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PREFACE

This book describes active and passive devices and circuit configura-
tions used for the generation and processing of pulse, digital, and
switching waveforms. These nonsinusoidal signals find extensive
application in such fields as computers, control systems, counting and
timing systems, data-processing systems, digital instrumentation,
pulse communications, radar, telemetry, television, and in many areas
of experimental research.

Methods are presented for the generation of very narrow (nano-
second or microsecond) pulses and of wider (millisecond or second)
gates or square waves. Techniques are also given for the generation
of a variety of other waveforms. These include a step, an exponential,
a pulse code, a staircase, a precisely linear ramp, etc. Having been
generated, a waveform must be processed in some way in order to per-
form a useful function. For example, it may be necessary to transmit
the signal from one location to another, to amplify it, to select a portion
of it in voltage, to choose a section of it in time, to combine it with
other signals in order to perform a logic operation, to use it to syn-
chronize a system, and so forth. All these processes are studied in
detail in this text.

The book begins with a review of those topics in electronic cireuit
theory which will be most useful throughout the text. The first sec-
tion defines a uniform system of notation which is equally applicable
to transistors and tubes and which differs in a minimal way from
present standards. The reader, after becoming acquainted with this
notation, may wish temporarily to omit the rest of the first chapter.
He may, instead, prefer to review each selected topic individually when
a reference is made to it at a later point in the text. The subjects
covered in Chapter 1 include network theorems, the small-signal
equivalent circuits of tubes and transistors (including the correlation
between transistor low-frequency & parameters and the high-frequency
hybrid-II circuit elements), some very elementary feedback amplifier
considerations, and the graphical methods of analysis. The book then

ix



x / PREFACE

continues with a study of how pulse-type signals are transmitted, shaped, or
amplified by linear circuits. Included are resistive, capacitive, and inductive
networks (Chapter 2), pulse transformers and delay lines (Chapter 3), and
amplifiers (Chapters 4 and 5). A particularly detailed study of transistor
wideband amplifiers (including compensation techniques) is made. As back-
ground material for the nonlinear wave-shaping circuits which are to follow, an
extensive summary of the steady-state switching characteristics of devices is
given (Chapter 6). Included are the semiconductor diode, the avalanche
diode, the vacuum diode, a lengthy study of the transistor at cutoff and in
saturation, the avalanche transistor, and the vacuum tube. Analyses of wave-
shaping and switching functions which can be performed with nonlinear ele-
ments are introduced in the next two chapters: clipping and nonregenerative
comparator circuits (Chapter 7) and clamping and switching circuits (Chapter
8). The study of digital operations begins in Chapter 9 with logic circuits,
including Boolean algebra. Bistable multivibrators are treated in Chapter 10.
The generation of gating signals and square waves by monostable and astable
multivibrators is considered in Chapter 11. Negative-resistance devices are
treated in Chapter 12. These include the tunnel diode, the unijunction tran-
sistor, the four-layer diode, the silicon-controlled switch (and its variants),
and the avalanche transistor. Switching circuits constructed from these
negative-resistance devices are discussed in Chapter 13. The next two
chapters treat voltage and current time-base generators (including the phan-
tastron circuit, the Miller integrator, and the bootstrap circuit). Chapter 16
discusses the blocking oscillator and includes the multiar configuration. Chap-
ter 17 considers gates for sampling or transmission of signals and introduces
the field-effect transistor as an important device for these applications. The
next two chapters deal with counting, timing, synchronization, and frequency
division. = The final chapter (20) treats the transient switching characteristics
of diodes and transistors, including the snap-off diode and the hot-carrier
diode. The emphasis yﬂughout this chapter is on the charge-control method
of analysis.

In summary, this book presents a thorough study of the following basic
circuits or techniques: transmission networks, differentiating circuits (includ-
ing the transmission-line differentiator), clippers (limiters), comparators (dis-
criminators), clampers (d-c restorers), the transistor or tube as a switch, logic
circuits (AND, OR, NOT, NAND, diode matrices, etc.), bistable multis (flip-flops),
monostable multis (one-shots), astable multis (square-wave generators), nega-
tive-resistance devices and circuits, time-base generators, counting, synchroni-
zation, and pulse amplification (including transient response and the effects of
driving a transistor into saturation). The signals considered range from the
very slow (millisecond or longer) to the very fast (nanosecond).

Semiconductor and tube circuits are presented side by side throughout the
text, but with the principal emphasis on transistors. The basic philosophy
adopted is to analyze a circuit on a physical basis in order to provide a clear
understanding and intuitive feeling for its behaviar. Only after the physical
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analysis is established is mathematics used to express quantitative relation-
ships. It is assumed that the student has a background in mathematics that
includes the study of linear differential equations with constant coefficients.
In order to avoid distractions from the principal concern of the analysis of
electronic circuits, algebraic and other mathematical manipulation has been
kept to & minimum. Solutions to differential equations which describe the
circuits under study are given without analysis, but the response indicated by
these equations has been plotted and studied in detail.

The piecewise linear and continuous model is introduced wherever such
an approximation is useful, particularly in a generalized discussion. However,
for the most part, real (commercially available) device characteristics are
employed. In this way, the reader may become familiar with the order of
magnitude of practical device parameters, the variability of these parameters
within a given type and with a change in temperature, the effect of the inevi-
table shunt capacitance in circuits, the consequence of minority-carrier storage
in semiconductor devices, the precautions which must be taken when dealing .
with nanosecond pulses, the effect of input and output impedances and loading
on circuit operation, ete. These considerations are of utmost importance to
the student or practicing engineer since the circuits to be designed must func-
tion properly and reliably in the physical world rather than under hypothetical
or ideal circumstances.

There are a large number of examples worked out in the text in detail in
order to illustrate how theory may be applied to obtain quantitative results
and to emphasize the order of magnitude of the effects under eonsideration.
In addition, the 700 homework problems give the student experience in the
analysis and the design of the circuits discussed in the text and of other con-
figurations to perform similar functions. In almost all numerical problems
realistic parameter values and specifications have been chosen. Considerable
care has been exercised in the development of these problems, which the authors
consider an integral and important part of the text.

There are many ways of implementing a pulse or digital system designed
to perform a particular function. It is hoped that through a study of this text
and through the experience gained from solving a goodly number of problems,
the reader will develop facility with these circuits and sharpen his creativity
and ingenuity so that he can arrive at a fa.u'ly optimum implementation of the
system under consideration.

To cover all the material in the book requires three semesters, at least
one of which should be part of an undergraduate electronics sequence. The
instructor has a wide range of topics to choose from, and he need not follow the
exact sequence in the book. For example, the two chapters (4 and 5) on wide-
band amplifiers may be considered too specialized for an undergraduate
program (or it may be desired that these topics be studied in a communications
course), and they may be omitted without particularly disturbing the sequence.

~ This book was planned originally as a second edition of the authors’
“Pulse and Digital Circuits” (McGraw-Hill Book Company, New York,
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1956). However, so much new material has been added and so extensive and
thorough have been the revisions that a new title for the present text seems
much more reasonable. About half the topics in this book did not appear in
the earlier work, and of the material that was presented there, almost every
section has been completely rewritten. This very major overhaul has been
made necessary by the rapid developments which have taken place recently
in this field, and particularly by the shift in emphasis from vacuum tubes to
transistors and other semiconductor devices.

It may be of some interest to note that consideration was given to the
advisability of splitting this work into two volumes, each of more moderate
size. A questionnaire that sought recommendations concerning the division
of the material was addressed to a large number of our academic colleagues.
The responses were so divergent that there seemed no alternative but to
include all of the topics in one volume.

Considerable thought and effort were given to the pedagogy of presen-
tation, to the explanation of circuit behavior, to the use of a consistent system
of notation, and to the care with which detailed waveforms and other diagrams
have been drawn in order to facilitate the use of this book in self-study. It
is hoped that the practicing engineer will find this book of service in updating
himself in this field.

The authors are grateful to the many companies who supplied information
in the form of device characteristics, application notes, and instrument instruc-
tion manuals. The General Electric Company, Fairchild Semiconductor,
Hewlett-Packard Company, Philco Corporation, Radio Corporation of
America, Raytheon Company, Tektronix, Inc., Texas Instruments, Inc., and
Transitron Electronic Corporation were particularly helpful.

We are pleased to acknowledge our indebtedness to our colleagues at
Columbia University, at The City College, and in industry for many fruitful
discussions. In particular, the following persons read various portions of the
manuscript and offered a great deal of constructive criticism: G. J. Clemens,
R. C. Gebhardt, J. Hahn, V. I. Johannes, A. B. Marcovitz, P. T. Mauzey,
1. M. Meth, A. C. Ruocchio, and L. Packer. Mr. Mauzey merits our special
gratitude because of the many valuable suggestions he offered and because of
the diligence with which he assisted in the chore of proofreading.

We express our particular appreciation to Miss S. Silverstein, administra-
tive assistant of the Electrical Engineering Department at The City College,
for her most skillful service in the preparation of the manuscript. We also
thank W. I. H. Chen, A. B. Glaser, J. T. Millman, and J. N. Taub for their
assistance.

Jacob Millman
Herbert Taub
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1 REVIEW OF SELECTED TOPICS
IN ELECTRONIC
CIRCUIT THEORY

This book is concerned principally with the generation and processing
of nonsinusoidal waveforms. A voltage or current waveshape having
been generated, it may require processing in some manner. For
example, it may be necessary to transmit it from one location to
another, to amplify it, to shape it by clipping the top or bottom, to
shift its d-c level, to select a portion (in time) of the waveform, to use
it as a gate in connection with some other waveform, to perform
with it some logic operation, and so forth. For the most part, the
devices and circuits capable of accomplishing the functions referred
to above must operate in a highly nonlinear manner, referred to as the
switching mode of operation.

No previous acquaintance is assumed, on the part of the reader,
with the switching behavior of devices or with the processing of the
nonsinusoidal waveforms thereby generated. However, it is assumed
that the reader has completed an introductory course in linear circuit
analysis and a course in the small-signal theory of electronic devices—
diodes, vacuum tubes, and transistors. For the sake of convenient
reference, we summarize in this chapter certain network theorems,
device models, concepts, and techniques from electronic circuit theory to
which we shall have occasion to makereference. Weassume the reader’s
familiarity with these topics and therefore present them without proof
or elaboration.

1-1 NOTATION

We shall often consider, side by side, a tube and an analogous tran-
gistor circuit that perform identical functions. Since tube and

1
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TABLE 1-1 Notation

Grid (plate) Base (collector)
voltage with voltage with
respect to cathode | respect to emitter

Instantaneous total value....................... v (vp) ve (ve)
Quiescent value................ ... ............. Vo (Vp) Ve (Ve)
Instantaneous value of varying component. ... .... v, (vp) v (ve)
Effective value of varying component (phasor, if a :
sinusoid)............ ... Vo (Vy) Ve (Ve)
Supply voltage (magnitude).................... . Ve (Vep) Vsr (Vec)

transistor will appear in the same discussion, it is very important that we
use a system of notation which is applicable to either device and which devi-
ates in a minimal way from contemporary practice. These requirements are
met by adhering to the IEEE standards!t for semiconductor symbols and
adopting? these standards as well for electron tubes. Only three modifications
are required in the tube standards. First, the symbol e (E) is dropped, and »
(V) is used for voltage. Second, the plate subscript b is no longer used, but is
replaced by P. Third, the grid subscript ¢ is replaced by G. Note that b and
c are now reserved for base and collector, respectively. This notation is summa-
rized in the following six statements and in Table 1-1.

1. Instantaneous values of quantities which vary with time are represented
by lowercase letters (z for current, v for voltage, and p for power).

2. Maximum, average (d-c), and effective, or root-mean-square (rms),
values are represented by the uppercase letter of the proper symbol (I, V,
or P).

3. Average (d-c) values and instantaneous total values are indicated by
the uppercase subscript of the proper electrode symbol (B for base, C for
collector, E for emitter, G for grid, P for plate, and K for cathode).

4. Varying components from some quiescent value are indicated by the
lowercase subscript of the proper electrode symbol.

5. A single subscript is used if the reference electrode is clearly understood.
If there is any possibility of ambiguity, the conventional double-subscript
notation should be used. For example, v,, = instantaneous value of the vary-
ing component of voltage drop between collector and emitter and is positive
if the collector is positive with respect to the emitter at a given instant of time.
If the emitter is grounded and all voltages are understood to be measured with
respect to ground, then the symbol v.. may be shortened to »,. The ground
symbol is N (for neutral). For example, vpy = instantaneous value of total
voltage from plate to ground.

6. The magnitude of the supply voltage is indicated by repeating the
electrode subscript.

T Superscript numerals are keyed to the References at the end of the chapter.
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1-2 NETWORK THEOREMS

The following theorems are used frequently in the analysis of the circuits
discussed in this book. ‘

Kirchhoff's Current Law (KCL) The sum of all currents toward a node
must be zero at all times.

Kirchhoff's Voltage Law (KVL) The sum of all voltage drops around a
loop must be zero at all times.

These two theorems are valid even if the network contains nonlinear
devices. The following laws are applicable only for linear circuits, but are
valid even if dependent sources are present. A controlled or dependent gen-
erator is one whose voltage or current is a function of the voltage or current
elsewhere in the circuit. A word of caution is in order when considering
impedance in a network containing controlled sources. To find the impedance
Z seen between two points, an external voltage generator V is considered to
be applied between these points and the current I drawn from the source is
determined. Thereafter, Z = V/I provided that in the above procedure
each independent (externally applied) source is replaced by its internal imped-
ance—an ideal voltage source by a short circuit, and an ideal current source
by an open circuit. All dependent sources, however, must be retained in the
. network.

Superposition Theorem The response of a linear network containing
several independent sources is found by considering each generator separately
and then adding the individual responses. When evaluating the response
due to one source each of the other independent generators is replaced by
its internal impedance.

Thévenin's Theorem Any linear network may, with respect to a pair of
terminals, be replaced by a voltage generator (equal to the open-circuit voltage
between the terminals) in series with the impedance seen at this port.

Norton's Theorem Any linear network may, with respect to a pair of
terminals, be replaced by a current generator (equal to the short-circuit current)
in parallel with the impedance seen at this port.

From Thévenin's and Norton’s theorems it follows that a voltage source
V in series with an impedance Z is equivalent to a current source I in parallel
with Z, provided that I = V/Z. These equivalent circuits are indicated in
Fig. 1-1.

Open-circuit Voltage—Short-circuit Current Theorems  As corollaries to
Thévenin’s and Norton’s theorems we have the following relationships. If V
represents the open-circuit voltage, I the short-circuit current, and Z(Y) the
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1 1
Fig. 1-1 As viewed from terminals 1

¥4 and 2, the Thévenin's circuit in (a) is
I=_Z‘C z equivalent to the Norton's circuit in (b).
Note: Throughout the text a circle with
> a + sign represents an ideal voltage
2 2 source, whereas a circle with an arrow
(a) ®) in it signifies an ideal current source.

+

impedance (admittance) between two terminals in a network, then

I |4 14
V—IZ—-T, I—Z—VY Z_T 1-1)
In spite of their disarming simplicity, these equations (reminiscent of Ohm’s
law) should not be overlooked because they are most useful in analysis. For
example, the first equation, which states “open-circuit voltage equals short-
ciréuit current divided by admittance,” is often the simplest way to find the
voltage between two points in a network, as the following problem illustrates.

EXAMPLE Find the voltage V between nodes 1 and 2 of Fig. 1-2.

Solution The current flowing in a short circuit placed between 1 and 2 is, using
superposition,

I=% —% =050mA

If the sources are replaced by their internal resistances (assumed zero), then
the three resistors are in parallel between 1 and 2. Hence

Y =1+ 3+ + % = 0.35mA/V = 0.35 millimho
and

The third relationship in Eq. (1-1), which states that ‘‘the impedance
between two nodes equals the open-circuit voltage divided by the short-circuit
current,” is frequently the simplest way to calculate the output impedance
of a circuit.

Fig. 1-2 An illustrative problem.

20K -rmv
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1-3 LOW-FREQUENCY SMALL-SIGNAL TRANSISTOR MODEL?

The incremental terminal behavior of a transistor is best described in terms
of the 2 parameters for the following reasons. These hybrid parameters
are real numbers at low frequencies, are particularly easy to measure, can also
be obtained from the transistor static characteristic curves, and are convenient
to use in circuit analysis and design. Furthermore, in present practice a
set of h parameters is customarily specified for each transistor by the manu-
facturer, and it is a simple matter to convert from the h parameters for one
configuration, say the common-base (CB) circuit, to another arrangement, say
the common-emitter (CE) configuration.

The hybrid small-signal model, valid in the active region of the transistor,
for any configuration at low frequencies is indicated in Fig. 1-3. The input
(output or load) voltage is V; (V.), the input (output) current is I; (I1), and
the impedance loading the output is Z;. Note that this model contains two
dependent sources, one (A, V) controlled by the output voltage and the other
(hsI;) controlled by the input current.

The quantities of most interest when using the transistor as an amplifier
are the current gain A;, the input impedance Z;, and the voltage gain Av.
From Fig. (1-3) we can obtain the following formulas for these quantities:

I _ —hy

di=7 =i (1-2)
V

Z(ET = h,+hA.1ZL (1‘3)
V.,  AZ;

Ay =gk = A (1-4)

The beautiful simplicity of the above amplifier equations is evident. Numer-
ical calculations for any configuration may be carried out quite rapidly.?
Note that the expression for Ay does not contain the h parameters explicitly

1; I
—_—
o—to o
+ +
V; Amplifier \73 Z;
o—+o o —
(@) ®

Fig. 1-3 (a) A transistor amplifier in either the CE, CB, or CC configuration;
(b) the hybrid-parameter model for small-signal variations from the quiescent
operating point.
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TABLE 1-2 Typical k-parameter values
(at Iz = 1.3 mA)
Parameter CE CC CB
ks 1,100 1,100 21.6 @
hy 2.5 X 10 ~1 2.9 X 10+
hy 50 —51 —0.98
1/h, 40 Kt 40K 2 Mt
t K = kilohms.

{ M = megohms.

and hence is valid regardless of what equivalent circuit is used for the tran-
sistor. In particular, Eq. (1-4) applies even at high frequencies, where the A
parameters are functions of the frequency or where we may prefer to use
another model for the transistor (Seec. 1-4).

If a specified configuration is under consideration it is identified by a
second subscript on the h parameters. Thus, for the CE configuration,
hy, by, by, and h, are replaced by ki, hy., hy., and ko, respectively. The negative
of the current transfer ratio with the output short-circuited (often referred to
simply as the short-circuit current gain) for the CE configuration is often called
the beta of the transistor, or ks, = 8. For the CB configuration this quantity
is called the alpha of the transistor, or by = —a.

Tables of conversion formulas of i parameters for the three configurations
are available.>* For example, the CC parameters are given in terms of the
CE hybrid values by the following nearly exact relationships:

hic = hi, hye = —(hye + 1) hee =1 hoe = hos (1-5)

An emitter follower is a CC circuit with the Joad in the emitter leg so that Z;,

is replaced by Z,. From the above equations it is found that for the emitter
follower

— hfa +1
4= Tz -9
Z; = hie + A1Z, (1'7)
hia
1-Av =3 (1-8)

The voltage gain of an emitter follower may be very close to unity, and Eq.
(1-8) is a nearly exact expression for the deviation from unity. We shall make
use of these equations in Sec. 14-15, where the Darlington cascade is discussed.
Representative values of the hybrid parameters for a low- or medium-power
junction transistor are indicated in Table 1-2.
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We should like to point out for future reference that the CE input imped-
ance under a reasonable load does not differ greatly from the short-circuit input
resistance k.. Thus, for a 5-K load and for parameter values in Table 1-2 we
find Z; = 1,045 . This value is only 5 percent smaller than h;, = 1,100 2.

1-4 THE HYBRID-PI (II), HIGH-FREQUENCY, SMALL-SIGNAL,
COMMON-EMITTER MODEL?.s

An equivalent circuit which gives excellent agreement with experiment in
the range from d-c¢ to frequencies where the effectiveness of the transistor
begins to be limited is indicated in Fig. 1-4. The h-parameter circuit is simpler
at low frequencies and hehce the hybrid-II model is usually reserved for high-
frequency calculations. We shall exploit it in Chaps. 4 and 5, where wide-
band amplifiers are considered. All parameters (resistances and capacitances)
in the model are assumed to be independent of frequency. They may vary
with the quiescent operating point but under given bias conditions are reason-
ably constant for small signal swings. The internal node B’ is not physically
accessible.. The ohmic base resistance, the so-called base-spreading resistance
s, is represented as a lumped parameter between the external base terminal
and B’. The transistor transconductance g., is linearly related to the emitter
current Iz and varies inversely with the absolute temperature T' as follows:

— hlc |IE|

gm =1 T hyonVr mhos . (1-9)

where 7 = 1 for germanium and approximately 2 for silicon and where
Vr = T/11,600 (Sec. 6-1). Hence, for a germanium transistor at room
temperature (with hy, >> 1), with Ix in milliamperes,

gm = —lélgl mhos (1-10)

If the CE h parameters at low frequency—hy,, hi; h.., and h,—are determined

L™

Tyt

bb B
Bo—AAA- 3 oC

C.
1

emms TG etz DsnVie

Eo— — —-OFE

Fig. 1-4 The hybrid-IT model for a transistor in the CE
configuration.
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at a given emitter current Ig, then the resistances in the hybrid-II circuit are
calculable from the following four equations in the order given:

_ ke _ I ‘

Thre = gm or bre = hfe (1-11) .
Toor = hie — Tpre « ‘ (1-12)
_ e _ e ]

Mo = 1 or gy == (1-13)

1
Jee = hoe — (1 + h/e)gb’c = ‘I'— ' (1-14')

For the typical 2 parameters in Table 1-2 we find at /g = 1.3 mA and room
temperature that for a germanium transistor

gm = 50 mA/V Tore = 1K Topt = 100 Q@
Tore = i1 M Tee 82 K

The collector junction capacitance C. = Cy- is the measured CB output
capacitance with the input open (Ir = 0) and is usually specified by manu-
facturers as Cy. The emitter-junction capacitance C, = Cj, is determined
from a measurement of the frequency fr at which the CE short-circuit current
gain drops to unity. We verify in Sec. 4-6 that

C, ~ 5% (1-15)

Reasonable values for these capacitances are

C.=3pFt C. = 100 pF

1-5 SMALL-SIGNAL TUBE MODELS

For small variations from the quiescent operating point a vacuum tube
(Fig. 1-5a) may be replaced by either the Thévenin's model of Fig. 1-5b or
the Norton’s equivalent of Fig. 1-5¢c. Both of the dependent sources, the
Thévenin’s voltage generator and the Norton’s current generator, are con-
trolled by the voltage V, from grid to cathode. In these circuits r, = plate
resistance, u = amplification factor, and g,, = transconductance. These three
parameters are not independent because u = gmrp. The model of Fig. 1-5 is
equally valid for a triode or a pentode provided that the screen and suppressor
are held at fixed voltages. A network containing tubes may be analyzed by
replacing each device with its equivalent circuit and by disregarding all those
features, such as supply and bias voltages, which have an influence only on the
quiescent state.

t The abbreviation pF = picofarad = uuF = micromicrofarad.
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[N 3
T?f ow

—OK

(a). : (d) (c)
Fig. 1-5 The vacuum tube in (o) may be replaced by either the Thévenin's
model, as in (b), or the Norton's equivalent circuit, as in (c).

1-6 VOLTAGE AND CURRENT AMPLIFICATIONS

In Chaps. 4 and 5 we shall deal with the gain, frequency response, and time-
domain response of vacuum-tube and transistor amplifiers and amplifier
stages. To avoid the need to digress in that discussion, we shall, at this point,
define a number of voltage and current amplifications, introduce symbols for
them, and derive certain useful relationships among them. )

In Fig. 1-6a a signal I is applied to an amplifier stage (transistor or tube)-
from a generator of source impedance Z,, and, as a result, a signal I, is delivered
to the load Z;. We have chosen here to represent the input generator by its
Norton's equivalent. The current entering the input terminals of the amplifier
is I;, We define the four current gains

Ar = % A, = —IIi' (1-16a)
_ IL _ IL
Ai = I— (ZL = 0) Au = T (ZL = 0) (l-lﬁb)
I
l—o
I Z, Amplifier
° (a)
I
+
\7 Z
- ®)

Fig. 1-6 An amplifier driven by (@) a current source and (b)
a voltage source.
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The gain Ay, takes account of the source impedance Z, although A does not.
The gain A; is the ratio of load current to the current that would be furnished
to the amplifier input by an ideal current source for which Z, = «. For
such an ideal source A; = Ar. The gains 4; and A4, are the corresponding
gains when the amplifier output terminals are shorted.

Alternatively, we might have chosen to have represented an input gen-
erator by its Thévenin’s equivalent (a source V in series with its impedance
Z,), as in Fig. 1-6b. The input and output (load) voltages of the amplifier are
V: and Vj, respectively. In this case it is appropriate to define the voltage
gains

Vi

Ay = 3 Av = KVE (1-17a)
A =ﬁ(z =w) A =I-’£(Z = «) (1-170)
v = V,' L v = V L

As in the case of the current amplifications, the gain Ay, has the “practical’’
aspect that it takes account of the generator impedance, whereas Ay does not.
The gain Ay, is equal to Ay when the input signal is applied by an ideal
voltage generator of zero impedance. The gains under open-circuit conditions
(when the load is disconnected from the output terminals) are 4, and A...

In general, the relationships among these various gains depend on the
amplifier. If the input impedance is Z; then it follows from the defining
equations (1-16) and (1-17) and from Fig. 1-6 that

I Z

A, = AI'I_ = A AZTTZ.‘ (1'18)
and
V; Z;
Ay, = AV‘I—,‘ = AV“T{-——Z—; (1'19)

We observe that these equations are consistent with the statements made
above that Ay, = A; if Z, = « and Ay, = Ay if Z, = 0. Combining Egs.
(1-4) and (1-19),

A:Zy,

AVa = Z. + Z.‘ (1-20)

Equations (1-18) and (1-20) indicate how to calculate current and voltage gains
taking source impedance into account if the current gain A from an ideal
source is known. In order to evaluate these amplifications we must be able
to evaluate the input impedance Z; of the amplifier under consideration.
There is one relationship which is independent of the amplifier (since it
does not require a knowledge of Z,) and which we shall find useful. Since

=Y

Ala =5 AVn vV

Voe=1.2Z. V = 1Z,
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we have that

Ay = Ar 2 (1-21)
This same result is obtained by dividing Eq. (1-20) by Eq. (1-18). It is
important to keep in mind that Eq. (1-21) applies only provided that Ay, and
Ay, correspond to the same source and load tmpedances. But the result is
independent of whether the source impedance appears as an element in series
with the input terminals and voltage generator, as in Fig. 1-6b, or in shunt
with the input terminals and current generator, as in Fig. 1-6a.

Suppose now that the ratio Z;/Z, is independent of frequency (or, more
generally, of the Laplace transform variable). Then from Eq. (1-21) we have
the result that the frequency response and time-domain response of the voliage
gain Ay, and of the current gain Ar, are precisely the same in form. Such
would be the case if, for example, the source and load impedances were both
resistive. However, even under this circumstance note that the transient
response of Ay (Z, = 0) may not be the same as that of 41 (Z, = «).

Note that none of the equations in this section depends upon the particular
model chosen for the amplifier. They are equally applicable to a tube or to a
transistor amplifier of any number of stages. Of course, in evaluating the
symbols, such as Z;, in the equations we must refer to an equivalent circuit
valid for the active device over the frequency range under consideration.

We shall often have occasion to refer to an amplification in the midband -
region; this quantity will be indicated exphcltly by an additional subscript o.
Two examples follow:

Ar, = midband current gain under load taking the source impedance tnto
account

A,, = midband open-circuil voltage amplification fed from an ideal voltage
source (R, =0, Ry = »)

A few final important observations with respect to the frequency response
of an amplifier: If the entire circuit can be reduced at low frequencies to
one containing a single time constant 7y, then the frequency response is given by

Aa — Ao
1=jlers 1 =3/
where \A ‘represents aniplification (either current or voltage) as a function of
frequency, A, is the midband gain, and f; = 1/2xr, is the lower 3-dB frequency.

Similarly, for a single-time-constant (r.) circuit at high frequencies the
response A, is given by

AO = AO
1+ jwrs 1+ 5(f/f2)

where f» = 1/2xr, is the upper 3-dB frequency.

4= (1-22)

Ay = (1-23)
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Fig. 1-7 Pertaining to Miller's theorem. By definition, K = V,/V..

The following procedures allow a very simple evaluation of A4, and
7 (r1 or 72). If all independent voltage sources are short-circuited and if all
independent current sources are open-circuited, the resulting network con-
tains only resistors and capacitors. Since we have assumed a single-time-
constant circuit we should now be able to evaluate r by inspection. To calcu-
late A, we must solve a resistive network for the ratio of output-to-input voltage
(or current). This midband region contains no reactive elements because
in the low-frequency circuit this region is defined by f — « and in the high-
frequency case by f— 0.

1-7 MILLER’'S THEOREM

Consider an arbitrary circuit configuration which can be split into two net-
works N;'and N, interconnected with an impedance Z’, as indicated in Fig.
1-7a.. More specifically, a set of terminals 1-2 is selected in N, and a second
set 3-4 is designated in N, so that 1 and 3 are connected through Z’ and 2 and
4 through a short circuit. We postulate that we know the ratio V,/V, where
V1is the voltage between terminals 1-2 and V' is the voltage between terminals
3-4. Designate the ratio V,/V, by K, which in the sinusoidal steady state will be
a complex number and more generally will be s function of the Laplace transform
variable s. * We shall now show that the current I, drawn from N; can be
obtained by disconnecting terminal 1 from Z’ and simply bridging an imped-
ance Z'/(1 — K) across 1-2, as indicated in Fig. 1-7b.
The current I, is given by

Vi— Ve _Vil-K _ ¥ Vi

Li=—%p VA “7Z/0—-K) Z

(1-24)
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Therefore if Z, = Z'/(1 — K) were shunted across terminals 1-2 the current
I, drawn from N; would be the same as that from the original circuit. Accord-
ingly, as far as the voltages and currents in Ny are concerned, the two configura-
tions (Fig. 1-7a and b) are indistinguishable from one another. ‘
In a similar way it may be established that the correct current I, drawn
from N, may be calculated by replacing the connections to terminals 3-4 by an
impedance Z,, given by
_ 7z’ _ Z'K
“1TZ1/K K-—-1
In other words, as far as N, is concerned Fig. 1-7a and ¢ are equivalent. It

must be emphasized that this theorem will be useful in making calculations
only if it is possible to find the value of K by some independent means.

Z

(1-25)

EXAMPLE Consider a triode-tube amplifier stage, taking interelectrode capaeci-
tances into account. (a) What is the effective input impedance? (b) What is
the effective capacitive loading at the output?

Solution a. As indicated in Fig. 1-8a, network N; may be taken as the source V,
in parallel with Cy, and network N as the tube including B, and Cpi and Z' =

r— == hl
I N. |
(ot {
| |
] + L |
I _ i
| TCoh |
(. |
|
' ]
T i
1 3
+ .
:L—‘j J:———‘j 2,2 &nVi n R, “TCu
\ wCpp wCy, (1 -K) m p P P!
2 4

b ()

Fig. 1-8 (o) A triode stage; (b) the equivalent input circuit; (c) the
equivalent output circuit. '
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—j/wCys. Using the above theorem the loading on N, is as indicated in Fig.
1-8b, where K = V,/V, represents the voltage gain of the stage. The calculation
of K is made by replacing the tube by its small-signal model and solving the
resulting network. In the midband region we find, approximately,

K= -4, where 4, = _g,,.R_,,r,
R, + 1,

is the magnitude of the voltage gain. In this region the load on the source V,
(or on the stage preceding the one under consideration, if a multistage amplifier
is under consideration) is a capacitance

Ci=Cu+ Con(l + 4,) (1-26)

Since 4, may be a large positive number, C; may be very much larger than C .
This exaggeration of the grid-plate capacitance is called the Miller effect. If,
typically, C,, = 3.5 pF = Cyx and K = —10, then the input capacitance is
42 pF. The Miller effect operates in pentodes as well, but the capacitance C,,
in a pentode is smaller than in a triode by a factor in the range 100 to 1,000.

b. In Fig. 1-8¢ we have indicated N, with the tube replaced by its Norton’s
small-signal model and with Z. given by Eq. (1-25), namely,

Z,= 4 _K__ =i (1-27)

if the voltage gain K is much greater than unity. Under these circumstances Z.
simply represents a capacitance equal to C,,. Hence, the total capacitance
loading this stage is C,, + T (plus, of course, the input capacitance of the next
stage if this amplifier is followed by another stage). Note that in this case we
do not need to know the exact expression for K, but we merely must be certain
that | K| > 1.

The Miller effect® was originally enunciated in connection with the input

capacitance of vacuum tubes. However, the transformation presented above,
by which the Miller effect is deduced, is generally useful in the analysis of other

circuits, and we shall refer to the transformation as Mailler's theorem.

Fig. 1-9 The circuit which results from an application of the Miller theorem to
the hybrlf-II circuit of Fig. 1-4. The impedance Z’ of Fig. 1-7 is now equal to
the parallel combination of gy, and C..
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An application of Miller’s theorem to the hybrid-II model of Fig. 1-4
yields the circuit of Fig. 1-9. Here K = V.,/Vy.. Observe that the use
of Miller’s theorem has resulted in two isolated networks, one at the input
and one at the output. We discuss further simplifications of this circuit in
Sec. 4-7, where we also inquire into the determination of the value of K in cases
of interest.

1-8 THE QPERATIONAL AMPLIFIER

An operational amplifier is constructed in the manner indicated in Fig. 1-10a.
Here an amplifier, with input terminals 1 and 2 and output terminals 3 and 4,
whose gain is negative, real, and large has been augmented by the addition
of two impedances Z and Z’. The impedance Z; represents the input imped-
ance of the amplifier. A simplified representation of the amplifier is shown in
Fig. 1-10b. The amplifier within the box in Fig. 1-10a is called the base
amplifier and may consist of one or more vacuum-tube or transistor stages in
cascade.

We define Ay = V,/V.; to be the voltage amplification with Z’ in place.
Comparing Fig. 1-10 with Fig. 1-7 we see that Miller's theorem is directly
applicable with K = Ay. Hence, an equivalent circuit of the operational
amplifier, which gives the same input current I from the source V,, the same
amplifier input voltage V;, and consequently the same output voltage V, as
in Fig. 1-10, is indicated in Fig. 1-11. From this figure we see that if

|| «a (1-28)

then I’ = I. Under these circumstances the output voltage is
ZI
14

Even for a transistor, for which the input impedance is much smaller than

Vo= AyV; = AvI (1-29)

‘?“_
i

°|a<

T
L

(@) ®

Fig. 1-10 Two representations of an operational amplifier.
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Fig. 1-11  An equivalent circuit of the operational amplifier.

for a vacuum-tube amplifier, the inequality (1-28) will be satisfied provided
that Ay is made sufficiently large. As |Ay] — o the impedance across ter-
minals 1 and 2 approaches zero (a short circuit), and I = V,/Z. Also, as
|Av}| — o, we see from Eq. (1-29) that the output is

z
— — (A — e
V,= —IZ 7 V.

and the overall voltage gain is
Vo z
Ay = V.= "7

The operation of the circuit may now be described in the following terms.
At the input to the amplifier proper there exists a virtual short circuit or
virtual ground. The term “virtual” is used to imply that, while the feedback
from output to input through Z’ serves to keep the voltage V. at zero, no cur-
rent actually flows through this short. The situation is depicted in Fig. 1-12,
where the virtual ground is represented by the heavy double-headed arrow.
The current furnished by the generator V, continues past this virtual short
through the impedance Z’, so that V, = —I1Z’.

An operational amplifier may be used to perform many mathematical
operations. This feature accounts for the name which has been assigned to
this type of amplifier configuration. Among the basic configurations are the
following :

(1-30)

Sign Changer or Inverter If Z = Z’, then A; = —1, and the sign of the
input signal has been changed. Hence such a circuit acts as a phase inverter.
If two such amplifiers are connected in cascade, the output from the second
stage equals the signal input without change of sign. Hence, the outputs
from the two stages are equal in magnitude but opposite in phase, and such a
system is.an excellent paraphase amplifier.

— W —_— :
. 7 z 1 YA +
Fig. 1-12 Virtual ground in the operational

> J amplifier.
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(@) ® -

Fig. 1-13 . (a) Operational integrator; (b) equivalent circuit.

Scale Changer If the ratio Z’/Z = k, a real constant, then A, = — ¥k,
and the scale has been multiplied by a factor —k. Usually, in such a case of
multiplication by a constant, —1 or —%, Z and Z’ are selected as resistors.

Phase Shifter Assume Z and Z’ are equal in magnitude but differ in
angle. Then the operational amplifier shifts the phase of a sinusoidal input
voltage while at the same time preserving its amplitude. Any phase shift
from 0 to 360° (or +180°) may be obtained.

Integrator If Z = R and a capacitor C is used for Z’, as in Fig. 1-13, we
can show that the circuit performs the mathematical operation of integration.
The input need not be sinusoidal and hence will be represented by the lower-
case symbol » = v(t). (The subscript s will now be omitted, for simplicity.)
Correspondingly, the current as a function of time is designated by 7 = <(%).
In Fig. 1-13b (analogous to Fig. 1-12) the double-headed arrow represents a
virtual ground. Hence ¢ = v/R and '

v,=~—éjidt=—%/vdt (1-31)

The amplifier, therefore, provides an output voltage proportional to the integral
of the input voltage.

If the input voltage is a constant v = V, then the output will be a ramp
v, = —Vi/RC. We shall discuss this Miller integrator in detail in Chap. 14,
where the errors introduced because Ay cannot be infinite are analyzed.

Differentiator If Z is a capacitor C and if Z’ = R, then we see from the
equivalent circuit of Fig. 1-14 that ¢ = C dv/dt and

, dv
v% = —Ri = —RC’E (1-32)
Hence, the output is proportional to the time derivative of the input.
We note that when the gain Ay is large enough, the overall gain of the
operational amplifier is A, = —Z’/Z. Therefore, provided only that the
amplifier has adequate gain, the overall amplification depends only on the
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c R

It
—— It —
N i i+
° Fig. 1-14 Equivalent circuit of the

I operational differentiator.

impedances Z’ and Z and not on other elements nor on the characteristics
of the active devices used in the base amplifier. If Z’ and Z are selected to be
stable components the overall gain will be similarly stable. The operational
amplifier suppresses the effect of the variability of gain with operating point,
with age, with replacement, with temperature, etc. Similarly, the operational
amplifier suppresses the effect of active element nonlinearity, for nonlinearity
may be viewed as a variation of device parameters with operating point.

These features of stability as well as other useful features which are char-
acteristic of the operational amplifier result from the fact that this amplifier
configuration incorporates feedback. The input signal to the amplifier V;
in Fig. 1-10a is a linear combination of the external signal V, and the output
signal V,. Since the signal which is fed back to the input is proportional
to the output voltage, the amplifier is described as incorporating voltage feed-
back. The feedback is negative (or degenerative) in the sense that the gain
with feedback |A4,| is less than the gain without feedback [Ay|. In a physical
circuit, the base amplifier consists of a cascade of common-emitter or common~
cathode stages. The input is applied at the base or grid of the first stage
and the output taken from the last collector or plate. Therefore, this type of
feedback is often called collector-to-base or plate-to-grid feedback.

1-9 _ A CURRENT FEEDBACK AMPLIFIER

A second feedback-amplifier configuration of a type we shall encounter in
Chap. 15 is shown in Fig. 1-15. Here the feedback voltage is taken across

Fig. 1-15 A current-feedback-amplifier circuit configuration.
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the resistor R, and this voltage V; = IR, is now proportional to the output
current I, rather than to the output voltage, as was the case with the opera-
tional amplifier. As a matter of convenience, separate inputs 1 and 1’ are
provided for the external signal and feedback signals, respectively. For .
example, the two inputs may be the bases of the two transistors of a difference
amplifier. The superposition of the two signals which appears at the collector :
continues thereafter through a common channel to the output. A Thévenin’s;
replacement of the base amplifier has been made with respect to terminals’
3 and 4. The output impedance without feedback is R,, and provision has
been made to account for the possibility that the gains A and A’ for the external
signal and the feedback signal, respectively, may not be the same.
From Fig. 1-15 we have

Vo= AV, + A'V, — (R, + R)IL = Z.,I, (1-33)
Eliminating V, through V, = IR, and solving for I, we find

_ — 4V,
ARy~ (R, + B; + Zo)

If the gain |A’| is made large enough so that |A’|R, >> |R, + R, + Zy/|, then

_ AV,
AR,

I (1-34)

I ~ (1-35)

Suppose further that we arrange that the feedback and external signals pro-
ceed, for the most part, through a common channel. Then A ~ A’ and
-V,
R,

I =~ (1-36)
Equation (1-36) indicates that the load current will be proportional to the
input signal and will be stable if R, is a stable resistor. As indicated by
Eq. (1-36), the load current does not depend on the parameters of the amplifier
or circuit elements, active or passive, other than R,;. The result is independent
of any nonlinearity of amplifier or the load Z;. These advantageous features
result from the negative current feedback present in the circuit when the gain 4
is large, real, and negative. Thus in the present case the current feedback
assures stability and lack of distortion in the output current just as, in the
operational amplifier, the voltage feedback secures these same benefits for the
output voltage.

1-10 GRAPHICAL CALCULATION FOR A TUBE CIRCUIT

A computation which must often be made in pulse circuits is that of calculating
the quiescent voltages and current in a triode tube circuit. Many practical
one-tube circuits have a resistor R, in series with the cathode in addition to the
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Fig. 1-16 A tube circuit with both
plate and cathode resistors.

+

T Vxx

L

resistor R, in series with the plate. The resistor R, is returned either to
ground or to a negative supply — Vxk, as indicated in Fig. 1-16.

We consider now how to use the characteristic curves of the vacuum
tube to analyze the circuit for a fixed (d-¢) grid bias Vee. Kirchhoff’'s law
(KVL) applied to the plate circuit yields

—Verp— Vg +Ve+ Ip(Ry+ Ri) =0 (1-37)
Similarly, KVL around the grid circuit gives
—Vee+ Ve — Veg 4+ IpRy = 0 (1-38)

Equation (1-37) represents a load line corresponding to an effective sup-
ply voltage Vrp + Vig and a total resistance B, + Ri. This line is plotted
on the plate characteristies in Fig. 1-17. From Eq. (1-38) the current is given
by

1, = Yoot ‘;':K — Ve (1-39)

For each value of V¢ for which there is a plotted plate characteristic the
current Iy is calculated from Eq. (1-39). The corresponding values of Ip
and V¢ are plotted on the characteristics, as indicated by the dots in Fig. 1-17.

IP
Vept Vix
R,+R,
Load line
Vi Fig. 1-17 The intersection of
the load line and the bias
Bi .
1as curve curve gives the operating
I __________ .
) A: B point.
]
]
|
0 Vv Vep+ Vi Ve
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The locus of these points is called the bias curve. The intersection of the bias
curve and the load line gives the plate voltage V and current I corresponding
to the given input voltage Vge.

The procedure outlined above is extremely simple to carry out. It is
really not necessary to use all values of Vg; it suffices to find two adjacent
grid curves which give currents above and below the load line, as indicated by
points A and B in Fig. 1-17. The intersection of a straight line drawn through
4 and B with the load line gives the desired operating point. In particular
it should be noted that if Vge + Vkx is large compared with the range of values
of V¢ (called the grid base), then Ip will be almost constant and hence the
curve connecting the dots in Fig. 1-17 will be approximately a horizontal
straight line.

The cathode follower is a special case of the circuit of Fig. 1-16 with
R, = 0. Often the cathode resistor is connected to ground, so that Vgx = 0.
Sometimes neither Vgx nor Vee is used, and self-bias is obtained from the
quiescent drop across Bx. The construction is the same as that indicated in
Fig. 1-17, with a load line corresponding to Ve and B, (or to Ry + R, if
Ry, # 0) and a bias curve given by Ip = —Vg/Ry.

Methods for calculating the quiescent operating condition in a transistor
circuit both in the active region and in saturation are given in the text where
needed and therefore are not discussed here.

1-1 INPUT AND OUTPUT IMPEDANCE OF A TUBE STAGE

Figure 1-18 shows a tube stage with plate and cathode resistors. Our concern
here is with small-signal operation; therefore all bias and supply voltages have
been omitted. The plate and cathode resistors have been placed to suggest
that these may be viewed, when we please to do so, as external loads on the

e
3
Ip
K,___ § R,
Ry,
N
N __

Ny o

Fig. 1-18 A vacuum-tube stage with a plate and cathode resistor.
The signal source V, is connected between grid and cathode or
between grid and ground.
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amplifier and not part of the amplifier. Provision has been made so that the
external signal source V, may be connected between grid and cathode or
between grid and ground.

Let us now consider the Thévenin’s equivalent circuit with respect to the
output terminals P-N when the signal source V, is connected between grid and
cathode. We consider that R, is in place but R, is not connected. Replacing
the tube by its small-signal equivalent of Fig. 1-5b we find that the Thévenin’s
equivalent source V and output impedance Z (Fig. 1-1a) are

- —wV, Z=r1,+Ri (1-40)

Next we determine the Thévenin’s equivalent when the source V, is connected
between grid and ground. To make this calculation we connect E, so that a
current I, will flow. Using again the small-signal equivalent circuit of the
tube we find

1V,
= -41
L= ¥+ DR TE, (14D
The output voltage V, = V. is

V,= —I,R, (=uV) R, (1-42)

T, F x+ DRI F E,

If a load Z. were connected across the terminals 1 and 2 of Fig. 1-1a then the
output in that case V, = V4, would be

_ ¥z
Ve=7+7 (149
Comparing Eqs. (1-42) and (1-43) we note that if we consider R, an external
load like Z;, then in the Thévenin’s equivalent with respect to terminals P-N,

V=w—uV., Z=r,+@+1)Ek (1-44)

Comparing Eq. (1-44) with (1-40) we see that the change in connection of the
input source has not modified the Thévenin’s source voltage but has resulted
in the addition of a term uR; to the output impedance.’

When the output is taken between K and N and when the signal source is
connected between G and K, with R, in place, but R not connected, then the
Thévenin's circuit consists of a source V and output impedance Z given by

V =uV, Z=r,+ R, (1-45)

With the source V, connected between grid and ground we proceed as before
and obtain Eq. (1-41) for I,. Hence V, = V,, is given by

FV:RIG

Vo= LB = T L T DR

(1-46)
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or
_ eV, R:
V°_#+lrp+Rp+R (1-47)
B +1 *

Comparing Eq. (1-47) with (1-43), with Z, = R;, we find that the Thévenin's
source voltage and output impedance are given by

vV, _r,+ R,
P F1 Z = P (1-48)

Thus the change in connection, in this case, results in both V and Z being
divided by u + 1.

If, in Fig. 1-18, the grid draws no current, then the input impedance is
infinite. In a physical tube, however, even with a negative bias on the grid
some small grid current will flow: because of residual gas in the envelope.
Hence an equivalent resistance R, appears between grid and eathode owing
to this gas current or because the grid is driven positive or simply because a
grid-leak resistor is connected between grid and cathode externally to the tube.
If the source V, is connected between the grid and cathode, then the source sees
an input impedance R,. However, if the source V, is connected between grid
and ground, then, in accordance with Miller’s theorem of Sec. 1-7, the input
resistance is

= B
R; = =4, (1-49)
where Ay is the voltage gain from the external signal to the cathode, that is,
Av = Vin/V,. Since Ay represents the gain of a cathode follower (except
for the additional resistance R, in the plate circuit), then Ay is positive and
usually not much less than unity. Hence, Eq. (1-49) indicates that the input
impedance may be very much larger when V, is connected between grid and

ground than when connected between grid and cathode.

1-12 INPUT AND OUTPUT IMPEDANCE OF A TRANSISTOR STAGE

Figure 1-19¢ shows a transistor stage with an emitter and a collector resistor.
Again, bias and supply voltages have been omitted. For a base current I,,
the collector and emitter currents are written in terms of the current gain 4,
which is defined as A; = —I./I,. If the emitter resistor were not present,
the input impedance, seen between base and ground, would be R; = h;,. This
result follows from Fig. 1-3b and from the consideration that h,, is so small (see
Table 1-2) that ordinarily the voltage &,V is negligible in comparison with
the voltage across h,. This approximation is justified more quantitatively
below. Similarly, the output impedance between collector and ground (con-
sidering B an external load) is 1/h,, if R, = 0.
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(@) : ®)
Fig. 1-19 (a) A CE transistor circuit with an emitter resistor B.. (b) An equivalent
circuit which gives the same currents as in (a).

The input and output impedances in the presence of the emitter resistor
may be determined very simply by recognizing the equivalence of the circuits
in Fig. 1-19a and b. This equivalence may be established by writing the
KVL equations for the base mesh and for the collector mesh with the transistor
junction voltages in Fig. 1-19a set equal to the transistor junction voltages in
Fig. 1-19b. The set of mesh equations for Fig. 1-19a and b are identical.
Hence, for a given source and load the input and output currents will be
identical.

We observe that, since A; is large and (4, — 1)/Ar = 1, the collector
circuit resistance is increased by R, @. If R. + R. < 4 K, then the current
gain differs from its short-circuit value by less than 10 percent. (We shall
justify this approximation below.) From inspection of Fig. 1-19b, we have,
with A = —hy,

Ri = hie + (1 + hfe)Re (1-50)

Typically, ki = 1 K, hys = 50, and R, =~ 1 K. In this case, the addition
of the emitter resistance increases the input resistance from 1 to 52 K, an
impressive change.

The output impedance seen at the collector is also greatly increased by
the presence of the emitter resistance. For values of R, which are large com-~
pared with B, + A, the emitter may be assumed to be an open circuit and the
base to be grounded. Under these conditions, the output resistance from
collector to ground approaches the resistance from collector to base with an
open emitter, or R, = 1/hs =~ 2 M. This value greatly exceeds the output
resistance for R, = 0, namely, 1/h, =~ 40 K. Clearly, R, depends upon E.
and R,. This dependence is given in Prob. 1-32.

Consider now the case where the output is taken between emitter and
ground. We assume again that 4; ~ —h, and that the impedance between
base and emitter is h;,. Then from the application of KVL around the base
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mesh of Fig. 1-19a we find

|4

Ib = Rl + ht'e + (1 + h}‘c)Re

(1-51)

and
VS’\

(1 + k) LR, (1-52)

Substituting from Eq. (1-51) into Eq. (1-52) and dividing numerator and
denominator by 1 4+ k., we obtain

V.R.

Rl + hie
5%, + R,

Comparing this expression with Eq. (1-43), we see that if R, is considered
to be an external load, the Thévenin's source voltage V and output impedance
Z with respect to the emitter and ground terminals are

Ra + hn‘a
1+ hy,

Thus, looking into the emitter we see that the impedance in the base mesh
of Fig. 1-19a is divided by the factor 1 + h;,. The reason for this reduction is
that of the current drawn from the emitter terminal only a fraction 1/(1 + hy)
is supplied as base current.

We shall now justify the approximation used above that A; =~ —hy..
The effective load impedance Z, is seen from Fig. 1-19b to be
Ar—1

Ar

Ven = (1-53)

V=V, Z-= (1-54)

Zy = Ry + R, (1-55)
The exact expression for the current gain may be found by using Eq. (1-2),
with Z,, given by Eq. (1-55). Solving for A; we find

— _hfe + hosRe
1 + hoe(RL + Re)

Using the parameter values in Table 1-2-we can verify that, if B, + R, < 4 K,
Ay differs from —h,, by less than 10 percent. In a similar manner we can
justify the assumption that if B, + R. < 4 K, the impedance between base
and emitter differs from &;, by less than 5 percent.

Ar (1-56)
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2 LINEAR WAVE SHAPING:
RC, RL, AND RLC CIRCUITS

If a sinusoidal signal is applied to a transmission network composed
of linear elements, then, in the steady state, the output signal will have
a waveshape which is a precise reproduction of the input waveshape.
The influence of the circuit on the signal may then be completely
specified by the ratio of output to input amplitude and by the phase
angle between output and input. With respect to this feature of pre-
serving waveshape in all linear networks, the sinusoidal signal is
unique. No other periodic waveshape preserves its form precisely,
and, in the general case, the input and output signal may bear very
little resemblance to one another. The process whereby the form of a
nonsinusoidal signal is altered by transmission through a linear net-
work is called “linear wave shaping.”

In pulse circuitry there are a number of nonsinusoidal waveforms
which appear very regularly. The most important of these are the
step, pulse, square wave, ramp, and exponential waveforms. The
responses to these signals of certain simple RC, RL, and RLC circuits
are described in this chapter.

24 THE HIGH-PASS RC CIRCUIT

The capacitive coupling network of Fig. 2-1 is a rudimentary high-pass
filter. Since the reactance of a capacitor decreases with increasing
frequency, the higher-frequency components in the input signal appear
at the output with less attenuation than do the lower-frequency com-
ponents. At very high frequencies the capacitor acts almost as a
short circuit and virtually all the input appears at the output. This
behavior accounts for the designation “high-pass filter.”

At zero frequency the capacitor has infinite reactance and hence

27
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q
= , Fig. 2-1 The high-pass RC circuit. [If the
+T ¢ T+ input is sinusoidal, the lowercase letters
Y; q R Y% should be replaced by capitals to represent
_l sinor (phasor) quantities. For example, v, is
i_ replaced by V.,.]

behaves as an open circuit. Any constant (d-c) input voltage is “blocked”
and cannot reach the output. Therefore C is called a “blocking capacitor.”
The basic configuration of Fig. 2-1 is the most common coupling circuit used
to obtain d-¢ isolation between input and output.

Sinusoidal Input For a sinusoidal input Vi, the output signal V,
increases in amplitude with increasing frequency. Even in the case of a
transmission network where no amplification is involved and in which the
output is always smaller than the input, it is not uncommon to refer to the
ratio V,/Vi., for a sinusoidal signal, as the “amplification” or “gain” A of '
the circuit. For the circuit of Fig. 2-1, the magnitude of the gain 4| and the
angle # by which the output leads the input are given by

1 _ N
T+ G/NT and 0= arctan7 @-1)
where f; = 1/2eRC. At this frequency fi, the magnitude of the capacitive
reactance is equal 1o the resistance, and the gain is 0.707. This drop in signal
level corresponds to a signal reduction of 3 decibels (dB), and accordingly
f1 is referred to as the lower 3-dB frequency. The maximum possible value
of the gain (unity) is approached asymptotically at high frequencies.

4] =

Step-voltage Input A step voltage is one which maintains the value zero
for all times ¢ < 0 and maintains the value V for all times ¢t > 0. The transi-
tion between the two voltage levels takes place at ¢ = 0 and is accomplished
in an arbitrarily short time interval. Thus in Fig. 2-2, »; = 0 immediately
before t = 0 (to be referred to as time t = 0—), and v; = V immediately after
t = 0 (to be referred to as time t = 0+).

From elementary congiderations, the response of the network is exponen-
tial, with a time constant RC = r, and the output voltage is of the form

Vo = B; + Bze_th (2-2)

The constant B; is equal to the steady-state value of the output voltage
because as t — «, v,— B;. If this final value of output voltage is called V,
then B; = V,. The constant B; is determined by the initial output voltage,
say V., because at t = 0, v, = V; = B, + Bs or B, = V; — V;. Hence the
general solution for a single-time-constant circuit having initial and final values
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V: and V,, respectively, is
vo= Vit (Vi— Vpetr 2-3)

This basic equation will be used many times throughout this text.

The constants ¥V, and V; must now be determined for the circuit of Fig.
2-1. We have already emphasized that the capacitor C blocks the d-¢c com-
ponent of the input; since the input is a constant for ¢ > 0, the final output
voltage is zero, or V, = 0. The value of V; is determined from the following
basic considerations.

If the instantaneous current through a capacitor is ¢, then the change

in voltage across the capacitor in time ¢, is (1/C) j;h 1 dt. If we restrict our-

selves to those circuits in which the current is always of finite magnitude,
then the above integral approaches zero as t;— 0. Hence, it follows that
the voltage across a capacitor cannot change instantaneously, provided that the
current remains finite. :

Applying the above principle to the network of Fig. 2-1, we must conclude
that since at ¢ = 0 the input voltage changes discontinuously by an amount ¥,
the output must also change abruptly by this same amount. If we assume
that the capacitor is initially uncharged, then the output at { = 0+ must
jump to V. Hence, V; = V and since V; = 0, Eq. (2-3) becomes

v, = Ve il (2-4)

Input and output are shown in Fig. 2-2. Note that the output is 0.61 of
its initial value at 0.5r, 0.37 at 17, and 0.14 at 2r. The output has completed

v, - -
2 ¢ l/r= x

v € g1
1.0 / v v,
09 * v
\ 0.5 |0.607
0.8 1.0 | 0.368
orf 20 |0135
\ 3.0 | 0.050
os|—} 40 {0018
\ 5.0 | 0.007

0.6
AN
04 A
AN
0.3 .
02 \ o
N

\
1
01 ! P
\

v; = ——
0 1 2 3 4 5 t

xX=z

Fig. 2-2 Step-voltage response of the high-pass RC circvit. The dashed
line is tangent to the exponential at ¢t = 0-1-.
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more than 95 percent of its total change after 3r and more than 99 percent
of its swing if ¢ > 5. Hence, although the steady state is approached
asymptotically, we may assume for most applications that the final value has
been reached after 5r.

Pulse Input An ideal pulse has the waveform shown in Fig. 2-3a. The
pulse amplitude is V and the pulse duration is t,. It appears from Fig. 2-3a, b,
and ¢ that the pulse may be considered to be the sum of a step voltage +V
whose discontinuity occurs at ¢ = 0 and a step voltage — V whose discontinuity
occurs at { = {,. .

If the pulse of Tig. 2-3a is-applied to the circuit of Fig. 2-1, the response
for times less than ¢, is the same as that for the step-voltage input. Hence,
the output at ¢t = ¢,— is given by v, = Vexp (—¢,/RC) = V,. At the end
of the pulse, the input falls abruptly by the amount V, and, since the capacitor
voltage cannot change instantaneously, the output must also drop by V.
Hence,att = t,4+,v, = V, — V. Since V,isless than V, the voltage becomes
negative and then decays exponentially to zero, as indicated in Fig. 2-3d.

Ui
1 4
(a)
Ly t=t, t
\ 4
(b) . ’
Fig. 2-3 (a) A pulse; (b, c) the
0 7 step voltages which make up the
pulse; (d) the pulse after
0 t=t, transmission through the high-pass
T t RC circuit.
(o)
-V
{d)
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(a)
A=A,
t
Fig. 2-4 (a) Response of high-
pass circuit to a pulse if
RC/t,>> 1; (b) pulse response if
RC/t, < 1. o ®)
17 4312
¢
-V
For t > t,, v, is given by
o = V(e /BC — 1)e~(t—tp)/RC : (2-5)

Note the distortion which has resulted from passing a pulse through an RC
coupling network. There is a tilt to the top of the pulse and an undershoot
at the end of the pulse. If these distortions are to be minimized, then the
time constant RC must be very large compared with the width ¢,. However,
for all values of the ratio RC/t, there must always be an undershoot, and
the area below the axis will always equal the area above. The equality of areas
can be verified by direct integration of the waveform in Fig. 2-3d. Because
the input and output are separated by the blocking capacitor C, the d-¢ or
average level of the output signal is zero for this linear circuit.

If the time constant is very large (RC/¢, 3> 1), there is only a slight tilt
to the output pulse and the undershoot is very small. However, the negative
portion decreases very slowly (as indicated in Fig. 2-4a), since its area must
equal that of the positive portion. If the time constant is very small (RC/¢,
« 1), the output consists of a positive spike or pip of amplitude V at the
beginning of the pulse and a negative spike of the same size at the end of the
pulse, as indicated in Fig. 2-4b. This process of converting pulses into pips
by means of a circuit of short time constant is called peaking.

Square-wave Input A waveform which maintains itself at one constant
level V' for a time T, and at another constant level V"’ for a time T'; and which
is repetitive with a period T = T, + T, as indicated in Fig. 2-5a, is called a
square wave. We are interested in the steady-state output waveform which
results if this square wave is impressed on the circuit of Fig. 2-1.
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First we shall prove that for any periodic input waveform the average level
of the steady-state output signal from the circuit of Fig. 2-1 is always zero
independently of the d-¢ level of the input. The network under consideration
is governed by the equation

-9 ~
=ot (2-6)
where ¢ is the capacitor charge. Differentiating Eq. (2-6) gives
dv; d o
e+ e (2-7)

where 7 = dq/dt is the mesh current. Since v, = 7R, this equation is equiv-
alent to

dvi _ dav,

@Rt @ 2-8)

Multiplying by dt and integrating this equation over one period T' we obtain
t=T 1 T

ﬂ o = 0(T) — 00) = 2 fo 0o @t + 2o(T) — 2,(0) (2-9)

Under steady-state conditions the output waveform (as well as the input
signal) is repetitive with a period T, so that v,(T) = v,(0) and v;(T) = v:(0).

T
Hence /; v,dt = 0. Since this integral represents the area under the output

waveform over one cycle, we have indeed verified that the average level of the
steady-state output signal is always zero.

An alternative proof of this important principle, based upon a frequency-
domain analysis, follows. The periodic input signal may be resolved into a
Fourier series consisting of a constant term and an infinite number of sinusoidal
components whose frequencies are multiples of f = 1/7. Since the blocking
capacitor presents infinite impedance to the d-¢ input voltage, none of this
d-c component reaches the output under steady-state conditions. Hence, the
output signal is a sum of sinusoids whose frequencies are multiples of f. This
waveform is therefore periodic with a fundamental period T' but without a
d-c¢ component.

With respect to the circuit of Fig. 2-1 we have already established the
following three points. First, the average level of the output signal is always
zero independently of the average level of the input. The output must
consequently extend in both the positive and negative direction with respect
to the zero-voltage axis, and the area of the part of the waveform above the
zero axis must equal the area which is below the zero axis. Second, when the
input changes discontinuously by amount V, the output changes discontinu-
ously by an equal amount and in the same direction. Third, during any
finite time interval when the input maintains a constant level, the output
decays exponentially toward zero voltage. In the limiting case where RC/T;
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v

(@ F— T, I—~ T, v o Vd-c
0 Zero voltage l J_

Uo

2 1
24 5 { vatags
W t

®) — 1, T, h T, —-I

T

Fig. 2-5 (a) Square-wave input; (b) output voltage if the time
constant is very large (compared with T). The d-c componerit
V4. of the output is always zero. Area A, equals area A,

and RC/T. are both arbitrarily large in comparison with unity, the output
waveform will be identical to the input except that the d-¢c component will be
lacking. Hence, the square wave of Fig. 2-5a, whose d-c level is different
from zero, will appear after transmission with an average value zero, as in
Fig. 2-5b.

At the other extreme, if RC/T; and RC/T; are both very small in com-
parison with unity, the output will consist of alternate positive and negative
peaks, as in Fig. 2-6. Observe in this case that the peak-to-peak amplitude
of the output is twice the peak-to-peak amplitude of the input.

More generally, the response to a square wave must have the appearance
shown in Fig. 2-7. The equations from which to determine the four quantities
V., Vi, Vs, and V3, indicated in Fig. 2-7, are

V! = VieDire Vi—Vy=V (2-10a)
V) = VyeTilRC Vi—V,=V (2-10b)

A symmetrical square wave is one for which T, = Ty = T/2. Because
of the symmetry, V; = —V,and V; = —V;. Under this condition the equa-
tions in Eq. (2-10a) are identical with those in Eq. (2-10b). Hence, the two
equations in either line of Egs. (2-10) suffice to determine the output. We
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Fig.2-6 Peaking of a square wave resulting from a
time constant small compared with 7',

find
14 , 14

Vi=igemm Vi pomme @11)

For T/2R(C « 1 these reduce to

ro V(. T
Vi (1 + 4RC) Vi=g (1 4RC) (212)

The exponential portions of the output are now approximately linear, as
shown in Fig. 2-8. The effect of the coupling network has been to 1ntroduce
a tilt on the waveform. The percentage tilt P is defined by

V-V

1
P p7a~ X 100 ~

2RC’ X 100% (2-13)

Since the low-frequency 3-dB point is given by f; = 1/2rRC, we have the

= =3, Fig. 2-7 The square-
! wave response of a
A\

[ High-pass RC circuit.

0 T The dashed curve
- ;;_6__‘%1 Vz L__ would represent the
\Z V,e~¢-T/RC f

2

output if RC> T.

<——T‘-—J<——— T, ————=
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Output
Vi Input
%Vi
v
2 \%
Fig. 2-8 Linear tilt of a square wave l
when RC/T>> 1. 0 :
r T
2 2
v
L __ —y R
V2
relationship
P =~ 1rf7l X 1009, (2-14)

in which f = 1/T is the frequency of the applied square wave.

2-2 THE HIGH-PASS RC CIRCUIT (EXPONENTIAL
AND RAMP INPUTS)

The response of the high-pass RC circuit to an input exponential waveform or to .
an input voltage which increases linearly with time is now to be considered.

Exponential Input From the preceding discussion on peaking (see Fig.
2-6) we are led to conclude that, if the time constant of the circuit is decreased,
the peaks obtained will be narrower, but the amplitude of the peak will remain
equal to the discontinuity V of the input square wave. This is true provided
that the input has vertical sides, an impossibility in a physical waveform. If
RC is made extremely small, the finite rise time of the input waveform must
be taken into account.

Consider a case in which the capacitor is initially uncharged and the
input waveform rises rapidly but not discontinuously from zero to a level V,
as shown in Fig. 2-9. Since the initial capacitor voltage is assumed to be zero
and since the input signal is zero at t = 0, then »,(0) = 0 [see Eq. (2-6)]. It
follows from Eq. (2-8) that

dv; _ dv, _
(‘CT[)initial N F[)inieial (2 15)

Since the initial rates of change of input and output are identical and both
start from zero, we may anticipate that in the neighborhood of ¢ = 0 the
output will follow the input quite closely. Furthermore, unless the time
constant RC is very large in comparison with the time required for v: to attain
its final value, the capacitor will have acquired appreciable charge in this time.
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Fig. 2-9 Response of a high-pass RC circuit to an
exponential input.

Hence it is apparent from Eq. (2-6) that v, will fall short of attaining the
voltage V. Eventually, of course, the output must decay exponentially to
Z€ro.

The above qualitative discussion will now be made quantitative by con-
sidering an exponential input waveform given by

vu=VQa— e“/".) (2-16)

Equation (2-8) then becomes

14 Vo dv

ott = = —

r © l RC +‘ dt (2-17)
Defining z and » by

= 1—% and n = EC (2-18)

T

the solution of Eq. (2-17), subject to the condition that initially the capacitor
voltage is zero, is given by

Vn

n—1

(e2/n — €7) (2-19)

Y =
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if n # 1 and by
v, = Vze= (2-20)

if n = 1. These equations are plotted in Fig. 2-9, and it is seen that they
have the shape predicted above. Note that if RC is much greater than
7(n > 1), the second term of Eq. (2-19) is negligible compared with the first
except for very small values of time. Then

Vn

v~ 2 eI =~ Ve tiRC (2-21)

This equation agrees with the way the circuit should behave for an ideal
step voltage. Near the origin of time the output follows the input. Also,
the smaller the circuit time constant, the smaller will be the oulput peak. For
example, if RC just equals the time constant of the input wave (n = 1), the
peak output will be only 37 percent of the peak input, but a very narrow pulse
will result, as shown in Fig. 2-9. The larger RC is (relative to r), the larger
will be the peak output but also the wider will be the pulse. A value of RC is
chosen to give the best compromise between these two conflicting characteris-
tics for the particular application at hand. The choice is seldom critical.

Ramp Input A waveform which is zero for { < 0 and which increases
linearly with time for ¢ > 0, » = a, is called a ramp or sweep voltage. Sucha .
waveform is indicated as the “input’ in Fig. 2-10a. If this waveform is
applied to the circuit of Fig. 2-1, the output is governed by Eq. (2-8), which
becomes

v, dv,
““got @

This equation has the solution, for », = 0 at ¢ = 0,
v = aRC(1 — ¢1/EC) (2-22)

For times ¢ which are very small in comparison with RC, we may replace
the exponential in Eq. (2-22) by a series with the result

t
v = af (1 —sgot ) (2-23)

The output signal falls away slightly from the input, as shown in Fig. 2-10a.
As a measure of the departure from linearity, let us define the transmission
error e; as the difference between input and output divided by the input. The
error at a time ¢ = T is then

o=~ — = o = wfil (2-24)
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Signal

{a) Fig.2-10 (a) Response of a high-
0 T 7 pass RC circuit to a ramp voltage
for RC/T>> 1; (b) response to a
ramp voltage for RC/T K 1.

Signal

_1;;&: _______ ®)

where f1 = 1/2RC is again the low-frequency 3-dB point. For example,
if we desire to pass a 2-msec sweep with less than 0.1 percent deviation from
linearity, the above equation yields

f1 <0.16 Hzt or RC > 1 sec

For large values of ¢ in comparison with RC, the output approaches the con-
stant value aRC, as indicated in Fig. 2-10b and Eq. (2-22).

2-3 THE HIGH-PASS RC CIRCUIT AS A DIFFERENTIATOR

If, in Fig. 2-1, the time constant is very small in comparison with the time
required for the input signal to make an appreciable change, the circuit is called
a differentiator. This name arises from the fact that under these circum-
stances the voltage drop across R will be very small in comparison with the
drop across C.  Hence we may consider that the total input »; appears across C,
8o that the current is determined entirely by the capacitance. Then the -
current is C dv;/dt, and the output signal across R is

dv.-
Up = RCa?

Hence the output is proportional to the derivative of the input.

The derivative of a square wave is & waveform which is uniformly zero
except at the points of discontinuity. At these points, precise differentiation
would yield impulses of infinite amplitude, zero width, and alternating polarity.
Referring to Fig. 2-6, we see that the RC differentiator provides, in the limit

t Hz = hertz = cycles per second. kHz = kilohertz. MHz = megahertz = mega-
cycles per second.
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of a very small time constant, a waveform which is correct except for the fact
that the amplitude of the peaks never exceeds V. We may expect such an
error since, at the time of the discontinuity, the voltage across R is not negligi-
ble compared with that across C.

For the ramp v; = at, the value of RC dv;/dtis «aRC. This result is verified
in Fig. 2-10b except near the origin. The output approaches the proper
derivative value only after a time has passed corresponding to several time
constants. The error near { = 0 is again due to the fact that in this region
the voltage across R is not negligible compared with that across C.

If we assume that the leading edge of a pulse can be approximated by a
ramp, then we can measure the rate of rise of the pulse by using a differentiator.
The peak output is measured on an oscilloscope, and from Fig. 2-10b we see
-that this voltage divided by the product RC gives the slope «. If R and C
are not given to the desired accuracy, then the system must be calibrated
by using a pulse of known rate of rise.

It is interesting to obtain a criterion for good differentiation in terms of
steady-state sinusoidal analysis. If a sine wave is applied to the circuit of
Fig. 2-1, the output will be a sine wave shifted by a leading angle 8 such that

Xe 1

tan0=?=m

(2-25)

and the output will be proportional to sin (w¢ 4+ 6). In order to have true
differentiation we must obtain cos wf. In other words, 8 must equal 90°.
This result can be obtained only if E = 0 or C = 0. However, if wRC = 0.01,
then 1/wCR = 100 and 6 = 89.4°, which is sufficiently close to 90° for most
purposes. If wRC = 0.1, then ¢ = 84.3° and for some applications this may
be close enough to 90°.

If the peak value of the input is V.., the output is

VaR

VRt Dac n @t

and if wRC < 1, then the output is approximately VawRC cos wt. This result
agrees with the expected value, RC dv;/dt. If wRC = 0.01, then the output
amplitude is 0.01 times the input amplitude.

Since it has been demonstrated that the output will be a small fraction
of the input if the differentiation is satisfactory, then the output will frequently
have to be followed by a high-gain amplifier. Any drift in amplifier gain will
affect the level of the signal, and amplifier nonlinearity may affect the accuracy
of differentiation. These difficulties are avoided by using the operational
differentiator discussed in Sec. 1-8. This feedback amplifier does not suffer
from the drifts just mentioned, the stability depending principally upon the
constancy of R and C.

The operational-amplifier equivalent circuit for a differentiator is a
capacitor €' in series with a resistor B/(1 — A), where A is the gain. The
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phase-shift angle 6 between output and input for a frequency « is given by

tan 0 = 1‘0—“‘4 (2-26)

Comparing Eq. (2-26) with Eq. (2-25), we see that for the same values of
R and C the frequency range of proper differentiation for the operational
amplifier is (1 — A) times that of the simple RC circuit and the output voltage
has essentially the same magnitude for both circuits.

If the RC product for the operational amplifier is (1 — 4) times that
of the simple circuit, then the output from the former will be (1 — A) times that
of the latter, whereas the quality of the differentiation is the same for both.
The same result can be obtained by following the simple RC circuit by an
amplifier of gain (1 — A), but, as already emphasized, this arrangement will
not have the stability and linearity of the operational system.

These considerations with respect to the conditions required for differen-
tiation of sinusoidal waveforms suggest an alternative point of view in con-
nection with the differentiation of an arbitrary waveform. Suppose we resolve
an arbitrary signal into its Fourier components. If each of the components
1s shifted in phase by 90° and if the amplitude of each component is multiplied
by a factor proportional to the frequency, then the Fourier series will have been
effectively differentiated term by term. From this point of view the require-
ment for good differentiation is that the time constant RC shall be small in

- comparison with the period of the highest-frequency term of appreciable
amplitude of the input signal.

2-4 DOUBLE DIFFERENTIATION

Figure 2-11 shows two RC coupling networks in cascade separated by an
amplifier A. It is assumed that the amplifier operates linearly and that its
output impedance is small relative to the impedance of R, and Cs, so that this
combination does not load the amplifier. Let R, be the parallel combination
of R and the input impedance of the amplifier. If the time constants E,C:
and R.C, are small relative to the period of the input wave, then this circuit
performs approximately a second-order differentiation.

If the input is a ramp (v; = af) of long duration, the output v of the invert-

T 1Ly [A\ nlwn 7

+ + +

. §R I/J/ v R, Fig. 2-11 A rate-of-rise amplifier.
= J

i
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ing amplifier is the negative of the waveform in Fig. 2-10b and is given by
[Eq. (2-22)]

v = —Aari(l — ¢tn) (2-27)
where A is the magnitude of the amplifier gain and 7, = R,C;. This expo-

nential input to the R.C, network leads in turn to an output which is, as given
in Eq. (2-19),

n
Vo = "‘AaTl
n —

i (e2in — €2) (2-28)
if n % 1, where n = r5/r1, 72 = ByCs, and z = t/r1. Values of —v,/Adar,
are plotted in Fig. 2-9 for values of n equal to 0.1, 1.0, 10, and 100. For
n = 1, the output is given by '

v, = —Aarre > (2-29)

This special case is plotted in Fig. 2-12. It should be noted that a ramp
voltage has been converted into a pulse. The initial slope of the output wave
is the initial slope of the input multiplied by the gain of the amplifier. For this
reason the stage in Fig. 2-11 is called a ‘‘rate-of-rise amplifier.”’ For a single
RC circuit, we demonstrate in Sec. 2-2 that the initial rate of change of output
equals the initial rate of change of input independently of the time constant.
Obviously, the same conclusion can be drawn for multiple differentiation.
A direct check can be made from Eq. (2-28), where we find that at ¢ = 0,
dv,/dt = —Aa.

As a second illustration of double differentiation consider the exponential
waveform v; = V(1 — e*7) applied to the circuit of Fig. 2-11. If

R]_Cl = RzCn =T
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Fig. 2-13 Response of a double differentiator to an exponentially
rising input. The numerical values correspond to an assumed
amplifier-gain magnitude 4 = 4and ¥V =1,

the output is found to be
v = —AVz (1 — g) €® (2-30)

where z = t/r. This result is plotted in Fig. 2-13. The initial slope of v,
is —AV/r since V/r is the initial slope of »;. Also, direct integration shows
that the output waveform has as much area above the time axis as below, a
fact of importance in some practical problems, such as in pulse spectrometry.!

2-5 THE LOW-PASS RC CIRCUIT

The circuit of Fig. 2-14 passes low frequencies readily, but attenuates high
frequencies because the reactance of the capacitor C decreases with increasing
frequency. At very high frequencies the capacitor acts as a virtual short
circuit and the output falls to zero.

* The importance of the basic circuit of Fig. 2-14 results from the fact that
it may represent the situation which exists very frequently at the terminals
of a signal source. The terminals of the source are 0-0’. TLooking back
into these terminals we may replace the source by a Thévenin’s equivalent.
The voltage v; is the open-circuit voltage and R is the output impedance of the
source, assumed purely resistive. The capacitance C represents all the capaci-
tance which appears in shunt across 0-0’. This capacitance may arise from
the wire used to couple terminals 0-0/ to a load or may arise as a result of the
capacitive component of admittance presented by the load or from stray
capacitance across the terminals at the signal source itself. The fact is that
almost invariably when we find ourselves pressed to extend the range of opera-
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Fig. 2-14 The low-pass RC circuit. Vi m == Yo

tion of some electronic circuit to a higher frequency, it is because we have to
contend with a low-pass RC circuit as shown in Fig: 2-14.

The network of Fig. 2-14 is identical with that of Fig. 2-1 except for the
fact that the output is now taken across C instead of across B. Hence, the
mathematical solution for the low-pass circuit can be obtained from the equa-
tions in Sec. 2-1. However, the physical behavior of the network of Fig. 2-14
is so different from that of the high-pass circuit of Fig. 2-1 that we shall give
detailed consideration to the low-pass configuration.

Sinusoidal Input If the input voltage v; is sinusoidal, the magnitude of
the steady-state gain A and the angle § by which the output leads the input
are given by

1 !

— = — arctan L 2-31
TFgms =4 0= -ecteg (2-31)
where fa = 1/2rRC. The gain falls to 0.707 of its low-frequency value at the
frequency f.. Hence, f is called the upper 3-dB frequency.

|A] =

Step-voltage Input The response of the circuit of Fig. 2-14 to a step
input is exponential with a time constant RC. Since the capacitor voltage
cannot change instantaneously, the output starts from zero and rises toward -
the steady-state value V, as shown in Fig. 2-15. The output is given by
Eq. (2-3), or

v, = V(1 — et/RC) (2-32)

<e

©0 O

o

Fig. 2-15 Step-voltage response
of the low-pass RC circuit. The
rise time £, is indicated.

<ls

01
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Fig. 2-16 Pulse response of the

v, = Ve E-BVRC low-pass RC circuit.
o~ 'p

The rise time t, is defined as the time it takes the voltage to rise from
0.1 to 0.9 of its final value. It gives an indication of how fast the circuit can
respond to a discontinuity in voltage. The time required for v, to reach one-
tenth its final value is readily found to be 0.1RC and the time to reach nine-
tenths its final value is 2.3RC. The difference between these two values is the
rise time ?, of the circuit and is given by

22 _ 035
2sz fg

Thus, the rise time is proportional to the time constant » and inversely pro-
portional to the upper 3-dB frequency.

t, = 2.2r = 22RC = (2-33)

Pulse Input The response to a pulse, for times less than the pulse width
t,, is the same as that for a step input and is given by Eq. (2-32). At the end
of the pulse the voltage is V, and the output must decrease to zero from this
value with a time constant RC, as indicated in Fig. 2-16. Note the waveform
distortion that has resulted from passing a pulse through a low-pass RC circuit.
In particular, it should be observed that the output will always extend beyond
‘the pulse width ¢,, because whatever charge has accumulated on the capacitor C
during the pulse cannot leak off instantaneously.

If it is desired to minimize the distortion, then the rise time must be small
compared with the pulse width. If f, is chosen equal to 1/¢,, then t, = 0.35¢,.
The output is as pictured in Fig. 2-17, which for many applications is a reason-
able reproduction of the input. We often use the rule of thumb that a pulse

v __
09V
:
U ! Fig. 2-17 Pulse response for the case
E Yo fo =1/t
0.1V - i
0 o _! Z
] l<— 0356, ~¢,
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shape will be preserved if the 3-dB frequency is approximately equal to the recip-
rocal of the pulse width. Thus, to pass a 0.5-usec pulse reasonably well requires
a circuit with an upper 3-dB frequency of the order of 2 MHz.

Square-wave Input Consider a periodic waveform whose instantaneous
value is constant at V’ with respect to ground for a time T'; and then
changes abruptly to V" for a time T, the remainder of the cycle, as indicated
in Fig. 2-18a. As we have already observed above, a reasonable reproduction
of the input is obtained if the rise time ¢, is small compared with the pulse
width. The steady-state response, in this case, is indicated in Fig. 2-18b.

If the time constant RC is comparable with the period of the input square
wave, the output will have the appearance shown in Fig. 2-18c. The equation
of the rising portion is determined by the fact that it must be an exponential

(@)
t
®)
t
()]
t
o 1 o 1
L v A
i 7 s A S My
S (S S SR B —

Fig. 2-18 (a) Square-wave input; (b-d) output of the low-pass RC
circuit. The time constant is smallest for (b) and largest for (d).
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of time constant RC and that the voltage would rise to the steady-state value
V' if the input remained at V. If V, is the initial value of the output voltage,
then from Eq. (2-3),

vor= V' + (V) — V')e¥BC (2-34)
Similarly, the equation for the falling portion is
Vor = V' + (Vo — V") G-TOIRC (2-35)

If we set v,1 = Veatt = Trand ve = Vyat t = Ty + T, the two resulting
equations can be solved for the two unknowns V, and V..

If the time constant is very large compared with the period of the input
square wave, the output consists of exponential sections which are essentially
linear, as indicated in Fig. 2-18d.

Since the average voltage across R is zero (see the discussion on page 32),
then the d-¢ voltage at the output is the same as that of the input. This
average value is indicated as V.. in all the waveforms of Fig. 2-18.

Consider a symmetrical square wave with zero average value, so that
Ti=Ty=T/2and V' = —V'" = V/2. For this case Egs. (2-34) and (2-35)
indicate that V, = —V,, and we find that

Ver—1 V

Vz = § m = E tanh z (2'36)

where T is the period of the square wave and z = T/4RC.

2-6 THE LOW-PASS RC CIRCUIT (EXPONENTIAL
AND RAMP INPUTS)

The response of the low-pass RC circuit to an input exponential waveform or
to an input voltage which increases linearly with time is now to be considered,

Exponential Input  For an input of the form in Eq. (2-16),
v, = V({1 — ¢t \

the voltage across the resistor is given by Eq. (2-19) for n » 1. Hence, the
voltage output across the capacitor is the difference between Eq. (2-16) and
Eq. (2-19). Performing this subtraction, if n » 1,

E’ = ~T —zn

Felt g — e (2-37)
and if n = 1,

Lol =1+ 2)es (2-38)

<
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Fig. 2-19 Response of two isolated cascaded low-pass RC
networks to a step input.

The parameters x and = are defined by = = t/r and n = RC/r. Equations
(2-37) and (2-38) give the response when an exponential of rise time ¢,, (= 2.2r)
is applied to a circuit of time constant RC (rise time ¢, = 2.2RC). The
response, which has a rise time ¢,, is plotted in Fig. 2-19 for various values of
n = RC/r = l,2/t,;. An identical response results when a step is applied to a
cascade of two circuits of rise times ¢,1 and ¢,,, assuming that the second circuit
does not load the first. Note, from Fig. 2-19, that, as n increases, a progres-
sively longer time (called the delay tme) is required for the response to attain
50 percent of its final value.

If two stages whose individual rise times are f,; and ¢,», respectively, are
cascaded and if the resultant rise time is ¢,, then Fig. 2-20 is a plot of ¢,/t.,

Fig. 2-20 Relative rise time of two 16
isolated cascaded low-pass RC

networks. The ordinate is the rise 14
time relative to n = 0 or to {,. = 0.
(if t,» = 0, then 1/n = = and

tr/trl = 1-)

12

10
o
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]
[]
b

&



48 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 2-6

versus t,1/t.s = 1/n. An excellent empirical relationship among the rise times
is

t, = 1.05 V12 + f,2? (2-39)
or

;L = 1.05v1 + n? (2-40)

rl

The ratio ¢/t as given in Eq. (2-40) differs from the exact ratio as plotted
in Fig. 2-20 by not more than 5 percent.

As an example of the usefulness of Fig. 2-20 consider that a cathode-ray
oscilloscope of rise time ¢, is being used to observe and measure the rise time
¢t of an input waveform. (We assume, for simplicity, that an oscilloscope
may be represented by a single resistance-capacitance network.) From
Fig. 2-20 we see that if ¢,, = t,1 the observed rise time is 53 percent longer than
the rise time of the input waveform. On the other hand, if ¢,; is less than 3t
the observed rise time differs from the input-signal rise time by less than
10 percent. Hence an oscilloscope used to make a rise-time measurement
should have a bandpass at least three times the bandpass of the circuit under
test.

Ramp Input For an input of the form »; = of, the voltage v across the
resistor is given by Eq. (2-22). The voltage across the capacitor is »; — vp or

v = a(t — RC) + aRCeHEC (2-41)
If it is desired to transmit the ramp with little distortion, then a small time
constant must be used relative to the total ramp time 7. The output is given
in Fig. 2-21a, where it is seen that the output follows the input but is delayed

by one time constant RC from the input (except near the origin where there is
distortion). The transmission error e, is defined as the difference between

aRC

v;=at

RC

Y ISR, W
<
Y RN W

(a) ()

Fig. 2-21 Response of a low-pass RC circvit to a ramp
voltage. (a) RC/T < 1; (b) RC/T> 1.
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input and output divided by the input at ¢ = T. For RC/T < 1, we find

RC 1
“~ T = ST (2-42)
where f; is the upper 3-dB frequency. For example, if we desire to pass a
2-msec sweep with less than 0.1 percent error, the above equation yields

f2 > 80 kHz and RC < 2 usec

If the time constant is large compared with the sweep duration, RC/T > 1,
the output is very distorted, as it appears in Fig. 2-21b. By expanding the
exponential in Eq. (2-41) in a power series in ¢{/RC, we find

at?

Yo = -2—E—C; (2-43)

A quadratic response is obtained for a linear input, and hence the circuit acts
as an integrator.

2-7 THE LOW-PASS RC CIRCUIT AS AN INTEGRATOR

If, in Fig. 2-14, the time constant is very large in comparison with the time
required for the input signal to make an appreciable change, the circuit is called
an integrator. This name arises from the fact that under these circumstances
the voltage drop across C will be very small in comparison to the drop across R
and we may consider that the total input »; appears across B. Then the cur-
rent is v;/ R and the output signal across C is

1. 1
% =G / idt = 7o | ¥ dt (2-44)

Hence the output is proportional to the integral of the input.

If v; = of, the result is «f?/2RC, as given by Eq. (2-43). As time increases,
the drop across C' will not remain negligible compared with that across R and
the output will not remain the integral of the input. As a matter of fact,
Fig. 2-21a shows that the output will change from a quadratic to a linear
function of time.

The integral of a constant is a linear function, and this agrees with the
curves of Fig. 2-18d which correspond to RC/T >> 1. As the value of RC/T
decreases, the departure from true integration increases, as indicated in Fig.
2-18¢ and b.

These examples show that the integrator must be used cautiously. We
can obtain a criterion for good integration in terms of steady-state analysis by
proceeding as in Sec. 2-3. If we define satisfactory integration as meaning
that an input sinusoid has been shifted at least 89.4° (instead of the true value
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of 90°), then it is necessary that
RC > 15T

where T is the period of the sine wave. ,

Since the output is a small fraction of the input (because of the factor
1/RC), amplification may be necessary. For the reasons given in Sec. 2-3,
an operational amplifier may possibly be used to advantage.

Integrators are almost invariably preferred over differentiators in analog-
computer applications for the following reasons. Since the gain of an inte-
grator decreases with frequency whereas the gain of a differentiator increases
nominally linearly with frequency, it is easier to stabilize the former than the
latter with respect to spurious oscillations. As a result of its limited bandwidth
an integrator is less sensitive to noise voltages than a differentiator. Further,
if the input waveform changes very rapidly, the amplifier of a differentiator
may overload. Finally, as a matter of practice, it is more convenient to
introduce initial conditions in an integrator.

2-8 ATTENUATORS

We consider now the simple resistance attenuator which is used to reduce the
amplitude of a signal waveform. We shall find the conditions under which it is
possible to ensure no distortion even if shunt capacitance is taken into consider-
ation. Also, we shall investigate the types of response which are obtained
with a step voltage input if the circuit is improperly adjusted.

The simple resistor combination of Fig. 2-22a would multiply the input
signal by the ratio @ = R,/(R, + R,) independently of the frequency, were
it not for the inevitable stray capacitance C» which shunts R;. The capaci-
tance C; may be, for example, the input capacitance of a stage of amplification.
Using Thévenin’s theorem, the circuit in Fig. 2-22a¢ may be replaced by its
_ equivalent in Fig. 2-22b, in which R is equal to the parallel combination of R,
and R.. We ordinarily want both B, and R, to be large so that the nominal
input impedance of the attenuator may be large enough to prevent loading
down the input signal. If, say,

Ri=R.=1M and Cs = 15 pF

then the rise time in Fig. 2-22bis2.2 X 0.5 X 15 usec = 16.5 usec. Solarge a
rise time is ordinarily entirely unacceptable.

The attenuator may be compensated, so that its attenuation is once again
independent of the frequency, by shunting R, by a capacitance C,, as indi-
cated in Fig. 2-22c. The circuit has been redrawn in Fig. 2-22d to suggest
that the two resistors and the two capacitors may be viewed as the four arms
of a bridge. If R.Cy = R,C,, the bridge will be balanced, and no current
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Fig. 2-22 An attenuator. (a) Actual circuit; (b) equivalent circuit; (c)
compensated attenuator; (d) compensated attenuator redrawn as a bridge.

will flow in the branch connecting the point X to the point ¥. For the purpose

of computing the output, the branch X-¥ may be omitted and the output is

again equal to av; independently of the frequency. In practice, C; will ordi- -
narily have to be made adjustable, and the final adjustment for compensation is

made experimentally by the method of square-wave testing. This procedure

is necessary because the compensation is critically dependent on the condition

R.Cy = R,C, being satisfied precisely.

Let us consider the appearance of the output signal for a step-voltage
input of magnitude V, if the compensation is incorrect. Inasmuch as the
input changes abruptly by V at { = 0 then the voltages across C; and C»
must also change discontinuously. On page 29 we demonstrated that the
voltage across a capacitor cannot change instantaneously if the current remains
finite. Hence, we are led to the conclusion that an impulsive current must
flow in the circuit of Fig. 2-22¢. An infinite current exists at ¢t = 0 for an

infinitesimal time, so that a finite charge ¢ = [)Of 1 dt is delivered to each
capacitor. At ¢ = 04, Kirchhoff’s voltage law yields

_ 4, 49 _(C:+Cyg
V = C, + c, ——CICE (2-45)

or the output voltage at t = 0+ is

_a__0G 3
wot) =& =g ” (2-46)
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The initial output voltage is determined by the capacitors because they
behave like short circuits for an instantaneous change. The final output
voltage is determined by the resistors (because a capacitor acts as an open
cireuit under steady-state conditions for an applied d-c voltage). Hence,

R,

() =
Looking back from the output terminals (with the input short-circuited)

we see a resistor E = R R./(Ry + R,) in parallel with ¢ = C, + C;. Hence,
the decay of the output from initial to final value takes place exponentially
with a time constant r = RC. The responses of an attenuator for C, equal to,
greater than, and less than C.R.»/R, are indicated in Fig. 2-23. Note that
perfect compensation is obtained if v,(0+) = v,( ) or from Egs. (2-46) and (2-47)

¢ ,_ R
Cl+C2 R1+R2

14

This equation is equivalent to
RiC: = R:C, , (2-48)

which is the balanced-bridge condition obtained above for perfect compensa-
tion. It is also interesting to note that the extreme values of »,(0+) are 0
for C; = O0and Vfor C, = .

In practice we certainly cannot obtain infinite current. The reason we are
led to the physically impossible impulsive response in the above analysis is
that we have implicitly assumed a generator with zero source impedance. We
shall now remove this restriction and show that even though the attenuator

\Output v, [ Perfect compensation
(0 +) K Perfec':t . / Output v,
compensation —aV T_

Uo (==) o(==)=aV
v,(0+)

(a) (®)

Fig.2-23 Response of an attenvator fo astepinput. ForCy = C.R:/R, =C,
the compensation is perfect and the output is a step of magnitude aV =
R.V/(R, + R»). (a) Overcompensation, C1 > C,; (b) undercompensation,
C, < C,.
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(]
Fig. 2-24 (a) Compensated attenuator including impedance of source R,;
(b) equivalent circuit: v: = (B + R)V/(R: + R: + R.).

is compensated, the ideal step response can no longer be obtained. Neverthe-
less, an improvement in rise time does result if a compensated attenuator is
used. For example, if the output is one-tenth the input, then the rise time
of the output using the attenuator is one-tenth what it would be without the
attenuator.

