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Preface

The seventh edition of Schaum’s Outline of Electric Circuits represents a revision and timely update of 
materials that expand its scope to the level of similar courses currently taught at the undergraduate level. 
The new edition expands the information on the frequency response, polar and Bode diagrams, and first- 
and second-order filters and their implementation by active circuits. Sections on lead and lag networks 
and filter analysis and design, including approximation method by Butterworth filters, have been added, 
as have several end-of-chapter problems.

The original goal of the book and the basic approach of the previous editions have been retained. This 
book is designed for use as a textbook for a first course in circuit analysis or as a supplement to standard 
texts and can be used by electrical engineering students as well as other engineering and technology stu-
dents. Emphasis is placed on the basic laws, theorems, and problem-solving techniques that are common 
to most courses.

The subject matter is divided into 17 chapters covering duly recognized areas of theory and study. The 
chapters begin with statements of pertinent definitions, principles, and theorems together with illustra-
tive examples. This is followed by sets of supplementary problems. The problems cover multiple levels 
of difficulty. Some problems focus on fine points and help the student to better apply the basic principles 
correctly and confidently. The supplementary problems are generally more numerous and give the reader 
an opportunity to practice problem-solving skills. Answers are provided with each supplementary problem.

The book begins with fundamental definitions, circuit elements including dependent sources, circuit 
laws and theorems, and analysis techniques such as node voltage and mesh current methods. These theo-
rems and methods are initially applied to DC-resistive circuits and then extended to RLC circuits by the use 
of impedance and complex frequency. The op amp examples and problems in Chapter 5 have been selected 
carefully to illustrate simple but practical cases that are of interest and importance to future courses. The 
subject of waveforms and signals is treated in a separate chapter to increase the student’s awareness of 
commonly used signal models.

Circuit behavior such as the steady state and transient responses to steps, pulses, impulses, and expo-
nential inputs is discussed for first-order circuits in Chapter 7 and then extended to circuits of higher order 
in Chapter 8, where the concept of complex frequency is introduced. Phasor analysis, sinusoidal steady 
state, power, power factor, and polyphase circuits are thoroughly covered. Network functions, frequency 
response, filters, series and parallel resonance, two-port networks, mutual inductance, and transformers are 
covered in detail. Application of Spice and PSpice in circuit analysis is introduced in Chapter 15. Circuit 
equations are solved using classical differential equations and the Laplace transform, which permits a con-
venient comparison. Fourier series and Fourier transforms and their use in circuit analysis are covered in 
Chapter 17. Finally, two appendixes provide a useful summary of complex number systems and matrices 
and determinants.

This book is dedicated to our students and students of our students, from whom we have learned to teach 
well. To a large degree, it is they who have made possible our satisfying and rewarding teaching careers. 
We also wish to thank our wives, Zahra Nahvi and Nina Edminister, for their continuing support. The con-
tribution of Reza Nahvi in preparing the current edition as well as previous editions is also acknowledged.

MahMood Nahvi

Joseph a. edMiNister
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1

Introduction

1.1 Electrical Quantities and SI Units
The International System of Units (SI) will be used throughout this book. Four basic quantities and their SI 
units are listed in Table 1-1. The other three basic quantities and corresponding SI units, not shown in the 
table, are temperature in degrees kelvin (K), amount of substance in moles (mol), and luminous intensity in 
candelas (cd).

All other units may be derived from the seven basic units. The electrical quantities and their symbols 
commonly used in electrical circuit analysis are listed in Table 1-2.

Two supplementary quantities are plane angle (also called phase angle in electric circuit analysis) and 
solid angle. Their corresponding SI units are the radian (rad) and steradian (sr).

Degrees are almost universally used for the phase angles in sinusoidal functions, as in, sin(w t + 30°). 
(Since wt is in radians, this is a case of mixed units.)

The decimal multiples or submultiples of SI units should be used whenever possible. The symbols given 
in Table 1-3 are prefixed to the unit symbols of Tables 1-1 and 1-2. For example, mV is used for millivolt, 
10−3 V, and MW for megawatt, 106 W.

CHAPTER 1

Table 1-1

Quantity Symbol SI Unit Abbreviation

length
mass
time
current

L, l
M, m
T, t
I, i

meter
kilogram  
second
ampere

m
kg
s
A

Table 1-2

Quantity Symbol SI Unit Abbreviation

electric charge
electric potential
resistance
conductance
inductance
capacitance
frequency
force
energy, work
power
magnetic flux
magnetic flux density

Q, q
V, v
R
G
L
C
f
F, f
W, w
P, p
f
B

coulomb
volt
ohm
siemens
henry
farad
hertz
newton
joule
watt
weber
tesla

C
V
W
S
H
F
Hz
N
J
W
Wb
T
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CHAPTER 1  Introduction2

1.2 Force, Work, and Power
The derived units follow the mathematical expressions which relate the quantities. From ‘‘force equals mass 
times acceleration,’’ the newton (N) is defined as the unbalanced force that imparts an acceleration of 1 meter 
per second squared to a 1-kilogram mass. Thus, 1N = 1 kg · m/s2.

Work results when a force acts over a distance. A joule of work is equivalent to a newton-meter: 1 J =
1 N · m. Work and energy have the same units.

Power is the rate at which work is done or the rate at which energy is changed from one form to another. 
The unit of power, the watt (W), is one joule per second (J/s).

EXAMPLE 1.1 In simple rectilinear motion, a 10-kg mass is given a constant acceleration of 2.0 m/s2. (a) Find the 
acting force F. (b) If the body was at rest at t = 0, x = 0, find the position, kinetic energy, and power for t = 4 s.

(a) F ma= = = ⋅ =( )( . ) . .10 2 0 20 0 20 02kg m/s kg m/s N2

(b) At t = 4 s,    x at= = =1
2

2 1
2

2 22 0 4 16 0( . )( ) .m/s s m   

KE N m N m kJ

KE/

= = = ⋅ =

= =

Fx

P t

( . )( . ) .

.

20 0 16 0 320 0 32

0 3332 0 0 8 0 0 8kJ/4s kJ/s kW= =. .

1.3 Electric Charge and Current
The unit of current, the ampere (A), is defined as the constant current in two parallel conductors of infinite 
length and negligible cross section, 1 meter apart in vacuum, which produces a force between the conductors 
of 2.0 × 10−7 newtons per meter length. A more useful concept, however, is that current results from charges 
in motion, and 1 ampere is equivalent to 1 coulomb of charge moving across a fixed surface in 1 second. Thus, 
in time-variable functions, i(A) = dq/dt(C/s). The derived unit of charge, the coulomb (C), is equivalent to an 
ampere-second.

The moving charges may be positive or negative. Positive ions, moving to the left in a liquid or plasma 
suggested in Fig. 1-1(a), produce a current i, also directed to the left. If these ions cross the plane surface S
at the rate of one coulomb per second, then the resulting current is 1 ampere. Negative ions moving to the 
right as shown in Fig. 1-1(b) also produce a current directed to the left.

Of more importance in electric circuit analysis is the current in metallic conductors which takes place 
through the motion of electrons that occupy the outermost shell of the atomic structure. In copper, for 
example, one electron in the outermost shell is only loosely bound to the central nucleus and moves freely 
from one atom to the next in the crystal structure. At normal temperatures there is constant, random motion 
of these electrons. A reasonably accurate picture of conduction in a copper conductor is that approximately 
8.5 × 1028 conduction electrons per cubic meter are free to move. The electron charge is −e = −1.602 × 10−19 C,   

Table 1-3

Prefix Factor Symbol

pico
nano
micro
milli
centi
deci
kilo
mega
giga
tera

10−12

10−9

10−6

10−3

10−2

10−1

103

106

109

1012

p
n
µ
m
c
d
k
M
G
T
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CHAPTER 1  Introduction 3

so that for a current of one ampere approximately 6.24 × 1018 electrons per second would have to pass a fixed 
cross section of the conductor.

EXAMPLE 1.2 A conductor has a constant current of 5 amperes. How many electrons pass a fixed point on the con-
ductor in 1 minute?

 

5 5

1 602

A C/s 60 s/min 300 C/min

300 C/min

= =

×

( )( )

. 110
1 87 1019

21
− = ×

C/electron
electrons/min.

  

1.4 Electric Potential
An electric charge experiences a force in an electric field which, if unopposed, will accelerate the charge. Of 
interest here is the work done to move the charge against the field as suggested in Fig. 1-2(a). Thus, if 1 joule 
of work is required to move the 1 coulomb charge Q, from position 0 to position 1, then position 1 is at a potential 
of 1 volt with respect to position 0; 1 V = 1 J/C. This electric potential is capable of doing work just as the 
mass in Fig. 1-2(b), which was raised against the gravitational force g to a height h above the ground plane. 
The potential energy mgh represents an ability to do work when the mass m is released. As the mass falls, it 
accelerates and this potential energy is converted to kinetic energy.

Fig. 1-1 

Fig. 1-2 

EXAMPLE 1.3 In an electric circuit, an energy of 9.25 µJ is required to transport 0.5 µC from point a to point b. What 
electric potential difference exists between the two points?

  1 1
9 25 10

10

6

volt joule per coulomb
J

0.5
= = ×

×

−

V
.

−− =6 18 5
C

V.   
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CHAPTER 1  Introduction4

1.5 Energy and Electrical Power
Electric energy in joules will be encountered in later chapters dealing with capacitance and induc tance whose 
respective electric and magnetic fields are capable of storing energy. The rate, in joules per second, at which 
energy is transferred is electric power in watts. Furthermore, the product of voltage and current yields 
the electric power, p = ni; 1 W = 1 V · 1 A. Also, V · A = (J/C) · (C/s) = J/s = W. In a more fundamental 
sense power is the time derivative p = dw/dt, so that instantaneous power p is generally a function of time. 
In the following chapters time average power Pavg and a root-mean-square (RMS) value for the case where 
voltage and current are sinusoidal will be developed.

EXAMPLE 1.4 A resistor has a potential difference of 50.0 V across its terminals and 120.0 C of charge per minute 
passes a fixed point. Under these conditions at what rate is electric energy converted to heat?

(120.0 C/min)/(60 s/min) 2.0 A (2.0 A)(50.= =P 000 V) 100.0 W=   

Since 1 W = 1 J/s, the rate of energy conversion is 100 joules per second.

1.6 Constant and Variable Functions
To distinguish between constant and time-varying quantities, capital letters are employed for the constant 
quantity and lowercase for the variable quantity. For example, a constant current of 10 amperes is written   
I = 10.0 A, while a 10-ampere time-variable current is written i = 10.0 f (t) A. Examples of common func-
tions in circuit analysis are the sinusoidal function i = 10.0 sin wt (A) and the exponential function   
n = 15.0 e−at (V).

SoLVEd ProbLEMS

1.1 The force applied to an object moving in the x direction varies according to F = 12/x2 (N). (a) Find the 
work done in the interval 1 m ≤ x ≤ 3 m. (b) What constant force acting over the same interval would 
result in the same work?

(a) dW F dx W
x

dx
x

= = = −





=∫so J
12

12
1

82
1

3

1

3

(b) 8 2J mc= F ( )   or  Fc N= 4  

1.2 Electrical energy is converted to heat at the rate of 7.56 kJ/min in a resistor which has 270 C/min 
passing through. What is the voltage difference across the resistor terminals?

From P = VI,

V
P
I

= = × = =7 56 10
270 28

3. J/min
C/min J/C 28 V  

1.3 A certain circuit element has a current i = 2.5 sin w t (mA), where w is the angular frequency in rad/s, 
and a voltage difference n = 45 sin w t (V) between its terminals. Find the average power Pavg and the 
energy WT transferred in one period of the sine function.

Energy is the time-integral of instantaneous power:

W i dt t dtT = = =∫ ∫υ ω π
ω

π ω π ω

0

2
2

0

2

112 5
112 5

/ /

. sin
.

(mJJJ)

The average power is then

P
WT

avg / mW= =2 56 25π ω .

Note that Pavg is independent of w .
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CHAPTER 1  Introduction 5

 1.4 The unit of energy commonly used by electric utility companies is the kilowatt-hour (kWh). (a) How 
many joules are in 1 kWh? (b) A color television set rated at 75 W is operated from 7:00 p.m. to 11:30 p.m. 
What total energy does this represent in kilowatt-hours and in mega-joules?

 (a) 1 kWh = (1000 J/s)(3600 s) = 3.6 MJ
 (b) (75.0 W)(4.5 h) = 337.5 Wh = 0.3375 kWh 

 (0.3375 kWh)(3.6 MJ/kWh) = 1.215 MJ

 1.5 An AWG #12 copper wire, a size in common use in residential wiring, contains approximately 2.77 × 1023 
free electrons per meter length, assuming one free conduction electron per atom. What percentage of these 
electrons will pass a fixed cross section if the conductor carries a constant current of 25.0 A?

25.0 C/s

1.602 10 C/electron
1.56 10 elect20

×
= ×−19 rron/s

(1.56 10 electron/s)(60 s/min)20× = ×9 36. 11021 electrons/min

9.36 10

2.77 10
(100) 3

21

23
×
×

= ..38%

 1.6 How many electrons pass a fixed point in a 100-watt light bulb in 1 hour if the applied constant voltage 
is 120 V?

100 120

3600

W V A 5/6 A

5/6 C/s

= × =( ) ( )

( )(

I I

ss/h

C/electron
electr

)

.
.

1 602 10
1 87 1019

22

×
= ×− oons per hour

 

 1.7 A typical 12 V auto battery is rated according to ampere-hours. A 70-A · h battery, for example, at a 
discharge rate of 3.5 A has a life of 20 h. (a) Assuming the voltage remains constant, obtain the energy 
and power delivered in a complete discharge of the preceding battery. (b) Repeat for a discharge rate 
of 7.0 A.

(a) (3.5 A)(12 V) = 42.0 W (or J/s)
 (42.0 J/s)(3600 s/h)(20 h) = 3.02 MJ
(b) (7.0 A)(12 V) = 84.0 W
 (84.0 J/s)(3600 s/h)(10 h) = 3.02 MJ

  The ampere-hour rating is a measure of the energy the battery stores; consequently, the energy trans-
ferred for total discharge is the same whether it is transferred in 10 hours or 20 hours. Since power is 
the rate of energy transfer, the power for a 10-hour discharge is twice that in a 20-hour discharge.

SUPPLEMEntAry ProbLEMS

 1.8 Obtain the work and power associated with a force of 7.5 × 10−4 N acting over a distance of 2 meters in an elapsed 
time of 14 seconds.  Ans. 1.5 mJ, 0.107 mW

 1.9 Obtain the work and power required to move a 5.0-kg mass up a frictionless plane inclined at an angle of 30° 
with the horizontal for a distance of 2.0 m along the plane in a time of 3.5 s.  Ans. 49.0 J, 14.0 W

1.10 Work equal to 136.0 joules is expended in moving 8.5 × 1018 electrons between two points in an electric circuit. 
What potential difference does this establish between the two points?  Ans. 100 V

1.11 A pulse of electricity measures 305 V, 0.15 A, and lasts 500 µs. What power and energy does this represent?

 Ans. 45.75 W, 22.9 mJ

1.12 A unit of power used for electric motors is the horsepower (hp), equal to 746 watts. How much energy does a 
5-hp motor deliver in 2 hours? Express the answer in MJ.  Ans. 26.9 MJ
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1.13 For t ≥ 0, q = (4.0 × 10−4)(1 − e−250t) (C). Obtain the current at t = 3 ms.  Ans. 47.2 mA

1.14 A certain circuit element has the current and voltage

i e et t= = −− −10 50 15000 5000( ) ( ) ( )A Vυ

Find the total energy transferred during t ≥ 0.  Ans. 50 mJ

1.15 The capacitance of a circuit element is defined as Q/V, where Q is the magnitude of charge stored in the element 
and V is the magnitude of the voltage difference across the element. The SI derived unit of capacitance is the 
farad (F). Express the farad in terms of the basic units.  Ans. 1 F = 1(A2 · s4)/(kg · m2)
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Circuit Concepts

2.1 Passive and Active Elements
An electrical device is represented by a circuit diagram or network constructed from series and parallel 
arrangements of two-terminal elements. The analysis of the circuit diagram predicts the performance of the 
actual device. A two-terminal element in general form is shown in Fig. 2-1, with a single device represented 
by the rectangular symbol and two perfectly conducting leads ending at connecting points A and B. Active 
elements are voltage or current sources which are able to supply energy to the network. Resistors, inductors, 
and capacitors are passive elements which take energy from the sources and either convert it to another form 
or store it in an electric or magnetic field. 

CHAPTER 2

Fig. 2-1

Figure 2-2 illustrates seven basic circuit elements. Elements (a) and (b) are voltage sources and 
(c) and (d) are current sources. A voltage source that is not affected by changes in the connected 
circuit is an independent source, illustrated by the circle in Fig. 2-2(a). A dependent voltage source 
which changes in some described manner with the conditions on the connected circuit is shown by the 
diamond-shaped symbol in Fig. 2-2(b). Current sources may also be either independent or dependent 
and the corresponding symbols are shown in (c) and (d). The three passive circuit elements are shown 
in Fig. 2-2(e), (f), and (g).

The circuit diagrams presented here are termed lumped-parameter circuits, since a single element in 
one location is used to represent a distributed resistance, inductance, or capacitance. For example, a coil 
consisting of a large number of turns of insulated wire has resistance throughout the entire length of the 
wire. Nevertheless, a single resistance lumped at one place as in Fig. 2-3(b) or (c) represents the distributed 
resistance. The inductance is likewise lumped at one place, either in series with the resistance as in (b) or in 
parallel as in (c).

In general, a coil can be represented by either a series or a parallel arrangement of circuit elements. The 
frequency of the applied voltage may require that one or the other be used to represent the device.
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2.2 Sign Conventions
A voltage function and a polarity must be specified to completely describe a voltage source. The polarity 
marks, + and −, are placed near the conductors of the symbol that identifies the voltage source. If, for example, 
u = 10.0 sin wt in Fig. 2-4(a), terminal A is positive with respect to B for 0 < w t < p, and B is positive with 
respect to A for p < w t < 2p for the first cycle of the sine function.

Fig. 2-2

Fig. 2-3

Fig. 2-4

Similarly, a current source requires that a direction be indicated, as well as the function, as shown in 
Fig. 2-4(b). For passive circuit elements R, L, and C, shown in Fig. 2-4(c), the terminal where the current 
enters is generally treated as positive with respect to the terminal where the current leaves.

The sign on power is illustrated by the dc circuit of Fig. 2-5(a) with constant voltage sources VA = 20.0 V 
and VB = 5.0 V and a single 5-W resistor. The resulting current of 3.0 A is in the clockwise direction. Consid-
ering now Fig. 2-5(b), power is absorbed by an element when the current enters the element at the positive 
terminal. Power, computed by VI or I2R, is therefore absorbed by both the resistor and the VB source, 
45.0 W and 15 W, respectively. Since the current enters VA at the negative terminal, this element is the power 
source for the circuit. P = VI = 60.0 W confirms that the power absorbed by the resistor and the source VB is 
provided by the source VA.
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2.3 Voltage-Current Relations
The passive circuit elements resistance R, inductance L, and capacitance C are defined by the manner 
in which the voltage and current are related for the individual element. For example, if the voltage u 
and current i for a single element are related by a constant, then the element is a resistance, R is the 
constant of proportionality, and u = Ri. Similarly, if the voltage is proportional to the time derivative 
of the current, then the element is an inductance, L is the constant of proportionality, and u = L di/dt. 
Finally, if the current in the element is proportional to the time derivative of the voltage, then the ele-
ment is a capacitance, C is the constant of proportionality, and i = C du/dt. Table 2-1 summarizes these 
relationships for the three passive circuit elements. Note the current directions and the corresponding 
polarity of the voltages.

Fig. 2-5

Table 2-1

Circuit element Units Voltage Current Power

   

ohms (W) υ = Ri  
(Ohm’s law) i

R
= υ p i i R= =υ 2

   

henries (H) υ = L
di
dt  

i
L

dt k= +∫1
1υ
 

p i Li
di
dt

= =υ
 

farads (F) υ =
1

2C
i dt k+∫  

i C
d
dt

= υ
 

p i C
d
dt

= =υ υ υ
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2.4 Resistance
All electrical devices that consume energy must have a resistor (also called a resistance) in their circuit 
model. Inductors and capacitors may store energy but over time return that energy to the source or to another 
circuit element. Power in the resistor, given by p = ui = i2R = u2/R, is always positive as illustrated in 
Example 2.1 below. Energy is then determined as the integral of the instantaneous power

w p dt R i dt
R

dt
t

t

t

t

t

t

= = =∫ ∫ ∫
1

2

1

2

1

2
2 21 υ  

EXAMPLE 2.1 A 4.0-W resistor has a current i = 2.5 sin w t (A). Find the voltage, power, and energy over one cycle,   
given that w = 500 rad/s.

υ ω

υ ω

=

= =

Ri t

p i i R t

=

=

10.0 sin (V)

25.0 sin (W)2 2

www p dt
t t

t

= = −





( )∫ 25 0 2
2

4
0

.
sin ω

ω J

The plots of i, p, and w shown in Fig. 2-6 illustrate that p is always positive and that the energy w, although a function 
of time, is always increasing. This is the energy absorbed by the resistor.

Fig. 2-6
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2.5 Inductance
The circuit element that stores energy in a magnetic field is an inductor (also called an inductance). With 
time-variable current, the energy is generally stored during some parts of the cycle and then returned to the 
source during others. When the inductance is removed from the source, the magnetic field will collapse; in 
other words, no energy is stored without a connected source. Coils found in electric motors, transformers, and 
similar devices can be expected to have inductances in their circuit models. Even a set of parallel conductors 
exhibits inductance that must be considered at most frequencies. The power and energy relationships are as 
follows.

 p i L
di
dt

i
d
dt

Li= = = 





υ 1
2

2   

 w p dt Li di L i iL
t

t

i

i

= = = − ∫ ∫
1

2

1

2 1
2 2

2
1
2   

Energy stored in the magnetic field of an inductance is w LiL = 1
2

2. 

EXAMPLE 2.2 In the interval 0 < t < (p /50)s a 30-mH inductance has a current i = 10.0 sin 50t (A). Obtain the voltage, 
power, and energy for the inductance.

 
υ υ= = = =L

di
dt

t p i t15 cos 5 V 75.0 sin 100 (W). ( )0 0 ww p dt tL

t

= = −∫ 0 75 1 100
0

. ( cos ) ( )J
 

As shown in Fig. 2-7, the energy is zero at t = 0 and t = (p /50) s. Thus, while energy transfer did occur over the interval, 
this energy was first stored and later returned to the source.

Fig. 2-7
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2.6 Capacitance
The circuit element that stores energy in an electric field is a capacitor (also called capacitance). When the 
voltage is variable over a cycle, energy will be stored during one part of the cycle and returned in the next. 
While an inductance cannot retain energy after removal of the source because the magnetic field collapses, 
the capacitor retains the charge and the electric field can remain after the source is removed. This charged 
condition can remain until a discharge path is provided, at which time the energy is released. The charge, q = Cu, 
on a capacitor results in an electric field in the dielectric which is the mechanism of the energy storage. In 
the simple parallel-plate capacitor there is an excess of charge on one plate and a deficiency on the other. It 
is the equalization of these charges that takes place when the capacitor is discharged. The power and energy 
relationships for the capa citance are as follows.

p i C
d
dt

d
dt

C= = = 





υ υ υ υ1
2

2   

w p dt C d CC = = = − ∫∫ υ υ υ υ1
2

1

2

1

2

2
2

1
2

υ

υ

t

t

The energy stored in the electric field of capacitance is w CC = 1
2

2υ .

EXAMPLE 2.3 In the interval 0 < t < 5p ms, a 20-mF capacitance has a voltage u = 50.0 sin 200t (V). Obtain the charge, 
power, and energy. Plot wC assuming w = 0 at t = 0.

q C t= =υ 1000 200sin ( )µC  

.i C
d
dt

t= = ( )υ
0 0 002 cos 2 A

p i t= =υ 5 0 400. sin ( )W  

w p dt tC

t

= = −∫ 12 5 1 400
0

. [ cos ] (mJ)   

In the interval 0 < t < 2.5p ms the voltage and charge increase from zero to 50.0 V and 1000 mC, respectively. 
Figure 2-8 shows that the stored energy increases to a value of 25 mJ, after which it returns to zero as the energy 
is returned to the source.

Fig. 2.8

2.7 Circuit Diagrams
Every circuit diagram can be constructed in a variety of ways which may look different but are in fact 
identical. The diagram presented in a problem may not suggest the best of several methods of solu-
tion. Consequently, a diagram should be examined before a solution is started and redrawn if neces-
sary to show more clearly how the elements are interconnected. An extreme example is illustrated in 
Fig. 2-9, where the three circuits are actually identical. In Fig. 2-9(a) the three “junctions” labeled A 
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2.8 Nonlinear Resistors
The current-voltage relationship in an element may be instantaneous but not necessarily linear. The 
element is then modeled as a nonlinear resistor. An example is a filament lamp which at higher voltages 
draws proportionally less current. Another important electrical device modeled as a nonlinear resistor is 
a diode. A diode is a two-terminal device that, roughly speaking, conducts electric current in one direc-
tion (from anode to cathode, called forward-biased) much better than the opposite direction (reverse-
biased). The circuit symbol for the diode and an example of its current-voltage characteristic are shown 
in Fig. 2-25. The arrow is from the anode to the cathode and indicates the forward direction (i > 0). A 
small positive voltage at the diode’s terminal biases the diode in the forward direction and can produce 
a large current. A negative voltage biases the diode in the reverse direction and produces little current 
even at large voltage values. An ideal diode is a circuit model which works like a perfect switch. See 
Fig. 2-26. Its (i, u) characteristic is

υ

υ

= ≥

= ≤







0 0

0 0

when

when

i

i
 

The static resistance of a nonlinear resistor operating at (I, V) is R = V/I. Its dynamic resistance is r = ΔV/ΔI 
which is the inverse of the slope of the current plotted versus voltage. Static and dynamic resistances both 
depend on the operating point.

EXAMPLE 2.4 The current and voltage characteristic of a semiconductor diode in the forward direction is measured 
and recorded in the following table:

u (V) 0.5 0.6 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75

i (mA) 2 × 10−4 0.11 0.78 1.2 1.7 2.6 3.9 5.8 8.6 12.9 19.2 28.7 42.7

In the reverse direction (i.e., when u < 0), i = 4 × 10−15 A. Using the values given in the table, calculate 
the static and dynamic resistances (R and r) of the diode when it operates at 30 mA, and find its power  
consumption p.

Fig. 2-9

are shown as two “junctions” in (b). However, resistor R4 is bypassed by a short circuit and may be 
removed for purposes of analysis. Then, in Fig. 2-9(c) the single junction A is shown with its three 
meeting branches.
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From the table

R
V
I

= ≈
×

=−
0 74

28 7 10
25 783

.

.
. W   

r
V
I

= Δ
Δ ≈ −

− ×
=−

0 75 0 73

42 7 19 2 10
0 853

. .

( . . )
. W   

p VI= ≈ × × =−0 74 28 7 10 21 2383. . .W mW   

EXAMPLE 2.5 The current and voltage characteristic of a tungsten filament light bulb are measured and recorded in 
the following table. Voltages are DC steady-state values, applied for a long enough time for the lamp to reach thermal 
equilibrium.

u (V) 0.5 1 1.5 2 3 3.5  4 4.5 5 5.5 6 6.5 7 7.5 8

i (mA) 4 6 8 9 11 12 13 14 15 16 17 18 18 19 20

Find the static and dynamic resistances of the filament and also the power consumption at the operating points 
(a) i = 10 mA; (b) i = 15 mA.

R
V
I

r
V
I

p VI= = Δ
Δ =, ,

(a) R r p≈
×

= ≈ −
− ×

= ≈− −
2 5

10 10
250

3 2

11 9 10
500 23 3

.
,

( )
,W W ..5 10 10 253× × =− W mW  

(b) R r≈
×

= ≈ −
− ×

=− −
5

15 10
333

5 5 4 5

16 14 10
5003 3W W,

. .

( )
, ppp ≈ × × =−5 15 10 753 W mW  

SoLVED PRobLEMS

2.1. A 25.0-W resistance has a voltage u = 150.0 sin 377t (V). Find the corresponding current i and 
power p.

i
R

t p i t= = = =υ υ6 0 377 900 0 3772. sin ( ) . sin ( )A W

2.2. The current in a 5-W resistor increases linearly from zero to 10 A in 2 ms. At t = 2+ ms the current is 
again zero, and it increases linearly to 10 A at t = 4 ms. This pattern repeats each 2 ms. Sketch the 
corresponding u.

Since u = Ri, the maximum voltage must be (5)(10) = 50 V. In Fig. 2-10 the plots of i and u are shown. 
The identical nature of the functions is evident.

2.3. An inductance of 2.0 mH has a current i = 5.0(1 − e−5000t)(A). Find the corresponding voltage and the 
maximum stored energy.

υ = = −L
di
dt

e t50 0 5000. (V)  

In Fig. 2-11 the plots of i and v are given. Since the maximum current is 5.0 A, the maximum stored energy 
is

W LImax max .= =1
2 25 02 mJ  

Ch02.indd   14 10/08/17   12:22 PM



CHAPTER 2  Circuit Concepts 15

 2.4. An inductance of 3.0 mH has a voltage that is described as follows: for 0 < t < 2 ms, V = 15.0 V and 
for 2 < t < 4 ms, V = −30.0 V. Obtain the corresponding current and sketch uL and i for the given 
intervals.

For 0 < t < 2 ms,

  i
L

dt dt t
t t

= =
×

= ×∫ ∫−
1 1

3 10
15 0 5 10

0
3

3

0

υ . (A)   

For t = 2 ms,

i = 10.0 A

For 2 < t < 4 ms,

  

i
L

dt dt
t t

= + +
×

−−
× ×− −∫ ∫1

10 0
1

3 10
30 03

2 10 2 103 3

υ . .

== +
×

− + ×

= −

−
−10 0

1

3 10
30 0 60 0 10

30 0

3
3. [ . ( . )]

.

t (A)

(( )10 103× t (A)

  

See Fig. 2-12.

 2.5. A capacitance of 60.0 mF has a voltage described as follows: 0 < t < 2 ms, u = 25.0 × 103 t (V). Sketch i, 
p, and w for the given interval and find Wmax.

Fig. 2-10

Fig. 2-11
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For 0 < t < 2 ms,

i C
d
dt

d
dt

t

p i

= = × × =

= =

−υ

υ

60 10 25 0 10 1 5

37 5

6 3( . ) .

.

A

×××

= = ×∫
10

1 875 10

3

4

0

2

t

w p dt tC

t

(W)

(mJ).

See Fig. 2-13.

Wmax ( . )( ) .= × × =−1 875 10 2 10 75 04 3 2 mJ  

or Wmax ( . )( . ) .= = × =−1
2

1
2 60 0 10 50 0 75 06 2CV mJmax

2

Fig. 2-12

Fig. 2-13

2.6. A 20.0-mF capacitance is linearly charged from 0 to 400 mC in 5.0 ms. Find the voltage function and 
Wmax.

q t t

q C

= ×
×







= ×

=

−

−
−400 10

5 0 10
8 0 10

6

3
2

.
. (C)

/υ === ×

= × × =−

4 0 10

4 0 10 5 0 10 20 0

3

3 3

.

( . )( . ) .max

t

V

(V)

V WWWmax max
2CV mJ= =1

2 4 0.

2.7. A series circuit with R = 2W, L = 2 mH, and C = 500 mF has a current which increases linearly from 
zero to 10 A in the interval 0 ≤ t ≤ 1 ms, remains at 10 A for 1 ms ≤ t ≤ 2 ms, and decreases linearly 
from 10 A at t = 2 ms to zero at t = 3 ms. Sketch uR, uL, and uC .

uR must be a time function identical to i, with Vmax = 2(10) = 20 V.
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For 0 < t < 1 ms,

  
di
dt

L
di
dtL= × = =10 10 203 A/s and Vυ   

When di/dt = 0, for 1 ms < t < 2 ms, uL = 0.
Assuming zero initial charge on the capacitor,

 υC C
i dt= ∫1   

For 0 ≤ t ≤ 1 ms,

  υC

t

t dt t=
×

=− ∫1

5 10
10 104

4

0

7 2 (V)   

This voltage reaches a value of 10 V at 1 ms. For 1 ms < t < 2 ms,

  υC t= × − +−( )( ) ( )20 10 10 103 3 V   

See Fig. 2-14. 

Fig. 2-14

 2.8. A single circuit element has the current and voltage functions graphed in Fig. 2-15. Determine the 
element.

The element cannot be a resistor since u and i are not proportional. u is an integral of i. For 2 ms < t < 4 ms, 
i ≠ 0 but u is constant (zero); hence the element cannot be a capacitor. For 0 < t < 2 ms,

  
di
dt

= 5 10 A/s and = 15 V3× υ   

Consequently,

  L
di
dt

= 3 mHυ =   

(Examine the interval 4 ms < t < 6 ms; L must be the same.)
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Fig. 2-15

2.9. Obtain the voltage u in the branch shown in Fig. 2-16 for (a) i2 = 1 A, (b) i2 = −2 A, (c) i2 = 0 A.
Voltage u is the sum of the current-independent 10-V source and the current-dependent voltage source 

ux. Note that the factor 15 multiplying the control current carries the units W.

(a) υ υ= + = + =10 10 15 1 25x ( ) V  

(b) υ υ= + = + − = −10 10 15 2 20x ( ) V  

(c) υ = 10 + 15(0) = 10 V

Fig. 2-16

2.10. Find the power absorbed by the generalized circuit element in Fig. 2-17, for (a) u = 50 V, (b) u = −50 V.

Fig. 2-17

Since the current enters the element at the negative terminal,

(a) p i= − = − = −υ ( )( . )50 8 5 425 W  

(b) p i= − = − − =υ ( )( . )50 8 5 425 W  
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2.11. Find the power delivered by the sources in the circuit of Fig. 2-18.

  i = − = −20 50
3 10 A   

The powers absorbed by the sources are:

  p ia a= − = − − =υ ( )( )20 10 200 W   

  p ib b= = − = −υ ( )( )50 10 500 W   

Since power delivered is the negative of power absorbed, source ub delivers 500 W and source ua absorbs 
200 W. The power in the two resistors is 300 W.

2.12. A 25.0-W resistance has a voltage u = 150.0 sin 377t (V). Find the power p and the average power pavg 
over one cycle.

 i R t= =υ / (A)6 0 377. sin  

  (W)p i t= =υ 900 0 3772. sin  

The end of one period of the voltage and current functions occurs at 377t = 2p. For Pavg, the integration 
is taken over one-half cycle, 377t = p. Thus,

  P t d tavg (W)= =∫1
900 0 377 377 450 02

0
π

π

. sin ( ) ( ) .   

2.13. Find the voltage across the 10.0-W resistor in Fig. 2-19 if the control current ix in the dependent source 
is (a) 2 A and (b) −1 A.

  

i i iR i

i

x R x

x R

4 4 (V)

2 A

= − = = −

= =

. ; . .

;

0 40 0 40 0

4

υ

υ 00 0

80 0

.

; .

V

1 A Vix R= − = −υ

  

Fig. 2-18

Fig. 2-19
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SuPPLEMENtARy PRobLEMS

2.14. A resistor has a voltage of V = 1.5 mV. Obtain the current if the power absorbed is (a) 27.75 nW and (b) 1.20 mW. 

Ans. 18.5 mA, 0.8 mA

2.15. A resistance of 5.0 W has a current i = 5.0 × 103 t (A) in the interval 0 ≤ t ≤ 2 ms. Obtain the instantaneous and 
average powers.  Ans. 125.0t2 (W), 167.0 (W)

2.16. Current i enters a generalized circuit element at the positive terminal and the voltage across the element is 3.91 V. 
If the power absorbed is −25.0 mW, obtain the current.  Ans. −6.4 mA

2.17. Determine the single circuit element for which the current and voltage in the interval 0 ≤ 103 t ≤ p are given by 
i = 2.0 sin 103 t (mA) and u = 5.0 cos 103 t (mV).  Ans. An inductance of 2.5 mH

2.18. An inductance of 4.0 mH has a voltage u = 2 0 103

. e t−  (V). Obtain the maximum stored energy. At t = 0, the current 
is zero.  Ans. 0.5 mW

2.19. A capacitance of 2.0 mF with an initial charge Q0 is switched into a series circuit consisting of a 10.0-W resistance. 
Find Q0 if the energy dissipated in the resistance is 3.6 mJ.  Ans. 120.0 mC

2.20. Given that a capacitance of C farads has a current i = (Vm/R)e−t/(Rc) (A), show that the maximum stored energy is 
1
2

2CVm . Assume the initial charge is zero.

2.21. The current after t = 0 in a single circuit element is as shown in Fig. 2-20. Find the voltage across the element 
at t = 6.5 ms, if the element is (a) a resistor with resistance of 10 kW, (b) an inductor with inductance of 15 mH, 
(c) a 0.3 nF capacitor with Q(0) = 0.

Ans. (a) 25 V; (b) −75 V; (c) 81.3 V

Fig. 2-20

Fig. 2-21

2.22. The 20.0-mF capacitor in the circuit shown in Fig. 2-21 has a voltage for t > 0, u = 100.0e−t/0.015 (V). Obtain the 
energy function that accompanies the discharge of the capacitor and compare the total energy to that which is 
absorbed by the 750-W resistor.  Ans. 0.10 (1 − e−t/0.0075) (J)

2.23 Find the current i in the circuit shown in Fig. 2-22, if the control u2 of the dependent voltage source has the value 
(a) 4 V, (b) 5 V, (c) 10 V.  Ans. (a) 1 A; (b) 0 A; (c) −5 A

2.24 In the circuit shown in Fig. 2-23, find the current, i, given (a) i1 = 2 A, i2 = 0; (b) i1 = − 1A, i2 = 4 A; (c) i1 = i2 = 1 A.

Ans. (a) 10 A; (b) 11 A; (c) 9 A
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2.25. A 1-mF capacitor with an initial charge of 10−4 C is connected to a resistor R at t = 0. Assume discharge current 
during 0 < t < 1 ms is constant. Approximate the capacitor voltage drop at t = 1 ms for

 (a) R = 1 MW; (b) R = 100 kW; (c) R = 10 kW. Hint: Compute the charge lost during the 1-ms period.  

 Ans. (a) 0.1 V; (b) 1 V; (b) 10  V

2.26. The actual discharge current in Problem 2.25 is i R e t R= −( ) /100 106

/  A. Find the capacitor voltage drop at 1 ms 
after connection to the resistor for (a) R = 1 MW; (b) R = 100 kW; (c) R = 10 kW.

 Ans. (a) 0.1 V; (b) 1 V; (c) 9.52 V

2.27. A 10-mF capacitor discharges in an element such that its voltage is u = 2e−1000t. Find the current and power 
delivered by the capacitor as functions of time.

 Ans. i = 20e−1000t mA, p = vi = 40e−1000t mJ

2.28. Find voltage u, current i, and energy W in the capacitor of Problem 2.27 at time t = 0, 1, 3, 5, and 10 ms. By 
integrating the power delivered by the capacitor, show that the energy dissipated in the element during the interval 
from 0 to t is equal to the energy lost by the capacitor.

 
Ans. 

t u i W

0 2 V 20 mA 20 mJ

1 ms 736 mV 7.36 mA 2.7 mJ

3 ms 100 mV 1 mA 0.05 mJ

5 ms 13.5 mV 135 mA ≈ 0.001 mJ

10 ms 91 mV 0.91 mA ≈ 0 J

2.29. The current delivered by a current source is increased linearly from zero to 10 A in 1 ms time and then is 
decreased linearly back to zero in 2 ms. The source feeds a 3-kW resistor in series with a 2-H inductor (see 
Fig. 2-24). (a) Find the energy dissipated in the resistor during the rise time (W1) and the fall time (W2). (b) Find 
the energy delivered to the inductor during the above two intervals. (c) Find the energy delivered by the current 
source to the series RL combination during the preceding two intervals. Note: Series elements have the same 
current. The voltage drop across their combination is the sum of their individual voltages.

 Ans. (a) W1 = 100, W2 = 200; (b) W1 = 200, W2 = −200; (c) W1 = 300, W2 = 0 (All in joules)

Fig. 2-22 Fig. 2-23

Fig. 2-24
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2.30. The voltage of a 5-mF capacitor is increased linearly from zero to 10 V in 1 ms time and is then kept at that 
level. Find the current. Find the total energy delivered to the capacitor and verify that delivered energy is 
equal to the energy stored in the capacitor.

Ans. i = 50 mA during 0 < t < 1 ms and is zero elsewhere, W = 250 mJ.

2.31. A 10-mF capacitor is charged to 2 V. A path is established between its terminals which draws a constant current 
of I0. (a) For I0 = 1 mA, how long does it take to reduce the capacitor voltage to 5 percent of its initial value? 
(b) For what value of I0 does the capacitor voltage remain above 90 percent of its initial value after passage 
of 24 hours?  Ans. (a) 19 ms, (b) 23.15 pA

2.32. Energy gained (or lost) by an electric charge q traveling in an electric field is q u, where u is the electric potential 
gained (or lost). In a capacitor with charge Q and terminal voltage V, let all charges go from one plate to the other. 
By way of computation, show that the total energy W gained (or lost) is not QV but QV/2 and explain why. Also 
note that QV/2 is equal to the initial energy content of the capacitor. 

Ans. W q dt Q QV CVV= =   = =∫ −υ 0
2

1
2

22/ . The apparent discrepancy is explained by the following. The
starting voltage between the two plates is V. As the charges migrate from one plate of the capacitor to the other 
plate, the voltage between the two plates drops and becomes zero when all charges have moved. The average of 
the voltage during the migration process is V/2 and, therefore, the total energy is QV/2.

2.33. Lightning I. The time profile of the discharge current in a typical cloud-to-ground lightning strike is modeled 
by a triangle. The surge takes 1 ms to reach the peak value of 100 kA and then is reduced to zero in 99 mS. 
(a) Find the electric charge Q discharged. (b) If the cloud-to-ground voltage before the discharge is 400 MV, 
find the total energy W released and the average power P during the discharge. (c) If during the storm there is an 
average of 18 such lightning strikes per hour, find the average power released in 1 hour.

Ans. (a) Q = 5C; (b) W = 109 J, P = 1013 W; (c) 5 MW

2.34. Lightning II. Find the cloud-to-ground capacitance in Problem 2.33 just before the lightning strike.

Ans. 12.5 mF

2.35. Lightning III. The current in a cloud-to-ground lightning strike starts at 200 kA and diminishes linearly 
to zero in 100 ms. Find the energy released W and the capacitance of the cloud to ground C if the voltage 
before the discharge is (a) 100 MV; (b) 500 MV.

Ans. (a) W = 5 × 108 J, C = 0.1 mF; (b) W = 25 × 108 J, C = 20 nF

2.36. The semiconductor diode of Example 2.4 is placed in the circuit of Fig. 2-25. Find the current for (a) Vs = 1 V, 
(b) Vs = −1 V.  Ans. (a) 14 mA; (b) 0 A

Fig. 2-25
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2.37. The diode in the circuit of Fig. 2-26 is ideal. The inductor draws 100 mA from the voltage source. A 2-mF 
capacitor with zero initial charge is also connected in parallel with the inductor through an ideal diode such that 
the diode is reversed biased (i.e., it blocks charging of the capacitor). The switch s suddenly disconnects with the 
rest of the circuit, forcing the inductor current to pass through the diode and establishing 200 V at the capacitor’s 
terminals. Find the value of the inductor.  Ans. L = 8 H

Fig. 2-26

2.38. Compute the static and dynamic resistances of the diode of Example 2.4 at the operating point u = 0.66 V.

 Ans. R r≈
×

= ≈ −
−−

0 66

1 2 10
550

0 67 0 65

1 7 0 783
.

.

. .

( . . )
W and

××
=−10

21 73 . W  

2.39. The diode of Example 2.4 operates within the range 10 mA < i < 20 mA. Within that range, approximate its 
terminal characteristic by a straight line i = au + b, by specifying a and b.

 Ans. i = 630 u − 4407 mA, where u is in V.

2.40. The diode of Example 2.4 operates within the range of 20 mA < i < 40 mA. Within that range, approximate its 
terminal characteristic by a straight line connecting the two operating limits.

 Ans. i = 993.33 u − 702.3 mA, where u is in V.

2.41. Within the operating range of 20 mA < i < 40 mA, model the diode of Example 2.4 by a resistor R in series 
with a voltage source V such that the model matches exactly with the diode performance at 0.72 V and 0.75 V. 
Find R and V.

 Ans. R = 1.007 W, V = 707 mV
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CHAPTER 3

Circuit Laws

3.1 Introduction
An electric circuit or network consists of a number of interconnected single circuit elements of the type 
described in Chapter 2. The circuit will generally contain at least one voltage or current source. The arrange-
ment of elements results in a new set of constraints between the currents and voltages. These new constraints 
and their corresponding equations, added to the current-voltage relationships of the individual elements, 
provide the solution of the network.

The underlying purpose of defining the individual elements, connecting them in a network, and solving 
the equations is to analyze the performance of such electrical devices as motors, generators, transformers, 
electrical transducers, and a host of electronic devices. The solution generally answers necessary questions 
about the operation of the device under conditions applied by a source of energy.

3.2 Kirchhoff’s Voltage Law
For any closed path in a network, Kirchhoff’s voltage law (KVL) states that the algebraic sum of the volt-
ages is zero. Some of the voltages will be sources, while others will result from current in passive elements 
creating a voltage, which is sometimes referred to as a voltage drop. The law applies equally well to circuits 
driven by constant sources, DC, time variable sources, u(t) and i(t), and to circuits driven by sources which 
will be introduced in Chapter 9. The mesh current method of circuit analysis introduced in Section 4.2 is 
based on KVL.

EXAMPLE 3.1 Write the KVL equation for the circuit shown in Fig. 3-1.

Fig. 3-1

Starting at the lower left corner of the circuit, for the current direction as shown, we have

	

−

−

u u u u u

u u

a b

a biR iR iR

+ + + + = 0

+ + + +

1 2 3

2 31 = 0

= ( + + )u ua b i R R R− 1 2 3
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3.3 Kirchhoff’s Current Law
The connection of two or more circuit elements creates a junction called a node. The junction between two 
elements is called a simple node and no division of current results. The junction of three or more elements 
is called a principal node, and here current division does take place. Kirchhoff’s current law (KCL) states 
that the algebraic sum of the currents at a node is zero. It may be stated alternatively that the sum of the 
currents entering a node is equal to the sum of the currents leaving that node. The node voltage method of 
circuit analysis introduced in Section 4.3 is based on equations written at the principal nodes of a network by 
applying KCL. The basis for the law is the conservation of electric charge.

EXAMPLE 3.2 Write the KCL equation for the principal node shown in Fig. 3-2.

	
i i i i i

i i i i i

1 2 3 4 5

1 3 2 4 5

0− + − − =

+ = + +
		

Fig. 3-2

Fig. 3-3

3.4 Circuit Elements In Series
Three passive circuit elements in series connection as shown in Fig. 3-3 have the same current i. The 
voltages across the elements are u1, u2, and u3. The total voltage u is the sum of the individual voltages: 
u = u1 + u2 + u3.

If the elements are resistors,

 u = + +iR iR iR1 2 3 	

 = + +i R R R( )1 2 3 	

 = iReq 	
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where a single equivalent resistance Req replaces the three series resistors. The same relationship between 
i and u will pertain.

For any number of resistors in series, we have R R Req = + +1 2
. . .. 	

If the three passive elements are inductances,

u = + +

= + +

=

L
di
dt

L
di
dt

L
di
dt

L L L
di
dt

L
di

1 2 3

1 2 3( )

eq dddt

	

Extending this to any number of inductances in series, we have L L Leq = + +1 2 .
If the three circuit elements are capacitances, assuming zero initial charges so that the constants of inte-

gration are zero,

u = + +

= + +





∫ ∫ ∫1 1 1

1 1 1

1 2 3

1 2 3

C
i dt

C
i dt

C
i dt

C C C
iii dt

C
i dt

∫
∫= 1

eq

	

The equivalent capacitance of several capacitances in series is found from the equation 
1 1 1/ / /

eq 1 2
C C C= + +.

EXAMPLE 3.3 The equivalent resistance of three resistors in series is 750.0 Ω. Two of the resistors are 40.0 and 410.0 Ω. 
What must be the ohmic resistance of the third resistor?

	
R R R R

R R

eq

and

= + +

= + + =

1 2 3

3 3750 0 40 0 410 0 300 0. . . . ΩΩΩ
	

EXAMPLE 3.4 Two capacitors, C1 = 2.0 µF and C2 = 10.0 µF, are connected in series. Find the equivalent capacitance. 
Repeat if C2 is 10.0 pF.

	 C
C C

C C
eq

(2.0 10 (10.0 10

2.0 10
=

+
= × ×

×

− −

−
1 2

1 2

6 6

6

) )

+++ ×
=−10.0 10

F
6

1 67. µ 		

If C2 = 10.0 pF,

	 			 Ceq = × ×
× + ×

− −

− −
( . )( . )

. .

2 0 10 10 0 10

2 0 10 10 0 10

6 12

6 1112

18

6
20 0

2 0 10

10= 10 0
×
×

=
−

−
.

.
. pF 		

where the contribution of 10.0 × 10−12 to the sum C1 + C2 in the denominator is negligible and therefore it can be 
omitted.

Note: When two capacitors in series differ by a large amount, the equivalent capacitance is essentially equal to the 
value of the smaller of the two.

3.5 Circuit Elements In Parallel
For three circuit elements connected in parallel as shown in Fig. 3-4, KCL states that the current i entering 
the principal node is the sum of the three currents leaving the node through the branches.
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 i i i i= + +1 2 3 	

If the three passive circuit elements are resistances,

 i
R R R R R R R

= + + = + +





=u u u u u
1 2 3 1 2 3

1 1 1 1

eq
	

For several resistors in parallel,

 
1 1 1

1 2R R Req
= + + . . . 	

The case of two resistors in parallel occurs frequently and deserves special mention. The equivalent resis-
tance of two resistors in parallel is given by the product over the sum of the resistances.

 R
R R

R Req = 1 2

1 2+ 	

EXAMPLE 3.5 Obtain the equivalent resistance of (a) two 60.0-Ω resistors in parallel and (b) three 60.0-Ω resistors 
in parallel.

(a) Req = =( . )
. .

60 0
120 0 30 0

2

Ω	

(b) 
1 1

60 0
1

60 0
1

60 0 20 0
R

R
eq

eq= + + = Ω. . . . 	

Note: For n identical resistors in parallel the equivalent resistance is given by R/n.
Combinations of inductances in parallel have similar expressions to those of resistors in parallel:

	 1 1 1

1 2L L L
L

eq
eand, for two inductances,= + + . . .
qq

1 2

1 2
= +

L L
L L

		

EXAMPLE 3.6 Two inductances L1 = 3.0 mH and L2 = 6.0 mH are connected in parallel. Find Leq.

	 	 1 1
3 0

1
6 0 2 0

L
L

eq
eqmH mH and mH= + =. . . 		

With three capacitances in parallel,

	 	 i C
d
dt

C
d
dt

C
d
dt

C C C
d
dt

C
d= + + = + + =1 2 3 1 2 3

u u u u u
( ) eq ddt

		

For several parallel capacitors, C C C
eq

= + +
1 2



, which is of the same form as resistors in series.

Fig. 3-4
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3.6 Voltage Division
A set of series-connected resistors as shown in Fig. 3-5 is referred to as a voltage divider. The concept 
extends beyond the set of resistors illustrated here and applies equally to impedances in series, as will be 
shown in Chapter 9.

Fig. 3-5

Since u u1 1 1 2 3= = + +iR i R R Rand ( ), 	

u u1
1

1 2 3
= + +







R
R R R 	

EXAMPLE 3.7 A voltage divider circuit consists of two resistors in series and with a total resistance of 50.0 Ω. If the 
output voltage is 10 percent of the input voltage, obtain the values of the two resistors in the circuit.

	 	 u
u
1 10 10 50 0= . .0.10 =

R 		

from which R1 = 5.0 Ω and R2 = 45.0 Ω.

3.7 Current Division
A parallel arrangement of resistors as shown in Fig. 3-6 results in a current divider. The ratio of the branch 
current i1 to the total current i illustrates the operation of the divider.

Fig. 3-6

Then 

i
R R R

i
R

i
i

R
R R R

= + + =

= + +

u u u u

1 2 3
1

1

1 1

1 2

1
1 1 1

and

/
/ / / 333

2 3

1 2 1 3 2 3
= + +

R R
R R R R R R
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For a two-branch current divider we have

 
i
i

R
R R

1 2

1 2
= + 	

This may be expressed as follows: The ratio of the current in one branch of a two-branch parallel circuit to 
the total current is equal to the ratio of the resistance of the other branch resistance to the sum of the two 
resistances.

EXAMPLE 3.8 A current of 30.0 mA is to be divided into two branch currents of 20.0 mA and 10.0 mA by a network 
with an equivalent resistance equal to or greater than 10.0 Ω. Obtain the branch resistances.

	 20
30

10
30 12

1 2

1

1 2

1 2

1 2

mA
mA

mA
mA= + = + + ≥

R
R R

R
R R

R R
R R

00 0. Ω 		

Solving these equations yields R1 ≥ 15.0 Ω and R2 ≥ 30.0 Ω.

SoLVED ProbLEMS

 3.1. Find V3 and its polarity if the current I in the circuit of Fig. 3-7 is 0.40 A.

Fig. 3-7

Assume that V3 has the same polarity as V1. Applying KVL and starting from the lower left corner,

 

V I V I V1 2 35 0 20 0 0

50 0 2 0 10 0 8 0

− − − + =

− − − +

( . ) ( . )

. . . . VV

V

3

3

0

30 0

=

= − . V

	

Terminal b is positive with respect to terminal a.

 3.2. Obtain the currents I1 and I2 for the network shown in Fig. 3-8.
a and b comprise one node. Applying KCL,

 2 0 7 0 3 0 6 01 1. . . .+ + = = −I Ior A 	

Also, c and d comprise a single node. Thus,

 4 0 6 0 1 0 9 02 2. . . .+ = + =I Ior A 	

 3.3. Find the current I for the circuit shown in Fig. 3-9.
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The branch currents within the enclosed area cannot be calculated since no values of the resistors are 
given. However, KCL applies to the network taken as a single node. Thus,

2 0 3 0 4 0 0 5 0. . . .− − − = = −I Ior A 	

3.4. Find the equivalent resistance for the circuit shown in Fig. 3-10.

Fig. 3-8

Fig. 3-9

Fig. 3-10

The two 20-Ω resistors in parallel have an equivalent resistance Req = [(20)(20)/(20 + 20)] = 10 Ω. This 
is in series with the 10-Ω resistor so that their sum is 20 Ω. This in turn is in parallel with the other 20-Ω
resistor so that the overall equivalent resistance is 10 Ω.

