VISUAL C+ ©

FOR

DUMMI’E.E)

by Charles Wright

I

1

BOOKS

WORLDWIDE

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA 4+ Chicago, IL. 4 Indianapolis, IN ¢ New York, NY

Table of Contents

Introductionouueeeeeeeeeeeeeeeeeennnnnnnnns 1

How This Book Is Organizedc..cc.cocooooooooeceereeoeesere, 2
Conventions Used in This BOOKcoeooeeueereoeroreeeeo 3
The Icon Crew ..o, 3
Part I: Getting to Know Visual C++............... 5
Customizing the Developer’s Workshop..............cooveeereeeovnoonnn, 6
Customizing TOOIDALSc..oveveeeieeeeeoeceeeeeseeeeeeeee e 7
Adding tools to a toolbarcocooveemercroeeee 8
Creating a tooIbAY ..o, 8
Deleting a toOIDarc..oo.oviiiviiiecee oo 9
Displaying or hiding a toolbarcccovveoeeroeeooeorr. 9
Removing tools from a toolbarcocooeeeeoromooooo . 9
Renaming a toolbar............c.coovovocovvvioeeeeeeeeoeeeoe 9
Resetting a toolbar ..o, 9
MENUS ..o 10
Customizing the Tools Menucooovoveeecesrooer, 11
The wizard bar action MenUccccoeeoereereooroe, 11
Project WIizards ... oo 12
Starting Visual C+ oo 13
Creating a desKtop iCONc..coooovvveeeceeeeeeeeeceeeoeeeo 13
Running Visual C++ from the Start menu 14
WINdow WatChingo..ouovevieieiioeecoeeeoeeeeoeoeeeeeeeoeeoeo 14
The Editing Windowcoccoveeeoinmreoeeeeoeoeeoeoeoo, 15
Exploring the Workspace windowcoocooooovovevoivio, 15
The Output WinAOW ..c....oeeviviveeeioeeeeeeeeee oo, 17
WOIKSPACE POP-UPS ...eoveooeiieieceieeteeees e oo 17
Part 1I: Creating a New Application 19
Adding Files t0 @ Projectoooovveuieeeeeieeceoeoeeeeeeeeeeoeo) 20
Creating and adding new filescccoovvevveeosroero 20
Adding existing filescccovoriiiiereiieeceee e, 20
ADPLICAtiONS ..ot 21
Dialog-based applicationscocoooeueeoeeeeseoeooo) 21
Document applicationsc..cooocouoveeeciereeoeoseeeeeso 21
Compiling and Running a Programc.occocoeovevvevvoni] 21
Creating Applicationsccococovviemienoeese e 22
Dynamic Link Libraries ..o 23
MFC APPWIZardc.oooooiiieieiieeeee oo 24
Step 1: Selecting an application typecoccoovvveviveo, 24
Step 2: Adding database SUPPOrtocoovveeveiomo 25
Step 3: Using compound documents ... 25
Step 4: Adding features to your application 26
More Step 4: Document template stringscco.oovn...... 27

Even more Step 4: Window styles...........ooocooovio 28

 Visual C++ 6 Quick Reference

Step 5: Comments and library options ... 29
Step 6: Naming your classes ..., 29
Project SEtHnGs ..o 30
Utility LIDFATiesc..cciiniiiiiiieee i, 31
Part 1: Building and Debugging a Project... 33
Adding Classes to a Project ..., 34
Adding an MFC class using the ClassWizard ..o, 34
Adding a generic Class ... 35
Adding Document Templates ..., 35
Step 1: Adding a string table entry ..o, 35
Step 2: Creating and adding a template ..o 37
Adding Functions to a Class ...,
Adding member functions ...
Using virtual functions ...,
Adding Windows Message Handlers
Adding a message handler with ClassWizardcc.c.c.... 39
Adding a message handler with the Wizard Bar 40
Breakpoints ..o 41
Setting breakpoints ... 41
Clearing breakpointsccccocviiiinnnnii e 42
Conditional breakpoints ... 42
Building an Application ... 43
Building a Debug version ... 43
Building a Release version ... 44
The ClassWizardc.ocoeveermiinrceniieii e
Compiling a Single File
DEDUZGING ..veveveirireciriiinieicet et
Editing Program Files ...
Error Handling ..o
Programming errors
SYNEAX EITOTS ..ottt
Exception Handling ...
The try statement ...
The catch statementccoeoiiererrrnneeen s 52
Searching fOr TEXLocovcrioeieriieniier e e 53
BOOKINATKS ..ottt eee ettt 53
The Find commandcocconvenviniiiniiniinec s 54
The Find in Files command and window ... 55
REPIACING LEXE ..voviieireiiiiiiceiiieree et 56
Stepping through a Program ... 57
Stepping into a function ... 57
Stepping over a function ... 58
Stepping out of a funCtion ... 58
WALCHES .ooviviveiiiiiicciete ettt st 58
Setting WatChes ..o 58
Clearing WatChescccveevieiniccnien e 58
Using QUICKWALCHvoviviiecriiirccice e 58

WIZATA BAT oot e e tee e ets e et st e e et e eareare o 59

Table of Contents .

Part IU: The Resource Workshop.................. 61

ACCEIETALOIS ..ot 62
Creating and editing accelerators ..., 62
Assigning accelerator IDscccviiiniiiii 62
Setting accelerator keys ... 62
Creating new accelerator tables ... 63

Animation CONtrols ..o 63

BItINAPS ..eeeriiieicecccre i s 65
Creating and editing bitmapsccc.ccorvivvncnininiiine, 65
Importing bitmapscccoocoiiiiincic s 66
Creating toolbars from bitmaps.........cccoovnveiininiinninin. 66

Common CONEIOlS ..o e 67
Creating common controls ..., 68

Adding member variables
Adding message handlers

DiIalog BOXEScccoiiiceieiieete ettt et
Creating a dialog DOXccoovviiieniiicicrcr e
Adding a dialog classccoveerinercniirniicnen

Edit CONIOLS ...oooviiiiiiiiiee et
Retrieving text from a text control ..o 76

Property SHEEets ..ottt ernenns 77
Creating a property sheet ... 77
Creating property Pagescccccneiiiiinininiees 77
Adding property pages to a property sheetcccceeee. 78

Selection CONLIOLSccveieiiiiiie e 79
Button controlsccoieiiieiinicec e 80
CombO DOXES ..ouviiiiieiieiieeeee e 80
LISt BOX oottt e 81
LiSt CONTIOIS 1ottt 83
Progress DArSccoooiiiiicir ettt et s 83
Radio BULtONSoovviiiiiccc e 84
SCrOII DATS ...vvveiiiiiiienii et e 84
SHABYS ettt et ar e 84
SPIN DULLONS ..ottt e 86
Tabh CONTIOLS .o 87
Tree CONtrols ... 88

WIZATAS oot et bbb s 90
Creating a Wizard ..o et 90
Making the Finish button appearc.cccocoiciiccninccnn 91

Part U: The Help Workshopccc..... 93

Compiling Help Files ..o 94

Creating a Help Project ... 95
The contents fileococoeeiiriiiiic e 97
Making new window tyPeS.......cceviiiiciceenennenneenieenerenens 99

Editing Help Filescccooviiiiiii e 100

FOOIMOLES ..oiiiiieiiiei ettt et 100

Visual C++ 6 Quick Reference

BIrOWSE SEQUEIICES ..ooreeeaemrnssesenrcriesermesssimsbss st et 102
GRAPRICS . ovocvoeeeris e 103
HOESPOLS .veveeeeeercicresis s s s 103
Creating HNKS ..o 104
IMACTOS oo eeeeeeee ettt ettt e rreb et 105
TOPIC PAZES w.evreriicvrieiisieis e 106
Help Workshop Help File ... 107
Testing Help Files ..o 107
Help AUthor Mode ... 108
TOPIC FILES .cvviiiiiieiiiiinie it 109
MiICTOSOft WOIdooviiiiirirecrircereci i 109
WOTAPEITECT oot 109
Visual C++ Help TOOIS ..o 110
Segmented Hypergraphics Editor ..., 110
Dialog Box Help Editor ..o 112
Part Vl: Constants, Arrays, and Variables... 113
ATTAYS 1ottt ss e et 114
Accessing array €lements ... 114
Declaring arrays ..ot 115
POINLErs t0 ArTAYS .ooveveciriveiiirieiiiiiiieee et e 117
Declaring an array variable ... 117
Accessing a subset of alarge array ... 118
Ct+ DAA TYPES 1o 118
Casting Variables ... 119
COMSLANES ..uvvieiieiie ettt sre e s bbb s 120
Functions as Variables ... 121
Pointers to funCtionscccocceeniviiiinieiinniie e 121
Functions as structure members...........cccoeeeviviininienninnnnns 122
Pointer Variablesococveriiiiiini e 122
Declaring pointer variables ... 122
Dereferencing pointer variables ... 123
Pointer arithmeticccocevininiiiniiiiii e 123
Typecasting POINTErS ... 124
String Handling ... 124
Variables ..oovoooiiiicie et e 126
Automatic variablescccccimeniiii 126
Static variablesocceeivineeiinerii s 127
Part Vll: Decision-Making Statements 129
FOT LOOPS coviviviiiieiieeesice st 130
FOrever LOOPS ...cvciieeeeiirecrecrrrcnieniie s nbebase s 132
If STALEMEIES ..ovoiviiiiiee et et 133
Simple if Statementsccccoooeiiiinie 133
[f-else StatemMEeNtoccoeeeeeiiiieicie e 134
Multiple else conditionscccccoioinciiinniies 135

LADELS c..oviiiieeecee ettt s 136

Table of Contents

LOODS ... ittt 137
EXItiNg lOOPS ..oooviiiiiiciiiicnrercriiie e 137
Nested loOPS .o 138

Switch Statementsccoveeeiiiiiiiirce 138
CASES woiiiiiiii et r e b 140
Default ..ooveiieiiiii e 141

WHhile LOOPS ooviiivei et 141

ADSEraCt CLASSES ..vvviiiiiceieceecirecre st et ia s
Accessing Class Members

The private keywordc.ccooiiniiiiiiii

The protected keyword

The public keyword ...
BaSE ClASSES ..ot ettt eev e e e e e e
Class Variablesooooviiiiei e eesvee et eve e

INAIMIINE «..cevee et e na s bean e

Static versus automatic
CONSITUCLOTS ..o eere e eee e

Declaring constructors

COPY CONSEIUCTOYS ..ottt et s

Using multiple constructors ..o, 154
Declaring a Classcccccvevicincinnniciienii s 154
DErived ClASSESooiiiciiiiiiiie ettt e et sre e rae e senea e e saereeans 155
Destructorscoccecveeeveeens et et ettt e oo e eb et earaans 156
Friend ClaSSesooivviieiiiii ettt e e sve e ebesovee e sneene 157
FUNCHIOMS 1ottt ettt e ste e e sne s bssara e snaesaneene 158

INlNE fUNCHONS ...oovviieiceeer et s e 158

Naming functions ...t 159

Overloading functionscccniciniinni 160

Virtual functionsccccceviiiiiecicicr e ceeee e 161
INNEIILANCE oot 162
Structures and UnIONSc.ccooovvveiiiei e 163
The This POINTEr ...t 164
VIrtual ClaSSeS ..uueeieeiieeeeeeee ettt 164

Part 1X: Operators.............cccacueecceeeceeaceee 167

Arithmetic OPerators ... 168
Assignment OPerators ... 168
Bit Control OPeratorsoocciirceriiiierecieccr e 170
Increment and Decrement Operatorscc.ccoovceiiiiieniinninn, 170
Logical Operators ...t 171
Overloading Operators ... 171
Precedence and Order of Evaluationcccoooviviniinn, 172

The Sizeof OPEratorccccoveviiieniininiiese et 173

Visual C++ 6 Quick Reference

Part X: Taking Advantage of Windows 175
SPIlash SCrENS .ouiiiiiiiiiiiicieee e 176
TRECAUS ..ottt b e 176
The Windows Registry ... 178

Part X1: The Microsoft Foundation Class..... 181
Application ClasSes ...t 182
CObject — Genesis of the Classes ..., 183
DIalog ClASSES c.ooueeviiiiiiciieic e 183
Dialog Command Enablers ... 185
MFC Programming Tips ... 186

Techie Talk.......... eeeeeeecrcenenesseceseeansnneecacass 189

Book Registration Information Back of Book

How to Use This Book

You're a busy person — much too busy to spend your
precious time reading a long treatise on Visual C++.
You already know something about programming, and
you don’t need me to tell you how to use loops and
conditional statements in your code. What you do
need to know is how Visual C++ can help you with
Windows programming and maybe a reminder now
and then of how the syntax of various C++ statements
work and what those statements accomplish. And you
want to get that information fast.

Well, you've come to the right place. Visual C++ For
Dummies Quick Reference is specifically designed to
give you the information you need as quickly as
possible so that you can get back to creating cool
Windows applications with Visual C++. Keep this
handy little reference right by your computer for
those times during marathon coding sessions when
you wonder what a particular menu item means or for
when you need a quick fix on a bit of C++ syntax.

How to Use This Book

How This Book Is Organized

This book is composed of 11 parts, each of which covers a specific
area of the Visual C++ program or Visual C++ programming. To find
particular information on a Visual C++ subject, first figure out what
classification it falls under, and then look at the alphabetical
listings in that part. For example, if you want to find out how to
declare a pointer in Visual C++, go to the part on Constants,
Arrays, and Variables, look alphabetically until you get to pointers,
and there it is!

The parts of this book are organized by subject matter, as follows:

Part I: Getting to Know Visual C++: In this part you can get your
feet wet with the Visual C++ Integrated Development Environment,
including customizing the environment, using and customizing
toolbars, and starting Visual C++.

Part II: Creating a New Application: This part tells you how
Visual C++ makes it easy to create Windows applications. In fact,
you can create a working Windows application in minutes using
the steps detailed in this part.

Part III: Building and Debugging a Project: This part provides
you with what you need to know to add code to your application
and debug that code.

Part IV: The Resource Workshop: The resource workshop is the
part of Visual C++ where you add ways for the user to interact with
your program (buttons, dialog boxes, and so on) and where you
tell your program how to handle the messages created by all those
user clicks and keystrokes.

Part V: The Help Workshop: Because the job’s not over 'til the
paperwork’s done, you can find help for creating help files in this
chapter. The work you do in creating a help file can really pay off
in terms of the time you don't lose answering users’ questions later.

Part VI; Constants, Arrays, and Variables: This part helps you out
with the syntax for declaring constants, arrays, and various
variables in Visual C++.

Part VII: Decision-Making Statements: This part tells you about
the use and syntax of the four decision-making statements in
Visual C++: if, for,while,and switch.

Part VIII: Classes: Classes allow you to write reusable object-
oriented code. This part tells you the syntax for working with
classes.

Part IX: Operators: This part can refresh your memory about how
operators work in C++.

How to Use This Book .

Part X: Taking Advantage of Windows: From splash screens
to Registry entries, this part tells you about using features of
Windows in your programs.

Part XI: The Microsoft Foundation Class: This part gives points out
some aspects of the Microsoft Foundation Class — reusable code
that comes with Visual C++.

Glossary: Techie Talk: Look up unfamiliar words in this part.

Conventions Used in This Book

| show code elements, such as variable names, commands,
collections, controls, methods, variables, and so on, in this way:
myCode. If the code extends beyond one line, you'll see something
like the following code fragment:
for (i = 1; i < 5; i++)

{//do something

b
For placeholder code that you need to change, I use italics. For
example:

class classname

In this case, you would put the name of the class you are declaring
in place of the text c1assname.

The lcon Crew

Look for the following icons in the margins of the parts that follow
to call special attention to the text it accompanies. The meanings
of these icons are as follows:

ne
This icon points out a particular hoop that you can make Visual C++

jump through and save yourself some programming hassle.

This icon points out the quickest way to get something done in
Visual C++.

@
H
$

%
5
s

o,

Ignore text marked with this little bomb at your own peril!

%

=
&>

<

This icon points out something that will have you scratching your
head and chuckling.

oNTay
S

How to Use This Book

This icon provides a sample that illustrates the use of a particular
element.

This icon points you toward another book for a more detailed
explanation than | give you here.

This icon tells you where to go to get the syntax for a particular bit
of code.

Getting to Know
Visual C++

Suppose you were given the chance to build the C++
development environment you wanted. What would
you put in it? Perhaps a way to build starter program
files for even the most complex projects without
having to gather skeleton program files and recode
them. Or maybe a panel that shows all the files,
classes, variables, and resource objects in your
program at a glance. Or perhaps you'd consider
including a method to add new classes to your
program, automatically create the header file defini-
tions, and build basic source code files with construc-
tors and destructors.

Well, you can go on dreaming, but if you haven't
guessed yet, that wish list and more describes
Microsoft’s Visual C++ Version 6.0 Integrated Develop-
ment Environment (IDE).

In this part . . .

1 Customizing the Developer’s workshop
v+ Customizing toolbars

v Modifying the Tools menu

+” Meeting the wizards

v~ Starting Visual C++

+» Watching the workshop windows

+* Reading the workshop menus

Customizing the Developer’s Workshop

Customizing the Developer’s Workshop

Visual C++ is part of the Microsoft Developer's Workshop. As busy
as the workshop frame seems when you first start it up, it contains
only a portion of the toolbars, menus, and windows that are
available to you while developing a program.

The workshop isn't a static place. The screen changes according
to what you're doing — whether editing a program file, debugging
code, or building resources. On top of that, you can move toolbars
and windows, placing them where they are most effective for you.
You can even customize some of the individual windows and build
your own toolbars. Microsoft truly designed this to be a
developer’s workshop.

e You may want to start out using the workshop as it first appears.
As you gain more experience, you discover the most useful
toolbars and the handiest places on the screen to have them.
Take the default configuration, for example: The build and
debug toolbars are on opposite sides of the screen, so you need
to slide the mouse a long way to start a debug session and to
pause it. A more convenient approach is to move the toolbars
next to each other or even to build your own toolbar containing
these two buttons.

oRNeg, Before you begin customizing, however, a word of caution is in
7 order. Not everything is as simple as it Jooks, but that's what
makes the workshop so flexible. Options, for example, is a single
word on a menu, yet it conjures up a 10-tab dialog box that, in
other circumstances, could be considered an application in itself.

The Tools and Menu dialog boxes enable you to customize the
tools and menus of the workshop. You can add or delete menus
and menu items, modify existing toolbars or create new ones, or
add your custom tools to the Tools menu.

You access the Tools and Menu dialog boxes by choosing either
ToolstsCustomize or Toolst>Options. If you need immediate help,
click the ? button and then a button, option, or check box. The
following minitable shows the tasks you can do with these tools:

Dialog Box Tab What You Can Do

Customize Commands Add commands, including toolbar commands, to
menus and toolbars

Customize Toolbars Set which toolbars are visible, enable tool tips
and shortcut keys, enable large icons on toolbars

Customize Tools Add commands to or delete commands from the
Tools menu

Customizing Toolbars

Dialog Box Tab

What You Can Do

Customize

Keyboard

Modify keyboard shortcut keys to a command or
assign shortcut keys to commands that don't
have shortcuts

Customize

Add-Ins and
Macro Files

Enable and disable add-ins and macro files

Options

Editor

Set editor and file save options

Options

Tabs

Set the tab stops and options for the various file
types used in the IDE {the smart indent options
are available only for C/C+ + files and only if you
select the Smart option under Auto Indent)

Options

Debug

Set the display and behavior options for the
debugging process (Of interest here is the Just-
in-Time Debugging option. Selecting this box
inserts information for Windows to start up the
IDE and begin debugging the program when it
encounters an error.)

Options

Compatibility

Set the text editor to emulate the Brief editor,
EPSILON editor, or the old Visual C+ + 2.0 editor
(if you're new to programming, stick with the
default Developer Studio editor)

Options

Build

Specify settings for makefiles, which are used
when building a program from the command line
(As long as you stay within the IDE, you won't
need to worry about makefiles. You can select the
Write Build Log option to cause Visual C+ + to
create a log that shows the options and build
sequence used to put together your programs.)

Options

Directories

Specify where the IDE looks for various types of
files during the project editing/build sequence

Options

Workspace

Set the default behavior of the IDE on startup (the
Docking Views window lets you determine
whether certain window frame elements are to
be docked or not)

Options

Macro

Select how the Developer Studio handles macro
files that you have changed since they last ran

Options

Format

Customize the appearance of the various
windows in the |DE

Options

InfoViewer

Sets display options for the InfoViewer window
(the font size setting is useful, especially after a

* bleary-eyed night of debugging}

Customizing Toolbars

You can create, edit, or delete toolbars from the Visual C++ IDE to
make the workshop reflect the way you work.

Customizing Toolbars

ARNIY

bz Toolbars you create are custom toolbars. Any changes you make
to a custom toolbar are permanent.

Adding tools to a toolbar

You can add tools to any toolbar, including the standard toolbars.
If you want to add a tool to a toolbar, follow these steps:

1. Choose Tools>Customize. Click the Toolbars tab.

2. Make sure the toolbar is visible by putting a check mark in the
box next to it.

3. Click the Commands tab.

4. Select the category that contains the toolbar items you want
to add.

5. Click the appropriate button and drag it to the toolbar.
Release the mouse button to drop the tool onto the bar.

Creating a toolbar

Follow these steps to create a custom toolbar:

1. Choose Toolsw>Customize. The dialog box that appears
contains a check box for Large buttons. This option applies to
all the buttons on the frame.

2. Choose the Toolbars tab. The toolbars with a check mark next
to them are already visible on the screen.

3. Click New and give your toolbar a name.

4. Click OK. An empty toolbar appears in the upper-left corner of
the Workshop. You may have to move the Customize dialog
box out of the way to see it.

5. Click the Commands tab.

6. From the category list, select the tool you want with the
mouse and drag it to where you want it to appear on your new
toolbar. Release the mouse.

* To reposition a tool, click the button and drag it to the new
position. Release the mouse.

¢ To remove a tool from the toolbar, click the button, drag it to
an open area off the toolbar, and release the mouse. You
can’'t undo a removal; to put a tool back on the toolbar,
repeat the above step.

7. Click Close. The toolbar is left floating. To dock it, drag the
toolbar and drop it on the frame.

Customizing Toolbars .
Deleting a toolbar

You can delete any custom toolbar. Although you may modify the
standard toolbars, you may not delete them.

To delete a toolbar, follow these steps:
1. Choose Toolsto>Customize.
2. Click the Toolbars tab.

3. Select the toolbar you want to delete, and click Delete. You can’t
undo a toolbar delete, so make sure you don’t need it anymore.

Remember: The Delete button is disabled for standard toolbars.

Displaying or hiding a toolbar
Right-click on any toolbar to show the toolbar menu where you

can show or hide any of the toolbars by selecting or deselecting
the toolbar.

Removing tools from a toolbar
To remove a tool from any toolbar, follow these steps:

1. Hold down the Alt key and click on the tool you want to remove.
You don’t have to open the Customize dialog box to do this.

2. Drag the tool over an open area of the edit window and
release the mouse. Dropping the tool over another toolbar
adds it to that toolbar.

Renaming a toolbar

The toolbar name is visible only when the toolbar is undocked.
You can rename toolbars by doing the following:

1. Choose Tools>Customize and click the Toolbars tab.

2. Select the toolbar you want to rename and type its new name
in the edit box below the list.

Resetting a toolbar

You can reset a standard toolbar to its original state when you no
longer need the changes. Just follow these steps:

1. Choose Tools=>Customize from the menu, and then open the
Toolbars property page.

2. Select the toolbar you want to restore.

3. Click Reset. The toolbar restores to its default state. To reset
all the toolbars, click the Reset All button.

Menus

You find only one menu bar on the Workshop frame, and you can’t
hide it — unless you're editing a file in full-screen mode. By

default,

it appears at the top of the workshop frame. Many menus

remain hidden until you need them. If | covered all of these menus
and their multitude of variations, this book wouldn’t be a quick
reference anymore. I address the main menu in the following table
and try to give an overview of the most useful hidden menus. |
cover many other menus in other sections. For example, The
Resource Workshop details the pop-ups on the Resource.

Menu

Submenu Options

File

Gives access to the New property sheet; open, save, and close files
and workspaces; printer functions and Warkshop exit

Edit

Cut, copy, paste, and undo functions; find and replace; bookmarks;
access to breakpoints. The Advanced submenu offers selections for
formatting, incremental searches, and changing the case of selected
text. Microsoft has had entabbing and untabbing functions in IDEs for
as long as | can remember; you find them here.

View

Access to Script and Class wizards; resource symbols and include
files; full-screen edit mode; show workspace, InfoView, output, and
debug windows; file properties

Insert

Insert various objects such as classes, resource objects, files, ATL
objects

Project

Project functions; set dependencies; access to Setup dialog box

Build

Compiler and debugger functions; access to configurations and profile
dialog boxes

Tools

Browser functions; run external programs used as tools; access to
Customize and Options dialog boxes

Window

Window functions and list

Help

InfoViewer access; tips; technicai help

You can access some useful context menus by right-clicking the
mouse at certain locations:

+ Right-click on a blank area of a source or header file to access
the cut, copy, and paste functions; the ClassWizard; and the
Properties dialog box for the file.

+ Right-click on a word to go to the definition or reference for
the word. If the word is a function name, you may jump to the
definition or declaration — assuming you have browsing
enabled. If browsing isn’t enabled, you get a chance to enable
it from this menu.

+ Right-click on resource objects to get access to functions that
depend upon the object.

Menus

Customizing the Tools menu
You can add or delete programs to and from the Tools menu.
To add a program to the Tools menu:
1. Choose Tools= Customize. Click the Tools tab.
2. Double-click the open rectangle at the bottom of the tool list.

3. Type the tool name. Inserting an ampersand (&) before a
letter makes it the accelerator key.

4. Press the tab key to activate the edit boxes below the list.

5. In the Command box, type the program name. Click the button
to the right (labeled “. . .”) to open a file search.

6. In the Arguments box, type in any parameters the tool needs.
Press the arrow to the right to get a list of Developer Studio
variables. If the arguments vary with each run, check the
Prompt for Arguments box at the bottom of the dialog.

7. In the Initial Directory box, type the working directory of the
tool. Press the button to the right to get a list of directories
used in the current project.

8. Select the Use Output Window check box at the bottom and
you then see a tab appear in the output window. Selecting this
check box allows you to see the program’s output in a window.

9. Close the dialog box and test the tool.

To delete a program from the tools menu, follow these steps:
1. Choose Toolse>Customizer>Tools tab.
2. Select the tool you want to remove from the menu.

3. Click the Delete tool (the red X just above the tool list). The
tool is removed. If the tool was writing to the output window,
the tab on the output window is removed as well.

The wizard bar action menu

The wizard bar action menu is part of a warp-drive control system
that lets you zip around your application and perform super-
programmer feats.

See also “The Wizard Bar” in Part II.

Project Wizards

Project Wizards

The application wizards of Visual C++ help you to create many
types of applications, as shown in the following table. Create an
application by following these steps:

1. Choose File'r New, or press Ctrl+N, to summon the dialog box.
This dialog box has tabs for creating files, projects,
workspaces, and ActiveX documents.

2. If you don’t have a project open in the workspace, the dialog
box opens on the Projects tab; otherwise, it opens on the Files
tab. In the latter case, click the Projects tab. You can see a list
of wizards and the types of applications you can create as
shown in the figure below.

Flss " Profects | Workepacss | O Documeits || :
LB aH. LOM Appiwizard Project ganves. : :
Custom AppWizard T
50 Catabase Project - S
OevShudio Addin Wizand ogabory o ol
158P1 Extension Wizand FACFILESS “H
] Mafle SEte e T
MFC dctiveX Contiohvizand S ¢
5] MFC Appiwiizard (di] & Qmmm F +
M Appwicard lerel £ aodta cutemwonkepace
4\ New Database Wizard s 1
Win32 Apehcation PR A

\win32 Console Applization
9]'win32 Dynamic-Link Library
%] Win32 Static Library

wizand App\wizard

In addition to the wizards, the Projects tab also has options to
set up standard Windows applications and libraries. Unlike
the MFC wizards, these options don’t generate any program
code. They build only the workspace files.

Wizard Name Purpose

MFC ActiveX ControlWizard Guides you through the steps of setting up an
ActiveX control, and then creates the files you
need — object description language (.0DL) and
source, header, and resource files.

MFC AppWizard Helps you through the steps of creating a new
application. This is your main wizard for most
applications.

ATL-COM AppWizard The Active Template Library is a set of template-

based classes that permit you to create small but
efficient Component Object Model objects, the
basis of ActiveX. This wizard takes you through
the process of creating an ATL application.

Starting Visual C++

Wizard Name Purpose

Custom AppWizard Walks you through the steps of creating your
own wizard. You can create your own custom
wizard from scratch, make an existing project
into a wizard, or opt to add your own steps to the
AppWizards.

ISAP! Extension Wizard This guy takes you through the steps of creating
an Internet Server Application Programming
Interface {ISAPI) extension or filter. ISAPI is an
alternative to the Common Gateway Interface
(CGl) programs.

Many of these wizards are beyond the scope of this book, but
Visual C++ was written for programmers of all levels, and you may
eventually find a need for them. For this book, however, you'll
concentrate on the MFC wizards for creating applications and
libraries.

Starting Uisual C++

Visual C++ is part of the Developer Studio, which you can access
from the Start Menu. Even if you have no other Developer Studio
products installed, the menu shows a number of tools depending
upon the options you selected at installation time.

Creating a desktop icon

If you use Visual C++ often, you may want to create a desktop icon
for it. This saves you the time of stepping through the Start menu.

Follow these steps to create a desktop icon:

1. Double-click the My Computer icon on the desktop, and then
double-click the drive on which you've installed Visual C++.

2. Navigate through the folders until you reach the program file
folder.

If you used the default folder during the installation, the
sequence is DevStudio=>SharedIDE=>bin. Find the icon for
MSDEV.EXE in this folder.

3. Right-click on this icon, and hold the mouse button down. Drag
the icon out of the folder to someplace on your desktop.

4. Release the right mouse button. From the menu that pops up,
select the menu option Create Shortcut(s) Here.

Anytime you want to run Visual C++, just double-click on the
desktop icon.

Window Watching

Running Visual C++ from the Start menu

To start Visual C++ from the Start menu, choose Start="Programs
Microsoft Visual C++ 6.0t Microsoft Visual C++ 6.0.

Window Watching

Technically, every object in the IDE is a window — the title bar,
individual toolbar buttons, the Workspace, and so on — with a
particular control applied to it. Practically, however, you refer to a
window as an object that displays information that can vary
according to what you do with the data.

Using that definition, three windows appear in the IDE when you
first start it up, as shown in the following figure.

N B ».1 Y *strlngBlndlng
AdClient filex g G_HANDLE Binding:

FADH RPC_! STATUS Status:

;f] AD CC UI.ONG Securitylevel = RPC_C_AUTHN_LEVEL NONE

3 ADCLIENT PP char *pszError
) RPCERAOR.CPF AdRequest = 0.
1 Extemal Dependencies} arge—;

@ AdServer fles argu+s

E)ADH f whiie(argc)
a0 oL

] sf (arge[0][0] = -
Jaoc && argv(0][0] 1= /')
HanSc
#] ADSERVER CPP Usage().

8] SERVICE CPP ‘;e"‘“‘(L

H) SERVICEH

swrt=h(argw[0]1{1])
{

O TIektaT e L wmﬁ

4 The Editing window. This is the MDI (multiple document
interface) client area and is the largest area in the middle of
the IDE. When you open a source file or InfoViewer topic, a
child window containing data for that object appears in this
area. Notice that a child window gets clipped when a portion
of the window moves outside the client area. Dialog boxes
may appear in this area, but they aren’t MDI child windows
and aren't clipped by moving them out of the Editing window.

Window Watching

+ The Workspace window. Each of the four panels is a separate
window containing tree views of the program elements on the
tab label. This window normally appears on the left side of the
frame below the menus and toolbars. Click the tabs at the
bottom to select a view.

4+ The Output window. This window, normally at the very
bottom of the frame, contains a tab control to choose Find in
Files, build, and debug windows. If you've added a tool and
specified that it should write to the Output window, a tab for
the tool appears.

Remember: In addition, the IDE contains several other windows
that are invisible until you start debugging a program. See
Part Ill for more on building and debugging a project.

The Editing window

The large area in the middle of the workshop is where you can edit
your source files. If you consider the workshop itself an applica-
tion (after all, it was created with earlier versions of the work-
shop), this area technically is the MDI client window. Experiment
with moving and resizing windows using the minimize and maxi-
mize tools. If you create an MDI application, your data windows
behave in the same way.

Exploring the Workspace window

= EHan closses ks
3 BAUDTABLE 8
% ¥ CaboutDig
& ™ CChidFiame
& ®4 CChooseDirectory
+ ¥ CChooseFont
% ®% CCommBar
4 B (LrediCard
& ™% CF_PREFERENCES
+ ™ CF_VERSION
¥ ®7 CFlashe
& ™3 CHaxbpp
& ®% CHaxCntrltem
*% CHavCommCanhg
% ®% CHaxConfig
% ®% CHaDoc
2+ ™% CHasFiesCorfig
& ®% CHaxHeaderConhig
" CHaxin
+ ™ CHaxManConfig
% ™= CHaxStoywinConfig
% ™% CHaxTextWinConfig
B oo 1B

The Developers Studio organizes the elements of your program
and displays them in the Workspace window. The actual panels
that you see depend on the type of project you have open. You
select a panel by clicking on its tab at the bottom of the window.

. Window Watching

If the Workspace isn't already visible, open it by clicking the
Workspace button on the toolbar. You also can open the
workspace by choosing View«i Workspace or by pressing Alt+0.

For a C++ project, at least four panels are available to you:

+ Class View. Lists the classes in your project and their member
functions and variables. Double-click on a class name to open
the file that contains the class definition. Double-click on a
member function to open the file containing the function, and
position the cursor at its definition.

+ File View. Lists the files you included in your project by
category (source, header, resource, and so on). Expanding a
category reveals a list of files, and you may go directly to that
file by double-clicking it. You can also invoke the Project
Setting dialog box by right-clicking any item and selecting
Settings from the popup menu. You can invoke resource tools
by double-clicking a resource file.

+ Info View. This panel is an information storehouse and is a
good starting place for help. Info View contains information
on Microsoft products, the developers network, and program-
ming tools. Here you find listings for tools, a Visual C++
reference, software development kit documentation, and
access to the developer network.

+ Resource View. Resources are listed by object type. Expand-
ing a type reveals the objects in your program. You can invoke
the Resource Workshop from this panel or any of the resource
tools. Double-clicking an object opens the object in a resource
editor. Right-clicking opens a menu that lets you insert new
objects.

Remember: If you don’t have a workspace open, only the Info
View panel is visible.

The Workspace window is a dockable object. Normally, the
Workspace window is on the left side of the screen, but you can
move it to any location you want or even leave it unattached. Grab
the double line at the top with the left mouse button, and drag the
window to any place on the frame. Release the mouse button, and
the window docks.

You can hide any of the four panels by right-clicking on a tab and
selecting from the pop-up menu. You can hide any three of the four
panels. To restore a panel, right-click on a tab, and then select the
panel you want to show.

Undocking the Workspace Window makes it appear as another
child window in the editing window. This method is a convenient
way to quickly expand the editing area and still have the

Window Watching

workspace panels available. To undock the Workspace Window,
right-click on any area in the window (including on a tab) and
select Docking View.

The Output window

The Output window is a tab control window where the workshop
writes messages to you and displays the result of Find In Files
searches. You can add tabs to the Qutput window by adding your
own tools to the Tools menu and specifying that the output should
go to the Output window. Normally, however, the window contains
four tabs:

4 Build. This window shows the results of compiling and linking
your program. Watch this window for any errors in the
compile. Double-clicking on an error message opens the
source window and places the cursor on the line containing
the error.

4+ Debug. Watch this window after a debugging session for any
messages from the debugger. Problems that don’t necessarily
stop the program are noted in this window. In Part Ill, which
covers building and debugging a project, you discover how to
write your own debug messages to this window.

4 Find In Files 1 and Find In Files 2. These panels display the
results of running the Find In Files command. Normally, the
command writes the results to Find In Files 1, but you may use
the second panel by checkmarking the Output to Pane 2 box
in the Find In Files dialog box.

Workspace pop-ups

What happens in Workspace pop-ups depends on which panel you
have open and what is under the mouse cursor.

1. Right-click on the top-level line (the classes) on the ClassView
panel. You get a menu to set the selected project as the active
project, add a new class (not the ClassWizard), create a new
ATL object, and create a folder.

2. Right-click on the same line on the ResourceView panel for
access to the Resource Includes dialog box and a window to
edit resource symbols. You also have options to save the
resource file and add or import resource objects.

3. On the files page, the topmost item is the workspace itself;
options here are to add a project to the workspace or to insert
a project into the workspace. Click on a project name to get a
project menu.

. Visual C++ 6 For Dummies Quick Reference

Creating a New
Application

When you have a good idea for a program, you want to
get right into writing it. But creating a Windows
application can be a tedious process. Before you get
into making your program perform, a lot of code is
necessary just to create a window, set up menus, and
do other chores to placate the operating system. Many
programmers have learned to keep a skeleton (pro-
gram, that is) or two in the closet and drag them out
for just this purpose. The good news is that Windows
libraries such as the Microsoft Foundation Class
(MFC) put most of that startup code into library form,
and the IDE goes a step farther: Wizards in the IDE
generate most of the remaining startup code for you,
which means you can create a working application in
minutes. You can get right into creating the program
you want.

In this part . . .

v+ Adding files to a project

v~ Applications

»* Changing project settings

+# Compiling and running a program
v Creating new applications

1 Saving your work

’ Adding Files to a Project

Adding Files to a Project

TP

The wizards of Visual C++ create most of the files your project
needs. The MFC AppWizard creates the startup files, and as you
add classes to your project, the ClassWizard creates the header
and source files for the classes.

From time to time, however, you may need to add new or existing
files to your project that the wizards can’t handle.

Creating and adding new files

Not all files can be handled by the wizards. You may want to
create a program file to hold utility routines that are not a member
of any class. For example, the callback routines for list controls
are better handled outside a class, and you may want to place
these in a separate program file and include a header file to
declare the functions.

To create a new file and add it to your project:
1. Select FiletoNew, and then click the Files tab.
2. Select the type of file you want to create.

3. Select the Add to Project check box at the upper right of the
dialog box, and give your file a name in the Project Name
edit box.

4. Click OK. Visual C++ creates the file and adds it to your
project.

Adding existing files
You can add files from any drive or directory to your project. This
is particularly handy as you develop utility routines to handle

various functions; you don’t have to copy them into your project
directory to include them in your program.

To add an existing file to your project:
1. Choose ProjectcAdd to Project @Files.
2. Navigate through the file dialog to find the file you want to add.

Files need not be in the project directory, nor even on the same
drive.

Compiling and Running a Program

Applications

An application is the result of your programming efforts. The
application isn't necessarily limited to the program itself, but it
can include help files, any support libraries you've developed to
support the main program, or any other elements needed by the
main program. Applications generally are dialog- or document-
based, but you can mix the types.

Dialog-based applications

If you don’t want your Windows application to create a main
window, the AppWizard provides a simple way to launch a dialog
box on startup. You need only select the Dialog Based option when
you start the wizard.

See also “Creating Applications” in this part for more on how to
use the AppWizard to create a dialog-based application.

Document applications

Most Windows applications involve opening a main window in
which you create one or more child windows to display data,
whether text or a database record in a form. These applications
are considered document based.

Options for document-based applications include

4+ Single Document Interface (SDI). Only one document may be
open for editing or creating at a time.

4+ Multiple Document Interface (MDI). Originally specified by
IBM, this interface involves creating a client class to manage
the documents. MFC contains full support for MDI, and the
MFC AppWizard handles the task of setting up the client and
views.

See also “Creating Applications” in this part for steps to
create an application using the MFC AppWizard.

Compiling and Running a Program

As your project develops, you want to compile and test it often.
Compiling involves changing your source code into instructions
the computer can understand. The Visual C++ compiler handles
this task.

. Creating Applications

To compile your project, press the Build button on either the Build
toolbar or Build Minibar toolbar or hit F7. The Build tab at the
bottom of the display opens and shows you the progress of the
compilation.

To compile a single program file, select it in the editor; then press
the “Compile” button on the toolbar. You also may press Ctrl+F7 to
compile a selected file.

To run your compiled program, press the Go button on the toolbar
or press F5. If any files have been modified since the last compile,
the IDE asks whether you want to rebuild the executable file. The
program file loads into memory, and the IDE executes it.

See also “Building and Debugging a Project” in Part IIL.

Creating Applications

Visual C++ is an application-oriented development environment.
You can create several types of programs by using the application
wizards. You generally base applications on the Microsoft Founda-
tion Class (MFC) and create them using the MFC AppWizard. For
any type project, however, the beginning steps are the same.

To create a new Windows application in Visual C++ using the
Application Wizards, perform the following steps:

1. Choose FilesvNew, or type Ctrl+N. If you don’t already have a
workspace or project open, Visual C++ opens the Projects
page by default.

2. Select the wizard for the application type you want to create.
For most applications, you use the MFC AppWizard (.exe).

3. Type a project name. As you type a name, the wizard builds a
default path in the Location box. You can change the location
after you type the name of the project. If this is a new project
and you haven’t opened a workspace, the wizard selects the
Create New Workspace radio button and disables the Add to
Current Workspace radio button.