The compensated attenuator will reproduce faithfully the signal which
appears at its input terminals. However, if the output impedance of the
generator driving the attenuator is not zero, the signal will be distorted right
at the input to the attenuator. This situation is illustrated in Fig. 2-24aq, in
which a generator of a step voltage V and of source resistance R, is connected
to the attenuator. Since, as was noted earlier, the lead which joins point X
to point ¥ may be open-circuited, the circuit in Fig. 2-24a may be redrawn
as in Fig. 2-24b. If R, < R, + R,, as is usually the case, the input to the
attenuator will be an exponential of time constant R,C’, in which €’ is the
capacitance of the series combination of ¢y and C; or ¢! = C,C2/(Cy + C5).
It is this exponential waveform rather than the step which the attenuator will
transmit faithfully.

If the generator terminals were connected to the terminals to which
the attenuator output is connected, the generator would see a capacitance C’s.
In this case the waveform at these terminals would be an exponential with time
constant r = R,Cs. When the attenuator is used, the time constant is
v = R,C’. Since 7'/r = (¢’'/C; = C1/(C1+ C3) = a, an improvement in
waveform results. For example, if the attenuation is equal to 10 (a = %), then
the rise time of the waveform will have been divided by a factor of 10. If
we are able to afford a loss of signal level, this reduction of input capacitance
may be used to advantage.

As an example of such an application, consider the problem associated
with connecting the input terminals of an oscilloscope to a signal point in a
circuit. If the point at which the signal is available is some distance from the
oscilloscope terminals, and particularly if the signal appears at a high imped-
ance level, we shall want to use shielded cable to connect the signal to the
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Access hole to Oscilloscope
Insulator 'Kd]ustable capacitor )nel
To waveform I 7 §Cl l To scope
to be AAYAY input
observed R, Shielded cab—le/‘ circuit
(coaxial) T~C; <R,
Metal shield L.

Fig. 2-25 A cathode-ray-oscilloscope probe. (Not drawn to scale: the
metal shield encasing R, and C. is a few inches long, whereas the coaxial
cable is a few feet long.)

oscilloscope. The shielding is necessary in this case to isolate the input lead
from stray fields such as those of the ever-present power line. The capacitance
seen looking into several feet of cable may be as high as 100 to 150 pF. This
combination of high input capacitance together with the high output imped-
ance (say, resistive) of the signal source will make it impossible to make
faithful observations of fast waveforms. A ‘“probe” assembly which permits
the use of shielded cable and still keeps the capacitance low is indicated in
Fig. 2-25. Typically, the attenuation introduced through use of the probe
assembly is 10 or 20 and the input capacitance to the probe assembly is about
20 or 10 pF, respectively. There are also units commercially available at
present which consist, of a probe assembly with an attenuation of 100 followed
by an amplifier of gain 100. The overall gain is 1, but the probe input capaci-
tance may be as little as 2 or 3 pF.

The problem of providing continuously variable attenuation is not so
easily solved. In this case the resistors R, and R. must be replaced by a
“potentiometer,” and since the required compensating capacitance depends on
the setting of the attenuator, the only practicable thing to do is to leave the
attenuator uncompensated. The bandpass is then a minimum when the
potentiometer is set at its electrical midpoint and is given by

(f2)min = 1%6 (2-49)

in which R is the total potentiometer resistance and C the total shunt capaci-
tance between the potentiometer arm and ground. If, say, C = 20 pF and
(f)min is to be 10 MHz, R = 3 K. The conflict between the necessary high
potentiometer resistance to avoid loading down the signal source and the
equally necessary low potentiometer resistance to maintain the bandpass
suggests the use of a cathode follower with the potentiometer in the cathode
circuit or an emitter follower with the potentiometer in the emitter leg.
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2-9 RL CIRCUITS

Suppose the capacitor C and resistor R of the preceding sections in this chapter
are replaced by a resistor B’ and an inductor L, respectively. Then if the time
constant L/R’ equals the time constant RC, all the preceding results remain
unchanged.

The inductor is seldom used if a large time constant is called for because
a large value of inductance can be obtained only with an iron-core inductor
which is physically large, heavy, and expensive relative to the cost of a capaci-
tor for a similar application. Such an inductor will be shunted with a large
amount of stray distributed capacitance. Furthermore, the nonlinear proper-
ties of the iron cause distortion, which may be undesirable. If it is required
to pass a very low frequency through a circuit in which L is a shunt element,
then the inductor may become prohibitively large. For example, with a
lower 3-dB frequency of 10 Hz and for R’ = 100 K, the inductance required is
1,600 H. Of course, in circuits where a small value of R’ is tolerable, then a
more reasonable value of inductance may be used.

The small, inexpensive, air-core inductor is used in low-time-constant
applications. Figure 2-26a shows how a square wave may be converted into
pulses by means of the peaking coil L. It is assumed that the bias voltage
and the magnitude of the input are such that the tube operates linearly. The
equivalent circuit is as indicated in Fig. 2-26b. The open-circuit voltage gain is
the amplification factor x of the tube and the output impedance R is the plate
resistance r, of the triode.

Since the instantaneous voltage L di/dt across an inductor cannot be
infinite, the current through an inductor cannot change discontinuously. Hence,
an inductor acts as an open circuit at the time of an abrupt change in voltage.
For a vacuum tube, with the output open-circuited, the change in plate voltage
equals u times the grid-voltage change.. Hence, as indicated in Fig. 2-27, the
peak of the output pulse (measured with respect to the quiescent voltage Vrp)
equals uV, where V is the jump in voltage of the input signal (the peak-to-peak
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Fig. 2-26 (a) Peaking circuit using an inductor;
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(b) linear equivalent circuit.
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voltage of the square wave). The output voltage falls or rises exponentially
with a time constant L/R toward Vpp.

A peaking coil may also be used in the collector circuit of a transis-
tor to obtain pulses. If the base input is a square wave of current whose
peak-to-peak value is 7, then the output voltage has the same waveform
as in Fig. 2-27b. The peak voltage is now hrl/h, and the time constant
is he.L, assuming that the transistor can be represented by its low-frequency
hybrid-paraineter model of Fig. 1-3b.

The rate-of-rise amplifier of Fig. 2-11 often uses a peaking inductor in the
output cireuit instead of the R,C; differentiating combination shown.

The situation where the square wave is large enough to cut the triode off,
so that the circuit acts in a nonlinear manner, is considered in Sec. 8-10, where
it will be found that the negative peaks are of smaller magnitude than the
positive ones.

2-10 RLC CIRCUITS

In Fig. 2-26 there should be indicated a capacitor C' across the output to
include the effect of coil winding capacitance, output capacitance, and stray
wiring capacitance to ground. This capacitance will modify the results of
Sec. 2-9, as we shall now show.

Figure 2-28 shows a signal v; applied through a resistor R to a parallel LC
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circuit. From the differential equations for this network, and assuming a
solution in the form ¢*, we find for the roots s of the characteristic equation?
(or for the poles of the transfer function)

1 1 \? 1)
) i [(2RC) - ITC] (2-50)
Let us introduce the damping constant k and the resonant or undamped period
T., defined by

_ 1 L _ =
k=sp \E, and T, = 2rLC (2-51)

in which case Eq. (2-50) can be put in the form
o= — -2%,'5 + j-2Tl: 1 — k2 (2-52)

If k = 0, we see that the roots are purely imaginary, +;2r/7T,, and hence
that the response is an undamped sinusoid of period T,. If k = 1, the two
roots are equal, corresponding to the critically damped case. If k > 1, there
are no oscillations in the output, and the response is said to be overdamped.
If & < 1, the output will be a sinusoid whose amplitude decays with time, and
the response is said to be underdamped.

The damping factor is inversely proportional to the @ of the circuit con-
sisting of a parallel combination of R, L, and C. Thus

_ _2«RC __RC _, [C 1
Q=woRC—‘T—o——_—-—RJ;—ﬁ

If the input to Fig. 2-28 is a step voltage V and if the initial current
through the inductor is zero and the initial vollage across the capacitor is zero, the
response is given by the following equations, in which z = ¢/T,:

Critical Damping, £ = 1 For the case of critical damping, we have

;’_; = dggetrs (2-53)

If use is made of Egs. (2-51), with k¥ = 1, Eq. (2-53) can be put in the equiv-
alent form

v _ 4Rt o
= == e € 2—54
7= T ¢ (2-54)
+ R T+
Fig. 2-28 A signal »; is applied through a v L =C Y%

resistor R to a parallel LC circvit. - -
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Fig. 2-29 Response of the circuit of Fig. 2-28 for the critically
domped and overdamped coses for a fixed value of R and
.L. The parameter k is related to the capacitance C

by k = (1/2R) v/L/C.

Overdamped, k > 1 In the overdamped case, it is convenient to rewrite
Eq. (2-52) as
2rk | 2k 1
T ET AN TR
If we apply the binomial expansion to the radical and assume that k is large
enough so that 4k?>>1, we find for s the approximate values —x/T,k and
—4xk/T, Subject to this restriction on the size of k, the response is

8§ =

% ~ TTlk — irka (2-55)
The first term is less than 1 everywhere except at x = 0. The second term
is equal to the first term raised to the power 4k%. Hence, the second term is
negligible compared with the first except near the origin. Thus Eq. (2-55)
can be approximated by

Yo o emalk = mttT, — —RHL (2-56)

in which we have made use of Eqs. (2-51). This result shows that the response
approaches that for the zero-capacitance case (Fig. 2-26) as k becomes much
greater than unity. Physically, this is just what we should expect, because
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Egs. (2-51) show that a large value of k means a small value of C for a given
value of B and L.

Since the voltage across the capacitor cannot change instantaneously,
Eq. (2-56) is in error at ¢ = 0 and the more correct equation (2-55) must be
used near the origin. The outputs for k = 3 and & = 1 are compared with
that for k = « (C = 0) in Fig. 2-29.

Underdamped, k < 1 In the underdamped case, we have

% = '\/12—10—15 ez 5in 2r /1 — Kz (2-57)
where, as above, z = t/T,. The damped period is seen to be To/(1 — k2t
and hence is larger than the free period T..

Assume an amplifier with a coil in the output circuit so that L and C are
fixed, but also assume that the damping can be varied by adjusting E. The
response for several values of k is given in Fig. 2-30. The curves for k less

v
10 Fmoe (B=0)
09
08
k=1
o7 O\ \
[ \‘L (critical damping)
06 ]\ A
0.6\\ \
o5 H— N
1'0.4\\\ AN
o4 [fH ;‘\\ N
1 k=3
03 : \ \ \
| /02 “\ \ \
0.2 3 \\
AN ~
01 a\ \ k=02 T~ ~—]
\\\ N0 I
) e —
N
~01 ~
\V
—02g 05 1.0 15 20 25 3.0

x=

Sl

Fig. 2-30 Response of the circuit of Fig. 2-28 for fixed L and C. The
parameter k is related to the resistance R by k = (1/2R) \/L/C.
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Fig. 2-31 (o) The circuit of Fig. 2-28 modified by the inclusion of a damping
resistor R,; (b) the equivalent circuit.
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than unity are given by Eq. (2-57). The curve for k£ = 1 is plotted from
Eq. (2-53) and the curve for k = 3 is given by Eq. (2-55). Fork = «», R =0
and the output equals the input as indicated. From Fig. 2-28 we note that
the smaller the value of R the larger must be the source current. Note that
if the damping factor k is adjusted to be somewhat less than unity an excellent
peaking circuit results.

For a fixed L and C the damping may be increased by shunting the LC
combination with an additional resistor, as indicated in Fig. 2-3la. If the
circuit to the left of points P and N in this figure is replaced by its Thévenin’s
equivalent, the result is as in Fig. 2-315. The resistor R represents B, and R,
in parallel, and a is the amplification factor. Specifically,

RiR, R,
R, + R, R, + R,

Comparing Fig. 2-31b with Fig. 2-28, we see that the results obtained for the
latter circuit are also valid for the former, provided that we multiply the output
by the factor a.

R= and a= (2-58)

2-n RINGING CIRCUIT

In Sec. 2-10 we show that to obtain a pulse from a step voltage (peaking) the
circuit should operate in the neighborhood of critical damping. In this
section we are interested in having as nearly undamped oscillations as possible.
Such a circuit is called a ringing circuit. If k is small, the circuit will ring for
many cycles. It is often of interest to know the value required of the @ of a
circuit which is to ring for a given number N of cycles before the amplitude
decreases to 1/e of its initial value. From Eq. (2-57) we see that this decre-
ment results when 2xkx = 1. Sincez = t/T, = NT,/T, = N and k = 1/2Q,
we have

Q=N (2-59)

Thus a circuit with @ = 12 will ring for @/r = 4 cycles before the amplitude
of the oscillation decreases to 37 percent of its initial value.
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Fig. 2-32 Ringing circuit with capacitor ini- Tq’
tially uncharged and with an initial inductor IT L -=C R Uy
‘current I. l_

If the parallel LC combination is in series with a tube or transistor and
if the active device is cut off by means of a step voltage, then R, of Fig. 2-3la is
effectively infinite. The equivalent circuit is given in Fig. 2-32. For maxi-
mum ringing, no shunting resistor is added and R represents an effective
resistor to account for the losses in the coil. The current I is the quiescent
current in the inductor before the step voltage is applied.

Outwardly, the circuits of Figs. 2-28 and 2-32 appear quite different.
When, however, the input to Fig. 2-28 is taken to be a step of amplitude V,
the output of the two circuits can be shown to be identical, provided only
that the initial inductor current I of Fig. 2-32 is taken to be V/R. The two
circuits have the same characteristic roots given in Eq. (2-50). And, under
the circumstance that V = IR, the conditions that apply in both cases to the
output voltage are that at ¢t = 0, v, = 0 and dv,/dt = I/C. Hence, provided
that we make the replacement of V for IR, all the equations from (2-53) to
(2-57) apply equally well to the circuit of Fig. 2-32.

If the damping is small enough the response approaches an undamped
sine wave. We can easily find the amplitude of oscillation if we remember that
the initial magnetic energy stored in the inductor is converted into electrie
energy in the capacitor at the end of one-quarter cycle. Thus

3L =3CV%, or  Vme=1 \/% (2-60)

A ringing circuit may be used to generate a sequence of pulses regularly
spaced in time. We shall see later how to obtain a pulse each time a sine wave
crosses the zero axis in the positive direction. The sequence starts when the
device delivering the current I is cut off. These pulses find application in
many timing operations.

If a pulse is applied to an active device which feeds a ringing L(' combina-
tion, then at the end of the pulse there may be a voltage V, across C as well as
a current I through L. The possible responses of the circuit at the end of the
pulse subject to these initial conditions are discussed in Appendix A.

212 MEASUREMENT OF INDUCTANCE AND CAPACITANCE
THROUGH CIRCUIT STEP RESPONSE

If a generator of output impedance R furnishes the voltage v = V(1 — ¢*7)
to an inductor of inductance L, the voltage v, across the inductor is given
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Fig. 2-33 A method for measuring the stray inductance L associated with a
capacitance C. (a) The circuit; (b) the output waveform.

precisely by Eq. (2-19), in whichn = (L/R)/r. The waveform of v is a pulse,
as shown in Fig. 2-9. The peak value of the pulse vmax is caleulated (Prob.
2-49) to be

Umax = Vp/0-m (2-61)

If n <1 then vmax = Vn = VL/R7 and the peak value is proportional to
the value of L. Accordingly, if the pulse is observed on a scope, an unknown
inductance can be determined provided that the scope has first been calibrated
by noting the pulse amplitude corresponding to a known value of inductance.
It is to be noted that the pulse amplitude varies inversely with the time
constant » with which the generator waveform rises. .Therefore this method
of inductance measurement may be extended to the determination of smaller
values of inductance as r decreases. As an example, consider that V = 10V,
R = 50 2, and 7 = 1 nsec (corresponding to a generator having a rise time of
2.2 nsec). Then an inductance of only L = 2.5 nH (n = 0.05) will give rise
to a pulse of 0.5 V amplitude.

This method of inductance determination is well suited to the measure-
ment?® of stray or incidental inductance associated with a circuit component
or device. As an example, in Fig. 2-33a an arrangement is shown by means
of which we may determine the small inductance that is introduced into a
circuit by a capacitor C. This inductance is often referred to as the “lead
inductance” of the capacitor and has been represented in Fig. 2-33¢ by L. If
the time constant RC >> r and if also RC > L/R, the output waveform v, will
appear as in Fig. 2-33b, that is, a pulse superimposed on a linear rise. The
value of L is determined from v,.x, as noted in Fig. 2-33b.

The measurement procedure indicated in Fig. 2-33 requires that all the
generator current flow through L. Such would not be the case if the connec-
tion of the scope bridged a capacitance €’ across the output terminals. Of
course we might simply require that RC' < L/R. But for L = 2.5 nH and
R = 50 @ we would require ¢’ < 1 pF, say ¢’ = 0.1 pF. Scopes with con-
ventional input connections have input capacitances of the order of 10 pF
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and would be completely unsuitable. Instead, matched delay-line inputs are
required, as is discussed in the next chapter.

These measurement procedures may be adapted to measure not only
stray inductance but also small incidental capacitances (Prob. 2-51).
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PULSE TRANSFORMERS
AND DELAY LINES

This chapter continues the linear wave-shaping studies of the pre-
ceding chapter. First we shall consider what happens to a step or
pulse waveform when it is transmitted through a transformer. In ,
order to make such an analysis it is necessary to obtain a model or
equivalent circuit of the pulse transformer. The distortions present
in the output can then be calculated from this equivalent circuit.

The latter part of the chapter deals with transmission lines. A
study is made of the waveshapes which are obtained under various
terminating impedances and input excitations (a step, pulse, etc.).

3-1 PULSE-TRANSFORMER APPLICATIONS

Iron-cored transformers are used in the transmission and shaping of
pulses which range in width from a fraction of a nanosecond to about
25 usec. Among the extensive applications of pulse transformers are
the following:

1. To change the amplitude and impedance level of a pulse

2. To invert the polarity of a pulse; also to provide, with the
aid of a center-tapped winding, equal positive and negative pulses
simultaneously

3. To produce a pulse in a circuit having negligible d-c resistance

4. To effect ““d-c isolation” between a source and a load; in other
words, to produce a pulse in a winding whose d-c voltage level may be
arbitrarily selected

5. To couple between stages of pulse amplifiers

6. To differentiate a pulse

7. To act as a coupling element in certain pulse-generating circuits
such as the blocking oscillator and the multiar (discussed in Chap. 16)

64



Sec. 3-2 PULSE TRANSFORMERS AND DELAY LINES / 65

In many instances the functions listed above may be accomplished as
well or better by transistor or vacuum-tube circuitry. But the transformer,
being a completely passive circuit element, has none of the instability normally
associated with tubes and transistors and in addition avoids the inconvenience
of supplying the voltages required for the operation of these active devices.

3-2 TRANSFORMER MODELS!?

The schematic diagram for a transformer is indicated in Fig. 3-1. - The pri-
mary inductance is L,, the secondary inductance is L, and the mutual induct-
ance is M. The load resistance is Bz. In this section, we shall ignore the
primary, secondary, and source resistances and also all capacitances. We
shall also neglect core loss and the nonlinearity of the magnetic circuit. These
parameters, however, will be added later to the equivalent circuit. The
coefficient of coupling K between primary and secondary is defined by

- M

VL,
Under the circumstances specified above, an ideal transformer is one for which
L, is infinite and K = 1. In this case the output v, is an exact replica of the

input v; and the transformation ratio n is independent of the load. For the
ideal transformer,

_G_ [T N ]
s —\/LP—NP " @ b

where i, is the primary current, , is the secondary current, N, is the primary
number of turns, and N, is the secondary number of turns.

An iron-cored transformer, such as a pulse transformer, behaves as a
reasonable approximation to a perfect transformer when used in connection
with the fast waveforms it is intended to handle. Insuch a case it is advantageous
to replace the actual transformer by an ideal transformer together with
additional circuit components which represent the departure of the real
transformer from perfection. The reasons this procedure is useful and
effective appear in Secs. 3-4 and 3-5. There it is shown how to determine
the magnitudes of the circuit components which give rise to the departure of
the transformer from ideal operation. These components may be caleulated

M
[
+
Fig. 3-1 Schematic diagram of a trans- + ° L4 T
former including source and load. 9 G R, %
2 L, YLs L
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' Ideal '
(@) (b)

Fig. 3-2 (a) A circuit which is equivalent to that of Fig. 3-1, in which

an ideal transformer T having a voltage step-up ratio 1/a is introduced.
(b) The same circuit with the transformer T eliminated by reflecting the
secondary load into the primary.

from the geometry and mechanical construction of the transformer or measured
experimentally. Alternatively, if a transformer response is specified, we may
physically construct a transformer to meet the requirements.

We shall now show that the circuits of Fig. 3-2 are equivalent to the circuit
of Fig. 3-1. Figure 3-2a includes an ideal transformer in cascade with a
configuration of inductors which represent the departure of the actual trans-
former from perfection. The transformation ratio of the ideal transformer T
is 1/a = secondary voltage/primary voltage, where « is a number which will
be specified later. In Fig. 3-2 the load current has been reflected into the
primary as 7,/a. The load resistance R, also has been reflected to the primary -
side in Fig. 3-2b, where it appears as a resistance «?R;. We shall now find the
values of the parameters o4, o2, and L in terms of «, L,, L., and M.

The network of Fig. 3-2b is to be equivalent to the original transformer
circuit in the sense that both are to draw the same current i, from the source v;
and both are to furnish the same current 4, to the load R;. In the circuit of
Fig. 3-1 we may write the mesh equations '

s, di,

Uy = Lp 'E? - M E? (3—2(1)
N Y
0= —-M T + L, i + i, R, (3-2b)
The corresponding equations for the circuit of Fig. 3-2b are
d, d (1,
w=(+L)P-Ls (g) (3-3a)
0=~L% 4 4 1) 2(%) 4 (- (3-3b)
dt di \a a

If Eq. (3-3b) is divided by « and then if Eqgs. (3-2) and (3-3) are compared,
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—
0y=L(1-K) | 03=L,(1-K) T*
KL, a’R L %
(a) t
Fig. 3- ir-
ig. 3-3 The forms of the cir TR

cvit of Fig. 3-2b for three par- . 0,=1, (Lz— ) 1+
ticular values of a. X

(@ a = V'L,/Li; S
(b) a = (1/K) V'Ly/Li; (®) l'
(¢) «a = KVL,/L,.

o= L(1-K?) T+

KL, o’R; av,
(© i
we find them to be identical provided that
L L
Ly=ai+L M== L=2% (3-4)
a [+3
" or

L =aM g1 =L, — aM oy = atL, — aM (3-5)

We are at liberty to select a. The circuits which result, together with
the corresponding component values, are shown in Fig. 3-3a, b, and ¢ for the
choices a = \/L,/L,, « = (1/K) \/L,/L,, and « = K A/L,/L,. The results
shown are calculated directly from Eq. (3-5) combined with the definition
of the coefficient of coupling K = M /~/L,L,. There are aninfinity of allowable
values which may be selected for a, but the three indicated in Fig. 3-3 are
those most commonly employed. Note that in Fig. 3-3a, o1 = o2; in Fig. 3-3b,
o1 = 0; and in Fig. 3-3¢, 02 = O.

In a well-constructed pulse transformer the coefficient of coupling K
differs from unity by less than 1 percent. Hence

| —K?= (1 — K)1 + K) ~2( — K)

And for such a transformer (K = 1), each of the circuits of Fig. 3-3 gives
very nearly the same value for the total series inductance and the total shunt
inductance. The total series inductance, called the leakage inductance, equals
or has the approximate value

o =~ 2L,(1 — K) (3-6)
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and the shunt inductance, called the magnetizing inductance, equals or has the
approximate value

L=~L, (3-7)

Further, the transformation ratio 1/« of the ideal transformer equals or has

the approximate value 1/a =~ \/L,/L,. Since from Eq. (3-1) \/L,/L, is

very nearly equal to the ratio n of the number of secondary turns to primary

turns, we also have that

‘ 1

‘—x' =n (3—8)
We shall find the model of Fig. 3-3¢ most useful for studying the trans-

mission of pulses through a transformer. This circuit is incomplete because

we have neglected the capacitance and resistance associated with the device.

We now introduce these parameters.

3-3 COMPLETE EQUIVALENT CIRCUIT

A pulse transformer, like any iron-cored transformer, consists of one or more
layers of a primary winding on the core and one or more layers of a secondary
winding wound over the primary. Let us consider a very simple case in which
the primary consists of a single layer of N, turns wound in solenoidal form
and the secondary consists also of a single layer separated somewhat from the
primary but wound concentrically with it. The secondary has N, turns, and
we shall assume that primary and secondary wire sizes are different so that the
length of each winding is the same. Now consider that the transformer is
connected between a source and a load, as in Fig. 3-4. Here we have con-
nected opposite ends of the primary and secondary windings to a common
ground. Assuming that the windings are wound in the same direction on the
core, the transformer must invert the input. With respect to ground the
output is v, = —(N,/N,y)v; = —nv..

There is now a voltage nv; between the bottom ends of the windings. The
voltage decreases linearly with distance along the windings and equals v;
at the top end. As a consequence there exists an electric field in the space
between the windings, and in this space electrostatic energy is being stored.
The circuit element which stores energy electrostatically is capacitance.
Therefore we must add to the model of the transformer in Fig. 3-3¢ a capaci-

Fig. 3-4 An inverting transformer with
turns ratio n.
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Fig. 3-5 The equivalent circuit of a
transformer, including resistances
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and the total shunt capacitance C.

tance C which will give the proper electrostatic energy storage. This addition
is made in Fig. 3-5.

We have taken the transformer capacitance into account by including
a shunt capacitor C which is connected on the load side of the leakage induct-
ance. Actually the transformer capacitance is a distributed element, and no
matter what location is selected for a single lumped capacitance, the result
is an approximate equivalent circuit. A somewhat better approximation
would result if the capacitance C were split so that a part of it appeared on
the generator side and a part appeared on the load side of the leakage induct-
ance. Such a division, however, leads to an equivalent circuit whose extra
complexity is not warranted, since a single capacitor in the equivalent circuit
usually gives reasonably good agreement with experimental results. '

Having decided to use a single lumped-capacitor representation of the
distributed capacitance, we have located this capacitance at the load end of the
leakage inductance for the following reasons. First, if C were located on the
generator side, then if the generator had a nominally zero output impedance
the effect of this capacitor would disappear—a result which does not agree
with experimental findings. Second, the external shunt-loading capacitance
Cp encountered with a pulse transformer is very frequently heavier on the
output side of the leakage inductance, and this external capacitance, reflected
into the primary side as n2C., may simply be added to the transformer capaci-
tance. In Fig. 3-5 it is the total effective shunt capacitance that is represented
by C.

In Fig. 3-5 we have included as well the resistance R, which repre-
sents the sum of the primary winding resistance and the generator imped-
ance (assumed resistive). The resistance R, represents the combination
of the load resistance R and the secondary winding resistance Rj;, so that

_ R+ R
- =2

R,

Before determining the pulse response of the circuit of Fig. 3-5 we shall,
in the next two sections, learn how to calculate and measure the inductance
and capacitance parameters of a transformer.

3-4 TRANSFORMER INDUCTANCES?

From the equivalent circuit of Fig. 3-3¢ it is clear that the magnetizing induct-
ance is the inductance presented at the input terminals when the secondary vs open-
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F=-— ="~ == ———= 1
o | I Fig.3-6 A primary of N, turns is wound on o
)
N, :—E— ! magnetic core of mean magnetic path
o—J P ! length 1.
L J

- circusted. Or, more simply, the magnetizirig inductance is the primary wind-
ing inductance. Similarly the leakage inductance is the inductance presented
at the terminals of the primary when the secondary is short-circuited. These
considerations may be used to estimate the magnetizing and leakage inductance
from the transformer geometry and constructional features.

The primary inductance L, may be calculated for the simple magnetic
circuit of Fig. 3-6. If I is the mean length of the magnetic path, A the cross-
sectional area of the core, N, the number of primary turns, and x the magnetic
permeability,

_ uAN,?

L, I

(3-9)

In order to see in a typical case how the leakage inductance ¢ depends
on the geometry, consider the simple geometrical arrangement of Fig. 3-7a,
where & single-layer secondary is wound over a one-layer primary. We have
already noted that the secondary must be short-circuited in order to find o.
For this connection the output voltage is, of course, zero. Hence the net
flux in the iron is zero, and the primary and secondary ampere-turns must be
equal and oppositely directed, N,I, = N,I,. Almost all the flux appears
in the space between the coils. For simplicity, we replace the coils by current
sheets carrying the current NI, and N,I, (= N,I,), respectively. A drawing
of the concentric solenoidal windings is shown in Fig. 3-7b, and the magnetic
field intensity H between windings is also indicated. The current sheets
are the same length A\ (in the direction perpendicular to the current flow)
" as the coils are long. We locate the current sheets at the point midway
through the thickness of the wires of the coils. “The value of H in the region
between sheets is H = N,I,/A. This result for H is computed by applying
Ampére’s circuital law to the path indicated in Fig. 3-7b. The energy density
stored in the magnetic field is given by $uH? Accordingly the total energy
W stored is W = $u,H?V, where V is the volume between coils and where
we have replaced u by u,, the permeability of free space because the medium
between the coils is air. The energy may also be calculated from W = }s] »2
since this magnetic energy (with the secondary shorted) may be considered to
reside in the leakage inductance s. Equating the above two expressions for W,

t If the permesability of the iron relative to free space is wr, then p = pirtto, Where
#o = 4x X 1077 H/m is the permeability of free space.
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we obtain

o = BV _ plNsV (3-10)
IP2 x2
where all quantities are expressed in mks units. This caleulation indicates
clearly that o is due to the leakage flux, that is, the flux which links one but
not both windings. Hence, ¢ is essentially independent of the magnetic circuit
of the transformer, since the leakage flux is almost entirely in air. Note that
the ratio of magnetizing to leakage inductance L,/c = pAN?/uV1 is inde-
pendent of the number of turns and is proportional to the permeability of the
iron. One of the main reasons for using high-permeability cores in pulse
transformers is to have a large ratio of magnetizing to leakage inductance.
The leakage inductance may be measured with a @ meter or an impedance
bridge provided that the transformer secondary is shorted. Of course, the
effect of the resistance which is in series with ¢ must be taken into account.
A second method of determining ¢ is to short the secondary, shunt the
primary with a capacitance C,, and measure the resonant frequency fi. In
order to eliminate the effect of the transformer and other unknown external
capacitances which are in shunt with Ci, the above measurement is repeated
with a second capacitor C;. If the resonant frequency is now found to be f,
we can show that

f2 — it

= —=1 _J2 3-11
7= @eRINC: — 0D @-1D)
A simple procedure for measuring the resonant frequencies f; and f; is the
following: the transformer is placed in series with a tube or transistor and a
steady current is established in the primary. Then a negative step cuts off
the active device. The transformer will now ring, and the resonant period

Circuital path for s
Pﬁmary\ y - Secondary o H,_\\)CA NI,
A Air
e S
Ao o
K B B M

(@) ®)

Fig. 3-7 (a) A one-layer secondary wound directly over a one-
layer primary. A cross indicates current into the page, and a
dot indicates current out of the page. (b) A schematic view

of the windings considered as current sheets, and the magnetic-
flux density between windings.
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may be measured from the waveform, as observed on a scope. This method
also allows the simultaneous measurement of the effective losses in the trans-
former. Thus, as explained in Sec. 2-11, if the amplitude of the waveform
falls to 1/e of its initial value in N cycles, the @ of the circuit is Nx.

If the above experiments are repeated with the secondary open-circuited,
then the magnetizing inductance L, will be measured.

3-5 TRANSFORMER CAPACITANCES?

To illustrate how the transformer capacitance C in Fig. 3-5 depends on geo-

" metrical factors, we calculate C for the simple two-winding transformer repre-
sented geometrically in Fig. 3-7 whose circuit is given in Fig. 3-4. The trans-
former is inverting, and opposite ends of each winding are connected. The
traces in the plane of the paper of the two windings of Fig. 3-7 are shown in
Fig. 3-8. At the bottom of the windings where £ = 0 the voltage between
windings is nv; and at the top the voltage is v;. We assume that in between
the voltage variation is linear with distance. Therefore the voltage between
windings at a distance z is

V, = [n +@1—-mn ;] v, (3-12)

The electric field is E, = V./d. The electrostatic energy stored per cubic
meter is eE,? = $eV,2/d?, where € is the dielectric constantt of the medium
separating the two windings. If S is the mean circumference of the windings
then the element of volume is Sd dz and the total energy is

r1 V.2
W= ['55 Sdde (3-13)

If V. from Eq. (3-12) is substituted into Eq. (3-13) and the integral is evalu-

t If the dielectric constant of the medium relative to free space is e, then ¢ = e,
where ¢, = (36x X 10°)~1 F/m is the permittivity of free space.
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ated, the result is

W = %EST)‘ (n® + n + v (3-14)

The voltage across the capacitor C introduced in shunt with the magnetizing
inductance in Fig. 3-3 is approximately v; because the drop across the leakage
inductance will normally be small in comparison with »;. The energy stored
in the capacitor C is therefore Cv;2. If this energy is equated to W we find

C=@m4n+1) % (3-15)

where C, = «S\/d. If the separation d between windings is small compared
with the core thickness, then the two layers may be considered the plates
of a parallel-plate capacitor whose capacitance is Co. Note that for n = 1,
C = C..

3-6 RISE-TIME RESPONSE OF A TRANSFORMER

The circuit of Fig. 3-5 is represented by a third-order equation whose solution
would be quite involved. Furthermore, this complete solution would not
clearly indicate the physical behavior of the circuit. Hence, if the input is a
pulse, it is advantageous to divide the solution into three parts; the first gives
the response near the front edge of the pulse, the second gives the response
during the flat top, and the third gives the response after the termination of the
pulse. In this section we consider the rise-time response and in the following
two sections the remainder of the waveform is discussed.

The response near the front edge of the pulse is given by the high-fre-
quency equivalent circuit of Fig. 3-9, which is obtained from Fig. 3-5 by
neglecting the effect of L. (At high frequencies the reactance wL of L is large
compared with the parallel reactance 1/wC of C.) The magnitude of the input
step is V. Writing down the differential equations for this network and
assuming a solution in the form ¢*, we find for the roots s of the characteristic
equation (or, equivalently, for the poles of the transfer function)

(R, 1 R, 1\ _RBi+RJ
8= (% t 2R20) * [(% + 2R,C> oCRs ] (3-16)

Let us introduce the amplification factor a, the period T, and the damping

Fig. 3-9 The approximate equivalent cir-

" . . R
cuit used to calculate the rise-time response. 2

=|°€4|
| +
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constant k, defined by

= R = i (B, 1 r -
a= E TR, T = 2x(sCa) k= (a’ + R2C’> o (3-17)
in which case Eq. (3-16) can be put in the form
2 .
s=——%ki]%(1‘—k2)* (3-18)

If £ = 0, we see that the roots are purely imaginary, +j2r/T, and hence the
response is an undamped sinusoid of period 7. In order for k to approach
zero, we must have B, — 0 and R; — o, in which case T = 2r v/oC is the
free period of oscillations of the ¢C circuit. If k = 1, the two roots are equal,
corresponding to the critically damped case. If k > 1, there are no oscilla-
tions in the output, and the response is said to be overdamped. If k < 1, the
response will be a sinusoid whose amplitude decays with time, and the response
is said to be underdamped.

If we introduce the parameters z = ¢/T and y = v,/naV, the response is
given by the following:

Critical Damping, & = 1
y=1— (14 2xz)e?= (3-19)

Overdamped, k > 1

== — ﬂ_ —-n: 1k —41kz =
y=l-g "t (3-20)

If 4k® >> 1, the response may be approximated by
y =~ 1 — 7zlk (3-21)

Underdamped, & < 1
y=1-— [(1 kkz)* sin 2x(1 — k*)iz 4 cos 2x(1 — k’)*xJ e rkz (3-22)

If the derivative of Eq. (3-22) is set equal to zero, the positions z,. and
magnitudes y» of the maxima and minima are obtained. The results are

—m
2(1 — k2)}

where m is an integer. The maxima occur for odd values of m and the minima
are obtained for even values of m. By using Eq. (3-23) the waveshape of the
underdamped output may be sketched very rapidly.

These responses are plotted in Fig. 3-10 for several values of k. If the
rise time ¢, is defined as the time interval required for the output to rise from
0.1 to 0.9 of its final value, we find, from Eq. (3-19) or Fig. 3-10, that for the

Tm = and  ym =1 — (—1)me2rkon (3-23)
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Fig. 3-10 The rise-time response of a pulse transformer.
y =v,/naV and z = ¢/T.

critically damped case
t, = 0.53T = 3.35(cCa)! (3-24)

We note that in order for the output to rise rapidly, the leakage inductance
and the shunt capacitance must be kept small. The rise time may also be
reduced by reducing a, but a small value of a will result in a highly attenuated
output voltage. ' :

For many applications an overshoot in the output of 5 or 10 percent is
acceptable. In such a case we may take advantage of the fact that permitting
the overshoot will reduce the rise time. For example, if k = 0.6, the overshoot
is 9 percent (see Fig. 3-10) and ¢, = 0.27T, whereas for the critically damped
case k = 1 and ¢ = 0.537. Since the value of T is itself a function of k,
a detailed calculation must be made in each case before it is possible to state
what the rise-time improvement will be. As a simple example, however, con-
sider the situation where R, 3> Ry, so that a = 1 and T =~ 2x(¢C)? is inde-
pendent of the resistance values. Then if R is increased so that & decreases
from 1 to 0.6, the rise time will be decreased to (0.27/0.53) X 100 = 50 percent
of what it was for the critically damped case.

.Large step-up ratios are seldom used in pulse transformers, because the
gain n can be obtained only at the price of increasing the rise time by the
factor n. This conclusion is easily verified. If the step-up ratio is n, then
load and interwinding capacitances are multiplied by approximately n? [see
Eq. (3-15)]. Since the rise time ¢, varies as C! [see Eq. (3-24)], ¢, is proportional
to n. If, in order to accommodate additional secondary turns, the geometry
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is modified so that o also increases, then the rise time deteriorates even further.
Usually n < 10.

3-7 THE FLAT TOP OF THE PULSE

The response during the top of the pulse is obtained from the low-frequency
equivalent circuit of Fig, 3-11a, which is obtained from Fig. 3-5 by neglecting
the effect of the leakage inductance and shunt capacitance. (At low frequen-
cies wL is small compared with 1/wC, and ws is small compared with R..)
Applying Thévenin’s theorem, we obtain Fig. 3-11b, where a = R./(R: + R,)
and R = R.R,/(R: + Rs). The output is given by

vﬂ

S = —Rt/L -
y=to = (3-25)

For values of R{/L much less than unity, the output is approximated by

Rt
=1- A (3-26)
Hence, the top of the output pulse will be tilted downward and the percent

tilt P is given by
= % x 100% (3-27)

where £, is the pulse width. Near the beginning of the pulse there will be
superimposed upon the linear fall the response pictured in Fig. 3-10.

We have assumed that the inductance L is a constant. This assumption
is valid as long as the iron does not begin to saturate. For a ferrite core dis-
cussed in Sec. 3-10 the permeability is fairly constant for flux densities B up
to a maximum B, which is of the order of 1,500 to 5,000 G (0.15 t0 0.5 Wb/m?2).
Saturation occurs if B exceeds the above value B,,. Now

—nN % _ dB
b= N5 =aN,a% (3-28)

where N, is the number of secondary turns, ¢ is the magnetic flux, n is the

(d)
Fig. 3-11 (a) The equivalent circvit used to calculate the flat-top
response of a transformer; (b) modified by Thévenin's theorem.
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step-up ratio, N, is the number of primary turns, and A is the cross-sectional
area of the core. Assuming that the top of the pulse is flat and equals naV,
the flux density at the end of the pulse is

_ [tV _aVi,
B = o wN.A dt = N.A (3-29)
In any particular application we must be sure not to saturate the core. For
example, consider that a pulse generator having an adjustable pulse width
is applied to a transformer. The output pulse will be a reasonable reproduc-
tion of the input for small widths. When the input duration exceeds the value
of t, given by Eq. (3-29) with B = B., the output will drop rapidly. This
behavior follows from the fact that, when the iron saturates, the magnetizing
inductance drops to a very low value.

Note that it is the voli-second product which determines the maximum flux
density. For example, if a given transformer saturates at a pulse width of
1 usec and an amplitude of 10 V, then doubling the pulse height will cause
saturation to take place in half the time, or at 0.5 usec.

3-8 COMPLETE PULSE RESPONSE OF A TRANSFORMER

The waveform y(t) is the composite of the rise-time response and the flat-top -
response, as found above. The composite waveform is obtained by first
plotting the exponential (almost linear) portions at the top of the pulse. Then
the positive and negative peak overshoots, given by y» — 1 of Eq. (3-23), are
superimposed upon the exponential.

The response beyond the pulse width, ¢ > t,, is obtained as follows. A
pulse may be considered to be the sum of a step of voltage +V whose dis-
continuity oceurs at ¢t = 0 and a step of voltage —V whose discontinuity
oceurs at t = ¢, (see Fig. 2-3). Hence, if the transformer response to a step V
at £ = 0is y(f), then the output for ¢t > ¢, is y(¢) — y(t — ¢,). For the flat-top
response, y(f) = ¢/ and hence

C—R”L — e—R(t—t,)IL

y(t) — y(t — tp)

(1 — eB4iL)eRIL (3-30)

for ¢t > t,. Note that this response is an exponential with the same time
constant as that of the top of the pulse. For the underdamped case, the
trailing edge of the output waveform will contain the same high-frequency
oscillations as are present on the leading edge. These are plotted by locating
the maxima and minima with respect to the exponential of Eq. (3-30).

The response of a transformer of typical parameters is computed in the
following illustrative example and shown in Fig. 3-12.



|

78 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 3-8 !

EXAMPLE A pulse transformer has the following parameters: L = 5 mH,
o0 =40 uH, C =50 pF, B, =200 Q, R, = 2K, n = 1. Find the response to a
2-psec 10-V pulse.

Solution.  For the rise-time response we have, from Eq. (3-17),

s B2 2000
R, 4+ R, 200 + 2,000 :
T = 2m(oCa)* = 2m(40 X 107° X 50 X 10~12 X 0.909) = 0.267 usec
p=(Bp LT _(_ 200 1 2.67 X 107
o B.C/d4r  \40 X 107 * 2 X 10® X 50 X 10-12 dxr
= 0318

= 0.909

Sinee k¥ < 1, the response is underdamped and is given by Eq. (3-22), namely,
y=1-— __k__ sin 2w(1 — k2)} : + cos 2rr(1 — k¥t L2 € 2Tk
(1 — gt T T

Substituting numerical values into this equation, we obtain
¥ =1 — (0.325 sin 22.3¢ + cos 22.3¢)c7-48¢

where t i3 expressed tn microseconds.
From Eqgs. (3-23) we find that the maxima and minima occur at
mT

= m = 0.141m

tm
where m = 1,2, 3, . . ., and that the magnitudes at ¢, are

Ym =1 —~ (._l)me—l.OUn

The flat-top response is given by Eq. (3-25), namely,

Y = €RIL = 0.0364 x| — 0364

where ¢ is expressed in microseconds. The percentage tilt of the top of the pulse is
3.64¢, = 7.28 percent. .

At the end of the pulse the response is given by Eq. (3-30), which for the given
value of the transformer parameters reduces to

Y = (1 — 0-0728)¢0.0364t — () 0758—0-0364t

At ¢ = t,+ = 2 psec, a value of y = —0.071 is obtained.

The complete response (up to ¢ = 6 usec) is sketched in Fig. 3-12. The long
undershoot for ¢ > ¢, should be noted. This section of the response will slowly
approach the zero axis so that the net area under the curve will equal zero, as we
shall now demonstrate.
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Fig. 3-12 The response of the transformer whose parameters are
given in the illustrative example. v, = 9.09y.

To show that the area under the plot of Fig. 3-12 is zero we write
v, = N, d¢/dt, where ¢ is the total flux in the magnetizing inductor. The total
area under the output voltage waveform is

{2 00

A‘v,,dz=N.ﬁ)”‘fi—“tbdt=N¢

=0

=0 (3-31)

since ¢ = 0 at t = 0 and at £ = . This proof does not assume that L is a
constant. Even if saturation takes place, so that L is not constant, the area
above the zero axis equals that below the zero axis and hence there is no shift
in d-c level. However, if the iron core exhibits appreciable hysteresis, so that
¢ # 0 at t = o, then the above theorem is not valid.

The high-frequency oscillations noted in Fig. 3-12 may be reduced to zero
by increasing the loading on the transformer. Critical damping for the trans-
former of the above illustrative example is obtained when R. = 400 ©. This
result is found by calculating the value of R, for k¥ = 1. The attenuation
factor is now

whereas the attenuation factor for R, = 2 K was 0.909. Thus, the oscillations
have been removed at the expense of increased attenuation. Also, the output
will rise somewhat more slowly toward its peak value, The rise time ¢, caleu-
lated from Eq. (3-24) is 0.122 usec. On the other hand, the tilt will now
be smaller than it was for By = 2 K because B = Ria is reduced. With
R, = 400 ©, the tilt is calculated to be 5.35 percent, which is to be compared
with the value of 7.28 percent found above for B; = 2 K.
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It should be emphasized that the output impedance of the pulse generator
may be different at the termination of the pulse than during the time of the
pulse. If this condition exists, then a different value of R; must be used when
calculating the response for ¢ > ¢, than for ¢t < t,. For example, if B,(t > t,)
is much greater than R,(¢ < {,), then the high-frequency oscillations at the
trailing edge will be greatly damped. However, even when the pulse is
terminated by opening a generator switch, in which case ¢ could be omitted,
at least in Fig. 3-9, oscillations often persist. The reason for this behavior is
that actually the capacitance is not properly included in the circuit as a lumped
element, but should really be included as an element continuously distributed
between the leakage inductance and ground. :

3-9 PULSE-TRANSFORMER GENERAL CONSIDERATIONS

An ideal transformer, which would introduce none of the pulse distortion
apparent in Fig. 3-12, would have an infinite L and zero ¢ and C. Actually,
the magnetizing inductance determines the tilt during the pulse and the
backswing at the end of the pulse. To minimize both tilt and backswing we
require only, as appears in Eq. (3-27), that L > Rt,. Accordingly, if, say,
t, = 0.1 usec and R = 200 @, Rt, = 20 xH and a magnetizing inductance
L =1mH (= 50 X 20 uH) is, for all practical purposes, infinite.

When a core has been selected, in both material and geometry, we may
calculate the number of primary turns necessary to realize the required mag-.
netizing inductance. Thereafter the number of secondary turns will be
determined from the transformation ratio. The smallest core on which there
is space available to place the windings is normally selected, and it is well to
check with the aid of Eq. (3-29) that the core is not saturated at the peak of the
pulse.

In a small pulse transformer, the preservation of the pulse shape is more
important than efficiency of operation. The winding resistances may there-
fore be permitted to be quite large, often as large as 10 percent of the load or
generator resistances. Small wire sizes may therefore be used, with a conse-
quent reduction in capacitances. If the interwinding and interlayer distances
are kept small, the leakage inductance will be small but the effective capaci-
tance will increase. The reverse will be true if the interlayer distances are
large. When the load and generator impedances are high, a large series leakage
inductance may be much more readily tolerated than a large shunt capacitance.
In this case the windings may be spaced far apart. If the load and generator
resistances are very small, a close spacing may be preferred.

The finite rise time and ringing observed in the transformer response
result from the leakage inductance ¢ and the capacitance C. Since the num-
ber of turns on the windings is fixed by the required magnetizing inductance,
all we may do in connection with ¢ and C is decrease one at the expense of
increasing the other. There is, however, in principle at least, one remedy
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Fig. 3-13 A pulse-transformer core is made by wind-
ing a continuous strip of thin high-permeability alloy.

that will both minimize ¢ and C and increase L, arbitrarily. This method
consists in employing a core material whose magnetic permeability is infinite.
For in such a case, a one-turn primary would provide more than adequate
magnetizing induetance. And since the turns are minimal we may shrink
the spacing between “windings” so that ¢ vanishes without introducing an
appreciable capacitance. Pulse transformers employ as core material such
alloys as Hipersil (Westinghouse) [u,(max) =~ 12,000] or Permalloy (Western
Electric) [p,(max) = 80,000] or ferrites (Sec. 3-10).

There is a second reason that great importance is attached to the perme-
ability of the core. The permeability actually achieved in pulse transformers
is very much less than the maximum values indicated above. When an abrupt
step of current is driven through the transformer winding, the magnetic flux
in the core is initially confined largely to the surface (the ‘‘skin effect’”) because
of the eddy currents that flow. The effective cross section of the core is
thereby reduced. As time passes, the flux penetrates deeper into the core
and eventually becomes uniform. Accordingly, the effective permeability
of the core increases with increasing pulse duration.! The effective permeabil-
ity of Hipersil is of the order of 400 for microsecond pulses. In order to reduce
eddy currents, to minimize both losses and the skin effect, it is important that
the core be laminated. It has been found that Hipersil and Permalloy can be
rolled into strips as thin as 2 mils, and cores are often formed by winding a
continuous strip, as indicated in Fig. 3-13.

3-10 FERRITE TRANSFORMERS

Cores molded from a magnetic ceramic such as sintered manganese-zinc ferrite
are now available that are excellent for pulse transformers. The maximum
permeability of this material is not very great, but its resistivity is at least
10 million times that of Hipersil or Permalloy. This high resistivity means
that the skin effect due to eddy currents is very small and an effective perme-
ability of the order of 1,000 is attained. This value is larger than the effective
permeability of strip alloys. Also, because of this high resistivity the core
loss is very small, and a @ of the order of 5 to 15 is obtained at a frequency
of 1 MHz. One form in which ferrite cores are commercially available is
shown in Fig. 3-14a. Because of its shape this element is called a “pot” or
“cup” core. This type of core lends itself to ‘‘do-it-yourself” transformer
construction. The windings are placed on a circular nylon or paper bobbin,
which is then inserted in the core. An end view of the complete core, assem-
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Fig. 3-14 (o) Three views of a small ferrite pot core. Dimensions
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are in inches. (Courtesy of Ferroxcube Corporation of America.)
(b) The assembled transformer.

bled by putting two halves together, is indicated in Fig. 3-14b. The two
sections are held together with a machine screw through a small hole in the
center of the core, and the entire assembly is dipped into a hard-setting resin.
The magnetic circuit thus completely encloses the windings. The primary
inductance of a core whose dimensions are given in Fig. 3-14 can be calculated
to be L, = 1.1N,? uH, to within 10 percent.

The windings in a pot core may be arranged in solenoidal layers as they
are for a rectangular core or instead may be put side by side in slots in the
bobbin. 1In the latter case, the turns pile up radially in the shape of a flat
disk. For this arrangement the capacitance will be smaller but the leakage
inductance larger than with the solenoidal winding.

Ferrite cores are also commercially available in the form of toroids (dough-
nuts) in very small sizes which make excellent pulse transformers for nano-
second applications.? For example, a transformer is found experimentally
to have a rise time of 0.5 nsec and a tilt of 10 percent for a 50-nsec pulse if it is
constructed according to the following specifications: Ferroxcube core, type 3B,
3C, or 102; outside diameter 0.2 in.; inside diameter 0.1 in.; height of toroid
0.125 in.; wound with 7 turns each of No. 27 Formvar bifilar wire for the
primary and secondary. A primary and secondary wound in this manner
constitute a “transmission-line” pulse transformer, as discussed in Sec. 3-20.

3-11 ELECTROMAGNETIC DELAY LINES*

Delay lines are passive four-terminal networks which have the property that a
signal impressed at the input terminals appears at the output terminals at the
end of a time interval ¢, called the delay time. Delays ranging from a few
nanoseconds to hundreds of microseconds are obtainable with electromagnetic
lines.
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Fig. 3-15 A 1.0-usec pulse
after passing through 1.0 usec
of HH-2500 delay cable. The
rise time is 0.08 usec. (Cour-
tesy of Columbia Technical
Corporation.)

If a pulse is applied to a real (nonidealized) line, the signal will not only
be delayed but will also suffer attenuation and distortion, as indicated in
Fig. 3-15. In such a line, #; is defined as the time interval between the
50 percent amplitude points on the rising edge of the incident and delayed
pulses. The important characteristics of delay lines are the following: the
time delay, the rise time, the attenuation, the distortion, the characteristic
impedance, the volume occupied by the line, the maximum voltage that may
be applied to the line, the stability of delay with temperature and time, the
ease and accuracy of adjusting the delay, and, finally, the cost.

The applications of delay lines are numerous. For example, a cathode-ray
oscilloscope which is to be used for observing fast waveforms has a built-in
delay line so that the input signal which also triggers the sweep is delayed
slightly before being applied to the vertical-deflection circuit. If the sweep
- were not allowed to start before the signal was applied, then the first portion
of the waveform might not be visible on the scope face. Other applications
of delay lines occur in distributed amplifiers, in pulse coders and decoders, in
precise time measurement, in radar, in television, and in digital-computer
systems.

In many applications the type of distortion indicated in Fig. 3-15 (pre-
shoot, overshoot, finite rise and fall times, and ringing) is acceptable. For
example, in computer circuits the occurrence or absence of a pulse is of more
importance than the exact form of the pulse. Moreover, where pulses have
become badly deteriorated in form, they may be reshaped. In other applica-
tions, notably in a scope, ringing is completely intolerable. As noted above,
a delay line is used in a scope to delay the signal until the sweep has started.
The remedy in this latter case is to construct a delay line whose ringing fre-
quency is well beyond the bandpass of the system in which it is included.

3-12 TRANSMISSION-LINE CHARACTERISTICS

A uniform lossless transmission line, terminated in its characteristic impedance
Z., may be used as a delay line. If a sinusoidal voltage V, = A&t is impressed
at the sending end of the line of Fig. 3-16, a traveling wave moves to the right
along the line. The voltage as a function of the distance z down the line is
given by V. = Ae¢“#2 and the voltage at the receiving end of the line is
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Fig. 3-16 A transmission line terminated in its characteristic
impedance,

given by V, = Acd@—#, These facts follow from elementary transmission-
line theory,5¢ where it is shown that 8 = v/LC, « being the angular fre-
quency, L the inductance per meter, and C the capacitance per meter. Since
the velocity with which the wave, progresses is u = (LC)Y, then 8 = w/u.
Hence

V, = A=) = Agalt-liv) = Aeul—td (3-32)

where t; = l/u. From this equation we see that the voltage which appears
at the receiving end is the same as that which was impressed on the sending
end at a time {; earlier. Since any waveform may be resolved into a Fourier
spectrum and since the velocity » is independent of frequency, it follows from
Eq. (3-32) that for an ideal line, an arbitrary waveform impressed on the input
terminals will appear without distortion at the output terminals after a delay time ta.
It is also shown in transmission-line theory (Sec. ‘3-15) that if the line is
terminated in a resistive impedance Z, = v/L/C, called the characleristic
impedance, no reflection will take place when the signal reaches the end of the
line.

Both L and C are functions of the geometry of the cross section of the
line, but it turns out that for lines with a uniform cross section the product
LC is independent of the geometry® and equals ue, where p and e are the
magnetic permeability and the permittivity, respectively, of the medium
between the conductors of the line. For a line whose conductors are in
free space, u = (LC)~* = (uoes)~?, where

Bo = 4w X 1077 H/m and & = (36r X 109! F/m

so that u = 3 X 108 m/sec. This speed is the same as that with which a
wave of electromagnetic radiation travels in free space, i.e., the velocity of
light. The delay per meter T is given by T = v/ ue = 1/u and, for air,
T = (3 X 109! sec/m = 3.3 nsec/m. For a medium of relative dielectric
constant ¢, the delay is 3.3¢! nsec/m. For the low-loss dielectric media
which are available (polystyrene, polyethylene, or Teflon), & =~ 2.3 and
T ~ 5 nsec/m. Such lines are useful in the nanosecond delay range, but the
length of cable required is prohibitively long in the microsecond region. For
example, a delay of 1 usec requires a line 200 m long!
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Delay-line Parameters Consider the magnitudes of L, C, and Z, for
three types of transmission lines—the coaxial cable, the single-wire line
over an infinite ground plane, and the line consisting of two parallel wires.
These lines are shown in Fig. 3-17, together with the expressions for the
corresponding capacitance C' per unit length. We note the similarity in
form in the three cases. Thus if 44 = D then C for the wire-over-ground
case is the same as for the coaxial cable and the two-wire configuration has
half as large a value of C. We note further that since it depends on the log-
arithm of the ratio of dimensions, the capacitance is extremely insensitive to
changes in spacing. This similarity among lines and insensitivity to dimen-
sional changes applies as well to the inductance L per unit length and the char-
acteristic impedance Z, = 4/L/C of the line because

1 1
L—W a,nd Zo—w

(3-33)
where u is the velocity of propagation. For a uniform line u = v/ge.
For a lossless coaxial line in which the space between inner and outer
conductor is filled with a material of dielectric constant ¢, we find
D D
= —4 = = —4p =
Z, = 138¢, log 4 60¢,~* In 4
When attenuation in the line results principally from ohmic losses in the
conductors, the loss (for a fixed D) is a minimum for D/d = 3.6. For this
ratio and for ¢ = 2.3, Z, = 51 Q. Most conventional and commercially
available coaxial lines have impedances of this order of magnitude, i.e., from
50 to about 200 . These lines have reasonable physical dimensions, whereas
lines of appreciably higher characteristic impedance are not realistic. A line
with Z, ~ 1,000 2 would require log (D/d) = 11 or D/d = 10!, which cer-
tainly is an impractical ratio.

=~ I
o) o S

(a) Coaxial cable (b) Wire over ground (¢) Parallel wires
C= 2xe Cx 2xe Cn —=¢
D Ty &
Ing In<F nZ

Fig. 3-17 Several types of transmission lines, together with
expressions for their capacitance per meter. The approximate
expressions for the capacitance of the wire lines in (b) and (c)
are correct to better than 5 percent if A/d > 1.
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When we use the coaxial line we ordinarily do so through choice and
employ for the purpose a cable of commercial manufacture. The coaxial
line is important and useful especially because external points are shielded
from the signal on the cable and because the cable is in turn shielded from
neighboring signal sources. On the other hand a wire-over-ground line most
often makes its appearance simply because a piece of wire has been used to
connect together two points in an electrical circuit. Since the components
are supported on a metal chassis this then constitutes the “infinite” ground
plane. Such lines ordinarily operate with no dielectric or with a dielectric
(the wire insulation) which occupies only a small part of the space between
wire and ground. Accordingly Z, = 138 log (4h/d), and if b = d, Z, ~ 83 Q.
If h = 2.5d, Z, = 138 9. We note again characteristic impedances in the
neighborhood of 100 @ and the same insepsitivity of Z, to spacing. Thus Z,
increases by 138 @ each time 4h/d is multiplied by a factor of 10.

The two-wire line of Fig. 3-17¢ does not find wide application in fast
circuitry and is included principally to suggest that the properties of the
coaxial and wire-over-ground lines are characteristic of lines generally. A
widely used two-wire line is the 300- line used as an antenna leadin for tele-
vision receivers.

The time delay per unit length T and the characteristic impedance Z,
depend on L and C, the inductance and capacitance per unit length, according
to the formulas

T=+IC Z, = \Fé (3-34)
or

C = L="TZ, (3-35)

N

We have already noted that Z, is usually limited to the range 50 to 200 Q.
Taking a nominal value Z, = 100 © we have, for an air dielectric,

T = 1 nsec/ft 3.3 nsec/m
C ~ 10 pF/ft = 0.33 pF/cm ' (3-36)
L =~ 100 nH/ft ~ 3.3 nH/cm

2

3-13 THE TRANSMISSION LINE USED TO TRANSMIT A SIGNAL’

In Chap. 2 we find that in transmitting a signal from one point to another we
must continually contend with shunt capacitance across the signal leads and
inductance in series with the signal leads. Both of these ever-present circuit
components limit the bandwidth of the transmission system and prevent the
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system from transmitting abrupt signal discontinuities. The consequent
signal distortion is apparent in increased rise times, in ringing, etc.

If, however, the shunt capacitance and series inductance are distributed,
as on a line, with capacitance C and inductance L per unit length, and if the
line is terminated in a resistance R = +/L/C, then such a line will convey a
signal without distortion. Equally important is the fact that for a line so
terminated the input impedance is also resistive and equal to R. Any actual
line will produce some distortion and attenuation of a signal because of ohmic
losses in the conductors and in the dielectric medium, both of which may be
frequency-dependent. But with the lengths of lines normally employed in
microsecond or nanosecond circuitry, the distortion so produced need not be
serious.

It should now be apparent that when a fast waveform is to be trans-
mitted for any appreciable distance, such transmission should take place over
a matched coaxial cable so as to minimize distortion and coupling. Further-
more, the line should be matched not only at the receiving end but at the
sending end as well. Any reflection which occurs on the line due to some line
discontinuity or lack of perfect match at the receiving end will be absorbed
at the sending end if the input is matched to the line.

To some extent in microsecond circuitry and to a much greater extent in
nanosecond circuitry, commercial instruments (generators, scopes, etc.) have
their output or input connections made through matched coaxial lines. In
this way input and output impedances are made resistive, and it becomes
feasible to make interconnections also through coaxial cables without introduc-
ing reflections, The characteristic impedances most common in commercial
coaxial lines are nominally 50 @ (as noted above) and nominally 72 Q (to
match the 72-Q impedance of a dipole antenna).

Now let us turn our attention to the wire-over-ground line such as appears
when a connection is made between components mounted over a metallic
chassis. In Fig. 3-18 a source v, of impedance R, is connected through a line
of characteristic impedance Z, to a load of impedance R = R,. Clearly, when
possible, we would make Z, = R,. But, as we shall now see, it is possible
to make an estimate of the distortion to be encountered if the condition
Z, = R, is not or cannot be fulfilled.

Let us assume, for the sake of being specific, that Z, > R,, as would be
the case if the spacing of the line above the ground plane were too great.
The capacitance per unit length of the line is C = T/Z, and L = CZ.2. If
the line were matched to the terminations, the inductance would be L’ = CR,2.
Accordingly, there is an excess of inductance AL in a line of length [, given by

= UL - L)) = 1022 (1 - g:) = ITZ, (1 - %) (3-37)

We now assume that the configuration of Fig. 3-18a¢ may be replaced as in
Fig. 3-180. Here we consider that the inductance L' = CR,? has ‘“‘canceled”’
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the line capacitance. The line is now replaced by an inductor AL and the
transmission-line properties of the line may be disregarded. It is now clear
that if the source at the input end of the line generated a step of amplitude V,
the waveform at the load would be v = (V/2)(1 — "), with 7 = AL/2R,.
As an example, consider a signal being transmitted over a 50-Q cable to a 50-Q
termination. Let us assume that a 3-cm lead is used to make the connection
from the cable to the termination and that this constitutes a 100-Q wire-over-
ground line. Since R, = 50 ©, Z, = 100 €, and I = 3 cm, then AL = 7.5 nH,
and the rise time is, from Eq. (2-33), 2.2r = 0.17 nsec. This time is propor-
tional to the wire length. If a 1-cm lead were used it would be reduced to
one-third the above value, or 0.06 nsec (60 psec).

If Z, < R., as when the wire-to-ground spacing is too small, then there
will be an excess of capacitance, which is given by

IT VA
AC = (1 - R‘,) (3-38)

This capacitance is shown in the circuit of Fig. 3-13c, from which it appears
that the corresponding time constant is r = (R./2) AC.

Altogether, it appears that when Z, > R, there will be an excess of induet-
ance and when Z, < R, an excess of capacitance. Since line impedances are
in the neighborhood of 100 2, we shall have excess inductance or capacitance
depending on whether R, is smaller or larger than about 100 @. Suppose that
we are required by certain constraints to use terminations of 1,000 2. We
might then be inclined to increase the Z, of the line by increasing the line-to-
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ground spacing, since such increase of spacing increases L and decreases C.
Such a maneuver is both ineffective and inadvisable. It is ineffective because,
as we have seen, the line parameters are remarkably insensitive to spacing
and the separation corresponding to Z, = 1,000 Q is unrealistically large.
It is also inadvisable because raising a lead well above the metal chassis
reduces the shielding effect between leads which results from the presence
of the chassis metal. We now look into this matter of shielding.

~ In Fig. 3-19 A and B are two wires running above a ground plane. It is
intended that these wires should have no coupling one to the other. But of
course there is some unavoidable capacitive coupling between them simply
because of their proximity to one another. To examine this coupling, let us
consider that a charge 4@ per unit length is placed on A. Then the magni-
tude of the electric field at B due to @ would be E, = Q/2xer; if the ground
plane were not present. The net effect of the induced charges on the ground
plane is replaceable by an image wire of charge — @ located as shown, and this
charge causes at B in Fig. 3-19 an electric field E, whose magnitude is Q/2wers.
The net field at B depends now on the vector difference E, — E;. The mag-
nitude of this resultant field intensity decreases as h decreases. Thus even
though the metal chassis does not project upward between wires A and B,
its presence in their neighborhood furnishes a measure of shielding provided
that the wires are close to the chassis. In the same way, if a current flows
in wire 4, an image current flows in the opposite direction at A’, and the net
magnetic coupling with the circuit of which B is a part is thereby reduced.
As a matter of fact, it is this shielding ability of the presence of a large mass
of metal that constitutes a most important reason why circuits are assembled
on a metallic chassis. And while it now appears that we may deliberately
choose to mount a wire close to a chassis, it hardly need be emphasized that
generally every advantage lies with making leads as short as possible.

3-14 NONUNIFORM LINES**

The low values of characteristic impedance obtainable in lines of uniform cross
section are often as much an inconvenience as is the short delay per meter.
For example, consider that we are required to transmit a 10-V pulse along a
line. If Z, = 50, the generator must supply a 200-mA peak current, whereas
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if Z, = 1,000 Q only 10 mA is required. Accordingly, in such applications,
the higher-impedance line has a distinct advantage over the lower-impedance
cable.

From Egs. (3-34) it follows that both T and Z, can be increased if a con-
structional change is made which increases L. One such ‘modification is to
replace the straight center conductor by a continuous coil of wire in the form
of a helix. In a cable with this configuration the cross section is not uniform
and the product LC is no longer equal to ye. The inductance may be further
increased if the inner conductor is wound upon a ferromagnetic core. Such
delay lines are described in Appendix B, which also lists commercially avail-
able cables with values of T and Z, as large as 1 usec/ft and 4,000 &, respec-
tively. We note that the delay has been increased by a factor of 1,000 over
that of an air-dielectric cable and the impedance has been multiplied by
about 100.

A given delay can often be obtained with less attenuation and in a smaller
volume with a lumped-parameter line than with a distributed-parameter line.
The design of such lumped delay networks is given in Appendix C. Several
manufacturers supply physically small lumped-parameter lines having fixed
delays in standard values up to about 20 psec, with impedances in the range
from 50 Q to 10 K, and with the ratio of delay to rise time of the order of 10.
Larger physical units are available with delays up to 200 msec and with rise
times which are less than 3 percent of the delay.®

3-15 REFLECTIONS ON TRANSMISSION LINES

It will be recalled®$ that the general solution for the voltage v and current ¢
on an ideal (lossless) transmission line is given by

#(e-2) () 559
i)l e

The positive assumed directions of v and ¢ are indicated in Fig. 3-20. The

v

and

. characteristic impedance of the line is R,, and w is the propagation velocity.

The function f; is an arbitrary function of the argument ¢ — z/u and repre-
sents a wave traveling to the right (in the positive z direction) with velocity u.
Similarly, f; represents a wave traveling to the left. For a wave traveling
to the right, v/i = R., whereas for a wave moving to the left, v/i = —R,.
This difference in sign results simply from the fact that in both cases the
assumed positive current direction is as shown in Fig. 3-20. The general
solution for wave propagation on a transmission line consists in combining a
wave traveling to the right with a wave traveling to the left in such a way that



Sec. 3-15 PULSE TRANSFORMERS AND DELAY LINES / N

Sending * 3 Receiving
end - end
- -—i

—
x

Fig. 3-20 Sign conventions for current and voltage on a trans-
mission line.

the boundary conditions at the sending and receiving ends are satisfied (at each
end of the line the ratio v/¢ must equal the terminating resistance). We shall
now illustrate this principle by applying it to a number of important special
cases. ' ‘

Infinite Line Assume that a unit step U(f) is applied to the sending end
of a line which is arbitrarily long, so that the conditions at the receiving end
need never be considéred. Then thé boundary conditions are obviously satis-
fied by taking ‘

'u=U(z—§) i=R%U(t—g) | (3-41)

It is understood, from the definition of the unit step, that U(t — x/u) is zero
whenever the argument is negative. The voltage distributions along the line
at two successive times are shown in Fig. 3-21. The abrupt discontinuity in
voltage travels down the line with velocity u.

Finite Line Terminated in Its Characteristic Inpedance An additional
boundary condition now must be satisfied at the termination where v/ must '
equal R,. But the solution given by Eqs. (3-41) already satlsﬁes this addi-
tional condition, so that the voltage and current on the line remain as before
(for an applied unit step). In general, a line terminated in its characteristic
impedance behaves as an infinitely long line.

Fig. 3-21. The voltage distribution along
an infinite line at two particular instances
of time ¢; and ¢,, with £, > §,.

1 ] =2 ®)




92 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 3-15

v Ult—x/u) '!_.:1 £ PULE=21/0) +2/u) Fig. 3-22 Incident and reflected
]
’I TT """"""" waves at a termination with
P ———— R>R, fort>1/u.
x x=1

Finite Line Terminated in B = R, The boundary condition at the ter-
mination is no longer satisfied by Eqs. (3-41). It is now required that at the
termination the ratio v/¢ equal R rather than R,. Hence, we must now find
a combination of waves traveling to the right and to the left which will satisfy
the boundary condition. The circumstances which exist at the termination
of the line (z = I) for the case of a resistive termination B > R, are shown
at a time ¢ > [/u in Fig. 3-22, The incident wave of voltage U(t — z/u) has
progressed to the point where the discontinuity has passed beyond the end
of theline. The second or reflected wave is represented by pU (¢t — 21/u + z/u)
and is one which travels from right to left and whose discontinuity passes
x=latt=1/u. (Of course, it is understood that the dashed portions of the
waves to the right of z = I do not actually exist, because the line ends at
z = 1) The constant p is called the reflection facior. For times ¢ > 1/u,
the net voltage at the termination is 1 + p. The current associated with
the original wave is 1/R, flowing to the right. The current associated with
the reflected wave is p/ R, flowing to the left. The net current is (1 — p)/ R,
flowing to the right. If the termination is R, then it is required that

1+p

T—p/B "¢
or
r= %% (3-42)

This result for p, which measures the ratio of the amplitudes of the two voltage
waves, is consistent with our expectation that p = 0 if B = R,. We also
note that p is positive if B > R,, whereas the reflected voltage wave is inverted
(p is negative) if the terminating resistance is less than the characteristic

1
1
[}
Y ! (@) Fig. 3-23 The voltage (a) and current (b)
=1
distributions along a line with a termination

R >R, fort> l/u.

®)
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Fig. 3-24 (a) A generator with an output impedance R, at the sending end of a
line. (b) The same circvit drawn using the standard symbol for a delay line.

resistance (R < R,). The voltage and current distributions along the line
for a particular instant of time, ¢ > I/u, are shown in Fig. 3-23. The net
voltage and current at any point on the line result from the simultaneous
existence of the incident and reflected waves. The time I/u = t; which it
takes the wave to travel down the entire length of the line is called the one-way
delay time.

To summarize, for voltage waves,

-1 <p< +1 for any R

p = +1 if R = = (an open-circuited line)
p=—1 " if R = 0 (a short-circuited line)
p>0 if R> R,

p <0 if R< R,

p=0 if R =R,

If one end of the line is terminated in R,, then when the discontinuity reaches
this termination it is completely “absorbed” and no additional reflections
result.

In the case where the generator at the sending end provides a voltage
v,(t) and has a source impedance R,, the amplitude of the wave which starts
down the line is easily caleculated. In Fig. 3-24, the ratio of voltage to current
on the line is R, until the discontinuity of the first wave reaches the termination
R. Hence, at time ¢t = 0, the impedance seen looking to the right is R, and
the amplitude of the wave is

n(t) = HI—%E v,(t)

3-16 A SHORTED OR AN OPEN LINE

Consider a generator of a step voltage V and impedance R, = R, connected
to a line which is short-circuited at the receiving end, as indicated in Fig, 3-25a.
What is the appearance of the voltage waveform at the sendingend? At¢ =0
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% iR,
Vv VJF
1 I
LT : 0 22, :
(a) ® (c)

Fig. 3-25 (a) A step voitage applied to a short-circuited line from a
generator whose impedance matches that of the line; (b) the resulting
voltage v; and (c) the resulting current ¢ at the input of the line.

a step VR,/(R, + R,) = V/2 appears at o = 0. This discontinuity travels
to the shorted end, where a second discontinuity — V/2 (since p = ~1) will
start toward the left. When this second edge reaches the input end, it will
add a voltage —V/2 to the voltage +V/2 established previously. The
resultant waveform will be a pulse of amplitude V/2 and duration 2{;, as
indicated in Fig. 3-25b. The advantage of producing a pulse in this manner
is that the duration depends only on passive elements (the L and C of the line)
and thus may have a stability not shared by pulse generators which depend
upon active elements. The initial current is V/2R,. This current disconti-
nuity is reflected as —pV /2R, = 4 V/2R,, so that at time t > 2¢, the input
current is V/2R, + V/2R, = V/R,, as it should be, since the steady-state
voltage at the input to the line is zero. The current waveform is indicated in
Fig. 3-25¢.

Attenuation In the above discussion we have neglected the attenuation
of the line, which we shall now take into account. Consider the circuit of
Fig. 3-25 again, The initial discontinuity at the input end will arrive at the
shorted end as §Ve*, where a = {l, ¢ is the attenuation factor, and I the
length of line. At t = 2¢;, a negative step of amplitude 1Ve 2 will appear
at the input end and the resultant wave will be as in Fig. 3-26a. We see that
a small step voltage or “pedestal” o’ remains after the pulse.

The above result will yield an expression for { in terms of the d-c input
resistance Ra.. of the shorted distortionless line. Since for ¢ > 2t; there are
no further discontinuities, v’ may be calculated from

’ VRd.g Rd-e

U Rt R~V R

in which we have taken into account the fact that on any practically useful
line Ry.. < R,. From Fig. 3-26a we see that

Bow \ V 0 _V
Vg t3" =3
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Fig. 3-26 The voltage at the input to the

line in Fig. 3-25 when attenuation is taken v
into consideration if the input waveform is
(a) an abrupt step and (b) an exponen-
tial rise. (c) An exponential input step
shaped by a double delay-line differ-
entiator (if an amplifier with an odd num-
ber of stages is used, then the waveform
should be inverted).

®)

v;

(@

Assuming small attenuation, so that e2¢ = 1 — 2a, we find

2R

a=¢{l= o

(3-43)

Delay-line Differentiation If the generator in Fig. 3-25 supplies an .
exponential rise of voltage, the waveform at the input to the line is as pictured
in Fig. 3-26b. It is assumed that the exponential time constant r is short
compared with the delay time f; of the line. The waveform in Fig. 3-26b
follows from that of Fig. 3-26a, which gives the response for an ideal step
applied to a shorted line. If an exponential waveform is applied to an RC
differentiating circuit (BEC < 7), then the output (Fig. 2-9) resembles that of
Fig. 3-26 in the sense that a step voltage has been converted into a pulse.
Hence, a shorted transmission line is referred to as a delay-line dzﬁ‘erentwtor
This terminology is further explained below.

If the waveform of Fig. 3-26b is applied through a buffer amplifier to a
second shorted line, the result is that indicated in Fig. 3-26¢, which should be
compared with Fig. 2-13. Note that this double-delay-line differentiator
almost eliminates the pedestal due to the cable attenuation and gives a wave-
form whose average value is approximately zero. Double-delay-line shaping
ig an important technique used in nuclear pulse spectrometry.®

We shall now explain how a length of delay line, shorted at the receiving
end, may be used to accomplish much the same function as is served by a
differentiating circuit.
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R, Z,=R, Incident voltagi =-;—'
[
@ v; Short 0 ~
2 cireuit Tl 1 !
- \ - Ry T /
e Reflected T~ -y (b)
_ (@) voltage
v
i
—
LJH— —0
+
) i ° t
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J; = (C)
—=L (d)

Fig. 3-27 (a) A delay-line differentiator using a short-circuited line; (b) the
incident and reflected waveforms; (¢) the resultant waveform at the input to
the line; (d) a delay-line differentiator using an open-circuited line.

Consider the situation pictured in Fig. 3-27a, which consists of the same
circuit as in Fig. 3-25a but excited by a signal waveform v,. To illustrate the
point we intend to make; a signal waveform has been selected which consists
of a portion where the voltage changes slowly with time and another portion
where the voltage changes rapidly with time. The waveform has the shape
shown by the solid curve in Fig. 3-27b. Initially the line behaves like a
resistance equal to its characteristic impedance Z,. The voltage v; which
travels down the line is v,/2, which has the same shape as the input waveform.
However, the short circuit at the line end causes the appearance at the line
input of a delayed and inverted voltage waveform, shown by the dashed curve
in Fig. 3-27b. We shall assume no attenuation, so that the dashed reflected
waveform is equal in amplitude to the incident signal. If the line introduces
a delay ts, the dashed waveform is delayed by 2ts. The resultant waveform
of v; is given by the sum of the two waveforms in Fig. 3-27b and is shown in
Fig. 3-27¢c.

We now observe a marked similarity between this resultant waveform
and the waveform that would result from transmitting the input signal
through a differentiating network. The principal difference in the two cases
is that, with the differentiating circuit, portions of the waveform of Fig. 3-27¢
that appear as linear rises and falls would be replaced by rising and falling
exponentials. Like the differentiating circuit, the delay-line circuit gives a
larger response when the input changes rapidly and a smaller response when
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the input changes slowly. When a ramp signal of slope « is applied to a
differentiating network, the response, after an initial transient, is constant
and equal to ra, where 7 is the circuit time constant (r=RCorr=0L/R,
depending on the circuit). The corresponding response for the delay-line
differentiator is 2{a. Qualitatively, we may say that a differentiating net-
work is one which will not transmit a signal unless it is changing rapidly.
Quantitatively we have that, for a ramp, the output signal is equal to the
magnitude of the input change in one time constant. Qualitatively, the
shorted delay line acts as a short circuit except when the signal changes rapidly.
Quantitatively we have the result that, for a ramp input, the output is equal
to the magnitude of the input change in the time 2ta.

A type of waveform which is frequently encountered is one in which
there occurs periodically an abrupt change in an otherwise slowly varying
shape. If this waveform is passed through a differentiating circuit, the
waveform generally will be ‘“washed out’’ and only the response to the abrupt
change will stand out. In this way, the signal may be converted to a wave-
form that is essentially a train of pulses. If the differentiation is achieved
in a lumped single-time-constant circuit, the pulse train will consist of a
series of spikes, as in Fig. 2-6, with a sharp leading edge, an exponentially
falling trailing edge, and a top which is pointed rather than flat. In such an
application the use of a delay-line differentiator has obvious merit because
the pulses will be much more nearly rectangular and will have a duration
which is controllable by an adjustment of the length of the delay line.
Nanosecond pulse generators making use of delay-line differentiation are dis-
cussed in Secs. 13-17 and 20-8.

Another form of delay-line differentiator using an open-circuited line is
indicated in Fig. 3-27d. If the signal voltage », has the waveform in Fig. 3-27b,
then the voltage v; = tR, across the input resistance K, has the form in Fig.
3-27c. This statement follows from the fact that in Fig. 3-27d the current
wave i is inverted at the open-circuited end, just as the voltage wave in
Fig. 3-27a is inverted at the short-circuited end. Clearly, the circuit in
Fig. 3-27d is the dual of that in Fig. 3-27a.

317 MULTIPLE REFLECTIONS

Let v.(f) be the voltage wave which starts down the line at £ = 0+. At
¢ = {; this incident wave reaches the end of the line z =1 and a reflected
voltage wave v, = pv; (and a reflected current wave —pv1/R,) start back
along the line, At t = 2{; this first reflection reaches the beginning of the line
z = 0. The condition for no reflection at the sending end is that the ratio
of voltage to current at this termination be R.. If the generator impedance
does not equal the characteristic impedance of the line, then this boundary
condition is not satisfied. We must therefore postulate, for any other termina-
tion, the existence of a third voltage wave v; = p'v; which starts to the right
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t=0

Fig. 3-28 Reflection chart of voltage waves
traveling between sending end at x = 0 with
2ty reflection coefficient p’ and reéeiving end at

z = [ with reflection coefficient p.. The same
chart may be used for current waves provided
that each voltage is divided by R, and the

signs of the refiection coefficients p and p’ are

4ty

changed.

x=0 x=1

fromz = Oatt = 2t44. The reflection factor p’ for the input-end termination
- isgiven by Eq. (3-42), where R = R, is the sending-end resistance. This third
wave is the reflection of the second wave and wilt4n turn produce a reflection
va at the receiving end, and so on indefinitely. This sequence of events is
_ conveniently represented in the reflection chart of Fig. 3-28. The resultant
voltage is the algebraic sum of all the individual reflection components. For
example, the voltage at z = 0 for 0 < ¢ < 4¢, is the sum of v, (starting at
.t =0), v, (starting at ¢ = 24,), and v; (starting at ¢ = 2{s). If the signal source
is a ramp generator af of internal resistance R,, then with k¥ = aR,/(R, + R.),
vy = kt. To this must be added v., which is a ramp of slope pk starting at
t = 2¢; and v;, another ramp, also passing through ¢ = 2{; and of slope p’pk.
The individual components and the resultant are indicated in Fig. 3-29 for the
special case where p = —3 and o’ = +3. The complete waveform at z = 0
is seen to be a broken line function of time, with the changes in slope occurring
att = 2t.d7 4t,.1, th_, e e e

Ui ’,
,”
’/’ Fig. 3-29 The voltage v(t) at the sending
il end (z = 0) of a line for 0 < ¢ < 44, if the
P 2 ] ,
vi=kt source is a ramp generator ond p = —3 and
b 41
v (0) o= +3.
vy = poi(t — )Vt — 2t4)
= —3k(t — 2)U(t — 2ta)
1 2 3 ‘ 4 vy = p'va(l — 2t Ut — 2t4)
0 SRRy t = —3k(t —2)U — 2ta)
. ;“\~ Us ty .
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¥
(a)
Fig. 3-30 The input to a line is a . s + + x y
step voltage. The waveforms at - %
f:e inputd(a) an: output (b). 'lc”he Y vy +0y
gure is drawn for p = +1 an T
4 1
p = "2 Uztu,
®)
o 1 3 5 7

£
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If the signal source is a step generator, then the resultant waveform is a
staircase function of time with steps up and down. At the sending end the
steps start at t = 0, 2y, 444, 6ts, . . . , and at the receiving end at ¢ = {,,
3t4, Stg, . . . , as indicated in Fig. 3-30. For example, the resultant constant
voltage v; for 4t; < ¢ < 6ty is seen from Fig. 3-30a to be the algebraic sum
v1 + v + v3 + v4s + v5. Some of the v’s may be negative.

If the input is a pulse (whose width ¢, is less than 2¢,;), then the output
will be a train of pulses. At z = 0 the pulse beginning at t = 44, will be
equal to v4 4+ v5. This result follows from the fact that the waveforms v,, v,,
and v; are all zero for ¢ > 4iy4, since {, < 2t;. It is possible for some of the
pulses to be inverted, as in the following illustration.

EXAMPLE A pulse generator whose impedance is B, = 600 Q delivers a 2-usec
8-V pulse to a 1,000-Q line terminated in 9,000 @. The one-way delay of the cable
is 5 psec. Find the voltage waveforms at the input and output of the line.

Solution The magnitude of the pulse applied to the line is

V= 8k, _ 8 X 1,000 =500V
R, 4+ R. 1,000 + 600

From Eq. (3-42)
_R/R,—1 _ 9-1

M=l 91 Los0
= RE.+1 0+1 T

and

o9
= K=}
+i
[y TN

= —0.25

o,
I
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p'=-025 p=+08

5 usec

15
Fig. 3-31 Reflection chart for illustrative
example.

35

x=0 x=!

The reflection chart for these specific values (corresponding to Fig. 3-28) is
given in Fig. 3-31. From this chart and the above theoretical discussion it follows
that the pulse trains at the sending and receiving ends of the line are as pictured in

Fig. 3-32.
Y
5.00
x=0
3._0% (=4.00 - 1.00) (a)
1 [ 2usec 012
0 10 20 d 30 40 \ t, usec
-06 —0.024 -
vD
9.00 (=5.00 +4.00)
x=1
(d)
0.36
o 1
0 5 15L| 25 35 \ t, usec
-0.072

-180

Fig. 3-32 The voltage waveforms at the input (a) and the output (b)
of the illustrative example.
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If the attenuation ¢ of the line is appreciable, then it is taken into account
in the reflection chart by multiplying each pulse amplitude by ¢! when the
pulse travels a distance I. If we are interested in the current, rather than the
voltage, waveform, then we must remember that a current pulse ¢ is reflected
at a termination as a pulse —ps.

3-18 DISCHARGE OF AN INITIALLY CHARGED LINE

Figure 3-33 indicates a line charged to a voltage V with the switch S closed.
If Sis opened at ¢ = 0, what is the voltage (or current) waveform at the begin-
ning or the end of the line? To answer this question we must first find the
magnitude of the initial voltage step traveling down the line. Then we can
draw a reflection chart and proceed as before.

At t = 0— the line voltage is V and the line current is ¢(0—) = V/R,.
At t = 0+ the voltage at the input to the line will change to another value
v; = V', which can be determined as follows. The current in B, at t = 0+
is ¢/ = V'/R,, and from Fig. 3-33 this must equal the negative of the input
line current, or {(0+) = —¢' = —V'/R..

The first voltage step Vi which must travel down the line equals the
change in input voltage, or Vi = V' — V. The corresponding input-current
step is 1(0+) — #(0—) = —(V'/R;) — (V/Ry). Since the ratio of voltage
to current for a traveling wave must equal the characteristic impedance R,,

, - vi_v
Vi —V = Rn(— 7 Rl) (3-44)

If this equation is solved for V' and then V, = V' — V is evaluated, we find

Vi - R:/Ry + 1
v R;/R, + 1

Note that, independently of Rs, if R, = R,, then ¥V, = —V and

(3-45)

Vi=Vi+V =0

This result is consistent with the fact that there can be no reflection if a line
is terminated in its characteristic impedance. Hence the wave traveling down
the line must wipe out the voltage on the line. Since the net vollage at any
distance along a line is the sum of the initial voliage V plus all the traveling waves
which have reached that point, then, for 0 <t <ty V4 Vi=00r Vi= —V

 ~~o— S LIRS
Fig. 3-33 With the switch S closed S +T | -1 T*’
the line is charged to a voltage V. +

Then S is opened at ¢ = 0. _T PSE. B L
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Initial voltage, V'
o'=0 o=+1
t=0

%

(a) )

Fig. 3-34 (a) Open-circuited line charged to an initial voltage V

with

input end terminated in its characteristic resistance; (b) corre-

sponding reflection chart.

At t = 15 the wave reaches the end of the line, the line is completely dis-

bharged, and there is no reflected wave. However, if B; # R,, then there
will be a reflection at ¢ = t,.

EXAMPLE A line charged to a voltage V is terminated at its input end in its
characteristic impedance and at its output end is open-circuited as in Fig. 3-34a.
When the voltage source V is removed find the voltage waveforms at both ends of
the line.

Solution Since R, = = and R» = R,, then p = 41, p’ = 0, and from Eq. (3-45)

The reflection chart is given in Fig. 3-34b and the waveforms in Fig. 3-35. The
initial voltage at t =04+ is V+ V, =V — V/2 = V/2. The discontinuity

(@)

2t
d Fig. 3-35 Waveforms at input (a) and output °

(b) of the line of Fig. 3-34, which is charged
to a voltage V fort < 0.

(®)
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V1 = —V/2 travels down the line, discharging it to half voltage as it progresses.
At the end of the line at ¢ = 4 the discontinuity is reflected as —V/2 (sincep = 1),
and it discharges the line to zero as it moves toward the beginning of the line.
At ¢ = 24, the line is completely discharged. The resultant voltage across R, is a
pulse of amplitude V/2 and duration 2t,, as indicated in Fig. 3-35a.

For service as the switch S in Fig. 3-34 special types of relays are com-
mercially available. The contacts of these relays are hermetically sealed in a
container which also contains some liquid mercury and a gas such as hydrogen
at a pressure as high as 250 atm. The mercury is drawn to the contact points
by capillary action and the contact is made through the mercury. Since the
metal contacts, which are wetted by the mercury, never actually touch, the
relay is capable of millions of operations without wear on the contact. points.
The very high gas pressure prevents arcing at the contacts, both on making
and on breaking. Accordingly, the time interval which elapses between the
moment when the contact just begins to open and the time when it is com-
pletely open may be a small fraction of a nanosecond. The repetition rate
of the closing or opening operation is limited, as in any mechanical relay.
Repetition rates up to several hundred per second are possible. A number of
commercial nanosecond pulse generators® are available in which the wave-
forms are generated as in Fig. 3-34 by using a mercury relay in connection
with a delay line. The polarity and amplitude of the pulse depend upon the
charging voltage, and the pulse width is determined by the line length. Repe-
tition rates as high as several megacycles per second are possible if the mecha.n-
ical relay is replaced by an avalanche transistor (Sec. 13-17).

A charged line may be used as a pulse stretcher.’® Consider, for example,
a lumped line open-circuited at the output and terminated in R, at the input.
Each capacitor is charged simultaneously from a pulse of width ¢, through
an emitter follower and buffer diodes. At the end of the input pulse the
line starts to discharge, but the output will remain constant for a time {4,
as indicated in Fig. 3-35b. Hence, the input width ¢, has been stretched to fa.

S

% @ = ®)

b

, S | ,
e

0 1 2 3 4 i 0o 1 S ]2 mral =

Fig. 3-36 The voltage across R: in Fig. 3-34 if (a) R, = 3R, (b) R, = 3R..

i [
Gk
o
-
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If neither R, nor R, in Fig. 3-33 equals R,, then there will be multiple
reflections from each end of the line. The voltages across R, for the two
special cases R, = 3R, (p = +3) and R: = }R, (p = —3%) are indicated in
Fig. 3-36 for Ry = .

3-19 REFLECTIONS FROM REACTIVE TERMINATIONSS®

If the line ends in an impedance Z consisting of some combination of reactive
and resistive elements, then the reflection coefficient is given by

- Z()/R, — 1
*O = Z6/R 1

where Z(s) is the terminating impedance, with the reactance of each inductor L
represented by Ls and that of each capacitor by 1/Cs. If vi(s) is the Laplace
transform of the first wave traveling down the line, then the wave reflected
from the termination and starting at ¢ = ts is the inverse Laplace transform
of p(s)vi(s). In other words, the reflection chart of Fig. 3-28 continues to be
valid, provided that p, p’, and the v’s are written as functions of s and the
inverse Laplace transform is taken to obtain the time waveforms.

(3-46)

EXAMPLE A unit step generator is matched to a line of characteristic impedance
R, which is terminated in a capacitor C, as in Fig. 3-37. Find the voltage v; at
the input to the line and v, at the termination.

Solution The incident wave is #U(t) = v:(¢) and #(s) = 1/2s. The reflection
coefficient in the s plane is

1/sCR, —1 —s+1/CR,

= = 3-47
P = {/sCR. 1 s+ 1/CR, (8-47)
The reflected wave is
—s+ 1/CR,
_ _ 3 -4
v2(8) = p(s)v:(s) 25 + 1/CR) (3-48)
Taking the inverse Laplace transform yields
vo(t) = 3 — €V/RC (3-49)

where we have written ¢’ = { — ¢; to remind us that this reflection starts at ¢t = ¢,
ort' = 0. Since R, = R,,p’ = 0and hence v = 0. In other words, there are no
reflections beyond the first originating at the end of the line.

-1 +
I Fig. 3-37 The termination of the line is a
C—H= %

_k

capacitor C.
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vO
1
(a)
Fig. 3-38 The waveforms (a) at
the output and (b) at the input of a Y t t
line excited from a matched step _
generator if the {ine terminates in a v;
capacitor. 1
i
®)
0 2ld t

The voltage v, at the end of the line is zero until £ = ¢, and then is v; + v, =
% + v2 = 1 — e v/2¢.  This waveform is plotted in Fig. 3-38a. The waveform at
the input to the line is v,, a constant of magnitude 3 until £ = 2¢,. From then on
Vi =0+ v, =1 — €/’ where t'” = t — 2{;. The waveform is plotted in Fig.
3-38b. Note that the capacitor voltage starts at zero and ends with a magnitude
equal to that of the generator (unity).