3.5. Determine the equivalent inductance of the three parallel inductances shown in Fig. 3-11.
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The two 20-mH inductances have an equivalent inductance of 10 mH. Since this is in parallel with the 
10-mH inductance, the overall equivalent inductance is 5 mH. Alternatively,

 
1 1 1 1 1

10
1

20
1

20
4

20L L L Leq 1 2 3 mH mH mH m= + + = + + = HH or mHeqL = 5 	

 3.6. Express the total capacitance of the three capacitors in Fig. 3-12.

Fig. 3-11

Fig. 3-12

  For C2 and C3 in parallel, Ceq = C2 + C3. Then for C1 and Ceq in series,

 C
C C

C C
C C C

C C CT = + =
+

+ +
1 eq

1 eq

1 2 3

1 2 3

( )
	

 3.7. The circuit shown in Fig. 3-13 is a voltage divider, also called an attenuator. When it is a single resistor with 
an adjustable tap, it is called a potentiometer, or pot. To discover the effect of loading, which is caused by the 
resistance R of the voltmeter VM, calculate the ratio Vout/Vin for (a) R = ∞, (b) 1 MΩ, (c) 10 kΩ, and (d) 1 kΩ.

 (a) V Vout in/ = + =250
2250 250 0 100. 	

Fig. 3-13
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(b) The resistance R in parallel with the 250-Ω resistor has an equivalent resistance

R V Veq out inand /=
+

= =250 10

250 10
249 9

2496

6
( )

.
.Ω 999

2250 249 9 0 100+ =. .

(c) R V Veq out i

0
0 and= + =( )( )

. /
250 10 00
250 10 00 243 9 Ω nnn = 0 098. 	

(d) R V Veq out inand= + = =( )( )
. /

250 1000
250 1000 200 0 Ω 000 082. 	

3.8. Find all branch currents in the network shown in Fig. 3-14(a).

Fig. 3-14

The equivalent resistances to the left and right of nodes a and b are

R

R

eq(left)

eq(right)

= + =

=

5
12 8

20 9 8

6 3

( )( )
.

( )(

Ω

)))
.9 2 0= Ω

	

Now referring to the reduced network of Fig. 3-14(b),

I

I

3

4

2 0
11 8 13 7 2 32

9 8
11 8 13 7 11

= =

= =

.
. ( . ) .

.
. ( . ) .

A

3338 A

	

Then referring to the original network,

I I

I

1 2

5

8
20 2 32 0 93 2 32 0 93 1 39

3
9

= = = − =

=

( . ) . . . .A A

((( . ) . . . .11 38 3 79 11 38 3 79 7 596= = − =A AI

	

SuPPLEMEntAry ProbLEMS

3.9. Find the source voltage V and its polarity in the circuit shown in Fig. 3-15 if (a) I = 2.0 A and (b) I = −2.0 A.

Ans. (a) 50 V, b positive; (b) 10 V, a positive.

3.10. Find Req for the circuit of Fig. 3-16 for (a) Rx = ∞, (b) Rx = 0, and (c) Rx = 5 Ω.  Ans. (a) 36 Ω; (b) 16 Ω; (c) 20 Ω
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3.11. An inductance of 8.0 mH is in series with two inductances in parallel, one of 3.0 mH and the other 6.0 mH. Find 
Leq.  Ans. 10.0 mH

3.12. Show that for the three capacitances of equal value shown in Fig. 3-17, Ceq = 1.5 C.

Fig. 3-15 Fig. 3-16

3.13. Find RH and RO for the voltage divider in Fig. 3-18 so that the current I is limited to 0.5 A when VO = 100 V.

 Ans.  RH = 2 MΩ, RO = 200 Ω

3.14. Using voltage division, calculate V1 and V2 in the network shown in Fig. 3-19. Ans. 11.4 V, 73.1V

Fig. 3-17 Fig. 3-18

Fig. 3-19 Fig. 3-20

3.15. Obtain the source current I and the total power delivered to the circuit in Fig. 3-20.  Ans. 6.0 A, 228 W

3.16. Show that for four resistors in parallel the current in one branch, for example the branch of R4, is related to the 
total current by

 I I
R

R R
R

R R R
R R R RT4

4

1 2 3

1 2 1 3
= ′

+ ′






′ = +where ++ R R2 3
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Note: This is similar to the case of current division in a two-branch parallel circuit where the other resistor has 
been replaced by	 ′R .

3.17. A power transmission line carries current from a 6000-V generator to three loads, A, B, and C. The loads are 
located at 4, 7, and 10 km from the generator and draw 50, 30, and 100 A, respectively. The resistance of the line 
is 0.1 Ω/km; see Fig. 3-21. (a) Find the voltage at loads A, B, C. (b) Find the maximum percentage voltage drop 
from the generator to a load.

Ans. (a) uA = 5928 V, uB = 5889 V, uC = 5859 V; (b) 2.35 percent

3.18. In the circuit of Fig. 3-22, R = 0 and i1 and i2 are unknown. Find i and uAC.  Ans. i = 4 A, uAC = 24 V

Fig. 3-21

Fig. 3-22

3.19. In the circuit of Fig. 3-22, R = 1 Ω and i1 = 2 A. Find, i, i2, and uAC.  Ans. i = 5 A, i2 = −16 A, uAC = 27 V

3.20. In the circuit of Fig. 3-23, is1 = us2 = 0, us1 = 9 V, is2 = 12 A. For the four cases of (a) R = 0, (b) R = 6 Ω, (c) R = 9 Ω, 
and (d) R = 10 000 Ω, draw the simplified circuit and find iBA and uAC. Hint: A zero voltage source corresponds 
to a short-circuited element and a zero current source corresponds to an open-circuited element.

Ans

a i

b i

BA AC

BA
.

,

.

( )

( )

= =

=

7 30

4 2

u

,,, .

. , .( )

( )

u

u

AC

BA AC

BA

c i

d i

=

= =

21 6

3 5 19 5

=== ≈ = ≈













 0 006 0 9 02 9. , .u

AC

	 	 (All in A and V)

3.21. In the circuit of Fig. 3-23, us1 = us2 = 0, is1 = 6 A, is2 = 12 A. For the four cases of (a) R = 0, (b) R = 6 Ω, (c) R =
9 Ω, and (d) R = 10 000 Ω, draw the simplified circuit and find iBA and uAC.

Ans

a i

b i

BA AC

BA
.

,

.

( )

( )

= =

=

6 36

3 6

u

,,, .

,

.

( )

( )

u

u

AC

BA AC

BA

c i

d i

=

= =

=

28 8

3 27

0 00005 0 18≈ ≈













 , u

AC

	 	 (All in A and V)
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3.24. In the circuit of Fig. 3-24, (a) find power P delivered by the voltage source as a function of a, and (b) evaluate P 
for a = 0, 1, 2.  Ans. (a) P = u 2 (1 − a)/R; (b) u2/R, 0, −u 2/R 

3.25. In the circuit of Fig. 3-24, let a = 2. Connect a resistor Rx in parallel with the voltage source and adjust it within 
the range 0 ≤ Rx ≤ 0.99 R such that the voltage source delivers minimum power. Find (a) the value of Rx and (b) 
the power delivered by the voltage source.  Ans. (a) Rx = 0.99 R, (b) P = u2/(99 R)

3.26. In the circuit of Fig. 3-25, R1 = 0 and b = 100. Draw the simplified circuit and find u for R = 1 kΩ and 10 kΩ.

 Ans. u = 1, 10 V

3.22. In the circuit Fig. 3-23, us1 = 0, us2 = 6 V, is1 = 6 A, is2 = 12 A. For the four cases of (a) R = 0, (b) R = 6 Ω, (c) 
R = 9 Ω, and (d) R = 10 000 Ω, draw the simplified circuit and find iBA and uAC.

 Ans

a i

b i

BA AC

BA
.

. ,( )

( )

= =

=

5 33 34u

33 2 27 6

2 66 26

. , .

. ,( )

( )

u

u

AC

BA ACc i

d i

=

= =

BBA AC= ≈ = ≈












 0 005 0 18 01 18. , .u

	 	 (All in A and V)

3.23. In the circuit of Fig. 3-24, (a) find the resistance seen by the voltage source, Rin = u/i, as a function of a, and (b) 
evaluate Rin for a = 0, 1, 2.  Ans. (a) Rin = R/(1 − a ); (b) R, ∞, −R

Fig. 3-23

Fig. 3-24

Fig. 3-25
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3.27. In the circuit of Fig. 3-25, R1 = 0 and R = 1 kΩ. Draw the simplified circuit and find u for b = 50, 100, 200. Note 
that u changes proportionally with b.  Ans. u = 0.5, 1, 2 V

3.28. In the circuit of Fig. 3-25, R1 = 100 Ω and R = 11 kΩ. Draw the simplified circuit and find u for b = 50, 100, 200. 
Compare with corresponding values obtained in Problem 3.27 and note that in the present case u is less sensitive 
to variations in b.  Ans. u = 0.90, 1, 1.04 V

3.29. A nonlinear element is modeled by the following terminal characteristic.

i =
≥
≤{10

0 1
u u
u u

when 0
when 0.

	

Find the element’s current if it is connected to a voltage source with (a) u = 1 + sin t and (b) u = −1 + sin t. See 
Fig. 3-26 (a).  Ans. (a) i = 10(1 + sin t); (b) i = 0.1(−1 + sin t)

3.30. Place a 1-Ω linear resistor between the nonlinear element of Problem 3.29 and the voltage source. See 
Fig. 3-26(b). Find the element’s current if the voltage source is (a) u = 1 + sin t and (b) u = −1 + sin t.

Ans.  (a) i = 0.91(1 + sin t); (b) i = 0.091(−1 + sin t)

Fig. 3-26
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Analysis Methods

4.1 The Branch Current Method
In the branch current method a current is assigned to each branch in an active network. Then Kirchhoff’s 
current law (KCL) is applied at the principal nodes and the voltages between the nodes employed to relate 
the currents. This produces a set of simultaneous equations which can be solved to obtain the currents.

EXAMPLE 4.1 Obtain the current in each branch of the network shown in Fig. 4-1 using the branch current method.

Fig. 4-1

Currents I1, I2, and I3 are assigned to the branches as shown. Applying KCL at node a,

 I I I1 2 3= +   (1)

The voltage Vab can be written in terms of the elements in each of the branches; Vab = 20 − I1(5), Vab = I3(10) and 
Vab = I2(2) + 8. Then the following equations can be written

  20 5 101 3− =I I( ) ( )   (2)

  20 5 2 81 2− = +I I( ) ( )   (3)

Solving the three equations (1), (2), and (3) simultaneously gives I1 = 2 A, I2 = 1 A, and I3 = 1 A.

Other directions may be chosen for the branch currents and the answers will simply include the appropri-
ate sign. In a more complex network, the branch current method is difficult to apply because it does not sug-
gest either a starting point or a logical progression through the network to produce the necessary equations. 
It also results in more independent equations than either the mesh current or node voltage method requires.

4.2 The Mesh Current Method
In the mesh current method a current is assigned to each window of the network such that the currents com-
plete a closed loop. They are sometimes referred to as loop currents. Each element and branch therefore 
will have an independent current. When a branch has two of the mesh currents, the actual current is given  

CHAPTER 4
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by their algebraic sum. The assigned mesh currents may have either clockwise or counterclockwise direc-
tions, although at the outset it is wise to assign to all of the mesh currents a clockwise direction. Once the 
currents are assigned, Kirchhoff’s voltage law (KVL) is written for each loop to obtain the necessary simul-
taneous equations.

EXAMPLE 4.2 Obtain the current in each branch of the network shown in Fig. 4-2 (same as Fig. 4-1) using the mesh 
current method.

Fig. 4-2

The currents I1 and I2 are chosen as shown on the circuit diagram. Applying KVL around the left loop, starting at 
point α,

− + + − =20 5 10 01 1 2I I I( )

and around the right loop, starting at point b,

8 10 2 02 1 2+ − + =( )I I I   

Rearranging terms,

15 10 201 2I I− = (4)

− + = −10 12 81 2I I   (5)

Solving (4) and (5) simultaneously results in I1 = 2 A and I2 = 1 A. The current in the center branch, shown dotted, is 
I1 − I2 = 1 A. In Example 4.1 this was branch current I3.

The currents do not have to be restricted to the windows in order to result in a valid set of simultaneous 
equations, although that is the usual case with the mesh current method. For example, see Problem 4.6, where 
each of the currents passes through the source. In that problem they are called loop currents. The applicable 
rule is that each element in the network must have a current or a combination of currents and no two elements 
in different branches can be assigned the same current or the same combination of currents.

4.3 Matrices and Determinants
The n simultaneous equations of an n-mesh network can be written in matrix form. (Refer to Appendix B for 
an introduction to matrices and determinants.)

EXAMPLE 4.3 When KVL is applied to the three-mesh network of Fig. 4-3, the following three equations are 
obtained:

( )

( )

R R I R I V

R I R R R I R I

A B B a

B B C D D

+ − =

− + + + − =

−

1 2

1 2 3 0

RRR I R R I VD D E b2 3+ + = −( )
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Placing the equations in matrix form,

  
R R R

R R R R R

R R R

IA B B

B B C D D

D D E

+ −
− + + −

− +

















0

0

11

2

3

0I

I

V

V

a

b

















=
−

















  

The elements of the matrices can be indicated in general form as follows:

  
R R R

R R R

R R R

I

I

I

11 12 13

21 22 23

31 32 33

1

2

3

































=
















V

V

V

1

2

3

  (6)

Now element R11 (row 1, column 1) is the sum of all resistances through which mesh current I1 passes. In Fig. 4-3, 
this is RA + RB. Similarly, elements R22 and R33 are the sums of all resistances through which I2 and I3, respectively, 
pass.

Fig. 4-3

Element R12 (row 1, column 2) is the sum of all resistances through which both mesh currents I1 and I2 pass. The sign 
of R12 is + if the two currents are in the same direction through each resistance, and − if they are in opposite directions. 
In Fig. 4-3, RB is the only resistance common to I1 and I2; and the current directions are opposite in RB, so that the sign 
is negative. Similarly, elements R21, R23, R13, and R31 are the sums of the resistances common to the two mesh currents 
indicated by the subscripts, with the signs determined as described previously for R12. It should be noted that for all i and 
j, Rij = Rji . As a result, the resistance matrix is symmetric about the principal diagonal.

The current matrix requires no explanation, since the elements are in a single column with subscripts 1, 2, and 3 
to identify the current with the corresponding mesh. These are the unknowns in the mesh current method of network 
analysis.

Element V1 in the voltage matrix is the sum of all source voltages driving mesh current I1. A voltage is counted posi-
tive in the sum if I1 passes from the − to the + terminal of the source; otherwise, it is counted negative. In other words, 
a voltage is positive if the source drives in the direction of the mesh current. In Fig. 4.3, mesh 1 has a source Va driving 
in the direction of I1; mesh 2 has no source; and mesh 3 has a source Vb driving opposite to the direction of I3, making 
V3 negative.

The matrix equation arising from the mesh current method may be solved by various techniques. One of 
these, the method of determinants (Cramer’s rule), will be presented here. It should be stated, however, that 
other techniques are far more efficient for large networks.

EXAMPLE 4.4 Solve matrix equation (6) of Example 4.3 by the method of determinants.
The unknown current I1 is obtained as the ratio of two determinants. The denominator determinant has the elements 

of the resistance matrix. This may be referred to as the determinant of the coefficients and given the symbol ∆R. The 
numerator determinant has the same elements as ∆R except in the first column, where the elements of the voltage matrix 
replace those of the coefficient matrix. Thus,

  I

V R R

V R R

V R R

R R R

R R1

1 12 13

2 22 23

3 32 33

11 12 13

21 2= 22 23

31 32 33

1 12 13

2 22 23

3 32 33

1
R

R R R

V R R

V R R

V R RR
≡ ∆
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Similarly,

I

R V R

R V R

R V R

I

R R

R R
2

11 1 13

21 2 23

31 3 33

3

11 11 1= ∆ = ∆
22 1

21 22 2

31 32 3

V

R R V

R R V

An expansion of the numerator determinants by cofactors of the voltage terms results in a set of equations which can 
be helpful in understanding the network, particularly in terms of its driving-point and transfer resistances:

I V V V
R R R

1 1
11

2
21

3
31=

∆
∆







+
∆
∆







+
∆
∆







  (7)

I V V V
R R R

2 1
12

2
22

3
32=

∆
∆







+
∆
∆







+
∆
∆







  (8)

I V V V
R R R

3 1
13

2
23

3
33=

∆
∆







+
∆
∆







+
∆
∆







  (9)

Here, ∆ij stands for the cofactor of Rij (the element in row i, column j) in ∆R. Care must be taken with the signs of 
the cofactors—see Appendix B.

4.4 The Node Voltage Method
The network shown in Fig. 4-4(a) contains five nodes, where 4 and 5 are simple nodes and 1, 2, and 3 are 
principal nodes. In the node voltage method, one of the principal nodes is selected as the reference and equa-
tions based on KCL are written at the other principal nodes. At each of these other principal nodes, a voltage 
is assigned, where it is understood that this is a voltage with respect to the reference node. These voltages are 
the unknowns and, when determined by a suitable method, result in the network solution.

Fig. 4-4

The network is redrawn in Fig. 4-4(b) and node 3 selected as the reference for voltages V1 and V2. KCL 
requires that the total current out of node 1 be zero:

V V
R

V
R

V V
R

a

A B C

1 1 1 2 0
−

+ +
−

=   

Similarly, the total current out of node 2 must be zero:

V V
R

V
R

V V
RC D

b

E

2 1 2 2 0
−

+ +
−

=   
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(Applying KCL in this form does not imply that the actual branch currents all are directed out of either node. 
Indeed, the current in branch 1–2 is necessarily directed out of one node and into the other.) Putting the two 
equations for V1 and V2 in matrix form,

  

1 1 1 1

1 1 1 1

R R R R

R R R R

V
A B C C

C C D E

+ + −

− + +



















11

2V

V R

V R

a A

b E



















=



















/

/

  

Note the symmetry of the coefficient matrix. The 1,1-element contains the sum of the reciprocals of 
all resistances connected to node 1; the 2,2-element contains the sum of the reciprocals of all resistances 
connected to node 2. The 1,2- and 2,1-elements are each equal to the negative of the sum of the recipro-
cals of the resistances of all branches joining nodes 1 and 2. (There is just one such branch in the present 
circuit.)

On the right-hand side, the current matrix contains Va/RA and Vb/RE, the driving currents. Both of these 
terms are taken to be positive because they both drive a current into a node. Further discussion of the ele-
ments in the matrix representation of the node voltage equations is given in Chapter 9, where the networks 
are treated in the sinusoidal steady state.

EXAMPLE 4.5 Solve the circuit of Example 4.2 using the node voltage method.
The circuit is redrawn in Fig. 4-5. With two principal nodes, only one equation is required. Assuming the currents 

are all directed out of the upper node and the bottom node is the reference,

 
V V V1 1 120

5 10
8

2 0
−

+ +
−

=   

from which V1 = 10 V. Then, I1 = (10 − 20)/5 = −2 A (the negative sign indicates that current I1 flows into node 1); 
I2 = (10 − 8)/2 = 1 A; I3 = 10/10 = 1 A. Current I3 in Example 4.2 is shown dotted in Fig. 4-2.

Fig. 4-5

4.5 Network Reduction
The mesh current and node voltage methods are the principal techniques of circuit analysis. However, 
the equivalent resistance of series and parallel branches (Sections 3.4 and 3.5), combined with the voltage 
and current division rules, provides another method of analyzing a network. This method is tedious and 
usually requires the drawing of several additional circuits. Even so, the process of reducing the network 
provides a very clear picture of the overall functioning of the network in terms of voltages, currents, 
and power. The reduction begins with a scan of the network to pick out series and parallel combinations 
of resistors.
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EXAMPLE 4.6 Obtain the total power supplied by the 60-V source and the power absorbed in each resistor in the 
network of Fig. 4-6.

R

R

ab

cd

= + = Ω

= 1
+ = Ω

7 5 12

12 6 4
2 6( )( )   

Fig. 4-6

These two equivalents are in parallel (Fig. 4-7), giving

Ref = + = Ω( )( )4 12
4 12 3   

Then this 3-Ω equivalent is in series with the 7-Ω resistor (Fig. 4-8), so that for the entire circuit,

Req = + = Ω7 3 10   

The total power absorbed, which equals the total power supplied by the source, can now be calculated as

P
V
RT = = =

2 260
10 360

eq
W

( )
  

This power is divided between Rge and Ref as follows:

P P Pge ef= = + = = + =Ω7

7
7 3 360 252

3
7 3 360 108( ) ( )W W

Power Pef is further divided between Rcd and Rab as follows:

P Pcd ab= + = = + =12
4 12 108 81

4
4 12 108 27( ) ( )W W

Fig. 4-7 Fig. 4-8
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Finally, these powers are divided between the individual resistances as follows:

  
P P

P

12 7

6

6
12 6 81 27

7
7 5 27 15 75

12

Ω Ω

Ω

= + = = + =

=

( ) ( ) .W W

112 6 81 54
5

7 5 27 11 255+ = = + =Ω( ) ( ) .W WP

  

4.6 Input Resistance
In single-source networks, the input or driving-point resistance is often of interest. Such a network is sug-
gested in Fig. 4-9, where the driving voltage has been designated as V1 and the corresponding current as I1. 
The input resistance is

 R
V
Iinput,1 = 1

1
  

EXAMPLE 4.7 Find the input resistance seen by the voltage source in the circuit of Fig. 4-6.
The circuit of Fig. 4-6 was reduced to Fig. 4-8, from which the input resistance is determined to be  

Rinput = + = Ω7 3 10 .

One may find a general expression for the input resistance seen by the voltage source V1 in the circuit of Fig. 4-9.
Since the only source is V1, the equation for I1 is [see Eq. (7) of Example 4.4]:

  I V
R

1 1
11=

∆
∆







  

The input resistance is the ratio of V1 to I1:

  R
V
I

R
input,1 = =

∆
∆

1

1 11
  

The reader should verify that ∆R/∆11 actually carries the units of Ω.

Fig. 4-9

4.7 Output Resistance
A voltage source applied to a passive network results in voltages between all nodes of the network. An exter-
nal resistor connected between two nodes will draw current from the network and in general will reduce the  
voltage between those nodes. This is due to the voltage across the output resistance (see the Thévenin equiva-
lent circuit in Section 4.11). The output resistance is found by dividing the open-circuited voltage to the 
short-circuited current between the desired terminals. The short-circuited current is found in Section 4.8.

EXAMPLE 4.8 Find the output resistance seen by the output terminal pair ab in the circuit of Fig. 4-6.
The circuit of Fig. 4-6 was reduced to Fig. 4-8, from which the output resistance is determined to be

  R aboutput in parallel with 3 /, ( ) .= Ω Ω = × + =7 7 3 7 3 2 11 Ω   

4.8 Transfer Resistance
A driving voltage in one part of a network results in currents in all the network branches. For example, a 
voltage source applied to a passive network results in an output current in that part of the network where a 
load resistance has been connected. In such a case, the network has an overall transfer resistance.
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EXAMPLE 4.9 In the circuit of Fig. 4-6 find the transfer resistance R
V
I

abtransfer = 1 , where V1 is the voltage source.
From the circuit reduction shown in Fig. 4-7, Iab = Vef  /12. From Fig. 4-8, we find Vef = 60 × 3/(7 + 3) = 18 V and   

Iab = 18/12 = 1.5 A. Therefore, Rtransfer = 60/1.5 = 40 Ω.
Consider the passive network suggested in Fig. 4-10, where the voltage source has been designated as V1 and the 

output current as Is. The mesh current equation for Is contains only one term, the one resulting from Vr in the numerator 
determinant:

Fig. 4-10

I Vs
s

R
r

rs

R
=

∆
∆







+ + +
∆
∆







+ +( ) . . . . . .0 0 01

The network transfer resistance is the ratio of Vr to Is:

R
V
Irs

r

s

R

rs
transfer, = =

∆
∆   

Consider now the more general situation of an n-mesh network containing a number of voltage sources. The solu-
tion for the current in mesh k can be rewritten in terms of input and transfer resistances [refer to Eqs. (7), (8), and (9) 
of Example 4.4]:

Ik
k

k

k k

V
R

V
R

= + + +−

−

1

1

1

transfer transfer,( 1),

. . . VVV
R

V
R

V
R

k

k

k

k k

n

input transfer,( 1) tra,

. . .+ + ++

+

1

nnnsfer,nk

There is nothing new here mathematically, but in this form the current equation does illustrate the superposition principle 
very clearly, showing how the resistances control the effects which the voltage sources have on a particular mesh current. 
A source far removed from mesh k will have a high transfer resistance into that mesh and will therefore contribute very 
little to Ik. Source Vk, and others in meshes adjacent to mesh k will provide the greater part of Ik.

4.9 Reciprocity Property
In a passive circuit the resistance matrix is symmetric, ∆rs = ∆sr, so

R Rrs srtransfer transfer, ,=   

This expresses an important property of linear passive networks: If a certain voltage in a mesh r gives rise 
to a certain current in a mesh s, then the same voltage in mesh s produces the same current in mesh r. This 
property is called reciprocity.

4.10 Superposition
A linear network which contains two or more independent sources can be analyzed to obtain the various 
voltages and branch currents by allowing the sources to act one at a time, then superposing the results. This 
principle applies because of the linear relationship between current and voltage. With dependent sources, 
superposition can be used only when the control functions are external to the network containing the sources, 
so that the controls are unchanged as the sources act one at a time. Voltage sources to be suppressed while a 
single source acts are replaced by short circuits; current sources are replaced by open circuits. Superposition 
cannot be directly applied to the computation of power, because power in an element is proportional to the 
square of the current or the square of the voltage, which is a nonlinear relationship.
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As a further illustration of superposition consider equation (7) of Example 4.4:

  I V V V
R R R

1 1
11

2
21

3
31=

∆
∆







+
∆
∆







+
∆
∆





   

which contains the superposition principle implicitly. Note that the three terms on the right are added to result 
in current I1. If there are sources in each of the three meshes, then each term contributes to the current I1. Addi-
tionally, if only mesh 3 contains a source, V1 and V2 will be zero and I1 is fully determined by the third term.

EXAMPLE 4.10 Compute the current in the 23-Ω resistor of Fig. 4-11(a) by applying the superposition principle. With 
the 200-V source acting alone, the 20-A current source is replaced by an open circuit, Fig. 4-11(b).

Fig. 4-11

  

R

IT

eq

A

= + + = Ω

= =

′

47
27 4 23

54 60 5

200
60 5 3 31

( )( )
.

. .

II23

27
54 3 31 1 65Ω = 



 =( . ) . A

  

When the 20-A source acts alone, the 200-V source is replaced by a short circuit, Fig. 4-11(c). The equivalent resis-
tance to the left of the source is

  Req = + =4
27 47

74 21 15
( )( )

. Ω   

Then  ′′ = +




 =ΩI23

21 15
21 15 23 20 9 58

.
. ( ) . A   

The total current in the 23-Ω resistor is

  I I I23 23 23 11 23Ω Ω Ω= ′ + ′′ = . A   

4.11 Thévenin’s and Norton’s Theorems
A linear, active, resistive network which contains one or more voltage or current sources can be replaced by a 
single voltage source and a series resistance (Thévenin’s theorem), or by a single current source and a parallel 
resistance (Norton’s theorem). The voltage is called the Thévenin equivalent voltage, ′V , and the current the 
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Norton equivalent current, ′I . The two resistances are the same, ′R . When terminals ab in Fig. 4-12(a) are 
open-circuited, a voltage will appear between them.

From Fig. 4-12(b) it is evident that this must be the voltage ′V  of the Thévenin equivalent circuit. If a short 
circuit is applied to the terminals, as suggested by the dashed line in Fig. 4-12(a), a current will result. From 
Fig. 4-12(c) it is evident that this current must be ′I  of the Norton equivalent circuit. Now, if the circuits in   
(b) and (c) are equivalents of the same active network, they are equivalent to each other. It follows that ′ = ′ ′I V R/ . 
If both ′V  and ′I  have been determined from the active network, then ′ = ′ ′R V I/ .

EXAMPLE 4.11 Obtain the Thévenin and Norton equivalent circuits for the active network in Fig. 4-13(a).
With terminals ab open, the two sources drive a clockwise current through the 3-Ω and 6-Ω resistors [Fig. 4-13(b)].

I = +
+20 =10

3 6
30
9 A   

Since no current passes through the upper right 3-Ω resistor, the Thévenin voltage can be taken from either active branch:

Fig. 4-12

Fig. 4-13

V Vab = ′ = − 



 =20

30
9 3 10( ) V  

or V Vab = ′ = 
  − =30

9 6 10 10 V
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The resistance R′ can be obtained by shorting out the voltage sources [Fig. 4.13(c)] and finding the equivalent  
resistance of this network at terminals ab:

  ′ = + = ΩR 3
3 6

9 5
( )( )

  

When a short circuit is applied to the terminals, current Is.c. results from the two sources. Assuming that it runs 
through the short from a to b, we have, by superposition,

  I Is.c.

20
= ′ = +





 +

















−6
6 3 3

3 6
9

3
3( )( ) ++





 +

















=3 6
3 3

6
2

10
A( )( )   

Figure 4-14 shows the two equivalent circuits. In the present case, V ′, R′, and I′ were obtained independently. Since 
they are related by Ohm’s law, any two may be used to obtain the third.

Fig. 4-14

The usefulness of Thévenin and Norton equivalent circuits is clear when an active network is to be examined under 
a number of load conditions, each represented by a resistor. This is suggested in Fig. 4-15, where it is evident that the 
resistors R1, R2, . . . , Rn can be connected one at a time, and the resulting current and power readily obtained. If this 
were attempted in the original circuit using, for example, network reduction, the task would be very tedious and time-
consuming.

Fig. 4-15

4.12 Maximum Power Transfer Theorem
At times it is desired to obtain the maximum power transfer from an active network to an external load resis-
tor RL. Assuming that the network is linear, it can be reduced to an equivalent circuit as in Fig. 4-16. Then

  I
V

R RL
= ′

′ +   

and so the power absorbed by the load is

  P
V R

R R

V
R

R R
R RL

L

L

L

L
=

′
′ +

= ′
′ −

′ −
′ +







2

2

2 2

4 1
( ) 
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It is seen that PL attains its maximum value, ′ ′V R2 4/ , when R RL = ′ , in which case the power in ′R  is also 
′ ′V R2 4/ . Consequently, when the power transferred is a maximum, the efficiency is 50 percent.

Fig. 4-16

It is noted that the condition for maximum power transfer to the load is not the same as the condition for 
maximum power delivered by the source. The latter happens when RL = 0, in which case power delivered to 
the load is zero (i.e., at a minimum).

4.13 Two-Terminal Resistive Circuits and Devices
A circuit made of resistors and sources has no memory of its past state. Element voltages and currents in such 
a circuit are related to the source only through the instantaneous values. When connected to another circuit 
through a terminal pair, such a circuit appears as a resistor and a source. If all resistors contained in a two-
terminal circuit are linear, the terminal characteristic is u (t) = ai(t) + b, shown by a straight line in the i − u
plane (see Problem 4.51). The Thévenin equivalent circuit of Section 4.11 and Fig. 4-12 illustrate the point.

If a two-terminal resistive circuit contains nonlinear elements (such as a semiconductor diode introduced 
in Section 2.8), its terminal i − u characteristic is still an instantaneous one (and in general nonlinear), and 
shown by f(u, i) = 0, which can be represented by a piecewise linear plot or a curve in the i − u plane. See 
Problems 4.52 and 4.53.

4.14 Interconnecting Two-Terminal Resistive Circuits
Kirchhoff’s laws apply to currents and voltages in an electric circuit regardless of the linearity property for the 
circuit. When embedded in a bigger circuit, a two-terminal circuit forms a branch of that circuit. In addition to the 
terminal characteristic, its current and voltage conform to KVL/KCL relationships generated by the connection. 
The ensemble of these relationships determines the voltages and currents. For linear circuits, the ensemble is a set 
of linear equations which can easily be solved analytically. For nonlinear circuits, an analytical approximation, a 
graphical solution, or an exact solution may be employed. Problem 4.57 illustrates the use of a graphical solution.

EXAMPLE 4.12 A two-terminal circuit characterized by u1 − 4i1 − 1 = 0 is connected to another two-terminal circuit 
characterized by i2 − 2u2 + 4 = 0 as shown in Fig. 4-58. Find the terminal current and voltage.

When connected, u1 = u2 and i1 = −i2. These two equations, along with the given terminal characteristics, result in 
u1 = u2 = 17/9 V and i1 = −i2 = 2/9 A.

Series and Parallel Connections
Of special interest are series or parallel connections of two-terminal circuits. Consider the two-terminal 
circuits N1 and N2 characterized by f1(u1, i1) = 0 and f2(u2, i2) = 0, respectively. Connecting N1 and N2 in 
parallel or in series, as shown in Fig. 4-60, produces a two-terminal circuit whose terminal characteristic 
f (u, i) = 0 can be found by eliminating u1, i1, u2, and i2 between the four equations due to N1, N2, KVL, and 
KCL. This is summarized below:

f i

f i

i i i

1 1 1

2 2 2

1 2 1 2

0

0

( , )

( , )

(

υ

υ

υ υ υ

=

=

= = = +and paraaallel connection

and series co

)

(υ υ υ= + = =1 2 1 2i i i nnnnection)
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For linear resistive circuits, the terminal characteristic is of the form u = Ri + V0 and can be easily obtained 
analytically as illustrated in Example 4.13. For nonlinear circuits, analytical or graphical methods may be 
used. Problems 4.61 and 4.62 illustrate the use of the graphical technique.

EXAMPLE 4.13 (a) Find the terminal characteristics of the series combination of two circuits characterized by  
u1 − 4i1 − 1 = 0 and i2 − 2u2 + 4 = 0, as shown in Fig. 4-60(a). (b) Repeat if the two circuits are placed in parallel as 
shown in Fig. 4-60(b).

(a) Series connection: i = i1 = i2 and u = u1 + u2 resulting in u = (4i + 1) + (0.5i + 2) = 4.5i + 3. (b) Parallel connec-
tion: u = u1 = u2 and i = i1 + i2 resulting in i = (0.25u − 0.25) + (2u − 4) = 2.25u − 4.25.

4.15 Small-Signal Model of Nonlinear Resistive Devices
Consider a nonlinear resistor with the terminal characteristic I = f (V). A DC voltage V0 applied across the 
resistor will create a DC current I0 = f (V0). This is called the DC operating point. Changing the voltage by a 
small incremental amount u results in a small incremental current i.

  I f V f V
dI
dV

I I i
V V

= + ≈ + × = + = +
=

( ) ( )0 0 0 0
0

υ υ υg   

where i = gυ and g dI
dV V V

=
= 0

 is a constant number representing the small-signal conductance of the element 
at the operating point (V0, I0). It is seen that the small variations u and i are linearly related to each other 
by a factor g which is the slope of the tangent to the I vs. V curve at the DC operating point and can be 
approximated graphically. Its inverse r = 1/g is the element’s small-signal (or dynamic) resistance. It may be 
approximated from experimental data (as was done for a semiconductor diode in Example 2.4 of Chapter 2) 
or computed analytically. The small-signal operation enables us to model nonlinear elements, devices, and 
circuits by linear elements and then apply powerful linear analysis techniques to them.

Small Signal Model of an Actual Semiconductor Diode
The current in a semiconductor junction diode as a function of its voltage is I = Is (e

40V/n − 1) at room tem-
perature, where 1 < n < 2 (for germanium diodes and high-current silicon diodes n = 1). Is is the diode’s 
reverse saturation current (the current when the voltage is negative) and is very small. The dynamic resistance 
of the diode (also called its small-signal model) at an operating point (V0, I0) is found from

 
g

dI
dV n

I e
I

n
r

g
n
IV V

s
V n= = ≈ = =

= 0

0
40 40 1

40
40 0

0

/

 

As an example, for a diode operating at 1 mA, its dynamic resistance is between 25 Ω and 50 Ω (depending 
on n). The small signal model of the diode is used to construct a small signal model of the circuit in which 
the diode is embedded. See Problem 4.64.

SOLVED PROBLEMS

 4.1. Use branch currents in the network shown in Fig. 4-17 to find the current supplied by the 60-V source.

Fig. 4-17

Ch04.indd   49 10/08/17   2:28 PM



CHAPTER 4  Analysis Methods50

KVL and KCL give:

I I2 312 6( ) ( )= (10)

I I2 412 12( ) ( )= (11)

60 7 121 2= +I I( ) ( ) (12)

I I I I1 2 3 4= + + (13)

Substituting (10) and (11) in (13),

I I I I I1 2 2 2 22 4= + + = (14)

Now (14) is substituted in (12):

60 7
1
4 12 10 61 1 1 1= + = =I I I I( ) ( ) or A  

4.2. Solve Problem 4.1 by the mesh current method.

Fig. 4-18

Applying KVL to each mesh (see Fig. 4-18) results in

60 7 12

0 12 6

0 6

1 1 2

2 1 2 3

3

= + −

= − + −

= −

I I I

I I I I

I

( )

( ) ( )

( III I2 312) +

Rearranging terms and putting the equations in matrix form,

19 12 60

12 18 6 0

6 18 0

11 2

1 2 3

2 3

I I

I I I

I I

− =

− + − =

− + =

or
999 12 0

12 18
0 18

1

2

3

−
− −

−






























6

6

I

I

I 
=

















60
0
0

Using Cramer’s rule to find I1,

I1

60 12 0
0 18 6
0 6

19 12 0
12 18 6
0 6

17 2=
−

−
−

÷
−

− −
−

=
18 18

8880 2880 6÷ = A  

4.3. Solve the network of Problems 4.1 and 4.2 by the node voltage method. See Fig. 4-19.
With two principal nodes, only one equation is necessary.

V V V V1 1 1 1
7 12 6 12 0

60−
+ + + =
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from which V1 = 18 V. Then,

  I
V

1
160

7 6=
−

= A  

Fig. 4-19

Fig. 4-20

 4.4. In Problem 4.2, obtain Rinput,1 and use it to calculate I1.

 R R
input,

2880
1

11 18 6
6 18

2880
288 10=

∆
∆ = −

−

= = Ω  

Then  I
R1

1

60 60
10 6= = =

input
A

,
 

 4.5. Obtain Rtransfer,12 and Rtransfer,13 for the network of Problem 4.2 and use them to calculate I2 and I3.
The cofactor of the 1,2-element in ∆R must include a negative sign:

  ∆ = −
− −

= =
∆
∆ =+

12
1 2

12
12

1
12 6

0 18
216

2
( ) R R

transfer,

8880
216 13 33= Ω.  

Then, I2 = 60/13.33 = 4.50 A.

  ∆ = −
−

− = =
∆
∆ =+

13
1 3

13
13

1
12 16

0 6
72

28
( ) R R

transfer,

880
72 40= Ω  

Then, I3 = 60/40 = 1.50 A.

 4.6. Solve Problem 4.1 by use of the loop currents indicated in Fig. 4-20.
The elements in the matrix form of the equations are obtained by inspection, following the rules of 

Section 4.2.
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19 7 7
7 13 7
7 7 19

60
60

1

2

3

































=
I

I

I 6660














  

Thus,  ∆ = =R

19 7 7
7 13 7
7 7 19

2880  

Notice that in Problem 4.2, too, ∆R = 2880, although the elements in the determinant were different. All valid 
sets of meshes or loops yield the same numerical value for ∆R. The three numerator determinants are

N N N1 2 3

60 7 7
60 13 7
60 7 19

4320 8642 4320= = = =

Consequently,

I
N

I
N

I
N

R R R
1

1
2

2
3

34320
2880 1 5 3 1 5= ∆ = = = ∆ = = ∆ =. .A A A  

The current supplied by the 60-V source is the sum of the three loop currents, I1 + I2 + I3 = 6 A.

4.7. Write the mesh current matrix equation for the network of Fig. 4-21 by inspection, and solve for the 
currents.

Fig. 4-21

7 5 0
5 19 4
0 4 6

21

2

3

−
− −

−

































=
−I

I

I

555
25
50














  

Solving,

I1

25 5 0
25 19 4
50 4 6

7 5 0
5 19 4
0 4 6

700=
− −

−
−

÷
−

− −
−

= − ÷( ) 55536 1 31= − . A

Similarly,

I
N

I
N

R R
2

2
3

31700
536 3 17

5600
536 10 45= ∆ = = = ∆ = =. .A A

4.8. Solve Problem 4.7 by the node voltage method.
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V V V V1 1 1 2
2

25
5 10 0+
−

+
−

=  

Similarly, at node 2,

  
V V V V2 1 2 2

10 4
50

2 0
−

+ +
+

=  

Putting the two equations in matrix form,

  
1
2

1
5

1
10

1
10

1
10

1
10

1
4

1
2

1

2

+ + −

− + +






















V

V











=

−

5

25

 

The determinant of the coefficient matrix and the numerator determinants are

  

∆ =
−

− =

=
−

− =

0 80 0 10
0 10 0 85

0 670

5 0 10
25 0 851

. .

. .
.

.

.
N 11 75

0 80 5
0 10 25

19 52.
.
.

.N = − − = −

 

From these,

  V V1 2

1 75
0 670 2 61

19 5
0 670 29 1= = = − = −.

. .
.

. .V V  

In terms of these voltages, the currents in Fig. 4-21 are determined as follows:

  I
V

I
V V

I
V

1
1

2
1 2 2

2 1 31 10 3 17
50

2 10=
−

= − =
−

= =
+

=. . .A A 3 445 A  

 4.9. For the network shown in Fig. 4-23, find Vs which makes I0 = 7.5 mA.
The node voltage method will be used and the matrix form of the equations written by inspection.

  
1

20
1
7

1
4

1
4

1
4

1
4

1
6

1
6

1

2

+ + −

− + +

























V

V 





=
















Vs /20

0

 

Solving for V2,

  V

Vs

2

0 443 20

0 250
=

−
−

−

=

.

.

/

0
0.443 0.250
0.250 0.583

00 0638. Vs
 

Fig. 4-22

The circuit has been redrawn in Fig. 4-22, with two principal nodes numbered 1 and 2 and the third 
chosen as the reference node. By KCL, the net current out of node 1 must equal zero.
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Then 7 5 10 6
0 0638

6
3

0
2.

.
× = = =− I

V Vs  

from which Vs = 0.705 V.

4.10. In the network shown in Fig. 4-24, find the current in the 10-Ω resistor.

Fig. 4-24

The nodal equations in matrix form are written by inspection.

1
5

1
10

1
5

1
5

1
5

1
2

21

2

+ −

− +

































=
V

V −−−

















=

−
−

−
−

6

2 0 20
6 0 70

0 30 0 20
0 20 0

1V

.

.
. .
. ...

.

70

1 18= V

Then, I = V1/10 = 0.118 A.

4.11. Find the voltage Vab in the network shown in Fig. 4-25.
The two closed loops are independent, and no current can pass through the connecting branch.

I I

V V V V I Iab ax xy yb

1 2

1 2

2
30
10 3

5 5

= = =

= + + = − − +

A A

( ) (44 3) = − V

Fig. 4-23
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Fig. 4-26

4.12. For the ladder network of Fig. 4-26, obtain the transfer resistance as expressed by the ratio of Vin 
to I4.

Fig. 4-27

Fig. 4-25

By inspection, the network equation is

  

15 5 0 0
5 20 5 0
0 5 20 5
0 0 5 5

1−
− −

− −
− +

















R

I

I

L

22

3

4

0
0
0

512

I

I

V

R



















=



















∆ =

in

55 18 750 125

150

4

4
4

R N V

I
N V

R

L

R L

+ =

= ∆ = +

in

in
41 (A)

 

and  R
V
I

RLtransfer,14
in= = + Ω
4

41 150 ( )  

4.13. Obtain a Thévenin equivalent for the circuit of Fig. 4-26 to the left of terminals ab.
The short-circuit current Is.c. is obtained from the three-mesh circuit shown in Fig. 4-27.
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15 5 0
5 20 5
0 5 15

1

2

−
− −

−






























I

I

Is.c.




=
















=

−
−

∆ =

V

I
V

V

R

in

s.c.

in
in

15

0
0

5 20
0 5

000

The open-circuit voltage Vo.c. is the voltage across the 5-Ω resistor indicated in Fig. 4-28.

Fig. 4-28

15 5 0
5 20 5
0 5 20

1

2

3

−
− −

−

































=
I

I

I

VVV

I
V V

in

3
in in

205 A

0
0

25
5125

















= = ( )

Then, the Thévenin source ′ = = =V V I Vo.c. in /3 5 41( ) , and

R
V
ITh

o.c.

s.c.
= = Ω150

41  

The Thévenin equivalent circuit is shown in Fig. 4-29. With RL connected to terminals ab, the output 
current is

I
V

R
V

RL L
4

41
150= + = +

in in/
(150/41) 41 A( )

agreeing with Problem 4.12.

Fig. 4-29

4.14. Use superposition to find the current I from each voltage source in the circuit shown in Fig. 4-30.
Loop currents are chosen such that each source contains only one current.
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  54 27
27 74

460
200

1

2

−
−















=
=

−





I

I
 

For the 460 V source,

  ′ = ′ = − = −I I1 10 42
( 460)(74)

3267 A.  

and for the 200 V source

  ′′ = ′′ = − − =I I1 3267 1 65
(200)( 27)

A.  

Then,  I I I= ′ + ′′ = − + = −10 42 1 65 8 77. . . A  

4.15. Obtain the current in each resistor in Fig. 4-31(a), using network reduction methods.
As a first step, two-resistor parallel combinations are converted to their equivalents. For the 6 Ω and 

3 Ω, Req = (6)(3)/(6 + 3) = 2 Ω. For the two 4-Ω resistors, Req = 2 Ω. The circuit is redrawn with series 
resistors added [Fig. 4-31(b)]. Now the two 6-Ω resistors in parallel have the equivalent Req = 3 Ω, and this 
is in series with the 2 Ω. Hence, RT = 5 Ω, as shown in Fig. 4-31(c). The resulting total current is

Fig. 4-30

Fig. 4-31
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IT = =25
5 5 A

Now the branch currents can be obtained by working back through the circuits of Fig. 4-31(b) and 
4-31(a)

I I I

I I I

I I

C F T

D E C

A T

= = =

= = =

= + =

1
2

1
2

2 5

1 25

3
6 3

5
3

.

.

A

A

AAA

AI IB T= + =6
6 3

10
3

4.16. Find the value of the adjustable resistance R which results in maximum power transfer across the 
terminals ab of the circuit shown in Fig. 4-32.

Fig. 4-32

First a Thévenin equivalent is obtained, with ′ =V 60 V and ′ = ΩR 11 . By Section 4.10, maximum 
power transfer occurs for R R= ′ = Ω11 , with

P
V

Rmax .= ′
′ =

2

4 81 82 W  

SuPPLEMENTARy PROBLEMS

4.17. Apply the mesh current method to the network of Fig. 4-33 and write the matrix equations by inspection. Obtain 
current I1 by expanding the numerator determinant about the column containing the voltage sources to show how 
much current each source supplies.  Ans. 4.27 A, 3.98 A, 8.58 A

Fig. 4-33

Ch04.indd   58 10/08/17   2:39 PM



CHAPTER 4  Analysis Methods 59

4.18. Loop currents are shown in the network of Fig. 4-34. Write the matrix equation and solve for the three currents. 
Ans. 3.55 A, −1.98 A, −2.98 A

Fig. 4-34

4.19. The network of Problem 4.18 has been redrawn in Fig. 4-35 for solution by the node voltage method. Obtain 
node voltages V1 and V2 and verify the currents obtained in Problem 4.18.  Ans. 7.11 V, −3.96 V

Fig. 4-35

4.20. In the network shown in Fig. 4-36, I0 = 7.5 mA. Use mesh currents to find the required source voltage Vs. 
Ans. 0.705 V

Fig. 4-36

4.21. Use appropriate determinants of Problem 4.20 to obtain the input resistance as seen by the source voltage Vs. 
Check the result by network reduction.  Ans. 23.5 Ω
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4.22. For the network shown in Fig. 4-36, obtain the transfer resistance which relates the current I0 to the source 
voltage Vs.   Ans. 94.0 Ω

4.23. For the network shown in Fig. 4-37, obtain the mesh currents.   Ans. 5.0 A, 1.0 A, 0.5 A

Fig. 4-37

Fig. 4-38

4.24. Using the matrices from Problem 4.23 calculate Rinput,1, Rtransfer,12, and Rtransfer,13.  Ans. 10 Ω, 50 Ω, 100 Ω

4.25. In the network shown in Fig. 4-38, obtain the four mesh currents.

Ans.  2.11 A, −0.263 A, −2.34 A, 0.426 A

4.26. For the circuit shown in Fig. 4-39, obtain Vo.c., Is.c., and ′R  at the terminals ab using mesh current or node voltage 
methods. Consider terminal a positive with respect to b.  Ans. − 6.29 V, − 0.667 A, 9.44 Ω

Fig. 4-39
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4.27. Use the node voltage method to obtain Vo.c. and Is.c. at the terminals ab of the network shown in Fig. 4-40. 
Consider a positive with respect to b.   Ans. −11.2 V, −7.37 A

Fig. 4-40

4.28. Use network reduction to obtain the current in each of the resistors in the circuit shown in Fig. 4-41.

 Ans. In the 2.45-Ω resistor, 3.10 A; 6.7 Ω, 0.855 A; 10.0 Ω, 0.466 A; 12.0 Ω, 0.389 A; 17.47 Ω, 0.595 A;  
6.30 Ω, 1.65 A

Fig. 4-41

4.29. Both ammeters in the circuit shown in Fig. 4-42 indicate 1.70 A. If the source supplies 300 W to the circuit, find 
R1 and R2.   Ans. 23.9 Ω, 443.0 Ω

Fig. 4-42

4.30. In the network shown in Fig. 4-43 the two current sources provide I ′ and I″ where ′ + ′′ =I I I. Use superposition 
to obtain these currents.   Ans. 1.2 A, 15.0 A, 16.2 A

Fig. 4-43
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4.31. Obtain the current I in the network shown in Fig. 4.44.   Ans. −12 A

Fig. 4-44

Fig. 4-45

4.32. Obtain the Thévenin and Norton equivalents for the network shown in Fig. 4.45. 

Ans.  ′ = ′ = ′ = ΩV I R30 5 6V A, ,  

Fig. 4-46

4.34. Under no-load conditions a dc generator has a terminal voltage of 120 V. When delivering its rated current of   
40 A, the terminal voltage drops to 112 V. Find the Thévenin and Norton equivalents.

Ans.  ′ = ′ = ′ = ΩV I R120 600 0 2V A, , .  

4.35. The network of Problem 4.14 has been redrawn in Fig. 4-47 and terminals a and b added. Reduce the network to 
the left of terminals ab by a Thévenin or Norton equivalent circuit and solve for the current I.

Ans. − 8.77 A

4.33. Find the maximum power that the active network to the left of terminals ab can deliver to the adjustable resistor 
R in Fig. 4-46.   Ans. 8.44  W
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4.36. Node Voltage Method. In the circuit of Fig. 4-48 write three node equations for nodes A, B, and C, with node D 
as the reference, and find the node voltages.

 Ans

V V V

V V V
A B C

A B C.

Node A:

Node B:

5 2 3 30

6 3 0

− − =
− + − =

NNode C:

from which

− − + =









= =
V V V

V V

A B C

A B

2 3 2

17, 99 12 33, . ,VC = all in V.  

Fig. 4-47

Fig. 4-48

4.37. In the circuit of Fig. 4-48 note that the current through the 3-Ω resistor is 3 A, giving rise to VB = 9 V. Apply KVL 
around the mesh on the upper part of the circuit to find current I coming out of the voltage source, then find 
VA and VC.  Ans. I = 1/3 A, VA = 17 V, VC = 37/3 V

4.38. Superposition. In the circuit of Fig. 4-48 find the contribution of each source to VA, VB, and VC, and show that 
they add up to the values found in Problems 4.36 and 4.37.

 

Ans.

Contribution of the voltage source: VA = 3 VB = 0 VC = −1

 (All in V)
Contribution of the 1 A current source: VA = 6 VB = 3 VC = 4

Contribution of the 2 A current source: VA = 8 VB = 6 VC = 28/3

Contribution of all sources: VA = 17 VB = 9 VC = 37/3

4.39. In the circuit of Fig. 4-48 remove the 2-A current source and then find the voltage Vo.c. between the open-circuited 
nodes C and D.   Ans. Vo.c. = 3 V

4.40. Use the values for VC and Vo.c. obtained in Problems 4.36 and 4.39 to find the Thévenin equivalent of the circuit 
of Fig. 4-48 seen by the 2-A current source.  Ans. VTh = 3 V, RTh = 14/3 Ω

4.41. In the circuit of Fig. 4-48 remove the 2-A current source and set the other two sources to zero, reducing the 
circuit to a source-free resistive circuit. Find R, the equivalent resistance seen from terminals CD, and note that 
the answer is equal to the Thévenin resistance obtained in Problem 4.40.  Ans. R = 14/3 Ω

4.42. Find the Thévenin equivalent of the circuit of Fig. 4-49 seen from terminals AB.  Ans. VTh = 12 V, RTh = 17 Ω
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4.43. Loop Current Method. In the circuit of Fig. 4-50 write three loop equations using I1, I2, and I3. Then find the 
currents.

Ans

I I I

I I I.

Loop 1:

Loop 2:

4 2 3

2 5 2
1 2 3

1 2 3

+ + =
+ − =

Loop 3 0

From which

: − + + =









=
I I I

I

1 2 3

1

2 2

32/// / / all in A.51 9 51 7 512 3, , ,I I= =

4.44. Superposition. In the circuit of Fig. 4-50 find the contribution of each source to I1, I2, and I3, and show that 
they add up to the values found in Problem 4.43.

Ans.

From the source on the left: I1 = 36/51 I2 = −9/51 I3 = 27/51

(All in A)From the source on the right: I1 = −4/51 I2 = 18/51 I3 = −20/51

From both sources: I1 = 32/51 I2 = 9/51 I3 = 7/51

4.45. Node Voltage Method. In the circuit of Fig. 4-51 write three node equations for nodes A, B, and C, with 
node D as the reference, and find the node voltages.

Fig. 4-49 Fig. 4-50

Fig. 4-51

Ans

V V V

V V
A B C

A B.

Node A:

Node B:

9 7 2 42

3 8 2

− − =
− + − VVV V V VC A B C= = = =9 9 5 2, , ,From which all in V

NNNode C: − − + =







 3 7 31 0V V VA B C

.  

Ch04.indd   64 10/08/17   2:48 PM



CHAPTER 4  Analysis Methods 65

4.46. Loop Current Method. In the circuit of Fig. 4-51 write two loop equations using I1 and I2. Then find the 
currents and node voltages.

  Ans
I I

I I
.

Loop 1:
Loop 2:

from
4 2

2 3
1 2

1 2

− =
− + =





wwhich,
A A
V V V

I I

V V VA B C

1 21 2
9 5 2

= =
= = =

 ,
, ,


 

4.47. Superposition. In the circuit of Fig. 4-51 find the contribution of each source to VA, VB, and VC, and show that 
they add up to the values found in Problem 4.45.

Ans.

From the current source: VA = 7.429 VB = 3.143 VC = 1.429

 (All in V)From the voltage source: VA = 1.571 VB = 1.857 VC = 0.571

From both sources: VA = 9 VB = 5 VC = 2

4.48. Verify that the circuit of Fig. 4-52(a) is equivalent to the circuit of Fig. 4-51.

 Ans. Move node B in Fig. 4-51 to the outside of the loop.