4. Select a platform for which the project will be built. For
Windows 9x projects, select only Win32.

5. Click OK.

See also “MFC AppWizard” in this part for the settings and
information you need to give the MFC AppWizard.

See also “Building and Debugging a Project” in Part IIL

Dynamic Link Libraries

Dynamic Link Libraries

«'5%‘ Ty

DLLs are ready-to-run libraries a program can summon at will. If
you have code that more than one program uses, such as database
access, you can build a DLL and load it at run time.

The wizard does not create source code files for dynamic link
libraries that are not based on MFC: The wizard only creates the
project files.

The wizard treats MFC-based libraries differently: The wizard does
generate some base code, but it needs some information from you
on what to include. To build an MFC DLL:

1. Select MFC AppWizard (.dll) from the Projects tab of the New
dialog box.

2. Type a name for the project into the Project Name text box,
and click OK.

3. Choose your options for DLL type from the following:

¢ Regular DLL with MFC Statically Linked. Links the MFC
library to your code at build time. Your code is available to
any Win32 or MFC application.

Note: This option is available only in the Professional and
Enterprise editions.

* Regular DLL Using Shared MFC DLL. The default. Your code
uses the MFC DLL. This option reduces the size and memory
requirements of your code. Your DLL must include a
CWinApp function, but it doesn’t handle messages.

¢ MFC Extension DLL (using shared MFC DLL). Only applica-
tions that use the MFC as a shared library can use calls in
this type of DLL. You must provide a D1 1Main function but
no CWinApp function.

4. Select the features you want in your library. Your options are

* Automation. Causes the wizard to create an ODL (object
description language) file and to include OLE functions

* Windows Sockets. Allows you to write programs that
operate over TCP/IP networks

5. Check whether you want the wizard to include comments in
the source files. Select the Yes, Please radio button or the No,
Thank You radio button.

- MFC AppWizard

MFC AppWizard

'51 TR4, oy

%

Document- and dialog-based MFC applications use the same wizard,
the MFC AppWizard. The wizard for dialog-based MFC applications
doesn't show a couple of screens that you get with the document-
based MFC AppWizard and limits available features in Step 4.

Microsoft has put a lot of effort into this wizard, which can
handle the bulk of Windows applications. The wizard needs a lot
of information from you, but at the end it creates tons of code
based on your responses.

The options offered by the wizard steps are particularly important
in the development of your program, and you should spend some
time understanding the wizard. Many project options can be
changed later, but some of them are settled finally in these steps.
For example, you can always add a rich edit control later, but it’s
more trouble than it’s worth to switch from a single-document to a
multidocument interface.

Step 1: Selecting an application type
On the first page, select the type of application you are preparing.

+ Single Document. An application of this type allows a user to
work on only one document at a time. To work on a second,
the user has to close the first document.

4+ Multiple Document. A user can open several documents at a
time — even of different types, depending upon the “views”
you put in your project — without having to close others. When
you select this option, the AppWizard generates a client class,
and the document windows become child windows of the client.

+ Dialog Based. This type of application doesn’t include a main
window or frame. If you choose this type, the wizard steps are
not the same as those for a document-based application.

Select a language for your application on this page. If you look in
the VCAMFC\Include subfolder where you installed Visual C++, you
see a number of “l.xxx” folders. These contain basic resources in
various languages that the wizard uses to prepare your applica-
tion. If you select “French,” the wizard draws from the “L.FRA”
folder, and your resources get prepared in French. “File” on the
menu becomes Fichier, and New under Fichier becomes Nouveau.
As a tuyauteux d’ordinateur (computer hacker), you may want to
try out different languages. You'll have to write other resources in
the proper language; the IDE doesn’t translate them.

Note: If this is a dialog-based application, the wizard skips Steps 2
and 3. Go on to Step 4.

MFC AppWizard

Step 2: Adding database support

The second page contains options to include database support for
your application. Check the radio button for the option you want.

4+ None. The AppWizard does not include files for database
support.

+ Header Files Only. This is the basic level of support. The
wizard creates a header file (afxdb.h) and includes the link
libraries in the compile, but it does not create any database
classes.

+ Database View Without File Support. Select this option to ask
the wizard to include header files, a record view, link libraries,
and a recordset in the program it creates. Selecting this option
enables the Source button beneath it, and you must specify
the data source.

4+ Database View With File Support. The same as the previous
option except the wizard includes support for serialization.
Database programs generally operate on records and do not
require serialization. A key concept of serialization, however,
is that an object includes procedures to read and write its own
state, and it could be applied to database records.

If you select either of the last two options, you have to specify the
data source, Open Database Connectivity (ODBC) or Data Access
Objects (DAO). These topics are beyond the scope of this book,
but a number of books about these topics are available.

Step 3: Using compound documents

The third page contains options for compound document support
(a new way of saying OLE).

4+ None: The wizard generates no compound document support.
You may not use CRichEditView as the base view class.

4+ Container: Allows you to include nontext files, such as .AVI,
WAV, or .BMP, in a document and to summon the proper
application when they are opened from your program. This is
the minimum support required for rich edit views.

4+ Mini-server: Select this option if you want your application to
only be able to create and manage compound document
items. This type of application cannot run alone. A container-
type program calls a miniserver application to handle files
with a particular extension or characteristic.

4 Full server: You can use this type of program to perform tasks
such as file editing, but a container-type application can also
call this type of program to handle particular files.

' MFC AppWizard

4+ Both container and server: This type of application lets your
application be both a server for other applications and a
container to hold objects that other applications handle. With
this type application you can, for example, create a text
document that includes imbedded .AVI or WAV files. Icons
represent the objects in the document, and selecting one of
the icons invokes the server for that object. You can use this
option with the rich edit control.

If you plan to use one of the last three options, [strongly recom-
mend additional reading on OLE and compound documents. Also,
if you check the “ActiveX” document server, 1 recommend ActiveX
Controls Inside Out by Adam Denning (Microsoft Press).

Remember: Microsoft is very serious about pushing OLE. If you
are writing an application to market and you want the Windows 9x
seal, you have to provide some level of OLE support. On the plus
side, the wizard generates a lot of code to get you started.

Step 4: Adding features to your application

Select the features you want the wizard to add to your application.
These include toolbars and the ability to print your documents.
This is the most involved page and includes a two-page popup tab.

Note: If this is a dialog-based application, your only choices are an
About Box, Context-Sensitive Help, and 3D Controls. (The wizard
automatically creates an About box for document applications.)

4+ Docking toolbar. Adds a default toolbar to your application.
The bar includes buttons for creating a new document;
opening and saving files; using the cut, copy, and paste edit
functions; displaying the About box; and entering Help mode.
You also get a menu item to hide or display the toolbar.

4+ Initial status bar. Adds a status bar and message line to the
bottom of the application window frame. The status bar
contains indicators for the NUM LOCK, SCROLL LOCK, and
CAPS LOCK keys. The status bar includes a message window
for extended Help tips or any other message you want to
write.

+ Print and print preview. Causes the wizard to add code to
handle print, print setup, and print preview commands. These
items also are added to the menu. The wizard adds a Print
button to the toolbar, but not a Print Preview button.

4+ Context-sensitive help. Creates a set of Help files for context-
sensitive help. This option requires the Help compiler, which
comes with Visual C++.

See also Part IV for more on help.

MFC AppWizard

4+ 3D controls. Gives a three-dimensional shading to the
program’s user interface.

This page also contains options for the Windows Open Services
Architecture (WOSA). Your options are

4+ MAPI. The Messaging Applications Programming Interface is a
set of functions that gives programs the ability to create,
store, manipulate, and transfer messages, which may include
entire files. MAPI support is added to the CDocument class.

+ Windows Sockets. You need this when you write programs
that communicate over a network. Windows sockets allow you
to communicate over TCP/IP networks, such as the Internet.

Note: If this is a dialog-based application, your only choice is
Windows Sockets.

Dialog-based application features end here. If you are
creating a dialog-based application, use the Title edit box to
give your dialog box a title and go to Step 5.

Step 4 has two other important items. The How Many Files Would
You Like on Your Recent File List text box controls the size of the
Most Recently Used (MRU) list. If you enter a value here, the wizard
creates code to save the most recently opened files in the Windows
Registry under the HKEY_USERS key. The use of the HKEY_USERS
key permits different users of your application on the same
computer to see their own MRUs, depending upon the user name
they typed when starting Windows. If you don’t want an MRU list,
set this to 0.

More Step 4: Document template strings

The final item on Step 4 is the Advanced button, which summons
the Advanced Options dialog. This dialog controls the labels and
display in various elements of your application. The first page sets
up the document template for your application.

You can create multiple templates in your code, but the wizard
contains a dialog item for only the first one. The options for the
template are

+ File extension. The default extension for files created by the
application. Entering an extension here allows Explorer to
print your program’s documents without launching your
application when a user drags and drops a file of this type
over a printer icon. When entering an extension, remember
that Windows 9x is not limited to three characters.

. MFC AppWizard

+ File type ID. The ID used to label your document type in the
HKEY _CLASSES_ROOT key of the Windows Registry. It can't
contain any spaces or punctuation marks other than a period.
The Registry information contains items such as the path, the
program type, how to open it, and server commands.

4+ Main frame caption. By default, the main window frame’s title
bar contains the application name. You can change that here.
The limit is 28 characters.

+ Doc type name. When you create a new document, the
document manager gives it a default name followed by a
number. The name defaults to the name of the application, but
you can supply a different default here.

+ Filter name. When you open or save a document, the File
dialog gives you a list of file types. Each item in the list contains
a description of the file type. By default, the description
contains the program name followed by the word Files and
the extension in parentheses. You may override this descrip-
tion in this edit box.

4 File new name. When you have more than one template
defined and create a document, a selection dialog appears
asking you to select a file type from a list box. The list item is
the name you type here.

See also Part I1l, “Building and Debugging an Application” for
steps on adding document templates to your program.

+ File type name. [f you selected compound document support
in Step 3, type in the name of the file type as you want it to
appear in the Windows Registry. By default, it is the applica-
tion name followed by the word file.

Even more Step 4: Window styles

This is the second page of the Advanced Options dialog. If you are
creating an SDI application, the bottom portion of this dialog is
grayed out. For MDI applications, the following descriptions,
except for the system menu, apply to the child windows:

4 Thick frame. Provides a thick border around the frame. Note
that if you don’t select this option, the user can't resize the
window after it is created other than to maximize it.

“w

4+ Minimize box. Provides a box (using the “_" symbol) in the
upper-right corner of the window to minimize the window

4+ Maximize box. Provides a box in the upper-right corner to
maximize the window

MFC AppWizard

+ System menu. Provides a drop-down menu when the icon is
clicked to minimize, maximize, move, or close the window.
With thick frame, the menu also includes options to resize and
restore the window to its original size.

+ Minimized. Causes the application to run as an icon on the
task bar at the bottom of the desktop (or, for a child window,
at the bottom of the main window).

+ Maximized. Causes the application window to fill the entire
screen on startup. Child windows fill the client area.

Step 5: Comments and library options

When the wizard generates source code, it places explanatory
comments in the code. Many programmers prefer to have the
comments, but you can opt out by politely selecting the No,
Thank You check box.

You also have the option of using the MFC library as a DLL or by
statically linking it to your program. Most programs use a shared
library (DLL) because static linking incorporates all the MFC code
into your program. That means larger program size and longer
startup times.

Note: Static linking is available only in the Professional and
Enterprise editions of Visual C++.

Step 6: Naming your classes

Decide here whether to accept the wizard’s choice of class names.
Select each class name in the window panel, and look at the edit
boxes below the panel for the wizard's choices; change them if you
don’t like the defaults.

Most classes have fixed bases, and therefore, the Base Class
window is disabled. Clicking on view class in the window panel
enables the Base Class combo box, and you may select a different
view class. The table outlines your choice of view classes.

Base Class Features

CView The base class for views. Includes only basic support
for display and editing of a document'’s data

CEditView Contains a standard edit control with support for text
editing, searching, replacing, and scrolling

CRichEditView Contains all the support of CEditView and also includes
support for fonts, colors, paragraph formatting, and
embedded OLE objects

(continued)

. Project Settings

Base Class Features

CFormView A scroll view, the basic layout of which you define in a
dialog template

CListView The derived class contains a list control similar to that
seen when you open a Windows folder

CScrollView Base class for views with automatic scrolling
capabilities

CTreeView The derived class contains a tree control, which

displays a hierarchical list of icons and labels. The view
is similar to the left-hand panel of Windows 95 Explorer

Click the Finish button and look over the application specs. If
you don't like what you see, click the Cancel button and go back
through the wizard to make changes. Otherwise, click the OK
button. The wizard generates a lot of code based upon the options
you select.

Project Settings

Normally, the AppWizard sets up two configurations for your
program, “Debug” and “Release,” but you can add others. You may
have a valued customer who wants some specific changes to your
program. By setting up a custom build for this customer and
including the altered code in conditional statements, you don’t
have to maintain a completely separate copy of the program. The
active configuration may be changed by selecting Build=>Set
Active Configuration. When you're ready to set your program
loose on the world, change the configuration to Release (or the
build for your valued customer) and rebuild it.

The IDE has a rich set of options you can set for each build, or the
setting may be applied to all builds. Select Project=>Settings or
type Alt+F7 to get the settings dialog.

Tab What You Can Do

General Modify static/dynamic options. Specify build
directories.

Debug page Set Working directories, insert startup arguments,
specify paths for DLLs your program needs.

C/C++ Set warning message, browse, and optimizations. Set
language, code and build options.

Link Specify output and custom library locations.

Resources Set the name of the compiled resource file to use and

any other directories for resource {(.res) files. Lets you
share .res files between projects.

Utility Libraries

Tab What You Can Do
OLE Types Specify an object description language (.0DL) file.
Browse Info Set the location of the browse files. If you check the

“Build browse info file” box, make sure to select the
browser check box on the C+ + page.

Custom Build Specify build commands and files when performing a
custom build.
Pre-link Step Specify commands to run after the creation of the

object files but before the linker generates the
executable file.

Post-build Step Commands to execute after the build is complete.
This may include creating a compressed file for
inclusion on a setup disk.

If you expand the tree on the left and select a source, header, or
resource file, you get a different set of options: You can specify
files that you don’t want to include in the build or object file
locations.

Utility Libravies

If you find that you are writing the same functions over and over,
you may want to include them in a library file, compile the file
once, and then link the compiled functions to your applications as
you need them. To build a utility library, follow these steps:

1. Select New from the main menu; then select Win32 Static
Library from the New dialog.

You don’t need to do any specific coding such as WinMain(),
Initinstance(), or class-creation coding. The wizard adds
the necessary compiler commands to create the library for you.

Remember: The application wizard sets up only the project
files; you have to create the source files.

2. Add source and header files to the project as you need them.

Note: You may want to place each function in its own source
file. Doing so allows you to link each routine as its own
module rather than having to link the entire library into
your program.

Building and
Debugging a Project

A wise programmer once observed that any program
can be shortened by at least one line of code and
contains at least one undiscovered bug, from which it
follows that any program can be reduced to one line of
code that doesn’t work. Obviously, you want to write
the tightest code possible with the least number of
bugs — preferably none. Creating a program is a
repetitive process of writing code and testing it.
During the writing phase, you create files and classes,
add variables and functions, and make your code
handle the many Windows messages. Errors are
inevitable, but you can clean them up easily. A few
examples of debugging methods include breakpoints,
stepping through a program, and watches.

In this part . . .

v+ Using breakpoints

+* Adding classes

1 Compiling the application

+” Debugging your code

v+ Adding member functions

1 Stepping through a program

» Finding and repairing program errors
»# Setting and using watches

» Adding Windows Message Handlers

. Adding Classes to a Project

Adding Classes to a Project

up

If you're adding a new class derived from an MFC class to your
project, by far the easiest way is to invoke the ClassWizard. This
wizard creates source and header files for you, inserts the class
constructors and destructors, declares a message map, and adds
some debugging code.

See also “The ClassWizard” in this part for a description of the
ClassWizard.

Remember: Generic classes — those not derived from MFC or a
type library — can’t be added by using the ClassWizard.

Adding an MFC class using the ClassWizard

You can use the ClassWizard only to add classes derived from MFC
base classes.

See also “Adding Generic Classes” in this section.
To add a class using the ClassWizard, follow these steps:

1. Invoke the wizard by choosing View:>ClassWizard or pressing
Ctrl+W.

2. Click the Add Class button on the upper right on any tab of
the ClassWizard.

3. A popup list (actually a menu) appears. You have two choices:
“New” and “From a type library.” Select New from the list.

4. In the dialog box that pops up, give the new class a name in
the Name edit box. As you type the name of the new class, the
wizard builds a default filename for it in the File Name edit
box. You can change the filename by clicking the Change
button. Yet another dialog box will pop up. Enter the name
you want for the header file in the Header File edit box and the
program file name in the Implementation File edit box. Use the
Browse buttons if you want to include the new class in an
existing file.

5. Select a base class from the Base Class combo box. The drop-
down list contains the Microsoft Foundation Class base class
names. The wizard does not create a generic class.

0. 1f your new class is for a dialog box, select the resource ID
from the list in the Dialog ID combo box.

7. Click the OK button.

To begin working on the new class, click the Edit Code button, and
the wizard opens the source file.

Adding Document Templates -

o TRag,

Adding a generic class

Use the following steps to add generic classes. You can also use
this method to create classes derived from MFC base classes.

1. Summon the generic New Class dialog box by choosing
Insertc>New Class.

2. Choose MFC or Generic in the Class Type box. If you created
your project with the ATL COM AppWizard, this box also
includes an ATL option.

3. Type your new class name in the Name box. A default source
file name builds while you add the name; you may give it a
different filename by clicking the Change button and entering
a file name in the new dialog box that pops up.

o [f this is an MFC class, you have to choose a base class
from the combo box. Otherwise, a base class name is
optional.

e [f this is a generic class, you can optionally insert your
own base class. To insert a base class, click the high-
lighted area under Base Class(es), add the base class
name, and then choose Public, Private, or Protected from
the As column.

4. Click OK.

See also “Accessing Class Members” in Part VIII for a discussion
of the public, private, and protected keywords.

Adding Document Templates

The MFC AppWizard gives you the option of setting up only one
template for your application’s documents. Eventually, you're
going to write an application that needs to handle more than one
type of document.

Adding templates, even late in the program development, is a
simple task involving two steps. First, you need to create a string
table entry to define the template, and then you need to add the
code to register the template.

Step 1: Adding a string table entry
To add a string table entry, follow these steps:

1. Select the ResourceView pane in the Workspace window. Click
on the plus sign next to String Table to expand the list.

Adding Document Templates

2. Double-click the string table entry in which you want to add
the template definition. (You probably can only see one string
table entry.) This brings up a dialog box with a list control
containing the string table entries.

3. Scroll to the bottom of the list control. You'll find an empty
string entry. Double-click it to reveal a String Properties
dialog box.

4. In the String Properties dialog box, enter a resource ID for the
new string in the ID box. This ID should be something like
IDR_RICHTEXTTYPE.

5. In the Caption box, enter the string text using the fields in the
table below. Each field is separated by a newline (\n) character;
if you omit a field, you still have to have a newline character.

The fields in the following table appear in the order they must be
placed in the string.

Field Explanation

Window title This field appears in the application window's title bar. It is
ignared for MDI applications.

Document name The root name that will be used when new documents of
this type are created. The document manager will append a
number to this name. If blank, “Untitled” is used.

FileNew name The text displayed in the dialog box when the Filec>New
command is invoked. The dialog box is disptayed only if
more than one template exists.

Filter name The text is displayed in the Files of Type combo box in the
File Open dialog box when the Filec>0Open command is
invoked.

Filter extension The extension used when displaying files of this type in
dialog boxes. If not present, files of this type cannot be
accessed through the dialog boxes {such as the File Open
dialog box).

Registration ID Used by the Windows File Manager to register the file type
in the database maintained by Windows. If not specified,
the file type is not registered.

Registration name The text displayed in dialog boxes of applications that
access the registration database.

The following is an example of what the string would look like for a
template for rich text (.rtf) documents:

Rich Text\nRichText\nRich Text Documents
(*.rtf)\nRich Text Documents (*.rtf)\n.RTF\nRich
Text Document.l\nRich Text Document

Adding Functions to a Class

@
H
3

)

The code above displays a window title of “Rich Text,” displays a
document name of “RichText,” displays “Rich Text Documents
(*.rtf)” in the New dialog box, and so on. Notice how the \n
character separates the fields.

Step 2: Creating and adding a template

After creating a string table entry, you need to create the actual
template and call the AddDocTemplate() function. Both of these
are done in the InitInstance() function of your application.

You can find the right place to create the template by searching for
the commented line // Register the application's
document templates.

The following is sample code that defines an .rtf template and calls
AddDocTemplate to add it to your application:

CMultiDocTemplate* pRtfTemplate;
pRtfTemplate = new CMultiDocTemplate(
IDR_RICHTEXTTYPE,
RUNTIME _CLASS(CMyDoc),
RUNTIME _CLASS(CChildFrame),
RUNTIME_CLASS(CMyView));
AddDocTemplate(pRtfTemplate);

First, this code sets pRtfTemplate as a pointer to a
CMultiDocTemplate object, which is the multidocument template
interface. (If you're using a single-document interface, substitute
CSingleDocTemplate for CMultiDocTemplate.) Then the
code creates a new instance of the CMultiDocTemplate that
pRtfTemplate refers to. The first parameter is the ID for the
particular template. Replace CMyDoc and CMyView with the
class names for your document and view classes. Finally, the
code calls AddDocTemplate() to add the new .rtf template to
your application.

Adding Functions to a Class

Adding functions to a class with the IDE tools can save a lot of
time and errors. If you use the dialog boxes accessed through the
Wizard Bar down arrow, you can enter the function type and any
parameters, and the tool inserts the declaration in your header file
and the body of the function in the source file. All you have to do
is to add the code in between.

Adding Functions to a Class

Adding member functions

From time to time, you may need to add your own functions to
your class. You can manually add the declaration to your header
file and then add the function definition to the source file. The
Wizard Bar simplifies this task and reduces the chance of error by
making the declaration and definition identical. You still have to
do the programming, but the tools handle the grunt work.

To add a member function:

1. Whisk up to the Wizard bar and click the Action button’s
down arrow.

2. Choose Add Member Function from the pop-up menu. The
Add Member Function dialog box appears.

3. Give your function a type in the Function Type edit box. The
type may be any of the C++ data types or any type that has
been previously defined.

4. In the Function Declaration dialog box, type the function
declaration as you would declare it in the header file. Include
any data types when entering parameters. Do not include the
terminating semicolon. For example,

MyFunction(int MyInt, char *MyPointer)

5. Select the appropriate check box in the Access group for the
security for the function — public, private, or protected.

0. Select the appropriate check box at the bottom of the dialog
box to declare whether the function is to be static or virtual.

Click OK. The dialog box closes, and the source file opens with
the cursor at the new function’s definition.

Using virtual functions

Use a virtual function to override a function of the same name in a
base class.

See also “Virtual Functions” in Part VIII for an explanation of
virtual functions.

To add a virtual function to your class:

1. Access the Wizard Bar’s pop-up menu by clicking on the
Action button’s down arrow.

2. Select Add Virtual Functions from the list. If your base classes
have no virtual functions that may be overridden, a message
box tells you so (you can’t go any further).

Adding Windows Message Handlers

3. In the New Virtual Override dialog box, select the function to
add from the New Virtual Functions list box. When you add it,
the function moves to the Existing Virtual Function Overrides
list box.

Note: If the function already has been added, click the Edit
Existing button to go to the source code file.

4. 1f you're adding more than one virtual function, click the Add
Function button. If this is the last or only function, click the
Add and Edit button to close the dialog box and go to the
source code.

Adding Windows Message Handlers

A Windows program receives a constant stream of messages from
the operating system. Almost anything that happens in an
application — a mouse movement, a key pressed, a button

pushed — generates a message. Your program may opt to ignore
the message or handle it with your own code. If you choose to
ignore the message, it will be processed by MFC message handlers,
if one exists to handle the message.

On a dialog box, for example, the MFC CDialog base class has
default functions for handling the OK and Cancel buttons, but you
may override them with your own code. Your own message
handlers need to handle any other buttons you add to the dialog.

You can use two tools to help you add message handlers: the
ClassWizard and the Wizard Bar. The ClassWizard is the quicker
method for dialog box functions.

Adding a message handler with ClassWizard

Using the ClassWizard makes adding message handlers for dialog
box controls easy. If you have the dialog box open, the wizard will
locate the resource ID for the control and select it when you
summon the wizard.

To add a message handler:

1. Summon the ClassWizard with Ctrl+W or choose
Viewr>ClassWizard. For a dialog box control. simply right-click
the control and select ClassWizard from the pop-up menu
that appears.

2. Make sure the Project and Class Name boxes show the class to
which you want to add the message handler. The default selects
the active window active at the time you invoke the wizard.

. Adding Windows Message Handlers

AL

i

TP

3. Click the Message Map tab. You'll see three list boxes: Object
IDs, Messages, and Member Functions.

4. Locate the resource ID of the object in the Object IDs list, and
select the class name. The Messages list box will contain a list
of base class virtual functions followed by a list of messages
that currently are not being handled in the base class. The
Member Functions list box will contain virtual functions that
have been overridden and message handler functions already
in your class.

5. Choose the message or handler function name in the Messages
list. (A listing in bold indicates a function that already has
been overridden or a message for which a handler has already
been added.)

Remember: The Member Functions list box just below the
Object IDs and Message panels contains message functions
already in your class. The V icon indicates a virtual function,
and the W icon indicates a Windows message function.

0. Click the Add Function button to add the function to your
class. You then may press the Edit Code button to open the
source file.

Pressing the Edit Code button instead of the Add Function
button first adds the function, closes the ClassWizard dialog
box and takes you to the source file in a single step.

7. Exit the ClassWizard by clicking OK.

Adding a message handler with the Wizard Bar

The context-tracking feature of the Wizard Bar makes adding
message handlers easy. As you edit program files, the bar keeps
track of where you are and is always ready to act on the current
class.

To add a message handler using the Wizard Bar:

1. Make sure the Wizard Bar Class Box displays the class in
which you want to insert a message handler. If you're editing a
source file, the context tracking selects the class you're
working on.

2. In the Filter box, choose the resource ID or object you want
your new function to handle.

3. Click the Action button. The default action should be Add
Windows Message Handler.

To confirm the default action, pause the mouse for a second
with the pointer over the Action button. The pop-up tool tip
shows you the action the bar will take when you press it.

Breakpoints §

«é‘%"“q

051 TRy, cp.

hd

4. In the New Windows Message and Event Handlers dialog box,
the Class or Object to Handle lists should have the Filter box
selection highlighted. If not, select it now.

5. The New Windows Messages/Events list box contains the
messages that are available for the selected object. Click the
one you want to add.

The Existing Message/Event Handlers list box shows message
handlers that already are added to your source file. If your
handler already is in the source code, click the Edit Existing
button. The source file opens with the cursor on the message
function.

6. 1f you want to add multiple message handlers, click the Add
Handler button and select the next message. If this is the only
or last message handler you want to add now, click the Add
and Edit button.

7. If you clicked the Add and Edit button, the dialog box closes
and the source file opens. If not, click the Edit Existing button
to close the dialog box and open the source file.

You can bypass the first three steps by pressing the Action
button’s down arrow and selecting Add Windows Message Handler
from the pop-up menu. In this case, you have to find and select the
class or object to handle yourself.

If the base class already had a message handler for the object (for
example, an OK button), the new handler will include a call to it.
Whether you add your code before or after the call depends upon
the function. You can delete the call and handle the message
entirely yourself.

Breakpoints

Breakpoints allow you to pause execution of a program when they
are encountered. You can place conditions on a breakpoint, and
the program will halt only when the conditions you specify are true.

A breakpoint without conditions is handy when you know the
approximate location of a program bug. You can set the breakpoint
near that point and then inspect variables as you single-step
through the suspect code.

See also “Stepping through a Program” in this Part.

Setting breakpoints

Set a breakpoint by locating the statement in the source file where
you want the break to occur. Press the Insert/Remove Breakpoint
button on the Build toolbar, or press F9.

Breakpoints

See also “Conditional breakpoints” in this part if you want the
breakpoint to halt the program only under certain conditions.

Clearing breakpoints

You can clear a breakpoint two ways: Use the Breakpoints dialog
box, or find the breakpoint in your code and manually clear it.

To clear a breakpoint using the dialog box:
1. Choose Edite Breakpoints, or press Alt«F9.

2. Locate the breakpoint in the Breakpoints list box at the
bottom of the dialog box. To disable and enable the breakpoint
without deleting it, toggle the check mark you see in the box
just to the left of the breakpoint ID.

3. To remove the breakpoint completely, select it, and then press
the Delete key. To clear all the breakpoints, click the Remove
All button.
To clear a breakpoint in the source code file:

1. Open the file containing the breakpoint.

2. Scroll through the file until you find the breakpoint. Each
breakpoint has a red dot to the left of the statement.

3. Click the Insert/Remove Breakpoint button on the Build
toolbar, or press F9.

Conditional breakpoints

To set a conditional breakpoint, you must first set a breakpoint
and then perform the following steps:

See also “Setting breakpoints” in this part.
1. Choose Edit=Breakpoints.

2. In the Breakpoints dialog box, select the breakpoint in the list
box at the bottom.

3. Click the Condition button to display the Breakpoint Condi-
tion dialog box.

4. Type the condition that must be true for the breakpoint to
execute. The condition should be a valid C++ expression that
evaluates to true or false.

For example, type i == 3 instead of i = 3.

5. In the box at the bottom of the dialog box, type the number of
times to skip the breakpoint before stopping the program.
Leave the box blank to stop the program every time the
condition is true.

Building an Application

6. Click OK to close the Condition dialog box, and then click OK
to close the Breakpoints dialog box.

Building an Application

Building refers to the entire process of compiling individual source
files and linking them together into a program.

Visual C++ builds two versions of your program. The first version
is the Debug version, which contains information the debugger
needs to step through your program. The second version is the
Release version, which is fully optimized. The executable file is
larger in the Debug version than in the Release version, which
means it takes more disk space and needs more time to load itself
into memory.

The first step in building is compiling the files. You can spend a lot
of time writing C++ code, but none of it is useful to your computer.
C++ code must be turned (compiled) into machine code — object
code — for the computer. Think of compiling as akin to translating
a book. You can read source code, but the computer can’t. Like-
wise, the computer can read object code, but you can't. The
compiler is the translator.

After your program compiles, the source code turns into object
files, one for each source file. The object files can’t run by them-
selves, so the IDE invokes a linker to put them together into a
single, executable program file.

Building a Debug version

You use the Debug version of your program during its development.
The Debug version contains symbolic information such as line
numbers and variable names so that the debugger can trace the
execution of your program.

If you have browsing enabled, the browser files (the .sbr files) are
created in the Debug version.

To see which version you’'re using when you click the Build button,
choose Build=>Set Active Configuration. The Set Active Project
Configuration dialog box highlights the current configuration. You
can change the version in this dialog box. To compile a Debug
version of your application, make sure you select the Win32 Debug
version. You can start the compilation three ways:

4 Choose Builde>Build MyApp.exe (or whatever your program
executable is called).

4 Press F7.

hild

TP

Building an Application

+ Press the Build button on the Build toolbar or the Build
MiniBar, whichever you have displayed (usually the minibar).

In each case, the Output Window tab switches to Build, and Visual
C++ displays the progress of the compile (including any errors or
warnings encountered).

If you get an error or warning message, double-click on the line in
the Output Window. The source file opens with the cursor at the
offending location.

A warning message doesn't stop your program from running, and
sometimes it’s difficult or impossible to avoid a warning. Check
warnings out because they may indicate some construct that can
cause unexpected program errors.

Building a Release version

When you're satisfied your program works the way you want, you
can build a release version to give to others. You will want to use

this version as well, because it’s smaller and runs faster than the

Debug version.

To build the Release version, follow these steps:
1. Choose Build=>Set Active Configuration.

2. Select the active configuration in the dialog box to Win32
Release, and press OK.

You can start the compilation in one of three ways:

4+ Choose Build=>Build MyApp.exe (the menu item has the name
of your executable file).

4 Press F7.

4 Click the Build button on the Build toolbar or the Build
MiniBar, whichever you have displayed (usually the minibar).

The Output Window tab switches to Build, and Visual C++ displays
the progress of the compilation, including any errors or warnings
encountered.

Ideally, your Release build comes up with (warnings and 0 errors.
Sometimes warnings are unavoidable, but if you have any errors,
you have to go back to the Debug version and work them out.

Thoroughly testing your Release version is a good idea. The Release
version is optimized, meaning that loops and code may have been
consolidated to speed up execution or cut down on program size,
but Debug versions usually aren’t optimized. Compilers, linkers,
and CPUs are better than they used to be; however, in the past,
optimization occasionally affected how the program ran.

The ClassWizard ‘

The ClassWizard

TP

If you've done much C++ programming, you'll really like the
ClassWizard shown in the figure below. This wizard is one of the
good guys, because it speeds up your programming. The wizard
helps you to set up message handlers and member variables. How
many times have you added a function or message handler and
forgotten to declare it in the header file? Or declared it as the
wrong type? Or forgotten to add the class name to the definition?
Or any of a number of other errors?

GetScroMarCt

¥ DoDatabxchange
% DoModal
W OnChangeT elcoCreditcarcDN_IDC_TELCO_CRED{TCARDNUMBER:EN_CHAMN
OnChanaeTekcolonalisteON IDC TELCO LONGDISTANCEACCESS.EN ctigal

You don’t need to worry about any of these details when you use
the ClassWizard. You just tell the wizard the function name and
type, the parameters and types to use, and how to secure the
function. The wizard puts all that information in the header file
and creates a function for you in the source file. The wizard even
adds a call to the base class function of virtual function overrides.

The ClassWizard and the Wizard Bar are like the Lone Ranger and
Tonto. They're a team, and they work well together. While you're
figuring out how to use the ClassWizard, check out the Wizard Bar
in this part.

Summon the ClassWizard by choosing Viewe>ClassWizard or by
pressing Ctrl+W. The dialog box contains five tabs.

+ Message Maps. Use this tab to set up message handler
functions in your class. The list boxes show you resource IDs,
virtual functions, and unhandled messages and functions that
already have been added to the class.

See also “Wizard Bar” for adding other functions to the class.

Compiling a Single File

4 Member Variables. If the wizard can identify member variables,
such as for dialog box objects, a list of their control IDs
appears in the Object IDs list. Select the control ID for which
you want to add a variable, and click Add Variable. By conven-
tion, class variable names begin with “m_", but they don’t
have to. The wizard selects the category and variable types
based on the object, but you can change them here.

+ Automation. If your class supports automation (for example,
your document class if you selected automation support when
you ran the AppWizard), the Add Method and Add Property
buttons are enabled. If these buttons aren’t enabled, your
class doesn’t support automation. Automation allows external
programs access to functions in your program. For example, if
you’re writing a sound editor, you may want other programs to
access code in your program to play your files automatically.

+ ActiveX Events. Click Add Event to add an automation event
to your code. ActiveX is beyond the scope of this book, and]
would recommend additional reading, such as ActiveX Controls
Inside Out by Adam Denning, published by Microsoft Press.

+ Class Info. This tab lists information about the class that will
be built. The Message filter combo box allows you to change
the filter in effect. Filters are categorized by type of window or
dialog box they operate on. Foreign Class and Foreign Variable
allow you to insert a pointer variable to an object of this class
into your application.

All tabs in the ClassWizard have two combo boxes in common. The
Project and Class Name combo boxes appear at the top of each
page. Use them to choose the project (in most cases you have only
one project available) and the class you want to work with.

Each page also has an Add Class button, which you can use to
create classes derived from MFC or from a type library. You cannot
create generic classes with this control.

See also “Adding Classes to a Project” for steps to create new classes.

Compiling a Single File

The wizards of Visual C++ may be perfect programmers, but the
rest of us aren’t. As you build your code, errors can creep in. Test-
compile your code from time to time to keep it clean.

A single error can create a long stream of error messages, and if
you have added a lot of code between compiles, you have to sift
through a lot to find the problem spot.

Debugging

Also, a missing brace, either { or }, can go undetected by the
compiler for many lines. In addition, the line where it actually
generates an error can be 20 or 30 lines later in the program. If
you've added only a few lines between test compiles, you know
where to look for the error.

Compiling a single file doesn't generate a new program file; it only
builds the object file for the single module. To test-run your
program, you have to go through a complete build.

To compile a single file:

1. Select the source file (.cpp) in the editor window. You can't
compile a header (h) file.

2. Use one of the following three methods to start the compiler:
¢ Choose Build=>Compile <filename>.
¢ Press Ctrl+F7.

¢ Click the Compile button on the Build toolbar or the Build
minibar.

3. The output window at the bottom switches to the Build tab.
Keep an eye on it for errors and warnings.

4. To stop the compile, click the Stop Build button on the Build
toolbar or press Ctrl+Break. A Stop Build item also gets added
to the menu.

See also “Building a Debug version” in this part for steps to create
a trial executable program.

Debugging

Like it or not, at some time during your programming a mistake
will creep in and you’ll face the task of finding and fixing it. No
matter how much experience you have, you still may manage to
write code that doesn’t work or doesn’t perform the way you want.

Finding those problem spots is the job of the debugger.

Assuming you built the debug version of your project, to start it
running in the debugger, choose Build=Start Debug=Go, press F5,
or click the Go button on the Build toolbar.

See also “Building an Application” in this Part for steps on
building the debug version of your program.

A lot of debugging technique is intuition and experience. Generally,
you will know the approximate location of the bug from writing the
program. Set a breakpoint in the code, and run your program until

Editing Program Files

it encounters the breakpoint. Step through the code until you find
the line or function causing the bug.

See also “Stepping through a Program” in this part for details on
using the single-step functions of the debugger and “Breakpoints”

for setting and using breakpoints.

L4 During debugging, you can pause execution at any point by
pressing the Break Execution button on the Debug toolbar.

If you still can’t locate the area of the bug, you can use what I call
the work-your-way-down technique.

1. Set the cursor at a point in the code before the bug occurs.
2. Choose Build= Start Debug=bRun to Cursor, or press Ctrl+F10.

3. Use the Step Over button on the Debug tool bar (or F10) to
step over each function call in your code.

4. When the bug occurs, the function that was being executed is
the culprit. Stop the program, reset the cursor at this point,
and rerun it. This time, step into the function you know caused
the bug, and single-step until you find it.

The bug may be several function calls deep, but you can repeat
this process until you work your way down to the function that is
causing the problem. Single-step the code using the Step Into or
Step Over buttons until the bug occurs.

Editing Program Files

The IDE contains a multiple-document client window that makes it
possible to have multiple files open at the same time.

When you create a project, the wizards don’t open any files for
you. The IDE provides a number of ways you can open files,
however.

+ Choose File=:Open, or type Ctrl+O. Select the file from the
Open dialog box.

+ In the File View pane of the Workspace Window, expand the
tree for the type file you want to open. Double-click on the file
name to open it.

4 In the Class View menu of the Workspace Window, double-
click on a class name to open the file that contains the
definition of the class. Usually this is a header (h) file. Expand
the class name and double-click on a member function to open
the source file (usually .cpp) that contains the body of the
function. The cursor appears at the function definition.

Error Handling

SuRaNEe,

jild

+ In the Resource View menu of the Workspace Window, double-
click on a resource object to open the resource file and start
the resource editor for that object.

+ Use the Wizard Bar to navigate to a function or class defini-
tion. The header or source file opens with the cursor placed
on the object.

Unless you change the default configuration, the IDE saves any
changed files when you build your project. When you close a
project, you receive a prompt to save each file that has changed.

The editor maintains an undo buffer of 65,536 operations. According
to the Help file, the Windows 95 Registry sets the size, and I haven'’t
found any way to modify it other than to edit the registry entry.

After you undo an operation, you can still change your mind and
click the Redo button.

Error Handling

The best way to keep your program running smoothly is to
compile often. Write a few lines of code and compile; that way, you
know within a few lines where to find any errors. You don’t have to
run your program with every compile, although test-driving the
code often to find and eliminate any programming errors is a good
idea.

Programming errors

Programming errors include logic problems, failure to initialize a
variable, invalid pointers, and so on. The preprocessors in the
compiler are good at sniffing out a number of common program-
ming errors; however, a number of errors are perfectly good
programming constructs but just don’t work.

Consider the following classic program error. Although the code
doesn’t do much, it’s still perfectly good code and the compiler
doesn’t even issue a warning. Modern PCs should take only a few
microseconds to execute it; but when you run the program, it
comes to a grinding halt.

i = 4;
while (i);
{

}

,,-i;

Even experienced programmers generate this bug from time to
time. You are so used to putting a semicolon at the end of each

Exception Handling

statement that the error may escape you even after scanning the
code several times. Fix the bug by removing the semicolon after
the while statement.

The only way to find these errors is by careful examination of the
code or single-stepping through the program.

See also “Debugging” in this section for a technique for finding
tips on bugs.

Syntax errors

Syntax errors derive from code the compiler can’t understand.
Such an error may be something as simple as a missing semicolon,
a variable or class name used improperly or missing, or an extra
brace, such as { or . The missing brace error is particularly
insidious, because the compiler may not flag the error until
several lines later in the code, when it finally gets so confused it
figures there must be an error.