If the termination in Fig. 3-37 consists of a resistor R in parallel with C,
then the waveforms in Fig. 3-38 remain valid with the following modifications.
The steady-state voltage is R/(R + R,) instead of unity and the time con-
stant is CRR,/(R + R,) instead of CR, (Prob. 3-67).

If the termination of the line in Fig. 3-37 is an inductor in series with a
resistor R, the waveforms can be calculated to be those indicated in Fig. 3-39

Fig. 3-39 The waveforms of the line
of Fig. 3-37 terminated in o series 0
combination of an inductor L and
resistor B, The time constant of
the exponential portions is

L/(R + R.). Ipem— e m ®)
R
1 J \. Gy "
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(Prob. 3-66). Note that if R = 0, the steady-state voltage is zero, which is
obviously correct since an inductor cannot sustain a constant voltage. If
R = R,, then the steady-state voltage is 3 V.

3-20 “'TRANSMISSION-LINE'' PULSE TRANSFORMERS

When a signal is transmitted from a generator to a load over a pair of wires,
the signal waveform is distorted by the combination of the distributed shunt
capacitance between wires and inductance in series with the wires. We find,
however (Secs. 3-12 and 3-13), that if the inductance and capacitance are
“balanced’ against one another for a particular load, as in the case of a uniform
transmission line, the signal may be transmitted to the load without distortion
and without reflection at the load if the line is properly terminated. In being
transmitted through a pulse transformer, fast waveforms are distorted by the
shunt capacitance and leakage inductance of the windings. We shall now
show that, in special cases, it is possible to arrange the transformer windings
mechanieally in such a manner that the signal is transferred from generator to
load as if over a transmission line. Under these circumstances distortion and
reflections are minimized.

1: 1 Inverting Transformer In the circuit of Fig. 3-40a a generator is
supplying power to a load through a transmission line. In Fig. 3-40b the
line is bent (with a radius which is large compared with the spacing between
wires), so that the two points P’ and S are brought close to one another. We
now join P’ and 8§ and connect this common point to ground. This connection
between P’ and 8 perturbs the power flow from source to load only slightly
since the traveling wave carrying the power is guided by the wires and travels
in the direction indicated by the arrow.

Grounding of P’ and S, though it does not affect appreciably the power
delivered to the load, does introduce one complication. For example, consider
in Fig. 3-40b that v is a low-frequency source. Then the complete low-
impedance loop PP'SP around the outside coil will require of the source
that it provide a large current which will then circulate around this loop.
To minimize this circulating current we may wind the transmission line around
a leg of a magnetic circuit. - The inductance of the outer coil will be increased
and the circulating current decreased thereby. -If the line'is long enough, we
may wind it many times around a magnetic toroid, as shown in Fig. 3-40c.
Note in Fig. 3-40c that P’ and S are both grounded, making these points com-
mon, as in Fig. 3-40b. Also, as in Fig. 3-40b, the source is connected between
P and S (= P’) and the load between 8’ and P’ (= §). But in Fig. 3-40c¢
it is apparent that the source is connected to a primary winding P-P’, whereas
the load is connected to a secondary S-S’. In this transformer the windings
of the primary and the secondary lie side by side and may even be twisted
together. The entire arrangement has finally been redrawn in Fig. 3-40d,
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P P!
_q’) Ry — RL§ v :
S S
(a)
W
q
P ® b ! ;‘
2§; [+
-v E.\\ss RL=Ro%_UL
P s
i L Portion of
- . ) ortion of
. YL ] magnetic circuit
S’ ——"——2 S
(0 R, =R, — d)

Fig. 3-40 Concerning a 1:1 inverting ‘'transmission-line’’ transformer, (a) a
source supplies power to o load over o delay line; (b) the line is curved to
place the source and load close together; (c) the line is wrapped around a
magnetic core; (d) the transformer in (¢) drawn in conventional form.

where it looks more like a conventional representation of an inverting trans-
former. The dots assigned to the windings are consistent with the fact that
the windings encircle the magnetic core in the same direction.

In summary, we have established that a 1:1 inverting transformer con-
structed in the manner described above actually conveys power from source
to load along a transmission line. If the line is matched, the transformer
capacitance and leakage inductance do not affect the transmission, and the
rise time of the transformer is now determined by secondary effects not con-
sidered in the above discussion. The flat-top response is determined, as in a
conventional transformer (Sec. 3-7), in part by the magnetizing inductance,
which in turn depends upon the number of times the line is wrapped around
the toroid and upon the permeability of the iron. The constructional details
of a nanosecond ‘‘transmission-line’”’ pulse transformer are given in Seec. 3-10.

Assume now that we have no interest in polarity inversion. Then,
returning to Fig. 3-40a, we would ground S and S, but we would not be able
to operate source and load at different d-c voltages. Accordingly we now
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Fig. 3-41 Development of a '‘transmission-line’’ noninverting transformer.

need a noninverting transformer with d-c¢ isolation between primary and
secondary.

1:1 Noninverting Transformer Starting with a set of transmission lines,
we shall now show how to construct a 1:1 noninverting transformer with
d-c isolation. We might imagine that if we devise a transmission-line trans-
former with d-c¢ isolation we might make of it either an inverting or a non-
inverting transformer simply by moving one ground lead. We shall see that
such is not the case.

In Fig. 3-4la are drawn two independent transmission lines, 1 and 2,
which have been curved so that they may meet at sending and receiving ends.
If an equipotential plane is placed perpendicular to the plane of the page and
along the line ABCD, then the electric and magnetic field lines will remain
unchanged throughout space. This statement follows from the fact that
system 2 is the electromagnetic image of system 1 in the equipotential (ground)
plane. We may note now, for future reference, that points 4 and C are at
the same potential.

Each line has a source v/2 and is matched, B, = R,, at both sending and
receiving ends. Because of the generator polarities and the symmetry of the
arrangement it is apparent that the leads AB and CD carry no current. The
circuit has been redrawn in Fig. 3-41b with the leads AB and CD deleted.

We see that we have here a 1:1 transformer in which the primary and
secondary are isolated. Observe the most interesting conclusion which must
be drawn from Fig. 3-41b, namely, that although each line has a character-
istic impedance R,, proper matching requires a source and load resistor equal
to 2RL = 2R,,.
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Fig. 3-42 (a) Two lines connected
in series at the sending and receiv-
ing ends constitute a transformer;
(b) physical realization of the
“‘transmission-line’’ 1 : 1 noninvert-
ing transformer.

(@) ®

We noted earlier that there is zero voltage between A and C. Hence
there is also zero potential between P’ and 8’ because the voltage drop from
A to P’ is the same as the drop from C to §’. Therefore, we are free to make a
common ground connection at P’ and §’. In this case the voltage vpp = vss/
and the transformer is a 1:1 noninverting transformer. We are not at liberty
to make an inverting transformer by grounding, say, P’ and S because there
is a voltage difference between these two points.

An alternative manner of arriving at the configuration of Fig. 3-41b is
shown in Fig. 3-42. Here two lines, 1 and 2, each of characteristic impedance
R., are placed side by side. The inputs to the lines are placed in series, and
the input signal is applied to this combination. Similarly the receiving ends
are placed in series, and the load is connected to this combination. The
matching resistance must equal 2R,, which is the sum of the characteristic
impedances of the two lines.

In order to limit the current in the outer loops of Figs. 3-41b and 3-42q,
it is necessary to wind the lines around a magnetic core. A physical realization
of a 1:1 noninverting transformer is shown in Fig. 3-42b. Other transmission-
line transformers are possible® in which there is an integral relationship in the
voltage transformation ratio between primary and secondary.
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4 WIDEBAND AMPLIFIERS
(UNCOMPENSATED )

Frequently the need arises in pulse systems for amplifying a signal
with a minimum of distortion. Under these circumstances the active
devices involved must operate linearly. In the analysis of such
circuits the first step is the replacement of the actual circuit by a
linear model. Thereafter it becomes a matter of circuit analysis to
determine the distortion produced by the transmission characteristics
of the linear network. In this sense the present discussion is an
extension of the material of Chaps. 2 and 3 with the following impor-
tant differences. Previously we were satisfied with simply observing
the distortion introduced by various simple transmission networks
for several representative waveforms. Now we shall be concerned
with the problem of how the distortion may be minimized and how
the signal may be amplified.

The frequency range of the amplifiers discussed in this chapter
extends from a few cycles per second (hertz), or possibly from zero, up
to hundreds of megahertz. The original impetus for the study of such
wideband amplifiers was supplied because they were needed to amplify
the pulses occurring in a television signal. Therefore, such amplifiers
are often referred to as video amplifiers.

Basic amplifier eircuits are discussed here. Modifications of these
configurations to give improved characteristics are considered in the
following chapter.

4-1 FREQUENCY RESPONSE OF AN AMPLIFIER!

A criterion which may be used to compare one amplifier with another
with respect to fidelity of reproduction of the input signal is suggested
by the following considerations. Any arbitrary waveform of engineer-

11
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ing importance may be resolved into a Fourier spectrum. If the waveform is
periodic, the Fourier speetrum will consist of a series of sines and cosines whose
frequencies are all integral multiples of a fundamental frequency. The funda-
mental frequency is the reciprocal of the time which must elapse before the
waveform repeats itself. If the waveform is not periodie, the fundamental
period extends in a sense from a time — « to a time 4+ «. The fundamental
frequency is then infinitesimally small, the frequencies of successive terms in
the Fourier series differ by an infinitesimal amount rather than by a finite
amount, and the Fourier series becomes instead a Fourier integral. In either
case the spectrum includes terms whose frequencies extend, in the general
case, from zero frequency to infinity.

Consider a sinusoidal signal of angular frequency o represented by
Vasin (wt + ¢). If the gain of the amplifier has a magnitude 4 and if the
signal suffers a phase lag 6, then the output will be

AV, sin (wt + ¢ — 8) = AVa,sin [w (t — g) + ¢]

Therefore, if the amplification A s independent of frequency and if the phase
shift 6 is proportional to frequency (or is zero) then the amplifier will preserve
the form of the input signal, although the signal will be delayed in time by an
amount D = 6/w.

This discussion suggests that the extent to which an amplifier's amplitude
response is not uniform and the extent to which its time delay is not constant
with frequency may serve as a measure of the lack of fidelity to be anticipated
in it. In principle, it is really not necessary to specify both amplitude and
delay response since, for most practical circuits, the two are related and, one
having been specified, the other is uniquely determined. However, in par-
ticular cases, it may well be that either the time-delay response or amplitude
response is the more sensitive indicator of frequency distortion.

Video amplifiers of either the transistor or tube variety are almost invari-
ably of the RC-coupled type. For such a stage the frequency characteristics
may be divided into three regions. There exists a range, called the midband
frequencies, over which the amplification is reasonably constant and equal to
A, and over which the delay is also quite constant. In the second (low-fre-
quency) region, below the midband, an amplifier stage will be shown to behave
like a simple high-pass circuit of time constant 7, of the type depicted in Fig.
2-1. We have, then, that the ratio of the gain A, at low frequency to the
midband gain A4, is [see Eq. (2-1)]

4,
A,

1
VI+ G/
where fi = 1/2xr is the lower 3-dB frequency, or half-power frequency. In

the third (high-frequency) region, above the midband, the amplifier stage has
as its equivalent circuit the low-pass combination of Fig. 2-14 with a time

(4-1)
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constant r.. Hence the ratio of the gain A4, at high frequency to the midband
gain A, is [Eq. (2-31)]

A,

4,

1
=—— (4-2)
V1 + (F/f)?
where f; = 1/2xr, is the upper 3-dB frequency. The normalized time delays,
D, and D,, for the low- and high-frequency ranges, respectively, are given

JiDy = % = — 21—" ‘;71 arctani,;1 (4-3)
and
feDs = Z%?} = 21—1 ? arctan 17{ (4-4)

In the above expressions 8, and 8, represent the angle by which the output
lags the input, neglecting the initial 180° phase shift through the amplifier.
The frequency dependence of the gains in the high- and low-frequency range
is to be seen in Fig. 4-1.

The frequency range from f; to f, is called the bandwidth of the amplifier
stage. We may anticipate in a general way that a signal, all of whose Fourier
components of appreciable amplitude lie well within the range f; to f, will

A
20 1og|:;1| ,dB 20 log IA—:I ,dB
0

/
il
/) \

Slope is 6 dB/octave Slope is 6 dB/octave

- \

0.01 0.1 10 10 0.1 1.0 10 100

Fig. 41 A log-log plot of the gain characteristics of an RC-coupled amplifier.
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pass through the stage without excessive distortion. This criterion must be
applied, however, with extreme caution, as will be indicated later.

4-2 STEP RESPONSE OF AN AMPLIFIER

An alternative criterion of amplifier fidelity is the response of the amplifier
to a particular input waveform. Of all possible available waveforms, the most
generally useful is the step voltage. In terms of a circuit's response to a step,
the response to an arbitrary waveform may be written in the form of the super-
position integral. Another feature which recommends the step voltage is the
fact that this waveform is one which permits small distortions to stand out
clearly. Additionally, from an experimental viewpoint, we note that excellent
pulse (a short step) and square-wave (a repeated step) generators are available
commercially.

As long as an amplifier can be represented by a single-time-constant
circuit, then the correlation between its frequency response and the output
waveshape for a step input is that noted in Chap. 2. The nonzero rise time ¢,
and percentage sag or tilt P introduced by the amplifier are related to the
high and low 3-dB frequencies, respectively, by Eqgs. (2-33) and (2-14):

fat, = 0.35 (4-5)
and
P~ x’:f! X 1009, (4-6)

where f is the frequency of the testing square wave.

Quite generally, even for more complicated amplifier circuits than the
uncompensated single stage, there continues to be an intimate relationship
between the distortion of the leading edge of a step and the high-frequency
response. Similarly, there is a close relationship between the low-frequency
response and. the distortion of the flat portion of the step. We should, of
course, expect such a relationship, since the high-frequency response measures
essentially the ability of the amplifier to respond faithfully to rapid variations
in signal, while the low-frequency response measures the fidelity of the amplifier
for slowly varying signals. An important feature of a step is that it is a combi-
nation of the most abrupt voltage change possible and of the slowest possible
voltage variation,

An important experimental procedure {called square-wave testing) is to
observe with an oscilloscope the output of an amplifier excited by a square-
wave generator. We shall see later that it is possible to improve the response
of an amplifier by adding to it certain circuit elements which then must be
adjusted with precision. It is a great convenience to be able to adjust these
elements and to see simultaneously the effect of such an adjustment on the
amplifier output waveform. The alternative is to take data, after each
successive adjustment, from which to plot the amplitude and phase responses.
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Aside from the extra time consumed in this latter procedure we have the
problem that it is usually not obvious which of the attainable amplitude and
phase responses corresponds to optimum fidelity. On the other hand, the step
response gives immediately useful information.

It is possible, by judicious selection of two square-wave frequencies, to
examine individually the high-frequency and low-frequency distortion. For
example, consider an amplifier which has a high-frequency time constant of
1 psec and a low-frequency time constant of 0.1 sec. A square wave of half
period equal to several microseconds, on an appropriately fast oscilloscope
sweep, will display the rounding of the leading edge of the waveform and
will not display the tilt. At the other extreme, a square wave of half period
approximately 0.01 sec on an appropriately slow sweep will display the tilt
and not the distortion of the leading edge.

It should not be inferred from the above comparison between steady-state
and transient response that the phase and amplitude responses are of no
importance at all in the study of amplifiers. The frequency characteristics
are useful for the following reasons. In the first place, much more is known
generally about the analysis and synthesis of circuits in the frequency domain
than in the time domain, and for this reason the design of coupling networks
is often done on a frequency-response basis. Second, it is often possible
to arrive at least at a qualitative understanding of the properties of a circuit
from a study of the steady-state response in circumstances where transient
calculations are extremely cumbersome. Finally, it happens occasionally
that an amplifier is required whose characteristics are specified on a frequency
basis, the principal emphasis being to amplify a sine wave.

4-3 THE RC-COUPLED AMPLIFIER

A cascaded arrangement of common-cathode (CK) vacuum-tube stages is
shown in Fig. 4-2a and of common-emitter (CE) transistor stages in Fig. 4-2b.
The output Y, of one stage is coupled to the input X, of the next stage via a
blocking capacitor C which is used to keep the d-¢ component of the output
voltage at ¥, from reaching the input X,. The resistor R, is the grid leak and
the plate (collector) circuit resistor is R, (R.). The cathode resistor R;, the
emitter resistor R,, the screen resistor R,., and the resistors R, and R, are
used to establish the bias. The bypass capacitors, used to prevent loss of
amplification due to negative feedback, are C; in the cathode, C, in the emitter,
and C,. in the screen circuit. There are also present interelectrode capaci-
tances in the case of a tube and junction capacitances if a transistor is used.
These will be taken into account when we consider the high-frequency response,
which is limited by their presence. In any practical mechanical arrangement
of the amplifier components there are also capacitances associated with tube
sockets and the proximity to the chassis of components (for example, the
body of C») and signal leads. These stray capacitances will also be considered
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preceding o—-—{
stage

®)

Fig. 4-2 A cascade of (a) common-cathode (CK) vacuum-tube stages or
(b) common-emitter (CE) transistor stages.

later. We shall assume that the active device operates linearly, so that small-
signal models will be used throughout this chapter.

4-4 LOW-FREQUENCY RESPONSE OF AN RC-COUPLED STAGE!

The effect of the bypass capacitors C, C,, and C,. on the low-frequency
characteristics will be discussed later. For the present we shall assume that
these capacitances are arbitrarily large and act as a-¢ short circuits across Ry,
R,, and R, respectively. A single intermediate stage of either of the cascades

Cy

Fig. 4-3 A schematic representation
of either a tube or transistor stage.
Biasing arrangements and supply
voltages are not indicated.
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G ‘ G
Y, | ,b X, R, Y, b X,
1Y
I R, R, R, R, IR, R}
+
Z Z, Z Z
(a) 1 2 1 ®) 2

Fig. 4-4 (a) The low-frequency model of an RC-coupled amplifier; (b) an
equivalent representation. For a tube: I = gV, R, = r,, R, =R, R, =R,
and B; = ». For a transistor: I = h.ly, R, = 1/h., Ry = R\Rs/(R, + RJ),
Ry, = R, R; = h;, R; = R.R:;/(R: + R)), and R, = R.R,/(R, + R,).

in Fig. 4-2 may be represented schematically as in Fig. 4-3. The resistor R,
represents the grid-leak resistor for a tube and equals R, in parallel with R,
if a transistor stage is under consideration. The resistor R, represents R,
for a tube and R, for a transistor.

The low-frequency equivalent circuit is obtained by neglecting all shunt-
ing capacitances and all junction capacitances, by replacing A, by its input
impedance R;, and by replacing 4, by its Norton's equivalent, as indicated in
Fig. 4-4a. For a vacuum tube R; = w ; the output impedance is R, = rp (the
plate resistance); and I = g,,V; (transconductance times grid signal voltage).
For a transistor these quantities may be expressed in terms of the CE hybrid
parameters as in Sec. 1-3; R; = ks, (for small values of R.), R, = 1/h,, (for a
current drive), and I = h, I, where I, is the base signal current. Let R,
represent B, in parallel with R, and let R} be R, in parallel with R,. Then
replacing I and R, by the Thévenin’s equivalent, the single-time-constant
high-pass circuit of Fig. 4-4b results. Hence the lower 3-dB frequency is

1

G AL | @
This result is easy to remember since the time constant equals C, multiplied
by the sum of the effective resistances R, to the left of the blocking capacitor
and R; to the right of C,. For a vacuum-tube amplifier R, = R, > R,.
Since R, < R, because R, is R, in parallel with R,, then R, > R, and f, =
1 / 2‘]’0 bR,.

EXAMPLE Tt is desired to have a sag or tilt of no more than 10 percent when
a 50-Hz square wave is impressed upon an amplifier stage. The output-circuit
resistance is B, = 1 K. What minimum value of coupling capacitance is required
if

a. Vacuum tubes with B, = 1 M are used?

b. Transistors with R; = 1 K are used?
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Solution a. From Egs. (4-6) and (4-7), with f = 50 Hz and P < 10 percent,

100xf, _ 1

P = <10
§  (RL+R)NC™

or

1

10(R, + RY)

Since R} = 1 M and R, < R, = 1 K, then C, > (1/10") F = 0.1 uF.

. From Prob. 1-29 we find that for a transistor B, > 1/h., = 40 K and hence
E, ~ R, = 1 K. If we assume that B, >> R; = 1 K, then R; = 1 K. Hence
1

Co>—L _F =50 uF
* = (10)(2,000) #

Co 2

Note that because the input impedance of a transistor is much smaller than that of
a tube, a coupling capacitor is required with the transistor which is 500 times
larger than that required with the tube. Fortunately it is possible to obtain
physically small electrolytic capacitors having such high capacitance values at
the low voltages at which transistors operate.

The value B; = 1 K is reasonable for a grounded emitter transistor. If,
however, an unbypassed emitter resistor E, is used, then the input impedance
is mcrea.sed [Eq. (1-50)] by approximately hsR., to the order of 10 K or
higher. Under these circumstances C, can be reduced greatly, perhaps by a
factor of 10. Now, however, because of the degeneration introduced by E.,
the magnitude of the midband gain is much smaller.

Phase Distortion In the above illustration f, = 1/2x(0.1) = 1.6 Haz.
Since the fundamental frequency is f = 50 Hz, then f/f1 = 50/1.6 = 31, and
every frequency in the Fourier series of the input signal is at least 31 times
the 3-dB frequency. Since, from Eq. (4-1), |4:/4,| = (1 + 1/31%)~ = 0.9995,
then the amplification of all harmonics may be taken identical. Hence the
signal lies well within the passband of the amplifier as far as the low frequencies
which determine the flat top of the wave are concerned. And yet the hori-
zontal portions of the input are distorted into a 10 percent tilt in the output
waveform. We shall now demonstrate that the reason for this apparently
anomalous situation is to be found in the extreme sensitivity of the shape of the
output to a shift in phase of the fundamental frequency component.

A symmetrical square wave of unity amplitude and of fundamental
frequency f has a Fourier series,

v=§(sina+;,sin3a+;,sin5a+ ce) (4-8)

in which @ = 2xft. Consider first only the influence on the square wave of



Sec. 4-5 WIDEBAND AMPLIFIERS (UNCOMPENSATED) / 119

v
o1
1} 3
\\\ ’
Fig. 4-5 Modification of a square wave =
because of the phase shift of the
fundamental. 0

the phase shift of the fundamental. The phase shift ié, from Eq. (4-3),
H L
77

for small angles. The output is obtained by replacing a in Eq. (4-8) by
a + 6;. The waveform is then modified by

Ay = é[sin (a +f71) - sina]

Since, for small angles, cos (fi/f) ~ 1 and sin (f1/f) =~ fi/f, this equation
reduces to

0, = arctan=

Ay = —’? cosSa = §COS a : (4-9)

where § = 4f,/xf. 'The waveform, modified by the addition of Ay, is shown in
Fig. 4-5. The percentage tilt is

P=28X100%=§’?X100% (4-10)

For f1/f = 3'r, P = 8.1 percent. To take into account the effect of the phage
shift of the remaining harmonics (which will, incidentally, change the cosine
tilt into a linear tilt), we need but note that the nth harmonic is of relative
amplitude 1/n and is shifted in phase 1/2th as much as the fundamental.
Therefore the above result may be corrected by writing

P=8.1(1+§1§+51§+%+ ---)=8.1x1.23=10%

This result agrees with the value P = 10 percent given above.

45 HIGH-FREQUENCY RESPONSE OF A VACUUM-TUBE
RC-COUPLED AMPLIFIER STAGE!

For frequencies above the midband range we may neglect the reactance of
the large series capacitance C,. However, we must now include in Fig. 4-2
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Fig. 4-6 The high-frequency model of an

8nY; Ry, QB =€

.5’1

RC-coupled stage using a pentode.

the output capacitance C, from Y, to ground and the input capacitance C;
from X, to ground. To these capacitances must also be added the stray
capacitance to ground. If the sum of all these shunt capacitances is called C,
then the high-frequency model of Fig. 4-6 can be drawn. In order to keep
the input capacitance C; as small as possible, a pentode, rather than a triode,
is used for the tube. (See Sec. 1-7.) Hence, r, is of the order of magnitude
of a megohm, as is also R,, whereas E, is at most a few kilohms. Therefore
the parallel combination of these three resistors can be approximated by E,
without introducing appreciable error. As predicted above, the amplifier
stage at high frequencies behaves like a single-time-constant low-pass circuit.

Hence, the upper 3-dB frequency f» and the rise time ¢, are given by

1

h=gme b= 22RC C(a-11)

In the midband region, where the shunting effect of C' can be neglected
(X.> R,), the output voltage is V, = —gnR,V, and hence the midband
gain 4, = V,/V: (for R, < r, and R, K R,) is given by

A, = —gnR, (4-12)

The rise time of the amplifier may be improved by reducing the product
R,C. Every attempt should be made to reduce C by careful meghanical
arrangement to decrease the shunt capacitance. The rise time may also be
lessened by reducing R,, but this reduces simultaneously the nominal amplifier
gain. A figure of merit which is very useful in comparing tube types is
obtained by computing the ratio of the nominal gain to the rise time in the
limiting case where stray capacitance is considered to have been reduced to
zero. Alternatively we may define the figure of merit F' as the product of
A, and f;. From Egs. (4-11) and (4-12) we have, since C = C; + C,,

F=|Alf: = (4-13)

_gm
2r(C, + C5)
Since f2 > f1, the bandwidth f2 — fi =~ f;and |A,|f, = F is called the gain-band-
width product. It should be noted that f, varies inversely with plate-circuit
resistance whereas A, is proportional to R,,*so that the gain-bandwidth
product is a constant independent of E,. It is possible to reduce R, to such
a low value that a midband gain |A,] = 1 is obtained. Hence the figure of
merit F may be interpreted as giving the maximum possible bandwidth
obtainable with a given tube if R, is adjusted for unity gain. For video
pentodes such as the 6AKS5, 6BH6, 6AU6, 6BC5, and 6CL6, values of gm
ranging from 5 to 11 millimhos (thA/V) and values of C, + C; from 7 to
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20 pF are obtainable. The value of F for all these tubes lies between 80 and
120 MHz, which is attained with the 6 AKS5.

An amplifier with a gain of unity is not very useful. Hence, let us
assume that |A,] is at least 2. Then f, = F/|4.,] = 60 MHz for the 6AK5
tube. The corresponding rise time is {, = 0.35/60 usec = 6 nsec. In a practi-
cal circuit, the inevitable extra stray capacitance might easily reduce the band-
width by a factor of 2. Hence we may probably take a rise time of 12 nsec
or a bandwidth of 30 MHz as a reasonable estimate of a practical upper limit
for an uncompensated tube amplifier using lumped parameters. If the desired
gain is 10 instead of 2, the maximum 3-dB frequency is about 6 MHz.

The highest transconductance available in tubes is about 50 millimhos
and is obtained with frame grid pentodes having very close (0.05 mm) grid-
to-cathode spacing. For example, the Amperex type 7788 pentode has
gm = 50 mA/V and C, + C; = 20 pF, corresponding to F = 400 MHz. With
this tube a 3-dB frequency of about 20 MHz is possible with a gain of 10.
If more bandwidth is needed, then distributed amplifiers are used (Sec. 5-8).

The above discussion is valid for any stage of a tube amplifier, including
the output stage. For this last stage C., representing the input capacitance to

the following stage, is missing and its place is taken by any shunt capacitance
" of the device being driven (say a cathode-ray tube). Since the input imped-
ance of a transistor cannot be represented by a parallel resistance-capacitance
combination, the analysis of an internal stage differs from the final stage.
In the next section we consider the output stage and then we shall proceed
to the analysis of an internal stage of a cascade of transistors.

4-6 FREQUENCY RESPONSE OF A TRANSISTOR STAGE—
THE SHORT-CIRCUIT CURRENT GAIN

Consider a single-stage CE transistor amplifier—or the last stage of a cascade.
The load R on this stage is the collector-circuit resistor, so that R. = Rp.

8y'c
oy B I I
B —|( ' c
+ l T+ C, +
V. Vb'e 8ee EmVe R, Vee

O S L I

Fig. 4-7 The hybrid-II circuit for a single transistor with a resistive
load B.. Typical values for a high-frequency transistor are

rer = 100 9, Tye = l/gb’e =1 K, Tore = l/gb’c =4 M, Tee = l/gce =

80 K, Cy, = C., = 100 pF, Cy. = C, = 3 pF, and g, = 50 millimhos
(Gf Ic = 1.30 mA und VCE =6 V).
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I

i B’ C
Fig. 4-8 Approximate equivalent
gb,e(g :_,"l) Ce+Ce lIL circuit for the calculation of the short-
¢ T EnVye circuit CE current gain.

E E

To analyze the frequency response of the transistor amplifier we use the
hybrid-II model of Sec. 1-4. The equivalent circuit of the transistor with a
resistive load Ry is shown in Fig. 4-7. In the caption, representative values
of the circuit components are specified for a transistor intended for use at high
frequencies. We shall use these values as a guide in making simplifying
assumptions.

The approximate equivalent circuit from which to caleulate the short-cir-
cuit current gain is shown in Fig. 4-8. A current source furnishes a sinusoidal
input current of magnitude I;, and the load current is Iz. We have neglected
gvre, which should appear across terminals B'E, because gyrc K gore- And of course
g.. disappears because it is in shunt with a short circuit. There is an additional
approximation involved in that we have neglected the current delivered directly
to the output through g, and C.. We shall see shortly that this approxima-
tion is justified.

The load current is I = —gmVi, Where
Vie = 1 (4-14)
gyre + jo(Co + Co)
The current amplification under short-cireuited conditions is
A= —gn (4-15)

- Io‘ . gv's +jw(Ca + Cc)

Using the result given in Eq. (1-11), also noted in Fig. 4-8, that gye = gm/hse,
we have

—h
A= e : 4-16

TF5G/%) (*16)
where the frequency at which the CE short-circuit current gain falls by 3 dB
is given by

b,

e _ 1 gm -
I8 = 5x(C. ¥ C) = Ty 22(Co + C2) (4-17)

This frequency is also represented by the symbols f,,. and f... The frequency
range up to fs is referred to as the bandwidth of the circuit. Note that the

value of A; at w = 0 is —hy,, in agreement with the definition of —h,. as the
low-frequency short-circuit CE current gain.
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Since for a single-time-constant circuit the 3-dB frequency f. is given by
f2 = 1/2x RC, where R is the resistance in parallel with the capacitance, we could
have written fz by inspection as

fo = 1
27 20rv(C, + C)

in agreement with Eq. (4-17).
The Parameter fr We introduce now fr, which is defined as the frequency

at which the short-circuit common-emitter current gain altains unit magnitude.
Since hs. >> 1 we have, from Eqgs. (4-16) and (4-17), that fr is given by

fT = hfsfﬂ = 2’,(0‘0:_ Cc) == 2?:(‘7‘ (4-18)
since C, > C.. Hence, from Eq. (4-16),
—hye
A~ — D 4-19
¥ Fhss(F7F7) (4-19)

The parameter fr is an important high-frequency characteristic of a transistor.
Like other transistor parameters its value depends on the operating conditions
of the device. Typically the dependence of fr on collector-to-emitter voltage
and emitter current is as shown in Fig. 4-9. Note that it does not require a
very large change in operating conditions to change fr by a factor of 2.

Since fr = hy.fs this parameter may be given a second interpretation. It
represents the short-circuit current-gain—-bandwidth product; that is, for the CE
configuration with the output shorted, fr is the product of the low-frequency

Ig, mA
» I
o = 1[25MHz
| w0
% / 17577,
20 A A 20

15 ‘//,//
REVA7ZZ
[/ 78

o 05 10 15 20 25 Ves, V

W
\
g

5

1}

Fig. 4-9 Contours of constant fr versus emitter current and
collector voltage for type 2N501A p-n-p germanium MADT
" transistor. (Courtesy of General Instrument Corporation.)
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A;(dB)=20log |4,

20 log Ay,

6 dB/octave = 20 dB/decade

i
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I
|
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0 H

log f, logfy logf
Fig. 410 The short-circuit CE current gain versus frequency (plotted
on a log-log scale).

current gain and the upper 3-dB frequency. For our typical transistor (Fig.
4-7) fr = 80 MHz, and fs = 1.6 MHz. Itis to be noted from Eq. (4-18) that
there is a sense in which gain may be sacrificed for bandwidth and vice versa.
Thus, if two transistors are available with equal fr, the transistor with lower
ks will have a correspondingly larger bandwidth.

In Fig. 4-10, A; expressed in decibels (i.e., 20 log |4,) is plotted against
frequency on a logarithmic frequency scale. When f K fs A:= —hy, and
A; (dB) approaches asymptotically the horizontal line A; (dB) = 20 log hy..
When f>>fs, |Ad = hefa/f = fr/f, so that A; (dB) = 20 log fr — 20 log f.
Accordingly, 4; (dB) = 0 dB at f = fr. And for f>> fs the plot approaches
as an asymptote a straight line passing through the point (fr, 0) and having
a slope which causes a decrease in 4 (dB) of 6 dB per octave or 20 dB per
decade. The intersection of the two asymptotes occurs at the “corner”
frequency f = fs where A is down by 3 dB.

Earlier we neglected the current delivered directly to the output through
gve and C.. Now we may see that this approximation is justified. Con-
sider, say, the current through C.. The magnitude of this current is wCeVore
whereas the current due to the controlled generator is gmVe. The ratio
of currents is wC./gn. At the highest frequency of interest fr we have, from
Eq. (4-18), using the typical values of Fig. 4-7,

wCe _ 2mfrC. _  Co
m - bm - Ce + Cc 0.03

In a similar way the current delivered to the output through g,-. may be shown
to be negligible.

The frequency fr is often inconveniently high to allow a direct experi-
mental determination of fr. However, a procedure is available which allows
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a measurement of fr at an appreciably lower frequency. We note from Eq.
(4-16) that for f >> f3 we may neglect the unity in the denominator and write
|Ai|f = hgofs = fr from Eq. (4-18). Accordingly, at some particular fre-
quency fi (say f, is five or ten times fs) we measure the gain |4,|. The param-
eter fr may be calculated now from fr = fi|4.]. In the case of our typical
transistor, for which fr = 80 MHz and f; = 1.6 MHz, the frequency f; may be
fi =5 X 1.6 = 8.0 MHz, a much more convenient frequency than 80 MHz.

The experimentally determined value of fr is used to calculate the value of
C, in the hybrid-II circuit. From Eq. (4-18)

= 9n
C. = e (4-20)
The Parameter f. In addition to fr and fs, still another parameter f, is
used to characterize the high-frequency performance of a transistor. This
parameter f, is called the shori-circust common-base culoff frequency and is the
frequency at which the short-circuit CB current gain o« has fallen by 3 dB from
its low-frequency value. The current gain o is given by

a

G

A *2D
in which a, is the low-frequency value of o and f. is the common-base cutoff
frequency. We find in Prob. 4-6 that f. = fshse = fr. Although it is expected
that f. and fr should be very close in value, experimentally it is found that in
diffusion transistors f. =~ 1.2fp, whereas in drift transistors f. = 2fr. Dif-
fusion transistors are transistors in which the base doping is uniform, so that
minority carriers cross the base entirely through diffusion. In drift transistors
the doping is nonuniform, and an electric field exists in the base that causes a
drift of minority carriers which aids the mechanism of diffusion.

The reason for the discrepancy is to be found in the fact that our lumped-
circuit equivalent representation of the transistor is simply not accurate
enough. By way of example, consider Eq. (4-21), which predicts that at
f = fa |@] = a,/4/2 and predicts also that « has undergone a 45° phase shift
in comparison with its low-frequency value. This calculated amplitude
response is in close agreement with experiment, but the phase-shift calculation
may well be far off. It is found, empirically, that the discrepancy between
calculation and experiment can be very substantially reduced by introducing
an “excess-phase’ factor? in the expression for «, so that Eq. (4-21) becomes

a eimfify (4_22)

Qg
1+ j(f/fa)
In this equation m is an adjustable parameter that ranges from about 0.2 for
a diffusion transistor to about unity for a drift transistor.
Another parameter related to the high-frequency operation of a transistor
i8 fmaz. This parameter- gives the frequency at which the power gain (under
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matched conditions of generator and load impedances) is reduced to unity.
It is the maximum frequency of operation of a transistor oscillator and is given
by

Jr

f m‘ux = m (4-23)

The parameter fmax i8 not of immediate applicability in amplifier circuits.

4-7 CURRENT GAIN WITH RESISTIVE LOAD

To minimize the’ complications which result when the load resistor Ry in
Fig. 4-7 is not zero, we shall find it convenient to deal with the parallel combina-
tion of gy. and C, using Miller’s theorem of Sec. 1-7. We identify V. with
V, in Fig. 1-7 and V,, with V.. On this basis the circuit of Fig. 4-7 may be
replaced by the circuit of Fig. 1-9, which is repeated in Fig. 4-11a for con-
venience. This cireuit is still rather complicated because it has two inde-
pendent time constants, one associated with the input circuit and one associ-
ated with the output. We shall now show that in a practical situation the
output time constant is negligible in comparison with the input time constant
and may therefore be ignored. Let us therefore delete the output capacitance
C.(K — 1)/K, consider the resultant circuit, and then show that the reintro-
duction of the output capacitance makes no significant change in the perform-
ance of the circuit.

I

1

s B [
o- o = —0
8y (1-K) g, . (——-)
. c C.(1-K) b'c ce Spe\ K R
b = = = L
L4 GW ™~ v -1 R
8mVp'e C. K
O- T r g
(a)
~ 3
R C(L+gnBy) #Umvb'g R; lIL
M
()]

Fig. 411 '(a) Approximate equivalent circuit for calculation of response of a
transistor amplifier stage with a resistive load; (b) further simplification of the
equivalent circuit.
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Since K = V./Vy. is the stage amplification, we shall normally have
|K|>1. Hence gy{K — 1)/K =~ gy.. Since gie K gee (roe =4 M and
r. =~ 80 K), we may omit g, from Fig. 4-11¢. In a wideband amplifier R,
seldom exceeds 2 K. The conductance g.. may be neglected compared with
R; and the output circuit consists of the current generator g.V,. feeding the
load R;, as indicated in Fig. 4-11b. Even if the above approximations were
not valid for some particular transistor or load, the analysis to follow is still
valid provided that R; is interpreted as the parallel combination of the col-
lector-cireuit resistor, r.. and ry..

By inspection, K = V../Vi. = —gmR., and with g,, = 50 millimhos and
Ry = 2,000 @, K = —100. For this maximum value of K the conductance
gwe(l — K) ~ 0.025 millimho is negligible compared with gy, = 1 millimho.
Hence the circuit of Fig. 4-11a is reduced to that shown in Fig. 4-11b. The
load resistance R; has been restricted to a maximum value of 2 K because at
values of R, much above 2,000 @ the capacitance C.(1 + gnRL) becomes
excessively large and the bandpass correspondingly small.

Now let us return to the capacitance C.(K — 1)/K = C., which we
neglected above. For B, = 2,000 ,

RiC.=2X 10 X3 X 10712 = 6 X 10-° sec
The input time constant is
75:JCs + Cc(l + gmRr)] = 103(100 + 3 X 101)10!2 = 403 X 10? sec

It is therefore apparent that the bandpass of the amplifier will be determined
by the time constant of the input circuit and that in the useful frequency
range of the stage the capacitance C, in the output circuit will not make itself
felt. Of course, if the transistor works into a highly capacitive load, this
capacitance would have to be taken into account and it then might happen
that the output time constant would predominate.
The circuit of Fig. 4-11b is different from the circuit of Fig. 4-8 only in
that a load R. has been included and that C. has been augmented by g.R.C..
. To the accuracy of our approximations the low-frequency current gain Ay,
under load is the same as the low-frequency gain A, with output shorted.
Therefore

Ar, = —hy,

However, the 3-dB frequency is now f; (rather than fs), where

I S )
J2= 5l = 22C (4-24)

where

C = Cc + Cc(l + ngL) B . (4'25)
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4-8 TRANSISTOR AMPLIFIER RESPONSE TAKING
SOURCE IMPEDANCE INTO ACCOUNT

In the preceding discussions we assumed that the transistor stage was driven
from an ideal current source, that is, a source of infinite resistance. We
now remove that restriction and consider that the source has a resistive
impedance R,. We may represent the source by its Norton's equivalent,
as in Fig. 4-12a, or by its Thévenin's equivalent, as in Fig. 4-12b. At low
frequencies the current gain Aro = Ir/I: = —gmVero/gsreVere = —hg, from
Eq. (1-11). Therefore the low-frequency current gain,{ taking the load and
source impedances into account, is

I, I, I _ R, —hyoRs

—I_ I,; I _hfe Rc + Tob’ + Tve = Ra + h‘it

gince hi, = 7y + 7o. Note that Ay, is independent of Rz. The 3-dB fre-
quency is determined by the time constant consisting of C and the equivalent
resistance R shunted across C.. Accordingly,

1
F2 = 3RC
in which C is given by Eq. (4-25) and R is the parallel combination of K, + s
and r;., namely,

(R. + rw)rye
Ra + ht's

From Egq. (1-21) and the results of Sec. 1-6 we have that the voltage gain
Av.. at low frequency, taking load and source impedances into account, is

Aho = (4'26)

(4-27)

R= (4-28)

Ay = Ang B = R:h;’j% (4-29)

Note that Ay, increases linearly with R;. The 3-dB frequency for voltage
gain Ay, is also given by Eq. (4-27). Note that f, increases as the load

t See Sec. 1-6 for the definitions of the various current and voltage gains.

E ®) E

Fig. 4-12 (a) A transistor is driven by a generator of impedance R, which is
represented by its Norton's equivalent circvit. (b) The generator is represented
by its Thévenin's equivalent.
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resistance is decreased because C is a linear function of R,. At R. =0
the 3-dB frequency is finite (unlike the vacuum-tube amplifier, which has
infinite bandpass for zero plate-circuit resistance) and, from Eq. (4-20), is given
by

- 1 _fr _ _Jfs _
o= RRC.TC) Bk ErT0 (4-30)
For R, = 0 this quantity is of the order of fr/5 = 10fs and for B, = 1 K
(and Ry = 0), f2 =~ fr/25 =~ 2fs. Of course, for R. = 0 the voltage gain is
zero. In practice, when Ry # 0, much lower 3-dB frequencies than those ’
indicated above will be obtained.

As noted in Sec. 1-6, the equality in 3-dB frequencies for current and volt-
age gains applies only in the case of a fixed source resistance. The voltage
gain Ay (for the case of an ideal voltage source) and the current gain A; (for
the case of an ideal current source) do not have the same value of f;. In the
former case R, = 0 and in the latter case B, = «. Equation (4-27) applies
in both cases provided that for Ay we use R = Ry, where, from Eq. (4-28),

= _TwToe _ Yoy _
id Top + Toe hie (4-31)

and for A; we use R = Rj, where
R[ = Tye (4'32)

Since Ry < R, the 3-dB frequency fov for an ideal voltage source is higher
than f,r for an ideal current source.
The gain-bandwidth product is found in Prob. 4-9 to be

|Avufs = =, - Be Jr Ry

= %CE Fry  1F 20/;CRLE + 1 (4-33)

—_ f T Ra _
el = T 2O B 7 -39

The quantities fa, Ar., and Ay, which characterize the transistor stage
depend on both Rz and R,. The form of this dependence, as well as the order
of magnitude of these quantities, may be seen in Fig. 4-13. Here f; has been
plotted as a function of Ry, up to Rz = 2,000 @, for several values of B,. The
topmost f, curve in Fig. 4-13 for R, = 0 corresponds to ideal voltage source
drive. The current gain is zero and the voltage gain ranges from zero at
R: = 0t090.9at R, = 2,000 2. Note that a source impedance of only 100 &
reduces the bandwidth by a factor of about 1.8. The bottom curve has
R, = o and corresponds to the ideal current source. The voltage gain is zero
for all Ry if R, = . For any R the bandwidth is highest for lowest E,.

In the case of a vacuum-tube stage of amplification, the gain-bandwidth
product is a useful number. It does not depend on the plate-circuit resistance
and no driving generator impedance enters into the discussion. The gain-
bandwidth product depends only on the tube parameters and serves as a figure
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Fig. 413 Bandwidth f: as a function of R. with source impedance as a
parameter for an amplifier consisting of one CE transistor whose parameters
are given in Fig. 4-7. Also the gain-bandwidth product for a §0-Q source is
plotted. The tabulated values of |Ay,| correspond to R:. = 2,000  and to
the valves of R, on the curves. The values of [Auo[ are independent of B..

of merit for the tube. The constancy of the gain-bandwidth product is useful
in assuring us that the extent to which we sacrifice gain is exactly the extent
to which we improve bandwidth, and vice versa. In the case of a transistor
amplifier consisting of a single stage, the gain-bandwidth product is ordinarily
not a useful parameter. It is not independent of B, and Ry, and varies widely
with both. The current-gain-bandwidth product decreases with increasing R
and increases with increasing R,. The voltage-gain-bandwidth product
increases with increasing R; and decreases with increasing R,. Even if we
know the gain-bandwidth product at a particular R, and R. we cannot use the
product to determine the improvement, say, in bandwidth corresponding to a
sacrifice in gain. For if we change the gain by changing B, or R, or both,
generally the gain-bandwidth product will no longer be the same as it had
been.

The important formulas for a single-stage CE amplifier are summarized
in Table 4-1. Also included in the table are the results (obtained in Sec. 4-10)
for an internal stage of a chain of cascaded stages.
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TABLE 4-1 CE transistor amplifier summary

Im

T aCor Gy M R
1
fr= 2°RC t, = 2.2RC
Single stage: Ay, = AnRi/R.. The collector-circuit resistance is designated by Rr.
—hyR, —hpRL
A 20 - A 0 = T
: Rl + hﬁ'- v Rl + hil
© (Re + 7o )ore
R="———— C=0C,+C(1 B
Rt b + C1 + gmBi)
R
|Awall = j’ 2

14 2"’f rCRL R, + ro

Cascaded stages (internal stage): Ay = Ap = A. The parallel combination of the
collector-circuit resistance and the effective resistance at the base is designated by R..

R’W C = C. + C{1 + gnR1)
Al = e B b
(Rodoot = \/%—-—l - J
(f2duae = ,{:’; for R, = 0

4-9 TRANSIENT RESPONSE OF A TRANSISTOR STAGE

From the preceding analysis we see that the frequency response of the transistor
stage driven from a resistive source and working into a resistive load is that
of a low-pass circuit with a single time constant 7. For such a network, the
response to a unit input step is given by A.(1 — "), where A, is the steady-
state voltage. The rise time f, of this exponential waveform is given by
Eq. (2-33),
0.35
=227 =
If a current generator of impedance R, applies a step of current [ at the
transistor input, then
hyR.1
R, + hi

i = — (1 — &) (4-35)
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If the source is a voltage generator which supplies a step of vbltage V, then
the output voltage is

RV
TR, + ks

In each case f: depends on R, and Ry in accordance with Eqgs. (4-27; (4-28),
and (4-25). The rise time increases linearly with R since ¢, is proportlonal
toC =C. + C.(1 + gnRy).

For an ideal current source (R, = <) the current gain is |As,,| = hy., and
it follows from Eq. (4-34) with wr = 2xfr that ,

v, = (1 — s (4-36)

1 hy
T = 2—1'_7; = w—T' (1 + chcRL) (4-37)
4-10 CASCADED CE TRANSISTOR STAGES?

We consider now the operation of one transistor amplifier stage in a cascade
of many stages. Such a cascade is shown in Fig. 4-14. We have omitted
from this diagram all supply voltages and components, such as coupling capaci-
tors, which serve only to establish proper bias and do not affect the high-
frequency response. The collector-circuit resistor R, is included, however,
since this resistor has an effect on both the gain and frequency response. The
base-biasing resistors B and R, in Fig. 4-2b are assumed to be large compared
with R.. If this condition is not satisfied, then the symbol R, represents
the parallel combination of R:, R, and the collector-circuit resistance. A
complete stage from collector to collector is included in the dashed box. We
define the currant gain of the stage to be A7, = I,/I,. A comparison of Fig.
4-14 with Fig. 4-12 reveals that each stage behaves like a current generator
of impedance R, = R, delivering current to the following stage. We define
the voltage gain to be Ay = V,/V,. Since we have specified V', as the voltage
preclsely at the stage input, then Ay is the gain for an ideal voltage source.
We shall now prove that A;, = Ay for an infinite cascade of similar stages.
In a long chain of stages the input impedance Z; between base and emitter
of each stage is identical. Let Z; represent Z; in parallel with R.. Accordingly

Fig. 4-14 An infinite cascade of CE stages. The dashed box encloses one stage.
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all

Te.a-6

Fig. 415 The equivalent circuit of the enclosed stage of Fig. 4-14,

Z) = Vi/I, = Vi/Iy, s0 that Io/Is = Ay, = Va/Vi = Ayin this special case.
+We shall now calculate this gain A;, = Ay = A. For this purpose Fig. 4-15
shows the circuit details of the stage in the dashed box in Fig. 4-14. Also
shown is the input portion of the next stage so that we may take account
of its loading effect on the stage of interest. The symbol K used in the
expression C.(1 — K) for one of the capacitors is K = V./Vy. The elements
involving gy have been omitted since, as above, their omission can be shown
to introduce little error.
The gain A, = I,/I, at low frequencies is given by Eq. (4-26) except with
R, replaced by R., and we have

_ —huR,
*~ R+ e

To calculate the bandwidth we must evaluate K. From Fig. 4-15 we
obtain for K an unwieldy expression. Since K is a function of frequency,
the element marked C,(1 — K) is not a true capacitor but rather is a complex
network. Thus in order to proceed with a simple solution which will give
reasonable accuracy we shall use the zero-frequency value of K. We shall
show below that the response obtained experimentally will be somewhat
better than that predicted by this analysis and hence that we are erring in the
conservative direction. At zero frequency K = K, = —gmRy, in which Ry is
the resistive load on the transistor from C to E and consists of R, in parallel
with re + 75e = hi.. Therefore

Rhi

A (4-38)

Be=r¥h -39
and the capacitance is
C = C.+ C.(1 + gaR1) (4-40)

Thegainis A = I./I, = —gmVse/I1, where Viry = Virzo represents the voltage
across C. Instead of calculating Vi, directly from the input network of
Fig. 4-15 we again make the observation that this is a single-time-constant
circuit. Hence we can calculate the 3-dB frequency f: by inspection. Since
the capacitance C is charged through a resistance B consisting of 7y, in parallel
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with R, + 74, or
R = (B: + r)ryse

E. ¥ h u-41)
the 3-dB frequency is
1
fi= 7 RC (4-42)

This half-power frequency is the same for the current gain and voltage gain.
In using the approximation K = K, = —g¢, R, we are making a conserva-
tive error, since K, is the maximum magnitude of K and is attained only at
zero frequency. Using K, leads to the largest value of shunt capacitance C
and consequently to an overly low estimate of the bandwidth f,.
From the above equations the gain-bandwidth product is found to be

dafe| = o B S L
2 27C B. + vy 1 + 2ufrC.RrL R, + roor

- where Ry depends upon R, as indicated in Eq. (4-39).

(4-43)

Gain and Bandwidth Considerations Our only adjustable parameter is
R. and we now discuss its selection. At one extreme, if we set R, = 0
we would simply shunt all output current away from the following transistor.
As a matter of fact, it seems initially not unreasonable to set R, arbitrarily
high so as to avoid this shunting effect. However, as we reduce R, and thereby
lose gain, a compensating advantage appears. A reduction of R. reduces
Ry in Eq. (4-39) and also reduces R in Eq. (4-41). The reduction in R,
reduces C = C, + C.(1 + gnRy), and this reduction together with the redue-
tion in R increases f,, as is seen in Eq. (4-42). It may be that a decrease in
gain may be more than compensated for by an increase in f;. To investigate
this point we differentiate the gain-bandwidth product | Aofe] with respect to
R.. Setting the derivative equal to zero we find that a maximum does oceur.
The value of R, for which this optimum gain-bandwidth product is obtained
is designated by (R.)op, and is given by

h:'c

Rc 0] = — . 4~44
Riops = = — (4-44)
with
_ hiCe i
T= Co + Cc Tob’ (4-45)

In Fig. 4-16 we have plotted the gain, the bandwidth, and the gain-
bandwidth product. The maximum which is apparent [at R, = 360 Q, as
found from Eq. (4-44)] is not particularly pronounced.® Nevertheless there
is enough of a falling off at values of R, above or below (R.) opt 80 that it may be
worthwhile to operate near the maximum. ' It is important to bias the tran-
sistor so that at the quiescent point. a large value of fy is obtained (Fig. 4-9).
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Fig. 416 Gain |4,}, bandwidth f,, and gain-bandwidth product |4,:|
as o function of R, for one stage of a CE cascade. The transistor
parameters are given in Fig. 4-7.

Note in Fig. 4-16 that |4,f.| remains roughly constant for values of R, in
the neighborhood of (R.)opt or for larger values of R.. Hence, for a cascade of
stages (as distinct from the single stage considered in Sec. 4-8) the gain-band-
width product takes on some importance as a figure of merit. For our typical
transistor fr = 80 MHz, whereas the constant value of |Aof2| in Fig. 4-16 is
approximately 40 MHz, or 0.5/r. The authors have found that a good
general rule in choosing a transistor as a broadband amplifier is to assume
A.f» = 0.6fr. This conclusion is based upon calculations on more than twenty
transistors for which the hybrid-II parameters were known. These had values
of fr ranging from 700 kHz to 700 MHz. In each case (R:)ops was found
and the value of A,fs at this optimum resistance was calculated. - All values
of gain-bandwidth produect were in the range between 0.4fr and 0.8fr. The
values of A,f; were also calculated for several values of R, besides (R.)opt, and
it was confirmed that the gain-bandwidth product remained constant over a
wide range of values of R..

It must be remembered that bandwidth cannot be exchanged for gain
at low values of gain because A.f; is not constant for small values of R, or A,.
The maximum value of fs, which occurs at R, = 0, is given by

o I _ Jrhe
© (f2)mex = g:R = by | (449)
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For our typical transistor (fs)mex = 17 MHz, as indicated in Fig. 4-16, and
this value of bandwidth is obtained only at zero voltage gain.

The design of the pulse amplifier represents, as usual, a compromise
between gain and bandwidth. If 4, is specified, then the load R, which must
be used is found from Eq. (4-38). Then the bandwidth which will be obtained
is found from Eq. (4-42). On the other hand, if the desired rise time ¢, is
specified, then f; = 0.35/¢, substituted into Eq. (4-42) will not allow a direct
calculation of E,. The reason for the difficulty is that R depends upon R,
and that C = C, + C.(1 4+ g.R.) is also a function of R, through R., as
given in Eq. (4-39). Under these circumstances an arbitrary value of R,
say 1,000 @, is chosen and f; is calculated. If this value is larger (smaller)
than the desired value of f;, then the next approximation to E, must be larger
(smaller) than 1,000 Q. By plotting f; versus R, the desired value of R, can
be found by interpolation.

The approximations which we have made in this analysis are valid if Ry, is
less than 2,000 2. Since Ry is the parallel combination of R, and k., ~ 1,100,
there are no restrictions on the magnitude of R,. As R.— «, R = hi, and
A, = —h;.. The asymptotic limits in Fig. 4-16 are found to be |4,| = 50,
f2 = 0.59 MHz, and |4,f.] = 29.5 MHz.

The important results obtained above for an internal stage of a cascade
are summarized in Table 4-1 on page 131. These formulas are not valid
for the first or last stage. For the first stage the equations in Table 4-1 for a
single stage apply, provided that the load Ry is taken as the collector-circuit
resistance in parallel with the input resistance of the second stage,

R.hi,

Bi= g Th

For the last stage in a cascade use the formulas for a single stage, with R, equal
to the collector-circuit resistance R, of the preceding stage and with Ry equal
to the R, of the last stage.

4-11 RISE-TIME RESPONSE OF CASCADED STAGES*

We have seen that one stage of an amplifier, whether of the tube or transistor
type, behaves like a circuit with a single time constant . If the midband
gain is A, the high-frequency transfer function is 4,/(1 4 jwr) for a single
stage. It is convenient to carry out a transient analysis in the complex-
frequency s plane (or the Laplace domain). Using this notation and with
Vi(s) = the input voltage and V.(s) = the output voltage, then

Vo(s) A,
V.’(S - 1 + 8T

~—|
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Since the gains of cascaded stages are multiplicative, the transfer function for
n identical stages is

I(8) _ Vols) _ A"
Iy V(s (Q+sn)m

If the input is a step V, then V(s) = V/s. The output function has an

(4-47)

nth-order pole at s = —1/r and a first-order pole at s = 0. Defining the
normalized response y and the normalized time z by
y = Z—"(ﬂ% and T = ;

we find from the inverse Laplace transform that
z2 3 -1 .
y—l—[1+x+ﬁ+3~!+ +m]e (4-48)
If it is observed that the polynomial in the brackets is the first n terms of the
power-series expansion of **, then this equation can be written in the form
13"+1

fe g —z
y=[m+m‘+]e (4-49)

Near the origin (z = 0) the curves start out like z». Therefore the firstn — 1
derivatives are zero. As n increases there is introduced into the response
a progressively larger delay. This is observed in Fig. 4-17, where the response

ARV V.0 82 ars P
1 A0
WSS S S A A
f / ////
N inaviVAa a4
W17/ 7
22 A
[/ 1/ A

x==

Fig. 4-17 Response [y = v,(t)/ A"V of cascaded identical uncompensated
stages. (Adapted from Ref. 4, fig. 1-25.)
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for the cases n = 1 to n = 10 is shown. We also note that the rise time ¢,
(for n stages) increases with n.

By determining the time between 0.1 and 0.9 values from the graph in Fig.
4-17 we can calculate ¢, For a single stage (n = 1), ¢, = 2.2r. Values of
/1, have been tabulated in Table 4-2. Also listed are values of 1.1 /7,
which we see is an excellent empirical approximation for ¢, /¢,

From Table 4-2 we see that if we wish to have an overall bandpass of
1 MHz with a two-stage amplifier, then the upper 3-dB frequency of each
must be 1.5 MHz. If 1 MHz is desired with a three-stage amplifier, then
each (identical) stage must be 1.9 MHz wide, ete. ‘

It will be shown in the next chapter that even for a circuit which is more
complicated than a single RC combination the rise-time-bandwidth product
remains approximately constant at 0.35. This result suggests that we try
to calculate the rise time from the bandwidth. The upper 3-dB frequency
for n cascaded amplifiers is £, and may be computed from

1 n 1 )
. S (A 4-50
[\/1 + (fa(")/fz)’] V2 (4-50)
80 that
fr _ 1 (4-51)

VAR
Therefore, if we assume that t,™f,™ = t.f,, we have

(n)
1 (4-52)

LT VAo
Values of (2¥» — 1)~* are also listed in Table 4-2. Note the very good agree-
ment with the correct values of rise-time ratios.

The delay associated with the curves of Fig. 4-17 may be specified by the
time required for the response to go from 0 to 0.5. We see that each stage
beyond the first introduces the same amount of delay. For n amplifiers, the

TABLE 4-2 Comparison of exact rise-time ratios with ratios given by square-root
rule and bandwidth rule

[ .
7 [Ea (4490 1.5 (1922|2528 13.0/3.3]3.45|3.6
1 Y 1.55|1.9|22]|2512.7 |2.9]|3.1(3.3 |3.5

(2'» — 1)} [Eq. (4-52)]......... 1.5512.0|2.3]|2.612.8(3.113.3{3.5 (3.7
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delay is given approximately by (n — 0.3)RC. This delay is not ordinarily
considered as a distortion.

From the above discussion we may expect that, at least approximately,
the following rule applies with respect to the overall rise time ¢, of n noniden-
tical stages. If the rise time of the individual amplifiers i8ty, bay . . ., ben
and of the input waveform rise time is ¢,, then the output-signal rise time is
given (to within 10 percent) by

& = 1.1 ‘\/th>+ trl2 + trz’ + - + trﬂ2 (4'53)

Having considered the rise-time response of cascaded stages we shall now
inquire into the flat-top response of such cascaded stages. Before doing so,
however, let us investigate all possible causes for a tilt in the step response
of an amplifier. We already know that the blocking capacitor between stages
is one contributor to such a tilt. In the next two sections it is shown that the
screen, cathode, and emitter bypass capacitors also affect the tilt in the
amplifier output waveform.

4-12 EFFECT OF SCREEN BYPASS ON LOW-FREQUENCY RESPONSE

The screen-grid circuit consists of a voltage-dropping resistor R, and a
capacitor C,. from screen to ground, as in Fig. 4-18. If a positive step voltage
is applied to the grid, the plate current increases and hence so does the screen
current. At ¢ = 0, the screen voltage V,. is at its quiescent value. As time
passes, the capacitor must discharge to a steady-state voltage equal to the
plate-supply voltage minus the new value of the screen current times R,..
Therefore there is a droop in screen voltage with time and a corresponding
tilt in the output plate voltage. The waveshape is similar to that encountered
if too small a blocking capacitor C, is used.

The method of calculating the size of the screen capacitor to keep the tilt
below a certain value is best illustrated by a numerical example. Consider
a 6CL6 with a quiescent current of 20 mA and V.. = 150 V. Because of a
step input to the grid, the plate current increases to 30 mA. What is the

Fig. 4-18 Use of a screen-dropping resistor and
a bypass capacitor to supply screen bias
voltage.
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minimum value of C,. if the tilt is to be less than 10 percent for a 50-Hz square
wave?

The screen current for a 6CL6 is approximately one-fourth the plate
current. Hence, the screen quiescent current is 5 mA and the screen current
under signal conditions is 7.5 mA. The difference, or 2.5 mA, must come
from the screen capacitor, and this current will discharge the capacitor. If
we assume that the plate current is approximately proportional to the screen
voltage, then we can allow only 10 percent drop in V,, or 15 V. Thus

_ L)t

AV, = .. (4-54)

where ¢ is the time for half a cycle = 0.01 sec. Thus

_ (ALt _25x10% oo
Csc - AV” = 15 X 10 F = 1.7 MF

This is a reasonable value, and hence screen grids are usually bypassed.

When it is desired to decrease even the small tilt which might be intro-
duced by the screen circuit and when an appropriate low-impedance screen
power supply is not available, the screen may be fed from a cathode follower
whose grid is at a fixed voltage with respect to ground. If the sereen current
changes by 2.5 mA, as in the above illustration, and if the cathode-follower
output impedance is, say, 400 @, then the change in screen voltage is only
25X 1073 X 400 =1V,

4-13 EFFECT OF AN EMITTER (OR A CATHODE) BYPASS
CAPACITOR ON LOW-FREQUENCY RESPONSE

If an emitter resistor R, is used for self-bias in an amplifier and if it is desired
to avoid the degeneration and hence the loss of gain due to R., then we might
attempt to bypass this resistor with a very large capacitor C.. The circuit is
indicated in Fig. 4-2. It will be shown that if the input is a square wave, the
output is a square wave with a tilt similar to that due to the coupling capacitor
between stages.

In the analysis it is convenient to use the hybrid-II model of Fig. 4-7. At
low frequencies we may neglect the capacitances C, and ¢,. We have already
demonstrated in Sec. 4-6 that for the usual parameters encountered in a pulse
amplifier the conductances g+ and g.. may also be taken as zero. The equiv-
alent circuit, subject to these approximations, is given in Fig. 4-19a.

A current 4 causes a drop 7.3, across r4, and, as a consequence, the collector
current is 4, = gmryrely = hyodp. The current s, = 4 + 4, = (hye + 1)3. If the
impedance in the emitter lead is Z.(s), then, as a consequence of the current
1(8), the drop across Z, is (hy. + 1)Z.(s)i5(s). Therefore, looking into termi-
nals EN from the input side we see an impedance (h;, + 1)Z,. The current
may be determined, accordingly, from the equivalent circuit of Fig. 4-19b.

~
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(b

Fig. 4-19 (a) The low-frequency hybrid-II equivalent circuit of a transistor with an

emitter impedance; (b) the equivalent input circvit.

The time constant r of this circuit is given by the product of C./(hse + 1)
and a resistance given by the parallel combination of R’ and R, where

R' = R,(hse+1) R = R+ r + rore = Ry + b (4-55)

so that
_ RR C.
TT R+ R hp+1

If the input signal v, is a step of magnitude V, then #w=V/Ratt =0+
(because the capacitor acts as a short circuit) and 4 = V/(R + R’) att =
(because the capacitor behaves as an open circuit). Since the output voltage
is

(4-56)

Vo = —iRL = —gmBitsre = —gmBrroets = —hyRits (4-57)
then, using Eq. (2-3),
_ h]eRLV R, —t(t -
Vo = -—R+R, 1+F€ (458)

If t < r, then we may expand the exponential and, retaining only the linear
term, we obtain

hpeBLV R .t
=" "pg O R+Hﬁ (4-59)
The percentage tilt in the output is
_ Rt (b + 1) -
P = yoA X 100% = RC. X 100% (4-60)

Note that the tilt is independent of R. and Ry provided that the tilt is small.

Assuming R, = 0, let us calculate the size of C. so that we may reproduce
a 50-Hz square wave with a tilt of less than 10 percent. Using the parameters
of our typical transistor, namely, hre = 50, roe = 1 K, 7o = 100 2, and with
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Fig. 4-20 The equivalent circvit of a pen-
tode stage (r,>> R. + R;) with a cathode
impedance.

t = 0.01 sec for one-half a cycle,

 (51)(0.01)(100) . _
C. = —qiomao T -

For a 1 percent tilt, C, would have to be at least 46,000 xF! If R, = h;, =
1,100 © then R is doubled and C, is cut in half. Such large values of capaci-
tance are impractical and it must be concluded that if accurate reproduction of
the flat top of a square wave of low frequency is desired the emitter bias resistor
must be unbypassed. The flatness will then be obtained at the sacrifice of
gain because of the degeneration caused by E,. If the loss in amplification
cannot be tolerated, R, cannot be used.

If the active device is a pentode instead of a transistor, the equivalent
circuit of Fig. 4-20 must be used. From a comparison with Fig. 4-19a it is
clear that the above analysis remains valid for a tube, provided that we take
Tore = ©, 150 =0, B, = 0, C, = C, and R, = R:. Since, as ;.. approaches
infinity,

h/a + 1 — gmrb’a + 1 =
R

Tbre

4,600 uF

gm

" the percentage tilt is, from Eq. (4-60),

P= %’L‘ X 100% (4-61)
k

If g, for the pentode is 5 millimhos (one-tenth that of the transistor), then for
a 1 percent output tilt with a 50-Hz square-wave input the capacitor C; must
be at least 5,000 uF, still an unreasonable value,

414 FLAT-TOP RESPONSE OF CASCADED STAGES*

If, upon application of a voltage step, one resistance-capacitance coupling
circuit produces a tilt of P, percent and if a second circuit produces a tilt of
P, percent, the effect of cascading these circuits is to produce a tilt of P, 4+
P; percent. This result applies only if the individual tilts and combined tilt
are small enough so. that in each case the voltage falls approximately linearly
with time. We shall now prove these statements.
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For a step input of amplitude V, the output of the first circuit is Vet/n ~
V(1 — t/ry), in which 7, is the time constant. If this signal is applied to the
second circuit, of time constant r; = R:C,, then, neglecting the possible gain
of the active device, the result may be computed from the equation

Rzi+l= V(l———)

Differentiating this equatlon with respect to ¢ (remembering that v, = Rs7)
yields

dt T2 T

@3_’_1}, 14

The solution for the output voltage v,, subject tov, = Vat ¢t =0, is
= -V 4 V(l + 1?) tin
1 T
-~V (1 _t i) (4-62)

L T2

Since /7, is the tilt due to the first network and t/r. is the tilt due to the second
network, Eq. (4-62) verifies the rule started above: the resultant tilt caused
by two RC circuits in cascade is the sum of the tilts due to each network.
Since the output again has a linear tilt, we may extend the result to an arbi-
trary number of stages, provided only that the net tilt remaing small enough
to be represented by a linear fall.

It was noted earlier that, within a single amplifier stage, tilt may be
introduced by the coupling circuit, the screen circuit, and the cathode or
emitter circuit. Since each of these produces its tilt by a mechanism which is
independent of the others, the net tilt produced by an individual stage may be
computed again by simply adding the individual tilts.

We have seen that one stage of an RC-coupled amplifier, whether of
the tube or transistor type, behaves like a circuit with a single time con-
stant . If the midband gain is A4,, then the low-frequency transfer function
is A,/(1 — j/wr), which, in the Laplace domain, may be written for a single
stage as

A, Agsr
1+ 1/st 1+ sr
For n identical stages with a step voltage of magnitude V, the Laplace trans-
form of the output is

V n V Aousn-l
Vile) = (1 ¥ sr) S GF i (4-63)
The output function has an nth-order pole at s = —1/r. Taking the inverse
transform we obtain for y = v,/ A,*V versus z = t/r ‘
n—1
1 _ &7 i) (4-64)

= - Dldze—!
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= e x,=01

~0.5—

Fig. 4-21 Normalized low-frequency response of one and five identical cas-
caded stages to an input pulse (whose trailing edge occurs at z = 0).

For small values of x, we may write e* = 1 — z in Eq. (4-64), which then
reduces to

y=l—n:c=1—’%t (4-65)

This equation again verifies the fact that the tilt of n identical stages is # times
the tilt of a single stage.

A pulse of width ¢, may be considered to be the result of the superposition
of a positive step which occurs at ¢ = 0 and a negative stepat{ = ¢,. Suppose
that a pulse of width ¢, is applied to a cascade of a number of amplifiers with
identical low-frequency time constants, The response at the end of the pulse
(for t > t,) may be obtained from Eq. (4-64) by forming the difference

U = vo(t) - U.,(t - tp)

For very small values of ¢, (more specifically if ¢>> t,), it follows from the
definition of the derivative that

di di
Vg = t,,-di; = x,d—':
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where z, = t,/r. Using Eq. (4-64), we have for ya = va/ A"V

v = 2 g @) (4-66)

Let us assume z, = 0.1 = #,/7, so that for a single stage there is a tilt

of 10 percent during the pulse. The response during and after the pulse is

indicated by the dashed curve marked n = 1 in Fig. 4-21. For five cascaded

stages the tilt will be about 50 percent during the pulse, and the response

is indicated by the solid curve (n = 5) in Fig. 4-21. Theoretically for n stages

there should be n — 1 crossings of the zero voltage axis, but because the attenu-

ation is so great not all of these are clearly visible in Fig. 4-21. It is of practical

importance to note that the response to a pulse persists for a very long time
relative to the pulse itself.

4-15 CATHODE INTERFACE RESISTANCE®

In many vacuum tubes there develops with use a cathode interface layer between
the base metal of the cathode and the active emitting surface of the cathode,
as shown in Fig. 4-22. The interface compound is & semiconductor compound
formed as a result of the chemical interaction between the oxide-emitting
material and the base metal or with some reducing constituent of the base
metal. The resistance of the interface layer may lie in the range from several
ohms to several hundred ohms and may therefore have an appreciable influence
on tube operation. Additionally, the emitting surface and the cathode base
metal serve as the electrodes of a capacitor, the cathode interface layer acting
as a leaky dielectric between these electrodes. The overall effect of the inter-
face layer is to introduce into the cathode a parallel resistance-capacitance
combination whose time constant, it is found experimentally, normally lies
in the approximate range 0.2 to 2.0 usec.

In video amplifiers the effect of cathode interface resistance may well be
gerious. For a signal whose period is very large in comparison with the interface
time constant, the principal effect is a loss in gain since the effective transcon-
ductance of the tube will be reduced from gm to gm/(1 + gnR:), R: being the

7

Active emitting
coating

Fig. 422 Cross section of cathode, showing
interface layer. Interface layer

/ % Base metal
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interface resistance. An abrupt discontinuity applied to the tube grid will
appear at the output similarly reduced in amplitude but accompanied by an
overshoot at the leading edge of the pulse.

Interface resistance is present to some extent in all tubes with oxide-
coated cathodes but is usually particularly pronounced in tubes whose cathode
base material contains a large amount of silicon. Interface resistance is
inversely proportional to cathode area and is therefore more serious in tubes
with small cathode areas. Also, since the effect of interface resistance is to
reduce the effective transconductance by the factor 1 4 g.R;, high-g. tubes
are particularly sensitive to interface effects. Interface resistance increases
with the total number of hours that the cathode has been heated, and the
end of the useful life of a tube may be the result of interface resistance rather
than loss in cathode emission.

A second disease which is often characteristic of video amplifier tubes has
the popular designation “slump.” The term is applied to a tube which
behaves as though there were present in the cathode a parallel resistance-
capacitance combination with a time constant in the range of several seconds.
The response of such a tube to an input negative step is an output positive
step which gradually slumps to a lower voltage level. The origin of “slump”
is not well understood. The effect is often a source of difficulty in the design
of d-c¢ amplifiers for cathode-ray oscilloscopes.
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5 WIDEBAND AMPLIFIERS
(COMPENSATED)

By adding a few passive circuit elements to the basic amplifier con-
figurations discussed in the preceding chapter improved character-
istics may be obtained. The rise time may be shortened and the tilt
may be decreased. These compensated amplifiers are considered in
detail in the present chapter.

By employing transmission-line coupling between active elements
it is possible to extend the bandpass of & vacuum-tube amplifier into
the hundreds-of-megahertz region. These so-called ‘‘distributed
amplifiers’ are also discussed in this chapter.

5-1 SHUNT COMPENSATION OF A VACUUM-TUBE STAGE!—+

One of the simplest methods available for improving the rise-time (or
high-frequency) response of an amplifier without loss of gain is to add
an inductor L in series with the plate-circuit resistor R,, as in Fig. 5-1.
This arrangement places L in parallel with the capacitance which
shunts the stage, and hence the circuit is called a “shunt-compensated”
or ‘“shunt-peaked’” amplifier.

We can readily see, qualitatively, why the inductor improves the
high-frequency response. The plate-circuit impedance is now Z, =
R, + joL and increases with frequency, so that the gain is larger
than it would be if L were absent. This increase in amplification
tends to offset the decrease in gain die to the shunting capacitance C,
whose reactance decreases with increasing frequency.

The analysis of the uncompensated amplifier discussed in the
preceding chapter was made in the frequency domain. The gain
funetion turned out to be that corresponding to a single-time-constant

147
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1Ll

+ — Vi cs v, L
o | T _
@ = L = ®

Fig. 5-1 (a) A shunt-compensated stage; (b) the equivalent circuit if
s > R, ' '

circuit or, equivalently, the transfer function contained a single pole. Under
these circumstances we see in Sec. 4-9 that the transient response can be written
down immediately. For the shunt-compensated stage we shall find a more
complicated transfer function (one containing two poles and one zero). For
this case a knowledge of the frequency response (the amplitude and phase
versus frequency) is of very little practical help in finding the transient
response. Hence, the present analysis will be made in the complex-frequency
s plane (the Laplace domain) so that the rise-time response can be obtained
directly.

Since the input circuit for a stage containing a tube is different from that
using a transistor, each analysis will be considered separately, the former
in this section and the latter in the next. Since for a pentode r, > R,, the
equivalent circuit of a shunt-compensated stage is that given in Fig. 5-1b.
The output voltage equals the short-circuit current times the impedance (or
divided by the admittance) across the output port [Egs. (1-1)], or

_ —gnVi(s)
Ve®) = 1R, + sL) + 5C 6D

The transfer function A(s) is the ratio of output to input voltage, or

Vo(s) _  —gm(sL + Ry)

Al) = 05 = #0L + OB, + 1

(5-2)

This function has two poles and one zero and may be written in the form

Vi(s) _ —(gn/C)(s + 5
Z0) (s + s1)(s + s2)

It is convenient to introduce the parameters K and f., defined by

C
K = R” \/\ 21rR 2rR,C ‘ . ‘ (5-4)

(5-3)
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in which case

8 = % :; } = 7f,K? + «f.K? \/1 - Kiz (5-5)

The parameter f, is, of course, the upper 3-dB frequency of the uncompen-
sated amplifier (L = % and K = 1/Q,. Here Q, is the @ at the resonant
frequency (w, = 1/4/LC) of the series combination of R,, L, and C, so that

Qo = wL/R,.
Let us consider the transient response to an applied step V so that
v
Vi(s) = ry

Depending upon whether K is equal to, smaller than, or larger than 2, the
response will be critically damped, underdamped (oscillatory), or overdamped.
The results of taking the inverse Laplace transform of V,(s) are given below
for the various special cases. For convenience we introduce the normalized
time z and normalized response y given by

—_— t — F—— va oo |
=R Tt VST LRy (5-6)
and we have
Critical Damping, K = 2
y = 1 — 472 — Qpgpeirs (5_7)

Underdamped, X < 2

— K2 JRE—
Yy = 1 4 vkt [I—(—2¢\/4—_—KK28in ('u'K v‘i — Kzﬁ:)

— cos (xK V4 = K“’x)] (5-8)

Overdamped, K >> 2 In this case of large K, s1 = 2xf2K? and s; =~ 2xfs.
The term in the solution associated with the first of these roots will decay very
rapidly; we may therefore neglect it and write

y=1— it =] — RS A (5-9)

as is to have been expected.
From Eq. (5-4) the inductance L is given by

L = mR,C (5-10)

where m = 1/K?. (Both parameters, m and K, are used in the literature.)
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Fig. 5-2 Response of a shunt-compensated vacuum-tube stage to a unit
voltage step. (Adapted from Ref. 2.)

The unit step response for several values of K is shown in Fig. 5-2. As
the peaking inductor is increased in value, there is a progressive improvement
in rise time without accompanying overshoot up to the point of critical damp-
ing. Beyond this point the amplifier response exhibits a progressively larger
overshoot. The factor by which the rise time is improved (divided) by
compensation is p = t,/t,, in which ¢, and ¢, are, respectively, the rise time of
the amplifier before and after compensation. The parameter p and the per-
centage overshoot v are plotted in Fig. 5-3. For the case of critical damping,
m = 0.25, the rise time is improved by the factor 1.43.

If the frequency response is determined by replacing s by jo in Eq. (5-2)
it is found that the curve having the most uniform amplitude response (maxi-
mum flatness) corresponds to K = 1.54. The curve having the most constant
time delay is given by K = 1.71. The curve for which [4:/4,] =1 at
f/fs = 1 is given by K = 1.41. The overshoot v and rise-time improvement
p for these special cases are summarized in Table 5-1.

TABLE 5-1 Overshoot and rise-time improvement

K m = 1/K? v % p Characteristic
2 0.25 0 1.43 Critical damping
1.71 0.34 1.0 1.70 Most constant delay
1.54 0.42 3.8 1.90 Maximum flatness
1.41 0.50 6.5 2.00 |[|A2/A =1latf/fs=1
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The amount of overshoot which is tolerable is very largely a function of
the application of the amplifier. For example, for an amplifier to be used in
oscillography, any visible overshoot would be objectionable. On the other
hand, in television amplifiers, overshoots as large as 5 percent not only may be
acceptable but may actually improve the quality of the resultant picture. If
the number of stages used is large, then the overshoot should be kept below
about 2 percent (Sec. 5-4).

In the case of no compensation it will be recalled [Eq. (2-33)] that the
product ¢,f; = 0.35. It is of interest to note that the same rule also applies
quite well in the present case of shunt compensation. For example, we may
calculate that for critical damping the amplitude response falls by 3 dB at
f/f: = /2. Since we estimated above that in this case the rise time was
divided by the factor 1.43, we have that

T 5 tr o~ _
fit, =N2f Tag = fate =035

where, here, ¢, and f; are the rise time and bandwidth for critical damping.

An initial estimate of the peaking inductance required may be made by
estimating the total shunt capacitance. The required inductance is usually
in the range 1 to 100 xH. Adjustable coils are available for this application,
and the final adjustment is made experimentally by the method of square-wave
testing. The inductance is changed by varying the depth of insertion into
the coil form of a powdered-iron slug. The square-wave frequency is set 8o
that the half period of the square wave is several times the rise time and the
inductance is adjusted to give the type of response most suitable for the appli-
cation for which the amplifier stage is intended.
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5-2 SHUNT COMPENSATION OF A TRANSISTOR STAGE
IN A CASCADELS

The circuit in the dashed box of Fig. 4-15 is a complete stage, collector to
collector, in a cascade of stages. This complete stage is redrawn in Fig. 5-4
with the addition of the shunt-compensating inductor L. The capacitor
C=C.+ C(l — K). As before, we use the low-frequency gain X = K,
in the calculation of C. Since at low frequencies the inductor acts as a short
circuit, K, is unaffected by L. Hence, C is given by Table 4-1 (and is repeated
in Table 5-2, on page 156, for convenience).

The transfer function (current gain or voltage gain, since in Sec. 4 10 we
show that the two are identical) has the same form as Fq. (5-3), namely,

Iy(s) _ —(gn/C)(s + 50)
A®) = 705 = G F 06 F 5 (5-11)
where
5 = % (5-12)
8 1/(R. + r 1 1 R; 4 ryp 1 2
sz} 5( A +F,,‘TC)¢§[< I +r,,,,0)

4 R.+ hio
-6 ] (5-13)

We seek to adjust the circuit so that, for an applied step input waveform,
the output response will have the shortest rise time consistent with no over-
shoot. The transfer function of Eq. (5-11) has a single zero and two poles,
just as does the transfer function of Eq. (5-3) for the shunt-compensated
vacuum-tube stage. In correspondence with that case we might have expected
that an adjustment which satisfies the condition s, = s; would ensure no over-
shoot. However, we shall now find that an additional condition (besides
81 = 82) must be satisfied if the response is to be monotonic.

Identical Poles For an input current step I1(s) = I/s. When s; and s»
are identical, so that s, = s, = s, we have from Eq. (5-11) that

I(s) = —@=/OC + )] | (5-14)

s(s + )2

Fig. 5-4 The equivalent circuit of
one stage of a cascade of shunt-
compensated transistor stages.

hic = Topr + Toree
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The final-value theorem of Laplace transform theory is () = lim s72(s).
. —0

Hence the steady-state value of the current, the value attained by 4x(f) at

t = o, is 4(®) = —gus,I/Cs? Taking the inverse transform of Eq. (5-14),
the output current, normalized with respect to this final value, is
- —0852’52(5) _ _ . _ S et
y——g"‘.s—oI——l 1+ sit(1 -s-: € (5—15)

If the response is to be monotonic, then the slope dy/dt ‘must not be zero
except, of course, at t = . We find for the derivative

dy 2ol _ﬁ ,1_
4~ goen[s(1-2) 1]

from which it is clear that if s, > s;, then 1 — s;/s, 2 0, so that there will be
no value of ¢ for which dy/dt = 0. The magnitude of the zero must equal or
exceed that of the pole in order to ensure a response without overshoot. In the
vacuum-tube case it turns out that this condition is automatically satisfied
since there s, = R,/L and s; = R,/2L.

From Eq. (5-13) we have, since the quantxty within the square root
must be zero for equal poles, that

_ R, + 7 1 1 R, + he
$=3 (—T + r—o) IC re (5-17)

Since Eq. (5-17) is quadratic in L, the equation is satisfied by either of two .
inductance values. Correspondingly s; may assume one of two values. The
larger s;, the smaller is the rise time, since the exponent in Eq. (5-15) is propor-
tional to s;.. The smaller L, the larger is s;. After some algebraic manipula-
tion we find that the smaller value L’ of L that satisfies Eq. (5-17) is

L= rC ( \/Rcm ) (518

Using this value of I’ we find that the condition s, > s; imposes on R, the
restriction

R, > Towhe (5-19)

Thre

The rise time may be determined by using numerical or graphical means
to calculate from Eq. (5-15) the value of sit for which y = 0.1 and again the
value of s;f for which y = 0.9. . The difference between the two is s, where &,
is the compensated rise time. From Eq. (5-15) we see that s, is a function of
8i/s, = d. Of more interest than the compensated rise time is the rise-time
improvement due to compensation, p = ¢,/f,. We have, using ¢, from Table
4-1, that

tr _ 22RC _ 22

8 '
b= t—; = 7 (si/s0)sitl s RC (5-20)
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Using Eqgs. (4-41), (5-17), and (5-12) we find that 8*RC/s, = (R. + raw)/Re.
Further, the quantity (s./s.)s#, is a function only of the ratio s;/s, = d.
Therefore

p= Bt p) (5-21)
in which$
2.2
B(d) = 54hd , (5-22)

The quantity B(d) is plotted in Fig. 5-5 as a function of d. We have already
proved that s, > s;, and hence the maximum value of d = s;/s, is unity. From
Eqgs. (5-12) and (5-17), with L = L’
_ 8 _ 1 1 ‘Tovp’ L’
i==3%3\& Tm.EC (5-23)
Since all the parameters in this equation are positive, the minimum value of d
is 0.5. Hence the abscissa in Fig. 5-5 extends only from 0.5 to 1.0.
Substituting for L’ from Eq. (5-18) into Eq. (5-23) we obtain, after
some algebraic manipulation,

a=" (Rc + b _ \/Rc + h¢,> (5-24)

Tb'e Tore

Since at low frequencies the inductance acts as a short circuit, the compen-
sated midband gain is the same as that of the uncompensated stage.

We have now completed the analysis on the basis of which we may select
the proper value of inductance and calculate the rise-time improvement for
the case where we have initially selected R, so that it satisfies the condition
given in Eq. (5-19). We shall now show how an overshoot may be avoided
even when R, is too small to satisfy Eq. (5-19).

B
14\
13 \\
Fig. 5-5 The function B(d).

12 N :

\\
11 \\
10

05 06 07 08 09 10 4.5
8,

o



Sec. 5-2 WIDEBAND AMPLIFIERS (COMPENSATED) / 155

Pole-Zero Cancellation A response without overshoot may also be
obtained if we arrange for a pole-zero cancellation. For example, if s, = 83,
then for an applied step I1(s) = I/s, Eq. (5-11) yields

== ————gml -
I:(s) Css + 59 (5-25)
Taking the inverse transform, we find for the normalized response
= — ,%}12_0) - — e ut (
ol 1 —¢€ (5-26)

which increases monotonically with time.
"Using Egs. (5-12) and (5-13) we find that either of the conditions s; = 8
or s, = ; leads to the same value L of inductance, which is given by

- ryerosr B.C

1"
L his

(5-27)

The rise time corresponding to the solution given in Eq. (5-26) is 2.2/s1.
Had we canceled the other pole, so that s, = s, the rise time would have been
2.2/s,. Since we are interested in obtaining the fastest possible response, we
must cancel the smaller pole. This smaller pole is that at s», where s, cor-
responds to the minus sign in Eq. (5-13). Accordingly

Rc 1 Rc + Top’ 1
17 S ‘2°< LII + Tb'cC) (5'28)
Combining Eqgs. (5-27) and (5-28), we have the condition on R, that
R, < The (5-29)
Toe
Since from Eq. (5-13)
R. ’ 1 R.
81+82='—‘Z*—,Ty"ﬂ" m and 82=S,=Ef,’
then
- Top’ 1 — Rc + h-'e (5_30)

S =17t T Rl

where we have used the value L” from Eq. (5-27). The compensated rise
time ¢ is now given by
22 22RaC

= T Rt e (5-31)

From Table 4-1 and Eq. (5-31) we find that

— f: - R(R: + hie) _ R + rw
= tr B Rcrb'e - Rc (5-32)
Since 8, > 83 = &, 81/% > 1. If we define B(d) =1 for d = s1/s, > 1, then
Eq. (5-21) for p may be used for all values of R..

X
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Design Considerations The results derived in this section are summa-
rized in Table 5-2, which is convenient for reference when-designing a shunt-
compensated stage. The midband gain 4, is the same with compensation (L
in series with R,) as without compensation because .at low frequencies the
reactance of L may be neglected compared with the resistance R..

It is interesting to compare the performance of the shunt-compensated
transistor stage in a cascade with that of a similar tube amplifier. The rise-
time improvement for the tube (under conditions of critical damping) is 1.43
regardless of the parameters. For the transistor stage p = [(R. + ruw)/R.]B,

TABLE 5-2 Shunt-compensated CE transistor stage in a cascade

Notation
(Rc + rbb’)rb'a R.hi.
= —— = C = e ¢ 1 mR
B tm TRt Co o Cll 4 gmin)

The low-frequency gain (compensated or uncompensated) or collector resistance

— _hf¢R¢ or R, = _tho'a
Rc + hiu ¢ Ao + h!l

o

Inductance for R. > rwhi./ry. (identical poles)

2
oy (1 _ \/&ﬂ)
Tore

Inductance for R. < rephi./rve (pole-zero cancellation)

L = ToreTopr FBC
hie
Uncompensated rise time

t, = 2.2RC
Compensated rise time

g o220 R
"~ B(d) R. + ha

Rise-time improvement factor p = t./t,

_ R; + ropr
R,

Pore (Rc + ke, \/Rc + h.»,)
d == —
R. Tore Tore

and B(d) is plotted in Fig. 5-5 and is given in the following table:
d 0.5 0.55 0.6 0.65 0.7 0.8 0.9 >1.0

p B(d)

where

B 1.43 | 1.33 1.25 1.18 1.13 1.05 1.01 1.00
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where B(d) is between 1 and 1.43. It is thus seen that for low values of R,
shunt compensation is more effective with transistors than with tubes; an
improvement considerably greater than 1.43 may be attained. With values
of R. much greater than ry, the parameters d, B, and p each approach
unity and shunt compensation is less effective with transistor than with tube
amplifiers. )

The design of a stage for a specified gain 4, is straightforward. From
Table 5-2 we can solve directly for the resistance R. in the collector circuit
and for the compensating inductance L' or L". Corresponding to these values
we can calculate the compensated rise time ¢, by first finding C and B from
the formulas in Table 5-2. However, if the desired rise time ¢ is specified,
then the solution is more complicated because of the dependence of # upon
resistance R, implicitly through C and B. A method of successive approxi-
mations can be used,’ or we may proceed by assuming various values of R.
and obtaining the corresponding rise time . From a plot of E. versus 4
we can find the value of R, which yields the desired rise time. This method
will now be illustrated.

EXAMPLE Design a shunt-compensated stage for. the transistor whose parame- -
ters are given in Fig. 4-7 so that a rise time of 40 nsec is obtained. Find R, L,
and 4,. What is the rise-time improvement due to the compensation?

Solution The parameters are gn = 5 X 1072 mho, i, = 1,000 Q, rr = 100 Q,
hi = 1,000, C. = 100 pF, and C; = 3 pF. We shall now find ¢, as a function of
R.. Start with R, = 1,000 @ as a first try. Using the formulas in Table 5-2,

R _ (1,000)(1,100)

R, = = =524 Q
TRt b 2,100
C =C.+ C.(1 + gnRy) = 100 + (3)(1 + 5 X 102 X 524) = 182 pF
d = zb:v Rc + hl'e _ JR(; + ht’c)
R. Tore Tore

1,000 (2,100 _ \/2_1 = 0.65
1,000/ \ 1,000 '

B(0.65) = 1.18 from Fig. 5-5

,_22C _rvRe _ (2:2)(182 X 107%(1,000)(1,000) _
" B(d) R + ki (1.18)(2,100)

This value is very much larger than the desired 40 nsec rise time. Hence, our

first guess of 1,000  for R, was much too large. Let us therefore now try B. = 250
Q. Proceeding as above, we find )

R,—204Q C=—134pF d=076 B=108 t =50.5nsec

t 161 nsec

This rise time is still too large, and hence R, must be somewhat smaller.
Assuming R, = 200 Q, we find

Rr.=167Q¢ C=128pF d=08 B=105 ! = 41.2 nsec
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Extrapolating from 250 £ and 50.5 nsec through 200 @ and 41.2 nsec we obtain
R, = 195 © for 40 nsec. Corresponding to R, = 195 we find C = 128 pF and
B = 1.05. Since

rahie _ (100)(1,100)
Tbre 1,000

R, > =110 2

then we must use the value L’ and not L”:

o 1 1 \2
L' =ri,C (1 - \/R—?L—h—) = (10%(128 X 107?)(1 — +/1.205)* H

Tore

= 2.44 pH
4o —heRe _ —(G0199) _
R. + ke 1,295
R, + 1o (295)(1.05)
do T pgy = ERN00) ) g
P R, 2@ 195

The above analysis gives the inductance value for the response with-
out overshoot. TUsing an adjustable choke of this nominal value the method
of square-wave testing is used to obtain experimentally the desired type
of response (perhaps a few percent overshoot) for the application under
consideration.