Fig. 4-52

4.49. Find VA and VB in the circuit of Fig. 4-52(b).   Ans. VA = 9, VB = 5, both in V.

4.50. Show that the three terminal circuits enclosed in the dashed boundaries of Fig. 4-52(a) and (b) are equivalent 
(i.e., in terms of their relation to other circuits). Hint: Use the linearity and superposition properties, along with 
the results of Problems 4.48 and 4.49.

4.51. Find the terminal characteristic of the circuit of Fig. 4-53(a) and plot it in the i −u plane.

 Ans. i = 0.2u − 0.3. See Fig. 4-53(b).
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4.52. In the circuit of Fig. 4-54(a) find terminal current i as a function of terminal voltage u and plot it in the i −u plane. 
The diode is ideal (defined in Fig. 2-26 of Chapter 2).

Ans.  i = −{ ≤
>

0
0 7

0 7
0 7υ

υ
υ.

.

.
V
V

. See Fig. 4-54(b).

Fig. 4-53

Fig. 4.54

Fig. 4-55

4.53. In the circuit of Fig. 4-55(a) express terminal voltage u in terms of terminal current i and plot it in the i −u plane. 
The diode is ideal.

Ans.  υ = −{ ≤
>

0
5 1 5

0 3
0 3i

i
i.

.

.
A
A

. See Fig. 4-55(b).
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4.54. The i −u characteristic of a two-terminal device is modeled by i = −{ ≤
>

0
0 5 2 5

5
5

,
. . ,υ

υ
υ

V
V

. See Fig. 4-56(a).

 Construct its circuit model using an ideal diode, a resistor, and (a) a voltage source and (b) a current source.

 Ans. (a) See Fig. 4-56(b); (b) See Fig. 4-56(c)

Fig. 4-56

4.55. The i −u characteristic of a two-terminal device is modeled by i =
+{ < −

≥ −
0 5 2 5
0

5
5

. . ,
,

υ υ
υ

V
V

. See Fig. 4-57(a).

 Construct its circuit model using an ideal diode, a resistor, and (a) a voltage source and (b) a current source. 

 Ans. (a) See Fig. 4-57(b); (b) See Fig. 4-57(c)

Fig. 4-57

4.56. The switch in Fig. 4-58 connects circuit N1, characterized by u1 = 2i1 + 3, to circuit N2, characterized by u2 = i2 + 6, 
at t = 0. Find i1, i2, u1, and u2 for −∞< < ∞t . 

  Ans
t
t

i i

i
.

, ,
,

<
>{ = = = =

= = =
0
0

3 6 0
5

1 2 1 2

1 2 1

υ υ
υ υ

V V A
V −− =i2 1 A

 

Fig. 4-58
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4.57. Find the diode’s DC operating point (I0, V0) in the circuit of Fig. 4-59(a) using the graph of Fig. 4-59(b).

Ans. V0 = 1.1 V; I0 = 73 mA

Fig. 4-59

4.58. Consider a two-terminal circuit N1, characterized by u1 = 2i1 + 3, and another circuit N2, characterized by u2 =
i2 + 6. Find the terminal characteristic of their combination if they are connected (a) in series as in Fig. 4-60(a) 
and (b) in parallel as in Fig. 4-60(b).  Ans. (a) u = 3i + 9; (b) i = 1.5u − 7.5

Fig. 4-60

4.59. Repeat Problem 4.58 for i1 = 2u1 + 4 and u2 = 0.5i2 + 1.5. 

Ans. (a) Series connection u = 1.5i; (b) Parallel connection i = 3u + 2

4.60. Repeat Problem 4.58 for u1 = 2i1 − 6 and i2 = u2 − 2.

Ans. (a) Series connection u = 2.5i − 4.5; (b) Parallel connection i = 2.5u

4.61. Plot the terminal characteristic of the circuit of Fig. 4-61(a) (i vs. u) if the DC voltage source is (a) 1.5 V 
and (b) −1.5 V. The diode’s characteristic is given in Fig. 4-61(b).  Ans. (a) See Fig. 4-61(c); (b) See   
Fig. 4-61(d)
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4.62. Plot the terminal characteristic of the circuit of Fig. 4-62(a) (i vs. u) if the DC voltage source is (a) 1.5 V and  
(b) −1.5 V. The diode’s characteristic is given in Fig. 4-61(b).  Ans. (a) See Fig. 4-62(b); (b) See Fig. 4-62(c)

Fig. 4-61

Fig. 4-62

4.63. In the circuit of Fig. 4-63(a), find and plot the voltage transfer ratio V2/V1. The diode is ideal. 

 Ans.  V
V V

V2
1 1

10 6

0 6
0 6

= 



≤
>.

.

.
V
V

. See Fig. 4-63(b).

Ch04.indd   69 10/08/17   2:55 PM



CHAPTER 4  Analysis Methods70

4.64. In the circuit of Fig. 4-64(a), find and plot the voltage transfer ratio V2/V1. The diode is ideal. 

Ans.  V V

V

V

V
2 1

1

1

1

0 8

0 6

0 8
0 8 0 6

0
=

−





≤ −
− < ≤

> −

.

.

.
. .

.

V
V

888 V
. See Fig. 4-64(b).

Fig. 4-63

Fig. 4-64

4.65. In the circuit of Fig. 4-65(a), find and plot the voltage transfer ratio V2/V1. The diode is ideal. 

Ans.  V V
V

V2
1

1

1

0
0 7

0 7
0 7

= −
≤
>



 .

.

.
V
V

. See Fig. 4-65(b).

Fig. 4-65
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4.66. (a) In the circuit of Fig. 4-66(a), determine the diode’s DC operating point (I0, V0). The diode’s characteristic is 
given in Fig. 4-61(b). Hint: Verify the Thévenin equivalent circuit shown in Fig. 4-66(b). Then use the result of 
Problem 4.57 (V0 = 1.1 V, I0 = 73 mA). (b) A small AC voltage signal e = 0.6 sin t is added to the voltage source, 
as seen in Fig. 4-66(c), producing an additional small AC current i(t) in the diode. Find r, the small-signal model 
of the diode at the DC operating point and verify the small-signal model of the circuit shown in Fig. 4-66(d). 
Then determine the diode’s AC current i(t). Assume the diode’s terminal characteristic to be I = Is(e

40V/n − 1), with 
n = 2.

 Ans.  (a) V0 = 1.1; I0 = 73 mA  
(b) r = 6.85 Ω; i = 14.6 sin t mA

Fig. 4-66

4.67. Given the operating point V0 = 1.1 V, I0 = 73 mA for the diode of Problem 4.66 and assuming n = 2, find its reverse 
saturation current Is.  Ans. Is = 20 pA
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EXAMPLE 5.1 A practical voltage source us with an internal resistance Rs is connected to the input of a voltage amplifier 
with input resistance Ri as in Fig. 5-2. Find u2/us.

CHAPTER 5

Amplifiers and Operational 
Amplifier Circuits

5.1 Amplifier Model
An amplifier is a device which magnifies signals. The heart of an amplifier is a source controlled by an input 
signal. A simplified model of a voltage amplifier is shown in Fig. 5-1(a). The input and output reference 
terminals are often connected together and form a common reference node. When the output terminal is 
open we have u2 = ku1, where k, the multiplying factor, is called the open circuit gain. Resistors Ri and Ro
are the input and output resistances of the amplifier, respectively. For a better operation it is desired that Ri 
be high and Ro be low. In an ideal amplifier, Ri = ∞ and Ro = 0 as in Fig. 5-1(b). Deviations from the above 
conditions can reduce the overall gain.

Fig. 5-1.
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The amplifier’s input voltage, u1, is obtained by dividing us between Ri and Rs.

  υ υ1 = +
R

R R
i

i s
s   

The output voltage u2 is

 υ υ υ2 1= = +k
kR

R R
i

i s
s   

from which

 
υ
υ

2

s

i

i s

R
R R

k= +  (1)

The amplifier loads the voltage source. The open-loop gain is reduced by the factor Ri/(Ri + Rs).

EXAMPLE 5.2 In Fig. 5-3 a practical voltage source us with internal resistance Rs feeds a load Rl through an amplifier 
with input and output resistances Ri and Ro, respectively. Find u2/us.

Fig. 5-2

Fig. 5-3

By voltage division,

  υ υ1 = +
R

R R
i

i s
s   

Similarly, the output voltage is

 υ υ υ
υ
υ2 1

2= + = + + =k
R

R R
k

R R
R R R R

Rl

l o

i l

i s l o
s

s( )( ) or ii

i s

l

l oR R
R

R R
k+ × +

 (2)

Note that the open-loop gain is further reduced by an additional factor of Rl/(Rl + Ro), which also makes the output 
voltage dependent on the load.

5.2 Feedback in Amplifier Circuits
The gain of an amplifier may be controlled by feeding back a portion of its output to its input as done for 
the ideal amplifier in Fig. 5-4 through the feedback resistor R2. The feedback ratio R1/(R1 + R2) affects the 
overall gain and makes the amplifier less sensitive to variations in k.
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EXAMPLE 5.3 Find u2/us in Fig. 5-4 and express it as a function of the ratio b = R1/(R1 + R2).
From the amplifier we know that

υ υ υ υ2 1 1 2= or = /k k (3)

Applying Kirchhoff’s current law (KCL) at node A,

υ υ υ υ1

1

1 2

2
0

−
+

−
=s

R R
(4)

Substitute u1 in (3) into (4) to obtain

υ
υ

2 2

2 1 1

1

1 2
1 1s

R k
R R R k

b
k
bk

b
R

R R
= + − = − − = +( ) , where  (5)

EXAMPLE 5.4 In Fig. 5-5, R1 = 1 kΩ and R2 = 5 kΩ. (a) Find u2/us as a function of the open-loop gain k. (b) Compute 
u2/us for k = 100 and 1000 and discuss the results.

Fig. 5-4

Fig. 5-5

(a)  Figures 5-4 and 5-5 differ only in the polarity of the dependent voltage source. To find u2/us, use the results of 
Example 5.3 and change k to −k in (5).

υ
υ

υ
υ

2 1

1 2

2

1 1
1
6

5

s

s

b
k
bk

b
R

R R

k

= − −
+ = + =

= −

( ) , where

666 + k

(b)  At k = 100, u2/us = −4.72; at k = 1000, u2/us = −4.97. Thus, a tenfold increase in k produces only a 5.3 percent 
change in u2/us; i.e., (4.97 − 4.72)/4.72 = 5.3 percent.

Note that for very large values of k, u2/us approaches −R2/R1 which is independent of k.
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5.3 Operational Amplifiers
The operational amplifier (op amp) is a device with two input terminals, labeled + and − or noninverting and 
inverting, respectively. The device is also connected to dc power supplies (+Vcc and −Vcc). The common refer-
ence for inputs, output, and power supplies resides outside the op amp and is called the ground (Fig. 5-6).

Fig. 5-6

The output voltage uo depends on ud = u+ − u−. Neglecting the capacitive effects, the transfer function is 
that shown in Fig. 5-7. In the linear range, uo = Aud. The open-loop gain A is generally very high. uo saturates at
the extremes of +Vcc and −Vcc when input ud exceeds the linear range υd ccV A> / .

Fig. 5-7

Figure 5-8 shows the model of an op amp in the linear range with power supply connections omitted for 
simplicity. In practice, Ri is large, Ro is small, and A ranges from 105 to several millions. The model of 
Fig. 5-8 is valid as long as the output remains between +Vcc and −Vcc. Vcc is generally from 5 to 18 V.

EXAMPLE 5.5 In the op amp of Fig. 5-8, Vcc = 15 V, A = 105, and u− = 0. Find the upper limit on the magnitude of u+ 
for linear operation.

 υ υ υo = 10 < 15 V < 15 10 V = 150 V5 + + −× 5 µ  
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EXAMPLE 5.6 In the op amp of Fig. 5-8, Vcc = 5 V, A = 105, u− = 0 and u+ = 100 sin 2πt (µV). Find and sketch the 
open-loop output uo.

Fig. 5-8

Fig. 5-9

EXAMPLE 5.7 Repeat Example 5.6 for u− = 25 µV and u+ = 50 sin 2πt (µV).

υ υ υ πd t= = 50 sin 2 10 25 10 = 50 10+ 6 6− ( ) − × ×− − − −666(sin 2 1/2) (V)π t −  

The input to the op amp is ud = u+ − u− = (100 sin 2πt)10−6 (V). When the op amp operates in the linear range, uo = 105

ud = 10 sin 2πt (V). The output should remain between +5 and −5 V (Fig. 5-9). Saturation starts when uo = 10 sin 2πt reaches 
the 5-V level. This occurs at t = 1/12 s. The op amp comes out of 5-V saturation at t = 5/12. Similarly, the op amp is in −5-V 
saturation from t = 7/12 to 11/12 s. One full cycle of the output, given in volts, from t = 0 to 1 s is

υ
π

o

t
t

t
=

< <
− < <

5 1 12 5 12
5 7 12 11 12

10 2

/ /
/ /

otherwsin iiise







Ch05.indd   76 10/08/17   3:25 PM



CHAPTER 5  Amplifiers and Operational Amplifier Circuits 77

When the op amp is within linear range, its output is

 υ υ πo d t= = 5(sin 2 / ) (V)510 1 2−  

uo saturates at the −5-V level when 5(sin 2πt − 1/2) < −5, 7/12 < t < 11/12 (see Fig. 5-10). One cycle of uo, in volts, 
from t = 0 to 1 s is

 υ πo

t
t

=
− < <

−{ 5 7 12 11 12
5 2 1 2

/ /
/ otherwise(sin )

 

Fig. 5-10

EXAMPLE 5.8 In Fig. 5-11, R1 = 10 kΩ, R2 = 50 kΩ, Ri = 500 kΩ, Ro = 0, and A = 105. Find u2/u1. Assume the amplifier 
is not saturated.

Fig. 5-11

Ch05.indd   77 10/08/17   3:32 PM



CHAPTER 5  Amplifiers and Operational Amplifier Circuits78

The sum of currents arriving at node B is zero. Note that uA = 0 and uB = −ud . Therefore,

υ υ υ υ υ1 2
10 500 50 0
+

+ +
+

=d d d  (6)

Since Ro = 0, we have

υ υ υ υ υ2
5= = 10 or = 10A d d d

−5
2  (7)

Substituting ud in (7) into (6), the ratio u2/u1 is found to be

υ
υ

2

1
5 5 5

5

1 10 5 10 0 1 10
5= −

+ + × + ×
≈ −− − −.

5.4 Analysis of Circuits Containing Ideal Op Amps
In an ideal op amp, Ri and A are infinite and Ro is zero. Therefore, the ideal op amp draws zero current at its 
inverting and noninverting inputs and, if it is not saturated, these inputs are at the same voltage. Throughout 
this chapter we assume op amps are ideal and operate in the linear range unless specified otherwise.

EXAMPLE 5.9 The op amp in Fig. 5-12 is ideal and not saturated. Find (a) u2/u1; (b) the input resistance u1/i1; and   
(c) i1, i2, p1 (the power delivered by u1), and p2 (the power dissipated in the resistors), given u1 = 0.5 V.

Fig. 5-12

(a)  The noninverting terminal A is grounded and so uA = 0. Since the op amp is ideal and not saturated, uB = 0. Applying 
KCL at nodes B and C and noting that the op amp draws no current, we get

  Node B: 
υ υ

υ υ1
15 10 0 2+ = = −C

Cor (8)

  Node C: 
υ υ υ υ

υ υC C C
C10 1 2 0 3 22+ +

−
= =or 2 .  (9)

Substituting uC in (8) into (9),

υ υ υ υ2 1 2 16 4 6 4= − = −. .or

(b)  With VB = 0, i1 = u1/5000 and so

input resistance = / = 5 k1 1υ i Ω  

(c) The input current is i1 = u1/5000. Given that u1 = 0.5 V, i1 = 0.5/5000 = 0.1 mA.
   To find i2, we apply KCL at the output of the op amp;

i C
2

2 2
8000 2000= +

−υ υ υ
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  From part (a), u2 = −3.2 V and uC = −1 V. Therefore, i2 = 1.5 mA.
  The power delivered by u1 is

 p i1 1 1
6= = /5000 = 50 10 W = 50 Wυ υ1

2 × − µ   

  Powers in the resistors are

 

1k : /1000 0.001 W = 1000 W

2 k :

1 k

2

Ω

Ω

Ωp

p

C= =υ2 µ

kk 2 C
2( ) /2000 = 0.00242 W = 2420 W

5k :

Ω

Ω

= −υ υ µ

p55 k 1

8 k

/5000 = 0.00005 W = 50 W

8 k :

Ω

ΩΩ

=

=

υ2 µ

p υυ

υ

2

10 k

/8000 = 0.00128 W = 1280 W

10 k :

2 µ

Ω Ωp = CC
2 /10 000 = 0.0001 W = 100 Wµ

 

  The total power dissipated in the resistors is

 p p p p p p2 1 k 2 k 5 k 8 k 10 k+ + + + = 1000 += Ω Ω Ω Ω Ω 22420 + 50 + 1280 + 100 = 4850 Wµ  

5.5 Inverting Circuit
In an inverting circuit, the input signal is connected through R1 to the inverting terminal of the op amp and the 
output terminal is connected back through a feedback resistor R2 to the inverting terminal. The noninverting 
terminal of the op amp is grounded (see Fig. 5-13).

Fig. 5-13

To find the gain u2/u1, apply KCL to the currents arriving at node B:

 
υ υ υ

υ
1

1

2

2

2

1

2

1
0

R R
R
R

+ = = −and  (10)

The gain is negative and is determined by the choice of resistors only. The input resistance of the circuit is R1.

5.6 Summing Circuit
The weighted sum of several voltages in a circuit can be obtained by using the circuit of Fig. 5-14. This 
circuit, called a summing circuit, is an extension of the inverting circuit.

To find the output, apply KCL to the inverting node:

  
υ υ υ υ1

1

2

2
0

R R R R
n

n

o

f
+ + ⋅ ⋅ ⋅ + + =  
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from which

υ υ υ υo
f f f

n
n

R

R

R

R

R

R
= − + + ⋅ ⋅ ⋅ +





1

1
2

2 (11)

EXAMPLE 5.10 Let the circuit of Fig. 5-14 have four input lines with R1 = 1, R2 = 1
2
, R3 = 1

4
, R4 = 1

8
, and Rf = 1, all 

values given in kΩ. The input lines are set either at 0 or 1 V. Find uo in terms of u4, u3, u2, u1, given the following sets 
of inputs:
(a) u4 = 1 V  u3 = 0  u2 = 0  u1 = 1 V

Fig. 5-14

(b) u4 = 1 V  u 3 = 1 V  u2 = 1 V  u 1 = 0
From (11)

υ υ υ υ υo = (8 + 4 + 2 + )− 4 3 2 1

Substituting for u1 to u4 we obtain
(a) uo = −9 V
(b) uo = −14 V

The set {u4, u3, u2, u1} forms a binary sequence containing four bits at high (1 V) or low (0 V) values. Input 
sets given in (a) and (b) correspond to the binary numbers (1001)2 = (9)10 and (1110)2 = (14)10, respectively. 
With the inputs at 0 V (low) or 1 V (high), the circuit converts the binary number represented by the input 
set {u4, u3, u2, u1} to a negative voltage which, when measured in V, is equal to the base 10 representation of 
the input set. The circuit is a digital-to-analog converter.

5.7 Noninverting Circuit
In a noninverting circuit the input signal arrives at the noninverting terminal of the op amp. The inverting 
terminal is connected to the output through R2 and also to the ground through R1 (see Fig. 5-15).

Fig. 5-15
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To find the gain u2/u1, apply KCL at node B. Note that terminals A and B are both at u1 and the op amp 
draws no current.

 
υ υ υ υ

υ
1

1

1 2

2

2

1

2

1
0 1

R R
R
R

+
−

= = +or  (12)

The gain u2/u1 is positive and greater than or equal to one. The input resistance of the circuit is infinite as 
the op amp draws no current.

EXAMPLE 5.11 Find u2/u1 in the circuit shown in Fig. 5-16.

Fig. 5-16

First find uA by dividing u1 between the 10-kΩ and 5-kΩ resistors.

 υ υ υA = + =5
5 10

1
31 1  

From (12) we get

 υ υ υ υ υ
υ
υ2 1 1

2

1
1

7
2

9
2

9
2

1
3 1 5= +



 = = 



 = =A A . and 11 5.  

Another Method
Find uB by dividing u2 between the 2-kΩ and 7-kΩ resistors and set uB = uA.

 υ υ υ υ
υ
υB = + = = =2

2 7
2
9

1
3 1 52 2 1

2

1
and .  

EXAMPLE 5.12 Determine uo in Fig. 5-17 in terms of u1, u2, u3, and the circuit elements.

Fig. 5-17

First, uA is found by applying KCL at node A.

 
υ υ υ υ υ υ

υ υ υ υ1 2 3
1 2 30

1
3

−
+

−
+

−
= = + +A A A

AR R R
or ( )  (13)

Ch05.indd   81 10/08/17   3:37 PM



CHAPTER 5  Amplifiers and Operational Amplifier Circuits82

From (12) and (13) we get

υ υ υ υ υo A

R
R

R
R

= +





= +





+ +1
12
3 1

1

2

1
1 2 3( ) (14)

5.8 Voltage Follower
The op amp in the circuit of Fig. 5-18(a) provides a unity gain amplifier in which u2 = u1 since u1 = u+, u2 =
u− and u+ = u−. The output u2 follows the input u1. By supplying il to Rl, the op amp eliminates the loading 
effect of Rl on the voltage source. It therefore functions as a buffer.

EXAMPLE 5.13 (a) Find is,u l,u2, and il in Fig. 5-18(a). (b) Compare these results with those obtained when source 
and load are connected directly as in Fig. 5-18(b).

(a) With the op amp present [Fig. 5-18(a)], we have

i i Rs s s l s l= 0 = = = = /1υ υ υ υ υ υ2 1

The voltage follower op amp does not draw any current from the signal source us. Therefore, us reaches the load 
with no reduction caused by the load current. The current in Rl is supplied by the op amp.

(b) With the op amp removed [Fig. 5-18(b)], we have

i i
R R

R
R Rs l

s

l s

l

l s
s= = + = = +

υ
υ υ υand 1 2  

The current drawn by Rl goes through Rs and produces a drop in the voltage reaching the load. The load voltage 
u2 depends on Rl.

Fig. 5-18
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5.9 Differential and Difference Amplifiers
A signal source uf with no connection to ground is called a floating source. Such a signal may be amplified 
by the circuit of Fig. 5-19.

Fig. 5-19

Here the two input terminals A and B of the op amp are at the same voltage. Therefore, by writing KVL 
around the input loop we get

 υ υf fR i i R= 2 or = /21 1  

The op amp inputs do not draw any current and so current i also flows through the R2 resistors. Applying 
KVL around the op amp, we have

 υ υ υo o fR i R i R i R R R+ + = 0 = 2 = 2 / = ( /2 2 2 2 1 22− − − RR f1)υ  (15)

In the special case when two voltage sources u1 and u2 with a common ground are connected to the inverting 
and noninverting inputs of the circuit, respectively (see Fig. 5-20), we have uf = u1 − u2 and

 υ υ υo R R= ( / )( )2 1 2 1−  (16)

EXAMPLE 5.14 Find uo as a function of u1 and u2 in the circuit of Fig. 5-20.
Applying KCL at nodes A and B,

Fig. 5-20

Node A: 
υ υ υA A

R R
−

+ =2

3 4
0  

Node B: 
υ υ υ υB B o

R R
−

+
−

=1

1 2
0  
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Set uA = uB and eliminate them from the preceding KCL equations to get

υ υ υo

R R R
R R R

R
R

= + −
+4 1 2

1 3 4
2

2

1
1

( )
( )

(17)

When R3 = R1 and R2 = R4, (17) is reduced to (16).

5.10 Circuits Containing Several Op Amps
The analysis and results developed for single op amp circuits can be applied to circuits containing several 
ideal op amps in cascade or nested loops because there is no loading effect.

EXAMPLE 5.15 Find u1 and u2 in Fig. 5-21.

Fig. 5-21

The first op amp is an inverting circuit.

υ1 3 1 0 6 1 8= − − =( )( . ) ./ V

The second op amp is a summing circuit.

υ2 2 1 0 5 2 2 1 8 2 8= − − = −( )( . ) ( )( . ) ./ / V  

EXAMPLE 5.16 Let Rs = 1 kΩ in the circuit of Fig. 5-22. Find u 1,u 2,u o, i s, i1,  and if as functions of us for (a) Rf = ∞
and (b) Rf = 40 kΩ.

Fig. 5-22
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(a) Rf = ∞. The two inverting op amps are cascaded, with u+ = 0. By voltage division in the input loop we have

 υ υ υ1

5
5 1

5
6= + =s s  (18)

   From the inverting amplifiers we get

 

υ υ υ υ

υ

2 1= (9/5) = (9/5)
5
6 = 1.5

=

− − 



 −

−

s s

o ((6/1.2) = 5( 1.5 ) = 7.5

= =

2υ υ υ

υ

− − s s

s
si i1 60000 (A) = 0.166 (mA)

= 0

υs

fi

 

(b)  Rf  =  40 kΩ. From the inverting op amps we get uo  =  −5u2 and u2  =  −(9/5)u1 so that uo  =  9u1. Apply KCL to the 
currents leaving node B.

 
υ υ υ υ υ1 1 1

1 5 40 0
−

+ +
−

=s o  (19)

  Substitute uo = 9u1 in (19) and solve for u1 to get

 

υ υ

υ υ υ

υ υ

1

2 1

2

=

= (9/5) = 1.8

= (6/1.2) = 5

s

s

o

− −

− − (( 1.8 ) = 9

= = 0

−

−

υ υ

υ υ

s s

s
si 1
1000

 

  Apply KCL at node B.

 i if
s

s= = 5000 (A) = 5000 (A) = 0.2 (mA)1
1

υ υ
υ  

   The current i1 in the 5-kΩ input resistor of the first op amp is provided by the output of the second op amp through 
the 40-kΩ feedback resistor. The current is drawn from us is, therefore, zero. The input resistance of the circuit is 
infinite.

5.11 Integrator and Differentiator Circuits

Integrator
By replacing the feedback resistor in the inverting amplifier of Fig. 5-13 with a capacitor, the basic integrator 
circuit shown in Fig. 5-23 will result.

Fig. 5-23
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To obtain the input-output relationship apply KCL at the inverting node:

υ υ υ
υ1 2 2

10
1

R
C

d
dt

d
dt RC

+ = = −from which

and

υ υ2 1

1= −
−∞∫RC

dt
t

 (20)

In other words, the output is equal to the integral of the input multiplied by a gain factor of −1/RC.

EXAMPLE 5.17 In Fig. 5-23 let R = 1 kΩ, C = 1 µF, and u1 = sin 2000t. Assuming u 2(0) = 0, find u2 for t > 0.

υ2 3 6
010 10

2000 0 5 2000 1
1= −
×

= −− ∫ sin . (cos )t dt t
t

Leaky Integrator
The circuit of Fig. 5-24 is called a leaky integrator, as the capacitor voltage is continuously discharged 
through the feedback resistor Rf  . This will result in a reduction in gain |u2/u1| and a phase shift in u2. For 
further discussion see Section 5.13.

Fig. 5-24

EXAMPLE 5.18 In Fig. 5-24, R1 = Rf = 1 kΩ, C = 1 µF, and u1 = sin 2000t. Find u2.
The inverting node is at zero voltage, and the sum of currents arriving at it is zero. Thus,

υ υ υ
υ

υ
υ

υ

1

1

2 2 3 2
2

3

0 10 0

10

R
C

d
dt R

d
dt

d

f
+ + = + + =−

−

or 1

222
2 2000

dt
t+ = −υ sin (21)

The solution for u2 in (21) is a sinusoid with the same frequency as that of u1 but different amplitude and phase angle; i.e.,

υ2 = cos(2000 + )A t B  (22)

To find A and B, we substitute u2 and du2/dt in (22) into (21). First du/dt = −2000A sin(2000t + B). Thus,

10 / + = 2 sin (2000 + ) + cos(3
2 2

− −d dt A t B Aυ υ 222000 + ) = sin 2000t B t−  

But 2 sin(2000 + ) cos(2000 + ) = 5 sinA t B A t B A− (((2000 + 26.57 ) = sin 2000t B t− °  

Therefore, A = 5 /5 = 0.447, B = 26.57° and

υ2 = 0.447 cos(2000 + 26.57 )t ° (23)
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Integrator-Summer Amplifier
A single op amp in an inverting configuration with multiple input lines and a feedback capacitor as shown 
in Fig. 5-25 can produce the sum of integrals of several functions with desired gains.

Fig. 5-25

EXAMPLE 5.19 Find the output uo in the integrator-summer amplifier of Fig. 5-25, where the circuit has three inputs.
Apply KCL at the inverting input of the op amp to get

 

υ υ υ υ

υ
υ υ υ

1

1

2

2

3

3

1

1

2

2

3

3

0
R R R

C
d
dt

R C R C R

o

o

+ + + =

= − + +
CC

dt
t 



−∞∫

 

(24)

Initial Condition of Integration
The desired initial condition, uo, of the integration can be provided by a reset switch as shown in Fig. 5-26. 
By momentarily connecting the switch and then disconnecting it at t = to, an initial value of uo is established 
across the capacitor and appears at the output u2. For t > to, the weighted integral of the input is added to 
the output.

 υ υ υ2 1= +− ∫1
RC

dt
t

t

o
o

 (25)

Fig. 5-26
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Differentiator
By putting an inductor in place of the resistor in the feedback path of an inverting amplifier, the derivative of 
the input signal is produced at the output. Figure 5-27 shows the resulting differentiator circuit.

To obtain the input-output relationship, apply KCL to currents arriving at the inverting node:

υ
υ υ

υ1
2

11
0

R L
dt

L
R

d
dt

t
+ = = −

−∞∫ or 2  (26)

Fig. 5-27

5.12 Analog Computers
The inverting amplifiers, summing circuits, and integrators described in the previous sections are used as   
building blocks to form analog computers for solving linear differential equations. Differentiators are avoided 
because of the considerable effect of noise despite its low level.

To design a computing circuit, first rearrange the differential equation such that the highest existing deriva-
tive of the desired variable is on one side of the equation. Then add integrators and amplifiers in cascade and in 
nested loops as shown in the following examples. In this section we use the notations ′ = ′′ =x dx dt x d x dt/ /, 2 2

and so on.

EXAMPLE 5.20 Design a circuit with x(t) as input to generate output y(t) which satisfies the following equation:

′′ ′y t y t y t x t( ) + 2 ( ) + 3 ( ) = ( )  (27)

Step 1. Rearrange the differential equation (27) as follows:

′′ − ′ −y x y y= 2 3  (28)

Step 2. Use the summer-integrator op amp #1 in Fig. 5-28 to integrate (28). Apply (24) to find R1, R2, R3 and C1 such 
that the output of op amp #1 is υ1 = − ′y . We let C1 = 1 µF and compute the resistors accordingly:

R C R

R C R

R C

1 1 1

2 1 2

3 1

= 1 = 1 M

= 1/3 = 333 k

=

Ω

Ω

1/2 = 500 kR3 Ω

υ1 3 2= − − − ′ = − ′′ = − ′∫ ∫( )x y y dt y dt y (29)

Step 3. Integrate u1 = −y′ by op amp #2 to obtain y. We let C2 = 1 µF and R4 = 1 MΩ to obtain u2 = y at the output 
of op amp #2.

υ υ2
4 2

2

1= − = ′ =∫∫R C
dt y dt y (30)
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Step 4. Supply inputs to op amp #1 through the following connections. Feed u1 = −y′ directly back to the R3 input of  
op amp #1. Pass u2 = y through the unity gain inverting op amp #3 to generate −y, and then feed it to the R2 input of 
op amp #1. Connect the voltage source x(t) to the R1 input of op amp #1. The complete circuit is shown in Fig. 5-28.

Fig. 5-28

Fig. 5-29

5.13 Low-Pass Filter
A frequency-selective amplifier whose gain decreases from a finite value to zero as the frequency of the 
sinusoidal input increases from dc to infinity is called a low-pass filter. The plot of gain versus frequency is 
called a frequency response. An easy technique for finding the frequency response of filters will be developed 
in Chapter 13. The leaky integrator of Fig. 5-24 is a low-pass filter, as illustrated in the following example.

EXAMPLE 5.22 In Example 5.18 let u1 = sin w t. Find |u2| for w = 0, 10, 100, 103, 104, and 105 rad/s.
By repeating the procedure of Example 5.18, the frequency response is found and given in Table 5-1. The response 

amplitude decreases with frequency. The circuit is a low-pass filter.

EXAMPLE 5.21 Design an op amp circuit as an ideal voltage source u(t) satisfying the equation u′ + u = 0 for t > 0, 
with u(0) = 1 V.

Following the steps used in Example 5.20, the circuit of Fig. 5-29 with RC = 1 s is assembled. The initial condition 
is entered when the switch is opened at t = 0. The solution u(t) = e−t, t > 0, is observed at the output of the op amp.
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5.14 Decibel (dB)
The gain of an amplifier is also expressed on a logarithmic scale. The unit is called the decibel (dB).

Gain in dB = 20 log (gain) where gain =
V
V10

2

1

Therefore, a gain of 1000 corresponds to 20 log10 (1000) = 60 dB. Accordingly, −3 dB (also called the 3-dB attenuation) 
corresponds to V V2 1 1 2/ /=  (for simplicity, log . )

10
2 0 3≈ . The advantage of the dB scale over the linear scale is that   

it covers a bigger range. The frequency response of an amplifier and filter is plotted as dB vs. log10 f (called a log scale) 
and is referred to as Bode plot.

EXAMPLE 5.23 Find the gain of the filter of Example 5.18 as a function of frequency and express it in dB. Specify   
(a) its dc value, (b) the 3-dB attenuation frequency, (c) its value at 10 kHz, and (d) its high-frequency asymptote.

From Example 5-18 (Fig. 5-24) we have

10 3 2
2 1

− + = −
d
dt
υ

υ υ

Let υ π1 1 2( ) cost V ft= . By repeating the procedure of Example 5-18 we find υ π θ2 2 2( ) cos ( )t V ft= − , where

V
V

f
f

f
f

f2
1

1
0

2
1

0 0
1000

2=

+







= − 





= =θ πtan 11159 15. Hz

 

In addition to an amplitude change, the filter introduces a phase change. In this example we are concerned with the gain 
only. The gain in dB is

20 20 110
2

1
10

0

2

log log
V
V

f
f

= − + 





dB  

(a) The dc gain is 0 dB. (b) The 3-dB attenuation frequency [where 1 2
0

2

+ 





=f
f

] is 1 kHz. (c) At f  = 10 kHz, the gain 
is − ≈ −20 101 20

10
log dB. (d) At high frequencies the gain is

20 10
2

1 0
log

V
V

f
f

≈ − 





20 log dB10

The gain decreases by 20 dB per each decade of frequency. See Problem 5.50 for a graph of gain vs. frequency in the 
form of a Bode plot.

5.15 Real Op Amps
The circuits discussed so far assumed an ideal op amp model under which

(i) The op amp draws no current (input resistance is Ri = ∞).

(ii) The op amp’s performance is not influenced by the load (output resistance is R0 = 0).

(iii) The op amp’s open-loop gain is infinite at all frequencies (A = ∞).

Table 5-1. Frequency Response of the Low-pass Filter

w, rad/s 0 10 100 103 104 105

f, Hz
υ υ2 1/

0
1

1.59
1

15.9
0.995

159
0.707

1.59 × 103

0.1
15.9 × 103

0.01
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Real op amps differ from the ideal model in several ways: (a) the op amp draws current (Ri < ∞), (b) the 
load affects the gain (Ro > 0), and (c) the open-loop gain is not infinite (A < ∞) and decreases with frequency. 
Despite these differences, if well-designed, the actual performance of an op amp circuit at low frequencies 
does not deviate from that expected under an ideal-model assumption. The following two examples illustrate 
the effect of finite gain, finite input resistance, and non-zero output resistance.

EXAMPLE 5.24 In the inverting-amplifier circuit of Fig. 5-11, assume Ri = ∞, Ro = 0, and a real-valued gain A. Develop 
an expression for u2/u1 in terms of k ≡ R2/R1 and A.

Apply KCL at the inverting input of the op amp (node B in Fig. 5-11):

 
υ υ υ υ1

1

2
2 0

+
+

+
=d d

R R
 

Substitute for υ υd A= 2 /  to find

 
υ
υ

2

1 1= −
+ +

kA
A k

 

For A >> k, the above ratio is reduced to υ υ2 1/ ≈ −k.

EXAMPLE 5.25 Develop an expression for u2/u1 in the amplifier circuit of Fig. 5-11 in terms of the circuit elements 
and k ≡ R2/R1. The gain A of the op amp is a real-valued number.

KCL at node B: 
υ υ υ υ υ1

1

2

2
0

+
+ +

+
=d d

i

d
R R R

 (31)

Voltage division at the output loop: υ υ υ υ2
0

2= + =
+R

R R
A

R R
ARd d

o







or  (32)

Substituting ud from Eq. (32) into Eq. (31) we get: 
υ
υ

2

1 11 1 1
1

= −

+ +





+ +





k

k
A

R
R

R
R k

o

i

 (33)

For A = ∞, the overall gain is u2/u1 = −k (as in a circuit with an ideal op amp). For A < ∞, the overall gain is reduced, 
depending on A, R Ro /



, R Ri1 / , and k. This example assumes A to be a real-valued number, thus changing the signal’s 
amplitude only. In reality, A changes the signal’s amplitude and phase, as seen in the text Section 5.16.

5.16 A Simple Op Amp Model
The most pronounced deviation of a real op amp from the ideal model is in its open-loop gain A. A real op 
amp not only has a finite open-loop gain which decreases with frequency, but also introduces a phase change 
in the signal, which has to be taken into account when the frequency response is considered. Chapter 6 will 
discuss this subject in detail. This section provides one example of magnitude gain for a real op amp.

EXAMPLE 5.26 At low frequencies the magnitude open-loop gain of a 741 op amp varies as

 A
V
V

a

f f
o

= =
+

2

1

0
21 ( )/

 

where typically a0 = 200,000 and f0 = 5 Hz. Find (a) its dc gain in dB, (b) the 3-dB attenuation frequency, (c) the 
frequency where the gain is 0 dB, and (d) its high-frequency asymptote.

(a) 20 2 10 20 5 20 2 100 20 0 3 10610
5

10log ( ) log .× = × + = + × ≈ dB. (b) 1 2
0

2

+ 





=f
f

, f = f0 = 5 Hz.  

(c) 200,000 = 1 5

2

+ 





f
,  f  = 106 Hz. (d) At high frequencies the gain is

 20 106 20 510
2

1
10log log

V
V

f≈ − 



 dB  
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The gain decreases by 20 dB per each decade of frequency. Note the similarities with the lowpass filter of Example 5.23.

3-dB Bandwidth The 3-dB bandwidth of the lowpass filter is defined as the frequency at which the gain 
falls 3 dB below the dc gain, and is generally referred to as the bandwidth. The open-loop bandwidth of 
the 741 op amp is 5 Hz.

Gain-Bandwidth Product (GBP) The product of the dc gain with the 3-dB bandwidth of the op amp is 
called its gain-bandwidth product. A typical value for the 741 op amp is 106.

Observation From Examples 5.23 and 5.26 we can derive the open-loop input-output time-domain 
relationship of the 741 op amp.

d
dt f a f d

υ
υ υ2

0 2 0 0+ =  

Conversely, we can conclude that a device with the above input-output relationship is a lowpass filter with a 
dc gain of a0, a 3-dB attenuation frequency at f0, and GBP = a0 f0.

EXAMPLE 5.27 In the inverting amplifier circuit of Fig. 5-11, υ1( )t  is the input and υ2( )t  is the output. Let Ri = ∞, 
Ro = 0, and assume the 741 op amp model specified by Example 5.26. (a) Find the circuit’s input-output relationship in 
the time domain. (b) Let υ π1 1 2( ) cost V ft=  produce an output υ π θ2 2 2( ) cos ( )t V ft= − . Develop an expression for 
magnitude gain V V2 1  vs. frequency.

We first find the circuit’s input-output relationship in the time domain.

Input-output relationship of the op amp: 
d
dt

f a f d

υ
υ υ2

0 2 0 0+ =  (34)

Voltage division between the input and output terminals: υ υ υ υd

R
R R

= − + − +1 1 2
1

1 2
( )  (35)

Substituting ud from Eq. (35) into Eq. (34) we get: 
d
dt

f a f
υ

υ υ2
1 2 1 1 1+ = −  (36)

where the new dc gain a1 and 3-dB frequency f1 are: a
ka
k a

f f
a

k1
0

0
1 0

0
1 1 1= + + = + +







and (37)

Overall magnitude gain of the circuit: 
V
V

a

f f

2

1

1

11 2
=

+ ( )/
(38)

If a0 >> k, the new dc gain and 3-dB frequency are a1 ≈ k and f
f a
k1

0 0≈  with a1 f1 = a0  f0.

The negative feedback has reduced the gain and increased the 3-dB frequency bandwidth. Note that the gain-bandwidth 
product of the inverting amplifier circuit remains the same as that of the op amp’s open-loop, a0  f0.

Note. Example 5.27 may appear to be the same as Example 5.24 prompting a solution by substituting the 
magnitude gain of the 741 model in the solution obtained in Example 5.24. This, however, would cause an error 
because the gain of the 741 op amp is not purely a real-valued number and produces a phase change in the sinusoid 
which passes through it.

5.17 Comparator
The circuit of Fig. 5-30 compares the voltage u1 with a reference level uo. Since the open-loop gain is very 
large, the op amp output u2 is either at +Vcc (if u1 > uo) or at −Vcc (if u1 < uo). This is shown by u2 = Vcc
sgn[u1 − uo], where “sgn” stands for “sign of.” For uo = 0, we have

υ υ
υ
υ2 1

1

1

0

0
= =

+ >
− <





V
V

Vcc
cc

cc
sgn[ ]
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EXAMPLE 5.28 In Fig. 5-30, let Vcc = 5 V, uo = 0, and u1 = sin wt. Find u2 .
For 0 < t < p/w,

 υ ω υ1 20 5= > =sin t V  

For p /w < t < 2p /w,

 υ ω υ1 20 5= < = −sin t V  

The output u2 is a square pulse which switches between +5 V and −5 V with period 2p/w. One cycle of u2 is 
given by

 υ
π ω

π ω π ω2

5 0

5 2
=

< <

− < <







V /

V / /

t

t
 

Window Comparator
By using two comparators set at two threshold levels (VTL and VTH) one can detect when a signal u1 falls 
within the window defined by the threshold levels. Such a circuit is called a window comparator. Its output 
u2 is given by

 υ
υ

2
1=

+ < <
−





V VTL VTH
V

cc

cc otherwise
 

5.18 Flash Analog-to-Digital Converter
An analog signal may be converted to a digital one by using n parallel comparators (as shown in Fig. 5-31 
for n = 3). The op amps compare the analog signal to n reference levels simultaneously and produce n binary 
outputs. The set of n binary levels at the outputs of the op amps represents the analog signal in its digital 
form. The circuit is called a flash A/D converter. The parallel operation of comparators speeds up the A/D 
conversion. The output of each op amp can control a visual device (such as light-emitting diodes or LEDs), 
providing a bar-graph display of the input signal level.

EXAMPLE 5.29 The circuit of Fig. 5-31 is a parallel analog-to-digital converter. The +Vcc and −Vcc connections are 
omitted for simplicity. Let Vcc = 5 V, uo = 4 V, and ui = t (V) for 0 < t < 4s. Find outputs u3, u2, and u1. Interpret the 
answer.

The op amps have no feedback and they function as comparators. The outputs with values at +5 or −5 V are given 
in Table 5-2.

The binary sequences {u3,
 u2,

 u1} in Table 5-2 uniquely specify the input voltage in the discrete domain. However, in 
their present form they are not the binary numbers representing input amplitudes. By using a coder we could transform 
the above sequences into the binary numbers corresponding to the values of analog inputs.

Fig. 5-30
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5.19 Summary of Feedback in Op Amp Circuits
Op amps are used with negative, positive, or no feedback. Negative feedback is required to prevent 
saturation of the op amp and keep the circuit in linear operation. This was done in the circuits of 
Figs. 5-12 through 5-29 by applying the feedback to the inverting input of the op amps. The com-
parator circuits of Figs. 5-30 and 5-31 use no feedback, as their functioning requires the op amp 
to be driven into saturation. Positive feedback can make an amplifier unstable, as exemplified in 
Problem 5.2, and drive it to saturation. However, some specific functions are achieved by establish-
ing positive feedback or a combination of positive and negative feedback (where paths from the 
output to both the inverting and noninverting inputs are established simultaneously). An example is 
a negative-resistance circuit (see Problem 5.55). Another example is a Schmitt trigger circuit which 
retains a memory of its immediate past state (see Problems 5.58 and 5.59). A third example is an 
oscillator circuit which generates a controlled signal at its output with zero input.

Table 5-2

Time, s Input, V Outputs, N

0 < t < 1
1 < t < 2
2 < t < 3
3 < t < 4

0 < ui < 1
1 < ui < 2
2 < ui < 3
3 < ui < 4

u3 = −5 u2 = −5 u1 = −5
u3 = −5 u2 = −5 u1 = +5
u3 = −5 u2 = +5 u1 = +5
u3 = +5 u2 = +5 u1 = +5

Fig. 5-31
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SOLVED PROBLEMS

 5.1. In Fig. 5-3, let us = 20 V, Rs = 10 Ω, Ri = 990 Ω, k = 5, and Ro = 3 Ω. Find (a) the Thévenin equivalent of 
the circuit seen by Rl and (b) u2 and the power dissipated in Rl for Rl = 0.5, 1, 3, 5, 10, 100, and 1000 Ω.

(a)  The open-circuit voltage and short-circuit current at the A − B terminal are uo.c. = 5u1 and is.c. = 5u1/3, 
respectively.
  We find u1 by dividing us between Rs and Ri. Thus,

 υ υ1

990
10 990 20 19 8= + = + =

R
R R

i

s i
s ( ) . V  

Fig. 5-32

  Therefore,

 
υ υ υo.c. Th o.c.

s.c.

V V

/

= = = =

= =

5 19 8 99 99

99 3 33

( . )

i AA /Th o.c. s.c.R i= =υ 3 Ω
 

  The Thévenin equivalent is shown in Fig. 5-32.

(b) With the load Rl connected, we have

 υ υ
υ

2
2
299

3= + = + =
R

R R
R

R
p

R
l

l

l

l lTh
Th and  

Table 5-3 shows the voltage across the load and the power dissipated in it for the given seven values of 
Rl. The load voltage is at its maximum when Rl = ∞. However, power delivered to Rl = ∞ is zero. Power 
delivered to Rl is maximum at Rl = 3 Ω, which is equal to the output resistance of the amplifier.

Table 5-3

Rl, Ω u2, V p, W

0.5
1
3
5

10
100

1000

14.14
24.75
49.50
61.88
76.15
96.12
98.70

400.04
612.56
816.75
765.70
579.94

92.38
9.74
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5.2. In the circuits of Figs. 5-4 and 5-5 let R1 = 1 kΩ and R2 = 5 kΩ. Find the gains G + = u2/us in Fig. 5-4 
and G − = u2/us in Fig. 5-5 for k = 1, 2, 4, 6, 8, 10, 100, 1000, and ∞. Compare the results.

From (5) in Example 5.3, at R1 = 1 kΩ and R2 = 5 kΩ we have

G
k

ks

+ = = −
υ
υ

2 5
6

 
(39)

In Example 5.4 we found

G
k

ks

− = = − +
υ
υ

2 5
6  (40)

The gains G− and G+ are calculated for nine values of k in Table 5-4. As k becomes very large, G+ and 
G− approach the limit gain of −5, which is the negative of the ratio R2/R1 and is independent of k. The circuit 
of Fig. 5-5 (with negative feedback) is always stable and its gain monotonically approaches the limit gain. 
However, the circuit of Fig. 5-4 (with positive feedback) is unstable. The gain G+ becomes very large as k 
approaches six. At k = 6, G+ = ∞.

Table 5-4

k G+ G−

1
2
4
6
8

10
100

1000
  ∞

1.0
2.5

10.0
∞

−20.0
−12.5
−5.32
−5.03
−5.00

−0.71
−1.25
−2.00
−2.50
−2.86
−3.12
−4.72
−4.97
−5.00

Fig. 5-33

This problem is solved by application of KCL at node A (another approach which uses the Thévenin 
equivalent is suggested in Problem 5.30). Thus,

υ υ υ υ υ1 1 2 1
1 5 50 0
−

+
−

+ =s (41)

5.3. Let R1 = 1 kΩ, R2 = 5 kΩ, and Ri = 50 kΩ in the circuit of Fig. 5-33. Find u2/us for k = 1, 10, 100, 1000, ∞
and compare the results with the values of G − in Table 5-4.
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From the amplifier we obtain

 υ υ υ υ2 1 1 2= − = −k kor /  (42)

Substituting u1 from (42) into (41) and rearranging terms, we obtain

 
υ
υ

2 50
61 10

5
6 1s

k
k

k
k

= −
+ = −

+.  (43)

Values of u2/us in (43) are shown in Table 5-5 as functions of k. The 50-kΩ input resistance of the amplifier 
reduces the overall gain very slightly, as seen by comparing Tables 5-4 and 5-5. The feedback has made the 
input resistance of the amplifier less effective in changing the overall gain.

Table 5-5

k u2/us

1
10

100
1000
  ∞

−0.704
−3.106
−4.713
−4.97
−5.00

 5.4. Let again R1 = 1 kΩ and R2 = 5 kΩ in the circuit of Fig. 5-33.
(a) Find u2/us as a function of k and Ri.

(b) Let Ri = 1 kΩ. Find u2/u1 for k = 1, 10, 100, 1000, ∞. Repeat for Ri = ∞.

(c)  Discuss the effects of Ri and k on the overall gain. Show that, for k = ∞ and Ri ≠ 0, the gain of the amplifier 
is independent of Ri and is equal to −R2/R1.

(a) Apply KCL to currents leaving node A to obtain

 
υ υ υ υ υ1 1 2 1

1 5 0
−

+
−

+ =s

iR
 

  From the amplifier we get u2 = −ku1 or u1 = −u2/k. Substituting for u1 in the KCL equation and rear-
ranging terms we get

 
υ
υ

2 5 1 5 6s

i

i

ck
ck

c
R

R
= − + = +where  (44)

(b) For Ri = 1 kΩ, c = 1/11 which, when substituted into (44), gives

 
υ
υ

2 5
11s

k
k

= −
+  (45)

 For Ri = ∞ we get c = 1/6 and so

 
υ
υ

2 5
6s

k
k

= −
+  (46)

  Table 5-6 gives values from u2/us in (45) and (46) versus k. Note that (46) is identical with (40).

Table 5-6

k

u2/us

Ri = 1 kΩ Ri = ∞

1
10

100
1000
  ∞

−0.31
−2.38
−4.51
−4.95
−5.00

−0.71
−3.12
−4.72
−4.97
−5.00
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(c)  Comparing the two columns in Table 5-6 we see that the smaller Ri reduces the overall gain G−. 
However, as the open-loop gain k increases, the effect of Ri is diminished. As k becomes very large, u2/
u1 approaches −5 unless Ri = 0.

5.5. Let again R1 = 1 kΩ and R2 = 5 kΩ in the circuit of Fig. 5-33. Replace the circuit to the left of node A 
(including Ri) by its Thévenin equivalent. Then use (5) to derive (44).

The Thévenin equivalent is given by

υ
υ υ

Th

Th

= + = +

= + = +

R
R R

R
R

R
R R

R R
R

R

i s

i

i s

i

i

i

i

i

1

1

1

1

1

where the resistors are in kΩ.
From (5),

υ υ2 1 1= − −
+( )b

k
bk Th  

where b
R

R R
R

R
b

R
R

i

i

i

i
= + = + − =

+
+

Th

Th
and

2 6 5 1
5 1
6 5
( )

Therefore,

υ υ2

5 1
6 5 1 6 5 1

5
=

+
+ × −

+ + × + =
−( )

( )
R

R
k

R k R
R

R
i

i i i

i

i
s/

RRR k
R R k

i

i i
s6 5+ + υ   

which is identical to (44).

5.6. Find the output voltage of an op amp with A = 105 and Vcc = 10 V for u− = 0 and u+ = sin t (V). Refer 
to Figs. 5-7 and 5-8.

Because of high gain, saturation occurs quickly at

υ υ υ2
5 410 10 10= = = −

d dV or V

We may ignore the linear interval and write

υ
υ

υ2

10 0

10 0
=

+ >

− <







V

V

d

d

where ud = u+ − u− = sin t (V). One cycle of the output is given by

υ
π

π π2

10 0

10 2
=

+ < <

− < <







V

V

t

t
 

For a more exact u2, we use the transfer characteristic of the op amp in Fig. 5-7.

υ

υ

υ υ

υ
2

4

5 4 4

10 10

10 10 10

10 10

=

− < −

− < <

+ >

−

− −

−

d

d d

d

V

V
444 V
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Saturation begins at |ud| = |sin t| = 10−4  V. Since this is a very small range, we may replace sin t by t. The 
output u2 is then given by

 

υ

υ π

υ

2
5 4 4

2
4 4

2

10 10 10

10 10 10

= − < <

= < < −

= −

− −

− −

t t

t

s

s

110 10 10

10 10 2

5 4 4

2
4

( )t t

t

− − < < +

= − + < < −

− −

−

π π π

υ π π

s

110 4− s

 

To appreciate the insignificance of error in ignoring the linear range, note that during one period of 2π s 
the interval of linear operation is only 4 × 10−4 s, which gives a ratio of 64 × 10−6.

 5.7. Repeat Problem 5.6 for u+ = sin 2p t (V) and u− = 0.5 V.
The output voltage is

 
υ υ υ

υ υ υ

2

2

10

10

= >

= − <

+ −

+ −

V when

V when
 

Switching occurs when sin 2p t = 1/2. This happens at t = 1/12, 5/12, 13/12, and so on. Therefore, one cycle 
of u2 is given by

 
υ

υ

2

2

10 1 2 5 12

10 5 2 13 12

= < <

= − < <

V /1 / s

V /1 / s

t

t
 

Figure 5-34 shows the graphs of u+ and u2.

Fig. 5-34
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Fig. 5-35

Table 5-7

ui, V u3 u2 u1

0        to 0.25− L L L

0.25+ to 0.5− L L H

0.5+    to 0.75− L H H

0.75+ to 1 H H H

Fig. 5-36

5.8. In the circuit of Fig. 5-35 us = sin 100t. Find u1 and u2.
At nodes B and A, uB = uA = 0. Then,

υ υ

υ υ

1

2 1

30
20 30 0 6 100

100
30

100
3

= + =

= − = −

s t. sin ( )V

000 0 6 100 2 100( . sin ) sin ( )t t= − V

Alternatively, υ υ2 20 30 2 100
100= − + = −s tsin ( )V  

5.9. Saturation levels for the op amps in Fig. 5-31 are +Vcc = 5 V and −Vcc = −5 V. The reference voltage is 
uo = 1 V. Find the sequence of outputs corresponding to values of ui from 0 to 1 V in steps of 0.25 V.

