode transfer characteristics can be
considered square law by making the following approximations:

RI
qv,
nkT

and

g\ :
(g/nkT)V,sinwt = | —— 7V, R V.2 2 P
e + lc T sin wt + ~ (nk T) sin? wt +

(8-8-9)
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Since we are interested only in the dc component, we can use Eq. (8-8-5)
and write

2
1+qu=l+l(_g_) Va4 - - -

nkT 4 \nkT
or
Voe—3 ve=—% v, where Vi = Ve (8-8-10)
4nkT kT 2"

The accuracy of Eqgs. (8-8-8) and (8-8-10) depends heavily on the manu-
facturing processes in the fabrication of the detector diode, but the equa-
tions are useful to determine the detected voltage to a reasonable
approximation.

8-9 Peak-to-peak Detection

The addition of a capacitor and a diode can change a peak detector
into a peak-to-peak detector, as shown in Fig. 8-27. The advantage of
detecting peak to peak over a simple peak detection is the absence of
turnover error caused by an unsymmetrical waveform. In addition, the
output voltage for a symmetrical waveform is double the output voltage
of a pgak detector, which results in twice the detection efficiency.

The peak-to-peak detector is sometimes called a voltage-doubler circuit,
and it works as follows: When the waveform at V, is negative, diode D,
becomes forward biased and C, charges up to approximately the negative
peak voltage. When V; goes positive, D, is back biased and D, becomes
forward biased. The charge on C, is gradually transferred to C; during
the initial transient period. When the circuit is in steady-state opera-
tion, the output voltage is the sum of the voltage developed across C,
during the negative portion of V1 and the positive peak of V,, which is
equal to the peak-to-peak input voltage. To ensure successful eperation

FIG 8-27 Peak-to-peak detector.

of the cireuit, C; and C; must be large enough so that the voltage does not
change appreciably across C; during one period of the input voltage, and
the voltage across C; does not appreciably change in the process of
recharging C,. '
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8-10 Root-mean-square—responding Detectors

There are many occasions when measurements of the true rms value of
a voltage are highly desirable. When measurements of electrical or
acoustical noise, low duty-cycle pulse trains, or voltages of undetermined
waveform are made, it is almost imperative that an rms-responding volt-
meter be used.

In past years, rms-responding voltmeters have not been used widely
because of the difficulties in designing a rugged, easily operated instrument
of somewhat reasonable cost. Recently, however, these difficulties have
been largely overcome. _

The rms-responding voltmeter presents special circuit-design problems
compared with the straightforward techniques used in the average- and
peak-responding voltmeters. This is because the input voltage must be
squared and then the square root of the average of the squared quantity
taken.

One approach has been to take advantage of the nonlinear character-
istics of diodes, which exhibit a fairly accurate square-law transfer function
at low voltage levels. By calibrating the meter scale so that it indicates
the square root of its driving voltage, one makes the meter indicate the
rms value. Acecurate calibration is difficult, however, because the diode
characteristics do not always conform precisely to a square-law curve,
and this characteristic is not uniform from diode to diode. This problem
isreduced by amplifying the signal and using a greater voltage to drive the
meter through a more predictable nonlinear network made up of several
diodes and resistors.

Another approach is to use a thermocouple. The signal to be measured
is applied to a fine heater wire, and a thermocouple attached to the heater
wire generates a dc voltage proportional to the rise in temperature of the
hot junction. This measurement is based on the original concept of the
rms value as the equivalent of the heating power in a waveform.

The accuracy of this technique has been difficult to control because of
the nonlinear behavior of thermocouples, which tends to complicate the
meter calibration, and also because of the thermal problems involved.
Thermal variations are reduced by installing the heater and thermocouple
in an evacuated glass bulb and by using fine wires of low thermal con-
ductivity. Other problems with thermocouples have been sluggish
response and susceptibility to burnout.

One technique to reduce these difficulties is to use a null-balance tech-
nique as shown in Fig. 8-28. The amplified input signal is applied to the
measuring thermocouple while a de feedback current is fed to the heater
of the balancing thermocouple. The de current is derived from the
voltage output difference between the thermocouples. The circuitry
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Measuring
thermocouple

dc ampl.
o—
Input
voltage

FIG 8-28 Block diagram of true-
rms voltmeter with null-balance

Baloncing
technique.

thermocouple

may be regarded as a feedback control system which matches the heating
power of the de feedback voltage to the input waveform heating power.
Meter deflection-is proportional to the dc feedback, which in turn is
equivalent to the rms value of the input signal if the loop gain is high.
The meter indication, therefore, is linear versus input and not subject to
the nonlinearities of the thermocouples.