5-3 ADDITIONAL METHODS OF RISE-TIME COMPENSATION®

Various networks of the type shown in Fig. 5-6 have been suggested for coupling
the output Y, of one tube stage to the input X; of the next in an attempt to
improve the rise-time response of a video amplifier. The following termi-
nology is common in the literature:

Ci=0 Li=0 L, = shunt compensation

Cy#0 Li=0 L,=0 tuned-shunt compensation

Ci=0 Li=0 Ly#0 series compensalion

Cy=0 Li#=0 Ly %0  shunt-series compensation

Ci#=0 Ly#0 La# 0 Dietzold compensation
The detailed analysis of any of these circuits except shunt peaking is very
involved and will not be considered here. Optimum values of Ci, Ly, and L,
are best determined experimentally. The process of adjustment for best
response is usually quite complicated because the various parameters interact

with one another. Furthermore, a rise-time improvement of only about 1.5
is obtained over that for shunt peaking even with the most complicated circuit
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Y, T X2
L,
Ry
Fig. 5-6 Four-terminal coupling networks.
C= L,
o —+- o

of Fig. 5-6. For these reasons the four terminal coupling networks are not as
popular as the simple shunt-compensated network. Occasionally one of the
more complicated networks is used because it makes possible the elimination
of one stage in a multistage tube amplifier and thus effects a worthwhile
economy of parts. Similar arrangements are possible also with transistor
amplifiers, but these more complicated networks have found practically no
applications.

In passing, it is interesting to note that the product of bandwidth and
rise time for any of the networks of Fig. 5-6 remains approximately equal to
that of the uncompensated stage, or

fobr = fof. =~ 0.35 (5-33)

5-4 RISE TIME OF CASCADED COMPENSATED STAGES’

When identical stages which individually have overshoot are cascaded, it is
still possible to make some general rules concerning the overall response.
These rules apply only very roughly but are nevertheless of some value.

When the individual stages have very small overshoot, of the order of
1 or 2 percent, the overshoot increases very slowly with the number of stages
or may even fail entirely to increase. For example, if the overshoot for a
single stage is about 1 percent, at 16 stages it has grown to only about 4 percent
and is still about the same at 64 stages. If the rise time and bandwidth for
n stages are £, and f>'™, respectively, then it is found that the equations
t™ = 1.1 v/nt, and £, = fu, also hold reasonably well in this case.

Circumstances are different when the overshoot is in the range 5 to 10 per-
cent. In this case the rise time increases appreciably more slowly than
/7, whereas the overshoot instead grows approximately as 4/n. If, there-
fore, an amplifier is to have a fairly large number of stages, it is clear that the
individual stages must be adjusted for very slight or no overshoot.

5-5 LOW-FREQUENCY COMPENSATION®

In Sec. 4-4 it is seen that for a step input the amplifier response is not flat-
topped but exhibits a downward tilt because of the coupling or blocking
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Cy

Fig. §-7 The decoupling filter R, and
Cq4is used for low-frequency com-
pensation. For a tube R, = R, and
R, = R,. Foratransistor, Byis R, in
parallel with R, the base bias re-
sistors of Fig. 4-2b, and R, = R..

capacitor C,. If, in Fig. 4-2, we add a high resistance R, in series with R,
or R. which connects to the supply voltage and bypass this resistor to ground
with a large capacitance C; we may compensate for the tilt in the output wave-
form—The added elements are indicated in Fig. 5-7, which should be com-
pared with Fig. 4-3. These additional components R; and C; are often used
with a multistage amplifier as a decoupling filter to minimize the interactions
between stages which result from the use of a common power supply. This
same decoupling network compensates for the low-frequency distortion intro-
duced by C;. Thus at high frequencies (in the midband region) C, acts as a
short circuit across R, and the gain of the amplifier is determined by R,.
At low frequencies, however, C; becomes a large reactance and the effective
output-circuit resistance increases toward R, + R, This increase in ampli-
fication tends to compensate for the loss in output due to the attenuation
caused by the reactance of C,, which increases as the frequency is reduced.

It is clear from the above qualitative discussion that R, should be as large
as possible. Therefore, let us begin the quantitative analysis by assuming R4
to be infinite. Furthermore, let us consider that the active device—pentode
or transistor——is a perfect current source, so that its output impedance may be
taken as infinite. For a negative step voltage applied to the input a constant
current I, is delivered, as indicated in Fig. 5-8. The resistance E; is R, in
parallel with the input resistance R; of the following stage.

Since the current I, divides inversely as the parallel impedances,

- 1 _pry 1L
Zl = Ry + st and Zz = R,; + st
the Laplace transform of the current.in R} is (I./$)[Z:/(Z: + Z,)], or
R!I, R, + 1/sC,
Vo(s) = —= ¥ 5-34
© R, F R+ (1/9(/Ca ¥ 1/C) (539
_Iq. ‘ Fig. 5-8 The equivalent circuit of Fig. 5-7 for
o :L the flat-top response, assuming the active
R, G device behaves as an ideal current generator.
L For o tube R, = R,. For a transistor R is R
c R v, in parallel with R,, the input impedance of the
13
o T l' next stage.




Sec. 5-5 : WIDEBAND AMPLIFIERS (COMPENSATED) / 161

Let R, be the series combination of R, and R; and let C, represent C; in series
with Cs, so that

_ ’ _ _Cil :
R, =R, + E; C"—C’d+Cb (5-35)
Then
_ R,RI(s +1/R,Ca)

Vo) = TR (s + 1/R.CS) (5-36)
Taking the inverse Laplace transform we obtain

¥ = 210 = Ve + 1) (5-37)
where

_ (DR, _ .t
Y=T1RR "7 RC., (5-38)
o= BaCe 14 Ca/Cy (5-39)

R.C. 1+ R//R,
Let us inquire about the output waveform as a function of Czsor A. The
results are shown in Fig. 5-9.
Perfect Compensation, A =1
y=1 (5-40)

This case corresponds to a flat-topped output, or to perfect compensation.
Note that A = 1 or R,Cq = R,C, results in a pole-zero cancellation in Eq.
(5-36). From Eq. (5-39) we see that this special case of A = 1is equivalent to

Ca _ R
C, R,
or to
CR;
Cd = b — = C/ (5-41)
R,
y
. =} 110
10 A=1 100 }yatx=01
095
. . A=es\T 090
Fig. 59 Normalized output voltage A2 )
response to a step input of a stage
compensated for low-frequency tilt.
The parameter A given in Eq. (5-39)
is adjusted by means of the com-
pensating capacitance Ca.
0 1
0 01 ¢
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We see that perfect compensation corresponds to the case where the two
branches of the circuit in Fig. 5-8 have the same time constants. The capaci-
tance C; for perfect compensation may be quite large. For example, for a
tube circuit with C, = 0.1 yF, R; = R, =1 M, and B, = R, = 1 K we find
C; = 100 yF. For a transistor for which R is of the same order of magnitude
asR, = Rc, szCb ‘350[&F

No Compensation, A > 1

Y~ e (5-42)

This case corresponds to no compensation at all (C; is very large). For
times small compared with the time constant R,C,, so that r < 1, we have
approximately

y~1-—1z (5-43)

Undercompensation, A = 2
=31+ ¢ (5-44)
and for z < 1

x

. We see that even if Cy is twice as large as the value C, required for exact com-
pensation, the percentage tilt is one-half the tilt of the uncompensated case,
as may be seen by comparing Eq. (5-45) and Eq. (5-43).

Overcompensation, A = }

y=2— e (5-46)
and for z < 1,
y=~1+z (5-47)

In this case the positive tilt is equal to the negative tilt of the uncompensated
amplifier. Note that if “overcompensation” (an upward tilt) is observed in
square-wave testing of an amplifier, it is to be corrected by increasing the
size of C,.

The curves of Fig. 5-9 are unrealistic because of the assumption that R,
is infinite. For large values of ¢, the capacitors C; and C, act as open circuits
and hence eventually all the current must flow through R; and not R.. Thus,
all curves of Fig. 5-9 must eventually drop to zero. For example, the curve
marked A = 3 would then have a rounded top. It is to be noted that if a
square wave were to be applied to the amplifier for testing purposes, we would
normally select the half period of the square wave to be approximately 0.1 R,C,.
In this case the input square wave would, after transmission through the
amplifier, have the appearance of one of the curves of Fig. 5-10.
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J t t t
. .
(a) (b) {c)

Fig. 5-10 Low-frequency square-wave response of an amplifier. (a) C; too
large; (b) perfect compensation, €y = CiR}/R,; (¢) C4 too small.

Finite R; In the above analysis B; was infinite. Let us remove this
restriction and examine the effect of a finite value of Ry It is desired that
the output start out as flat as possible, or that dy/dt = 0 at t = 0. This
condition was satisfied for R: = « by choosing Cy in accord with Eq. (5-41).
Since at t = 0 the capacitor C; acts as a short circuit across Ry, then regardless
of the value of B, the output will begin with a horizontal slope, provided that
C: = CR./R,. For this particular value of capacitance Cs we find in Prob.
5-17 that the first two terms of the power-series expansion of the normalized
output voltage are

_ R, =z
A S (5-48)
where ‘
-t = Ba
*=%c. "TE (5-49)

It is now seen that the tilt is parabolic and not linear and that the initial
slope is indeed zero. The amount of tilt to be expected is given by the follow-
ing example. If the uncompensated tilt is, say, 10 percent, so that z = 0.1,
then Eq. (5-48) gives a compensated tilt of less than (0.1)2/2n X 100 per-
cent = 0.5/n percent because R;/(R; + R,) < 1. Hence, even if n = 1 or
R, is just equal to R, (instead of R;>> R,), the tilt is at most 0.5 percent.
For a pentode R = R, > R, and R)/(R; + R,) = 1, whereas for a transistor
R; may be of the same order of magnitude as R, and the tilt is reduced even
further.

The above theory indicates that the proper procedure for low-frequency
compensation is to choose E; as large as possible and then to choose Cj to
satisfy

R,Cs = RICs

The upper limit on R, is determined by the fact that the quiescent device cur-
rent passes through R; and that the power supply must be able to furnish this
voltage drop.
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Tilt Due to Several Sources In Secs. 4-12 and 4-13 it is shown that the
tilt may be produced not only by the coupling circuit but also by the screen
and cathode or emitter circuits. Further, the overall tilt is the sum of the
tilts due to each of these three causes, provided that each sag is small. Let
the resultant tilt be P percent in the time 7/2 of half a cycle. If the screen and
cathode or emitter bypass capacitors were arbitrarily large, then this tilt
would be obtained if the blocking capacitance had an effective value C; given
by P = 100T/2R,C;. Hence, it is possible to compensate for the total tilt
by choosing C.; to balance this effective Cy, or from Eq. (5-41)

_ R, 100TR, _ 50 R
Cs="R, =2PR.R, “JPR, B, + E, (5-50)

where f is the frequency of the testing square wave.

5-6 RISE-TIME COMPENSATION IN THE CATHODE CIRCUIT

In Sec. 4-13 we see that an unreasonably large bypass capacitor C; is needed
across the cathode self-biasing resistor R; in order to prevent low-frequency
distortion. If no capacitor C; is used, the midband gain is divided by 1 + g Rx
because of the feedback in the cathode resistor, but there will be no tilt in the
output for a step input. Suppose we now add a small capacitor Ci in an
attempt to improve the high-frequency response. Since the voltage across a
capacitor cannot change abruptly, C; acts initially as a short circuit across R,
so that there is no degeneration at the instant that the step is applied, and
therefore the rise time should be improved. It will indeed be shown below
that if we adjust R.Ci, = R,C, the bandwidth will be multiplied by the factor
1 + gnRi. However, since at the same time the nominal gain will be divided
by the same factor, then unlike the compensation methods described above
(shunt peaking, etc.) the gain-bandwidth product will remain unaltered. If
the circuit served no other purpose than to extend the bandwidth at the expense
of gain it would be of little interest, since the same end may be achieved by
the much simpler expedient of reducing the plate-circuit resistance B,. How-
ever, since we have here a case of current feedback, this circuit has better
- stability of gain and more linearity of operation.

K R, C= Y% Fig. 5-11 The equivalent circuit of a
- pentode with a cathode impedance.
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To consider the effect of the cathode impedance on the gain and rise time
we draw the equivalent circuit in Fig. 5-11. Since for a pentode r,>> R, +
R,, no plate resistance appears in this circuit. A straightforward analysis
yields for the transfer function

Vo(s) —_ ngL ~
ZORRE T A (5-51)

where Z; represents R, and C in parallel, and Z; is the parallel combination
of R, and C;: ’

R

_ » R:
Y= 1+ sCR,

Z = 1 + kaRk

Z

Combining these three equations gives

Vo(8) _ _—gnBy 1 + sCiRy
Vis) 1+ sCR, 1+ gnRi + sCrRx

(5-52)

This function has two poles and one zero, and there is the possibility of over-
shoot in the response to a step input. However, if we choose C; so that
the zero cancels one pole, then a single time constant remains and a response
without overshoot is assured. Thus, let

CiRy = CR,, (5-53)
For a step input, so that V,(s) = V/s,

AV

Vi(s) = S0+ s70)

(5-54)

where the midband gain A, and the compensated time constant r. are given by

—gnly — CR,

b = AL ey (5-55)
The output is
—_ —g"‘RPV . —tlTe -
b= [ (1= ) (5-56)

If the cathode were connected directly to ground, the output would be
Vo = —ngpV(l _ e-tlr,) (5-57)

in which 7, = R,C. In either case the ratio of gain to rise time is the same and
equals ¢../2.2C.

In order to see some of the useful features of cathode compensation,
let us compare two amplifiers, one without and one with cathode compensation.
The first amplifier, without compensation, has a plate resistor R,. The second
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amplifier has a plate resistor aR, and a cathode resistor selected to make
1 + ngk =a

The quiescent tube current and voltage are to remain as before, which means
that the plate resistor aR, must be returned to a higher supply voltage. It
may happen that the cathode resistor selected will furnish the bias required
for optimum linearity of tube operation. More generally, however, some
additional external bias will be required. The capacitance C shunting the
plate to ground is to be the same in both cases. These two amplifiers now
have the same gain and the same bandwidth.

One advantage of the compensated amplifier that is readily apparent
is its greater stability of nominal gain with respect to variation of tube param-
eters. In the case where the nominal gain is given by —gmaR,/(1 + gmB:)
the gain will be a less sensitive function of g. than in the case where the gain
is given by —¢.R,. In the limiting case in which g,R; >> 1, the gain for the
compensated case is simply —aR,/ R, independently of gm. '

A second advantage of the compensated amplifier is an improvement
in linearity of operation. The nonlinearity of a pentode amplifier results
from the variation of transconductance g, with tube current. The effective
transconductance of the compensated stage is gm/(1 + gnR:i). For large
values of g,R: the effective transconductance becomes quite insensitive to
variations in the g.. of the tube. Additionally, since the load resistor is « times
as large in the compensated as in the uncompensated stage, the current swing
in the compensated amplifier will be 1/a times the current swing in the uncom-
pensated amplifier for the same output signal. Hence for the same output
signal from the two amplifiers the response of the compensated amplifier will be
more linear. For comparable linearity in the two cases the compensated stage
can provide a larger output signal.

If the capacitor Ci were not present, then because of cathode-follower
action the amplifier would handle a peak-to-peak input signal larger than the
grid base of the tube. However, it must be emphasized that because of the
presence of C; the input signal must be restricted in amplitude to the grid base.
Otherwise the operation of the circuit will be highly nonlinear, as explained in
Sec. 8-15.

5-7 HIGH-FREQUENCY RESPONSE OF A STAGE
WITH AN EMITTER IMPEDANCE

In Fig. 5-12 there are indicated circuits with emitter impedances. If an
amplifier is under consideration the output is taken at the collector. Under
these circumstances we shall show that it is advantageous to bypass the
emitter resistance, as in Fig. 5-12a (or at least a portion of it as in Fig. 5-12b),
in order to improve the transient response. On the other hand, the output
may be taken across R, if an emitter follower is desired. In this case C,, in
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Cy
(__
R,
R,
(b)

Fig.5-12 Stages with an emitter impedance. These circuits may be
used either as emitter followers or to provide gain,

Fig. 5-12a, represents the inevitable shunt capacitance of the load and the -
stray capacitance. We wish to study the high-frequency behavior of both -
these circuits. We shall, for simplicity, assume that R,, R., and C, are so
large that they have negligible effect on the circuit operation.

We shall first investigate the effect of an unbypassed emitter resistor R,
on the high-frequency response of a CE amplifier. Such a circuit is indicated
in Fig. 1-19a. The equivalent circuit of Fig. 1-19b applies independently of the
particular model chosen for the transistor and hence may be used at high ;
frequencies in connection with the hybrid-Il model. Assuming that the current
gain A is large compared with unity over the entire passband, then, from
Fig. 1-19b, we see that the effective collector-circuit resistance is increased
from R, to R, where, if [A;| > 1, then
Ar—1

Ar
However, the principal effect of the emitter resistor is to increase the input
impedance by (1 — A;)R.. Hence, subject to the same reasonable assump-
tions made in Sec. 4-7, the equivalent circuit is that given in Fig. 4-12 with
(1 ~ ApR, added to the input and R, added to the output, as indicated in
Fig. 5-13. The capacitor C is, from Fig. 4-11b,

C = Ce + Cc(l + ng::) (5'59)
The current gain Ay is, from Fig. 5-13, given by

R:- = Rc + Ru =~ Rc + Rc (5-58)

~—y

—gnVu —h
Ar=L= Im L ore = e 5-6
d i (Vb’e/rb'c) +]wC Ve 1 +.7wC1‘b'e ' ( 0)
since, from Eq. (1-11), ks, = gmrse. Note that the current gain at low fre-
quencies is —hy., the short-circuit current amplification, independently of the
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Fig. 5-13 The equivalent high-frequency circuit of a CE amplifier with an
emitter resistor B.. The effective load is R, ~ E. + R..

emitter resistance. However, the upper 3-dB frequency for current gain
does depend somewhat on R, because C is a function of R, and hence R..

We shall now demonstrate that — A;R. in Fig. 5-13 is equivalent to a
resistance in parallel with a capacitance. The admittance Y is

]. _ 1 +].wCTb’¢ _ 1 . C
- AIRe - hfeRz - hfeRe + e ngﬂ

Y = (5-61)

Hence, — A;R. may be represented by a resistance h, R, in parallel with a

capacitance C/g.R., as indicated in Fig. 5-14a, where E; = R, + rw: + R..
The time constant of the parallel combination is

C _ hgC
nge Im

hyeR, = ry.C

and this is identical with the time constant between B’ and E. Hence the
circuit may be redrawn as in Fig. 5-14b. Points B”” and B’ are at the same
potential because of the equality of the time constants of the parallel branches
in Fig. 5-14a (Sec. 2-8). It is now clear that a single-time-constant circuit is
under consideration. The low-frequency voltage gain Av,,, taking the source
impedance into account, and the 3-dB frequency for voltage gain are found
from Fig. 5-14b to be

4 hs R
= Lo _Myelle 62
AVco V.g Rs + R'_ (5 )
and
1 R, + R:
= J -63
f2 21!"07‘1,'. Rc + ey + R, (5 )
where R; is the input resistance given by
Ri = rwy + rye + Re(1 + hy) = hie + Ro(1 + hyo) (5-64)
The gain-bandwidth product is
' - gm R 65
[ vafdl = 9vC B F o ¥ R (5-65)
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(@ (b) -
Fig. 5-14 (a) The impedance — 4R, in Fig. 5-13 is replaced by a parallel resistor-
capacitor combination. Also, By = R, + rw + R.. (b) A circuit equivalent to that
in (a).

[compare with Eq. (4-33)]. The effect of adding an emitter resistance is to
greatly increase the input impedance R;, because hy. > 1. If R, > R,, then
the circuit behavior is unaffected by the addition of R.. Usually this is an
unrealistic inequality, and more often the consequences of inserting an unby-
passed emitter resistor are the following: the voltage gain is greatly decreased,
the bandpass is greatly increased, but the gain-bandwidth product is decreased
only slightly (if R, + r4. > E.). (An unbypassed cathode resistor decreases
the gain of a tube amplifier but does not improve the bandpass.)

The physical reason that the emitter resistor R, improves the bandwidth
is that, as the frequency increases, the capacitor C/g.R, in Fig. 5-14 bypasses
the resistor Ay R. to a greater extent. Hence with increasing frequency the
current I; increases and the voltage V,. increases correspondingly. And,
finally, the output increases as well, since the output voltage is proportional
to Vi It is therefore reasonable to expect that a small capacitance C,
placed across R., as in Fig. 5-12a, will further extend the bandwidth, since
this capacitance will cause the input impedance to decrease even faster with
frequency. The calculation of the value of C, required to give, for a step
input, an output having the fastest rise time without overshoot is quite
formidable® algebraically because we no longer are dealing with a single-time-
constant circuit. The proper value of C, is best found experimentally. A
reasonable initial choice for C, is based upon the consideration that the par-
allel impedance of R. and C, should start to decrease significantly at the 3-dB
frequency f» of the stage with C, = 0, or C, =~ 1/2xR.f.. Incidentally, it is
interesting to note® that an emitter-compensated stage will generally have a
smaller bandwidth than a shunt-compensated stage for the same gain.

Oscillations A practical difficulty with an emitter-compensated stage is
that it may break into oscillations. We shall now explain why this possibility
exists and give several methods for minimizing this effect.
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If we were to attempt a solution for the transient response of Fig. 5-12a,
we would use the equivalent circuit of Fig. 5-14a¢ with R, replaced by Z,, the
impedance consisting of R, in parallel with C,. Hence, Eq. (5-61) is now
modified as follows:

_ 1 _l14jeCreef1 .
Y - —AIZe n hfc Re +JwC')
_ 1 efCC. | . C C.
=ik o (ot h,,) (5-66)

where again use was made of the relationship hye = gmrse. As might have
been anticipated, a capacitance C./hs, appears in parallel with C/gnRE.. How-
ever, it follows from Eq. (5-66) that these capacitances no longer shunt kR,
but instead are in parallel with a resistance whose value is

1 hfaRc

(1/hseRs) — (@?CC./gm) 1 — w?CC.Rury, (5-67)

For sufficiently high frequencies this resistance will be negative. Hence,
the possibility exists that the input impedance Z; to the amplifier will consist
of a capacitance shunted by a negative resistance.” Under this circumstance,
where Z; has a negative real part, the transient response may consist of large
overshoots, or, if the stage is driven from an induective source, oscillations may
result.

Incidentally, it should be noted that not only must Y in Fig. 5-14a be
modified, as indicated by Eq. (5-66), but that B; and R, contain R,, which
must now be changed to Z,. Clearly, to obtain the transient response of
such a network is a complicated chore.

The instability discussed above is accentuated if the stage in Fig. 5-12
is used as an emitter follower. In this case the output is taken from the
emitter, and hence the inevitable shunt capacitance of the load or inter-
connecting wiring capacitance appears directly across R,. The tendency
for an emitter follower to oscillate may be minimized in a number of ways.
The obvious first step is to keep the driving-source inductance as low as pos-
sible. A resistance R, may be added to the base so that the net input resistance
remains positive over the passband of the stage. Alternatively, a resistance
R, may be added in series with the emitter, as indicated in Fig. 5-12b. Since
this resistance will be reflected into the input circuit as (1 + hy)E,, then a
few tens of ohms in the emitter are as effective as a few kilohms added to the
base circuit. In either case, the voltage gain is reduced somewhat and there
is a d-¢ level shift between input and output. A third way® to improve the
stability is to use a coil on a lossy ferrite core in series with the emitter. The
core may be regarded as a resistor in parallel with a small inductor. At high
frequencies the losses in the core are reflected as a resistance R/ in series with
the emitter and, as noted above, this tends to suppress the possibility of
oscillations. Since this technique does not introduce a d-c level shift it s
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particularly advantageous with emitter followers used in low-level logic cir-
cuits (Chap. 9).

The above discussion refers only to the smali-signal behavior of the emitter
follower. For large-signal excitation the transistor acts as a switch, and the
response under these conditions is discussed in Sec. 8-16.

5-8 DISTRIBUTED AMPLIFIERS

Lumped-circuit delay lines (Appendix C) are essential elements in a type of
pulse amplifier which is referred to as a disiributed amplifier. Distributed
amplifiers are principally effective with vacuum tubes and provide worth-
while gain over a bandwidth which exceeds appreciably the bandwidth attain-
able with conventional tube amplifiers.

In a conventional uncompensated amplifier stage, increased bandwidth
may be achieved only at the expense of gain. When the stage gain has
been reduced to unity or less, the stage is no longer useful for the purpose
of amplification. Furthermore, since the gain of a number of stages in cascade
is the product of the individual gains, no advantage accrues from cascading
such stages of unity gain or less. To pursue the matter further, let us com-
pute approximately the relationship between the gain, the bandwidth, and
the number of stages in a conventional vacuum-tube uncompensated amplifier.
The magnitude of the gain of n stages is

A = (guBp)" (5-68)

in which g, is the transconductance and R, the plate-circuit resistor of a
stage. In Sec. 4-11 we see that the result of cascading n amplifiers is to
divide the bandwidth approximately by the factor v/n. The upper 3-dB
frequency of an n-stage amplifier is therefore approximately

PR
' 2xR.CV/n
in which C, is the sum of the input and output capacitance in a stage. The

figure of merit F of a tube may be defined as the product of gain and bandwidth
and is given by

(5-69)

= _Im
= 5, (5-70)
From Egs. (5-68) to (5-70) we have
fadVn /0 = F ' (5-71)

Now as an example of the limitations of the bandwidth capabilities of
a conventional amplifier let us compute the bandwidth possible in an amplifier
where the gain is required to be, say, & = (2.72)? = 7.4. We shall use the
type 6AK5 vacuum tube, for which g, = 5.1 millimhos and the sum of the
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input and output capacitance is 6.8 pF. We shall assume (unrealistically)
that we may neglect all additional stray capacitance. The figure of merit
F = (51X10%)/(2r X 6.8 X 10712) = 120 X 10° sec-!. We may compute
from Eq. (5-71) that f» will be a maximum for a given value of gain if

=2n4 (5-72)

For a gain 4 = ¢, n = 4 and, from Eq. (5-71), we have f, = 36.4 MHz.
We have the result, then, that even using a tube of high figure of merit and
assuming that every conceivable precaution is taken to reduce shunt capaci-
tance, it is not possible to build a conventional amplifier of gain 7.4 with a
bandwidth in excess of 36.4 MHz. This situation may, of course, be remedied
somewhat by the use of some form of high-frequency compensatlon But, as
we noted in Sec. 5-3, a really worthwhile improvement in bandpass is achieved
only with a circuit of considerable complexity, with its attendant difficulties
of adjustment, particularly in a multistage amplifier. ;

The basic limitation of the conventional cascade of amplifier stages is
overcome by combining amplifier tubes in the manner indicated in Fig. 5-15.
Such an arrangement is called a distributed amplifier.’® The capacitances -
C, and C, represent, respectively, the input and output capacitances of the
tubes together with the stray or any other capacitances present. A signal
applied at the input travels down the grid transmission line, reaches each
grid in turn, and is finally absorbed in the matched termination. Each
pentode delivers current to the plate line, which is matched at both ends.
One-half the tube current flows to each plate-line termination. The delays
per section of the plate and grid lines are adjusted to be identical. Then all
the current which reaches the plate-line output termination, in response to a
given input voltage, will arrive at this termination at the same time. If
the characteristic impedance of the plate line is R,,, then it follows that the
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gain of an amplifier having 7 sections is
A = ngmRop (5-73)

The upper frequency limit of the amplifier may be considered to be deter-
mined essentially by the cutoff frequency of the delay lines. The cutoff
frequencies of the plate and grid lines are the same since the delay per section
is the same for both lines.

We may observe the following distinctive features. The gain of a dis-
tributed amplifier is computed by adding the gains provided by each tube
individually. Hence, even if each tube provides a gain less than unity,
the overall gain still increases with increasing number of tubes. Further,
since the cutoff frequency of a delay line is not a function of the number of
sections, the upper frequency limit of the amplifier is not decreased as more
tubes are added to increase the gain.

At low frequencies, where the reactances of the elements of the trans-
mission lines are negligibly small, the amplifier of Fig. 5-15 may be viewed
simply as n paraliel pentodes feeding a plate load resistor R,p/2. Hence
the gain is given again by Eq. (5-73). However, a simple parallel connection
of n tubes would not serve a useful purpose, since in such a case the effective
g and shunt capacitance would increase in the same proportion. The figure
of merit F for a parallel combination of tubes is the same as for a single tube.

- The distributed amplifier arrangement, however, effectively parallels the tubes
so far as transconductance is concerned, but manages to keep the capacitances
separate.

The delay lines indicated in Fig. 5-15 are constructed of prototype sec-
tions, and the terminations are simple resistors. Actually, of course, any
of the other types of lines described in Appendix C may be used instead, and
m-derived half-section terminations may be used to advantage. Any improve-
ment of the delay lines will improve the performance of the amplifier.

5-9 DISTRIBUTED AMPLIFIERS IN CASCADE

In Fig. 5-15 each tube with its portion of transmission line is called a section.
The combination of 7 such sections is called a stage. Distributed amplifier
stages may be cascaded in the conventional sense. Suppose that we consider
a cascade of m such stages. Then the total number of tubes involved in such
an amplifieris N = nm. We may now show that, for a fixed gain, there is an
optimum arrangement of tubes which reduces to a minimum the number of
tubes required.

When stages are cascaded, the output end of the plate line of one amplifier
must be coupled into the input end of the grid line of the succeeding amplifier.
Since generally the plate and grid lines will have different characteristic
impedances, an impedance transformer must be interposed between the lines.
An impedance-transforming device which matches the grid-line impedance R.,
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to the plate impedance R,, will simultaneously produce a voltage transforma-
tion in the ratio (R,,/R.,)*. Thus, from Eq. (5-73), we have the result that
the gain from one grid line to the next is

m Rn m >
4 = 2 Ry |52 = "2 VB, E,, (5-74)

If the gain of the entire amplifier of m stages is G, then @ = A™ or G¥m = 4.
Using Eq. (5-74) to determine n we have

2mA 2mGum
9n V' RoyRoy  gm \/ RopRog
The minimum number of tubes for a fixed gain and fixed line impedances
is found by setting the derivative dN /dm = 0 in Eq. (5-75). The result is
m=InG. ThusG = A» = ¢, and when N is adjusted for a minimum,

A =c¢ (5-76)
in which ¢ = 2.72. Hence the tubes are used in optimum fashion when each

stage produces a gain e corresponding to 8.68 dB. From Eq. (5-75) the num-
ber of tubes per stage is

2e
n= ——— 5'77
" 9n V' R,R,, &7D

We shall now calculate the bandpass of the distributed amplifier in terms
of the tube parameters at the specified gain. The characteristic impedances
of the plate and grid lines are

I _ L :
R, = o Bu= c (5-78)

Since the delays of the plate and grid lines are the same, we have from Eq.
(C-8) that

LC,=L0C, (5-79)
and from Eq. (C-5) that the cutoff frequency f, of the lines is
1 1

e = = = — = 5‘80
7 *VL,C, =vIL,C, (5-80)

Using Eqgs. (5-80), (5-79), (5-78), and (5-74) with 4 = ¢ we find that
fo= —Tm (5-81)

27 \/C,C,

The bandwidth of one stage is given by f. in Eq. (5-81). When m stages are
cascaded the overall bandwidth will be reduced. We shall assume that we
may reasonably apply to a cascade of identical distributed-amplifier stages
the same rule that applies in the case of conventional stages, namely, that the
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bandwidth £, of m stages is 1/4/ ™ times the bandwidth of one stage. In
this case we find that the bandwidth £ is

fum = MO

~/m 2xe v/ C,C,

The bandwidth will be & maximum when C, and C, are reduced to a mini-

mum, that is, when no additional capacitance is introduced and C, = C, is the

tube output capacitance and C, = C;is the tube input capacitance. In this
case Eq. (5-82) may be written

(5-82)

n

fom = T F' (5-83)
with
. -
2% \/ C.C; (5-84)

The parameter F’ is a figure of merit for the tube for distributed-amplifier
service, just as F in Eq. (5-70) is a figure of merit for a conventional amplifier.

In Sec. 5-8 we find that, in a conventional cascade when a gain € is speci-
fied, four tubes should be used and that with 6AK5 tubes a bandwidth of
36.4 MHz results. Let us now use the same four tubes in a distributed
amplifier. Weset A = ¢, as in Eq. (5-76). Hence, for a gain of *, two stages
are required, leaving two tubes per stage. We now find from Egs. (5-83) and
(5-84) that for the 6AK5 with C; = 4.0 pF and C, = 2.8 pF,

2 51 X107}

- 51X 10 Hz = 126 MH
V22722 VAO X 28 X 10- ?

'fc(m)

Hence, the distributed amplifier bandwidth is approximately four times that
of the conventional amplifier using the same number of tubes and the same
gain.

In the analysis above, we specified the overall gain G and found that
tubes were used most economically when 4 = e. It can be shown (Prob. 5-26)
that if we specify both the overall gain G and the overall bandwidth f.“, then
the tubes will be most economically used if 4 = ¢.

Practical Considerations in Distributed Amplifiers The discussion, so
far, of distributed amplifiers has been unrealistic in that it has been assumed
that the frequency range of the amplifier is limited only by the cutoff frequency
of the delay lines. The fact is, however, that as the frequency increases, the
impedance seen looking into the grid of the tubes exhibits not only a capacitive
reactance but a resistive loading as well. The resistive loading at the grid
has two sources. The first of these is due to the presence of inductance in the
cathode-to-ground lead of the tube. The -presence.of such-a cathode-lead
inductance results in a conductive component of admittance at the grid. For
this reason, good construction practice requires that the cathode connection



176 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 5-9

iH

L

Fig. 5-16 A practical form of a distributed amplifier. Inductances are given in
microhenrys, and capacitances in picofarads.

to ground be made as short and direct as possible. But, of course, some
residual conductive component at the grid will always remain.

A second and much more important source of conductive loading at
the grid results from effects due to the finite time of transit of an electron
across the tube. For a sinusoidal signal, the loading due to transit-time
effects!! begins to make itself felt when the period of the signal becomes
small enough to be comparable to the transit time. Each of these components
of conductance at the grid is proportional to the square of the frequency. The
severity of this loading with increasing frequency may be noted by observing
that at 400 MHz the input resistance of a 6AK5 is only 250 €.

An example of a stage of distributed amplification!? is shown in Fig. 5-16.
The plate and grid lines are constructed of prototype sections. They are
terminated in m-derived half sections (Fig. C-9), which serve to improve
the match between the lines and the terminating resistors. The lines are
designed to have a cutoff frequency of 400 MHz. The grid line has a character-
istic impedance of 50 Q. This low impedance has been selected to minimize
the effect of the loading of the grid line due to transit-time effects. The general
formulas

L
Ro = 6 and fp =

1
rVILC

(5-85)
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may be solved for L and C with the result

_ R, g
= , - (5-86)
o ,
¢= 7 Rofe (5-87)

The inductance per section of the grid line is calculated from Eq. (5-86)
with the result L, = 0.04 pH. The grid-line capacitance is calculated from
Eq. (5-87) with the result ¢, = 16 pF. After the 6AKS5 input capacitance,
the tube-socket capacitance, and other stray capacitances have been taken
into account, it is found that an additional 7.5 pF must be added in the grid
circuit to bring the total to the required 16 pF.

It is advantageous to make the impedance of the plate line as large as
possible since the amplifier gain increases with plate-line impedance. The
impedance would be a maximum if the capacitance per section were kept at a
minimum. Actually 3 pF of capacitance has been added to each section
of the line to bring the line impedance down to 93 . A 93-Q impedance is
particularly convenient since there is available a commercial coaxial cable
(RG-62/U) whose impedance is 93 Q.

The amplifier uses a total of nine 6AK5 tubes. The transit-time loading
of the grid line is therefore quite heavy, and actually the signal level on the
grid line falls appreciably as the upper frequency limit of the amplifier is
approached. This effect, however, is counterbalanced by the fact that the
impedance of the plate line (as viewed at the point where the tube plates are
connected) increases substantially as the line cutoff frequency is approached.
The result is that the gain remains reasonably uniform up to a frequency
nearly equal to the cutoff frequency.
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0 /STEADY-STATE SWITCHING
CHARACTERISTICS OF DEVICES

Junction diodes, thermionic diodes, transistors, and vacuum tubes
all have extreme regions of operation in which they nominally do.not
conduct even when large voltages are applied and regions in which they
conduct heavily even when relatively small voltages are applied. In
the first of these regions the device is described as being ‘“off,” “‘open,”
or “nonconducting.” In the latter region the device is said to be
“on,” “closed,” or ‘“‘conducting.” When the device is driven from
one extreme condition to the other, it operates much like a switch.
In the present chapter we shall be interested only in the steady-state
characteristics of these extreme end states of the switching operation.
There is a limit to the speed with which the switching transition
between the extreme states can be made. This switching speed,
- together with other matters relating to the transition between end
states, is discussed in detail in Chap. 20.

6-1 THE SEMICONDUCTOR DIODE

For an ideal p-n junction the current I is related® to the voltage V
by the equation

I = L — 1) Q (6-1)

A positive value of I indicates that the current flows from the p to
the n side. The diode is forward-biased if V is positive, indicating
that the p side of the junction is positive with respect to the n side.
The symbol 7 is unity for germanium and is approximately 2 for
silicon. ‘The parametér n takes into account the recombination of
carriers. in the junction transition region.? Such recombination is
negligible in germanium but not in silicon.

179



180 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 6-1

I I, mA
6
5
44
8 -
2.
I, 11
4 — ¥
.1 01 02
R v I, 0 105 v.v
- {10
E pA
1]
(@) S ®)

Fig. 6-1 (a) The volt-ampere characteristics of anideal diode; (b) the volt-ampere
characteristic for a germanium diode redrawn to show the order of magnitude of
currents. Note the expanded scale for reverse currents. The dashed portion
indicates breakdown at V2. ‘

The symbol Vr stands for the electron-volt equivalent of temperature
and is given by
kT

Vy = - (6-2)

in which k is the Boltzmann constant (k = 1.380 X 10~2* J/°K), ¢ is the
electronic charge (e = 1.602 X 10~'* C), and T is the absolute temperature.
Substituting, we find that Vr = (7/11,600) V and that at room temperature
(T = 300°K) Vr = 0.026 V = 26 mV.

The form of the volt-ampere characteristic described by Eq. (6-1) is
shown in Fig. 6-la. When the voltage V is positive and several times V7,
the unity in the parentheses of Eq. (6-1) may be neglected. Accordingly,
except for a small range in the neighborhood of the origin the current increases
exponentially with voltage. When the diode is reverse-biased, and (V| is
several times Vy, I = —I,. The reverse current is therefore constant, inde-
pendently of the applied reverse bias. Consequently I, is referred to as the
reverse saturalion current.

For the sake of clarity, the current I, in Fig. 6-1a has been greatly exagger-
ated in magnitude. Ordinarily the range of forward currents over which a
diode is operated is many orders of magnitude larger than the reverse satura-
tion current. In order to display forward and reverse characteristics con-
veniently it is necessary, as in Fig. 6-1b, to use two different current scales.
The volt-ampere characteristic shown in that figure has a forward current
scale in milliamperes and a reverse scale in microamperes.
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The dashed portion of the curve of Fig. 6-1b indicates that at a reverse-
biasing voltage Vz the diode characteristic exhibits an abrupt and marked
departure from Eq. (6-1). At this critical voltage a large reverse current flows,
and the diode is said to be in the breakdown region, discussed in Sec. 6-4.

The Cutin Voltage V, Both silicon and germanium diodes are commer-
cially available. There are a number of differences between these two types
that are relevant in circuit design. The difference in volt-ampere character-
istics is brought out in Fig. 6-2. Here are plotted the forward characteristics at
room temperature of a general-purpose germanium switching diode and a
general-purpose silicon diode, the 1N270 and 1N3605, respectively. The
diodes have comparable current ratings. A noteworthy feature in Fig. 6-2
is that there exists a cufin, offset, break-point, or threshold voltage V. below
which the current is very small (say less than 1 percent of maximum rated
value). Beyond V, the current rises very rapidly. From Fig. 6-2 we see
that V, is approximately 0.2 V for germanium and 0.6 V for silicon.

Note that the break in the silicon diode characteristic is offset about
0.4 V with respect to the break in the germanium diode characteristic. Tbe
reason for this difference is to be found, in part, in the fact that the reverse
gaturation current in a germanium diode is normally larger by a factor of about
1,000 than the reverse saturation current in a silicon diode of comparable
ratings. Thus if I, is in the range of microamperes for a germanium diode,
I, will be in the range of nanoamperes for a silicon diode.

Since n = 2 for small currents in silicon, the current increases as ¢"/?'r
for the first several tenths of a volt and increases as ¢/Vr only at higher volt-
ages. This initial smaller dependence of the current on voltage accounts for the
further delay in the rise of the silicon characteristic.

L mA
100 / l
80
Fig. 6-2 The forward ’
voit-ampere characteris- ® /
tics of a germanium .
(IN270) and a silicon Ge 8
(1N3605) diode at 25°C. © /
” /
0
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Logarithmic Characteristic It is instructive to examine the family of
curves for the silicon diodes shown in Fig. 6-3. A family for a germanium
dicde of comparable current rating is quite similar, with the exception that
corresponding currents are attained at lower voltage.

From Eq. (6-1), assuming that V is several times Vr so that we may
drop the unity, we have log I = log I, + 0.434V/9V,. We therefore expect
in Fig. 6-3, where log I is plotted against V, that the plots will be straight
lines. We do indeed find that at low currents the plots are linear and cor-
respond to n =~ 2. At large currents an increment of voltage does not yield
as large an increase of current as at low currents. The reason for this behavior
is to be found in the ohmic resistance of the diode. At low currents, the ohmic
drop is negligible and the externally impressed voltage simply decreases
the potential barrier at the p-n junction. At high currents the externally
impressed voltage is called upon principally to establish an electric field to
overcome the ohmic resistance of the semiconductor material. Therefore at
high currents the diode behaves more like a resistor than a diode and the cur-
rent increases linearly rather than exponentially with applied voltage.

6-2 THE TEMPERATURE DEPENDENCE OF p-n CHARACTERISTICS

Let us inquire into the diode voltage variation with temperature at fixed
current. This variation may be calculated from Eq. (6-1), where the tempera-
ture is contained implicitly in Vr and also in the reverse saturation current.
The dependence of I, on temperature T is given approximately by?

I, = KTe Ve (6-3)
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where K is a constant and eV, (e the electronic charge) is the energy required
to break a covalent bond in the semiconductor. For germanium % = 1 and
s = 0.75 V and for silicon y = 2and V, = 1.12 V. Taking the derivative

of the logarithm of Eq. (6-3) we find ‘
1dl, _d(nl) 2 V, 14

—~ g
1,dT dT 2T ' 9TVs = 3TVs (6-4)

since V,/Vr>>2. At room temperature, we deduce from Eq. (6-4) that
d(In I,)/dT = 0.075/°C for 8i and 0.10/°C for Ge. The performance of com-
mercial diodes is only approximately consistent with these results. The
reason for the discrepancy is that in a physical diode there is a component
of the reverse saturation current due to leakage over the surface that is not
taken into account in Eq. (6-3). Since this leakage component is independent
of temperature, we may expect to find a smaller rate of change of I, with
temperature than that predicted above. From the data presented in Sec.
6-8, we find that the reverse saturation current increases approximately
7 percent/°C for both silicon and germanium. Since (1.07)1° ~ 2.0, we con-
clude that the reverse saturation current approximately doubles for every 10°C
rise in temperature.

From Eq. (6-1), dropping the unity in comparison with the exponential,
we find, for constant 7,

v _ v 1dI\ _V -7, :
ar =T ~"r (T, dT) T (6-5)

where use has been made of Eq. (6-4). Consider a diode operating at room
temperature (300°K) and just beyond the threshold voltage V, (say at 0.2V
for Ge and 0.6 for S8i). Then we find from Eq. (6-5)

av _ { ~1.8mV/°C for Ge (V, = 0.75 V)

dT =~ | —~1.7mV/°C . for i (V, = 1.12 V) (6-6)

Since these data are based on “average characteristics” it might be well for
conservative design to assume a value of

gﬁ,": = —2mV/°C (6-7)
for either Ge or 8i at room temperature. Note from Eq. (6-5) that |dV/dT|
decreases with increasing 7'

The temperature dependence of forward voltage is given .in Eq. (6-5)
as the difference between two terms. The positive term V/T on the right-
hand side results from the temperature dependence of Vy. The negative
term results from the temperature dependence of I, and does not depend
on the voltage V across the diode. The equation predicts, accordingly, that
at increasing V, dV/dT should become less negative, reach zero at V = V,,
and thereafter reverse sign and go positive. This behavior is regularly
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Fig. 6-4 Examples of diodes which do not exhibit a constant reverse
saturation current. (a) Germanium diode 1N270; (b) silicon TN461.
(Courtesy of Raytheon Company.)

exhibited by diodes. Normally, however, the reversal takes place at a current
which is higher than the maximum rated current. The curves of Fig. 6-3
also suggest this behavior. At higher voltages the separation between curves
of different temperatures is smaller than at low voltages.

Typical reverse characteristics of germanium and silicon diodes are given
in Fig. 6-4a and b. Observe the very pronounced dependence of current on
reverse voltage, a result which is not consistent with our expectation of a
constant saturated reverse current. This increase in I, results from leakage
across the surface of the diode and also from the additional reason that new
current carriers may be generated by collision in the transition region at
the junction (Sec. 6-8). On the other hand there are many commercially
available diodes, both germanium and silicon, that do exhibit a fairly constant
reverse current with increasing voltage. The much larger value of I, for a
germanium than for a silicon diode, to which we have previously referred, is
apparent in comparing Fig. 6-4a and b. Since the temperature dependence is
approximately the same in both types of diodes, at elevated temperatures the
germanium diode will develop an excessively large reverse current, whereas
for silicon I, will be quite modest. Thus we see that for Ge in Fig. 6-4 an
inerease in temperature from room temperature (25°C) to 90°C increases the
reverse current to hundreds of microamperes, although in silicon at 100°C the
reverse current has increased only to some tenths of a microampere.
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6-3 DIODE TRANSITION CAPACITANCE

A diode is driven to the reverse-biased condition when it is desired to turn off a
current or prevent the transmission of a signal. When diodes are used for
such purposes in circuits which handle fast waveforms or high frequencies, we
must take account of the capacitance which appears across a reverse-biased
junction. This capacitance is called the barrier or iransition capacitance Cy.
If this capacitance is large enough, the current which is to be restrained by the
low conductance of the reverse-biased diode will flow through the capacitor.

Diodes intended for service with fast waveforms have transition capaci-
tances of the order of 1 to 10 pF. The barrier capacitance decreases with
increasing reverse voltage, as is illustrated for two typical diodes in Fig. 6-5.
For certain assumed simple junction geometries it is calculated* that the tran-
sition capacitance is given by

A A

Cr = War = V-

(6-8)
Here A is a constant, and Vi is the voltage across the junction and is equal
to the externally impressed voltage V, except for quite small voltages. The
exponent n is 4 or § for an abrupt or gradual junction, respectively.

6-4 AVALANCHE DIODE

The reverse voltage characteristic of the diode, including the breakdown region,
is redrawn in Fig. 6-6a. Diodes which are designed with adequate power-
dissipation capabilities to operate in the breakdown region may be employed
as voltage-reference or constant-voltage sources. Such diodes are known as
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Fig. 6-6 (a) The volt-ampere characteristic of an avalanche or Zener diode; (b) a
circuit:in which such a diode is used to regulate the voltage across R against
changes due to variations in load current and supply voltage.

avalanche, breakdown, or Zener diodes. They are used characteristically in the
manner indicated in Fig. 6-6b and are replacing the gaseous glow tubes previ-
ously employed in this circuit. The source V and resistor R are selected
so that initially the diode is operating in the breakdown region. Here the
diode voltage, which is also the voltage across the load Ry, is Vz, as in Fig. 6-6q,
and the diode current is ;. The diode will now regulate the load voltage
against variations in load current and against variations in supply voltage V
because in the breakdown region large changes in diode current produce only
small changes in diode voltage. Moreover, as load current or supply voltage
.changes, the diode current will accommodate itself to these changes to maintain
a nearly constant load voltage. The diode will continue to regulate until the
circuit operation requires the diode current to fall to Izk, in the neighborhood
of the knee of the diode volt-ampere curve. The upper limit on diode current
is determined by the power-dissipation rating of the diode.

Two mechanisms of diode breakdown for increasing reverse voltage are
recognized. In one mechanism, the thermally generated electrons and holes
acquire sufficient energy from the applied potential to produce new carriers
by removing valence electrons from their bonds. These new carriers, in
turn, produce additional carriers again through the process of disrupting bonds.
This cumulative process, which is analogous to the Townsend discharge! in a
gas diode, is referred to as avalanche multiplication. It results in the flow of
large reverse currents, and the diode finds itself in the region of avalanche break-
down. Even if the initially available carriers do not acquire sufficient energy
to disrupt bonds, it is possible to initiate breakdown through a direct rupture
of the bonds because of the existence of the strong electric field. Under these
circumstances the breakdown is referred to as Zener breakdown. This Zener
effect is now known to play an important role only in diodes with breakdown
voltages below about 6 V.  Nevertheless, the term Zener is commonly used
for the avalanche or breakdown diode even at higher voltages. Silicon diodes
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operated in avalanche breakdown are available with maintaining voltages from
several volts to several hundred volts and with power ratings up to 50 W.

A matter of interest in connection with Zener diodes, as with semicon-
ductor devices generally, is their temperature sensitivity. The temperature
dependence of the reference voltage, which is indicated in Fig. 6-7a and b,
is typical of what may be expected generally. In Fig. 6-7a the temperature
coeflicient of the reference voltage is plotted as a function of the operating
current through the diode for various different diodes whose reference voltage
at 5 mA is specified. The temperature coefficient is given as percentage change
in reference voltage per centigrade degree change in diode temperature. In
Fig. 6-7b has been plotted the temperature coefficient at a fixed diode current
of 5 mA as a function of Zener voltage. The data which are used to plot this
curve are taken from a series of different diodes of different Zener voltages
but of fixed dissipation rating. From the curves in Fig. 6-7a and b we note
that the temperature coefficients may be positive or negative and will normally
be in the range +0.1 percent/°C. Note that if the reference voltage is
above 6 V, where the physical mechanism involved is avalanche multiplica-
tion, the temperature coefficient is positive. However, below 6 V, where true
Zener breakdown is involved, the temperature coefficient is negative.

A second matter of importance in connection with Zener diodes is the
slope of the diode volt-ampere curve in the operating range. If the reciprocal
slope AVz/Al;, called the dynamic resistance, is r, then a change AIz in the
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Fig. -7 Temperature coefficients for a number of Zener diodes having different
operating voltages (a) as a function of operating current, (b) as a function of
operating voltage. The voltage V; is measured at I; = 5 mA (from 25 to 100°C).
(Courtesy of Pacific Semiconductors, Inc.)
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Fig. 6-8 The dynamic resistance at a number of currents
for Zener diodes of different operating voltages at 25°C.
The measurements are made with a 60-Hz current at 10
percent of the d-c current. (Courtesy of Pacific Semicon-
ductors, Inc.)

operating current of the diode produces a change AVz = r Alzin the operating
voltage. Ideally r = 0, corresponding to a volt-ampere curve which, in the
breakdown region, is precisely vertical. The variation of r at various currents
for a series of avalanche diodes of fixed power-dissipation rating and various
voltages is shown in Fig. 6-8. Note the rather broad minimum which occurs
in the range 6 to 10 V and note that at large Vz and small Iz, the dynamic
resistance 7 may become quite large. Thus we find that a TI 3051 (Texas
Instruments Company) 200-V Zener diode operating at 1.2 mA has an r of
1,500 . Finally we observe that to the left of the minimum, at low Zener
voltages, the dynamic resistance rapidly becomes quite large. Some manu-
facturers specify the minimum current I;x (Fig. 6-6a) below which the diode
should not be used. Since this current is on the knee of the curve, where the
dynamic resistance is large, then for currents lower than Izx the regulation
will be poor.

The capacitance across a breakdown diode is the transition capacitance
and hence varies inversely as some power of the voltage, as in Eq. (6-8).
Since Cr is proportional to the cross-sectional area of the diode, high-power
avalanche diodes have very large capacitances. Values of Cr from 10 to
10,000 pF are common.

The performance and reliability of Zeners have been greatly improved with
the oxide-passivation process. They may be used over the range ~200°C.
Also, some diodes exhibit a very sharp knee even down into the microampere
region.



Sec. 6-5 STEADY-STATE SWITCHING CHARACTERISTICS OF DEVICES / 189

Zener diodes are available with voltages as low as about 2 V. Below
this voltage it is customary, for reference and regulating purposes, to use
diodes in the forward direction. As appears in Fig. 6-2, the volt-ampere
characteristic of a forward-biased diode (sometimes called a stabistor) is not
unlike the reverse characteristic with the exception that in the forward direc-
tion the knee of the characteristic occurs at lower voltage. A number of
forward-biased diodes may be operated in series to reach higher voltages.
Such series combinations, packaged as single units, are available with voltages
up to about 5 V and may be preferred to reverse-biased Zener diodes, which
at low voltages, as seen in Fig. 6-8, have very large values of dynamic resistance.

When it is important that a Zener diode operate with a low temperature
coefficient, it may be feasible to operate an appropriate diode at a current
where the temperature coefficient is at or near zero. Quite frequently such
operation is not convenient, particularly at higher voltages and when the diode
must operate over a range of currents. Under these circumstances temperature-
compensated avalanche -diodes find application. Such diodes consist of a
reverse-biased Zener diode with a positive temperature coefficient combined
in a single package with a forward-biased diode whose temperature coefficient is
negative. As an example, the Transitron SV3176 silicon 8-V reference diode
has a temperature coefficient of +0.001 percent/°C at 10 mA over the range
—55 to 4+100°C. The dynamic resistance is only 15 @. The temperature
coeflicient remains below 0.002 percent/°C for currents in the range 8 to 12
mA. The voltage stability with time of some of these reference diodes is
comparable to that of conventional standard cells.

When a high-voltage reference is required it is usually advantageous
(except of course with respect to economy) to use two or more diodes in series
rather than a single diode. This combination will allow higher voltage, higher
dissipation, lower temperature coefficient, and lower dynamic resistance.

6-5 THE YACUUM-TUBE DIODE ' -

For an ideal diode the current I is related to the voltage V by the Langmuir-
Child space-charge equation! .

I=gv? T (6-9)

The specific value of the parameter G, called the perveance, depends upon
the geometry of the system. The derivation of this three-halves-power equation
assumes an equipotential cathode surface, zero contact potential between
electrodes, no trace of gas in the tube, zero initial velocity of the emitted
electrons, and a heater temperature sufficiently high to supply the desired
plate current. A plot of Eq. (6-9) is given in Fig. 6-9a.

The diode characteristic does not follow Eq. (6-9) for small currents or
voltages because the initial velocities of the electrons and the contact potential
cannot be neglected in this region. An expanded view of the volt-ampere
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Fig. 6-9 The volt-ampere characteristic of a vacuum diode (a) for large voltages
and (b) for small voltages.

curve near the origin is given in Fig. 6-9b. Space charge is negligible at these
small currents, and the current is given by -

I = Ievivr (6-10)

where I, is the plate current at zero applied voltage V and Vr = T/11,600
is the electron-volt equivalent of temperature given in Eq. (6-2). Note that
the curve does not pass through the origin and that the cutin or break point
V, i8 quite indefinite. Whereas V, for a semiconductor diode is positive
(approximately 0.2 V for Ge and 0.6 V for Si), for most vacuum-tube diodes
the break point is negative and is located at a voltage between —0.25 and
—0.75 V.

There is a shift in the characteristic with filament temperature. Experi-
ment reveals this drift to be about 0.1 V for a 10 percent change in heater voltage.
The higher the filament voltage, the more the curve shifts to the left, because
the increase in the initial velocities of the electrons with increase in temperature
results in higher currents at a given voltage. The displacement with tube
aging or tube replacement is found in practice to be of the order of +0.25 V.

Since a diode consists of two metallic electrodes separated by a dielectric—
a vacuum—this device constitutes a capacitor. The order of magnitude of
the capacitance in receiving-type tubes is 5 pF and is nominally constant,
independent of voltage (unlike the semiconductor diode which has a nonlinear
junction capacitance).

Commereial vacuum diodes are avmlable for rectifying very high voltages
up to about 200,000 V.

Because of their small size and long life and because no filament power
is required, semiconductor diodes are replacing vacuum rectifiers in many
applications. The tube must be used, however, if very high voltage or power
is involved, if extremely low reverse currents are necessary, or if the diode is
located in an unusual environment (high nuclear radiation or very high
ambient temperature).
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6-6 DIODE RESISTANCE

The static resistance R of a diode is defined as the ratio V/I of the voltage
to the current. . At any point on the volt-ampere characteristic of the diode
(Figs. 6-1 and 6-9) the resistance R is equal to the reciprocal of the slope of a
line joining the operating point to the origin. The static resistance varies
widely with V and I and is not a useful parameter. The rectification property
of a diode is indicated on the manufacturer’s specification sheet by giving the
maximum forward voltage V required to attain a given forward current I
and also the maximum reverse current I at a given reverse voltage V. Typ-
ical values for a silicon planar epitaxial diode are Ve = 0.8 V at Ir = 10 mA
(corresponding to Rr = 80 @) and Iz = 0.1 pA at Vp = 50 V (corresponding
to Rz = 500 M).

For small-signal operation the dynamic or incremental resisiance r is an
important parameter and is defined as the reciprocal of the slope of the volt-
ampere characteristic, r = dV/dI. The dynamic resistance is not a constant
but depends upon the operating voltage. For example, for a semiconductor
diode we find from Eq. (6-1) that the dynamic conductance g = 1/7 is

aI _ Letvr _ I+ 1,

9=qv = "9V ~ aVr

(6-11)

For a reverse bias greater than a few tenths of a volt (so that [V/9Vy| > 1)
g is extremely small and r is very large. On the other hand, for a forward bias
greater than a few tenths of a volt I >> [, and r is given approximately by

2Vr

= (6-12)

T o=

The dynamic resistance varies inversely with current; at room temperature
and for n = 1, r = 26/I, where I is in mA and r is in ohms. For a forward
current of 26 mA, the dynamic resistance is 1 8. The ohmic body resistance
of the semiconductor may be of the same order of magnitude or even much
higher than this value. Although r varies with current, in a small-signal
model, it is reasonable to use the parameter r as a constant.

A Piecewise Linear Diode Characteristic A large-signal approximation
which often leads to a sufficiently accurate engineering solution is the piecewrse
linear representation. For example, the three-halves-power curve of Fig. 6-9a
may be replaced by a straight line through the origin and the point P (V = 60V,
I = 120 mA), as pictured in Fig. 6-10a. This piecewise linear model replaces
the diode by an open circuit (infinite back resistance) if V. < 0 and a constant
forward resistance of 60/0.12 = 500 € for V > 0. In this case, where the
characteristic is a straight line passing through the origin, the dynamic resist-
ance dV/dI equals the static resistance V/I and the break-point or cutin
voltage V, is zero.
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Fig. 6-10 The piecewise linear characterization of a diode. (a) A vacuum tube;
(b) a semiconductor,

The piecewise linear approximation for a semiconductor characteristic is
indicated in Fig. 6-10b. The break point is not at the origin and hence V, is
also called the offset or threshold voltage. The diode behaves like an open
circuit if V < V, and has a constant incremental resistance r = dV/dI if
V > V,. Note that the resistance r (also designated as R, and called the
Sforward resistance) takes on added physical significance even for this large-

_ signal model, whereas the static resistance B = V/I is not constant and is not
useful.

The numerical values V, and R, to be used depend upon the type of diode
and the contemplated voltage and current swings. For example, from Fig. 6-2
we find that for a current swing from cutoff to 10 mA with a germanium diode
reasonable values are V, = 0.2 V and R, = 20 @, and for a silicon diode
V, =06V and R, = 15 Q. On the other hand, a better approximation for
current swings up to 50 mA leads to the following values—germanium:
Vy=03YV, B, =6 Q;silicon: V, =065V, R, =5.5 2. For an avalanche
diode V, = V3, and R; is the dynamic resistance in the breakdown region.

6-7 THE TRANSISTOR AS A SWITCH

The transistor @ in Fig. 6-11a is being used as a switch to conneet and dis-
connect the load R from the source V¢oe. Execept that the transistor may be
operated electrically and may be made to respond more rapidly, it serves the
same function as that of the mechanical switch in Fig. 6-116. The mechanical
switeh arrangement allows no current to flow when the switch is open, but
when the switch is closed, all of the voltage V¢c appears across the load R:.
Ideally, the transistor switch should have these same properties. In this
section we discuss the steady-state characteristics of the circuit of Fig. 6-11a
corresponding to the cases when the transistor switch is open and when it is
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Fig. 6-11 The transistor in (a) is being used as a switch. It serves the same
function as the switch S in (b). The positive reference direction for each cur-
rent is as shown. The symbol V¢ is a positive number representing the
magnitude of the supply voltage. '

closed. Chapter 20 contains a detailed discussion of the speed with which a
transition between these two states may be made.

When a transistor is used as a switch it is useful to divide its range of
operation into three regions: the cutoff, the active, and the saturation regions.
These regions are easily identified on the common-base characteristics of the
transistor, as in Fig. 6-12. In the cutoff region both the emitter junction
and the collector junction are reverse-biased, and only very small reverse
saturation currents flow across the junctions. The transistor operates in the
region below the characteristic for Iz = 0. This characteristic corresponds
to a collector current I¢o, the reverse collector saturation current. It is almost

Saturation
/——region———‘q————Active region —
h Il
J 1
E w0 I;=40mA
Fig. 6-12 Typical common- 3 I 30
base characteristics of a E -3
p-n-p transistor. The cutoff, g 20
active, and saturation re- g ~20
gions are indicated. Note 3
the expanded voltage scale ~10 10
in the saturation region.
0 2 i
Iol/
\_ Cutoff region J
025 0 -2 —4 =6 -8

Collector-to-base voltage drop V5, V
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but not precisely coincident with the axis I¢ = 0. It is required that the
transistor must be in the cutoff region at times when it is to behave as an open
(nonconducting) switch.

When the emitter junction is forward-biased and the collector junction
is reverse-biased, the transistor output current responds most linearly to an
input signal. The pulse amplifiers of Chaps. 4 and 5 were operated in this
active region. In switching operations, this region is not of great interest
because the transistor switches abruptly from the cutoff region to the saturation
region (or in the reverse direction) and spends, ideally, a relatively insignificant
time in the active region.

The region to the left of the ordinate V¢ = 0 and above Iz = 0 is
the saturation region. Here the emitter junction and the collector junction
are both forward-biased. The voltages across the individual junctions or
across the combination of junctions are small (in the millivolt range). Accord-
ingly, when a transistor switch is required to be in the closed (conducting)
condition it is driven into saturation.

When a transistor is used as a switch in the commoun-base configuration,
the input emitter current required to operate the switch is nominally as large
as the collector current being switched. In the common-collector configura-
tion, the input voltage required to operate the switch is nominally as large as
the supply voltage.

In the common-emitter configuration the input switching signal, current
or voltage, is small in comparison with the switched output current or voltage.
Hence, the common-emitter configuration is the most generally useful for a
transistor switch.

Return now to the common-emitter switching circuit of Fig. 6-11a and
consider that the transistor is a type 2N404 p-n-p alloy-junction germanium
transistor with CE characteristics shown in Fig. 6-13. This transistor type
is fairly representative of alloy-junction germanium transistors capable of

T L]
-40 Xaio_se ’\ —
E_ ;)q.%/ \ Fig. 6-13 Common-emitter charac-
< s - et Pr=150mW max teristics of the 2N404 alloy-junction
g ’ﬁ germanium transistor. Maximum
- Pt allowable dissipation Py = 150
§ S ____\.—{-0—1‘6’1 N mW. 1load line corresponding to
/ﬁ I~ Veoe =10V, Ry = 500 Q. (Courtesy
-10 \-\ 4—305 of Texas Instruments, Inc.)
o 0 RN
0 -2 -4 -6 -8 -10

Collector-emitter voltage Vo, V
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dissipating about 150 mW at room temperature (25°C). We have selected
a load resistor R, = 500 @ and a supply voltage Vec = 10 V and have super-
imposed the corresponding load line on the characteristics. The cutoff and
saturation regions are not as clearly shown in Fig. 6-13 as in Fig. 6-12. We
shall, in the next several sections, discuss details of importance in connection
with the transistor operation at cutoff and operation in saturation.

6-8 THE TRANSISTOR AT CUTOFF

Cutoff in a transistor is defined by the condition Ig = 0. A good approxima-
tion to the common-base characteristics, even to the point of cutoff, is given
by the equation

Io = —alg+ Ico (6-13)

in which « is the common-base short-circuit forward current gain. From Eq.
(6-13) we see that the cutoff condition Iy = 0 implies that I¢ = Ico.

It is important to note that in the common-emitter configuration the
transistor will not be at cutoff if the base is open-circuited. For, from Fig.
g-11a, if I = 0, then Ig = —I¢ and from Eq. (6-13) we have

ICO

l1—-a

Ic= —Ig= (6-14)
In germanium, even near cutoff, a may be as large as 0.9 and I¢ = 10/co.
Therefore the transistor is not at cutoff. In Sec. 6-17 we find that Ip = 0
corresponds to a small forward bias and that to bring the germanium transistor
to cutoff we need to establish a reverse-biasing voltage between base and
emitter of about 0.1 V. In silicon, at collector currents of the order of I¢o,
it is found?® that « is very nearly zero because of recombination in the junction
transition region. Hence, even with Ip = 0, we find from Eq. (6-14) that
I¢ = Igo = —Ig, so that the transistor is still very close to cutoff. We verify
in Sec. 6-17 that, in silicon, cutoff (Iz = 0) occurs at Vzg = 0V, corresponding
to a short-circuited base.

The Reverse Collector Saturation Current Iggo The collector current
when the emitter current is zero is designated by the symbol I¢pe. Two
factors cooperate to make |I¢ro| larger than |Ico|. First, there exists a leakage
current which flows not through the junction but around it and across the
surfaces. The leakage current is proportional to the voltage across the junc-
tion. The second reason why |Icso| exceeds |Ico| is that new carriers may be
generated by collision in the junction transition region, leading to avalanche
multiplication of current and eventual breakdown, as discussed in Sec. 6-9.
But even before breakdown is approached, this maultiplication component of
current may attain considerable proportions.

At 25°C, I¢po for a germanium transistor, whose power dissipation is in
the range of some hundreds of milliwatts, is of the order of microamperes.



196 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 6-8

Under similar conditions a silicon transistor has an I¢go in the range of nano-
amperes. The temperature sensitivity of I¢zo in silicon is approximately
the same as that of germanium. However, because of the lower absolute
value of Icgo in silicon, these transistors may be used up to about 200°C,
whereas germanium transistors are limited to about 100°C.

Plots showing typical variations of I¢po with temperature for a germanium
and for a silicon transistor are given in Fig. 6-14. These plots indicate an
almost linear relationship between the logarithm of I¢z and the temperature.
In this respect the plots are in only fair agreement with Eq. (6-3). That
equation predicts a noticeable decrease in slope with increasing temperature,
particularly over the large temperature range, 235°C, in the case of silicon. A
more pronounced failing of Eq. (6-3) is that it predicts a larger factor of growth
for Icpo over the temperature range contemplated in Fig. 6-14 than is actually
observed. The discrepancy arises from the fact that a part of the current
that is measured as reverse saturation current actually results from surface
leakage and is independent of temperature. Hence, the rate of change of I¢zo
with T should be less than that predicted by Eq. (6-3), which assumes that
all the current is temperature-sensitive. By examining a large number of
commercially available plots like those in Fig. 6-14 we find an average value
for (1/I¢po)(dIcro/dT) of 8 percent/°C for Ge and 6 percent/°C for Si (as
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Fig.8-14 Plot of I¢s0 versus the junction temperature T'; for (a) germanium alloy
type 2N1175 transistor and (b) silicon planar epitaxial type 2N914 transistor.
(Courtesy of General Electric Company.)
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Fig. 6-15 The source Vs applies a
reverse-biasing voltage to the n-p-n
transistor base through R and main-
tains the transistor in cutoff in the

presence of the reverse saturation Vs
current Icso. T

=

against the theoretical values of 10 and 7.5 percent/°C, respectively). Since
(1.08)t° = 2.2 and (1.06)*° = 1.8, then for every 10°C rise in temperature Icso
1s multiplied by 2.2 for Ge and by 1.8 for Si. If not too large a temperature
range is contemplated, then we can say that Icso approximately doubles for
every 10°C increase for either Ge or Si.

In addition to the variability of reverse saturation current with tempera-
ture there is also a wide variability of reverse current with particular samples
of a given transistor type. For example, the specification sheet for a Texas
Instruments type 2N337 grown diffused silicon switching transistor indicates
that this type number includes units with values of Jcso extending over the
extremely large range from 0.2 nA to 0.3 pA. Accordingly, any particular
transistor may have an I¢so which differs very considerably from the average
characteristic for the type.

Circuit Considerations at Cutoff Because of temperature effects, ava-
lanche multiplication, and the wide variability encountered from sample to
sample of a particular transistor type, even silicon may have values of I¢go
of the order of many tens of microamperes. Consider the circuit configuration
of Fig. 6-15, where V 55 represents a biasing voltage applied to keep the transis-
tor cut off. We have considered that the transistor is just at the point of cutoff,
with 7z = 0, so that Iz = —Icpo. Since at cutoff Var < —0.1V, then the
condition of cutoff requires that

Vee = —Ves + Rslepo < —01V (6-15)

As an extreme example assume that Rp is as large as 100 K and assume that
we want to allow for the contingency that Icso may become as large as 100 pA.
Then Vs must be at least 10.1 V. When I¢go is small the voltage across
the base-to-emitter junction will be 10.1 V. Hence we must use a transistor
whose maximum allowable reverse base-to-emitter junction voltage before
breakdown exceeds 10 V. It is with this contingency in mind that a manu-
facturer supplies a rating for the reverse breakdown voltage between emitter
and base, represented by the symbol BV rzo. The subseript O indicates that
BVizso is measured under the condition that the collector current is zero.
Breakdown voltages BV zpo may be as high as some tens of volts or as low as
0.5V. If BVgso = 1V, then V5 must be chosen to have a maximum value
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of 1 V. For Vs = 1 V and for I¢pe = 0.1 mA maximum, Rz cannot exceed
9 K. Forexample,if R = 8K, then —Vgp + IopoBs = —14+08 = —02V,
so that the transistor is indeed cut off.

We consider now the unhappy consequences which might result if, for
any one of many reasons, Eq. (6-15) is not satisfied. Suppose, in Fig. 6-15,
that — I'p falls short of the value I¢po, necessary to maintain cutoff, by the
current ATx. Then the change in collector current above the value I¢go will
be very nearly Al¢ = hs, AIp, in which h;, is the common-emitter forward-
current gain. The increased collector current will carry the transistor some-
what into the active region, where the collector-junction power dissipation is
increased. The dissipation at the collector junction will increase its tempera-
ture and thereby increase Tcpo. The increase in I¢so is aided further by the
fact that at low collector currents an increase in collector current increases &y,
The possibility exists that the process whereby I increases may become regen-
erative and a runaway condition may occur.

6-9 BREAKDOWN VOLTAGES®

In a transistor switch, the voltage change which occurs at the collector with
switching is nominally equal to the collector supply voltage Vec. Since this
voltage change will be used to operate other eircuits and devices, then for the
sake of reliability of operation, V¢¢ should be made as large as possible. The
maximum allowable voltage depends, as we shall see, not only on the character-
istics of the transistor but also on the associated transistor base circuitry.

The maximum reverse-biasing voltage which may be applied before break-
down between the collector and base terminals of the transistor, under the
condition that the emitter lead be open-circuited, is represented by the symbol
BVeso. This breakdown voltage is a characteristic of the transistor alone.
Breakdown occurs because of avalanche multiplication of the current Ico
that crosses the collector junction. As a result of this multiplication the
current becomes M I¢o, in which M is the factor by which the original current
I is multiplied by the avalanche effect. (We neglect leakage current, which
does not flow through the junction and is therefore not subject to avalanche
multiplication.) At a high enough voltage, namely BV ¢zo, the multiplication
factor M becomes nominally infinite and the region of breakdown is then
attained. Here the current rises abruptly, and large changes in current
accompany small changes in applied voltage.

The avalanche multiplication factor depends on the voltage V¢ between
collector and base. We shall consider that

1
1 — (Ves/BVepo)*

Equation (6-16) is employed because it is a simple expression which gives
a good empirical fit to the breakdown characteristics of many transistor types.

M= (6-16)
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Fig. 6-16 (a) Common-base characteristics extended into
breakdown region. (b) Idealized common-emitter charac-
teristics extended into breckdown region.

The parameter n is found to be in the range of about 2 to 10 and controls
the sharpness of the onset of breakdown. When n is large, M continues at
nearly unity until V¢p approaches very close to BVcso, at which point M
soars upward abruptly. When n is small the onset of breakdown is more
gradual.

In Fig. 6-16a the common-base characteristics of Fig. 6-12 have been
extended into the breakdown region. The curve for Iz = 0 is a plot, as a
function of Vg, of the product of the reverse collector current Ico and the
avalanche multiplication factor M. The abrupt growth in I¢ as BV¢po is
approached is shown, along with the slower increase of I¢ over the active
region that results from the small but not negligible avalanche multiplication.

If a current I is caused to flow across the emitter junction, then, neglect-
ing the avalanche effect, a fraction alx, where a is the common-base current
gain, reaches the collector junction. Taking multiplication into account, I¢
has the magnitude Malg. Consequently, it appears that, in the presence of
avalanche multiplication, the transistor behaves as though its common-base
current gain were a*, where \

a* = Ma (6-17)
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The CE Configuration Since hrr = a/(1 — a) it follows that in the pres-
ence of avalanche multiplication the CE current gain is k¥, where
Bt = a*  Ma
FE" 1 ~a* 1 —Ma

Now « is a positive number with a maximum magnitude less than unity,
but Mo may equal unity in magnitude, at which point A}z becomes infinite.
Accordingly, any base current, no matter how small, will give rise to an
arbitrarily large collector current whenever Ma = 1. This situation is, of
course, to be interpreted to mean that breakdown has occurred. Therefore,
whenever the base current is kept fized, breakdown occurs at the voltage Vs
which satisfies the equation
1

M= 1 — (Ves/BVeno)® T a (6-19)

or at the voltage V¢p given by
Ver = BVeso V1 — @ (6-20)

Since Vg at breakdown is much larger than the small forward base-to-emitter
voltage Vg, we may replace V¢p by Ve in Eq. (6-20). Also
1 .
1 —a=-2% ~ >
* " hes hrs

(6-18)

[y

since a is very close to unity. Finally we note that the condition imposed
above that the base current be fixed implies a current generator at the base,
that is, a source of infinite impedance. Equation (6-20) consequently gives
the breakdown voltage under the condition that the base is open-circuited
(with respect to signal or a-c variations). Altogether, the collector-to-emitter
breakdown voltage with open-circuited base, BV ¢go, designated is

"1
BVego = BVeno \/h—w (6-21)

For an n-p-n germanium transistor a reasonable value for n, as determined
experimentally, is n = 6. If we now take hrp = 50 we find that

BVego = 0.52BV ¢50

so that if BV¢so = 40 V, BV cgo is about half as much, or about 20 V. Ideal-
ized common-emitter characteristics extended into the breakdown region are
shown in Fig. 6-16b.

The Breakdown Voltage with Base Not Open-circuvited Assume that
the base is returned to the emitter through a resistor Rp, as in Fig. 6-17. We
may expect that the breakdown voltage, designated BV¢gg, will lie between
BVero and BVepo. To estimate BVegzr we shall make some simplifying
assumptions concerning the emitter-junction diode. We had noted in Fig. 6-2
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Fig. 6-17 The breakdown voltage between
collector and emitter is increased above
|BV¢go| by returning the base to the emitter
through Rs.

that the semiconductor junction diode exhibits a threshold voltage V., in the
forward direction. That is, until the forward voltage attains about 0.2 V in
germanium or 0.6 V in silicon the forward current is very small. We shall
assume that, until the threshold voltage has been reached, the collector current
will flow entirely to the base and hence through Rs. We also assume that once
the threshold voltage is exceeded nearly all the additional collector current will
flow through the emitter junction and the corresponding breakdown voltage is
BVego. Therefore when the collector-to-emitter voltage is larger than
BVego and the threshold voltage of the emitter junction is reached, break-
down will occur. On this basis, we expect breakdown when the collector
current M I¢o satisfies

MIgoRs =V, (6-22)

Proceeding as above, we now calculate that

BVerr = BVcso 4 ’1 - —IC—;;IE (6-23)
ki

The value of BV¢gr for Rz = 0, that is, when the base is short-circuited to
the emitter, is denoted by the symbol BVces. Equation (6-23) suggests
that BVegs = BVceso. However, we must recognize the presence of the
base-spreading resistance 7y and Ep should properly be replaced by Ry + 7w
Accordingly, even when Rp = 0, BVcgs is lower in magnitude than BV ¢go.

Equation (6-23) was derived on the basis of the assumption that, until
the occurrence of breakdown, the current through Rs was very large in com-
parison with the emitter-junction current. If Rp becomes so large that this
condition is not satisfied, then Eq. (6-23) is not applicable. Finally we should
note that, after breakdown has occurred, the collector and the emitter cur-
rents will become very large in comparison with the base current. Therefore
at large currents the presence of Es makes no difference, and the voltage across
the transistor will drop from BVcgr to BVcro, a8 noted in Fig. 6-18.

The breakdown voltage may also be increased by returning the resistor
Rjp to a voltage Vs, as in Fig. 6-15, which provides some back bias for the
emitter junction. In this case the condition which determines the onset of
breakdown is

MIgo(Rp + row) = Vy+ Vaa (6-24)
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and the breakdown voltage, now represented by the symbol BVegx, is given
approximately by

Ico(Rp + roe7)
V'r + VBB

Figure 6-18 shows plots of the collector current against the collector-to-
emitter voltage extending into the breakdown region. The dependence of
the breakdown voltage on the base return circuit is indicated. Also indicated
is the fact that, after breakdown, the voltage across the transistor at large
currents drops to a lower sustaining voltage. The curves are not drawn to
scale vertically. Before breakdown the currents are very small, being of the
order of microamperes, and the negative-resistance region of the curves may
be attained after the currents have risen to several milliamperes, whereas
after breakdown the currents may rise to many tens of milliamperes.

Note that in the breakdown region the characteristic of Fig. 6-18 gives
more than one value of current for a given voltage but has a single value of
voltage for each current. The transistor possesses a negative-resistance
characteristic of the current-controlled type as defined in See. 13-1. A
device used in this breakdown region is called an avalanche transistor. Because
both the current and voltage may be large the power dissipation may be
exceeded unless pulsed operation at a low duty cycle is employed (Sec. 13-16).

For the sake of avoiding complexity at the outset of our discussion con-
cerning breakdown, we have allowed an error which we shall now correct.
Figure 6-18 makes it appear that, unlike the other plots, the curve correspond-
ing to ‘““open base” approaches BV cgo monotonically. The fact is that some
transistors have an “open-base” characteristic that displays a breakdown
voltage which is larger than the sustaining voltage and is hence of the same
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Fig. 6-18 Plot, extended into the breakdown region, of collector
current against Vg for various connections to the base. The
sustaining voltage is BV ¢zo.
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Fig. 6-19 A possible set of break-

down characteristics. The curve I
marked O is for an open-circvited

base, R for the base connected to the
emitter through a resistor, S for a o
short-circvited base, and X for a
reverse-biased base. The break-
down-voltage curve between collector ’
and base with the emitter open is
marked Vczo. (Courtesy of Silicon Ver
Transistor Corporation.)

general form as all the other plots in Fig. 6-18. Qualitatively the reason for
such anomalous behavior, as well as certain other features in breakdown char-
acteristics, is explained by the following. We note from Eq. (6-21) that BV¢go
is a function of hpz. The parameter kpz, however, is a function of the current.
It is small at small currents, increases with increasing current to a maximum,
and then falls off again. In Fig. 6-18 the dependence of BVcgo on hre and
consequently on collector current has not been taken into account. Because
the variation of hpg with I¢ depends on the transistor construction (alloy,
planar epitaxial, etc.), the breakdown characteristics may take on a variety
of shapes. One possibility is indicated in Fig. 6-19.

6-10 LATCHING VOLTAGES

A possibility for which we must cheek is illustrated in Fig. 6-20. Here we
have selected a supply voltage Ve which is less than the breakdown voltage
BV. But the load selected is one which causes the load line to intersect the
transistor breakdown characteristic at three points. Suppose, then, that the
transistor is initially at saturation at S, which is the point of intersection of the
load line and a common-emitter characteristic corresponding to some base
current I adequate to drive the transistor to saturation. Next suppose that
the transistor is driven off by applying a reverse voltage at the base cor-
responding to which condition the transistor characteristic is the breakdown
characteristic shown. The transistor will leave the point § and move along
the load line toward cutoff, where the collector-to-emitter voltage is nominally
Vee. Cutoff, however, will not be attained; instead, a stable state of appreci-
able current will be reached at L. This point of intersection of the load line
with the breakdown characteristic is called the latching point.

Suppose that the transistor is originally at cutoff with Veg = Vec and
that the base current then is driven to I5. Under these conditions the tran-
sistor will be driven to saturation at the point S. Thus the latching point is
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. of ‘‘latching’’ in a transistor switch.
Latching point, L

properly named. Like the latch on a door, it restrains transfer of the operating
point in one direction but not the other. The latching voltage is ordinarily
identified by the same subscripts used for the corresponding breakdown
voltage. Thus, in Fig. 6-20, if it is appropriate to label the breakdown voltage
BV ¢ex the latching voltage would be designated LV ¢px.

Figure 6-18 suggests that, if ‘the latching point occurs at high enough
currents, then the latching voltage will be very close to BV¢eo and that the
latching voltage is largely independent of the type of base return. Figure
6-18 was drawn on the basis of the assumption that at high current very little
current would flow in the base circuit of the transistor. If this condition is not
satisfied, then the lower voltage to which the breakdown characteristic drops
after the breakdown voltage has been passed is a function of the type of base
return. This lower voltage will also be the latching voltage corresponding
to each case, and we may therefore continue to designate it by LV. When the
transistor itself is being referred to rather than the proposed application of the
transistor as a switch, the latching voltage is referred to as the lower limiting
voltage and the symbol LV is still appropriate. Just as BVcex > BVcrs >
BV¢gr > BVego, so toois LVeex > LVegs > LVerr > LV¢go. These lower
limiting or latching voltages are also referred to as sustaining voltages and
designated by V (sustaining). Thus LVcex = Veex (sustaining), ete.

6-11 REACH-THROUGH

There is a second mechanism by which a transistor’s usefulness may be ter-
minated as the collector-to-base voltage is increased. This mechanism is
called punch-through or reach-through and results from the increased width
of the collector-junction transition region that results from increased collector-
junction voltage (the Early effect).
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The transition region at a junction is the region of uncovered charges
on both sides of the junction at the positions occupied by the impurity atoms.
As the voltage applied across the junction increases, the traunsition region
penetrates deeper into the collector and base. Because neutrality of charge
must be maintained, the number of uncovered charges on each side remains
equal. Since the doping of the bage is ordinarily substantially smaller than
that of the collector, the penetration of the transition region into the base is
larger than into the collector. Since the base is very thin, it is possible that,
at moderate voltages, the transition region will have spread completely across
the base to reach the emitter junction. At this point normal transistor action
ceases, since emitter and collector are effectively shorted. Punch-through
differs from avalanche breakdown in that it takes place at a fixed voltage
between collector and base, and is not dependent on circuit configuration.

In a particular transistor, the voltage Jimit is determined by punch-
through or breakdown, whichever occurs at the lower voltage. If reach-
through occurs first (as it usually does for an alloy transistor), this voltage is
easily determined in the following manner. An adjustable reverse-biasing
voltage is connected between collector and base, and at the same time the
voltage between emitter and base is monitored with a high-impedance volt-
meter. As the collector-to-base voltage is increased the emitter voltage will
respond very little until the punch-through voltage is reached. At this point
an increment in collector-to-base voltage will cause an equal change in the
emitter voltage.

6-12 THE TRANSISTOR SWITCH IN SATURATION

When a transistor switch is driven from saturation to cutoff, one of the factors
which has an important effect on the speed of response is the time required to
charge the capacitance which appears in shunt across the output terminals
of the transistor. This capacitance must charge through the load resistance
R:, and for this reason, in fast switching circuits, Rz must be kept small.
In saturation, the transistor current is nominally Ve¢e/Ry, and since Rr is
small, it may well be necessary to keep Ve correspondingly small in order to
stay within the limitations imposed by the transistor on maximum current
and dissipation. The total voltage swing at the transistor switch is Ve —
Ver(sat). The symbol Ves(sat) stands for the collector-to-emitter voltage
of the transistor when it is in saturation. If Vee is fixed, then in order to
make the output swing as large as possible it is necessary that Vcz(sat) be
as small as possible. The largest possible output swing is desirable in order
to reduce the sensitivity of the switching circuit to noise, supply voltage
fluctuations, transistor aging and replacement, etc. There are also occasions
when the output of one switch is d-c-coupled to the input of other switches,
and a small change in V¢g(sat) will determine whether the succeeding switches
are cut off or driven to saturation. For both these reasons, a manufac-
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turer of a switching transistor invariably specifies V¢g(sat) under particu-
lar operating conditions or furnishes information from which Vog(sat) may be
determined.

For the transistor switch of Fig. 6-11a we are not able to read Ver(sat)
with any precision from the plots of Fig. 6-13. Accordingly, we refer instead
to the characteristics shown in Fig. 6-21. 1In these characteristics the 0- to
—0.5-V region of Fig. 6-13 has been expanded, and we have superimposed the
same load line as before, corresponding to R, = 500 ©. We observe from
Figs. 6-13 and 6-21 that Vg and I¢ no longer respond appreciably to base
current Ip after the base current has attained the value —0.15 mA. At
this point the transistor is in saturation and |[Ver| =~ 175mV. Atz = —0.35,
[Vee| has dropped to |Vez| =~ 100 mV. Larger magnitudes of Iz will of course
decrease |Vep| slightly further. '

For a transistor operating in the saturation region, a quantity of interest
is the ratio Vog(sat)/Ic. This parameter is called the common-emiller satura-
tion resistance and variously abbreviated Res, Rers, or Rep(sat). To specify
Rcs properly we must indicate the operating point at which it was determined.
For example, from Fig. 6-21 we find that at 7 ¢ = —20mAand /5 = —0.35mA,
Res = —0.1/(—20 X 103 = 5 Q. The usefulness of Res stems from the
fact, as appears in Fig. 6-21, that to the left of the knee each of the plots, for
fixed Iz, may be approximated, at least roughly, by a straight line. In
instances where the manufacturer is not inelined to make available saturation-
region collector characteristics as in Fig. 6-21, he may instead specify values of
Rcs for one or more values of Ip. Still another way to supply the necessary
information is indicated in Fig. 6-22. Here Vez(sat) is plotted as a function
of Ic and I¢/Ip for the 2N914 silicon transistor.

The saturation voltage Vg (sat) depends not only on the operating point -
but also on the semiconductor material (germanium or silicon) and on the
type of transistor construction. Alloy-junction transistors and epitaxial tran-
sistors give the lowest values for Ver(sat) (corresponding to about 1  satura-
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tion resistance), whereas grown-junction transistors yield the highest. Ger-
manium - transistors have lower values for Veg(sat) than do silicon. For
_example, we see in Fig. 6-21 that an alloy-junction Ge transistor may allow,
with adequate base currents, values for Ver(sat) as low as tens of millivolts
at collector currents which are some tens of milliamperes. Similarly, epitaxial
silicon transistors may yield saturation voltages as low as 0.2 V with collector
currents as high as an ampere. On the other hand, grown-junction germanium
transistors have saturation voltages which are several tenths of a volt, and
silicon transistors of this type may have saturation voltages as high as several
volts.

The D-C Current Gain A parameter of interest in connection with the
transistor is the ratio I¢/Ip, where I is the collector current and Ip is the
base current. ‘This ratio is known as the d-c¢ forward-current transfer ratio,
the d-c current gain, or sometimes simply as the d-c beta and is represented by
the symbol hre. The symbol keg is not to be confused with hy.. The latter,
with the lowercase subseripts, equals the incremental ratio Alc/Alp. We
note from Fig. 6-21 that at Veg = —0.25 V and at J¢ = —30 mA, hrg =
—30/—0.23 = 130. At the same operating point k;, =~ 6/0.05 = 120.

In the saturation region, particularly, the parameter hrg is a useful num-
ber and one which is usually supplied by the manufacturer when a switching
transistor is involved. We know I¢, which is given approximately by Vee/R i,
and a knowledge of hrg tells us how much input base current (Ic/hre) will
be needed to saturate the transistor. For the type 2N404, the variation of
hex with collector current at a low value of Vg is as given in Fig. 6-23. Note
the wide spread (a ratio of 3:1) in the value which may be obtained for hrz
even for a transistor of a particular type. Commercially available transistors
have values of hrz that cover the range from 10 to 150 at currents as small as
5 mA and as large as 30 A.
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From Fig. 6-21 we see that h;,— 0 in the saturation region because
Alc — 0O for a finite Alg. However, from Fig. 6-13 we find that for saturation
at I = —30 mA the base current required is /5 = —0.25 mA, so that hpg =
—30/(—0.25) = 120. We note that the value of hrz (at the edge of satura-
tion) is of the same order of magnitude as A, (in the active region).

6-13 INPUT CHARACTERISTICS

Knowing the base driving current required, we next naturally wish to learn
how large a voltage must be applied at the input base to establish this base
current. Information on this point is to be found in the plot of Fig. 6-24.
Here the base-to-emitter voltage Vg is plotted against the base current. The
values of V¢g for which plots are given are low values such as are normally
encountered in a transistor switch in saturation. A qualitative understanding
of the form of the curves is not difficult. If we were dealing with the emitter
junction alone there would be just a single plot, for the emitter-junction current
would depend only on the voltage applied between base and emitter. In the
present case, however, a collector current flows and the principal part of this
collector current continues through the base to cross the emitter junction as
well. Accordingly, for a fixed base-to-emitter voltage, the base current varies
with collector current and therefore varies also with collector-to-emitter
voltage so long as collector-to-emitier voltage affects the collector current. Or, for
fixed base current, the base-to-emitter voltage varies only so’'long as this same
condition applies. Thus, considering any one of the plots for fixed base
current in Fig. 6-21, we expect that Vg will depend on Vg only to the left
of the knee and not above the knee, where collector current is insensitive to
collector-to-emitter voltage.
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Fig. 6-24 Input characteristics for type 2N404 Ge transistor
in the CE configuration.

We now determine from Fig. 6-21 for the given load line and I = —0.35
mA that Ic = —20 mA and Vee(sat) = —0.1 V. From Fig. 6-24 we find
Vaer(sat) = —0.23 V. As noted in Fig. 6-25, we calculate that

Vso(sat) = —0.23 + 0.10 = —0.13V

We observe that the transistor is indeed in saturation since the collector
junection is forward-biased rather than reverse-biased. (The p-type collector
is positive with respect to the n-type base.) We observe further that the
voltage between collector and emitter is smaller than the input voltage between
base and emitter. This circumstance arises because, in saturation, the voltage
drops across the two junctions are in opposition.

The input characteristics for silicon transistors are similar in form to
those in Fig. 6-24. The only notable difference in the case of silicon is that
the curves break away from zero current at Vzg(sat) in the range 0.5 to 06V
rather than in the range 0.1 to 0.2 V as for germanium. Manufacturers give
input characteristics in a variety of ways in addition to the form in Fig. 6-24.

C C

Fig. 6-25 Calculated values of ter- ;r ?
- + -
minal voltages to illustrate that _013V 013V
|Ver| < |[Vaxl. (o) and (b) are + -
. . B -0.1V B 01V
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that.a p-n-p transistor is involved -023V 023V
and that both junctions are forward- " - * *
biased. E E
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Sometimes Vpx(sat) is plotted against Iz (or the ratio I¢/Is) for various col-
lector currents I¢, as in Fig. 6-26. Another method of presenting the data
is to plot I¢ against Vpgg(sat) for various values of Ip.

We note in Fig. 6-24 that beyond the break, a quite small change in input
voltage causes a large change in base current. For this reason it is desirable in
transistor switches to avoid “voltage drive,” that is, applying a voltage from a
low-impedance voltage source to drive the transistor to saturation. Rather
it is advantageous to use “current drive,” that is, to furnish a signal from a
high-impedance source which consequently behaves nominally as a current
generator.

Tests for Saturation It is often important to know whether or not a
transistor is in saturation. We have already given two methods for making
such a determination. These may -be summarized as follows: .

1. If I¢ and Iz can be determined independently from the circuit under
consideration, then the transistor is in saturaiion if Ip > I¢/hre.

2. If Vep is determined from the circuit configuration and if this quantily
is positive for a p-n-p transistor (or negative for an n-p-n), then. the transistor s
in saturation. Of course, the emitter junction must be simultaneously forward-
biased, but then we would not be testing for saturation if this condition were
not satisfied. We shall make applications of these rules in the transistor-
circuit analyses to follow in later chapters.