Usually, with syntax errors, the compiler error messages give a
clue on how to fix the mistake, but sometimes you have to read
the messages carefully.

14 Don’t be discouraged if a compile generates numerous errors,
particularly if you've just typed a few lines of code. Sometimes a
simple declaration error can produce 50 or 60 errors. Just go to
the top of the list, and go through the errors; often you find many
of the errors are related and produced by the same line of code.

Exception Handling

Your program may be bug-free (my, aren’t you the dreamer), but it
still may encounter errors that you can't control. Reading or
writing a file to disk, for example, may generate an unexpected
error. These errors are called exceptions, and they can be serious
in the Release version of your program.

Fortunately, the C++ language specifies procedures to deal with
exceptions. Microsoft handles them a little differently in Visual C++,
but the result is that with exception handling, your code doesn't
have to keep checking for unexpected errors. When an error
occurs, you can catch it, deal with it, and resume your program.

MFC has several exception classes.

Exception Handling |

WA,
Y2\

Exception Meaning

CFileException Designates an error encountered during a
file operation. The file may not be open,
the disk may be full or write-protected.

CArchiveException Shows an error similar to a file exception
except it’s thrown during serialization.

CMemoryException Memory error, usually out of memory. The
new operators throw this exception
automatically. If you use the old mal1oc
statement, you need to detect the error
{malloc returns a NULL on error) and
throw the exception yourself.

CSimplekxception Thrown when the program makes a
request for a feature that isn't available.

CResourceException Thrown when Windows cannot find or
allocate memory for a requested resource.

CUserkxception Used when the user performs some
unexpected operation that interferes with
normal processing. Usually used with a
message box to alert the user.

COleException Thrown when an error occurs during an
OLE operation.

CDaoException Indicates an error during an operation on a
Data Access Object.

CDBException Indicates an error during execution of an

Open Database Class operation.

COleDispatchException Thrown when an error occurs during an
automation operation.

The class library functions throw most of these exceptions when
they detect an error. You are responsible for catching and process-
ing the error without interrupting your program flow. If you don't,
then a message box advising the user of an Unhandled Exception
appears. The message box usually gives the user the option of
stopping the program abruptly, something you don’t want to
happen if you're in the middle of writing a file.

Don't expect the class library to be aware of every possible user
problem that can occur. It’s your program; you know what the user
should be doing. Generally, you are responsible for throwing and
catching the CUserException.

The try statement

The try statement sets up a protected block of code. When an
exception occurs in this block, it is thrown, meaning it is tossed
into the air to be caught by an exception handler. If it isn’t caught,
then it becomes an unhandled exception.

5 Exception Handling

The following code depicts a try statement:

Try
{
// Program code that might be subject to an

// exception being thrown.
}

The catch statement

The catch block contains the code to handle a thrown exception,
hopefully in a more graceful manner than the operating system
would. You can catch an exception, make adjustments in your
program and data, and keep the program running.

Catch blocks may be made to intercept particular exceptions, or
you can set up a generic catch block. If you're reading a file and
allocating memory for the data that is being read in a loop, you
may want to handle a file exception differently than a memory
exception.

The syntax for the catch statement is catch
(exceptionObject* exceptionName). You replace the
exceptionObject parameter with one of the Visual C++ exception
types. In place of exceptionName, enter the variable name that
will hold the exception for use in your code.

The following code is a skeleton of how a try-catch block looks:

Try
{
for (I = 0; I < NUMRECORDS; ++I)

{
// Allocate memory for & record
// Read a record into memory

J

}
catch (CFiletxception* fe)
{

}
catch (CMemoryException* me)

{
}

The preceding code handles only memory and file exceptions. If
you want to catch and process any other exception, you can add a
generic catch block.

// Code to handle the file exception.

// Code to handle the memory exception.

catch (CException* e)
{

}

// Code to handle any other exceptions.

Searching for Text

// Normal program code following
// the catch blocks.

- The generic exception handler must be the last catch block in the

sequence.

Searching for Text

Visual C++ provides a number of powerful search mechanisms.
The familiar grep command is missing from the IDE Tools menu.
In its place, you find edit boxes for entering regular expressions.
(The grep command took its name from the phrase “get regular
expression.”) Until you get used to it, writing regular expressions
for grep can take more looking up the syntax in the manual than
searching through the text yourself. The Visual C++ search dialog
boxes have some tools that make it easy.

Bookmarks

Bookmarks allow you to save the location in a file and return to it
later. Visual C++ provides two types of bookmarks: ordinary and
named.

An ordinary bookmark indicates only the line that is marked. This
bookmark is temporary and is lost when the file closes or reloads.
You recognize an ordinary bookmark by a cyan (sort of light blue)
box in the left margin.

To set or clear an ordinary bookmark:
1. Locate the line you want to mark, and place the cursor on it.

2. Toggle the bookmark using the Toggle Bookmark tool in the
Edit toolbar, or press Ctrl+F2.

3. To turn off the bookmark, repeat these steps.

Visual C++ retains named bookmarks when the file — or even the
IDE itself — closes. You may return to the named bookmark anytime,
even in successive programming sessions.

To set a named bookmark:

1. Place the cursor at the location of the word or text you want
to mark.

2. Summon the Bookmark dialog box by choosing Edite
Bookmarks or pressing Alt+F2.

3. In the Name box, type the name you want to give the bookmark.

4. Click the Add button, or press Enter. The bookmark gets
added to the list.

- Searching for Text

In stepping from one bookmark to the next (or previous), named
bookmarks are visited in order with ordinary bookmarks. Use the
Next Bookmark (F2) and Previous Bookmark (Shift+F2) tools in the
Edit toolbar.

You can also jump directly to a named bookmark:
1. Choose Edit'? Bookmarks.

2. Choose the bookmark from the list (the filename and line
number appear at the bottom of the dialog box).

3. Click the Go To button.

To clear ordinary bookmarks, press the Clear All Bookmarks tool
or press Ctrl+Shift+F2. You can clear named bookmarks in the
dialog box by choosing them and then clicking Delete.

The Find command

Select EditiFind or press Ctrl+F to summon the Find dialog box.
The box for entering your search string is a combo box that stores
up to 16 of your previous searches. In addition, at the end of the
box, you see an arrow pointing to the right. The arrow takes you to
the regular expression tool.

Option Meaning

Match Whole Word Only The searches are matched only if they are preceded
and followed by white space or punctuation, or if
they fall at the beginning or end of a line.

Match Case The case characters in the string must match the
case of the characters in the Find What box.

Regular Expression The contents of the Find What box are used as a
regular expression for searching.

Search All Open Documents Searches for the string in all files open in the
workspace. If you need to search all files, open or
not, use the Find in Files command.

Up/Down radio buttons Chooses whether to search forward or backward
through the text.
Find Next button Searches through the text stopping at each

occurrence of the search string.

Mark All button Searches through the entire text and places
bookmarks at each line that contains a match.
You can use the bookmark tools on the Edit
toolbar to step through the marked lines.

Regular Expression menu Summon this menu by pressing the arrow next to
the Find Next button. Enter a regular expression
item by choosing it in the menu. The Regular
Expression check box gets marked automatically.

Searching for Text

The Find in Files command and window

Somebody at Microsoft let his imagination run amok when he
designed this tool. The result is a super-powerful tool for searching
through your source files, whether you have them open in the edit
window or not. Visual C++ doesn’t have the familiar grep command.
The search mechanisms in Visual C++ do provide some grep-like
capabilities.

The Find in Files command writes to two panels in the Output
Window. You may save the results of two separate searches by
choosing alternate panels.

Access the Find in Files dialog box shown in the figure below by
selecting Filec>Find In Files or by pressing the Find in Files button
on the Standard toolbar.

o ::} SR
Bes e [o cop” oo b e :k‘ : ; l
o F\CFILES\Hax j‘_f “t

mmmw !7 mnwua-

The dialog box has three combo boxes plus several options that
let you search through multiple directories and restrict your
search. To use the Find in Files command:

1. Type the text you want to search for in the Find What box. The
IDE saves up to 16 of your previous searches, and you can
choose one by pressing the down arrow on the combo box.
Pressing the right-pointing arrow just to the right of this box
brings up a menu of grep-like search patterns. The syntax is
not the same as grep, but they serve the same purpose.

2. In the In Files/File Types box, choose the filter for the type of
files you want to search through. Select *.* to search all files.

W

Select the directory to search through using the In Folder
combo box. Using this and the Advanced button and the Look
in Subfolders check box, you can search through multiple
directories. Clicking the button (marked with a “.") to the right
of this combo box brings up a Choose Directory dialog box.

earching for Text

4. Select the Match Whole Word Only check box to restrict your
search to whole words (strings that begin and end with a white
space or punctuation marks or that fall at the beginning or end
of a line).

5. Select the Match Case check box to limit the found list to
either uppercase or lowercase. The case in the search exactly
matches the case in the search pattern.

6. To use a grep-like expression, select the Regular Expression
check box. If you select an item from the Regular Expression
menu, this box is selected automatically.

7. To search through subdirectories of the directory, select the
Look in Subfolders check box.

8. Select the Output to Pane 2 check box to output the results in
the Find in Files 2 pane of the Output Window. If this check
box isn’t selected, Visual C++ writes the output to the Find in
Files 1 pane.

plld You can complete most searches by using a combination of
these steps. If you need more search options, press the
Advanced button.

9. 1f your project spans multiple directories, you can select the
Look in Folders for Project Source Files check box to search
them.

10. Select the Look in Folders for Project Include Files check box
to extend the search to directories in the include path.

11. To include other directories in the search, type them in the
Look in Additional Folders list box. A mini toolbar at the top of
this box has tools for entering, deleting, and stepping through
entries. If you select the tool to enter a new folder, a button
marked with an ellipsis (. . .) appears to the right of the edit
line. Click this button to get the Choose Directory dialog box.

12. Click the Find button to conduct the search. The results are
listed in one of the Find in Files panels of the Output Window.
To go to a line containing the search pattern, double-click the
line in the Output Window.

Replacing text

Choose FilecoReplace or type Ctrl+H to display the Replace dialog
box. This dialog box is almost guaranteed to produce some head-
scratching.

To use the Replace dialog box:

1. In the Find What field, type the string you want to find.

Stepping through a Program

2. In the Replace With field, type the replacement string.

3. Select the Whole Word Only check box to limit the search to
words. (A word is a string preceded and followed by white
space or punctuation marks or which falls at the beginning or
end of a line.)

4. Select the Match Case check box to search only for text
matching the case of the text in the Find What field.

5. Select Regular Expression to use grep-like search syntax. The
button to the right of the Find What box displays a menu of
regular expressions to insert into the box.

6. In the Replace In group, you have two choices.

¢ If you have an area of a file selected, you can select the
Selection radio button to limit the search and replace
operation to that block of text.

» Select the Whole File radio button to search the entire file
for the Find What string.

7. Alternately click the Find Next and Replace buttons to search
for and replace the text. To replace all occurrences of the Find
Next string, click the Replace All button.

Stepping through a Program

Like the living variety, bugs can find some clever hiding places.
Just looking at the program code won't flush them out, and you
have to resort to running the program and examining each line of
code. Visual C++ lets you run the program one line at a time, giving
you time to examine the results of each line of code.

Stepping into a function

Together with the Step Over button, the Step Into command lets
you walk through a program one line at a time. If you press the
Step Into button when the program is paused or at a breakpoint on
a line containing a function call, then the debugger stops at the
first line of the function. If you haven't started the program in the
debugger yet, the Step Into command initiates the program and
stops at the first line of the code. You can step into the MFC
source code, but it’s easy to get several layers deep quickly and
lose track of the program.

The keyboard command to step into a function call is F11.

. Watches

Stepping over a function

When you're fairly sure a function is operating properly (or you
don’t want to step into the MFC source code), you can bypass it by
using the Step Over command. The compiler executes the
function and stops at the first line after the function call.

Execute the Step Over command by pressing F10.

Stepping out of a function

The Step Out command is handy when you want to get out of a
function call (for example, if you accidentally press Step Into when
you want Step Over). The Step Out command completes the
execution of a function and stops at the first program line after the
function call.

Execute the Step Out command by pressing Shift+F11.

Watches

When you start the debugger, the Watch window opens in the
lower-right corner of the screen. Watches allow you to keep track
of the values of variables or expressions while the program debugs.
The watches update only as you step through a program. The Watch
window is a tree view, and you can watch the contents of entire
structures or classes by clicking on the plus sign next to the name.

The watch window has four tabs, allowing you to keep track of the
variables in multiple functions without having to sift through the list.

Setting watches

To add a variable or expression to the watch window:
1. Click on a blank line in the Name column of the Watch window.

2. Type the name of the variable, object, or expression you want
to watch.

3. Press Enter.

Clearing watches

To clear or delete a watch, select it in the watch window and press
the Delete key.

Using QuickWatch

QuickWatch is an easy way to quickly check the value of a variable
or expression without adding it to the watch list. To use the
QuickWatch window:

Wizard Bar

1. Select the window by choosing Tools= QuickWatch, or by
pressing Shift+F9.

2. Type the name of the variable or expression in the edit box. If
you already had used the variable or expression in a QuickWatch,
you can select it by pulling down the combo box list.

3. Click Recalculate.

The variable (or all variables in an expression) should be in
scope, meaning the variables must be accessible from the
function or subfunction currently executing. You can'’t, for
example, do a QuickWatch on an automatic variable in the
next function.

Wizard Bar

Microsoft deserves a real pat on the back for adding a tool such as
the Wizard Bar to the IDE. The other tools aside, the Wizard Bar is
super fast. Think of it as a wormhole to various parts of your
application; you start at the bar, select your destination, and zip
right to it.

You can use the Wizard Bar to add new classes and functions or
jump to existing classes and functions. The Wizard Bar uses
context tracking, which means it watches you and tries to decide
what to put in its selection boxes so that when you're ready to use
the Wizard Bar, it’s ready to help.

If the Wizard Bar isn’t visible on your screen, right-click any empty
area on the frame and select it from the pop-up list. The following
figure shows the Wizard Bar.

[fE—?emmcess 4 (a8 class members) e Ont clcaAtNumberBox ON_IDC_TI AR]

The following list summarizes the controls on the Wizard Bar:

4 Class List. The first combo box on the bar displays classes in
the active project. As you select different source files or move
the edit cursor from class to class, the name of the class
selected in the combo box will change according to where you
have the cursor in the source file. If you select a window that
has no class, the display is grayed out. For navigation, you
may select any class in your project from this box.

4 C++ Filters. This lists the filter for the class displayed in the
Class List box. (The filter is used to sort out specific resource
IDs.) In this combo box you can select All Class Members, which
will list all member functions in the next box, or a specific
resource ID.

Wizard Bar

+ Members List. What appears in the third combo box depends
on what you select in the C++ Filters box.

¢ If you select All Class Members, this box lists all the member
functions of the current class. You can select one of them for

navigation.

« If you select a specific resource D, this box lists the avail-
able message handlers available for the ID. If you select a
handler that hasn’t been added, the New Windows Message
and Event Handlers dialog box appears, which allows you to

add the new handler.

4+ Action button. This is a two-part button. The left side is like a
tool button. Pressing it performs the default Wizard Bar
action. To find out what that action is, move the mouse cursor
over it for a second and the toolbar tip will tell you. The right
side is a down arrow, which you use to call the Action Menu.
The following table summarizes the menu items.

Menu Selection

Action

Go to Function Declaration

Goes to the source line where the function is
declared. Opens the source file if necessary

Go to Function Definition

Goes to the body of the function. Opens the
source file if necessary

Add Windows Message Handler

Summons the dialog box to add a message
handler

Add Virtual Function

Starts the dialog box to add a function that
overrides a base class function

Add Member Function

Opens a dialog box to insert a function into
the class

Go to Class Definition

Opens the source code file {if necessary) and
positions the cursor at the line where the
selected class is defined

New Class

Starts the New Class dialog box for MFC or
generic classes

Go to Next Function

Moves the cursor to the next function in the
source file

Go to Previous Function

Moves the cursor to the previous function in
the source file

Open Include File

Starts a dialog box to select and open any file
that is included (with the #include directive)
in the file containing the selected class

The Resource

Workshop

Resources — menus, dialog boxes, toolbars, and
so on — are how the user interacts with the
program you write. Good design and use of
resources can make the difference between a
program that is a dreaded chore and one that is
easy to use. The Resource Workshop, a part of
the Developers Studio, is a powerful and flexible
tool. I gloss over or pass some of the older or
simpler controls and get into more detail on the
newer and more interesting controls, such as the
list, animation, and tree controls, along with
property sheets and wizards.

In this part . . .

1+ Using accelerators

v Working with bitmaps

+* Using the Common Controls Library
+~ Building dialog boxes

v+~ Finding out about property sheets
+” Making wizards

} Accelerators

Accelerators

An accelerator supercharges the keyboard for your program,
enabling users to perform menu operations with keystrokes rather
than having to maneuver through the menu system.

The MFC AppWizard created a default accelerator table for you
with a resource ID of IDR_MAINFRAME. The table loads when you
start your application. Edit this table for your application.

Creating and editing accelerators

You can add to the wizard-generated accelerator tables or create
your own tables. First, open the accelerator table as follows:

1. Select ResourceView in the Workspace window.

2. Click the + symbol next to Accelerator to display the tables in
your project.

3. Highlight the table you want to modify, and open it by
double-clicking or pressing return. A panel opens that lists
the accelerator keys in the selected table.

To edit an existing accelerator, double-click the line containing the
key you want to edit.

To create an accelerator key, double-click the empty rectangle at
the bottom of the list. When the Properties box appears, give your
new accelerator an ID.

Assigning accelerator 1Ds

Each accelerator key must have an ID. When you press the key,
Windows uses the ID in a command message to your application. If
you enter a resource symbol that does not already exist, the
workshop assigns it a value and adds it to the resource header file.
Generally, accelerator [Ds are the same as menu or tool IDs, but
they don’t have to be. You can have accelerators that do not
match menu items, but their IDs must be unique.

Setting accelerator keys

The Key combo box, along with the selection boxes to the right of
it, identifies the key that generates the accelerator action. The key
can be a typewriter key, a function key, or a keypad stroke.

To enter a base Key as the accelerator, just type the character.
Preceding the key with a caret (») creates a control key accelera-
tor. Optionally, you can type the number value of the key in this
field and the editor checks the appropriate boxes.

Animation Controls |

L4 If you enter a value, it must be two or more digits; a single digit is
interpreted as the number key itself. To enter a Ctrl+C, for example,
make it 03. Be sure you check off the ASCII radio button.

Another way to enter the accelerator is to click the Next Key
Typed button. The resource editor reads all the keys that you are
pressing (Shift, Alt, or Ctrl) as you strike the next key and select
the appropriate check boxes for you.

Make sure the check boxes and the radio buttons to the right have
the correct combination for the key you want. You may select
among Ctrl, Alt, Shift, any combination of these, or none. Each key,
therefore, has eight possible combinations. Shift+Alt+F1, for
example, can be assigned a different identifier than Alt+F1.

When you press the Enter key, the accelerator appears on your list.

Creating new accelerator tables

Create new accelerator tables by copying an existing table or by
starting from scratch. To create a new table, follow these steps:

1. In the ResourceView, right-click Accelerator.
2. From the popup menu, select Insert Accelerator.

e This popup menu is the same for all resource types, but the
third item is context-sensitive. In this case, it shows Insert
Accelerator because you clicked Accelerator.

3. Give the table a distinctive name and go through the process
of creating and editing new accelerators to build the new table
as described in the “Setting accelerator keys” section.

Animation Controls

Most users are introduced to animation when they first install
Windows 95. Remember that snare drum on the setup wizard? If
you bought a machine with Windows 95 already installed, you
missed it, but you can see another example of it when you use the
drag-and-drop method of copying files. The little sheet of paper
flying through the air from one folder to another is an animation
control.

You can create buttons to display animations when clicked. The
control can play only AVI files that have no sound. The only
compression allowed is Run-Length Encoding (RLE); otherwise,
the .avi file must not be compressed. Coming up with a .avi file is
pretty easy; making it meet those restrictions is a bit more
difficult. I haven’t seen a bitmap editor that can handle .avi files

’ Animation Controls

%
2
s

o,

%

very well. But, then, I haven't really looked for one. If you're
looking for a good project for your new Visual C++, how about an
AVI editor? The samples directory of the CD has a nifty animated
cursor that looks as though it may be modified to edit animation
files. Also, you can find lots of information on the AVl file format
on the Internet and in the Visual C++ header files.

You can get that file copy animation file — plus the little moving
flashlight used in the network neighborhood and a little jumping
armadillo — by retrieving the CMNCTRLS demonstration program.
Just follow these steps:

1. In the InfoViewer search panel, type common controls,
sample programs. You get a topic called Common Control
Sample List. Open it.

2. Select the CMNCTRLS sample program.
3. Click Copy All, and specify the directory.

4. When all the files are copied, close the dialog box and open
the workspace in the directory where you copied the files.

The CMNCTRLS sample program is a nifty little dialog-based
program that demonstrates several of the Windows 9x controls.
Look in the directory you copied it to and you’ll find three anima-
tion files: dillo.avi, filecopy.avi, and search.avi. Use these files to
experiment with the animation control. While you're at it, you may
go ahead and compile the CMNCTRLS program; it’s informative
and entertaining.

To use the animation control:

1. Create an animation control on your dialog. What you see isn’t
very exciting. In fact, if you don’t put a border or a frame edge
on it, the control sinks into the dialog background. Turn off
the grid lines and you can't even tell it’s there, but that’s the
idea of the animation control. If you're planning to use
filecopy.avi, make the control wide.

2. Add a variable for your control in your dialog box’s header
file, something like

CAnimateCtrl m_animate;

Do not use the ClassWizard to add this variable. The wizard
adds it to the DoDataExchange function, which guarantees
an exception when you run it. If you use the wizard, be sure to
delete the DDX item.

3. You can use a program event to trigger an animation.

To start the animation, add the following code:

Bitmaps

const char *filename =
"E:N\CFILESA\NCOMNCTRLANfiTecopy.avi"”;
// Or wherever you placed the file
m_animate.Stop ():
m_animate.Close ();
int result = m_animate.Open (filename);
if (result)
m_animate.Play(0, -1, -1);

This code stops and closes any previous incarnation of the control
and then opens the file and plays it. In P1ay (), 0 means to start
with the first frame and -1 to play through to the end of the file;
the final -1 parameter makes it repeat until stopped. The
CAnimateCtr] class doesn’t have a lot of member functions,

and most of them appear in the snippet of code. The only other
member function is Seek (UINT frame) to display a single frame
of the .avi file. You may also need the Create() function if the
control isn’t placed on a dialog.

Bitmaps

A bitmap is a collection of bits that describe the image as it would
appear on the screen or on a printer. In the case of color bitmaps,
the bits also contain color information. Bitmaps can be used to
illustrate menus, buttons, or dialog boxes.

The graphics editor in the Resource Workshop isn’t very good for
handling large or higher-resolution graphics (bitmaps can't really
be called high resolution graphics), but the editor is acceptable for
drawing icons, cursors, and the small bitmaps that fit on buttons.
If you plan to use larger bitmaps in your program, you may want to
look into programs such as Paint Shop Pro, which have much
greater abilities to draw, manipulate, and resize images. You can
import the bitmap output of other graphics programs into the
Workshop very easily.

See also “Importing bitmaps” in this part.

Creating and editing bitmaps

The MFC AppWizard does not create any bitmap objects when
you create a project. To create a bitmap, follow these steps:

1. Right-click on any item in the Resource View of the
Workspace Window.

2. Select Insert from the popup menu.

3. From the resource tree control, choose Bitmap, and then
click New.

QRN

RNy,
S

Bitmaps

The default frame is a drawing window that is 48 pixels square, the
size of a large icon. For anything larger than this, you'll have to
create the graphic with a good graphics editor, save the result as a
bitmap, and then import it into the workshop as described in the
following section.

Importing bitmaps

Importing bitmaps for use in your program is the only good reason
for invoking the bitmap editor. The workshop editor can only crop,
rotate, and flip the image. This editor also has some capabilities
for adjusting colors, but doing so is much easier to do in other
graphic editing editors.

1. Using an editor such as Paint Shop Pro, draw or edit your
image. Save the image in the external editor as a Windows RLE
Encoded bitmap.

Make sure the resulting image is the size you want; you cannot
resize bitmaps in the workshop.

2. Return to the Workshop, and right-click on any item in the
Resource View.

3. Select Insert from the popup menu.

4. Select Bitmap from the Resource Type list, and then click the
Import button. The Import Resource dialog box appears.

5. Select the .bmp file containing the image you saved in the
other editor.

6. When the image appears, deselect the Save Compressed
check box.

The file is already compressed. If you leave the Save Compressed
check box selected, the bitmap editor tries to compress it
again, giving you some strange results.

At this point, you can make only simple changes to the bitmap
image. You can rotate the image through multiples of 90 degrees
or flip it horizontally or vertically using the main menu. You can
also crop the image, but any major editing at this point is not a
good idea because of the limited capabilities of the bitmap editor.

Creating toolbars from bitmaps

The most interesting and useful feature of the bitmap object is the
editor’s ability to convert any bitmap, even scanned images, into a
toolbar.

1. Edit the bitmap that you want to convert to a toolbar by using
the bitmap editor.

Common Controls

QPRI

WRDAGe,

2. Choose Imaget>Toolbar Editor on the main menu.

3. When the dialog box appears, type the width and height of the
toolbar buttons.

4. Click OK. The bitmap image is separated into multiple sec-
tions the size of each button, ready for the toolbar editor.

When you click OK, the bitmap entry moves to the Toolbar section
of the resource list. If your bitmap uses more than 16 colors, the
color depth decreases to 16.

Unfortunately, you can’t size an individual button using this
method. Your bitmap should be drawn so it can be split into
equal sections.

Common Controls

The Windows operating system provides dynamic link libraries
(DLLs) that contain controls any program can use. These common
controls are actually child windows that an application uses to
provide I/O or editing functions. Generally, you use these controls
in dialog boxes, but you can use them in other windows.

The controls provide a common user interface between programs.
A control from the library looks and acts the same in every program
that uses it, shortening the time it takes users to learn a program.

The advantage of a control is that much of the work is done for
you, and the more a control does, the less programming you have
to do. The edit controls are a good example. These controls
provide keyboard processing, cursor movement, and word
wrapping, all without your having to write a single line of code.

You can set or retrieve the contents or state of a control by using
member functions of the control classes. For a dialog class, the
ClassWizard inserts a DoDataExchange () function that ex-
changes data between controls and member variables. Do not call
this function directly; instead, use the UpdateData() member
function. The dialog framework calls UpdateData() with a FALSE
parameter when a dialog box is created to set the control contents
from the member variables, and with a TRUE parameter when you
press the OK button to transfer the control contents to the
member variables.

Remember: You may call UpdateData() at any point in your
code, but it will exchange data among all the controls in the DDX
function. To retrieve or set the contents or state of a single
control, use the control class’s member functions.

. Common Controls

For a list of the data exchange functions available for each control,
refer to the Class Members item in the control’s entry in the Help
file. Some of the more common functions are listed in the table.

Control To Set Data To Retrieve Data Note

Edit SetDlgltemText() GetDlgltemText() Includes Rich Edit
and Static text
controls

List box, SetitemData() GetltemData() 32-bit data stored

Combo box with list item

List and Tree Setltem() Getltem() Requires LV_ITEM

structure for List
control, TV_ITEM
structure for Tree

control
SetltemText() GetltemText() Manipulating text
Spinner SetPos({) GetPos() For current value
SetBuddy() GetBuddy() Associated up/
down buttons
SetRange() GetRange() Limits of control's
values
Slider SetPos() GetPos{) Current position of
slider bar
SetRangeMin() GetRangeMin() Minimum value of
slider bar
SetRangeMax() GetRangeMax() Maximum value
of slider bar

Creating common controls

The common controls are available via a toolbar that magically
appears whenever you create or edit a dialog box. (See the figure
below.) Unless you have the dialog box open, you cannot hide or
display the Common Controls toolbar.

Selection— &
Static Text—
Group Box—
Check Box—+& ®+4—Radio Button

Combo Box—{E& B84 —1 ist Box
Horizontal Scroll Bar—®. B4—Vertical Scroll Bar
Spin Button— % ®—Progress

Slider—% &4—Hotkey
List—E] Br—Tree
Tab—+E3 B+—Animation
Rich Edit—t=& #1+—Custom

Common Controls '

The table below describes the controls that you can place using

the Common Controls toolbar:

To create a common control item in a dialog box, follow these steps:

1. Select the proper control tool from the Common Controls

toolbar.

Note: The Common Controls toolbar normally isn’t on the
toolbar list. The toolbar magically appears whenever you
create or edit a dialog box, usually to the right of the screen.
While you have the dialog box open, you can hide and display

it from the list.

2. Move to the dialog box, and draw the control to the size you
want and in the position you want by using the left mouse
button. You may adjust the size and location after you draw

the control.

3. When you release the mouse button, the control image appears.

Control MFC Class Description

Animation CAnimate Displays successive frames of an
AVl video clip

Button CButton Buttons such as OK or Cancel

Combo Box CComboBox Edit box and list box combination

Edit Box CEdit Boxes for entering text. Often used
as the control in a document
window

Header CHeaderCtrl Button above a column of text
Control the width of displayed text

Hotkey CHotKeyCtrl Enables user to create a hot key to
perform an action quickly

Image List Cimagelist Manages large sets of icons or
bitmaps (This is not a true control,
but it supports lists that other
controls use.)

List CListCtrl Displays a list of text with icons

List Box CListBox Contains a list of strings

Progress CProgressCtrl A bar that indicates the progress of
an operation

Rich Edit CRichEditCtr} Edit control that allows multiple

character, paragraph, and color
formatting. Often used as the control
for a document window

Horizontal/Vertical CScroliBar
Scroll Bar

Scroll bar used inside a dialog box

(continued)

. Common Controls

%

Control MEFC Class Description

Slider CSliderCtrl Similar to a sliding control used as
volume control on audio equipment

Spin Button CSpinButtonCtrl A pair of arrow buttons to increment
or decrement a value

Static Text CStatic An edit control for labeling other
controls

Status Bar CStatusBarCtrl Displays information such as the

state of the insert or NumLock keys,
or to write status or help messages

Tab CTabCtrl Used in property sheets. Similar to
notebook tabs.

Toolbar CToolBarCtr! Contains buttons to generate
command messages

Tool Tip CToolTipCtrl A small popup window that
describes the use of a button or tool

Tree CTreeCtrl Displays a hierarchical list

Adding member variables

When you create a control, you usually need a member control
variable to manipulate it. To add a member variable using
ClassWizard, follow these steps:

1. Right-click on the control. Select ClassWizard from the popup
menu.

2. Select the Member Variables tab of the ClassWizard.
3. Find and select the ID for your control. Click Add Variable.

4. In the popup dialog box, choose Category=Control and make
sure the Variable Type box shows your control class from the
table below.

5. Type the variable name (for example, m_my combo), and click OK.

6. Add any initialization for the control to the OnInitDialog()
function in your dialog class.

The following code shows how you would initialize a list control in
OnInitDialog().You would first use the ClassWizard to define a
control variable in your class definition:

CListCtrl m Charlist;

The example gets its data from an array of structures called
List0fChars, which is read into memory and passed to the
CCharlist class when it’s created. Before executing any code, the
function first calls the base class OnInitDialog (). After the

Common Controls -

base class call has returned, the dialog box controls have all been
created and are ready for your initialization code.

ffdefine XFLAG X"
{fdefine BLANKFLAG o
BOOL CKeyboardDlg::OnInitDialog()
int CCharlist::OnlnitDialog()
{
int i;
int Widths[] = {115, 77, 70, 35};
const char *Titles [] =
{
"Character Name",
"Position",
"End Line",
"Ctrl"
IR
ffdefine LISTCOLUMNS (sizeof (Titles)
/ sizeof (char *))

CDialog::0nInitDialog();
for (i = 0; i < LISTCOLUMNS; ++1)
{
LV_COLUMN Tve:
Tvc.mask = LVCF_FMT \ LVCF_SUBITEM \
LYCF_TEXT | LVCF_WIDTH;
lve.fmt = LVCFMT_LEFT;
Tvce.iSubltem = 1i;
Tve.pszText = Titles [i];
Tve.cx = Widths [i];
m_CharList.InsertColumn (i, &lvc);
}
for (i = 0; i < CHARSET; ++i)
{
LV_ITEM Tvi:
char text[64];
int iActualltem;

Tvi.mask = LVIF_TEXT;

Tvi.iltem = 7;

Tvi.iSubltem = 0;

lvi.lParam = 1;

Tvi.pszText = ListOfChars[i].CharName;
iActualltem = m_Charlist.Insertlitem(&lvi);

Tvi.iltem = iActualltem;

Tvi.iSubItem = 1;

sprintf (text, "0x%02X (%d)",
ListOfChars[i].Value,
ListOfChars[i].Value);

Tvi.pszText = text;

m_Chartist.Setltem(&lvi);

Tvi.iltem = iActualltem;

(continued)

TP

Common Controls

(continued)

Tvi.iSubltem = 2;
if (ListOfChars[i].NewLine)
Tvi.pszText = XFLAG;

else
Tvi.pszText = BLANKFLAG;
m_Charbist.Setltem(&lvi);

if (ListOfChars[i].Control)
Tvi.pszText = XFLAG:
else
Tvi.pszText = BLANKFLAG:
Tvi.iltem = iActualltem;
Tvi.iSubltem = 2;
Tvi.pszlText = text;
m Charlist.SetlItem(&lvi);
}
return TRUE;
// return TRUE unless you set the
focus
// to a control
// EXCEPTION: OCX Property Pages
should
// return FALSE
}

How do you know whether to call the base class before or after
your code? The ClassWizard inserts some comment text into the
body of the function and usually a call to the base class, if required.
Watch where it places these comments. If you need to add your
code before the base class function call, the wizard will put the
comment text before the function call. If the comment text is
placed after the base class call, add your code before calling the
base class. In the case of OnInitDialog(), the base class call
must come before your initialization code. (The base function
actually creates the controls; if you tried to initialize them before
the call, the run code would throw an exception.)

Adding message handlers

Some controls, such as a button, tab, or slider, require message
handlers for some of their operations. To add a message handler,
use the ClassWizard by following these steps:

1. Right-click on the control, and select ClassWizard from the
popup menu.

2. Click the Message Maps tab. In the Object IDs panel, select the
resource ID for the control to which you want to add a
message handler. The Messages panel lists the messages that
are available for the particular control.

Common Controls

MR

)

3. Select the message you want to add, and click the Add
Function button. From the Add Member Function dialog box,
give the function a name or click OK to accept the default
function name.

4. Click OK, and then select the Edit Code button on the
ClassWizard.

5. Add your code to the message handler (similar to the code
below).

void CMyDialog::0nMyButton()

{
// TODO: Add your control notification
handler code here

}

If the message has a base class handler, it gets called in this
function.

The following example shows how you can set up a message
handler to respond to a button labeled “Save Character Set.” The
resource ID for this button is IDD_LIST_SAVECHARSET. Notice how
the ClassWizard has used the components of the ID to build a
function name. In this example, the message handler summons
another dialog box, the Windows File common dialog box.

void CCharbList::0OnlListSavecharset()
{

CString Filter;

int Index;

FILE *fp;

Filter = "Keyboard Files (*.cls)|*.cls||";
CFileDialog cfd(false, ".cls", NULL,
OFN_HIDEREADONLY |
OFN_OVERWRITEPROMPT,
Filter);
if (cfd.DoModal () == IDCANCEL)
return;
if ((fp = fopen (cfd.GetFileName(), "wb")) ==
NULL)
{
Format = "Cannot open " + cfd.GetFileName()
+ " for writing";
AfxMessageBox (_T{(Text));
return;
}
for (int i = 0; 1 < CHARSET; ++i)
fwrite ((char *) &ListOfChars[i], 1,
sizeof (CHARDEF), fp);
fclose (fp);

.: d Dialog Boxes

Dialog Boxes

The dialog box is where users really get into your program. Users
don’t spend much time with menus and toolbars, but they may
spend a lot of time in a dialog box.

Dialog boxes can display records from a file, take input from a user
to create some program action, or provide guidance on which
direction the program should take. A dialog box can be small with
only one or a few controls, or it can fill the entire screen. A dialog
box also can be the main window for a program.

Creating a dialog box
To create a dialog box, follow these steps:

1. Select the Resource view panel of the Workspace window and
right-click on the top line to summon the menu, or simply type
Ctr1+R. In the Insert Resource dialog box that pops up,
select Dialog from the list.

2. Click the New button. You get a blank dialog box with two
buttons: OK and Cancel. You can resize the dialog box to fit
your needs. Just grab a corner or edge with the mouse and
drag it out to the size you want. Grab the two buttons and
drag them to another location if necessary.

3. Right-click on any open area on the new dialog, and select
Properties at the bottom of the menu. A four-page form for
dialog properties appears.

4. Type an ID. As a convention, dialog box IDs begin with IDD_.
Make the name descriptive; you can easily lose track of
IDD_DIALOG1, IDD_DIALOG2, and so on. In the Caption field
type the title as you want it to appear when the dialog is
summoned.

Click the More Styles or Extended Styles tab. [couldn’t even hope
to cover all the styles and variations here, but you can click the
Help icon at the upper-left of the Properties dialog box to get a full
explanation of the styles. Try Client edge or Static edge to see
what the dialog looks like, or try them both at the same time.

The dialog box is ready for your controls.

Adding a dialog class

Placing dialog boxes into their own separate classes — one class
for each dialog box — is convenient and because you'll be adding
message handlers and functions to handle your controls. Things
get messy if you try to handle more than one in a class. To add the
dialog class, follow these steps:

Edit Controls

1. Right-click on an open area of the dialog box.

2. From the popup menu, select ClassWizard. In the Adding a
Class dialog box, select Create a New Class, and click OK.

3. Give the class a name. Notice the wizard has filled in the base
class and resource ID, although you can change them.

4. Click OK. You return to the ClassWizard where you may add
variables and functions. Right now there’s not a lot to do
because you don’t have any controls on your dialog (other
than the two buttons, and MFC provides message handlers for
them).

Your dialog is ready for you to place your own controls on it.

See also “Common Controls” in this part for descriptions of how
to use the various controls available to you.

Edit Controls

The basic edit controls are the edit box, rich edit, and static text
controls. The first two support the use of only one font in one
point size and one color. The rich edit control supports a variety
of fonts, sizes, and colors, as well as text formats.

4+ The edit box control. This is the basic edit control for
Windows programs; you use it wherever a user needs to
input text. You can use this control in a view class for editing
plain text files or for displaying text where only one font and
point size are necessary. The most useful application of the
edit box control is in dialog boxes, where data entry usually
does not need the capabilities of the rich edit control.

4 The rich edit control. This control includes all the functional-
ity of the edit box control but also supports multiple fonts in
various sizes and colors. Originally, the rich edit control was
designed to support Word for DOS version 5.0, and it still
displays some quirks from that heritage. The introduction of
the rich edit control in Windows 95 largely has superseded the
edit box control in view classes however, and most applica-
tions can benefit from the display capabilities of the rich edit
control for view classes.

4+ The static text control. This control is not intended for user
input. It does not provide for a cursor; generally, you use it to
label other controls, primarily in dialog boxes. Unlike the edit
box and rich edit controls, this control does not produce a
box on the dialog (unless you check one of the frame styles).
Instead, the text seems to be written directly on the dialog

. Edit Controls

background. You draw the control on your dialog box. The
control itself does not contain a label, so you may need to add
a static text control if you need a title for the edit box.

Retrieving text from a text control

[nput from an edit control may be retrieved line by line, but most
uses in a dialog box are single-line edit controls. The following
code works for both single- and multiline controls. Add the
following lines to the function where you need to retrieve the text:

int LineNumber = [ineToRead;

int len = m_MyEdit.Linelength (LineNumber);
char *etext = new char [len + 1];

memset (etext, '\0', len + 1);
m_MyEdit.GetLine (LineNumber, etext, len};

In the code above, you need to replace Line oRead with an
expression for the line number for the computer to read.
Replace the m_My£Edit control with the name that you give to
your control. First, the code uses the LinelLength function to
determine the length of the line of code in the m_MyEdit control
and stores the length in the 1en variable. Then a new array of
characters is declared and the etext variable is set to point at
the first character in the array. Notice the size of the array is set
to one more than the length of the line. The extra array member
holds the NULL character (\0), because the get1ine() function
doesn’t add a NULL terminator. The memset function initializes
the allocated memory to NULL characters, and then the line is
copied into the array.

Remember: Use the delete [] function to free the memory
reserved for etext before exiting the function.

For a single-line control, the line number value is ignored. Set the
buffer to all nulls before getting the text; the control does not
terminate the returned text.

If you need to set or retrieve the contents of an edit control while a
dialog box is displayed, two member functions are useful:

GetDlgltemText (UINT ResourcelD, char *Buffer, int
BufferSize);
SetDlgltemText (UINT ResourcelD, char *text);

If you use CDialog’s UpdateData() function, the data in all the
controls of the dialog box is set or retrieved. These functions let
you set or retrieve the contents of a single control.

If you specify the Password style, the characters that a user
enters turn into asterisks (*), but the text that GetLine() or
GetDlgltemText () returns is plain text. You can use the
Password style only in single-line controls.