See Table 5-7, where L = −5 V and H = +5 V.

5.10. Find u in the circuit of Fig. 5-36.
Apply KCL at node A,
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Then
 

( ) ( ) ( )υ υ υ υ υ υ

υ
υ υ υ

− + − + − =

=
+ +

1 1 2 2 3 3

1 1 2 2 3

0g g g

g g g33

1 2 3

1 2 3 2 1 3 3 2 1

1 2 2 3 3g g g
R R R R R R

R R R R R+ + =
+ +
+ +

υ υ υ
RR1

 

The circuit of Fig. 5-36 generates the sum of u1, u2, and u3 (weighted by conductance values). However, 
unlike the summing op amp circuit of Fig. 5-14 (in which a load connected to the output draws current 
from the op amp and not from the input resistors and, therefore, does not affect the summing function of 
the circuit), a load connected across the terminal u in Fig. 5-36 draws current from the set of resistors and 
interferes with its summing function.

5.11. In the circuit of Fig. 5-37 find uC (the voltage at node C), i1, Rin (the input resistance seen by the 9-V 
source), u2, and i2.

Fig. 5-37

At nodes B and A, uB = uA = 0. Applying KCL at node C, we get

 (uC − 9)/4 + uC /6 + uC /3 = 0  from which uC = 3 V 

Then i R i
C1 in

/ A and / /= − = = = = Ω( ) . .9 4 1 5 9 1 5 6
1 1

υ υ  

From the inverting amplifier circuit we have

 υ υ2 5 3 5 5 10 0 5= − = − = − = −( ) ./ V and / A2C i  

5.12. Find u2 in Problem 5.11 by replacing the circuit to the left of nodes A-B in Fig. 5-37 by its Thévenin 
equivalent.

 R
Th Th

3 +
(6)(4)
6 + 4

5.4 and
6

4 +6
(9) 5.4 V= = Ω = =υ  

Then u2 = −(5/5.4)(5.4) = −5 V.

5.13. Find uC, i1, u2, and Rin (the input resistance seen by the 21-V source) in Fig. 5-38.
From the inverting amplifier we get

 υ υ2 5 3= −( )/ C  (47)

Note that uB = uA = 0 and so KCL at node C results in
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υ υ υ υ υC C C C−
+ + +

−
=

21
3 6 3 8 02  (48)

Substituting uC = −(3/5)u2 from (47) into (48) we get u2 = −10 V. Then

υ

υ

C

C
i

R i

=

= − = =

= =

6

21 3000 0 005 5

21 21

1

1

V

/ A mA

/
in

( ) .

// k0 005 4200 4 2. .= =Ω Ω

5.14. In the circuit of Fig. 5-38 change the 21-V source by a factor of k. Show that uC, i1, and u2 in 
Problem 5.13 are changed by the same factor, but Rin remains unchanged.

Let us = 21k (V) represent the new voltage source. From the inverting amplifier we have [see (47)]

υ υ2 /= −( )5 3 C   

Apply KCL at node C to obtain [see (48)]

υ υ υ υ υ υC s C C C−
+ + +

−
=3 6 3 8 02  

Solving for uC and u2, we have

υ υ υ υ
C s s

k k

i

= = = − = −( ) ( ) ( ) ( )6 21 6 10 21 10
2

1

/ V and / V

=== − = − =

=

( ) ( ) .υ υ

υ

s C

s

k

R i

/ / k A

/
in

3000 21 6 3000 0 005

111
21 0 005 4200= =k k/ . Ω

These results are expected since the circuit is linear.

5.15. Find u2 and uC in Problem 5.13 by replacing the circuit to the left of node C in Fig. 5-38 (including 
the 21-V battery and the 3-kΩ and 6-kΩ resistors) by its Thévenin equivalent.

We first compute the Thévenin equivalent:

RTh Thk and V= + = = + =( )( )
( )

6 3
6 3 2

6
3 6 21 14Ω υ

Replace the circuit to the left of node C by the above uTh and RTh and then apply KCL at C:

υ υ υ υC C C−
+ +

−
=

14
2 3 8 02  (49)

For the inverting amplifier we have u2 = −(5/3)uC or uC = −0.6u2, which results, after substitution in (49),
in u2 = −10 V and uC = 6 V.

Fig. 5-38
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5.16. (a) Find the Thévenin equivalent of the circuit to the left of nodes A-B in Fig. 5-39(a) and then find u2 
for Rl = 1 kΩ, 10 kΩ, and ∞. (b) Repeat for Fig. 5-39(c) and compare with part (a).

(a) The Thévenin equivalent of the circuit in Fig. 5-39(a) is shown in Fig. 5-39(b).

Fig. 5-39

 υ
Th Th

V and k=
+

= =
+

= Ω6
6 3

15 10
3 6
3 6

2( )
( )( )

R  

 By dividing uTh between RTh and Rl we get

 υ2 = +
R

R
l

l 2 10( )  

 

For k V

For k V

For

R

R

R

l

l

l

= Ω =

= Ω =

=

1 3 33

10 8 33

2

2

, .

, .

υ

υ

∞∞ =υ2 10 V

 

 The output u2 depends on Rl. The operation of the voltage divider is also affected by Rl.

(b) The Thévenin equivalent of the circuit in Fig. 5-39(c) is shown in Fig. 5-39(d). Here we have

 υ
Th Th

V and= =10 0R  

Ch05.indd   103 10/08/17   3:57 PM



CHAPTER 5  Amplifiers and Operational Amplifier Circuits104

and u2 = uTh = 10 V for all values of Rl. That is, the output u2 depends on R1, R2, and us only and is inde-
pendent of Rl.

5.17. Find u2 as a function of i1 in the circuit of Fig. 5-40(a).

Fig. 5-40

Current i1 goes through resistor R producing a voltage −Ri1 across it from right to left. Since the inverting 
terminal B is at a zero potential, the preceding voltage appears at the output as u2 = −Ri1 [see Fig. 5-40(b)]. 
Therefore, the op amp converts the current i1 to a voltage u2 with a gain of | |υ

2 1
/i R= . The current source i1 

delivers no power as the voltage uAB across it is zero.

5.18. A transducer generates a weak current i1 which feeds a load Rl and produces a voltage u2 across it. It 
is desired that u2 follow the signal with a constant gain of 108 regardless of the value of Rl. Design a 
current-to-voltage converter to accomplish this task.

The transducer should feed Rl indirectly through an op amp. The following designs produce u2 = 108 i1
independent of Rl.

Design 1: Choose R = 100 MΩ in Fig. 5-40. However, a resistor of such a large magnitude is expensive and 
not readily available.

Design 2: The conversion gain of 108 V/A is also obtained in the circuit of Fig. 5-41. The first op amp with 
R = 106 converts i1 to u1 = −106i1. The second amplifier with a gain of −100 (e.g., R1 = 1 kΩ and R2 = 100 kΩ) 
amplifies u1 to u2 = −100u1 = 108i1. The circuit requires two op amps and three resistors (1 MΩ, 100 kΩ,
and 1 kΩ) which are less expensive and more readily available.

Fig. 5-41

Design 3: See Fig. 5-42 in Problem 5.19.

5.19. Determine the resistor values which would produce a current-to-voltage conversion gain of u2/i1 =
108 V/A in the circuit of Fig. 5-42.
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Apply KCL at node C. Note that uB = uA = 0. Thus,

 
υ υ υ υC C C
R R R

+ +
−

=
1

2

2
0  

Substituting uC = −Ri1 and solving for u2 we get

 υ
2 1

2

1

21= − = + +






R i R R

R

R

R

Req eq
where  

For a conversion gain of u2/i1 = Req = 108 V/A = 100 MΩ, we need to find resistor values to satisfy the 
following equation:

 R
R

R

R

R
1 102

1

2 8+ +






= Ω  

One solution is to choose R = 1 MΩ, R1 = 1 kΩ, and R2 = 99 kΩ. The design of Fig. 5-42 uses a single op amp 
and three resistors which are not expensive and readily available.

5.20. Find i2 as a function of u1 in the circuit of Fig. 5-43.

Fig. 5-42

Fig. 5-43

We have

 υ υ υ υB A i R i i R= = = = =0 1 1 1 2 1 1 1/ /  

The op amp converts the voltage source to a floating current source. The voltage-to-current conversion ratio 
is R1 and is independent of R2.
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5.21. A practical current source (is in parallel with internal resistance Rs) directly feeds a load Rl as in   
Fig. 5-44(a). (a) Find load current il. (b) Place an op amp between the source and the load as in   
Fig. 5-44(b). Find il and compare with part (a).

Fig. 5-44

(a)  In the direct connection, Fig. 5-44(a), il = isRs/(Rs + Rl), which varies with Rl. (b) In Fig. 5-44(b), the 
op amp forces uB to zero causing the current in Rs to become zero. Therefore, il = is which is now inde-
pendent of Rl. The op amp circuit converts the practical current source to an ideal current source. See 
Figure 5-44(c).

5.22. Find uo in the circuit of Fig. 5-45.

Fig. 5-45
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The first op amp is a unity gain inverter with u3 = −u2. The second op amp is a summing circuit with a 
gain of −R2/R1 for both inputs u1 and u3. The output is

 υ υ υ υ υo

R
R

R
R

= − + = −2

1
1 3

2

1
2 1( ) ( )  

The circuit is a difference amplifier.

5.23. Find uo in the circuit of Fig. 5-46.

Fig. 5-46

Apply KCL at node B. Note that uB = uA = u2. Thus,

 
υ υ υ υ2 1

1

2

2
0

−
+

−
=

R R
o  

Solving for uo, we get uo = u2 + (R2/R1)(u2 − u1).

5.24. Find uo in the circuit of Fig. 5-47.

Fig. 5-47

The left part of the circuit has a gain of (1 + R1/R2). Therefore, u3 = (1 + R1/R2)u1. Using the results of 
Problem 5.23 and substituting for u3 gives

 υ υ υ υ υo

R
R

R
R

R
R

R
R

= + − = +





− +2
2

1
2 3

2

1
2

2

1

1

2
1 1( )







= +





−υ υ υ1
2

1
2 11

R
R

( )  

5.25. In Fig. 5-48 choose resistors for a differential gain of 106 so that uo = 106 (u2 − u1).
The two frontal op amps are voltage followers.

 υ υ υ υA B= =1 2and  
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From (16), Sec. 5.9, we have

υ υ υ υ υo B A

R
R

R
R

= − = −2

1

2

1
2 1( ) ( )

To obtain the required differential gain of R2/R1 = 106, choose R1 = 100 Ω and R2 = 100 MΩ.

Fig. 5-48

The circuit of Fig. 5-48 can have the same gain as Fig. 5-45, but its input resistance is infinite. However, 
it employs two small and large resistors which are rather out of ordinary range.

5.26. Resistors having high magnitude and accuracy are expensive. Show that in the circuit of Fig. 5-49 we 
can choose resistors of ordinary range so that uo = 106 (u2 − u1).

Fig. 5-49

The two frontal op amps convey the input voltages u1 and u2 to the terminals of RG, creating an upward 
current i = (u2 − u1)/RG in the resistor. The current also goes through the two R3 resistors, creating voltage 
drops iR3 across them. Therefore,

υ υ υ υ υ υ υ υ υA
G

B
G

R i
R
R

R i
R
R

= − = − − = + = +1 3 1
3

2 1 2 3 2
3( ) ( 22 1

3
2 11

2

−

− = +





−

υ

υ υ υ υ

)

( )B A
G

R
R
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and  υ υ υ υ υo B A
G

R
R

R
R

R
R

= − = +





−2

1

2

1

3
2 11

2
( ) ( )  

For a differential gain of 106 we must have

 
υ

υ υ
o

G

R
R

R
R2 1

2

1

3 61
2

10− = +





=  

Choose R1 = RG = 1 kΩ, R2 = 100 k, and R3 = 5 MΩ.
The circuit of Fig. 5-49 has an infinite input resistance, employs resistors within ordinary range, and 

uses three op amps.

5.27. Show that in the circuit of Fig. 5-50 i1 = i2, regardless of the circuits N1 and N2.

Fig. 5-50

Nodes A and B are at the same voltage uA = uB. Since the op amp draws no current, i1 and i2 flow through 
the two resistors and KVL around the op amp loop ABC gives Ri1 − Ri2 = 0. Therefore, i1 = i2.

5.28. Let N1 be the voltage source u1 and N2 be the resistor R2 in the circuit of Fig. 5-50. Find the input 
resistance Rin = u1/i1.

From the op amp we obtain uA = uB and i1 = i2. From connections to N1 and N2 we obtain u1 = uB = 
u2 = uA and u2 = −i2R2, respectively. The input resistance is u1/i1 = −i2R2/i2 = −R2 which is the negative of 
the load. The op amp circuit is a negative impedance converter.

5.29. A voltage follower is constructed using an op amp with a finite open-loop gain A and Rin = ∞ (see 
Fig. 5-51). Find the gain G = u2/u1. Defining sensitivity s as the ratio of percentage change produced 
in G to the percentage change in A, find s.

Fig. 5-51
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From Fig. 5-51 we have u2 = Aud. Applying KVL around the amplifier, we obtain

υ υ υ υ υ υ υ

υ
υ

1 2 2

2

1

1 1

1

= + = + = + = +

= =
+

d d d d
A A A A

G
A

( ) ( )/

AAA

The rate of change of G with respect to A is

dG
dA A

dG
dA

A
=

+
=

+
1

1 12 2( ) ( )
from which

The percentage change produced in G is 100(dG/G).

dG
G

dA

A

A
A A

dA
A

=
+

× + = + ×
( )1

1 1
12

and the sensitivity is

s
dG G
dA A A

= = +
/
/

1
1  

The percentage change in G depends on A. Sample values for dG/dA and s are shown in Table 5-8.

Table 5-8

A G = u2/u1 dG/dA s

10
11

100
1000

0.909 
0.917 
0.990 
0.999

0.008 
0.007 

  0.0001 
  0

0.091
0.083
0.01
0

For high values of A, the gain G is not sensitive to changes in A.

SuPPLEMENtARy PROBLEMS

5.30. Repeat Problem 5.3 by replacing the circuit to the left of node A (include Ri) by its Thévenin equivalent 
(see Fig. 5-33). Solve the problem by applying the results of Example 5.4.

5.31. Find the Thévenin equivalent of the circuit to the left of nodes A-B in Fig. 5-52 with k = 10 for (a) R2 = ∞ and 
(b) R2 = 50 kΩ.  Ans. (a) uTh = −100 V, RTh = 100 Ω; (b) uTh = −31.22 V, RTh = 37.48 Ω

Fig. 5-52

5.32. Repeat Problem 5.31 for R2 = 50 kΩ and k = 100.  Ans. uTh = −47.16 V, RTh = 5.66 Ω
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5.33. Determine the relationship between R, R1, and R2 in Fig. 5-41 such that the circuit has a gain of u2/i1 = 106 V/A.

 Ans. RR2/R1 = 106

5.34. In the circuit of Fig. 5-13, Vcc = 10 V, R1 = 2 kΩ and u1 = 1 V. Find the maximum value of R2 before the op amp 
is saturated.  Ans. R2 = 20 kΩ

5.35. Let the summing circuit of Fig. 5-14 have two inputs with u1 = 1 and u2 = sin t (V). Let R1 = 3 kΩ, R2 = 5 kΩ,  
and Rf = 8 kΩ. Apply superposition to find uo.

 Ans.  υ0

8
3

8
5= − +



sin t  

5.36. In Fig. 5-17 let R1 = 4 kΩ and R2 = 8 kΩ. Apply superposition to find uo in terms of the input voltages.

 Ans. uo = u1 + u2 + u3

5.37. Find the input resistance seen by uf in Fig. 5-19.  Ans. Rin = 2R1

5.38. Use superposition to find uo in Fig. 5-20 for R1 = 2, R2 = 7, R3 = 10, R4 = 5, all in kΩ.

 Ans. uo = 1.5u2 − 3.5u1

5.39. In the circuit of Fig. 5-20 find (a) u0 for R1 = 1, R2 = 3, R3 = 2, and R4 = 2, all in kΩ; (b) the input resistance 
R2 in seen by u2; (c) i1 as a function of u1 and u2 and show that u1 sees a variable load which depends on u2.

 Ans. (a) uo = 2u2 − 3u1, (b) R2 in = 4 kΩ, (c) i1 = u1 − u2/2

5.40. Using a single op amp, design an amplifier with a gain of u2/u1 = 3/4, input resistance of 8 kΩ, and zero output 
resistance.  Ans. See Fig. 5-53.

Fig. 5-53

5.41. Show that, given R1 = ∞ and R2 = 0, the noninverting op amp circuit of Fig. 5-15 and (12) is reduced to a voltage 
follower.

5.42. In the circuit of Fig. 5-22 let Rs = 10 kΩ. (a) Find Rf  such that is = 0. (b) Is Rf  independent of Rs? Discuss.

 Ans. (a) 40 kΩ; (b) yes

5.43. The input to the circuit of Fig. 5-23 with RC = 1 is u1 = sin w t. Write KCL at node B and solve for u2.

 Ans. u2 = −(1/w) cos w t + C

5.44. Show that the output u2 in Fig. 5.54 is the same as the output of the integrator in Fig. 5-23.

Fig. 5-54
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5.45. Find u2 in the leaky integrator of Fig. 5-24 with R1 = Rf = 1 kΩ, C = 1 µF, and υ
1

=
V1 0

0 0

t

t

>

<






.

Ans.  υ2

10001 0

0 0
( )

( )
t

e t

t

t

=
− + >

<







− V
 

5.46. Repeat Problem 5.45 for υ
1

=
V1 0

0 0

t

t

<

>






.  Ans. υ

2

1000 0

1 0
( )

( )
t

e t

t

t

=
− >

− <







− V

V

5.47. In the differential equation 10−2 du2/dt + u2 = us, us is the forcing function and u2 is the response. Design an 
op amp circuit to obtain u2 from us.  Ans. See Fig. 5-24, with R1 = Rf , RC = 10−2, and u1 = −us.

5.48. Design a circuit containing op amps to solve the following set of equations:

y x

y x x

s

s

′

′

+ =

+ + = −

υ

υ

1

2
2 3

Ans. See Fig. 5-55, with R1C = R4C = 1 s, R2C = 
1
3

 s, R3C = 
1
2

 s.

Fig. 5-55

5.49. Average power delivered by a 1 mV voltage source to a 1 Ω resistor is 1 µW. Apply the 1 mV voltage source to 
the input of an amplifier with a gain of 60 dB and then connect the output to the 1 Ω resistor. What is the average 
power delivered to the resistor?  Ans. 1 W

5.50. The input-output relationship in a circuit is

d

dt

υ
ω υ ω υ ω π2

0 2 0 1 0
2000+ = =where  
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 (a) Show that given υ π1 2( ) cost ft= , the output is υ π θ2 2 2( ) cos ( )t V ft= + , where

 V
f

f
2 2

11

1 1000

1000=

+ 





= − 





−and θ tan  

 (b) Plot the magnitude of the output (in dB) and its phase (in degrees) as functions of f for 10 < f < 105. Use 
logarithmic scale for frequency axis.

 Ans.

Fig. 5-56 Plot of the frequency response of Problem 5.50.

 (a) The magnitude in dB is − +






20
10

1
1000

2
log

f
.

 (b) The phase is − − 





tan 1
1000

f . The abscissa for each plot is log f.

5.51. The input-output relationship in a circuit is

 
d
dt
υ

υ υ2 4
2

6
110 10+ =   

 With u1(t) = cos 2p ft, find u2 (t) = V2 cos(2p ft + q). Determine (a) the dc gain, (b) the 3-dB attenuation frequency, 
and (c) the frequency at which V2 = 1.  Ans. (a) 40 dB; (b) 1591.5 Hz; (c) 159155 Hz

5.52. Repeat Problem 5.51 for a circuit with the input-output relationship

 
d
dt
υ

π υ π υ2 4
2

6
12 10 2 10+ × = ×  

 Ans. (a) 40 dB; (b) 10 kHz; (c) 1 MHz
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5.53. Convert the amplifier circuit of Fig. 5-11 into a noninverting configuration and assume the same conditions 
as specified in Example 5.27 with u1(t) as the input, u2(t) as the output, Ri = ∞, Ro = 0, k = 1 + R2/R1, and the 
op amp model specified by Example 5.26. (a) Find the circuit’s input-output relationship in the time domain.   
(b) Let u1(t) = V1 cos 2π ft produce an output u2(t) = V2 cos(2π ft − q). Develop an expression for magnitude 
gain |V2/V1| vs. frequency. (c) Verify that the gain-bandwidth product of the noninverting amplifier circuit is the 
same as that of the op amp’s open-loop, a0 f0.

Ans. (a) 
d
dt

f a f
υ

υ υ2
1 2 1 1 1+ = − , where the DC gain is a

a k
a k1

0

0
= +  and the 3-dB frequency is f a k

f
k1 0
0= +( ) ; 

   (b) 
V
V

a

f
f

2

1

1

1

2

1

=

+ 





; (c) a f
a k

a k
a k

f
k

a f1 1
0

0
0

0
0 0= + × + =( )  

5.54. In the inverting configuration of Fig. 5-13 switch the inverting and noninverting inputs of the op amp so that 
the inverting input is connected to the ground and a positive feedback is provided to the op amp through the 
R2 resistor. (a) Assuming an ideal op amp, find the circuit’s input-output relationship. (b) Give reasons why in 
practice the above configuration is avoided.  Ans. (a) u2/u1 = − R2/R1; (b) instability (see Problem 5.2)

5.55. Find u/i in Fig. 5-57, assuming an ideal op-amp with saturation levels at ± Vs.  Ans. See Fig. 5-58

Segment ABC low saturation

Segment CF

υ = −R i Vs3

υυυ = −R
R
R

i1
2

3
linear operation negative input, resistance

Segment FGH high saturatυ = +R i Vs3 iiion

Fig. 5-57 Fig. 5-58

5.56. In the circuit of Fig. 5-57. switch the inverting and noninverting inputs of the op amp so that the external lead 
goes to the inverting input and a positive feedback is provided to the op amp through the R2 resistor as shown in 
Fig. 5-59. Find u/i assuming an ideal op amp with saturation levels at ±Vs.  Ans. See Fig. 5-60

Segment ABC low saturation

Segment CF

υ = −R i Vs3

υυυ = −R
R
R

i1
2

3
linear operation negative input, resistance

Segment FGH high saturatυ = +R i Vs3 iiion
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5.57. A sensor converts a physical quantity (such as heat, pressure, vibration, etc.) to an electrical signal. It 
is modeled by a voltage source us in series with an internal resistance r. The sensor feeds a load R as in  
Fig. 5-61 (a). It is desired that the load current i be proportional to voltage us regardless of the load. Design 
a circuit (including the elements’ values) which provides such a function.  Ans. See Fig. 5-61(b). If r = R1R3/R2, 
the op amp circuit (internal resistance −r) in combination with the sensor (internal resistance r) presents 
an ideal current source (zero internal resistance). The range of operation will be limited by the op amp’s 
saturation levels.

Fig. 5-61

5.58. The op amp of Fig. 5-30 compares the input signal u1 with an independent reference level u0, forcing the op amp 
into high saturation (if u1 > u0) or low saturation (if u1 < u0). Let the reference level be set up by the output of 
the op amp through the voltage divider R1/(R1 + R2) as shown in Fig. 5-62(a) with R1 = 2R2. Assume saturation 
levels of  ±15. Given u1(t) = 10(sin 20πt + sin 30πt) and u2(0) = 15 V, sketch the output voltage u2(t). The circuit 
is called an inverting Schmitt trigger.  Ans. See Fig. 5-62(b)

Fig. 5-60Fig. 5-59
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5.59. Repeat Problem 5.58 for the circuit shown in Fig. 5-63(a) with R1 = 2R2. Assume saturation levels of ±15 V. 
Given u1(t) = 10(sin 20πt + sin 30πt) and u2(0) = l5 V, sketch the output voltage u2(t). The circuit is called a 
noninverting Schmitt trigger.  Ans. See Fig. 5-63(b)

Fig. 5-62 Inverting Schmitt trigger

Fig. 5-63 Noninverting Schmitt trigger
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Waveforms and Signals

6.1 Introduction
The voltages and currents in electric circuits are described by three classes of time functions:

  (i) Periodic functions

 (ii) Non-periodic functions

(iii) Random functions

In this chapter the time domain of all functions is −∞ < t < ∞ and the terms function, waveform, and signal 
are used interchangeably.

6.2 Periodic Functions
A signal u(t) is periodic with period T if

 υ υ( ) ( )t t T t= + for all  

Four types of periodic functions which are specified for one period T and their corresponding graphs are 
as follows:

(a) Sine wave:

 υ π1 0 2( ) sint V t T= /  (1)

See Fig. 6-1(a).

CHAPTER 6

Fig. 6-1(a)

(b) Periodic pulse:

 υ2
1

1

0
( )t

V t T

V T t T
=

< <
− < <





1

2

for
for  (2)
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See Fig. 6-1(b).

Fig. 6-1(b)

Fig. 6-1(c)

(d) Repetition of a recording every T seconds:

υ4( )t  (4)

See Fig. 6-1(d).

Fig. 6-1(d)

Periodic signals may be very complex. However, as will be seen in Chapter 17, they may be represented 
by a sum of sinusoids. This type of function will be developed in the following sections.

(c) Periodic tone burst:

υ
π

3
1

1

2 0

0
( )

sin /
t

V t t T

T t T
=

< <
< <





0 for

for

Λ
(3)

where T = kΛ and k is an integer. See Fig. 6-1(c).
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6.3 Sinusoidal Functions
A sinusoidal voltage u(t) is given by

 υ ω θ( ) cos ( )t V t= +0  

where V0 is the amplitude, w is the angular velocity, or angular frequency, and q is the phase angle.
The angular velocity w may be expressed in terms of the period T or the frequency f, where f  ≡ 1/T. The 

frequency is given in hertz, Hz, or cycles/s. Since cos w t = cos (w t + 2p), w and T are related by wT = 2p. And 
since it takes T seconds for u(t) to return to its original value, it goes through 1/T cycles in 1 second.

In summary, for sinusoidal functions we have

 ω π π ω π π ω= = = = = =2 2 1 2 1 2/ / / /T f f T T f /  

EXAMPLE 6.1 Graph each of the following functions and specify the period and frequency.

 

( ) ( ) cos ( ) ( ) sin (a t t b t tυ υ1 2= = cc t t

d t t

) ( ) cos

( ) ( ) cos ( / )

υ π

υ π

3

4

2 2

2 4 45

=

= − ° = 22 4 4 2 1 4

55

cos ( / ) cos [ ( )/ ]

( ) ( )

/π π π

υ

t t

e t

− = −

= ccos ( ) cos ( / ) cos ( / )10 60 5 10 3 5 10 30t t t+ ° = + = +π π

 

(a) See Fig. 6-2(a). T  =  2p  = 6.2832 s and f  =  0.159 Hz.

(b) See Fig. 6-2(b). T  =  2p  = 6.2832 s and f  =  0.159 Hz.

(c) See Fig. 6-2(c). T  =  1 s and f  = 1 Hz.

(d) See Fig. 6-2(d). T  =  8 s and f  =  0.125 Hz.

(e) See Fig. 6-2(e). T  =  0.2p  =  0.62832 s and f  = 1.59 Hz.

EXAMPLE 6.2 Plot u(t) = 5 cos w t versus w t.
See Fig. 6-3.

6.4 Time Shift and Phase Shift
If the function u(t) = cos w t is delayed by t seconds, we get u(t − t) = cos w (t − t ) = cos (w t − q), where 
q = wt. The delay shifts the graph of u(t) to the right by an amount of t seconds, which corresponds to a 
phase lag of q = wt = 2pft. A time shift of t seconds to the left on the graph produces u(t + t), resulting in a 
leading phase angle called an advance.

Conversely, a phase shift of q corresponds to a time shift of t. Therefore, for a given phase shift, the higher 
the frequency, the smaller the required time shift.

EXAMPLE 6.3 Plot u(t) = 5 cos (p t/6 + 30°) versus t and pt/6.
Rewrite the expression as

 υ π π π( ) cos ( / / ) cos[ ( )/ ]t t t= + = +5 6 6 5 1 6  

This is a cosine function with a period of 12 s, which is advanced in time by 1 s. In other words, the graph 
is shifted to the left by 1 s or 30° as shown in Fig. 6-4.

EXAMPLE 6.4 Consider a linear circuit with the following input-output pair valid for all w and A:

 Input: Output:υ ω υ ω θi t A t t A t( ) cos ( ) cos ( )= = −0   

Given ui(t) = cos w1t  +  cos w2t, find u0(t) when

(a) q = 10−6w [phase shift is proportional to frequency, Fig. 6-5(a)]

(b) q = 10−6 [phase shift is constant, Fig. 6-5(b)]

The output is u0(t) = cos (w 1t − q1) + cos (w2t − q2).
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Fig. 6-2
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(a) q1 = 10−6w1, q2 = 10−6w2. Then

 
υ ω ω ω ω

ω

0 1
6

1 2
6

2

1

10 10( ) cos ( ) cos ( )

cos

t t t= − + −

=

− −

(( ) cos ( ) ( ) ( )t t t ti i− + − = − = −− − −10 10 106
2

6 6ω υ υ τ
 

   where t = 10−6 s = 1 µs. Thus a phase shift proportional to w [Fig. 6-5(a)] delays all frequency components of the 
input signal by 1 µs. The output follows the input with no distortion.

(b) q1 = q2 = 10−6. Then

  
υ ω ω

ω

0 1
6

2
6

1

10 10

1

( ) cos( ) cos( )

cos (

t t t

t

= − + −

= −

− −

00 106
1 2

6
2

− −+ −/ ) cos ( / )ω ω ωt
  

   A constant phase shift [Fig. 6-5(b)] delays different frequency components of the input signal by different amounts. 
The output is a distorted form of the input.

Fig. 6-3

Fig. 6-4

Fig. 6-5
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6.5 Combinations of Periodic Functions
The sum of two periodic functions with respective periods T1 and T2 is a periodic function if a common 
period T = n1T1 = n2T2, where n1 and n2 are integers, can be found. This requires T1/T2 = n2/n1 to be a rational 
number. Otherwise, the sum is not a periodic function.

EXAMPLE 6.5 Find the period of u(t) = cos 5t + 3 sin (3t + 45°).
The period of cos 5t is T1 = 2p/5 and the period of 3 sin(3t + 45°) is T2 = 2p/3. Take T = 2p = 5T1 = 3T2 which is the 

smallest common integral multiple of T1 and T2. Observe that u(t + T) = u(t) since

υ π π( ) cos ( ) sin [ ( ) ] cost T t t t+ = + + + + ° = +5 2 3 3 2 45 5 3 sssin ( ) ( )3 45t t+ ° = υ  

Therefore, the period of u(t) is 2p.

EXAMPLE 6.6 Is u(t) = cos t + cos 2pt periodic? Discuss.
The period of cos t is T1 = 2p. The period of cos 2pt is T2 = 1. No common period T = n1T1 = n2T2 exists because 

T1/T2 = 2p is not a rational number. Therefore, u(t) is not periodic.

EXAMPLE 6.7 Given p = 3.14, find the period of u(t) = cos t + cos 2pt.
The period of cos t is T1 = 2p and the period of cos 2pt is T2 = p/3.14. The ratio T1/T2 = 6.28 is a rational number. 

The integer pair n1 = 25 and n2 = 157 satisfies the relation n2/n1 = T1/T2 = 628/100 = 157/25. Therefore, u(t) is periodic 
with period T = n1T1 = n2T2 = 50p s.

Trigonometric Identities
The trigonometric identities in Table 6-1 are useful in the study of circuit analysis.

EXAMPLE 6.8 Express u(t) = cos 5t sin(3t + 45°) as the sum of two cosine functions and find its period.

υ( ) cos sin ( ) [sin ( ) sin (t t t t t= + = + − −5 3 45 8 45 2 4º º 555 2

8 45 2 45

º

º º

)] [ ( )]

[cos ( ) cos ( )]

/ Eq. 9

/

b

= − + +t t 222 [ ( )]Eq. 5c

The period of u(t) is p.

Table 6-1

sin a = −sin (−a)
cos a = cos (−a)
sin a = cos (a − 90°)
cos a = sin (a + 90°)
sin 2a = 2 sin a cos a
cos 2a = cos2a − sin2a = 2 cos2a − 1 = 1 − 2 sin2a

sin
cos2 1 2
2a

a= −

cos
cos2 1 2
2a

a= +

sin (a + b) = sin a cos b + cos a sin b
cos (a + b) = cos a cos b − sin a sin b
sin a sin b = 1

2 cos (a − b) −  1
2 cos (a + b)

sin a cos b = 1
2 sin (a + b) +  1

2 sin (a − b)
cos a cos b = 1

2 cos (a + b) + 1
2 cos (a − b)

sin a + sin b = 2 sin 1
2 (a + b) cos 1

2 (a − b)
cos a + cos b = 2 cos 1

2 (a + b) cos 1
2 (a − b)

(5a)
(5b)
(5c)
(5d)
(6a)
(6b)

(7a)

(7b)

(8a)
(8b)
(9a)
(9b)
(9c)

(10a)
(10b)
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6.6 The Average and Effective (RMS) Values
A periodic function f (t), with a period T, has an average value Favg given by

 F f t
T

f t dt
T

f t dt
t

t TT

avg = 〈 〉 = =
+

∫∫( ) ( ) ( )
1 1

0

0

0

 (11)

The root-mean-square (rms) or effective value of f (t) during the same period is defined by

 F F
T

f t dt
t

t T

eff rms= =












+

∫1 2

1 2

0

0

( )

/

 (12)

It is seen that F f teff
2 2= 〈 〉( ) .

Average and effective values of periodic functions are normally computed over one period.

EXAMPLE 6.9 Find the average and effective values of the cosine wave u(t) = Vm cos (w t + q).
Using (11),

 V
T

V t dt
V

T
tm

m T
T

avg = + = + =∫1
00

0

cos ( ) [sin ( )]ω θ ω ω θ  (13)

and using (12),

 V
T

V t dt
T

V tm

T

meff
2 2 2

0

21 1
2 1 2= + = +∫ cos ( ) [ cos (ω θ ω ++ =∫ θ)] /dt Vm

T
2

0

2  

from which V V Vm meff /= =2 0 707.  (14)

Equations (13) and (14) show that the results are independent of the frequency and phase angle q. In other words, the 
average of a cosine wave and its rms value are always 0 and 0.707 Vm, respectively.

EXAMPLE 6.10 Find Vavg and Veff of the half-rectified sine wave

 υ
ω ω

ω
( )

sin sin

sin
t

V t t

t
m=

>
<





when

when

0

0 0
 (15)

From (11),

 V
T

V t dt
V

T
t Vm

m T
m

T

avg = = − =∫1
0

2

0

2

sin [ cos ] //
/

ω ω ω π  (16)

and from (12),

 V
T

V t dt
T

V t dt Vm m meff
2 2 2 2 21 1

2 1 2= = − =sin ( cos ) /ω ω 44
0

2

0

2 TT //

∫∫  

from which V Vmeff = /2  (17)

EXAMPLE 6.11 Find Vavg and Veff of the periodic function u(t) where, for one period T,

 υ( )t
V t T

V T t T
T=

< <
− < <





0 1

0 1 1

0

3

for

for
Period == 3 1T  (18)
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We have V
V
T

T T
V

avg = − =
−0

1 1
0

3 2 3( ) (19)

and V
V

T
T T Veff

2 0

2

1 1 0
2

3= 2+ =( )

from which V Veff = 0  (20)

The preceding result can be generalized as follows. If |u(t)| = V0, then Veff = V0.

EXAMPLE 6.12 Compute the average power dissipated from 0 to T in a resistor connected to a voltage u(t). Replace 
u(t) by a constant voltage Vdc. Find Vdc such that the average power during the period remains the same.

p i R

P
RT

t dt
R

V
V

R

T

= =

= = =∫
υ υ

υ

2

2 2

0

2
1 1

/

( )avg eff
dc or VV Vdc eff=

EXAMPLE 6.13 The current i(t) shown in Fig. 6-6 passes through a 1-µF capacitor. Find (a) uac, the voltage across 
the capacitor at t = 5k ms (k = 0, 1, 2, 3, …) and (b) the value of a constant current source Idc which can produce the 
same voltage across the above capacitor at t = 5k ms when applied at t > 0. Compare Idc with 〈 〉i t( ) , the average of i(t) 
in Fig. 6-6, for a period of 5 ms after t > 0.

Fig. 6-6

(a) At  t = 5 ms

υac = = −−

×

×

−

−

∫1
10 10 4 26 3

3 10

5 10

0 3

3

C
i t dt dt dt( ) ( )

333 10

0

5 10 33

12 4 8
×× −−

∫∫












= − = V  

This is the net charging effect of i(t) during each 5-ms interval. Every 5 ms the above amount is added to the capacitor 
voltage. Therefore, at t = 5k ms, u = 8k (V).

(b) With a constant current Idc, the capacitor voltage udc at t = 5k ms is

υdc dc dc dc (= = × =−1
10 5 10 10 56 3 3

C
I dt I k k I( )( ) ( )( ) VVV)

5

0

10 3k × −

∫
 Since udc = uac at 5k ms, we obtain

10 5 8 8 5 10 1 6 103 3 3( )( ) ( ) .k I k I k kdc dcor / A= = × = × =− 111 6. mA  

Note that Idc = 〈i(t)〉 in Fig. 6-6 for any period of 5 ms after t > 0.
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6.7 Nonperiodic Functions
A nonperiodic function cannot be specified for all times by simply knowing a finite segment. Examples of 
nonperiodic functions are

(a) υ1

0 0
1 0

( )t
t
t

=
<
>{ for

for  (21)

(b) υ2

0 0
1 0
0

( ) /t
t

T t T
t T

=
<
< <
>

for
for
for






 (22)

(c) υ τ3

0 0

0
( ) /t

t

e tt=
<
>





−
for

for
 (23)

(d) υ ω4

0 0
0

( )
sin

t
t

t t
=

<
>{ for

for  (24)

(e) υ
ωτ5

0 0
( ) /t

t

e t=
<

−
for

cos tt tfor >


 0

 (25)

( f )  υ τ
6( ) /t e tt= − for all  (26)

(g) υ7( ) | |t e ta t= − for all  (27)

(h) υ ω8( ) cos| |t e t ta t= − for all  (28)

Several of these functions are used as mathematical models and building blocks for actual signals in 
analysis and design of circuits. Examples are discussed in the following sections.

6.8 The Unit Step Function
The dimensionless unit step function, is defined by

 u t
t
t

( ) =
<
>{0 0

1 0
for
for  (29)

The function is graphed in Fig. 6-7. Note that the function is undefined at t = 0.

Fig. 6-7

To illustrate the use of u(t), assume the switch S in the circuit of Fig. 6-8(a) has been in position 1 for t < 0 
and is moved to position 2 at t = 0. The voltage across A-B may be expressed by uAB = V0u(t). The equivalent 
circuit for the voltage step is shown in Fig. 6-8(b).
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EXAMPLE 6.14 The switch in the circuit of Fig. 6-8(a) is moved to position 2 at t = t0. Express uAB using the step 
function.

The appearance of V0 across A-B is delayed until t = t0. Replace the argument t in the step function by t − t0 and so 
we have uAB = V0u(t − t0).

EXAMPLE 6.15 If the switch in Fig. 6-8(a) is moved to position 2 at t = 0 and then moved back to position 1 at t = 5 s, 
express uAB using the step function.

υAB V u t u t= − −0 5[ ( ) ( )]  

EXAMPLE 6.16 Express u(t), graphed in Fig. 6-9, using the step function.

Fig. 6-8

Fig. 6-9

υ π( ) [ ( ) ( )]sint u t u t t= − − 2  

6.9 The Unit Impulse Function
Consider the function sT(t) of Fig. 6-10(a), which is zero for t < 0 and increases uniformly from 0 to 1 in 
T seconds. Its derivative dT(t) is a pulse of duration T and height 1/T, as seen in Fig. 6-10(b).

d t
t

T t T
t T

T ( ) /=
<
< <
>

0 0
1 0
0

for
for
for






(30)

If the transition time T is reduced, the pulse in Fig. 6-10(b) becomes narrower and taller, but the area under 
the pulse remains equal to 1. If we let T approach zero, in the limit, the function sT (t) becomes a unit step u(t)
and its derivative dT (t) becomes a unit pulse d (t) with zero width and infinite height. The unit impulse d (t)
is shown in Fig. 6-10(c). The unit impulse or unit delta function is defined by

δ δ( ) ( )t t t dt= ≠ =
−∞

∞

∫0 0 1for and  (31)
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An impulse which is the limit of a narrow pulse with an area A is expressed by Ad (t). The magnitude A is 
sometimes called the strength of the impulse. A unit impulse which occurs at t = t0 is expressed by d (t − t0).

EXAMPLE 6.17 The voltage across the terminals of a 100-nF capacitor grows linearly, from 0 to 10 V, taking the 
shape of the function sT(t) in Fig. 6-10(a). Find (a) the charge across the capacitor at t = T and (b) the current iC(t) in the 
capacitor for T = 1 s, T = 1 ms, and T = 1 µs.

(a) At t = T, uC = 10 V. The charge across the capacitor is Q = CuC = 10−7 × 10  = 10−6 C.

(b) i t C
d
dtc

C( ) =
υ

 

Fig. 6-10

From Fig. 6-10,

 i t

t

I T t TC ( ) ( )=
<
< <−

0 0

10 0

0

6

for

= / A for

fo
0

rr t T>






 (32)

For T = 1 s, I0 = 10−6 A; for T = 1 ms, I0 = 10−3 A; and for T = 1 µs, I0 = 1 A.
In all the preceding cases, the charge accumulated across the capacitor at the end of the transition period is

 Q i t dt I TC

T

= = = −∫ ( ) 0
6

0

10 C  

The amount of charge at t = T is independent of T. It generates a voltage uC = 10 V across the capacitor.

EXAMPLE 6.18 Let dT (t − t0) denote a narrow pulse of width T and height 1/T, which starts at t = t0. Consider a func-
tion f (t) which is continuous between t0 and t0 + T as shown in Fig. 6-11(a). Find the limit of integral I in (33) when T 
approaches zero.

 
I d t t f t dt

d t t
T t t t T

T

T

= −

− =
< < +

−∞

∞

∫ ( ) ( )

( )
/

0

0
0 01

0 ellsewhere




 

(33)
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Substituting dT in (33) we get

I
T

f t dt
S
T

t

t T

= =
+

∫1

0

0

( )  (34a)

where S is the hatched area under f (t) between t0 and t0 + T in Fig. 6-11(b). Assuming T to be small, the function f (t)
may be approximated by a line connecting A and B. S is the area of the resulting trapezoid.

S f t f t T T= + +1
2 0 0[ ( ) ( )]  (34b)

I f t f t T= + +1
2 0 0[ ( ) ( )]  (34c)

As T → 0, dT ( t − t0) → d (t − t0) and f (t0 + T) → f (t0) and from (34c) we get

Fig. 6-11

lim lim [ ( ) ( )]
T T

I f t f t T
→ →

= + +
0 0

1
2 0 0 (34d)

We assumed f (t) to be continuous between t0 and t0 + T. Therefore,

lim ( )
T

I f t
→

=
0 0  (34e)

But lim ( ) ( )
T

I t t f t dt
→ −∞

∞

= −∫0 0δ  (34f)

and so 
−∞

∞

∫ − =δ ( ) ( ) ( )t t f t dt f t0 0 (34g)

The identity (34g) is called the sifting property of the impulse function. It is also used as another definition for d (t).

6.10 The Exponential Function
The function f (t) = est, with s a complex constant, is called an exponential. It decays with time if the real 
part of s is negative and grows if the real part of s is positive. We will discuss exponentials eat in which the 
constant a is a real number.
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The inverse of the constant a has the dimension of time and is called the time constant t  = 1/a. A decaying 
exponential e−t/t is plotted versus t as shown in Fig. 6-12. The function decays from one at t = 0 to zero at t = ∞. 
After t seconds, the function e−t/t is reduced to e−1 = 0.368. For t = 1, the function e−t is called a normalized 
exponential which is the same as e−t/t when plotted versus t/t.

EXAMPLE 6.19 Show that the tangent to the graph of e−t/t at t = 0 intersects the t axis at t = t as shown in Fig. 6-12.
The tangent line begins at point A (u = 1, t = 0) with a slope of de−t/t/dt|t = 0 = −1/t. The equation of the line is utan(t) = 

−t/t + 1. The line intersects the t axis at point B where t = t. This observation provides a convenient approximate 
approach to plotting the exponential function as described in Example 6.20.

EXAMPLE 6.20 Draw an approximate plot of u(t) = e−t/t for t > 0.
Identify the initial point A (t = 0, u = 1) of the curve and the intersection B of its tangent with the t axis at t = t. Draw 

the tangent line AB. Two additional points C and D located at t = t and t = 2t, with heights of 0.368 and 0.3682 = 0.135, 
respectively, also belong to the curve. Using the preceding indicators, the curve may be drawn with a rather good 
approximation (see Fig. 6-12).

Fig. 6-12

EXAMPLE 6.21 (a) Show that the rate of change with respect to time of an exponential function u = Aest is at any 
moment proportional to the value of the function at that moment. (b) Show that any linear combination of an exponential 
function and its n derivatives is proportional to the function itself. Find the coefficient of proportionality.

(a)  The rate of change of a function is equal to the derivative of the function, which, for the given exponential 
function, is

 
d
dt

sAe sstυ υ= =  

(b) Using the result of (a) we get

 
d

dt
s Ae s

n

n
n st nυ υ= =  

 a a
d
dt

a
d

dt
a a s a sn

n

n n
n

0 1 0 1υ υ υ υ+ + + = + + +. . . ( . . . ) == Hυ  (35)

where H a a s a sn
n= + + +0 1

. . .  (36)

Specifying and Plotting f (t) = Ae-at + B
We often encounter the function

 f t Ae Bat( ) = +−
 (37)

This function is completely specified by the three numbers A, B, and a:

 A = initial value − final value  B = final value  a = inverse of the time constant

 Put differently, Initial value f (0) = A + B  Final value f (∞) = B  Time constant = 1/a 
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EXAMPLE 6.22 Find a function u(t) which decays exponentially from 5 V at t = 0 to 1 V at t = ∞ with a time constant 
of 3 s. Plot u(t) using the technique of Example 6.20.

From (37) we have u(t) = Ae−t/t + B. Now u(0) = A + B = 5, u(∞) = B = 1, A = 4, and t = 3. Thus

υ( ) /t e t= +−4 13  

The preceding result can be generalized in the following form:

υ τ( ) /t e t= − +−(initial value final value) (finalll value)  

The plot is shown in Fig. 6-13.

Fig. 6-13

EXAMPLE 6.23 The voltage u = V0e
−|t|/t, t > 0, is connected to a capacitor. Find the current i in the capacitor. Sketch u

and i for V0 = 10 V, C = 1 µF, and t = 1 ms. 
Using i = C du/dt,

for t < 0,               υ τ= V et
0

/     and  i I et= 0
/τ  

for t > 0, υ τ= −V e t
0

/   and  i I e t= − −
0

/τ   

where I0 = CV0/t.
For V0 = 10 V, C = 1 µF, and t = 10−3 s, we get I0 = 10 mA. Graphs of u and i are shown in Figs. 6-14(a) and (b),

respectively.

Fig. 6-14
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6.11 Damped Sinusoids
A damped sinusoid, with its amplitude decaying exponentially, has the form

 υ ω θ( ) cos ( )t Ae tat= +−
 (38)

This function will be discussed in more detail in Chapter 8.

EXAMPLE 6.24 The current i = I0e
−at cos w t passes through a series RL circuit. (a) Find uRL, the voltage across this 

combination. (b) Compute uRL for I0 = 3 A, a = 2, w = 40 rad/s, R = 5 Ω and L = 0.1 H. Sketch i as a function of time.

(a) We have

where 

υ ω

υ

R
at

L
at

Ri RI e t

L
di
dt

LI e a

= =

= = −

−

−

0

0

cos

( cosωω ω ω

υ υ υ ω ω

t t

I e R La t LRL R L
at

+

= + = − −−

sin )

[( ) cos s0 iin ] ( )

( )

ω ω θt V e t

V I R La

at= +

= − +

−
0

0 0
2

cos

LL L R La2 2 1ω θ ωand /= −−tan [ ( )]  (39)

(b) Substituting the given data into (39), V0 = 18.75 V and q = 39.8°. Current i and voltage uRL are then given by

 i e t e tt
RL

t= = + °− −3 40 18 75 40 39 82 2cos . cos ( . )and υ  

 The current i is graphed in Fig. 6-15.

Fig. 6-15

6.12 Random Signals
So far we have dealt with signals which are completely specified. For example, the values of a sinusoidal 
waveform, such as the line voltage, can be determined for all times if its amplitude, frequency, and phase are 
known. Such signals are called deterministic.

There exists another class of signals which can be specified only partly through certain statistical measures 
such as their means, rms values, and frequency ranges. These are called random signals. Random signals can 
carry information and should not be mistaken with noise, which normally corrupts the information contents 
of the signal.
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The voltage recorded at the terminals of a microphone due to speech utterance and the signals picked up 
by an antenna tuned to a radio or TV station are examples of random signals. The future course and values 
of such signals can be predicted only on the average and not precisely. Other examples of random signals 
are the binary waveforms in digital computers, image intensities over the area of a picture, and the speech or 
music which modulates the amplitude of carrier waves in an AM system.

It may not seem useful to discuss signals whose values are specified only on the average. However, through 
harmonic analysis we can still find out much about the average effect of such signals in electric circuits.

EXAMPLE 6.25 Samples from a random signal x(t) are recorded every 1 ms and designated by x(n). Approximate the 
mean and rms values of x(t) from samples given in Table 6-2.

Table 6-2

n 0 1 2 3 4 5 6   7 8 9 10 11 12 13 14 15

x(n) 2 4 11 5 7 6 9 10 3 6 8 4 1   3   5 12

The time averages of x(t) and x2(t) may be approximated from x(n).

Xavg /= + + + + + + + + + + + + + + +( )2 4 11 5 7 6 9 10 3 6 8 4 1 3 5 12 1666 6

2 4 11 5 7 6 9 10 3 62 2 2 2 2 2 2 2 2 3 2

=

= + + + + + + + + + +Xeff ( 888 4 1 3 5 12 16 46

6 78

2 2 2 2 2 2+ + + + + =

=

)

.

/

effX

EXAMPLE 6.26 A binary signal u(t) is either at 0.5 or −0.5 V. It can change its sign at 1-ms intervals. The sign change 
is not known a priori, but it has an equal chance for positive or negative values. Therefore, if measured for a long time, 
it spends an equal amount of time at the 0.5-V and −0.5-V levels. Determine its average and effective values over a 
period of 10 s.

During the 10-s period, there are 10,000 intervals, each of 1-ms duration, which on average are equally divided 
between the 0.5-V and −0.5-V levels. Therefore, the average of u(t) can be approximated as

υavg ( . . )/ ,= × − × =0 5 5000 0 5 5000 10 000 0  

The effective value of u(t) is

Veff /2 2 20 5 5000 0 5 5000 10 000 0= × + − × =[( . ) ( . ) ] , ( .55 0 52) .or VeffV =  

The value of Veff is exact and independent of the number of intervals.

SoLVED PRobLEMS

6.1. Find the maximum and minimum values of u = 1 + 2 sin(w t + q), given w = 1000 rad/s and q = 3 rad. 
Determine if the function u is periodic, and find its frequency f and period T. Specify the phase angle 
in degrees.

V Vmax min= + = = − = −1 2 3 1 2 1

The function u is periodic. To find the frequency and period, we note that w = 2pf = 1000 rad/s. Thus,

f T f= = = =1000 2 159 15 1 2/ Hz andπ . / πππ / . .1000 0 00628 6 28

3 1

= =

= =

s ms

Phase angle rad 8880 3 171 9º × = °/ .π

6.2. In a microwave range measurement system the electromagnetic signal u1 = A sin 2pft, with f = 100 MHz, 
is transmitted and its echo u2(t) from the target is recorded. The range is computed from t, the time 
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delay between the signal and its echo. (a) Write an expression for u2(t) and compute its phase angle 
for time delays t1 = 515 ns and t2 = 555 ns. (b) Can the distance be computed unambiguously from the 
phase angle in u2(t)? If not, determine the additional needed information.

(a) Let

For
2u ( ) sin ( ) sin ( ).t B f t B ft

f

= − = −

=

2 2

100

π π θτ

MMHz =10 Hz, where 0 <8 θ π τ πτ π φ φ π= = × = + <2 2 10 2 28f k , ..

,For 1τ θ π π= × = × × = = ×− −515 10 2 10 515 10 103 519
1

8 9 22 51

555 10 2 1
1 1 1

9
2

π φ φ π

τ θ π

+ = =

= × =−

or and

For 1

k .

, 00 555 10 111 55 2 558 9
2 2 2× × = = × + = =− π π φ φ πor andk .

 

(b) Since phase angles f1 and f2 are equal, the time delays t1 and t2 may not be distinguished from each 
other based on the corresponding phase angles f1 and f2. For unambiguous determination of the dis-
tance, k and f are both needed.

 6.3. Show that if periods T1 and T2 of two periodic functions u1(t) and u2(t) have a common multiple, the 
sum of the two functions, u(t) = u1(t) + u2(t), is periodic with a period equal to the smallest common 
multiple of T1 and T2. In such a case show that Vavg = V1,avg + V2,avg.

If two integers n1 and n2 can be found such that T = n1T1 = n2T2, then u1(t) = u1(t + n1T1) and u2(t) = 
u2 (t + n2T2). Consequently,

 υ υ υ υ υ υ( ) ( ) ( ) ( ) ( ) ( )t T t T t T t t t+ = + + + = + =1 2 1 2  

and u(t) is periodic with period T.

The average is

 V
T

t t dt
T

t dt
T

T T

avg = + = +∫ ∫1 1 1
1 2

0
1

0
2[ ( ) ( )] ( )υ υ υ υ (( )t dt V V

T

= +∫ 1,avg 2,avg
0

 

 6.4. Show that the average of cos2 (w t + q) is 1/2.
 Using the identity cos ( ) [ cos ( )],2 1

2 1 2ω θ ω θt t+ = + +  the notation 〈 〉 =f Favg, and the result of  
Problem 6.3, we have

 1 2 1 2+ + 〉 = 〈 〉 + 〈 +cos ( ) cos ( )ω θ ω θt t  

But 〈 + 〉 = 〈 + 〉 =cos ( ) . cos ( ) /2 0 12ω θ ω θt tTherefore, 22.  

 6.5. Let u(t) = Vdc + Vac cos (w t + q). Show that V V Veff dc ac
2 2 1

2
2= + .