6-14 TEMPERATURE VARIATION OF SATURATION PARAMETERS

The variation with temperature of the saturation parameters of the transistor
switeh is of interest. At constant base and eollector currents we find that the
forward base-to-emitter voltage |Vzz| has a typical temperature sensitivity
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Fig. 6-27 (a) Temperature dependence for type 2N404 germanium transistor of
the base-to-emitter voltage in the saturation region at constant base and collector
current; (b) temperature dependence of collector-to-emitter saturation voltage;
(c) temperature dependence of kre for various collector currents normalized to
25°C. (Courtesy of Texas Instruments, Inc.)

in the range —1.5 to —2.0 mV/°C. This figure applies both to germanium
and to silicon units and agrees reasonably well with the calculation in Sec. 6-2.
A plot for germanium of Vg against ambient temperature is shown in Fig.
6-27a. A similar characteristic for silicon has approximately the same slope.

In saturation, the transistor consists of two forward-biased junctions
back to back, series opposing. It is consequently to be anticipated that the
temperature-induced voltage change in one junction will be canceled in some
measure by the change in the other junction. We do indeed find such to be
the case for Veg(sat). At small and moderate transistor currents the com-
pensation may be very good, as is borne out by the plots of Fig. 6-27b. At
high currents the voltage drops across the body resistance of the emitter and
collector may become comparable to or even larger than the drops across the
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junctions. Since the ohmic drops are additive, the cancellation is not possible
at these high currents.

The temperature dependence of hxz is shown in Fig. 6-27c. At small and
moderate currents hpz increases substantially with temperature. At high
currents hrz may well become rather insensitive to temperature.

6-15 VARIABILITY OF PARAMETERS

In spite of the great strides that have been made in the manufacturing tech-
nology of semiconductor devices, transistors of any particular type still come
out of production with a wide spread in the values of some parameters. We
have already noted the wide variability that may appear in I¢po. Fortu-
nately, other parameters are less difficult to control. Nevertheless, a varia-
tion by a factor of 3 or 4 in a parameter as important as hrg is not unusual (see
Fig. 6-23).

To provide information about this variability a transistor data sheet,
in tabulating parameter values, invariably provides columns headed minimum,
typical (or average), and mazimum. Not all columns will necessarily have
entries. Thus, if a particular parameter is not especially important in the
application for which the transistor is intended, a listing may appear only
under typical. Or, in the case of an important parameter, it may be that the
extreme corresponding to the worst case is given and possibly the typical
value as well. By way of example, we find that the Texas Instruments Com-
pany data sheet on the 2N404 gives only the minimum value of BV ¢s0, whereas
for hpg it gives minimum and typical values (30 and 100, respectively). Also,
the data sheet gives only a typical value (135) for the small-signal CE short-
circuit current gain hy,, whereas for Vcg(sat) it gives maximum and typical
values. Any design calculated to ensure that the circuit will operate as pre-
dicted with nearly all transistors of a particular type must take account of the
most unfavorable possible value of each parameter. Design on this basis is
called worst-case design and is employed invariably when reliability is important.

6-16 ANALYTIC EXPRESSIONS FOR TRANSISTOR CHARACTERISTICS

We have found that the transistor characteristics which we require for switch-
ing-circuit design are normally furnished for each transistor type by the manu-
facturer. It is nonetheless important that we should have some analytic
procedure for determining the operating states of a transistor. In the first
place, the availability of such a theoretical analysis will relieve us of complete
dependence on published specifications and plots for each. transistor type we
may plan to use. Second, it will permit us to arrive at general principles con-
cerning transistor operation. Third, we shall be able to obtain some numerical
values (such as the cutoff voltage) not usually supplied by the manufacturer.
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The basic equation of transistor operation in the active region is
Ic = —alg+ Ico (6-26)

In Eq. (6-26) I¢ and I are the collector and emitter currents, respectively,
and are positive when currents flow into the corresponding transistor terminal.
The parameter a is known as the short-circuit common-base current gain, with a
value close to but always less than unity. The parameter I¢o is the reverse
saturation current discussed in Sec. 6-8. (In an n-p-n transistor I¢o is a posi-
tive number, and in a p-n-p transistor it is a negative number.)

Suppose now that we seek to generalize Eq. (6-26) so that it will apply
not only when the collector junction is substantially reverse-biased but also
for any voltage across the collector junction. To do this we need but to replace
the term I¢o by the more complete expression from which the I¢o term is
derived as a special case. We recall that the volt-ampere characteristic of any
junction is given by Eq. (6-1):

I = I(evs — 1) (6-27)

where n = 1 for germanium and n = 2 for silicon. We apply Eq. (6-27) to
the collector junction by replacing I, by —Ico and V by V¢. The symbol
Ve represents the drop across the junction, as in Fig. 6-28, from the p side
to the n side and not necessarily the voltage Vs between the corresponding
transistor terminals. The difference between Vs and Ve is due to the ohmic
drop across the body resistances of the transistor, particularly the base-
spreading resistance ry. A positive value of Ve means that the collector is

E
(emitter)

Emitter
junction

B
(base)

Fig. 6-28 Defining the voltages and currents in the Ebers and Moll equations.
For either a p-n-p or an n-p-n transistor a positive valve of current means that
positive charge flows into the corresponding junction, and a positive Vi (Vo)
means that the emitter (collector) is forward-biased (the p side positive with
respect to the n side).
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forward-biased with respect to the base. Equation (6-26) now becomes
Ic = —anIeg + Ico(l — e¥elrVr) (6-28)

We have added a subscript N to « for a reason that will be apparent shortly.
Equation (6-28) reduces again to Eq. (6-26) if V¢ is negative (a reverse-biased
junction) and large in magnitude in comparison with 2Vr. Equation (6-28)
represents the analytical expression for the common-base characteristics of
Fig. 6-12.

To generalize further, we must recognize that there is no essential reason
which constrains us from using a transistor in an inverted fashion, that is,
interchanging the roles of the emitter junction and the collector junction and
returning the base current to the collector instead of the emitter. From a
practical point of view such an arrangemeut might not be as effective as use
in the normal fashion, but this matter does not concern us now. With this
inverted mode of operation in mind we may now write, in correspondence with
Eq. (6-28),

Iz = —arle + Igo(l — e¥s/7Vr) (6-29)

Here oy is the inverted common-base current gain, just as oy in Eq. (6-28)
is the current gain in normal operation. Ixo is the emitter-junction reverse
saturation current and Vg is the voltage drop from p side to » side at the
emitter junction and is positive for a forward-biased emitter. In the literature
ar (reversed alpha) and ar (forward alpha) are sometimes used in place of
ar and oy, respectively.

If we use these equations simultaneously we shall be assuming tacitly
that the response of the transistor to a current injected at the collector junction
is independent of any possible current injected at the emitter junction and
vice versa. Thus we shall be assuming that superposition applies to the
transistor currents, and this assumption implies, in turn, that the transistor
is a linear device. This linearity does not apply, of course, to the volt-ampere
characteristic of the junctions but only to relationships of the junction currents
to one another. If the doping of the base region is uniform such linearity
will indeed prevail. If the doping is not uniform, linearity will not apply.
However, the range of applicability of these equations is very wide and covers
many transistor types.

We may use Eqgs. (6-28) and (6-29) to solve explicitly for the junction
currents in terms of the junction voltages as defined in Fig. 6-28, with the
result that

=_£‘_’£C"_ Velvr — 1) — LB vyiave _

Ig T = anas (e¥elvr — 1) T— ("= 1) (6-30)
=_"‘_N£& VelnVr — __deo (vermve _

I “1—a1va1(e s"Vr — 1) 1—azv(x1(€ oln 1) (6-31)

These two equations were first presented by Ebers and Moll in a now classic
paper.*®
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The third current I is determined from the condition
IB+IE+IC=0 (6—32)

We may solve explicitly for the junction voltages in terms of the currents from
Eqs. (6-29) and (6-28), with the result that

Ve=aVrln (1 _ IL;L‘ﬂE> (6-33)
EO

Ve=19Veln (1 — IC_"}_"‘N_IE> 6-34)
co

The parameters an, ar, Ico, and Igo are not independent but are related by
the condition®

OLNIEO = aIICO (6-35)

Manufacturers’ data sheets often provide information about ax, Ico, and Ixo,
80 that ar may be determined. For many of the transistor types such as
alloy junction and grown junction, for which the present analysis is appropri-
ate, Igo lies in the range 0.51¢o to Ico.

6-17 ANALYSIS OF CUTOFF AND SATURATION REGIONS

Let us now apply the above equations to find the d-c currents and voltages in
the grounded-emitter transistor switch.

The Cutoff Region If we define cutoff as we did in Sec. 6-8 to mean zero
emitter current and reverse saturation current in the collector, what emitter-
junction voltage is required for cutoff? Equation (6-33) with Iz = 0 and
I¢ = I¢o becomes

Vs =1Vrln (1 - Sfﬂ) = Vrln(l — ax) ' (6-36)
EO

where use was made of Eq. (6-35). At 25°C, Vr = 26 mV, and for ay = 0.98,
Ve = —100 mV for germanium (3 = 1). Near cutoff we may expect that
« may be smaller than the nominal value of 0.98. With a = 0.9 for germa-
nium, we find that Vg = —60 mV. For silicon near cutoff, « ~ 0 (page 195),
and from Eq. (6-36), Ve = 9VrIn1 = 0 V. The voltage Vi is the drop from
the p to the n side of the emitter junction. To find the voltage which must be
applied between base and emitter terminals we must in principle take account
of the drop across the base-spreading resistance ry in Fig. 6-28. If repr = 100 Q2
and Ico = 2 pA, then Icorw = 0.2 mV, which is negligible. Since the emitter
current is zero, the potential Vi is called the floating emitter potential.

The above analysis indicates that a reverse bias of approximately 0.1 V
(0 V) will cut off a germanium (silicon) transistor. It is interesting to deter-
mine what currents will flow if a larger reverse input voltage is applied.
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Assuming that both Vg and V¢ are negative and much larger than Vr, so
that the exponentials may be neglected in comparison with unity, Eqs. (6-28)
and (6-29) become

Ic = —anle + Ieo Ig = —arle + Izo (6-37)
Solving these equations and using Eq. (6-35), we obtain
Ie=Teed —a)  p _ Ieoll = ax) (6-38)

1 — anar 1 — anar
Sinee (for Ge) ay = 1, I¢ ~ Ico and Ig = 0. Using ay = 0.9 and a; = 0.5,
then Ic = 100(050/055) = 0.91100 and IE = 130(010/055) = 0.18130 and
represents a very small reverse current. Using ar = 0 and ay =~ 0 (for Si),
we have that I¢ =~ I¢s and Iz =~ Iz. Hence, increasing the magnitude of
the reverse base-to-emitter bias beyond cutoff has very little effect on the
very small transistor currents.

Short-circuited Base Suppose that instead of reverse-biasing the emitter
junction we simply short the base to the emitter terminal. The currents which
now flow are found by setting Vz = 0 and by neglecting exp (V¢/9V7r) in the
Ebers and Moll equations. The results are

IC’O

1 — OQNOT

IC' = ICE'S and - IE = —‘OlIICES (6'39)
where we have used the notation of Sec. 6-9; namely, Iczs represents the
collector current in the common-emitter configuration with a short-circuited
base. If (for Ge) ay = 0.9 and ar = 0.5, then Icgs is about 1.81¢o and Ig =
—0.9100. If (fOl‘ Sl) ay = 0 and oy = 0, then Icgs = Ico and IE = 0.
Hence, even with a short-circuited emitter junction the transistor is virtually
at cutoff.

Open-circvited Base If instead of a shorted base we allowed the base
to “float”’ so that I = 0, we see, in Sec. 6-8, that the cutoff condition is not
reached. The collector current under this condition is called Icgo and is
given by

Icpo = - Too (6-40)

“an
It is interesting to find the emitter-junction voltage under this condition of a
floating base. From Eq. (6-33) with Iz = —I¢, and using Eq. (6-35),
_ ax(l — ar) g

Ve=2Vrln [1 + o § aN)] i (6-41)
For ay = 0.9 and a7 = 0.5 (for Ge) we find Vg = +60 mV. For ay =
2a; ~ 0 and 7 = 2 (for 8i) we have Vg =~ 2V In 3 = +57 mV. Hence an
open-circuited base represents a slight forward bias.
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The Cutin Voltage The volt-ampere characteristic between base and
emifter at constant collector-to-emitter voltage is not unlike the volt-ampere
characteristic of a simple junction diode. When the emitter junction is
reverse-biased the base current is very small, being of the order of nanoamperes
or microamperes for silicon and germanium, respectively. When the emitter
junction is forward-biased, again as in the simple diode, no appreciable base
current flows until the emitter junction has been forward-biased to the extent
where |Vig| > |V,|, where V, is called the cutin voltage. Since the collector
current is nominally proportional to the base current, no appreciable collector
current will flow until an appreciable base current flows. Therefore, a plot
of collector current against base-to-emitter voltage will exhibit a cutin voltage,
just as does the simple diode.

In principle, a transistor is in its active region whenever the base-to-
emitter voltage is on the forward-biasing side of the cutoff voltage, which
oceurs at a reverse voltage of 0.1 V for germanium and 0 V for silicon. In
effect, however, a transistor enters its active region when Vg > V,.

We may estimate the cutin voltage V, in a typical case in the following
manner. Assume that we are using a transistor as a switch so that when the
switch is oN it will carry a current of 2 mA. We may then consider that the
cutin point has been reached when, say, the collector current equals 1 percent
of the maximum current or a collector current Ic = 20 uA. Hence, V, is the
value of Vg given in Eq. (6-33), with Iz = —(I¢ + Is) = —Ic = —20 pA.
Assume a silicon transistor with ay = 0.5 and Tzp = 1 nA. Since 5 = 2 and
at room temperature Vy = 0.026 V, we obtain from Eq. (6-33)

20 X 10%(1 ~ 0.5)
10—*

V, = 2(0.026)(2.30) log1o [1 + ] =048V

With a germanium transistor (7 = 1 and Iz = 1 gA) and again using oy = 0.5
and Ig = —I¢ = —20 uA, Eq. (6-33) yields V,, = 0.06 V. If the switch had
been called upon to carry 20 mA rather than 2 mA, then cutin voltages of
’0.60 and 0.12 V for Si and Ge, respectively, would have been obtained.

Figure 6-29 shows plots, for several temperatures, of the collector current
as a function of the base-to-emitter voltage at constant collector-to-emitter
voltage for a typical silicon transistor. We see that the value calculated above
for V, (of the order of 0.5 V) is entirely reasonable. The temperature depend-
ence results from the temperature variation in the forward direction of the
emitter-junction diode. Therefore the lateral shift of the plots with change
in temperature and the change with temperature of the cutin voltage V., are
given by Eq. (6-6), that is, approximately —2 mV/°C.

The Saturation Region Let us consider the 2N404 p-n-p germanium
transistor operated as in Fig. 6-21 with I¢ = —20 mA and Iz = —0.35, so
that 7 = +20.35 mA. Assume the following reasonable values: I¢p =
—2.0 pA, Igo = —1.0 pA, and axy = 0.99. From Eq. (6-35) ar = 0.50.
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From Egs. (6-33) and (6-34) we calculate that at room temperature

20.35 — (0.50)(20)

Ve = (0.026)(2.30) logo [1 - —10-%

] =024V

and
—20 + 0.99(20.35)
—{(2)(107%)

Ve = (0.026)(2.30) logso [1 - ] =011V
For a p-n-p transistor
Veg = Ve — Vg =011 —-024 =~ —-0.13V

Taking the voltage drop across rs (= 100 Q) into account,

Ves = Ve — Ipre = 0.11 +0.035 = 0.15 V
and

]

Veg = Iprw — Vg = —0.035 — 0.24 = —0.28V

These are in fair agreement with the values in Fig. 6-25, which were obtained
from the published saturation curves (Veg = —0.10, Vep = 0.13, and
Vee = —0.23).

Note that the base-spreading resistance does not enter into the caleulation
of the collector-to-emitter voltage.” For a diffused-junction transistor the
voltage drop resulting from the collector-spreading resistance may be sig-
nificant for saturation currents. If so, this ohmie drop can no longer be
neglected as we have done above. For example, if the collector resistance is
5 ©, then with a collector current of 20 mA the ohmic drop is 0.10 V and |Vce|
inereases from 0.13 to 0.23 V.
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6-18 TYPICAL TRANSISTOR-JUNCTION VOLTAGE VALUES

Quite often, in making a transistor-circuit calculation, we are beset by a com-
plication when we seek to determine the transistor currents. These currents
are influenced by the transistor-junction voltages. However, to determine
these junction voltages we would first have to know the very currents we seek
to determine. A commonly employed and very effective procedure to over-
come this problem arises from the recognition that certain of the transistor-
junction voltages are ordinarily small in comparison with externally impressed
voltages, the junction voltages being in the range of only tenths of volts,. We
may therefore start the calculation by making the first-order approximation
that these junction voltages are all zero. On this basis we calculate a first-
order approximation of the current. These first-order currents are now used
to determine the junction voltages either from transistor characteristics or,
if they are applicable, from the Ebers-Moll equations. The junction voltages
so calculated are used to determine a second-order approximation of the cur-
rents, etc. As a matter of practice it ordinarily turns out that not many orders
are called for, since the successive approximations converge to a limit very
rapidly. Furthermore, a precise caleulation is not justifiable because of the
variability from sample to sample of transistors of a given type.

The required number of successive approximations may be reduced, or,
more importantly, the need to make successive approximations may usually
_ be eliminated completely by recognizing that for many low- and medium-power
transistors, over a wide range of operating conditions, certain transistor-
junction voltages lie in a rather narrow range and may be approximated by the
entries in Table 6-1. Table 6-1 lists the collector-to-emitter saturation voltage
[V cx(sat)], the base-to-emitter saturation voltage [Vaxz(sat) = V,], the base-to-
emitter voltage in the active region [Vzr(active)], at cutin [Vs g(cutin) =
V,], and at cutoff [V zg(cutoff)]. The entries in the table are appropriate for an
n-p-n transistor. For a p-n-p transistor the signs of all entries should be
reversed. Observe that the total range of V zx between cutin and saturation is
rather small, being only 0.2 V. The voltage Vze(active) has been located
gomewhat arbitrarily but nonetheless reasonably at the midpoint of the range.

Of course, particular cases will depart from the estimates of Table 6-1.
But it is unlikely that the larger of the numbers will be found in error by more
than about 0.1 V or that the smaller entries will be wrong by more than about

TABLE 6-1 Typical n-p-n transistor-junction voltages at 25°Ct

Vez(sat) Var(sat) = V, | Vas(active) | Var(cutin) = Vy V sz(cutoff)

Si 0.3 0.7 0.6 0.5 0.0
Ge 0.1 0.3 0.2 0.1 —-0.1

 The temperature variation of these voltages is discussed in Secs. 6-14 and 6-17.
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0.05 V. In any event, starting a calculation with the values of Table 6-1
may well make further approximations unnecessary.

Finally, it should be noted that the values in Table 6-1 apply to the intrin-
sic junctions. The base terminal-to-emitter voltage includes the drop across
the base-spreading resistance 7. Ordinarily the drop 74/ is small enough
to be neglected. If, however, the transistor is driven very deeply into satura-
tion the base current Iz may not be negligible, and we must take

Veeg = Vo + Inre

6-19 THE VACUUM-TUBE TRIODE!

Typical triodes used in pulse applications, as well as in other types of circuits,
are the 6CG7, the 12AU7 (or its equivalent the 5963), the 12AT7, the 12AX7,
and the 5965. These are miniature tubes and each contains two triode sec-
tions in one envelope. The 6SN7 is a nonminiaturized tube similar to the
type 6CG7 and was the tube most commonly used in pulse-type equipment
during World War I1. The 5963 and 5965 were designed for use in high-speed
digital computers. The volt-ampere characteristics of the above tubes are
given in Appendix D or in this section. The curves for the 5965 are given
in Figs. 6-30 and 6-31. In these latter characteristics, curves for positive
grid voltages have been included because, as we shall see, the grid of a tube
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Fig. 6-30 Negative-grid plate characteristics of 5965 tube.
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Fig. 6-31 Positive-grid plate characteristics of 5965 tube. The dashed lines
are loci of constant grid current.

is often driven positive in pulse circuits. If the region near small plate volt-
ages is ignored, then the positive-grid curves are very similar in shape and
spacing to those for negative-grid values. Hence, if the grid signal is supplied
from a source of low impedance, so that the loading effect on the source due
to the flow of grid current may be ignored, the tube will continue to operate
linearly even if the grid signal makes an excursion into the positive-grid
region. This linearity will continue so long as the grid current is a small
fraction of the total cathode current.

In pulse applications, large voltage swings are often encountered, and the
small-signal equivalent circuit of Sec. 1-5 is meaningless because the tube
parameters g, 1, and gn are not constant. The variation of these parameters
with plate current is given in Fig. 6-32.

The grid volt-ampere characteristics of the 5965 tube are given in Fig. 6-33.
At a given plate voltage the grid circuit behaves as a diode. By analogy with
the definition of the dynamic plate resistance, the dynamic grid resistance 7,
is given by dV¢/dIs, where Vg and Ig are the instantaneous values of grid
voltage and current, respectively. The static grid resistance re is defined as
the ratio V¢/Is. From Fig. 6-33 it appears that the difference in values
between the static and dynamic resistances is not great, except possibly for
small grid voltages. Furthermore, the value of the grid resistance r¢ is not a
sensitive function of plate voltage. From Fig. 6-33 we find that for the 5965



222 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec, 6-19

10 35

1 [T 1] P
sl % \ V=63V 7 .
j V=150V &m %
3
o 50 M 25 B 7 5
s b ] 3
< w0 3 22 = 4 g
8 - g
=}
& af 'g 15 AT IN 3 3
! 3
5 L ﬁ 4/ < o]
g 2 0 Sew 2 g
¥
IOL- 5 4 1 3
oL 0
0 2 4 6 8 10

Plate current, mA
Fig. 6-32 Average small-signal parameters of 5965 tube.

tube, 250 € is a reasonable value for rg. For other tubes, the grid resistance
may be much more variable than indicated above. For example, for a 12AU7
the static r¢ has values ranging from about 500 to 1,500 2, depending upon the
values of grid and plate voltages (see the grid current curves of Fig. 6-33).

The grid current at zero grid-to-cathode voltage, and even for slightly
negative grid voltages, is often large enough to have an appreciable effect
on the operation of a circuit. We estimate from Fig. 6-31 that the grid
current is

I¢ = 400 A at Vg=0V
Ie¢ = 10 uA at V¢ = —05V
Ig = 0.25 uA at Vg = —1V

Consider, then, that a grid-leak resistor is connected from grid to cathode of
the 5965. If this grid-leak resistor is B, = (1/0.25) M = 4 M, then a negative
bias of 1 V will be developed. At a plate voltage of 100 V, the plate current
corresponding to the 1-V bias is seen from Fig. 6-30 to be 7 mA. If we were
to neglect the effect of the grid current and assume that V¢ = 0, we would
expect a current of 15 mA, or more than twice the value actually obtained.
Even if the grid leak were reduced to 50 K, the bias due to grid current would
be —0.5 V, since (5 X 104 (10 X 10-%) = 0.5, and the plate current would be
about 11 mA, which is still much less than the zero grid-bias value of 15 mA.

A Clamped Grid If, asin Fig. 6-34, the grid leak is tied to the V pp supply
instead of to the cathode, then the grid-to-cathode voltage will approach nom-
inal zero for values of R, which are large compared with rs. For example, if
R, =1 M and Vpp = 300 V, then the grid current will be approximately
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300 uA. From Fig. 6-31, we find that the grid voltage corresponding to this
grid current is about —0.05 V. (If we assume that the value of r¢ = 250 Q@
is valid at low grid voltages, then the calculated value of Ve is 0.3 X 0.25
= 40.075 V.) In many pulse circuits it is common to use this connection
of the grid leak to a high positive voltage. Under such circumstances, where
the grid is held at the cathode voltage because of the flow of grid current, we
shall refer to the grid as being clamped to the cathode. Alternatively, the
tube is said to be in clamp. Clamping is discussed in detail in Chap. 8.

Variability of Characteristics If the grid voltage is made a few volts neg-
ative, then the grid current reverses.” This negative current is caused by the
positive ions which are attracted to the grid. Since the positive-ion current
comes from the residual gas in the ‘“vacuum” tube, it is very variable from
tube to tube, and is usually a small fraction of a microampere. Negative grid
current can also result from thermionic or photoelectric emission from the grid.

The characteristics given in Figs. 6-30 to 6-33 are average values as
supplied by the manufacturer, and the curves for a specific tube may differ
appreciably from these published values. The Military Specification, MIL-
E-1, for Electron Tubes gives the limits of variability which may be expected.

Fig. 6-34 A triode with the grid leak E, con-
nected to the Vpp supply. o—
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The volt-ampere characteristics vary with heater temperature and with
aging of the tube. In multielement tubes as in diodes, the temperature effect
is found experimentally to be equivalent to a 0.1-V shift in cathode voltage
(relative to the other electrodes) for each 10 percent change in heater voltage.

6-20 ADDITIONAL DEVICES

A family of plate characteristics for the type 6AU6 pentode is given in Fig.
D-1. The switching characteristics of a pentode are quite similar to those of
a triode.

Devices which, between a pair of terminals, exhibit a negative resistance
over a portion of their volt-ampere characteristic are considered in Chap. 12.
Included among these are the tunnel diode, the unijunction transistor, the
p-n-p-n diode, the silicon controlled switch, and the avalanche transistor.

The use of the field-effect transistor in chopper circuit applications is dis-
cussed in Chap. 17.
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/ /CLIPPING AND
COMPARATOR CIRCUITS

In Chaps. 2 through 5 we consider the behavior of linear circuits and
devices. With such circuits a sinusoidal excitation results in a sinus-
oidal steady-state response of the same frequeney but of a different
amplitude and phase. Any other excitation results in an output which
has suffered a change in waveshape.

In the preceding chapter we discuss the nonlinear properties of
devices. In electronic systems many useful and interesting functions
can be performed by taking advantage of the nonlinearity of semi-
conductor or thermionic devices. In this chapter we describe and
analyze the manner in which these nonlinear elements, in combination
with resistors, can function as clipper or as comparator circuits.

Energy-storage circuit components are not required in the basic
process of clipping or comparison. Any reactive elements introduced
in this chapter represent spurious unavoidable stray components (such
as shunt capacitance). In the following chapters we consider some
combinations of nonlinear devices, resistors, and energy-storage ele-
ments which perform other basic functions such as clamping, switching,
and the generation of square-wave or pulse waveforms.

7-1 CLIPPING (LIMITING) CIRCUITS

Clipping circuits are used to select for transmission that part of an
arbitrary waveform which lies above or below some particular ref-
erence voltage level. Clipping circuits are also referred to as voltage
(or current) limiters, amplitude selectors, or slicers. Limiting circuits
usually fall into one of the following configurations: (1) a series com-
bination of a diode, resistor, and reference supply (the ‘“‘diode” may
be the input circuit of a vacuum-tube triode, pentode, or transistor);

225
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(2) a network consisting of several diodes, resistors, and reference voltages;
(3) two emitter-coupled or cathode-coupled triodes operating as an overdriven
difference amplifier. Some of the more commonly employed clipping circuits
are now to be described.

7-2 DIODE CLIPPERS

In Chap. 6, it is suggested that a diode volt-ampere characteristic may be
approximated as shown in Fig. 6-10 (and repeated for easy reference in Fig.
7-1a) by a curve which is piecewise linear and continuous. This idealized diode
characteristic exhibits a discontinuity in slope at the voltage V,, and this point
of slope discontinuity is called a break point. The break point occurs at
V, =02V for Ge, at ¥V, ~ 0.6 V for 8i, at V, = —0.5 V for a thermionic
diode, and for a “backward” diode (Sec. 12-2), V, is very nearly zero. Using
this piecewise linear model of the diode, we find that the clipping circuit
of Fig. 7-1b has the transmission characteristic shown in Fig. 7-lc. The
transmission characteristic, which is a plot of the output voltage v, as a func-
tion of the input voltage ;, also exhibits piecewise linear continuity. A break
point occurs at the voltage Vi + V,. To the left of the break point (for
v: < V& + V,) the diode is reverse-biased (oFrF). In this region, the signalv;
may be transmitted directly to the output, since there is no load across the
output to cause a drop across the series resistor B. To the right of the break
point, increments Av; in the input are attenuated and appear at the output as
increments Av, = Av;R;/(R, 4+ R), in which R, is the diode forward resistance.

Figure 7-1c shows a sinusoidal input signal of amplitude large enough
80 that the signal makes excursions past the break point. The corresponding
output exhibits a suppression of the positive peak of the signal. If R, < R,
then this suppression will be very pronounced, and the positive excursion
of the output will be sharply limited at the voltage Vi -+ V,. The output
will appear as though the positive peak had been “clipped off”” or “‘sliced off.”
Often it turns out that Vz > V,, in which case one may consider that Vp
itself is the limiting reference voltage.

In Fig. 7-2a the clipping circuit has been modified in that the diode in
Fig. 7-1b has been reversed. The corresponding piecewise linear representa-
tion of the transfer characteristic is shown in Fig. 7-2b. In this circuit, the
portion of the waveform more positive than Vi — V, is transmitted without
attenuation, but the less positive portion is greatly suppressed.

The Break Region The piecewise linear approximation given in Fig.
7-la indicates an abrupt discontinuity in slope at V,. Actually, the transition
of the diode from the oFr condition to the ox condition is not abrupt. There-
fore, a waveform which is transmitted through a clipper will not show an
abrupt onset of clipping at a break point but will instead exhibit a break
region, that is, a region of transition from unattenuated to attenuated trans-
mission. We shall now estimate the range of this break region.
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Fig.7-1 (o) A diode volt-ampere characteristic is approximated by a broken
straight line having piecewise linear continvity. (b) A diode clipping circuit
which transmits that part of the waveform more negative than V= + V,. (c) The
piecewise linear transmission characteristic of the circuit. A sinusoidal input
and the clipped output are shown. ‘

The semiconductor diode equation [Eq. (6-1)] is
I = I(eVivr — 1)

Beyond the diode break point, for currents [ which are large compared with
I, we may write ‘

[ = Lerivr (7-1)
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Fig.7-2 (o) A diode clipping circuit which transmits that part of the waveform
more positive than Vi — V,. (b) The piecewise linear transmission charac-
teristic of the circuit. A sinusoidal input and the clipped output are shown.

From the discussion in Sec. 6-5 it follows that Eq. (7-1) applies equally to the
thermionic diode in the region of small currents, where space-charge effects
are negligible, provided that 7, is interpreted to be the current at zero voltage
and 7 = 1. We must, of course, use a value of Vg appropriate to the cathode
temperature. For an oxide-coated cathode, a reasonable value of the temper-
ature is T = 1000°K and correspondingly Vy = 0.086 V. Since the limiting
circuit clips or does not clip depending on whether the diode incremental
resistance r is very large or very small in comparison with the circuit resistance
R, let us arbitrarily define the break region as the range over which the diode
resistance is multiplied by some large factor, say 100. The incremental
diode resistance r = dV/dI and is, from Eq. (7-1),

L TR 14 -
T ¢ K i (7-2)

]
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Note that r varies inversely with the quiescent current and directly with the
absolute temperature.

The resistance will be multiplied by a factor 100 over the voltage range
AV provided that e2V/7Vr = 102. We have then, with n =1 for Ge, n = 2
for 8i, Vr = 0.026 V at room temperature, and Vr = 0.086 Vat T = 1000°K,

AV = 29VrIn 10
= 0.12 V (Ge)
= 0.24 V (Si)
= 0.40 V (thermionic) (7-3)

Note that the break region is independent of the quiescent current. Thus,
at any current I>> I, (at an arbitrary value of resistance) the dynamic
resistance is multiplied by a factor of 100 if the voltage is decreased by the
value of AV given in Eq. (7-3) and divided by 100 if V is increased by AV.

If a diode is to be effective in a clipping circuit, the signal applied to the
circuit must carry the diode from a point well to one side of the break region
to a point well to the other side. If the signal is only of the order of magnitude
of the extent of the break region, the output will not display sharp limiting.

Reverse Characteristic We now consider the diode reverse-bias charac-
teristic. In thermionic diodes the magnitude of the diode current decreases
monotonically with increasing negative plate-to-cathode voltage. At voltages
in excess of 0.5 to 0.75 V the current will have fallen to the point where it
ordinarily need no longer be taken into account. In an ideal semiconductor
diode, at reverse voltages the reverse current is constant. In a circuit such as
in Fig. 7-1b this constant current will give rise to a fixed voltage difference
across R, but this fixed voltage will not prevent the output signal from follow-
ing the input signal without attenuation. However, in many semiconductor
diodes (Fig. 6-4) the magnitude of the diode reverse current increases with
reverse voltage. A piecewise linear and continuous volt-ampere model which
represents such diodes better than does the characteristic of Fig. 7-1a is
shown in Fig. 7-3. To the right of the break point, in the forward-biased
region, the diode resistance is R,. To the left of the break point, in the back
or reverse-biased region, the diode resistance is E,. (Actually, of course, in
the region from the origin to the break point the diode is forward-biased.)

Fig. 7-3 A piecewise linear and continuous I
approximation to the volt-ampere character-

istic of o semiconductor diode. The break

pointisat V = V,. To the right of ¥y the

forward resistance R, is small, and to the { v
left the reverse resistance R, is large. 7 l %
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Fig. 7-4 Four diode clipping circuits. In (a) and (c) the diode appeuré as a shunt
element. In (b) and (d) the diode oppears as a series element. Under each cir-
cuit appears the output waveform (solid) for a sinusoidal input. The clipped por-
tion of the input is shown dashed.

In Figs. 7-1c and 7-2b we have assumed R, arbitrarily large in comparison
with R. If this condition does not apply, the transmission characteristics
must be modified. The portions of these curves which are indicated as having
unity slope must instead be considered to have a slope R./(R. + R).

In a transmission region of a diode clipping circuit we require that B, > R,
for example, that B, = kR, where k is a large number. In the attenuation
region, we require that R >> Ry, for example, that B = kR;. From these two
equations we deduce that R = v/R,R, and that k = v/ R./R,.- On this
basis we conclude that it is reasonable to select R as the geometrical mean of
R, and B;. And we note that the ratio R,/R; may well serve as a figure of
merit for diodes used in the present application.

Clipping Circuits Figures 7-1 and 7-2 appear again in Fig. 7-4 together
with variations in which the diodes appear as series elements. If in each case
a sinusoid is applied at the input, the waveforms at the output will appear
as shown by the heavy lines. In these output waveforms we have neglected
V, in comparison with Vg and we have assumed that the break region is
negligible in comparison with the amplitude of the waveforms. We have
also assumed that R, > R > R;. In two of these circuits the portion of the
waveform transmitted is that part which lies below Vg; in the other two the
portion above Vg is transmitted. In two the diode appears as an element
in series with the signal lead; in two it appears as a shunt element. The use
of the diode as a series element has the disadvantage that when the diode is
oFfF and it is intended that there be no transmission, fast signals or high-
frequency waveforms may be transmitted to the output through the diode
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capacitance. The use of the diode as a shunt element has the disadvantage
that when the diode is open (back-biased) and it is intended that there be
transmission, the diode capacitance, together with all other capacitance in
ghunt with the output terminals, will round sharp edges of input waveforms
and attenuate high-frequency signals. A second disadvantage of the use
of the diode as a shunt element is that in such circuits the impedance R, of the
source which supplies Vz must be kept low. This requirement does not arise
in circuits where Vg is in series with R, which is normally large compared with
R,.

When a diode clipper is used with fast waveforms, then, as the example
to follow will show, the stray capacitances associated with the circuit may
not be neglected. '

s A e e VRS~ e e U i 6 LA

EXAMPLE The clipper of Fig. 7-5a is to be used with the input waveform indi-
cated. This input may represent a pulse or half a cycle of a square wave, The
capacitance C1 is the total effective capacitance shunting the diode (for which 5 pF
is a reasonable value), and C-: is the total capacitance shunting the output load
resistor R > R)). The value C: = 20 pF is nominally the input capacitance of an
oscilloscope probe which we might be using.  Find the output waveform, assuming
that the back resistance is infinite.

Solution If the diode were perfect and the capacitances were neglected, the output
waveform would be as shown in Fig. 7-5b.

Assume that a steady-state condition has been reached in which the input is
—57V and the output is 0 V. Now let the input rise abruptly by 10 V. If the
source impedance is negligible, an impulsive current results and the initial output
voltage rise is determined entirely by the capacitors. Since C; = 4C,, only one-
fifth of the input rise will appear across C;; hence the output will jump abruptly
by 2 V. The voltage across the diode is now 3 V and in the direction to make the
diode conduct. The output v, will rise to its final value of 5V with a time constant
71 = (C1 + C2)R,, where R, is the forward resistance of the diode. Similarly,
when the input voltage drops by 10 V, the output voltage will drop abruptly by

C, ¢
P
5pF
r oV _—

b

7,=(C; + Co)Ry

|||—-

7,=(CL+C)R

o @) ()

Fig.7-5 (a) A diode clipper circuit with a pulse input. The output (b) neglect-
ing capacitances, (c) taking capacitances into account.
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2 V. The cathode of the diode is now at +3 V, and the anode is at —5 V. The
diode will not conduct, and the decay of the output signal to zero will take place
with a time constant 7; = (C1 + C2)RE. The resultant waveform is shown in Fig.
7-5¢. 1f Ry = 100 Q, then 7; = 2.5 nsec. On the other hand, 7, = 25 usec. If,
say, £, =~ 50 usec, the slow decay on the trailing edge of the signal will be very
apparent, whereas the rise time of the front edge is negligible.

If in the above example the capacitance C, across the diode were larger than
C across the load, then the output waveform would not have rounded rising and
falling sides, as indicated in Fig. 7-5. Instead there would be a spike overshoot at
the front and rear edges (Prob. 7-6).

7-3 VACUUM-TUBE CLIPPER AT CUTOFF

A vacuum-tube circuit such as that shown in Fig. 7-6a will limit a signal when
the grid is driven beyond cutoff. A triode vacuum tube is indicated but a
pentode would serve as well. In Fig. 7-6b a plot of a typical dynamic transfer
characteristic of the tube is indicated. The sinusoidal input signal is of such
magnitude and so biased that the signal makes excursions above and below
the cutin point, which occurs at the voltage V., (also called the cutoff voltage).
As appears in the output current waveform, only that part of the input is
transmitted which is above this cutoff voltage. Note that since the transfer
characteristic is not linear near cutin, some distortion appears in the output
waveform.

()]

Fig.7-6 (o) A vacuum-tube clipper; (b) the dynamic transfer curve. A sinusoidal
input signal and the clipped output are shown. The time durations marked 4 are
equal, and those marked B are equal.
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The cutoff point in a vacuum tube is not sharply defined. The abrupt-
ness with which the plate current increases as the grid voltage rises depends
upon the tube type and upon the plate voltage at which the tube is operating.
High-u triodes give sharper cutin break regions than do low-u triodes, and the
break region becomes less sharp as the plate voltage increases. Except for
very low plate voltages, the break region at cutoff is less sharp than that of
either a semiconductor or thermionic diode. Further, the break region in a
diode is appreciably more stable with respect to device replacement than is the
case with triodes or pentodes. On the other hand, the nominally infinite input
impedance of a triode or pentode and the fact that the tube will provide gain
are both important advantages.

7-4 CLIPPER USING GRID-CATHODE ‘'DIODE"

We observe in Fig. 6-33 that the grid-voltage—grid-current characteristic of a
multielectrode tube has much the same form as the volt-ampere characteristic
of a simple thermionic diode. In the case of a triode, the characteristic
depends somewhat on plate voltage, but this dependence is small enough to be
neglected in our present considerations. Tt then appears, as in Fig. 7-7a, that a
triode may be viewed as a combination of a diode and an ideal triode which
draws no grid current. A clipping circuit using this grid-cathode ‘‘diode,”
called a grid-current limiter, is shown in Fig. 7-7b. The operation of the circuit
is illustrated in Fig. 7-8. In Fig. 7-8a the piecewise linear and continuous
transmission characteristic of the resistor R and diode combination has been
drawn, assuming for simplicity that the diode break is abrupt, that the break
oceurs at zero voltage, and that R,>> B> Ry. A sinusoidal input is indi-
cated and, as appears, the grid-to-cathode signal ve displays a clipped positive

(@)
Fig. 77 (o) A representation of a triode taking into account the fact
that the grid and cathode are the terminals of a diode; (b) a clipping
circuit which uses the grid-cathode diode.
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Fig. 7-8 (o) The grid-cathode

diode clipper of Fig. 7-7 is repre-

sented by a piecewise linear and
(@ continvous transfer curve. A sinus-

oidal input gives a clipped grid
signal. (b) The clipped grid signal
is faithfully reproduced in the plate
current if the dynamic transfer char-
acterisfic is linear.

t (&)

peak. As noted in Sec. 6-19, under these circumstances the grid is said to be
clamped to the cathode. In Fig. 7-8b a piecewise linear representation is
shown for the dynamic transfer characteristic of the triode. The grid signal
v is applied to the characteristic. Since the grid signal does not make excur-
sions which cross a break point of this transfer characteristic, the output
current waveform has the same form as the grid signal. It is important to
recognize that the clipping which appears in the output current waveform
is not due to the failure of the plate current to respond to the grid voltage but
rather to the failure of the grid voltage to respond to the applied signal. As
appears in Fig. 7-8b and as is pointed out in Sec. 6-19, the plate current will
respond almost linearly to grid voltage, even for positive grid voltages, up
to the point where the grid current becomes an appreciable part of the total
cathode current.

We have already noted that the diode break is sharper than the cutoff
break in a triode. Therefore, if the series resistor R in Fig. 7-7b is large enough,
the clipping which takes place in a triode at the occurrence of grid current
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may well be sharper than the clipping at cutoff. Further advantages of
grid-current limiting over cutoff limiting are the following. Assume that the
cathode temperature of the triode has increased. If the grid-to-cathode
voltage remained the same, the plate current would increase. However, if
the grid is drawing current, this current simultaneously increases and, because
of the resistance R, the grid-to-cathode voltage decreases. As a consequence,
the plate current remains more nearly constant. The resultant stability of
the break associated with grid current permits this break to be used in pre-
cision circuits. Furthermore, when the tube is conducting, the output imped-
ance is the parallel combination of the plate resistance 7, and R,, whereas
in the case of cutoff clipping the output impedance is E,. The effect of
capacitive loading on fast waveforms is therefore less for grid-current limiting
than for cutoff limiting. On the other hand, the input capacitance is greater
when the tube conducts and amplifies than when it is cut off and the gain is
zero. Hence, the capacitive input impedance of a grid-current limiter will
produce more distortion in a fast signal than will a cutoff limiter because this
capacitance must charge through £.

7-5 LIMITING BY BOTTOMING

There is a third type of limiting possible with a triode. Consider the circuit
of Fig. 7-7b, but without the series grid resistor which is necessary for grid-
current limiting. The largest possible plate current is Ver/R, 1 we apply
to the grid, from a low-impedance source, a signal large enough to make the
plate current nearly equal to Ver/R,, limiting will take place. For example,
if the tube is a-type 5965 with Vpp = 300 and R, = 30 K, the current will
be about 10 mA and the break will be at +2 V at the grid instead of 0 V (see
Fig. 6-31). Such clipping is sometimes referred to as plate-current saturation,
but it is not to be confused with any effect associated with maximum cathode
emission. This type of limiting is also referred to as bottoming, since it results
when the plate voltage has gone as low as it can go and yet still leave some
tube voltage to supply the tube current. This type of limiting is not particu-
larly stable, but it is useful where precision is not required.

7-6 PENTODE CLIPPERS

Pentodes may be used as grid-current, cutoff, or bottoming limiters. If a
high value of plate-circuit resistance is used, then the bottoming takes place
while the grid voltage is still negative. For example, for a 6AU6 tube with
Ver = 300, R, = 100 K, and a screen voltage of 150 V, the plate characteris-
tics in Fig. D-1 show that the limiting takes place at —2V on the grid.

As a cutoff limiter, a pentode with a fixed screen voltage may provide
a sharper break than a triode. When the grid voltage in a triode changes
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from a value just below cutoff to a value just above cutoff, the plate voltage
drops because of the plate resistor. The change in plate current is therefore
smaller than in the case of a pentode with fixed screen voltage.

7-7 THE TRANSISTOR CLIPPER

The transistor has two pronounced nonlinearities which may be used for
clipping purposes. One occurs as the transistor crosses from cutin into the
active region, and the second occurs when the transistor crosses from the active
region to saturation. Therefore, if an input signal waveform makes excursions
which carry the transistor across the boundary between cutin and active
operation or across the boundary between the active and saturation regions, a
portion of the input waveform will be clipped off. Presumably we require
that the portion of the input waveform which keeps the transistor in the active
region shall appear at the output without distortion. If such be the case, we
require that the input current rather than the input voltage have the waveform
of the signal of interest. The reason for this requirement is that over a large -
signal excursion in the active region the transistor output current responds
nominally linearly to the input current but is related in a quite nonlinear man-
ner (exponentially) to the input voltage. Therefore, in a transistor clipper
as in other large-signal transistor circuits, we are led to the use of a current
drive, as indicated in Fig. 7-9. The resistor R, which represents either the
signal source impedance or a resistor deliberately introduced, must be large
in comparison with the input resistance of the transistor in the active region.
Under these circumstances the input base current will very nearly have the
waveform of the input voltage, for we shall have iz = (v; — V,)/R, where V,
is the base-to-emitter cutin voltage.

The Cutin Region We wish to know at what input voltage the circuit of
Fig. 7-9 enters the active region. We shall now discuss this matter. In Sec.
6-17 we find that a transistor comes out of cutoff in the neighborhood of 0.1-V
reverse bias for germanium or 0 V for silicon. More precisely, we find that
at this back-biasing voltage the emitter current is zero and that the collector
current, which equals the reverse-saturation current Igpo, flows also in the

Fig; 7-9 A transistor clipper.
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base lead. The collector current starts to increase above [I¢so| as we begin
to forward-bias the transistor. However, the reverse saturation current
is 80 small (nanoamperes for Si and microamperes for Ge) that a substantial
forward bias V., is required before the collector current becomes a small frac-
tion (say 1 percent) of its rated value. In Table 6-1 (page 219) we find that
this cutin voltage V, is of the order of 0.5 V for Si and 0.1 V for Ge.

The cutin values just quoted are to be taken only as reasonable estimates
and are not intended to apply precisely to any particular transistor type.
Our definition of the point at which the transistor comes into conduction
depends on the transistor and the circuit application. In one instance we
may consider that a collector-current change of only 10 A brings the transistor
into the active region, whereas in another instance we may require 100 pA
or more. In any event, we find experimentally that germanium transistors, in
general, cut in at vzz some tens of millivolts either side of 0.1 V, and in silicon
vgg will be some tens of millivolts either side of 0.5 V. These considerations
also make it clear that to keep a silicon transistor in cutoff it may be quite
adequate at room temperature to return its base to the emitter through a
resistor and thus not to use a reverse-biasing voltage. In the case of a ger-
manium transistor, however, such an arrangement would almost never be
suitable. At elevated temperatures, even with silicon a reverse-bias supply
will be necessary, as indicated in Sec. 6-8 in connection with Fig. 6-15.

Input Resistance Another parameter of interest for the transistor clipper .
of Fig. 7-9 is the incremental resistance seen looking into the terminals
between base and emitter. When the switch is in the cutoff condition the
incremental resistance may well be many tens of megohms in magnitude. Its
precise value is of no great importance so long as it is large in comparison with
R in Fig. 7-9. As noted in Sec. 1-12, when the transistor collector-circuit
resistance is small (say below about 5 K) and the transistor enters its active
region, the input impedance is approximately the short-circuit input resistance
hie. From Eqs. (1-12) and (1-11)

his = e + 106 = 100 + %’3 74

in which re is the base-spreading resistance, k. is the short-circuit common-
emitter current gain, and g, the transconductance. If the value of g, from
Eq. (1-9) is substituted into Eq. (7-4), we obtain

B = e+ (b + 1) 77 (7-5)

B

Note that the input resistance varies inversely with emitter current. (This
result remains valid even for large values of R,. The general expression for
the input impedance is given in Prob. 7-10.) Accordingly, as the transistor
comes out of cutoff and moves further into the active region its input resistance
decreases. As an example, in a germanium transistor for which 5 = 1,
e = 100 Q, and hy, = 49, at an emitter current Iz of 100 pA the input resist-
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ance is ki, = 100 -+ 50 X 260 = 13,100 2. At Iz = 1 mA, h;, = 1,400 Q, and
at Iy = 10 mA, ki = 230 2. We have neglected the variation of the param-
eter hy, with transistor current because this variation is smallin comparison with
the variation in g.. Accordingly, it is quite customary, in driving a transistor
switch from cutin well into the active region, to encounter changes in input
resistance by a factor of 100 or more with resistance variation from tens or
hundreds of thousands of ohms to a few hundred ohms.

Waveforms Waveforms for the clipper in Fig. 7-9 are shown in Fig. 7-10.
Here we consider that the input signal v; is a ramp which starts at a voltage
below cutoff and carries the transistor into saturation. The voltage scale in
Fig. 7-10a is appropriate for an n-p-n germanium transistor. The slope
dvge/dt of the base waveform is related to the slope dv;/dt of the input by

dvsg _ hi  du
& Rt hndt (7-6)

The input impedance h;, decreases as the transistor goes further into the active
region, and consequently the slope of dvpg/dt decreases also. In saturation
the current gain Ay, = 0 and ki, falls to the low value 7 + 9Vy/|Ig]. For
example, if the saturation current is 1 mA, then the minimum input resistance
in the active region, just before saturation, is 1,400 Q, whereas when the
transistor enters saturation, the input impedance drops to about 126 €. This
abrupt lowering of the input resistance results in a sharp limiting of the voltage

Voltage, V

Saturation
03f———--—-————— /-5

Fig. 7-10 Waveforms of the tran-
sistor clipper of Fig. 7-9. (a) The
voltage vz which results when a
ramp input drives the switch from
cutoff into saturation. (b) The base
and collector currents.

Current
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Vi

UBE

(a)

Fig. 7-11  Waveforms for the transistor
clipper of Fig. 7-9. The input v; is sinusoidal
and large enough to carry the transistor
both into saturation and below cutoff. The

(b

base is biased so that cutin occurs at the
voltage V. (a) The input voltage v; and
the base-to-emitter voltage vzs; (b) the base
current; (¢) the collector current and (d) the
output (collector) voltage.

(d)

0 f -

vpg, and the waveform remains nominally constant at the base-to-emitter
voltage corresponding to saturation.
The slope of the base current ¢z is given by

dig 1 dw

@ TRtk @t
and hence increases as the transistor goes further into the active region and
eventually into saturation. In the active region, as shown in Fig. 7-10b, the
collector current will have the same form as the base current. In saturation,
however, the collector current will remain constant at

ic = ________Vcc —;’cg(sat) = I¢s

This limiting occurs when iz > I¢g/hrsg.
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The waveforms which result when a sinusoidal voltage v; carries the tran-
sistor from cutoff to saturation are shown in Fig. 7-11. The base circuit id
biased so that cutin occurs when vpg reaches the voltage V.

7-8 CLIPPING AT TWO INDEPENDENT LEVELS

The waveform Z¢ in Fig. 7-11 exhibits clipping at two currents. In the wave-
form of Fig. 7-11, however, the levels at which clipping occurs are not independ-
ently adjustable but are separated by the current Ics. Similarly, a vacuum
tube may be used to clip both the positive and negative extremities of a signal
by adjusting the tube bias and signal amplitude so that clipping occurs both at
cutoff and as the tube is driven to clamp. In this case also the clipping levels

v; Uy
Vi -
_l " 1’ Vg > ﬂ_
(@)
Uy %
Slope=1

Dion /\ D1 oFF : D1 orF
D2 oFF /7 " D2orr! D2 onN

Rt el i -

® t

Fig. 7-12 (o) A double-diode clipper which limits at two independent levels.
(b) The piecewise linear transfer curve for the circuit in (a). The doubly
clipped output for a sinusoidal input is shown. ‘
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are not independently adjustable. The region between cutoff and zero grid
voltage is called the grid base of the tube.

Diode clippers may be used in pairs to perform double-ended limiting
at independent levels. A parallel, a series, or a series-parallel arrangement
may be used. A parallel arrangement is shown in Fig. 7-12a. Figure 7-12b
shows the piecewise linear and continuous input-output voltage curve for the
circuit in Fig. 7-12a. The transfer curve has two break points, one at v, =
v; = Vg1 and a second at v, = v; = Vg, and has the following characteristics
(assuming Vgs > Vigy):

Input v; Output v, Diode states
1, < Ve v, = Vg1 D1 on, D2 oFr
Ver < v < Vg v, = D1 orr, D2 orFF

v 2 Ve v, = Vg D1 OFF, D2 on

The circuit of Fig. 7-12a is referred to as a slicer because the output contains
a slice of the input between the two reference levels Vg, and Vig,.

The circuit is used as a means of converting a sinusoidal waveform into a
square wave. In this application, to generate a symmetrical square wave,
Vg1 and Vg are adjusted to be numerically equal but of opposite sign. The
transfer characteristic passes through the origin under these conditions, and
the waveform is clipped symmetrically top and bottom. If the amplitude
of the sinusoidal waveform is very large in comparison with the difference
in the reference levels, then the output waveform will have been squared.

Two avalanche diodes in series opposing, as indicated in Fig. 7-13a,
constitute another form of double-ended clipper. If the diodes have identical
characteristics then a symmetrical limiter is obtained. If the breakdown
(Zener) voltage is V; and if the cutin voltage in the forward direction is
V, (= 0.5 V for Si), then the transfer characteristic of Fig. 7-13b is obtained.

, ~(V+ V)

-

|
{
i
0 \ v;
Vz+Vy

(@ &

Fig. 7-13 (a) A double-ended clipper using avalanche diodes;
(b) the transfer characteristic.
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7-9 CATHODE-COUPLED AND EMITTER-COUPLED CLIPPER

The cathode-coupled and emitter-coupled circuits of Fig. 7-14a and b may be
used as double-ended clippers. Qualitatively the operation of these circuits is
the following. Consider initially that the input voltage v; is negative enough
to ensure that V1 (or Q1) is in cutoff. Then only V2 (@2) is carrying current.
We consider that Vegs (Vgs2) has been adjusted so that V2 is within its grid
base (Q2 is in its active region). As v; increases, V1 (Q1) will eventually come
out of cutoff, both tubes (transistors) will be carrying current, and the input
signal will appear at the output, amplified but not inverted. As v; continues
its excursion in the positive direction the common cathode (common emitter)
will follow the-grid of V1 (the base of Q1). Since the grid of V2 (the base of
@2) is fixed, a point will be reached when the rising cathode (emitter) cuts off
V2 (Q2). In summary, the input signal is amplified but twice limited, once
by the cutoff of V1 (Q1) and once by the onset of cutoff in V2 (Q2).

To consider these circuits more quantitatively, let us make the simplifying
assumption that the current I in Fig. 7-14 is constant. Such would be the
case if [vgxe| ([vaze]) were small compared with Vge: + Vg (Vesa + Viz).
In making this assumption we lose no essential feature of the operation of the
circuit, and we may now describe the operation of the circuit in the following
way. When v; is below the cutoff point of V1 (Q1), all the current I flows
through V2 (Q2). As v; carries V1 (Q1) above cutoff, the current in V2 (Q2)

. decreases while the current in V1 (Q1) increases, the sum of the currents in the
two active devices remaining constant and equal to I. The total range Av,
over which the output can follow the input is R,7(R.I) and is therefore adjust-
able through an adjustment of 7. The absolute voltage of the portion of the
input waveform selected for transmission may be selected through an adjust-

e (150V)

(@) b — Vi (—200V)

Fig.7-14 (a) A cathode-coupled two-level clipping circuit; (b) an emitter-coupled
clipping circuit.
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ment of a biasing voltage on which v; is superimposed or through an adjustment
of Vags (Veas). The total range of input voltage Ay; between clipping limits
is Av,/ A, in which A is the gain through the amplifier stage.

The vacuum-tube circuit of Fig. 7-14a has the merit of offering a high
input impedance, since the tube grids need never draw grid current. The
illustrative example which follows shows how the piecewise linear transmission
eharacteristic of the vacuum-tube circuit may be determined.

EXAMPLE The circuit of Fig. 7-14a has Vep = 150 V, Viz = 200 V, Vgas = 0,
R, = 10K, and R, = 40 K. Find the values of input voltage »; at which limiting
occurs and find the corresponding limited voltages v, at the output. The tube is
a 12AU7 (Fig. D-5).

Solution Consider initially that V1 is orr. Using the procedure of Sec. 1-10 we
calculate that the grid-to-cathode voltage drop of V2is Vgxs = —3 V. The cur-
rent in V2 is I, = (200 4 3)/40 = 5.08 mA. The lower limiting voltage, from
the plate of V2 to the ground terminal N,is Vews = Vpp — IR, = 150 — 5.08 X
10 =99 V = V,;. Since the common-cathode voltage with respect to ground is
Vevw =3 V, then Veri = Vep — Vgy = 150 — 3 = 147 V. At this voltage,
grid cutin occurs at Vex; = —11 V = V,,. Therefore the lower of the limiting
voltages at the grid of V1is Vewy = Vex1 + Van = —11+3 = -8 V = V,;.

As the grid of V1 rises, so also will the common cathode. We need to calculate
the cathode voltage at which V2 cuts off. Here we encounter a minor complica-
tion. For, to determine this cutin voltage V2 we need to know Vex, and hence
need to know the very cathode voltage we seek to determine. This complication,
which occurs frequently in the analysis of tube (and transistor) circuits, is easily
resolved by using a series of successive approximations. Thus, in the present
instance, we estimate that at cutin Vex. = 150 V. Correspondingly, from Fig.
D-5 we find that Vy» = —11 V. On this basis, however, Vrx: = 139 V, and the
corresponding V.. is closer to —10 V. Now Vrxs = 140 V and, in principle, we
might make a further correction in cutin voltage, etc. But the accuracy with
which published average tube characteristics represent a particular sample of a
tube type hardly warrants further extension of the approximation.

Vo, V
v,
150 ~~—— = ' oU

L~ I
i
Vor !
vt T T T T 99 :
! |
! |

V1orr | Vion ! V1on

V2on | V2on T V2 orr
| i
H !

Ve=-8 L . vV

Fig. 7-15 The piecewise linear transfer characteristic of
the cathode-coupled clipper specified in the example.
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We have found that V2 cuts off when the cathode voltage is Vxy = 410
V. Henece, I; = (200 + 10)/40 = 5.25 mA. From the tube characteristic we
read (at Vex: = 140 V, I, = 5.25 mA) that Vexi = —5 V. Thus the upper
limiting voltage at the grid of V1 is Vewi = Vex1 + Vewn = =5+ 10 = +5
V = V.y. The corresponding limit at the output plate is Vor = V,, = 150 V.
The change in total cathode current from one limit to the other is 5.25 — 5.08 ~
0.2 mA, a change of less than 4 percent. In passing, we may note that, having
determined the lower limiting point, we might have determined the upper limiting
point by caleulating the gain A as indicated earlier. We are, however, reluctant
to do this because the tubes operate from cutoff to well into their grid basesand itis
uncertain what values are to be assigned to the tube parameters. Finally, we may
see in Fig. 7-15 a piecewise linear and continuous transfer characteristic of the
circuit. To draw this figure we have idealized the triodes by considering that
cutin is sharp and that within the grid base the tubes operate linearly. The aver-
age gain is now seen to be
VoU - VoL 150 e 99 _

A= -
Vie - Vir 5+8

3.9

Transfer Characteristic of the Emitter-coupled Clipper We shall find
the transfer curve of the circuit of Fig. 7-14b. The emitter current is

I=L+1=Yomt =t -7
In Table 6-1 (page 219) we see that the base-to-emitter voltage changes by only
0.2 V from cutin to saturation. Hence, as long as Vepe + Vg > vs, [
remains essentially constant. The upper output limited level is Vi = Vee
and corresponds to I, = 0 and I; = I. The lower output limited level is

Voo = Vee — Ic2Re. (7-8)
and corresponds to I, = 0 and I = I. Note that

I, = Ics+ Ips = Icz(l -+ %)
FE

Hence, in Eq. (7-8), I¢s = I/(1 + 1/hrg), where I is obtained from Eq. 7-7).
From Fig. 7-14b we find

vi= Vppa + vy — 02 (7-9)

Since the current varies exponentially with base-to-emitter voltage (v ot v2),
the cutoff (and hence the clipped) levels are approached asymptotically. Let
us therefore define (as indicated in Fig. 7-16) the upper input level Vi to cor-
respond to I = 0.1] and I, = 0.9/. Similarly, we define the lower input
level Vi, to correspond to I; = 0.17 and I; = 0.9]. From Eq. (6-33) the base-
to-emitter voltage is
Ve=19Vrln (1 — Iff_"'_"‘f_h')

IEO
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Fig. 7-16 The transfer
characteristic of the
emitter-coupled clipper.

Vi, 7| Vags v Y

7VyIn9 7V In9

'4—4.41' Vr —”

Neglecting the small base current in the active region, I¢ ~ — I, and since
the second term in the parentheses is large compared with the first,

~ 7Vrln :QI_LI)IE (7-10)
EO
Sincev; = Vegif Iy = —Igand v, = Vg if I, = — Ig, then from Eq. (7-9)
vi= Vips+qVpln A0y oy A —anls
Igo Igo
= Vaas +aVrIn 3! @-11)
Hence
Viw = Ves: + qVp ln 0 II = Vgp: +9VrIn9 (7-12)
and
Vie= Vea+9VrIn gﬁi Vee: — 9VrIn9 (7-13)

These results are indicated in Fig. 7-16. Since at room temperature
Vr = 26 mV and since In 9 = 2.2, then the input swing is +57 mV for Ge
and +114 mV for 8i, centered about the reference voltage Vgs.. In general,
the total input vo]tage swing A, to carry the output through its entire swing
V,= IR, is

Av; = 29V In 9 = 4.49Vp (7-14)

This increment is proportional to the junction temperature. These results
have been verified experimentally.! If the transistor parameters are not
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_identical for the two sections, then the transfer curve will not be symmetrical
with respect to Vgg..

Since the current switches from Q2 to @1, with the total emitter current
remaining constant, this circuit is often referred to as a ‘‘current-mode switch.”
Note that neither transistor need be in saturation at any point over the entire
range of operating voltages.

7-10 COMPENSATION FOR TEMPERATURE CHANGES
IN DIODES

The break point of a semiconductor diode depends on the junction temperature,
and the break point of a thermionic diode depends on the cathode temperature.
From Eq. (6-7) we note that for semiconductor diodes the break point decreases
by about 2 mV/°C with increase in temperature. Experimentally it is found
that in a thermionic diode the break point becomes more negative by about
100 mV for a 10 percent increase in heater voltage.

It is convenient in the discussion to follow to represent the actual diode
as an ideal diode in which the break point occurs at zero voltage and to add
in series with the diode a voltage source equal to the offset voltage V,. A
simple clipping circuit in which the diode is represented in this manner is
shown in Fig. 7-17a. The polarity of the source V, is appropriate for semi-
conductor diodes. For thermionic diodes the polarity must be reversed. It
is apparent from Fig. 7-17a, as well as from earlier discussions, that since V,
depends on temperature, so also must the point on the input waveform at
which clipping takes place.

A scheme for temperature compensation is shown in Fig. 7-17b. The
second diode D2 introduces a second source V,, and we may expect that if
both diodes experience the same change in junction temperature or heater
voltage the change in V, in D2 will compensate for the change in D1. The
break point oceurs at »; = Vg = v, In practice we find that, because of
differences in diodes even of a particular type, compensation is not perfect.

Actual diode, D1
Ay, A,
»+—r
+ V7 T«v +
R
Vi Vo v;
L il

=
(a) (b)
Fig. 7-17 (a) lllustrating that the point of clipping is a function of the diode
temperature, becauvse V., depends upon T; (b) a scheme for temperature
compensation.
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With some selection of diodes, however, an improvement by a factor of 5 or
even better is not difficult to achieve.

The auxiliary supply V’ and resistor R’ are necessary to keep diode D2
conducting at all times. Otherwise, if D1 were conducting, but if D2 were
back-biased, there would be no transmission of signal to the output. This
condition—that D2 must conduct—establishes an upper limit to the allowable
magnitude of »; before a second limiting (not intended) occurs as D2 goes OFF.
Frem the condition that the current in the diode D2 must always be in the
forward direction we find

vi(maximum) = Vpy + % v -v,) (7-15)

An alternative compensating cireuit which avoids the need for a separate
ungrounded source V' is shown in Fig. 7-18a. Here the source Vp serves
simultaneously as the reference voltage and as the source that causes current
to flow through D2. As in the previous circuit, the input must be restrained
from becoming so large that it reduces to zero the current through D2. In
this circuit, a change in V, occasioned by a change in temperature will cause
a change in the d-c level of the output voltage since (if B, > R > Ry

U0=VR—V7 ifD(SVR

(7-16)
vo=uv: — V, ifv; > Vg

We observe, however, that independently of V,, just before diode D1 con-
ducts, the voltage at the cathode of the ideal diode in D1 is V. Accordingly,
a change in temperature will not change the point (v; = Vz) on the mput
waveform at which clipping occurs.

Still another temperature-compensated clipping circuit is shown in Fig.
7-18b. This circuit has the transfer characteristic indicated in Eq. (7-16).
When »: < V&, D1 is orr, D2 is oN, and v, = Ve ~ V,. When v; > Vp,
D1 is oN, v, = v; —- V,, which is greater than V& — V,, and therefore D2 is
ofF. Thus, at v; = Vg the diodes switch simultaneously, D1 from oFF to on

D1
) }
+ ‘;Y R * B ‘l’.lv
i . D2
Yo i {
. L
b

3

%

.||—>—-||——>|—]<|—-

Fig. 7-18 Alternative schemes for temperature compensation of clippers.
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and D2 from oN to oFr. The clipping level is Vg, independently of the
voltage V, and hence of the temperature.

This circuit does not have the inconvenient requirement that a current
be maintained in the compensating diode, as is the case with the previous
circuits, It does have the disadvantage, however, that the sharpness of the
break region may be adversely affected. For when the input signal »; rises
to the point where D1 starts to conduet, all the current initially flowing through
D2 must transfer to D1 before the output », can respond fully to the input
signal, Because of the finite forward resistances of the diodes this transfer
does not take place abruptly but extends over a finite range of the input
voltage, thus extending the break region (Prob. 7-25).

7-n COMPARATORS

The nonlinear circuits which we have used to perform the operation of clipping
may also be used to perform the operation of comparison. In this case the
circuits become elements of a comparator system and are usually referred to
simply as comparators. A comparator circuit is one which may be used to
mark the instant when an arbitrary waveform attains some reference level.
The distinction between comparator circuits and the clipping circuits con-
sidered earlier is that in a comparator there is no interest in reproducing any
part of the signal waveform. For example, the comparator output may consist
of an abrupt departure from some quiescent level which occurs at the time the
signal attains the reference level but is otherwise independent of the signal.
Or the comparator output may be a sharp pulse which occurs when signal and
reference are equal.

The diode circuit of Fig. 7-19 which we encountered earlier as a clipping
circuit is used here in a comparator operation. For the sake of illustration
the input signal is taken as a ramp. This input crosses the voltage level
%= Vg at time £ = {;. The output remains quiescent at », = Vg until
t = &, after which it rises with the input signal. The output waveform is
drawn on the basis of the assumption that the diode has a break point at zero
voltage and that the diode resistance changes abruptly at the break point from
infinite reverse resistance to a finite forward resistance.

The device to which the comparator output is applied will respond when
the comparator voltage has risen to some level V, above Vz However, the
precise voltage at which this device responds is subject to some variability
Av, because of gradual changes which result from aging of components, temper-
ature changes, etc. As a consequence (as shown in Fig. 7-19) there will be a
variability At in the precise moment at which this device responds and an
uncertainty Av; in the input voltage corresponding to Af. Furthermore, if
the device responds in the range Av,, the device will respond not at ¢ = ¢,
but at some later time t,. The situation may be improved by increasing the
slope of the rising portion of the output waveform »,. If the diode were
indeed ideal, it would be advantageous to follow the comparator of Fig. 7-19
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(a)

()

t

Fig. 7-19 (a) A diode comparator; (b) the comparison operation is illus-
trated with a ramp input signal v; and the corresponding output waveform
is indicated.

by an amplifier. For then, if the amplifier had a gain A, the output v, would
pass through the range Av, in an interval At/ 4 and the delay in response would
be reduced to (t, — t;)/A. We shall, however, now show that because of the
characteristics of an actual diode such an anticipated advantage is not realized.

In Chap. 6 we define the diode break point to be the point in the neigh-
borhood of the diode voltage which yields a diode current approximately
1 percent of the rated diode current. This definition does not define a break
point for a diode-resistor series combination, as in Fig. 7-19. For such a
. combination we may arrive at a definition of a break point in the following way.
To the left of the break point the diode incremental resistance r should be very
much larger than the resistance B. To the right of the break point the diode
resistance 7 should be very much smaller than B. It seems reasonable, then,
to consider that the break point is located at about the place where r = R.
At this point the transmission gain Av,/Av; = R/(R + 1) = 1. Now let us
suppose that we have connected the comparator of Fig. 7-19 directly to the
device it is to actuate. The device will respond when the diode current is, say,
7, and the drop across R is RI. Now let us interpose an amplifier of gain A
between the comparator and the device to be actuated. It is to be understood
that the amplifier is coupled to the comparator in such a way that it amplifies
only the changes in comparator output voltage and not the reference voltage
V. Then the comparator will cause a response when the amplifier output is
R1I or when the drop across R is RI/ A, corresponding to a diode current I/ A.
From Eq. (6-12) we have the result that the diode incremental resistance is
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inversely proportional to I. Therefore, if an amplifier is used, the device
actuated by the comparator will respond at a current such that r = RA. The
transmission gain between amplifier output and comparator input is A times
that of the diode-resistor combination with r = RA, or with the amplifier
in place,

A, , R _ AR _ A
- “R¥fr RTRATI+4

(7-17) -

Even if A were to become arbitrarily large, this last ratio will attain a maxi-
mum value of unity. Since we found above that the transmission gain without
the amplifier was %, then an infinite gain device gives an improvement by
only a factor of 2. This discussion concerning a diode-resistor comparator
break point is summarized by noting that the voltage of the input signal at
which the comparator yields an output depends not only on the diode but also -
on the value selected for R, that the comparator break point depends also
on the gain of the amplifier following the comparator, and finally that the
sharpness of the comparator break is not materially improved by an amplifier
following the comparator. All these features are to be seen in the diode
comparator input-output curves shown in Fig. 7-20.

In addition to the lack of sharpness in the comparator-element break
region, there is a second source of difficulty in comparators. This difficulty
results from the instability of the components constituting the comparator
circuit. For example, as is pointed out in Sec. 7-10, there is a shift of about
—2 mV/°C in the voltage at which a constant current is obtained in a semi-
conductor diode. Such a shift will have a corresponding effect on the effective

= o+—o,
Amplifier v
gain, A °
—0- o
Uo vo
Gain Az Gain 4,
Ar>A,
Ri,>R,>R;
'l
’ : Y Yi
{a) (b)

Fig. 7-20 (o) lllustrating that an amplifier following a diode comparator
does not improve the comparator sharpness but does move the breck
point; (b) illustrating that variation of R does not change comparator
sharpness but does move the break point.
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reference point of a diode comparator. To minimize instability of this type, it
may be necessary to use some one of the compensating schemes described in
Sec. 7-10, or for a thermionic diode it may be necessary to regulate the heater
voltage. ’

There is also a third type of error encountered in comparators which
results from the presence of reactive elements in the circuit. Such reactive
components are energy-storing elements, and therefore the effective reference
point of a comparator may depend somewhat on the past history of the
circuit. The reference point will then be a function of the nature of the input
signal, i.e., its amplitude, repetition rate, etc. With the simple diode com-
parator considered thus far, the prinecipal reactive elements are the capacitances
across the diode and across the load.

A metal-semiconductor diode [also called a hot-carrier diode (Sec. 20-9)],
with the very sharp break in its volt-ampere characteristic, its very low capaci-
tance, and negligible storage time, makes an excellent comparator element.

7-12 BREAKAWAY DIODE AND AMPLIFIER

If, in a series combination of resistor and diode, the output is taken across the
diode, the circuit will continue to operate as a comparator. A comparator
‘of this type with a ramp input is shown in Fig. 7-21. The diode in Fig. 7-19
is often referred to as a pick-off diode, while the diode in Fig. 7-21 is called a .
breakaway diode. . The stray capacitance shunting the output will limit the

(@)

)

Fig. 7-21 (a) A comparator using o “breukqwdy" diode; (b) the output
waveform for a ramp input signal given by » = V — at, where V > V5.



252 / I;ULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 7-12

() 5

i
Fig. 7-22 (a) An amplifier precedes the diode comparator;
(b) equivalent circuit where A is the magnitude of the amplifier
gain; (c) transfer characteristic.

abruptness of change in the output waveform more seriously in the circuit of
. Fig. 7-21 than in the cireuit of Fig. 7-19. TFor this reason the former cireuit
is not frequently used where fast waveforms are encountered. On the other
hand, in the series diode circuit of Fig. 7-19 some of the input voltage, for fast
waveforms, will appear at the output even for voltages less than Vg because
of the diode shunt capacitance.

Although an amplifier which follows a diode-resistor comparator does not
improve the sharpness of the comparator break, an amplifier preceding the
comparator will do so. - Thus, suppose that the input signal to a diode com-
parator must go through a range Av; to carry the comparator through its
uncertainty region. Then, if the amplifier has a gain 4, the input signal
need only go through the range Avi/ A to carry the comparator output through
the same voltage range. A simple example of a comparator using this principle
is shown in Fig. 7-224. Replacing the amplifier by its Thévenin’s equivalent,
we have the circuit shown in Fig. 7-22b, in which A is the amplifier gain and
R, is the output impedance of the amplifier including R,. The battery V
represents the quiescent output voltage. The circuit is of the type shown in
Fig. 7-21, in which the output is taken across the diode. A plot of output
against input voltage exhibits the break shown in Fig. 7-22¢.

A disadvantage normally encountered when an amplifier precedes a com-
parator results from the fact that, as in Fig. 7-22a, the amplifier must be direct-
coupled to the comparator so as to avoid energy-storage elements. If, there-
fore, there should be a drift-in the output voltage of the amplifier corresponding
to a fixed input voltage, then the comparator reference point would shift
correspondingly. Accordingly, unless care is taken to stabilize the amplifier
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against such drift the amplifier-comparator combination may lose more in
accuracy through the use of the amplifier than it gains in precision.

7-13 DIODE-DIFFERENTIATOR COMPARATOR

The diode circuit of Fig. 7-19 is not a complete comparator system by itself.
When the input signal rises past Vg the output voltage will depart from Vg, and
this change in output voltage will be applied to a device which is to be actu-
ated. The precise moment at which the device will respond will depend on its
own characteristics. Why, then, use the diode comparator at all? The
answer is that the diode network lends convenience to the operation. The

output device will not have to contend with the input signal until shortly’

before the comparison point is reached. The diode circuit is especially con-
venient when the signal is passed through an amplifier in order to improve the
precision of the comparison.

Just as it is convenient to restrain the signal from reaching the actuated
device until shortly before the moment of comparison, so also it is convenient
to remove the signal after the comparison has been completed. A signal
appropriate for this purpose can be generated by a double differentiation of the
output signal of Fig. 7-19. Such a circuit is shown in Fig. 7-23. The amplifier
is used to prevent the second differentiator from loading the first and also
serves to increase the amplitude of the output to a convenient level. Wave-
forms for the circuit of Fig. 7-23 are shown in Fig. 7-24 for the special case
where R.Cy, = R,C; = r, where R, is the parallel combination of R; and the
input impedance of the amplifier. Beginning at ¢ = ¢/, at which time v; = Vg,
the amplifier input voltage v,4 rises frem zero and approaches ar exponentially,
a being the slope of the input ramp. The second differentiator converts the
exponential to a pulse, as shown in Fig. 7-24c. The pulse waveform is given
by Eq. (2-20) as

v, = Aarze ™ (7-18)

where now z = (t — t')/r.

R
1
) — o — v / - ;
Selector Differentiator Amplifier  Differentiator

Fig. 7-23 A comparator followed by two differentiotors
to provide a pulse-type comparator output.
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From Eq. (7-18) we deduce that the pulse amplitude V., is 0.37a4r, the
" pulse width at half maximum is 2.4r, and the pulse peak occurs z = 1 or
at ¢ =t +r=4{. In arriving at the pulse waveform of Fig. 7-24 we have '
again assumed an ideal diode. The actual form of the pulse will appear more
nearly as shown in.Fig. 7-25, where two different amplifier gains A and
A, (A, > Ay) are considered. The pulse does not rise abruptly, and conse-

N

Gain A,

Fig. 7-25 The waveform of the output
pulse of Fig. 7-23 for two gains, taking
info account the lack of abruptness of
the diode break.

-

o~k
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quently when the gain is increased the pulse becomes not only larger but also
broader. Accordingly, we see that the pulse is not made sharper with increased
gain. Of course, as before, if the gain were introduced before the diode the
output pulse would indeed be sharper. :

7-14 ACCURATE TIME DELAYS

To see one way in which the circuit of Fig. 7-23 may be usefully employed,
consider that the slope « of the input ramp is known. If the comparison or
reference voltage Vi is set at some value Vg, a pulse will be generated with a
peak at ¢t = #;. If in a second comparator Vi = Vgs, then a pulse will occur
at { = t,. We need then but measure the d-c voltage difference Vs — Vg
in order to establish the time difference between the two pulses, since

VR2 _ VR]

o

o — bl =

Alternatively, if in a single comparator circuit we change Vi by AVg, then we
also have changed the time of occurrence of the pulse by At = AVg/a. If it
should happen that the ramp is being used as the time base of a CRO display,
the pulse may then be used as a timing marker. Comparators are used exten-
sively in this manner for timing purposes in radar systems. Altogether, we
see that the combination of a ramp of known slope used in connection with a
comparator allows us to establish or measure a time interval simply by measur-
ing a voltage. We have here a voltage-to-time converter.

We have defined the operation of comparison as one in which a determina-
tion is made of the precise moment at which a signal voltage attains some
reference voltage. On this basis, the pulse-generating circuit of Fig. 7-23
may or may not be a comparator, depending on the exact manner in which
its signal is used. On the one hand, suppose that the pulse signal is applied
to some device which responds at some particular voltage on the rising edge
of the pulse. Then the device would respond as well when this particular
voltage is attained even if the diode and double differentiation were not used.
It is, then, the device that performs the operation of comparison, and the
circuit of Fig. 7-23 is used as a matter of convenience. Such might be the
case if we used the pulse to modulate the intensity of 8 CRO and take note of
the position where the trace intensity just dropped to zero. In this case the

" comparator operation would actually be performed by the combination of the
‘nonlinearity of the CRO screen (intensity versus beam current) and the eye
of the observer. On the other hand, if we superimposed the pulse on the
deflection signal and noted, with whatever precision is possible (taking account
of the pulse width), the position of the pulse peak, then the circuit of Fig.
7-23 is itself performing the operation of comparison.
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7-15 AN AMPLIFIER FOR A COMPARATOR

We have already noted the advantage of placing an amplifier before a com-
parator. An amplifier which finds frequent use in this application is the
emitter-coupled or the cathode-coupled amplifier of Fig. 7-14. When so used,
the signal is applied to one base (or grid), say Bl (or G1), and a referencing
voltage Vg is applied to the other base (grid), say B2 (G2). The output
signal at the collector (plate) is applied to the nonlinear device (diode, tube, or
transistor at cutoff, etc.). To change the point of comparison we change the
referencing voltage.

Let us assume that the comparator element has been coupled to the
amplifier output in such a way that the comparator element will just respond
when the signal v; equals V;. We require that, when Vp is fixed, the output
voltage v, should respond sensitively to changes Av; in input voltage. The
" comparator precision is improved by the ratio Av,/Av;,, On the other hand,
suppose that we change ¥V by an amount AVe. Then we require that the com-
parator shall respond when the input voltage attains the value v; = V; 4 AVg.
Since the comparator which is coupled to the output responds at some fixed
output voltage, then we also require that when both bases (or grids) change by
the same increment, there shall be no corresponding change in the output.

The above requirements may be described in terms of the common-mode
gain A, and the difference-mode gain A, of the amplifier. The common-mode
" gain is defined by A. = Av,/Av, under the circumstances that when an input
voltage increment Av; = Av, is applied to one base (grid), an identical signal
change Av, is simultaneously applied to the other base (grid). The difference-
mode gain is defined by A, = Av,/Av; under the circumstances that when a
signal increment Av; = Av;/2 is ‘applied to one base (grid), a signal change
— Av,/2 is simultaneously applied to the other base (grid). When the common-
mode gain is very small the difference-mode gain may also be defined as
Aq = Av,/Avg under the circumstances that the full signal change Av, is applied
to one base (grid) while no signal is applied to the other base (grid). We may
now specify, in connection with the amplifier of Fig. 7-14, that we require that
Ay be as large and A, as small as feasible. The common-mode rejection ratio
A4/ A, may well be taken as a figure of merit in the present application.
Expressions for 4. and A, in terms of the circuit and device parameters are
given in Prob. 7-30 for the emitter-coupled comparator and in Prob. 7-32
for the cathode-coupled circuit.

We may now see that if the common emitter (cathode) in the circuits of
Fig. 7-14 is returned to a constant-current source, the common-mode gain will
be reduced to zero. For let each base, say, in Fig. 7-14b be increased by the
same voltage. Then, from symmetry, the current in each transistor must
increase by the same amount A, and the emitter current must increase by 2 Al.
However, if the emitter current is being supplied by a constant-current source,
then 2 AT must be zero. Consequently the change in each collector current
must also be zero. Hence, in response to the simultaneous change in voltage
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at both bases, no change at all will take place in the output voltage. A
constant-current source is approximated through the use of a large emitter
resistor R. returned to a correspondingly large source Vgz. A more nearly
perfect current source is obtained if, as in Fig. 7-26, the emitter resistor is
replaced by a transistor @4 with its own emitter resistor. The incremental
resistance seen looking into the collector of this added transistor may be
extremely large (Prob. 1-32).

We have described how the suppression of the common-mode gain makes
the amplifier stages of Fig. 7-14 suitable for use as a comparator amplifier.
We may now see that this same stage is itself useful as a comparator. Assume
that we propose to use for comparison purposes the cutoff of transistor Q2.
We saw that a simultaneous variation at both inputs produced negligible
change in the load current through Q2. In the present instance we need but
apply this result to the special case in which the collector current has just been
set at zero. Accordingly, if for some reference voltage Vz a voltage v; just
brings @2 into conduction, a change AV will require a change Av; = AVg to
bring Q2 again just to the point of cutin. For example, in Fig. 7-16 (with
Ver: = Vi) note that approximate cutin of ¢2 occurs at

Vie =V +229Vy

so that, indeed, if V' changes by AV, then AV changes by the same amount.
A comparator circuit which uses the difference amplifier twice is shown in
Fig. 7-26.1.2 The first stage (Qla and @1b) is an amplifier, and the second

Vcc?

Qla 2N2060 Q1b Q2 Q3

II|_'°I Ty

o' =

Q4

N\ -
% K :
T,

Fig. 7-26 A symmetrical transistor amplifier followed by o difference-amplifier
comparator.
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stage (Q2 and @Q3) is the comparator. The transistor Q4 in the emitter -
of the first stage provides a large, effective emitter resistance. Hence, in effect,
the emitter current is being supplied by a current source. The avalanche
(Zener) breakdown diode D is used here to establish a fixed voltage between
the base of Q4 and the — Vg, supply.

The operation of the circuit is as follows. If the amplifier is completely
symmetrical, then when the signal voltage v; is equal to the reference voltage
Vr the voltages at the two collectors of Q1 will be identical. The resistor R
may be adjusted so that under these conditions the currents through Qla and
Q1b are nominally equal. The difference amplifier can handle linearly only a
limited range of input signal. Hence, as the voltage difference between the
collectors of @1 departs from zero, a break occurs in the comparator output
as @2 or' @3 passes through cutoff. (Note the emitter-coupled clipper wave-
form of Fig. 7-16.) For a negative-going sweep input signal, as indicated
in Fig. 7-26, the response at the collector of Q3 will be a positive-going step, as
shown. The step will begin when the input signal v; is different from the
reference Vz by some fixed voltage. Alternatively, the resistor R may be
adjusted so that the step forms at the moment v; = Vz. We may now discuss
some of the advantageous features of the circuit of Fig. 7-26.

The gain of the amplifier @1, defined as the ratio of the collector-to-
collector output voltage to the input signal v;, may be quite high, perhaps 50 to
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Fig. 7-27 A symmetrical tube amplifier followed by a difference-amplifier com-
parator.
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500. Hence there is an improvement by this gain factor in the precision of the
comparator as compared with the precision which would result without the
amplifier. This circuit has a very high common-mode rejection ratio because
of the extremely large effective dynamic resistance in the emitter of Q1.

The amplifier is highly stable. This stability results not from any par-
ticular circuit features but rather from the nature of the devices employed.
The type 2N2060 was designed especially for difference-amplifier applications.
It consists of two high-gain n-p-n silicon planar transistors in the same hermeti-
cally sealed enclosure. The manufacturer guarantees that for equality of
collector currents the maximum difference in base voltages is 5 mV, that the
base voltage differential change at fixed collector current will not exceed
10 xV/°C, and that ky, for one transistor will not differ from h;, for the other
by more than 10 percent.

A tube circuit which is analogous to the transistor configuration of

Fig. 7-26 is given in Fig. 7-27. The avalanche diode is now replaced by a
glow-tube regulator type 5651. The input stage V1 is a type 5755 tube,
especially designed for balanced d-¢ amplifier service. The manufacturer
guarantees that, for equality of tube currents, the maximum difference in
‘grid voltage is 0.3 V. More importantly, it is claimed that over a 7-hr period
‘a maximum change of no more than 5 mV need be made at one grid to keep the
currents balanced. Similarly, the 5651 tube is a very stable reference-voltage
regulator. Over the normal operating range of 1.5 to 3.5 mA, its maintaining
voltage of 87 V will not drift with age by more than about 0.3 V under continu-
ous operation.

7-16 APPLICATIONS OF VOLTAGE COMPARATORS

The gain of the difference amplifier of Fig. 7-26 may be increased by adding
more stages. The number of stages which may be used is limited by the
d-c stability (drift). With a very high gain, the output will approach a step
waveform, which begins at the instant when the input differs from the reference
voltage Vy by a fixed amount. In this chapter we consider only nonregenera-
tive comparators, but by using circuits with positive feedback it is possible
to obtain infinite forward gain (unity loop gain). Such regenerative compara-
tors (for example, the Schmitt circuit of Sec. 10-12) do indeed approximate a
step output. Other types of regenerative comparators (for example, the
blocking oscillator of Chap. 16) generate a pulse rather than a step output
waveform. Most applications of comparators make use of the step or pulse
nature of the output.

Accurate Time Measurements This application is discussed in Sec. 7-14.

Pulse-time Modulation If a periodic sweep waveform is applied to a
comparator whose reference voltage is modulated by some information, it is
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possible to obtain a succession of pulses whose relative spacing reflects the
input information. The result is a iime-modulation system of communication.

Timing Markers Generated from a Sine Wave If a comparator is used
to detect the instant of equality of the instantaneous value of a sine wave
with a d-c reference voltage, pulses will be obtained which are synchronized
with the sine wave. Thus, a sine wave is converted into a series of pulses.
There are many important applications of this type.

Phasemeter When a comparator is used with sinusoidal signals, as
above, then it is advantageous that the reference voltage be zero. Under
these circumstances the pulses are locked in phase with the zero of the sine
wave and, ideally, are independent of the amplitude of the sinusoidal voltage.
The phase angle between two voltages can be measured by a method based
upon this principle. Both voltages are converted into pulses, and the time
interval between the pulse of one wave and that obtained from the second
sine wave is measured. This time interval is proportional to the phase
difference. Such a phasemeter can measure angles from 0 to 360°.

Square Waves from a Sine Wave If the comparator output is a signal
which assumes either one of two levels (a step output), then a sine-wave input
will result in a square-wave output. If the reference voltage Vi is set equal
to zero, then a symmetrical square wave results.

Amplitude-distribution Analyzer A comparator is a basic building block
in a system used to analyze the amplitude distribution of the noise generated
in an active device or the voltage spectrum of the pulses developed by a nuclear-
radiation detector,? etc. To be more specific, suppose that the output of the
comparator is 100 Vif »; > Vzand 0 Vifv; < Vi Let the input to the com-
parator be tube noise. A d-¢ meter is used to measure the average value -
of the output square wave. For example, if Vz is set at zero, the meter will
read 100 V, which is interpreted to mean that the probability that the ampli-
tude is greater than zero is 100 percent. If Vg is set at some value V7% and
the meter reads 70 V, this is interpreted to mean that the probability that the
amplitude of the noise is greater than V% is 70 percent, etc. In this way the
cumulative amplitude probability distribution of the noise is obtained by
recording meter readings as a function of V.

Analog-to-Digital Converter It is often required that data taken in a
physical system be converted into digital form. Such data would normally
appear in electrical analog form. For example, a temperature difference
would be represented by the output of a thermocouple, the strain of a mechani-
cal member would be represented by the electrical unbalance of a strain-gauge
bridge, etc. The need therefore arises for a device that converts analog
information into digital form. A very large number of such devices have been
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invented.* We shall consider below one such system which involves a time-
modulation scheme of high precision.

In this system® a continuous sequence of equally spaced pulses is passed
through a gate. The gate is normally closed and is opened at the instant
of the beginning of a linear ramp. - The gate remains open until the linear
sweep voltage attains the reference level of a comparator, the level of which
is set equal to the analog voltage to be converted. The number of pulses
in the train that passes through the gate is therefore proportional to the analog
voltage. If the analog voltage varies with time, it will, of course, not be
possible to convert the analog data continuously, but it will be required that
the analog data be sampled at intervals. The maximum value of the analog
voltage will be represented by a number of pulses n. It is clear that n should
be made as large as possible consistent with the requirement that the time
interval between two successive pulses shall be larger than the timing error
of the time modulator. The recurrence frequency of the pulses is equal, at a
minimum, to the product of n and the sampling rate. Actually, the recur-
rence rate will be larger in order to allow time for the circuit to recover between
samplings.

One form of digital voltmeter uses the above-described analog-to-digital
converter. The number of pulses which pass through the gate is proportional
to the voltage being measured. These pulses go to a counter whose reading
is indicated visually by means of some form of luminous display (for example,
the Nixie tube, which is a cold-cathode glow tube described in Sec. 18-13).
Another system for analog-to-digital conversion is given in Sec. 18-3.
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CLAMPING AND
SWITCHING CIRCUITS

In this chapter we study a number of circuits in which reactive ele-
ments (particularly capacitors) appear in combination with nonlinear
devices. In clamping circuits the capacitors are essential; in switching
circuits the capacitors are often unavoidable.

8-1 THE CLAMPING OPERATION

A function that must frequently be accomplished with a periodic
waveform is the establishment of the recurrent positive or negative
extremity at some constant reference level V. Since, in the steady
state, the circuits used to perform this function restrain the extremity
of the waveform from going beyond Vg, the circuits are referred to as
clamping circuits. However, the term ‘‘clamping” is rather widely
used for a variety of related but not identical operations. For exam-
ple, in Sec. 6-19 we encountered in Fig. 6-34 a “clamped” grid. Here
the grid was constrained to remain in the neighborhood of 0 V because
of the flow of grid current, and this restraint was in no way related
to a signal. Generally, whenever a circuit point becomes connected
through a low impedance (as through a conducting diode) to some
reference voltage Vg, we say that the point has been clamped to Vg
since the voltage at the point will not be able to depart appreciably
from V. In this sense, the diode limiting circuit of Fig. 7-2 is an
example of such a clamping circuit, since the output is clamped to
Vi whenever the input voltage exceeds V. Since, in these applica-
tions, a voltage change in only one direction is restrained, the circuits
are called one-way clamps. Two diodes may be used to establish a
two-way clamp.

262
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Fig. 8-1 (a) The basic circvit of a d--c restorer; (b) a sinusoidal signal is applied at
t = 0; (c) the output waveform.

The need to establish the extremity of the positive or negative signal
éxcursion at some reference level often appears in connection with a signal
which has passed through a capacitive coupling network. Such a signal
has lost its d-c component, and the clamping circuit introduces a d-¢ com-
ponent. For this reason the circuit is often referred to as a d-c restorer or
d-c reinserter. - These terms are somewhat misleading, because the prefix ‘“re”’
suggests that the d-c component so introduced is identical with the d-¢ com-
ponent lost in transmission. Such is normally not the case. A term which
avoids this objection is d-c inserter. In practice all the terms mentioned above
are used interchangeably.