Property Sheets

For a static text control, simply create the control and type in the
caption and any styles you want. Generally, that’s all there is to a
static text control. You can assign the control a variable name and
change the text in your program using the SetDlgltemText ()
member function, but the control is intended to be as its name
suggests — static.

Property Sheets

Property sheets are handy when you have a lot of controls for
your dialog boxes. On a 640 by 480-pixel display, it's not difficult to
design a dialog that fills the entire screen, but it usually doesn’t
look very good. A more pleasing approach is to break down the
controls according to the tasks they perform and then place them
on separate pages — property pages.

A property sheet is the control that holds the property pages. You
can create a property page the same way you created a dialog, and
then change the base class from CDialogto CPropertyPage
when you create the classes. Dialog pages on the sheet would have
the base class of CPropertyPage rather than CDialog.

Creating a property sheet

Before you can have property pages, you need a property sheet
class to hold your property pages. You don't need a dialog box;
Windows takes care of that. The following steps create a property
sheet dialog box:

1. Open the ClassWizard (Ctrl+W).

2. Choose Add ClassvNew. Give your property sheet class a
name.

3. From the Base Class combo box, select CPropertySheet.
Be careful; it's easy to select CPropertyPage by mistake.

4. Click OK, and exit the wizard.

Creating property pages

After you create the property sheet you need to add pages to it.
You can’t display an empty property sheet. Create the pages as
individual dialogs.

1. Open the Insert Resource dialog again (Ctrl+R). Click the +
symbol next to Dialog to list the subclasses.

2. Select one of the 10D PROPPAGE items. It doesn’t matter which;
you can always resize it. The dialog gives the option because
the pages of a property sheet should all be the same size.

TP

- Property Sheets

If you do resize a property page, make sure you resize all the
pages to match. If you don't, the framework does it, and your
controls may end up in strange places.

3. Select New, and your first property page gets created. On this
dialog box, the caption is the title that appears on the tab, so
keep it short but descriptive.

Prepare as many property pages as you want or need. (Be reason-
able, though; think about the poor overloaded memory in your
computer.) Each page is a separate dialog. You should have at
least two pages. Although you may have seen one-page property
sheets, such pages are usually created that way for looks.

Create a class for each page by summoning the ClassWizard
(Ctrl+W). Give the class a name, and from the Base Class combo
box, select CPropertyPage. Click OK, and exit the ClassWizard.

Adding property pages to a property sheet

You need to add the property pages to your property sheet.
Unfortunately, there’s no wizard to do this for you. You have to
open the header and source files for the property sheet class you
created earlier.

1. In the property sheet header file, add a line near the top to
include the property page class definition. Assuming the
property page header file is called FirstPage.h, type

#include "FirstPage.h"

2. Scroll down to the protected area of the property sheet class
definition, and enter a variable for the property page class. If
you called the class CFirstPage, then the line should read

CFirstPage m_firstpage;

3. You're done with the header file. Go to the property sheet
source file, and add the following line of code to the con-
structors. (A property sheet has two constructors; add the
line to both. If you are adding a lot of pages, create a member
function to add them and call it from each constructor.)

AddPage (&m_firstpage);
Remember: AddPage takes a pointer to the variable.

You've created a property sheet. Your program has to provide a
means of summoning it, usually through an accelerator, a menu, or
a tool button — the same way it calls a dialog, but the object
created is of the property sheet class.

CMyPropertySheet ps(_TEXT("Property Sheet"));
ps.DoModal (); // Show the property sheet

Selection Controls

The property sheet needs a title, which is passed when it is
declared. The _TEXT (or simply _T) converts the string to a type
the control can use.

Selection Controls

Selection controls accept user input for the application. Generally,
you use these controls in dialog boxes, but you can also place
them on the application’s main window frame. In fact, having
combo boxes on the main frame for such things as font or color
selection is common practice.

Most of the controls share general and extended styles: I list
them in the following table rather than repeat them for each of
the control types. Styles that are specific to a particular control
generally appear on the Styles tab of the control’s Properties
dialog box.

Control Style Description

Visible Determines whether the control is visible when the
dialog box is first run

Disabled Determines whether the control displays as disabled
{grayed out) when the dialog box is first run

Group Specifies the first item in a group of controls through
which the user can move by using the arrow keys.
The next control with this property setto TRUE ends
the group and starts the next.

Tabstop Allows user to move to this control using the tab key
Help ID Assigns a help ID to the control based on the
resource 1D

Extended styles are selected on the Extended Styles page. The
properties of extended styles are described in the following table.

Property Description

Client edge Creates a sunken edge around the control

Static edge Creates a border around the control

Model frame Creates a three-dimensional effect around the control

Transparent Allows a window under the control to be visible
through the control

Accept files Generates a WM_DROPFILES message if the user
drops a file on the control

No parent notify Disallows WM_PARENTNOTIFY message sending to
the control

(continued)

hild

d Selection Controls

Property Description
Right aligned Aligns any text on the right side of the control
Right-to-left Displays in right-to-left reading order (this is for

languages such as Hebrew or Arabic)

The edge or frame selection determines the appearance of the
control. They may be used singly or in combination with each other.

Button controls

Buttons are simple controls that send messages to the application
when you press the control with the mouse button or select it with
the tab key. The OK and Cancel buttons on most dialog boxes are
examples of button controls.

Buttons need a message-handler function to process the control
messages. Add as many buttons as you need, but add a handler
routine for each.

See also “Adding message handlers” in this part.

Combo boxes

A combo box gets its name from the fact that it combines an edit
box and a list box in one control. With this control, you can give
users a prepared list of items in a compact space; only the selected
item is visible until you pull down the list. The most common place
for a combo box is in a dialog box, but combo boxes also often
appear in toolbars. The Wizard Bar contains three combo boxes.

Drawing a combo box is slightly different from drawing other
controls. To draw a combo box control, follow these steps:

1. Select the control from the toolbar. Drag the mouse across
the area you want the control to appear. Do not include the
drop-down area when you draw the combo box.

2. Release the mouse button. A combo box image appears.

3. Press the down button at the right side of the image. The box
in the bottom boundary changes from an outline to a solid.
Grab this box with the mouse, and drag it down until it fills
the area you want the drop-down box to occupy.

Page 2 of the Properties dialog box contains a list box for entering
selection items. Press Ctrl+Enter between items; the editor
recognizes an ordinary Enter as the end of the list.

In addition to the standard control extended styles, the combo box
has a left scroll-bar property. When selected, the scroll bar in the
list box plus the control arrow next to the edit box appear on the
left side of the combo box.

Selection Controls

RN,

When the combo box appears, the edit window is blank. If you
want it to display an item, call

m_mycombo.SetCurSel (int Index);

inthe OnInitDialog() function.

Reading a combo box is not so direct. First you have to find the
index of the selected item by calling

int sel = m_mycombo.GetCurSel();

If that’s all you need, you're done. Often you may need to read a
string from the list. To do this, you need the index of the string.
The control has functions for these operations, as shown in the
following code:

int index, len;
int len = m_combobox.GetLBTextlen (index);
char *selstr = new char [len + 17;
m_combobox.GetLBText (index, selstr);

Adding 1 to the size of selstr gives an extra byte for the string
terminator.

Note: Be sure to use delete[] selstr to free the string before
leaving the routine.

If you are reading the data when the dialog box closes, add a
message handler for WM_DESTROY and put the code in it. If you try
to read it in the class destructor, you get an exception error. When
the destructor executes, the controls are deleted. However, the
code in a WM_DESTROY message hander is executed before the
destructor.

You may store a DWORD number with each item in a combo box list.
This can be any n-"ber you want, a pointer to a structure or class
object, a time value for a birthday, a price, and so on. Set the
number by calling

SetltemData(int nIndex, DWORD dwltemData);

and retrieve it by calling
DWORD Myval = SetlItemData(int nlndex);

List box

List boxes are open windows that contain a list of items a user
may select. Along with the edit box, it is one of the components
that make up a combo box, and it operates much the same as the
list portion of a combo box.

. Selection Controls

The stand-alone list box control has the added feature of being
able to select multiple items in the list. To enable multiple selection,
select Multiple or Extended in the Selection box on the style tab.

Other useful list box functions appear in the table.

Function Type Purpose

GetCount() int Returns the number of items in the
list box

GetSel int Returns a positive number if the

(int index) indexed item is selected; 0 if not, and
LB_ERR otherwise

GetTopIndex() int Returns the index of the first item in
the list

GetTextlen int Returns the text length of the item

(int index)

GetText int Gets the text of the item and returns it

(int index, in the buffer parameter

char *buffer)

SetItemData int Sets the 32-bit storage to the value

(int index, passed in the data parameter

DWORD data)

GetltemData DWORD Retrieves the 32-bit storage from the

(int index) list box item

The list box control also has a handy function that allows you to
list a directory with a single call. The syntax is

m mylistbox.Dir(UINT attr, char *filter). The at-
tribute may be any of the following:

4+ CFile::normal
4+ (CFile::readOnly
+ (CFile::hidden
4+ CFile::system
4 CFile::volume
+ CFile::directory

4+ CFile::archive

The filter is the selection criteria and may contain wildcards. For
example, *.exe lists only executables. You can use the OR attribute
(]) to get a combination. For example, using the OR attribute with
0x4000 includes a list of drives, along with the files. The filter
m_mylistbox.Dir (CFile::normal | 0x4000, "*.cpp");
gives a list of all the .cpp files in the current directory, and a list of
all the drives on your system.

Selection Controls

Using the OR attribute (|) with 0x8000 restricts the list to the
attribute you set. As a default, CFile::normal files are included
despite the attribute, but 0x8000 restricts the list to the attribute
you pass to the function.

You can use successive calls to this function, but unchecking the
Sort style is a good idea. For example,

m_mylistbox.Dir(0x4000 | 0x8000, "*");
m_mylistbox.Dir(CFile::directory | 0x8000, "*.*");
m_mylistbox.Dir(CFile::normal, "*.cpp");

gives a list beginning with drives on the system, subdirectories in
the current directory, and then all .cpp files in the directory, in
that order. This method is fairly common in Windows programs.

List controls

Don’t confuse the list control with the list box control. The list box
control was a part of the Common Controls long before Windows 9x.
The list control, however, is a different animal and was introduced
with Windows 95. You see this control all through Windows 9x.
Opening a folder from the desktop, for example, displays a list
control. The list control allows you to create a window to list items
along with icons to represent the list items.

You can choose from four methods of listing items in a list control:

4+ Icon view: Displays the items with large icons, each with a
label. This is similar to the view of the files you see when you
open a folder. ltems may be dragged to another location.

4+ Small Icon view: Lists the items in columns, each with a small
icon. This is the same view you get by selecting it under the
View menu of a folder. ltems may be dragged to another
location.

4+ List view: Lists the items in a single column. List item may not
be dragged.

4+ Report view: Each item appears in a column with an icon and
label. Additional columns allow you to list information about
the item. This is the view you get when you choose Viewr>
Details in a folder. You cannot drag items to another location.

Progress bars

This control doesn’t do any real work, but it does give user
feedback when performing long operations. The code to support a
progress bar isn’t complex, but the return is high for a user’s
peace of mind.

Selection Controls

Setting up and using a progress bar takes only a few lines of code.
As long as the bar advances, you know the code is working. You
can put a progress bar in a toolbar.

Inthe OnInitDialog() function, add the following lines:

m_myprogbar.SetRange (MIN_VALUE, MAX_VALUE);
m.myprogbar.SetPos (INITIAL VALUE);
m_myprogbar.SetStep (STEP_VALUE);

At key places in your code, make a call tom_myprogbar.Steplt
() and the progress bar will increment by STEP _VALUE.

See also the sample code under “Sliders” for an example of using
a progress bar.

Radio buttons

This control has been around for a long time. In MFC, it derives its
properties from CButton. The radio buttons control takes its
name from the fact that it acts like the selection buttons on a car
radio — you can select only one button at a time.

Some important rules to remember when creating radio buttons:

4+ Create all the radio buttons in a group in sequence. Do not
create any other controls between buttons. This assures their
grouping in the resource file declaration of the dialog box.

4+ On the first button, check the Group property on the General
styles page. This marks the button as the first in the group. On
subsequent buttons in this group, do not check the box.

4+ If this is not the last control to be created, check the Group
property on the next nonradio button control. This marks the
end of the radio button sequence.

Scroll bars

Use a scroll bar when the text or object in a window is too
large to display completely. MFC classes normally add scroll
bars automatically when you select the AUTOHSCROLL or
AUTOVSCROLL style flags.

You may use a scrollbar as an indicator, similar to a progress bar,
or for user input, similar to a slider.

Sliders

These controls look like the sliding volume controls on audio/
visual equipment. In fact, you can make them serve the same
purpose (as in the Windows 9x Volume Control utility program).

Selection Controls

RO

Sliders need some initialization, so I'll guide you through the steps
of creating some sample code. I show you how your program can
read and set sliders and combine it with a progress bar just to
show some results. To add a slider to your application, follow
these steps and insert your own values. Instead of a progress bar,
you can use the slider values to operate on any control.

1. On your dialog box, create vertical and horizontal sliders. The
default for a slider is horizontal. Now draw a progress bar
using the progress bar control tool. You'll make the two
sliders track each other and show their positions using the
progress bar.

2. Summon the ClassWizard (Ctrl+W is a quick way), and add
variables for these three objects, for example, m_vertslider,
m_horzslider,and m_progbar. Make sure your dialog box
has message handlers for WM_INITDIALOG, WM_HSCROLL, and
WM_VSCROLL.

3. Add the following ffdefine near the top of your source file;
f#define MAX_SLIDER_VALUE 100

4.Inthe OnInitDialog() function, add the following code:

m_horzslider.SetRange (0, MAX_SLIDER_VALUE);
m_horzslider.SetPos (0);
m_horzslider.SetTicFreq (10);
m_vertslider.SetRange (0, MAX_SLIDER_VALUE);
m_vertslider.SetPos (MAX_SLIDER_VALUE);
m_vertslider.SetTickreq (10);
m_progbar.SetRange (0, MAX _SLIDER_VALUE);
m_progbar.SetPos (0);

The initial position of the vertical slider in this example is
MAX_SLIDER_VALUE instead of 0. Curiously, Microsoft
created the control with 0 at the top and full value at the
bottom, just the opposite of the way sliders are used in the
real world.

The tick frequency is set to 10. With Autotick on and a range
of 100, the ticks are so close together they make a black bar.
Add space between the ticks by calling SetTicFreq().

5. Now link the two sliders. In the OnHScro11 () message
handler, add the following:

if ((CSliderCtrl *) pScrollBar ==
&m_horzslider)
{

int pos = m_horzslider.GetPos();
m_vertslider.SetPos (MAX_SLIDER_VALUE -
pos);

(continued)

up

Selection Controls

(continued)

m_progbar.SetPos (pos);
return;

}
CDialog::0nHScroll(nSBCode, nPos, pScroliBar);

The first line tests whether this is the horizontal slider. All
scroll-bar, slider, and spin-button messages pass through this
handler. The third parameter is a pointer to the actual control.
The type, however, is CScrol1Bar*, so you have to cast it to
CSliderCtrl*.If it isn't your slider, then just call the default
handler and return. See also Part V1.

The next line reads the position of the horizontal slider. Next,
you set the vertical slider position to match the horizontal
slider and indicate the positions in the progress bar.

Remember: If you are using a vertical slider, override the
OnVScrol1() handler. The code is slightly different. (Don’t forget
that you need to adjust for the top-to-bottom behavior.)

if ((CSliderCtrl *) pScrollBar == &m_vertslider)

{
pos = MAX_SLIDER_VALUE - m_vertslider.GetPos();

m_horzslider.SetPos (pos):
m_scrollbar.SetScrollPos (pos);
m_progbar.SetPos (pos);

return;

}
CDialog::0nVScroll(nSBCode, nPos, pScrollBar);

Compile and run your program. Summon the dialog box. As you
move one slider, the other tracks with it, and the progress bar
indicates the relative position of the sliders.

To hide the tick marks on the right side or the bottom, make the
control slimmer. If you don’t have enough room for tick marks on
both sides, the control draws only the top or left tick marks.

Spin buttons

You often use the spin button control (or spinner) with an edit box
to display a number. The spinner gets its name from the way the
values spin up or down as you hold down one of the buttons.

You may attach a spinner to another window to display values, or
you can use it to control the display in any control. The buttons
generate either a WM_HSCROLL or WM_VSCROLL message, depending
on the orientation of the buttons. You have to sort it out from any
other scroll controls. The third parameter to the scroll message
handler is a pointer to the control that caused it. Use the following
test to determine if the message was generated by your control:

Selection Controls

TP

f ((CSpinButtonCtrl *) pScrollBar == &m_myspinner)

,i

{

// Add your code to handle the spinner
return;

}

Remember: Don’t forget the return statement in this part of the
code; you don’t want the dialog box to process it as a normal
scroll message.

If you are going to attach a spinner to another control using the
Auto Buddy property, create the other control first and then the
spinner control. Do not create any other controls in between, or
the spinner will attach to the wrong control.

For an example, use the code in the section on sliders, but
substitute a spinner for one of the sliders.

Tab controls

The tab control is like the tabs in a notebook. The Help system
isn’t very informative about these controls. You can study the
example programs in Visual C++, but they have almost no com-
ments in them to explain how to use the various functions.

To use the tab control, follow these steps:
1. Create a tab control by drawing it on your dialog box.
2. Put a control variable in the class for your dialog box.
3. Put the following code in the OnInitDialog() function.

TC_ITEM Tabltem;

Tabltem.mask = TCIF_TEXT;
Tabltem.pszText = "First";
m_tab.InsertItem (0, &Tabltem);

4. Repeat the last two lines of code for as many tabs as you
need, changing to the title that will appear on the tab.

When a user selects a tab, Windows sends a TCN_SELCHANGE
message to your application. Add a message handler to and call
the tab control to get the newly selected tab.

int sel = m_tab.GetCurSel();

You can put different controls on each of the tab pages, but you
have to show and hide each control as the page gets and loses
focus. For this reason, tab pages are best suited for only one — or
a few at best — controls. If you have several controls you want to
place on a tab page, you can create another dialog box and place it
on the tab page.

- Selection Controls

The tab control is the basis of the property sheets you see all
throughout Windows 9x. The property sheet, however, is a stand-
alone dialog box, but you may place a tab control in any dialog box
along with other controls.

Tree controls

You need look only as far as the Workspace window to see a tree
control example. Building a tree control is not difficult, but it is a
tedious task. The tedium can get to you, and bugs can creep in, so
test your tree often to make sure it’s growing in the right direction.

The best way to describe a tree is by building a sample. When you
have a working tree, you can copy and paste the code into other
programs and then change the values and text for your own needs.
To create a sample tree, follow these steps:

1. Draw the tree control on your dialog box. Make the control
about 1'/2 inches wide by 2 inches deep.

2. Select the following styles: Has Buttons, Has Lines, Lines At
Root and Border. (After you see the basic tree, try changing
these styles to see the effects.)

3. Type the ClassWizard, and create a member variable in your
class for the tree object.

4. You need a structure to insert tree items, so in the
OnInitDialog() function, add the following variable:

TV_INSERTSTRUCT Tresltem;

5. Add a root node, alsoin OnInitBialog(), and call it
"Animals".

Treeltem.hParent = TVI_ROOT;

Treeltem.hInsertAfter = TYI_LAST;

Treeltem.item.mask = TVIF_TEXT | TVIF_PARAM;

Treeltem.item.pszText = "Animals”;

Treeltem.item./Param = 0;

HTREEITEM hAnimall =
m_tree.Insertlitem(&Treeltem);

6. Now add a root node for "Plants".

Treeltem.item.pszText = "Plants”;

Treeltem.item.TParam = 1;

HTREEITEM hPlantl =
m_tree.Insertitem(&Treeltem);

TVI_ROOT specifies this is a root node. The hInsertAfter
member is the handle of the node to insert this item under. You
could insert the handle of another object here, but you may use
the following predefined handles:

Selection Controls

+ TVI_FIRST: Inserts the item at the beginning of the list under
the parent node.

+ TVI _LAST: Inserts the item at the end of the list under the
parent node.

4+ TVI_SORT: Inserts the item into the list under the parent node
in alphabetical order.

The "item" memberis a TV_ITEM structure within
TV_INSERTSTRUCT. This is the information the control stores with
the item.

TVIF_TEXT | TVIF_PARAM means you are going to insert text
and a parameter. The text, the pszText line, is what appears in
the tree. The 1Paramis a 32-bit number of your choice; use it to
identify and act on the tree item.

The HTREEITEM casts a variable to a handle that you will use as
the parent for subsequent entries under this node.

Compile and test your dialog box. Make sure you have two root
nodes on the list ("Animals” and "PTants"). Compile and test
often, especially after any major node change. After you test the
root nodes, continue building the tree by adding subnodes.

1. Add a subnode for "Domesticated” animals.

Treeltem.hParent = hAnimall;

Treeltem.item.pszText = "Domesticated”;

Treeltem.item. /Param = 100;

HTREEITEM hDomestic =
m_tree.Insertitem(&Treeltem);

2. Add a subnode for "Wild and Free" animals.

Treeltem.item.pszText = "Wild and Free";

Treeltem.item.1Param = 110;

HTREEITEM hWildFree =
m_tree.Insertltem(&Trecltem);

3. Now add some animals under "Domesticated".

Treeltem.hParent = hDomestic;
Treeltem.item.pszText = "Dogs";
Treeltem.item.1Param = 111;
m_tree.Insertltem(&Treeltem);

Treeltem.item.pszText = "Cats";
Treeltem.item.1Param = 112;
m_tree.Insertltem(&Treeltem);

(continued)

Wizards

(continued)

Treeltem.item.pszText = "Hamsters™;
Treeltem.item.1Param = 11i3;
m tree.Insertitem(&Treeltem);

4. Add some animals under "Wild and Free".

Treeltem.hParent = hWildFree;
Treeltem.item.pszText = "Tigers";
Treeltem.item.1Param = 111;
m_tree.Insertltem(&Treelzem);

Treeltem.item.pszText = "Platypus”;
Treeltem.item.1Param = 112;
m_tree.Insertltem(&Treeltem);

Notice that each item has its own value for
Treeltem.item.]1Param Anytime that node is selected, you can
retrieve the value by calling

HTREEITEM hTree = m _tree.GetSelectedItem ();
DWORD data = m tree.GetItemData (hiree);

Using that value, you can write a switch statement to show a
picture, play a sound, or perform some other action based on the
tree entry.

I'll leave it to you to create the hierarchy for plants. I'm tired of
climbing trees.

Wizards

Wizards are neat tools for programmers. The important concept of
a wizard is that the user must go through the pages in order rather
than select a page or control at random. If one step relies on
information to be supplied on an earlier page, you can disable the
Next button until that information is provided. You deal with
plenty of wizards in Visual C++. Actually, a wizard is nothing more
than a property sheet with a “Wizard Mode” flag turned on.

Maybe it’s time you became a wizard, or learned to create one.
First, you need to create a property sheet with at least two tabs.

See also “Property Sheets” in this part.

Creating a wizard

To build a wizard from a property sheet, follow these steps:

Wizards

1. Open the source file for your property sheet class (not a page
class). Zip up to the Wizard Bar, and click on the down arrow
on the Action button. From the drop-down menu, select Add

Virtual Function.

2. In the dialog, find and select DoModal in the New Virtual
Functions panel.

3. Click the Add and Edit button. Add the following line of code
to the newly created DoModal () function before the call to
the base class DoModal():

SetWizardMode();

That'’s all there is to it. Recompile your program, and run it.
Summon what once was a property sheet. (Pretend to toss smoke
dust into the fire at the same time.) You should notice the follow-
ing changes:

What used to be the titles on the tabs are now the dialog titles as
you step through the pages. Instead of OK, Cancel, and Apply
buttons, you now have Back, Next, and Cancel.

Your last page should provide some means of completing the
wizard steps without having to press Cancel.

Making the Finish button appear

Now for some befuddling Microsoft magic. (Okay, you run into
this in the Borland IDE, as well.) On the last page you want the
second button to read Finish instead of Next. You need to call
SetWizardButtons () with some flags to change it. The Help
file reads, “Typically, you should call SetWizardButtons from
CPropertyPage::0OnSetActive.” Nice, considering
SetWizardButtons is a member of CPropertySheet, not
CPropertyPage, and you can’t call it from your page class.

The base class also has no variable to identify the property sheet
that created it.

You can use several methods to get to SetWizardButtons (),
but the best one seems to use one of the class casting macros,
either STATIC_DOWNCAST or DYNAMIC_DOWNCAST. These macros
cast one object to another. Use the macro to get the CWnd parent,
and then cast it to CPropertySheet, which is the base class for
your parent.

Add the OnSetActive virtual function using the Wizard Bar
Action button to the last property page. Put the following lines of
code into it:

CpropertySheet* ps =
STATIC_DOWNCAST(CPropertySheet, GetParent());
ps->SetWizardButtons(PSWIZB_BACK | PSWIZB_FINISH);

Wizards

Do the same thing for the next-to-last property page, except make
the function call

ps->SetWizardButtons(PSWIZB_BACK | PSWIZB_NEXT):

This makes the Finish button appear on the last page but resets it
to Back if the user goes to the previous page.

In a wizard, you may run into a number of circumstances where
you need to access functions in the parent class. [prefer to add
the property sheet pointer as a member of the property page class
and then use the macroin OnInitDialog() . This tactic makes
the pointer available in all member functions.

If you don't include a flag, the button becomes disabled. Add the
OnSetActive function to your first property page, and add the
same code. Disable the Back button with the following line of code:

ps->SetWizardButtons(PSWIZB_NEXT);

The flag parameter to SetWizardButtons () may be any combi-
nation of the following:

Flag Parameter Button
PSWIZB_BACK The Back button
PSWIZB _NEXT The Next Button
PSWIZB_FINISH The Finish Button

PSWIZB_DISABLEDFINISH The Finish button (disabled)

Next and Finish share the same button. You may have one or the
other for a wizard page but not both.

The Help Workshop

From an end user’s point of view, preparing a good
Help file is one of the most important tasks you
need to perform in your programming project.
From a programmer’s view, the Help file is your
platform for explaining how to use your program,
and a good Help file can save you many hours of
time spent helping users. Unfortunately, the Help
file is missing from most Windows programming
books. Even in books that do talk about Help files,
the topic usually gets just a glancing blow.

In this part . . .

v+ Compiling Help files

v~ Editing Help files

v+~ Exploring the Help Workshop’s Help file
v+~ Using rich text editors

+»* Using Visual C++ Help tools

» The Windows Help Engine

»* Writing effective Help

Compiling Help Files

Compiling Help Files

As with any programming effort, compile and test Help projects
often. The Help Workshop isn’t as easy to use as Visual C++ when
locating errors, so try to catch and correct any potential problems
quickly.

The Help compiler isn’t as fast as the Visual C++ compiler, either.
On large projects, having to wait 10 to 15 minutes for a compile
isn't uncommon. The Help compiler has a lot of work to do in
building its internal file system, compiling your topic files, and
including bitmaps and other files. Outfitting your development
computer with additional RAM reduces wait time.

To compile a Help project, follow these steps:

1. In the Help Workshop, choose Files>Compile or press the
Compile button on the toolbar. The project file doesn’t have to
be open to compile it.

2. In the dialog box that pops up, the Project File combo box
contains a list of recently opened Help projects. Select the one
you want to compile. The list below summarizes the options
on this dialog box:

 The Minimize Window When Compiling option hides the
window during the compilation. Microsoft’s literature says
this option speeds up the compilation, but that’s academic
on machines with adequate memory. Anyway, watching a
compilation is pretty boring, so minimizing the window is a
good idea.

The Automatically Display Help File in WinHelp When Done
is ho-hum. This option causes the compiler to automatically
start WinHelp and display your Help file after the compile.
More often than not, you may want to look at the results of
the compilation, and starting a test view of the Help file isn’t
difficult.

Select Turn off Compression when you're compiling your
Help files for testing. This action greatly speeds compile
time, sometimes by 25 to 50 percent. Of course, on the final
compilation you should leave compression turned on.

The Include .rtf Filename and Topic ID in Help File option is a
handy debugging aid. Selecting this check box causes two
new fields to appear in the Topic Information dialog box (the
dialog box you get when you right-click a topic ID and select
Topic Information from the menu). These new fields contain
the .rtf file the topic is in and the topic’s ID and can speed
debugging. Make sure you deselect this box when you
compile your Help file for release.

Creating a Help Project

w

To use the Include .rtf Filename and Topic ID in Help File option,
you must have Help Author mode turned on.

See also the “Testing Help Files” section in this chapter for a
description of Help Author mode.

Creating a Help Project

RNy,
D

To prepare a Help file, you need one or more topic files — the files
produced by a rich text editor such as Word or WordPerfect.
These topic files contain the actual messages that will appear in
your help windows. You can’t compile a Help project without a
topic file, but you can create a project without it.

Also, you don’t need an application to have a Help project,
although generally a user will launch a Help file by using links in
an application.

The MFC AppWizard gives you a head start in creating a Help file, but
you don’t have to use it. The following list explains your options.

4+ Selecting “Context sensitive help” in Step 4 of the MFC
AppWizard when you create a new project makes the wizard
prepare several basic files for your Help project: the Help
project file, a contents file, a map file, a topics file, and several
bitmaps to illustrate the Help windows. Look for these files in
the “HLP” subdirectory where you created your application.

4+ If you didn’t select Context Help in the AppWizard, you still

can create a Help project. At times, you may want to prepare
a Help file but really don’t need an application. For example,
as I get older and more senile, | need help jogging my memory;
so [have created some personal Help files. One of these files
contains code snippets for using the various common controls
that Windows provides. No application is associated with it,
so to run it, I simply click the desktop icon I created for it or
run “winhelp controls.hlp” from the command line.

Except for the rich text files (the topic files), don’t directly edit the
Help files that the MFC AppWizard creates. Several of the Help files
are sensitive to stray spaces and tabs. Use a rich text editor such
as Word or WordPerfect to edit the topic files, and use the Help
Workshop to modify the other files.

See also “Help Workshop Help File” and “Editing Help Files” in this
part.

As your application develops, the Workshop makes changes to
some of these files, adding Help IDs for dialog boxes and controls,
and so forth. You, of course, have to write the actual text for the
Help topics.

Creating a Help Project

To create a Help project, follow these steps:
1. Choose Start:: Help Workshop.
2. Choose Filer::New: Help Project, and then click OK.

3. Specify the path and file name for your project, and then click
Save.

4. Add the Help project information to the files using the buttons
on the right side of the project window. If you created your
topic files (the rich text files), click the Files button. If the files
are in the same directory in which you created the Help
project, select the files and click the Add button, and select
the path and file to add to your project. Otherwise, you need
to browse to the files. Continue until you include all the files.

Note: If you haven'’t created your topic files yet, you need to
return to this step after you create the topic files to add them
to the project.

5. Continue adding elements to your project as needed by using
the Help Project Window buttons that appear in the table.

When you open the project in the Help Workshop, you see a
window with an array of buttons down the right side, regardless of
whether you created your own basic Help files or had the MFC
AppWizard prepare them for you. Here’s what the buttons mean:

Help Project Purpose
Window Button
Options Specify options for compressing files, sorting

keywords, text search functionality, macros, fonts,
and build tags.

Files Specify the location of the topic {rich text) files. You
cannot compile a Help project without specifying at
least one topic file.

Windows Set the type, attribute, color, and position of Help
windows; and specify which buttons should appear
on the Help windows and which macros should run
when the window displays. You can use macros, for
example, to change the color of the window.

Bitmaps If your Help file includes bitmaps as illustrations
(always a good idea, especially for complicated
dialog boxes and toolbars), use this button to specify
their location. Use the Segmented Hypergraphics
Editor {shg.exe} to put hotspots on your graphics for
mouse clicks. {See the section on Hypergraphics in
this chapter.)

Map Use to associate topic IDs with numeric values. The
association is required for context-sensitive help.

Creating a Help Project

SERaNEs,

hUd

Help Project Purpose

Window Button

Alias Replace one set of topic IDs with another.

Config Specify menus or buttons to appear on the Help
windows or to register DLL (Dynamic Link Library)
functions.

Data Files Files to include in the Help file system. Placing files

in the internal file system (as opposed to the
Windows file system) makes access faster, but
increases the size of the Help file.

Save and Compile Saves the modifications to the Help project and
compiles the project into a Help {.hip) file.

Microsoft didn’t include a separate Save button. Often, you may
find yourself making changes without being ready to recompile the
project. Simply closing the project file gives the option to save
without compiling. You can then reopen the project.

The contents file

A contents file isn’t a requirement for a Help project, but it does
add some pep and energy to your project. For large applications,
you may need a contents file as the place to link several Help files
together.

The Windows Help Engine uses the contents file to generate that
nifty tree control with open and closed book icons on the Help
Topics dialog box. The contents file also can contain links to
multiple Help files. If your project contains several components,
you can provide links to the Help files in the contents file, even for
Help files that do not exist yet. When you run the Help Engine, it
looks for the files linked in the contents; if it doesn’t find them, the
items containing the links do not display.

The contents file is a plain text file, and you can edit it using a
program such as Notepad. However, the indenting and links can
get confusing for large projects, so the best approach is to maintain
it, using the Help Workshop editor.

To create a contents file:
1. In the Help Workshop, choose Filec’New.

2. In the New dialog box, you have the choice of selecting a
project file or a contents file from the list box. Select “Help
Contents” from the list box, and press the OK button.

The dialog box that appears is the same dialog box you use
when you later edit your contents file, so the following steps
apply to editing as well as to creating a file.

L)

PN

| Creating a Help Project

3. Type the name of the file that contains most of your Help

topics in the Default Filename field.

4. In the Default Title field, enter the text you want to appear

in the title bar of the Help Topics dialog box. This title
appears in Help windows that do not have a title specified in
the [WINDOWS] section of the project file. You also can enter
the title by clicking the Edit button and filling in the fields.

5. Click the Add Above or Add Below button to enter your first

heading or topic. Because you haven’t added topics to the list
yet, you can select either button. However, after adding your
first topic, you need to select one or the other, depending on
where you want the new topic to appear.

6. Select the Heading or Topic radio button from the Edit

Contents Tab Entry. When the contents file is invoked from
your application, a book icon will represent Heading. When
you double-click the icon, the icon changes to an open book
to reveal the items below it. A page icon will represent a topic;
double-click the icon and the topic window. Other radio
button options are “Macro” to run a predefined macro when
you click the item and “Include” to link another contents file
to this one.

If you make a mistake here or later want to change the level
type, you can’t change it. You have to delete it by using the
Remove button and reinserting the item with the correct type.

. In the Title edit box, enter the title as you want it to appear in

the topic tree control. If this is a heading entry, all the other
fields become disabled. If it is a topic, enter the ID of the topic
in the Topic ID field. This is the ID you use with the “#”
keyword in your topic files, and the ID should not contain any
spaces. Generally, try to use the resource ID or Help ID
provided by the Workshop; things can get confusing in a large
project. Also in this dialog box, enter the Help filename (if it is
not the default file) in which the topic is located in the Help
File edit box and the window type you want to use in the
Window Type edit box. (It’s okay to leave the Window Type
blank if you haven’t created a window type; the workshop will
use a default.)

. Click Move Right or Move Left to adjust the indent level of the

item. The indent level is important. If an item is indented to
the right more than the item above it, it appears as a subitem.
The display shows you the relative position of items.

9. Repeat the above steps until you have entered all the head-

ings and topics you want to appear on your Help Topics page.

Creating a Help Project |

You should be aware of three other buttons at the bottom of the
dialog box, but you probably won’t need them for beginning Help
projects:

4+ Tabs: Use to display custom tabs in the dialog box. To use
this, you have to write your own DLL specifically for this
purpose.

4+ Link Files: Use to list other files if your Help file contains
A-Link and K-Link macros that jump to topics in those files

4+ Index Files: Use to list other Help files whose keywords
should appear in the Index tab of the Help Topics dialog box.
The Help compiler searches for keywords in your Help files to
build the index.

Making new window types

To a limited extent, you can customize your topic windows in the
Help system. You can change the color and appearance of the
scrolling and nonscrolling portions of the windows to give your
Help file a distinctive appearance.

To define a new window type:

1. Click the Windows button on the Help Project dialog box. The
Window Properties property sheet appears.

2. Click the Add button on the General tab to create a new
window type.

3. In the Add A New Window dialog box that appears, enter a
name for your window type. The name must be eight characters
or fewer. L.eave the standard window types box on “Procedure.”

4. Click the Position tab to set up the window size and position.

5. For now, press the Auto Sizer button. Drag the sample window
to the position on the screen where you want it to appear, and
then grab the edges of the window to size it to your needs.
Click the OK button on the sample window. Later, you can
adjust the size by entering new values in the Left, Top, Width,
and Height edit boxes.

6. Select the Buttons tab, and check the buttons you want to
appear on your window.

7. Click the Color tab. Notice the two areas of your window —
the nonscrolling region and the scrolling region. The scrolling
region is the region that contains the actual text for the topic
when the Help window is displayed. Click the Change button
next to either region to change its color. The “Choose Color”

Editing Help Files

common dialog box appears. After you select a color, click OK
on the color dialog box. The background of the region should
change to your selected color.

8. If you want to add macros that execute when the window type
you are creating displays, add them on the Macro tab.

9. Return to the General tab and give your window a title. The
“Comment” field is not used in the Help file and is intended as
a note to yourself. Checking the “Auto-size height” box causes
the window to expand or shrink automatically to fit the text.
Checking “Keep Help window on top” makes the window stay
in the foreground, even if the user returns to the application
without closing the Help file.

Editing Help Files

By using a rich text editor such as WordPerfect or Microsoft Word,
you can create all the subtle codes that make the Help file work.
The compiler needs special symbols and text attributes to create
such things as jump targets and browse sequences.

Footnotes

You create much of a Help file’s action by using footnotes. A
unique mark identifies each footnote; the mark has significance to
the Help compiler. The accompanying table explains the marks.

Mark Character Purpose Footnote Example

Poundal # Defines a unique # IDH_MYDIALOG
topic identifier.
It is required for
all topics. Should
be the Help ID for
the topic.

Dollar $ Denotes the title $ My Dialog Box
of a topic as it
will appear in the
“Topics Found”
dialog box, the
Bookmark dialog
box, and the history
window.

Editing Help Files

Mark

Character

Purpose Footnote Example

Plus

+

With a number + Index:0005
value, defines the
topic’s position in

a browse sequence.
Index:0005 identifies
this as the fifth

in the Index browse
sequence. You can
leave gaps between
numbers for later
expansion.

Exclamation

Defines a macro that I SetPopupColor
is to run when the user (255,255,200)
opens the topic.

SetPopupColor

(255,255,200, for

example, causes a

pop-up window to

appear with a light

yellow background.

Asterisk

Defines topics used * DEBUGBUILD
in conditional builds.

Greater than

>

Identifies a window > MyWindow
type for the topic.

This is a window type

defined in the Help

Workshop. See the

section on Creating

New Window Types

under Creating Help

Projects.

Specifies words used A Link Name
in ALink macros. An

Alink is similar to a

KLink, but the identifier

does not appear in the

index of the Help Topics

dialog box. The Help

system uses an ALink

internally.

Specifies words used K Link Name
in KLink macros. A

KLink appears in the

index of the Help Topics

dialog box, and a user

can access it by clicking

on the entry.

Editing Help Files

To insert a footnote using Microsoft Word:
1. Choose Insert': Footnote.

2. In the dialog box that pops up, make sure you select the
Footnote radio button. In the Numbering section, select
Custom Marks and enter a footnote character from the table
above.

3. Click OK, and type the text of your footnote next to the mark.
If you have Views: Footnotes on, the footnote appears ina
window at the bottom of the screen.

In WordPerfect, adding footnotes for a Help file is more difficult.
Follow a slightly different sequence:

1. Before you begin, choose Insert=>Footnote=>Options. Make
sure you select the “Characters” option, and then enter the
characters from the chart above. In WordPerfect Version 6.1,
this field accepts only five characters, so you may have to
alter it occasionally. Also note the sequence of characters.
WordPerfect assigns the first character to the first footnote
and continues through the list.

2. Create the footnote by choosing Insert>Footnote=>Create.

3. Type the footnote text at the bottom of the page.

Browse sequences

A Browse sequence is the collection and order of topic windows
that appears when the user clicks either the “<<" or “>>" buttons
at the top of the Help window. You can group windows of similar
topics together under a single browse identifier and then set the
order in which you want them to appear.

Place a topic in a browse sequence by using a plus sign)
footnote, giving it the browse sequence identifier, and adding a
number in the footnote text. The numbers don’t have to be
sequential; you may leave gaps for later adjustments and addi-
tions, jumping, for example, from number 010 to 020. Browse
sequence numbers should have the leading zeros so the numbers
are all the same length. Browse sequence identifiers have a limit
of 50 characters.

You don’t need to include a browse sequence number. If you don’t,
the compiler creates the browse sequence in the order in which the
compiler encounters the topics. If you later need to reorder the
sequence, you can add the numbers, but you need to add them to
all the topics in the sequence. Make it easy for yourself and always
include the numbers.

For example, adding the + footnote to a topic named Spell Menu
and placing + commands:040 in the footnote text assigns the
Spell Menu topic to the command browse sequence and gives it
the relative number of 40.