 

V
T

V V t dt

T
V V

T

eff dc ac

dc a

2 2

0

2 2

1

1

= + +

= +

∫ [ cos( ]

[

ω θ

cc dc ac

dc

cos ( ) cos( )]2

0

2 1
2

2ω θ ω θt V V t dt

V

T

+ + +

= +

∫
VV 2

ac

 

Alternatively, we can write

 

V t V V t

V V

eff dc ac

dc

2 2 2

2

= 〈 〉 = 〈 + + 〉

= 〈 +

υ ω θ( ) [ cos ( )]

22 2

2 2

2ac dc ac

dc ac

cos ( ) cos ( )ω θ ω θt V V t

V V

+ + + 〉

= + 〈ccos ( ) cos ( )2

2 1
2

2

2ω θ ω θt V V t

V V

+ 〉 + 〈 + 〉

= +

dc ac

dc ac
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6.6. Let f1 and f2 be two different harmonics of f0. Show that the effective value of u (t) = V1

cos ( ) cos ( ) (2 21 1 2 2 2
1
2 1

2
2
2π θ π θf t V f t V V+ + + +is ))) .

υ π θ π θ2
1
2 2

1 1 2
2 2

2 22 2

2

( ) cos ( ) cos ( )t V f t V f t= + + +

+ VVV V f t f t

V

1 2 1 1 2 2

2 2

2 2cos ( ) cos ( )

(

π θ π θ

υ

+ +

= 〈eff ttt V f t V f t) cos ( ) cos ( )〉 = 〈 + 〉 + 〈 +1
2 2

1 1 2
2 2

2 22 2π θ π θ 〉〉〉

+ 〈 + + 〉2 2 21 2 1 1 2 2V V f t f tcos ( ) cos ( )π θ π θ

But 〈 + 〉 = 〈 + 〉 =cos ( ) cos ( ) /2
1 1

2
2 22 2 1 2π θ π θf t f t  (see Problem 6.4) and

〈 + + 〉 = 〈 +cos( ) cos( ) cos[ (2 2
1
2 21 1 2 2 1π θ π θ πf t f t f f222 1 2

1 2 1 2

1
2 2

) ( )]

cos[ ( ) ( )

t

f f t

+ + 〉

+ 〈 − + −

θ θ

π θ θ ]]]〉 = 0

Therefore, V V V V V Veff effand2 1
2 1

2
2
2 1

2 1
2

2
2= + = +( ) ( ) .

6.7. The signal u (t) in Fig. 6-16 is sinusoidal. Find its period and frequency. Express it in the form u(t) =
A + B cos (w t + q) and find its average and rms values.

Fig. 6-16

The time between two positive peaks, T = 20 s, is one period corresponding to a frequency f = 0.05 Hz. 
The signal is a cosine function with amplitude B added to a constant value A.

B V V A V B V B= =1
2

1
2 8 4 6 2( ) ( )max min max min− = + = − = + =

The cosine is shifted by 2 s to the right, which corresponds to a phase lag of (2/20)360° = 36°. Therefore, 
the signal is expressed by

υ π
( ) cost t= + −



2 6 10 36º  
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The average and effective values are found from A and B:

 V A V A B Vavg eff
2

eff/ or= = = + = + = = =2 2 2 6 2 22 222 2 2 2, / 44 69.  

 6.8. Let u1 = cos 200pt and u2 = cos 202pt. Show that u = u1 + u2 is periodic. Find its period, Vmax, and the 
times when u attains its maximum value.

The periods of u1 and u2 are T1 = 1/100 s and T2 = 1/101 s, respectively. The period of u = u1 + u2 is the 
smallest common multiple of T1 and T2, which is T = 100T1 = 101T2 = 1 s. The maximum of u occurs at t = 
k, with k an integer, when u1 and u2 are at their maxima, and Vmax = 2.

 6.9. Convert u(t) = 3 cos 100t + 4 sin 100t to A sin(100t + q).

 

Note that and 4 /3 3 4 3 5 36 87 3 4 42 2 2 2/ / sin . /+ = = ° + = 55 36 87= °cos . .

(

Then,

υ t)) cos sin ( . cos . sin= + = +3 100 4 100 5 0 6 100 0 8 100t t t tt)

(sin . co= 5 36 87º ss cos . sin ) sin ( . )100 36 87 100 5 100 36 87t t t+ = +º º

 

6.10. Find the average and effective value of u2(t) in Fig. 6-1(b) for V1 = 2, V2 = 1, T = 4T1.

 

V
V T V T T

T
V V

V

2
1 1 2 1 1 2

2
2

3
4 0 25,

,

( )
.avg

eff

=
− −

=
−

= −

=
VV T V T T

T
V1

2
1 2

2
1

2

7
4 7 2 1 32

+ −
= = =

( )
/ .,or eff

 

6.11. Find V3,avg and V3,eff in Fig. 6-1(c) for T = 100T1.
From Fig. 6-1(c), V3,avg = 0. To find V3,eff, observe that the integral of υ 3

2 over one period is V T0
2

1 2/ . The 
average of υ3

2
1100over T T=  is therefore

 〈 〉 = = =υ3
2

3
2

0
2

1 1 0
2

3200 200( ) , ,t V V T T V Veff ef/ / or ff = =V V0 02 20 0 0707/ .  

The effective value of the tone burst is reduced by the factor T T/ 1 10= .

6.12. Referring to Fig. 6-1(d), let T = 6 and let the areas under the positive and negative sections of u4(t) be 
+5 and −3, respectively. Find the average and effective values of u4(t).

 V4 5 3 6 1 3, ( )avg / /= − =  

The effective value cannot be determined from the given data.

6.13. Find the average and effective value of the half-rectified cosine wave u1(t) shown in Fig. 6-17(a).

 

V
V
T

t
T

dt
V T

T
t

T
m

T

T

m
1

4

4

2
2

2
,

/

/
cos sinavg = = 

−∫ π
π

π





=

=

−

−∫
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2
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π

π
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= +

−∫
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−
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from which V1,eff = Vm/2.

6.14. Find the average and effective value of the full-rectified cosine wave u2(t) = Vm|cos 2pt/T | shown in 
Fig. 6-17(b).
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Use the results of Problems 6.3 and 6.13 to find V2,avg. Thus,

υ υ υ2 1 1 2 1 12( ) ( ) ( ) , , ,t t t T V V V= + − = +/ and avg avg avggg avg= =2 21V Vm, /π

Use the results of Problems 6.5 and 6.13 to find V2,eff. And so,

V V V V V Vm2
2

1
2

1
2

1
2 2

22 2, , , , ,/eff eff eff eff or= + = = eeeff = Vm / 2

The rms value of u2(t) can also be derived directly. Because of the squaring operation, a full-rectified 
cosine function has the same rms value as the cosine function itself, which is Vm / 2 .

6.15. A 100-mH inductor in series with 20-Ω resistor [Fig. 6-18(a)] carries a current i as shown in   
Fig. 6-18(b). Find and plot the voltages across R, L, and RL.

Fig. 6-17

Fig. 6-18
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Since the passive elements are in series, uRL = uR + uL and so

 υRL t= − −
200

2 10 8005

V

( ) (VV

for

)
0







<t 00
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>
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The graphs of uL and uRL are given in Fig. 6-18(c) and (d), respectively. The plot of the resistor voltage 
uR has the same shape as that of the current [see Fig. 6-18(b)], except for scaling by a factor of 20.

6.16. A radar signal s(t), with amplitude Vm = 100 V, consists of repeated tone bursts. Each tone burst lasts 
Tb = 50 µs. The bursts are repeated every Ts = 10 ms. Find Seff and the average power in s(t).

Let V Vmeff = 2  be the effective value of the sinusoid within a burst. The energy contained in a single burst 
is W T Vb b= eff

2 . The energy contained in one period of s(t) is W T Ss s= eff
2 . Since Wb = Ws = W, we obtain

 T V T S S T T V S T Tb s b s b seff eff eff eff eff/ /2 2 2 2= = =( ) VVeff  (40)

Substituting the values of Tb, Ts, and Veff into (40), we obtain

 Seff / / V= × × =− −( ) ( ) ( )50 10 10 10 100 2 56 3  

Then W = 10−2 (25) = 0.25 J. The average power in s(t) is

 P W T T S T Ss s s= = = =/ /eff eff W2 2 25  

The average power of s(t) is represented by Seff
2  and its peak power by Veff

2 . The ratio of peak power to 
average power is T Ts b/ . In this example the average power and the peak power are 25 W and 5000 W, 
respectively.

6.17. An appliance uses Veff = 120 V at 60 Hz and draws Ieff = 10 A with a phase lag of 60°. Express u, i, 
and p = ui as functions of time and show that power is periodic with a dc value. Find the frequency, 
and the average, maximum, and minimum values of p.

           
υ ω ω

υ ω

= = −

= =

120 2 10 2 60

2400

cos cos ( )

cos co

t i t

p i t

º

ss ( ) cos cos ( )ω ωt t− = + − = +60 1200 60 1200 2 60 600º º º 11200 2 60cos ( )ωt − º

The power function is periodic. The frequency is f = 2 × 60 = 120 Hz. Also, Pavg = 600 W, pmax = 600 + 1200 = 
1800 W and pmin = 600 − 1200 = −600 W.

6.18. A narrow pulse is of 1-A amplitude and 1-µs duration enters a 1-µF capacitor at t = 0, as shown in 
Fig. 6-19. The capacitor is initially uncharged. Find the voltage across the capacitor.

Fig. 6-19
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The voltage across the capacitor is

V
C

i dt

t

t tC

t
= =

<
< <

− ∞∫1
0 0

10 0 16

for

V for s( ) µ (((charging period)
V for s1 1t >





 µ

If the same amount of charge were deposited on the capacitor in zero time, then we would have u = u(t) (V) 
and i(t) = 10−6d(t) (A).

6.19. The narrow pulse is of Problem 6.18 enters a parallel combination of a 1-µF capacitor and a 1-MΩ
resistor (Fig. 6-20). Assume the pulse ends at t = 0 and that the capacitor is initially uncharged. Find 
the voltage across the parallel RC combination.

Let u designate the voltage across the parallel RC combination. The current in R is iR = u/R = 10−6u. 

Fig. 6-20

During the pulse, iR remains negligible because u cannot exceed 1 V and iR remains under 1 µA. Therefore, 
it is reasonable to assume that during the pulse, iC = 1 A and consequently u(0+) = 1 V. For t > 0, from 
application of KVL around the RC loop we get

υ υ υ+ = =+d
dt

0 0 1, ( ) V (41)

The only solution to (41) is u = e−t for t > 0 or u(t) = e−t u(t) for all t. For all practical purposes, is can be 
considered an impulse of size 10−6 A, and then u = e−tu(t) (V) is called the response of the RC combination 
to the current impulse.

6.20. Plot the function u(t) which varies exponentially from 5 V at t = 0 to 12 V at t = ∞ with a time constant 
of 2 s. Write the equation for u(t).

Identify the initial point A (t = 0 and u = 5) and the asymptote u = 12 in Fig. 6-21. The tangent at A 
intersects the asymptote at t = 2, which is point B on the line. Draw the tangent line AB. Identify point C 
belonging to the curve at t = 2. For a more accurate plot, identify point D at t = 4. Draw the curve as shown. 
The equation is u(t) = Ae−t/2 + B. From the initial and final conditions, we get u(0) = A + B = 5 and u(∞) =
B = 12 or A = −7, and u(t) = −7e−t/2 + 12.

Fig. 6-21
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6.21. The voltage u = V0e
−a|t| for a > 0 is connected across a parallel combination of a resistor and a capacitor 

as shown in Fig. 6-22(a). (a) Find currents iC, iR, and i = iC + iR. (b) Compute and graph u, iC, iR, and 
i for V0 = 10 V, C = 1 µF, R = 1 MΩ, and a = 1.

Fig. 6-22
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(a) See (a) in Table 6-3 for the required currents.

(b)  See (b) in Table 6-3. Figures 6-22(b)–(e) show the plots of u, iC, i
r
, and i, respectively, for the given 

data. During t > 0, i = 0, and the voltage source does not supply any current to the RC combination. 
The resistor current needed to sustain the exponential voltage across it is supplied by the capacitor.

SUPPLEMENTARy PRobLEMS

6.22. Let u1 = 8 sin 100pt and u2 = 6 sin 99pt. Show that u = u1 + u2 is periodic. Find the period, and the maximum, 
average, and effective values of u.  Ans. T = 2, Vmax = 14, Vavg = 0, Veff = 5 2

6.23. Find period, frequency, phase angle in degrees, and maximum, minimum, average, and effective values of u(t) =
2 + 6 cos (10pt + p/6).

Ans. T = 0.2 s, f = 5 Hz, phase = 30°, Vmax = 8, Vmin = −4, Vavg = 2, Veff = 22  

6.24. Reduce u(t) = 2 cos (w t + 30°) + 3 cos w t to u(t) = A sin (w t + q).  Ans. A = 4.84, q = 102°

6.25. Find V2,avg and V2,eff in the graph of Fig. 6-1(b) for V1 = V2 = 3, and T = 4 T1/3.

Ans. V2,avg = 1.5, V2,eff = 3

6.26. Repeat Problem 6.25 for V1 = 0, V2 = 4, and T = 2T1.  Ans. V2,avg = −2, V2 eff, = 2 2

6.27. Find V3,avg and V3,eff in the graph of Fig. 6-1(c) for V0 = 2 and T = 200T1.

Ans. V3,avg = 0, V3,eff = 0.1

6.28. The waveform in Fig. 6-23 is sinusoidal. Express it in the form u = A + B sin (w t + q) and find its mean and rms 
values.  Ans. u(t) = 1 + 6 sin (pt/12 + 120°), Vavg = 1, Veff = 19  

Table 6-3

Time u iC = C du/dt iR = u/R i = iC + iR

(a)
t < 0

t > 0

u = V0e
at

u = V0e
−at

iC = CV0aeat

iC = −CV0ae−at
iR = (V0/R)eat

iR = (V0/R)e−at
i = u0(Ca + 1/R)eat

i = V0(−Ca + 1/R)e−at

(b)
t < 0

t > 0

u = 10et

u = 10e−t
iC = 10−5et

iC = −10−5e−t
iR = 10−5et

iR = 10−5e−t
i = 2(10−5et)

i = 0

Fig. 6-23
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6.29. Find the average and effective values of u1(t) in Fig. 6-24(a) and u2(t) in Fig. 6-24(b).

 Ans. V V V V1 1 2 1

1
3

17
3

1
2

13
2, , , ,, ; ,avg eff avg eff= − = = − =  

Fig. 6-24

6.30. The current through a series RL circuit with R = 5 Ω and L = 10 H is given in Fig. 6-10(a) where T = 1 s. Find 
the voltage across RL.

 Ans. υ = +






<
<

0
10 5
0

0
0

for
fort

t
tt

t
<

>
1

1for
 

6.31. Find the capacitor current in Problem 6.19 (Fig. 6-20) for all t.  Ans. iC = 10−6 [d(t) − e−tu(t)]

6.32. The voltage u across a 1-H inductor consists of one cycle of a sinusoidal waveform as shown in Fig. 6-25(a). 
(a) Write the equation for u(t). (b) Find and plot the current through the inductor. (c) Find the amount of and time 
for the maximum energy in the inductor.

 Ans. ( ) [ ( ) ( )] sin ( )

( ) ( )[ (

a u t u t T
t

T

b i T u t

υ π

π

= − −

=

2

2

V

/ )) ( )] cos ( ). . (− − −



u t T

t
T

b1
2

6 25
π

A See Fig - )).

( ) ( )maxc W T t T= =1

2
22

2

π
J at /

 

Fig. 6-25
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6.33. Write the expression for u(t) which decays exponentially from 7 at t = 0 to 3 at t = ∞ with a time constant of 
200 ms.  Ans. u(t) = 3 + 4e−5t for t > 0

6.34. Write the expression for u(t) which grows exponentially with a time constant of 0.8 s from zero at t = −∞ to 9 at 
t = 0.  Ans. u (t) = 9e5t/4 for t < 0

6.35. Express the current of Fig. 6-6 in terms of step functions.

Ans. i t u t u t k u k

k

( ) ( ) [ ( ) ( )]= + − − − +
=

∞

∑4 6 5 1 5 2

1

6.36. In Fig. 6-10(a) let T = 1 s and call the waveform s1(t). Express s1(t) and its first two derivatives ds1/dt and 
d s dt2

1
2/ , using step and impulse functions.

Ans. s t u t u t t u t ds dt u t u t1 11 1( ) [ ( ) ( )] ( ), / ( ) (= − − + − = − −−− = − −1 12
1

2), / ( ) ( )d s dt t tδ δ  

6.37. Find an impulse voltage which creates a 1-A current jump at t = 0 when applied across a 10-mH inductor.

Ans. u (t) = 10−2d (t) (V)

6.38. (a) Given u1 = cos t, u2 = cos (t + 30°) and u = u1 + u2, write u in the form of a single cosine function u =
A cos (t + q). (b) Find effective values of u1, u2, and u. Discuss why V V Veff eff eff

2
1
2

2
2> +( ), , .

Ans. (a) u = 1.93 cos (t + 15°); (b) V1,eff = V2,eff = 0.707, Veff = 1.366. Veff is found from the following derivation

Veff
2 2

1 2
2

1
2

2
2

1 2 1
22= 〈 〉 = 〈 + 〉 = 〈 + + 〉 = 〈 〉υ υ υ υ υ υ υ υ( ) +++ 〈 〉 + 〈 〉υ υ υ2

2
1 22  

Since u1 and u2 have the same frequency and are 30° out of phase, we get 〈 〉 = ° =V V1 2
1
2 30 3 4cos / , which 

is positive. Therefore, V V Veff 1,eff 2,eff
2 2 2> +( ).

6.39. (a) Show that υ1 2= +cos cost t  is not periodic. (b) Replace 2  by 1.4 and then show that u2 = cos t +   
cos 1.4t is periodic and find its period T2. (c) Replace 2  by 1.41 and find the period T3 of u3 = cos t + cos 1.41t. 
(d) Replace 2  by 1.4142 and find the period T4 of u4 = cos t + cos 1.4142t.

Ans. (a) 2  is not a rational number. Therefore, u1 is not periodic. (b) T2 = 10p s. (c) T3 = 200p s.   
(d) T4 = 10 000p s.

6.40. A random signal s(t) with an rms value of 5 V has a dc value of 2 V. Find the rms value of s0(t) = s(t) − 2, that is,

when the dc component is removed.  Ans. S0
25 4 21 4 58,eff V= − = = .  
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First-Order Circuits

7.1 Introduction
Whenever a circuit is switched from one condition to another, either by a change in the applied source or a 
change in the circuit elements, there is a transitional period during which the branch currents and element 
voltages change from their former values to new ones. This period is called the transient. After the transient 
has passed, the circuit is said to be in the steady state. Now, the linear differential equation that describes the 
circuit will have two parts to its solution, the complementary function (or the homogeneous solution) and the 
particular solution. The complementary function corresponds to the transient, and the particular solution to 
the steady state.

In this chapter we will find the response of first-order circuits, given various initial conditions and sources. 
We will then develop an intuitive approach which can lead us to the same response without going through the 
formal solution of differential equations. We will also present and solve important issues relating to natural, 
forced, step, and impulse responses, along with the dc steady state and the switching behavior of inductors 
and capacitors.

7.2 Capacitor Discharge in a Resistor
Assume a capacitor has a voltage difference V0 between its plates. When a conducting path R is provided, 
the stored charge travels through the resistor from one plate to the other, establishing a current i. Thus, the 
capacitor voltage u is gradually reduced to zero, at which time the current also becomes zero. In the RC 
circuit of Fig. 7-1(a), Ri = u and i = −C du/dt. Eliminating i in both equations gives

 d
dt RC
υ υ+ =1

0 	 (1)

The only function whose linear combination with its derivative can be zero is an exponential function of 
the form Aest. Replacing u by Aest and du/dt by sAest in (1), we get

 sAe
RC

Ae A s
RC

est st st+ = +



 =1 1

0 	

from which s
RC

s
RC

+ = = −1
0

1
or  (2)

Given u(0) = A = V0, u(t) and i(t) are found to be

 υ( ) ,/t V e tt RC= >−
0 0 	 (3)

 i t C
d
dt

V
R

e tt RC( ) ,= − = >−υ 0 0/ 	 (4)

The voltage and current of the capacitor are exponentials with initial values of V0 and V0/R, respectively. 
As time increases, voltage and current decrease to zero with a time constant of t = RC. See Figs. 7-1(b) 
and (c).

CHAPTER  7
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EXAMPLE 7.1 The voltage across a 1-µF capacitor is 10 V for t < 0. At t = 0, a 1-MΩ resistor is connected across the 
capacitor terminals. Find the time constant t, the voltage u(t), and its value at t = 5 s.

τ υ υ= = = = > =− −RC t e t et10 10 1 10 0 5 106 6( ) ( ) ( ), ( )s s V −−− =5 0 067. V 	

Fig. 7-1

EXAMPLE 7.2 A 5-µF capacitor with an initial voltage of 4 V is connected to a parallel combination of a 3-kΩ and a 
6-kΩ resistor (Fig. 7-2). Find the current i in the 6-kΩ resistor.

Fig. 7-2

The equivalent resistance of the two parallel resistors is R = 2 kΩ. The time constant of the circuit is RC = 10−2 s. The 
voltage and current in the 6-kΩ resistor are, respectively,

υ υ= = =− −4 6000 0 67100 100e i et t( ) . (V and / mA) 	
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7.3 Establishing a DC Voltage across a Capacitor
Connect an initially uncharged capacitor to a battery with voltage V0 through a resistor at t = 0. The circuit 
is shown in Fig. 7-3(a).

Fig. 7-3

For t > 0, KVL around the loop gives Ri + u = V0 which, after substituting i = C(du/dt), becomes

 
d
dt RC RC

V t
υ υ+ = >1 1

00 	 (5a)

with the initial condition

 υ υ(0 ) = (0 ) = 0+ − 	 (5b)

The solution should satisfy both (5a) and (5b). The particular solution (or forced response) up(t) = V0 
satisfies (5a) but not (5b). The homogeneous solution (or natural response) uh(t) = Ae−t/RC can be added and 
its magnitude A can be adjusted so that the total solution (6a) satisfies both (5a) and (5b).

 υ υ υ( ) = ( ) + ( ) = +0t t t V Aep h
t RC− / 	 (6a)

From the initial condition, u (0+) = V0 + A = 0 or A = −V0. Thus the total solution is

 υ( ) = (1 ) ( )0
/t V e u tt RC− − 	  [see Fig. 7-3(b)] (6b)

 i t
V
R

e u tt RC( ) = ( )0 /− 	 [see Fig. 7-3(c)] (6c)
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EXAMPLE 7.3 A 4-µF capacitor with an initial voltage of u(0−) = 2 V is connected to a 12-V battery through a resistor 
R = 5 kΩ at t = 0. Find the voltage across and current through the capacitor for t > 0.

The time constant of the circuit is t = RC = 0.02 s. Following the analysis of Example 7.2, we get

υ( ) = 12 +t Ae t−50 	

From the initial conditions, u (0−) = u (0+) = 12 + A = 2 or A = −10. Thus, for t > 0,

υ

υ

( ) = 12 10 (V)

= (12 )/5000 = 2

t e

i t

t−

−

−50

( ) ××× − − −10 = 2 (mA)3 50 50e A et t
	

The current may also be computed from i = C(du/dt). And so the voltage increases exponentially from an initial value 
of 2 V to a final value of 12 V, with a time constant of 20 ms, as shown in Fig. 7-4(a), while the current decreases from 
2 mA to zero as shown in Fig. 7-4(b).

Fig. 7-4

7.4 The Source-Free RL Circuit
In the RL circuit of Fig. 7-5, assume that at t = 0 the current is I0. For t > 0, i should satisfy Ri + L(di/dt) = 0, 
the solution of which is i = Aest. By substitution we find A and s:

A R Ls e R Ls s R Lst( + ) = 0, + = 0, = /− 	

Fig. 7-5
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The initial condition i(0) = A = I0. Then

 i t I e tRt L( ) = for > 0/
0

− 	 (7)

The time constant of the circuit is L/R.

EXAMPLE 7.4 The 12-V battery in Fig. 7-6(a) is disconnected at t = 0. Find the inductor current and voltage u for 
all times.

Fig. 7-6

Assume the switch S has been closed for a long time. The inductor current is then constant and its voltage is zero. 
The circuit at t = 0− is shown in Fig. 7-6(b) with i(0−) = 12/4 = 3 A. After the battery is disconnected, at t = 0, the circuit 
will be as shown in Fig. 7-6(c). For t > 0, the current decreases exponentially from 3 A to zero. The time constant of the 
circuit is L/R = (1/100)s. For t > 0, the inductor current and voltage are, respectively,

 
i t e

t L di dt e

t( )

( )

= 3 (A)

( ) = / =

−

−−

100

10030υ tt (V)
	

i(t) and u(t) are plotted in Figs. 7-6(d) and (e), respectively.
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7.5 Establishing a DC Current in an Inductor
If a dc source is suddenly applied to a series RL circuit initially at rest, as in Fig. 7-7(a), the current grows 
exponentially from zero to a constant value with a time constant of L/R. The preceding result is the solution 
of the first-order differential equation (8) which is obtained by applying KVL around the loop. The solution 
follows.

Fig. 7-7

Ri
dt

V t iL
di

+ for > 0, (0 ) = 00
+= 	 (8)

Since i = ih(t) + ip(t), where ih(t) = Ae−Rt/L and ip(t) = V0/R, we have

i Ae V RRt L= + /− /
0

	

The coefficient A is found from i(0+) = A + V0/R = 0 or A = −V0/R. The current in the inductor and the 
voltage across it are given by (9) and (10) and plotted in Fig. 7-7(b) and (c), respectively.

i t V R e tRt L( ) = / for > 00 1( )/− − 	 (9)

υ( ) = = for > 0t L
di
dt

V e tRt L
0

− / 	 (10)

7.6 The Exponential Function Revisited
The exponential decay function may be written in the form e−t/t, where t is the time constant (in s). For the RC
circuit of Section 7.2, t  = RC; while for the RL circuit of Section 7.4, t  = L /R. The general decay function

f t Ae tt( ) = ( > 0)− /τ 	

is plotted in Fig. 7-8, with time measured in multiples of t. It is seen that

f Ae A( ) = = 0.368τ −1 	
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that is, at t = t the function is 36.8 percent of the initial value. It may also be said that the function has under-
gone 63.2 percent of the change from f (0+) to f (∞). At t = 5t, the function has the value 0.0067A, which is 
less than 1 percent of the initial value. From a practical standpoint, the transient is often regarded as over 
after t = 5t.

The tangent to the exponential curve at t = 0+ can be used to estimate the time constant. In fact, since

 slope = (0 ) =+′ −f
A
τ 	

the tangent line must cut the horizontal axis at t = t (see Fig. 7-9). More generally, the tangent at t = t0 
has horizontal intercept t0 + t. Thus, if the two values f( t0) and ′f t( )0 	are known, the entire curve can be 
constructed.

Fig. 7-8

Fig. 7-9

At times a transient is only partially displayed (on chart paper or on the face of an oscilloscope), and the 
simultaneous values of function and slope needed in the preceding method are not available. In that case, any 
pair of data points, perhaps read from instruments, may be used to find the equation of the transient. Thus, 
referring to Fig. 7-10,

 f Ae f Ae
t t

1 2
1 2= =

− −/ /τ τ 	

which may be solved simultaneously to give

 τ =
−
−

t t
f f
2 1

1 2ln ln 	

and then A in terms of t and either f1 or f2.
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7.7 Complex First-Order RL and RC Circuits
A more complex circuit containing resistors, sources, and a single energy storage element may be converted 
to a Thévenin or Norton equivalent as seen from the two terminals of the inductor or capacitor. This reduces 
the complex circuit to a simple RC or RL circuit which may be solved according to the methods described 
in the previous sections.

If a source in the circuit is suddenly switched to a dc value, the resulting currents and voltages are expo-
nentials, sharing the same time constant with possibly different initial and final values. The time constant of 
the circuit is either RC or L/R, where R is the resistance in the Thévenin equivalent of the circuit as seen by 
the capacitor or inductor.

EXAMPLE 7.5 Find i, u, and i1 in Fig. 7-11(a).

Fig. 7-10

Fig. 7-11

The Thévenin equivalent of the circuit to the left of the inductor is shown in Fig. 7-11(b) with RTh = 4 Ω and uTh =
3u(t) (V). The time constant of the circuit is t = L/RTh = 5(10−3)/4 s = 1.25 ms. The initial value of the inductor current is 
zero. Its final value is

i
R

( ) = =
3 V
4

Th = 0.75 A
Th

∞
υ

Ω
	

Therefore,

i e u t L
di
dt

e u tt t= − = =− −0 75 1 3800 800. ( ) ( ) ( ) ( ) (A υ VV A) ( ) ( ) ( )i e u tt
1

8009
12

1
4 3= − = − −υ 	

u can also be derived directly from its initial value u(0+) = (9 × 6)/(12 + 6) = 3 V, its final value u(∞) = 0 and the circuit’s 
time constant.
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EXAMPLE 7.6 In Fig. 7-12 the 9-µF capacitor is connected to the circuit at t = 0. At this time, capacitor voltage is 
u0 = 17 V. Find uA, uB, uC, iAB, iAC, and iBC for t > 0.

Fig. 7-12

Apply KCL at nodes A, B, and C for t > 0 to find voltages in term of i:

Node A: 
1
2

1
3

1
6

1
2

1
6+ +



 − − − −υ υ υ υ υ υA B C A B C= 0 or 6 3 = 0 	 (11)

Node B: − + +



 − − − + −1

2
1
2

1
4 10

1
4

3υ υ υ υ υ υA B C A Bi = 0 or 2 3 CC i= (4 10 )3× 	 (12)

Node C: − − + + +



 − − +1

6
1
4

1
4

1
6

1
12 6υ υ υ υ υ υA B C A B= 0 or 2 3 CC = 0 	 (13)

Solving (11), (12), and (13) simultaneously,

 υ υ υA B Ci i i=
7
3 (10 ) =

34
9 (10 ) =

8
3 (10 )3 3 3 	

The circuit as seen by the capacitor is equivalent to a resistor R = uB /i = 34/9 kΩ. The capacitor discharges its initial

voltage V0 in an exponential form with a time constant τ = = × =−RC 34
9 0 0 0 0( )( ) .1 9 1 34 s3 6 . For t > 0, the voltages 

and currents are

 

υ

υ

τ
B

t t

B

V e e

i C
d
dt

= =

= − = × ×

− −
0

1000 3417

9 17 10

/ ( )

(

V

−− − − −= ×3 1000 34 3 1000 3434 4 5 10/ A) ( . ) ( )/ /e et t

Aυ == = = =−7
3 10 10 5

8
3 10 123 1000 34 3( ) . ( ) ( )/i e i et

CV υ −−1000 34t / ( )V

	

 υ υ υ υAB A B
t

AB ABe i= − = − = = −−6 5 2000 31000 34. ( ) (/ V / .. ) ( )

.

/25 10

1 5

3 1000 34

1000

×

= − = −

− −

−

e

e

t

AC A C

A

υ υ υ tt
AC AC

ti e/ /( ) ( . )34 3 1000 346000 0 25 10V /= = − × − −υ (( )

( ) (/

A

V /υ υ υ υBC B C
t

BC BCe i= − = = =−5 4000 11000 34 .. ) ( )/25 10 3 1000 34× − −e t A

	

All voltages and currents are exponential functions and have the same time constant. For simplicity, it is customary to 
use units of V, mA, kΩ, and ms for voltage, current, resistance, and time, respectively, so that the multipliers 1000 and 
10−3 can be omitted from the equations as summarized below.

 

υ υA
t

AB
t

ABe e i e= = − = −− −10 5 6 5 3 2534 34. ( ) . ( ) ./ /V V −−

− −= = −

t

B
t

AC
t

Ae e i

/

/ /

( )

( ) . ( )

34

34 3417 1 5

mA

V Vυ υ CC
t

C
t

BC
t

e

e e

= −

= =

−

− −

0 25

12 5

34

34 34

. ( )

( )

/

/ /

mA

Vυ υ (( ) . ( )

. ( )

/

/

V mA

mA

i e

i e

BC
t

t

=

=

−

−

1 25

4 5

34

34
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7.8 DC Steady State in Inductors and Capacitors
As noted in Section 7.1, the natural exponential component of the response of RL and RC circuits to step 
inputs diminishes as time passes. At t = ∞, the circuit reaches steady state and the response is made up of the 
forced dc component only.

Theoretically, it should take an infinite amount of time for RL or RC circuits to reach dc steady state. 
However, at t = 5t, the transient component is reduced to 0.67 percent of its initial value. After passage 
of 10 time constants, the transient component equals 0.0045 percent of its initial value, which is less 
than 5 in 100,000, at which time for all practical purposes we may assume the steady state has been 
reached.

At the dc steady state of RLC circuits, assuming no sustained oscillations exist in the circuit, all currents 
and voltages in the circuit are constants. When the voltage across a capacitor is constant, the current through 
it is zero. All capacitors, therefore, appear as open circuits in the dc steady state. Similarly, when the current 
through an inductor is constant, the voltage across it is zero. All inductors therefore appear as short circuits 
in the dc steady state. The circuit will be reduced to a dc-resistive case from which voltages across capaci-
tors and currents through inductors can be easily found, as all the currents and voltages are constants and the 
analysis involves no differential equations.

The dc steady-state behavior presented in the preceding paragraph is valid for circuits containing any 
number of inductors, capacitors, and dc sources.

EXAMPLE 7.7 Find the steady-state values of iL, uC1, and uC2 in the circuit of Fig. 7-13(a).
When the steady state is reached, the circuit will be as shown in Fig. 7-13(b). The inductor current and capacitor volt-

ages are obtained by applying KCL at nodes A and B in Fig. 7-13(b). Thus,

Fig. 7-13
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Node A: 
υ υ υ υ υ

υ υA A B A B
A B3 6

18
6+

−
+

+ −
= − =3 or 2 0 	

Node B: 
υ υ υ υ υ

υ υB B A B A
A B12 6

18
6 5+

−
+

− −
= − + =0 or 4 36 	

Solving for uA and uB we find uA = 6 V and uB = 12 V. By inspection of Fig. 7-13(b), we have iL = 2 mA, uC1 = 8 V, and 
uC2 = 6 V.

EXAMPLE 7.8 Find i and u in the circuit of Fig. 7-14.

Fig. 7-14

At t = 0, the voltage across the capacitor is zero. Its final value is obtained from dc analysis to be −2 V. The time constant 
of the circuit of Fig. 7-14, as derived in Example 7.6, is 0.034 s. Therefore,

 

υ

υ

= − −

= = − ×

−

−

2 1

9 10

1000 34

6

( ) ( ) ( )

( )

/e u t

i C
d
dt

t V

(( )
( ) ( ) ./ /2 10

0 53
3

1000 34 1000 3× = −− −
34 Ae u t et t 44 u t( ) ( )mA

	

7.9 Transitions at Switching Time
A sudden switching of a source or a jump in its magnitude can translate into sudden jumps in voltages or 
currents in a circuit. A jump in the capacitor voltage requires an impulse current. Similarly, a jump in the 
inductor current requires an impulse voltage. If no such impulses can be present, the capacitor voltages and 
the inductor currents remain continuous. Therefore, the post-switching conditions of L and C can be derived 
from their pre-switching conditions.

EXAMPLE 7.9  In Fig. 7-15(a) the switch S is closed at t = 0. Find i and u for all times.
At t = 0−, the circuit is at steady state and the inductor functions as a short with u(0−) = 0 [see Fig. 7-15(b)]. The inductor 

current is then easily found to be i(0−) = 2 A. After S is closed at t = 0, the circuit will be as shown in Fig. 7-15(c). For t > 0, 
the current is exponential with a time constant of t = L/R = 1/30 s, an initial value of i(0+) = i(0−) = 2 A, and a final value 
of 12/3 = 4 A. The inductor’s voltage and current are

For t < 0,  i = 2 A and u = 0

For t > 0,  i = 4 − 2e−30t (A) and υ = = −L
di
dt

e t6 (V)30 	
and plotted in Figs. 7-15(d) and (e).
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EXAMPLE 7.10 Find i and u for t = 0− and t = 0+ in the circuit of Fig. 7-16, given R = 5 Ω, L = 10 mH, and

υ ωs

t
t t

= >{5
5 0

V for < 0
V forsin ( )

	

Fig. 7-15

Fig. 7-16

At t = 0−, i(0−) = 5/5 = 1 A and u(0−) = 0. During the transition time t = 0− to t = 0+, the inductor current is continu-
ous as there exists no voltage impulse to produce a discontinuity in it. Therefore, i(0+) = i(0−) = 1 A. To find u(0+), write 
KVL at t = 0+ : us = RI + u and note that us(0

+) = 0. Therefore, u(0+) = us(0
+) − ri(0+) = −5 V.
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7.10 Response of First-Order Circuits to a Pulse
In this section we will derive the response of a first-order circuit to a rectangular pulse. The derivation applies 
to RC or RL circuits where the input can be a current or a voltage. As an example, we use the series RC circuit 
in Fig. 7-17(a) with the voltage source delivering a pulse of duration T and height V0. For t < 0, u and i are 
zero. For the duration of the pulse, we use (6b) and (6c) in Section 7.3:

 υ = − < <−V e t Tt RC
0 1 0( ) ( )/ 	 (14a)

 i
V
R

e t Tt RC= < <−0 0/ ( ) 	 (14b)

When the pulse ceases, the circuit is source-free with the capacitor at an initial voltage VT .

 V V eT
T RC= − −

0 1( )/ 	 (14c)

Using (3) and (4) in Section 7.2, and taking into account the time shift T, we have

 υ = >− −V e t TT
t T RC( ) ( )/ 	 (15a)

 i V R e t TT
t T RC= − >− −( ) ( )( )/ / 	 (15b)

The capacitor voltage and current are plotted in Figs. 7-17(b) and (c).

Fig. 7-17

EXAMPLE 7.11 In the circuit of Fig. 7-17(a), let R = 1 kΩ and C = 1 µF and let the voltage source be a pulse of height 
V0 and duration T. Find i and u for (a) V0 = 1 V and T = 1 ms, (b) V0 = 10 V and T = 0.1 ms, and (c) V0 = 100 V and 
T = 0.01 ms.

We use (14) and (15) with the time constant of t  = RC  = 1 ms. For convenience, time will be expressed in ms, 
voltages in V, and currents in mA. We also use the approximation e−t ≈ 1 − t when t  1.

(a) V0 = 1 V, T = 1 ms.

   For 0 < t < 1 ms,

 υ = − = = − =− − −( ), , ( ) .1 1 0 6321e i e V et t
Tand V 	
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   For t > 1 ms,

υ = = = −− − − −0 632 1 72 1 721. . , .( )e e i et t tand 	

(b) V0 = 10 V, T = 0.1 ms.

 For 0 < t < 0.1 ms,

υ = − = = − =− − −10 1 10 10 1 0 950 1( ), ( ) ..e i e V et t
T, and V 	

   For t > 0.1 ms,

υ = = = −− − − −0 95 1 05 1 050 1. . , .( . )e e i et t tand 	

(c) V0 = 100 V, T = 0.01 ms.

 For 0 < t < 0.01 ms,

υ = − ≈ = ≈ − =− −100 1 100 100 100 1( ) , ( ),e t i e t Vt t
Tand 11100 1 0 9950 01( ) ..− =−e V 	

   For t > 0.01 ms,

υ = = = −− − − −0 995 1 01 1 010 01. . .( . )e e i et t tand 	
As the input voltage pulse approaches an impulse, the capacitor voltage and current approach u = e−tu(t) (V) and 

i = d (t) − e−tu(t), respectively.

7.11 Impulse Response of RC and RL Circuits
A narrow pulse can be modeled as an impulse with the area under the pulse indicating its strength. Impulse 
response is a useful tool in the analysis and synthesis of circuits. It may be derived in several ways: take the 
limit of the response to a narrow pulse, to be called the limit approach, as illustrated in Examples 7-11 and 
7-12; take the derivative of the step response; or solve the differential equation directly. The impulse response 
is often designated by h(t).

EXAMPLE 7.12 Find the limits of i and u of the circuit in Fig. 7-17(a) for a voltage pulse of unit area as the pulse 
duration is decreased to zero.

We use the pulse responses in (14) and (15) with V0 = 1/T and find their limits as T approaches zero. From (14c) we have

lim lim / /
T T T

T RCV e T RC
→ →

−= − =
0 0

1 1( ) 	

From (15) we have:

For t < 0, h hiυ = =0 0and 	

For 0− < t < 0+, 0
1 1≤ ≤ =h

RC
h

R
t

iυ δand ( ) 	

For  t  >  0 ,  h t
RC

e h t
R C

et RC
i

t RC
υ( ) ( )/ /= = −− −1 1

2
and 	

Therefore,

h t
RC

e u t h t
R

t
R C

e ut RC
i

t RC
υ δ( ) ( ) ( ) ( ) (/ /= = −− −1 1 1

2
and ttt) 	

EXAMPLE 7.13 Find the impulse responses of the RC circuit in Fig. 7-17(a) by taking the derivatives of its unit step 
responses.

A unit impulse may be considered the derivative of a unit step. Based on the properties of linear differential equations 
with constant coefficients, we can take the time derivative of the step response to find the impulse response. The unit 
step responses of an RC circuit were found in (6) to be

υ( ) ( ) ( ) ( ) ( ) ( )/t e u t i t R e u tt RC t RC= − =− −1 1and 	

We find the unit impulse responses by taking the derivatives of the step responses. Thus

h t
RC

e u t h t
R

t
R C

e ut RC
i

t RC
υ δ( ) ( ) ( ) ( ) (/ /= = −− −1 1 1

2
and ttt) 	
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EXAMPLE 7.14  Find the impulse responses hi(t), hu(t), and hi1(t) of the RL circuit of Fig. 7-11(a) by taking the deriva-
tives of its unit step responses.

The responses of the circuit to a step of amplitude 9 were already found in Example 7.5. Taking their derivatives and 
scaling them down by 1/9, we find the unit impulse responses to be

 

h t
d
dt

e u t e ui
t t( ) [ . ( ) ( )]= − =− −1

9 0 75 1
200

3
800 800 (( )

( ) [ ( )] (

t

h t
d
dt

e u t e u tt t
υ = = −− −1

9 3
800

3
800 800 )) ( )

( ) ( ) ( )

+

= −





−

1
3

1
9

1
4 31

800

δ t

h t
d
dt

e u ti
t == +−200

9
1

18
800e u t tt ( ) ( )δ

	

7.12 Summary of Step and Impulse Responses in RC and RL Circuits
Responses of RL and RC circuits to step and impulse inputs are summarized in Table 7-1. Some of the entries in this 
table have been derived in the previous sections. The remaining entries will be derived in the solved problems.

Table 7-1(a). Step and Impulse Responses in RC Circuits

RC Circuit Unit Step Response Unit Impulse Response

υ

υ

s

t Rc

t Rc

u t

e u t

i R e u t

=

= −
=



 −

−

( )

( ) ( )

( ) ( )

1

1

/

//

υ δ

υ

s

t RC

i
t RC

t

h RC e u t

h R C e

=

=

= −

−

−

( )

( ) ( )

( )

1

1 2

/

/

/

/ uu t R t( ) ( ) ( )+





 1/ δ

	

i u t

R e u t

i e u t

s

t RC

t RC

=

= −
=







−

−

( )

( ) ( )

( )

υ 1 /

/

i t

h C e u t

h RC e u

s

t RC

i
t RC

=

=

= −

−

−

δ

υ

( )

( ) ( )

( ) (

1

1

/

/

/

/ tt t) ( )+





 δ

	

Table 7-1(b). Step and Impulse Responses in RL Circuits

RL Circuit Unit Step Response Unit Impulse Response

υ

υ

s

Rt L

Rt L

u t

e u t

i R e u t

=

=
= −



 −

−

( )

( )

( )( ) ( )

/

//1 1

υ δ

δυ

s

Rt L

i
Rt

t

h R L e u t t

h L e

=

= +

= −

−

−

( )

( / ) ( ) ( )

( / )

/

1 // ( )Lu t







	

i u t

Re u t

i e u t

s

Rt L

Rt L

=

=
= −







−

−

( )

( )

( ) ( )

/

/

υ
1

i t

h R L e u t R t

h R L e

s

Rt L

i

=

= − +

=

−

−

δ

δυ

( )

( ) ( ) ( )

( / )

/2/
RRt Lu t/ ( )
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The natural response ih(t) is the solution of Ri + L(di/dt) = 0, i.e., the case with a zero forcing function. 
Following an argument similar to that of Section 7.4 we obtain

i t Aeh
Rt L( ) /= − 	 (17b)

The forced response ip(t) is a function which satisfies (16) for t > 0. The only such function is

i t I ep
st( ) = 0 	 (17c)

After substituting ip in (16), I0 is found to be I0 = V0/(R + Ls). By choosing A = −V0/(R + Ls), the boundary 
condition i(0+) = 0 is also satisfied. Therefore,

i t
V

R Ls
e e u tst Rt L( ) ( ) ( )/= + − −0 	 (17d)

Special Case. If the forcing function has the same exponent as that of the natural response (s = −R/L), the 
forced response needs to be ip(t) = I0te

−Rt/L. This can be verified by substitution in (16), which also yields 
I0 = V0/L. The natural response is the same as (17b). The total response is then

i t i t i t I t A ep h
Rt L( ) ( ) ( ) ( ) /= + = + −

0 	

From i(0−) = i(0+) = 0 we find A = 0, and so i(t) = I0te
−Lt/Ru(t), where I0 = V0/L.

Fig. 7-18

7.13 Response of RC and RL Circuits to Sudden Exponential Excitations
Consider the first-order differential equation which is derived from an RL combination in series with a 
sudden exponential voltage source us = V0e

stu(t) as in the circuit of Fig. 7-18. The circuit is at rest for t < 0. 
By applying KVL, we get

Ri L
di
dt

V e u tst+ = 0 ( ) 	 (16)

For t > 0, the solution is

i t i t i t ih p( ) ( ) ( ) ( )= + =+and 0 0 	 (17a)

Ch07.Indd   158 10/08/17   5:22 PM



CHAPTER 7  First-Order Circuits 159

7.14 Response of RC and RL Circuits to Sudden Sinusoidal Excitations
When a series RL circuit is connected to a sudden ac voltage us = V0 cos wt (Fig. 7-19), the equation of 
interest is

 Ri L
di
dt

V t u t+ = 0(cos ) ( )ω 	 (18)

The solution is

  i t i i i t Ae i t Ih p h
Rt L

p( ) ( ) ( ) cos (/= + = =−where and 0 ωω θt − )   

By inserting ip in (18), we find I0:

 I
V

R L

L
R0

0
2 2 2

1=
+

= −

ω
θ ω

and tan 	

Then i t Ae I t tRt L( ) cos ( )/= + − >−
0 0ω θ 	

From i(0+) = 0, we get A = −I0 cos q. Therefore,

 i t I t e Rt L( ) [cos ( ) cos ( )]/= − − −
0 ω θ θ 	

Fig. 7-19

7.15 Summary of Forced Response in First-Order Circuits
Consider the following differential equation:

 d
dt

t a t f t
υ υ( ) ( ) ( )+ = 	 (19)

The forced response up(t) depends on the forcing function f (t). Several examples were given in the 
previous sections. Table 7-2 summarizes some useful pairs of the forcing function and what should be 
guessed for up(t). The responses are obtained by substitution in the differential equation. By a weighted 
linear combination of the entries in Table 7-2 and the appropriate time delay, the forced response to new 
functions may be deduced.

7.16 First-Order Active Circuits
Active circuits containing op amps are less susceptible to loading effects when interconnected with other 
circuits. In addition, they offer a wider range of capabilities with more ease of realization than passive circuits. 
In our present analysis of linear active circuits we assume ideal op amps; that is, (1) the current drawn by 
the op amp input terminals is zero and (2) the voltage difference between the inverting and noninverting 
terminals of the op amp is negligible (see Chapter 5). The usual methods of analysis are then applied to the 
circuit as illustrated in the following examples.
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EXAMPLE 7.15 Highpass filter. The op amp in the circuit of Fig. 7-44 is ideal. Find the unit-step response of the 
circuit; that is, u2 for u1 = u(t).

The inverting input terminal of the op amp is at virtual ground and the capacitor has zero voltage at t = 0+. 
The 1-V step input, therefore, generates an exponentially decaying current i through R1C (from left to right, 
with a time constant R1C and initial value of 1/R1).

i
R

e u t
t R C= −1

1

1
/ ( )

( ) 	

All of the preceding current passes through R2 (the op amp draws no current), generating u2  = −R2i at the output terminal. 
The unit-step response is, therefore,

υ2
2

1

1= −
−R

R
e u t

t R C/( )
( ) 	

EXAMPLE 7.16 In the circuit of Fig. 7-44 derive the differential equation relating u2 to u1. Find its unit-step response 
and compare with the answer in Example 7.15.

Since the inverting input terminal of the op amp is at virtual ground and doesn’t draw any current, the current i
passing through C, R1, and R2 from left to right is −u2/R2. Let uA be the voltage of the node connecting R1 and C. Then, 
the capacitor voltage is u1 − uA (positive on the left side). The capacitor current and voltage are related by

− =
−υ υ υ

2

2

1

R

d

dt
A

( )
	

To eliminate uA, we note that the segment made of R1, R2, and the op amp form an inverting amplifier with u2 = −(R2/R1)
uA, from which uA = −(R1/R2)u2. Substituting for uA, we get

υ
υ υ

2 1
2

2
1+ = −R C

d

dt
R C

d

dt
	

To find the unit-step response, we first solve the following equation:

υ
υ

2 1
2

0 0
0

2+ =


 <

− >
R C

d
dt t

tR C
	

Table 7-2

f (t) up(t)

1
1
a

	

t
t

a a
− 1

2

e s ast , ( )≠ − 	 e

s a

st

+

e at− 	 te at−

cos w t A t A
a a

cos ( )ω θ
ω

θ ω− =
+

=where and tan
1

2 2

e−bt cos w t Ae t A
a b a b

bt− − =
− +

= −cos ( )
( )

ω θ
ω

θ ω
where and tan

1
2 2
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The solution of the preceding equation is	 − − −
R C e u t

t R C

2
1 1( ) ( )

/ ( )
. The unit-step response of the circuit is the time-

derivative of the preceding solution.

 υ
2

2

1

1( ) ( )
/ ( )

t
R

R
e u t

t R C= − − 	

Alternate Approach
The unit step response may also be found by the Laplace transform method (see Chapter 16).

EXAMPLE 7.17 Passive phase shifter.  Find the relationship between u2 and u1 in the circuit of Fig. 7-45(a).
Let node D be the reference node. Apply KCL at nodes A and B to find

 KCL at node A:  	 C
d

dt R
A A

υ υ υ
+

−
=

( )
1 0 	

 KCL at node B:  	 C
d

dt R
B B

( )υ υ υ−
+ =1 0 	

Subtracting the second equation from the first and noting that u2 = uA − uB we get

 υ
υ

υ
υ

2
+ = −RC

d

dt
RC

d

dt
2

1
1 	

EXAMPLE 7.18 Active phase shifter. Show that the relationship between u2 and u1 in the circuit of Fig. 7-45(b) 
is the same as in Fig. 7-45(a).

Apply KCL at the inverting (node A) and non-inverting (node B) inputs of the op amp.

 KCL at node A:  	
( ) ( )υ υ υ υ

A A

R R

−
+

−
=1

1

2

1

0 	

     KCL at node B:       	
( )υ υ υ

B B

R
C

d

dt

−
+ =1 0 	

From the op amp we have uA = uB and from the KCL equation for node A, we have uA = (u1 + u2) / 2. Substituting the 
preceding expressions in the KCL equation at node B, we find

 υ
υ

υ
υ

2
2

1
1+ = −RC

d

dt
RC

d

dt
	

SOLVED PRObLEMS

 7.1. At t = 0−, just before the switch is closed in Fig. 7-20, uC = 100 V. Obtain the current and charge 
transients.

Fig. 7-20
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With the polarities as indicated on the diagram, uR = uC for t > 0, and 1/RC = 62.5 s−1. Also, uC(0+) = 
uC(0−) = 100 V. Thus,

υ υ
υ

R C
t R te i

R
e q= = = = =− −100 0 2562 5 62 5. .( ) . ( )V A CC eC

tυ = −4000 62 5. ( )C 	

7.2. In Problem 7.1, obtain the power and energy in the resistor, and compare the latter with the initial 
energy stored in the capacitor.

p i e

w p dt e dt

R R
t

R R

t
t

= =

= = =

−

−∫
υ 25

25 0 2

125

0

125

( )

.

W

000 1 125

0

( ) ( )− −∫ e t
t

J
	

The initial stored energy is

W CV wR0 0
2 6 21

2
1
2 40 10 100 0 20= = × = = ∞−( )( ) . ( )J 	

In other words, all the stored energy in the capacitor is eventually delivered to the resistor, where it is 
converted into heat.

7.3. An RC transient identical to that in Problems 7.1 and 7.2 has a power transient

p eR
t= −360 0 00001/ . ( )W 	

Obtain the initial charge Q0, if R = 10 Ω.

  p P e
RC

CR
t RC= = =−

0
2 52

10 2/ or or Fµ 	

w p dt eR R

t
t= = −∫ −

0

0 000013 6 1. ( ) (/ . mJ) 	

Then, w Q C
R

( ) .∞ = =3 6 mJ /2
0
2 , from which Q0 = 120 µC.

7.4. The switch in the RL circuit shown in Fig. 7-21 is moved from position 1 to position 2 at t = 0. Obtain 
uR and uL with polarities as indicated.

Fig. 7-21

The constant-current source drives a current through the inductance in the same direction as that of the 
transient current i. Then, for t > 0,

i I e e

Ri e

Rt L t

R
t

L R

= =

= =

= −

− −

−

0
25

25

2

200

/ ( )

( )

A

Vυ

υ υ === − −200 25e t ( )V
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 7.5. For the transient of Problem 7.4 obtain pR and pL.

 
p i e

p i e

R R
t

L L
t

= =

= = −

−

−

υ

υ

400

400

50

50

( )

( )

W

W
	

Negative power for the inductance is consistent with the fact that energy is leaving the element. And, since 
this energy is being transferred to the resistance, pR is positive.

 7.6. A series RC circuit with R = 5 kΩ and C = 20 µF has a constant-voltage source of 100 V applied at 
t = 0; there is no initial charge on the capacitor. Obtain i, uR, uC, and q, for t > 0.

The capacitor charge, and hence uC, must be continuous at t = 0:

 υ υ
C C

( ) ( )0 0 0+ −= = 	

As t → ∞, uC → 100 V, the applied voltage. The time constant of the circuit is t = RC = 10−1 s. Hence, from 
Section 6.10,

 υ υ υ υτ
C C C

t
C

te e= − ∞ + ∞ = − ++ − −[ ( ) ( )] ( ) (/0 100 10010 VV) 	

The other functions follow from this. If the element voltages are both positive where the current enters, 
uR + uC = 100 V, and so

 

υ

υ

υ

R
t

R t

C

e

i
R

e

q C

=

= =

= =

−

−

100

20

2000 1

10

10

( )

( )

(

V

mA

−− −e t10 ) ( )µC

	

 7.7. The switch in the circuit shown in Fig. 7-22(a) is closed at t = 0, at which moment the capacitor has 
charge Q0 = 500 µC, with the polarity indicated. Obtain i and q, for t > 0, and sketch the graph of q.