Waveforms We turn our attention now to Fig. 8-1, which consists of a
signal source v; of negligible output impedance, a capacitor, and the diode D.
We assume that the diode is ideal in that it exhibits an arbitrarily sharp break
at 0 V and that its forward resistance is zero. The input signal is a sinusoid,
as shown, which begins at ¢ = 0. The capacitor C is uncharged at ¢ = 0.
Our interest is in finding the waveform of the voltage v, across the diode.

During the first quarter cycle the input signal rises from zero to the
maximum value V,. The diode being ideal, no forward voltage may appear
across it. Accordingly, during this first quarter cycle the capacitor voltage
va = vi. . The voltage across C rises sinusoidally, the capacitor being charged
through the series combination of the signal source and the diode. Through-
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out this first quarter cycle the output v, has remained zero. At the end of the
quarter cycle there exists across the capacitor a voltage vy = V,,.

When, after the first quarter cycle, the peak has been passed and the
input signal begins to fall, the voltage v, across the capacitor is no longer
able to follow the input voltage. For in order to do so, it would be required
that the capacitor discharge, and because of the diode, such a discharge is not
possible. Accordingly, the capacitor remains charged to the voltage vs = V,,
and, after the first quarter cycle, the output voltage is v, = v; — V... During
succeeding cycles the positive excursion of the signal just barely reaches zero.
The diode need never again conduct, and the positive extremity of the signal
has been ‘‘clamped’ or “restored” to zero.

Suppose that after the steady-state situation has been attained, the
amplitude of the input signal is increased. Then there will again be an
interval of one quarter cycle, at most, during which the diode will conduct.
The d-c voltage across C will increase as required, again to restore the positive
excursions of the signal to zero. But what if the amplitude of the input
signal should decrease? In this case, it is required that the d-c voltage across
the capacitor decrease. But in the circuit of Fig. 8-1 there is no mechanism
to allow such a discharge. To permit a decrease in capacitor voltage it is
necessary to shunt a resistor across C or equivalently to shunt a resistor

“across the diode. In this latter case the capacitor will discharge through
the series combination of the resistor shunted across the diode and the resist-
ance of the source.

A circuit with such a resistor B is shown in Fig. 8-2a. Figure 8-2b shows
the output waveform for a case where an abrupt decrease of the amplitude of
the sinusoidal input signal has taken place. The first two complete cycles
correspond to the steady-state condition after the large-amplitude signal had
been applied for a long time. At the time ¢t = ¢, the amplitude is abruptly
reduced in magnitude. Since the capacitor cannot discharge rapidly, the
positive peaks of the sinusoid fall short of attaining 0 V. The voltage across C
falls exponentially as C discharges, and after some cycles, the positive peaks
again reach zero. In this case, unlike the case where B was absent, some
diode current will flow at each positive peak. For now, even after the voltage
across C has dropped to the point where the positive peaks reach zero voltage,
the capacitor continues to discharge through R and the generator resistance.
Therefore the diode must now supply to the capacitor, at the time of this
positive excursion of the signal, the charge lost by the capacitor when the
diode is not conducting. Fortunately, in most applications there is no great
need to reestablish clamping immediately after a reduction in signal amplitude.
Many cycles may be permitted to elapse before clamping is again obtained.
Therefore, since the capacitor discharges slowly, the diode will not have to
conduct for any but a small part of the eycle to supply the lost charge.

It is of interest to examine the waveform in the neighborhood of a positive
peak where the diode conducts. This portion of the waveform is shown on an
expanded scale in Fig. 8-2c. If it were not for the diode the signal would
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Fig. 8-2 (a) The clamping circuit is completed through the inclusion of a resistor
which permits the capacitor to discharge. (b) At time t = t, the amplitude of the
input signal is abruptly reduced. Output waveform shows approach to steady
state. (c) The details of the waveform v, at the first positive peak which would
cross the zero-voltage axis at ¢, if the diode were absent.

follow the dashed sinusoidal waveform, with peak at ¢t = t;. Because of the
diode the part of the waveform between ¢, and ¢, is clamped at 0 V. The
time #; is the time at which the rising sinusoidal waveform just reaches the
zero axis. To the right of ¢, the waveform is sinusoidal, with maximum at
t = t;. That is, to the right of ¢ = ¢, the actual waveform is the dashed wave-
form lowered so that the peak occurs at 0 V. If the distortion of the waveform
is to be kept to a minimum the capacitor must lose only a very small fraction
of its total charge during any one cycle. This condition requires that the time
constant RC be very large in comparison with the period of the signal.

8-2 CLAMPING CIRCUIT TAKING SOURCE AND DIODE
RESISTANCES INTO ACCOUNT

We turn now to the more realistic circuit shown in Fig. 8-3. Here we have
included a source resistance R, and a diode forward resistance R;. The
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Fig. 8-3 A clamping circuit in which
the resistance R, of the signal source
v, is taken into account. During
conduction the diode is assumed to be
a resistance R,.

resistance R, will lie in the range tens to hundreds of ohms, depending on
the type of diode used. The source resistance may be negligible or may
range up to many thousands of ohms, depending on the source. We shall
assume for the present that the diode break point V, occurs at zero voltage.
This restriction is removed in Sec. 8-4.

As already suggested, and as we shall shortly see more exactly, the pre-
cision of operation of the circuit depends on the condition that B > E;. To
analyze the circuit we need only to recognize that the equivalent circuits
for the purpose of calculating the output voltage », are as shown in Fig. 8-4a
and b. The circuit in Fig. 8-4a applies when the diode is conducting and
Fig. 8-4b applies when the diode is not conducting. If the inequality B > R,
is not valid, then in Fig. 8-4a, B, must be replaced by the parallel combination
of R and R;. In connection with Fig. 8-4b it may also turn out that the back
resistance of the diode is not very large in comparison with B. In this case R
must be replaced by the parallel combination of the two. In some instances it
may be that no physical resistor R is placed in the circuit and that B may
actually represent the diode reverse resistance R,.,

The Transient Waveform We wish to follow the waveform which results
after a signal is suddenly applied to the circuit and to see how the steady state
is reached. After a number of cycles have passed we expect to approach a
steady-state condition in which the positive peaks have been clamped to zero.
For this purpose we need but make use of the equivalent circuits of Fig. 8-4
and proceed as in the following illustrative example.

Uy U
bl i il [
LAY 4
c c
+ R +
e ) . @ )
Rf Vo
-

(a) ()

Fig. 8-4 Circuits equivalent to the circuit of Fig. 8-2 for the purpose of
calculating v, (a) when the diode is conducting, (b) when the diode is not
conducting. It is assumed that R, >> R > R,.
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EXAMPLE In the circuit of Fig. 8-3, R, = Ry = 1009, R = 10K,and C = 1.0
uF. At t = 0 there is applied a symmetrical square-wave signal of amplitude
10 V and frequency 5 kHz. As indicated in Fig. 8-5, the signal v, extends from 0
to +10 V. Draw the first several cyeles of the output waveform.

Solution Assume that the capacitor C is initially uncharged. Using the equiva-

~ lent circuit of Fig. 8-4a we find that, at the first 10-V jump of the input signal, the
output jumps to +5 V. The output now decays toward zero exponentially with a
time constant

r = (R, + R)C = 200 psec

Since the period T = (5,000)7 sec = 200 usee, then at the end of a half cycle of
the square wave, at { = T/2, the output, indicated by the solid line, has fallen to

v, (t = g) = 5T = 5¢3 =30V

At this time, since the voltage across R;is 3.0 V, so also is the voltage across K.,
leaving the capacitor voltageva = 4 V. Whenatt = (T/2)+ theinput drops back
to zero, the diode cuts off, and we now use Fig. 8-4b. 1In this circuit, v4 = 40V
and v, = 0, so that, neglecting R, compared with R, v, = —4.0 V, as shown in
Fig. 8-5. The output now again starts to decay toward zero. However, the
time constant now is RC = 10 K X 1.0 uF = 10,000 usec, or 100 times larger than
the time T/2 = 100 usec. Therefore the decay is negligible and is not indicated

in the figure.
v
Us
R =71 i ro===" r-=
] \ 1 ] : : :
: ' | : | ! I
1 1 : : 1 : i
1 ! ' ' : 1 !
5 1 H ] 1 1 1
Yo H I 1 1
! i ! 1 1
LI R T S
18 18 \'l.l 1.1
0
t=0 z T 3T ¢

-64

-18

Fig. 8-5 Exomple of the transient approach to the steady state ina
clamping circuit.
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Since in the interval ¢ = T/2 to ¢ = T the voltage across the capacitor has
not changed, then at ¢ = T+ the output returns to +3.0 V. Again the output
decays toward zero. The portion of the exponential decay in the interval ¢ = T to

= 3T/2is a continuation of the portion in the intervalt =0tot = T/2 Ifallof
the decays indicated were moved together so that they just joined, they would form
one continuous exponential decay from 5.0 V toward zero.

Att = 3T/2, v, = 3¢t = 1.8. The remaining calculations are repetitions of
those above and the results are shown on the figure. We observe that cycle by
cycle the output waveform is approaching the steady-state case, where the
positive excursion of the waveform is clamped approximately to zero. (The
calculation of the clamped level is given in Sec. 8-3.)

The Steady-state Output Waveform for a Square-wave Input Hence- -

forth we shall concentrate exclusively on the steady-state response. Consider
the square wave of Fig. 8-6a applied to the clamping circuit of Fig. 8-3. The
general form of the output waveform is indicated in Fig. 8-6b and is determined
by the four voltages Vi, Vi, Ve, and V;. We shall now indicate how to calcu-
late these voltage values.

Consider conditions at ¢ = 0— when v, = V" and v, = V;. Since the

diode is reverse-biased at this time, Fig. 8-4b is applicable, and the capacitor

voltage is ,
va =V — EtE —; B, v, (8-1)
vs v v
-3
\ 4
(a)
v \ %4
0 . ) — Fig. 8-6 (o) A square-wave input

Uo

t=0 T T+ Ty t signal of peak-to-peak amplitude
V; (b) the general form of the
steady-state output of a clamping

Af Zero " . . . R
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Vi _JRIV’
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At ¢t = 0+ the input signal jumps to V’, the output to V,, the diode conducts,
and Fig. 8-4a is applicable. Since the voltage across the eapacitor cannot
change instantaneously, it remains at the value given in Eq. (8-1). From -
Fig. 8-4a

Vg =V, — R, I—; R, v, (8-2a)
or, with v, = V/,
v — R+R vi— v — Bt By (8-2b)
R,
Since the peak-to-peak input amplitude is V = V' — V", Eq. (8-2b) becomes
R+ R.,, R+R,,
v E Vv, % Vi (8-3)
In a similar manner, by considering conditions at ¢ = T'y— and T+ we obtain
R/ + R, R+R, :
V= e Vi B Vs, (8-4)

Since in the interval T, the diode is conducting, the output decays with a time
constant (R, + R,)C. Hence

V, = Vie T/ (EBAHRIC (8-5)

Similarly, during the interval T, the diode is reverse-biased and the circuit
time constant is (R + R,)C, so that

Vi = Vae T/ (B+RIC (8-6)

Equations (8-3), (8-4), (8-5), and (8-6) suffice to determine the four voltages
Vi, Vi, Vs, and V,. We have in effect used these same equations in calculating
the voltages in Fig. 8-5. Note that if, as in the present case, the source imped-
ance is taken into account the output voltage jumps are smaller than the
abrupt discontinuity V in the input. Only if R, = 0 are the jumps in input
and output voltages alike. Thus, from Egs. (8-3) and (8-4) with R, = 0,

V=V=V, =V, -V, (8-7)

Observe, also, that the response is independent of the absolute levels V’ and
V' of the input signal and is determined only by the amplitude V. It is
possible, for example, for V'’ to be negative or even for both ¥’ and V’’ to
be negative. The average level of the input plays no part in determining the
steady-state output waveform.

An interesting result is obtained if Eq. (8-4) is subtracted from Eq. (8-3):

Bt Bey, —yp - BER
i

or using the notation in Fig. 8-6, where

A=V,—=V, A =V,—V; (8-8)

(Ve—Vy =0



270 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 8-3

we obtain

A, = R, R+ R,
"R, ¥R, K

Since R, is usually much smaller than R, then the tilt A, in the forward direc-

tion is almost always less than the tilt A, when the diode is reverse-biased.

Only when R, < R; are the two tilts almost equal.

A, (8_9)

8-3 A CLAMPING-CIRCUIT THEOREM

We shall now demonstrate that, in the steady state, the area A, under the
output voltage waveform in the forward direction (when the diode conducts)
is related to the area A, in the reverse-biased direction (when the diode does
not conduct) by the relationship

A, _ R,

T=F ) (8-10)
The areas referred to are indicated in Fig. 8-8b, for which case the input signal
was a square wave. However, the result applies quite generally, independently
of the input waveform and of the magnitude of the source resistance ..

If v,(t) is the output waveform in the forward direction, then, from

Fig. 8-4a, the capacitor charging current is i; = v;/R;. Therefore the charge
- acquired by the capacitor during the forward interval is

Ty, _ 1 T: _i, g
/0 z,dt—Eﬁ) vy di = 3! (8-11)

Similarly, if »,(¢) is the output voltage in the reverse direction, then the current
which discharges the capacitor is 4, = »,/R, and the total charge lost is

In the steady state, the net charge acquired by the capacitor must be zero.
Therefore we equate Egs. (8-11) and (8-12) and arrive at Eq. (8-10). This
equation says that for any input waveform the ratio of the area under the output-
voltage curve in the forward direction to that in the reverse direction is equal to the
ratio RB;/R. An application of this principle is given in the following illustra-
tive example.

EXAMPLE (a) An unsymmetrical square wave with T; = 1 msec and 7> = 1
psec has an amplitude of 10 V. This signal is applied to the restorer cireuit of
Fig. 8-3, in which B, = 50 2, R = 50 K, and R, = 0. - Assume that the capacitor
C is arbitrarily large, so that the output is a square wave without tilt. Find
where, on the waveform, the zero level is located.  (b) If the waveform is inverted
so that T, = 1 psec and T» = 1 msec, find the location of the zero level. (c)
If the diode is inverted, but the input is as in part b, locate the zero level.
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Solution a. The output waveform and zero level are shown in Fig. 8-7a. In the
figure we have already taken into account the fact that, since B, = 0, the peak-
to-peak amplitude of the output signal must be the same as that for the input
signal, namely 10 V. We have A; = 1,000V, and A, = 10 — V,, where the
areas are in units of microsecond-volts. From Eq. (8-10) we have

4, _ 1,000V, R, 50 = 10-9

A, 10—V, R 50 x10%
and we find that V, = 10~% V. This example illustrates that clamping of the
broad base line of the waveform is quite precise, since only one-millionth of the
input waveform is above the zero level.

b. In Fig. 876, Ay =V, and 4, = (1,000)(10 — V). Again from Eq.
(8-10) we have

V.
1,000(10 — V)

or Vi = 5V. The zero level is now not near the positive peak but is halfway down
the waveform, and the circuit has done very poorly as a clamp. This example
illustrates that it is not advisable to attempt to clamp the peak of narrow pulses.
To yield good precision of clamping in this case it would be necessary to increase B
by a large factor. Such an increase in B would greatly lengthen the circuit
recovery time for a signal decrease. It may even be that when semiconductor
diodes are used, such an increase in B would be ineffective because of the finite
diode back resistance.

=10

¢. Positive voltages now back-bias the diode and negative voltages forward-
bias the diode, because the diode has been inverted. Comparing Fig. 8-7¢ and a
we see that one is inverted with respect to the other, and hence V, = 103 V,
as in part a.
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We note that the d-c level of the input did not enter these calculations. This
observation confirms our previous assertion that the average value of the input
has no effect on the output level in the steady state.

We can summarize the results of this example by observing that it is very
difficult to achieve d-c restoration to the peak (either positive or negative) of a
narrow pulse, but we can very effectively clamp to the broad base line.

If the clamping-circuit theorem is applied to the waveform in Fig. 8-5,
it is found that the peak of v, is at 0.1 V.

8-4 PRACTICAL CLAMPING CIRCUITS

To maintain perfect flatness of the positive and negative peaks of a square
wave would require that C be arbitrarily large, as was assumed to be the case
in the problem above. In a practical situation it will normally turn out
that (R; + R)C K T, and (R + R,)C > T, A square-wave or pulse-type
waveform, after restoration, typically appears as in Fig. 8-8. During the
interval T, there is a small tilt A,, and at the beginning of the interval 7'y a
sharp spike of magnitude A; appears. The capacitor recharges through the
diode in a very short time, and during the remainder of the time T'; no appreci-
able diode current flows. From Eq. (8-9) the overshoot A; will usually be
smaller than the tilt A,.

For the important special case depicted in Fig. 8-8, the voltage values are
found from Egs. (8-5), (8-4), (8-6), (8-9), and (8-8) to be

r — _L -
Vim0 Vi=—pigV (8-13)
Vi = Ve TalR+RIC (8-14)

R, R+R..,. _ )
Vi=Ar = R,+R E (Vs — V) (8-15)

We have already observed that even if we assume C arbitrarily large,
unless the source resistance R, is zero, the part of the input signal which

Yo

Af Zero
1ta;
0--L w2 vi=o Vi, e
f ! Fig.8-8 The form of the output of a

input for (B, + R,)C < T; and

Ty Ty ﬁ clamping circuit with a square-wave
)
o (R + R)C> Ts.
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(a)

Fig. 8-9 (a) A ramp input to o _p Zero level
restorer and (b) the output taking into
account the finite source impedance. Yo

o g~ Zero level

A
ki o
7|
7

1, L—Tz )

occurs when the diode is conducting appears at the output multiplied by
the factor R;/(R; + R.) = F,;. That part of the signal which occurs when the
diode is not conducting is transmitted to the output multiplied by R/(R +
R,) = F,. Usually F, is much closer to unity than is F,. Such selective
attenuation obviously produces distortion in the output signal by blunting
or flattening that part of the signal which drives the diode to conduction.
This distortion is not readily apparent in the case of a square wave, which
already has a flat top. Nor is it even especially apparent with a sinusoidal
signal, whose peak is already rounded. The distortion is much more easily
observed in the case of a signal which comes to a sharp peak, such as is the
case with the ramp type of waveform of Fig. 8-9. In that figure 1t is assumed
that the capacitor is large enough so that the only distortion is due to the
attenuation. We emphasize again that quite independently of-the distortion
the relationship 4,/A, = R,/R is valid.

If the diode in Fig. 8-3 is reversed, it was shown in the illustrative example
above that the negative rather than the positive extremity of the signal will
be established at zero. If the circuit is modified to include a fixed voltage Vg,
as in Fig. 8-10, the positive extremity (or negative extremity, if the diode is
reversed) of the output will be established at Vg. That such is the case
may be seen in the following manner. Assume first that the output signal is
taken across the diode and that the voltage Vg is part of the input signal.
We have already seen that, in the steady state, the output voltage across the
diode is unaffected by the direct component of the input. Accordingly, the
waveform which appears across the diode is the signal v; with its positive
extremity clamped to zero. The voltage v, is this same voltage translated
* upward by the amount Vg, so that the positive extremity of v, is clamped
to Vg. The clamping theorem, Eq. (8-10), remains valid provided that the
areas A, and A, are measured with respect to the level Vg rather than with
respect to ground.

Sometimes the device which receives the output signal of the restorer
of Fig. 8-10 bridges a resistance across the output, and it is necessary to operate
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Fig. 8-10 A circuit which clamps Fig. 8-11 A modification of the

to the voltage V. circuit of Fig. 8-10 in which the
resistor R is bridged across both
the diode and the reference
voltage V.

the circuit as in Fig. 8-11. Here the resistor R is bridged across the combina-
tion of both the diode and the reference source. This arrangement will
operate perfectly well, provided that the amplitude of the input signal is
adequately large. To see how this restriction arises, we consider that the
lead marked X in Fig. 8-11 has been opened, separating the EC circuit from the
diode-reference source combination. The input signal »; makes excursions in
the positive and negative direction with respect to its average value. The
signal between X and ground makes equal excursions with respect to its aver-
age value, which is zero. If the diode is to conduct, so that clamping may
take place, the positive excursions at X must at least equal Vz. Accordingly,
the condition to be imposed on the signal to ensure proper circuit operation is
that the positive excursion of the signal with respect to its average value must be
larger than Vg.

We shall now remove the assumption we have made thus far in this
chapter that the diode break point oceurs at zero voltage. The diode piece-
wise linear model is as indicated in Fig. 7-3, with the break point at a voltage
V,. Hence, the clamping circuit of Fig. 8-2 is equivalent to that of Fig. 8-11
with Vz = V,. Therefore, if a silicon diode (V, = 0.6 V) is used, the circuit
will function properly only if the positive excursion of the signal above its
average value exceeds 0.6 V. Moreover, the peak of the output will be
clamped not to zero but to a voltage of 0.6 V above ground. If an external
reference voltage Vi is added to the diode, then the clamping levelis Vg + V,.

By following the procedure outlined in Sec. 8-3 the clamping-circuit
theorem expressed by Eq. (8-10) can be generalized to

A, — Ve +V)Th _ Ry
A, R
where T, is the interval over which the diode is forward-biased, and R > R,.

If in the illustrative example in Sec. 8-3 a silicon diode is used, then an applica-
tion of the above equation yields the following results. In parts o and ¢

(8-16)
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Vi=0.6410"% = 0.6 V, so that the broad base line is now clamped to
Vy = 0.6 V rather than to ground. In part b, ¥, = 5.3 V instead of 5.0 V,
which was obtained on the assumption that V, = 0.

8-5 EFFECT OF DIODE CHARACTERISTICS
ON CLAMPING VOLTAGE

Up to this point in our discussion of restorers, we have represented the diode
as an ideal diode in series with a battery V, and a resistor B;. We shall now
take explicit account of the diode volt-ampere characteristic to calculate, in a
simple case, the effect of the diode characteristic on the clamping voltage. Let
us consider that the input to the clamping circuit of Fig. 8-3 is the square
wave of Fig. 8-6a with a peak-to-peak amplitude V. Assume that the capaci-
tor C is arbitrarily large, so that the output waveform v, across the diode is
similarly a square wave. We shall again consider, as in Sec. 7-2, that the
relation I = Ie"/7"r may be used for both semiconductor and thermionic
diodes. As noted before, this assumption is valid for semiconductor diodes
whenever the diode operates at a point where ¢’/"%"7>> 1. Finally, for the
sake of simplicity, we shall assume that R, = 0 in this discussion, which takes
the diode volt-ampere characteristic into account.

During the interval when the input signal is at its positive extremity
V' the diode clamps the output at some clamping voltage V., and the corre-
sponding diode current is

La = ILevainvs

This current charges the capacitor C so that v4 = V/ — V4. During the
negative interval of the input signal, the diode is not conducting and the voltage
across K in Fig. 8-4b has the magnitude v4 — V¥ = V — V.. We expect
that V., will be of the order of tenths of a volt and we shall consider that V is
of the order of tens of volts, so that we may set V. — V4 ~ V. Then the dis-
charge current of the capacitor is V/R. *Since the square wave is symmetrical
in the sense that the two portions of the cycle are of equal duration and the net
accumulation of charge must be zero, we must set the charging current equal
to the discharging eurrent, or

Ig = l}; = [,eValrVr (8-17)
Solving for V,; we find
v
Va=12Vrln EL, (8-18)

and taking the differential we obtain

aVa = nVr %Y (819)
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VYY

2 JﬁL Fig. 8-12 A clamping circuit in which the

R
R 7+ diode is biased to operate higher on its
Yo
ne

characteristic.

The clamping voltage may be obtained from Eq. (8-18), and from Eq. (8-19)
we may determine how the clamping voltage varies with the amplitude of
the input signal. As is to be expected, we find that in typical cases the clamp-
ing voltages for the various diodes are in the neighborhood of the break point
for the diode (V4 =~ V), that is, some tenths of a volt negative for a thermionie
diode and about 0.2 and 0.6 V positive, respectively, for Ge and Si.

From Eq. (8-19) we find for Ge, with V = 10 V and 4 = 1, that a 1-V
change in input amplitude yields a change dV,; = 2.6 mV. We observe that
Eq. (8-19) indicates a reduced dependence of V; on V with increased V. The
reason for this feature is that at increased V the diode clamps higher on its
volt-ampere characteristic, where a smaller voltage change is required for a
fixed current change. To take advantage of this feature it is useful to bias
the diode in its forward direction, as is done in Fig. 8-12. Here the resistor
R is returned to a supply Vyy, which causes a current Vyy/R to flow through
the diode even in the absence of a signal. It may be proved (Prob. 8-18) that
in the presence of a symmetrical square wave of peak-to-peak value V the
diode current during conduction (when clamping takes place) is

Ig = W_”'._ﬂ, (8-20)
R
and that
av
Wa=nVeoy 5V (8-21)

In the illustration above, with V = 10 V and dV = 1V, if we assume Vyy =
50 V then dV4 = 0.24 mV, which is a value approximately one-tenth that
obtained with Vypy = 0. This example indicates the advantage with respect
to the stability of the clamping level of using a biased diode.

If the diode is represented by a piecewise linear model, then the clamping-
circuit theorem of Sec. 8-3 when applied to the biased diode of Fig. 8-12 must
be generalized as follows:

Aj - V‘yTl _ R/‘

4FVaT~ R (8-22)
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where T is the period of the input square wave, T, is the interval over which
the diode conducts, and V, is the diode break-point voltage.

If the input signal is too small the circuit of Fig. 8-12 will not operate
properly, but instead the diode will remain conducting continuously. The
minimum signal amplitude required is obtained as follows. Assume that when
the input is at its upper level, the output is constant at V,, so that the current
in Ris Ig = (Vyy — V,)/R. When the input drops by V then the current
through R, is Iy = —V/R,. 1If Iy always exceeds Is in magnitude, then cur-
rent flows continuously in the diode. Hence, in order to ensure proper circuit
operation with an applied square waveform, the peak-to-peak magnitude V of
the signal must be larger than (Vyy — V,)(R./R). Note that if the signal-
source impedance is negligible the circuit always functions correctly (the diode
becomes nonconducting during the lower level of the input signal waveform).

8-6 CLAMPING IN BASE OR GRID CIRCUITS

Clamping may be accomplished in the base circuit of a transistor or the grid
circuit of a triode (or pentode). The operation is identical with that described
above. In the case of a tube the grid and cathode serve as the electrodes
of the diode, whereas in a transistor the emitter-junction diode provides the
necessary nonlinearity. Restorer action in the input circuit of a multielectrode
device has interesting applications, as we shall now indicate.

Consider a transistor amplifier in which fixed-current bias is obtained by
connecting a resistor R from the base to the supply voltage, as indicated in
Fig. 8-13a. The behavior of the base circuit is identical with the diode clamp
of Fig. 8-12. If the quiescent base current (V¢e — V,)/R places the transistor
in the active region and if the signal swing is small enough, then, as noted
in the preceding section, the base-to-emitter diode always conducts. The
emitter-junction voltage remains forward-biased, and the transistor behaves
as a small-signal class A amplifier. On the other hand, if a large-amplitude
signal is employed, clamping will take place at the positive extremities of the

VCC
(a) (b)
R B,

Fig.8-13 Clamping in the input circuit of an amplifier using (@) a transistor
and (b) a tube.
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Fig.8-14 Self-biasis obtained at the input
of an oscillator because of the flow of grid
or base current at the peaks of the signal.

waveform and the transistor will be below cutoff during a portion of each cycle.
Such an overdriven amplifier or switch is treated in detail in Sec. 8-8.

If the transistor in Fig. 8-13a is replaced by a tube, as indicated in Fig.
8-13b, then there is a fundamental difference in behavior. For no input
signal the grid must be clamped to the cathode (V¢x = 0), whereas for the
circuit of Fig. 8-13a the transistor could be within its active region in the
quiescent state. If the signal is supplied by a voltage source (B, =~ 0) and
if the peak-to-peak signal amplitude does not exceed the grid base, then
essentially linear operation is obtained, for the following reason. The clamp-
ing action at the grid will adjust the d-c level of the signal between grid and
cathode to be negative, so that no grid current is drawn except for a small
portion of the eycle at its positive extremity. The signal thus provides its
own bias. As long as R, < R, the signal distortion during the small part
of the cycle when grid current is drawn will be negligible. If, on the other
hand, a large input signal is employed, then the tube will be cut off during a
portion of each cycle, and an overdriven amplifier results.

For large-signal operation the resistor R in Fig. 8-13 may also be connected
to ground instead of to the supply voltage. Alternatively R may be placed
directly across C. This latter connection is indicated in Fig. 8-14 and is
commonly used to provide self-bias in a resonant-circuit oscillator which
operates class C.

In all of the preceding discussion concerning clamping we have assumed
a periodic signal. It is, however, to be noted that clamping may be accom-
plished with a nonperiodic signal, provided only that the signal has a periodic
positive or negative extremity. We consider next how clamping may be
accomplished with a signal (not necessarily periodic) in which the level to be
clamped occurs neither as the positive nor as the negative extremity but at
some level in between. ’

8-7 SYNCHRONIZED CLAMPING

The d-c restorers discussed above are examples of clamping circuits in which
the time during which the clamping is effective is controlled by the signal
itself. Useful features result when the time of clamping is not determined
directly by the signal but is determined rather by an auxiliary voltage, called
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a conlrol signal, which oceurs synchronously with the signal. For example,
suppose the waveform of Fig. 8-15a is to be used to displace the beam of a
cathode-ray tube linearly with time, first in one direction and then in the other
direction from some fixed initial point. If the signal is transmitted through
an a-c coupling network whose low-frequency time constant is not very large
in comparison with the interval 7', the signal will distort into the form shown in
Fig. 8-15b. The principal defect in the waveform is that the two displace-
ments will start from different places (A and B). In addition the d-c level
Vg has been lost. If, however, the signal is passed through the circuit of
Fig. 8-16 and if switch S is closed during time T, and is open during time 7T,
the waveform will appear as in Fig. 8-15¢c. The pips which appear when the
voltage returns to the level V' will be reduced to infinitesimally narrow spikes
as the resistance of the switch (R;) approaches zero.

It is, of course, required that the switch S be open throughout the time
interval T, but it is not necessary that the switch be closed for the entire
interval T.. It is only required that the switch be closed for a period long
enough to allow the capacitor C to acquire or lose enough charge to bring
the output terminal to the reference level V.

It is not possible to use synchronized clamping with a signal of arbitrary
waveform. For example, if the waveform were sinusoidal, it would necessarily

(@)

Fig. 8-15 lllustrating the necessity
for synchronized clamping for a
signal which may vary in beth direc-
tions from a voltage which is to be

established at some reference level. )
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r By Fig. 8-16 Switch S closes in synchronism
vy

with the signal during those intervals when
9 , it is desired that the output be clamped to
Vz.

be distorted every time the switch S closed. Synchronous clamping may be
used whenever the signal has periodically occurring intervals during which
the input waveform is quiescent. Where synchronized clamping is feasible,
it may be used to provide d-c restoration even when the positive and negative
excursions of the signal fluctuate from cycle to cycle.

A synchronous clamping circuit is shown in Fig. 8-17. The signal is
transmitted from input to output through the capacitor C,. The two-diode
circuit which is bridged between signal lead and ground serves the function
of the switch S in Fig. 8-16. Two control-signal pulse trains v; and v, are
required. These waveforms are identical in all respects except that one is the
inverse of the other. The d-c levels of the waveforms are of no consequence.

This circuit may be analyzed in much the same manner as the d-c-restorer
circuit, for the two circuits have many features in common. Such an analysis!
reveals that, in the steady state, during the interval T. the diodes are brought
to conduction and that the voltage at the point A is the same as at point B.
As in the d-c restorer, the diodes conduct briefly to supply to the capacitors
C the charge lost through the resistors R during the nonconducting interval T'».
During T, both diodes are back-biased, and the output signal lead is entirely
free to follow the input signal. Suppose that at the end of an interval T,
the voltage at A is not equal to Vz. Then when the diodes are brought to the
point of conduction, if it should happen that V4 > Vg, diede D1 will conduct,
discharging capacitor C, into capacitor ¢ until V4, = Vg. If V4 < Vg, diode
D2 will conduct until V4 = Vg.

For proper operation of the circuit it is required that € >> C, and that
RC > T,. There is, however, an upper limit on R which results from the
fact that during the interval T, the capacitor must be able to discharge through
R the charge it may have acquired from C, during the interval T.. When C,
discharges it does so through a diode forward resistance R, and through the
output impedance R, of one of the generators that furnish the control signal.
Hence it is also required that C,(R; + R,) < T.. The required minimum
amplitude Vp of the clamping pulse is determined by the condition that
neither diode be brought into conduction during the interval 7', by the signal.
This condition leads to the restriction that ¥V > Vg, where Vg is the peak
signal excursion above or below the average value of the signal. Finally, we
may note that if the clamping-pulse amplitudes are not equal or if the resistors



Sec. 8-8 CLAMPING AND SWITCHING CIRCUITS / 281

3

Fig. 8-17 A synchronous clamping circuit.

K are not equal, the circuit will not clamp to Vi but to a somewhat different
voltage. All these matters are discussed in detail in Ref. 1.

8-8 THE TRANSISTOR OR TUBE AS A SWITCH

We have already noted that amplifier tubes (vacuum triodes and pentodes)
and transistors are widely used in applications where they operate as switches.
In these circuits, the tube or transistor is placed in series with the load and a
supply voltage. The tube is then driven by an external signal between cutoff
and clamp, or the transistor is driven between cutoff and saturation. The
waveforms generated in such nonlinear switching circuits are of interest and
are now to be considered. The principles already established in connection
with clipping and clamping circuits are useful in studying these switching
circuits.

A transistor switching circuit is shown in Fig. 8-18a. In the absence
of a signal, the transistor would be held in saturation by virtue of the connec-
tion of the base to the supply voltage through RB. The signal », in Fig. 8-18¢
is applied to the base through the capacitor ¢' from a source of resistance R,.|
This signal, of peak-to-peak amplitude V, may be described variously as a
square wave, a train of negative pulses (of width T, separated by intervals T4),
or a train of positive pulses (of width T, separated by intervals T,). In the
present instance, because of the application involved, the signal is commonly
referred to as a gating waveform or as a train of negative gating pulses. The
transistor is viewed as a ‘“‘gate” which opens and closes, and the input wave-
form is the agency through which the transistor is so operated. The tube
circuit of Fig. 8-18b is similar and similarly operated. In the absence of a
signal the tube would be maintained in clamp by virtue of the connection of the
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Fig. 8-18 (o) Transistor switch; (b) vacuum-tube switch; (c) input waveform; (d)
base (or grid) waveforms; (e) collector (or plate) waveforms; (f) waveform v; at
junction of R, and C.

grid to the supply voltage through the resistor R. The input gating waveform
drives the tube from clamp to cutoff and back again.

Base (Grid) Waveform If we view the base (grid) and emitter (cathode)
terminals of the transistor (tube) as the terminals of a diode, then it is evident
that the base (grid) circuit is precisely the clamping circuit of Fig. 8-12. The
waveform at the base (grid) will appear as in Fig. 8-18d, which should be
compared with Fig. 8-8. In these two figures we have considered that the
time constant.with which the capacitor C' charges at the positive extremity
of the signal is small in comparison with the interval T: and that the base
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Fig. 8-19 Load-line construction to find quiescent clamping voltage {a) at
base of Ge or Si transistor, (b) at grid of triode.

(grid) voltage returns to the level at which it would remain constantly in the
absence of an input signal. This saturation (clamping) level V, will ordinarily
be some tenths of a volt negative in the case of a thermionic tube and will be
approximately 0.3 or 0.7 V for a germanium or silicon transistor (page 219).
If there were available the base-emitter or the grid-cathode volt-ampere
characteristics, and there were an interest in so doing, we might find the clamp-
ing voltage V, more precisely by the load-line construction of Fig. 8-19.

. We shall now calculate the voltage levels of the base waveform vp of
Fig. 8-18d. Since the signal v, is at the level V' just before the onset of the
interval T» (at t = 0—) and the base is at the clamped or saturation level V,,
then the voltage across the capacitor is V' — V.. At t = 0+, immediately
after the abrupt negative drop, v, = V'’, and the capacitor voltage remains
V' — V., because the voltage across a capacitor cannot change instantaneously.
We assume that the abrupt change V in v, is large enough to drive the transis-
tor below the cutin level V,. We shall neglect the small base current at cutoff.
The equivalent circuit from which to calculate vg is indicated in Fig. 8-20,
where at ¢t = 04-, v4 = V' — V,. The generator source impedance may be
different during the two portions of the square wave. Hence we have indi-
cated in Fig. 8-20 the symbol R,, to represent the value of the source resistance
during the interval T;. By using the principle of superposition and remem-
bering that V = V’/ — V*/, we may calculate that the base drops to the voltage

R.s

0504) = Ve = V) g + Veo g = U (8-23)

Note that this result is independent of the d-c level of the input signal. Equa-

Ry, Ua

+[7= B R
Fig. 8-20 The input equivalent circuit for ~— Y . Y
i i

the transistor base circvit of Fig. 8-18a dur- !
ing the time that the transistor is cut off. v e
At =04,00=V —Va 'l 'L
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tion (8-23) is valid only if the base is driven below the cutin level, that is, if
Ve <V,

If it should happen that R,; K R, then V, = V, — V, and the change in
voltage at the base is V, — V, = V, which just equals the abrupt drop in the
gating waveform »,. At the other extreme consider the case in*which, say,
R, = R, so that

Veo=3Ve =V + Veo) (8-24)
The condition Vy < V, requires that
V>Vee+Ve—2V, (8-25)

Since V, — 2V, is usually small compared with the supply voltage V¢¢, then,
approximately, V > V¢e. In other words, for R,, = R, the peak-to-peak
voltage must be at least as large as the supply voltage in order to bring the
transistor just below the cutin point. This same conclusion is reached in
Sec. 8-5. It is also to be noted, in the above situation, that any drop in input
voltage beyond V = V¢ will appear at the base attenuated by a factor of 2.

During the interval T, the voltage at the base rises asymptotically
toward V¢e. Using Eq. (2-3) we may calculate V; from

V; = Vcc -_ (Vcc — Vz)e_T’/’ (8-26)

in whichr = C(R + R,»). We have assumed in Fig. 8-18 that the voltage V;
is below the cutin level V..

During the interval T, the capacitor C' charges and the voltage vz rises,
bringing vy closer to its initial level V,. Therefore, when at ¢ = T, the input
_ rises abruptly by amount V, it carries the base above its initial level V,.
Consequently, as shown in Fig. 8-18d, an overshoot appears in the vz wave-
form. We shall now calculate the amplitude A, of this overshoot. To
make this calculation we first find the change Av, in the voltage across the
capacitor C in the interval T,.

During the interval T'; the base side of the capacitor € in Fig. 8-20 rises
in voltage by the amount V, — V.. Consequently, the current ¢ through B
falls by the amount (V, — V,)/R, as does also the current through R,,. Hence
the decrease in voltage drop across R.. is Re(V, — V2)/R, and the voltage v;
at the generator side of the capacitor falls by this same amount. The total
change in voltage across C' is

R

R32 22
=) (827

R

At t = T,4, immediately after the input v, has returned to its initial level,
the circuit is different from its initial state only in that the voltage Av, exists
across the capacitor ¢ and that the source resistance is now R,;. The change
from the initial state which results from this voltage change Av4 may be calecu-
lated from the circuit of Fig. 8-21. We have assumed that the incremental
input impedance of the transistor is the base-spreading resistance rw., The

—Avy = (V' — Vo) + (Vi—Vy) = (V’z'— V) (1 +
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Fig. 8-21 An equivalent circuit from which
to calculate the overshoot A; at ¢t = T+

change in voltage across 7 is the overshoot. From Fig. 8-21 and using Eq.
(8-27) we find, subject to the condition R >> ry, that

Tob’
Ap == — _—
! AvA Rsl + Top
vy Bt Ra  mw .
== Vi) —p— g v (8-28)
Very commonly R,» < R and ry3- << R,;. In this case we have
By~ (Vs — Vo) ¥ (8-29)
21

The peak value of vg is V., = V, + A;. The overshoot decays with a time
constant

= (Ra + re)C (8-30)

In the case of the vacuum tube, r is replaced by rg, the grid resistance.

Collector (Plate) Waveform Consider the waveform of Fig. 8-18¢. Dur-
ing the interval T,, when the transistor is below cutoff, its collector voltage
is ve = V¢e (neglecting the small reverse saturation current). At t = 0—,
when the transistor is in saturation, ve = V, = Vgg(sat). This satura-
tion voltage is obtained by drawing a load line corresponding to Ve and
R. on the collector characteristics and locating the intersection for a base
current Iy = (Voo — V,)/R. A good approximation for Veg(sat) is given
in Table 6-1 and is 0.3 V for a silicon and 0.1 V for a germanium transistor.
At t = T,4, when the base overshoots, there will be a small undershoot in
collector voltage. Since v¢ cannot go negative, V. differs from V, by a maxi-
mum of 0.1 V for germanium and 0.3 V for silicon. In many cases when the
collector waveform is observed on a cathode-ray oscilloscope the undershoot
will be small enough so that it will not be apparent unless special pains are
taken to observe it.

For a tube, the plate voltage equals Vpp during the interval Ty, when it is
cut off. At ¢t = 0—, when the tube is in clamp, its grid voltage is V, = 0.
The plate voltage V, is found by drawing on the plate characteristics the load
line for R, and Vpp and locating the intersection for V¢ = 0. Corresponding
to the grid overshoot at ¢ = Ty+ there is a pronounced plate undershoot.
This value of plate voltage V| is now found by drawing a load line on the plate
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characteristics and locating the intersection at V¢ = A,. Since the grid over-
shoot carries the grid into the region of positive grid voltages, a set of character-
istics for such positive voltages is required. The plate undershoot will be
larger than the grid overshoot by the gain of the tube. And the tube gain
will be even larger in the neighborhood of clamp than it is in the tube’s grid
base. This increased gain results from the fact that with increasing current
the tube transconductance increases and the plate resistance decreases. Since
A, is of the order of a few volts, then V, — V? is of the order of tens of volts.

Waveform v; Consider the waveform v;, which is the voltage to ground
of the junction of R, and the capacitor. The upper level of this waveform
is identical with the upper level V' of v,, since at ¢ = 0— there is no current
in C. At the beginning of the interval T, the voltage vs drops abruptly by
V. — Vs, as does the voltage »; on the other side of the capacitor. The voltage
v; drops less than does the input voltage v, because of the voltage drop across
R.. that results from the current which is charging the capacitor C. As the
capacitor charges, the capacitor current decreases, the drop across R,; becomes
smaller, and therefore during the interval T, the voltage v; falls. As we saw
earlier, in the discussion leading to Eq. (8-27), the change A; in v; is

A = (V) = V) RT%E (8-31)

At the end of the interval T, there is an abrupt jump in »; by V. — V; to
match the abrupt jump in vz on the other side of the capacitor. This jump in v
leaves v; short of returning to its starting point on account of the fact that dur-
ing T, the capacitor has been charging through R,, and R. For ¢ > T, the
capacitor discharges through R,; and the input diode. As the capacitor dis-
charges, the collector (plate) undershoot decays with the same time constant
7' [Eq. (8-30)] as does the base (grid) overshoot and the voltage v; rises to its
starting point asymptotically with this same time constant.

EXAMPLE In the circuit of Fig. 8-18a the transistor is an n-p-n germanium tri-
ode with characteristics similar to those of the p-n-p type 2N404, Voc = 10V,
R.=50092, R =40K,C =01 uF, By =R=10K, V=10V,and T» = 1.0
msec. Find the voltage levels of all the waveforms of Fig. 8-18, assuming
Topr = 100 Q.

Solution In the quiescent state the transistor is in saturation. Assuming the

transistor in saturation, we estimate from Table 6-1 that Vge(sat) = V, = 0.3 V.

Then the base current is I = (10 — 0.3)/40 = 0.24 mA. We observe from Fig.

6-21 that such a base current is adequate to keep the transistor in saturation.
- From Eq. (8-23) we find

Vaz (03 —10) —2 4 1010

0 = —58V
40 + 10 40 4+ 10 8
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From Eq. (8-26)
V=10 — (10 + 5.8)e L0590 = ~29V
From Eq. (8-28), the base overshoot is

H+1091 _gouv

Ay =(-29+58
7= +58) =5 101

and
Vi=V.4+A,=03+004 =03V

In the waveform for vc we find the upper level at 10 V. From Table 6-1 the
lower level is Veg(sat) = 0.1 V, Or if we refer to Fig. 6-21 we read Veg(sat) =
0.12V. Considering, however, that Fig. 6-21 gives average characteristics, in any
particular case the former estimate from Table 6-1 is probably as reliable as
the number read from the characteristic curves. The level V, lies somewhere
between 0 and 0.1 V and cannot be determined with any precision from average
characteristics.

The changes in level in v; are

Ve —V2a=03+4+58=61V
Ve—Vy=03+29=32V
and from Eq. (8-31)
Ai=(—294+58)13 =07V
The recovery time constant is
7 = Ry + r)C = (10.1 X 10%)(0.1 X 107%) sec ~ 1 msec

In order for the transient for ¢ > T’ to die down in the interval T, as indicated in
Fig. 8-18, we must have T >>7'. In the present example, since 7> =~ 7/, then
it is necessary that 7, > T&.

EXAMPLE In the circuit of Fig. 8-18b the tube is a type 5965, Vpp = 200 V,
R=05M Ry =R:=20K, R, =10 K, C = 001 uF, T, = 1.0 msec, and
V = 100V. Find the voltage levels of all the waveforms of Fig. 8-18.

Solution The grid current when the grid rests quiescently at clamp is 200/0.5 =
400 uA. From Fig. 6-31 and from the discussion of Sec. 6-19 we find that at this
grid current the grid is close to 0 V. In a tube circuit the voltages encountered are
of the order of hundreds of volts. Therefore the 0.1- or 0.2-V departure of the
clamping voltage in either direction from zero normally encountered is of no great
consequence and is often neglected. From Eq. (8-23) we see that

501 20

Vo= —100 =20 _ 499020 _
500 + 20 500 + 20

and from Eq. (8-26)
Vi = 200 — (200 + 88)e~1.0/5D = 38V

—88V

which is more than adequate to keep the tube cut off.
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From Fig. 6-33 we estimate r¢ = 0.25 K. From Eq. (8-28), with ru replaced
by re,
500 +20 025

=07V
500 204 0.25 0.7

Ay = (—38 4 88)

Turning now to the waveform for vp, we have an upper level Vpp = 200 V. To

find the lower level we draw the load line for 200 V and B, = 10 K on the plate
characteristics of Fig. 6-31, and we find that V, = 80 V at Vs = 0 and that the
minimum plate voltage at V¢ = 0.7 Vis V, =~ 60 V. Thus a 0.7-V grid overshoot |
has given rise to a 20-V undershoot, or a gain of 30 in the positive grid region. \
On the waveform for v; we find that the drop is

Vo~ Ve =88V
Since V, = 0, then V. ~ Ay and at t = T+ the rise is
Vo—V3=07+38 =387V
aﬁd the tilt of the bottom is, from Eq. (8-31),
Ay = (-38488)%% =20V
The time constant with which the overshoots decay is

7 = (20.3 X 10%)(0.01 X 10~%) sec = 0.20 msec

8-9 TWO-STAGE OVERDRIVEN AMPLIFIER

A circuit configuration which is frequently encountered is shown in Fig. 8-22.
Here the transistor switch @2 is driven not directly by a gating signal but
rather by the output of a preceding transistor @1. The transistor Q1 has
applied to it a gating signal which drives this transistor alternately from
cutoff to clamp and back again. Accordingly, in the absence of the loading
effect of transistor Q2, the signal at the collector of Q1 would be a gating wave-

Q1 Q2 +

o | L

° e

Fig. 8-22 A transistor switch capacitively coupled to and
driven by a preceding transistor switch.
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form of the same form as the input signal except inverted in polarity. This
circuit may now be analyzed in the same manner as we analyzed the circuit of
Fig. 8-18. We need only take into account that the second transistor @2 is
being driven by a gating source whose output impedance is not constant.
That is, when Q1 is cut off, the output impedance of @1 is equal to the col-
lector-circuit resistance R.,. When transistor @1 is in saturation the output
impedance is the parallel combination of R.;and the collector saturation resist-
ance Rcg and hence nominally equal to Reg. Therefore one may repeat all
the calculations performed above, taking into account that R,, = R and
R,» = Rep. The waveform v; in Fig. 8-18 corresponds in Fig. 8-22 to the wave-
form to be found at the collector of Q1. Of course, a circuit involving two
vacuum tubes in the manner that Fig. 8-22 involves two transistors may be
similarly analyzed. For the tube circuit, R,y = R, and R,; is the parallel
combination of R, and rp.

EXAMPLE In the circuit of Fig. 8-22, both transistors are germanium, Ve = 10
V,R:=10K, R, = 5002, R = 40 K,and C = 0.1 yF. The square wave which
is applied to the base of Q1 makes excursions between such levels that transistor
@1 is turned o~ and oFr. The on period of Q1 is T, = 1.0 msec. Find the voltage
levels of the waveforms at the collector of Q1 and at the base and collector of Q2.

Solution The waveform v¢, at the collector of @1 is similar to the waveform v;
in Fig. 8-18f, and the waveforms at the base and collector of Q2 are similar to the
waveforms vp and ve in Fig. 8-184 and e. When Q1 goes oN, vc1 drops from
Vee =10 V to ver = 0.1 V, the collector saturation voltage. Therefore using,
in Eq. (8-23), V = 10 — 0.1 = 9.9 V and setting R,; = Rcz = 0, we find, with
Ve =03V,

Ve=(03—-99) = —96V
From Eq. (8-26)
V=10 — (10 + 9.6)e 1040 = _53V

At the time of the generation of the overshoot, Q1 is oFF and By = R = 10K,
From Eq. (8-28), using rer = 100 Q,

0.1
A ~534+96)— =004V
7= + 9.6) 101

and

Vo=V, + 4, =03V

The wiveform ve; at the collector of Q1 starts at Vee = 10 V and drops to
0.1 V when @1 goes on. Since R,; = 0, we have from Eq. (8-31) that A; = 0, so

that v¢, exhibits no tilt but is constant at vey = 0.1 V in the interval T, during
which Q1 is oN. At the end of this interval ve; jumps by the amount

Veo—V;=03453=56V
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The waveform at the collector of Q2 has the form of Fig. 8-18e¢, with V¢e = 10
V, V,=0.1, and V: somewhere between 0 and 0.1 V. The overshoot in vz, the
undershoot in vce, and the approach of ve, to its initial level all take place with a
time constant given in Eq. (8-30) as 7' = (10.1 X 10%)(0.1 X 107%) = 1 msec.

8-10 SWITCH WITH INDUCTIVE LOAD

In Fig. 8-23a and b are shown a transistor and a tube switch in which the
load is an inductor L shunted by a resistor B. A gating waveform of arbi-
trary d-c level (Fig. 8-24a) is applied, and, because of the clamping in the
base and grid circuits, the transistor is carried from saturation to cutoff and
the tube from clamp to cutoff. An additional resistor R, has been included
in the collector circuit, since otherwise when the transistor is in saturation the
collector current will become intolerably large.

After the transistor and tube have been in saturation or clamp for a
long enough time so that all transients have decayed, each inductor will

||H

(d) =

Fig. 8-23 (a) A transistor switch driving an inductor; (b) a tube switch
driving an inductor; (c) equivalent circuit for finding the output when the
switch is open (Vyy represents either Vec or Ver); (d) equivalent circuit
when the switch is closed.
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(@)

Fig.8-24 (a) The input to the switches
of Fig. 8-23; (b) the output voltage.

()

|
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| |

1 1

0 T, ¢
be carrying a current I,. In the case of the transistor the current will be
[Vee — Ver(sat)]/R.. In the case of the tube the current may be found
from the plate characteristics as the current corresponding to a plate voltage
Vep and a grid voltage nominally equal to zero. At the moment the switches
are driven to cutoff, the equivalent circuit from which to calculate the output
voltage is given in Fig. 8-23¢, in which the initial condition that the inductor
current is I, has been noted. We have neglected the small leakage current
of the transistor when it is in the cutoff condition. The inductor current,
which must flow through R, decays from I, to zero with a time constant L/E.
The output voltage is as shown in Fig, 8-24b and is given by

v = Vyr + I, ReBUL ; (8-32)

Thus, driving the switch to cutoff develops at the collector or plate a positive
spike of amplitude I,R superimposed on the supply voltage. This spike
may become very large for large R, and this possibility is a cause for concern,
particularly in the case of transistors, where the maximum collector breakdown
voltage must not be exceeded. In practice, the peak voltage may be limited
by stray capacitance across the inductor, but even in this case a peak value
several times the supply voltage may be obtained. A difficulty may arise
from a rather unexpected source. Suppose, for example, that a d-c¢ milli-
ammeter has been introduced into the collector circuit of a transistor resistive
switch to monitor the collector current. Then, because of the inductance of
the meter coil, the simple act of abruptly turning off the collector current may
damage the transistor.

When the switches are returned to saturation or clamp again at the time
t = T, the inductor acts initially as an open circuit. The transistor current
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- and hence the current through R is [Vee — Ver(sat)]/(R + R.). The tube
current may be found by drawing on the tube characteristics a load line passing
through V pp corresponding to a resistance R and noting the point of intersection
of this load line with the tube characteristic for a grid-to-cathode voltage of 4.

Let I’ represent the transistor or tube current which flows at the moment
the switches are turned on. The current through R will decay from I to
zero with a time constant L/R’, in which R’ is the parallel combination of R
and R. (or of R and the tube plate resistance r,). The output for ¢ > T, is

v, = Vyy — IR ToIL (8-33)

and has the form of the negative spike shown in Fig. 8-24b superimposed
on the supply voltage. The negative spike is always smaller than the supply
voltage because the collector or plate voltage cannot reverse in polarity. The
time constant of the negative spike.is larger than that-of the positive spike
and therefore the negative spike decays more slowly. The output waveform
of Fig. 8-24 should be compared with the waveform of the peaking circuit of
Fig. 2-6, where the active device operates linearly.

The above discussion has neglected the capacitance shunting the output
terminals. If this capacitance is taken into account, we may have responses
similar to those discussed in Sec. 2-10. For example, if the circuit is under-
damped, each pulse in Fig. 8-24 will be converted into a train of damped
oscillations. Because the damping is greater when the tube or transistor
conducts than when they are not conducting, it is possible to have oscillations
near t = 0 instead of a single positive peak and yet have a single negative
spike at t = T,.

8-1 DAMPER DIODES

If, in the peaking circuit just discussed, it is desired to have only positive out-
put pulses, we may connect a diode across the coil as indicated in Fig. 8-25a.
If the output voltage falls below Vyy, the diode conducts and the small for-
ward resistance of the diode quickly damps out this portion of the waveform.
If in Fig. 8-24 there were oscillations in the vicinity of ¢ = 0, the diode of

VYY VYY

Fig. 8-25 (a) The damper diode
allows the output to go only positive
with respect to Vyy. (b) The diode

Y WY Y *  allows the output to go only negative
Collector ° Yo .
or plate - - with respect to Vyy.

(@) (]



Sec. 8-12 CLAMPING AND SWITCHING CIRCUITS / 293

Fig. 8-25a would allow only the first positive peak to appear in the output
because of the heavy damping which it imposes on the ringing circuit. This
action accounts for the name damper diode.

If the damper diode is inserted across the peaking coil with the polarity
indicated in. Fig. 8-25b, then the output will contain a single negative peak in
the vicinity of £t = T,. In this case the diode conducts whenever the output
rises above Vyy.

8-12 SWITCH WITH CAPACITIVE LOAD

A switch with a capacitive load behaves somewhat differently depending upon
whether the active device is a tube or transistor. We shall first consider the
vacuum-tube circuit of Fig. 8-26a, including the shunt capacitance C,.

Ui

L

t
——o0
+
7<C, Up
4_ Y%
® =
-V [\
W PP ————O+ \~’ Py
r, =0C, [2 ‘
D ‘s o __‘ 7
-0 teT
+

(¢) (d)

Fig. 8-26 (u) A tube switch with a capacitive load; (b) equivalent circuit for cal-
culating output when the tube is oFF; (c) equivalent circuit when the tube is on; (d)
the input and output waveforms.
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The Capacitively Loaded Tube Switch At ¢ = 0—, when the tube is in
clamp, the plate current I, is found from the intersection of the load line
(corresponding to Vpp and R,) and the plate characteristic for V¢ = 0. The
plate voltage at this time is therefore Vpp — IR, as indicated in Fig. 8-26d.
At ¢t = 0+, when the switch is driven to cutoff, the equivalent circuit from
which to determine the plate waveform is given in Fig. 8-26b. The plate
rises toward Vpyp exponentially with a time constant R,C,. When, on the
other hand, the switch has been driven into clamp during the interval T, the
equivalent circuit from which to calculate the fall of the plate voltage is shown
in Fig. 8-26c. The output falls with a time constant R'C,, where R’ is the
parallel combination of R, and the dynamic plate resistance r,. From the
waveform of Fig. 8-26d it is apparent that the waveform falls more rapidly
than it rises, since R’ < R,.

If the grid resistance rq is taken into account and if the input time con-
stant is not large enough compared with 7', then there will be an overshoot at
the grid at { = T»+ and an undershoot at the plate (as indicated in Fig. 8-18¢).
The dashed portion in Fig. 8-26d corresponds to this situation.

The Capacitively Loaded Transistor Switch Consider the circuit indi-
cated in Fig. 8-27a. At t = 0—, when the transistor is in saturation, the
output voltage v, and the collector current 7¢ are given by

v, = Veg(sat) and ic = Vﬂ——;{—c@ =],

These quantities are indicated in Fig. 8-27d. At ¢t > 0+, when the switch
is driven to cutoff, the equivalent circuit from which to determine the collector
voltage is given in Fig. 8-27b. The collector rises toward Vec with a time
constant R.C,.

At t = T,+ the input rises abruptly, the base-emitter diode is forward-
biased by V, (a few tenths of a volt), and a base current Ip = (Vee — V,)/Rs
flows. The collector voltage at this time is the voltage V¢c across C,.  Since
this voltage reverse-biases the collector junction, the transistor remains in its
active region and a collector current I ~ hrpgls = I, results. The equivalent
circuit from which to calculate the discharge of the capacitor is indicated in
Fig. 8-27¢, where I is a constant. The output voltage starts at a value V¢
and falls exponentially with a time constant R.C, toward a steady-state value of
Vee — I.R.. For t > T, and until the transistor returns to saturation, the
output is given by

vo = Voo — IR, + IR ¢ W—ToIRC, (8-34)

These conditions are pictured in Fig. 8-27d, where we have indicated that
I, > I,. This condition follows from the fact that I, is the saturation collector
current and hence that I, < hpglp, whereas I, = hpgls. Therefore I > I..

When the collector falls to Vcg(sat) the transistor enters into satura-
tion, the collector current drops to its saturation value I,, and v, remains at
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Fig. 8-27 (o) A transistor switch with a capacitive load; (b) equivalent circuit for
calculating the output when the transistor is oFF; (¢) equivalent circuit when the
base circuit is driven into clamp but the collector circuit is still in its active region;
(d) the input voltage v;, the collector current i¢, and the output voltage v, wave-
forms. The dashed portion of v, is an exponential which asymptotically approaches -
Vee — I,’,Rc.

V¢e(sat), as indicated in Fig. 8-27d. If I,>> I,, then v, falls almost linearly
with time and the fall time is much smaller than the rise time.

In drawing the waveforms in Figs. 8-26d and 8-27d we have implicitly
assumed that the time constants were small compared with T, or T:. If,
instead, we assume that R,C, (or E.C,) is much greater than T, then the
exponential rise can be approximated by a linear increase. The circuit
behaves as an integrator and a step input is converted into a ramp output.
This ramp-generating eircuit is discussed in detail in Sec. 14-5,

The effect of a capacitance shunting across a set of terminals of resistive
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output impedance is to cause a rounding of what would otherwise be an abrupt
jump in voltage. We have already observed in Sec. 2-5 that such is the case.
In the present circuits we note the additional feature that because of the switch
nonlinearity the rounding is more pronounced on the rising edge of the wave-
form than on the falling edge. We should now also observe that even when
shunt capacitances are not deliberately introduced, such stray shunt and
wiring capacitance is always present. Therefore, in retrospect, all of the
‘voltage changes that have been indicated as abrupt and discontinuous (for
example, in Fig. 8-18) will in practice be observed to be somewhat rounded.
If, however, the time constants of the rise and fall are small in comparison
with the intervals T and T, the rounding will be little noticed.

If a p-n-p transistor is used in Fig. 8-27, a negative supply is required and
the waveforms in Fig. 8-27d are inverted. In this case the falling edge is slower
(more rounded) than the rising edge.

8-13 PLATE AND COLLECTOR CATCHING DIODES

Diodes used at the plate or collector of a tube or transistor to limit the plate
or collector excursion are called catching diodes. One application of catching
diodes is shown in Fig. 8-28. A tube switch has a capacitive load as in Fig.
8-28a and for this reason, in the absence of the diodes, the output would have
the waveform shown dashed in Fig. 8-28b. However, diode D1 restrains v,
from rising above V', and diode D2 prevents v, from dropping below V.. The
output waveform is as shown by the solid curve. The waveform is now
reasonably square, the rise and fall times having been reduced appreciably.
For example, assume that diode D1 was used alone and that V; was adjusted
to reduce the output voltage amplitude by only 20 percent. In this case a
simple calculation shows that the rise time would be reduced to approximately
one-half its original value. Finally we note that in the absence of the catching

Yy - v,
D1 LT Lo
—P—oV; v, i H I v
f——t——ov, r
D2
0 V2 ) 1 ) :_—
+ ——— v et o
Yo Cy== Vo hd
<L 0 t
(@) - (b

Fig.8-28 (a) Plate or collector catching diodes; (b) squaring of waveform of Fig.
8-26d dve to diodes.



Sec. 8-14

Fig. 8-29 A collector catching diode
is used to maintain constant output
swing in the presence of a variable
load.

diodes the limits on the waveform are approached asymptotically (except for
the fall in Fig. 8-27d), so that, in principle, the limits are never really attained.
With the catching diodes the limits are reached in a finite time.

A further application.of a catching diode is shown in Fig. 8-29. A transis-
tor switch is to be called upon to provide a signal for a variable resistive load.
Such a situation is of interest in digital-computer circuitry, where the output
of one switch must provide the input signal to a variable number of succeeding
switches. As is ordinarily the case in computers, the coupling from stage to

- stage is direct (d-c), such as has been indicated in the figure. The levels of the
input signal »; are assumed appropriate to carry the transistor from cutoff to
saturation. In the absence of the diode, the output voltage at cutoff and
hence the swing at the collector would depend on the load. For example, if
there is no load the swing will be nominally equal to Vee.  If, on the other hand,
the load resistor equals R,, then the swing is only one-half Vee.  In the presence
of the diode, however, the situation is different. In the absence of a load the
collector will rise to Vg when the transistor stops conducting, and a current
(Vee — Ve)/R, will flow through the diode. As load current is now drawn,
the diode current will reduce correspondingly, but the collector voltage at

" cutoff will remain constant at V. The output voltage will remain constant
until the load current has become so large that the diode current has dropped
to zero. The net result is that, up to a limit, the output swing at the collector
is independent of the number of other switches to which it must “fan out”
and that this swing is Vi — Vcx(sat).

8-14 NONSATURATING SWITCHES

The limitation on speed imposed by the storage time of a saturated transistor
prompts us (Chap. 20) to inquire about the operation of a switch which is not
permitted to attain saturation. We consider now a number of such non-
saturating transistor switches. .

An obvious scheme for avoiding saturation is indicated in Fig. 8-30.
When the input is at its lower voltage the transistor is cut off, the collector
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Fig. 8-30 The diode D is used to
prevent the transistor from enter-
ing the saturation region. Note
that Vee > Ve =1V,

is at V¢e, and diode D does not conduct if Ve < Vee. When the input v;
rises, the collector may fall only to the voltage Vg. At that voltage, diode D
conducts and restrains the collector from falling further. The voltage Vg
is small in comparison with V¢ but large enough (say ~1 V) to ensure that
the collector junction will never become forward-biased. The usefulness of the
eircuit depends, of course, on the selection of a diode D which has a recovery
time appreciably smaller than the recovery time of the transistor.

As noted earlier, the current gain of a transistor hrg is a function of the
particular sample of a transistor type as well as a function of temperature.
The base current must be at least large enough so that even in the worst case
of lowest hrpr the collector current is adequate to drop the collector voltage
to Ve, The transistor is in the active region. Therefore when either the
base current ip increases above this minimum or, because of a temperature
change or transistor replacement, hpg increases, the collector current will
increase even though the collector voltage does not. This rise in collector
current. increases the collector dissipation and the diode dissipation as well,
because all the excess collector current passes through the diode. Altogether
it is found that the method of Fig. 8-30 is not very reliable; it leads frequently
to the destruction of both diode and transistor.

The principle of an improved scheme is presented in Fig. 8-31. The diode,
which in Fig. 8-30 was returned to a fixed reference voltage, is here returned
to the base through a voltage V5. The collector voltage may drop freely
until the diode D1 conducts. From this point the drop from collector to base
will be

YoB = —VD1 + V)} (8-35)

in which Vp, is the diode voltage drop from p side to » side. Since we require
that vcs be positive (for an n-p-n transistor) to avoid saturation we require that

Ve > Vb1 (8-36)
even at the largest voltage across diode D1 corresponding to the largest current
through it.

The circuit operates by virtue of the nonlinear feedback which exists
between the collector and base. Suppose that the diode is conducting and
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Fig. 8-31 (a) A nonlinear feedback method to restrain the transistor
from entering saturation; (b) an alternative connection.

that, as a consequence of a change in hrg, the collector current increases. This
collector-current increment will flow in part through R, and in part through
the diode and then through R,. The result will be a lowering of the collector
voltage which will be transmitted to the base. The lowered base voltage
will undo much of the effect of the increased collector current. Alternatively,
we may describe the operation by saying that when the collector current
increases because of an increase in hpg the current through the diode increases.
Therefore some of the base current is shunted away from the base.

As noted in Fig. 8-31, the driving current may be applied either directly
to the base, as in Fig. 8-31a, or to the junction of the diode and voltage source,
as in Fig. 8-31b. If the diode D1 is germanium, the voltage source ¥V may be
realized through the use of a forward-biased silicon diode. If a silicon diode
is used for D1, two silicon diodes in series or an avalanche diode may be used
fOl‘ VB. '

One of a number of possible nonsaturating switches is shown in Fig. 8-32.
Here diode D1 transmits the feedback signal from collector to base. Diode D2
supplies the voltage V5. The additional diode D3 performs a function which
is not restricted to nonsaturating switches and is often used in saturating
switches as well. This diode ensures that initially, before the transistor is

Fig. 8-32 An example of a non-
saturating switch.
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driven to conduction, the base of the transistor is not more negative than the
forward voltage drop across D3. In this way, the delay time at the beginning
of the response is kept small because the transistor is only slightly below cutoff.
Also, D3 ensures that the breakdown voltage BVgp is not exceeded. And
finally, as we see in greater detail in Chap. 20, the capacitor C assists in ensur-
ing that the switch responds rapidly to the input signal.

8-15 THE CATHODE FOLLOWER WITH A CAPACITIVE LOAD

One of the useful properties of a cathode follower is its ability to handle a large
input signal. As an example, consider a cathode follower, as in Fig. 8-33a,
using a type 12AT7 vacuum tube with a cathode resistance B, = 20 K. From
the plate characteristics of Fig. D-4 it may be determined that the tube will
operate within its grid base for the range of voltage of v; from —107 to 492V,
At v; = —107 V the tube is just at cutoff,and at v; = +92V, Vox = 0. Fur-
ther increase in v; will result in the flow of large grid current. However, over
this allowable range of grid voltage (two-thirds as large as the total supply
voltage of 300 V), the cathode follower possesses high input impedance, low
output impedance, excellent linearity, and stability. If the tube were used
as a conventional amplifier, with the load in the plate circuit the allowable
grid swing would be only 7 V, because with a supply voltage of 300 V the tube
cuts off at Vgxg = —7 V.

The output impedance R, of a cathode follower (seen looking between
cathode and ground) is equal to the parallel combination of the cathode
resistor and a resistor 1/g,,, where g., is the tube transconductance. Rather
commonly Rj 3> 1/gn, so that R, = 1/g,. The output resistance so attained
is rather small in comparison with resistances normally encountered in vacuum-
tube circuits. For the 12AT7, g. =~ 3 mA/V and R, = 330 Q. Other small
tubes are available with g,, = 10 mA/V or higher, yielding R, = 100 € or less.
This low output resistance is advantageous when, as in Fig. 8-33a, the cathode

Vop (200V)

1 (12AT7)

{a) (0)
Fig. 8-33 (a) A cathode follower with capacitive load; (b) small-signal equivalent
circvit for the purpose of finding the rise time of the output waveform.
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follower is called upon to drive a capacitive load and a fast signal must be
handled. If the input »; is a small step voltage of amplitude V, the equivalent
cireuit for calculating the output voltage is as shown in Fig. 8-33b. The output
rises with the time constant CR, = C/g.. and for a fixed C is minimized by
using a tube with the largest possible g,,. _

We shall now see, however, that when the cathode follower is loaded by a
capacitor, it may handle a signal which is large but slow or fast but small.
It is not able to handle a signal which is simultaneously larger than the grid
base and possesses a short rise-time edge. Assume, for example, that in
Fig. 8-33a, v, = 0, in which case we find that v: ~ —2.5V. Now let the input
signal (Fig. 8-34a) consist of a negative step of magnitude 50 V, so that the
grid drops to —52.5 V. Because of the capacitor ' the cathode cannot respond
immediately, and it remains at 0 V. For Vpg = 200 V, cutoff oceurs at
Vex = —6 V. Hence the tube will be driven to cutoff. Since the tube is
now not conducting, the output v, will start to fall exponentially with a time
constant CR; rather than with a time constant C/g,. We find, again from
the plate characteristics of Fig. D-4, that the steady-state cathode voltage
corresponding to Vgy = —52.5 Vis Vgy = —48 V. The waveform of the
falling edge of the cathode waveform, », = vky, is now as shown in Fig. 8-34b.
The voltage starts asymptotically toward — 100 V but is stopped at the —48-V
level. Just slightly (about 6 V) before the —48-V level is reached the tube
again enters its grid base, and the time constant associated with the fall
changes from CR; to C/gn.

Now let us assume that after the output has attained its steady-state
value v, = —48 V, the input is returned abruptly from —52.5 V back to its
—2.5-V level, so that the cathode.is now to return to 0 V. Again, because the
cathode voltage cannot change abruptly, the grid will now be driven into the
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positive grid region. The output now rises as the capacitor C is charged
both by the tube current and by current delivered directly to the output from
the input signal source through the grid-to-cathode resistance r,. If r, ~ 1/gn
(an entirely reasonable possibility), then, of the current which charges the
output capacitor, one-half will be supplied by the tube and one-half by the
signal source. This situation will result in a rapid charging of the capacitor
but certainly defeats the purpose for which the cathode follower is being
employed, since it no longer is a high-input-impedance device isolating source
from load. ~The rise of the waveform is shown in Fig. 8-34b. The time con-
stant is initially CRj, where Ry is the parallel combination of r, and 1/g,..
Near the end of the rise the tube enters its grid base, and the time constant
becomes again C/g.,.

We have so far neglected the effect of the resistance E, of the source
which provides the input grid signal. If this resistance is appreciable, then
on the rising edge of the waveform the extent to which the grid will go positive
with respect to the cathode will be limited and so also will be the amount of
current which the tube will supply. For this condition of very large R, the
grid will be clamped to the cathode and the output impedance of the tube will
be its plate resistance r,. When R, is taken into account, the output imped-
ance of the cathode follower on the rising edge and until the tube returns
to its grid base is (Prob. 8-39)

R, = ro(Rs + 7,)
TR+ 1+ (u+F Dry

In the limit when R, — «, R, = r,, and when R, = 0,and for 3> 1, R, =~ R}.

(8-37)

8-16 THE EMITTER FOLLOWER WITH A CAPACITIVE LOAD

An emitter follower with capacitive load is shown in Fig. 8-35. The resistor R,
represents the sum of the source resistance, the base-spreading resistance,
and any other resistance added deliberately in series with the bagse. In the
active region the input and output are coupled by the forward-biased emitter
junction. The usefulness of the emitter follower results from the impedance
transformation effected by the transistor. As noted in Sec. 1-12, the input
impedance is high and is given by Eq. (1-50) and the output impedance is
low and is given by Eq. (1-54).

Neglecting the effect of the capacitor C, an emitter follower can handle
a signal which approximates much more closely the supply voltage than is the
case with a cathode follower.  With reference to Fig. 8-35 we note that one
limit on the input is approximately 0 V, at which point the transistor would
effectively be cut off. The other limit is saturation. When a silicon transistor
is in saturation the collector-to-emitter voltage is about 0.3 V and the base-to-
emitter voltage about 0.7 V, leaving 0.4 V between collector and base. There-
fore saturation will occur when the base-to-ground voltage is about 0.4 V
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Fig.8-35 (a) A capacitively loaded emitter follower; (b) the input and (c) the output
waveforms. '

larger in magnitude than Vee. The input », becomes somewhat larger still
because of the voltage drop in R,. This result is to be compared with the
situation in the cathode follower, where an input signal of the order of two-
thirds of the supply voltage is obtained.

We consider now the output waveform of the circuit of Fig. 8-35 in
response to the input signal shown, which makes abrupt transitions between
the level 9 and 3 V. The waveforms are shown in Fig. 8-35band ¢. Allowing
a 0.6-V drop across the emitter junction in the active region and assuming
hys = 50, so that the emitter current is 51 times the base current, we find that
when v, = 9 V, the drop across R, is about 0.1 V, and v, = 8.3 V. When the
input drops abruptly to 3 V, the transistor is driven off because the emitter
voltage is 8.3 V and hence the emitter junction is reverse-biased. The capaci-
tor now discharges asymptotically toward 0 V with a time constant R.C.
The discharge toward zero is halted at v, = 2.4 V, which is the steady-state
output voltage corresponding to v, = 3 V. As the voltage v, drops to about
0.5 V below the 3.0-V base level, at which time v, is about 0.1 V above the
9.4-V level, the transistor enters its active region and the time constant changes
to R,C, where Ry is the parallel combination of R. with the emitter-follower
output impedance =~ (R, + hio)/ (hye + 1) = 30 Q, with ke = 1 K.

At the rising edge of the input waveform the emitter junction is driven to
clamp (Ve = V), so that the base current is initially

. _v.—V,—v,_9—0.7—2.4__
i = R, = 05 = 11.8 mA
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Fig. 8-36 An emitter-follower circuit using complementary
transistors.

Since the voltage difference between the supply and the capacitor voltage
(10 — 2.4 = 7.6 V) appears from collector to emitter and is of such polarity
as to reverse-bias the collector junction, the transistor is therefore in its active
region. A very large collector current should flow, since

ic =~ hrgts = (50)(11.8) = 590 mA

The actual collector current may be. considerably smaller because of the
collector body resistance and the power-supply internal resistance. The large
collector current charges the capacitor rapidly.

We observe in both Fig. 8-34 for the cathode follower and Fig. 8-35 for
the emitter follower that the rates of fall and rise may be very unequal. In
the case of the vacuum-tube circuit this situation is not correctable by any
simple means. In the case of the transistor there is a simple remedy because
of the availability of complementary transistor pairs. A complementary tran-
sistor pair is a set, one of which is an n-p-n unit and the other is p-n-p and which
have similar current and voltage ratings. An emitter-follower circuit using
such a pair which serves to give the falling edge a speed comparable to that
of the rising edge is shown in Fig. 8-36. Let us assume that v, is at its upper
level. Then Q1 will be conducting and v, = 8.4 V if the drop across R, is
negligible. The voltage v, appears across @2, but since Q2 is a p-n-p transistor
and the base voltage of Q2 is 9.0 V, this transistor will be well beyond cutoff.
At the moment that v, makes its abrupt negative transition, Q1 will be driven
to cutoff, but Q2 will be in its active region. The collector current of Q2 will
become very large so that C may discharge abruptly through Q2. Altogether,
C will charge rapidly through @1 and discharge rapidly through Q2, yielding

,an output waveform v, in which both edges are fast.

In Sec. 5-7 it is pointed out that a small-signal capacitively loaded emitter
follower may break into oscillations. The same difficulty may arise with the
overdriven emitter follower as it passes through the active region. The
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several methods indicated in Seec. 5-7 for minimizing the possibility of oscilla-
tions are equally effective for the large-signal transistor circuits considered here.
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LOGIC
CIRCUITS

Even in a large-scale digital system, such as in a computer, or in
a data-processing, control, or digital-communication system, there
are only a few basic operations which must be performed. These
operations, to be sure, may be repeated very many times. The four
circuits most commonly employed in such systems are known as the
OR, AND, Nor, and rrLip-FLOP. These are called logic gates or circuits
because they are used to implement Boolean algebraic equations (as we
shall soon demonstrate). This algebra was invented by G. Boole in
the middle of the nineteenth century as a system for the mathematical
analysis of logic.

This chapter discusses in detail the four basic logic circuits men-
tioned above. Auxiliary circuits such as delay devices, amplifiers,
wave-shaping circuits, ete., which are also used in digital systems are
treated elsewhere in this text.

Since logic gates are used extensively in digital computers we shall
take our illustrations of these switching gates from this field.

9-1 SOME FEATURES OF A DIGITAL COMPUTER!

An electronic digital computer is a system which processes and stores
very large amounts of data and which solves scientific problems of
numerical computation of such complexity and with such speed that
solution by human calculators is not feasible. We may get some sense
of the basic processes involved if we think of the computer as a system
which is able to perform numerical computation and to follow instruc-
tions with extreme rapidity but which is not able to program itself.
The numbers and the instructions which form the program the com-

306
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Fig. 9-1 Showing interrelationship of basic elements of a
digital computer (Ref. 1).

puter is to follow are stored in an essential part of the computer called the
memory. A second important portion of the computer is the conirol, whose
funetion it is to interpret orders. The control must convert the order into an
appropriate set of voltages to operate switches, etc., and thereby carry out the
instructions conveyed by the order. A third basic element of a computer is
the arithmetic unit, which contains the circuits which actually perform the
arithmetic computations: addition, subtraction, etc. The control and arith-
metic components combined are called the central processor. Finally, a com-
puter requires appropriate input-output devices for inserting numbers and
orders into the memory and for reading the final result. The input-output
components may be punched cards or paper tape, magnetic tape, photographic
film, typewriters, printers, ete., and the study of these devices is outside the
scope of this book. Our principal interest is in the logic gates of the central
processor and in some types of memory cireuits.

Suppose we consider that, as part of a larger routine, an order to perform an
addition or division, etc., has been transmitted to the central processor.  In
response to this order the control must select the correct operands from the
memory, it must transmit these operands to the correct arithmetic unit, and
it must return to the memory in some previously designated place the result
of this computation. The memory serves, then, to store not only the origi-
nal input data but also the partial results which will have to be used again as
the computation proceeds. Lastly, if the computation is not to cease with
the execution of this instruction and the storage of the partial result, the control
unit must automatically sequence to the next instruction.

In terms of this crude representation of the functioning of a digital com-
puter the interrelationship of the various components is as indicated in Fig. 9-1.
The connection of the control unit back to the input is to permit insertion of
more data when room becomes available in the memory.

9-2 DIGITAL (BINARY) OPERATION OF A SYSTEM?—+

A digital system functions in a binary manner. It employs devices which are
permitted to exist in only two possible states. A transistor is allowed to
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TABLE 9-1 Binary-state terminology

1 2 3 4 5 6 7 8 9 10 11
=
One of the
states.....| True | High {1]| Up Pulse | Excited | Off | Hot | Closed | North | Yes
The other
state...... False | Low |0| Down | No Non- On | Cold | Open | South | No
pulse| excited

operate at cutoff or in saturation, but not in its active region. A node may be
at a high voltage of, say, 12 £ 2 V or at a low voltage of, say, 0 + 0.2 V, but
no other values are allowed. Various designations are used for these two
_quantized states, and the most common of these are listed in Table 9-1.
In logic, a statement is characterized as {rue or false, and this is the first binary
classification listed in the table. A switch may be closed or open, which is
the notation under 9, etc. Binary arithmetic and mathematical manipulation
of switching or logic functions-are best carried out with classification 3, which
involves two symbols, 0 (zero) and 1 (one).

The binary system of representing numbers will now be explained by
making reference to the familiar decimal system. In the latter the base is
10 (ten), and ten numerals, 0, 1, 2, 3, . . ., 9, are required to express an
arbitrary number. To write numbers larger than 9, we assign a meaning to
the position of a numeral in an array of numerals. For example, the number
1264 (one thousand two hundred sixty four) has the meaning

1264 =1 X 10% + 2 X 10% + 6 X 10* + 4 X 10° (9-1)

Thus the individual digits in a number represent the coefficients in an expan-
sion of the number in powers of 10. The digit which is furthest to the right
is the coefficient of the zeroth power, the next is the coefficient of the first
power, and so on.

In the binary system of representation the base is 2, and only the two
numerals 0 and 1 are required to represent a number. The numerals 0 and 1
have the same meaning as in the decimal system, but a different interpretation
is placed on the position occupied by a digit. In the binary system the
individual digits represent the coefficients of powers of two rather than ten as in
the decimal system. For example, the decimal number 19 is writteu in the
binary representation as 10011 since

1X2¢+0X22+0X224+1X2041%X2°
16+0+0+2+1=19(9-2)

10011

o

A short list of equivalent numbers in decimal and binary notation is given in
Table 9-2.
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TABLE 9-2 Equivalent numbers in decimal and
binary notation

Decimal Binary Decimal Binary
notation notation notation notation
0 00000 11 01011

1 00001 12 01100

2 00010 13 01101

3 00011 14 01110

4 00100 15 01111

5 00101 16 10000

6 00110 17 10001

7 00111 18 10010

8 01000 19 10011

9 01001 20 10100

10 01010 21 10101

A general method for converting from a decimal to a binary number is
indicated in Table 9-3. The procedure is the following. Place the decimal
number (in this illustration, 19) on the extreme right. Next divide by 2
and place the quotient (9) to the left and indicate the remainder (1) directly
below it. Repeat this process (for the next column 9 + 2 = 4 and a remainder
of 1) until a quotient of 0 is obtained. The array of 1’s and 0’s in the second
row is the binary representation of the original decimal number. In this
example, decimal 19 = 10011 binary.

A binary digit (a 1 or a 0) is called a bit. A group of bits having a sig-
nificance is a bite, word, or code. For example, to represent the 10 numerals
0,1,2,...,9) and the 26 letters of the English alphabet would require
36 different combinations of 1’s and 0’s. Since 25 < 36 < 2¢, then a minimum
of 6 bits per bite are required in order to accommodate all the alphanumerie
characters. In this sense a bite is sometimes referred to as a character and a
group of one or more characters as a word.

Logic Systems In a d-c or level-logic system a bit is implemented as one
of two voltage levels. If, as in Fig. 9-2a, the more positive voltage is the
1 level and the other is the O level, the system is said to employ d-c positive
logic. On the other hand, a d-¢ negative-logic system, as in Fig. 9-2b, is one
which designates the more negative voltage state of the bit as the 1 level and
the more positive as the 0 level. It should be emphasized that the absolute
values of the two voltages are of no significance in these definitions. In

TABLE 9-3 Decimal-to-binary conversion
Divide by 2.......... | 0 | 1 | 2 | 4 I 9 |19decima1

Remainder........... |1|0|0|1|1| Binary
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Fig. 9-2 llustrating the definitions

V=10V V=12V of (a) positive and (b) negative
logic. The numerical value of the
ov V=0V z voltage V(1) of the 1 state and of
V)= -4V ! the voltage V(0) of the 0 state is
arbitrary. A transition from one
(@) (b) state to the other occurs at t = t'.

particular, the 0 state need not represent a zero voltage level (although in some
systems it might). In Fig. 9-2b we have intentionally illustrated the case
where the value of the 1 state isO V.

In a dynamic or pulse logic system a bit is recognized by the presence
or absence of a pulse. A 1 signifies the existence of a positive pulse in a
dynamic positive-logic system; a negative pulse denotes a 1 in a dynamic
negative-logic system. In either system a 0 at a particular input (or output)
at a given instant of time designates that no pulse is present at that particular
moment. In a “double-rail”” system the variable appears on two leads. A
pulse on one lead indicates that the variable has the 0 value, whereas a pulse
on the other lead signifies a 1. A system employing pulses for bits may be
constructed with capacitive or transformer (a-c) coupling between stages,
_ although d-c¢ coupling may also be used with pulses.

Most computers using pulses operate as synchronous systems since all
operations are performed during definite constant intervals of time. There
is available in a computer, to achieve this synchronism, a continuous sequence
of pulses of good waveshape, whose frequency is usually established by a
crystal oscillator. This stable oscillator determines the basic rate at which
the computer operates and for this reason is referred to as the master clock.
These clock pulses are distributed to all parts of the computer, where they are
used to maintain the timing of the system.

In a synchronous dynamic system a number is represented in serial form
by a train of pulses. A 1is implemented by a pulse occurring at the same
time as a clock pulse, whereas for a 0 a signal pulse is absent at a particular
clock-pulse time. For example, the pulse train in Fig. 9-3a represents the
binary number 11010111 (decimal 215) in a positive “‘single-rail”’ logic system.
Such a signal is called a binary-coded pulse train. Note that since time increases
from left to right, the least-significant pulse occurs at the extreme left (at
t = 0), whereas in representing a binary number the least-significant bit is
placed at the extreme right. Ina similar way, the instructions which must be
conveyed from place to place are also transmitted in the form of a train of
pulses. Actually, then, a waveform representing a number is indistinguishable
from a waveform representing an instruction.

A d-¢ system may function synchronously in the sense that all operations
are performed sequentially and in coincidence with a timing pulse from the
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clock. In such a computer the clock interval must be longer than the mini-
mum time of any operation. On the other hand, a d-c system may also be
used in an asynchronous manner. In this mode, there is no clock, but instead
each completed logic operation generates a timing pulse to start the next
operation. The overall speed of an asynchronous system is higher than that
of the synchronous machine since the former is determined by the average
speed of an operation whereas the latter is established by the maximum time
of any operation. However, because of the need for additional circuitry to
designate the end of a logical operation, an asynchronous system is more
complex than one run synchronously. - '

The signal waveform of Fig. 9-3¢ consists of a time sequence of pulses.
The pulses (or absence of pulses) oceur serially, one after another, and the
information (number or instruction) conveyed by this pulse sequence may be
transmitted from one place to another over a single communication link (i.e,,
in the simplest case, a pair of wires). This mode of representing information
is described by the word serial. Alternatively, we may devise that each
of the pulses (or absence of pulses) needed to represent the information occurs
simultaneously on a separate channel (i.e., in the simplest case, on a separate
wire, there being, say, a common ground). This mode of operation is described
by the word parallei. In the serial mode the time required to transmit the
information is the duration 7T of a pulse interval multiplied by the number of
bits in the character. In the parallel mode, the information is transmitted
in one pulse interval but we require as many channels as there are bits in the
character. The serial mode is slower but cheaper; the parallel mode is faster
but more expensive.

" With the above brief description of digital-computer fundamentals, the
binary method of coding information, and the common modes of operation
we are now ready to study the logic circuits (oR, AND, NoT, and FLIP-FLOP)
which form the basic building blocks of the machine. We shall first define
each of these logic gates and then show how to implement the desired function
in hardware. We shall then consider the sequential operation of various
combinations of these switching gates to perform more advanced logic, such

Binary Decimal

1 1 1 0 1 0 1 1 =11010111'<215
20 21 92 93 ot 95 26 97 Time (a)

AN

=0 e ®)

Fig. 9-3 (a) A pulse train representing @ number (or an order) in
a synchronous positive-logic digital system; (b) the clock pulses.
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A Input | Output
B g |-y 4 B Y Fig. 9-4 (o) The IEEE standard for
N 0 0 0 an or gate and its Boolean expres-
- 0 1 1 X
10 1 sion; (b) the truth table for a two-
Y=A+B+---+N 1 11 1 input oR gate.

(@ ®)

as is needed in the control, the memory, or the arithmetic sections of the
computer.

9-3 THE OR GATE?-®

An or gate has two or more inputs and a single output, and it operates in
accordance with the following definition:® The output of an OR assumes the
1 state if one or more inputs assume the 1 state. The n inputs to a logic ¢ircuit
will be designated by 4, B, . . . , N and the output by Y. It is to be under-
stood that each of these symbols may assume one of two possible values, either
0 or 1. The IEEE standard symbol for the oR circuit is given in Fig. 9-4a,
together with the Boolean expression for this gate. The equation is to be read
“Y equals 4 or Bor - - - or NV Instead of defining a logical operation in
words, an alternative method is to give a truth table which contains a tabula-
tion of all possible input values and their corresponding outputs. It should
be clear that the two-input truth table of Fig. 9-4b is equivalent to the above
definition of the or operation.

In a diode-logic (DL) system the logical gates are implemented by using
diodes. A diode or for negative logic is shown in Fig. 9-5, where the symbol D
is used to represent either a thermionic or a semiconductor diode (although
the former would be used only in those infrequent circumstances when very
high voltages are required). The generator source resistance is designated by
R.. We consider first the case where the supply voltage Vz has a value equal
to the voltage V(0) of the 0 state for d-c logic.

oVVV—ie Fig. 9-5 A diode ok circuit for
5 B D2 v negative logic. [itis also possible
VO lf:—’\/\/\'“‘i‘— 2 to choose the supply voltage such
v TR R that Vz > V(0), but that arrange-
— N v 7 ment has the disadvantage of draw-
ing stand-by current when all inputs
Vel=V(0)]

are in the O state.]
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If all inputs are in the 0 state, then the voltage across each diode is
V(0) - V(0) = 0.- Since in order for a diode to conduct it must be forward-
biased by at least the cutin voltage Vy (Fig. 7-3), then none of the diodes
conducts. Hence the output voltage is v, = V(0), and Y is in the 0 state.

If now input A4 is changed to the 1 state, which for negative logic is
at the potential V'(1), less positive than the 0 state, then D1 will conduct. The
output becomes

R
v% = V() — [V(0) — V(1) — V)] RT R TE
where R, is the diode forward resistance. Usually R is chosen much larger
than R, + R, Under this restriction

%~ V(1) + V,

Hence, the output voltage exceeds the more negative level V(1) by V,
(approximately 0.2 V for germanium or 0.6 V for silicon). Furthermore, the
step in output voltage is smaller by V, than the change in input voltage.
From now on, unless explicitly stated otherwise, we shall assume R > R,
and ideal diodes with R, = 0and V, = 0. The output, for input A excited, is
then v, = V(1) and the circuit has performed the following logic: if 4 = 1,

B=0,... , N=0,then? = 1, which is consistent with the or operation. )
For the above excitation, the output is at V(1) and each diode, except
D1, is back-biased. Hence, the presence of signal sourcesat B,C, . .., N

does not result in an additional load on generator A. Since the or configura-
tion minimizes the interaction of the sources on one another, this gate is some-
times referred to as a buffer circuit. Since it allows several independent
sources to be applied at a given node it is also called a (nonlinear) mizing gate.

If two or more inputs are in the 1 state, then the diodes connected to
these inputs conduct and all other diodes remain reverse-biased. The out-
put is V(1) and again the or function is satisfied. If for any reason the
level V(1) is not identical for all inputs then the most negative value of V(1) (for
negaltive logic) appears ai the output, and all diodes except one are nonconducting.

A positive-logic or gate uses the same configuration as that in Fig. 9-5
except that all diodes must be reversed. The output now is equal to the most
positive level V(1) [or more precisely is smaller than the most positive value of
V(1) by V,]. If a dynamic logic system is under consideration, then the out-
put-pulse magnitude is (approximately) equal to the largest input pulse (regard-
less of whether the system uses positive or negative logic).

Dynamic Systems The influence of shunt capacitance and diode capaci-
tance on the output pulse is easily seen. Assume, for simplicity, that the
Ievel V(0) is at ground potential and that only one generator is furnishing an
input pulse. Since, therefore, all diodes but one are back-biased during the
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R, , ”0*
i '
R -~C I
(a) _L' (b)

Fig. 9-6 (a) Equivalent circuit for an or circuit with one input excited; (b)
output waveform in response to input pulse.

input pulse, the capacitance shunted across the output is C = C,+ (n — 1)C4,
in which C, is the capacitance across R, and C; is the diode capacitance. We
neglect here the impedance of all generators connected to the back-biased
diodes and also assume that R >> R,, where R, is the output impedance
of the generator supplying the pulse. This input pulse will appear at the
output with a rounded leading edge whose time constant is R,C. The equiv-
alent circuit and waveform are shown in Fig. 9-6a and b. When the input volt-
age rises at the end of the pulse, the output capacitor will maintain the output
voltage and every diode will be back-biased. The capacitor C (whose capaci-
tance is now equal to C, + nCs) must discharge through R. The trailing-
edge rise time will therefore be very much longer than the leading-edge rise
time since B> R,. The number of input circuits which may be used is
determined by the required transient response of the network. There will also
be & small amount of coupling between generators because of the diode capaci-
tances, but this effect need not be serious.