Graphics

Adding bitmaps and hypergraphics to your Help file significantly
increases the compile time. But a picture is worth a thousand
words, and a well-prepared hypergraphic that pops up brief
explanations of an object such as a dialog box can make your Help
file easier to use.

See also “Segmented Hypergraphics Editor” in this part.

Declare a graphic in your topic file by enclosing its filename inside
braces { and | along with the keyword bml, bmr, or bmc. Use
those keywords even if you are inserting a hypergraphic (.shg) file.

Syntax What It Does

{bmc filename.shg} Places the graphic using character alignment.
It is treated just like any other character. If
you want to center a graphic by itself in the
window, follow the declaration with an end of
paragraph, and then use the Center Align
command of the rich text editor.

{bml filename.shg} Positions the graphic along the left margin of
the window; flows text around the graphic on
the right.

{bmr filename.shg! Places the graphic on the right margin; flows

text around it on the left.

Hotspots

A hotspot is like a Web link. When the user clicks on the hotspot,
the Help system jumps to the topic identified in hidden text.

To declare a hotspot:

4+ If you want Help to display a new topic when the user clicks
on the hotspot, type the text in double-underline mode. In
Word, choose Formatr>Font and select Double in the Under-
line combo box. In WordPerfect, choose FormatcFont and
select the Double Underline check box.

4+ If you want Help to display a pop-up window without closing
the current topic page, type the link text in single-underlined
text. In both Word and WordPerfect, the underline mode is
available on a toolbar button.

QRDAE,,

Editing Help Files

+ In either case, immediately after the link text, type the topic ID
of the new window in hidden text (no intervening spaces). In
Word, choose Format=Font and select the Hidden check box.
In WordPerfect, you have to type the ID in normal text, define
it, and then choose Format<*Font and select the Hidden check
box; the Hidden box is disabled unless the text is defined.

In the compiled Help file, the link text appears in green. When the
user clicks on the link, the Help system jumps to the topic identi-
fied in the hidden text or displays a pop-up box, depending upon
the underline mode.

Creating links

Help provides two macros, KLink and AL1nk, to provide jumps to
multiple topics based on keywords rather than specific context
strings. Because you resolve the jumps at runtime rather than
when you compile the file, you can create jumps between Help
files. You also can provide jumps to Help files that may have
changed since the original compilation of the Help project.

The KLink macro uses K-keywords, which are in the index. The
ALink macro is identical except it uses A-keywords, which never
appear in the index. These macros can access multiple Help files
when specified in the contents file.

See also “Footnotes” in this section for steps to add A- and K-type
keywords.

The syntax for both macros is the same:

KLink(keywordl;keyword], type,topic ID,Window Type)

The macro requires at least one keyword; the rest of the param-
eters are optional. A keyword may contain a comma if the keyword
is enclosed in quotes. Use a semicolon to separate multiple
keywords.

In the macro, topic ID can take one of four values, as shown in
the table. Notice that the number 3 doesn’t exist. The Help
Workshop Help could lead you to believe that you can use the
name (for example, TITLE) as the topic 1D parameter, but with
my version of the workshop, only the number value seems to
work.

Number Value Name Description

0 Place holder You can't have empty parameters. If
you omit a parameter and have a
parameter following it, you must have a
number in this position. 0 fills the bill.

Editing Help Files

Number Value ~ Name Description

1 JUMP If only one keyword is found, Help
jumps directly to that topic.

2 TITLE If Help finds a keyword in more than

one Help file, the title of the file appears
next to the topic in the Topics Found
dialog box.

4 TEST Returns O if no match was found or 1 if
one or more matches were found.

Topic D specifies the ID to display in a pop-up window if Help
does not find a match. Without this parameter, the message box
“No additional help is available” displays if no match is found.

Window Type specifies the name of a window to use when the
topic displays. If blank, the default type is used; otherwise,
Window Type should be the name of a window you defined. (See
“Making new window types” in the section on “Creating a Help
Project.”)

Replace missing parameters with empty quotation marks (except
Type, which must be a number), but don’t end the parameter
string with a comma. If parameters are left off at the end, simply
end the string without any trailing commas.

Add the macro to your contents file by using the following steps:
1. Open the contents file in the Help Workshop.

2. Determine where you want to place the macro, and select the
item either just before or just after that point.

3. Press the Add Above or Add After button, as appropriate.

4. Select the Macro radio button. In the Title field, enter the text
as you want it to appear in the contents list.

5. Enter the macro in the Macro field, including all parameters as
you want them to be used. Click OK.

When you examine the contents file, you find the Workshop has
truncated the name of the macro to AL or KL. This is fine; the Help
system recognizes on the first two characters of a macro name.

Macros

The Help system contains a number of predefined macros you can
use in your Help file. Add these macros to your project by using
the exclamation point () footnote. Use only one “!” footnote. If you
want to run more than one macro, include them in the same
footnote, separated by a semicolon in the order in which you want
them to run.

. Editing Help Files

[can't list all of the many macros here, but if you choose
Helpt: Help Topic and type macros, you get a list of them. Select
the one that interests you, and double-click it. Take a look at some

of the most useful macros:

+ JumpContents: Jump to the contents topic of another Help
file. Using this macro is an easy way to link Help files, but you
should make certain the other file is present, or Help will
display an error.

+ SetPopupColor: Sets the background color of pop-up
windows. The default is white, but this parameter lets you
specify any combination of the three colors. S5etPop upColor
(255,255, 255) gives the pop-up window a slightly yellowish
cast, for example.

+ ShellExecute: Allows you to open a file outside the Help
system and pass it parameters. If the file is an executable file,
it runs. If it is a document file, it opens or prints, according to
the macro flags.

4+ ShortCut: Runs a specified program or, if it already is
running, activates it. Parameters allow you to send the
program a command through the WM_COMMAND message.

4 [fThen: Allows you to test a macro’s return value and run it
or another if the value is non-zero. [fThen(MacroToTest,
MacroToRun) runs the second macro only if the first returns
non-zero. (An [fThenE1se macro also exists.)

Topic pages
You can include as many topic pages in a Help file as you want, but
each must be on its own page in the rich text file. Each topic

requires at least one footnote, the topic identifier designated by
the poundal (3#).

Insert a page break after you enter the text you want to display in
the topic window. From the WordPerfect menu, choose Insert=
Page Break; in Microsoft Word, choose Insert=>Break, and then
select the Page Break radio button and click OK. In both editors,
you can insert the page break by pressing Ctrl+Enter.

Generally, a topic page has a headline on it in larger type than the
body text. Common practice is to place the footnote identifiers
just before the headline, but placement is flexible. Be consistent,
because you refer to these footnotes throughout the course of
your project.

See also “Topic Files” in this part.

Testing Help Files

Help Workshop Help File

The Windows Help system is a very mature and stable environ-
ment, and its features have grown to meet the needs of developers
over the years. The system has far more features than I can cover
in a single chapter, but it contains one of the best examples of
Help that one can find, as expected. Studying the construction of
the Help Workshop’s own Help file can give you some ideas of how
to build your own.

Start with the “Training Cards” item on the Help menu for step-by-
step instructions on many of the tasks involved in building a Help
project. The subitems on this menu item change, depending on
what you have on the screen. With a blank Help Workshop, the
training card walks you through the steps of creating a project file.
After you create the project, check it again, and you see that the
subitems have changed to “Adding Topic Files,” “Adding Bitmap
Locations,” and “Adding Windows.”

Choose Help=Help Topics, and jump off into almost any of the
listings; you can find much help on Help. Use this chapter of this
book to start building your Help project, but don’t hesitate to
jump into the Workshop's Help file to get detailed information.

Testing Help Files

As with any programming project, you need to test your Help file
frequently. The Help Workshop is not as easy as the Visual C++
environment is in pointing you to errors. The Help Workshop
simply tells you an error exists; you have to find it.

Test the Help project by pressing the Test button (the one with a
“?” icon on it). This button is the only way to interactively test the
project. The Test menu offers some options, but none of them
mimic this button (but some come close).

From the Test menu, you have four options.

4+ Contents File: Tests the integrity of the contents file. If you
opt to test the jumps in the contents file, the Workshop
performs all the jumps that the file contains. (This process
passes quickly, though.)

4+ Close All Help: Often in a large project you may have several
Help files open in the Workshop in test mode. This option
closes all the Help files and starts you off with a clean slate.
(Close All Help does not close any project files.)

4+ Send a Macro: Enables you to test a macro by sending it to

Help Author Mode

the Help file. The Help file must be open (for example, running
under test mode), and the macro must be one that is con-
tained in the Help file.

+ WinHelp API: Sends a command to WinHelp for the selected
Help file. Select the command to send from the combo box.
For example, selecting the HELP CONTENTS message opens
the selected Help file at the contents topic.

Help Author Mode

The Help Author mode helps troubleshoot and build Help projects.
This mode changes the behavior of WinHelp — its error messages
are more descriptive, and it gives more information about topics
and hotspots.

You can toggle Help Author mode on or off by choosing File=>

Help Author. Just before the most recent file list is an item titled
“Help Author.” If this item has a check mark next to it, Help Author
mode is on. If not, select this itemn to turn the mode on. Notice that
any Help file already running is not affected until you close and
restart that Help file. The title bar then shows “Help Author On.”

In Help Author mode, numbers that indicate the relative position
in the rich text file replace the title bar text. You can go directly to
another topic by pressing Ctrl+Shift+J and then entering its
relative number.

Pressing Ctrl+Shift+Home takes you to the first topic in the file,
and Ctrl+Shift+End takes you to the last item. Ctrl+Shift+Left
Arrow and Ctrl+Shift+Right Arrow steps you forward or backward,
respectively, through the topics.

Two new items now are available in the Topic Information window
(summoned when you right-click on a topic window and select
Topic Information). These items show you the actual topic ID and
the file that contains the topic.

Finally, the Help Workshop adds a new item — Ask On Hotspots —
to the Topic Information menu. This option is a toggle, so select it
once to turn it on, select it again to turn it off. When you click on a
hotspot with this option on, WinHelp displays a dialog box. This
dialog box shows the hidden text of the hotspot item and gives
you the option of executing the jump or macro or staying in the
current topic.

Topic Files

Topic Files

e

w

Topic files are the rich text files the Help Workshop uses to create
the text for your Help file. Strangely, the Help Workshop provides
no editor for writing topic files. To write or edit topic files, you
need a rich text editor that can handle footnotes and hidden text,
such as Microsoft Word or WordPerfect. WordPad, while it is a rich
text editor, isn’t up to the task.

If you are using Word 97, be sure you have at least Version 4.03 of
the Help Workshop. Earlier versions cannot compile rich text files
prepared by Word 97. The latest version is available as a free
download from Microsoft’s Web site.

Microsoft Word

One of the tasks Microsoft Word does well is handling Help topic
files. This accomplishment is to be expected. The RICHED32.DLL
that comes with Windows has some quirks in it that were intended
to support early versions of Word and which will give you problems
if you try to use it for your own rich text editor. (Don’t bother
complaining to Microsoft about the quirks; [did, and was told
basically “If it’s a problem, don’t use it.”)

If you plan to use the Dialog Box Help Editor, you need Word.

Here are some of the Word features you need to use in preparing
topic files and how to access them:

4+ Hidden Text: Turn this feature on for viewing hotspots and
other Help file formats. Click on the paragraph mark on the
Standard toolbar.

4+ Footnotes: You need to turn on the footnote view because you
access many of the Help functions through footnotes. Choose
Viewr>Footnotes.

4+ Text modes: Use these to select text formatting modes such as
underline, strikeout, and hidden text. Access them by choos-
ing Format=>Fonts and then selecting the proper boxes in the
Effects section.

You may find it handy to set up a custom toolbar. Choose
Toolsw>Customizen*New, and then follow the procedures for
defining a toolbar.

WordPerfect

Microsoft Word is the preferred editor for topic files, but
WordPerfect works — with a little extra effort. My version of
WordPerfect is 6.1, and later versions may handle rich text files
better.

Visual C++ Help Tools

If you use WordPerfect and also have Word 97, don’t even bother
to call up a topic file in WordPerfect after Word 97 has edited it.
Some of the new coding in Word 97’s rich text files causes you to
get nothing but a blank screen in WordPerfect.

Some of the features you need to have in WordPerfect and how to
access them include:

4+ Hidden Text: Turn on this feature. Hotspots in topic files
are in hidden text, and you need to see them. Choose
Viewe>Hidden Text and make sure it has a check mark next
to it.

+ Text Modes: Use this to select formatting such as underline,
hidden, or strikeout. Choose Format=Font, and select the
appropriate check box(es) in the Appearance section.

+ Footnotes: WordPerfect did not provide any way to display
footnotes — at least up to Version 6.1. Choose
InsertoFootnote, and then choose Create or Edit as appropri-
ate. This is a major disadvantage of WordPerfect because you
frequently need to refer to the footnotes. Having the footnotes
constantly displayed, as in Word, is a nice touch.

With WordPerfect, the WYSIWYG (what you see is what you get)
display is better than in Word, but you may find the footnote
symbols difficult to read.

Visual C++ Help Tools

The Help Workshop is, of course, the primary Help tool that the
Developers Workshop provides, but you may find a couple of other
tools handy and necessary. These tools are the “Segmented
Hypergraphics Editor” and the “Dialog Box Help Editor.”

If yow've installed the Help Workshop from a package outside the
Developers Studio (say, from the upgrade from Microsoft’s Web
site), you see these two tools as separate items on the Start Menu.
Otherwise, you see them only as menu items on the Help
Workshop’s Tools menu. “Shed” on the menu is the hypergraphics
editor.

Segmented Hypergraphics Editor

Another name for the Segmented Hypergraphics Editor is the
“Hotspot Editor,” but you can just call it Shed, for short. It's much
easier to remember. A hypergraphic is a bitmap that includes
hotspots for jumping to Help topics. Shed is the tool you use to
create these bitmaps and associate topics with areas in the
bitmap.

Visual C++ Help Tools

To use Shed, you first need a hypergraphics (.shg) file, which you
can prepare from an ordinary bitmap file (.bmp or .dib) or a
metafile (wmf).

To create a hypergraphics file, follow these steps:

1. Using a graphics program, create the bitmap you want to use
for the hypergraphic. Or, using a tool such as Paint Shop Pro,
capture the screen area or object (such as a dialog box) you
want to provide help for, and save the image as a Windows
bitmap.

2. Start Shed, and open the file you just created. You can start
editing it immediately as though it were a hypergraphic.

3. Save the file as a hypergraphic by choosing FilecbSave As and
selecting .shg as the file type.

You now have a hypergraphic that you can include in your Help
file. By defining areas and objects on the graphic (hotspots) and
assigning them topic IDs, you can make your Help file jump to
other areas or display pop-up windows to explain the object.

To create a hotspot and add a topic ID, follow these steps:

1. Using the left mouse button, drag a box around the area or
object you want to define as a hotspot. Release the mouse
button. If you make a mistake or need to redraw the area, just
select it with the mouse and hit the Delete key.

2. Double-click the area you just defined. An Attributes dialog
box appears.

3. In the Binding section, put the topic ID in the Context String
field. Select the action in the type field (select pop-up window,
jump to another window, or run a macro), and select whether
you want the box around the defined area to be visible or
invisible when it displays in the Help window.

4. Give the hotspot a name in the Hotspot ID box. (This name is
used only for reference, so make the hotspot name meaningful
to yourself.)

5. If you need to adjust the rectangle you drew, you can change
the values in the Bounding Box field.

6. Click OK to close the dialog box.

Include this graphic in your Help file. (See the section “Graphics”
under “Editing Help Files.”) When you compile and run your Help
file, left-click on the area of the graphic you defined to make sure
the proper action occurs.

. Visual C++ Help Tools

Dialog Box Help Editor

The Dialog Box Help Editor is designed to assist you in creating
context-sensitive help for dialog boxes in your application. You
need to be aware of two caveats regarding the DBHE: You cannot
use this editor for pre-Windows 95 applications, and you must
have Microsoft Word installed to use DBHE.

To use the editor, you need to create a project for it, even if you
selected Context Sensitive Help when you created your Visual C++
application. To create the project:

1. Start the Dialog Box Help Editor. The most common method is
from the Tools menu of the Help Workshop, but it can run
independently of the Workshop.

2. Choose FilewNew Project.

3. Enter the name of the executable module for your application
(or library) and the header file to contain the Help IDs. Use
the Browse button to locate these if necessary.

4. Give it the name of your topic (rich text) file, or press the New
button to have your context help put in a separate file. In the
latter case, you are asked to give the file a name. If you create
a new file, be sure to add it to the Help project in the Help
Workshop.

After you click the OK button, the editor creates your project and
displays the available dialog boxes in a combo box in the main
toolbar.

You can return to this point at any time simply by reopening the
project file from the Dialog Box Help Editor. You are ready to start
writing your context help.

1. In the combo box in the main toolbar, select the dialog box for
which you want to write context-sensitive help. The selected
dialog box appears.

2. Select a control for the topic by clicking the control. The
editor starts Microsoft Word and surrounds the control with a
red box.

3. Write the text for your topic. (Don’t forget the headline.)
Notice that the editor has placed a poundal (#) footnote for
the topic already. This is a required footnote for all topics, but
you can add others at this point.

4. When you finish, choose File>Save Project. If you haven’t
already saved the project file, you need to give it a name.

Constants, Arrays,
and Variables

The Visual C++ program provides you with a
robust set of variable types and data types. This
part provides the syntax for using the various C++
data and variable types.

In this part . . .

+# C++ data types

v+ Casting variables

1+ Constants

+# Declaring and accessing arrays
+* Functions as variables

+~ Pointers

v String handling

1 Variables

Arrays

1P

UL

As in most languages, an array in Visual C++ is a storage area for
multiple elements of the same data type. Unlike most languages,
however, that's about as far as the definition goes. Neither C nor
C++ places many restrictions on arrays, and runtime modules
generally don’t check the range of an array to make sure you're
not trying to access a nonexistent array element.

This isn't necessarily a bad thing, however. Keeping your arrays in
order is up to you, the programmer. And you should write your
code so that you don’t overstep the bounds of the array. In the
end, though, it gives you much greater freedom for building and
accessing arrays.

Accessing array elements

You can access an array element placing the index of the element
in brackets following the array name. For example,

int i = MyArray[6];

would access the seventh element (the first element is 0) in the
array of integers named MyArray.

You can access multidimensional array elements similarly. Just
specify the position in each dimension.

int i = MyArray[6]1[2];

sets 1 to the value in the seventh row of the third column of the
array.

Remember: The index can be anything that evaluates to an
integer — a number, variable, expression or a {ffdefine constant.

If you use a noninteger value as the index, some compilers simply
cast the value to a whole number (integer), but Visual C++ gener-
ates an error.

The C and C++ languages place few restrictions on accessing array
elements, and reading nonexistent array elements is possible. For
example:

int i, MyArray[10];
i = MyArray[17];

is perfectly valid and doesn’t generate a compile error. In most
cases, such expressions don’t cause runtime errors, but the
resulting value of i doesn’t have any meaning. You need to make
sure your indexes are within the bounds of the array.

Arrays

Pointers can also access array elements. The name of the array is
nothing more than a pointer to the first element. For example, the
code

int MyArrayl(6] = {12, 120, 3, 42, 15, 26, 971};
int 1 = *(MyArray + 3);

returns 42, the value in the fourth element of the array. The
asterisk in the expression means “get the value that is stored at
this address.” Programmers call this technique de-referencing the
pointer. Note that because an int is 4 bytes, the third element
actually begins in the 12th byte of the array, but [added only three
to the pointer variable. The compiler makes the adjustment for
me, and multiplies my value by the size of the data object.

See also “Declaring pointer variables™ and “Pointer arithmetic” in
this part.

Declaring arrays

Declare an array in the following format:

Syntax Example What It Does

Type Of Array int IntArray Declares IntArray as
Name Of Array [10]; an array of ten integers
[Number Of

Array Elements]

You can declare an array of any C or C++ data type, or any object
you have typed with the typedef statement, or even structures

and classes. The language itself places no restraints on the data

type of an array. The declaration

struct MyStuff
{
int MylInt;
char MyChar;
char* MyCharPointer;
char MyCharArray[10];
b
struct MyStuff MyStuffArray[20];

declares an array of type struct MyStuff with room for 20
structures.

A string in C and C++ is an array of type char. When you declare a
string such as

char MyString[] = "My String";

or

char *MyString = "My String";

. Arrays

QUBONEs
e

Y,

TP

the compiler actually creates an array of type char with room for
ten characters (the length of MyString plus one for the terminat-
ing NULL character). The compiler also creates a char pointer

variable (MyString) that points to the first character in the array.

The language also places no restrictions on the number of dimen-
sions in an array. You face practical limits, however. Eventually
you'll run out of storage, but that’s not because of the C or C++
language restrictions.

To declare a multidimensional array, simply include the number of
elements in each dimension enclosed in a separate set of brackets.
A two-dimensional array would be declared by the number of rows
followed by the number of columns. The following code

int ArrayTwo[10][207;

declares an array with 10 rows, each containing 20 columns.

Arrays of more than two dimensions aren’t common in C and C++
programming, but they are possible. If you use them, remember
the total size of the array is the product of the size of each
dimension and the size of the element type. The declaration

int BigArray (510[6102][201L10];

may not look big, but it declares a five-dimensional array with a
total of 12,000 integers. The size of an integer in Visual C++ is 4
bytes, so the total size of the array is 48,000 bytes! Adding another
dimension with only two elements would double the size of the
array.

Declaring an array with no elements, initializing it, and letting the
compiler figure out how many elements exist is possible — and
common programming practice. Suppose you have an array of
baud rates, such as

int BaudRates[] = {300, 600, 1200, 1200, 2400,
4800, 9600} ;

The preceding code sets up an array of seven integers and places
the values in the array. If you later add 19200 and 38400 to the
array, you don’t need to adjust the value in the brackets. But how
does your program know how many elements are in the array? The
number of elements is exactly the size of the array divided by the
size of the data type — in this case an integer. Just set up a
define statement such as

f#fdefine BAUDRATES (sizeof (BaudRates) /
sizeof (int))

Arrays

AL

and then use the define in the program code. For example,

for (i = 0; i < BAUDRATES; ++1)
{

}

lets you access every element of the array without ever knowing
exactly how many elements exist.

// Do something with BaudRates[i]

Pointers to arrays

Describing a C++ array without bringing up pointers is almost
impossible. In fact, in C++, the name of an array is actually a
pointer to the first element in the array.

You don'’t face too many rules in declaring and accessing arrays in
Visual C++. Generally, the compiler imposes more restrictions than
the language, and the Visual C++ compiler is more liberal than
most. This fact gives the programmer some degree of flexibility in
coding.

Declaring an array variable

Declare a pointer variable by prefixing its name with an asterisk *.
For example,

Syntax Example What It Does

* pointerName, int *pVar, Declares pVar asa
arrayName Array [101; pointer to the first
{NumberOfArray element of a ten-element
Elements]; array named Array.

Because an array variable is actually a pointer to the first element
in the array, you can set a pointer variable to an array variable
directly. For example,

int *pVar, Array[10];
pvar = Array;

is a legal operation.

When you increment (or decrement) a pointer variable, C++ adds
(or subtracts) the size of the data element to the original value

of the variable. In the above example, pVar is set to point to
Array[0]. If you increment the variable by ++pVar (the same as
pVar+1), it then points to Array[1]. The size of an integer, whether
2 bytes (as in DOS) or 4 bytes (as in Windows 9x), doesn’t matter.
The compiler sets the size of the data element, and the runtime
code then adds that size when the variable is incremented.

. C++ Data Types

See also “Declaring pointer variables” and “Pointer arithmetic” in
this part for more on pointers.

Accessing a subset of a large array

JAMPe In Visual C++, you can access a subset of a large array. Suppose
you have an array with 100 elements that contains the set of all
integers from 1 to 100. You can define a pointer variable and set it
to an address within the table. For example,

int OneHundred[1001];
int *Sixties, i;

for (i = 0; 1 < 100; ++i)
OneHundred[i] = 1;
Sixties = OneHundred[601;
i = Sixties[31;

defines a set of integers from 0 to 99 and then sets a pointer
variable (*Sixt1ies) to point to the 61st element of the array.
Then, retrieving the value of Sixties[3] is the same as retrieving
OneHundred[63].

C++ Data Types

Visual C++ defines the basic data types in the C++ language and
adds some of its own. The language specifies only the minimum
sizes for the data types, leaving the specifics to the compiler and
operating platform. In the table below, for example, there is no
difference between a type int and a type 10ong; the C++ specifica-
tions only say that a 1ong cannot be smaller than an int.

Data Type Category Size Use

char integral 1 byte Members of the machine’s
character set. Usually
ASCII.

int Integral 4 bytes Basic numerical type.
Must contain a whole
number.

short Integral 2 bytes An integer with a size

between type char and
type int. Must contain a
whole number.

Casting Variables

Data Type Category Size Use

_intn Integral Varies Used to specify the size of
an integer variable. The n
indicates the number of
bits in the data type. May
be int8, intlé6,
int32, or int64d
yielding a 1-, 2-, 4-, or 8-
byte integer. Must contain
a whole number. Don't use
in portable code.

long Integral 4 bytes An integer with a size
equal to or greater than
the size of an int. Must
contain a whole number.

float Floating 4 bytes Basic numerical type to
contain a fractional value,
for example, 123.654.

double Floating 8 bytes An extended fractional
value type that must be at
least as large as type
float.

lTong double Floating 8 bytes An extended fractional
value that must be as
large as a double.

All the number data types are signed by default and may contain
positive or negative values. The integral types may be qualified by
using the signed or unsigned keyword, restricting their usage to
a particular set of numbers.

In addition, you can use a type void to indicate an empty set of
values. The primary use is to declare functions that return no
values. You can’t declare an ordinary variable of this type, but you
can declare a pointer variable of type vo1id, indicating it may be
used to point to any data type. You also can cast an expression to
type void.

Casting Variables

Variables are cast when they are declared, but more than occa-
sionally you need to use a variable of one type as another type. To
do this, you must cast the variable when it is referenced. The C++
language enforces strict data types, so casting is common practice.

You cast a variable by putting the temporary type declaration in
parentheses before the reference to the variable. For example, if
var is a variable of type int and contains a value of 35, then

. Constants

var/0.5 returns 17. That syntax is correct for integer arithmetic,
but if you need to know the fractional value of the result, you need
to cast the variable. The following code

(float) var/0.5

temporarily makes the runtime module use var as a type float and
returns 17.5.

QURDNEe, One exception to the casting rule is when mixing types char and
int. When assigning the value of a char variable to an int
variable, the cast is done automatically. Thus,
int x;
char c;

o= 0ty

X = C;
is perfectly valid and sets the value of x to 67, the ASCII value of
the character C.

apfiixG The language specifications don’t say anything about casting in
the reverse direction, from an int down to a char, but the
specifications don’t prohibit it either. Visual C++ lets you do this
type of automatic cast, but be careful that you don't overflow the
size of a type char. The following is perfectly valid in Visual C++:
int x;
char c;

x = 32356;
C = X;
If you expect this code to set ¢ to 32356, you're in for a surprise.
The x variable is 32 bits wide and ¢ is only 8 bits wide, so you end
up with 100 (a lowercase “d”) as the value of c.
Constants

In C++, a constant is like a number; it has an intrinsic value that
you can't change. Otherwise, it wouldn’t be a constant.

Declare any of the data types as constant by putting the const
keyword in front of the declaration. You must initialize a constant
at the time of its declaration, and once declared, you cannot
change its value.

As with any rule, you can run into exceptions. If the constant is a
pointer, you can change the value to point to another object,
which then becomes the constant when referenced by the pointer.
In the following code

int 1, J

const int *ip = &i;

Functions as Variables

the compiler would permit you to assign 1p=3&] later. Also, in

this code snippet, you can change the value of i by something like
i = 3,butyoucan'tsay *ip = 3. You could cast it back to an
int to change the values by writing (int) *ip = 3.

Functions as Variables

RNy,

You can use a function call in place of a variable in an expression
or a call to another function if the return value of the function call
is the same data type as the variable being replaced. For example,
in the following code

lTong f();

int g(long);

void MyFunc ()

{

int 1;

long
X
1‘

'f(>;
gix);

x>

}
you can substitute i = g(f()) for the second function call,
getting rid of the need for the first function call and the variable x.

In their book, The C Programming Language (Prentice-Hall), Brian
Kernighan and Dennis Ritchie warn that it is possible to write
“impenetrable” code by combining operations such as the substi-
tution in the previous example. The code can become so dense
that neither you nor anyone else will be able to read or modify it
six months later. The important point is to keep the code tight yet
still readable, even if you have to add a lot of comments.

Pointers to functions

Pointers to functions can also be members of an array or structure
and called as any other function would be called: The declaration
must be in the form (*(FunctionName)) ().

The following code demonstrates using a pointer to a function.

int fl
int f2
int f3
int (*
int i;
for (i = 0; 1 < 3; ++1)
examples[i]();

xamplesi31))() = {fl, f2. f3};

B Pointer Uariables

The above code would call f1(), f2(), and f3() in order, the
same as if you had called the functions separately.

You cannot increment or decrement a function pointer. Substitut-
ing the following code gives a compile error at ++example:

int (*(example))();
example = examples[0];
for (i = 0; 1 < 3; ++1)
{
example();
++example;

}

Functions as structure members

To declare a function as a member of a structure, use the same
syntax.

typedef struct
{

char *C;

int i;

int (*(example))();
} MYSTRUCT;

Then when you declare the structure:
MYSTRUCT MyStruct = {"A string", 65, f4};
The function would be called as a member of the structure

MyStruct.example();

Different instances of MYSTRUCT could declare different functions
for the member.

Pointer Uariables

A pointer variable is not a storage class; it may be declared as a
static or automatic variable. A pointer is a data object that
contains a memory address. You use it to reference other vari-
ables. Remember: A pointer is like your mailing address: The
address isn’t you, but it tells other people where to find you.

Declaring pointer variables

You declare a pointer variable by prefixing its name with an
asterisk, as follows:

Pointer Variables

jild

e

Syntax Example What It Does
Type *pointerName; int *pInt; Declares plnt as a pointer to
an integer

Dereferencing pointer variables

You can make a pointer point to any variable by prefixing the name
of the variable you want to point to with an ampersand (&). For

example,

int *pInt, i; // Declare plnt as a pointer to
// an integer and i as an integer
plnt = &i; // Make pInt hold the address of i

is a valid construct. You can dereference pInt to get the value of i
by prefixing pInt with an asterisk (sometimes called indirection).
In the above code, pInt points to the variable i, and you can
retrieve 1 by referencing *pInt.

In C++, variables are passed to functions by value. Essentially, they
are new variables, and the called function may modify the param-
eter variable without affecting the original variable. This can be a
problem when you need the called function to alter the original
variable. In this case, you can pass a pointer variable, which
contains the address of the original variable. By dereferencing the
pointer, the function can modify the variable.

Pointer arithmetic

Pointer arithmetic is no different from ordinary arithmetic except
there are only two basic operations — addition and subtraction —
and the basic unit of change is the size of the data element
referenced by the pointer. You increment a variable simply by
adding 1 to it and decrement by subtracting 1. Visual C++ doesn’t
let you perform other operations such as multiplication or division
on pointer variables.

Remember: In pointer arithmetic, you're dealing with memory
addresses. If you increment a pointer, you change its value by the
size of the data type. In Windows 9x, an integer has a size of four
bytes, so incrementing a variable by 1 would add 4 to its value,
pointing to the next address where an integer could survive.

You don’t need to worry about the size, of course. The compiler
figures it all out. If you have an array of structures containing a
number of data types, you don’t need to add up the sizes. Visual C++
keeps track of the sizes.

You can determine how far apart two elements in an array are by
subtracting pointers. Set one pointer to the first element and the
other to the second, and then subtract the first from the second.

. String Handling

The result tells you, in data units, how far apart the two elements
are, as shown in the following code:

int i;
int *p, *q.
int al20];

= &i;
&al87;
&all6];

| [|

p
p
9
1 =q - P .
TRACEL("Difference = %d\n", 1;

Although the elements are 32 bytes apart, the value of i is 8,
which is 32 divided by the size of an integer.

Typecasting pointers

C++ imposes strict typecasting for pointer variables. In the old C,
you could have statements such as

int *plnt;

char *szChar = "Hello";

pInt = szChar;

and the compiler wouldn’t complain because both variables are
pointers. C++, however, doesn’t go for that. One is a pointer to
type int and the other to type char. The compiler won't let you
assign one pointer to another of a different type unless you cast
one to the other. C++ will allow

pInt = (int *) szChar;

and you often need to do this sort of casting in C++. For example,
in handling the scroll message for a slider control, the variable
passed to the message handler is a pointer to a scroll bar. To test
whether the message came from your slider, you must cast the
passed variable to type CS1iderCtrl*.

You also need pointers when you allocate global memory using the
new operator as in

int *pInt = new int;

The framework allocates space for an integer, but the only way
you can set or retrieve the value is through the pointer.

String Handling

In C++, a string is just an array of type char. When you declare the
array, its maximum length is fixed. You must make sure that any
changes in the string don’t overrun the array bounds. Visual C++
(actually, the Microsoft Foundation Class library) provides a
CString class that makes string handling in C++ as easy as in BASIC.

String Handling ’25

CString contains a number of member functions that take care of
the details of string handling, relieving the programmer of having
to include code to manipulate the string. At some time in your C++
programming experience, you may find yourself handling strings,
and you may realize that any help is welcome. The following table
lists some of the more useful member functions:

Member C++ Equivalent Use

Getlength strien () Returns the number of
characters in the string

IsEmpty Istrien() Returns true if the string
is empty

GetAt stringlindex] Returns the character at a
given position

SetAt stringlindex]=c Sets the character at a
given position

Mid None Extracts the middle of a
string (similar to BASIC
MID$)

Left None Extracts the left part of a
string (similar to BASIC
LEFT$)

Right None Extracts the right part of a
string (similar to BASIC
RIGHTS$)

MakelUpper _strupr() Converts the string to all
uppercase

MakelLower _striwr() Converts the string to all
lowercase

MakeReverse None Reverses the character
sequence

Format sprintf() Formats the string

TrimLeft None Strips leading white space
from the string

TrimRight None Strips trailing white space
from the string

Find strchr()orstrstr() Findsacharacter or

substring within the string

Reversefind

strrchr() or

Finds the last occurrence

strrstr() of a character or substring
in the string
FindOneOf strtok() Finds the first match in the

string of a character in a
set

Variables

Variables

%

The C++ language specification lists four storage classes for
variables: auto, static, extern, and register.

Auto variables (usually referred to as automatic by programmers)
are created dynamically, usually on the stack, each time a function
or block executes and are destroyed when the function or block
terminates. The value of an automatic variable is lost between
calls to a function.

Static variables are created in a memory area, usually the
program’s data block, where they stay for the life of the program.

Register variables are the same as auto variables, but the declara-
tion hints to the compiler that it will be used a lot and should be
stored in a CPU register. Declaring a variable of register class is
wishful thinking; the compiler usually ignores the declaration and
treats the variable as auto. If your code contains a pointer to a
register variable, the compiler treats the variable as auto by
default.

Extern is used to declare a variable without actually setting aside
any storage space. You must declare the variable without the
extern storage class in one of the program’s modules.

Automatic variables

An automatic variable is created when the block in which it is
declared executes and destroyed when the block goes out of
scope (terminates). Its value must be reinitialized each time the
block is executed.

In C++, you can declare variables at almost any point, even within
conditional blocks or loops. Variables can be accessed only within
the block in which they are declared. In the following code, for
example,

int Function ()
{
int i1;
//Some program code
while (/* Some condition */)
{
int j;
// Some conditional code
}
// Additional program code
}

Variables

the variable 1 may be referenced anywhere within the function.
The variable j, however, may only be referenced within the while
loop; it is destroyed when the loop terminates.

Static variables

Declare a static variable by prefixing its declaration with the
keyword static. A static variable and its value are retained for
the duration of the program.

If a static variable is declared within a function, it can be refer-
enced only within that function, and you can have static variables
with the same name in different functions.

Static variables are useful when you need to retain the value of a
variable between function calls, such as with a counter variable.

. Visual C++ 6 For Dummies Quick Reference

Decision-Making
Statements

Decision making imparts power to a program and
really distinguishes a computer from a simple
calculating device. C++ provides the programmer with
four powerful statements for controlling program flow:
if,while, for, and switch. This chapter goes over
the various constructs and how to use them.

In this part . . .
v For loops

v 1f statements

»” Labels

+* Nested loops

v Switch statements

v While loops

. For Loops

For Loops

The for loop is a special form that incorporates its own initializa-
tion, modification, and test code within the declaration itself.

The declaration of a for loop includes three elements, each
separated by a semicolon.

for (initializing code; test code; modifying code)

In a for loop, the initializing code always executes once, before
the program enters the loop. The test code executes each time the
program enters the loop, including the first time; the loop code
executes if and only if this expression is nonzero. The modifying
code executes each time the loop ends, after all the statements in
the loop execute. You can easily rebuild the following code into a
for loop.
i=20
Loop:
if (i >= 3)

goto LoopExit;

statementl;

Statement?Z;

i=1+1;
goto Loop;
LoopExit:
// Rest of program.

Putting all the code into a for loop looks like this:
for (i = 0; 1 <3; 1 =1+1)
{

statementl;
statement?Z;

}

The execution sequence goes like this:

1. The initializing code executes and i is set to 0. This is the only
time this statement executes.

2. The test code executes to see if 1 is less than 3. If it is not, the
loop finishes, even if this is the first iteration of the loop.

3. The statements between the braces execute.

4. The modifying code executes and i is incremented. (You can
use C shorthand here and write ++1, i++ ori += 1.)

See also “Increment and Decrement Operators” in Part [X.

5. Goto Step 2.

For Loops 1:

)

You can omit any or all of the expressions in the for statement,
but you must leave the semicolons. Suppose the test variable 1
initializes before the for statement and you don't want to
initialize it again, the code looks like this:

for (;1 < 3; ++1)

The initializing and modifying code may contain multiple state-
ments, each separated by a comma. The test code may be a
compound expression.

for (i =0, J =10; (i < Jj) && (J > 5); ++i, —J)

This statement initializes 1 to 0 and J to 10, and tests whether i is
less than j and whether j is greater than 5. On each loop, 1 is
incremented and j is decremented. (In case you're wondering,
this loop terminates when both i and j reach 5.)

The following bubble sort routine illustrates the power of a for
loop. The bubble sort isn’t terribly efficient or fast, but it does
require very little coding and can be implemented quickly. It gets
its name from the fact that the higher value data elements tend to
sink (lead bubbles?) to the bottom of the array as the algorithm
progresses.

#define FOREVER for(;;)

void Bubble (int Nums[], int elems)

{
int Jj, sorts, temp;

FOREVER

{
for (j = 0, sorts = 0; j < elems 1: ++3)

{
if (Nums[j] > Nums[j+11)
{
temp = Nums[j+1];
Nums[j+1] = Nums(j];
Nums[j] = temp;
++sorts;
}
}
if (lsorts)
break;

}

See also “Forever Loops” and “Nested loops™ in this part.

Notice that the code executes the outer loop elem times, but the
iterations of the inner loop go down by one each time the outer
loop executes. The sorts variable keeps track of the number of

Forever Loops

transpositions the loop has made, and when the array is fully
sorted (sorts is 0), the break statement causes the outer loop
(the FOREVER loop) to exit.

Forever Loops

1P

Programmers use the term, but there’s really no such thing as a
forever loop in C++. This loop is constructed from one of the
loop statements (such as for or while). You use it when you
want to repeat code until some external condition happens —
perhaps the user enters a line from the console that signals an end
to the program or loop.

Create a forever loop by using a controlling expression that
always evaluates to nonzero. In the case of the for loop, you can
just leave the expression empty.

while (1)

or
for (;3;)

Be sure not to put a semicolon after either of these statements or
the program will never get to the following code. In that case you
would have an infinite loop. Definitely a bummer.

Suppose you want to continue processing user input until the user
types bye. The following snippet of code does just that.

main {(int argc, char *argv[])
{
char UserInput[_MAX_PATHI;
for (;;) // or while (1)

{

cout << "Your input?

cin >> UserlInput

if (!strcmp (UserInput, "bye"))
break;

// Do something with the user input

}

Defining a forever control statement and using it in place of the
control statement is common. This action has the added benefit of
making forever loops stand out when debugging the code.

ftdefine FOREVER for (;3)

or
ftdefine FOREVER while (1)

If Statements

Your loop now becomes

FOREVER

{

// Do something code
|

If Statements

All high-level computer languages provide some form of condi-
tional statement, and C++ is no exception. The i f statement is the
basic conditional construct, and it is a very rare program that
does not use the if statement somewhere in the code.

Simple if statements

Declaring an i f statement is straightforward. Use the keyword i f
(all C++ keywords are in lowercase) followed by the control
expression in parentheses. Next, add the statement to be per-
formed when expression evaluates to nonzero.

You can write the entire construct on one line.

if (expression) statement;

but most programmers prefer to put the statement on a separate
line and indent it four spaces.

if (expression)
Statement;

The indent signals the reader that the statement depends on the
line before it and makes the code more readable. When you have
multiple statements following the if expression, the indent
becomes even more important.