Fig. 7-22

The initial charge has a corresponding voltage V0 = Q0/C = 25 V, whence uC(0+) = −25 V. The sign is 
negative because the capacitor voltage, in agreement with the positive direction of the current, would be + 
on the top plate. Also, uC(∞) = +50 V and t = 0.02 s. Thus, as in Problem 7.6,

 υC
te= − +−75 5050 ( )V 	

from which

 q C e i
dq
dt

eC
t t= = − + = =− −υ 1500 1000 7550 50( ) ( )µC mA 	
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The sketch in Fig. 7-22(b) shows that the charge changes from 500 µC of one polarity to 1000 µC of the 
opposite polarity.

7.8. Obtain the current i, for all values of t, in the circuit of Fig. 7-23.
For t < 0, the voltage source is a short circuit and the current source shares 2 A equally between the two 

10-Ω resistors:

Fig. 7-23

i t i i( ) ( ) ( )= = =− +0 0 1 A 	

For t > 0, the current source is replaced by an open circuit and the 50-V source acts in the RL series 
circuit (R = 20 Ω). Consequently, as t → ∞ , I → −50/20 = −2.5 A. Then from Section 6.10,

i t i i e i eRt L t( ) [ ( ) ( )] ( ) . . (/= − ∞ + ∞ = −+ − −0 3 5 2 5100 AAA) 	

By means of unit step functions, the two formulas may be combined into a single formula valid for all t:

i t u t e u tt( ) ( ) ( . . ) ( ) ( )= − + −−3 5 2 5100 A 	

7.9. In Fig. 7-24(a), the switch is closed at t = 0. The capacitor has no charge for t < 0. Find i
R
, i

C
, uC, and 

us for all times if is = 2 mA.
For t < 0, iR = 2 mA, iC = uC = 0, and us = (2 mA)(5000 Ω) = 10 V.
For t > 0, the time constant is t = RC = 10 ms and

i
R
(0+) = 0, i

R
(∞) = 2 mA, and iR = 2(1 − e−100t) (mA)  [See Fig. 7-24(b).] 

uC(0+) = 0, uC(∞) = (2 mA)(5 kΩ) = 10 V, and uC = 10(1 − e−100t) (V)  [See Fig. 7-24(c).] 

iC(0+) = 2 mA, iC(∞) = 0, and iC = 2e−100t (mA)  [See Fig. 7-24(d).] 

us(0
+) = 0, us(∞) = (2 mA)(5 kΩ) = 10 V, and us = 10(1 − e−100t) (V)  [See Fig. 7-24(e).]

7.10. In Fig. 7-25, the switch is opened at t = 0. Find iR, iC, uC, and us.
For t < 0, the circuit is at steady state with iR = 6(4)/(4 + 2) = 4 mA, iC = 0, and uC = us = 4(2) = 8 V. 

During the switching at t = 0, the capacitor voltage remains the same. After the switch is opened, at t = 0+, 
the capacitor has the same voltage uC(0+) = uC(0−) = 8 V.

For t > 0, the capacitor discharges in the 5-kΩ resistor, produced from the series combination of the 3-kΩ
and 2-kΩ resistors. The time constant of the circuit is t = (2 + 3)(103)(2 × 10−6) = 0.01 s. The currents and 
voltages are

υ

υ

C
t

R C C
t

e

i i e

=

= − = = =

−

−

8

5000 8 5000

100

100

( )

( )

V

/ / 111 6

6 4 24

100. ( )

( )( )

e t

s

−

= =

mA

mA k Vυ Ω

	

since, for t > 0, all of the 6 mA goes through the 4-kΩ resistor.

7.11. The switch in the circuit of Fig. 7-26 is closed on position 1 at t = 0 and then moved to 2 after one time 
constant, at t = t = 250 µs. Obtain the current for t > 0.
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Fig. 7-24

Fig. 7-25

Fig. 7-26
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It is simplest first to find the charge on the capacitor, since it is known to be continuous (at t = 0 and at 
t = t), and then to differentiate it to obtain the current.

For 0 ≤ t ≤ t, q must have the form

q Ae Bt= +− /τ 	

From the assumption q(0) = 0 and the condition

i
dq
dt

( )0
20

500 40
0

+ = = =
+

V
mAΩ

	

we find that A = −B = −10 µC, or

q e tt= − ≤ ≤−10 1 04000( ) ( ) ( )µC τ 	 (20)

From (20), q(t) = 10(1 − e−1 ) µC; and we know that q(∞) = (0.5 µF)(−40 V) = −20 µC.
Hence, q, is determined for t ≥ t as

q q q e q et t= − ∞ + ∞ = −− − −[ ( ) ( )] ( ) .( )/τ τ τ 71 55 204000 (( )µC 	 (21)

Differentiating (20) and (21),

i
dq
dt

e t

e

t

t
= =

< <
−

−

−
40 0

286 2

4000

4000

( ) ( )

. (

mA

mA

τ
))) ( )t >





 τ
	

See Fig. 7-27.

Fig. 7-27

7.12. A series RL circuit has a constant voltage V applied at t = 0. At what time does uR = uL?
The current in an RL circuit is a continuous function, starting at zero in this case, and reaching the final 

value V/R. Thus, for t > 0,

i
V
R

e Ri V et
R

t= − = = −− −( ) ( )/ /1 1τ τυand 	

where t = L/R is the time constant of the circuit. Since uR + uL = V, the two voltages will be equal when

υ

τ

τ

τ

R

t

t

V

V e V

e

t

=

− =

=

=

−

−

1
2

1
1
2

1
2

( )/

/

ln 2

	

that is, when t = 0.693t. Note that this time is independent of V.
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7.13. A constant voltage is applied to a series RL circuit at t = 0. The voltage across the inductance is 20 V 
at 3.46 ms and 5 V at 25 ms. Obtain R if L = 2 H.

Using the two-point method of Section 7-6.

 τ υ υ=
−
− = −

− =
t t2 1 25 3 46

20 15 54ln ln ln ln 5 ms
1 2

.
. 	

and so R
L= =

×
=

−τ
2

15 54 10
128 7

3.
. Ω 	

7.14. In Fig. 7-28, switch S1 is closed at t = 0. Switch S2 is opened at t = 4 ms. Obtain i for t > 0.

Fig. 7-28

As there is always inductance in the circuit, the current is a continuous function at all times. In the 
interval 0 ≤ t ≤ 4 ms, with the 100 Ω shorted out and a time constant t = (0.1 H)/(50 Ω) = 2 ms, i starts at 
zero and builds toward

 
100

2
V

50 AΩ = 	

even though it never gets close to that value. Hence, as in Problem 7.12

 i e tt= − ≤ ≤−2 1 0 42( ) ( ) ( )/ A 	 (22)

where t is measured in ms. In particular,

 i e( ) ( ) .4 2 1 1 7292= − =− A 	

In the interval t ≥ 4 ms, i starts at 1.729 A and decays toward 100/150 = 0.667 A, with a time constant
0 0 2

3.1/15 ms= . Therefore, with t again in ms,

 i = (1.729 − 0.667)e−(t −	4)/(2/3) + 0.667 = 428.4e−3t/2 +	0.667 (A)  (t ≥	4)	 (23)

7.15. In the circuit of Fig. 7-29, the switch is closed at t = 0, when the 6-µF capacitor has charge Q0 = 300 µC. 
Obtain the expression for the transient voltage uR.

The two parallel capacitors have an equivalent capacitance of 3 µF. Then this capacitance is in series with 
the 6 µF, so that the overall equivalent capacitance is 2 µF. Thus, t = RCeq = 40 µs.

At t = 0+, KVL gives uR = 300/6 = 50 V; and, as t → ∞, uR → 0 (since i → 0). Therefore,

 υ τ
R

t te e= =− −50 50 40 V/ / ( ) 	

in which t is measured in µs.
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7.16. In the circuit shown in Fig. 7-30, the switch is moved to position 2 at t = 0. Obtain the current i2 at   
t = 34.7 ms.

After the switching, the three inductances have the equivalent value of

L
eq

H= + =10
6 15

5 10(
5

) 	

Then t = 5/200 = 25 ms, and so, with t in ms,

i e i i et t= = 



 =− −6

5
15 225

2
25/ /( ) ( )A A 	

and i e2
34 7 2534 7 2( . ) . /= − A = 0.50 A 	

7.17. In Fig. 7-31, the switch is closed at t = 0. Obtain the current i and capacitor voltage uC, for t > 0.

Fig. 7-29 Fig. 7-30

Fig. 7-31

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,

τ = = =R Ceq (5 )(2 F) 10 sΩ µ µ 	

By continuity of the capacitor voltage, uC(0+) = uC(0−) = 0. Furthermore, as t → ∞, the capacitor becomes 
an open circuit, leaving 20 Ω in series with the 50 V. That is,

i C( ) . ( ) ( .∞ = = ∞ = =50
20 2 5 2 5 25A A)(10 ) Vυ Ω 	

Knowing the end conditions on uC, we can write

υ υ υ υτ
C C C

t
C

te e= − ∞ + ∞ = −+ − −[ ( ) ( )] ( ) ( ) (0 25 1 10/ / V))) 	

where t is measured in µs.
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The current in the capacitor is given by

 i C
d
dt

eC
C t= = −υ

5 10/ ( )A 	

and the current in the parallel 10-Ω resistor is

 i eC t
10

10

10
2 5 1Ω Ω

= = − −υ
. ( ) ( )/ A 	

Hence, i i i eC
t= + = + −

10
102 5 1Ω . ( ) ( )/ A 	

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-
ential equations.

7.18. The switch in the two-mesh circuit shown in Fig. 7-32 is closed at t = 0. Obtain the currents i1 and i2 
for t > 0.

Fig. 7-32

 10 5 0 01 100
1 2 1

1( ) .i i i
di

dt
+ + + = 	 (24)

 10 5 1001 2 2( )i i i+ + = 	 (25)

From (25), i2 = (100 − 10i1)/15. Substituting in (24),

 
di
dt

i1
1833 3333+ = 	 (26)

The steady-state solution (particular solution) of (26) is i1(∞) = 3333/833 = 4.0 A; hence,

 i Ae t
1

833 4 0= +− . ( )A 	

The initial condition i1(0−) = i1(0+) = 0 now gives A = −4.0 A, so that

 i e i et t
1

833
24.0(1 ) (A) and 4.0 2.67 (A)= − = +− −833 	

Alternate Method
When the rest of the circuit is viewed from the terminals of the inductance, the equivalent resistance is

 Req = + =5
5 10

15 8 33
( )

. Ω 	

Then, 1/t = Req/L = 833 s−1. At t = ∞, the circuit resistance is

 RT = + =10
5 5
10 12 5
( )

. Ω 	

Ch07.Indd   169 10/08/17   5:31 PM



CHAPTER 7  First-Order Circuits170

so that the total current is iT = 100/12.5 = 8 A. And, at t = ∞, this divides equally between the two 5-Ω
resistors, yielding a final inductor current of 4 A. Consequently,

i i eL
t= = − −

1
8334 1( ) ( )A 	

7.19. A series RL circuit, with R = 50 Ω and L = 0.2 H, has a sinusoidal voltage

υ = +150 sin (500 0.785) (V)t 	

applied at t = 0. Obtain the current for t > 0.

The circuit equation for t > 0 is

di
dt

i t+ = +250 750 500 0 785sin ( . ) 	 (27)

The solution is in two parts, the complementary function (ic) and the particular solution (ip), so that i = ic + ip. 
The complementary function is the general solution of (27) when the right-hand side is replaced by zero: 
ic = ke−250t. The method of undetermined coefficients for obtaining ip consists in assuming that

i A t B tp = +cos sin500 500 	

since the right-hand side of (27) can also be expressed as a linear combination of these two functions. 
Then

di

dt
A t B tp = − +500 500 500 500sin cos 	

Substituting these expressions for ip and dip/dt into (27) and expanding the right-hand side,

− + + +5 sin 5 5 cos 5 25 cos 5 2500 00 00 00 0 00 0A t B t A t BBB t t tsin 5 53 3 cos 5 53 3 sin 500 0 00 0 00= +. . 	

Now equating the coefficients of like terms,

− + = + =500 250 530 3 500 250 530 3A B B A. .and 	

Solving these simultaneous equations, A = −0.4243, B = 1.273.

i t tp = − + =0 4243 500 1 273 500 1 342 500. cos . sin . sin ( ttt − 0 322. ) ( )A 	

and i i i ke tc p
t= + = + −−250 1 342 500 0 322. sin ( . ) ( )A 	

At t = 0, i = 0. Applying this condition, k = 0.425, and, finally,

i e tt= + −−0 425 1 342 500 0 322250. . sin ( . ) ( )A 	

7.20. For the circuit of Fig. 7-33, obtain the current iL for all values of t.

Fig. 7-33
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For t < 0, the 50-V source results in the inductor current 50/20 = 2.5 A. The 5-A current source is applied 
for t > 0. As t → ∞, this current divides equally between the two 10-Ω resistors, whence i

l
(∞) = −2.5 A. The 

time constant of the circuit is

 τ = × =
−0 2 10

20
1

100

3. H
msΩ 	

and so, with t in ms and using iL(0+) = iL(0−) = 2.5 A,

 i i i e i eL L L
t

L
t= − ∞ + ∞ = −+ − −[ ( ) ( )] ( ) . ./0 5 0 2 5100τ (AA) 	

Finally, using unit step functions to combine the expressions for t < 0 and t > 0,

 i u t e u tL
t= − + −−2 5 5 2 5 A1. ( ) ( . . ) ( ) ( )0 00 	

7.21. The switch in Fig. 7-34 has been in position 1 for a long time; it is moved to 2 at t = 0. Obtain the 
expression for i, for t > 0.

With the switch on 1, i(0−) = 50/40 = 1.25 A. With an inductance in the circuit, i(0−) = i(0+). Long after 
the switch has been moved to 2, i(∞) = 10/40 = 0.25 A. Using the previous notation for the current expression,

 B i A i B= ∞ = = − =+( ) . ( ) .0 25 0 1 00A A 	

and the time constant is t = L/R = (1/2000) s. Then, for t > 0,

 i Ae et t= + = +− −/ . . ( )τ B 1 25 A200 0000 	

7.22. The switch in the circuit shown in Fig. 7-35 is moved from 1 to 2 at t = 0. Find uC and uR, for t > 0.

Fig. 7-34

Fig. 7-35
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With the switch on 1, the 100-V source results in uC(0−) = 100 V; and, by continuity of charge, uC(0+) =
uC(0−). In position 2, with the 50-V source of opposite polarity, uC (∞) = −50 V. Thus,

B A BC C= ∞ = − = − =+υ υ( ) ( )50 0 150V V 	

τ = =RC
1

200 s 	

and υC
te= −−150 50200 ( )V 	

Finally, KVL gives uR + uC + 50 = 0, or

υ R
te= − −150 200 ( )V 	

7.23. Obtain the energy functions for the circuit of Problem 7.22.

	

w C e

w
R

dt

C C
t

R
R

t

= = −

= =

−

∫

1
2 1 25 3 12 200 2

2

0

υ

υ

. ( ) ( )mJ

1111 25 1 400. ( ) ( )− −e t mJ
	

7.24. A series RC circuit, with R = 5 kΩ and C = 20 µF, has two voltage sources in series. They are

υ υ1 225 25= − = −u t u t t( ) ( ) ( ) ( )V and V' 	

Obtain the complete expression for the voltage across the capacitor and make a sketch, if ′t 	is positive.

The capacitor voltage is continuous. For t ≤ 0, u1 results in a capacitor voltage of 25 V.
For 0 ≤ ≤ ′t t , both sources are zero, so that uC decays exponentially from 25 V toward zero:

υC
t RC te e t t= = ≤ ≤− −25 25 010/ V( ) ( )' 	

In particular, υC
tt e( ) ( )′ = − ′25 V10 .

For t t≥ ′, uC builds from υC t( )′ 	toward the final value 25 V established by u2:

υ υ υ υC C
t

Ct e

e

= ′ − ∞ + ∞

= −

− − ′[ ( ) ( )] ( )

[ (

( )
C

t RC/

25 1 1000 101′ −− ≥ ′t te t t) ] ( ) ( )V
	

Thus, for all t,

υC
tu t e u t u t t e= − + − − ′ + −− ′25 25 25 110 10( ) [ ( ) ( )] [ ( ttt te u t t− − ′−1 10) ] ( ) ( )V 	

See Fig. 7-36.

Fig. 7-36
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SuPPLEMEnTARy PRObLEMS

7.25. The capacitor in the circuit shown in Fig. 7-37 has initial charge Q0 = 800 µC, with polarity as indicated. If the 
switch is closed at t = 0, obtain the current and charge, for t > 0.

 Ans. i = −10e−25 000t (A), q = 4 × 10−4 (1 + e−25 000t) (C)

7.26. A 2-µF capacitor, with initial charge Q0 = 100 µC, is connected across a 100-Ω resistor at t = 0. Calculate the 
time in which the transient voltage across the resistor drops from 40 to 10 volts.  Ans. 0.277 ms

7.27. In the RC circuit shown in Fig. 7-38, the switch is closed on position 1 at t = 0 and then moved to 2 after the 
passage of one time constant. Obtain the current transient for (a) 0 < t < t,  (b) t > t.

 Ans. (a) 0.5e−200t (A); (b) −0.516e−200(t−t) (A)

7.28. A 10-µF capacitor, with initial charge Q0, is connected across a resistor at t = 0. Given that the power transient 
for the capacitor is 800e−4000t (W), find R, Q0, and the initial stored energy in the capacitor.

 Ans. 50 Ω, 2000 µC, 0.20 J

7.29. A series RL circuit, with R = 10 Ω and L = 1 H, has a 100-V source applied at t = 0. Find the current for t > 0.

 Ans. 10(1 − e−10t) (A)

7.30. In Fig. 7-39, the switch is closed on position 1 at t = 0, then moved to 2 at t = 1 ms. Find the time at which the 
voltage across the resistor is zero, reversing polarity.  Ans. 1.261 ms

Fig. 7-37 Fig. 7-38

Fig. 7-39

7.31. A series RL circuit, with R = 100 Ω and L = 0.2 H, has a 100-V source applied at t = 0; then a second source, of 
magnitude 50 V with the same polarity, is switched in at t t= ′, replacing the first source. Find ′t 	such that the 
current is constant at 0.5 A for t t> ′.  Ans. 1.39 ms

7.32. The circuit of Problem 7.31 has a 50-V source of opposite polarity switched in at t = 0.50 ms, replacing the first 
source. Obtain the current for (a) 0 < t < 0.50 ms, (b) t > 0.50 ms.

 Ans. (a) 1 − e−500t (A); (b) 0.721e−500(t−0.0005) − 0.50 (A)
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7.33. A voltage transient, 35e−500t (V), has the value 25 V at t1 = 6.73 × 10−4 s. Show that at t = t1 + t the function has 
a value that is 36.8 percent of that at t1.

7.34. A transient that increases from zero toward a positive steady-state magnitude is 49.5 at t1 = 5.0 ms, and 120 at 
t2 = 20.0 ms. Obtain the time constant t.  Ans. 12.4 ms

7.35. The circuit shown in Fig. 7-40 is switched to position 1 at t = 0, then to position 2 at t = 3t. Find the transient 
current i for (a) 0 < t < 3t, (b) t > 3t.

Ans. (a) 2.5e−50 000t (A); (b) −1.58e−66 700 (t−0.00006) (A)

7.36. An RL circuit, with R = 300 Ω and L = 1 H, has voltage u = 100 cos (100t + 45°) (V) applied by closing a switch 
at t = 0. [A convenient notation has been used for the phase of u, which, strictly speaking, should be indicated as 
100t + (p/4) (rad).] Obtain the resulting current for t > 0.

Ans. −0.282e−300t + 0.316 cos (100t + 26.6°) (A)

7.37. The RC circuit shown in Fig. 7-41 has an initial charge on the capacitor Q0 = 25 µC, with polarity as indicated. 
The switch is closed at t = 0, applying a voltage u = 100 sin (1000t + 30°) (V). Obtain the current for t > 0.

Ans. 153.5e−4000t + 48.4 sin (1000t + 106°) (mA)

7.38. What initial charge on the capacitor in Problem 7.37 would cause the current to go directly into the steady state 
without a transient?  Ans. 13.37 µC (+ on top plate)

7.39. Write simultaneous differential equations for the circuit shown in Fig. 7-42 and solve for i1 and i2. The switch 
is closed at t = 0 after having been open for an extended period of time. (This problem can also be solved by 
applying known initial and final conditions to general solutions, as in Problem 7-17.)

Ans. i1 = 1.67e6.67t + 5 (A), i2 = −0.555e−6.67t + 5 (A)

7.40. For the RL circuit shown in Fig. 7-43, find the current iL at the following times: (a) −1 ms, (b) 0+, (c) 0.3 ms, 
(d) ∞.  Ans. (a) 2.00 A; (b) 2.00 A; (c) 2.78 A; (d) 3.00 A

7.41. A series RC circuit, with R = 2 kΩ and C = 40 µF, has two voltage sources in series with each other, u1 = 50 V 
and u2 = −100u(t) (V). Find (a) the capacitor voltage at t = t, (b) the time at which the capacitor voltage is zero 
and reversing polarity.  Ans. (a) −13.2 V; (b) 55.5 ms

Fig. 7-40 Fig. 7-41

Fig. 7-42 Fig. 7-43
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7.42. Find the unit-impulse response of the circuit of Fig. 7-44; i.e., u2 for u1 = d(t) (a unit-area narrow voltage 
pulse).

 Ans. υ δ2
2

1 1

1
1= − −





−R
R

t
R C

e u t
t R C

( ) ( )
/( ) 	

7.43. In the circuits of Fig. 7-45, RC = 5 × 10−7 and u1(t) = 10 + cos (1000t) + 3 cos (2000t). Find u2(t). Assume 
tan q ≈ q when q < 1°.  Ans. u2(t) ≈ 10 + cos [1000(t − 10−6)] + 3 cos [2000(t − 10−6)] = u1(t − 10−6)

Fig. 7-44

Fig. 7-45

7.44. The input voltage in the circuits of 7-45 is a weighted sum of sinusoids with the highest frequency f0 Hz. 
Assuming that RC < 1/(360 f0), find u2(t).  Ans. u2(t) ≈ u1(t − 2RC)

7.45. Find the relationship between u2 and u1 in the circuit of Fig. 7-46.

 Ans. 	 υ
υ

υ2
2

12+ =RC
d
dt

	

Fig. 7-46
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7.46. In the circuit of Fig. 7-47, find the differential equation relating u2 to u1. Compare with the result of 
Example 7.17.

Ans. 	 υ
υ

υ
υ

2
2

1
11

2+ = −





RC
d
dt

RC
d
dt

	

7.48. In the circuit of Fig. 7-49, let k = 0. Find u and i after the switch is closed at t = 0.

Ans. u = e−t, i = 1 − 0.5e−t

Fig. 7-48

Fig. 7-49

7.49. Show that the segment of the circuit enclosed by the dashed box in the circuit of Fig. 7-49 is equivalent to an 
inductor with value L = 1/(1 − k) H. Hint: Write a KVL equation between terminals AB of the dashed box.

7.50. The switch in the circuit of Fig. 7-49 is closed at t = 0. Find u at t > 0 for the following values of k: (a) 0.5, 
(b) 1, (c) 2.  Ans. (a) u = e−t/2; (b) u = 1; (c) u = et

Fig. 7-47

7.47. In the circuit of Fig. 7-48, find the relationship between u2 and u1.

Ans. 	 υ
υ

υ
υ

2 1 1
2 1

2
1 2 2

1+ = − −





R C
d
dt

C
C

R C
d
dt
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7.51. Find i, the current drawn from the battery, in Problem 7.50.

 Ans. (a) i = 1 − 0.5e−t/2; (b) i = 0.5; (c) i = 1 − 0.5et

7.52. A 90 µF capacitor having 6+ volts across its terminals is connected at t = 0 to the input of the circuit of Fig. 5-57, 
reproduced below in Fig. 7-50(a). Assume R1 = R2 = R3 = 1 kΩ and an ideal op amp with saturation levels of 
±12 V. (a) Find and plot u(t) for t > 0. (b) Find uout for t > 0.

 Ans. (a) u(t) = 12 − 6e−t/t, t > 0, t = 90 ms; (b) u(t) > 6 V, u+ > u−, uout = 12 V. See Figs. 7-50(b) and (c).

Fig. 7-50

7.53. A 90 µF capacitor having an initial voltage of u0 = 6 V is connected at t = 0 to the input terminal of the circuit 
of Fig. 5-59, reproduced below in Fig. 7-51(a). Assume R1 = R2 = R3 = 1 kΩ and an ideal op amp with saturation 
levels of ±12 V. (a) Find and plot u (t) for t > 0. (b) Find uout for t > 0.

 Ans. (a) υ

ττ

τ
( )

, . .
( . )

t

e t

e

t

t

=

− = < <−

− −
12 6 0 09 0 0 07

18 0 07

s

−− < <
− < <− −

12 0 07 0 17

12 18 0 17 0 270 17

. .

. .( . )

t

e tt τ

υ(( . ) . .t t b c− >



0 2 0 27 See Figs. 7-51( ) and ( ).








	

  
(b) −6 < u− < 6 and υ

υ+ = out
2 .

 

υ υ

υ υ
out

out

when is increasing.

when

=

= −

−12

12 −− is decreasing. The op amp works as a
Schmmitt trigger.
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7.54. By observing that the circuit of 7-51 (a) is an inverting Schmitt trigger (introduced in Problem 5.58), argue that 
the capacitor voltage and the op amp’s output are correctly shown in Fig. 7-51(c).

Ans. The op amp is either at high- or low-saturation levels. The capacitor voltage provides the input to the op 
amp. It is charged (or discharged) through R3 toward uout = ±12 V. Switching occurs when its voltage reaches 
u+ = ±	6 V.

Fig. 7-51
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Higher-Order Circuits  
and Complex Frequency

8.1 Introduction
In Chapter 7, RL and RC circuits with initial currents or charge on the capacitor were examined and first-
order differential equations were solved to obtain the transient voltages and currents. When two or more 
storage elements are present, the network equations will result in second-order differential equations. In this 
chapter, several examples of second-order circuits will be presented. This will then be followed by more 
direct methods of analysis, including complex frequency and pole-zero plots.

8.2 Series Rlc Circuit
The second-order differential equation, which will be examined shortly, has a solution that can take three 
different forms, each form depending on the circuit elements. In order to visualize the three possibilities, a 
second-order mechanical system is shown in Fig. 8-1. The mass M is suspended by a spring with a constant k.  
A damping device D is attached to the mass M. If the mass is displaced from its rest position and then 
released at t = 0, its resulting motion will be overdamped, critically damped, or underdamped (oscillatory). 
Figure 8-2 shows the graph of the resulting motions of the mass after its release from the displaced position 
z1 (at t = 0).

CHAPTER  8

Fig. 8-1

The series RLC circuit shown in Fig. 8-3 contains no voltage source. Kirchhoff’s voltage law for the 
closed loop after the switch is closed is

 υ υ υR L C+ + = 0 	

or Ri L+ + =∫di
dt C

i dt
1

0 	
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Differentiating and dividing by L yields

d i

dt

R
L

di
dt LC

i
2

2
1

0+ + = 	

A solution of this second-order differential equation is of the form i A e A e
s t s t= 1 2

1 2+ . Substituting this solution 
in the differential equation results in

A e s
R
L

s
LC

A e s
R
L

s
LC

s t s t
1 1

2
1 2 2

2
2

1 2
1 1+ +



 + + +



 = 0 	

Therefore, if s1 and s2 must be the roots of s2 + (R/L)s + (1/LC) = 0,

s
R
L

R
L LC

s
R
L

R
L1

2

2

2

2 2
1

2 2
1= − + 



 − ≡ − + = − − 



 −a β

LLLC
≡ − −a β 	

where a β a w≡ ≡ −R L/2 2
0
2, , and w0 1≡ / LC .

Overdamped Case (`  > v0)
In this case, both a and b are real positive numbers.

i A e A e e A e A et t t t t= + = +− + − − − −
1 2 1 2

( ) ( ) ( )a β a β a β β 	

Fig. 8-2

Fig. 8-3
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EXAMPLE 8.1 A series RLC circuit, with R = 200 Ω, L = 0.10 H, and C = 13.33 µF, has an initial charge on the 
capacitor of Q0 = 2.67 × 10−3 C. A switch is closed at t = 0, allowing the capacitor to discharge. Obtain the current 
transient. (See Fig. 8-4.)

For this circuit,

 a w β a w= = = = × = −− −R
L C2 10

1
7 5 103 1

0
2 5 2 2

0
2s s and, . ,

L
== −500 1s 	

Then, i e A e et t t= +− −1000
1

500
2

500( )A 	

The values of the constants A1 and A2 are obtained from the initial conditions. The inductance requires that i (0+) = i (0−	). 
Also the charge and voltage on the capacitor at t = 0+ must be the same as at t = 0−, and uC(0−) = Q0/C = 200 V. Applying  
these two conditions,

 0 2000 500 15001 2 1 2= + ± = − −A A A Aand 	
from which A1 = ±	2, A2  =		±	2, and, taking A1 positive,

 i e et t= −− −2 2500 1500 	(A) 
If the negative value is taken for A1, the function has simply flipped downward but it has the same shape. The signs of 
A1 and A2 are fixed by the polarity of the initial voltage on the capacitor and its relationship to the assumed positive 
direction for the current.

Critically Damped Case (a	=	w0)
With a = w0 , the differential equation takes on a different form and the two exponential terms suggested in 
the preceding will no longer provide a solution. The equation becomes

 d i

dt

di
dt

i
2

2
22 0+ + =a a 	

and the solution takes the form i = e−a t(A1 + A2t).

EXAMPLE 8.2 Repeat Example 8.1 for C = 10 µF, which results in a = w0.
As in Example 8.1, the initial conditions are used to determine the constants. Since i(0−) = i(0+), 0 = [A1 + A2(0)] 

and A1 = 0. Then,

 di
dt

d
dt

A te A te et t t= = − +− − −( ) ( )2 2
a a aa 	

from which A2 = (di/dt)|0+ = ±2000. Hence, i te t= ± −2000 10 3

	(A) (see Fig. 8-5).

Fig. 8-4

Fig. 8-5
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Once again the polarity is a matter of the choice of direction for the current with respect to the polarity of the initial 
voltage on the capacitor.

The responses for the overdamped and critically damped cases plotted in Figs. 8-4 and 8-5, respectively, 
are quite similar. The reader is encouraged to examine the results, selecting several values for t, and compar-
ing the currents. For example, find the time at which the current in each of the two cases reaches the values 
of 1.0 mA and 1.0 µA. Also, in each case, find t1 for the maximum current.

Underdamped or Oscillatory Case (`  < v0)
When a < w0, s1 and s2 in the solution to the differential equation suggested in the preceding are complex

conjugates s1 = a + jb and s2 = a − jb, where b is now given by w a0
2 2− . The solution can be written in 

the exponential form

i e A e A et j t j t= +− −a β β( )1 2
	

or, in a readily derived sinusoidal form,

i e A t A tt= +−a β β( cos sin )3 4 	

EXAMPLE 8.3 Repeat Example 8.1 for C = 1 µF.
As before,

a w β= = = = = − =− −R
L LC2 1000

1
10 10 10 30001

0
2 7 2 7 6s s raddd/s 	

Then, i e A t A tt= +−1000
3 43000 3000( cos sin ) 	

The constants A3 and A4 are obtained from the initial conditions as before, i(0+) = 0 and uc(0
+) = 200 V. From this A3 = 0 and 

A4 = ±0.667. Thus,

i e tt= ± −0 667 30001000. (sin ) ( )A 	

See Fig. 8-6. The function ±0.667e−1000t, shown dashed in the graph, provides an envelope within which the sine 
function is confined. The oscillatory current has a radian frequency of b (rad/s), but is damped by the exponential 
term e−at.

Fig. 8-6
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8.3 Parallel Rlc Circuit
The response of the parallel RLC circuit shown in Fig. 8-7 will be similar to that of the series RLC circuit, 
since a second-order differential equation can be expected. The node voltage method gives

 
υ υ υ
R L

dt C
d
dt

t

+ + =∫1
0

0

 (1)

Differentiating and dividing by C yields

 d

dt RC
d
dt LC

2

2
1

0
υ υ υ+ + = 	

A solution is of the form

 υ = +A e A e
s t s t

1 2
1 2  (2)

where s
RC RC LC1 = − + 



 − = − + −1

2
1

2
12

2
0
2a a w 	

 s
RC RC LC2 = − − 



 − = − − −1

2
1

2
12

2
0
2a a w 	

where a = 1/2RC and w0 1= / LC . Note that a, the damping factor of the transient, differs from a in the 
series RLC circuit.

Fig. 8-7

The transient response is easiest to visualize by assuming an initial charge Q0 on the capacitor and a switch 
that closes at t = 0. However, a step function voltage applied to the circuit will initiate the same transient 
response.

Overdamped Case (`	2 > v0 
2)

In this case, the solution (2) applies.

EXAMPLE 8.4 A parallel RLC circuit, with R = 1000 Ω, C = 0.167 µF, and L = 1.0 H, has an initial voltage V0 = 50.0 V 
on the capacitor. Obtain the voltage u(t) when the switch is closed at t = 0.

We have

 a a w= = = × = = ×1
2 2994 8 96 10

1
5 99 102 6

0
2 6

RC LC
. . 	
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Since a w2 > 0
2, the circuit is overdamped and from (2) we have

s s1
2

0
2

2
2

0
21271 4717= − + − = − = − − − = −a a w a a wand 	

At t = 0, V A A
d
dt

s A s A
t0 1 2 0 1 1 2 2= + = +
=

and
υ

	

From the nodal equation (1), at t = 0 and with no initial current in the inductance L,

V
R

C
d
dt

d
dt

V
RCt

0

0

00+ = = −
=

υ υ
or 	

Solving for A1,

A
V s RC

s s
A V A1

0 2

2 1
1 0 1

1
155 3 50 0 1=

+
− = = − = −

( )
. .

/
and 5555 3 105 3. .= − 	

Substituting into (2)

υ = −− −155 3 105 31271 4717. . ( )e et t V 	

See Fig. 8-8.

Fig. 8-8

Underdamped (Oscillatory) Case (v0 
2 > `	2 )	

The oscillatory case for the parallel RLC circuit results in an equation of the same form as that of the under-
damped series RLC circuit. Thus,

υ w wa= −e A t A tt
d d( cos + sin )1 2 	 (3)

where a = 1/2RC and w w ad = −0
2 2 . wd	is a radian frequency just as was the case with sinusoidal circuit 

analysis. Here it is the frequency of the damped oscillation. It is referred to as the damped radian
frequency.
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EXAMPLE 8.5 A parallel RLC circuit, with R = 200 Ω, L = 0.28 H, and C = 3.57 µF, has an initial voltage V0 = 50.0 V 
on the capacitor. Obtain the voltage function when the switch is closed at t = 0.

 a a w= =
×

= = × =−
1

2
1

2 200 3 57 10
700 4 9 106

2 5
0
2

RC ( )( . )
.

11 1

0 28 3 57 10
106

6

LC
=

×
=−( . )( . )

	

Since w a0
2 2> , the circuit parameters result in an oscillatory response.

 w w ad = − = − × =0
2 2 6 510 4 9 10 714( . ) 	

At t = 0, V0 = 50.0; hence in (3) A1 = V0 = 50.0. From the nodal equation

 

V
R L

dt C
d
dt

d
dt

V
RC

t

t

0

0

0

0

1
0+ + =

= −

∫
=

υ υ

υ

	

at t = 0,
Differentiating the expression for u and setting t = 0 yields

 
d
dt

A A A A
V
RCt d d

υ w a w a
=

= − − = −
0 2 1 2 1

0or 	

Since A1 = 50.0,

 A
V RC V

d
2

0 0 49 0=
− +

= −
( )

.
/ a

w 	

and so υ = −−e t tt700 50 0 714 49 0 714( . cos . sin ) 	(V)

The critically damped case will not be examined for the parallel RLC circuit, since it has little or no real 
value in circuit design. In fact, it is merely a curiosity, since it is a set of circuit constants whose response, 
while damped, is on the verge of oscillation.

8.4 Two-Mesh Circuit
The analysis of the response for a two-mesh circuit which contains two storage elements results in simultane-
ous differential equation as shown in the following.

For the circuit of Fig. 8-9, choose mesh currents i1 and i2, as indicated. KVL yields the two first-order 
differential equations

 R i L
di
dt

R i V1 1 1
1

1 2+ + =  (4)

 R i R R i L
di
dt

V1 1 1 2 2 2
2+ + + =( )  (5)

Fig. 8-9
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which must be solved simultaneously. To accomplish this, take the time derivative of (4),

R
di
dt

L
d i

dt
R

di
dt1

1
1

2
1
2 1

2 0+ + =  (6)

and then eliminate i2 and di2/dt between (4), (5), and (6). The following result is a second-order equation for 
i1, of the types treated in Sections 8.2 and 8.3, except for the constant term on the right:

d i

dt

R L R L R L
L L

di
dt

R R
L L

i
2

1
2

1 1 2 1 1 2

1 2

1 1 2

1 2
1+

+ +
+ =

RRR V
L L

2

1 2

(7)

The steady-state solution of (7) is evidently i1(∞) = V/R1; the transient solution will be determined by the 
roots s1 and s2 of

	 	 s
R L R L R L

L L
s

R R
L L

2 1 1 2 1 1 2

1 2

1 2

1 2
0+

+ +
=+ 		

together with the initial conditions

i
di
dt

V
L1

+
0

(0 ) 0 =+= 1

1
	

(both i1 and i2 must be continuous at t = 0). Once the expression for i1 is known, that for i2 follows from (4).
There will be a damping factor that insures the transient will ultimately die out. Also, depending on the 

values of the four circuit constants, the transient can be overdamped or underdamped, which is oscillatory. 
In general, the current expression will be

i
V
R1

1
= (transient) + 	

The transient part will have a value of −V/R1 at t = 0 and a value of zero as t → ∞.

8.5 Complex Frequency
We have examined circuits where the driving function was a constant (e.g., V = 50.0 V), a sinusoidal function 
(e.g., u = 100.0 sin (500t + 30°) (V), or an exponential function, e.g., u = 10e−5t (V). In this section, we intro-
duce a complex frequency, s, which unifies the three functions and will simplify the analysis, whether the 
transient or steady-state response is required.

We begin by expressing the exponential function in the equivalent cosine and sine form:

e t j tj t( ) cos ( ) sin ( )w φ w φ w φ+ = + + + 	

We will focus exclusively on the cosine term cos (w t + f) = Re ej(wt+f) and for convenience drop the prefix Re. 
Introducing a constant A and the factor es t,

Ae e Ae t Ae e Aet j t t j j t jσ w φ σ φ σ w φw φ( ) ( )cos ( )+ +⇒ + = ee jts where s = +σ w 	

The complex frequency s = s + jw has units s−1, and w, as we know, has units rad/s. Consequently, the 
units on s must also be s−1. This is the neper frequency with units Np/s. If both s and w are nonzero, the 
function is a damped cosine. Only negative values of s are considered. If s and w are zero, the result is a 
constant. And finally, with w = 0 and s nonzero, the result is an exponential decay function. In Table 8-1, 
several functions are given with corresponding values of s for the expression Aest.

When Fig. 8-10 is examined for various values of s, the three cases are evident. If s = 0, there is no damp-
ing and the result is a cosine function with maximum values of ±Vm (not shown). If w = 0, the function is 
an exponential decay with an initial value Vm. And finally, with both w and s nonzero, the damped cosine 
is the result.
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8.6 Generalized Impedance (R, l, c) in s-Domain
A driving voltage of the form u = Vmest applied to a passive network will result in branch currents and 
voltages across the elements, each having the same time dependence est; e.g., Iae

jy est, and Vbe
jfest. Con-

sequently, only the magnitudes of currents and voltages and the phase angles need be determined (this will 
also be the case in sinusoidal circuit analysis in Chapter 9). We are thus led to consider the network in the 
s-domain (see Fig. 8-11).

Table 8-1

f (t) s A

10e−5t −5 + jq 10

5 cos (500t + 30°)  0 + j500 5

2e−3t cos (100t − 45°) −3 + j100 2

100.0  0 + j0 100.0

Fig. 8-10

Fig. 8-11

A series RL circuit with an applied voltage u = Vmejfest will result in a current i = ImeJy est = Imest, which, 
substituted in the nodal equation

 Ri L
di
dt

V e em
j t+ = φ s 	
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will result in

RI L
m

t
m

t
m

j t
m

m
j

e I e V e e I
V es s ss= from which= =φ

φ

RR L+ s 	

Note that in the s-domain the impedance of the series RL circuit is R + sL. The inductance therefore has 
an s-domain impedance sL.

EXAMPLE 8.6 A series RL circuit, with R = 10 Ω and L = 2 H, has an applied voltage u = 10 e−2t cos (10t + 30°).
Obtain the current i by an s-domain analysis.

υ = = + = +10 30 10 2/ � e Ri L
di
dt

i
di
dt

st 	

Since i = Iest,

10 30 10 2
10 30
10 2/ /�

�
e Ie Ie It t ts s s= + = +s

s
or 	

Substituting s = −2 + j10,

I
j j

= + − + = + = −10 30
10 2 2 10

10 30
6 20 0 48 43 3/ / /� �

( ) . . ��� 	

Then, i = Iest = 0.48e−2t cos(10t − 43.3°) (A).

EXAMPLE 8.7 A series RC circuit, with R = 10 Ω and C = 0.2 F, has the same applied voltage as in Example 8.6. 
Obtain the current by an s-domain analysis.

As in Example 8.6,

υ = = + = + ∫∫10 30
1

10 5/ � e Ri
C

i dt i i dtts 	

Since i = Iest,

10 30 10
5 10 30

10/ /
�

�
e Ie Ie It t ts s s

s= + = +from which 555 1 01 32 8/s = . ./ � 	

Then, i = 1.01e−2t cos (10t + 32.8°) (A).
Note that the s-domain impedance for the capacitance is 1/(sC). Thus the s-domain impedance of a series RLC circuit 

will be Z(s) = R + sL + 1/(sC).

8.7 Network Function and Pole-Zero Plots
A driving voltage of the form u = Vest applied to a passive network will result in currents and voltages 
throughout the network, each having the same time function est; for example, Iejy est. Therefore, only the 
magnitude I and phase angle y need be determined. We are thus led to consider an s-domain where voltages 
and currents are expressed in polar form, for instance, V /θ , I /ψ , and so on. Figure 8-12 suggests the cor-
respondence between the time-domain network, where s = s + jw, and the s-domain where only magnitudes 
and phase angles are shown. In the s-domain, inductances are expressed by sL and capacitances by 1/(sC). 
The impedance in the s-domain is Z(s) = V(s)/I(s).

A network function H(s) is defined as the ratio of the complex amplitude of an exponential output Y(s) to 
the complex amplitude of an exponential input X(s) If, for example, X(s) is a driving voltage and Y(s) is the 
output voltage across a pair of terminals, then the ratio Y(s)/X(s) is nondimensional.

The network function H(s) can be derived from the input-output differential equation

a
d y

dt
a

d y

dt
a

dy
dt

a y b
d

n

n

n n

n

n m

m

+ + + + =−

−

−1

1

1 1 0
. . . xxx

dt
b

d x

dt
b

dx
dt

b xm m

m

m+ + + +−

−

−1

1

1 1 0
. . . 	
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When x(t) = Xest and y(t) = Yest,

 ( . . . ) (a a a a e b bn
n

n
n

m
m

m
ms s s s ss+ + + + = +−

−
−

−
1

1
1 0 1

t 11
1 0+ + +. . . )b b es st 	

Then,

 H s
Y s
X s

s s s

s
( )

( )
( )= =

+ + + +
+

−
−a a a a

b
n

n
n

n

m
m

1
1

1 0
. . .

bb b bm
m

−
− + + +1

1
1 0s s. . . 	

In linear circuits made up of lumped elements, the network function H(s) is a rational function of s and 
can be written in the following general form

 H s
s z s z s z
s p s p( ) 1 2

1 2
=

− − −
− −k

( )( ) . . . ( )

( )( ) . . . (
µ

ss p− ν ) 	

where k is some real number. The complex constants zm (m = 1, 2, . . . , µ), the zeros of H(s), and the 
pn (n = 1, 2, . . ., u) the poles of H(s), assume particular importance when H(s) is interpreted as the ratio of 
the response (in one part of the s-domain network) to the excitation (in another part of the network). Thus, 
when s = zm, the response will be zero, no matter how great the excitation; whereas, when s = pn, the response 
will be infinite, no matter how small the excitation.

EXAMPLE 8.8 A passive network in the s-domain is shown in Fig. 8-13. Obtain the network function for the current 
I(s) due to an input voltage V(s).

Fig. 8-12

Fig. 8-13
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H s
I s
V s Z s( )

( )
( ) ( )= = 1 	

Since Z s

s
s

s
s

s
( ) = +













+
= +

2 5

5
3

20

5
3

20 2 5
2

. ( . )
888

122
s

s

+
+

12 	

we have

H s
s

s s( ) = +
+ +( . ) ( )( )0 4

12
2 6

2
	

The numerator of H(s) in Example 8.8 is zero when s = ± j 12 . Consequently, a voltage function at this frequency 
results in a current of zero. In Chapter 12 where series and parallel resonance are discussed, it will be found that the 
parallel LC circuit is resonant at w = 1/ LC . With L = 5

3 H	and C = 1
20 F, w = 12 rad/s.

The zeros and poles of a network function H(s) can be plotted in a complex s-plane. Figure 8-14 shows the poles 
and zeros of Example 8.8, with zeros marked 	and poles marked ×. The zeros occur in complex conjugate pairs, 
s = ± j 12, and the poles are s = −2 and s = −6.

Fig. 8-14

8.8 The Forced Response
The network function can be expressed in polar form and the response obtained graphically. Before starting 
the development, it is helpful to recall that H(s) is merely a ratio such as V0(s)/Vi(s), I2(s)/V1(s), or 
I2(s)/I1(s). With the polynomials factored,

H s
s z s z s z
s p s z( )

) ( )2

1 2
=

− − −
− −k

( )( . . .

( )( ) . . . (
1 µ

ss p− v ) 	

Now setting ( )s z− =m m mN �a 	(m = 1, 2, . . . , m) and ( )s p− =n n nD �β 	(n = 1, 2, . . . , u), we have

H s( ) = k
N N N

D D

( )( ) . . . ( )

( )( )

1 1 2 2

1 1 2 2

� � �
� �

a a a

β β
µ

... . . ( )

. . .

. . . ( . . . )
D

k
N N N

D D D
v v�

�β
aµ a µ= + + −1 2

1 2
1 ((( . . . )β β1 + + v 	

It follows that the response of the network to an excitation for which s = s + jw is determined by measuring 
the lengths of the vectors from the zeros and poles to s as well as the angles these vectors make with the 
positive s axis in the pole-zero plot.
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EXAMPLE 8.9 Test the response of the network of Example 8.8 to an exponential voltage excitation u = 1est, where 
s = 1 Np/s.

Locate the test point 1 + j0 on the pole-zero plot. Draw the vectors from the poles and zeros to the test point and 
compute the lengths and angles (see Fig. 8-15). Thus,

 N N D D1 2 1 2 1 2 1 2
113 3 7 0 1= = = = = = = − = −, , , ,β β a aand tan 22 73 9= °. 	

Hence, H( ) ( . )
( )( )

( )( ) .1 0 4
13 13

3 7 0 0 0 248= − =/ � � 	

Fig. 8-15

The result implies that, in the time domain, i(t) = 0.248u(t), so that both voltage and current become 
infinite according to the function e1t. For most practical cases, s must be either negative or zero.

The above geometrical method does not seem to require knowledge of the analytic expression for H(s) 
as a rational function. It is clear, however, that the expression can be written, to within the constant factor k, 
from the known poles and zeros of H(s) in the pole-zero plot. See Problem 8.37.

8.9 The Natural Response
This chapter has focused on the forced or steady-state response, and it is in obtaining that response that the 
complex-frequency method is most helpful. However, the natural frequencies, which characterize the 
transient response, are easily obtained. They are the poles of the network function.

EXAMPLE 8.10 The same network as in Example 8.8 is shown in Fig. 8-16. Obtain the natural response when a source 
V(s) is inserted at xx′.

Fig. 8-16
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The network function is the same as in Example 8.8:

H s( )
s

s s= +
+ +( . ) ( )( )0 4

12
2 6

2
	

The natural frequencies are then −2 Np/s and −6 Np/s. Hence, in the time domain, the natural or transient current is of 
the form

i A e A en
t t= +− −

1
2

2
6 	

where the constants A1 and A2 are determined by applying the initial conditions to the complete response, i = in + if , 
where if indicates the forced response.

EXAMPLE 8.11 The network of Fig. 8-16 is driven by current I(s) across terminals yy′. The network function is 
H(s) = V(s)/I(s) = Z(s). The three branches are in parallel so that

H s Z s

s
s

s
s s( ) ( )

1
1

2.5 +
3
5 + 20

=
20

( 2)( 6)= = + +
	

Again the poles are at −2 Np/s and −6 Np/s, which is the same result as that obtained in Example 8.10.

8.10 Magnitude and Frequency Scaling

Magnitude Scaling
Let a network have input impedance function Zin(s), and let Km be a positive real number. Then, if each 
resistance R in the network is replaced by KmR, each inductance L by KmL, and each capacitance C by 
C/Km, the new input impedance function will be KmZin(s). We say that the network has been magnitude-
scaled by a factor Km.

Frequency Scaling
If, instead of the above changes, we preserve each resistance R, replace each inductance L by L/Kf (Kf > 0), 
and replace each capacitance C by C/Kf , then the new input impedance function will be Zin(s/Kf). That is, the 
new network has the same impedance at complex frequency Kf s as the old had at s. We say that the network 
has been frequency-scaled by a factor Kf .

EXAMPLE 8.12 Express Z(s) for the circuit shown in Fig. 8-17 and observe the resulting magnitude scaling.

Z s s

s

s
s

( )
/= +

+
= + +K L

K R
K
C

K R
K
C

K L
R C

Rm
m

m

m
m

ms
( ) ( )

(
1

111/Cs)






		

Fig. 8-17
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There are practical applications suggested by this brief exposure to magnitude scaling. For example, if the input current  
to a network were greater than it should be, a factor Km = 10 would reduce the current to 1/10 of the former value.

8.11 Higher-Order Active Circuits
Application of circuit laws to circuits which contain op amps and several storage elements produces, in 
general, several first-order differential equations which may be solved simultaneously or be reduced to a 
higher-order input-output equation. A convenient tool for developing the equations is the complex frequency 
s (and generalized impedance in the s-domain) as used throughout Sections 8.5 through 8.10. Again, we 
assume ideal op amps (see Section 7.16). The method is illustrated in the following examples.

EXAMPLE 8.13 Find H(s) = V2/V1 in the circuit of Fig. 8-41 and show that the circuit becomes a noninverting integrator 
if and only if R1C1 = R2C2.

Apply voltage division, in the phasor domain, to the input and feedback paths to find the voltages at the terminals 
of the op amp.

 
At terminal A:

At terminal B:

V
R C s

V

V
R

A

B

= +

=

1
1 1 1

1

22 2

2 2
21

C s
R C s

V+

	

But VA = VB. Therefore,

 V
V

R C s
R C s R C s

2

1

2 2

1 1 2 2

1
1=

+
+( )

	

Only if R1C1 = R2C2 = RC do we get an integrator with a gain of 1/RC

 
V
V RCs RC

dt
t

2

1
2 1

1 1= =
−∞∫, υ υ 	

EXAMPLE 8.14 The circuit of Fig. 8-42 is called an equal-component Sallen-Key circuit. Find H(s) = V2/V1 and 
convert it to a differential equation.

Write Kirchhoff’s current law (KCL) at nodes A and B.

 
At node A:

At node B:

V V
R

V V
R

V V CsA A B
A

−
+

−
+ − =1

2 0( )

VV V
R

V CsB A
B

−
+ = 0

	

Let 1 + R2/R1 = k, then V2 = kVB. Eliminating VA and VB between the above equations we get

 

V
V

k

R C s k RCs

R C
d

dt
k RC

d

2

1
2 2 2

2 2
2

2
2

3 1

3

=
+ − +

+ −

( )

( )
υ υυ

υ υ2
2 1dt

k+ =

	

EXAMPLE 8.15 In the circuit of Fig. 8-42 assume R = 2 kΩ, C = 10 nF, and R2 = R1. Find u2 if u1 = u(t).
By substituting the element values in H(s) found in Example 8.14 we obtain

 

V
V s s

d

dt

d
dt

2

1
10 2 5

2
2

2
4 2

2

4 10 2 10 1

5 10

=
× + × +

+ ×

− −

υ υ
++ × = ×25 10 5 108

2
9

1υ υ
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The response of the preceding equation for t > 0 to u1 = u(t) is

υ w wa a
2 2 2 2 31 2 3 055= + − = +− −e t t et t( cos . sin ) . cos (wwwt + °130 9. ) 	

where a = 25 000 and w = 21 651 rad/s.

EXAMPLE 8.16 Find conditions in the circuit of Fig. 8-42 for sustained oscillations in u2(t) (with zero input) and 
find the frequency of oscillations.

In Example 8.14 we obtained

V
V

k

R C s k RCs
2

1
2 2 2 3 1

=
+ − +( )

	

For sustained oscillations the roots of the characteristic equation in Example 8.14 should be imaginary numbers. This 
happens when k = 3 or R2 = 2R1, in which case w = 1/RC.

SOLvED PRObLEMS

8.1. A series RLC circuit, with R = 3 kΩ, L = 10 H, and C = 200 µF, has a constant-voltage source, V = 50 V, 
applied at t = 0. (a) Obtain the current transient, if the capacitor has no initial charge. (b) Sketch the 
current and find the time at which it is a maximum.

(a) a w β a w= = = = = − =− − −R
L LC2 150

1
500 148 31

0
2 2 2

0
2 1s s s. 	

The circuit is overdamped (a > w0).

s s1
1

2
11 70 298 3= − + = − = − − = −− −a β a β. .s s 	

and i A e A et t= +− −
1

1 70
2

298 3. . 	

Since the circuit contains an inductance, i(0+) = i(0−) = 0; also, Q(0+) = Q(0−) = 0. Thus, at t = 0+, 
Kirchhoff’s voltage law (KVL) gives

0 0 5
0 0

+ + = = =+ +L
di
dt

V
di
dt

V
L

or A/s 	

Applying these initial conditions to the expression for i,

0 1 1

5 1 70 1 298 3 1

1 2

1 2

= +

= − −

A A

A A

( ) ( )

. ( ) . ( )
	

from which A1 = −A2 = 16.9 mA.

i e et t= −− −16 9 1 70 298 3. ( ) ( ). . mA 	

(b) For the time of maximum current,

di
dt

e et t= = − +− −0 28 73 5041 31 70 298 3. .. . 	