The above discussion has neglected entirely the diode forward and reverse
recovery times. If the rise and fall times in Fig. 9-6 due to shunt capacitance
are small compared with the diode transient times due to minority-carrier
storage, then the recovery-time considerations given in Secs. 20-1 to 20-6
become important. For very-high-speed circuits, the diode internal character-
istics rather than the shunt capacitance may be the limiting factor in the
transient response. '

A second mode of operation of the or circuit of Fig. 9-5 is possible if Vi
is set equal to a voltage more positive than V(0) by at least V,. For this
condition all diodes conduct in the 0 state, and v, = V(0) if R>> R, + R;. If
one or more inputs are excited then the diode connected to the most negative
V(1) conducts, the output equals this value of V' (1), and all other diodes are
back-biased. Clearly, the or function has been satisfied. The output wave-
form for a pulse input is the same as in Fig. 9-6 on the leading edge. However,
on the trailing edge the output rises toward Vg but is clamped when it reaches
V(0) (Fig. 9-12).

A third mode of operation of the circuit of Fig. 9-5 results if we select
Ve < V(0). This arrangement has the disadvantage that the output will not
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”
Fig. 9-7 A two-input or gate

Y%
for positive pulses using capaci-

. . - R
tive coupling. v 0—
¢ -
R =

respond until the input falls enough to overcome the initial reverse bias of the
diodes.

In a dynamic logic system, if the pulses are at an inconvenient average-
voltage level, then capacitive coupling is employed as indicated in Fig. 9-7.
The diode polarities shown are appropriate for positive pulses. Note that
because of the presence of the blocking capacitors C, the d-c level of the signal
is immaterial, and hence, for convenience, the resistor B may be connected
to ground instead of to the voltage Vg, as in Fig. 9-5. Now, however, d-c
restoration- is required, as indicated by the shunt diodes in Fig. 9-7. The
resistors R’ are large and may possibly be omitted altogether with semi-
conductor diodes. When an input is excited with a pulse, the corresponding
input capacitor will acquire a charge because of the current which flows
through the series diode. At the termination of the pulse the capacitor will
quickly discharge through the shunt diode. Hence the next pulse in the
train will be transmitted with full amplitude to the output. In general, the
complication of a-¢ coupling with restorers should be avoided.

Emitter-follower Logic (£FL) A second implementation of the or circuit,
using an emitter-coupled or gate, is indicated in Fig. 9-8, where an emitter
follower is used for each input and where the output is taken from the common

T_ Vee <VQ)
1
¥
1
Q@ 4 Q@ 1 L Qn
V() !
Uz I o
' Y
! b
V() R
V()

Fig. 9-8 An oR circuit for negative logic using transistors in an
emitter-follower configuration. (This same circuit is also a posi-
tive AND gate, as is shown in Sec. 9-4.)
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emitter resistor R. The bottom of this resistor goes to a supply voltage equal
to V(0). For negative logic the transistors must be of the p-n-p type as shown.
If all inputs are at the 0 level V(0) then each base-to-emitter voltage is at

VOo)—V@0) =0V

and each transistor is virtually at cutoff. The output is then v, = V(0), or
Y = 0. On the other hand, if any input is at the 1 level, then, because of
emitter-follower action, the output is v, = V(1) (neglecting the small base-to-
emitter voltage), or ¥ = 1. The base-to-emitter voltage of all transistors
other than the one which is excited is ¥(0) — V(1). Since this is a pos-
itive voltage (for negative logic), these p-n-p transistors are oFr. Here,
then, is a circuit obeying the or logic and having a higher input impedance
than the diode-logic gate. If more than one input is excited simultaneously,
then the output follows the most negative value of V(1). Note that the collec-
tor supply voltage —V¢c must be more negative than V(1) if the excited
transistor is to be driven into its active region. (If the transistor went into
saturation then the input impedance would be shunted by the low-saturation
base-to-collector resistance.) In practice a resistor would probably be added
in series with the supply voltage — V¢c to protect the transistors in case of an
accidental short circuit to ground at the output.

For positive logic; n-p-n transistors must be used and V¢e must be more
positive than V(1). If high voltages are required, then vacuum tubes may be
used as cathode followers for positive logic. Since there is no tube equivalent
of a p-n-p transistor, a vacuum-tube negative-logic oR circuit analogous to
that in Fig. 9-8 is not possible.

The general appearance of an output pulse from the circuit of Fig. 9-8
will be as shown in Fig. 9-6. That is, the leading edge will have a shorter rise
time than the trailing edge. The reason is again that the total shunt capaci-
tance across the output will charge through an impedance which is relatively
low. In the active region the output resistance of an emitter follower is
approximately (R, + hi.)/(1 + hs), where E, is the source impedance. At
the end of the pulse, however, the capacitor must discharge through R alone.

Boolean ldentities If it is remembered that 4, B, and C can take on
only the value 0 or 1, then the following equations from Boolean algebra
pertaining to the or (+) operation are easily verified:

A+B+C=(4A+B+C=4+B+0) (9-3)
A+B=B+ A (9-4)
A+4=4 (9-5)
A+1=1 (9-6)

A+0=4 - (9-7)

I
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These equations may be justified by referring to the definition of the or
operation, to a truth table, or to the action of the or circuits discussed above.

9-4 THE AND GATE>—*

An AND gate has two or more inputs and a single output, and it operates in
accordance with the following definition: The output of an AND assumes the
1 state if and only if all the inputs assume the 1 state. The IEEE standard for
the AND cireuit is given in Fig. 9-9a, together with the Boolean expression for
this gate. The equation is to be read “Y equals A and Band - - - and N.”
[Sometimes a dot (-) or a cross (X) is placed between symbols to indicate the
AND operation.] It may be verified that the two-input truth table of Fig.
9-9b is consistent with the above definition of the AND operation.

A diode-logic (pL) configuration for a negative -AND gate is given in
Fig. 9-10a. To understand the operation of the circuit, assume initially
that all source resistances R, are zero and that the diodes are ideal. If any\
input is at the 0 level V(0), the diode connected to this input conducts and the
output is clamped at the voltage V(0), or ¥ = 0. However, if all inputs are
at the 1 level V(1), then all diodes are reverse-biased and », = V(1),or ¥ = 1.
Clearly, the AND operation has been implemented. The AND gate is also called
a cotncidence circuit.

A positive-logic AND gate uses the same configuration as that in Fig. 9-10a
except that all diodes are reversed. This circuit is indicated in Fig. 9-10b
and should be compared with Fig. 9-5. It is to be noted that the symbol V(0)
in Fig. 9-5 designates the same voltage as V(1) in Fig. 9-10b because each
represents the upper binary level. Similarly, V(1) in Fig. 9-5 equals V(0)
in Fig. 9-10b since both represent the lower binary level. Hence, these two
circuits are identical, and we conclude that a negative or gate is the same circuit
as a positive AND gate. This result is not restricted to diode logic, and, by using
Boolean algebra, we show in Sec. 9-8 that it is valid independently of the hard-
ware used to implement the circuit.

In Fig. 9-10b it is possible to choose Vi to be more positive than V(1).
If this condition is met, then all diodes will conduct upon a coincidence (all
inputs in the 1 state) and the output will be clamped to V(1). The output
impedance is low in this mode of operation, being equal to (R, + R,)/n in
parallel with R. On the other hand, if V; = V(1) then all diodes are cut off

Input | Output
B ¥

'S

A
Fig. 9-9 (o) The IEEE standard for B:
an AND gate and its Boolean expres- 7]
sion; (b) the truth table for a two-

input AND gate.

OO
- o OO0

0
1
Y=AB---N (1)

(@) (®)
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Fig. 9-10 A diode-logic AND circuit for (a) negative logic and (b) positive logic.

at a coincidence, and the output impedance is high (equal to R). If for any
reason not all inputs have the same upper level V (1), then the output of the
positive anp gate of Fig. 9-10b will equal V(1)min, the least positive value of
V(1). Note that the diode connected to ¥ (1)min conducts, clamping the out-
put to this minimum value of V(1) and maintaining all other diodes in the
reverse-biased condition. If, on the other hand, Vg is smaller than all inputs
V¥ (1), then all diodes will be cut off upon coincidence and the output will rise
to the voltage V. Similarly, if the inputs are pulses, then the output pulse will
have an amplitude equal to the smallest input amplitude [provided that Vg is
greater than V(1)min].

Let us now examine the positive-logic circuit of Fig. 9-10b more carefully,
taking into account the source resistance R, the diode forward resistance Ry,
and the diode break-point voltage V,. Assume that m inputs are at V(1)
and hence that m diodes are reverse-biased, The remaining n — m diodes
conduct, and hence the effective eircuit of these diodes in parallel consists of a
resistance (R, + R;)/(n — m) in series with a voltage V,. For this excitation
the output is R

v, = V(l) - [V(l) - V(O) - V‘Y] R + (R, T R;)/(n — 7n) (9'8)

Note that if all inputs are excited, m = n and », = V(1), which is the expected
output voltage for a coincidence. Also, if we neglect B, + R, compared with
R, then if m # n,

ve = V() + V, | (9-9)

and the output is clamped at a value V, above the V(0) level. However, if
we take the nonzero value of R, + R, into account, then we see from Eq. (9-8)
that the output will respond to the number m of excited inputs. The output
increases by small steps as m increases from 0 ton — 1. This variation in level
is called logical noise. 1f R>> R. + R, then the response at a coincidence
will be very much larger than the response resulting even when all but one
of the diodes are caused to stop condueting (m = n — 1). However, in an AND
circuit even the slight response (the noise) to something less than a complete
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coincidence is often undesirable. To reduce this effect a shunt diode D is
added to Fig. 9-10b, converting it to Fig. 9-11 in order to clamp the output to a
fixed voltage V' until all inputs are excited.

Use of Clamping Diode In Fig. 9-11, ¥’ must be adjusted so that the
individual diode currents I,, I, . . . , I, (which are nominally equal to one
another) are each larger than I. If we assume, for the moment, perfect diodes,
then the restriction I, > I means

V=V  Ve—V _
R, E -

In this case, even if all but one diode is back-biased by input signals, the diode
D will be required to continue to conduct, and the output will remain clamped
to V', If, however, all the input diodes stop conducting, the diode D must also
become nonconducting and the output must rise toward V. If Ve > V(1),
then the input diode connected to V(1)min will clamp the output to this lowest
input level, as already noted above. A limitation on the number of input
circuits which may be employed is the current-carrying capacity of the diode D.
The diode D keeps the output close to V' for anything less than a complete
coincidence but, of course, will not act as a perfect clamp because of the finite
forward resistance R, of D. If, say, some number m < n diodes are cut off,
the current in D must change by an amount AI, = mI, and the output will
change by (AI,)R;. The magnitude of this change is usually quite small in
- comparison to the output which results at a coincidence.

The circuit of Fig. 9-11 is an AND circuit since its output remains in the 0
state unless all inputs are in the 1 state, in which case the output goes to the
1 state. However, there has been a d-c level shift because the 0 state V(0)
of the input is not the same as the 0 state V' of the output. From Eq. (9-10)
we must choose ¥V’ > V(0) in order to have a positive value for the current I,.
We could have emphasized earlier that a d-c level shift takes place to some
extent in all gates using real (nonidealized) elements. For example, in the or
circuit of Fig. 9-5 having an input V(1) in the 1 state, the output is also at the
1 level but the voltage of the output 1 state is given by V(1) + V,, which
differs from the input by V,. If in passing through a logic gate the level shift,
or the delay, rise, and fall times, or the attenuation is too large then it may
be necessary to follow this stage with a circuit designed to reshape, to retime, or
to amplify the signal.

Il=

I (9-10)

Fig. 9-11 A positive AND gate
with a clamping diode D shunting V()
the output.

V(0)
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Vo Yo
--Y% Fig. 9-12 Effect of capacitance on
waveform of output of an anD
= V(Wio cirevit. (a) V(Dwia > Vi
v : \'4 7 b) V(D min < Va.
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A Dynamic System The waveform of an output pulse is easily calculated
if we neglect the capacitances across the diodes. When the output pulse is
formed, all the diodes are reverse-biased and the output capacitance C, must
charge through R. The output will therefore rise from V' to Vg with a time
constant RC,. At the termination of the input pulses the series diodes conduct
and hence introduce a resistance R’ = (R, + R;)/n. The output capacitance
now discharges with a time constant equal to the product of C, and the parallel
combination of R and RB’. The trailing edge of the output pulse will therefore
decay much more rapidly than the leading edge rises. The waveform is
indicated in Fig. 9-12q, provided that the peak value of the pulse exceeds Vg.
This result is to be compared with the corresponding waveform in Fig. 9-6
for the or circuit. The rise time is improved if the peak value of the pulse is
smaller than Ve Under these circumstances the output rises toward Vg
but is clamped at the peak of the smallest pulse by the diode connected to the
generator supplying this pulse. The waveform is indicated in Fig. 9-12b.
If the diode capacitances are taken into account the output waveforms are
modified only slightly from those indicated in Fig. 9-12.

The circuit of Fig. 9-11 may be modified for capacitive coupling by insert-
ing a series blocking capacitor C before each input and a resistor from each
input to ground or to some reference voltage. No additional diodes are needed
for restoration since at the end of each pulse C' may discharge rapidly through
the combination of its own diode and the shunt diode D. As with the or
gate, here also direct coupling is preferable to capacitive coupling.

Transistors in emdtter-follower logic (EFL) can implement the axDp function.
For example, the circuit of Fig. 9-8 without modification functions as a positive
AND gate. A negative AND is obtained by using n-p-n transistors or tubes.

Boolean Identities Since 4, B, and C can only have the value 0 or 1,
then the following expressions involving the AND operation may be verified:

ABC = (AB)C = A(BC) (9-11)
AB = BA (9-12)
AA =4 (9-13)
A1 =4 (9-14)
A0 =10 (9-15)

AB +C) = AB + AC (9-16)
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Input | Output
A Y=4 A Y=A A Y
0 1
1 0

* (a) (®) (c)

Fig. 9-13 Logic negation at the input (a) and output (b) of
a logic block and the Boolean equation for negation; (c) the
truth table.

These equations may be proved by reference to the definition of the anp
operation, to a truth table, or to the behavior of the AND circuits discussed
above. Also, by using Eqgs. (9-14), (9-16), and (9-6) it can be shown that

A+ AB =4 (9-17)
Similarly, it follows from Eqs. (9-16), (9-13), and (9-6) that
A+ BC=(A+B)(A+0) (9-18)

We shall have occasion to refer to these last two equations later.

9-5 THE NOT OR INVERTER CIRCUIT

The Nor circuit has a single input and a single output and performs the opera-
tion of LOGIC NEGATION in accordance with the following definition:® The out-
put of @ NOT circuil takes on the 1 state if and only if the input does not take on
the 1 state. The IEEE standard to indicate a LOGIC NEGATION is a small
circle drawn at the point where a signal line joins a logic symbol. Negation
at the input of a logic block is indicated in Fig. 9-13a and at the output in
Fig. 9-13b. The truth table and the Boolean expression for negation are given
in Fig. 9-13c. The equation is to be read “Y equals NoT 4” or “Y is the
complement of A.”” [Sometimes a prime (') is used instead of the bar (-) to
indicate the NoT operation.]

A circuit which accomplishes a logic negation is called a nNoT circuit, or,
since it inverts the sense of the output with respect to the input, it is also
known as an inverter. The output of an INVERTER is relatively more positive

vQ)— V()
I I | l | I A NOT =Y I I l I l I
V(o) h -1 V() — "

(a) (&)
Fig. 9-14 (a) The input A and (b) the output ¥ of a Nor circvit.
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Vee = V)

C( Fig. 9-15 An INVERTER for positive logic.
LA A similar circuit using a p-n-p transistor
iO—Ej\/\q . valaai N
vy R % is used for a negative-logic NOT circuit,
V) ~Vas Ve =V(0)

if and only if the input is relatively less positive. In a truly binary system
only two levels V(0) and V(1) are recognized, and the output, as well as the
input, of an inverter must operate between these two voltages. When the
input is at V(0), the output must be at V (1), and vice versa. Ideally, then, a
NOT circuit inverts a signal while preserving its shape and the binary levels
between which the signal operates, as indicated in Fig. 9-14.

The transistor circuit of Fig. 9-15 implements an inverter for positive
logic having a 0 state of V(0) = Vgg and a 1 state of V(1) = Vee. 1f the
input is low, »; = V(0), then the parameters are chosen so that the Q is orr and
hence v, = Ve = V(1). On the other hand, if the input is high, »: = V(1),
then the circuit parameters are picked so that @ is in saturation and then

v, = Vgg = V(0), if we neglect the collector-to-emitter saturation voltage
Ver(sat). A detailed calculation of quiescent conditions is made in the follow-
ing example.

EXAMPLE If the silicon transistor in Fig. 9-16 has a minimum value of hrz of
30, find the output levels for input levels of 0 and 12 V.

Solution TFor v; = V(0) = 0 the open-circuited base voltage Vs is

Vo= —12—0 _ _ _156V
100 + 15

Since a bias of about 0 V is adequate to cut off a silicon emitter junction (Table 6-1,
page 219), then @ is indeed cut off. Hence, v, = 12 V for v; = 0.

For »; = V(1) = 12 V let us verify the assumption that @ is in saturation.
Assume for the moment that the transistor saturation voltages are zero. The
minimum base current required for saturation is

(I8)aia = 2

hre
We have

12 5.45
I¢e = — =545 mA Ip)min = — = 0.18 mA
Y (I») 30
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Fig. 9-16 An inverter calculation.

From Fig. 9-16 we can find the base current. We find

12 12
L=2-080mA I,=22-012mA
T 15 " *~ 100 m

and
Ig=1,—1,=0.80—0.12 = 0.68 mA

Since this value exceeds (I 8) min, @ is indeed in saturation and the drop across the
transistor is zero. Hence, v, = 0 for v; = 12 V, and the circuit has performed the
NOT operation.

The assumptions made in this example that Vze(sat) = 0 and Vez(sat) = 0
may be discarded by referring to the manufacturers’ curves. Corresponding to
I¢ = 545 mA and 75 = 0.68 mA we can find the saturation junction voltages.
It is usually sufficiently accurate to use the approximate values given in Table 6-1,
which for silicon are Vz(sat) = 0.7 V and Ver(sat) = 0.3 V. With these values

12 — 0.3 531 _

Io="2"2°_531mA (In)ms = 2o = 018 mA
¢ 2.2 m (Ix) 30 m

I, = 12 -07 _ 075 mA I, = 0.7 — (—12)

= 0.13 mA
15 100

and
Ip =075 —0.13 = 0.62 > (Is)min = 0.18 mA

Note that the values obtained from this more exact calculation do not differ greatly
from those obtained by assuming that the transistor in saturation is an ideal short
circuit.

If the input to the inverter is obtained from the output of a similar gate,
then the input levels are V(0) = Vcz(sat) = 0.3 Vand V(1) = 12V. The corre-
sponding output levels are 12 and 0.3 V, respectively.

The capacitor C across R, in Fig. 9-15 is added to improve the transient
response of the inverter. This capacitor aids in the removal of the minority-
carrier charge stored in the base when the signal changes abruptly between
logic states. A detailed discussion of this phenomenon, including rise time,
fall time, and propagation delay time, is given in Chap. 20. The order of
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magnitude of C is 100 pF, but its exact value depends upon the transistor.

Transistor Limitations There are certain transistor characteristics as well
as certain circuit features which must particularly be taken into account in
designing transistor inverters.

1. The back-bias emitter-junction voltage Vgp. This voltage must not
exceed the emitter-to-base breakdown voltage BV gso specified by the manu-
facturer. For the type 2N914, BVEggo = 5 V, and for the 2N1304, BVgpo =
25 V. However, for some (diffused-base) transistors BVgzszo may be quite
small (less than 1 V).

2. The d-c current gain hpg. Since hrpg decreases with decreasing temper-
ature (Fig. 6-27¢), the circuit must be designed so that at the lowest expected
temperature the transistor will remain in saturation. The maximum value of
R, is determined principally by this condition.

3. The reverse collector saturation current I gpo. Since |l ¢po|increases about
7 percent/°C (doubles every 10°C for either germanium or silicon), then we
cannot continue to neglect the effect of Icpo at high temperatures. At cutoff
the emitter current is zero and the base current is I ¢po (in a direction opposite
to that indicated as I in Fig. 9-16). Let us calculate the value of I¢po which
just brings the transistor to the point of cutoff. If we assume, as in Table 6-1,
that at cutoff Vzz = 0 V, then I1 = 0and the drop across the 100-K resistor is

100 ICBO =12V or Icao = 012 mA

The ambient temperature at which I¢pe = 0.12 mA = 120 gA is the maximum
temperature at which the inverter will operate satisfactorily. From Fig. 6-14b
we see that the 2N914 silicon transistor could be operated at temperatures
in excess of 185°C. If a germanium transistor were under consideration
then the peak temperature would be about 100°C (Fig. 6-14a).

Other Inverter Gates A plate-loaded tube amplifier is also an inverter
for positive logic, but in general there will be a large shift in the binary levels.
However, a cathode follower may be used in cascade with a d-¢ amplifier in

V(l)_’ | I l I I 101 C(
vi + +
V(0) . 3
(a) t—
V(l)-_l_[__—__Ll—-Ll-_ ] . }r V(l)
UD
Vo~ I
(b) (c)

Fig. 9-17 (a) The input and (b) the output of (c) the transformer
INVERTER circuit.

.

(5<|——°C




Sec. 9-6 LOGIC CIRCUITS / 325

order to obtain the ideal NoT operation between two fixed levels, as indicated
in Fig. 9-14 (Prob. 9-16).

For pulse logic an inverting transformer may be used to perform
the Not function. As indicated in Fig. 9-17, a d-c restorer is added to establish
the absolute levels of the two states at the output.

Boolean Identities From the basic definition of the nor, AND, and or
connectives we can verify the following Boolean identities:

Ad=4 (9-19)
A4+ 4=1 (9-20)
A4 =0 (9-21)
A+ AB=A+B (9-22)
9-6 THE INHIBIT OPERATION

A Nor circuit preceding one terminal () of an AND gate acts as an INHIBITOR.
This modified AND circuit implements the logical statement: If4 =1,B =1,
..., M =1,then Y = 1 provided that N = 0. However, if N = 1, then the
coincidence of A, B, . . . , M is inhibited, and ¥ = 0. Such a configuration
is also called an anticoincidence circuit. The logical block symbol is drawn in
Fig. 9-18a, together with its Boolean equation. The equation is to be read
“Y equals A and B and - - - and M and not N.” The truth table for a three-
input AND gate with one inhibitor terminal (C) is given in Fig. 9-18b.

A combination of the AND circuit of Fig. 9-10b and the INVERTER of Fig.
9-16 satisfying the logic given in the truth table (Fig. 9-18b) is indicated in Fig.
9-19. If either input A or B or both are in the 0 state, V(0) = 0 V, then at
least one of the diodes D1 or D2 conducts and clamps the output to 0 V or
Y = 0. This argument verifies all items in the truth table except lines 4 and
8. Consider now the situation where a coincidence occurs at 4 and B. If
C is in the O state, then Q is cut off, and the output of the xo7 circuit is ¢ = 1
(12 V). Hence, all three diodes are reverse-biased and the output rises to

Input Output

ABC Y
Fig. 9-18 (@) The logic block and 1looo 0
Boolean expression for an AND with g: 2010 0
an inhibitor terminal N. (b) The = —--- A r—y ;’ 1 ‘1’ g ‘;
truth table for ¥ = ABC. The pe— 5{001| o
column on the left numbers the eight 61011 Y
possible input combinations., Y=AB-.-MN ; i (1) i 8

(a) ®)
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Ve (12V)

15K

Va (12V) A

V=12V

——
V(©)=0V AN

Fig. 9-19 A positive-logic anD circuit with a negation
input terminal.

12 V, or Y = 1, which verifies line 4 of the truth table. (If A, B, Vg, and
Vg2 are not all equal to the same voltage, then the output will rise to the
smallest of these values.) Finally, consider the condition in line 8 of Fig. 9-185.
If C is in the 1 state, then @ is driven into saturation, and the output of the
transistor drops to 0 V (ideally). Hence, ¢ = 0, D3 conducts, and ¥ = 0, .
which indeed is the logic in the last row of the truth table.

It is possible to have a two-input AND, one terminal of which is inhibiting, .
This circuit satisfies the logic: ‘“The output is true (1) if input A is true (1)
provided that B is not true (0) [or equivalently, provided that B is false (0)].”
Another possible configuration is an AND with more than one inhibit terminal.

In a dynamic system, if an inhibit pulse is to allow none of the signal
to be transmitted through the gate, it is necessary that the inhibit pulse begin
earlier and last longer than the signal pulses. A method of effectively stretch-
ing the inhibit pulse is indicated in Prob. 9-17.

9-7 THE EXCLUSIVE OR CIRCUIT

An EXCLUSIVE OR gate obeys the definition:® The output of a two-input EXcLU-
SIVE OR assumes the 1 state if one and only one input assumes the 1 state. The

Input | Output
e A B| v
OE L-y 0 o0 0 Fig. 9-20 (o) The IEEE standard for an
B— 0 3 i EXCLUSIVE OR symbol and its Bootean
1 ‘
Y-A@B 11 0 expression; (b) the truth table.
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(@) Y=(A+B)(4B) b Y=AB+BA

Fig. 9-21 Two logical blocks for the ExcLUSIVE OR (OE) gate.

IEEE standard symbol for an EXcLUSIVE OR is given in Fig. 9-20a and the
truth table in Fig. 9-20b. © The circuit of Sec. 9-3 is referred to as an INCLUSIVE
or if it is desired to distinguish it from the EXCLUSIVE OR (OE).

The above definition is equivalent to the statement: “If 4 = lorB =1
but not simultaneously, then ¥ = 1.”” In Boolean notation,

Y = (A + B)(4B) (9-23)

This funetion is implemented in logic diagram form in Fig. 9-21a.

A second logical statement equivalent to the definition of the o is the
following: “If A = l1and B = 0,orif B = land 4 = 0,then Y = 1.” The
Boolean expression is

Y =AB + B4 (9-24)

The block diagram which satisfies this logic is indicated in Fig. 9-21b.

An EXCLUSIVE OR is employed within the arithmetic section of a com-
puter (Sec. 9-12). Another application is as an tnequality comparator, matching
circuit, or detector because, as can be seen from the truth table, ¥ = 1 only if
A # B. This property is used to check for the inequality of two bits. If
bit A is not identical with bit B then an output is obtained. Equivalently,
“If 4 and B are both 1 or if A and B are both 0, then no output is obtained,
. and ¥ = 0.” This latter statement may be put into Boolean form as

Y = AB + AB (9-25)

This equation leads to a third implementation for the o block, which is
indicated by the logic diagram of Fig. 9-22a. An equality detector gives an

A A AB A OR A+B
B B
OR
Y A Y
z=Y

— OR ="

AB ‘ A+B
(@) Y=(AB+4B) ) Y=(A+B)A+B)

Fig. 9-22 Two additional logic diagrams for the EXCLUSIVE OR (0E) gate.
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output Z = 1 if 4 and B are both 1 or if 4 and B are both 0, and hence
Z=Y =AB+ AB (9-26)

where use was made of Eq. (9-19). If the output Z is desired, the negation
in Fig. 9-22a may be omitted or an additional inverter may be cascaded with
" the output of the oE.

A fourth possibility for the oE is

Y =(4+ B)(4 + B) (9-27)

which may be verified from the definition or from the truth table. This logic
is depicted in Fig. 9-22b.

We have demonstrated that there often are several ways to implement
a logical circuit. In practice one of these may be realized more advantageously
than the others. Boolean algebra is sometimes employed for manipulating a
logic equation so as to transform it into a form which is better from the point
of view of implementation in hardware. In the next section we shall verify
through the use of Boolean algebra that the four expressions given above for the
EXCLUSIVE OR are equivalent. '

9-8 DE MORGAN'S LAWS

' The statement “If and only if all inputs are true (1), then the output is true
(1)” is logically equivalent to the statement ““If at least one input is false (0),
then the output is false (0).” In Boolean notation this equivalence is written

ABC - - =A+B+C+ - - (9-28)

If we take the complement of both sides of this equation and use Eq. (9-19)
we obtain

ABC - =A+B+C+ - -- ' (9-29)

This equation and its dual (which may be proved in a similar manner)

A+B+C+ - =A4BC - - - (9-30)

are known as De Morgan’s laws. These complete the list of basic Boolean
identities. For easy future reference, all these relationships are summarized in
Table 9-4.

With the aid of Boolean algebra we shall now demonstrate the equivalence
of the four EXcLUSIVE OR circuits of the preceding section. Using Eq. (9-29)
it is immediately clear that Eq. (9-23) is equivalent to Eq. (9-27). Now the
latter equation can be expanded with the aid of Table 9-4 as follows:

(A+ B A+ B)=AA +BA+ AB+ BB = BA + AR (9-31)
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Table 9-4 Summary of basic Boolean identities

Fundamental laws

OR AND NOT
A+0=24 A0 =0 A4+ 4=1
A+1=1 A1 =4 A4 =0
A+A4A=A4 AA =A A=A
A+4d=1 Ad =0

Associative laws
A+B)+C=44+(B+C) (AB)C = A(BC)
Commutative laws
A+B=B+4 AB = BA
Distributive law
A(B+C) = AB + AC
De Morgan’s laws
AB-—=A+B+ - --A¥BFx. - =4B ...
Awuziliary identities
A+AB =4 A+AB=A+B
(A +B)XA +C)=A4 4+ BC

This result shows that the ExcLusIVE or of Eq. (9-24) is equivalent to that
of Eq. (9-27). TFinally, applying Eq. (9-30) to Eq. (9-25) gives

AB + AB = (AB)(AB) (9-32)
Using Eq. (9-29), we have
(AB)(AB) = (A + B)Y(A + B) = (A + B)(4 + B) (9-33)

where use is made of the identity A = A. Comparing Eqs. (9-32) and (9-33)
shows that the ExcLUSIVE oR of Eq. (9-25) is equivalent to that of Eq. (9-27).

With the aid of De Morgan’s law we can show that an AND circuit for
positive logic also functions as an OR gate for negative logic. Let Y be the output

and 4, B, . . ., N be the inputs to a positive AND so that

Y=AB -- - N (9-34)
Then, by Eq. (9-29),

V=A4+B+ - ---+N (9-35)

If the output and all inputs of a circuit are complemented so that a 1 becomes
a 0 and vice versa, then positive logic is changed to negative logic (refer to
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Fig. 9-23 (a) An aND

A cc'm be implemented
OR F-—Y=AB A b—y=A+B with or and ~or gates.
B I B (b) An Or can be con-

structed from anD and
(a) ) NOT gates.

Fig. 9-2). Since ¥ and ¥ represent the same output terminal, 4 and A the
same input terminal, etc., then the circuit which performs the positive aND
logic in Eq. (9-34) also operates as the negative or gate of Eq. (9-35). Sim-
ilar reasoning is used to verify that the same circuit is either a negative anD
or & positive or, depending upon how the binary levels are defined. We veri-
fied this result for diode logic in Sec. 9-4, but the present proof is independent
of how the circuit is implemented.

Tt should now be clear that it is really not necessary to use all three
connectives, or, AND, and Nor. The or and the Nor are sufficient because
from the De Morgan law of Eq. (9-28) the anxp can be obtained from the or
and the Nor, as is indicated in Fig. 9-23a. Similarly the anp and the noT
may be chosen as the basic logic circuits, and from the De Morgan law of
Eq. (9-30) the or may be constructed as shown in Fig. 9-23b. This figure
makes clear once again that an or (AND) circuit negated at input and output
performs the anD (oR) logic.

9-9 THE NAND AND NOR GATES (DTL LOGIC)”

In Fig. 9-21a the negation before the second anbp could equally well be put
at the output of the first AND without changing the logic. Such an aND-NoOT
sequence is also present in Fig. 9-23b and in many other logic operations.
This negated anp is called a NOT-AND or a NAND gate. The logic symbol,
Boolean expression, and truth table for the NAND are given in Fig. 9-24. The
NAND may be implemented by placing a transistor Nor circuit after the diode
anDp in Fig. 9-19. Such a transposition is shown in Fig. 9-25. Circuits
involving diodes and transistors as in Fig. 9-25 are called diode-transistor logic
(DTL) gates.

Input | Output
A A B Y
A b~y o o 1 Fig. 9-24 (a) The logic symbol and
B 0 1 1 Boolean expression for a two-input NAND
Y-i5 i (1) (1) gate; (l?) the truth table.

(@) (®)
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Ve (18V)

22
K< v
}—P—oq2V)

p———w«——o0Y

Q

(]

Fig. 9-25 (a) A three-input positive NAND (or negative NOR) gate; (b) a
collector clamping diode may be used to improve the characteristics of the
output circuit.

EXAMPLE (a) Verify that the circuit of Fig. 9-25 is a positive NAND for the
binary levels 0 and 12 V. Neglect source impedance and junction saturation
voltages and diode voltages in the forward direction. Find the minimum hgsg.
(b) If the drop across a conducting diode is 0.6 V and if the sum of source and
diode resistances is 1 K, is a clamping diode (Fig. 9-11) required at the output of
the AND circuit? (c¢) Will the circuit operate properly if the inputs are obtained
from the outputs of similar NAND gates? Assume silicon transistors and diodes
and neglect collector saturation resistance and diode forward resistance.

Solution a. If any input is at 0 V, then the junction point P of the diodes is at
0 V because a diode conducts and clamps this point to V(0) = 0. The base
voltage of the transistor is'then

15
Va= -2 (-2} = 156V
® ( )(115> 5

Hence, Qiscutoffand Yisat 12V,or ¥ = 1. This result confirms the first three
rows of the truth table of Fig. 9-24b.

If all inputs are at V(1) = 12 V, assume that all diodes are reverse-biased and
that the transistor is in saturation. We shall now verify that these assumptions
are indeed correct. If @ is in saturation, then with Vg = 0 the voltage at P is
(12)(33) = 6 V. Hence, with 12 V at each input all diodes are reverse-biased
by 6 V. Since the diodes are nonconducting, then the two 15-K resistors are in
series and the base current of Q is

—1—2 - E— = 0.40 — 0.12 = 0.28 mA
30 100
Since the collector current is
Io = 122 = 545 mA and (hpE)min = 5.45 19

028
then Q will indeed be in saturation if hrz > 19. Under these circumstances the
output is at ground, or ¥ = 0. This result confirms the last row of the truth table.
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(a) (b) (c)
Fig. 9-26 Relating to the calculation of the base voltage of the transistor in the
circuit of Fig. 9-25.

b. The transistor must be OFF if at least one input is at 0. The worst case
occurs when all diodes except one are reverse-biased, because then the voltage at P
is & maximum. For this case the Thévenin’s equivalent from P to ground is,
from Fig. 9-26q, a voltage of

1 15
(12) (1_6) + (0.6) (i?i) =075+ 0.56 =13V

in series with a resistance of (1)(+§) = 0.94 K. The open-circuit voltage at the
base of the transistor is, from Fig. 9-26b,

15.9 100
Vo= —(12) (—~2 )+ (181) { —— ) = —1.65 + 1.13 = —0.52 V
2= )(115.9> +( )<115.9) +

This voltage is more than adequate to reverse-bias @, and hence no clamping diode
is required.

c. If the inputs are high the situation is exactly as in part a. With respect
to keeping the base node at a low voltage when there is no coincidence, the worst
situation occurs when all but one input are high. The low input now comes from
a transistor in saturation, and Veg(sat) = 0.3 V. The open-circuit voltage at
the base of @ is, from Fig. 9-26¢,

15 100
Ve=—12{ 2}V +o09({- }=-078V
? (115) 09 (115) 7

which cuts off @ and ¥ = 1, as it should.

Neglecting the inherent speed limitations of the transistor (Chap. 20),
the rise time of the output, when @ is cut off, depends upon the shunt capaci-
tance C, and the collector resistance R,. If V¢¢ is increased, then for fixed
values of C, and R,, less time is required to reach the particular voltage at
which the next stage switches (is driven into saturation). If such an increased
value of Ve [> V(1)] is used, then a collector clamping diode is often added as
indicated in Fig. 9-256. This diode limits the collector voltage of @ to V(1)
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Input | Output
A A B| Y
Fig. 9-27 (a) The logic symbol and OR b—Y 0o 0 1
Boolean expression for a two-input Nor gate; B 01 0
(b) the truth table. — A B
Y-A+B

(@) (d)

and also prevents the following stage from being driven too heavily into satura-
tion. Secondarily, the diode helps to reduce the time to discharge C, when @
is driven into saturation by providing a lower collector starting voltage.

A Nor Gate A negation following an or is called a NoT-0R or a NOR gate.
The logic symbol, Boolean expression, and truth table for the Nor are given
in Fig. 9-27. A positive NOR circuit is implemented in Fig. 9-28a by a cascade
of a diode or and a transistor INVERTER.

In Fig. 9-28a the base supply — V z5 may also be used as the reference volt-
age Vi for the or, and hence Vi and R may be omitted from the circuit. Such
a simplified configuration is indicated in Fig. 9-28b for the specific binary levels
V() = 0 and V(1) = 12 V. We can readily confirm that this circuit obeys
Nor logic. If all inputs are in the O state, all diodes conduct and the input
to the inverter is 0 V. If any input is high the diode connected to this input
conducts and all other diodes are reverse-biased. The voltage at the diode
node P is now V(1) = 12 V. Hence, from input to point P the or function
has been satisfied. Since from P to the output we have an inverter identical to
that in Fig. 9-16, no further calculations are necessary to justify Nor operation.
The direct connection from the junction of the or diodes to the external pin C
is convenient for expanding the number of inputs by adding more diodes as

) 12v

Howe
15K
100K%

-12V

Fig. 9-28 (a) A positive oRr in cascade with a NoT to form a Nor gate. (b) A
more practical form of positive Nor (or negative NAND) gate.

22K

V, S V(0)
N

N T

OR NOT
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needed. It will also turn out to be important for combining two NoT gates
into another basic circuit (the rLIP-FLOP, described in Sec. 9-13).

The circuits of Figs. 9-25 and 9-28 employ diode-transistor logic (pTL), or
transistor-diode logic (TpL). The NAND and NoR may also be implemented
in configurations which do not use both diodes and transistors, as is indicated
in Secs. 9-16 through 9-19. With the aid of De Morgan’s laws it can be shown
that, regardless of the hardware involved, a positive NaND is also a negative
NOR, whereas a negative NAND may equally well be considered a positive NOR.

It is clear that a single input NAND is a NoT. Also, a NaND followed by a
NoT is an aND. In Sec. 9-8 it is pointed out that all logic can be performed
by using only the two connectives aND and NoT. Therefore, we now conclude
that by repeated use of the NAND circuit alone, any logical function can be
carried out. A similar argument leads equally well to the result that all logic
can be performed by using only the Nor circuit.

9-10 TWO LOGIC-CIRCUIT CONVERSION THEOREMS

We have seen that a particular gating circuit may perform one or another
function, depending on whether positive or negative logic is used. Thus a
positive AND gate is a negative or gate, etc. Suppose, however, our interest
is in preserving the type of logic performed by the gate (i.e., an AND gate is
to remain an AND gate) but we wish to reverse the logic from positive to nega-~
tive or the other way around.  Then the following generalization provides a
method for achieving this modification.

THEOREM | A circuit using positive (negative) logic can be converted into a
configuration performing the same logic function but with negative (positive) logic,
provided that all supply voltages are reversed in polarity, the input voltage levels
are reversed in polarity, all diodes are reversed, and all transistors are changed from
p-n-p to n-p-n and vice versa.

Proof Tf all voltages in a circuit are reversed, then the current in any branch is
also reversed. If all diodes and transistors are reversed (p-n-p = n-p-n), then a
diode or transistor which was reverse-biased (conducting) in the original circuit
remains reverse-biased (conducting) in the converted network. Hence, the two
circuits perform the same logic. However, if the original level V(1) was more
positive than V(0), then —V (1) is now more negative than — V(0) and positive
logic has been changed to negative logic.

As an application of this theorem, suppose it were desired to build a
positive NAND with the binary levels V(0) = —12 Vand V(1) = 0 V. Since
the circuit of Fig. 9-28b is a negative NAND, it can be converted by the theorem
into the configuration of Fig. 9-29, which is now a positive NAND.
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~12V
22K
V)=0V
V)= - 12V

Fig. 9-29 A positive NAND gate.

The following theorem is useful in converting a logic circuit with one
set of binary voltages to an equivalent circuit with another set of logical
levels (in which, perhaps, neither is 0 V).

THEOREM 1l If the same voltage is added to all supply voltages, to any leads
that are grounded, and to both binary levels, then the logic function performed by
the circuit remains unchanged.

Proof The voltage difference between any two nodes is invariant under the above
procedure, which is equivalent simply to shifting the zero reference of voltage.
Hence, the same currents flow in the modified circuit under the identical logical
conditions as in the original circuit. Clearly, the logic performed is unchanged.

As an application of this theorem, consider a positive NaND with logic

" levels of —9 and 43 V. This logic is performed by the circuit of Fig. 9-29

if the +12-V supply is changed to +15 V, the —12-V supply to —9 V, and if
the emitter is connected to a +3-V supply.

9-11 PACKAGING OF LOGIC CIRCUITS

A digital computer uses a large number of switching circuits, but, as we have
already emphasized, the variety of different types of gates is quite small.
Hence, the fundamental circuits, which are used over and over again, are
mounted on a number of plug-in units called logic cards. The advantage
with respect to manufacturing, replacement, trouble shooting, convenience,
etc., is apparent. Several manufacturers® market such logic cards, consisting
of a glass epoxy printed-circuit board with the individual components mounted
to the board through funnel eyelets. Also, a number of vendors® have a line
of micrologic gates manufactured by integrated-circuit techniques. These will
undoubtedly replace the conventional lumped-component circuits within a
few years. Building a digital system consists principally in interconneeting
these packages to perform the desired logic. A card or integrated-circuit
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Voo (12V)

R ~Vap (—12V)
15K
D, (15K)
F
G
H Py
I
D,
2 NN '
3 AND gates OR . INVERTER

T
NOR

Fig. 9-30 A two-level aAND-NOR (a01) package.

package might consist of ten 2-input NAND gates, or eight NoT circuits (invert-
‘ing amplifiers), or three 5-input or gates, etec.

Often the logical design calls for an AND followed by an or or vice versa.
Such a configuration is known as two-level logic. One of the most useful logic
packages!'® for a large-scale computer is the AND-GR-INVERT (AOI) Or AND-NOR
configuration. If a two-input anD is fed to terminal A of Fig. 9-28b, a three-
input AND to terminal B, and a four-input aAND to the third terminal (through
a diode) we obtain the aor circuit of Fig. 9-30. The number of inputs, called
the fan-in of each aND, is not critical and neither is the number of AND clusters
which feed the or gate. In this illustration the fan-in for the or circuit is 3.
The number of outputs from a logic cireuit is called the fan-out. Figure 9-30
indicates a fan-out of 4, so that this ao1 block may feed four other logic circuits.
For the particular inputs indicated the logic is

Y = AB 4+ CDE + FGHI (9-36)
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We shall now proceed to verify the above logic. If at least one input to
each AND is at 0, then the corresponding anp diodes conduct and the output of
each anp is 0. All junction voltages are neglected for the conducting devices.
The or diodes in series with these outputs conduct, the transistor is cut off
by —1.56 V at the base, and the output is V(1) = 12 V (refer to the NAND
calculation in Sec. 9-9). If all inputs in one AND (say A and B) are excited to
V(1), then D, and Dp are reverse-biased and P, rises toward +12 V. Hence
D1 conducts more heavily, and @ goes into saturation with a base current of
0.28 mA. The output of the or, point P, is at 6 V, and since the inputs to
D2 and D3 are zero, these diodes are reverse-biased. Since Y = V(0) =0V,
then the circuit has functioned as a simple two-input NAND.

Consider the case where a coincidence occurs simultaneously in more than
one AND. For example, let us assume that all inputs are at the high level
V(1) = 12 V. Then all aNp diodes are reverse-biased, all or diodes are
forward-biased, and @ is in saturation, as we shall now prove. If the anp
diodes were cut off, then P,, P;, and P; would rise toward 12 V and D1, D2,
and D3 would conduct. Under these circumstances the three resistors R are
in parallel, as are also the three or diodes, and the equivalent circuit is that
given in Fig. 9-31. The base current is now

12 12
IB = 5-}-—15 - 1—0—0 = 048 mA

_This is an increase over 0.28 mA which was obtained when there was a coinci-
dence at only one aND gate. Since the smaller value was sufficient to drive Q
into saturation (provided that hrg exceeded 19), then certainly @ is now also in
saturation. Note that the voltage at P (P, Ps, or P3) is (12)(33) =9 V,
whereas the voltage at each input is 12 V. All input diodes are reverse-
biased by 3 V, thus verifying our original assumption.

In summary, the ao1 circuit behaves like independent NAND circuits
with no interaction of one AND upon the other, because the or gate acts as

12V

15K

Fig. 9-31 The equivalent circuit of Fig. 9-30 when there is a
simultaneous coincidence at all inputs. The point P
represents either P, P,, or P; since these three nodes are
at the same potential.
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a buffer. However, the larger the number of AND circuits which are excited
simultaneously, the further into saturation is the transistor driven.

The aor function or any other logic block may be implemented in many
ways besides using diode-transistor logic. The most frequently used alterna-
tive configurations are discussed in Secs. 9-16 through 9-19. We shall first,
however, show how these logic blocks may be combined to perform arlthmet-
ical or control functions. ‘

9-12 BINARY ADDITIONz¢1

A digital computer must obviously contain circuits which will perform arith-
metic operations, i.e., addition, subtraction, multiplication, and division. The
basic operations are addition and subtraction, since multiplication is essen-
tially repeated addition, and division is essentially repeated subtraction. It is
entirely possible to build a computer in which an adder-subtractor is the only
arithmetic unit present. Moultiplication, for example, may then be performed
by programming; that is, the computer may be given instructions telling it
how to use the adder repeatedly to find the product of two numbers.

Suppose we wish to sum two numbers in decimal arithmetic and obtain,
say, the hundreds digit. We must add together not only the hundreds digit
of each number but also a carry from the tens digit (if one exists). Similarly
in binary arithmetic we must add not only the digit of like significance of the
two numbers to be summed but also the carry bit (should one be present)
of the next lower significant digit. This operation may be carried out in two
steps: first, add the two bits corresponding to the 2* digit, and then add the
resultant to the carry from the 2*-1 bit. A two-input adder is called a half
adder, because to complete an addition requires two such half adders.

We shall first show how a half adder-sublractor is constructed from the
basic logic gates and then indicate how the Jull or complete adder-subtractor
is assembled. A half adder-subtractor has two inputs—A and B—represent-
ing the bits to be added, and three outputs—D (for the digit of the same
significance as A and B represent), C (for the carry bit), and P (for the borrow
bit). In a half adder D and C are used, while in a half subtractor D and P
are used.

The symbol for a half adder-subtractor is given in Fig. 9-32a and the
truth table in Fig. 9-32b. Note that the D column gives the sum of A and B

A B Input Output
| A B| DCP
. 0 o0 0 0 0 Fig. 9-32 (a) The symbol for a half adder-
A 0 1 1 01 subtractor; (b) the truth table for the digit
1 0 1 0 0
I I [ (D), carry (C), and borrow (P).
DCP 1 1 0 1 0

(@) ()
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Fig. 9-33 Block diagram of a half adder-subtractor.

as long as the sum can be represented by a single digit. When, however,
the sum is larger than can be represented by a single digit, then D gives the
digit in the result which is of the same significance as the individual digits
being added. Thus, in the first three rows of the truth table D gives the sum
of A and B directly. Since the decimal equation “1 plus 1 equals 2" is writ-
ten in binary form as “01 plus 01 equals 10,” then in the last row D = 0.
Because a 1 must now be carried to the place of next higher significance, C = 1.
Finally, where subtraction of B from 4 is contemplated, the P (borrow)
column gives the digit which must be borrowed from the place of next higher
significance when B is larger than A, as in the second row of Fig. 9-32.

From Fig. 9-32b we see that D obeys the EXCLUSIVE-OR (OE) function,
C follows the logic of an anD gate, and P obeys the logic “B and not A4.”
Figure 9-33 shows a configuration which satisfies this half adder-subtractor logic
based upon the oE circuit of Fig. 9-21b. Any of the other implementations
given in Sec. 9-7 for the oE may be used in the half adder-subtractor. A half
adder constructed by using only NoR circuits is given in Prob. 9-36.

Parallel Operation Two multidigit numbers may be added serially (one
column at a time) or in parallel (all columns simultaneously). Consider
parallel operation first. For an n-digit binary number there are (in addition te
a common ground) n signal leads in the computer for each number. The kth
line for number A (or B) is excited by A; (or B;), the bit for the 2* digit (¢ = 0,
1, . .., n). A parallel binary adder is indicated in Fig. 9-34. Each digit
except the least-significant one (2°) requires a complete adder consisting of
two half adders in cascade. The sum digit for the 2° bit is S, = D, of a half
adder because there is no carry to be added to 4, plus B,, The sum Sk (k = 0)
of 4; plus By is made in two steps. First the digit D is obtained from one half
adder, and then D, is summed with the carry Cix_; which may have resulted
from the next lower place. As an example, consider k¥ = 2 in Fig. 9-34.
There the carry bit C; may be the result of the direct sum of A4, plus B, if
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Fig. 9-34 A parallel binary adder consisting of half adders.

each of these is 1. This first carry is called €y, in Fig. 9-34. A second possi-
bility is that A; = 1 and B, = 0 (or vice versa), so that D, = 1, but that
there is a carry C, from the next lower significant bit. The sum of D, =1
and C, = 1 gives rise to the carry bit designated Cr. It should be clear
that C1, and Cy. cannot both be 1, although they will both be 0 if 4, =
and B, = 0. Since either €1, or €1, must be transmitted to the next stage, an
or gate must be interposed between stages, as indicated in Fig. 9-34. This
circuit is equally effective for subtraction, provided that the borrow bit P is
used in place of the carry C.

Bmary Decxmal

II || || -116T-19- 4
(b)ﬂ.ﬂ [

=01011=11 =8B
-7
(C) | I Il =11000 = 24 = Sum
(@ ﬂ =00010 = 2 = Difference

Time —~

Fig. 9-35 (a, b) Pulse waveforms representing numbers A
and B; (¢, d) waveforms representing sum and difference.
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adder consisting of two
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Serial Operation 1In a serial adder the inputs 4 and B are synchronous
pulse trains on two lines in the computer. Figure 9-35a and b show typical
pulse trains representing, respectively, the decimal numbers 13 and 11.
Pulse trains representing the sum (24) and difference (2) are shown in Fig.
9-35¢ and d, respectively. A serial edder is a device which will take as inputs
the two waveforms of Fig. 9-35a and b and deliver the output waveform in Fig.
9-35¢. Similarly, a subtractor will yield the output shown in Fig. 9-35d.

We have already emphasized that the sum of two multidigit numbers
may be formed by adding to the sum of the digits of like significance the carry
(if any) which may have resulted from the next lower place. With respect
to the pulse trains of Fig. 9-35, the above statement is equivalent to saying
that, at any instant of time, we must add (in binary form) to the pulses A
and B the carry pulse (if any) which comes from the resultant formed one
period T earlier. The carry pulse may arise from the direct sum of two digits
(each 1) or from the addition of digits 1 and 0 and a carry 1 from the preceding
interval. The logic outlined above is performed by the full adder circuit of
Fig. 9-36, which consists essentially of two half adders in cascade. This
circuit differs from the configuration in the parallel adder of Fig. 9-34 by the
inclusion of an electromagnetic delay line. The time delay TD of this line is
equal to the time T between pulses. Hence, the carry pulse (from either
of the two sources mentioned above) is delayed a time T and added to the
digit pulses in 4 and B, exactly as it should be.

Flow Chart It is instructive to construct the “flow chart” in Fig. 9-37 for
the addition of two binary numbers 4 and B, in either the parallel method

24 23 22 21 20
0 1 1 0 1
Fig. 9-37 Relating to a full adder consist- B0 1 0 1 !
ing of two half adders. The arrows show Dlo 0 1 1 0
the origin of the carry bit C. The bits clo 1 0 0 1
1

correspond to those in Fig. 9-35 and the e e

. me Cl1 1 1 1 0
symbols to those in Fig. 9-36.

C.| o 0 ha 1 0
S|1 1 0 0 0
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Input Output
A B C S C
o 0 0 o o
0 0 1 1 0
o 1 o 1 0 Fig. 9-38 Truth table for a three-input adder.
0 1 1 0 1
1 0 0 1 o0
1 0 1 o 1
1 1 0 o 1
101 1 11

of Fig. 9-34 or the serial arrangement of Fig. 9-36. In applying the table to
the parallel method of Fig. 9-34 it is to be kept in mind that C;; in Fig. 9-34
corresponds to C; in Fig. §-36 and Ci. corresponds to C». That is, in the
double subscript attached to the C’s in Fig. 9-34 the first indicates the sig-
" nificance of the digit and the second indicates whether the carry comes from
the first or second half adder. The illustration is taken for numbers A and B
pictured in Fig. 9-35. In any particular case the chart is filled out as follows:
A and B are the given numbers. D and C; are obtained from the truth
table of Fig. 9-32b for the addition of two single-digit numbers. Then C is
obtained from C; by shifting each 1 to the next higher significant place, as
indicated by the downward arrows in the table. Now, remembering that
D and C are the inputs to a half adder, we obtain the outputs S and C. follow-
ing the rules of Fig. 9-32b. We must, however, start with the right-hand
column (2% and work toward the left. Each time C; =1 this bit is shifted
into €, as indicated by the upward arrows. Note that in this particular
example two of the carries come from Ci (corresponding to A = B = 1)
and two from C, (corresponding to the addition of 1, 0, and a carry 1 from the
next lower place). From the chart of Fig. 9-37 we can construct the wave-
forms existing at the input or output of any block in Fig. 9-36.
"~ A comparison of Figs. 9-34 and 9-36 indicates that parallel addition is
faster than serial because all digits are added simultaneously in the former
but in sequence in the latter. However, whereas only one full adder is needed
for serial arithmetic we must use a full adder for each bit in parallel addition
(except the 2° bit, which requires a half adder). Hence, parallel addition is
much more expensive than serial operation.

The Three-input Adder It is possible to construct a complete adder with-
out the use of half adders. The circuit has three inputs: 4, B, and the carry C.
A truth table for such an adder is given in Fig. 9-38. The output carry C’'in a
serial system is delayed one synchronizing interval T and then becomes the
input carry C. From the truth table we can verify that the Boolean expres-
sions for the sum S and the carry C’ are given by

S = ABC + ABC + ABC + ABC (9-37)
¢’ = ABC + ABC + ABC + ABC (9-38)



Sec. 9-13 ' LOGIC CIRCUITS / 343

By algebraic manipulation these expressions may be transformed into a
number of different forms. In particular it turns out that

8= (A +B+0C)C)+ ABC (9-39)
C’'= AB + BC + CA (9-40)

These expressions can also be verified from the truth table. The three-input
adder is considered in Prob. 9-37.

9-13 REGISTERS

In addition to the anD, or, and Nor logic gates a fourth important basic
circuit, called the FLIP-FLOP, is required in many digital systems. A FLIP-FLOP
consists of two Nor circuits intereonnected in the manner shown in Fig. 9-39a.
Each ~Not could be, for example, the transistor INVERTER of Fig. 9-15. The
FLIP-FLOP configuration is studied in detail in Chap. 10. For the present
we are interested only in certain external characteristics which are relevant
in digital systems. The most important property of the rLIP-FLOP is that, on
account of the interconnection, the circuit may persist indefinitely in a state
in which one device (say Q1) is on while the other (Q2) is oFF. A second stable
state of the FLIP-FLOP is one in which the roles of the two devices are inter-
changed so that Q1 is oFF and @2 is oN. Since the FrLiP-FLOP has two stable
states it may be used to store one bit of information. For these reasons the
FLIP-FLOP is also called a BINARY. '
An output, designated as Y in Fig. 9-39, may be taken from a collector.
This output may take on two voltage levels, corresponding to either ¥ = 1 or
Y = 0. If we designate the output at the other collector as ¥, then the

Q1

Ay

=i
~

l
‘]<l

Az
(@) (®) (c)

Q2
Fig. 9-39 (o) A FLIP-FLOP assembled from two Nor circuits; (b or ¢) the logic
symbol. An input to T effectively applies excitation to S and R
simultaneously.
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rLIP-FLOP has two stable states, one in which ¥ = 1 and ¥ = 0 and the other
in which ¥ = 0 and ¥ = 1. The existence of these stable states is consistent
with the interconnection shown in Fig. 9-39a. For example, if the output
Y of one Not circuit is 1 then so also is the input A to the second NoT circuit.
The second INVERTER then has the state O at its output ¥ and at the input A4,
to the first gate. This result is consistent with our original assumption that
the first NoT gate had a 1 at its output. It is readily verified that the situ-
ation in which both outputs are in the same state is not consistent with the
interconnection,

A FLIP-FLOP is represented in block form as in Fig. 9-39b or ¢, where
three input terminals are indicated—S (set), R (reset), and T (trigger). The
points of connection of these terminals are not shown in Fig. 9-39a but are
described in the next chapter (Fig. 10-14). An excitation of the set input
causes the FLIP-FLOP to establish itself in the state ¥ = 1. If the binary is
already in that state the excitation has no effect. A signal at the reset input
causes the FLIP-FLOP to establish itself in the state ¥ = 0. If the binary is
already in that state the excitation has no effect. The waveform of the input
signal (a pulse, a step, etc.), auxiliary circuits through which the excitation is
applied to the binary, and related matters are discussed in the next chapter.

A triggering signal applied to the T input causes the FLIP-FLOP to change
its state regardless of the existing state of the binary. Thus each successive
excitation applied to T causes a transfer, and 7' is referred to as the foggle or

_complementing input. This type of excitation is called symmetrical triggering
(Sec. 10-9) and is used in binary counters (Chap. 18) and in other applications.
Unsymmetrical triggering (See. 10-7) through the S or R input is most useful in
logic applications, as we demonstrate below.

A One-word Memory Suppose that it is required to carry out the
addition of two numbers which are stored in the main computer memory.
Now, ordinarily, it will not be possible to abstract both numbers from the
memory simultaneously. Since in the adders of the preceding section both
numbers are applied simultaneously, it will generally be required that at
least one of the numbers be stored, temporarily, in a one-word memory device.
Similarly, it may not be feasible to return the arithmetic-unit output immedi-
ately to the main memory. In this case, again, a one-word memory®*!? or
storage device, which is called a register, is needed.

A set of n flip-flop circuits may clearly be used to store an n-digit binary
number, since we have but to set the states of the binaries at 0 or 1, depending
on the value of the digit which the rLIP-FLOP is to represent. The binary
number may appear in serial form as a train of pulses, and one method for
inserting the number into the register is as shown in Fig. 9-40. The input
pulse train is applied to a delay line which is tapped at time-delay intervals 7D
equal to the basic pulse separation time (a one-bit delay T). Hence, at the
moment the last pulse (2%) of the train appears at the input of the delay line,
the earlier pulses will appear at the delay-line taps. If, at this moment, the
register line is pulsed, then the AND circuits will transmit to each binary the
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Serial

Register or ) » ‘ Reset
write-in pulse - &= Or clear
pulse

Fig. 9-40 A register for converfing a 4-bit code from serial to parallel form.
The time delay TD equals the interval between bits.

pulse (or lack of pulse) at the corresponding delay-time taps. The output
of each AND circuit is coupled to the set input of a FLIP-FLOP so that the AND-
circuit pulse (if one is present) will leave the corresponding binary in state 1.
Thus, the 2° bit is registered in FF3, the 22 bit in FF2, etc. The register
may be cleared by a pulse on the reset line. This pulse will cause each binary
to remain in or return to state 0. The circuit of Fig. 9-40 is a serial-to-parallel
converler, since each bit of information in a pulse train is now available in a
separate FLIP-FLOP. A lemporal code (a time arrangement of bits) has been
changed to a spatial code (information stored in a static memory).

Consider that the outputs of successive binaries are coupled through
a second set of AND circuits to corresponding points of an additional delay
line which is a duplicate of the input line. Then the reset pulse, which is also
applied to the second set of AND circuits, will not only clear the register but
also establish on this output line the initial temporal arrangement of the pulses.
Hence, the clearing operation will also regenerate the original pulse train.
Here, then, is a parallel-to-serial converter—or a spatial—to-temporal converter—
since each bit of information stored statically in individual FLIP-FLOPS has
been converted into a pulse train on a single line.

The process outlined in the preceding paragraph is called destructive read-
out because the information is removed from the register when the pulse train
is formed. Consider now that one input of the aAND circuit is again excited
by the d-c level of a FLIP-FLOP in the register and that the second input is a
pulse from an external source. If this pulse is not used to reset the register,
then nondestructive readout is possible; that is, a pulse-train output is obtained
while retaining the digital information in the register. An alternative form of
coincidence gate having a binary input and a pulse input is given in Sec. 17-2.

A Shift Register For low repetition frequencies (say below 200 kHz) the
time delay TD (> 5 usec) may require an impractically long delay line. A
circuit which avoids this difficulty (and also has other favorable character-
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Fig. 9-41 (o) A shift register. The time delay A is very much smaller than
the interval between pulses. (b) A typical input pulse train. (c) The
shift-pulse waveform.

istics) is indicated in Fig. 9-4la; it is called a shift register. The input con-
sists again of the train of pulses which is to be stored in the register. The
reset or shift pulse line is excited now, not by a single pulse, but rather by a
continuous train of pulses (Fig. 9-41c) which are timed to occur nominally
midway between the pulses of the input number. The delay sections have a
delay A much smaller than the time interval between pulses and are required
to ensure that an individual binary shall not receive a triggering signal simul-
taneously from the shift line and from a preceding FrLIp-FLOP. The shift
pulses always drive the binaries to state 0. The coupling between binaries is
such that a succeeding FLIP-FLOP will respond only if the preceding binary
goes from state 1 to state 0. The pulse which results from this transition will
drive the succeeding rLipP-FLOP to state 1.

Now suppose we want to register the number 1011. The pulse pattern
is as indicated in Fig. 9-41b. The first pulse (2°) drives FF3 to state 1. The
shift pulse now returns FF3 to 0, and a short time later (depending on the
delay A) FLip-FLOP FF2 is driven to state 1 by the pulse received from the
previous binary. The first digit (2%), which was initially registered in FF3,
has been shifted to FF2, and FF3 has been cleared (returned to 0) so that it
may now register the next pulse (2!). We may now easily follow the procedure
from this point and see that, by this process of registering and shifting to make
room for the next pulse, the input number will eventually become installed
in the register. Of course, the shift pulses must cease at the moment the
number has been registered.

This register may be read in parallel (each FLIp-FLOP output going to a
separate line), if desired, and hence the shift register is also a serial-to-parallel
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converter. Or we may take the output at ¥ of FFO in Fig. 9-41 and obtain
a pulse train. To read the register serially in this fashion it will be necessary
to apply four shift pulses. In response to these shift pulses the original
character will appear at the output ¥ of FFQ. Note that the shift-out rate
may be greater or smaller than the original pulse repetition rate. Hence, here
is a method for effectively changing the spacing of a pulse sequence, 8 process
referred to as buffering.

Assume that a binary number is stored in a shift register, with the least-
significant bit stored in FF0. Now apply one shift pulse. Each bit then
moves to the next lower significant place and hence is divided by 2. The
number now held in the register is half the original number, provided that
FFO was originally 0. Since the 2° bit is lost in the shift to the right, then
if FFO was originally in the 1 state, corresponding to the decimal number 1, .
after the shift the register is in error by the decimal number 0.5. If the
circuit is wired so that each shift pulse causes a shift to the left, then each bit
moves to the next higher significant place and the number stored is multiplied
by 2. A computer uses shift registers in this way for performing the multipli-
cation of two binary numbers.

A shift register may function as a digital delay device. Thus, the input
pulse train appears at the output of an n-stage register delayed by a time
equal to T, + (n — 1)T, where T is the interval between shift pulses and 7,
is the time between the first bit and the first shift pulse (Fig. 9-41).

An important application of a shift register is as a character generator,!?
The FLIP-FLOPS may be preset individually with push-button switches at S and
R to give the desired code (the pattern of 1's and 0’s making up the desired
character). Then a pulse generator is used to apply shift pulses and the out-
put of the shift register gives the temporal pattern corresponding to the
character. For test purposes it is often important that the code be repeated
continuously. This mode of operation is easily obtained by feeding the output
of the register back into the input to form a “reentrant shift register.” Such
an arrangement is called a dynamic or circulating memory.

9-14 DYNAMIC REGISTERS

If a pulse train already available in a computer is to be stored, then a more
economical form of dynamic memory is obtained by replacing the shift register
of the preceding section with a delay line. The word (pulse train) is introduced
at one end of the delay line, whose time delay T'D is equal to the time duration
for the word, and the output signal is returned to the delay-line input so that
the word continues to circulate around a closed path. A dynamic register
of this type is indicated in Fig. 9-42. Synchronization between the circulating
pulse train and the pulses in other parts of the computer is required since the
word may take many trips around the circuit, and if the total loop delay is even
slightly incorrect a large error may accumulate. Therefore means are usually
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Fig. 9-42 A dynamic register using a delay line whose time delay TD equals
a word length. The clock pulses are used for synchronization.

provided!? (but this circuit is not shown in Fig. 9-42) to ensure the synchroniza-
tion and also to reshape the pulses which suffer attenuation and distortion in
each round trip.

The pulse train circulates and reappears continuously at the output.
The register may be read (nondestructively) by exciting the read lead of the
output AND circuit by a number of pulses equal to the digits in one word.
. The register may be cleared by exciting the erase lead of the inhibitor in the
circulation path. Note that to erase an n-digit word, n consecutive erase
pulses are required, which pulses coincide with the clock pulses. - Alternatively,
a single erase pulse may be used whose duration is sufficient to encompass the
entire word. . '

In order to represent a 10-digit number in the decimal system, 34 binary
bits are required. If the clock-pulse repetition rate is 2 MHz, then one
word will require 17 psec. If the total storage capacity of the computer is
1,000 words, then a single delay line 17 msec long could supply all the storage.
However, a prohibitively long waiting time would then be required before a
word is available. As a compromise between speed and eguipment some
50 lines, each 20 words (or 340 usec) long, might be used. The attenuation of
electrical delay lines (about 6 dB/usec delay at a frequency of a few mega-
cycles per second) is excessive for the present application. An improvement
results if the block marked TD in Fig. 9-42 is an acoustical delay line. The
pulse train representing a word is used to modulate a carrier frequency of
30 MHz. These 30-MHz pulses in turn drive a quartz-crystal transducer
which generates waves in a mercury column. A receiving crystal at the other
end of the line detects the pulses after they have traveled down the column.

Many different memory systems,!? besides the mercury line, are now in
use or have been suggested for future computers. These memory devices
include a magnetic-core matrix, solid acoustical lines, magnetostrictive delay .
lines, magnetic drums, and others.

The dynamic-register circuit of Fig. 9-42 suggests an interesting special
case. Suppose that the input were to consist of a single pulse instead of a
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pulse train and that the total circuital delay were adjusted to be equal to the
time interval between pulses. In this case the circuit could exist in either of
two possible states, i.e., a state 0 in which there is no circulating pulse or a
state 1 in which there is a circulating pulse. This one-digit (or one-bit)
dynamic storage circuit then shares the basic digital property of a binary and
is called a dynamic FLIP-FLOP.

9-15 DIODE MATRICES OR CODE-OPERATED SWITCHES? 414

As noted earlier, in a digital computer, instructions as well as numbers are
conveyed by means of binary levels or pulse trains. If, say, 4 bits of a char-
acter are set aside to convey instructions, then 16 different instructions are
possible. This information is coded in binary form. There arises frequently
a need for a multiposition switch, also called a translational network, which
may be operated in accordance with this code. In other words, for each of
the 16 codes, one and only one line is to be excited. This process of identifying
a particular code is called decoding.

Consider that the codes are stored in a 4-bit register, The four rLIP-
FLOPS, the 16 output lines, and a decoding network made up of diodes is indi-
cated in Fig. 9-43. Because of the schematic arrangement of wires into (16)
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o \‘\ \"\ \’\ \’\ ’
23 22 21 20
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FF3 FF2 FF1 FFO
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Fig. 9-43 A 16-position code-operated switch (lines 3 through 12 are not
indicated).
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Fig. 9-44 Decoding lines 2 and 13 of a 16-position switch. If
the AND gate uses diodes, then this circuit is identical with that
of Fig. 9-43. An external signal X will be gated onto control
line Y, by code 0010.

rows and (8) columns this array is ealled a rectangular diode matriz. Assume
that the binary outputs are ¥ = 0 V for binary 0 and ¥ = 12 V for binary 1.
If a FLIP-FLOP is set (storing a 1) then the right-hand output is at 12 V, but if it
stores a 0 then the left-hand output is at 12 V. The left-hand output Y is, of
course, the complement of the right-hand output Y. Let us now conﬁrm
that the diodes are correctly positioned to perform the desired decoding.
Consider, for example, line 13. Note that the diodes are’ connected to the
code 1101, which is the binary equivalent of the decimal number 13. For this
1101 code all the cathodes to the diodes are at 12 V and the output on line 13
rises to 12 V. In other words, this line is excited—it is a binary 1. For any
other code, at least one of the diodes connected to line 13 is at 0 V and the
output is clamped to 0 V. The reader should confirm that all the diodes follow
this logical pattern. For example, line 2 is excited if and only if the code.
corresponds to the binary representation of decimal 2, namely, 0010.

It should be clear that the decoder is simply a diode AND gate and that
an equivalent representation for Fig. 9-43 is given in Fig. 9-44. Only the-
AND gates for channels 2 and 13 are indicated but, of course, there are a total
of 16 four-input AND gates. If only the first 10 lines are used namely those
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labeled 0, 1, 2, . . ., 9, then this translational network converts from a
binary-coded decimal (Bcp) to a decimal number.

If in the diode matrix of Fig. 9-43 n flip-flops are used, the number of
switch combinations, instructions, or positions available will be 27, and in this
case (n)(2") diodes will be required in a rectangular array. For example, a
256-position switch will require 2,048 diodes. It turns out!* that where the
number of switch positions is 16 or more, it is possible to rearrange the network
into other than a rectangular array, with an attendant saving in diodes. For
example, the most economical 256-position switch requires only 608 diodes,
against 2,048 for the rectangular array. The effect of the finite back resistance
of semiconductor diodes used in a multiposition switch is considered in Ref. 14.

Decoder Applications Suppose that for a specific code (say 1101) it
is desired that a signal Xy; (in the form of a pulse train) appear on line V3.
This is accomplished, as indicated in Fig. 9-44, by adding a fifth input X,
and a fifth diode to the AND gate which controls output ¥;.

In the above application each code ean, of course, control a different
signal X; on the kth line. If instead of this parallel operation it is desired that
all signals appear serially on one line—but each signal in response to its own
control code—then the outputs Y, in Fig. 9-44 are applied to an or circuit.
This configuration is an example of two-level aAND-oR logic. An alternative,
slightly simpler arrangement, but one which has the disadvantage that it
does not use standard logic packages, is indicated in Fig. 9-45.

The decoder circuit may also be used as an electronic distributor or
commutator. Suppose that in Fig. 9-43 the binaries are coupled together
in such a way that they may be pulsed from one code to the next in succession:
0000, 0001, 0010, . . . , 1111, 0000, 0001, etc. (such an arrangement is called

X, AW

X /
0 x \
\\ \ ) ﬂ_‘ Output
I

X 0NV

¥

7é Y Té oY
2! 2°
Fig. 9-45 A code-operated switch used for direct gating of
four signals onto the saome line.
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Input Outputs Y, Y, Y, Y,
Y, Y, | Yal Y, Ai\ \& \\

A 1 1 1 0

B 0 0 1 1 B

c 1o 1|1 \9\ \

X

1ii

(a) ®

Fig. 9-46 An encoder. The diode matrix in (b) follows the logic
in (0).

a scale-of-16 counter and is discussed in Sec. 18-1). The circuit will then com-
mutate from one channel to the next at the occurrence of each input pulse.

The Encoding Process The decoding process is one in which a binary
code establishes the state 1 on one (and only one) of a number of output lines. -
For example, in Fig. 9-43 the code stored in the form of FLIP-FLOPS selects any
one of 16 channels. The inverse process is called encoding. In this process

" there are a number of input lines and a code is generated depending on which
of the input channels is in the binary state 1. For example, consider the situa-
tion in which there are three inputs and the code is to have four binary digits.
Such a situation is represented in the table of Fig. 9-46a. This table is to be
interpreted to mean that if 4 = 1 then

Yl =1 Yz =1 Y3 =1 Y4 =0 ete.
Clearly, the or connective is invoked here at each output line because
Yi=44C Y,=4 Y;=A44+B+C Y, =B+ C

The diode matrix for this encoder is indicated in Fig. 9-46b.

A binary-coded decimal (Bcp) encoder which converts the decimal num-
bers 0, 1, 2, . . ., 9 into the binary code is indicated in Fig. 9-47. Note,
for example, that since it is necessary to excite the 22 channel for any decimal
number whose binary code contains 22, then or diodes will be connected to this
line from switches 4, 5, 6, and 7. For permanent storage the set terminal S
of a flip-flop would be connected to each output channel. The reset terminal
R would be excited from the 0 line.

Finally, the problem of converting one code into another is a combination
of the two situations treated above. The first code is decoded as in Fig. 9-43
and then encoded as in Fig. 9-46.



Sec. 9-16 ) LOGIC CIRCUITS / 353

23 22 21 0
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Fig. 9-47 An encoding matrix to
transform a decimal number into a

binary code (BcD).
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9-16 RESISTOR-TRANSISTOR LOGIC? (RTL AND RCTL)

In addition to the logic configurations we have already considered—diode
logic, diode-transistor logic, and emitter-follower logic—there are several other
possible systems.'* We shall now show how the Nor (NAND) gate may be
implemented in some of these other configurations.

If in the pTL circuit of Fig. 9-28b we omit the diodes and fan in through
15-K resistors, as in Fig. 9-48, then we have the resistor-transistor logic NoRr
gate, RTL (or {ransistor-resistor logic, TRL).

Fig. 9-48 Resistor-transistor V@)=12V
positive NOR (negative NaND) logic
gate.

V(0)=0V
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EXAMPLE Verify that the rTL circuit of Fig. 9-48 obeys Nor logic. Neglect
junction voltages and source resistance.

Solution If all inputs are in the zero-voltage state, then the base is connected
through the three 15-K resistances in parallel, or through 5 K to ground. The
open-circuit base voltage is

: 5
=—-a{=)= —o.
Ve ( )(105) 57V

which is sufficient to reverse-bias Q. Hence, the outputis at 12 V,or ¥ = 1.
Assume that with one input in the 1 state, @ is in saturation. The equivalent
circuit is indicated in Fig. 9-49a. The base current is

Since the collector current is I¢ = 12/2.2 = 5.5 mA, then Q is indeed in saturation

if hpg > 5.5/0.68 = 8,
If more than one input is excited, then the transistor is driven further into
saturation. For example, if all three inputs are in state 1, then, from Fig. 9-49%,

Hence, if krz > 8 and if one or more inputs are at 12 V, the output is at Vez(sat),
or Y = 0, and Nor logic has been performed.

The rTL gate has a relatively slow transient response, particularly if all

inputs are excited so that the transistor is driven heavily into saturation. By
using capacitors across the input resistors the minority-carrier storage time
(Sec. 20-21) can be reduced. Such a configuration is indicated in Fig. 9-50
and is called resistor-capacitor-transistor logic (rctr). The disadvantage of
this circuit is that it is susceptible to high-frequency noise (spikes), which
passes from the input to the transistor base through a capacitor. There is also
cross talk between input channels because of the capacitors. We have already

15K Iy 12v 5K I
o—AA\N\VN—
100K
~12V = ) -12V

(a)

Fig. 9-49 An example of an RTL NOR gate. (a) Twoinputs
are low (0 V) and one input is high (12 V); (b) all three
inputs are high.
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Fan-in of 3 m—«

15K
100K

Fan-out of 4

-12V

Fig. 9-50 A posifive NOR RCTL gate with a clamped output.

noted that in prL this difficulty is minimized because of the isolation between
inputs afforded by the diodes.

The clamping diode indicated in Fig. 9-50 serves several purposes. As
already emphasized, it improves the switching speed (Sec. 9-9). It also
. stabilizes the output voltage level since it makes it independent of the loading
(Sec. 8-13). Finally, if this circuit drives similar rRTL gates, then the current
to saturate the following transistors becomes independent of the fan-out,
provided that a diode clamp is used and so long as the loading is not so heavy
that the clamp diode stops conducting.

In any logic configuration the number N of inputs is called the fan-in, and
the number M of outputs is called the fan-out. For example, in Fig. 9-50,
N = 3and M = 4. In the case of resistor-transistor logic the maximum value
of N is determined by the condition that, when all the inputs are in the 0 state,
" the transistor Q@ must remain oFF even at the highest operating temperature.
The maximum value of M is determined by the condition that, when @ is OFF,
all M of the following stages must be driven into saturation even at the lowest
temperature.

9-17 DIRECT-COUPLED TRANSISTOR LOGIC (DCTL)%8:18

Consider the positive Nor cireuit of Fig. 9-51, consisting of the three CE tran-
sistors Q1, @2, and Q3 with collectors tied together. The fan-in is obviously 3
and the fan-out is 2 sincé the output feeds the two transistors @4 and Q5.
The input to Q1 comes directly from the output ¥’ of a previous nor. Since
no resistors, capacitors, or diodes are used between stages, such a system is
called direct-coupled transistor logic (DCTL).
» To verify that the circuit implements Nor logic, consider first that all
inputs are in the 0 state. Because this low voltage to an input (say to Q1)
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Vee

Vee Re
4
R ? Vac
(]
Y R,
Q2 Q3
Q5
Uz Us
L —
T T T
Preceding stage NOR Fan-out

Fig. 9-51 A positive NOR DCTL gate.

comes from a saturated transistor (Q’) of a preceding state,
LU= VCE(SB,t) = V(O)

Since this voltage is, say, 0.25 V for a heavily saturated silicon transistor,
and since the cutin voltage V, = 0.5 V, @1 will conduct very little (although
theoretically it is not at cutoff, which requires approximately zero bias). Since
the current in Q1 is almost zero, the output Y is at Ve and Q4 and Q5 are in
saturation. Hence the output Y is clamped at

Vee(sat) = V(1) = 0.7V

for silicon. Thus, with all inputs in the low state the output is in the high
state.

Consider now that at least one input v; is in the high state. Since Q1
is fed from @', @’ is cut off and Q1 is driven into saturation. Under these
circumstances the output V is Veg(sat) = V(0). If more than one input is
excited, then the output will certainly be low. Hence, we have confirmed
that the NoRr function is satisfied.

There are a number of difficulties with pcrn. The reverse saturation
current for all fan-in transistors adds in the common collector-circuit resistor
R.. At high enough temperatures the total I¢czoR. drop may be large enough
so that the output Y is too low to drive the fan-out transistors into saturation.
Further, because of the direct connection, the base current is almost equal
to the collector current [for Vec 3> Veg(sat) and Vee 3> Vpg(sat)]l. With a
transistor so heavily driven into saturation, very large stored base charge will
result, with a corresponding detrimental effect on the switching speed. Since
the voltage levels are so low—the total output-voltage step is only of the order
of 0.5 V for silicon and 0.25 V for germanium—then spurious (noise) spikes
can be troublesome. The -bases of the fan-out transistors are connected
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together. Since the input characteristics can never be identical let us assume
that Q@4 has a much lower Vg for a given I than does @5. Under these
circumstances, @4 will “‘hog” most of the base current, and it is possible that
Q5 may not even be driven into saturation. Hence, transistors suitable for
perTL must have very close control on uniformity of input characteristics, very
low values of I¢po, as large a differential as possible between Vpg(sat) and
Ver(sat), a large hrg, and a small storage time.

The advantages of pcrn are: (1) the need for only one low-voltage sup-
ply (operation with 1.5 V is possible), (2) transistors with low breakdown
voltages may be used, (3) the power dissipation is low, and (4) this configu-
ration is advantageous for integrated-circuit manufacture because transistors
are cheaper to fabricate with integrated techniques!® than are resistors or
capacitors.

We shall conclude this section with a few random observations. In
DCTL & NOR Or NAND circuit is possible in which the fan-in transistors are in
series rather than in parallel as in Fig. 9-51 (Prob. 9-43). The pcTL FLIP-FLOP
is discussed in Sec. 10-10. There is no counterpart to pcTL using tubes,
because the grid of one stage cannot be directly connected to the plate of the
preceding triode without drawing excessive grid current.

Finally, the pcru circuit may be modified in order to circumvent some
of the above disadvantages. The variability of Vgr(sat)-—the current-hogging
difficulty—may be minimized by including a resistor R, in series with the base.
With this addition the base current depends primarily on Vee, R, and R,
as long as Ve > Viee(sat). To reduce storage time, R; should be bypassed
with a capacitor. A further modification consists in returning the base through
a resistor R, to a reverse-biasing source. Such a connection makes the opera-
tion of the circuit less sensitive to variations in V¢g(sat) and ensures cutoff in
the transistor which is supposed to be reverse-biased. If these modifications
are made each transistor takes the form of the INVERTER of Fig. 9-15. Several
inverters, with collectors connected together, can therefore function as a Nor
circuit. This configuration—it might be called iransistor or tube logic (TL)—
is seldom used because it is more expensive than TRL or DL.

9-18 LOW-LEVEL LOGIC215 (DTL AND TTL)

The pTL circuit of Fig. 9-25 may be modified by replacing the R,C: combina-
tion by one or more silicon diodes D1, as indicated in Fig. 9-52. When at least
one input is at V(0) = V¢g(sat) =~ 0.3 V, the voltage at P is the sum of V(0)
and the diode voltage Vp ~ 0.6 V. At a coincidence the voltage at P rises
to equal the sum of Vp; (= 0.6 V for one diode, 1.2 V for two series diodes,
etc.) plus Vpg(sat) = 0.7 V. Since the swing at point P required to drive the
transistor from cutoff to saturation is of the order of 1 V, this configuration is
called low-level logic (LLL). It is also referred to as current-switching diode logic
(cspL) because the current in a diode D connected to an input in the V(0) state
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Fig. 9-52 A positive-NanD low-level-logic (LLL) gate. (a) A pTL gate
(two or three diodes in series may be used for D1; also, Vs may be
ground); (b) a TTL gate.

is switched through D1 into the base of the transistor whenever all inputs are
excited to the V(1) state.

Since, as mentioned above, only a low voltage swing is required, then"
the output may be clamped at, say, 3 V. As already emphasized, such
clamped operation means improved switching speed. In order to make the
circuit less susceptible to noise voltages, more than one diode may be con-
nected in series for D1. Of course, the required voltage swing is then increased
by the drop across these extra diodes. It is also possible to return the base
terminal to the emitter through R, and thus eliminate the Vg supply. This
simplification means that the transistor will not be theoretically cut off, but
will operate with Vpz =~ 0 and hence the collector current will be very small.
Even in this cutoff condition the noise immunity is excellent because the series
diodes are reverse-biased.

The diodes D and D1 of Fig. 9-52a may be replaced by the base-to-emitter
diode and the base-to-collector diodes, respectively, of a transistor.!® This
all-transistor configuration is especially simple if integrated-circuit techniques
are used because it is then not difficult to fabricate a multiemitter transistor.?
(See Fig. 17-31 for constructional details.) A one-power-supply version of this
transistor-transistor logic gate (TTL) is given in Fig. 9-52b. Tt is capable of high
speed at low power levels but may be noisier than pTL.

9-19 CURRENT-MODE LOGIC (CML OR ECTL)215.18

In order to eliminate minority-carrier storage time, a transistor must not be
allowed to go into saturation. In Sec. 7-0 the nonsaturating emitter-coupled
. clipper circuit of Fig. 7-14b is discussed. It is found that the emitter current
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—VCC
Y=A+B+C _
o— Y=A+B+C
A B c - Vag
Re
Vee

Fig. 9-53 A positive NOR ECTL gate.

remains essentially constant and that this current is switched from one transis-
tor to the other as the input signal varies from below to above the reference
voltage — Vs, By adding several input transistors in parallel this circuit
becomes the current-mode logic (cML) or emiiter-coupled transistor logic (ECTL)
of Fig. 9-53. Complementary outputs are available. A positive NoR results
when the output is ¥ and a positive or is obtained at the ¥ terminal. One
of the difficulties with this configuration is that the V(0) and V(1) levels in
the output differ from those in the input. Hence, avalanche diodes and
emitter followers must be used in the output to provide the proper d-c level
shift. The possible higher speed obtainable with gcTL is offset by the increased
power dissipation and the increased component count.

9-20 COMPARISON OF LOGIC CIRCUITS5-1®

" In the discussion of each logic configuration some of its advantages and dis-
advantages have been listed. An exhaustive comparison is extremely difficult
because we must take into account all of the following characteristics: (1)
speed (propagation time delay), (2) noise immunity, (3) fan-in and fan-out
capabilities, (4) power-supply requirements, (5) power density when packaged,
(6) suitability for integrated fabrication, (7) reliability, (8) maintainability,
and (9) cost. Also to be considered is the personal prejudice of the engineer,
who is always strongly influenced by past experience.

1t should be clear that there can be no single logic configuration best suited
for all applications. Different manufacturers!® have available in integrated
form the types of logic discussed above, there being no decided preference for
one type over the other. On the other hand, however, the manufacturers of
logic cards using lumped components (with operating repetition rates of up
to a few megacyecles per second) seem to favor prL.
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BISTABLE
MULTIVIBRATORS

A bistable circuit is one which can exist indefinitely in either of two
stable states and which can be induced to make an abrupt transition
from one state to the other by means of external excitation. In this
chapter we consider two-stage regenerative amplifiers which behave as
bistable circuits. Such interconnected amplifier pairs are known by a
wide variety of names, such as bistable multivibrator (multit), Eccles-
Jordan circuit (after the inventors), trigger circuit, scale-of-2 toggle
circutl, flip-flop,t and binary. A bistable multi is used for the perform-
ance of many digital operations such as counting and the storing of
binary information. The circuit also finds extensive application in the
generation and processing of pulse-type waveforms.

10-1 THE STABLE STATES OF A BINARY

The circuit diagram of a flip-flop is shown in Fig. 10-1. The active
devices A1 and A2 are either tubes or transistors, so that the input X
is either the grid of a tube or the base of a transistor, the output Y is
either the plate of a tube or the collector of a transistor, and Z is
either a cathode or an emitter. The indicated supply-voltage polari-
ties are proper for an n~p-n transistor or for a tube and must be reversed
if a p-n-p transistor binary is under consideration. Note that the
output of each amplifier is direct-coupled to the input of the other
amplifier (inverter). Compare with Fig. 9-39. ;
Because of the symmetry of the circuit we might expect the

t The jargon terms “‘multi” and “flip-flop” are firmly entrenched in the
3
literature,

362
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Fig. 10-1 A binary circvit. |If the
active devices are tubes, then

Vyyr = Ver, Vxx = Ve, and

R, = R,. If the devices are tran-
sistors, then Vyy = Vec, Vxx = Vs,
ond R, = R..

- quiescent currents in each amplifier to be the same. Such would indeed
. be the case if both devices were biased negatively enough to be cut off or
if both were biased so positively as to be in clamp (if tubes) or in saturation
(if transistors). These extreme cases turn out to be of little practical interest. -
. Let ug investigate whether or not it is possible for both devices also to operate
normally (within the grid base, if tubes, or within the active region, if transis-
tors) and simultaneously to carry equal currents. In such a circumstance
it is possible to find currents I, = I, which are consistent with the device
characteristics and with Kirchhoff’s laws, and hence such a state of the binary
is an equilibrium state. This state, however, is one of unstable equilibrium,
as may be seen from the following considerations.

Suppose that there should be a minute fluctuation in the current I,. If
I, increases, the voltage at the output Y, will decrease. This will then decrease
the voltage at the input X,. This change in voltage at X will be amplified
and inverted by A2 and the output voltage at Y, will increase. Hence the
voltage at X; will become more positive, and as a consequence the current I,
will increase still further. This cycle of events repeats itself. The current I,
continues to increase and the current I, continues to decrease, the circuit
moving progressively further away from its initial condition. This action
takes place because of the regenerative feedback incorporated into the circuit
and will occur only if the loop gain of the circuit is larger than unity. _

From the above discussion it is clear that a stable state of a binary is one
in which the currents and voltages satisfy Kirchhoff’s laws and are consistent
with the device characteristics and in which, in addition, the condition is
satisfied that the loop gain is less than unity. The condition with respect
to the loop gain will certainly be satisfied if either of the two devices is below
cutoff or if either device is in clamp or in saturation.t In principle, in order
that a flip-flop be in a stable state, it would be sufficient either that one of the
devices be oFF or that one be on.

For practical reasons, to be discussed now, the arrangement almost
invariably employed is one in which one of the devices is oFr and the other

t A tube in clamp or a transistor in saturation will henceforth be designated as a device
which is oN, whereas an orr device is one biased below cutofl.
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is oN. Consider, for example, that one amplifier is below cutoff and the other
is biased in its active region. As the temperature changes or the devices
age and the device parameters vary, the quiescent point changes and the out-
put voltage may change appreciably. Even more serious is the possibility
that a larger drift may cause the device that was assumed to be operating
in its active region to be driven below cutoff. In such a case both devices
in the binary would be below cutoff and the circuit would be useless.

In practice, we should like to be able to assemble these flip-flops using
components which are held to a tolerance no better than about 10 percent.
And we should like to feel confident that the binary will continue to operate
as the devices age or are replaced and despite reasonable variations in supply
voltages and ambient temperature. For these reasons the flip-flop is usually
adjusted so that in a stable state one device is well below cutoff while the other
is well in clamp or in saturation.

10-2 A VACUUM-TUBE BINARY

In the flip-flop of Fig. 10-2 the component values and supply voltages indicated
are typical for use with the medium-u vacuum triode such as the type 5965.
The useful signal at the plate, called the output or the plate swing V,, is the
voltage change corresponding to a transition from one stable state to the other.
Since the fraction of the plate swing which is coupled across to the opposite grid
depends only on the ratio of the resistances R; and R,, these resistances are
usually made large enough compared with the external plate-circuit resistance
R, so as to avoid loading the amplifier output excessively. The plate swing
for a given tube is determined by Vep and R,. Since the plate characteristic
for V¢ = 0 can be approximated by a straight line through the origin with a
slope given by the plate resistance r,, then for B, = r,, V, = Vpp/2. If R,
is very much larger than r,, then the plate swing may approach the full plate
supply voltage. However, too large a value of R, adversely affects the maxi-
mum speed with which the flip-flop may be made to operate (Sec. 10-5).

TVPP (250V)

5965
o wbe B2,

Fig. 10-2 A typical vacuum-tube
binary circuit. The values in

parentheses refer to the example
: on page 365.

&— Vg (~150V)
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Fig. 10-3 The circuit of Fig. 10-2 redrawn to indicate the connecﬁoﬁs
between (a) the plate of V2 and the grid of V1 and (b) the plate of V1
and the grid of V2.

Hence, R, is usually chosen to be of the order of r, (tens of kilohms), whereas
the magnitudes of R; and R, are hundreds or thousands of kilohms.

The procedure for calculating the circuit currents and voltages in a stable
state is particularly simple if we take advantage of the fact that R; and R, -
are large in comparison with R, and large also in comparison with the grid-to-
cathode resistance r¢. In such a case the tube which is in clamp will be
tightly clamped, and we shall not make a serious error if we consider that the
grid-to-cathode voltage is zero. Furthermore, in such a case the current in
the conducting tube may be considered to be identical to the current through
its resistor R,. A typical calculation is given in the following illustrative
example.

EXAMPLE Compute the stable-state currents and voltages for the binary circuit
of Fig. 10-2. The triodes are the two sections of a type 5965 vacuum tube (Fig.
D-9).

Solution The analysis is clarified if we draw two circuits, Fig. 10-3a—showing
the connections between the plate of V2 and the grid of V1—and Fig. 10-3b—
indicating the connections between the plate of V1 and the grid of V2. Let us
assume that V1 is cut off and V2 is in clamp with a grid-to-cathode voltage equal
to zero and then verify that these assumptions are valid.