The expression may be a function call or a compound expression —
in fact, anything that can be evaluated as zero or nonzero. If you
want the statement to execute because the expression is zero, you
can use the not operator, indicated by an exclamation mark (|)
in C++.

if (lexpression)
statement;

The preceding construct reverses the sense of the conditional, and
the statement executes if and only if expression evaluates to zero.

To include multiple statements, put them inside curly braces, like
this{ and }. For example,

RNl

TP

If Statements

if (expression)
{
statementl;
statement?;

}

Notice the line containing the if does not have a semicolon. A
semicolon would terminate the condition statement, and the block
inside the braces would become an ordinary block of statements.
You get so used to adding a semicolon at the end of each line that
this is a common — and very nasty — programming error.

Many programmers try to avoid this trap by placing the opening
brace on the same line as the conditional expression similar to the
foltowing. The choice is a matter of preference. Placing the
opening brace on a separate line makes the code more readable,
but the compiler doesn’t care.

if (expression) {
statementl;
statement?Z;

}

You can declare variables within the braces, but only statements
inside the braces can use them.

if (expression)
{

char ch;

int 1;

statementl;
statement?Z;

}

When the conditional block exits, the variables cease to exist, and
the program can’t use them.

If-else statement

The statement or statements following an if expression execute
only if the expression evaluates to nonzero. You may provide
alternate statements by placing them after an e se keyword. An
if . . . else statement, in its simplest form, looks like this:

if (expression)
statementl;

else
statement?Z;

If Statements !

hid

If the expression evaluates to nonzero, statement -1 executes. If
the expression evaluates to zero, statement -2 executes.

Note the placement of the semicolons. No semicolons appear on
the lines containing the i f and e1se keywords, but each of the
statements must end with a semicolon.

You can include multiple statements after the e se keyword by
enclosing them in curly braces, as shown in the following code.

if (expression)
{
Statementl;
Statement?;
Statement3;
}
else
{
Statement4;
statementhb;
statementé;
}

Many programmers prefer to include the braces even if there is
only one statement. The braces isolate the code for debugging,
and if programmers later add additional statements, the braces are
already in place, eliminating a source of program error.

See also “Switch Statements” in this part.

Maultiple else conditions

You can stack e1se conditionals by placing alternate i f state-
ments after each else. In the following example, each e1se
except the last one must have its own i f statement. The i f is
optional on the last e1se statement.

if (conditional-expression-1)
{
Statementl;
statement?;
}
else if (conditional _expressionZ)
{
statement3;
Statement4;
}
else if (conditional_expression3)

statementh;
statementé;
}
else

(continued)

Labels

(continued)

{
statement/;
statement8;

i

This sample declares four blocks of code, only one of which
executes, regardless of the value of the conditional statements. If
conditional_expressionlis nonzero, the block following it
executes and the rest of the code is ignored.

Similarly, the second block executes only if
conditional_statementl is zero and
conditional_statement?Zis nonzero. The third block executes
only if the first two conditionals are zero and
conditional_expression3is nonzero.

Finally, the last block executes if and only if all the conditionals are
nonzero.

Remember: The important point here is that only one biock of
code executes, even if more than one conditional statement
evaluates to nonzero.

Alengthy if . . . then . . . else series may be exhaust-
ing to debug. If the test object is an integral type (char, int, or
10ng), consider using the switch construction.

See also “Switch Statements” in this part.

Labels

UL

Declare a label by typing its name and adding a colon at the end.

Labels are extremely rare in C++ programming, but they are a part
of the specification for the original C language. In fact, most
textbooks on C and C++ totally ignore labels.

Labels are almost always used with the goto statement, which
itself is a rare bird in C++

goto Mylabel;
// Some code that will not be executed.
MyLabel:

This construct may be useful as a debugging tool to temporarily
jump over some code. Otherwise, the goto label combination has
little use. Although some programmers use the combination to
break out of a deeply nested loop, you rarely find programming
constructs in C++ that can’t be accommodated by using other
statements.

Loops

Loops

Repetitive code is common in programming, and you often find
yourself writing lines of code that are similar but may differ only in
the value of a variable. Most languages, including C++, provide
some means of looping to reduce the amount of code and program
size. Tighter code means shorter programs, which load and run
faster.

C++ provides two powerful loop statements: the while loop
(including the special form do-while) and the for loop.

See also “For Loops,” “Forever Loops,” and “While Loops” in
this part.

Exiting loops

You can terminate loops prematurely by using the break state-
ment. Normally, loops terminate themselves when the controlling
expression is 0, but a break is the only method of terminating a
forever loop (other than exiting the program).

See also “Forever Loops” in this part.

In the following code, the loop continues normally unless the
conditional expression (perhaps the result of one of the state-
ments) is nonzero.

for (i =0; 1 < 3; ++1)
{
statementl;
statement’Z;
if (conditional_expression)
break:
}

You also can abort a loop prematurely without exiting it using the
continue statement:

for (1 = 0; 1 < 3; ++1)
{
statementl;
if (conditional_expression)
continue;
statement?Z;
}

In this case, statement1 would execute; then if
conditional_expressionistrue, statement? would not
execute and the loop would start from the top.

Switch Statements

Nested loops

The code within a 100p statement may itself contain another loop.
The C++ language puts no limits on the number of levels you may
nest loops.

To nest a loop within another loop, simply write the code for the
loop as though it were not within the other loop. A nested loop may
be awhile or for loop, regardless of the type of the outer loop.

Suppose, for example, you have a two-dimensional array and you
want to initialize all the elements. The following code demon-
strates how.

int AnArray[201[10]1;
for (i = 0; 1 < 20; ++i)
{
for (j = 0; j < 10; ++J)
{

}

AnArrayl[i10j] = 1 * 10 + J;
}

When the loop finishes, the array initializes with all the numbers
from 0 to 199. Notice that i remains constant while the inner loop
executes; i isn't incremented until the inner loop finishes.

Switch Statements

The switch statement is the programmatic equivalent of a radio
button group; you can select one of the buttons (conditions) and
perform different actions. The switch statement allows you to
examine the different values an integer expression can have and
execute different code depending on the value.

In the following snippet, the xs are integer constants.

switch (expression)
{
case xI:
// Some code based on xI
break;
case xZ:
// Some code based on xZ2
break;
case x3
// Some code based on another x
break;
default:
// Code to execute when none of the
// above conditions is true
| break;

Switch Statements |

e

W”lg
>

The switch statement is not a loop; it executes only once. If you

need to execute the statement more than once, include itina for
or while loop. The switch statement is a powerful programming

tool, but you need to keep some rules in mind when using it:

4+ The expression must evaluate to an integer value. This
means it must be of type char, int, or Tong. The switch
statement doesn’t work with floating-point numbers.

4+ The value for each case statement must be a constant. You
can’t use an expression or a variable here. The case object
(represented by x1, x2, and x3) can be a constant, a defined
value, or anything the compiler recognizes as a constant value.

4+ You can have only one constant value for each case statement.
You can’t specify a range such as 3 through 6; for this you
would need separate case statements for 3, 4, 5, and 6, but
you can stack them.

See also “Cases” in this part for an explanation of stacking
cases.

4+ The set of cases must be included in curly braces.

You can’t declare variables within a case, but you can declare them
immediately after the opening brace. Variables declared within a
switch statement can be used only within the curly braces. In this
code,

switch (expr)
{
int varl;
case 3:
int var?;

the declaration of varl is allowable, but the declaration of var?2
results in a compile error. When the switch statement gets
completed, varl goes out of scope and is no longer usable.

You also shouldn’t include the block of code in a case inside curly
braces. Visual C++ is forgiving in this, but other compilers may not
like it.

You can include code in curly braces if it is part of another statement
such as a for or while loop, or even another switch state-
ment. (Yes, the code in a case may contain another switch
statement.)

See also “Default” in this part.

Switch Statements

Cases

A switch works like a multiple if . . . then . . . else
statement, and the cases are the blocks of code that execute if the
condition is true. You can replace the following code:

if (i ==1)

j/ statements
é]se if (i == 2)
}/ statements
é]se
%/statements

with

switch (i)
{
case 1:
// statements
break;
case 2:
// statements
break;
default:
// statements
break:
}

Unlike an i f then-else construction, the valuesina case
statement must be constants and must be of an integral type
(char, int,or 1cong). The values should (but don’t have to) be
the same type as the expression contained in the switch state-
ment itself; a good compiler such as that in Visual C++ promotes
them to the same type.

The case constant must be of a single value. Ranges aren’t allow-
able, but you can stack multiple cases to get the same effect. The
snippet of code below effectively builds a range case for 3 to 6:

case 3:
case 4:
case 5:
case 6:
// Code to execute for cases 3 through 6
break;

While Loops

The cases do not have to be in order. I could have just as easily
reversed the order of the cases above or scrambled them. For
readability, though, you should arrange them in some logical order.

The break statement is optional; but if you don't include it, the
execution falls through to the next case statement. The break
causes the switch statement to exit, just as in a loop. In the
above example, if | put a break after case 3, the switch state-
ment would end without ever getting to the code. Without it,
however, the case falls through to case 4, which falls through to
case Sandto case 6, and the code executes.

Default

The default is a special case and doesn’ have to be included in
the switch statement. Statements included in the default case
execute if the expression doesn’t evaluate to any of the cases.

Use the default case even if it only contains a break statement
to make the code more readable. A good optimizing compiler such
as Visual C++ ignores it anyway if there is no program code.

If you include the default case, it should be the last case in the
switch statement. Visual C++ doesn’t care where you place the
default case, but many compilers give you an error if additional
case statements follow. For readability, the default case marks
the end of the code if you place the default case last. Don’t
develop a bad habit; put the default case at the end.

While Loops

The while loop takes on two forms — an ordinary while loop
where the conditional statement executes before the loop block,
andado . . . while loop where the conditional statement
appears at the end of the block.

You construct the simplest form simply by adding the while
keyword and following it by a conditional expression in parentheses:

while (conditional_expression)

Notice the lack of a semicolon at the end of the statement. The
conditional -expressionmay be a simple expression, a
function call, a compound expression, or anything that can be
evaluated to either zero or nonzero. Follow the declaration with
one or more statements to execute when the expression evaluates
to nonzero. If you have more than one statement, enclose the
statements in curly braces.

While Loops

while (conditional expression)
{

!

// Statements to execute.

If the conditional expression is 0 when the loop is entered, none of
the statements in the loop execute.

Inthe do ... while loop, the statements execute at least once
before the expression is evaluated:
do

{
// Statements to execute.
I while (conditional_expression);

The statements execute before the expression is evaluated for the
first time. If it is nonzero, the program returns to the do and
repeats the process. Note that in this form, a semicolon does
belong after the conditional expression,; in fact, it's required in this
form of the loop.

Classes

A class is really nothing more than a special type of a
structure; but the way classes are constructed,
derived, and related is important in object-oriented
programming. In this part, you go over how classes are
used in programming and figure out how to build
classes from other classes.

In this part . . .

+~ Abstract classes

»” Accessing class members
+~ Base classes

1+~ Constructors

1 Derived classes

+~ Destructors

1+ Friend classes

» Functions

+» Inheritance and class families
+* Naming

» Overloading

»” Structures

v Virtual classes

Abstract Classes

Abstract Classes

%

An abstract class is a schematic — an outline from which you can
derive a class. Its purpose is to provide a base class you can build
upon by deriving new classes. You can’t declare an instance of an
abstract class, but you can derive your own class from it and
declare an instance of that derived class.

Define an abstract class by declaring one or more member
functions as virtual, but set the address to NULL. This type of
function is called a pure virtual function, and you don't have to
write the code to implement it. Just declaring it is enough to
establish the class as an abstract class. You do, however, have to
write the code to implement other functions in the class that are
not pure virtual.

When you derive a class from an abstract call, your derived class
must override the pure virtual function, and you have to write the
code to implement the overridden function, for example:

class CTool
{
public:
virtual int ToolType (int type) = 0;
by

In the preceding example, you can’t declare a variable of the
CTool class. Instead, derive a class from it and write the code to
override and implement the pure virtual function ToolType().

class CHammer : public CTool
{

public:

CHammer (int tool) {TypeOfTool = tool;}

Int ToolType ()i{return(Type(fTool);!}
private:

int TypeOfTool;

by

Now you can declare a CHammer variable, which derives from the
base class CToo1 because the function TooTType () now has a
body of code to implement it.

ffdefine ClawHammer 1
CHammer MyTool (ClawHammer);

Use an abstract class where you intend to define common proper-
ties that other classes derived from the abstract class will use. In
addition, using such a class can prevent accidentally declaring a
class where it would be meaningless without the individual
properties.

Accessing Class Members

Class CView is an example of an abstract class that is intended to
serve as a base class for other view classes. If you try to create an
instance of CV1iew, the compiler gripes with the following error

message:

"CView' : cannot instantiate abstract class due to
following members:

"void CView::0OnDraw(class CDC *)' : pure virtual

function was not defined

See also “Base Classes” and “Derived Classes” in this part.

Accessing Class Members

C++ provides mechanisms for protecting member variables and
functions in a class that may be sensitive to external tampering,
either intentional or accidental. Members may be given public,
private, or protected access. Each access specifier has different
characteristics, as shown in the following table:

C++ Keyword Access Allowed

public May be accessed from any function using the class or
variable name

private May be accessed only by member functions of the class
and by friends of the class in which it is declared. This
access level is the default if you haven't declared any
access privilege. Ideally, variables should be included in a
private section.

protected May be accessed by functions that are members of the
class, friends of the class in which it is declared, and by
member functions or friends of a derived class

See also “Friend Classes” in this part.

Knowing whether a variable or function should be public, private,
or protected takes a lot of experience. Even veteran programmers
find themselves adjusting the access privileges of class members.

After you declare an access keyword, all members following are of
that type unless you declare another access level.

You're not limited to just one block of public, private, or protected
declarations. You can declare sections in any order, although
it’s customary to declare a public section first for the public
constructor. You can declare multiple sections of any access. Say
you want to keep your member variable declarations separate
from your member functions (this is common practice), you can
declare access levels in each.

Accessing Class Members

class MyClass
{
// Declare function prototypes
public:

MyClass ();

~MyClass ()

// Other public functions
private:

// Private functions
protected:

// Protected functions

// Declare class data members

public:

// Public data members
private:

// Private data members
protected:

// Protected data members
b

The private keyword

Private access is the default access level for all class members if
you haven’t declared an access specifier.

Only member functions of the class and friend classes may access
class members that you have declared private.

In the following code, the constructor initializes TypeOfTool. You
find no member functions to change it and no friend classes; so
once TypeQfTool initializes, you can’t modify it.

class CHammer : public CTool
{
public:
CHammer (int tool) {TypeOfTool = tool;}
int ToolType (){return (TypeOfTool)
private:
int TypeOfTool;
b

If you try to change TypeOfToo] as in the following code, you get
a compile error telling you that the variable is “not accessible.” In
fact, you can't even retrieve the value of TypeQfToo1 unless you

use the member function Tool1Type().

CHammer MyTool (Hammer);
MyTool.TypeOfTool = Wrench;

If you declare a function private, it can be called only by other
member functions of the class (or by functions in friend classes).

Accessing Class Members

TIP

hild

Generally, C++ practice is to declare all data members of a class
private and then use public or protected functions to
access them.

For quick access to member variables, you may declare functions
to access them inline; the compiler substitutes the proper code
in the program rather than calling a function.

See also “Inline” in the “Functions” section.

The protected keyword

Members with the protected specifier are semiprivate. These
members are private to any functions outside the class. However,
they are public to statements in a derived class, to friends of the
class, and to friends of derived classes. This special access level
lets you hide class members from the outside world, yet still be
able to access them in derived classes.

In the following example, TypeQfTool is a protected member of
the base class CToo1, but it is accessed from a derived class as if
it were a local member:

class CTool
{

public:

virtual int ToalType (int type) = 0;
protected:

int TypeOfTool;

b
ctass CHammer : public CTool
{

public:
CHammer (int tool) {TypeOfTool = tool;!}
int ToolType (){return (TypeOfTool);}

)

The TypeOfToo]l variable is set when an object of class CHammer
is created and there’s no way to change the variable. You may
retrieve the value only by calling the Too1Type () function in the
derived class.

The public keyword

The public-access specifier exposes a class member to any
statement inside or outside the class. This level provides no
protection at all. You can declare any member object public, but
you can turn to some good programming practices for guidance.

I don’t know of any formal rule, but C++ practice is to use the
pub1ic keyword only for functions. Data members of a class usually
are declared private. If you need to access data members,

Base Classes

declare a pub1ic member function to access or modify it.
Keeping data private ensures encapulation.

See also “The private keyword” in this section.

Base Classes

C++ allows you to reuse existing code by building new classes from
others. Many of the classes in the Microsoft Foundation Class
library, which is provided with Visual C++, are intended to be used
as building blocks for your own classes.

See also “Inheritance” in this part.

When you use a class as the basis for a new class, the original
class becomes the base class and the new class is the derived
class. A base class is the building block for other classes and is at
the heart of the concept of reusable components. Use a base class
to set up common functions and variables to be used by classes
you build from the base class.

You can define a base class when you have two or more classes
that are the same except for a few properties. Put the similar
properties in one class, and then derive your new classes from this
base class. Each new class will have the same properties. You can
start with a very general base class, and then derive more specific
classes from this class. Any class may serve as a base class.

See also “Derived Classes” in this part.

Suppose you have a class called CAnimal that contains variables
describing animals in general. To describe domesticated animals
as opposed to wild animals, you can build a class based on
CAnimal.

class CDomestic : public CAnimal
{

// Functions and variables to describe
// domesticated animals
b

The new class is the derived class and inherits all the properties of
CAnimal, which becomes the base class. Similarly, you could
derive a CWi1d class that would inherit the properties of
CAnimal, but you could give it a different set of properties to
differentiate it from domesticated animals.

To go even further, you could then derive classes CDog and CCat
from CDomestic, as shown in the following code:

Class Variables

class CDog : public CDomestic
{
CDog (char *breed);
// Statements and variables describing dogs
b
class CCat : public CDomestic

{
CCat (char *breed);
// Statements and variables describing cats

b
When you declare instances of CDog and CCat,

CDog MyDog("Pomeranian");
CCat MyCat("Persian");

MyDog would have all the properties of CDog, Cdomestic, and
CAnimal, but not CCat. Similarly, MyCat would have the proper-
ties of CCat, Cdomestic, and CAnimal, butnot CDog.

The sequence builds down from the most generic to the most
specific. You can see how using base classes to hold common
elements simplifies your programming. You can reuse common
code simply by making it part of a derived class.

Class Uariables

%

A variable is a unit of data that has a name that is unique within its
scope. The variable can be as small as a single bit in a bit field or
as large as the program’s largest data object. You can overload
functions and operators, but you can’t overload a variable.

In a class, declare variables private unless you have a compel-
ling need to give them a more open access specifier. This tactic
protects variables from being accidentally changed or given
invalid values. Instead, use public or protected functions to set
and retrieve them.

You may ask what the difference is. You still can get and set the
variables at will even if it is through the functions. Look at the
following situation:

class MyClass
{

public:
MyClass ();
Int AnArrayl[4];

}

void MyFunction ()
{

int count;

MyClass AnlInstance;

(continued)

Class Variables

(continued)

for (count = 1; count < 5; ++count)
AnInstance.AnArrayf{count] = count;
}

You're setting only four items in the array, but you've mistakenly
assumed the array starts at index 1. When count reaches 4, you
actually are setting the fifth (and nonexistent) item in the array.
You'll accidentally write over something else or, worse, get an
exception thrown at you.

Now, suppose you make AnArray private and allow access only
through a pub1 1 ¢ function with this code:

int MyClass::SetArray (int index, int value)
{
if ((index > 3) || (index < 0))
return (-1);
AnArraylindex] = value;
return (0);
}

You've protected yourself against that sort of error and given the
calling function a method of checking for errors by returning 0 for
success or —1 for an out-of-range index.

Naming

A, A variable name must be unique within its scope. You can have
variables of the same name in different functions, but be careful in
naming global variables and those with limited scope. When
referencing a variable, the compiler always selects the variable
with the smallest scope. In the following snippet of code, all the
declarations of count are permitted, but if you write code this
way, you may only confuse yourself:

int count; // Declared globally
void MyFunction ()
{
int count; // Declared within the function.
if (<Some true expression>)
{
int count;
// Code that initializes count

)
printf ("count = %d", count)
}

The preceding code is perfectly legal, and the compiler won't
object a bit or even issue a warning. But when you run this code,
you may be surprised to find that count used for the printf
statement never initialized.

Class Variables

The compiler uses the definition with the smallest scope possible,
so within the conditional statement it uses the definition after the
opening brace of the condition. That count initialized. But when
you get out of the conditional, that definition of count is out of
scope and its value is lost. Therefore, the compiler uses the
definition within the function for the printf statement, but that
variable was never given a value! To make things worse, outside
the function, the compiler uses the global definition of count.

This scenario should convince you to make your variable names
unique, even when C++ doesn’t require it.

Static versus automatic

Normally, when you declare a variable within a function, the
runtime code reserves stack space to hold it. When the function
completes, the stack is adjusted and the variable is destroyed.
These are automatic variables — they are created and destroyed
automatically.

A static variable is allocated storage at runtime and retains its
value for the duration of the program unless you change it. If you
set the value during one function call, it has the same value when
the function is called again. Static variables are handy for counters
and flags.

void MyFunction ()

static bool first = true;
static int counter = 0;

if (first == true)

{
// Do something for the first call

// to the function.
first = false;
}
++counter;
TRACEL("Function has been called %d timesi\n",
counter;

}

Common sense leads you to believe the variables first and
counter initialize each time the function is called, but the static
keyword changes their behavior. Instead, they get created and
initialized when the program runs, and from that point the runtime
code ignores the initialization code. When you set first to false,
it remains false until you change it. Similarly, counter increments
and contains the new value each time the function is called.

Constructors

You may have static variables with the same name in different
functions, and each gets treated as a separate variable. Within a
class definition, however, the opposite is true.

Remember: When you declare a class member static, only one
copy of it gets created at runtime, regardless of how many in-
stances of the class you create. The static member is shared by
the class instances, and if one changes it, it is changed for all the
instances, even those that haven't been created yet. This is true
for static variables and functions.

Constructors

In C++, every class must have a function known as a constructor. It
you don’t declare a constructor, the compiler generates a default
function.

Constructors set up the basic structure of the class object and
initialize any variables within the class instance. The language
specification contains a number of tasks the constructor may be
called upon to do, but the compiler takes care of that for you.
Generally, you want to use a constructor to initialize variables
within your class.

Constructors are not inherited, which means you can't use the
constructor for a base class as the constructor for a derived class.
Obviously, the base class has no sense of what type of class may
be derived from it (it may even have been written by someone
else, as in the case of the Microsoft Foundation Class), so the base
class can’t contain code to initialize derived classes.

When you create a class object, the base class constructor is
called first and then the derived class.

Declaring constructors

Declare a constructor function by giving it the same name as the
class, but don’t give it a type such as int or 1ong. You don’t need
to declare a constructor — the compiler does it for you. A compiler-
generated constructor is essentially is will be an empty function
(from a programming standpoint), so if you need to pass any
variables to your new class or initialize any data members, you
need to declare your own constructor.

In the class definition, prototype the constructor under the
public: keyword, but don’t give it a data type.

class CDog
{
public:
CDog (<any parameters>);
Vs

Constructors

}

e

If you have a derived class and need to pass some parameters to
the base class, you need to do two things. You must declare a
constructor and pass the parameters to the base class constructor
even if your derived base class doesn’t use the parameters. For a
class named CDog, the body of a constructor would look like the
following code:

CDog::CDog (<any parameters>)
{

b

// Statements to initialize the class instance.

To pass parameters to a base class, add a colon after your
constructor’s name and then a call to the base class constructor
as shown in the following code:

CDog::CDog (<parameters>) : CDomestic (<param-
eters>)

If the base class itself has a base class, its constructor passes the
parameters up the line; you don’t need to do it here.

Remember: You can’t declare a constructor const or volatile,
nor can it be virtual or of storage class static. Finally, a
constructor does not return a value, and you can’t give it a data
type such as int or 10ng. Essentially, you can’t declare a con-
structor as anything but, well, a constructor.

Copy constructors

In most cases, you don’t need to do anything with a copy con-
structor except use it. The compiler automatically generates copy
constructors; that’s part of the language specification.

When a copy constructor is used, the class’s constructor is not
called. Obviously, the class already is constructed, and calling the
constructor more than once can alter member variables that have
been changed.

To use a copy constructor, place an ampersand after the type
declaration. Copy constructors must be initialized at the time they
are used, as shown in the following code:

CDog MyDog ("Pomeranian");
CDog& MyDogToo = MyDog;

Placing the ampersand before the variable name has the same
effect. CDog &MyDogToo = MyDog works just as well, but it can
have the side effect of being confused with the address operator,
which is also an ampersand.

Notice that the declaration for MyDogToo contains no parameters,
whereas the required parameter for CDog is the breed type.

\ Declaring a Class

MyDogToo is a copy of MyDog, and all the member functions and
variables can be accessed the same as for MyDog.

Using multiple constructors

As with any function in C++, constructors can be overloaded,
meaning you can declare more than one of them as long as each
declaration differs in the data type returned or in the number or
type of parameters.

If you want to be able to create a class instance using different
data types, simply declare a constructor for each. In the class
definition, add the prototypes, as shown in the following code:

class CMyClass

{

public:
CMyClass (int ivar);
CMyClass (long lvar);
CMyClass (char chvar)

}s

When you write the body of the constructors, the statements
should do something based on the type of parameter passed. For
example,

CMyClass::CMyClass (int ivar)
{

}
CMyClass::CMyClass (long lvar)
{

}
CMyClass::CMyClass (char chvar)
{

}

// Do something with the integer parameter
// Do something with the long parameter

// Do something with the char parameter

Now you may declare an instance of CMyClass using an int,
long, or char data type.

Declaring a Class

Declare a new class by using the keyword c1ass followed by the
name of the new class. Follow the name with an opening brace ({).
Declare your class functions and variables, then end the declara-
tion with a closing brace and semicolon (} ;).

In Visual C++, it is common practice to begin a class name with a
capital C and the letter immediately following in uppercase. For

Derived Classes 1.

example, a class describing automobiles can be named
CAutomobile and can be declared as in the following example:

class CAutomobile
{

public:
CAutomobile(); // the constructor
~CAutomchile(); // the destructor
protected:
/7 declare protected class members here
private:
// declare private class members here

by

If you are deriving a new class from a base class, follow the class
name with a colon, an access specifier for the base class, and the
name of the base class. The declaration for a class CTruck based
on CAutomobile might look like the following:

class CTruck : public CAutomobile

See also “Base Classes” and “Derived Classes” in this part.

Derived Classes

When you build a new class based on another class, you are
deriving a class. The new class is called the derived class, and the
class from which it is derived is called the base class. You may
derive a new class from any other class.

See also “Base Classes” in this part.

A derived class inherits the properties of a base class and all the
properties of any classes from which the base class was derived.

The derived class contains all the functions and variables of the
class from which it was derived and will have any additional
variables you add.

To declare a derived class, first name your new class and then add
a colon (%), an access specifier, and the name of the base class.
Assuming Your(C1lass already has been defined, the following
example illustrates how a derived class would be declared:

class MyClass : public YourClass
{
public:
MyClass();
~MyClass();
// Additional function and variable definitions.
1

Destructors

The access specifier can be public, protected, or private.
The table below shows how the access specifiers act on the base
class members:

Specifier Effect on Base Class

public None. All base class members retain their original access.

protected Public members are set to protected; private members are not
affected.

private All members of the base class are set to protected.

The access changes are relative to the derived class and don't
actually change in the base class. If you derive yet another class
from the base class, you may give the base class a different access
specifier.

See also “Accessing Class Members” in this part.

Destructors

C++ provides a method of gracefully destroying a class object.
That method, known as a destructor, is called when an object is
deleted or goes out of scope.

Like a constructor, a destructor must have a data type, and if you
don’t provide one, the compiler generates a default. Unlike a
constructor, however, it can’t have arguments.

Declare a destructor by using a tilde (~) and the class name. In the
body of the code, include any statements you need to clean up the
class construction, such as freeing any memory that may have
been allocated.

In the following example, notice that the constructor allocates
memory to hold the name of the dog breed, and the destructor
frees it. If the memory were not freed, it would be left stranded
when the class is destroyed and become what is affectionately
known as a memory leak. Note also how the class protects itself
against accidentally being passed a NULL pointer or a memory
allocation error. (In a real class, you would want to write some
error handling code if the new operator fails.)

class CDog : public CDomestic
{

public:
CDog (char *breed); // Constructor
~CDog () // Destructor. No arguments
char *GetBreed () {return (m_breed);};

private:

char *m_breed;
b

Friend Classes

CDog::CDog (char *breed) // The body of
the constructor
{

if (breed != NULL)
{
m_breed = new char [strlen (breed) + 1];
if (m_breed != NULL)
strcpy (m_breed, breed);

else
m_breed = NULL;
}
CDog::~CDog () //Destructor. Note tilde, no
//parameters
{
if (m_breed != NULL)
delete [] m_breed;
}
class CDog : public CDomestic
{

public:
CDog (char *breed); // Constructor
~CDog () // Destructor. No arguments
char *GetBreed () {return (m_breed);};

private:

char *m_breed;
b

Friend Classes

Declare a friend class by using the friend keyword followed by
the name of the friendly class in the declaration of your class.

I can’t find a lot of good things to say about friend classes. They
wreak havoc with many of the tenets of object-oriented program-
ming by exposing elements of the class to unrelated functions.
Sometimes friend classes are useful and even necessary. Just as
you would trust a friend, a class must trust its friends not to do it
harm.

Functions in friend classes have access to all members, data,
and functions, regardless of whether they are declared public,
private, or protected. In the following code, class CDog is
declared a friend of CFireHydrant:

class CDog : public CDomestic
{

public:
CDog (char *breed); // Constructor
~CDog () // Destructor. No arguments

char *GetBreed () {return (m_breed);};

(continued)

Y Functions

(continued)

private:
char *m_breed;
s

class CFireHydrant
{
public:
FireHydrant (int height, int plugs, int type)
{
m_height = height;
m_plugs = plugs;
m_type = type;
}
~FireHydrant ();
private:
int m_height, m_plugs, m_type;
friend CDog;
bs

Objects of type CDog have access to all the data elements and
functions of CFireHydrant, and the functions in CDog could
modify them. The reverse isn’t true, however. Because it’s an
unrelated class, CFireHydrant may access only the public
members of CD0g.

Functions

TP

Every C++ program must have at least one function named
main(), but in Visual C++, that function is hidden from you. In
using a class library such as the Microsoft Foundation Class, you'll
probably never encounter amain () function. In non-MFC Windows
programming, you'll need a WinMain() ora LibMain() function,
depending upon the type of program you're writing.

In C++, functions must be typed, and they default to int if you
don’t give them a data type. You should also declare functions in a
prototype declaration. Make a habit of declaring and prototyping
all functions, including int. Doing so is just good programming
practice, and it helps the compiler to spot program errors. In a
class definition, all functions in a class must be prototyped — a
good habit to get into for functions that are not in a class.

Functions must return a value of the declared type. The only
exception is type void, which is used for functions that do not
return a value; you can’t declare a variable of type void, so you
can return a type void.

Inline functions

Calling a function takes time. The compiler must generate code to
reserve stack space for variables, and then the CPU must push the

Functions

§

hild

P

current program location onto the stack and jump to the function
address. This process doesn’t take a lot of time, but if you're
calling a function thousands of times in loop, it adds up.

Inline functions avoid these steps. Instead of actually calling the
function, the compiler replaces each instance of an inline function
with the code in the function except, of course, return statements.

Keep inline functions short, however. If you have a lengthy inline
function and it appears many times in your program, the size of
your executable is going to grow rapidly.

Following is an example of an inline function:

inline int CTool::GetToolType ()
{

!

return (TypeQfTool);

Now you can write a statement such as

CTool MyTool (1)
int TheTool;
TheTool = MyTool.GetToolType();

And the effective code generated by the compiler is

TheTool = TypeOfTool;

In essence, this type of construction causes the compiler to
override the private keyword and place TypeQfTool directly in
the code, yet at the same time maintains the integrity of the class.

Defining the body of a function within the class definition is the
same as declaring it inline. Instead of the above function, you
could have placed the following in the class definition for the
prototype of GetTool Type:

int GetToolType () {return (TypeOfTool);}

Naming functions

You don’t need to follow any rules for naming functions other than
their names may not be the same as a C++ reserved word. For
readability, the name of a function should give a hint as to what it
does. For example, it's pretty clear what a function called
GetToolType () should return. To reduce typing and to minimize
the chance of error, function names should be as short as possible
but not so short that you sacrifice clarity. Eventually, you'll
develop your own style. If it works for you, stick with it.

The Visual C++ designers developed some conventions for naming
functions generated by ClassWizard. If you add a message handler

e

JBM

Functions

for a menu item, Visual C++ prefixes the name with On to indicate
an event handler. Next, Visual C++ tacks on some form of the menu
item name. Just reading OnfileNew() tells you the menu item is
an event handler for the New item on the Fi1e menu.

Similarly, if in a dialog box you have an edit control named

1DC BASKET and you want a message handler for any changes to
the control, the ClassWizard generates the name
OnChangeBasket ().

Case is significant in function names. OnFileNew() is not the same
as OnFilenew(). Using a capital letter for each major component
of a naming convention improves readability. On indicates an event
(message) handler, Fi1e¢ indicates the File menu, and New tells
you the component is the New item on the menu.

The wizard names are only suggestions. The Visual C++ naming
convention can, and sometimes does, come up with some long
function names. You're free to change the name when the
suggested-name dialog box pops up.

Overloading functions

Function names do not need to be unique. You can give two functions
the same name as long as they differ in the number or type of para-
meters passed to it. This convention is called function overloading.

Suppose in a class named CD0og you store an integer to indicate
the index of a breed of dog and a string to hold the name of the
breed. You can declare two functions named GetBreed(): one
that returns the integer, and the other that copies the name of the
breed to a local variable.

class CDog
{
public:

CDog (int iBreed, char *pszBreed);

int GetBreed (char *pszBreed, int len);

int GetBreed () {return (m_iBreed):}
private:

char *m_pszBreed;

int m_iBreed;

b

CDog::CDog (int iBreed, char *pszBreed)
{
m_iBreed = iBreed;
m_pszBreed = new char [strlen (pszBreed) + 11;
if (m_pszBreed != NULL)
strcpy (m_pszBreed, pszBreed);
}

int CDog::GetBreed (char *pszBreed, int len)

Functions

ARy,

L“'o.r
L

if (m_pszBreed != NULL)
{
strncpy

(pszBreed, m_pszBreed, len - 1);
return (0)

’

}
return (-1);
}

Don’t write a function such as the preceding to return a pointer to
a member character string. Doing so would expose a private
member to access by a nonmember function through the pointer.
Instead, return a copy of the string using a length parameter to
avoid overwriting the size of the string in the calling function.

The two functions differ in the number parameters, and the
compiler and linker can resolve the ambiguous name.

Overloading is common in declaring class constructors, giving you
flexibility in creating class objects. The CString class, for
example, has seven constructors, each differing in the type of
parameter you pass when the class object is created.

Virtual functions

In a derived class, sometimes you will have to override a function
contained in a base class to alter its behavior. Normally, function
overriding is not a problem until you use a pointer to the derived
class. Then the code has a problem distinguishing between the
function in the base class and the one in the derived class. When
you use a pointer to the class instance, the code will execute the
function in the base class.

Check out Visual C++ 6 For Dummies (1DG Books Worldwide, Inc.)
for a complete description of virtual functions.

You can alter this by declaring the base class function with the
keyword virtual. This will force the compiler and runtime code
to skip to the derived class function.

The virtual keyword is used in conjunction with any other type
specifier. To declare a void function in the base class virtual, write
it this way:

virtual void MyFunction ();
You don't need to declare the derived class function virtual, but

it’s common practice to do so. It doesn’t hurt to declare a function
virtual, and it serves as a flag that you are using virtual functions.

' Inheritance

Inheritance

e

The principle of inheritance — the idea of reusing existing
programming — probably is one of object-oriented programming’s
most significant contributions.

Inheritance means you can write generic classes with the intention
of never using them directly but instead deriving other classes
from them and reusing the generic functions. You don't need to
include these functions in your derived class to use them.

To get an idea of inheritance in Visual C++ using the Microsoft
Foundation Class, follow these steps:

1. Summon the InfoView index, and type hierarchy chart.

2. Select the Class Library Reference and display it. At the top is
a class called CObject, which serves as a base class for most
MFC classes.

3. Follow the chart lines to see how the classes you use in your
programming are derived from this grandfather class.

You'll never see a class object built directly from CObject.
Look at the class definition in the file afx.h (don’t make any
changes). You see that the only constructor is protected — it
can be called from only derived classes. Microsoft never
intended this class for direct use. Notice, too, that it contains
only the basic, low-level functions; you see nothing specific
like OnFileOpen{).

A derived class inherits all the properties and functions of its base
class, so any class derived from CObject has access to its
functions. As you work your way down the hierarchy chart, the
functions and variables in the classes become more specific.

See also “Derived Classes” in this part for an example of derived
classes.

When you derive a class from (D1alog, you have to write only the
code specific to handling your dialog box — the message handlers
for the controls, for example. You can call any public or protected

function in CDialog, CWnd, CCmdTarget, and CObject.

The fact that functions for the base classes are already written
doesn’'t mean you're stuck with the code. You can override any
public or protected function and write your own code. You can
even add to the existing code.

When you’re writing classes that can be used as base classes,
make the functions you may override virtual. If the base class
function is not virtual and you access a derived class function

Structures and Unions

through a pointer, the base class function may execute rather than
the derived class function. The mechanics of why this happens is
beyond the scope of this book. The virtual keyword in the base
class forces the derived class function to execute,

To override a base class function, you must declare your derived
class function exactly like the base class function. The function
name, return type, number, and type and order of parameters
must be identical. Otherwise, the compiler looks at them as
different functions.

OnInitDialog() is a common example of overriding and adding
to a base class’s code. You need to call the base class function to
create the controls. Obviously, however, CDialog has no sense of
what you will do with the controls in your derived class, so it
can’t initialize them for you. Instead, you override the base class
function, call it from your derived function using the syntax
CDialog::0nInitDialog(), and add your own code to
initialize your controls:

BOOL CMyDialog::0OnInitDialog()

{
CDialog::0OnInitDialog();
// TODO: Add extra initialization here
m_basketname = "Basket";

}

This function calls the base class function of the same name and
then initializes an ed it control to contain the word Basket.

Structures and Unions

Structures, like classes, are named groups of statements used to
encapsulate functions and data. Encapsulation is a key feature of
the C++ language.

The structure is a concept brought over from the C programming
language and is the basis for the class concept in C++. You find
only subtle differences between a structure and a class, and in
most cases, you can use the struct and class keywords inter-
changeably. In fact, if you define a structure in Visual C++ and then
examine the Class View pane of the Workshop window, you see
that structure listed as a class.

The scope of the keyword struct has been redefined in C++. You
can move a C structure to a C++ program and use it without modify-
ing it; the reverse isn’t necessarily true. For one, C++ structures
support function declarations. In C, the only way you can put a
function in a structure is to use a pointer to an external function.

The This Pointer

Remember: A key difference between a C++ class and a C++
structure is that in a class all the members default to private;in
a structure, they default to public. The C language had no
concept of access, so all members essentially were public. To
maintain portability, C++ carries this across.

A union is a special case of a structure. In a structure, a number of
data fields are stored one after the other. In a union, declared with
the keyword union, these data fields are stored in the same
location so it may hold only one data element at a time. The
compiler reserves space for the largest member. Unions are handy
when you want to store and retrieve different data types from the
same location, depending on the state of the program.

Suppose you define a union:

union _myunion

{
int MyInt;
char MyString[32];
long MylLong;

b MYUNION;

When you declare an instance of MYUNION, the compiler sets aside
32 bytes, the size of the largest member, MyString. You may store
an int,astring, ora long in the union, but only one at a time. If
you store an int and then later store a string, the string
overwrites the previous integer value.

The This Pointer

Every instance of a C++ class contains a special pointer to itself
called this. This pointer allows an instance of a class to point to
itself without ever knowing its name. Kinda like an amnesiac
saying “me.”

At times, you will need a pointer to the c1ass instance. For
example, the CToolBar::Create() function requires a pointer
to the parent window as the parameter. Toolbars generally are
created within the mainframe window when it is created, so you
can use this to refer to the frame. You don’t need to know the
class or the variable name of the instance of the frame window.

Virtual Classes

When a class is derived from more than one base class (called
multiple inheritance), it's possible that somewhere in the hierarchy
the base classes are themselves derived from a common ancestor.

Virtual Classes

In this case, your derived class would inherit more than one copy
of the remote ancestor.

I don’t see anything wrong with inheriting more than one copy of
an ancestor; it won't stop your compile or keep you from running
your program. However, it can be annoying. If you reference a
function in the common ancestor, there are multiple copies of it,
and you have to use the scope resolution operator “: : " to tell the
compiler which copy of the function to use. Otherwise the com-
piler will gripe about an ambiguous function reference.

You can avoid this by declaring the ancestors virtual in your
base classes. In this case, your derived class inherits only one
copy of the common ancestor or ancestors, no matter how many
times it is used to derive another class.