Solving by logarithms, t = 17.4 ms. See Fig. 8-18.
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 8.2. A series RLC circuit, with R = 50 Ω, L = 0.1 H, and C = 50 µF, has a constant voltage V = 100 V applied 
at t = 0. Obtain the current transient, assuming zero initial charge on the capacitor.

 a w β a w= = = = × = − =− −R
L LC

j2 250
1

2 0 10 3701
0
2 5 2 2

0
2s s. ..8 rad/s 	

This is an oscillatory case (a < w0), and the general current expression is

 i e A t A tt= +−250
1 2370 8 370 8( cos . sin . ) 	

The initial conditions, obtained as in Problem 8.1, are

 i
di
dt

( )0 0 1000
0

+ = =+ A/s 	

and these determine the values: A1 = 0, A2 = 2.70 A. Then

 i e tt= −250 2 70 370 8( . sin . ) ( )A 	

 8.3. Rework Problem 8.2, if the capacitor has an initial charge Q0 = 2500 µC.
Everything remains the same as in Problem 8.2 except the second initial condition, which is now

 0
100 2500 50

0 1 50
0

0

0
+ + = = − =+ +L

di
dt

Q
C

V
di
dt

or
/( )

. 00 A/s 	

The initial values are half those in Problem 8.2, and so, by linearity,

 i e tt= −250 1 35 370 8( . sin . ) ( )A 	

 8.4. A parallel RLC network, with R = 50.0 Ω, C = 200 µF, and L = 55.6 mH, has an initial charge Q0 = 5.0 mC 
on the capacitor. Obtain the expression for the voltage across the network.

 a w= = = = ×− −1
2 50

1
8 99 101

0
2 4 2

RC LC
s s. 	

Since w a0
2 2> , the voltage function is oscillatory and so w w ad = = 296 rad/s0

2 2− . The general voltage 
expression is

 υ = +−e A t A tt50
1 2296 296( cos sin ) 	

Fig. 8-18
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with Q0 = 5.0 × 10−3C, V0 = 25.0 V. At t = 0, u = 25.0 V.  Then, A1 = 25.0.

d
dt

e A t A t et tυ = − + +− −50 296 296 29650
1 2

50( cos sin ) ((( sin cos )− +A t A t1 2296 296 	

At t = 0, du/dt = −V0/RC = wdA2 − aA1, from which A2 = −4.22. Thus,

υ = −−e t tt50 ( . cos . sin )25 0 296 4 22 296 	(V)

8.5. In Fig. 8-19, the switch is closed at t = 0. Obtain the current i and capacitor voltage uC, for t > 0.

Fig. 8-19

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,

τ = = =R Ceq F s( )( )5 2 10Ω µ µ 	

By continuity, uC(0+) = uC(0−) = 0. Furthermore, as t → ∞, the capacitor becomes an open circuit, leaving 
20 Ω in series with the 50 V. That is,

i C( ) . ( ) ( . )( )∞ = = ∞ = Ω =50
20 2 5 2 5 10 25A A Vυ 	

Knowing the end conditions on uC, we can write

υ υ υ υτ
C C C

t
C

te e= − ∞ + ∞ = −+ − −[ ( ) ( )] ( ) ( )/ /0 25 1 10 	(V)

wherein t is measured in µs.
The current in the capacitor is given by

i C
d
dt

eC
C t= = −υ

5 10/ ( )A 	

and the current in the parallel 10-Ω resistor is

i eC t
10

10

10Ω 2 5 1Ω= = − −υ
. ( ) ( )/ A 	

Hence, i i i eC
t= + = + −

10
102 5 1Ω . ( ) ( )/ A 	

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-
ential equations.

8.6. For the time functions listed in the first column of Table 8-2, write the corresponding amplitude and 
phase angle (cosine-based) and the complex frequency s.

See columns 2 and 3 of the table.
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 8.7. For each amplitude and phase angle in the first column and complex frequency s in the second column 
in Table 8-3, write the corresponding time function.

See column 3 of the table.

Table 8-2

Time Function A /φ� s

i t( ) . (= 86 6 A)  86 6 0. / � A 	 0

i t e t( ) 15.0 A= − ×2 103

( ) 	15.0 A/0� 	 −2 × 103 Np/s

υ( ) 25.0 cos (250 Vt t= − °45 ) ( )    25.0 45 V/− � ± j250 rad/s

υ( ) 0.50 sin (250 Vt t= + °30 ) ( ) 			0.50 60 V/− � 	 ± j250 rad/s

i t e tt( ) 5.0 A= + °−100 50 90sin ( ) ( ) 			 5 0 0. / � A −100 ± j50 s−1

i t t t( ) sin 50 A= +3 50 4cos ( ) 	 5 A/−53 13. � ± j50 rad/s

Table 8-3

A /φ� s Time Function 

10 0/ � +j120p 10 cos 120pt

2 45/ � −j120p 2 cos (120 pt + 45°)

5 90/− � −2 ± j50 5e−2t cos (50t − 90°)

15 0/ � −5000 ± j1000 15e−5000t cos 1000t

100 30/ � 0 86.6

 8.8. An amplitude and phase angle of 1 V0 2 45/ � 	has an associated complex frequency s = −50 + j 100s−1. 
Find the voltage at t = 10 ms.

 υ( ) cos ( ) ( )t e tt= + °−10 2 100 4550 V 	

At t = 10−2s, 100t = 1 rad = 57.3°, and so

 υ = ° = −−10 2 102 3 1 830 5e . cos . . V 	

 8.9. A passive network contains resistors, a 70-mH inductor, and a 25-µF capacitor. Obtain the respective 
s-domain impedances for a driving voltage (a) u = 100 sin (300t + 45°) (V), (b) u = 100e−100t

 cos 300t (V).
(a) Resistance is independent of frequency. At s = j300 rad/s, the impedance of the inductor is

 sL j j= × =−( )( )300 70 10 213 	

 and that of the capacitor is

 1
133 3sC
j= − . 	

(b) At s = −100 + j300 s−1,

 
s

s

L j j

C j

= − + × = − +

=
− +

−( )( )

(

100 300 70 10 7 21

1 1

100 3

3

000 25 10
40 1206)( )×

= − −− j
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8.10. For the circuit shown in Fig. 8-20, obtain u at t = 0.1 s for source current (a) i = 10 cos 2t (A),   
(b) i = 10e−t cos 2t (A).

	 Z s
s

s
s
sin

+ 2
+

+3
+ 4( )

( )
( )= + =2

2
4 4 	

(a) At s Z= =j j2 2 3 22 7 13rad/s, in ( ) . ./ � Ω. Then,

  V IZ= = = =in V or( )( . . ) . .10 0 3 22 7 13 32 2 7 13 3/ / /� � � υ 222 2 2 7 13. cos ( . ) ( )t + ° V

   and υ(0.1) V= ° =32 2 18 59 30 5. cos ( . ) . .

(b) At s Z= − + − + =−1 2 1 2 3 14 11 311j js in, ( ) . ./ � Ω. Then 

  V = = = +−IZin V or31 4 11 31 31 4 2 11 31. . . cos ( ./ � �υ e tt ))) ( )V

   and υ(0.1) V= =−31 4 22 77 26 20 1. cos . ..e � .

Fig. 8-20 Fig. 8-21

8.11. Obtain the impedance Zin(s) for the circuit shown in Fig. 8-21 at (a) s = 0, (b) s = j4 rad/s, (c) |s| = ∞.

Z s

s s

s s

s s
in

2+ 1

+ 1) +

+ 3 + 4
( )

( )

(
( )= +







=2

2
4

2
4 2

sss s2 + 2+
	

(a) Zin (0) = 4 Ω, the impedance offered to a constant (dc) source in the steady state.

(b)   Zin ( )
( ) ( )

( )
. .j

j j

j j
4 2

4 3 4 4

4 4 2
2 33 29 0

2

2= + +
+ +

= −/ 555� Ω 	

This is the impedance offered to a source sin 4t or cos 4t.

(c) Zin(∞) = 2 Ω. At very high frequencies the capacitance acts like a short circuit across the RL branch.

8.12. Express the impedance Z(s) of the parallel combination of L = 4 H and C = 1 F. At what frequencies s
is this impedance zero or infinite?

Z s
s s

s s
s

s
( )

/
+ (1/ ) 2= =

+
( ) ( )

.

4 1
4 0 25

	

By inspection, Z(0) = 0 and Z(∞) = 0, which agrees with our earlier understanding of parallel LC circuits 
at frequencies of zero (dc) and infinity. For |Z(s)| = ∞,

s s2 or rad/s+ = = ±0 25 0 0 5. .j 	

A sinusoidal driving source, of frequency 0.5 rad/s, results in parallel resonance and an infinite 
impedance.
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8.13. The circuit shown in Fig. 8-22 has a voltage source connected at terminals ab. The response to the 
excitation is the input current. Obtain the appropriate network function H(s).

 

H s
I s
V s Z s

Z s

( )
response

excitation
( )
( ) ( )= = ≡

=

1

( ) 22
2 1 1
2 1

8
3+ +

+ = =( )( )/
/ +1

+3
+1 from which ( )

s
s

s
s H s

11 3
8Z s

s
s( ) = +1

+3

	

Fig. 8-22 Fig. 8-23

8.14. Obtain H(s) for the network shown in Fig. 8-23, where the excitation is the driving current I(s) and the 
response is the voltage at the input terminals.

Applying KCL at junction a,

 I s I s
s

V s s s I s( ) ( ) or ( )+ = ′ =2 5
15

( ) ( )V' 	

At the input terminals, KVL gives

 V s I s V s s s I s( ) ( ) ( ) ( )= + ′ = +



2 2

15
s 	

Then H s
V s
I s

s
s( ) = = +( )

( )

22 15 	

8.15. For the two-port network shown in Fig. 8-24 find the values of R1, R2, and C, given that the voltage 
transfer function is

 H s
V s
V s s sυ ( )

( )
( )

.≡ =
+

o

i

0 2

32 + 2
	

Fig. 8-24

The impedance looking into xx′	is

 ′
+

+ +
+

+ +Z
s
s=
/
/ =

( )( )
( ) ( )
1
1 1

1 2

1 2

1 2

1 2

C R R
C R R

R R
R R CCs 	
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Then, by repeated voltage division,

V
V

V
V

V
V

o

i

o

xx

xx

i

R
R R

= 











= +




′

′ 2

1 2

′′
′ +





 =

+

+ +

Z
Z s

s s
1 1 1

2 1 2

2

1 2

R R R C

R R C C

/

+

( )

( )

	

Equating the coefficients in this expression to those in the given expression for Hu(s), we find:

C R R= = =1
2

3
5

1
151 2F Ω Ω 	

8.16. Construct the pole-zero plot for the transfer admittance function

H s
I s
V s

s s

s s
( )

( )
( )= = +

+
o

i

2

2
+ 17

+ 2

2

3
	

In factored form,

H s
s s

s s( )
( )( )

( )( )= + + + −
+

1
+

4 1 4
1 2

j j 	

Poles exist at −1 and −2; zeros at −1 ± j4. See Fig. 8-25.

Fig. 8-25

8.17. Obtain the natural frequencies of the network shown in Fig. 8-26 by driving it with a conveniently 
located current source.

Fig. 8-26
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The response to a current source connected at xx′	is a voltage across these same terminals; hence the 
network function H(s) = V(s)/I(s) = Z(s). Then,

 
1 1

1
1

2
1

2 4
1
2

2 5 1 5
0

2

Z s s s
s

s( )
. .

.= + + + = 





+
+/

+s
55 	

Thus, Z s
s

s s

s
s s( ) ( )

.

. .
( )

.
( )( .= +

+ +
= +

+ +2
0 5

2 5 1 5
2

0 5
1 12 55)

	

The natural frequencies are the poles of the network function, s = −1.0 Np/s = 2 and s = −1.5 Np/s.

8.18. Repeat Problem 8.17, now driving the network with a conveniently located voltage source.
The conductor at yy′	 in Fig. 8-26 can be opened and a voltage source inserted. Then, H(s) = 

I(s)/V(s) = 1/Z(s).
The impedance of the network at terminals yy′	is

 Z s s
s

s
s s

s( )
( )

( )
.= + + + = +

2 4
1 2
1 2 4

2 5/
/

+ 1.5
+ 2

2

	

Then, H s s
s

s s
( )

.
= = 



 +

1 1
4 2 5Z( )

+ 2

+ 1.52 	

The denominator is the same as that in Problem 8.17, with the same roots and corresponding natural 
frequencies.

8.19. A 5000-rad/s sinusoidal source, V = 1 V00 0/ � 	in phasor form, is applied to the circuit of Fig. 8-27. 
Obtain the magnitude-scaling factor Km and the element values which will limit the current to 89 mA 
(maximum value).

At w = 5000 rad/s,

 
Zin = +

+





+ +

=

j L
j L R

j C

j L R
j C

j

w
w w

w w
1

2

2

1

1

0 2

( )

. 550
0 500 0 40 0 80

0 40 0 30 1 124 69+ −
− =( . )( . . )

. . .
j j

j / ..15� Ω

	

For |V| = 100 V, |I| = 100/1.124 = 89.0 A. Thus, to limit the current to 89 × 10−3 A, the impedance must be 
increased by the factor Km = 103.

The scaled element values are as follows: R = 103 (0.4 Ω ) = 400 Ω, L1 = 103 (50 µH) = 50 mH, L2 =  
103 (100 µH) = 100 mH, and C = (250 µF)/103 = 0.250 µF.

8.20. Refer to Fig. 8-28. Obtain H(s) = Vo/Vi for s = j4 × 106 rad/s. Scale the network with Km = 10−3 and 
compare H(s) for the two networks.

Fig. 8-27 Fig. 8-28
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At w = 4 × 106 rad/s, XL = (4 × 106)(0.5 × 10−3) = 2000 Ω. Then,

H s
V
V( ) = = + =o

i

j
j

2000
2000 2000

1
2

45/ � 	

After magnitude scaling, the inductive reactance is 10−3 (2000 Ω) = 2 Ω and the resistance is 10−3 (2 kΩ) =
2 Ω. Thus,

H s( ) = + =j
j

2
2 2

1
2

45/ � 	

The voltage transfer function remains unchanged by magnitude scaling. In general, any dimensionless 
transfer function is unaffected by magnitude scaling; a transfer function having units Ω is multiplied by Km; 
and a function having units S is multiplied by 1/Km.

8.21. A three-element series circuit contains R = 5Ω, L = 4 H, and C = 3.91 mF. Obtain the series resonant 
frequency, in rad/s, and then frequency-scale the circuit with Kf = 1000. Plot |Z(w)| for both circuits.

Before scaling,

w w0 0

1
8 5= = = =

LC
Rrad/s and Z( ) Ω 	

After scaling,

R L C= = = =5
4

1000 4
3 91

1000 3 91Ω H
= mH

mF
F

.
. µ 	

w w0 01000 8 8000 5= = = =( ) ( )rad/s rad/s Z R Ω 	

Thus, frequency scaling by a factor of 1000 results in the 5-Ω impedance value being attained at 8000 rad/s 
instead of 8 rad/s. Any other value of the impedance is likewise attained, after scaling, at a frequency 1000 
times that at which it was attained before scaling. Consequently, the two graphs of |Z(w)| differ only in the 
horizontal scale—see Fig. 8-29. (The same would be true of the two graphs of qZ(w).)

Fig. 8-29

SUPPLEMENTARy PRObLEMS

8.22. In the RLC circuit of Fig. 8-30, the capacitor is initially charged to V0 = 200 V. Find the current transient after the   
switch is closed at t = 0.  Ans. −2e−1000t sin 1000t (A)

8.23. A series RLC circuit, with R = 200 Ω, L = 0.1 H, and C = 100 µF, has a voltage source of 200 V applied at t = 0. 
Find the current transient, assuming zero initial charge on the capacitor.

Ans. 1.055(e−52t − e−1948t ) (A)
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8.24. What value of capacitance, in place of the 100 µF in Problem 8.23, results in the critically damped case?

 Ans. 10 µF

8.25. Find the natural resonant frequency, |b |, of a series RLC circuit with R = 200 Ω, L = 0.1 H, C = 5 µF.

 Ans. 1000 rad/s

8.26. A voltage of 10 V is applied at t = 0 to a series RLC circuit with R = 5 Ω, L = 0.1 H, C = 500 µF. Find the transient 
voltage across the resistance.  Ans. 3.60e−25t sin 139t (V)

8.27. In the two-mesh circuit shown in Fig. 8-31, the switch is closed at t = 0. Find i1 and i2, for t > 0.

 Ans. i1(t) = –0.051e−100t + 10.05e−9950t (A), i2 = −5.05e−100t + 5.00 + 0.05e−9950t (A)

8.28. A voltage has the s-domain representation 1 V00 30/ � . Express the time function for (a) s = −2Np/s,  
(b) s = −1 + j5s−1.  Ans. (a) 86.6e−2t (V); (b) 100e−t cos (5t + 30°) (V)

8.29. Give the complex frequencies associated with the current i(t) = 5.0 + 10e−3t cos (50t + 90°) (A).

 Ans.  0, −3 ± j50 s−1

8.30. A phasor current 25 /40�	A has complex frequency s = −2 + j3 s−1. What is the magnitude of i(t) at t = 0.2s?

 Ans. 4.51 A

8.31. Calculate the impedance Z(s) for the circuit shown in Fig. 8-32 at (a) s = 0, (b) s = j1 rad/s, (c) s = j2 rad/s,  
(d) |s| = ∞.  Ans. (a) 1Ω; (b) 1 58. ./18 43� Ω; (c) 1 84. ./12 53� Ω; (d) 2 Ω

Fig. 8-30 Fig. 8-31

8.32. The voltage source in the s-domain circuit shown in Fig. 8-33 has the time-domain expression

 υi
tt e t( ) cos= −10 2 (V) 	

 Obtain io(t).  Ans. 7.07e−t cos (2t + 98.13°) (A)

Fig. 8-32 Fig. 8-33
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8.33. In the time domain, a series circuit of R, L, and C has an applied voltage ui and element voltages uR, uL, and uC. 
Obtain the voltage transfer functions (a) V

r
(s)/Vi(s), (b) VC(s)/Vi(s).

Ans. ( ) ; ( )a
R L
R
L LC

b
LC

R
L LC

s

s s s s

/

+

1/

+2 21 1+ +
	

8.34. Obtain the network function H(s) for the circuit shown in Fig. 8-34. The response is the voltage Vi(s).

Ans. 	 ( . )( )
( )( )

s s
s s

+ −7 2 65j j+ 7 + 2.65
+ 2 + 4 	

Fig. 8-34

8.35. Construct the s-plane plot for the transfer function of Problem 8.34. Evaluate H(j3) from the plot.

Ans.  See Fig. 8-35.

( . )( . ) . .

( . )( . ) .

7 02 9 0 2 86 38 91

3 61 5 0 56 31
/
/

+
+

�

� 3336 87
3 50 51 41

.
. .

�
�= −/ Ω 	

Fig. 8-35

8.36. Obtain H(s) = Vi(s)/Ii(s) for the circuit shown in Fig. 8-36 and construct the pole-zero plot.

Ans. H s
s s

s
( ) =

+
( +1.5)2

2 1
. See Fig. 8-37.
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Fig. 8-36 Fig. 8-37

8.37. Write the transfer function H(s) whose pole-zero plot is given in Fig. 8-38.

 Ans. 	 H s
s s

s s
( ) = +

+
k

2

2
50

40

+ 400

+ 2000
	

8.38. The pole-zero plot in Fig. 8-39 shows a pole at s = 0 and zeros at s = −50 ± j50. Use the geometrical method to 
evaluate the transfer function at the test point j100.  

 Ans. H( ) . .j1 223 600 26 57= / �	

8.39. A two-branch parallel circuit has a resistance of 20 Ω in one branch and the series combination of R = 10 Ω and 
L = 0.1 H in the other. First, apply an excitation, Ii(s), and obtain the natural frequency from the denominator 
of the network function. Try different locations for applying the current source. Second, insert a voltage source, 
Vi(s), and obtain the natural frequency.  Ans. −300 Np/s in all cases

Fig. 8-38 Fig. 8-39

Ch08.indd   205 11/08/17   10:51 AM



CHAPTER 8  Higher-Order Circuits and Complex Frequency 206

8.40. In the network shown in Fig. 8-40, the switch is closed at t = 0. At t = 0+, i = 0 and

di
dt

= 25 A/s 	

Obtain the natural frequencies and the complete current, i = in + i=f .

Ans. −8.5 Np/s, −23.5 Np/s; i = −2.25e−8.5t −	0.25e−23.5t + 2.5 (A)

Fig. 8-40

8.41. A series RLC circuit contains R = 1 Ω, L = 2 H, and C = 0.25 F. Simultaneously apply magnitude and frequency 
scaling, with Km = 2000 and Kf = 104. What are the scaled element values?

Ans. 2000 Ω, 0.4 H, 12.5 µF

8.42. At a certain frequency w1, a voltage V1 25 V= /0� 	 applied to a passive network results in a current 
I1 3 85= −. / 30� 	 (A). The network elements are magnitude-scaled with Km = 10. Obtain the current which 
results from a second voltage source, V2 1 V= 0 45/ � , replacing the first, if the second source frequency is 
w2 = 103 w1.  Ans. 0 15.154 A/ � 	

8.43. In the circuit of Fig. 8-41 let R1C1 = R2C2 = 10−3 s. Find u2 for t > 0 if: (a) u1 = cos(1000t)u(t),   
(b) u1 = sin(1000t)u(t).  Ans. (a) u2 = sin (1000t); (b) u2 = 1 − cos(1000t)

8.44. In the circuit of Fig. 8-42 assume R = 2 kΩ, C = 10 nF, and R2 = R1 and u1 = cos wt. Find u2 for the following 
frequencies: (a) w0 = 5 × 104 rad/s, (b) w1 = 105 rad/s.

Ans. (a) u2 = 2 sin w0t; (b) u2 = 0.555 cos (w1t − 146.3°)

Fig. 8-42

Fig. 8-41
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8.45. Noninverting integrators. In the circuits of Fig. 8-43(a) and 8-43(b) find the relationship between u2 and u1.

 Ans. (a) u1 = (RC/2)du2/dt; (b) u1 = 2RCdu2/dt

Fig. 8-43

8.46. In the circuit of Fig. 8-44 find the relationship between u2 and u1. Show that for R1C1 = R2C2 we obtain 
u2 = R2u1/(R1 + R2).

 Ans. R R C
d
dt

R R R R C
d
dt

R1 2 1 2 1 2 2 1 2 1 2C( ) ( )+ + + = +
υ

υ
υ

υ2 1
11 	

Fig. 8-44

8.47. In the circuit of Fig. 8-44 let R1 = 9kΩ = 9R2, C2 = 100 pF = 9C1, and u1 = 104 t V. Find i at 1 ms after the switch 
is closed.  Ans. i = 1.0001 mA

8.48. Lead network. The circuit of Fig. 8-45(a) is called a lead network. (a) Find the differential equation relating 
u2 to u1. (b) Find the unit-step response of the network with R1 = 10 kΩ, R2 = 1 kΩ, and C = 1 µF. (c) Let u1 = 
cos w t be the input and u2 = A cos (w t + q) be the output of the network of part (b). Find A and q for w at 1, 100, 
331.6, 1100, and 105, all in rad/s. At what w is the phase at a maximum?

 Ans. ( ) , (a
d
dt

R R
R R C

d
dt R C

b
υ

υ
υ

υ2 1 2

1 2
2

1

1
1

1+
+





= + )) ( ) ( )υ2
11001

11 1 10= + −e u tt 	
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    (c)

Fig. 8-45

w 1 100 331.6 1100 105

A 0.091 0.128 0.3015 0.71 1

q 0.5° 39.8° 56.4° 39.8° 0.5°

Phase is maximum at w = =1 331 6 rad/s.00 11 . 	

8.49. Lag network. The circuit of Fig. 8-45(b) is called a lag network. (a) Find the differential equation relating u2
to u1. (b) Find the unit-step response of the network with R1 = 10 kΩ, R2 = 1 kΩ, and C = 1 µF. (c) Let u1 =
cos wt be the input and u2 = A cos(wt − q) be the output of the network of part (b). Find A and q for w at 1, 90.9, 
301.5, 1000, and 105, all in rad/s. At what w is the phase at a minimum?

Ans. = 1( ) ( ) , ( )a R R C
d
dt

R C
d
dt

bυ
υ

υ
υ

υ2 1 2
2

1 2
1

2+ + = + − 1110
11

90 91e u tt−





. ( ) 	

   (c) w 1 90.9 301.5 1000 105

A 1 0.71 0.3015 0.128 0.091

q 0.5° 39.8° 56.4° 39.8° 0.5°

Phase is minimum at w = =1 / 3 1 5 rad/s.000 11 0 . 	

8.50. In the circuit of Fig. 8-46 find the relationship between u2 and u1 for (a) k = 103, (b) k = 105. In each case find 
its unit-step response; that is, u2 for u1 = u(t).

Ans. ( ) , (a
d
dt

e tυ
υ υ υ2 6

2
7

1 2
4 104 10 4 10 10 1

6

+ × = − × = − − − × ))) ( )

( ) , (

u t

b
d
dt

e
υ

υ υ υ2 8
2

9
1 24 10 4 10 10 1+ × = − × = − − −444 109× t u t) ( )

	

Fig. 8-46
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CHAPTER 9

Sinusoidal Steady-State  
Circuit Analysis

9.1 Introduction
This chapter will concentrate on the steady-state response of circuits driven by sinusoidal sources. The 
response will also be sinusoidal. For a linear circuit, the assumption of a sinusoidal source represents no 
real restriction, since a source that can be described by a periodic function can be replaced by an equivalent 
combination (Fourier series) of sinusoids. This matter will be treated in Chapter 17.

9.2 Element Responses
The voltage-current relationships for the single elements R, L, and C were examined in Chapter 2 and 
summarized in Table 2-1. In this chapter, the functions of u and i will be sines or cosines with the argument 
w t. w is the angular frequency and has the unit rad/s. Also, w  = 2p f, where f is the frequency with unit 
cycle/s, or more commonly, hertz (Hz).

Consider an inductance L with i = I cos (w t + 45°) A [see Fig. 9-1(a)]. The voltage is

 υ ω ω ω ωL L
di
dt

t LI t= = − + = +LI[ sin ( cos ( (45 135� �)] ) VV)  

Fig. 9-1

A comparison of uL and i shows that the current lags the voltage by 90° or p /2 rad. The functions are 
sketched in Fig. 9-1(b). Note that the current function i is to the right of u, and since the horizontal scale is 
w t, events displaced to the right occur later in time. This illustrates that i lags n. The horizontal scale is in 
radians, but note that it is also marked in degrees (−135°, 180°, etc.). This is a case of mixed units just as with 
w t + 45°. It is not mathematically correct but is the accepted practice in circuit analysis. The vertical scale 
indicates two different quantities, that is, u and i, so there should be two scales rather than one.
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While examining this sketch, it is a good time to point out that a sinusoid is completely defined when its 
magnitude (V or I), frequency (w or f ), and phase (45° or 135°) are specified.

In Table 9-1 the responses of the three basic circuit elements are shown for applied current i = I cos w t 
and voltage u = V cosw t. If sketches are made of these responses, they will show that for a resistance R, u
and i are in phase. For an inductance L, i lags n by 90° or p/2 rad. And for a capacitance C, i leads n by 90°
or p/2 rad.

Table 9-1

i I t= cos ω υ ω= V tcos

υ ωr RI t= cos  i
V
R

tR = cos ω

υ ω ωL LI t= +cos( )90�
 

i
V
L

tL = −ω ωcos( )90�

υ ω ωC

I
C

t= −cos( )90� i CV tC = +ω ωcos( )90�

EXAMPLE 9.1 The RL series circuit shown in Fig. 9-2 has a current i = I sin w t. Obtain the voltage u across the two 
circuit elements and sketch u and i.

υ ω υ ω ωR LRI t L
di
dt

LI t= = = + °sin sin ( )90   

υ υ υ ω ω ω= + = + + °R L RI t LI tsin sin ( )90   

Fig. 9-2

Since the current is a sine function and

υ ω θ ω θ ω θ= + = +V t V t V tsin ( ) sin cos cos sin   (1)

we have from the above

υ ω ω ω ω ω= + ° + °RI t LI t LI tsin sin cos cos sin90 90   (2)

Equating coefficients of like terms in (1) and (2),

V LI V RIsin cosθ ω θ= =and

Then /υ ω ω ω= + +I R L t L R2 2( ) sin[ arctan( )]  

and V I R L
L

R
= + = −2 2 1( ) tanω θ ω

and
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The functions i and u are sketched in Fig. 9-3. The phase angle q, the angle by which i lags u, lies within the range 0° 
≤ q ≤ 90°, with the limiting values attained for ωL R  and ωL R , respectively. If the circuit had an applied voltage 
u = V sin w t, the resulting current would be

 i
V

R L
t=

+
−

2 2( )
sin ( )

ω
ω θ   

where, as before, q = tan−1 (wL/R).

Fig. 9-3

EXAMPLE 9.2 If the current driving a series RC circuit is given by i = I sinw t, obtain the total voltage across the two 
elements.

 
υ ω υ ω ω

υ υ υ

R C

R C

RI t C t

V

= = − °

= + =

sin ( ) sin ( )

sin (

1 90/

ωω θt − )
  

where V I R C CR= + = −2 2 11 1( ) tan ( )/ and /ω θ ω  

The negative phase angle shifts u to the right of the current i. Consequently i leads n for a series RC circuit. The phase 
angle is constrained to the range 0° ≤ q ≤ 90°. For ( )1/ωC R , the angle q = 0°, and for ( )1/ωC R , the angle  
q = 90°. See Fig. 9-4.

Fig. 9-4

9.3 Phasors
A brief look at the voltage and current sinusoids in the preceding examples shows that the amplitudes and 
phase differences are the two principal concerns. A directed line segment, or phasor, such as that shown 
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rotating in a counterclockwise direction at a constant angular velocity w (rad/s) in Fig. 9-5, has a projection 
on the horizontal which is a cosine function. The length of the phasor or its magnitude is the amplitude or 
maximum value of the cosine function. The angle between two positions of the phasor is the phase difference 
between the corresponding points on the cosine function.

Throughout this book phasors will be defined from the cosine function. If a voltage or current is expressed 
as a sine, it will be changed to a cosine by subtracting 90° from the phase.

Consider the examples shown in Table 9-2. Observe that the phasors, which are directed line segments and 
vectorial in nature, are indicated by boldface capitals, for example, V, I. The phase angle of the cosine function 
is the angle on the phasor. The phasor diagrams here and all that follow may be considered as a snapshot of the 
counterclockwise-rotating directed line segment taken at t = 0. The frequency f (Hz) and w (rad/s) generally do   
not appear but they should be kept in mind, since they are implicit in any sinusoidal steady-state problem.

Fig. 9-5

Table 9-2

Function Phasor Representation

υ = + °150 500 45cos ( ) ( )t V

i t= + °3 0 2000 30. sin ( ) (mA)
  = − °3 0 2000 60. cos ( )t (mA)  
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EXAMPLE 9.3 A series combination of R = 10Ω and L = 20 mH has a current i = 5.0 cos (500t + 10°) (A). Obtain the 
voltages u and V, the phasor current I and sketch the phasor diagram.

Using the methods of Example 9.1,

 
υ υR Lt L

di
dt

t= + ° = = +50 0 500 10 50 0 500 1. cos( ) . cos ( 000

70 7 500 55

°

= + = + °

)

. cos ( ) ( )υ υ υR L t V
  

The corresponding phasors are

 I V= =5 0 10 70 7 55. ./ /� �A and V   

The phase angle of 45° can be seen in the time-domain graphs of i and u shown in Fig. 9-6(a), and the phasor diagram 
with I and V shown in Fig. 9-6(b).

Fig. 9-6

Phasors can be treated as complex numbers. When the horizontal axis is identified as the real axis of a 
complex plane, the phasors become complex numbers and the usual rules apply. In view of Euler’s identity, 
there are three equivalent notations for a phasor.

 polar form   V = V /θ   

 rectangular form   V = +V j(cos sin )θ θ   

 exponential form   V = Ve jθ   

The cosine expression may also be written as

 υ ω θ ω θ ω= + = =+V t Ve ej t j tcos ( ) Re[ ] Re [ ]( ) V   

The exponential form suggests how to treat the product and quotient of phasors. Since

( )( )
( )

V e V e V V e
j j j

1 2 1 2
1 2 1 2

θ θ θ θ+ +
,

 ( )( )V V V V1 1 2 2 1 2 1 2� � �θ θ θ θ= +   

and, since ( ) ( ) ( ) ,
( )

V e V e V V e
j j j

1 2 1 2
1 2 1 2

θ θ θ θ
/ /= −

 

 
V

V
V V

1 1

2
1 2 1 2

�
�

θ
θ θ θ/

= −/   
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The rectangular form is used in summing or subtracting phasors.

EXAMPLE 9.4  Given V1 25= . .0 143 13/ �  and V2 11 2 26.57= . / �, find the ratio V1/V2 and the sum V1 + V2.

V V1 2

25 0 143 13
11 2 26 57

2 23 116 56/ = = =. .
. .

. ./
/ /�

�
� −−− +

+ = − + + +

1 00 1 99

20 0 15 0 10 0 5 01 2

. .

( . . ) ( . . )

j

j jV V === − + =10 0 20 0 23 36 116 57. . . .j / �

9.4 Impedance and Admittance
A sinusoidal voltage or current applied to a passive RLC circuit produces a sinusoidal response. With time 
functions, such as u(t) and i(t), the circuit is said to be in the time domain, Fig. 9-7(a); and when the circuit 
is analyzed using phasors, it is said to be in the frequency domain, Fig. 9-7(b). The voltage and current may 
be written, respectively,

υ ω θ θω( ) cos ( ) Re[ ]

( ) cos (

t V t e V

i t I

j t= + = =

=

V Vand /

ωωω φ φωt e Ij t+ = =) Re[ ]I Iand /

The ratio of phasor voltage V to phasor current I is defined as impedance Z, that is, Z = V/I. The reciprocal 
of impedance is called admittance Y, so that Y = 1/Z (S), where 1 S = 1 Ω−1 = 1 mho. Y and Z are complex 
numbers.

Fig. 9-7

When impedance is written in Cartesian form the real part is the resistance R and the imaginary part is 
the reactance X. The sign on the imaginary part may be positive or negative: When positive, X is called the 
inductive reactance, and when negative, X is called the capacitive reactance. When the admittance is written 
in Cartesian form, the real part is conductance G and the imaginary part is susceptance B. A positive sign on 
the susceptance indicates a conductance susceptance, and a negative sign indicates an inductive susceptance. 
Thus,

Z Z

Y Y

= + = −

= − = +

R jX R jX

G jB G jB

L C

L C

and

and

The relationships between these terms follow from Z = 1/Y. Then,

R
G

G B
X

B

G B

G
R

R X
B

X

R X

=
+

= −
+

=
+

= −
+

2 2 2 2

2 2 2 2

and

and
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These expressions are not of much use in a problem where calculations can be carried out with the numerical 
values as in the following example.

EXAMPLE 9.5 The phasor voltage across the terminals of a network such as that shown in Fig. 9-7(b) is 1 V00 0 45. / �  
and the resulting current is 5 A.0 15/ � . Find the equivalent impedance and admittance.

 

Z
V
I

Y

= = = +100 0 45
5 0 15

20 0 30 17 32 10 0
.

.
. . ./

/ /
�

�
� j Ω

== = = − = − × −I
V Z

1
0 05 30 4 33 2 50 10 2. ( . . )/ j S

  

Thus, R = 17.32 Ω, XL = 10.0 Ω, G = 4.33 × 10−2 S, and BL = 2.50 × 10−2 S.

Combinations of Impedances
The relation V = IZ (in the frequency domain) is formally identical to Ohm’s law, u = iR, for a resistive 
network (in the time domain). Therefore, impedances combine exactly like resistances:

 impedances in series   Z Z Zeq = + +1 2
. . .   

 impedances in parallel  
1 1 1

1 2Z Z Zeq
= + + . . .   

In particular, for two parallel impedances, Zeq = Z1Z2/(Z1 + Z2).

Impedance Diagram
In an impedance diagram, an impedance Z is represented by a point in the right half of the complex plane. 
Figure 9-8 shows two impedances; Z1, in the first quadrant, exhibits inductive reactance, while Z2, in the 
fourth quadrant, exhibits capacitive reactance. Their series equivalent, Z1 + Z2, is obtained by vector addi-
tion, as shown. Note that the “vectors” are shown without arrowheads, in order to distinguish these complex 
numbers from phasors.

Fig. 9-8

Combinations of Admittances
Replacing Z by 1/Y in the formulas above gives

 admittances in series 
1 1 1

1 2Y Y Yeq
= + + . . .   

 admittances in parallel  Y Y Yeq = + +1 2
. . .   

Thus, series circuits are easiest treated in terms of impedance; parallel circuits, in terms of admittance.
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Admittance Diagram
Figure 9-9, an admittance diagram, is analogous to Fig. 9-8 for impedance. Shown are an admittance Y1
having capacitive susceptance and an admittance Y2 having inductive susceptance, together with their vector 
sum, Y1 + Y2, which is the admittance of a parallel combination of Y1 and Y2.

Fig. 9-9

9.5 Voltage and Current Division in the Frequency Domain
In view of the analogy between impedance in the frequency domain and resistance in the time domain, 
Sections 3.6 and 3.7 imply the following results.

(1) Impedances in series divide the total voltage in the ratio of the impedances:

V
V

Z
Z V

Z
Z Vr

s

r

s
r

r
T= =or

eq
  

See Fig. 9-10.

Fig. 9-10
Fig. 9-11

(2)  Impedances in parallel (admittances in series) divide the total current in the inverse ratio of the imped-
ances (direct ratio of the admittances):

I
I

Z
Z

Y
Y I

Z
Z I

Y
Y Ir

s

s

r

r

s
r

r
T

r
T= = = =or eq

eq
  

See Fig. 9-11.

9.6 The Mesh Current Method
Consider the frequency-domain network of Fig. 9-12. Applying Kirchhoff’s voltage law (KVL), as in 
Section 4.3, or simply by inspection, we find the matrix equation
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Z Z Z

Z Z Z

Z Z Z

I

I

11 12 13

21 22 23

31 32 33



















1

2

II

V

V

V3

1

2

3



















=



















  

for the unknown mesh currents I1, I2, I3. Here, Z11 ≡ ZA + ZB, the self-impedance of mesh 1, is the sum 
of all impedances through which I1 passes. Similarly, Z22 ≡ ZB + ZC + ZD and Z33 ≡ ZD + ZE are the self-
impedances of meshes 2 and 3.

Fig. 9-12

The 1,2-element of the Z-matrix is defined as:

 Z I I12 1 2(impedance common to and )≡ ±∑   

where a summand takes the plus sign if the two currents pass through the impedance in the same direction, 
and takes the minus sign in the opposite case. It follows that, invariably, Z12 = Z21. In Fig. 9-12, I1 and I2 
thread ZB in opposite directions, whence

 Z Z Z12 21= = − B   

Similarly,

 
Z Z I I

Z

13 31 1 3

23

0= ≡ ± =

=

∑ ( )impendance common to and

ZZ I I Z23 2 3≡ ± = −∑ ( )impendance common to and D

  

The Z-matrix is symmetric.
In the V-column on the right-hand side of the equation, the entries Vk (k = 1, 2, 3) are defined exactly as 

in Section 4.3:

 Vk k≡ ±∑ ( )driving voltage in mesh   

where a summand takes the plus sign if the voltage drives in the direction of Ik, and takes the minus sign in 
the opposite case. For the network of Fig. 9-12,

 V V V V V1 2 30= + = = −a b   

Instead of using the meshes, or “windows” of the (planar) network, it is sometimes expedient to choose 
an appropriate set of loops, each containing one or more meshes in its interior. It is easy to see that two loop 
currents might have the same direction in one impedance and opposite directions in another. Nevertheless, 
the preceding rules for writing the Z-matrix and the V-column have been formulated in such a way as to 
apply either to meshes or to loops. These rules are, of course, identical to those used in Section 4.3 to write 
the R-matrix and V-column.
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EXAMPLE 9.6 Suppose that the phasor voltage across ZB, with polarity as indicated in Fig. 9-13, is sought. Choosing 
meshes as in Fig. 9-12 would entail solving for both I1 and I2, then obtaining the voltage as VB = (I2 − I1)ZB. In Fig. 9-13 
three loops (two of which are meshes) are chosen so as to make I1 the only current in ZB. Furthermore, the direction of I1 is 
chosen such that VB = I1ZB . The matrix equation is set up:

Z Z Z

Z Z Z Z

Z Z Z

A B A

A A C D D

D D E

+ −

− + +

+



















0

0

Z

I111

2

3

I

I

V

V

V



















=

−

















a

a

b

From which,

V Z I
Z

V Z

V Z Z Z Z

V Z Z Z

B B
B

a A

a A B C D

b D D E

= = ∆

− −

+ +

+

1
z

0

where ∆z is the determinant of the Z-matrix.

Fig. 9-13

Input and Transfer Impedances
The notions of input resistance (Section 4.6) and transfer resistance (Section 4.8) have their exact counter-
parts in the frequency domain. Thus, for the single-source network of Fig. 9-14, the input impedance is

Z
V
Iinput,

z
r

r

r rr
≡ =

∆
∆   

where rr is the cofactor of Zrr in ∆z; and the transfer impedance between mesh (or loop) r and mesh (loop) s is

Z
V
Itransfer,

z
rs

r

s rs
≡ =

∆
∆   

where ∆rs is the cofactor of Zrs in ∆z.

Fig. 9-14
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As before, the superposition principle for an arbitrary n-mesh or n-loop network may be expressed as

 I
V

Z
V

Zk
k

k

k k
= + + +−

−

1 1

transfer,1 transfer,( 1)

. . . VV
Z

V
Z

V
Z

k

k

k

k k

n

input,

+1

transfer,( +1) tra
+ + +. . .

nnsfer,nk
  

9.7 The Node Voltage Method
The procedure is exactly as in Section 4.4, with admittances replacing reciprocal resistances. A frequency-
domain network with n principal nodes, one of them designated as the reference node, requires n − 1 node 
voltage equations. Thus, for n = 4, the matrix equation would be

 

Y Y Y

Y Y Y

Y Y Y

V

V

11 12 13

21 22 23

31 32 33



















1

2

VV

I

I

I3

1

2

3



















=



















  

in which the unknowns, V1, V2, and V3, are the voltages of principal nodes 1, 2, and 3 with respect to principal 
node 4, the reference node.

Y11 is the self-admittance of node 1, given by the sum of all admittances connected to node 1. Similarly, 
Y22 and Y33 are the self-admittances of nodes 2 and 3.

Y12, the coupling admittance between nodes 1 and 2, is given by minus the sum of all admittances con-
necting nodes 1 and 2. It follows that Y12 = Y21. Similarly, for the other coupling admittances: Y13 = Y31, 
Y23 = Y32. The Y-matrix is therefore symmetric.

On the right-hand side of the equation, the I-column is formed just as in Section 4.4; i.e.,

 Ik k k= =∑ ( ) ( , , )current driving into node 1 2 3   

in which a current driving out of node k is counted as negative.

Input and Transfer Admittances
The matrix equation of the node voltage method,

 [Y][V] = [I] 

is identical in form to the matrix equation of the mesh current method,

 [Z][I] = [V] 

Therefore, in theory at least, input and transfer admittances can be defined by analogy with input and transfer 
impedances:

 
Y

I
V

Y
I
V

Y

Y

input,r
r

r rr

rs
r

s rs

≡ =
∆
∆

≡ =
∆
∆transfer,

  

where now ∆rr and ∆rs are the cofactors of Yrr and Yrs in ∆Y. In practice, these definitions are often of limited 
use. However, they are valuable in providing an expression of the superposition principle (for voltages);

 V
I

Y
I

Yk
k

k

k k
= + + +−

−

1 1

transfer,1 transfer,( 1)

. . . II I
Y

Ik k

k k

n
Y Ykinput,

+1

transfer,( +1) t
+ + + −. . . 1

rransfer,( If)n k−
  

for k = 1, 2, . . . , n − 1. In words, the voltage at any principal node (relative to the reference node) is obtained by  
adding the voltages produced at that node by the various driving currents, these currents acting one at a time.
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9.8 Thévenin’s and Norton’s Theorems
These theorems are exactly as given in Section 4.9, with the open-circuit voltage ′V , short-circuit current ′I , 
and representative resistance ′R  replaced by the open-circuit phasor voltage ′V , short-circuit phasor current ′I , 
and representative impedance ′Z , respectively. See Fig. 9-15.

Fig. 9-15

9.9 Superposition of AC Sources
How do we apply superposition to circuits with more than one sinusoidal source? If all sources have the same 
frequency, superposition is applied in the phasor domain. Otherwise, the circuit is solved for each source, 
and time-domain responses are added.

EXAMPLE 9.7 A practical coil is connected in series between two voltage sources u1 = 5 cosw1t and u2 = 10 cos(w2t +
60°) such that the sources share the same reference node. See Fig. 9-54. The voltage difference across the terminals of 
the coil is therefore u1 − u2. The coil is modeled by a 5-mH inductor in series with a 10-Ω resistor. Find the current i(t) 
in the coil for (a) w1 = w2 = 2000 rad/s and (b) w1 = 2000 rad/s, w2 = 2w1.

(a)  The impedance of the coil is R jL j+ = + =ω 1 1 10 0 0 2 45/ � Ω. The phasor voltage between its terminals is

V V V= − = − = −1 2 5 1 5 3V0 60/ � j . The current is

I
V= = − ≈ − = −
Z

j j5 3
10 2 45

8 66
14 14 45

0 61 135
/ / /

� �
�

.
.

. AAA

0.61 cos (2000i t= − 135�)

(b)  Because the coil has different impedances at w1 = 2000 and w2 = 4000 rad/s, the current may be represented in 
the time domain only. By applying superposition, we get i = i1 − i2, where i1 and i2 are currents due to u1 and 
u2, respectively.

I
V

1
1

1

5
10 10 0 35 45 0 35 20= = + = − =

Z j
i t. ( ) . cos (/ � A, 1 0000 45

10 60
10 20 0 452

2

2

t

j
i

−

= = + = −

�

�

)

. ,I
V
Z

/ / 3.4° A 222

1 2

0 45 4000 3 4

0 35 20

( ) . cos ( . )

. cos (

t t

i i i

= −

= − =

�

0000 45 0 45 4000 3 4t t− − −� �) . cos ( . )

SoLVED PRobLEMS

9.1. A 10-mH inductor has current i = 5.0 cos 2000t (A). Obtain the voltage uL.
From Table 9-1, uL = wLI cos (w t + 90°) = 100 cos (2000t + 90°) (V). As a sine function,

υ L t t= + ° = −100 2000 180 100 2000 Vsin ( ) sin ( )
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 9.2. A series circuit, with R = 10 Ω and L = 20 mH, has current i = 2.0 sin 500t (A). Obtain total voltage u 
and the angle by which i lags u.

By the methods of Example 9.1,

 θ

υ ω ω

= × = °

= +

−

arctan
( )

( ) sin(

500 20 10
10 45

3

2 2I R L t ++ = + °θ) . sin ( )28 3 500 45t (V)

  

It is seen that i lags u by 45°.

 9.3. Find the two elements in a series circuit, given that the current and total voltage are

 i = 10 cos (5000t − 23.13°) (A)  u = 50 cos (5000t + 30°) (V) 

Since i lags u (by 53.13°), the elements are R and L. The ratio of Vmax to Imax is 50/10. Hence,

 
50
10 5000 1 33

50002 2= + ° = =R L
L

R
( ) .and tan 53.13   

Solving, R = 3.0 Ω, L = 0.8 mH.

 9.4. A series circuit, with R = 2.0 Ω and C = 200 pF, has a sinusoidal applied voltage with a frequency  
of 99.47 MHz. If the maximum voltage across the capacitance is 24 V, what is the maximum voltage 
across the series combination?

 ω π= = ×2 6.25 10 rad/s8f   

From Table 9-1, Imax = wCVC,max = 3.0 A. Then, by the methods of Example 9.2,

 V I R Cmax ( ) ( ) ( ) .= + = + =max / V2 2 2 21 6 24 24 74ω   

 9.5. The current in a series circuit of R = 5 Ω and L = 30 mH lags the applied voltage by 80°. Determine 
the source frequency and the impedance Z.

From the impedance diagram, Fig. 9-16,

 5 80 5 80 28 4+ = = =jX Z XL L/ � �tan . Ω   

Then 28.4 = w (30 × 10−3), whence w = 945.2 rad/s and f = 150.4 Hz.

 Z = + Ω5 28 4j .   

Fig. 9-16 Fig. 9-17

 9.6. At what frequency will the current lead the voltage by 30° in a series circuit with R = 8 Ω and C = 30 mF?
From the impedance diagram, Fig. 9-17,

 8 30 8 30 4 62− = − − = − = −jX Z XC C/ � �tan ( ) . Ω   
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Then 4 62
1

2 30 10 6.
( )

=
×

=−π f
for 1149 Hz  

9.7. A series RC circuit, with R = 10 Ω, has an impedance with an angle of −45° at f1 = 500 Hz. Find the 
frequency for which the magnitude of the impedance is (a) twice that at f1, (b) one-half that at f1.

From 10 45 10 14 141 1− = = =jX Z X ZC C/ �, .Ω Ωand .

(a) For twice the magnitude,

10 28 28 28 28 10 26 452 2− = = − =jX XC C. ( . ) ( ) ./θ� or Ω   

 Then, since XC is inversely proportional to f,

10
26 45 500 1892

2. = =
f

for Hz   

(b)  A magnitude Z3 = 7.07 Ω is impossible; the smallest magnitude possible is Z = R = 10 Ω.

9.8. A two-element series circuit has voltage V = 24 V0 0/ �  and current I = −5 A0 60/ � . Determine the 
current which results when the resistance is reduced to (a) 30 percent, (b) 60 percent, of its former 
value.

Z
V
I= = − = = +240 0

50 60
4 8 60 2 40 4 16/

/ /
�

�
�. . .j Ω   

(a) 30 2 40 0 72 0 72 4 16 4 22 80 21% . . . . . .× = = + =Z j / � Ω  

I1 4 22 80 2
56 8

240 0= 80 2= −/
/ /�

�
�

. .
. . A   

(b) 60 2 40 1 44 1 44 4 16 4 40 70 92% . . . . . .× = = + =Z j / � Ω  

I2 4 40 70 9
54 5

240 0= 70 9= −/
/ /

�

�
�

. .
. . A   

9.9. For the circuit shown in Fig. 9-18, obtain Zeq and compute I.
For series impedances,

Zeq = + = + =10 0 4 47 63 4 12 0 4 0 12 65 18 43/ / /� � �. . . . . .j ΩΩΩ   

Then, I
V

Z= = = −
eq

A
100 0

12 65 18 43
7 91 18 43/

/ /
�

�
�

. .
. .

9.10. Evaluate the impedance Z1 in the circuit of Fig. 9-19.

Z
V
I= = = +20 60 10 0 17 3/ � . .j Ω   

Fig. 9-18 Fig. 9-19
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Then, since impedances in series add,

 5 0 8 0 10 0 17 3 5 0 9 31. . . . . .+ + = + = +j j jZ Zor 1 Ω   

9.11. Compute the equivalent impedance Zeq and admittance Yeq for the four-branch circuit shown in 
Fig. 9-20.

Using admittances,

 

Y Y

Y

1

1
5 0 20

1
15 0 067

1
5 8 66 0 05

= = − = =

= + =

j
j

j

. .

. .

S 3

2

S

−− = − =j
j

j0 087
1
10 0 10. .S SY4

  

Then, Y Y Y Y Yeq S= + + + = − = −1 2 3 4 0 117 0 187 0 221 58 0. . . .j / �  

and Z Yeq
eq

= =1
4 53 58 0. ./ � Ω  

Fig. 9-20

9.12. The total current I entering the circuit shown in Fig. 9-20 is 33 A. .0 13 0/− � . Obtain the branch current 
I3 and the voltage V.

 

V IZ= = − =eq ( . . )( . . ) . .33 0 13 0 4 53 58 0 149 5 45 0/ / /� � ��

� �

V

I VY3 3 149 5 45 0
1

15 0 9 97 45= = 



 =( . . ) ./ / / ..0� A

  

9.13. Find Z1 in the three-branch network of Fig. 9-21, if I = 31 5 A. ./24 0�  for an applied voltage 
V = 5 V0 0 60 0. ./ � .

Fig. 9-21
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Y
I
V= = − = −0 630 36 0 0 510 0 370. . . ./ � j S   

Then, 0 510 0 370
1

10
1

4 0 3 01. . . .− = + + +j
j

Y

whence, Y1 354 S= −0 45. / �  and Z1 = 2.0 + j2.0 Ω.

9.14. The constants R and L of a coil can be obtained by connecting the coil in series with a known resistance   
and measuring the coil voltage Vx, the resistor voltage V1, and the total voltage VT (Fig. 9-22). The 
frequency must also be known, but the phase angles of the voltages are not known. Given that f = 60 Hz, 
V1 = 20 V, Vx = 22.4 V, and VT = 36.0 V, find R and L.

Fig. 9-22 Fig. 9-23

The measured voltages are effective values, but, as far as impedance calculations are concerned, it makes 
no difference whether effective or peak values are used.

The (effective) current is I = V1/10 = 2.0 A. Then,

Zx = = = =22 4
2 0 11 2

36 0
2 0 18 0

.
. .

.
. .Ω ΩZeq

From the impedance diagram, Fig. 9-23,

( . ) ( ) ( )

( . ) ( )

18 0 10

11 2

2 2 2

2 2 2

= + +

= +

R L

R L

ω

ω

where w = 2p60 = 377 rad/s. Solving simultaneously,

R L= =4 92 26 7. .Ω mH   

9.15. In the parallel circuit shown in Fig. 9-24, the effective values of the currents are Ix = 18.0 A, I1 = 15.0 A, 
and IT = 30.0 A. Determine R and XL.

The problem can be solved in a manner similar to that used in Problem 9.14 but with the admittance 
diagram.

The (effective) voltage is V = I1(4.0) = 60.0 V. Then,

Y
I
V

I
V

Yx
x T= = = = =0 300 0 500 4 0 0 250

1
1. . . .S S SeqY
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From the admittance diagram, Fig. 9-25,

 
( . ) ( . )

( . )

0 500 0 250

0 300

2 2 2

2 2 2

= + +

= +

G B

G B

L

L

  

which yield G = 0.195 S, BL = 0.228 S. Then,

 R
G

jX
jB

jL
L

= = = − =1
5 13

1
4 39. .Ω Ωand   

I.e., XL = 4.39 Ω. 

9.16. Obtain the phasor voltage VAB in the two-branch parallel circuit of Fig. 9-26.
By current-division methods, I1 4 64 A= . ./120 1�  and I2 17 4 A= . ./30 1� . Either path AXB or path AYB 

may be considered. Choosing the former,

 V V V I IAB AX XB j= + = − = +1 22 6 92 8 120.1 1 4( ) ( ) . .0 0/ � 44 11 6 59.9 V/ /− = −59 9. .� �   

Fig. 9-24 Fig. 9-25

Fig. 9-26 Fig. 9-27

9.17. In the parallel circuit shown in Fig. 9-27, VAB = 48 3 V. /30� . Find the applied voltage V.
By voltage division in the two branches:

  V V V V VAX BX

j
j

j
j

= −
− = + = +

4
4 4

1
1

8 66
5 8 66j

.
.   

and so V V V VAB AX BX j
j

j
= − = + − +





 = −

1
1

8 66
5 8 66

1
0 26

.
. . 88 1+ j

V  

or V V= − + = =( . ) ( . )( . ) .0 268 1 1 035 105 48 3 30 50j AB / /� � 00 135/ � V  
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Fig. 9-28

Fig. 9-29

9.18. Obtain the voltage Vx in the network of Fig. 9-28 using the mesh current method.
One choice of mesh currents is shown on the circuit diagram, with I3 passing through the 10-Ω resistor 

in a direction such that Vx = I3(10) (V). The matrix equation can be written by inspection:

7 3 5 5

5 12 3 2 2

5 2 2 17 2

+

+ − −

− − −















j j

j j j

j j

( )

( )

























=











I

I

I

1

2

3

10 0

5 30

0

/

/

�

�











Solving by determinants,

I3

7 3 5 10 0
5 12 3 5 30
5 2 2 0

7 3 5 5
5 1

=

+
+

− +
+

j j
j j

j

j j
j

/
/

�

�

222 3 2 2
5 2 2 17 2

667 96 169 09
1534 5

+ − +
− + −

= −

j j
j j

. .
.
/ �

/// /25 06
0 435 194 15

.
. .