A frequent limitation on the usefulness of an rms-responding voltmeter
for measuring highly nonlinear waveforms, such as pulse trains, is its
crest-factor rating. Crest factor is defined as the ratio of the peak voltage
to the rms voltage of a waveform. The crest factor is limited primarily
by the amplifiers in the voltmeter circuit preceding the detector. The
maximum crest factor is determined by (1) the level beyond which the
input waveform drives the amplifiers into nonlinear operation and (2)
the bandwidth of the amplifiers, which determines how much of the fre-
quency spectrum of the pulse train or other nonlinear waveform will be
accurately detected. A pulse train and its frequency spectrum are
shown in Fig. 829. It should be observed that the width of the fre-
quency spectrum is inversely proportional to the width of the pulse and,
as will be shown below, is increased as the crest factor of the pulse train
is increased. If the crest factor of the waveform is large and the repeti-
tion rate of the pulse train is within a decade of the bandwidth of the
system, it is possible that an appreciable amount of the energy of the

"

FIG 8-29 Frequency spectrum
111t of a pulse train: (a) pulse train; (b)
frequency spectrum.
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input waveform would not pass through the amplifiers, which would
result in an error in the voltmeter reading.

Since a pulse train represents an extreme case of a nonsinusoidal periodic
waveform and in some cases is a reasonable approximation of impulse

tt
(<lfo> Va I
Ovolts A Time —»
L T |

>

FIG 8-30 Pulse train.

noise, it can be considered essential in studying the effects of waveform
crest factor on the accuracy of an rms-responding voltmeter. From
Fig. 8-30 we can define duty cycle D as the pulse width ¢, divided by the
waveform period T. That is,

to

D=2 -10-1
T (8-10-1)
Since most rms-responding voltmeters are ac coupled, we can assume
Vet Vo= Vyp (8-10-2)
and
Vato = Vo(T — ty) (8-10-3)
Then
Ve = VoD (8-10-4)
Vo= V,,(1 —D) (8-10-5)

The rms sum of V, and V, is, after integration,
Vime = (Vp,.za — D)t + Vp™DX(T — m))*ﬁ

T
= VaulD(1 — D)J*  (8-10-6)

Since crest factor CF is equal to V./V.n, for values of 0 < D < s

= pp(l _ D)
r VDA — D) (D > (8-10-7)

If the duty factor D is small compared with 1, the crest factor is approxi-
mately equal to the reciprocal of the square root of the duty factor, or

1

CF = —

Dh (8-10-8)
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Thus, the crest factor of a pulse waveform with low duty factor turns out
to be somewhat different from that which might be presumed from con-
sideration of the peak-to-average ratio. A pulse waveform with a duty
factor of 1 percent has a crest factor of approximately 10, not 100 as might
be assumed.

High crest-factor performance is not easily obtained. An rms volt-
meter with a high crest-factor rating must have amplifiers with sufficient
dynamic range to pass signals that have a peak amplitude many times
larger than full-scale rms value. For example, a pulse train with a crest
factor of 7 must have a minimum dynamic range corresponding to 7.14 V
to read full scale on the 1-V range of an rms voltmeter and a dynamic
range corresponding to 14 V to read correctly if the pulse train should be
turned over.

8-11 Other Detection Methods

There are several detecting schemes used to obtain so-called true-rms
readings by means other than measuring the heating value of a waveform
with a thermocouple or other heat-sensing device. The most common
technique uses a combination of the average detector and peak detector
with suitable proportionality factors determined by the waveforms
most frequently measured. This is shown in Fig. 8-31.

For any given waveform, the rms value can be expressed by its peak and
average values. That is,

Vrms = kIVp + koVa (8-11-1)

where k; and k. are proportionality factors for the peak and average
values of the input waveform, respectively. Dividing by V,,
Vrma
Va

v
= le,f + ke (8-11-2)

FIG 8-31 Quasi-rms detector.

Using Eq. (8-11-2), we can solve for k; and k» for any two waveforms,
knowing their form factor and peak-to-average ratio. It should be noted
that the detector will indicate the true rms value for only the waveforms
whose form factor and peak-to-average ratio are used in the design. Any
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other type of waveform will be detected with some error. If the wave-
forms chosen are representative of those to be measured, the detector will
read the rms value with a relatively small amount of error, which can
be calculated by using Eq. (8-11-1).

Input
voltage Input W 2
ot votage
Input 97 c
voltage c

(a) . (b) (c)

FIG 8-32 Combined peak and average detector with rms output:
(a) average detector, (b) peak detector, and (c) combined detector.

This type of detector is most commonly used for special applications,
such as measuring the rms value of a two-tone signal in telephone work
or measuring random noise.