The declaration is made at the time you define your derived class
simply by adding the keyword virtual to the base class name.
Suppose class Band class C are both derived from class A
and you derive a new class using B and C as the base classes.
When you define classes B and C, include the virtual keyword for
class A.

class B : virtual public A

and

class C : virtual public A

Then when you derive your class from B and C, only one copy of
class A will be inherited.

class MyClass : public B, public C

You need to do some planning to make this work. You probably
won't need to worry about the virtual class keyword until you
start building your own base classes. However, you should be
aware of the way it works in case you start seeing some odd
behavior from the compiler and get error messages about
ambiguous references.

Visual C++ 6 For Dummies Quick Reference

Operators

A computer does things by the number, and arithmetic
and logical operators are how it expresses the rela-
tionship between numbers. In this chapter you go over
the various operators, determine how they work, and
find out how to use them.

In this part . . .

+»” Using arithmetic operators

+* Working with assignment operators

v+ Manipulating with bit control operators
1+ Using increment and decrement operators
+»* Looking at logical operators

+* Overloading operators

v+ Figuring out operator precedence and the order
of evaluation

+* Knowing how to use the sizeof operator

Arithmetic Operators

Arithmetic Operators

Arithmetic operators enable you to manipulate numbers by
adding, subtracting, multiplying, or dividing. Operators are either
unary or binary. A unary operator (either the + or - symbol) needs
only one value (called the operand), and the + operator is implied.
For example, 42 implies +42, and my_variable implies

+my _variable. Binary operators act on two values (operands).

Operator Rule Example

+ Unary positive i = +42 (implied}
- Unary negation i = -42

+ Addition io= 3 + 42

- Subtraction i =3 - 42

/ Division i=3/ 42

* Multiplication i=3 * 42

% Module division i =7 % 42

The modulo division operator returns the remainder of the
division of the two operands and may be performed only on
integer values and variables. This operator also is useful for
determining when an event occurs. For example, if you want to
execute certain code only on every eighth pass of a loop, you can
write something like the following:

for (i = 1; i < 100; ++1)
{

if (i % 8)
// Do something every eighth time
else

// Do something else
}

Modulo 2 division tells you whether a number (such as a page
number) is odd or even.

odd = PageNumber % 2;
if (odd)

// Do something odd
else

//Do something even

Assignment Operators

The equals symbol (=) indicates the assignment operator. The
symbol sets the variable that appears to the left of it to the result

Assignment Operators

«'5‘ TR4, oy

RNy,

of the expression appearing to its right. For example, i = 47 sets
the value of 1 to 42.

You can combine the assignment operator with one of the arith-
metic or bit-manipulation operators (except for the not operator).
For example, where you would write i = 1 + 42,in C you can
write i += 42 and get the same result. The operand to the right
of += may be a complex expression.

Operator C/C++ Example Usage Long Equivalent
= i=x Set i equal to x i =X

+= i o+= X Addxtoi i=1 4+ x
-= i -= X Subtract x from i i =1 - X
*= i *= X Multiply i by x i=1 %X
= i /=X Divide i by x i =1/ x
%= i %= x Modulo divideibyx 1 = 1 % x
&= i &= x Bitwise ANDiandx 1 = 1 & X
| = i = x Bitwise OR i and x i=1] x
N= i M= X Bitwise XORiandx 1 = 1 ~ x
K= i &= x Shift i left x bits i=1 < x
>>= i &= x Shift i right x bits i=1 5> x

See also “Bit Control Operators” in this part.

C also contains a conditional assignment operator, which appears
as a question mark. The operator must follow a test expression
and must be followed by two expressions separated by a colon. If
the test expression is true, then the assignment is made from the
expression to the left of the colon. If false, the assignment is made
from the expression to the right of the colon. For example,

i = test_expr ? true_expr : false_expr;

is the same as writing

if (test expr)

i = true_expr;
else

i = false_ expr;

Any of the expr expressions may be a value, variable, or a
complex equation as long as the result can be assigned to the
variable on the left of the equals sign. You can write code that
neither you nor anyone else can figure out using C shorthand like
this, so use it wisely.

- Bit Control Operators

Bit Control Operators

Manipulating bits quickly and efficiently is important, and C++ has
an excellent complement of bit operators. Bitwise operators work
on corresponding bits in the operands. The table lists the operators
and some uses for them follow the table.

Operator Operation Result

& Bitwise AND 1 Only if both bits are 1
| Bitwise OR 1 If either bit is 1

n Bitwise XOR See below

~ Bitwise NOT 1 If original bit was 0
<< Bitwise left shift Bits are shifted left

>> Bitwise right shift Bits are shifted right

The XOR operator (called exclusive or in the world of logic) yields
a 1 if and only if the bits are different. Some rules for using the XOR
operator are

4+ XORing a bit with 0 leaves it in the same state.

+ XORing a bit with 1 toggles it, giving the operator its popular
name of the “toggle” operator.

+ XORing a variable with itself sets it to 0.

Increment and Decrement Operators

The assignment operator is used often to increment or decrement
a variable, but in C these operations have special notations. To
increment a variable, simply precede or follow its name with two
plus signs (++). To decrement it, use two minus signs (- -). All of
the following are equivalent:

41 = i +1:The value of i is taken, 1 is added to it, and then i
is set to the new result.

4+ i += 1;1is added to the value of i.
4 i++: The value of i is taken, and then 1 is added to it.

4 ++i: 1 is added to the value of i before it is taken.

If the operator precedes the variable name, the operation is
performed before the variable is used. If the operator follows the
name, then the value is used before the operation is performed.
For example, if] = 4,theni = --j willset jto 3 and then set
ito3:buti = j-- will set i to 4 and then set] to 3.

Overloading Operators

You may combine operations on a single line by separating them
with a comma.

is the same as writing the two statements on separate lines.

Logical Operators

Logical, or relational, operators return only true or false condi-
tions (Boolean values or type bool in Visual C++). These opera-
tors are key to decision-making operations; a good understanding
of them is important in programming.

Operator Meaning Result

&& Logical AND True only if both operands are non-zero

|| Logical OR True if either operand is non-zero

! Logical NOT True only if the operand is zero

< Less than True if the left operand is less than the
right operand

> Greater than True if the left operand is greater than
the right operand

(= Less than or equal to True if the left operand is less than or
equal to the right operand

>= Greater than or equal to True if the left operand is greater than
or equal to the right operand

== Is equal to True if both operands have the same

value and sign

= Not equal to True if the left and right operands have
different values

Overloading Operators

It is possible to make the C operators perform other operations
depending on the context of the statement. This is called operator
overloading, and you can see some excellent examples in the
CString class of MFC.

Unlike function overloading, operator overloading must be done
within a class. You can’t globally overload an operator. To over-
load an operator, declare a function in a class definition using the
keyword operator followed immediately by the operator symbol
and a list of parameters in parentheses. The CString class,
for example, overloads the equals operator, and the declaration
looks like the following.

- Precedence and Order of Evaluation

CString& operator=(LPCSTR str);

See also Part VIIL

The body of the function would contain the code you want to
execute when the operator executes

CString& ClassName::operator=(LPCSTR str)

{
// Code to copy str into a CString charl] vari-
able.

}

You then may use the operator to initialize a CString instance.

CString string = "This is a CString instance.™;

pld You can have multiple functions for the same operator, but they
must differ in the parameters. Any operator other than the
following can be overloaded: sizeof, the conditional assignment
operator (?), the scope resolution operator (: :), the member of
operator (.), and the indirection operator (*).

Precedence and Order of Evaluation

C++ evaluates expressions algebraically from left to right, but
some operators take precedence over others. The actual order of
operations is complex and takes up a number of pages in the Ce+
reference manual, detailing such things as the resolution of scope
operators and overloaded operators. Generally, however, you'll
treat things such as MyClass: :MyVariable as a single item; the
programmers who wrote Visual C++ can’t; they must follow the
C++ reference.

The following table lists the operators by groups in order of
evaluation. Within a group, the order is as listed, but some
operators may have equal precedence. For example, the dot ()
and pointer (->) operators for structures and classes are virtually
identical in purpose and precedence. They are evaluated first,
along with this and the : : scope resolution operator. The table
does not list these primary operators.

Operators Comments

() [Parentheses first, then subscripts (which may contain
parentheses)

++, --,~, | Increment, decrement, bitwise NOT, logical NOT

Ik Multiplication, division, and modulo division

+, - Addition and subtraction

>>, << Bitwise shifts

The Sizeof Operator

Operators Comments

<,<=,>,>= Comparison operators

== I= Equality tests

Bitwise AND, bitwise XOR, bitwise OR
&&, || Logical AND, logical OR
7 Conditional assignment

The lowest order of priority is given to the assignment operators.
By the time they are needed, the work has been done, and all that
remains is to drop the value into the variable. The following all
have the same precedence:

= 4= o= *= /= %= k= |= K= >>=

The Sizeof Operator

1P

The handy sizeof operator returns the size, in bytes, of its
operand. The operand may be an expression or a type name in
parentheses. It may not be used for functions (but you may use
it for a pointer to a function), a bit field or an undefined class or
structure, a variable or type void, or an array with an unspecified
dimension.

Be careful of the “expression.” It is not evaluated before the
sizeof operator is applied. The C++ specifications are not clear
what is returned in this case, just that it may be applied to an
expression “which is not evaluated.”

The sizeof operator is useful for writing portable code and for
finding the number of elements in an array. For example, if you
want to compile your program for Windows 3.1 and Windows 9x,
you may be surprised to find the size of an integer is different.
Say you have an initialized array with no particular size, and
during the course of your program you want to extract its size,
maybe for a loop.

int BaudRates[] = {300, 600, 1200, 1200, 2400,
4800, 96001} ;

How many entries are in this array? Well, you could divide its size
by 4, the size of an integer, but that differs on Windows 3.1 and
Windows 9x. If you use the sizeof{int) expression, the value
will be correct regardless of the operating system.

f#fdefine BAUDRATES (sizeof (BaudRates) / _
sizeof (int))

Uisual Basic C++ 6 For Dummies

Taking Advantage
of Windows

Windows 9x brought some new and exciting capabili-
ties to the personal computer. Multitasking gave us
the capability to run several programs at the same
time. Multithreading gave programs the ability to
perform several tasks virtually simultaneously. The
registry, first introduced in Windows NT, gives us a
common database to store program information.
Visual C++ allows your application to take advantage
of these capabilities.

In this part . . .
+» Using the Windows Registry
v+ Giving your program a splash screen

1+ Bare basics of threads

Splash Screens

Splash Screens

TP

A splash screen is a bitmap that gets displayed when the applica-
tion is first launched. Splash screens often display the version
number of an application and other user information in a graphi-
cally appealing format. It gives the user something to look at while
your program is initializing, and it gives you a chance to plug
yourself or your company.

Many people, particularly old-timers, don't like splash screens.
They consider them a waste of code space and computer time.
Actually, creating a splash screen takes very little programming
effort. (Visual C++ provides a splash screen component.) Also, in
an operating system such as Windows 9x or Window NT, the
computer overhead is almost negligible.

To insert a splash screen into your application:
1. Select Project=vAdd to Projecte>Components and Controls.

2. In the Gallery dialog, select “Splash Screen” and press
the Insert button. Visual C++ inserts a splash screen class
(CSplashWnd) into your application and inserts a call to
display it in the InitInstance() function of your
application class.

3. Compile and run your program; the splash screen appears.

You definitely don’t want the default bitmap. The default doesn’t
really look very good, and it has no information about your
application. Use a graphics editor such as Paint Shop Pro or the
Microsoft Image Editor to design your own startup screen, add it
to your project using the Resource Workshop, and change the
resource ID in the Create() function of CSplashWnd. (The
default is [DB_SPLASH.)

Remember: There's only one rule to remember when using a
splash screen: Have fun with it.

Threads

With multitasking operating systems such as Windows 9x and NT,
you can load several applications at the same time and programs
can execute in the background. Although you can only use one
program at a time, when one program is busy at a task, you can
easily switch over to another and keep working.

An application itself can be doing more than one task at a time
through a technique called threading. Basically, a thread is another
execution point in a program. The thread has its own stack space

Threads

%

so it can call functions and use local variables independently of
the main thread, and it has access to all the global variables in the
program.

Threads don’t have to be complicated to be useful. Animation is
an example of a thread at work. While you and your program are
doing something else, the thread is handling the chore of changing
images.

Generally, a task can be offloaded to a thread if the task doesn't
require user input. For example, on startup, your program may
have to do some time-consuming tasks such as read configuration
information or initialize a spell checker.

The Microsoft Foundation Class provides a base class called
CWinThread to help you build threads. The following example
declares a simple thread:

class CHelper : public CWintThread
{

public:

CHelper () {}

~CHelper () {}
int Run ();

};

In the Run () function, add any tasks you want to perform and
then have the thread exit. The following one, for example, writes a
couple of messages through a user-defined routine
(StatusMessage) and calls a function to initialize a spell-check
engine:

int CHelper::Run ()

{
StatusMessage ("Initializing Spell Engine");
Initializelex ();
StatusMessage ("Spell Engine is ready");
return (0);

}

Initializelex() can be a function in the main application or
part of another class, as long as you use the scope resolution
operator. The thread is started by a call to

phelper=(CHelper*)AfxBeginThread
(RUNTIME_CLASS(CHelper)):

You can find entire books about Threads, and the subject is far too
involved to cover completely here. Try some small threads with
limited scope such as this one, and then gradually make them
perform more complicated tasks. You'd be surprised at how they
can add some pep to your programs.

The Windows Registry

Keep these rules in mind when using threads:

+ A secondary thread should always exit before your main
program exits. If the thread has more than a limited lifetime
(such as the above example), provide some means of signaling
it to stop when your program exits, and wait for it to terminate
before letting your program exit.

+ Don't use a thread where user input or feedback to the user is
required. Let your main program code handle any error
conditions your thread might send back to it.

+ Don't use threads for simple tasks just to use them. The
overhead involved in running a thread means you should use
them as they are intended — for time-consuming or back-
ground tasks.

The Windows Registry

Before Windows NT and later Windows 95, programmers used .INI
and configuration files to record startup and operating information
for their programs. These files worked, but reading them was often
cumbersome, and they were prone to user tampering.

With NT came the Registry, a system-controlled database that
contains most of the operating system’s startup and operating
information and in which programmers could store their
program’s information.

Rather than having to write all the code to decipher the contents
of an INI file, you can call Registry functions to set and retrieve
program information in the database.

When you create an application using the Visual C++ MFC
AppWizard, look in the InitInstance function of your main
application program file and you find the following lines:

// Change the registry key under which our settings

// are stored.

// You should modify this string to be something

// appropriate

// such as the name of your company or

// organization.

SetRegistryKey(_T("Local AppWizard-Generated
Applications"));

Change the registry key name to something more meaningful to
you. Say your program is called Howdy . exe; make it read "The
Howdy Company". Compile and run the program.

The Windows Registry §

Two things happen:

+ A registry key gets created for “The Howdy Company”, and a
subkey for the program “Howdy” gets added below it. Follow
these steps to check the entries:

1. Run regedit.exe. You won't find regedit in any of your Start
Menu programs. Wisely, Microsoft keeps it out of public
view. To run regedit, select Run from the Start Menu. Type
regedit in the dialog box, and click the OK button.

Be careful not to delete or change anything in the registry
unless you know what you are doing. Accidentally pressing
the Delete key while you have the wrong registry key
selected can seriously damage your operating system.
Regedit is a useful tool, but it also can be dangerous.

2. Expand the HKEY_CURRENT_USER key, and then expand
the Software entry. There — among the big names such
as Borland, Netscape, Creative Tech, and
Microsoft —is anentry for The Howdy Company.

3. Expand the entry for The Howdy Company. You then see
your program name and, below that, an entry for the
Recent File List and another called Settings.

4+ Second, a flag signals the old functions that used to read and
write an INI file that they now will use the system registry.
Your program'’s key becomes HKEY_CURRENT_USER\
Software\The Howdy Company\Howdy.

Add the following call to appear after the SetRegistryKey() call:

WriteProfileString (_T("SETTINGS"), _T("Howdy
Stuff"), _T("Boy, Howdy"));

Run your program, and refresh the registry screen. (In regedit,
press F5.) Click the "Settings™ key to select it, and on the right
panel, you see a value key called "Howdy Stuff"; its valueis
"Boy, Howdy". Notice the Default value is not set; you can put
an entry in it by passing an empty string (not a NULL) as the
second parameter to WriteProfileString().

Your program (or any other) can retrieve this value at any time,
even after it exits and has been restarted. The keys and values are
kept in the system database and are called Persistent data. To
retrieve the value, use the call

CString str = GetProfileString(T("SETTINGS"),
_T("Howdy Stuff"));

To retrieve the default value, use an empty string (_T("")) as the
second parameter.

The Windows Registry

Other useful registry functions appear in the accompanying table.

Function

Use

LoadStdProfileSettings

Extracts standard INI values including the
Most Recently Used file fist.

RegCreateKey

Creates a new key in the registry. If the
key already exists, it is opened.

RegCreateKeyEx

Similar to RegCreateKey, except it
temporarily locks the portion of the
registry it is using. This is the preferred
function.

RegOpenKey

Opens a registry key using default security
values. Fails if the key does not exist.

RegOpenKeykEx

Opens a registry key using security mask
provided by the calling function.

RegCloseKey

Closes the specified key. If the key is
locked, this call unlocks it.

RegDeleteKey

Deletes a key and all the values associated
with it. Fails if the key is open. In
Windows 95, the key and all its subkeys
are deleted. In Windows NT, the call fails if
the key has subkeys.

RegFlushKey

Force writes the key and subkey values
to the registry. Similar to fflush ()
for a file.

The Microsoft
Foundation Class

The Microsoft Foundation Class library is taking on a
de facto role as the standard for development of
Windows applications. Although MFC isn’t the best
class library on the market (Borland OWL is far
superior), MFC isn’t a bad library. MFC can frustrate
you in many places, but, in the end, you'll be a better
programmer because of the knowledge you gain in
dealing with MFC.

I can’t give you every object in every class in this
chapter (or even in this book, if that was my only goal),
so | present some of the most useful objects in MFC
and a few tips for dancing around some of its vagaries.

In this part . . .

1 Application classes

1 CObject — genesis of the classes
1+ Dialog classes

v Enabling dialog commands

+» Tips for programming with MFC

Application Classes

Application Classes

All the code in the Microsoft Foundation Class library is code you
don't have to write. A basic application created using the MFC
AppWizard includes six classes. If you select compound document
support, the wizard adds an OLE container class.

The table summarizes the basic application classes derived from
MFC. The sample names assume you created an application called
Myapp, so substitute your application name where you see Myapp.

See also “MFC AppWizard” in Part II.

Class

Base Class

Purpose

CMyappApp

CApplication

Main application class. Contains
Initinstance{) where you would set
initialization, read input arguments, and
add document templates.

CAboutDlg

CDialog

Creates a basic About dialog box for
your application. The class definition
and functions are all contained in the
main application file.

CMainFrame

CMDIFrame
or CFrameWnd

Creates the main window for your
application. If you created a multiple-
document interface, it is derived from
CMDIFrame. For a single-document
interface, the base class is
CFrameWnd.

CChildFrame

CMDIChildWnd

Creates the multiple-document interface
client. This class is not included if you
select single-document interface in the
MFC AppWizard.

CMyappDoc

CDocument
or CRichEditDoc

Supports the basic functions to create,
load, and save a document. This is
where you would add your special code
to manipulate documents. The base
class for a rich edit view is
CRichEditDoc. Otherwise, the base
class is CDocument.

CMyappView

varies

Creates the window to display your
document. This is where you would add
code for user interaction, such as
editing text, listing records, and so on.
The base class is the class you select in
Step 6 of the MFC AppWizard.

CMyappCntritem

COLEClientitem or
CRichEditCntrltem

Creates the container class or OLE
objects. These objects usually are read
and saved using the document class.

If you select None for compound
document support in Step 3 of the MFC
AppWizard, this class is not included.

Dialog Classes

The basic MFC AppWizard-generated application is a “program in a
box.” If you selected an edit view as your view class, you can
compile the program without adding any code at all; run it; and
begin opening, editing, and saving files. You have the basis of a
utility program such as Notepad. You'll want to add code to make
it perform your specific task, of course. The world doesn’t need a
plethora of Notepads; one per universe is quite enough.

CObject — Genesis of the Classes

Among the sparse printed documentation you get with the
Developers Workshop is a chart of the Microsoft Foundation Class
library. At the top of the chart you see a class called CObject,
with its bar extending across the top. CObject is the ancestor of
most of the classes in the MFC library.

Not all classes are derived from CObject, but chances are if the
class accepts input from some device or displays something on
the screen or printer, you can trace the class back to CObject.

CObject's constructor is protected, so you can't declare an
instance of it; you can only derive classes from it.

See also “Constructors” in Part VIII.

Down the chart is CCmdTarget. Classes that accept messages
generally are derived from this class, including CWnd, the basis for
most of the classes that actually display objects on the screen.
Dialog boxes, views, and the common controls all derive from
CWnd and, consequently, from CCmdTarget.

If you are going to derive a new view or control, you should follow
this sequence. Each derived class inherits the functionality of its
parent classes, and much of the work in handling input and
display is built into CWnd.

Dialog Classes

CDialog is the base class you will use to display dialog boxes. You
won't declare an instance of this class directly. Instead, each of
your dialog boxes will have a class derived from CDialog, in which
you will write the specific code to handle your dialog functions.
The dialog box you create in the Resource Workshop is simply the
template that CDialog uses to create the box on the screen.

CDialog itself is derived from CWnd, and dialog boxes derived from
CDialog are windows in themselves. The following chart shows the
MFC classes derived from CDialog. All of the classes in the chart
inherit CDialog’s functions and variables.

e

Dialog Classes

Class

Use

CCommonDialog

The base class for the Windows common controls. The
common controls are CFileDialog, CColorDialog,
CFontDialog, CFindReplace, CPrintDialog,
CPageSetupDialog, and COleDialog.

CPropertyPage

The base class for property sheet (tab) and wizard pages.
Use CPropertyPage together with CPropertySheet, which
serves as a container for the property pages
(CPropertySheet is derived fram CWnd).

COlePropertyPage

Base ciass to display the properties of a custom control.
Classes derived from COlePropertyPage are used to build
the Properties dialog box for a custom control.

See also “Dialog Boxes” in Part IV.

Get to know CDialog. I consider dialog boxes a very important

part of an application and tend to spend a lot of time on them. A
well-designed, efficient dialog box makes the user feel at ease in
using an application.

Member functions you will find useful are listed in the table below.
These functions all have public or protected access, so you can
override them to add your custom code.

Member Function Purpose

DoModal

Creates a modal dialog box from your template. Override
this function to pass the dialog box class any parameters
it needs when the dialog box is created.

NextDIgCtrl

Moves the focus to the next control in the dialog box.
You may want to call this function when the user has
typed the maximum number of characters permitted in a
control or has performed a required action.

PrevDIgCtrl

Moves the focus to the next control in the dialog box.

GotoDIgCtrl

Moves the focus to a specified control. If you want the
cursor to fand in a control other than the first control in
the dialog box, include a message handler for
WM_SHOWWINDOW and call this function from the
message handler. Calling this function from OnlnitDialog
doesn’t work.

GetDeflD

Returns the resource ID of the default button in a
dialog box.

SetDefID

Sets the default button for a dialog box. The default
button is the button specified when the user presses the
Enter key while in a dialog box.

EndDialog

Terminates the dialog box. You may include a return
value in the call to this function. The return value is
passed back to your code that called the dialog box.

OnlnitDialog

Initializes variables and controls.

Dialog Command Enablers |

Member Function Purpose

On0OK Override this function to perform any value checking
before closing the dialog box. Called when the user
presses the OK button. If you simply return from this
function, the dialog box will not be closed. To close the
dialog box, call the base class OnOK() function.

OnCancel Override this function to provide a confirmation that the
user wants to cancel. Called when the user presses the
Cancel button or hits the Esc key.

Dialog Command Enablers

e

Often in creating and coding a dialog box, you need to limit a
user’s input. If you press a button to perform a function but the
function doesn’t work because the program is in a certain state,
you may want to disable the button. Doing so gives some feedback
to the user and heads off the “Why doesn’t this work?” complaint.

You could write a function to do this and call it from every mes-
sage handler in your class, but what if the program state changes
between messages? How do you update the buttons before the
next user input? Have you ever noticed that buttons in Microsoft
programs seem to enable and disable themselves? The functional-
ity is in Visual C++, and I consider it a serious deficiency of MFC
that Microsoft chose not to include it in the CDialog class.

You can add command enablers to your dialog boxes by using a
couple of undocumented Windows messages, WM_KICKIDLE and
WM_IDLEUPDATECMDUI. Don’t bother looking these up in the
InfoViewer — they aren’t there.

First, add message handlers for these messages to your message
map. You'll have to add these manually; the ClassWizard does not
have them in the CDialog class message list.

ON_MESSAGE(WM_KICKIDLE, OnKickIdle)
ON_MESSAGE(WM_IDLEUPDATECMDUI, OnldleUpdateCmdUI)

Next, add functions to handle these messages. Again, the
ClassWizard will be of no help to you. For WM_KICKIDLE, add this
code:

void CMyDialog::0OnKickIdle()
{
AfxGetApp()->0nldle(-1);
OnldleUpdateCmdUI();

(continued)

MFC Programming Tips

‘ontinued)
void CMyDialog::0nldleUpdateCmdUl ()
{

}

Magically, your dialog box now handles command-enabling
messages.

UpdateDialogControls((CCmdTarget*)this, TRUE);

M Suppose you want to enable a Hangup button if the modem is on
@ line or disable it while a file is being transferred. Add the com-
2 mand line to your message map:

ON_UPDATE_COMMAND_UT(ID_TELCO_HANGUP,
OnUpdateHangup)

and the message handler function to your dialog class:

void CMyDialog::0nUpdateHangup(CCmdUI * pCmdUI)

pCmdUI->Enable (sender.GetModemState());
}

The sender.GetModemState()would be a function in your
modem handling code, of course, and [D_TELCO_HANGUP would
be the resource ID of the Hangup button. The button is enabled or
disabled depending upon the returned value.

Again, you'll have to add the ON_UPDATE_COMMAND_UI message
handlers manually.

MFC Programming Tips

I hate programming. It’s not as interesting as my previous
occupation as a newspaper reporter, often repetitive, and, all too
often, very frustrating. So why do it? Because programming has
been my bread and butter for a long time, and over the years |
have developed some techniques to reduce the tedium and
frustration. Besides, | enjoy the satisfaction of seeing others use
programs that I have developed and the freedom to improve
those programs. With an off-the-shelf application, you're stuck
with the programmer’s ideas and hung out to dry with the
application’s bug.

A library such as the Microsoft Foundation Class helps a lot. The
basic coding is one for you, and you quickly can get into the meat
of your application.

MFC Programming Tips

Still, even with MFC, you're going to find yourself standing on your
head to make things work. Build on your own work as well as that
of other programmers. You can find a lot of literature on the
Microsoft Foundation Class (there has to be), and don't hesitate to
crack a good tutorial on MFC.

Approach programming and MFC methodically. One invention of
the wheel is enough (they're all round). The following tips may
help you in program development:

+ Try small development projects to work out coding problems.
Rather than compiling and linking large projects while trying
to make troublesome functions work, create a smaller project
just to work on that problem. When you get the code to work,
transfer it to your larger project.

+ Keep a notebook. Whether a disk file or a printed notebook,
this record will be invaluable in later program development.
When you work out a programming problem, transfer the code
snippet to your notebook along with any observations or
quirks you noticed.

+ Build a library of functions you use often. The IDE allows you
to create a library project, or you may want to include
functions or custom controls in a dynamic link library and
load it with your applications. DLL projects also are possible
with the IDE.

+ Keep an eye on the developers’ section of the Microsoft Web
site, www.microsoft.com/win32dev. This site has lots of
articles, some dating to before the introduction of Windows 95,
but new ones appear from time to time. Even so, the existing
articles contain a number of programming tips.

4+ Develop your own sample programs. Many of the sample
programs that Microsoft provides suffer from the ivory tower
syndrome. The projects are written for the specific example
rather than how you might use the code in real-world pro-
gramming. You may find adapting Microsoft’s sample code
into your own applications difficult.

For example, | keep a project called CONTROLS that uses all
the common controls as | would use them in an application,
not just a dialog-based program written specifically for a
single control. I keep copies of it for the Borland and the
Microsoft IDEs, which are the two major environments | use.
When a new version of an IDE is released, | test it against this
project (and a couple of others), make whatever adjustments
are necessary, and include notes for that release. When I need
the code, [lift it out by using the clipboard and drop it into my
current project.

Visual C++ 6 For Dummies Quick Reference

Techie Talk

Abstract Class: A class that is intended to be used
as the base for other classes. An abstract class is
created by setting the address of a virtual mem-
ber function to NULL. Thus, an abstract class may
not be created directly.

Accelerator: A keyboard sequence that mimics a
menu selection.

Accelerator Table: A resource containing the
accelerators. A program may have several
accelerator tables, which may be loaded on
demand or associated with particular menus.

ActiveX: The new specification for OLE (Object
Linking and Embedding). ActiveX is used to create
compact, reusable controls.

Animation Control: A control to display succes-
sive frames of an .AVI file to represent motion.
Files used with this control may contain only a
single video track and an audio track. If the audio
track is present, it is ignored.

Techie Talk

AppWizard: A sequence of dialog boxes in the Visual Studio that
takes you through the steps of creating the basic files for an
application. There are several application wizards in Visual C++,
each intended to generate a particular type of application.

Array: A contiguous sequence of data elements all of the same
type.

Automatic Variable: A data element that is created when it is
needed and destroyed when no longer used. Automatic variables
may have a very limited scope, such as within a loop.

Automation: The process of exposing an object or function to
external processes. This is a key feature of ActiveX controls.

Base Class: A class used as the building blocks of another (the
derived) class. A derived class inherits the functions and variables
of the base class.

Bitmap: An array of bits that describe the colors of an area of the
display or printed page. May be stored in a file (BMP file).

Bookmark: A marker in a Developers Studio edit file that lets you
move to it quickly. Bookmarks may be accessed from the Edit
menu by typing Alt+F2 or by selecting them from the edit toolbar.

Breakpoint: A debugging point in a program that causes the
debugger to halt the execution of a program at the point just
before it is to be executed. Breakpoints are used to halt execution
so the program state can be evaluated.

Button: A control that simulates the action of a button. Pushing it
with the mouse causes a message to be sent to the window or
dialog on which it is located. A button may be part of a toolbar.
Most dialogs have at least one button.

Check Box: A true orfalse control used in dialogs. When selected,
the check box contains a check mark.

Class: The primary means of encapsulating data and functions in
C++. The same as a structure in C programming.

Class View: The pane of the Workspace Window that lists the
classes in a project. The pane is accessed by pressing the
ClassView tab on the window.

ClassWizard: A Developers Studio tool for creating and modifying
classes in a project. This wizard may be used to add message
handlers and some member functions.

Combo Box: A common control that combines an edit control with
a list control. Often features a drop-down selection box.

Techie Talk

Common Controls: A set of standard controls available to Windows
programmers through a library provided by Windows. Common
controls benefit users by presenting a consistent look and feel to
programs and dialogs.

Common Dialog: A set of predefined dialogs available through a
Windows library. These include dialogs to select fonts and color
and to open and save files and printer dialogs.

Compile: The process of converting the written program code
into object code. The linker uses the object code to generate the
executable code that can be understood by the computer.

Component Object Module: A specification defining the basics,
construction, and use of an object. COM is at the basis of ActiveX
and OLE, and programmers may create their own object modules.

Constructor: A member function of a class that is called whenever
the class object is created. A constructor has the same name as
the class and may not have a type specified. Used to initialize class
members upon construction.

Context Sensitive Help: A message handler that puts an applica-
tion into Help mode on demand. The function retrieves the Help ID
of the object under the help cursor and spawns WinHelp to display
the help item for that object.

Control: A programmable component intended to produce a
specific result. Button controls, for example, generate a Windows
message when they are pressed.

Custom Control: A programmer-defined Windows control. Custom
controls give a program a distinctive look and feel as opposed to
that offered by common controls. A number of commercial custom
control libraries are available, or a programmer may roll his own.

Debug Version: A copy of a Developers Studio program containing
information needed by the debugger. Visual C++ normally main-
tains a Debug and a Release version of a program.

Debugging: The process of finding and eliminating errors in a
project. Often accompanied by wailing and gnashing of teeth.

Desktop: The view of tools and icons presented by a program. The
screen first created when Windows is started is commonly
referred to as the Desktop, but a program may create its own. The
Visual C++ screen is an example of a program desktop.

Destructor: A member function of a class that is called automati-
cally when the class is destroyed or goes out of scope. The
destructor is a convenient place to free heap memory allocated by
class functions. It has the same name as the class but is preceded
with a tilde (-).

Techie Talk

Dialog Box: A window that encapsulates controls through which
a user interacts with a program. A dialog box may be used for
complex data entry, or it might be as simple as a message box.

Dialog-based Application: An application that uses a dialog box as
its main window. Such applications usually do not use views (but
they may, as in the case of the record view) and generally are
limited to specific functions.

DLL (Dynamic Link Library): A collection of functions that is
loaded by an application at runtime. DLLs reduce program size
and free up memory because they may be loaded and unloaded on
demand. The common controls and common dialogs are examples
of functions encased in DLLs.

Dock: A position on the main frame of a window where a moveable
toolbar may be placed.

Dynamic Linking: The process of using DLLs to call library
functions rather than including them in program code. With
dynamic linking, a library may be loaded and unloaded as it is
needed.

Edit Control: One of the common controls used to accept text
input from a user or to display information. An edit control may be
static, in which case it cannot accept user input.

Exception: A C++ construct that allows programs to gain control
when an unexpected event occurs that normally would cause the
program to terminate.

File View: A pane on the Workspace window that displays the files
in a project. It is accessed by pressing the FileView tab of the
window.

Group Box: A rectangular control used to visually group other
controls. It is a static control used for visual effect only.

Harbor: A position on the window frame where a toolbar may be
docked. A harbor may be the top, bottom, or one side of the main
window frame. Multiple toolbars may be docked in a single harbor.

Header Control: A small window placed above columns in a
control or view. It normally contains a label for the window and
may be resized by the user. A header control is used in the
“Report” mode of a list control.

Header File: A file that contains definitions and prototypes for a C
or C++ program. This file usually is given the extension .H or .HPP.

Hot Key: A key combination a user may press to perform an action
quickly. A hot key generates a WM_HOTKEY message, which is
interpreted by the application to perform a specific action.

Techie Talk

Icon: A graphic representation of an object, usually used to refer
to the image that represents a program on the desktop or in the
Start Menu.

IDE: Integrated Development Environment. An application that
includes the tools and controls necessary to develop other
applications. These usually include at least an editor for writing
program files, a compiler, and a debugger. The Developers Studio
is an example of an IDE.

Image List: A collection of same-sized images, usually bitmaps or
icons, used by a program or control. Because all the images are
the same size, they may be accessed by specifying an offset into
the file, such as with an index variable.

Info View: The pane on the Workspace window showing documen-
tation and help files available from the Developers Studio. It is
accessed by pressing the InfoView tab in the Workspace.

Label: A named execution point in a program, denoted in C and
C++ by adding a colon to the name. While it has some benefits in
debugging, labels have virtually disappeared from C and C++
programming techniques.

Linking: The process of collecting all the object modules gener-
ated by the compiler and creating an executable program or
library.

List Box: A Windows control that allows a programmer to list
items in a defined area. Depending upon programming code, a user
may select one or more items in a list box to be acted on by the
program.

List Control: A new control introduced in Windows 95 that
features different display modes: icon, small icon, list, and report.
List controls are used throughout Windows 95 to display folder
contents.

Loop: A section of repeating code that, ideally, should have some
means of terminating itself. Loop constructs provided by C and
C++ include the for loop,the do loop, and the do-while loop.

MAPI: Messaging Applications Programming Interface. The
collection of functions that enable a program to access Windows
messaging functions, including creating and modifying mailbox
entries.

Member Function: A procedure that is included as a member of a
class. Member functions may be called directly by other class
members or externally by specifying the class object. Member
functions may have access rights imposed on them, such as
private, public, or protected.

Techie Talk

Member Variable: A data object that is included as part of a class
definition. Member variables generally are declared protected or
private so that only member functions may access and modify

them.

Menu: A list of items that are used to generate commands for an
application. Menus are placed on a menu bar, from which
submenus may be made to pop up when an item is selected.

Message Box: A standard box used to alert a user of a program
condition or to provide feedback to the user from the programmer.
In Microsoft Foundation Class applications, it is invoked by using
the AfxMessageBox function.

Message Handler: A function that implements a program’s
response to a Windows message. When placed in the message map
for a dialog or application, it is invoked automatically when the
message is received.

Message Map: A collection of statements that define what mes-
sages an application or dialog will respond to. The message map
includes the message ID, type, and the address of the message
handler, although some of these may be defined in a macro.

Microsoft Foundation Class: Microsoft’s implementation of a class
library for C++ programming. It is provided with Visual C++.

MRU: The Most Recently Used file list. An application maintains
this list to simplify retrieving recently used documents. The MFC
AppWizard generates the basic code to maintain an MRU in the
Windows registry.

Multiple-Document Interface: A specification originally defined by
IBM for creating client classes to manage more than one docu-
ment. MFC contains full support for MDI, and the task of setting up
the client and views is handled by the MFC AppWizard.

Multithreading: The process of setting up multiple execution
points in a program. A multithreaded program may be performing
several tasks at once, and the technique is used by programmers
to perform time-consuming tasks that do not require user input.

Object Code: The numeric code that is used as commands by the
central processing unit. Compilers generate object modules
containing object code, which are then joined by the linker to
resolve addresses.

Operator: A C or C++ symbol that causes a specific block of code
to be generated by the compiler. The plus operator (+), for example,
causes the compiler to create the code to add to its two operands.

Techie Talk

Output Window: A window in the Developers Studio that provides
feedback to the programmer. In the distribution configuration, it is
at the bottom of the IDE and is used to provide messages from the
IDE tools as well as from programs that are being tested.

Pointer: A variable that contains a reference to another variable. A
pointer contains the address in which a data element is stored. C
and C++ functions cannot directly modify variables in a calling
function, but if the programmer passes a pointer to the variable, it
may be modified indirectly.

Popup: A menu or window that normally remains hidden until it is
invoked by some action of the user. In the case of a menu, it
usually is a submenu that remains hidden until the user presses a
particular item on a main menu. In the case of a window, it is a
special type of overlapped window normally used for message
boxes, dialog boxes, and other temporary windows.

Print Preview: A special window that emulates the context of a
printer. In applications generated by the MFC AppWizard, code is
automatically generated if the “Printing and Print Preview” box on
Step 6 of the wizard is checked.

Process: A program that has been loaded into memory and is
either executing or ready to execute. Until an executable file has
been read into memory, it is an ordinary program.

Program: A file containing the code to execute a particular
application. When it has been loaded into memory and is ready
to run, it becomes a process.

Progress Bar: A common control used to indicate the status of a
time-consuming procedure. This is represented by an elongated

rectangle with a color bar that moves across it. The color bar is

under the control of the application.

Project: In the Developers Workshop, the collection of files —
source, header, resource, and so on — that comprise the code to
build an application. A project is contained in a workspace, which
may include several projects.

Property Sheet: A dialog-based tab control that was introduced
with Windows 95 and is used throughout the operating system.
The property sheet holds one or more property pages, which are
accessed by the user by selecting the proper tab.

QuickWatch: A dialog that contains an edit control where you
may enter an expression to evaluate and a spreadsheet area that
displays the contents of the item you entered. Use this to examine
or modify a variable during debugging.

Techie Talk

Radio Button: A common control that works much like a multiple
choice answer. Radio buttons are grouped together, and within the
group only one of them may be selected at a time. Selecting a
button automatically deselects the previous.

Registry: A database introduced with Windows NT that is used to
store configuration information for the operating system. It also
may be used by applications to store configuration information.
The Windows API contains a number of procedures for registry
operations.

Release Version: A non-debug version of an application. This
version is maintained by Visual C++ and may be invoked by
selecting “Set Active Configuration” from the Build menu.

Resource: In a Windows application, this is binary data added to
the executable file to describe icons, cursors, menus, dialog
boxes, bitmaps, fonts, keyboard-accelerator tables, message-table
entries, string-table entries, version data, and user-defined data.

Resource View: The pane of the Workspace window that lists the
resources that are included in a project. It is accessed by selecting
ResourceView from the Workspace window tab.

Rich Edit Control: A common control that encapsulates the
features of the edit control but includes functions that allow user
or program selection of fonts, colors, type size, and so on. It is
most commonly used as the base of a view class.

Scroll Bar: A Windows interface that converts mouse or keyboard
input into values used by an application to shift the contents of a
window horizontally or vertically. It is commonly implemented
using the scroll bar control.

Single-Document Interface: A document interface that lacks the
code to display more than one document or record at a time. The
contents of the document may be visible in multiple views,
however.

Slider Control: A common control that operates much like the
sliding volume controls on audio equipment. The control may be
moved by user input and its relative location read by an applica-
tion and used to perform a particular application. Examples of
slider controls used horizontally and vertically may be seen in the
Windows volume control application.

Sockets: A network programming interface originally specified for
the Berkeley Scientific Distribution (BSD) implementation of UNIX.
Sockets are intended to relieve the programmer of the details of
network communication.