To find the plate voltage at V2, we neglect the loading of R, and R; and draw
a load line corresponding to 47 K and 256G V on the plate characteristics of the
tube. The plate current and voltage for V¢, = 0 are found to be V», = 33 V and
I. = 4.6 mA. ‘

We must now check to see whether or not V1 is indeed cut off when V2 is in
clamp. The grid voltage of V1 is calculated from the equivalent circuit of Fig.
10-3a. The voltage Vg is calculated by superposition to be

27! 220

0
Veoy =83 — = 4 (—150) — ==~ = —49V
@ 220 +270 T ¢ ) 320 + 270
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The plate voltage Vp, of V1 is calculated from Fig. 10-3b with Vg, = 0. We find
Ve = 250 X 220/(220 + 47) = 206 V. Since, at a plate-to-cathode voltage of
206 V, cutoff occurs at —8 V (Fig. D-9), V1 is well below cutoff. Note that the
voltage at the plate of the oFF tube is not equal to the supply Ver (= 250 V)
because of the loading of the divider R;.

We must now check to see whether V2 is in clamp when V1 is cut off. If
the grid of V2 were not drawing grid current, then, from the equivalent circuit
drawn in Fig. 10-3b, the voltage Vg2 would be

270 220 + 47

Vor =250 v zor a7 T T oo+ a7
This 50 V is applied to the grid of V2 from a source whose Thévenin’s equivalent
impedance is equal to the parallel combination of By + B, and R,. Thisequivalent
impedance is 134 K. If we calculate the grid voltage by considering that the grid-
to-cathode resistance is r¢ = 250 Q (Sec. 6-19), we have

Ve = 50 025 _ 010V
134

=50V

This same result can be obtained by multiplying the short-circuit current by
the impedance from @, to ground. Thus
250 150

Ves=(—2—=1025 =010V
267 270

Hence V2is indeed in clamp, and we have made only a very small error in assuming
that the grid-to-cathode voltage is zero. Actually, as we know from the discussion
of Sec. 6-19, V4 may well be some tens of millivolts negative. Similarly, if the
loading of R, and R, is taken into account by drawing the Thévenin’s equivalent
from the plate of V2 to ground, the value of Vp. is found to be 32 V instead of 33 V.
These errors may well be smaller than the error involved in applying the average
tube characteristics to a particular tube. To summarize, in the stable state we
have approximately

Il=0mA Vp|=206v V01=-‘49V
I, =46 mA Ve =33V Va2 =0V
The output swing is V,, = 206 — 33 = 173 V.

The binary has two stable states. In one state V1 is cut off and V2 is in
clamp. In the second state V2 is cut off and V1 is in clamp. The principal
importance of the flip-flop results from the fact that it is possible, by a variety
of means, to transfer the binary from one stable state to the other. Suppose,
for example, that the grid of the oFF tube were momentarily shorted to ground.
This orF tube would go o~ and in so doing would turn oFF the tube that was
initially on. This condition would again persist permanently even after the
short circuit is removed. This means of transferring conduction, however, is
not ordinarily useful. More practically useful methods will be considered
later.
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In most applications the transistor flip-flop is displacing the vacuum-tube
binary. Hence, the emphasis in the remainder of this chapter will be on the
semiconductor bistable circuit. '

10-3 A FIXED-BIAS TRANSISTOR BINARY

A fixed-bias flip-flop using n-p-n transistors is indicated in Fig. 10-4. Nearly
the full supply voltage V¢c will appear across the transistor that is orr. The
condition that the supply voltage be reasonably smaller than the transistor
collector breakdown voltage BVcg (Sec. 6-9) will usually restrict Ve to the
order of several tens of volts. This supply voltage is to be compared with the
several hundred volts used with vacuum tubes.

Under saturation conditions the collector current I¢ is a maximum,
Hence, R. must be chosen so that this value of I¢ (= V¢e/R.) does not exceed
the maximum permissible current. The values of R,, B, and Vzs must be
selected so that in one state the base current is large enough to drive the
transistor into saturation whereas in the second state the emitter junction
must be below cutoff. The signal at a collector, called the output swing V.,
is the change in collector voltage resulting from a transition from one state
to the other, or V,, = V¢, — Vo, If the loading of R, can be neglected, then
the collector voltage of the orr transistoris Vee. Since the collector saturation
voltage is a few tenths of a volt, then the swing V,, = V¢c independently of R..

Manufacturers of switching transistors useful in flip-flop circuits usually
specify the cutoff and saturation characteristics. The reverse saturation
current Icpo is given as a function of temperature (Sec. 6-8, Fig. 6-14). The
d-c¢ CE current transfer ratio hrg is specified as a function of collector current
I¢ (Sec. 6-12, Fig. 6-23). The saturation voltage Veg(sat) is given as a func-
tion of I and base current Iz (Sec. 6-12, Fig. 6-22). Also, Vzg(sat) versus
Ic and Ip is specified (Sec. 6-13, Fig. 6-26). The temperature dependence of
the saturation parameters is often indicated (Fig. 6-27). We shall demon-
strate by the solution of illustrative problems and by subsequent discussions

TVCC azv)

Fig. 10-4 A fixed-bias
n-p-n transistor binary.
The valves in parentheses

refer to the example on
page 368.
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that these parameters [I¢so, hrg, Ver(sat), and Vgg(sat)] are sufficient to allow
an analysis of transistor binary circuits.

EXAMPLE Calculate the stable-state currents and voltages for the flip-flop
circuit of Fig. 10-4, consisting of two cross-coupled INVERTER circuits whose
parameter values are those given in Fig. 9-16. Assume that the transistors have
a minimum hrz value of 20.

Solution The analysis is carried out by drawing two circuits—Fig. 10-5a, showing
the connections between the base of Q1 and the collector of @2, and Fig. 10-5b,
indicating the connection between the collector of @1 and the base of Q2. These
equivalent circuits are analogous to those in Fig. 10-3 for the vacuum-tube binary.
Assume that transistor Q1 is OFF and transistor Q2 is oN. Since the saturation
voltages are small (a few tenths of a volt), let us initially neglect them altogether
and assume that Vg, = 0 and V¢. = 0. From Fig. 10-5a we can verify that, with
Q2 in saturation, @1 is oFF. Thus, if we neglect /¢ 3o,

VBl = —]2 i—‘ = —156V
15 + 100

Since a back bias of only about 0.1 V (Ge) or 0 V (Si) is required to cut off an
emitter junction (Table 6-1, page 219), @1 is indeed OFF.

To verify that with @1 beyond cutoff, Q2 is in saturation, we first calculate
Ice. From Fig. 10-6a, and continuing to neglect Iczo,

2 15 4+ 100

[\

I, = = 0.10 mA

[

and
Icz = 11 - Iz = 5.45 —_ 0.10 = 5.35 mA

(In this illustration I, is negligible compared with Z,, but in many binary designs
such is not the case.) If the transistor type had been specified, then the minimum
base current I p. required for a collector saturation current of 5.35 mA could have

Fig. 10-5 Equivalent circuits for computing the stable states of the binary
circvit with the parameters given in Fig. 10-4.
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been read from the collector characteristic curves. Since in this example hrz was
specified but no curves were supplied, we may use the alternative procedure of
finding the minimum ] 5, for saturation from

(I32) min = Tor 535 _ ) orma
20

hFE
From Fig. 10-5b we can find the base current of Q2. Thus

Ia=—£—-—=0.70mA I4=E=0.12mA
22+ 15 100

and
Ipo =1 —I,=0.70 — 0.12 = 0.58 mA

Since this value exceeds the minimum base current (0.27 mA) required for satura-
tion, we have verified that Q2 is indeed in saturation.
The collector voltage of Q1 is, from Fig. 10-5b,

Ver =12 — 221, = 12 — (2.2)(0.70) = 10.5 V

In summary, a stable state of the binary is characterized by the following voltages
and currents:

Iei = 0 mA Ios = 5.35 mA Ipg; = 0mA Ips = 0.58 mA
Ver =105V Ve =0V Vei= —1.56V Ve =0V

The second stable state is one in which Q2 is oFr and Q1 is oN and the above cur- .
rents and voltages are interchanged between @1 and Q2. The output swing is
Ver — Vea = 10.5 V, which approaches the collector supply voltage of 12 V.

The assumptions (that Vg, = 0 and V¢, = 0) made in this example may be
removed by referring to the manufacturer’s curves. For example, if the transistors
are silicon type 2N914, then corresponding to Iz = 0.58 mA and Ic: = 5.35 mA
(Icz/Is, = 9.2) we find Vegs(sat) = 0.15 V from Fig. 6-22 and Vzes(sat) = 0.7V
from Fig. 6-26. Using these voltages we can recalculate the stable-state currents
and voltages. For example, from Fig. 10-5a with V¢: = 0.15 V, using the super-
position principle,

15 100
Vo1 = —12{ ————— 015{ ———— )= —-143V 10-1
o (15 + 100) +0.15 (15 + 100) (10-1)

and @1 is oFr. From Fig. 10-5a we also find

12 - 0.15 0.15 + 12
IL=——" =35, A I,=—"—— =011mA 10-2
' 2.2 539m ' 15+ 100 (102
5.28

IC2 = Il - Iz = 5.28 mA (IB2)min = —26 = 0.26 mA (10-3)

From Fig. 10-5b, with Vg, = 0.7V,

- . 12
u = 0.66 mA I, = 27_"'_

- =0.13 mA (10-4)
2.2+ 15 100
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and Iz, = Is — I, = 0.53 mA. Since this value of Ip: exceeds

(IBz)min = 0.26 mA
Q2isoN. Since Vei = 12 — (0.66)(2.2) = 10.5 V, the new values of a stable

state are
Ic,=0mA Icg=5.28mA 131=0mA Inz=0.53mA
Vc; = 105 V ch = 0.15 V VB] = "'143 V VBz = 0.7 V

If these new values of I¢s and Ip: are used in Figs. 6-26 and 6-22, we again find
Vere(sat) = 0.7 V and Vera(sat) = 0.15V, so that no further calculations are
required.

We note by comparing the two sets of values obtained above that a
small error results from assuming that a transistor in saturation behaves
as an ideal short circuit. Often this error can be neglected, particularly if the
applied voltages are large compared with the junction voltages.

In the calculations given above of the stable states of a flip-flop we
neglected initially the voltages across the saturated transistor. Thereafter,
on the basis of the results of this initial calculation, we determined the transis-
tor voltages and made an improved calculation. We may arrive at our end
result more expeditiously if we recognize that over a wide range of operating

- conditions of low- and medium-power transistors, the saturation voltages are
fairly closely approximated by the values in Table 6-1 (page 219).

The peak emitter-junction breakdown voltage BV gso and the variations
of hrr and I¢po with temperature must be taken into account in designing
transistor flip-flops. These limitations are discussed in detail on page 324 in
connection with the transistor inverter.

Loading The binary may be used to drive other circuits, and hence at one
or both collectors there are shunting loads which are not indicated in Fig. 10-4.
These loads must be taken into account because they reduce the magnitude
of the collector voltage V¢y of the orr transistor. The first effect of the
loading is to give a reduced output swing. More importantly, however, is
the fact that a reduced V¢, will decrease I 5; and it is possible that Q2 may not
be driven into saturation. Hence the flip-flop circuit components must be
chosen so that under the heaviest load which the binary drives, one transistor
remains in saturation while the other is cut off.

Since the resistor R, also loads the oFr transistor, we should like to use
a value of R, which is large compared with E.. However, to ensure a loop
gain in excess of unity during the transition between states the inequality
R; < hseR. must be satisfied (Prob. 10-6).

For some applications (in computers) the loading varies with the operation
(the “logic”’) being performed. For such a circuit, the extent to which a
transistor is driven into saturation is variable. A constant output swing
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Rc V< VCC Rc

To circuit to T To circuit to
bedriven be driven

~ Ve

Fig. 10-6 The binary of Fig. 10-4 with collector catching
diodes D1 and D2 added.

V» = V and & constant base saturation current Iz, can be obtained by clamp-
ing the collectors to an auxiliary voltage V < V¢ through the diodes D1
and D2, as indicated in Fig. 10-6. As Q1 cuts off, its collector voltage rises,
and when it reaches V, the “collector catching diode” D1 (Sec. 8-13) con-
ducts and clamps the output to V (except for the small drop in the diode).
The effect of loading must be taken into account with a vacuum-tube flip-flop
as well as with a transistor binary.

10-4 A SELF-BIASED TRANSISTOR BINARY

The need for the negative power supply in Fig. 10-4 may be eliminated by using
a common emitter resistor R, to provide self-bias, as in Fig. 10-7. The

7" Voo (~12V)
R
K3 g, Re

(30K) R,
Fig. 10-7 A self-biased p-n-p tran- Q1 Q2
sistor binary. The numerical values ‘
refer to the example on page 372.

R, R,

(10K)
R,
(500 Q)
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procedure for calculating the stable states is, in principle, the same as is
employed for a fixed-bias flip-flop and is given in the following illustrative
example.

EXAMPLE Calculate the stable-state currents and voltages for the binary circuit
of Fig. 10-7, which uses p-n-p germaninm transistors. Find the minimum value of
hrz which will keep the oN transistor in saturation.

Solution Assume that Q1 is cut off and Q2 is in saturation. The connections
between the base of Q1 and the collector of Q2 are indicated in Fig. 10-8a, whereas
the connections from the base of Q2 to the collector of @1 are given in Fig. 10-8b.
In order to proceed further we must find the voltage V ey from the emitter to the
ground N. Since Vv = (I52 + Ic2)R. we must find the saturation currents from

(a)

)

Fig. 10-8 The circuit of Fig. 10-7 redrawn to indicate the connections
between (a) the base of Q1 and the collector of @2 and (b) the
base of Q2 and the collector of Q1.
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Fig. 109 The equivalent circuit
when Q2 in Fig. 10-7 isin saturation.

L
213V T 109V

L

the equivalent circuit for Q2 given in Fig. 10-9. In this diagram we have replaced
the collector circuit of Q2 in Fig. 10-8a by its Thévenin’s voltage

—Veo(Ri + Ry) _ (—12)(30 + 10) _

= = —-109V 10-5

R+ R: + R, 30 4+ 10 4 4 ( )
and its Thévenin’s resistance

BB+ Bo) _ (A0 _ 4o, (10-6)

Ei+ R+ R, 44

Similarly, the Thévenin’s equivalent of the base circuit of Q2 is obtained from
Fig. 10-8b as a voltage

—VeeR:  (—12)(10) _

= —-273V 10-7
Ri+ R+ R, 44 3 ¢ )
in series with a resistance

Ri+ R, + R, 44

Hence the equivalent circuit of @2 is as drawn in Fig. 10-9. Since a germanium
transistor is under consideration we shall assume, as in Table 6-1 (page 219), that
Vse(sat) = —0.3 Vand Ves(sat) = —0.1 V. The KVL equations are

2.78 — 0.3 4 I5x(7.73 4+ 0.5) + I¢4(0.5) = 0 (10-9)
and
10.9 — 0.1 + I52(0.5) + Ic2(3.64 + 0.5) = 0 (10-10)

Solving, we find Ip; = —0.138 mA and Ics = —2.59 mA. Hence
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The voltages in the circuit are now found from Fig. 10-8¢ and b:

Vexr = (Isz + Ien)R, = (—0.138 — 2.59)(0.5) = —1.36 v
Vewe = Veps + Ven = —0.1 —1.36 = —146 V
Vaene = Vage + Vey = —0.3 — 1.36 = —1.66 V

R,
Ven = VCN2R1+R2 = (— 146)( ) = —-037V

Ve = Vawi — Ven = —0.37 4+ 1.36 = 4099V

A positive value of Vsx of only about 0.1 V is required to cut off a p-n-p transistor.
Hence Q1 is certainly ofF.

From Fig. 10-8b,
—VecRy | VanRe _ (—12)(30) + (—1.66)(4) _
R+ R, R.+R: 34 34

Ve = —10.8V (10-11)

In summary, the stable state has the following values:
Tei = OmA Ic, = —2.59 mA Ip =0mA Ig = —0.14 mA
Vew: = —108V Vewe = —146V Venma = =037V
Vene = —1.66 V Vew = —1.36 V
The output swing is Vu = Vewe — Venn = —1.46 + 10.8 = 9.3 V.

In the above example we assumed values for Vsg(sat) and Vcr(sat) of
—0.3 and —0.1 V, respectively, and calculated I¢. and Ip» of —2.58 and
—0.14 mA, respectlvely Using these values of current we can find from the
manufacturer s saturation curves new values of Ver(sat) and Vps(sat) and
can then repeat the above calculations. Since we must work with average
transistor characteristics and with resistors known to about 10 percent and
since the voltage levels in a flip-flop need seldom be known with precision,
then a second approximation is seldom warranted.

The drop across the emitter resistor R, is nominally the same for the two
stable states. However, during the course of a transition, the emitter current
Ig will vary by Alg. In order to keep the emitter voltage Vzy almost con-
stant during the transition time Tz, a capacitor C. is used to bypass R..
The order of magnitude of C, is given by the condition that the change in
voltage across this capacitor is small compared with Ve, or (Alg) Tr/C. LK Vgn.
The stable states are, of course, not affected by the presence of C., but the ease
of inducing a transition between states and the rapidity with which the flip-flop
settles into its new state may be adversely influenced if the capacitor is omitted.

A self-biased multi using vacuum tubes and having a circuit configuration
analogous to that of the transistor flip-flop of Fig. 10-7 (but using a positive
supply voltage) is also possible (Prob. 10-12). For the oN tube the grid-to-
cathode voltage is taken as zero and the plate-to-cathode voltage is found by
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drawing the load line corresponding to R, + Ri on the plate characteristics
(neglecting the voltage drop across -R: due to grid current and assuming
Ri+ R, >» R,).

10-5 COMMUTATING CAPACITORS

A flip-flop will remain in one of its stable states indefinitely until it is induced
to make a transition as the result of a “triggering” signal, such as a pulse,
applied from some external source. There are many applications of flip-flops
in which it is desired to have a change of state take place as soon after the
application of an abrupt triggering signal as possible. The fransition time is
defined as the interval during which conduction transfers from one transistor (or
tube) to the other. The transition time may be reduced by introducing small
capacitances in shunt with the coupling resistors R, of the binary. A flip-flop
with such capacitors included is shown in Fig. 10-10. Because these capacitors
assist the binary in making abrupt transitions between states; they are known
as commutating, transpose, or speed-up capacitors. The usefulness of these
capacitors will be seen in the following discussion. To be specific let us assume
that the active devices are tubes or #-p-n transistors.

Let us consider that A2 is on and A1 is orF and that, to induce a transi-
tion, a negative step is applied at X,. The point ¥ will rise rapidly, and we
desire that this rapid rise be transmitted with minimum delay to X,. The
device A1 has an input capacitance C;, and in the absence of C,, the circuit
configuration consisting of R,, R, and C; constitutes precisely the uncompen-
sated attenuator discussed in Sec. 2-8. Even if the voltage at Y, rises with
negligible rise time, the voltage at X; would increase with a time constant RC,,
where R is the parallel combination of R, and R,. The speed with which X,
rises may be increased by the addition of the capaéitor C; in shunt with R,.
If the capacitor C; were arbitrarily large, then the waveform at X 1 would rise
as rapidly as does the waveform at ¥, and the full amplitude of the rapid rise

I Vyy

Fig. 10-10 A binary including
speed-up capacitors (C; = C)).
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would be transmitted through the capacitor. We shall now see, however, that
there is also some disadvantage in using a capacitance C, of large value.

The voltages across C; and C; are not alike because one stage is oN and
the other orr. For example, for the circuit of Fig. 10-4, the voltage across
€} i8 Vo1 — Ve = 9.8 V and the voltage across C1is Vea — Ve = 1.58 V
with A1 oFr and A2 on. When the circuit is triggered so that A1 is ox and
A2 oFF, then the voltage across C; must change to 1.58 V and that across
C: to 9.8 V. The flip-flop will not have settled itself completely in its new
state until this interchange of capacitor voltages has been completed. A
transition having been induced by a triggering signal, a certain minimum time
must elapse before a succeeding trigger will be able reliably to induce the
reverse state. The smallest allowable interval between triggers is called the
resolving ttme of the flip-flop, and its reciprocal is the maximum frequency at
which the binary will respond.

If the binary has been triggered so as to drive stage A1 oFr and A2 ox,
the equivalent circuit from which to calculate the time constant r associated
with the recharging of C, is given in Fig. 10-11a. (Compare this circuit with
that of Fig. 10-5a.) If the output impedance of A2 (including R,) is R,, then
7 = C1R, where R is the parallel combination of resistance R, and R; + R..
For a transistor in saturation, R, is very small compared with B,. For a
vacuum tube, it is usually true that R, >> R,, and since R, is always greater
than R, = R,r,/(R, + r,), little error is made in taking R =~ R R:/(R: + R.).

Similarly, from Fig. 10-11b we can find the time constant ' associated
with the recharging of C;. The input resistance of A, is R If a vacuum-
tube binary is under consideration, then R; = r¢ (the grid resistance) when this
electrode is driven positive. If a flip-flop uses transistors, then B; = 7 (the
base-spreading resistance). For either device R; seldom exceeds 1 K and
usually R; << R;. Hence v’ ~ CjR’, where R’ is the parallel combination of
R, and R, + R:. Since R, + R.is usually smaller than either B, or R,, then
7 > r’ and the larger of the two time constants is

R1R,Cy
B+ R,

O} is the commutating capacitance.

RC; ~ (10-12)

T

where C;

i

@ L ®)

Fig. 10-11 Equivalent circuits for computing the time constants with
which the commutating capacitors recharge.
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As the preceding discussion suggests, the complete transfer of conduction
from one device to the other involves two phases. The first of these phases
is the fransition phase, during which conduction transfers from one-active
device to the other. In order that this transfer take place, the voltage across
certain of the capacitances present in the circuit must change. In the binary
of Fig. 10-10 there are present capacitances to ground at the points X and Y.
These capacitances are the input and output capacitances of the tubes or
transistors and also the stray capacitances. None of these capacitances is
explicitly indicated in Fig. 10-10. But the voltage across these capacitances
must change if the devices are to switch between on and oFr.

On the other hand, the voltages across the capacitances C; and C} need
not change during the transfer of conduction. If the capacitors C; and Ci
were replaced by batteries whose voltages were set equal to the capacitor
voltages, then 'this substitution would in no way restrain the transfer of con-
duction. Hence these capacitors are permitted to complete their interchange
of voltage after the transfer of conduction has taken place. The additional
time required for the purpose of completing the recharging of capacitors after
the transfer of conduction is called the settling time. The resolution time is the
sum of the transition time and the settling time. Of course, however, there
is no clear-cut separation between the transition phase and the settling phase.

We may now see that if we make the commutating capacitors too small
we shall lengthen the transition time and if we make them too large we shall
lengthen the settling time. An engineering compromise is called for. In
the case of the vacuum-tube binary we find that a reasonable compromise
is reached when the capacitors C; and C; are adjusted so that the R.R.
attenuator is nominally compensated for the case where the attenuator is
applying a signal to the grid of a tube which is within its grid base. Since
under these circumstances the input capacitance is increased as a result of the
Miller effect, the attenuator is overcompensated when the grid is at cutoff
or in clamp. Such overcompensation is acceptable in the present case since
we are not concerned with preserving a waveshape but only with transmitting
a signal from a plate to a grid. If the input capacitance taking the Miller
effect into account is C;, then a reasonable choice for €, is

_ R.C:
Cl = Tl

In practical tube circuits we find that the commutating capacitors rarely
exceed 200 pF, are more usually in the range 50 to 75 pF, and may be, if
pentodes are used, as low as 10 pF.

In a transistor flip-flop the commutating capacitors serve the same purpose
a8 they do in the tube circuit. They aid the switching by causing the base
of one transistor to respond more rapidly to an abrupt change at the collector
of the other transistor. The situation is more complicated with transistors
than with tubes. This complication arises because, when in its active region,
a transistor stores charge in its base and when in the saturation region it
stores even more charge. The transistor cannot be brought from saturation

(10-13)
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to.cutoff until all this charge has been removed. The commutating capacitors
hasten the removal of this charge. A detailed discussion of the transient
switching characteristics of transistors, including an analysis of the delay
caused by this base charge, is presented in Chap. 20. For the present, let it
suffice to note that the values of commutating capacitors encountered in
transistor flip-flops are comparable to those found in tube circuits. They lie
in the range from. some tens to some hundreds of picofarads (Sec. 20-20).
High-speed transistors are available for which the storage-time delay
and the fall time are small compared with the settling time of the circuit.
Similarly, for tubes the transition time is generally smaller than the settling
time. It seems reasonable to assume that if a time 2r is allowed between
triggers, then all the transients will have died down sufficiently so that the flip-
flop ean be triggered reliably. In practice, this assumption usually leads to a
conservative estimate of the maximum frequency fmasx Of Operation, given by

1 -_-_1_=&_'t£2
mex T 2 2C1R1R:

where use is made of Eq. (10-12).

(10-14)

10-6 METHODS OF IMPROVING RESOLUTION

We consider first the vacuum-tube binary. A step in the direction of decreas-
ing the resolution time of the binary is clearly to reduce all stray capacitances
to a minimum. Beyond this, it is necessary to reduce the values of the
resistances R, R, and R;. The reduction of R, will improve the rise time of
the waveforms at the tube plates and will also reduce the recharging time of the
commutating capacitor connected between the plate of the oFF tube and
the clamped grid. The reduction of R: and R will reduce the recharging
time of the other commutating capacitor.

The price that must be paid for these improvements in resolution time is,
first, increased dissipation of power in the circuit since, because of the smaller
resistances, the current drain from the supply voltages will increase. Second,
unless it is possible to increase the tube current in proportion as the load resist-
ance is reduced, the plate swing will become smaller. Hence, not only will the
useful output signal be reduced but the total grid swing will be decreased
and it may be difficult to maintain d-c stability in the binary. When the grid
swing is reduced, it may become necessary to use 5 percent or perhaps even
1 percent components. ‘

Final measures which may be taken to improve resolution time include
the use of pentodes and auxiliary diodes. The pentode reduces the tube input
capacitances by suppressing the Miller effect, and the diodes are used as
clamps to restrain the total signal excursion at the plates and grids. Such
procedures, in spite of their added cost and complexity, will only succeed in
reducing the resolution time to the order of 0.1 usec.!
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With respect to resolution, the transistor binary has one immediate
advantage over the tube circuit. This advantage results from the fact that it
is convenient to use in a transistor circuit a much smaller collector-circuit resist-
ance R, than may be used as a plate-circuit resistance B,. With a small R,
the collector swing is still very nearly equal to the supply voltage, whereas
in a tube circuit the use of a small B, will result in an important sacrifice of
plate swing. Further, plate swing is more at a premium than is collector
swing. The plate swing must be several times larger than the grid base, which
is of the order of 10 or 20 V, although the collector swing need only be a few
times larger than the several tenths of a volt that will carry a transistor from
cutoff to saturation. The effect of these considerations is apparent in compar-
ing the values of the components in Fig. 10-2 with those in Fig. 10-4. The
fact that R. is appreciably smaller than R, allows a reduction also in the size
of B, and R in the transistor circuit. As we see in Sec. 10-5 and Eq. (10-12),
the recovery time is reduced thereby, and smaller values of resistance generally
allow all shunting capacitors to charge more rapidly, with a consequent
improvement in transition speed.

In a vacuum-tube binary the resolution time is limited by the speed
with which interelectrode capacitances and capacitances external to the tube
can charge through the resistive circuit components. The situation which
normally prevails in a transistor binary is that the speed is limited by mecha-
nisms which are internal to the transistor. As mentioned, and as is dis-
cussed in Chap. 20, an inherent and serious limitation on resolution time is the
interval required to draw the stored charge out of the base of a transistor
which is in saturation. Upon application of a reverse-biasing voltage to the
base, there is a delay, called the storage time (Sec. 20-14), which elapses before
the collector current starts to change. Therefore, where resolution time is at
premium, the transistor must not be allowed to saturate. '

A Nonsaturating Binary A method of restraining the transistors from
saturating is shown in Fig. 10-12. Here, four diodes have been added to the
circuit’ of Fig. 10-4. These diodes ensure that the collector junctions are
reverse-biased and hence that the transistor is always operating in the active
region. Both avalanche diodes D3 and D4 (also called Zener diodes; Sec. 6-4)
are always biased in the breakdown direction and each has a voltage V; < Ve
across it. The voltage across the diode D1 or D2 is very small in the forward
direction. With Q2 o, its emitter junction is forward-biased and Vggs =~ 0.
Hence the left-hand side of D2 is at V; with respect to ground. The right-
hand side is connected to the low voltage of the collector of the oN transistor
Q2. Thus D2 is forward-biased and the collector junction of Q2 is reverse-
biased by Vg, =~ V3, therefore preventing saturation. From Fig. 10-12b
we see that Vg, = —VieR1/(R, + R»), keeping Q1 cut off. Because Ve,
is high (approximately equal to Vee > Vz), then D1 is back-biased. The
output swing is approximately Ve — Vz. It will be recognized that the
configuration used here is the same as that illustrated in Fig. 8-31.
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Fig. 10-12 (o) A nonsaturated binary; (b) the equivalent circuit from which to
calculate the voltage at the base of the oFF transistor.

If p-n-p transistors are used, then each diode in Fig. 10-12 must be
reversed. This same nonsaturating configuration can also be used with the
self-biased flip-flop of Fig. 10-7. There exist a number of other circuits for
reducing the minority-carrier storage-time delay, one? of which is given in
Prob. 10-17.

The nonsaturating ecircuits are more complicated than the saturated
flip-flops. Also, the latter dissipate less power, because the on transistor
has low voltages whereas the oFF transistor has low currents. On the other
hand, the onN transistor in the nonsaturated configuration operates at a
high current and a voltage Vz which may result in a significant power loss.
An ‘additional advantage of the saturated binary is that its voltage swing is
more stable with temperature, aging, and component replacement than is the
nonsaturating type. For these reasons and because high-frequency transistors
with very small storage times are now available, a nonsaturating flip-flop
design is justified only in those applications where extreme speed is necessary.
Transistor flip-flops have been designed for triggering frequencies in excess of
100 MHz,

10-7 UNSYMMETRICAL TRIGGERING OF THE BINARY

The triggering signal which is usually employed to induce a transition from
one state to the other is either a pulse of short duration or a step voltage. This
pulse or step may be introduced in such a manner as will produce either
symmetrical or unsymmetrical triggering. In unsymmetrical triggering the
triggering signal is effective in inducing a transition in only one direction.
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A second triggering signal from a separate source must be introduced in a
different manner to achieve the reverse transition. In symmetrical triggering
each successive triggering signal induces a transition, regardless of the state
in which the binary happens to be. Unsymmetrical triggering, using two
triggering sources, is found frequently where the binary is to be used as a
generator of a gate whose width equals the interval between triggers. Such
triggering also finds extensive application in logic circuitry, as, for example, in
the register and coding circuits in Chap. 9. Symmetrical triggering is used
in binary-counting circuits (Chap. 18) and in other applications. We shall
consider in this present section only the method of unsymmetrical triggering.

It is important to understand that the sensilivity of the binary to a pulse
of such polarity as to turn off the conducting device will appreciably exceed the
sensttivily to a pulse of opposite polarity. To be specific, let us consider the
circuit of Fig. 10-10, using either tubes or n-p-n transistors. A positive step
applied through a capacitor to the input of the oFr stage, say A1, will give no
response until the step amplitude exceeds the voltage by which the device is
below cutoff. On the other hand, a negative step applied to the input of the on
stage A2 will immediately decrease the current in this device (we are neglecting
the minority-carrier storage time in this discussion). Since 42 now operates
in its active region, the input voltage at X, is amplified at ¥, and a fraction of
this voltage appears at X;. Because of this amplification from X, to X, a
small negative step at X, will leave the binary in the condition in which the -
current. in the initially oFr stage is larger than the current in the initially on .
triode, and we may expect the flip-flop to complete the transition through
regenerative action. A vacuum-tube or n-p-n transistor binary will therefore
be triggered by a smaller negative than positive voltage step.

Suppose that a positive pulse is applied to the input of the oFF stage. The
pulse is a combination of a positive step and a delayed negative step. The
result to be anticipated is therefore a combination of the response to a positive
step applied to the orr device followed by a negative step applied to the oN
stage. If the amplitude of a positive step is large enough to flip the binary
at its leading edge, then because of the greater triggering sensitivity to a nega-
tive step, the binary will flip back again at its trailing edge.

Next consider a negative pulse applied to the on stage. Since the binary
responds to a smaller negative step than positive step, we may adjust the pulse
amplitude experimentally to prevent the flip-flop from making a reverse
transition on the trailing edge of the pulse.

It is possible to arrange a permanent binary transition in a tube or an
n-p-n transistor through the use of a positive pulse, provided that the positive
pulse is applied to the input of the oN stage through a small capacitor C.
At the leading edge of the positive pulse this capacitor will charge through
the low input resistance of the amplifier in series with the output impedance
R, of the trigger source. The voltage across C may become as large as the
pulse amplitude if R, is small enough. At the instant of the negative-going
trailing edge of the trigger, the input is driven negative by the amount by



382 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS - Sec. 10-7

(@ ~Van ()

Fig. 10-13 Method of triggering unsymmetrically (o) an n-p-n or vacuum-tube
binary and (b) a p-n-p flip-flop.

which the voltage across C has changed. Since the binary is very sensitive to a
negative step applied to the oN stage, a transition may result. It is to be
noted, however, that the transition, when it takes place, occurs at the trailing
edge of the input pulse. Usually it is desired to avoid this triggering at the
trailing edge. Such suppression may be achieved (if R, is not large enough)
by including a large resistance in series with C.

The triggering signal may be applied at the output of one of the stages
of the binary rather than at the input, again preferably through a resistor and
capacitor (Fig. 10-13). Any signal so applied will immediately appear at the
input of the other device, being transmitted through the commutating capaci-
tor. The presence of the series resistor R, will serve to accentuate even further
the relative sensitivity of the tube or n-p-n transistor to a negative pulse. This
extra sensitivity results because the positive pulse would have to be introduced
at a point where the signal looks directly or through a coupling capacitor at the
plate of a tube or the collector of a transistor which is conducting. For
example, in Fig. 10-10, with A1 oFr and A2 oN a positive step must be applied
at Y, to bring A, out of cutoff. At Y, however, the impedance presented
to the triggering signal is low. A negative signal could be introduced, on the
other hand, at the output of a cutoff stage (¥, in Fig. 10-13a) where the
impedance is high.

If p-n-p transistors are used then a positive step must be applied to the
base in order to produce cutoff. Hence, the discussion in this section may be
summarized as follows: An excellent method for triggering a binary unsymmet-
rically on the leading edge of a pulse is to apply the pulse from a high-impedance
source to the output of the nonconducting device. If the active element is a tube
or an n~p-n transistor a negative pulse is required, but for a p-n-p triode the trigger
polarity should be positive (Fig. 10-13b).
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10-8 TRIGGERING UNSYMMETRICALLY
THROUGH A UNILATERAL DEVICE

A method of triggering a flip-flop which allows the binary to respond to only
one polarity of pulse is obtained by adding a diode to the circuit as indicated
in Fig. 10-14¢. When @1 is conducting, the diode D is back-biased by the
drop across R, and the diode will not transmit a triggering signal (unless it is
negative and has an amplitude larger than this voltage drop). When Q1 is
oFF the drop across D is zero. The diode will still fail to transmit a positive-
going trigger but will transmit a negative step or pulse to the input (base) of

(pulse reset)

bor

(pulse set)

1

)

Fig. 10-14 Method of triggering unsymmetrically with a diode.
Pulses applied (a) to the collector of the oFF transistor and (b) to the
base of the on triode. Control of the state of the flip-flop is also
possible with a binary input at 8’ (d-c set) and R’ (d-c reset).
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Q2 on

Fig. 10-15 The use of a trigger amplifier in conjunction with
a binary.

Q2. Observe that here the binary responds to that signal which effectively
applies a negative pulse to the ox device, to which polarity the binary is more
sensitive. The resistance B must be large enough not to load down the trigger
source. On the other hand, B must be small enough so that any charge
which accumulates on €' during the interval when D conducts will have time
to decay during the time between pulses. If the triggering rate is high, then
it may be necessary to replace R with a diode. The placement of this diode
in the circuit is such that it is back-biased during the pulse but it does conduct
after the pulse so as quickly to remove the charge accumulated on C. (See D3
in Fig. 10-16.)

The rFrLIP-FLOP Of Fig. 10-14a may be used as a basic logic element (Sec.
9-13). For a positive logic system the output Y is taken from the collector of
the n-p-n transistor, say @2, and the output Y is taken from the collector of Q1.
The triggering signal is a negative pulse and is applied to the set terminal S.
After the pulse excitation, @2 will be orr and Q1 oN,sothat ¥ = 1and ¥ = 0.
Similarly, after a triggering signal is applied at the reset terminal R, Q2 will be
oN and Q1 oFF, so that ¥ = 0and ¥ = 1.

If a completely d-¢ positive logic system is under consideration, then the
input “‘signal” to the FLIP-FLOP is the 1 level (the more positive logic voltage).
The triggering arrangement is now that indicated in the dashed box in Fig.
10-14a. With a 1 at the d-c set terminal §’, Q1 is ox and Q2 oFr, so that
Y =1and ¥ = 0. On the other hand, with a 1 at the d-c reset terminal R’,
@1 is orF and Q2 is oN, so that ¥ = 0 and ¥ = 1.

An alternative diode-triggering arrangement is shown in Fig. 10-145.
Here the negative set pulse S is applied through D to the base of the o stage
Q2. Now R is returned to ground rather than to the supply voltage. The d-c
set circuit is identical with that in Fig. 10-14a. Only one half of the circuit
is indicated, the portion not shown being understood to be symmetrical with
the configuration which is drawn.

If p-n-p transistors are used, then the diodes in Fig. 10-14a or b must be
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reversed and the circuits respond only to a positive input signal, which is the
proper polarity for turning off the on transistor.

If the trigger amplitude available is small, it may be necessary to amplify
this signal before applying it to the flip-flop. In this case a diode need not be
used because the amplifier can provide the unilateral action previously sup-
plied by the diode. Such a configuration is indicated in Fig. 10-15 for a
circuit which uses p-n-p transistors. Note that R, serves as both the collector
resistor of the binary transistor Q1 and the trigger amplifier 3. Since its
emitter-to-base voltage supply is zero, then 3 is virtually at cutoff (Sec. 6-17).
Regardless of the state of the binary, a positive signal at the base of @3 will
have no effect. However, a negative pulse causes @3 to conduct if @1 is oFF.
This signal is amplified and inverted by @3, and the resulting positive wave-
form at the collector of @1 is coupled to the base of Q2. If Q1 is cut off, then
Q2 is on. Hence, Q2 will be driven toward cutoff by the positive pulse at its
base, and a transition will occur,

10-9 SYMMETRICAL TRIGGERING

The circuits of Fig. 10-16 show how the binary may be pulsed in a symmetrical
manner. They are called complementing rriP-FLOPs. The input terminal
corresponds to the trigger T on the logiec symbol of Fig. 9-39. For example, in
Fig. 10-16a the diodes D1 and D2 serve the same function as deseribed in .
Sec. 10-8 in connection with Fig. 10-14q, and diode D3 takes the place of R
in Fig. 10-14a. The drop (approximately Vec) across the collector load R,
of the conducting transistor @2 reverse-biases D2. Since there is zero voltage
across . of Q1, then D1 is at zero bias. Hence, a negative input signal
will be transmitted through D1 to the collector of @1 and thence to the input

T Vee

é R, L D3 R, QIEOFF Q2 ox

v
T
o D1 D2 c
——— o
Q1 oFF Q2 onN
o— [
L L
(a) = by =

Fig. 10-16 Symmetrical triggering through diodes (a) at the outputs and (b) at
the inputs of the amplifiers. These circuits are symmetrical forms of the unsym-
metrical circuits of Fig. 10-14, except that R has been replaced by D3.
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of the o~ stage Q2 via the R,C; combination connecting the output of Q1
to the input of Q2. A negative pulse at the base of Q2 is appropriate for
turning this stage orr and thus causing a transition. After the transition is
completed D1 will be reverse-biased and D2 will be at 0 V. The next negative
pulse will pass through D2 instead of D1. Hence, these elements are called
steering diodes. The binary will transfer at each successive negative input
pulse or step but will not respond to the opposite polarity. If p-n-p transistors
are used, then the diodés must be reversed and a positive triggering signal is
required. If the pulse rate is low, then D3 may be replaced by a resistor R.

If the pulse amplitude is too small, a configuration using triggering ampli-
fiers @3 and Q4 is used. This circuit is an extension of the unsymmetrical
method shown in Fig. 10-15, with the collector of @4 connected to that of @2
and the base of @4 tied to the base of 3. A number of other triggering schemes
may be found in the literature (Prob. 10-18).

Triggering of a Bistable Multi Symmetrically without the Use of Auxiliary
Diodes or Triodes Symmetrical triggering is possible in this case because
of the presence of the commutating capacitors. Such triggering may be suc-
cessfully achieved only if the commutating capacitances are large enough to
predominate over all other capacitances present, so that during the transition
the voltages across the commutating capacitors do not change appreciably.
We have already seen that large commutating capacitors lengthen the time
required to complete the settling from one binary state to the other. There-
fore this method of triggering without auxiliary steering diodes or transistors
is not employed where the shortest possible resolution time is required.

With the circuit of Fig. 10-17 symmetrical triggering can be achieved
by the direct application of a positive step to the common emitters of a self-
biased flip-flop. We shall make some assumptions which simplify the analysis
but which are not essential to the discussion. We assume that in saturation
the collector-to-emitter voltage and the base-to-emitter voltage are zero. We
specify only the ratio of the coupling resistances (R: = 3R,), and we assume
that these resistances are large enough so that they constitute a negligible load
on the output of the transistor. Finally, we specify only the ratio of collector
circuit resistance to the emitter resistance (R, = 4R,).

Initially the flip-flop is in a state in which @1 is orr and Q2 is oN. Fora
10-V supply and with R, = 4R., 8 V appears across R, and 2 V across R..
Hence, the transistor voltages are as indicated in Fig. 10-17. (Ignore the
values in parentheses for the moment.) Now let there be applied a positive
step of amplitude 7 V to the common emitters £ through a small capacitance C.
Then the voltage of E will rise abruptly to 9 V and both transistors will be
turned oFr. The circuit voltages immediately after the input step are given
in parentheses. We assume that the voltages across the commutating capaci-
tors have not changed. Observe that the base-to-emitter voltage of Q2 is
—7 V and the corresponding voltage for @1 is —0.5 V. Hence @2, which was
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Fig. 10-17 A symmetrical triggering
arrangement which does not employ
auxiliary diodes or transistors. The
voltages indicated (not in paren-
theses) are quiescent values. The
voltages enclosed in parentheses
result immediately after a positive
7-V step is applied at the emitter,
assuming that the commutating capac-

Q2
ON
(OFF)

itor voltages do not change

initially own, is reverse-biased to a larger extent than is Q1. Now as the
capacitor C charges through R,, the voltage at E will fall and clearly @1 will
enter its active region before Q2. Accordingly, when the voltage at E returns
to its quiescent level, we shall find Q1 o~ and Q2 orF. A transition has taken
place.

It is necessary that C be selected small enough so that, after the input
step, the voltage at £ may decay before the commutating-capacitor voltages
can change appreciably. Eventually the voltages across ', and C, will inter-
change and the flip-flop will settle into its new state.

Essential to the above discussion has been the assumption that the
commutating capacitances were large enough to be predominant. If these
capacitors were absent or inadequate, the input capacitances to the transistors
might well predominate. If these latter capacitors maintained their voltages,
then they would serve to keep the on transistor conducting and the oFF
transistor nonconducting and a transfer could not take place.

If a 7-V negative step were applied to E, it would serve only to drive Q2
further into saturation. A transition would not take place. If the triggering
signal were a square wave, the flip-flop would respond on the positive-going
edge but not on the negative-going edge.

Another method of triggering symmetrically without using steering diodes
or triodes is indicated in Prob. 10-20.

Before leaving the subject of triggering we shall make one last important
observation. Let us call the initial state (Q1 orr, Q2 oN) state A and the
second state, state B. Immediately after the transition has taken place the



388 / PULSE, DIGITAL, AND SWITCHING WAVEFORMS Sec. 10-10

predominant commutating capacitors have voltages corresponding to state A
rather than to state B. A question which frequently occurs is therefore the
following. Since the commutating capacitors have voltages corresponding
to state A immediately after the triggering signal, should not the flip-flop be
even more susceptible to the next trigger immediately after the first pulse
than it would be at a later time when the commutating-capacitor voltages have
interchanged? Such is not the case, for, as we see from the numbers in paren-
theses in Fig. 10-17, immediately after the first trigger @2 is deeply in cutoff.
Therefore the next pulse will drive Q2 even further into reverse bias and can
consequently cause no transition.

10-10 A DIRECT-CONNECTED BINARY CIRCUIT®

A pert (Sec. 9-17) flip-flop circuit containing very few components (two
transistors and two resistors) is indicated in Fig. 10-18. This transistor binary
has no vacuum-tube counterpart because, if a direct connection were made
from a plate to the opposite grid, the circuit would have only one stable state,
in which both tubes would be conducting heavily. We shall now demonstrate
that the transistor flip-flop does have two stable states. Inonestate, transistor
Q2 is in saturation and Q1 is conducting slightly (rather than being beyond
cutoff, as in the binaries discussed in the preceding sections), and in the
other state Q1 is in saturation and @2 is conducting slightly.

Initially, let us assume that @1 is orr. Then the circuit of Fig. 10-18
consists of transistor Q2, whose emitter is grounded and whose collector and
base are connected through resistors R, to the supply voltage V¢c. The cur-
rents in Q2 are given by

_ Vee — Vers

= I_/E_C_—VB“ Ig, = —C¢ " CF2 (10-15)

182 Rc Rc

If the base current Iz, drives Q2 into saturation, Vzg: and Vegs are small
compared with V¢c. Consequently, as a first approximation, we have
Igs = Vee/R. = Ica. Since Ipy 3> Iea/hrr, then we have verified that Q2
is indeed driven well into saturation.

From the first-approximation values of Ips: and I¢, we obtain the values

IVCC

R, R
% . % Fig. 10-18 A direct-connected binary.

(X

Q2
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of Vpr(sat) and Veg(sat) from the manufacturer’s data. We can use these
values in Eqgs. (10-15) to find the next approximation for the currents and
subsequently for the saturation voltages. This procedure can be repeated
again, but it is seldom necessary to do so since the process converges very
rapidly.

In a typical case we might obtain for a germanium transistor under heavy
saturation Vegz = 0.05 and Ve = 0.30 V. Because of the direct connection
between the collector of Q2 and the base of Q1, Vg = Vege = 0.05V. There-
fore @1 is actually forward-biased by a small amount (50 mV). Although Q1
is not cut off, its currents are very small compared with the current in R., and
the above method of analysis is essentially correct. Since Vig, = Vpgs =~
0.3 V the output swing isonly V, = Vegs — Vege = 0.25 V.

There are a number of disadvantages to the direct-coupled binary. (1)
We have neglected Icgo, but as the temperature increases, this reverse satura-
tion current may increase sufficiently to bring @1 into its active region and
may even take Q2 out of saturation. (2) Since @2 is driven heavily into
saturation, storage-time delay will be large and the switching speed will be low.
Hence, a direct-coupled flip-flop can be used only at slow pulse rates and at
relatively low temperatures (50°C for germanium and 150°C for silicon tran-
sistors). (3) The output voltages are equal to the saturation base and collee-
tor voltages, and these parameters may vary appreciably from transistor to
transistor. (4) The voltage swing is only a fraction of a volt, and hence the
binary is susceptible to spurious (noise) voltages. (5) Since an orFr collector
is tied directly to an ox base, it is difficult to trigger the binary by the usual
method of applying a pulse to the oFF collector. To supply sufficient current
to take the on transistor out of saturation usually requires an amplifier, and
hence the most common triggering method is that indicated in Fig. 10-15.

The advantages of the d-c flip-flop are the following: (1) extreme simplic-
ity; (2) one supply voltage of low value (perhaps only 1.5 V); (3) low power
dissipation; (4) transistors with low breakdown voltages may be used; and
(5) the binary may easily be constructed as an integrated circuit because of the
few elements (resistors and transistors) involved.

10-11 SCHMITT TRIGGER CIRCUIT

A most important bistable circuit is indicated in Fig. 10-19. It differs from
the basic Eccles-Jordan configuration of Fig. 10-1 in that the coupling from
the output Y of the second stage to the input X, of the first stage is missing
and that feedback is obtained now through the resistor B,. If tubes are used
for the amplifiers, then Z represents a cathode, and hence the circuit is called
a cathode-coupled binary. If transistors are used, Z represents an emitter, and
the designation emitter-coupled binary is appropriate. Quite commonly in
the literature either circuit is referred to as a Schmitt trigger,* after the inventor
of the vacuum-tube version.
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iVYY

Fig. 10-19 A Schmitt
trigger circuit. The sup-
ply voltage Vyy is of the
proper polarity for a
tube or an n-p-n tran-
sistor, but must be

reversed for a p-n-p
transistor.

As in the basic eircuit of Fig. 10-1, so here also, the existence of only
two stable states results from the fact that positive feedback is incorporated
into the circuit and from the further fact that the loop gain of the circuit is
greater than unity. We shall obtain additional insight into this circuit if we
consider initially that we have adjusted the loop gain to be less than unity.
One way, among many other possibilities, to make such an adjustment is
simply to reduce the resistance of the resistor R,;. If R, is small enough,
regeneration is not possible. Therefore the circuit will not operate as a binary,
but we may use it as an amplifier. Let us then assume that the circuit is an
amplifier with input signal » applied as shown in Fig. 10-19 and output v,.

If device A2 is conducting, there will be a voltage drop across R, which
will elevate the emitter or cathode of A1. Consequently, if v is small enough
in voltage, A1 will be cut off. As v rises, the circuit will not respond until 41
reaches its cutin point. Until then, the output v, will be v, = Vyy — IoRy,
where I is the current in R, for A1 cutoff. -With A1 conducting, the circuit
will amplify, and since the gain Aw,/Av is positive, the output will rise in
response to the rise of v. As v continues to rise, X, continues to fall and Z; to
rise. Therefore a value of v will be reached at which A2 is turned orr. At
this point, v, = Vyy (in the transistor circuit, we neglect the small reverse
saturation current), and the output again no longer responds to the input. -
A plot of v, against » is shown in Fig. 10-20a, marked “Loop gain <1.” The
voltage at which A1 reaches cutin is marked v = V1.

Let us now increase the loop gain by increasing R,;. Such a change
will have negligible effect on the cutin point v = V;. However, in the region
of amplification, the amplifier gain Av,/Av will increase and consequently the
slope of the rising portion of the plot in Fig. 10-20a will be steeper. This
slope will continue to increase with increasing loop gain until, at a loop gain of
unity, where the circuit has just become regenerative, the slope will become
infinite. And finally, when the loop gain becomes greater than unity, the
slope reverses in sign and the plot of », against v assumes the S shape shown in
Fig. 10-20b.
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This S curve of Fig. 10-20b may be used to describe the behavior of the
circuit. As v rises from zero voltage, v, will remain at the lower of its two levels
until v reaches V;.. When v exceeds V, a line drawn vertically intersects
the plot only at the upper level. Hence when v exceeds V, the circuit will
make an abrupt transition to this higher level. Similarly, if » is initially
greater than V', then as v is decreased, the output will remain at its upper level
until v attains a definite level V,, and at this point the circuit will make an
abrupt transition to the lower level. We observe that the circuit exhibits
hysteresis; that is, to effect a transition in one direction we must first pass
beyond the voltage at which the reverse transition took place.

A vertical line drawn at » = V which lies between V; and V, intersects
the S curve at three points. The upper and lower points, a and ¢, are points
of stable equilibrium. Point b is a point of unstable equilibrium. The 8
curve is a plot of values which satisfy Kirchhoff’s laws and are consistent with
the tube or transistor characteristics. However, a point such as b cannot be
attained experimentally. Atwv = V the circuit will be at either a or ¢, depend-
ing on the direction of approach of » toward V. When » = V in the range
between V, and V, the Schmitt cireuit is in one of two possible stable states
and hence is a bistable circuit.

Applications  Observe that we may readily deseribe the circuit of Fig. 10-1
in the manner we have just used to describe the Schmitt circuit. We could
develep for that first circuit an S curve such as appears in Fig. 10-20b. As a
matter of principle, the Eccles-Jordan circuit of Fig. 10-1 and the Schmitt

1
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H Loop gain<1
Vyy—LR,, :
) (@)
i
Fig. 10-20 Response of Schmitt v v
1
circuit (a) for loop gain <1, (b) v :
for loop gain >1. el '
a
VYY =l T :
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3
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circuit of Fig. 10-19 may be used for the same applications. As a matter of
practice, however, the Eccles-Jordan circuit, because of its symmetry, is
preferred for applications where the cireuit is to be triggered back and forth
between stable states. The Schmitt circuit has the feature that one device
terminal, the base or grid of A1, is not involved in the regenerative switching.
When the circuit switches between levels, the voltage on this terminal does not
change. The Schmitt circuit is therefore preferred for applications in which
we desire to take advantage of this free terminal. Observe also that the
resistance R, in the output circuit of A2 is not required for the operation
of the binary. This resistance may be selected over a wide range to obtain
different output-signal amplitudes. Furthermore, capacitive loading at ¥,
will not slow the regenerative action, although such capacitance will increase
the rise and fall times of the waveform at V.

A most important application of the Schmitt circuit is its use as an
amplitude comparator to mark the moment at which an arbitrary waveform
attains a particular reference level. Amplitude comparators are considered in
Sec. 7-11, where we discuss the use of diodes in amplitude comparison circuits.
As a comparator, the Schmitt circuit has some advantages over the diode
circuitry. We desire, when the comparison point is reached, that the com-
parator output make an abrupt and pronounced change. In a diode-resistor
comparator, as in Fig. 7-19, the sharpness of the break is limited by the lack of
sharpness of the diode break. And after the break point is reached, the rate
of change of the output waveform is no faster than the rate of change of the
input waveform. As proved in Sec. 7-11, the use of an amplifier after the
diode comparator does not improve the sharpness of the break, and in addition
the comparison point becomes a function of amplifier gain. When a high-gain
amplifier is used before the diode comparator the amplifier may have to be
d-c-coupled to the comparator, and complications ensue because amplifier
drift will change the comparison point.

The situation is otherwise with the Schmitt circuit. As the input v
rises to V', or falls to V, the circuit makes a fast regenerative transfer to its
other state. We may increase this speed of response by using all available
techniques to improve the rise time of the amplifier stages of which the cireuit
is composed. Such techniques include minimizing all shunt capacitance, using
high-speed transistors or high-figure-of-merit tubes, and even possibly employ-
ing high-frequency compensation. In any event, the abruptness of the
comparator response is not related to the rate of rise of the input waveform.
Also, there is, in the Schmitt comparator, a definite comparison voltage rather
than a fairly uncertain comparator region, as in the diode circuit. This
improvement in comparator performance results from the regeneration in the
Schmitt circuit and is characteristic of all discriminators which employ
regeneration.

In a second application, the Schmitt circuit is used as a squaring circuil.
This application is illustrated in Fig. 10-21. Here the input signal is arbitrary
except that it has a large enough excursion to carry the input beyond the limits
of the hysteresis range Vy = V, — V,. The output is a square wave, as
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Input v
Fig. 10-21 Response of 0
I t
the Schmitt binary to an Output
arbitrary input signal. at Ys,
Y
0

shown, whose amplitude is independent of the amplitude of the input wave-
form. Observe, further, that the output waveform may have much faster
leading and trailing edges than does the input.

In still another application the circuit is triggered between its two stable
states by alternate positive and negative pulses. Thus if the input is biased
to a voltage V between V, and V,, and if a positive pulse whose amplitude
exceeds V', — V is coupled to the input, then A1 will conduct and A2 will be
driven to cutoff. If there now is applied a negative pulse whose amplitude
is greater than ¥V — V,, the circuit will be triggered back to the state where
A1 is oFr and A2 is conducting. This behavior is the same as that of a
flip-flop, with alternate positive and negative pulses applied to one input.
However, for the Schmitt binary the possible triggering difficulties discussed
earlier are not encountered because pulses are applied to an input node X
which is not connected to any other point in the circuit.

Hysteresis In many instances, the hysteresis of the Schmitt circuit
is not a matter of concern. Such would be the case if we had a periodic signal
of amplitude large in comparison with the hysteresis range Vx and our
interest lay in using the circuit as a one-way comparator. In Sec. 14-6 an
example is given of a system requiring a large value of Vy. In other applica-
tions, a large hysteresis range will not allow the circuit to function properly.
Thus, even when used as a one-way comparator, if the signal were smaller
than Vy, then the comparator, having responded by a transition in one direc-
tion, would never reset itself.

As may be seen in Fig. 10-20, hysteresis may be eliminated by adjusting
the loop gain of the circuit to be unity. Such an adjustment may be made
in a variety of ways. The gain will increase or decrease with increase or
decrease in R,;. Another possibility is to add to the circuit a resistor R, in
series with the emitter or cathode lead of A1l or a resistor R,, in series with
the emitter or cathode lead of A2. Here the gain will increase or decrease as
either R.; or R.. is decreased or increased. Since R, and R, are in series
with A1, these resistors will have no effect on the circuit while 4 is cut off.
Therefore these resistors will not change ¥, but may be used to move V,
closer to or coincident with V. Similarly R.. will affect Vi but not V,. A
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further method of gain adjustment consists in varying the ratio B,/(R, 4+ R.).
Such an adjustment will change both V; and V..

Adjusting the gain precisely to unity is not feasible. The device param-
eters, and hence the gain, ate variable over the signal excursion. Hence an
adjustment which ensures that the maximum gain is unity would have ranges
where the gain is less than unity, with a consequent loss in speed of response
of the circuit. Further, the circuit is not stable enough to maintain a gain of
precisely unity for a long period of time without frequent readjustment. In
practice, therefore, where hysteresis is undesirable we must be content with
adjusting the hysteresis to be small and with increasing the signal amplitude,
when possible, so that it is large in comparison with the hysteresis range.

A quantitative discussion of the Schmitt circuit is given in the next two
sections.

10-12 A CATHODE-COUPLED BINARY

The method of calculating Vi, V., and the two stable-state output voltages
for a vacuum-tube Schmitt trigger is illustrated in the following example.

EXAMPLE Analyze the circuit of Fig. 10-22.
Solution - If
R. 200 1

R+ R, 200+400 3
then with V1 oFr, the voltage at the grid of V2 (assuming zero grid current) is

Vera = §g‘q =100V

a

I

(neglecting the small loading of B, and R;). The equivalent circuit for this state
isindicated in Fig. 10-23a. To find the current ¢, we follow the procedure described
in Sec. 1-10. We plot the load line corresponding to By + By = 30 K and the

? Vep (300V)

P

2
(10K)

+

Fig. 10-22 A cathode-coupled
binary. The numerical values refer
v, to the illustrative example.
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T Vep (300V) Vep (300V) I

+

Fig. 10-23 The circuit of Fig. 10-22 with (o) V1 just at cutoff and (b) V2 just at
cutoff.

supply voltage Vrp = 300 V on the plate characteristics of the 5965 tube (Fig.
D-9).  From the grid circuit we see that

ip = Trea e 100 —vey (10-16)
R; 20

This bias curve, a plot of ¢ as a function of ve., is added to the plate characteristics,
and the intersection with the load line is found to be

ta=51mA =1, and vg: = —2.3V
o= Vep — IsRy, = 300 — 51 = 249 V
vy = IRy =102V
The voltage drop across V1 is
Ver — IR = 300 — 102 = 198 V

and the cutin grid voltage corresponding to this plate voltage is found from Fig.
D9tobe V,; = —8 V. Hence

Vi=Vytoven=—-8+102=94V

With V1 on, the input is now reduced to v = V; such that V2 is just about
to come out of cutoff. The corresponding value of 7, can be found from the
equivalent circuit indicated in Fig. 10-235. Kirchhoff’s voltage law applied to the
grid circuit of V2 yields

(=Ver+ uRpda+ Vyr + LR =0

or

1:1 _ Vppa - V‘yz - 100 — V-yz mA (10_17)
Ryla + Rk 23.3
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As a first approximation take Vy2 =~ V,; = —8 V. Then 4, = 108/23.3 = 4.63
mA. The voltage drop across V2 is

Ver — i1l = 300 — 92.6 = 207 V

and for this plate voltage we see from Fig. D-9 that a cutin voltage of —8 V is
reasonable, so that no correction of the calculated value of %, is necessary.

If ¢, = 4.63 mA = ], is located on the load line, a value of vg, = —2.6 V is
obtained. Hence

Vi=ven+ iR = —26+926 =90V (10-18)
For the circuit under consideration

Ve=Vi—V,=904-90=4YV

Let us attempt to eliminate the hysteresis by adding a resistor Ry in
series with the cathode of V1. Such a resistor can have no effect on V', because
in the equivalent circuit of Fig. 10-23a (from which V), is calculated) V1isat
cutoff and hence the drop across Ry, is zero. Since the current ¢, = I, in
Fig. 10-23b required to bring V2 just out of cutoff is determined from the grid
circuit of V2, it is unaffected by Rx.. Hence V. will be increased by I,R;,,
and if Ry; is chosen properly, then

V2 + I lRlcl = Vl
and hysteresis is eliminated. In the illustrative example a value of

Bu=270_0sK =800
is needed.
Similarly, if a resistor Ryx» is added in series with the cathode of V2, the
value of V3 is unaffected but V, will be decreased. By the proper choice of Ry

it is again possible to reduce Vy to zero.

10-13 AN EMITTER-COUPLED BINARY

We shall now analyze the Schmitt transistor binary of Fig. 10-24. First we
calculate V,, defined as the input voltage at which @1 begins to conduct. The
circuit for caleulating the current in @2 when Q1 is just at cutin is shown in
Fig. 10-25. We have replaced Ve, R.1, By, and R, by the Thévenin’s equiv-
alent V’ in series with R, between the base of Q2 and ground, where
VecR, Ry(Re + Ry)
V, = —_— = ————
Bathi+R ™ PR TRTm
It is possible for @2 to be in its active region or to be in saturation. We shall
assume for the present that 2 is in its active region, and hence

(10-19)

ics = hpripe and tc2 + tg2 = (hrg + 1)ine
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I Voo (12V)

Fig. 10-24 An emitter-coupled
binary. The impedance of the
input source v is B,. The numerical
values refer to the illustrative
example on page 399.

Applying Kirchhoff’s voltage law to the base circuit of Q2 we find
V' — Vig: = [RBy + R.(hre + 1)]in: (10-20)

Solving for Vgy = (ic: -+ i2) R., we obtain

' .(h 1
Venw = Venr = Vene = (V' — Vigs) & :a-(R:fh:; j_ 1 (10-21)
and finally
Vi=Vexv+Vy (10-22)

If R.(hre + 1) > R:, then the drop across R, may be neglected and Vgy =
V’ —_ VBE2- Then

V1 = VI - VBEZ + V71 (10-23)

Vee A12V)

©®Vv)

Fig. 10-25 The circuit of Fig. 10-24 with Q1 just at cutin.
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Since V', is the voltage from base to emitter at cutin where the loop gain just
exceeds unity, it differs from Vsg: in the active region by only about 0.1 V
(Table 6-1). If, therefore, we assume that Vgz: = V,1 + 0.1, we have, for
either germanium or silicon,

Vi=V —01 (10-24)

This result indicates that ¥, may, in this way, be made almost independent of
hrg, of the emitter resistance R., of the temperature, and of whether or not a
silicon or germanium transistor is used. Hence the discriminator level Vy is
stable with transistor replacement, aging, or lemperature changes, provided that
R.(hyg + 1) > Ry and that V' 3> 0.1. Since V' depends on Ve, R.1, Ri, and
R,, where stability is required it is necessary that a stable supply and stable
resistors be selected.

It is, of course, possible to adjust the circuit so that, when @1 is cut off,
Q2 is in saturation. Under these circumstances, regeneration would start
not when Q1 comes into conduction but rather when @2 comes out of satura-
tion sufficiently so that the loop gain exceeds unity. Because of the presence
of the commutating capacitor Cy, the regeneration point will then be a fune-
tion of the speed of the input waveform, since the response at B, to a fast
waveform will be greater than for a slow waveform. Since we normally require
a fixed comparison voltage point, such operation with @2 in saturation is not
desirable. Accordingly we must keep the collector resistor R, small enough
to avoid saturation. Because of this restriction and also because E, may be
comparable to R.;, the swing at the output may be much smaller than Vec.

Calculation of V; The voltage V;, defined as the input voltage at which
Q2 resumes conducting, is calculated from Fig. 10-26. In order to take into
account the loading of R, and R, at the collector of Q1 we have replaced

Fig. 10-26 The circuit
of Fig. 10-24 with Q2
Q2 orF just at cutoff. The
Via resistor B, will later be
= set different from zero
aVem to eliminate hysteresis.
| <
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Ri, Ry, Ra, and Ve by the Thévenin’s equivalent voltage V. and R, where

Vee(R1 4+ R,) R.(Ry 4+ R»)

Vt:Rc1+R1+Rz Ry + Ri+ R,

and R = (10-25)

The voltage ratio from the first collector to the second base is a, where

R,

~ TR (10-26)

a
In Fig. 10-26 the input signal to @1 is decreasing, and when it reaches V,

then Q2 comes out of cutoff. Kirchhoff’s voltage law around the base circuit
of Q2 is

—aVen1 + Voo + (day + tc)Re = 0 (10-27)

where Ven: = V, — ic1R, and i¢1 = hpris: for Q1 in the active region. We
obtain, using ¥V’ from Eq. (10-19),

aV,—Vy V' — V.,

W= R TR, aREFE (10-28)

where

hFE

R. =R, (1 + L) (10-29)
From Fig. 10-26, the comparator voltage V is given by

V2 = imR, + Varr + (i1 + ic1)Re = Vazm + i (R: + }%)

!
= Vom + L B ) (10-30)
Although Vg = V., these quantities do not cancel out of Eq. (10-30).
Hence, since Vpg, is higher for silicon than germanium, V, is a few tenths
of a volt higher for a Schmitt circuit using silicon transistors than for one using
germanium devices.
Since hrg is a large number, R, ~ R,, and it may well be that R,/hrg < R..
In this case Eq. (10-30) becomes

V= Vas + a%ie, V' = V.5 (10-31)

From Eq. (10-31) it appears that V, is very insensitive to both R, and kpg.
As a matter of fact it is possible for V,to be a less sensitive function of k rz than
is V1 (Prob. 10-29).

EXAMPLE (a) Find V, for the circuit of Fig. 10-24. Assume hrz = 30 and that
gilicon transistors are used. (b) Find V.. (¢) Find the value of R., (Fig. 10-26)
required to eliminate hysteresis. (d) Repeat part ¢ for R,, (Fig. 10-27).
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Solution a. From Egs. (10-19),
V= (12)(6)

=6V Rb=—“*—&(6)(4+2)=
44+24+6 44+246
We have Ro(hrz + 1) = 3(31) = 93 K,and R, = 3 K. Hence R.(hrz + 1) > Rs,
and as a first approximation V; = ¥/ — 0.1 = 5.9 V. For a more accurate cal-
culation we use Eq. (10-21) to calculate Vzy. We have, using Vez: = 0.6 V
for silicon from Table 6-1,

3(31)
3 + 3(31)

3K

Ven = (6 — 0.6) =52V

and from Eq. (10-22)
Vi=5824+05=57V

which differs from the approximate value by only about 3 percent. A similar
calculation for germanium gives ¥y = 5.7 V, just as for silicon.

The above calculation assumes that Q2 is operating in its active region. In
order to be sure that Q2 is indeed in its active region let us calculate the collector
junction voltage. We find

Vese = Verss — Vezs = Voo — icaBes — Ve — Vine (10-32)
To find %cs note that

Vew = ipa(hre + DR, = iR,
where, from Eq. (10-29),

Ri=(3)(1+3—10)=3.1K

From Eq. (10-32),
Vepe = 12 — (1.68)(1) — 52 — 06 =45V

Since this voltage is positive and an n-p-n transistor is under consideration, then
the collector is reverse-biased and we have verified that Q2 is in its active region.
If R., is increased sufficiently then V¢s, becomes negative and @2 is in saturation
(Prob. 10-26).

b. From Egs. (10-26) and (10-25),

6 _ _®we+6
a=5 =07 RB= o= 267K

aR = (0.75)(2.67) = 20 K
Since V/ = 6 V and V,, = 0.5 V we calculate from Eq. (10-30) that

3.1 4 0.03

Vs =06+ 20 + 3.1

(6—~05) =40V
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If germanium transistors had been used we would have found

3.1 4+ 0.03
Va=02+4 om0 (6-01) =38V

a value slightly lower than that found for silicon.

¢. A resistor B,; in series with the emitter of @1 will affect V, but not V.
Hence ¥V, = 5.7 V. From Fig. 10-26, with R,, in series with E,, we see that ¢y,
which was determined by the base circuit of @2 [Eq. (10-27)], is unaffected by Re1.
Hence the value of Vgy2 at which @2 returns to conduction is the same as before.
However, in order for the currents to remain unchanged with RB,, present, v = V3
must be increased by the amount of the voltage drop across B... Hence, this
resistance must be chosen so that (ici 4 ¢51)R.: is equal to the value of Vg before
the addition of R,.. From Eq. (10-28),

~ 8708 smA im= % 004ma
T20+31 °on e =gy TUEM

i1

so that hysteresis is eliminated when V, = V3 + (ici + 151)Rey, o1

The comparator level is now 5.7 V for either increasing or decreasing voltages.

d. From Fig. 10-26 we see that if we place a resistor R.. in series with the
emitter of Q2 it can have no effect on V; because Q2 is orr. Hence V, remains
at 4.0 V. However, from Fig. 10-27 it is clear that R, will affect Vgy, and
hence V;. From the base circuit of Q2

—6 + 3ip2 + 0.6 + (Be2 + 3) (€52 + ic) = 0

Fig. 10-27 The circuit of Fig. 10-24 with a resistor R, in the
emitter of Q2 which may be adjusted to eliminate hysteresis.
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Using iBz = icz/hpa = '1:02/30, we obtain ’I:cz = 5.4/(1.03R32 + 320) and

16.7

Vieny = (tc2 + 182)(3) = 3.100¢2 = 1.03R., + 3.20
V1= Vanvi 4+ V41 = Vi = 4.0 for zero hysteresis. Hence

16.7
1.03R,, + 3.20 = 10 —05 " 477 or R, =15K

(By coincidence R, = R,, for this example.)

Hysteresis Considerations If R, or R, is larger than the value required
to give zero hysteresis, then the loop gain will be less than unity and the circuit
will not change state. Usually, R.; or R.. is chosen so that a small amount of
hysteresis remains, in order to ensure that the loop gain will remain greater
than unity even if the circuit drifts somewhat (owing to supply-voltage changes,
aging, ete.). Also, R,; or R, is usually bypassed with a small capacitor.
During the transition interval this capacitor reduces the degeneration caused
by these resistors, and hence an output pulse or step with a shorter rise time is
delivered.

If a value of R,; (or R,;) is used which is larger than required for zero
hysteresis but if the resistor is bypassed so that the a-c loop gain exceeds
unity, then it is possible to trigger the circuit from one state to the next.
Under these circumstances |V > |V, and hence the hysteresis range Vg is
negative. With this condition the circuit produces high-frequency oscillations
if the input voltage has a value between V, and V,. Here, then, is another
reason why the resistor R,; (or R.;) is chosen so as to make |Vi| somewhat
greater than |V,|.

A few comments about the source resistance R, are appropriate. The
value of V; is independent of R..- The value of V', does depend upon R, but
only to a small extent as long as R, < hrgR,. If R, is too small, then it is
possible for large input signals v that the first stage Q1 may be driven heavily
into saturation. Under these conditions minority-carrier storage in the base
of Q1 may limit the maximum speed of operation of this circuit. On the
other hand, too large a value of B, may make it impossible to trigger the
circuit because the loop gain may fall below unity. Since V, increases when
R, is added, whereas V, is independent of R,, then for large enough R, it is
possible for V, = V,. Hysteresis is thus eliminated and the loop gain is unity.
If R, exceeds this critical value, the loop gain falls below unity and the circuit
cannot be triggered. In the example considered above for silicon ¥, = 5.7 and
V. is given by Eq. (10-30). Hence the maximum value of R, is found from

3.1 + R,/30

5.7 = 06 + 52

(6 — 0.5)

which yields a maximum value of R, of 49 K.
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MONOSTABLE AND
ASTABLE MULTIVIBRATORS

The binary circuit, it will be recalled, has two stable states, in either
one of which it may remain permanently. The monostable circuit
has instead only one permanently stable state and one quasi-stable
state. In the monostable configuration, a triggering signal is required
to induce a transition from the stable state to the quasi-stable state.
The circuit may remain in its quasi-stable state for a time which is
very long in comparison with the time of transition between states.
Eventually, however, it will return from the quasi-stable state to its
stable state, no external signal being required to induce this reverse
transition.

Since, when it is triggered, the circuit returns to its original state by
itself after a time 7', it is known as a one-shot, a single-cycle, a single-
step circuit, or a undvibrator. Since it generates a rectangular waveform
and hence can be used to gate other circuits, it is also called a gating
circuit. Furthermore, since it generates a fast transition at a predeter-
mined time T after the input trigger, it is also referred to as a delay
circutt,

The astable circuit has two states, both of which are quasi-stable.
Without the aid of an external triggering signal the astable configura-
tion will make successive transitions from one quasi-stable state to the
other.

Both these circuits find extensive application in pulse circuitry.
The basic application of the monostable configuration results from the
fact that it may be used to establish a fixed time interval, the beginning
and end of which are marked by an abrupt discontinuity in a
voltage waveform. The astable circuit is an oscillator and is used
as a generator of ‘‘square waves’ and, since it requires no triggering
signal, is itself often a basic source of fast waveforms.

404
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Two amplifier stages may be interconnected in such a manner as to possess
one stable state or two quasi-stable states. These configurations are called
monostable multivibrators or astable multivibrators (multis), respectively.
Vacuum-tube and transistor multis will be considered in this chapter. In
Chap. 13 other monostable and astable circuits, most of which contain only
one active device, will be studied.

11-1 THE MONOSTABLE MULTI

The ecircuit diagram of a monostable multi is shown in Fig. 11-1. The active
devices A1 and A2 are either tubes or transistors. The supply-voltage polari-
ties indicated are correct for an n-p-n transistor or for a tube but must be
reversed for a p-n-p transistor. Here, as in a binary circuit, the output at ¥,
is coupled to the input at X, through a resistive attenuator in which Ciis a
small commutating capacitor. This capacitor serves here the same purpose as
is served by the commutating capacitors in the binary. As for a tube-circuit
binary, C, is given, to a first approximation, by Eq. (10-13). The d-¢ coupling
found in a binary from ¥, to X is here replaced by capacitive coupling through
C. While the resistor B at the input of 42 is shown returned to the supply
voltage Vyy, this feature of the circuit is not essential, and R may be returned
to a lower potential. We shall, however, later discuss the advantage of con-
necting R to the supply voltage.

We shall assume that the circuit parameters have been adjusted properly
so that the multi finds itself in its (permanently) stable state with A1 orF
and A2 o~ (in clamp, if a tube; in saturation, if a transistor). The multi
may be induced to make a transition out of its stable state by an application
of a negative trigger at X, or at Y, of Fig. 11-1. As with the binary, diode or
triode triggering may be used to advantage. It is to be emphasized that the
triggering is unsymmetrical, being applied to one device only and not to both
simultaneously.

Fig. 11-1 The monostable multi.

If the devices A1 and A2 are p-n-p
transistors, then the supply-voltage
polarities must be reversed. For
atube Vyy = Vep, Vix = Vae,
and B, = R,. For a transistor
Ver = Voo, Vxx = Vg, and

R, = R..
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Vrr Fig. 11-2  Simplified circuit for computing

IRI R the voltage vx, at the input to A2, during the
R b |c, X quasi-stable state. The Thévenin's voltage
it 2
+

V. is the voltage at ¥, if the capacitor C'is
vx2 disconnected from Yi. Att = 0 the voltage

-0 across Cis Vyy — V.

'll—%i:%

Assume that a single trigger is applied to X» and that a regenerative action
takes place driving A2 completely below cutoff. The voltage at Y, now
rises to approximately Vyy, and because of the cross coupling between
Y, and X, the first stage A1 comes into conduction. This device may be
driven into saturation (or clamp), or it may operate within its active region.
In either event a current I; now exists in the output-circuit resistor B, of A1,
and the voltage at Y1 drops abruptly by an amount I,R,. The voltage at X
drops by the same amount because the voltage across C cannot change instan-
taneously. The multi is now in its quasi-stable state.

The circuit will remain in this quasi-stable state for only a finite time T
because X is connected to Vyy through a resistance R. Therefore X, will
rise in voltage, and when it passes the cutin voltage V, of 42, a regenerative
action will take place, turning A1 off and eventually returning the multi to its
initial stable state. We look now into the matter of determining the time
duration of the quasi-stable state. During this interval A2 is oFF, and the volt-
age changes at X, may be calculated from the circuit of Fig. 11-2. In this cir-
cuit the stage A1 has been replaced by a Thévenin’s equivalent generator V.
(the voltage at ¥, with C disconnected) and a resistance R,, which represents
the amplifier output impedance including the presence of R,. The voltage
waveform at X, is indicated in Fig. 11-3. The transition from stable to
quasi-stable state occurs at ¢ = 0. For ¢ <0, vxs = V., the saturation base
voltage of a transistor (or the grid voltage of a tube in clamp). Since Y,
and X, are coupled by a capacitor, any abrupt change in voltage at Y, must
result in the same discontinuous change at X, At t= 0+, the voltage
at Y, drops by I:R,. Hence, att = 0+, vx2 = V. — 1R, Thereafter, the
voltage vx» will rise exponentially toward Vyy with a time constant

= (R + R)C

(Refer to Fig. 11-2.) Sinceatt = «,vxs = Vyr, then the input voltage to the
second stage is given by [Eq. (2-3)]

vx: = Vyy — (Vyy — V. + IlRy)e_‘l' (11-1)

This exponential rise will actually continue, however, only until vx, rises to the
cutin voltage V,, at which time 7 a reverse transition will occur. Solving
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Eq. (11-1) for t = T, when vxs = V., we obtain

Vyr + LR, — V,

T=r1ln g—

(11-2)

In this equation ¥V, may be taken as zero for a tube in clamp, whereas for a
transistor Vo, = Vg (sat) (typically 0.3 V for germanium and 0.7 V for silicon,
as on page 219). For a tube V, is a negative quantity, the cutin voltage
corresponding to a plate voltage Vpp (V, = — Vpp/u), whereas for a transistor
V, is a forward-bias voltage (typically, 0.1 V for germanium and 0.5 V for
silicon). The symbol T is referred to as the delay time and also as the gate
time, pulse width, or duration.

The delay T may be varied either through the time constant  or by adjust-
ing I,. The current I,, which flows in device A1 when this device is ON, is
controlled by the base input current or grid input voltage. This input current
or voltage is, in turn, dependent on Vxx. Therefore T may be varied through
variation of Vxx. The voltage Vxx will affect T up to the point where,
when Al comes oN, it finds itself in clamp or in saturation.

The duration T of a monostable multi is ordinarily not particularly
stable, depending as it does on the device characteristics through I, V,, and )
V,. The stability is somewhat better if R is returned to a voltage of large
magnitude such as Vyy rather than to a low voltage V; or to ground. The
reason for this feature may be seen in Fig. 11-4. Curve 1 corresponds to
returning B to Vyy, whereas curve 2 is for R connected to a low voltage V..
The time constants have been adjusted in the two cases to give the same initial
time duration T,. Suppose that V., now changes by AV, because of, say, a
change in ambient temperature, heater voltage, or device replacement. We
see from Fig. 11-4 that the change in time T, — T, is smaller than T, — T,.

If the active devices are transistors and if R is returned to ground, then
the circuit will not function properly. Under these circumstances Vggs =~ 0

Uxs
" Vyy

Fig. 11-3 Voltage variation at X, during ’
the quasi-stable state. The cutin voltage /!
V. and the saturation voltage V, are

positive for an n-p-n transistor, but nega-

<
~\

tive for a p-n-p device. For atube V,is 0
negative and V, is zero. LR,
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Ux2 . To Vyy #
I’I
To /
/ Vi
Vo 7
/-
" 4y Fig. 11-4 llustrating the advan-
(2] f tage with respect to timing sta-
AVy bility of returning the resistor R to
Time Vyy rather than to a lower volt-
(1] age V1.
D
Ty —

in the stable state, and the collector current in Q2 is quite small, at most a few
times I¢po (Sec. 6-8). If the transistor Q2 were reverse-biased then its collector
current would change to I¢go. Hence, with R returned to ground, @2 remains
virtually cut off at all times. In order for a transition to take place the swing
at ¥, must be large enough to take @1 out of cutoff. But if R goes to ground,
then the change in the output of @2 is too small to bring Q1 into its active
region, and the circuit cannot be triggered. ’
We may expect that the waveforms generated in the monostable multi
will be very similar to those encountered in Sec. 8-8, where we discussed the
tube and transistor as a switch. In the multi circuit, tube V1 or transistor @1
will be turned on and at a later time turned orr. Hence there will appear
at the plate or collector a negative gating voltage of the form shown as the
input in Fig. 8-18f. This negative gating waveform is applied through a
capacitor to the grid or base of a tube or transistor, just as in Fig. 8-18a and b.

11-2 A VACUUM-TUBE MONOSTABLE MULTI

The circuit in Fig. 11-5 is the vacuum-tube version of the circuit in Fig. 11-1.
Because of the coupling from the plate of one stage to the grid of the second
tube, this configuration is called the plate-to-grid-coupled monostable multi or,
simply, the plate-coupled delay multi or plate-coupled one-shot.

We shall now investigate the appearance of the waveforms at both plates
and both grids from the time before a trigger is applied to the time the multi
has restored itself to its initial stable state. The waveforms are shown in
Fig. 11-6. The triggering signal occurs at ¢ = 0, and the reverse transition
occurs at t = T.

The Stable State For ¢ < 0, the current in V1 is zero and that in V2 is
I, corresponding to a clamped grid. The plate P, is at Vep and the plate P2
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TVPP (200 V)

3 — Vi (~210V) L

Fig. 11.5 The plate-coupled monostable muiti. The compo-
nent values in parentheses refer to the example on page 411,

(neglecting the loading effect of the attenuator) isat vps = Vpp — I,R,. The
grid G: is at V, = 0 (approximately), and the grid-to-ground voltage at V1 is
calculated by superposition to be

B:  VeeR:
Ri+ R. R:+ R,

ve1 = (Vep — ILR;) =Vr (11-3)
The voltage Vr must be negative enough to keep V1 below cutoff. These "
stable-state voltages are indicated in Fig. 11-6.

The Quasi-stable State As a result of the application of a triggering sig-
nal at ¢ = 0, V2 goes oFF and V1 goes on. The voltages vp; and vg: drop
abruptly by the same amount I 1R, where I, is the current in R, of V1 when
V1 goes oN. At ¢ =0+, a current iz = (Vep + I,R,)/R flows through R.
Since the grid G, is below cutoff, this current flows through € into the plate
terminal of V1.  This current iz is not constant but decreases with time as the
capacitor charges. We shall neglect the current sz in comparison with I,.
On this basis we may consider that the currerit in V1 is I and we may consider
as well that, so long as the grid @; maintains a fixed voltage, so also will the
plate P,. We shall then be neglecting the voltage drop ixR,, where R, is the
output impedance of the amplifier stage V1. A method for calculating I,
taking into account the loading of R at the plate of P, is given in Prob. 11-2.

At ¢ = 0, also, the voltage vp, rises abruptly by I,R, to Vep and ve
rises abruptly to

VepR: VeeR:

el Ay il e Al L (11-4)

If this o~ voltage Vy of V1, as computed from Eq. (11-4), is positive, then V1
is in clamp and Vy is to be taken as nominally zero. The voltage at G,
now starts to rise exponentially with time constant (R + R,)C = RC toward
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Vpr. Until vg; reaches the cutin voltage V., all voltages at the other electrodes
remain unaltered. '

Waveforms for t > T Refer to Fig. 11-6¢ and b. At ¢t = 0, tube V1
is driven oN, so that vp; and vg: drop by I1R,. At t = T, tube V1 will be
driven back to cutoff, and if it were not restrained from doing so, the plate
P, (Fig. 11-5) would rise abruptly by I;R, and thus carry the grid G, upward
by the same amount. At ¢t = T, however, the grid G is much closer to zero
voltage than at t = 0+. Therefore, G is driven positive and appreciable
grid current flows. Hence an overshoot develops in vg: which decays as the
capacitor C recharges because of the grid current. We shall now calculate the
magnitude of this overshoot.

V1 oFr Vion V1orr
V2 on V2 oFr V2 on
Vg2 =0 (=T 1676 (2.6)
o V, =0 | ¥ L
L) :
IlR: (70) X vy (-19)
r=RC (@)
(-170)
Vep (200)
L) ) B e
o5 (130)
' =5(17.6)

Fig. 11-6 Waveforms of plate-
®) ' coupled monostable multi. The
exponential portions of the wave-
0 7 forms beginning at ¢ = T all have a
time constant (B, + r¢)C = . The
numerical values (in volts) refer to
the circvit of Fig. 11-5.

Vpz Vep (200}

LR,(140) | LR,

(165)
-
©0) ©
’ (35)
° 0 T :

i}
Ugy

Ve (-75) (@)
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Fig. 11-7 Circuit for calculating the over- R c R>>Rp
shoot in the plate-coupled multi. V1 of Ver T P G,
Fig. 11-5 is below cutoff and.V2 is driven I "
into the positive grid region. ¢
r— "

The grid current may be accounted for adequately by using a piecewise
linear and continuous model for the input circuit. We shall assume that the
break point occurs at the origin and that for positive grid voltages the grid
volt-ampere characteristic is linear. The input resistance of V2 when its grid
is driven positive is r¢ (Sec. 6-19). The grid current immediately after the
reverse transition is designated by I, and its path is indicated in Fig. 11-7.
Since R is very much larger than R,, the current in R has been neglected com-
pared with Ig. From Fig. 11-7 we see that, at ¢ = T+,

Vg2 = If;rg and Vpy = Vpp - I;R,, (11-5)
From Fig. 11-6 the jumps in voltage at G, and at P, are, respectively,
8=1Igr¢—V, and & =I,R,~ I}R, (11-6)

Since P; and G are connected by a capacitor and since the voltage across a
capacitor cannot change instantaneously, then 8 = &. Equating these two
voltage changes we obtain from Eq. (11-6)

_ LR, +V,
R,4+ry -

The overshoot Igrg decays to zero with a time constant ' = (R, + 16)C,
and as the grid overshoot decays exponentially, the plate P, rises exponentially
to Vpp. Corresponding to the overshoot at @, there is an undershoot at P
The current I, in V2 at the time of the overshoot may be determined by draw-
ing a load line for B, on the positive grid characteristics of the tube and noting
the current corresponding to a grid voltage rely. The undershoot at P,
similarly is reflected in an undershoot at G;. Of course, all the sharp corners
indicated in Fig. 11-6 are actually slightly rounded by tube and stray shunting
capacitances. Ordinarily, however, this rounding is of a different order of
magnitude from the rounding apparent on the trailing edge of the waveform
at Py, . '

The following illustrative example will indicate more specifically how one
may determine the waveforms in a plate-coupled multi.

o (11-7)

EXAMPLE Compute the voltage levels for the waveforms of‘Fi‘g. 11-6 for a plate-
coupled multi whose components and supply voltages are as given in Fig. 11-5.
.The tubes employed are the two halves of a type 12AU7. '
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Solution Drawing a load line for B, = 20 K and Vpp = 200 V on the negative-
-grid plate characteristics for the type 12AU7 (Fig. D-5), we find I.R, = 140 v
and Vep — I,R, = 60 V. From Eq. (11-3), we find

Ve=60X%—210X%=—-75V

and from Eq. (11-4) we obtain
Ve =200X3—210X3=—-5V

Corresponding to this grid voltage we find from Fig. D-5
LR, =70V and Verp — IR, =130V

Beginning immediately after ¢ = 0, the grid waveform rises from —70 v
exponentially toward 200 V with a time constant which is approximately » = RC.
The quasi-stable state persists until ve, reaches the cutoff voltage V,=—15V,
during which time all other voltage levels remain constant.

We must now compute the amplitude of the grid overshoot, for which we may
use Eq. (11-7), provided that we are able to decide on a reasonable value of re.
Examine now the positive-grid tube characteristics for the 12AU7 given in Fig.
D-6. Observe that over a broad range of plate voltage the grid current is 10 mA
for a grid voltage of 10 V. We therefore tentatively accept for re the value
re = 1 K. The grid overshoot is therefore

(70 — 15) X 1 _ 55
20 + 1 21

The sbrupt portion of the rise of the plate voltage vp, has a magnitude
b=ILg—Vy=26+15=176V

The remainder of the approach to the supply voltage oceurs with a time constant
(Rp + 74)C, which is also the time constant with which the overshoot decays.

To find IR, we draw the load line for 20 K and Ve = 200 V on the positive
grid characteristics, finding approximately that, corresponding to ve: = +2.6 V,
IR, = 165 V. At the overshoot, then, the voltage vp, drops to 35 V. The
amplitude of the undershoot in va, is

R,
R, + R:

Igrg = =26V

(I3R, — I,R,) = (165 — 140) X 1 = 125V

The delay time is given by Eq. (11-2) with V, = 0, Vyy = Vee = 200,
LR, =IR,=70V,and V, = —15V, or
_ 200 + 70 _ 270 _

T =RCh 200 — (=15) ~ RCIn 515 = 0.23RC
It is feasible to select values for B and C which yield values of T from seconds
to microseconds. )

The least-certain feature of the above calculation has to do with the
overshoot amplitude. This difficulty results from the fact that the grid
resistance r¢ is not constant but is rather a function of the plate voltage,
decreasing with decreasing plate voltage. We may, however, note that re
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does remain fairly constant, provided that the plate voltage remains large
in comparison with the grid voltage. This result is borne out by the curves
of Fig. D-6, where it appears that for high plate voltage in comparison with grid
voltage r¢ = 1,000 Q. In our present case we seek the value of rg under the
circumstance that vgs = 2.6 V and vps = 35 V; hence we may reasonably
consider ¢ = 1,000 2. This general procedure may be summarized as follows:
we select first some reasonable value for rg¢ and compute, as above, the grid
and plate voltage corresponding to the overshoot. Corresponding to this first
approximation for grid and plate voltages we note from the tube characteris-
tics a better value for r¢. We may now recalculate the overshoots, leading
to a still better value of rg, etc. Normally, however, the first approximation
gives sufficiently good results, and successive calculations are not warranted.

Let us note that there is & minimum allowable value J,(min) of I, which
is required in order that there shall be a quasi-stable state. This current
Ii(min) is clearly determined by the condition that the drop I 1(min) B, shall
be sufficient to drive G, below cutoff. Hence I,(min) R, = |V,|, or I;(min) =
[V4|/R,. This result is consistent with Eq. (11-2) since this condition makes
T = 0. Corresponding to I,(min) there is a maximum value Vee(max) of
the bias supply. Similarly, there is a minimum value Vee(min) dictated
by the consideration that in the stable state tube V1 must be at cutoff. If
Ve is adjusted so that V1 is not at cutoff, then the multi may have no perma-
nently stable state. In this case, as. is described in Sec. 11-11, the multi
may become astable and switch back and forth between two quasi-stable |
states.

n-3 RECOVERY IN A PLATE-COUPLED MONOSTABLE MULTI

After the formation of the gate of duration T, the multi will not have com-
pletely returned to its stable state until all overshoots have decayed to zero.
The decay time of these overshoots is called the recovery time. The recovery
time depends on the time constant (R, + r¢)C, whereas T depends on RC.
Where a short recovery time is of importance, a fixed required time constant
R( is attained by making R as large as possible and ¢ correspondingly small.
A practical upper limit for R is of the order of 10 M and is set by the same
considerations that limit grid-leak resistors generally. Additionally, if R is
large and C small, the effective impedance between G» and ground will be large
during the interval when G; is not in clamp, and the circuit may become
excessively sensitive to stray fields. The advantage of a short recovery time
may be seen from the following discussion.

Consider what might happen if regularly spaced triggers are to gen-
erate gates which are as wide as possible {7 to be nearly equal to the interval
between triggers). At the end of the time T the capacitance ¢ must recharge
through R, before the next trigger comes along. Suppose that € is not com-
pletely recharged and hence that P, has not reached Vpp before the next
trigger is injected. This next pulse will trip the circuit and P, will drop
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Fig. 11-8 Waveforms
of multi when interval
between triggers does
not allow complete
recovery. The dashed
line in the vp1 wave-
form represents an

Ver abrupt change in volt-
age. This is followed
Upy by an exponential rise

to Vpe.

_ to its value for vg; = V. The change in voltage §! at P, is less than the full
swing S, = IR, because the plate did not reach Vpp. This new smaller
increment S, appears at Gs, as shown in Fig. 11-8. Furthermore, the voltage
at G, will not have decayed to zero when the second trigger arrives. The
result is that, after this second trigger, G, starts at a more positive voltage
than after the first trigger. Therefore the length of the quasi-stable state id
after the second trigger is less than T after the