Another technique closely related to the scheme discussed above is one
in which the average and peak detectors are combined as shown in Fig.
8-32. Figure 8-32a shows a simplified average detector and Fig. 8-32b
shows a peak detector. Figure 8-32¢ shows the combination of the aver-
age and peak detectors in which the approximation to the rms value is
determined. The ratio B,/R. can be adjusted empirically to provide the
rms output for a group of closely related waveforms over a limited
dynamic voltage range and a limited frequency range.

Another possibility is to make R; nonlinear by using a diode shaping
network or other suitable nonlinear network to more closely approximate
a true rms reading over a large dynamic range. The shaping network
could be used to ‘“‘square’” the input voltage, which is averaged by the
average detector, and applied to a meter with scale resembling a square-

Input
vottage

[-S——

e

FIG 8-33 Quasi-rms detector with non-
linear R, substituted in previous figure,

root function. This would closely approximate the root-mean-square
process over a relatively large dynamic range, depending on how closely
the shaping network produces the desired nonlinear effect. This circuit,
shown in Fig. 8-33, is also primarily designed by empirical means.
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8-12 Sampling Voltmeters

Sampling techniques used to construct low-frequency equivalents of
high-frequency waveforms have been in existence for several years in
oscilloscopes to display the waveforms of very high frequency repetitive
signals. Only within the past few years has this technique been applied
to voltmeters. An rf vector voltmeter is available that uses a sampling
technique to measure amplitudes and phase angles simultaneously and
automatically at frequencies as high as 1 GHz. Other sampling instru-
ments are being developed to operate at frequencies as high as 12.4 GHaz.

Most sampling instruments, including the sampling oscilloscope and
the 1f vector voltmeter, sample coherently. This is analogous to the
familiar stroboscopic technique, by which an oscillating or repetitive
motion is apparently ‘“‘slowed down” by observing it only at discrete
times, instead of continuously. The observations, or samples, may be
taken by flashing a light, by observing the oscillating object through a
slit in a rotating disc, or by some other means. Coherent sampling is
shown in Fig. 8-34a and b. 'This type of sampling is primarily used when
the waveform must be preserved for visual presentation or phase measure-
ment. In a sampling voltmeter designed to measure only magnitude, it
is advantageous to sample incoherently, because the voltmeter can be
made very broadband without requiring frequency tuning. The input
voltage is sampled at irregular intervals that have no relationship to any
of the frequency components of the input signal. Enough samples are
taken, however, so that the average, peak, and rms values of the samples
closely approximate the average, peak, and rms values of the input volt-
age. Thus the information that is relevant to the voltage-measuring
function is preserved, while the waveform, which is assumed irrelevant,
is not.

Incoherent sampling, shown in Fig. 8-34¢ and d, is especially advanta-
geous in a voltmeter, because it gives the meter the sensitivity, aceuracy,
and broad frequency range of a sampling instrument, and yet it is less
costly than coherent techniques and, unlike coherent sampling, it does
not require that the input signal be periodic. The sampling voltmeter
operates equally well with sinusoidal, pulsed, random, or ¥M signals.

Tor the technique of incoherent sampling to work in all situations it is
necessary that there be no correlation between the sampling times and
the motion or signal under observation. If the sampling frequency were
a subharmonic of the frequency of the signal being measured, the motion
would be completely stopped. Thus, all the samples would be exactly
the same height, and it would be impossible to determine the peak, aver-
age, rms, and so on. One way to produce uncorrelated or nonuniform
sampling intervals is to frequency-modulate the basic sampling signal
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(d)

FIG 8-34 Sampled outputs with coherent and random sampling:
() input waveform, coherent sampling; (b) sampled output, coherent
sampling, (c) input waveform, random sampling; (d) sampled output,
random sampling.

with a low-frequency triangular wave. This produces sampling intervals
which are for all practical purposes uncorrelated with all input signals.

A block diagram of a typical sampling voltmeter is shown in Fig. 8-35.
Incoherent intervals are generated by frequency modulating the sampling
rate at a 10-Hz rate. The sample hold circuit retains a constant voltage
proportional to the sample until the next sampling instant.

Sample hold drive

|
Pulse Vottage -controlied 10 Hz triangle wavel
generator oscillgtor 1 generator
X Sample
Input ———nf Sampling probe Attenuator Somple hold & ho:;p
assembly meter circuit output

FIG 8-35 Sampling voltmeter.
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8-13 Synchronous Detection

A difficult but essential voltage measurement required for many appli-
cations is that of measuring low-level signals obscured by noise or other
nonrelated signals. Such conditions are frequently encountered in com-
munications systems, medical research, and control systems. Unfor-
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input

FIG 8-36 Synchronous rectifier.

tunately, almost all broadband voltmeters are limited in sensitivity by
noise and spurious signals introduced along with the input signal, caused
by interference and ground loops within the system or by noise inherent
in the amplifying circuitry.