Techie Talk

Source Code: The (sometimes) human-readable form of program
code. The compiler used the source code to generate the equiva-
lent object code for use by the linker and computer.

Spinner Control: A common control used to accept user input for
a value that can be incremented or decremented. It gets its name
from the way the value in an associated edit control spins up or
down when a button is held down.

Static Linking: The process of including library code in the
executable file of an application. Statically linked code becomes
part of the program and does not require the presence of a DLL to
execute. Static linking may dramatically increase the size of a
program.

Static Variable: A data element that is created when a process is
launched and remains throughout the life of the program. It retains
its value unless it is changed by the program.

Status Bar: The informational strip at the bottom of a main
window that contains indicators for time, messages, and keyboard
state such as the current setting of the Num Lock, Caps Lock, and
Scroll Lock keys. The MFC AppWizard generates the code to
display a status bar if you check the “Initial status bar” box on
Step 4 of the wizard.

String: An array of type char. C and C++ do not have data types
for text, so strings are implemented by declaring an array of char
large enough to hold the text. In the Microsoft Foundation Class,
you may use class CString for strings of variable length.

String Table: A list of values, IDs, and captions for the strings in
your application. The string table is a convenient place to store
program text, and if you are planning versions of your application
in other languages, you may change the language by substituting
string tables.

Switch: A C and C++ statement that performs the operation of a
multiple if-then-else statement with some restrictions. A switch
statement contains a set of “cases,” which must be constant
values. Also, the test expression in a switch statement must
evaluate to an integer.

Tab Control: A common control that operates much like the tabs
in a notebook. It was introduced with Windows 95 and is the base
control for property sheets.

This: The egocentric identifier for a class. Often, class members
have to refer to the class instance, but they have no way of L
knowing the variable names the programmer used when they
were created. So C++ provides a “this” operator that permits a
class to refer to itself. It's always all lowercase.

' Techie Talk

Thread: The execution point of a process. Every process has at
least one thread and may contain several.

TLA: Three-Letter Acronym. Well, they are so common in the
computer world, isn’t it proper for TLAs to have their own TLA?

Tool Tip: A common control that provides the small popup
window giving tips on how to use a control. Typically it is invoked
when the mouse cursor is held over a control containing a tool tip.

Toolbar: The collection of controls encapsulated within a single
object to make it easier for the programmer to manipulate them. A
toolbar usually contains an array of buttons, but it may hold any
Windows control.

Tree Control: A common control introduced with Windows 95 that
displays data elements in a structured fashion, much like the
branches on a tree. The views in the Workspace window are
examples of tree controls.

View: A description of the way a document or record is displayed
on the screen. Views may be constructed using appropriate
controls, such as the edit, rich edit, list, or tree controls. In MFC,
base classes are available for views that do not correspond to
common controls, such as CRecordView for database objects.

Watch: A tool to display the value of variables while a program is
being debugged. Watches are placed in one of four Watch Windows
in the Developers Studio. Local variables may be modified in the
watch window, but giobal variables may not.

Wizard: A special case of the property sheet that allows users to
access pages in a preset sequence rather than randomly.

Wizard Bar: A Developers Studio toolbar that provides quick
access to class members, functions, and declarations. In the
distribution configuration, it is placed immediately below the main
toolbar.

Workspace: The area of the Developers Studio that contains
projects and their configuration. A workspace may contain only
one or a number of projects, which may be of different types. For
example, a single workspace may contain a Visual C++ project and
a Visual J++ project.

Index

A

abstract classes, 144-145, 189
accelerator table, 189
accelerators, 62-63, 189
accessing class members
private keyword, 145, 146-147
protected keyword, 145, 147
public keyword, 145, 147-148
active projects displaying classes, 59
ActiveX controls, 12, 46, 189
ActiveX Controls Inside Out, 26, 46
Add A New Window dialog box, 99-100
Add Member Function dialog box, 38
AddDocTemplate() function, 37
add-ins, 7
Advanced Options dialog box, 27-29
afxdb.h header file, 25
ALink macro, 104
animation and threads, 177
animation controls, 69, 189
AVl files, 63-64
CMNCTRLS sample program, 64
RLE (Run-Length Encoding), 63
starting animation, 64-65
usage, 64
application classes, 182-183
application window title bar name, 36
applications
adding features, 26-27
as both servers and containers, 26
browsing, 30
build options, 30
building, 43-44
changing active configuration, 30-31
code options, 30
commands after build is complete, 31

commands after object file creation, 31

compiled resource file name, 30
compound document support, 25-26
as containers, 25
context-sensitive help, 26
creation of, 12-13, 22

custom build, 31

custom library locations, 30
database support, 25
debugging, 47-48

default file extension, 27
default name for documents, 28
default toolbar, 26
dialog-based, 21

DLL paths, 30
document template strings, 27-28
document types, 28
document-based, 21
drop-down menu for managing
windows, 29
labels and display control, 27-28
language, 24, 30
main window frame title, 28
maximizing windows, 28
message support, 27
MFC library as DLL, 29
MFC (Microsoft Foundation Class), 22
minimizing windows, 28
modifying static/dynamic options, 30
MRU (Most Recently Used) list, 27
multiple types of documents, 35-37
new, 12
.ODL (object description language)
file, 31
optimizations, 30
output locations, 30
overriding File dialog box file types, 28
printing and print preview, 26
root name for new document, 36
running as icon on taskbar, 29
selecting type, 24
as servers, 25
source code comments, 29
splash screens, 176
startup arguments, 30
statically linking MFC library, 29
status bar and message line, 26
templates, 27-28
templates and file types, 28
text displayed in dialog boxes, 36
thick border around window frame, 28
threads, 176-178
user interface three-dimensional
shading, 27
warning messages, 30
window filling screen on startup, 29
working directories, 30
AppWizard, 190
arithmetic operators, 168
array variables, 117
arrays, 114-118, 190
accessing elements, 114-115
accessing subset, 118
char type, 115-116
declaring, 115-117
declaring array variables, 117
index, 114

Visual C++ 6 For Dummies Quick Reference

arrays (continued)
number of dimensions in, 116
pointers to, 117
struct MyStuff type, 115
assignment (=) operator, 168-169
ATL (Active Template Library)
objects, 12, 17
ATL-COM AppWizard, 12
automatic variables, 126-127, 151-152, 190
automation, 46, 51, 190
AVl files and animation controls, 63-64

8

Backward Help Topic (Ctrl+Shift+Right
Arrow) shortcut key, 108
base classes, 148-149, 190
deriving classes, 144, 155
generic classes, 35
Microsoft Foundation Class names, 34
overriding functions, 60
binary arithmetic operators, 168
bit control operators, 170
bitmaps, 65-67, 110, 190
.bmp file, 111
Bookmark dialog box, 53
bookmarks, 53-54, 190
Alt+F2 shortcut key, 53
break statement, 137, 141
Breakpoint Condition dialog box, 42
breakpoints, 190
clearing, 42
conditional, 42-43
debugging, 47-48
enabling/disabling without removing, 42
setting, 41-42
Breakpoints dialog box, 42
browse sequences, 102-103
bubble sort routine, 131-132
Build (F7) shortcut key, 43, 44
ild menu, 10
Build MiniBar
Build button, 22, 44
Compile button, 47
Stop Build button, 47
Build toolbar
Build button, 22, 44
Compile button, 47
Go button, 47
Insert/Remove Breakpoint button, 41, 42
Stop Build button, 47
build window, 15
Build=Build program executable
command, 43, 44
Buildw:Compile filename command, 47
building applications, 43-44
Build=-Set Active Configuration command,
30, 43, 44

Build:: Start Debugt:Go command, 47

Build«: Start Debuge:Run to Cursor
command, 48

button controls, 69, 80

buttons, 190

¢

The C Programming Language, 121
CAboutDIlg class, 182
CAnimal class, 148
CAnimate class, 69
CAnimateCtr] class, 65
CApplication class, 182
CArchiveException class, 51
case statement, 139, 140-141
casting variables, 119-120
catch statement, 52-53
CAutomobile class, 155
CButton class, 69
CCat class, 148
CCharlist class, 70
CChildFrame class, 182
CCmdTarget class, 162, 183
CComboBox class, 69
CCommonDialog class, 184
CCreate() function, 65
CDaoException class, 51
CDBException class, 51
CDialogclass, 39, 162, 182, 183, 184
CDocument class, 27, 182
CDog class, 148, 153, 157, 158, 160
CDomestic class, 148-149
CEdit class, 69
CEditView class, 29
CFileException class, 51
CFireHydrant class, 157, 158
CFormView class, 30
CFrameWnd class, 182
CGI (Common Gateway Interface)
programs, 13
char data type, 118, 120
CHeaderCtrl class, 69
Check Box, 190
Choose Directory dialog box, 55, 56
CHotKeyCtrl class, 69
CImagelist class, 69
class keyword, 154, 163
Class View, 190
classes, 190
abstract, 144-145
accessing members, 145-148
adding functions to, 37-39
adding member functions, 38
adding new, 17
adding to projects, 34-35
adding virtual functions, 38-39
application, 182-183

Index

automation support, 46
base, 34, 148-149
constructors, 152-154
declaring, 154-155
definition of, 60
derived, 148, 155-156
destructors, 156-157
displaying, 59
files containing selected, 60
filters, 59
friend, 157-158
header file name, 34
information about, 46
inserting functions, 60
listing in projects, 16
listing member functions, 16, 60
listing variables, 16
member variables, 46
message handler functions, 45
naming, 29-30, 34
pointer variable to object of, 46
private variables, 149
program file name, 34
template-based, 12
variables, 149-152
view, 29-30
virtual, 164-165

ClassWizard, 20, 34, 45-46, 190
ActiveX Events tab, 46
Add Class button, 34, 46
Add Classe>New command, 77
Add Event button, 46
Add Function button, 40, 73
Add Member Function dialog box, 73
Add Method button, 46
Add Property button, 46
Add Variable button, 70
Adding a Class dialog box, 75
adding member variable, 70-72
adding message handlers, 39-40, 72-73
adding MFC classes with, 34
Automation tab, 46
base class call, 72
Base Class combo box, 34, 77, 78
Browse buttons, 34
Category=Control command, 70
Change button, 34
Class Info tab, 46
Class Name box, 39, 46
comment text in body of function, 72
Ctrl+W shortcut key, 34, 39, 45, 77, 78, 85
Dialog ID combo box, 34
Edit Code button, 34, 40, 73
File edit box, 34
generic classes and, 34
Header File edit box, 34
Member Functions list box, 40
Member Variables tab, 46, 70
Message filter combo box, 46
Message Maps tab, 40, 45, 72-73

Messages list box, 40

Messages panel, 72

Name Edit box, 34

naming functions, 159-160

New option, 34

Object IDs box, 40, 46, 72

Project combo box, 39, 46

From a type library option, 34

Wizard Bar and, 45
Clear All Bookmarks (Ctrl+Shift+F2)

shortcut key, 54

CListBox class, 69
CListCtrl class, 69
CListView class, 30
CMainfFrame class, 182
CMDIChildWnd class, 182
CMDIframe class, 182
CMemoryException class, 51
CMNCTRLS sample program, 64
CMultiDocTemplate object, 37
CMyappApp class, 182
CMyappCntrltem class, 182
CMyappDoc class, 182
CMyappView class, 182
CObject class, 162, 183
code, testing, 46-47
COLECYIientItemclass, 182
COLEDispatchException class, 51
C0letxception class, 51
CO0lePropertyPage class, 184
COM (Component Object Model), 12, 191
combo box controls, 68-69, 80-81
combo boxes, 190
command enablers, 185-186
comments, 29
common controls, 67-73, 191

adding member variables, 70-72

creation of, 68-70

editing text, 75

labeling, 75-76

message handlers, 72-73
Common Controls toolbar, 68-69
common dialog boxes, 191
Compile dialog box, 94-95
Compile (F7) shortcut key, 22
Compile Single File (Ctrl+F7) shortcut

key, 22, 47

compiler, 47
compound document support, 25-26
conditional assignment operator, 169
conditional breakpoints, 42-43
const keyword, 119
constants, 120-121
constructors, 152-154, 161, 191
container-type programs, 25
contents file, 97-99
context-sensitive Help, 191
context-sensitive menus, 10
continue statement, 137

Visual C++ 6 For Dummies Quick Reference

control classes member functions, 67, 68

controls, 191
copy constructors, 153-154
count variable, 150-151
counter variable, 151
.cpp files, 47-48
CProgressCtrl class, 69
CPropertyPage class, 77, 184
CPropertySheet class, 77, 91
Create() function, 176
CResourceException class, 51
CRichEditCntritemclass, 182
CRichEditDoc class, 182
CRichEditView class, 25, 29
CScrollBar class, 69
CScrollView class, 30
CSeek () function, 65
CSimpleException class, 51
CSingleDocTemplate object, 37
CSliderCtrl class, 70
CSpinButtonCtri class, 70
CSplashWnd class, 176
CStatic class, 70
CStatusBarCtrl class, 70
CString class, 124-125, 161, 171-172
CTabCtrl class, 70
CTool class, 144
CTcolBarCtrl class, 70
CToolTipCtrl class, 70
CToolType() pure virtual function,
144, 147
CTreeCtrl class, 70
CTreeView class, 30
CUserException class, 51
Custom AppWizard, 13
custom controls, 191
custom wizards, 13
Customize dialog box, 6-9, 11
CView class, 29, 145
CWild class, 148
CWinApp () function, 23
CWinThread class, 177
CWnd class, 162

D

DAO (Data Access Objects), 25, 51
data types, 118-119
database support for applications, 25
DBHE (Dialog Box Help Editor), 112
Debug application version, 43-44, 191
Debug toolbar, 48
debug window, 15
debugger

messages from, 17

Step Into command, 57
debugging, 47-48, 191

breakpoints, 41, 47-48

pausing execution, 48

setting display and behavior options, 7
tracking variable or expression value,
58-59
work-your-way-down technique, 48
decision-making statements
i f statements, 133-136
switch statements, 138-141
decrement operators, 170-171
default accelerator table, 62
default case, 141
delete() function, 76
Delete tool, 11
de-referencing the pointer, 115
derived classes, 148, 155-156, 162
desktop, 191

desktop icon, 13

destructors, 156-157, 191
Developer Studio, 7
developers network information, 16
Developer's Workshop, 6

Build menu, 10

context-sensitive menus, 10

customizing, 6-7

customizing Tools menu, 11

Delete tool, 11

Edit menu, 10

File menu, 10

Help menu, 10

Insert menu, 10

menus, 10-11

menus and toolbars, 6

Menus dialog box, 6

messages to you, 17

Project menu, 10

Tools dialog box, 6

Tools menu, 10

ToolsCustomize command, 6, 11

Tools:>Options command, 6

View menu, 10

Window menu, 10

wizard bar action menu, 11
DevStudio=SharedIDE=>bin command, 13
dialog boxes, 192

adding dialog classes, 74-75

creation of, 74

file extensions used to display files in, 36

text displayed in, 36
dialog classes, 67, 74-75, 183~185
dialog command enablers, 185-186
dialog-based application, 192
dialog-based applications, 21, 24, 26
.dib file, 111
dillo.avi file, 64
D11Main() function, 23
DLLs (dynamic link libraries), 23, 67, 192
dock, 192
document templates

adding, 35-37

strings, 27-28

document types, 28
document-based applications, 21, 24, 26
documents

editing data, 29-30

including nontext files. 25
DoDatatxchange () member function,

64, 67

DoModal () member function, 91, 184
double data type, 119
do-while loops, 137, 138, 141
Dynamic Linking, 192
DYNAMIC_DOWNCAST class casting

macro, 91
E

edit box control, 69, 75
Edit Breakpoint (Alt+F9) shortcut key, 42
edit controls, 68, 75-77, 192
Edit menu, 10
Edit toolbar, 53-54
Edit>Bookmarks command, 53, 54
Edit< Breakpoints command, 42
Edit>Find command, 54
editing
accelerators, 62
bitmaps, 65-66
document data, 29-30
Help files, 95
program files, 48-49
source files, 15
editing Help files
browse sequences, 102-103
footnotes, 100-102
graphics, 103
hotspots, 103-104
links, 104-105
macros, 105-106
topic pages, 106
Editing window, 14, 15
elements, tree view of, 15-17
else keyword, 134, 135
encapsulation, 163
EndDialog() member function, 184
error handling 49-50
error messages, 17
errors
automation operation, 51
building applications, 44
compiling single file and, 46—47
during DAO (Data Access Object)
operation, 51
encountered during file operation, 51
feature not available, 51
memory, 51
during OLE operation, 51
Open Database Class, 51
programing, 49-50
syntax, 50

thrown during serialization, 51
Windows cannot find or allocate
memory, 51
exception classes, 50-51
exception handling, 50-53
automation operation errors, 51
catch statement, 52-53
error encountered during file
operation, 51
error thrown during serialization, 51
errors during DAO (Database Access
Object) operation, 51
errors during OLE operation, 51
feature not available error, 51
memory error, 51
Open Database Class errors, 51
try statement, 51-52
user performs unexpected operation, 51
Windows cannot find or allocate
memory, 51
exceptions, 192
thrown, 51-52
expressions, 58-59
extern variables, 126

F

feature not available error, 51
File dialog box and overriding file
types, 28
file extensions used to display files in
dialog boxes, 36
File Manager, registering file type with, 36
File menu, 10
File Open dialog box, 36
file types, 28
File View, 192
filecopy.avi file, 64
File<>Find in Files command, 55
Filer::Help Author command, 108
Files:New command, 12, 20, 22
Filec> Newr>Help Project command, 96
Filee>Open command, 48
FilewReplace command, 56
files
adding existing, 20
adding to projects, 20
compiling single, 22, 46-47
containing selected class, 60
listing by category, 16
location during editing/building, 7
new, 20
opening, 48-49
filters, 59
Find (Ctrl+F) shortcut key, 54
Find dialog box, 54
Find In Files command, 17
Find In Files dialog box, 15, 17, 55-56
Find() member function, 125

 Uisual C++ 6 For Dummies Quick Reference

FindOne0Of () member function, 125
First Help Topic (Ctri+Shift+Home)
shortcut key, 108
first variable, 151
FirstPage.h header file, 78
float data type, 119
folders, new, 17
for loops, 130-132, 137, 138
bubble sort routine, 131-132
initializing code, 130
modifying code, 130
test code, 130
forever loops, 132-133
Format () member function, 125
Forward Help Topic (Ctrl+Shift+
Left Arrow) shortcut key, 108
friend classes, 157-158
friend keyword, 157
functions, 158-161
adding to classes, 37-39
body of, 60
case sensitivity, 160
declaring, 158
inline, 158-159
inserting in class, 60
message handler, 45
naming, 159-160
next in source file, 60
overloading, 160-161
overriding base class function, 60
pointers to, 121-122
previous in source file, 60
private, 147
prototyping, 158
public keyword, 147-148
pure virtual, 144
source line declaration of, 60
stepping into, 57
stepping out of, 58
stepping over, 58
as structure members, 122
as variables, 121-122
virtual, 161, 162

G

Getlength() member function, 125
GetLine() function, 76

GetPos () member function, 68
GetRange() member function, 68
GetRangeMax () member function, 68
GetRangeMin() member function, 68
GetSel () function, 82

GetText () function, 82
GetTextlen() function, 82
GetToolType() function, 159
GetTopIndex() function, 82

goto statement, 136

GotoD1gCtr1() member function, 184
graphics and Help files, 103

grep command, 53, 55

Group Box, 192

H

Gallery dialog box, 176

generic catch block, 52-53

generic classes, 34-35

GetAt () member function, 125

GetBreed() function, 160

GetBuddy () member function, 68

GetCount () function, 82

GetDefID() member function, 184

GetDlgltemText () member function,
68, 76

GetItem() member function, 68

GetItemData () member function, 68, 82

GetItemText () member function, 68

harbor, 192
header control, 69, 192
header files (.h), 48, 192
naming, 34
Help Author mode, 108
Help files
editing, 95, 100-106
Help Author mode, 108
rich text editor, 95
testing, 107-108
Help menu, 10
Help project
A-link and K-link macros, 99
compiling, 94-95
contents file, 97-99
creation of, 95-100
editing Help files, 100-106
file containing most Help topics, 98
Help Author mode, 108
hotspots, 103-104
new window types, 99-100
tabs, 99
topic files, 95
topic tree control, 98
Help Project dialog box, 99
Help system macros, 105-106
Help toolbar, 94
Help tools, 110-112
Help Topics dialog box, 97-99
Help Workshop
Add Above or Add After button, 105
Alias button, 97
Bitmaps button, 96
Close All Help command, 107
Config button, 97
Contents File command, 107
Data Files button, 97
File:Compile command, 94
FilebHelp Author command, 108
FilectNew command, 97

Index

Filess Newr: Help Project command, 96
Files button, 96
Help file, 107
Help Project Window buttons, 96
Macro radio button, 105
Map button, 96
New dialog box, 97
Options button, 96
Save and Compile button, 97
Send a Macro command, 107-108
Test button, 107
Test menu, 107
topic files, 109-110
Topic Information menu, 108
Windows button, 96
WinHelp APl command, 108
Helpr>Help Topics command, 106, 107
horizontal/vertical scroll bar control, 69
Hot Key, 192
hotkey control, 69
hotspots, 103-104
hypergraphics, 110-111

o]e

icons, 193

IDE (Integrated Development
Environment), 193

customizing toolbars, 7-9

customizing window appearance, 7

default startup behavior, 7

location of files during editing/building, 7

opening files, 48-49

setting tab stops and file types, 7

Toolse>Customize command, 8, 9

windows, 14-17

Wizards, 19

f statements

if-else statement, 134-135

multiple e1se conditions, 135-136

simple, 133-134

if-else statement, 134-135

[fThen macro, 106

image list control, 69, 193

Image=-Toolbar Editor command, 67

importing bitmaps, 66

increment operators, 170-171

indirection, 123

Info View, 193

InfoViewer windows, 7, 14

inheritance, 162-164

Initializelex() function, 177

Initinstance() function, 37, 176

inline functions, 158-159

Insert menu, 10

Insert Resource (Ctrl+R) shortcut key,

74,77
Insert Resource dialog box, 74, 77
InsertcoNew Class command, 35

Insert/Remove Breakpoint (F9) shortcut
kev, 41, 42

int data type, 118, 120

_intn datatype, 119

ISAPI Extension Wizard, 13

ISAPI (Internet Server Application
Programming Interface) extensions
or filters, 13

IsEmpty() member function, 125

o]e

JumpContents macro, 106

oo

KLink macro, 104

o/ o

labels, 136, 193
languages, 24
Last Help Topic (Ctrl+Shift+End) shortcut
key, 108
Left () member function, 125
LibMain() function, 158
LinelLength() function, 76
linking, 193
list box controls, 68, 69, 81-83, 193
list controls, 68, 69, 83, 193
List0fChars structure, 70
LoadStdProfileSettings()
function, 180
logical operators, 171
Tong data type, 119
Tong double data type, 119
loops, 193
for, 130-132, 137, 138
do-wnile, 137, 141
forever, 132-133
nested, 138
terminating, 137
while, 137, 138, 141-142

oM o

macro files, 7

main{) function, 158

makefiles, 7

Makelower () member function, 125

MakeReverse() member function, 125

MakeUpper () member function, 125

malloc statement, 51

MAPI (Messaging Applications Program-
ming Interface), 27, 193

Visual C++ 6 For Dummies Quick Reference

maximizing windows, 28
MDI (multiple document interface), 21, 194
client area, 14, 15
member functions, 193
adding to classes, 38
control classes, 67, 68
declaring, 38
listing, 16, 60
permissions, 38
type, 38
member variables, 46, 194
common controls, 70-72
memory
errors, 51
Windows cannot find or allocate, 51
memory leak, 156
memset () function, 76
menus, 6, 10-11, 194
message boxes, 194
message handlers, 194
adding, 39-41, 60
ClassWizard, 39-40
common controls, 72-73
dialog box control, 39
functions, 45
listing, 60
MFC, 39
Wizard Bar, 40-41
message maps, 194
MFC ActiveX Control Wizard, 12
MFC AppWizard, 12, 20, 22
3D Controls option, 27
adding features to applications, 26-27
Advanced button, 27
Advanced Options dialog box, 27-29
afxdb.h header file, 25
Automation option, 23
Both Container and Server option, 26
comments and library options, 29
compound document support, 25-26
Container option, 25
Context-sensitive help option, 26, 95
Database View With File Support radio
button, 25
Database View Without File Support
radio button, 25
dialog-based applications, 24
Docking toolbar option, 26
document template strings, 27-28
document-based applications, 24
Full server option, 25
Header Files Only radio button, 25
Help files, 95
How Many Files Would You Like on Your
Recent File List text box, 27
Initial status bar option, 26
launching dialog box on startup, 21
MAPI (Messaging Applications Program-
ming Interface) option, 27

MDI (Multiple Document Interface)
support, 21
MFC Extension DLL option, 23
Mini-server option, 25
Multiple Document application, 24
naming classes, 29-30
New dialog box, 31
None radio button, 25
Print and print preview option, 26
project settings, 30-31
Regular DLL using shared MFC DLL
option, 23
Regular DLL with MFC Statically Linked
option, 23
selecting application type, 24
Single Document application, 24
utility libraries, 31
window styles, 28-29
Windows Sockets option, 23, 27
WOSA (Windows Open Services
Architecture) options, 27
MFC classes, 34-35
MFC DLLs (dynamic link libraries), 23
MFC library, 29
MFC message handlers, 39
MFC (Microsoft Foundation Class), 19, 194
applications, 22
exception classes, 50-51
inheritance, 162
MFC (Microsoft Foundation Class) library
application classes, 182-183
dialog classes, 183-185
dialog command enablers, 185-186
programming tips, 188-187
Microsoft product information, 16
Microsoft Word
double-underline mode, 103
footnotes, 109
Help file footnotes, 102
hidden text, 104, 109
text modes, 109
topic files, 109
underline mode, 103
Mid () member function, 125
minimizing windows, 28
MRU (Most Recently Used) list, 27, 194
multidimensional arrays, 116
multiple inheritance, 164
multithreading, 194
My Computer, 13
MyArray array, 114
MyDogToo copy constructor, 153-154

o\ e

named bookmarks, 53-54
nested loops, 138
new accelerator tables, 63

Index

New Class dialog box, 35, 60
New (Ctrl+N) shortcut key, 12, 22
New dialog box, 12

Above or Below button, 98

Add to Project check box, 20

Default Filename field, 98

Default Title field, 98

Edit Contents Tab Entry area, 98

Files tab, 12, 20

Index Files button, 99

Link Files button, 99

MFC AppWizard (.dll) option, 23

Move Right or Move Left button, 98

Project Name edit box, 20

Projects page, 22

Projects tab, 12, 23

Tabs button, 99

text displayed in, 36

Title edit box, 98
New Virtual Override dialog box, 39
New Windows Message and Event

Handlers dialog box, 41, 60
newline (\n) character, 36
Next Bookmark (F2) shortcut key, 54
Next Help Topic (Ctrl+Shift+Home)
shortcut key, 108

NextDlgCtrl () member function, 184

o() e

object code, 194

ODBC (Open Database Connectivity), 25

.ODL (object description language) files,
12,31

OLE (Object Linking and Embedding),
25-26

errors during operation, 51
OnCancel () member function, 185
OnChangeBasket () function, 160
OnFileNew() function, 160
OnHScrol1 () function, 85
OnInitDialog() member function, 81,
84, 85, 87, 88, 92, 163, 184
initializing control in, 70-71
On0K () member function, 185
OnSetActive() virtual function, 91, 92
ON_UPDATE_COMMAND_UI message, 186
OnVScroll () function, 86
Open (Ctri+O) shortcut key, 48
Open Database Class errors, 51
Open dialog box, 48
opening files, 48-49
operators, 194
arithmetic, 168
assignment (=), 168-169
bit control, 170
conditional assignment, 169
increment and decrement, 170-171
logical, 171

overloading, 171-172
precedence and order of evaluation,
172-173
sizeof, 173
Options dialog box, 7
ordinary bookmarks
clearing, 54
setting or clearing, 53
Output window, 15, 17, 195
adding tabs to, 17
Build tab, 17, 44, 47
Debug tab, 17
Find in Files 1 and Find in Files 2 tab, 17
Find in Files 1 pane, 56
Find in Files 2 pane, 56
overloading
constructors, 154, 161
functions, 160-161
operators, 171-172

opPe

Play () function, 65
pointer arithmetic, 123-124
pointer variables, 117, 122-124
declaring, 122-123
dereferencing, 123
to object of class, 46
typecasting, 124
pointers, 195
accessing array elements, 115
to arrays, 117
de-referencing, 115
to functions, 121-122
popup, 195
PrevD1gCtrl () member function, 184
Previous Bookmark (Shift+F2) shortcut
key, 54
print preview, 195
printf statement, 150-151
private keyword, 145, 146-147
private variables
classes, 149
processes, 195
program files
editing, 48-49
naming, 34
programming errors, 49-50
programming tools information, 16
programs, 195
adding and deleting from Tools menu, 11
compiling, 21-22
debugging, 47-48
displaying elements, 15-17
pausing execution of, 41-43
results of compiling and linking, 17
running, 21-22
stepping through, 57-58
tree view of elements, 15-17

Visual C++ 6 For Dummies Quick Reference

Progress Bar, 195
progress bar controls, 83-84
progress control, 69
Project menu, 10
Projectri'Add to ProjectvComponents
and Controls command, 176
Project:iAdd to ProjectriFiles
command, 20
projects, 195
as active project, 17
adding classes, 34-35
adding existing files, 20
adding files, 20
adding to workspace, 17
displaying classes, 59
listing classes, 16
listing files by category, 16
location of files during editing/building, 7
naming, 22
new files, 20
settings, 30-31
sharing .res files, 30
Project=>Settings command, 30
Properties dialog box, 79
property pages, 77
adding to property sheet, 78
creation of, 77-78
resizing, 78
property sheets, 195
adding property pages, 78
building wizard from, 90-91
creation of, 77
titles, 79
protected functions, 149
protected keyword, 145, 147
pRtfTemplate pointer, 37
public functions, 149
public keyword, 145, 147-148
pure virtual functions, 144

oQo

QuickWatch, 58-59, 195
Shift+F9 shortcut key, 59

o R e

radio button controls, 84, 196
RegCloseKey () function, 180
RegCreateKey () function, 180
RegCreateKeyEx () function, 180
RegDeleteKey () function, 180
RegFlushKey() function, 180
register variables, 126
Registry, 178-180, 196

file type names, 28

HKEY CLASSES_ROQT key, 28

HKEY_CURRENT_USER key, 179
HKEY CURRENT_USER\Software\
The Howdy Company key, 179
HKEY USERS key, 27
Software entry, 179
Reg0OpenKey () function, 180
Reg0OpenKeyEx () function, 180
Release application version, 44, 196
Replace (Ctrl+H) shortcut key, 56
Replace dialog box, 56-57
replacing text, 56-57
res files, 30
resizing property pages, 78
resource files, 49
saving, 17
Resource Includes dialog box, 17
Resource View, 196
Resource Workshop, 16
resources, 196
adding or importing objects, 17
editing symbols, 17
listed by object type, 16
return statement, 159
Reversefind() member function, 125
rich edit control, 69, 75, 196
rich text editor, 95
topic files, 109
Right () member function, 125
RLE (Run-Length Encoding) and anima-
tion controls, 63
.rtf (rich text) documents, 36-37
Run (F5) shortcut key, 22, 47
Run () function, 177
Run to Cursor (Ctrl+F10) shortcut key, 48
running programs, 21-22

oS e

scroll bar controls, 84, 196
SDI (Single Document Interface), 21
search.avi file, 64
searching for text
bookmarks, 53-54
Find command, 54
Find in Files command and window,
55-56
replacing text, 56-57
source files, 55-56
selection controls
Accept files style, 79
button controls, 80
Client edge style, 79
combo box controls, 80-81
Disabled style, 79
Group style, 79
Help ID style, 79
list box controls, 81-83
list controls, 83
Model frame style, 79

Index

No parent notify style, 79
progress bar controls, 83-84
radio button controls, 84
Right aligned style, 80
Right-to-left style, 80
scroll bar controls, 84
slider controls, 84-86
spin button controls, 86-87
Static edge style, 79
tab controls, 87-88
Tabstop style, 79
Transparent style, 79
tree controls, 88-90
Visible style, 79
serialization, 25
Set Active Project Configuration dialog
box, 43
SetAt () member function, 125
SetBuddy () member function, 68
SetCurSel () function, 81
SetDefID() member function, 184
SetDlgltemText () member function,
68, 76, 77
SetItem() member function, 68
SetItemData() member function,
68, 81, 82
SetltemText () member function, 68
SetPopupColor macro, 106
SetPos () member function, 68
SetRange () member function, 68
SetRangeMax () member function, 68
SetRangeMin{() member function, 68
SetRegistryKey () function, 179
SetTicFreq() function, 85
Settings (Alt+F7) shortcut keys, 30
Settings dialog box, 30-31
SetWizardButtons() function, 91, 92
SetWizardMode () function, 91
Shed (Segmented Hypergraphics Editor),
110-111
ShellExecute macro, 106
.shg file, 111
short data type, 118
shortcut keys, 67
ShortCut macro, 106
signed keyword, 119
simple i f statements, 133-134
Single-Document Interface, 196
sizeof operator, 173
slider controls, 68, 70, 84-86, 196
sockets, 196
source code, 197
comments, 29
source files (.cpp), 48
child window, 14
compiling, 47
directories searched in, 55
editing, 15
next function, 60
previous function, 60

searching through, 55-56
text searched for, 55
type filter, 55
spin button controls, 70, 86-87
spinner controls, 68, 197
splash screens, 176
.srb files, 43
Standard toolbar, 55
standard toolbars, resetting, 9
Start:>*Help Workshop command, 96
Startt:i Programse Microsoft Visual
C++ 6.0c0Microsoft Visual C++ 6.0
command, 14
static keyword, 126, 151, 152
static linking, 197
static text control, 70, 75-76
static variables, 126, 127, 151-152, 197
STATIC_DOWNCAST class casting macro, 91
status bar control, 70, 197
Step Intocommand, 57
Step Into (F11) shortcut key, 57
Step Out command, 58
Step Out (Shift+F11) shortcut key, 58
Step Over command, 58
Step Over (F10) shortcut key, 48, 58
stepping into functions, 57
stepping out of functions, 58
stepping over functions, 58
stepping through programs, 57-58
string handling, 124-125
String Properties dialog box, 36
string table, 197
string table entry, 35-37
resource ID, 36
string fields, 36
strings, 197
struct keyword, 163
structures, 163-164
functions as members, 122
switch statements, 138-141, 197
break statement, 141
case statement, 139, 140-141
default case, 141
variables, 139
syntax errors, 50

o e

tab controls, 70, 87-88, 197
taskbar, application running as icon, 29
template-based classes, 12
templates
adding, 35-37, 37
adding string table entry to definition, 36
applications, 27-28
creation of, 37
file types, 28
rtf (rich text) documents, 36-37
string table entry, 35-37

Visual C++ 6 For Dummies Quick Reference

testing
code, 46-47
Release application version, 44
text
replacing, 56-57
retrieving from text control, 76-77
searching for, 53-57

text control, retrieving text from, 76-77

text editor, 7
this pointer, 164, 197
threads, 176178, 198

animation, 177
thrown exceptions, 51-52
TLA (three-letter acronym), 198
TNC_SELCHANGE message, 87
Toggle Bookmark (Ctrl+F2) shortcut

key, 53

tool tip control, 70
tool tips, 198

enabling, 6
toolbar control, 198
toolbars, 70

adding commands, 6

adding tools, 8

from bitmaps, 66-67

customizing, 7-9

deleting, 9

displaying or hiding, 9

docking, 8

Go button, 22

large icons, 6

modifying, 6

naming, 8

new, 8

removing tools, 8, 9

renaming, 9
_ repositioning tools, 8

resetting, 9

visibility, 6
Tools menu, 10
» adding and deleting commands, 6
adding and deleting programs, 11
customizing, 11
Tools=>QuickWatch command, 59
topic files, 109-110
tree controls, 68, 70, 88-90, 198
TrimlLeft () member function, 125
TrimRight () member function, 125
try statement, 51-52
try-catch block example, 52
typecasting pointer variables, 124
TypeOfTool variable, 146, 147

ol o

unary arithmetic operators, 168
unhandled exceptions and try
statement, 51

unior keyword, 164

unions, 163-164

unsigned keyword, 119
UpdateData() member function, 67
utility libraries, 31

oo

variables, 126-127, 149-152
adding to Watch window, 58
automatic, 126-127, 151-152
casting, 119-120
extern, 126
functions as, 121-122
initializing, 152
listing, 16
naming, 150
passed by value, 123
register, 126
in scope, 59
scope, 150-151
static, 126, 127, 151-152
switch statements, 139
tracking value, 58-59

view classes, 29-30

View menu, 10

View':ClassWizard command, 39, 45

views, 198
base class, 29

View>Workspace command, 16

virtual classes, 164-165

virtual functions, 161, 162
adding to classes, 38-39

virtual keyword, 161, 163, 165

Visual C++
desktop icon, 13
Help tools, 110-112
Start menu, 14
starting, 13-14

Visual C++ 6 For Dummies, 161

void data type, 119

o(f/ o

warning messages while building
applications, 44
Watch window, 58
Name column, 58
watches, 58-59, 198
clearing, 58
QuickWatch, 58-59
setting, 58
while loops, 137, 138, 141-142
Window menu, 10
Window= ClassWizard command, 34
windows, 14-17
drop-down menu for managing, 29

Index

filling screen on startup, 29
maximizing, 28
minimizing, 28
styles, 28-29
thick border around frame, 28
Windows applications, 22
Windows programs
adding message handlers, 39-41
cannot find or allocate memory, 51
Windows Registry, 178-180
Windows Sockets, 27
WinMain() function, 158
Wizard Bar, 59-60, 198
Action button, 38, 40, 41, 60, 91
Action menu, 11, 60
Add Member Function command, 60
Add Member Function option, 38
Add Virtual Function command, 60, 91
Add Virtual Functions option, 38
Add Windows Message Handler
command, 40, 41, 60
C++ Filters combo box, 59
Class Box, 40
Class List combo box, 59
ClassWizard and, 45
combo boxes, 80
context tracking, 59
Filter box, 40
Go To Class Definition command, 60
Go to Function Declaration command, 60
Go to Function Definition command, 60
Go To Next Function command, 60
Go To Previous Function command, 60
Members List combo box, 60
message handlers, 40-41
navigating for function or class
definition, 49
New Class command, 60
Open Include File command, 60
wizards, 19, 198
creation of, 90-91
custom, 13
Finish button, 91-92
listing, 12
WM_DESTROY message, 81
WM_DROPFILES message, 79
wmf file, 111
WM_HSCROLL message, 85, 86
WM_IDLEUPDATE message, 185
WM_INITDIALOG message, 85
WM_KICKIDLE message, 185
WM. PARENTNOTIFY message, 79
WM_VSCROLL message, 85, 86
WordPerfect
double-underline mode, 103
footnotes, 110
Help file footnotes, 102
hidden text, 104, 110
text modes, 110
topic files, 109-110

underline mode, 103
Workshop Window, 66
workspace, 198
adding project to, 17
Alt+0 shortcut key, 16
Workspace pop-ups, 17
Workspace window, 15-17
Accelerator button, 63
Bitmap command, 65
Class View menu, 48
Class View panel, 16
as dockable object, 16
Docking View command, 17
File View panel, 16, 48
hiding and restoring panels, 16
Info View panel, 16
Insert Accelerator command, 63
[nsert command, 65
New command, 65
opening, 16
Resource View panel, 16, 35, 49, 62,
63, 65, 74
undocking, 16-17
WOSA (Windows Open Services Architec-
ture) options, 27
WriteProfileString() function, 179

oo

XOR operator, 170

IDG BOOKS WORLDWIDE
BOOK REGISTRATION

We want to hear
from you!

Visit http://my2cents.dummies.com to register this book and tell us
how you liked it!

Get entered in our monthly prize giveaway.

Give us feedback about this book — tell us what you like best,
what you like least, or maybe what you'd like to ask the author
and us to change!

Let us know any other ...For Dummies® topics that interest you.

Your feedback helps us determine what books to publish, tells us what
coverage to add as we revise our books, and lets us know whether we're
meeting your needs as a ...For Dummies reader. You're our most valuable
resource, and what you have to say is important to us!

Not on the Web yet? It’s easy to get started with Dummies 101°: The
Internet For Windows" 95 or The Internet For Dummies® 5th Edition, at
local retailers everywhere.

Or let us know what you think by sending us
a letter at the following address:

...For Dummies Book Registration
Dummies Press
7260 Shadeland Station, Suite 100

Indianapolis, IN 46256-3945 eRAL COMPUTER

Fax 317-596-5498 REFERENCE BOOK SERIES
RIES
PROMIDG TROMIDG

	Cover
	Contents
	Intro
	Pt1: Visual C++
	Pt2: Creating a new app
	Pt3: Building & debugging a project
	Pt4: The resource workshop
	Pt5: The help workshop
	Pt6: Constants arrays variables
	Pt7: Decision-making stmts
	Pt8: Classes
	Pt9: Operators
	Pt10: Taking advantage of Windows
	Pt11: MFC
	Glossary
	Index