One common approach to this type of measurement is the use of a
synchronous rectifier driven by a reference signal at the same frequency
as the fundamental or most significant frequency in the input signal, as
shown in Fig. 8-36. Voltmeters using this technique require a clean,
high-level reference-signal input from the test-signal source, or from a
local oscillator inside the voltmeter. This type of voltmeter is generally
average responding and calibrated in rms volts, but it isconceivable that
true-rms-responding synchronous detecting voltmeters could be easily
designed.

Another approach, somewhat unique to this type of measurement, is
the phase-locked synchronous detector, in which no external reference
signal is required. An internal voltage-controlled oscillator is used to
drive the synchronous detector, as shown in Fig. 8-37. The internal
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FIG 8-37 Block diagram of phase-lock voltmeter.
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oscillator is coarsely tuned to the frequency of interest in the input wave,
where the phase-lock loop automatically locks onto the input signal.
The voltage controlling the frequency of the internal oscillator is derived
from a phase detector, in which the input signal and internal oscillator
output are compared in phase.

Ordinarily, a synchronous detector (or demodulator) is simply a phase-
sensitive detector in which the reference signal is in phase with the
signal to be demodulated. This relationship gives maximum efficiency of
amplitude demodulation; to get maximum efficiency of phase detection,
the reference signal should be in quadrature with the input signal. There-
fore, in Fig. 8-37 it can be assumed that the phase-lock detector contains
a 90° phase shifter.

The synchronous detector can in most cases be considered a product
modulator. That is, the detector output voltage is proportional to the
product of the input signal and the reference signal. If the detector is
tuned to the frequency of interest in the input signal, this component of the
input is frequency transformed to de, filtered by a low-pass filter, and read
out on the meter face. Any frequency not harmonically related to the
frequency of the reference signal is averaged to zero and will not be read.
Hence, noise and spurious signals are rejected.

Usually, the synchronous detector is driven by a square-wave reference
signal, either shaped by an internal amplifier or obtained directly from
the internal oscillator. This is done to maximize the detection efficiency
of the circuit. To understand the response of the detector to a general
input signal, an examination of this technique must be made. The
reference signal can be expressed as

Vet = V, sinwit + V. sin 3wit + V, sin Syt + + -+ - (8-13-1)
and a general input signal as
v; = Visin wit + Vasin 2wat + Vi sin 3wat 4+ + - - (8-13-2)

It can be seen that upon multiplying Egs. (8-13-1) and (8-13-2) and then
taking the average, several things become apparent:

1. No dc due to even harmonics of the input signal appears in the
detected output. This is true because even harmonics have integral
numbers of cycles in one period of the fundamental and the average volt-
age is zero.

2. Only odd harmonics of the input signal will contribute dc terms in
the detected output, the amplitudes of which are inversely proportional
to their harmonic number.

3. If the reference oscillator is tuned to a lower frequency than the
frequency of interest in the input signal, so that the frequency of interest
is odd-harmonically related to the reference oscillator frequency, a meter
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indication will appear even though there is no energy in the input signal
at this frequency. This is an undesired effect and is generally suppressed
by an inhibiting circuit.

The synchronous detection, or frequency-selective voltmeter, is an
extremely valuable instrument to use for measuring signals in the presence
of noise and spurious signals. However, care must be taken in the inter-
pretation of the meter reading, particularly when the input voltage is not
sinusoidal.

8-14 Direct-current Probes

It is frequently undesirable to connect a known resistance in series with
a conductor in order to measure the de component (time average) of
current by measuring the voltage across that resistor, and a moving-coil
indicating instrument can be just as undesirable or inconvenient. The
alternative is to measure the average magnetic field' produced by the cur-
rent in the vicinity of the conductor, and this is not easy to do aceurately.

Unless a magnetic path of low reluctance is provided around the con-
duetor, the field measurement varies greatly as the distance between the
conductor and the magnetic sensor changes. Of course, a torroidal core
surrounding a conductor will concentrate the flux, but ordinarily one
would have to break the circuit to insert the core or leave the core per-
manently installed. Some years back, however, a tiny split core was
designed into a probe (Fig. 8-38) in such a manner that the two halves
can be opened like jaws by squeezing the flanges on the probe handle
(Hewlett-Packard model 428A). A spring return closes the jaws tightly
around a conductor when the flanges are released. Practically no air gap
remains.

The two halves of the core contain windings that are connected as a
magnetic amplifier [3]. That is, an ac excitation is applied to the wind-

1 More precisely, it is a line integral which is being evaluated, & Hdl = I.

FIG 8-38 Probe jaws are opened
by flanges on probe body; spring
return close