�
�= − A   

and V Ix = ( ) = −3 1 4 35 V0 194 15. ./ � .

9.19. In the network of Fig. 9-29, determine the voltage V which results in a zero current through the 2 + j3 Ω 
impedance.
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Choosing mesh currents as shown on the circuit diagram,

 I
V

2

1
5 5 30 0 0

5 0 6
0 10

0= ∆

+
− =

z

j
j

/ �

  

Expanding the numerator determinant by cofactors of the second column,

 −
−

−
+
− = =( ) .30 0

5 6
0 10

5 5 0
5 6

0 35 4 45/ /�
j j

j
V Vwhence ..0� V   

9.20. Solve Problem 9.19 by the node voltage method.
The network is redrawn in Fig. 9-30 with one end of the 2 + j3 impedance as the reference node. By the 

rule of Section 9.7 the matrix equation is

 

1
5

1
5

1
2 3

1
5

1
5

1
5

1
5

1
5

1

+ + + − +





− +



 +

j j j

j j55
1
4

1
6

30
1

2
+ +









































=

V

V

//

/

0
5

30 0
5 4

�

�− −





















V
  

For node voltage V1 to be zero, it is necessary that the numerator determinant in the solution for V1 
vanish.

  N
j

j
1

30 0
5 0 200 0 200

30 0
5 4 0 617 0 20

=
− +

− − −

/

/

�

�

. .

. .
V

00
0 35 4 45= =from which VV . / �   

Fig. 9-30 Fig. 9-31

9.21. Use the node voltage method to obtain the current I in the network of Fig. 9-31.
There are three principal nodes in the network. The reference and node 1 are selected so that the node 1 

voltage is the voltage across the j2-Ω reactance.

 

1
5

1
2

1
4

1
4

1
4

1
4

1
2

1
2

1

2

+ + −

− + − +























j

j

V

V















=



















50 0
5

50 90
2

/

/

�

�

  

From which,
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V1

10 0 250
25 0 750 0 500

0 450 0 500 0 25
=

−
+

− −

.
. .

. . .
j j

j 000
0 250 0 750 0 500

13 52 56 31
0 546 15

− +

= −
. . .

. .
. .

j

/
/

�

9994
24 76 72 25

�
�= . ./ V   

and I = = −24 76 72 25
2 90

12 38 17 75
. .

. ./
/ /

�

�
� A  

9.22. Find the input impedance at terminals ab for the network of Fig. 9-32.

Fig. 9-32

With mesh current I1 selected as shown on the diagram,

Z Z
input,1 =

∆
∆ =

− −
− + −

− −
+ −11

8 2 3 0
3 8 5 5

0 5 7 2
8 5 5

j
j

j
j

−−− −

= = −

5 7 2

315 5 16 19
45 2 24 86

6 98 8 67

j

. .
. .

. ./
/ /

�

�
� ΩΩΩ   

9.23. For the network in Fig. 9-32, obtain the current in the inductor, Ix, by first obtaining the transfer 
impedance. Let V = 1 V0 30/ � .

Z Z
transfer,12 =

∆
∆ =

−
− −

−

=
12

315 5 16 19
3 5

0 7 2

1
. ./ �

j

444 45 32 14. ./ � Ω   

Then I I
V

Zx = = = =2

10 30
14 45 32 14

0 69
transfer,12

/
/

�

�. .
. 222 2 14/− . � A  

9.24. For the network in Fig. 9-32, find the value of the source voltage V which results in V0 0 0= 5 V. / � .
The transfer impedance can be used to compute the current in the 2 − j2 Ω impedance, from which V0 

is readily obtained.

Z Z
transfer,13 =

∆
∆ = =

13

315 5 16 19
15 0

21 0 1
. .

./
/ /

�

�
666 19

2 2 2 2 00

.

( ) ( ) ( .

� Ω

V I
V

Z V= − = − =3
transfer,13

j j 11135 61 19/− . )�
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Thus, if V0 0 0= 5 V. / � ,

 V V= − =5 0 0
0 135 61 19

37 0 61 19
.

. .
. ./

/ /
�

�
�  

Alternate Method
The node voltage method may be used. V0 is the node voltage V2 for the selection of nodes indicated in 
Fig. 9-32.

 V V

V

0 2

1
5 2

1
3

1
5 5 2

1
5 0

1
5 2

1
3

1
5

1
= =

− + + −

−

− + + −

j j j

j

j j j55
1
5

1
5

1
5

1
2 2

0 134 61 15

− + + −

= −

j j j

V( . . )/ �   

For V0 0 0= 5 V. / � , V = 37 3 V. ./61 15� , which agrees with the previous answer to within roundoff errors.

9.25. For the network shown in Fig. 9-33, obtain the input admittance and use it to compute node 
voltage V1.

 Y Y
input,1 =

∆
∆ =

+ + −

− + + + −
11

1
10

1
5

1
2

1
2

1
2

1
2

1
3 4

1
j

j j110
1
2

1
3 4

1
10

0 311 49 97

1
1

+ + + −

= −

=

j j

. ./ � S

input
V

I
Y ,,1

V= − =5 0 0
0 311 49 97

16 1 49 97
.

. .
. ./

/ /
�

�
�

  

Fig. 9-33

9.26. For the network of Problem 9.25, compute the transfer admittance Ytransfer,12 and use it to obtain node 
voltage V2.

 

Y Y
transfer,12 =

∆
∆ = −

− − =
12

0 194 55 49
0 50 0

. .
( . ) ./ �

3388 55 49

12 9 55 492
1

/

/

−

= =

.

. .

�

�

S

V
transfer,12

V
I

Y
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9.27. Replace the active network in Fig. 9-34(a) at terminals ab with a Thévenin equivalent.

′ = +
+

+ + = +Z j
j

j
j5

5 3 4
5 3 4 2 50 6 25

( )
. . Ω   

The open-circuit voltage ′V  at terminals ab is the voltage across the 3 + j4 Ω impedance:

′ = +






+ =V
10 0
8 4 3 4 5 59 26 56/ /

�
�

j
j( ) . . V   

Fig. 9-34

9.28. For the network of Problem 9.27, obtain a Norton equivalent circuit (Fig. 9-35).
At terminals ab, Isc is the Norton current ′I . By current division,

′ =
+ +

+

+
+





 =I

10 0

5
5 3 4
3 9

3 4
3 9 0 830/ /

�
j j

j

j
j( ) . −−−41 63. � A   

Fig. 9-35 Fig. 9-36

The shunt impedance ′Z  is as found in Problem 9.27, ′Z  = 2.50 + j6.25 Ω.

9.29. Obtain the Thévenin equivalent for the bridge circuit of Fig. 9-36. Make ′V  the voltage of a with 
respect to b.

By voltage division in either branch,

V Vax bx

j
j

j
j

= +
+ = +

+
12 24
33 24 20 0

30 60
80 60 20( ) (/ /� 000�)   
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Hence, V V Vab ax bx

j
j

j
j

= − = +
+ − +

+( )20 0
12 24
33 24

30 60
80 6/ � 00 0 326 169 4



 = = ′. ./ � V V  

Viewed from ab with the voltage source shorted out, the circuit is two parallel combinations in series, and so

 ′ = +
+ + +

− + =Z
21 12 24

33 24
50 30 60
80 60 47 3

( ) ( )
) .

j
j

j
j

55 26 81/ . � Ω   

9.30. Replace the network of Fig. 9-37 at terminals ab with a Norton equivalent and with a Thévenin 
equivalent.

By current division,

 I Isc = ′ =
+ − +

−

















+10 0

10
10 3 4

3 6

3/ �
( ) ( )j j

j

jj
j
4

3 6 0 439 105 26−




 = . ./ � A   

and by voltage division in the open circuit,

 V Vab

j
j

= ′ = +
+ =3 4

13 4 10 0 3 68 36 03( ) . ./ /� � V   

Then ′ = ′
′ = = −Z

V
I

3 68 36 03
0 439 105 26

8 37 69 2
. .

. .
. ./

/ /
�

�
33� Ω  

See Fig. 9-38.

Fig. 9-37

Fig. 9-38
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Fig. 9-40

SuPPLEMENTARy PRobLEMS

9.31. Two circuit elements in a series connection have current and total voltage

i t t= − = +13 42 sin 5 53 4 ) A 15 sin 5 1. ( . ( ) ( )00 0 00 0� �υ (V)   

Identify the two elements.  Ans. R = 5 Ω, L = 20 mH

9.32. Two circuit elements in a series connection have current and total voltage

i t t= + = +4 cos 2 13 2 ) A 2 sin 2 5. ( . ( ) ( .0 000 00 000 0 0� υ ���) V( )

Identify the two elements.  Ans. R = 30 Ω, C = 12.5 mF 

9.33. A series RC circuit, with R = 27.5 Ω and C = 66.7 mF, has sinusoidal voltages and current, with angular frequency 
1500 rad/s. Find the phase angle by which the current leads the voltage.  Ans. 20°

9.34. A series RLC circuit, with R = 15 Ω, L = 80 mH, and C = 30 mF, has a sinusoidal current at angular frequency 
500 rad/s. Determine the phase angle and whether the current leads or lags the total voltage.

Ans. 60.6°, leads

9.35. A capacitance C = 35 mF is in parallel with a certain element. Identify the element, given that the voltage across 
and total current through the combination are

υ = = +15 sin 3 V 16 5 sin (3 72 4 ) (A)0 000 000t i tT( ) . . �   

Ans.  R = 30.1 Ω

9.36. A two-element series circuit, with R = 20 Ω and L = 20 mH, has an impedance 40 0. /θ Ω�. Determine the angle 
q and the frequency.  Ans. 60°, 276 Hz

9.37. Determine the impedance of the series RL circuit, with R = 25 Ω and L = 10 mH, at (a) 100 Hz, (b) 500 Hz, 
(c) 1000 Hz.

Ans. (a) 25 8. ./14 1� Ω; (b) 4 10 51 5. ./ � Ω; (c) 67 6. ./68 3� Ω  

9.38. Determine the circuit constants of a two-element series circuit if the applied voltage

υ = + °15 sin 5 45 (V)0 000( )t   

results in a current i = 3.0 sin (5000t − 15°) (A).  Ans. 25 Ω, 8.66 mH

9.39. A series circuit of R = 10 Ω and C = 40 mF has an applied voltage u = 500 cos (2500t − 20°) (V). Find the resulting 
current i.  Ans. 25 cos 25 25°) A2 00( ( )t +  

9.40. Three impedances are in series: Z1 3= Ω.0 45/ � , Z2 1= Ω0 2 45/ � , Z3 5= −.0 90/ � Ω. Find the applied 
voltage V, if the voltage across Z1 is 27 V.0 10/− � .

Ans. 126 5 V. ./−24 6�  

9.41. For the three-element series circuit in Fig. 9-39, (a) find the current I; (b) find the voltage across each impedance 
and construct the voltage phasor diagram which shows that V V V1 2 3 1 V+ + = 00 0/ � .

Ans. (a) 6 28 A. ./−9 17� ; (b) see Fig. 9-40.

Fig. 9-39
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9.42. Find Z in the parallel circuit of Fig. 9-41, if V = 5 V0 0 30 0. ./ �  and I = 27 9 A. ./57 8� .

 Ans. 5.0 30/− � Ω 

Fig. 9-41

9.43. Obtain the conductance and susceptance corresponding to a voltage V = 85 V.0 205/ �  and a resulting current 
I = −41 2 A. ./ 141 0� .

 Ans. 0.471 S, 0.117 S (capacitive)

9.44. A practical coil contains resistance as well as inductance and can be represented by either a series or parallel 
circuit, as suggested in Fig. 9-42. Obtain Rp and Lp in terms of Rs and Ls.

 Ans. R R
L
R

L L
R

Lp s
s

s
p s

s

s

= + = +
( )

,
ω

ω

2 2

2  

Fig. 9-42

9.45. In the network shown in Fig. 9-43, the 60-Hz current magnitudes are known to be IT = 29.9 A, I1 = 22.3 A, and 
I2 = 8.0 A. Obtain the circuit constants R and L.  Ans. 5.8 Ω, 38.5 mH

Fig. 9-43 Fig. 9-44

9.46. Obtain the magnitude of the voltage VAB in the two-branch parallel network of Fig. 9-44, if XL is (a) 5 Ω, 
(b) 15 Ω, (c) 0 Ω.  Ans. 50 V, whatever XL

Ch09.indd   233 11/08/17   11:25 AM



CHAPTER 9  Sinusoidal Steady-State Circuit Analysis 234

9.47. In the network shown in Fig. 9-45, VAB = 36 1 V. ./3 18� . Find the source voltage V. 

Ans. 75 V/−90�  

Fig. 9-45 Fig. 9-46

9.48. For the network of Fig. 9-46 assign two different sets of mesh currents and show that for each, 
∆ Ωz = −55 9 2. ./ 26 57� . For each choice, calculate the phasor voltage V. Obtain the phasor voltage across the 
3 + j4 Ω impedance and compare with V.

Ans. V V= = −+3 4 22 36 Vj . ./ 10 30�  

9.49. For the network of Fig. 9-47, use the mesh current method to find the current in the 2 + j3 Ω impedance due to 
each of the sources V1 and V2.

Ans. 2 41 A. ./6 45� , 1 36 A. ./141 45�  

Fig. 9-47

9.50. In the network shown in Fig. 9-48, the two equal capacitances C and the shunting resistance R are adjusted until 
the detector current ID is zero. Assuming a source angular frequency w, determine the values of Rx and Lx.

Ans. Rx = 1/(w2C2R), Lx = 1/(2wC)

Fig. 9-48
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9.51. For the network of Fig. 9-49, obtain the current ratio I1/I3.  Ans. 3 3. /−90�  

Fig. 9-49

9.52. For the network of Fig. 9-49, obtain Zinput,1 and Ztransfer,13. Show that Ztransfer,31 = Ztransfer,13.

 Ans. 1 31. ./21 8� Ω, 4 31. ./−68 2� Ω  

9.53. In the network of Fig. 9-50, obtain the voltage ratio V1/V2 by application of the node voltage method.

 Ans. 
∆
∆ = −11

12
29 81 61. ./ �  

9.54. For the network of Fig. 9-50, obtain the driving-point impedance Zinput,1.  Ans. 5 59. ./17 35� Ω

Fig. 9-50
Fig. 9-51

9.55. Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-51. Choose the 
polarity such that ′ =V Vab.

 Ans. ′ =V 2 V0 0 0. / � , ′ = −I 5 56 A. ./ 23 06� , ′ =Z 3 6. .0 23 06/ � Ω

9.56. Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-52.

 Ans. ′ = −V 11 5 V. ./ 95 8� , ′ = −I 1 39 A. ./ 80 6� , ′ = −Z 8 26. ./ 15 2� Ω  

Fig. 9-52
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9.57. Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-53.

Ans. ′ =V 11 18 V. ./93 43� , ′ =I 2 24 A. ./56 56� , ′ =Z 5. .0 36 87/ � Ω  

Fig. 9-54 Fig. 9-55

9.59. In the circuit of Fig. 9-55, u1 = 6 cos w t and u2 = cos (w t + 60°). Find uA if w = 2 rad/sec. Hint: Apply KCL at 
node A in the phasor domain.  Ans. uA = –1.11 sin 2t

9.60. In the circuit of Problem 9.59 find phasor currents I1 and I2 drawn from the two sources. Hint: Apply phasor KVL 
to the loops on the left and right sides of the circuit.

Ans. I1 5 8= −0 100 4/ . � , I = / , both in mA

9.61. Find uA in the circuit of Problem 9.59 if w = 0.5 rad/s.  Ans. uA = 0

9.62. In the circuit of Fig. 9-55, u1 = V1 cos (0.5t + q1) and u2 = V2 cos (0.5t + q2). Find the current through the 4 H inductor.

Ans. i = (V2/4) sin (0.5t + q2) − (V1/3) sin (0.5t + q1)

9.63. In the circuit of Fig. 9-55, u1 = V1 cos (t + q1) and u2 = V2 cos (t + q2). Find uA.

Ans. uA = ∞, unless V1 = V2 = 0, in which case uA = 0

9.64. In the circuit of Fig. 9-55, u1 = V1 cos (2t) and u2 = V2 cos (0.25t). Find uA.

Ans. uA = −0.816V1 cos (2t) − 0.6V2 cos (0.25t)

Fig. 9-53

9.58. In the circuit of Fig. 9-54, u1 = 10 V and u2 = 5 sin 2000t. Find i.

Ans. i = 1 − 0.35 sin (2000t − 45°)
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CHAPTER 10

AC Power

10.1 Power in the Time Domain
The instantaneous power entering a two-terminal circuit N (Fig. 10-1) is defined by

 p t t i t( ) ( ) ( )= υ  (1)

where u (t) and i(t) are the terminal voltage and current, respectively. If p is positive, energy is delivered to 
the circuit. If p is negative, energy is returned from the circuit to the source.

Fig. 10-1

In this chapter, we consider periodic currents and voltages, with emphasis on the sinusoidal steady state 
in linear RLC circuits. Since the storage capacity of an inductor or a capacitor is finite, these passive ele-
ments cannot continue receiving energy without returning it. Therefore, in the steady state and during each 
cycle, all of the energy received by an inductor or capacitor is returned. The energy received by a resistor is, 
however, dissipated in the form of thermal, mechanical, chemical, and/or electromagnetic energies. The net 
energy flow to a passive circuit during one cycle is, therefore, positive or zero.

EXAMPLE 10.1 Figure 10-2(a) shows the graph of a current in a 1 kΩ resistor. Find and plot the instantaneous 
power p(t).

From u = Ri, we have p(t) = ui = Ri2 = 1000  × 10−6 = 10−3 W = 1 mW. See Fig. 10-2(b).

EXAMPLE 10.2 The current in Example 10.1 passes through a 0.5-µF capacitor. Find the power p(t) entering the capacitor 
and the energy w(t) stored in it. Assume uC(0) = 0. Plot p(t) and w(t).

Figure 10-2(a) indicates that the current in the capacitor is a periodic function with a period T = 2 ms. During 
one period the current is given by

 i
t
t

=
< <

− < <{ 1 0 1
1 1 2

mA ms
mA ms

( )
( )
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The voltage across the capacitor is also a periodic function with the same period T [Fig. 10-3(a)]. During one 
period the voltage is

υ( )
( ) ( )
( ) (

t
C

i dt
t t
t

t

= =
< <

−∫1 2000 0 1
4 2000 1

0

V ms
V <<< <{ t 2 ms)

 

Finally, the power entering the capacitor and the energy stored in it (both also periodic with period T ) are

p t i
t t
t t

( )
( ) ( )

( ) (
= =

< <
− < <υ 2000 0 1

2000 4 1 2
mW ms

mW mmms
Fig. -

J ms

)
[ ( )]

( )
( ) ( )

{
= =

< <

10 3

1
2

0 12
2

b

w t C
t tυ
ttt t t2 6 34 10 4 10 1 2

10
+ × − × < <






− − ( ) ( )

[
J ms

Fig. -333( )]c

Alternatively, w(t) may be obtained by integrating p(t). The power entering the capacitor during one period is equally 
positive and negative [see Fig. 10-3(b)]. The energy stored in the capacitor is always positive as shown in Fig. 10-3(c). 
The maximum stored energy is Wmax = 10−6 J = 1 µJ at t = 1, 3, 5, … ms.

10.2 Power in Sinusoidal Steady State
A sinusoidal voltage u = Vm cos w t, applied across an impedance Z Z= | | /θ , establishes a current   
i = Im cos (w t − q). The power delivered to the impedance at time t is

p t i V I t t V Im m m m( ) cos cos ( ) [cos cos (= = − = +υ ω ω θ θ1
2 222

2

ω θ

θ ω θ

t

V I t

V I

−

= + −

=

)]

[cos cos ( )]eff eff

eff eff cccos cos ( )θ ω θ+ −V I teff eff 2

(2)

where V V I Im meff eff/ /= =2 2,  = V Zeff /| |. The instantaneous power in (2) consists of a sinusoidal com-
ponent Veff Ieff cos (2wt − q) plus a constant value Veff Ieff cosq which becomes the average power Pavg. 

Fig. 10-2
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This is illustrated in Fig. 10-4. During a portion of one cycle, the instantaneous power is positive which 
indicates that the power flows into the load. During the rest of the cycle, the instantaneous power may be 
negative, which indicates that the power flows out of the load. The net flow of power during one cycle is, 
however, nonnegative and is called the average power.

EXAMPLE 10.3 A voltage u = 140 cos w t is connected across an impedance Z = −5 60/ � . Find p(t).
The voltage u results in a current i = 28 cos (w t + 60°). Then,

 p t i t t( ) ( ) cos cos( ) cos= = + ° = +υ ω ω140 28 60 980 1960 (( )2 60ωt + °  

The instantaneous power has a constant component of 980 W and a sinusoidal component with twice the frequency 
of the source. The plot of p vs. t is similar to that in Fig. 10-4 with θ π= − /3.

10.3 Average or Real Power
The net or average power P p tavg = 〈 〉( )  entering a load during one period is called the real power. Since the 
average of cos (2w t − q) over one period is zero, from (2) we get

 P V Iavg eff eff= cosθ   (3)

Fig. 10-3
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If Z R jX Z= + = | | /θ , then cosθ = R Z/| | and Pavg may be expressed by

P V I
R
Zavg eff eff= | | (4)

or P
V

Z
Ravg

eff=
2

2| |
 (5)

or P RIavg eff= 2
 (6)

The average power is nonnegative. It depends on V, I, and the phase angle between them. When Veff and 
Ieff are given, P is maximum for q = 0. This occurs when the load is purely resistive. For a purely reactive 
load, |q | = 90° and Pavg = 0. The ratio of Pavg to Veff Ieff is called the power factor pf. From (3), the ratio is 
equal to cos q and so

pf pfavg

eff eff
= ≤ ≤

P

V I
0 1   (7)

The subscript avg in the designation for average power, Pavg, is often omitted and so in the remainder of 
this chapter P will denote average power.

EXAMPLE 10.4 Find P delivered from a sinusoidal voltage source with Veff = 110 V to an impedance of Z = 10 + j8. 
Find the power factor.

Z j

I
V
Z

= + =

= =

10 8 12 81 38 7

110

12 81 38 7

. .

. .

/

/

�

eff
eff

���
�. .

cos ( . cos

= −

= =

8 59 38 7

110 8 59 3

/ A

eff effP V I θ 888 7 737 43

38 7 0 78

. ) .

cos . .

�

�

=

= =

W

pf

Fig. 10-4
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Alternative Solution
We have |Z |2 = 100 + 64 = 164. Then,

 P V R Z= = =eff / / W2 2 2110 10 164 737 8| | ( ) .  

The alternative solution gives a more accurate answer.

10.4 Reactive Power
If a passive network contains inductors, capacitors, or both, a portion of the energy entering it during one cycle 
is stored and then returned to the source. During the period of energy return, the power is negative. The power 
involved in this exchange is called reactive or quadrature power. Although the net effect of reactive power is 
zero, it degrades the operation of power systems. Reactive power, indicated by Q, is defined as

 Q V I= eff eff sinθ  (8)

If Z R jX Z= + = | | /θ , then sin q = X/|Z | and Q may be expressed by

 Q V I
X
Z

= eff eff | |  (9)

or Q
V

Z
X= =eff

2

| |2
 (10)

or Q XI= eff
2  (11)

The unit of reactive power is the volt-amperes reactive (var).
The reactive power Q depends on V, I, and the phase angle between them. It is the product of the voltage 

and that component of the current which is 90° out of phase with the voltage. Q is zero for q = 0°. This 
occurs for a purely resistive load, when V and I are in phase. When the load is purely reactive, |q | = 90° 
and Q attains its maximum magnitude for given values of V and I. Note that while P is always nonnega-
tive, Q can assume positive values (for an inductive load where the current lags the voltage) or negative 
values (for a capacitive load where the current leads the voltage). It is also customary to specify Q by it 
magnitude and load type. For example, 100-kvar inductive means Q = 100 kvar and 100-kvar capacitive 
indicates Q = −100 kvar.

EXAMPLE 10.5 The voltage and current across a load are given by Veff = 110 V and Ieff A= −20 50/ � , respectively. 
Find P and Q.

 P Q= ° = = ° =110 20 50 1414 110 20 50 1685( cos ) ( sin ) vW aar  

10.5 Summary of AC Power in R, L, and C
AC power in resistors, inductors, and capacitors, is summarized in Table 10-1. We use the notation Veff and 
Ieff to include the phase angles. The last column of Table 10-1 is S = VI, where S is the apparent power.  
S is discussed in Section 10.7 in more detail.

EXAMPLE 10.6 Find the power delivered from a sinusoidal source to a resistor R. Let the effective values of the 
voltage and current be V and I, respectively.

 

p t i V t I t VI t VIR R( ) ( ) cos ( ) cos cos (= = = =υ ω ω ω2 2 2 12 ++

= + = +

cos )

( cos ) ( cos )

2

1 2 1 22
2

ω

ω ω

t

RI t
V
R

t

 

Thus, P
V
R

RI QR = = =
2

2 0and .  
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The instantaneous power entering a resistor varies sinusoidally between zero and 2RI2, with twice the frequency 
of the excitation, and with an average value of P = RI2. u(t) and pR(t) are plotted in Fig. 10-5(a).

EXAMPLE 10.7 Find the ac power entering an inductor L.

p t i V t I t VI tL L( ) ( ) cos ( ) cos( ) cos= = − ° =υ ω ω ω2 2 90 2 sssin sin sin

sin

ω ω ω ω

ω ω

t VI t L I t

V
L

t

= =

=

2 2

2

2

2

Thus, P Q VI
V
L

L I= = = =0
2

2and ω ω .  

The instantaneous power entering an inductor varies sinusoidally between Q and −Q, with twice the frequency 
of the source, and an average value of zero. See Fig. 10-5(b).

EXAMPLE 10.8 Find the ac power delivered in a capacitor C.

p t i V t I t VIC C( ) ( ) cos ( ) cos( ) cos= = + ° = −υ ω ω ω2 2 90 2 ttt t VI t C V t

I
C

t

sin sin sin

sin

ω ω ω ω

ω ω

= − = −

= −

2 2

2

2

2

Thus, P Q VI
I

C
C V= = − = − = −0

2
2and ω ω .  

Like an inductor, the instantaneous power entering a capacitor varies sinusoidally between −Q and Q, with twice 
the frequency of the source, and an average value of zero. See Fig. 10-5(c).

10.6 Exchange of Energy between an Inductor and a Capacitor
If an inductor and a capacitor are fed in parallel by the same ac voltage source or in series by the same 
current source, the power entering the capacitor is 180° out of phase with the power entering the inductor. 
This is explicitly reflected in the opposite signs of reactive power Q for the inductor and the capacitor. In such 
cases, the inductor and the capacitor will exchange some energy with each other, bypassing the ac source. 
This reduces the reactive power delivered by the source to the LC combination and consequently improves 
the power factor. See Sections 10.8 and 10.9.

Table 10-1

υ ω

ω θ

= =

= − = −

( ) cos

( ) cos( )

V t V

i I t I

2

2

0V

I

eff

eff

/ �

� θθθ

θ θP VI Q VI S VI= = =cos , sin and (apparent power)

Z i Ieff p(t) P Q S

R R
V

R
t

2
cosω

V
R /0� V

R
t

2

1 2( cos )+ ω
V
R

2

0
V
R

2

L jLw
V
L

t
2

90ω ωcos( )− °
V
Lω /−90� V

L
t

2

2ω ωsin 0
V
L

2

ω
V
L

2

ω  

C − j
Cω

V C t2 90ω ωcos( )+ ° VCω/90� −V C t
2

2ω ωsin 0 −V C
2 ω V C2 ω  
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EXAMPLE 10.9 Find the total instantaneous power p(t), the average power P, and the reactive power Q delivered 
from υ ω= ( ) cosV t2  to a parallel RLC combination.

The total instantaneous power is

 p t i i i i p p pT R L C R L C( ) ( )= = + + = + +υ υ  

Fig. 10-5
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Substituting the values of pR, pL, and pC found in Examples 10.6, 10.7, and 10.8, respectively, we get

p t
V
R

t V
L

C tT ( ) ( cos ) sin= + + −





2
21 2

1
2ω ω ω ω

The average power is

P P V RT R= = 2/  

The reactive power is

Q Q Q V
L

CT L C= + = −





2 1
ω ω  (12)

For ( )1 0/L Cω ω− = , the total reactive power is zero. Figure 10-5(d) shows pT (t) for a load with a leading power factor.

10.7 Complex Power, Apparent Power, and Power Triangle
The two components P and Q of power play different roles and may not be added together. However, they 
may conveniently be brought together in the form of a vector quantity called complex power S and defined

by S = P  +  jQ. The magnitude | |S = + =P Q V I2 2
eff eff  is called the apparent power S and is expressed 

in units of volt-amperes (VA). The three scalar quantities S, P, and Q may be represented geometrically as 
the hypotenuse, horizontal, and vertical legs, respectively, of a right triangle (called the power triangle) as 

Fig. 10-5 (cont.)
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shown in Fig. 10-6(a). The power triangle is simply the triangle of the impedance Z scaled by the factor 
Ieff

2  as shown in Fig. 10-6(b). Power triangles for an inductive load and a capacitive load are shown in  
Figs. 10-6(c) and (d), respectively.

Fig. 10-6

It can be easily proved that S V I= eff eff
* , where Veff is the complex amplitude of effective voltage and Ieff

*  
is the complex conjugate of the amplitude of effective current. An equivalent formula is S I Z= eff

2 .
In summary,

 Complex Power: eff eff
*

eff
2S V I Z= = + =P jQ I  (13)

 Real Power: eff effP V I= =Re[ ] cosS θ  (14)

 Reactive Power: eff effQ V I= =Im[ ] sinS θ  (15)

 Apparent Power: eff effS V I=  (16)

EXAMPLE 10.10 (a) A sinusoidal voltage with Veff = 10 V is connected across Z1 = 1 + j as shown in Fig. 10-7(a). Find 
i1, I1,eff, p1(t), P1, Q1, power factor pf1, and S1. (b) Repeat part (a) replacing the load Z1 in (a) by Z2 = 1 − j, as shown in 
Fig. 10-7(b). (c) Repeat part (a) after connecting in parallel Z1 in (a), and Z2 in (b), as shown in Fig. 10-7(c).

Let υ ω= 10 2 cos t .
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(a) See Fig. 10-7(a). (b) See Fig. 10-7(b)

Z Z

i t i

1 2

1 2

2 45 2 45

10 45 10

= = −

= − =

/ /� �

�cos( ) cos(ω ωωωt

p t

+

= − =

=

45

5 2 45 5 2 45

11

�

� �

)

( ) (

I I1,eff 2,eff/ /
0000 2 45 100 22) cos cos( ) ( ) ( ) cos cos(ω ω ω ωt t p t t− =� ttt

t

+

= + − = +

45

50 50 2 2 45 50 50 2 2

�

�

)

( ) cos ( ) ( ) cos(ω W ωωωt

P V I P V I

+

= = =

45

45 501 2

�

�

)

cos

W

Weff 1,eff eff 2,eeeff

eff 1,eff

Wcos

sin var

45 50

45 501 2

�

�

=

= = =Q V I Q −− = −

= + = +

V I

P jQ j

eff 2,eff sin var45 50

50 501 1 1 2

�

S S === + = −

= = = = =

P jQ j

S S

2 2

1 1 2 2

50 50

50 2 70 7 50| | | |S S. VA 222 70 7

0 707 0 7071 2

=

= =

.

. .

VA

pf lagging pf leadinggg

(c)  See Fig. 10-7(c).

Z Z Z
j j

j j

i t

= = + −
+ + − =

=

1 2

1 1
1 1 1

10 2

||
( )( )

( ) ( )

cosω

Ieeeff

eff

W

=

= = +

=

10

200 100 100 22p t t t

P V

( ) cos cosω ω

III

Q

P

S

eff W

VA

pf

=

=

= =

= =

=

100

0

100

100

1

S

S| |

Fig. 10-7
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Fig. 10-7 (cont.)
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The results of part (c) may also be derived from the observation that for the Z1||Z2 combination, i = i1 + i2 and 
consequently,

p t p t p t

t

( ) ( ) ( )

[ ( ) cos( )] [

= +

= + − +

1 2

50 50 2 2 45 50ω � ++ +

= +

= +

( ) cos ( )]

cos

50 2 2 45

100 100 2

1 2

ω

ω

t

t

P P P

�

W

=== + =

= + = − =

= < +

50 50 100

50 50 0

100

1 2

1 2

W

Q Q Q

S S S

The power triangles are shown in Figs. 10-7(a), (b), and (c). Figure 10-7(d) shows the plots of u, i, and p for the 
three loads.

EXAMPLE 10.11 A certain passive network has equivalent impedance Z = 3 + j4 Ω and an applied voltage

υ = +42 5 1000 30. cos ( ) ( )t � V   

Give complete power information.

V

I
V

eff

eff
eff

V

/

=

= =

42 5
2

30

42 5 2 30

5 53

.

( . )

.

/

/
/

�

�
Z 1113

8 5
2

23 13

180 6 53 13

�
�

�

= −

= = =

.
.

. .

/

/

A

eff eff
*S V I 11108 4 144 5. .+ j

Hence, P = 108.4 W, Q = 144.5 var (inductive), S = 180.6 VA, and pf = cos 53.13° = 0.6 lagging.

10.8 Parallel-Connected Networks
The complex power S is also useful in analyzing practical networks, for example, the collection of house-
holds drawing on the same power lines. Referring to Fig. 10-8,

S V I V I IT n= = + + +eff eff eff 1, eff 2, eff , ef
* * *( . . .I fff )

*

. . .= + + +S S1 2 Sn

Fig. 10-8
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from which

 

P P P P

Q Q Q Q

S P Q

T n

T n

T T T

= + + +

= + + +

= +

1 2

1 2

2 2

. . .

. . .

pfTT
T

T

P
S

=

 

These results (which also hold for series-connected networks) imply that the power triangle for the net-
work may be obtained by joining the power triangles for the branches vertex to vertex. In the example shown 
in Fig. 10-9, n = 3, with branches 1 and 3 assumed inductive and branch 2 capacitive. In such diagrams, some 
of the triangles may degenerate into straight-line segments if the corresponding R or X is zero.

If the power data for the individual branches are not important, the network may be replaced by its equiva-
lent admittance, and this is then used directly to compute ST .

Fig. 10-9

EXAMPLE 10.12 Three loads are connected in parallel to a 6-kVeff ac line, as shown in Fig. 10-8. Given

 P P P1 1 2 2 310 1 20 0 5 1= = = = =kW pf kW pf lagging, ; , . ; 55 0 63kW pf lagging, .=  

Find PT , QT , ST , pfT , and the current Ieff.
We first find the reactive power for each load:

 

pf kvar

pf

1 1 1 1 1 1

2 2

1 0 0= = = = =

=

cos tan tan

cos

θ θ θ

θ

Q P

== = = =

=

0 5 1 73 34 62 2 2 2

3 3

. tan . tan .

cos

θ θ

θ

Q P kvar

pf == = = =0 6 1 33 203 3 3 3. tan . tanθ θQ P kvar

 

Then PT , QT , ST , pfT , and Ieff are

 

P P P P

Q Q Q Q

T

T

= + + = + + =

= + + = +

1 2 3

1 2 3

10 20 15 45

0 34

kW

.66 20 54 6

45 54 6 70 752 2 2 2

+ =

= + = + =

.

. .

kvar

kVAS P QT

pf / lagging

eff

T T TP S

I

= = = = °

=

0 64 50 5. cos , .θ θ

SS V/ kVA / kV Aeff

eff

= =

= −

( . ) ( ) .

.

70 75 6 11 8

11 8I / 550 5. � A

 

The current can also be found from I = I1 + I2 + I3. However, this approach is more time-consuming.
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10.9 Power Factor Improvement
Electrical service to industrial customers is three-phase, as opposed to the single-phase power supplied to 
residential and small commercial customers. While metering and billing practices vary among the utilities, the 
large consumers will always find it advantageous to reduce the quadrature component of their power triangle; 
this is called “improving the power factor.” Industrial systems generally have an overall inductive component 
because of the large number of motors. Each individual load tends to be either pure resistance, with unity 
power factor, or resistance and inductive reactance, with a lagging power factor. All of the loads are parallel-
connected, and the equivalent impedance results in a lagging current and a corresponding inductive quadrature 
power Q. To improve the power factor, capacitors, in three-phase banks, are connected to the system either 
on the primary or secondary side of the main transformer, such that the combination of the plant load and the 
capacitor banks presents a load to the serving utility which has a power factor as close to unity as possible.

EXAMPLE 10.13 How much capacitive Q must be provided by the capacitor bank in Fig. 10-10 in order to improve 
the power factor to 0.95 lagging?

Fig. 10-10

Before addition of the capacitor bank, pf = cos 25°C = 0.906 lagging, and

I

S V I

1

240 0

3 5 25
68 6 25

240
2

= = −

= =

/
/ /�

�
�

.
.

*

A

eff eff /// / /0
68 6

2
25 8232 25 7461 3� � �







+ =





= +.
j 44479

After the improvement, the triangle has the same P, but its angle is cos−1 0.95 = 18.19°. Then (see Fig. 10-11),

3479
7461 or capaciti

−
= =

Q
Qc

ctan . var (18 19 1027� vvve)  

The new value of apparent power is ′ =S 7854 VA, as compared to the original S = 8232 VA. The decrease, 378 VA, 
amounts to 4.6 percent.

Fig. 10-11

The transformers, the distribution systems, and the utility company alternators are all rated in kVA or 
MVA. Consequently, an improvement in the power factor, with its corresponding reduction in kVA, releases 
some of this generation and transmission capability so that it can be used to serve other customers. This is the 
reason behind the rate structures which, in one way or another, make it more costly for an industrial customer 
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to operate with a lower power factor. An economic study comparing the cost of the capacitor bank to the 
savings realized is frequently made. The results of such a study will usually show whether the improvement 
should be made and also what final power factor would be attained.

EXAMPLE 10.14 A load with P = 1000 kW and pf = 0.5 lagging is fed by a 5-kV source. A capacitor is added in 
parallel such that the power factor is improved to 0.8. Find the reduction in current drawn from the generator.

Before the improvement:

 P S P I= = = = =1000 0 5 2000 40kW / kVA, cos . , cos ,θ θ 00 A  

After the improvement:

 P S P I= = = = =1000 0 8 1250 25kW / kVA,cos . , cos ,θ θ 00 A  

Hence, for the same amount of real power, the current is reduced by (400 − 250)/400 = 0.375 or 37.5 percent.

EXAMPLE 10.15 A fourth load Q4 is added in parallel to the three parallel loads of Example 10.12 such that the 
total power factor becomes 0.8 lagging while the total power remains the same. Find Q4 and the resulting S. Discuss 
the effect on the current.

In Example 10.12 we found the total real and reactive powers to be P = P1 + P2 + P3 = 45 kW and Q = Q1 + Q2 + 
Q3 = 54.6 kvar, respectively. For compensation, we now add load Q4 (with P4 = 0) such that the new power factor 
is pf = cos q = 0.8 lagging or q = 36.87°.

Then, tan . ( ) ( . ) .36 87 54 6 45 0 754 4 4� = + = + = = −Q Q P Q Q/ / and 220 85. kvar.

The results are summarized in Table 10-2. Addition of the compensating load Q4 reduces the reactive power from 
54.6 kvar to 33.75 kvar and improves the power factor. This reduces the apparent power S from 70.75 kVA to 56.25 kVA. 
The current is proportionally reduced.

Table 10-2

Load P, kW pf Q, kvar S, kVA

#1 10 1  0 10

#2 20 0.5 lagging  34.6 40

#3 15 0.6 lagging  20 25

#(1 + 2 + 3) 45 0.64 lagging  54.6 70.75

#4 0 0 leading −20.85 20.85

Total 45 0.8 lagging  33.75 56.25

10.10 Maximum Power Transfer
The average power delivered to a load Z1 from a sinusoidal signal generator with open circuit voltage Vg and 
internal impedance Zg = R + jX is maximum when Z1 is equal to the complex conjugate of Zg so that 
Z1 = R − jX. The maximum average power delivered to Z1 is P V Rgmax = 2 4/ .

EXAMPLE 10.16 A generator, with Vg = 100 V(rms) and Zg = 1 + j, feeds a load Z1 = 2 (Fig. 10-12). (a) Find the average 
power PZ1 (absorbed by Z1), the power Pg (dissipated in Zg) and PT (the power provided by the generator). (b) Compute 
the value of a second load Z2 such that, when placed in parallel with Z1, the equivalent impedance is Z = Z1 ||Z2 = Z*

g. 

Fig. 10-12
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(c) Connect in parallel Z2 found in (b) with Z1 and then find the powers PZ, PZ1, PZ2 (absorbed by Z, Z1, and Z2, respec-
tively), Pg (power dissipated in Zg), and PT (power provided by the generator).

(a)  | | = | |Z Z1 2 1 10+ + + =g j . Thus I = + = + +V Z Zg g j/ /( ) ( )1 100 2 1  and | |I = 10 10 A. The required 
powers are

P I

P

Z

g g

1 1
22 10 10 2000= × = =

= ×

Re[ ] ( )

Re[ ]

Z

Z

| |

|

2 W

III

P P PT Z g

|2 = =

= + = + =

1 10 10 1000

2000 1000 30

2

1

( ) W

0000 W

(b) Let Z2 = a + jb. To find a and b, we set Z Z Z1 2 1|| *= = −g j. Then,

Z Z
Z Z

1 2

1 2

2
2 1+ = + +

+( = −)a jb
a jb

j  

   from which a − b − 2 = 0 and a + b + 2 = 0. Solving these simultaneous equations, we get a = 0 and b = −2; 
substituting into the equation above, Z2 = −j2.

(c) Z = Z1||Z2 = 1 − j and Z + Zg = 1 − j + 1 + j = 2. Then, I = Vg/(Z + Zg) = 100/(1 − j + 1 + j) = 100/2 = 50 A, and so

P PZ g g= × = × = = × = × =Re[ ] Re[ ]Z I Z I2 2 2 21 50 2500 1 50W 222500 W  

To find PZ1 and PZ2, we first find VZ across Z V IZ: ( )Z j= = −50 1 . Then I V ZZ Z j1 1 50 1 2= = − =/ /( )
  ( ) ,25 2 45/− � and

P I P P PZ Z Z T g1 1 1
2

22 25 2 2500 0= × = = = =Re[ ] ( )Z | |2 W W +++ =PZ1 5000 W  

Alternatively, we can state that

P P PZ ZZ2 1and 25 W= = =0 00  

10.11 Superposition of Average Powers
Consider a network containing two ac sources with two different frequencies w1 and w2. If a common period 
T may be found for the sources (i.e., w1 = mw, w2 = nw, where w = 2p/T and m ≠ n), then superposition of 
individual powers applies (i.e., P = P1 + P2), where P1 and P2 are average powers due to application of each 
source. The preceding result may be generalized to the case of any n number of sinusoidal sources operating 
simultaneously on a network. If the n sinusoids form harmonics of a fundamental frequency, then superposi-
tion of powers applies.

P Pk

k

n

=
=

∑
1

EXAMPLE 10.17 A practical coil is placed between two voltage sources u1 = 5 cos w1 t and u2 = 10 cos (w2t = 60°) 
which share the same common reference terminal (see Fig. 9-54). The coil is modeled by a 5-mH inductor in series with 
a 10-Ω resistor. Find the average power in the coil for (a) w2 = 2w1 = 4000, (b) w1 = w2 = 2000, and (c) w1 = 2000 and 
ω2 1000 2= , all in rad/s.

Let u1 by itself produce i1. Likewise, let u2 produce i2. Then i = i1 − i2. The instantaneous power p and the 
average power P are

p Ri R i i Ri Ri Ri i

P p R i

= = − = + −

= 〈 〉 = 〈

2
1 2

2
1
2

2
2

1 2

1
2

2( )

〉〉〉 + 〈 〉 − 〈 〉 = + − 〈 〉R i R i i P P R i i2
2

1 2 1 2 1 22 2

where 〈 〉p  indicates the average of p. Note that in addition to P1 and P2, we need to take into account a third term 
〈 〉i i1 2  which, depending on w1 and w2, may or may not be zero.
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(a) By applying superposition in the phasor domain we find the current in the coil (see Example 9.7).

 

I
V

1
1

1
1

5
10 10 0 35 45 0 35 2000= = + = − =

Z j
i. , . cos (/ � A tt

P
RI

Z

− °

= = × =

= =

45

2
10 0 35

2 0 625

10

1
1
2 2

2
2

2

)

.
. W

I
V // /60

10 20 0 45 3 4 0 45 4000 32

�
�+ = − = −

j
i t. . . cos ( .A, 44

2
10 0 45

2 1

0 35 20

2
2
2 2

1 2

°

= = × =

= − =

)

.

. cos (

P
RI

i i i

W

000 45 0 45 4000 3 4t t− ° − − °) . cos ( . )

 

  In this case 〈 〉 =i i1 2 0 because 〈 − − 〉 =cos( ) cos ( . )2000 45 4000 3 4 0t t� � . Therefore, superposition of power 
applies and P = P1 + P2 = 0.625 + 1 = 1.625 W.

(b)  The current in the coil is i = 0.61 cos (2000t − 135°) (see Example 9.7). The average power dissipated in the 
coil is P = RI2/2 = 5 × (0.61)2 = 1.875 W. Note that P > P1 + P2.

(c) By applying superposition in the time domain we find

 

i t P

i

1 1

2

0 35 2000 45 0 625

0 41

= − ° =

=

. cos ( ) , .

. cos

W

(( . ) , .

,

1000 2 35 3 0 8332

1 2
2

t P

i i i P Ri

− ° =

= − = 〈

W

/22 1 44 2000 45 1000 2 351 2〉 = + − 〈 − ° −P P t t. cos ( ) cos ( .33° 〉)

 

   The term 〈 − ° − ° 〉cos( ) cos ( . )2000 45 1000 2 35 3t t  is not determined because a common period cannot be 
found. The average power depends on the duration of averaging.

SoLvED PRobLEMS

 10.1.  The current plotted in Fig. 10-2(a) enters a 0.5-µF capacitor in series with a 1-kΩ resistor. Find and 
plot (a) u across the series RC combination and (b) the instantaneous power p entering the 
RC combination. (c) Compare the results with Examples 10.1 and 10.2.

(a) Referring to Fig. 10-2(a), in one cycle of the current the voltages are

 

υ

υ

R

C

t

t
t

C
i dt

=
< <

− < <{
= =∫

1 0 1
1 2

1 2000

V ms
1V ms

0

( )
( )

tt t
t t

R C

( ) ( )
( ) ( )

V ms
V ms

0 1
4 2000 1 2

< <
− < <{

= + =υ υ υ 11 2000 0 1
3 2000 1 2

+ < <
− < <{ t t

t t
( ) ( )
( ) ( )

[
V ms
V ms

Seee Fig. -10 13( )]a

 

(b) During one cycle,

 

p Ri

p i
t t
t

R

C C

= =

= =
< <

−

2 1

2000 0 1
2000 4

mW

mW msυ ( ) ( )
(( ) ( )

( ) (

mW ms

mW

1 2

1 2000 0 1

< <{
= = + =

+ < <

t

p i p p
t t

R Cυ mms
mW ms

See Fig. -
)

( ) ( )
[ ( )]

2000 3 1 2
10 13

t t
b− < <{
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(c)  The average power entering the circuit during one cycle is equal to the average power absorbed by the 
resistor. It is the same result obtained in Example 10.1. The power exchanged between the source and the 
circuit during one cycle also agrees with the result obtained in Example 10.2.

Fig. 10-13

10.2. A 1-V ac voltage source feeds (a) a 1-Ω resistor, (b) a load Z = 1 + j, and (c) a load Z = 1 − j. Find 
P in each of the three cases.
(a) P V R= = =2 1 1 1/ / W  

(b) and / / W( ) . . .c Z j I V Z P RI| | | | | |= ± = = = = =1 2 1 2 0 52

10.3. Obtain the complete power information for a passive circuit with an applied voltage u =   
150 cos (wt + 10°) V and a resulting current i = 5.0 cos (wt − 50°) A.

Using the complex power,

S V I= = 











=eff eff
* .150

2
10

5 0
2

50 37/ /� � 555 60 187 5 342 8/ � = +. .j  

Thus, P = 187.5 W, Q = 324.8 var (inductive), S = 375 VA, and pf = cos 60° = 0.50 lagging.

10.4. A two-element series circuit has average power 940 W and power factor 0.707 leading. Determine 
the circuit elements if the applied voltage is u = 99.0 cos (6000t + 30°) V.

The effective applied voltage is 99 0 2 70 0. ./ V= . Substituting in P V I= eff eff cosθ ,

940 70 0 0 707 19 0= =( . ) ( . ) .I Ieff effor A  

Then, (19.0)2 R = 940, from which R = 2.60 Ω. For a leading pf, θ = = −−cos .1 0 707 45�, and so

Z = − = = ΩR jX X RC Cwhere tan .45 2 60�  

Finally, from 2.60 = 1/w C, C = 64.1 µF.
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 10.5. Find the two elements of a series circuit having current i = 4.24 cos (5000t + 45°) A, power 180 W, 
and power factor 0.80 lagging.

The effective value of the current is Ieff / A= =4 24 2 3 0. . . Then,

 180 3 0 20 02= = Ω( . ) .R Ror  

The impedance angle is q = cos−1 0.80 = +36.87°, wherefore the second element must be an inductor. 
From the power triangle,

 
Q
P

I X
XL

L= = ° = Ωeff
180 or
2

36 87 15 0tan . .  

Finally, from 15.0 = 5000L, L = 3.0 mH.

 10.6. Obtain the power information for each element in Fig. 10-14 and construct the power triangle.

Fig. 10-14

The effective current is 14.14/ 2 10 A= .

   
P Qj= = = =Ω( ) ( ) var ( )10 3 300 10 6 6002

6
2W inductive QQ

S

j− Ω = =

= +

2
2

2

10 2 200

300

( ) var ( )

( ) (

capacitive

6600 200 500 0 62− = = =) .VA pf / laggingP S

 

The power triangle is shown in Fig. 10-15.

Fig. 10-15

 10.7. A series circuit of R = 10 Ω and XC = 5 Ω has an effective applied voltage of 120 V. Determine the 
complete power information.

 Z I= + = Ω = =10 5 11 18
120

11 18 10 732 2 . . . Aeff  

Then,

 P I R Q I XC= = = =eff eff
2W, var (capacitiv2 1152 576 ee), VA,S = + =( ) ( )1152 576 12882 2  and  

pf = 1152/1288 = 0.894 leading.
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10.8. Impedances Zi = − Ω5 83 59 0. ./ �  and Z2 8 94 63 43= Ω. ./ �  are in series and carry an effective current 
of 5.0 A. Determine the complete power information.

Z Z ZT j= = + Ω1 2+ 7.0 3 0.  

Hence,        P QT T= = = =( . ) ( . ) ( . ) ( . ) var (5 0 7 0 175 5 0 3 0 752 2W innnductive)  

ST = + = = =( ) ( ) . . .175 75 190 4
175

190 4 0 9192 2 VA pf lagggging  

10.9. Obtain the total power information for the parallel circuit shown in Fig. 10-16.

Fig. 10-16

By current division,

I I5 417 88 18 43 26 05 12 53= = −. . . ./ /� �A A

Then, PT = 





+ 





=17 88
2

5
26 05

2
4 2156

2 2
.

( )
.

( ) W  

Q

S

T

T

= 





=

=

17 88
2

3 480
2

.
( ) var ( )capacitive

((( ) ( )2156 480 22092 2+ =

= =

VA

pf
2156
2209 0.976 leaddding

Alternate Method

Zeq = − = − Ω−4 5
9 3 2 40 0 53

3( )
. .

j
j

j  

Then, P = =( . ) ( . )42 4 2 40 21572/ 2 W and Q = =( . ) ( . )42 4 0 53 4762/ 2 var (capacitive).

10.10. Find the power factor for the circuit shown in Fig. 10-17.

Fig. 10-17
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With no voltage or current specified, P, Q, and S cannot be calculated. However, the power factor is the 
cosine of the angle of the equivalent impedance.

 
Zeq 13

pf

= +
+ = Ω

=

( )( )
. .

cos .

3 4 10
4 3 68 36 03

36 0

j
j / �

33 0 809� = . lagging

 

10.11. If the total power in the circuit of Fig. 10-17 is 1100 W, what are the powers in the two resistors? 
  By current division,

 
I

I
Z
Z

1

2

2

1 2 2

10

3 4
2,

,

eff

eff
= =

+
=  

and so 
P
P

I

I
3

10

2

2

3

10

6
5

Ω

Ω
= =1,eff

2,eff

( )

( )
 

Solving simultaneously with P3Ω + P10Ω = 1100 W gives P3Ω = 600 W and P10Ω = 500 W.

10.12. Obtain the power factor of a two-branch parallel circuit where the first branch has Z1 = 2 + j4 Ω and 
the second Z2 = 6 + j0 Ω. To what value must the 6-Ω resistor be changed to result in the overall 
power factor 0.90 lagging?

Since the angle of the equivalent admittance is the negative of the angle of the equivalent impedance, 
its cosine also gives the power factor.

 
Yeq S

pf

= + + = −

= −

1
2 4

1
6 0 334 36 84

36 84

j
. .

cos ( . )

/ �

� == 0 80. lagging

 

The pf is lagging because the impedance angle is positive.
Now, for a change in power factor to 0.90, the admittance angle must become cos−1 0.90 = −25.84°. 

Then,

 ′ = + + +



 −Yeq

1
=

1
10

1
2 4

1 1
5j R R

j  

which requires 
1 5

1 25 84 3 20
/

1
10

or
+

= ° = Ω

R

Rtan . . .  

10.13. A voltage, 28.28 V/60� , is applied to a two-branch parallel circuit in which Z1 4 30= / � and 
Z2 5 60= Ω/ � . Obtain the power triangles for the branches and combine them into the total power 
triangle.

 

I
V
Z I

V
Z

S

1
1

2
2

1

7 07 30 5 66 0

28 28
2

= = = =

=

. .

.

/ /

/

� �A A

660 30 100 30 86 6 50� � �






−





= = +7.07
2 / / . j ..

.
.

0

28 28
2

60 0 80 0 62S = 











=/ / /� �
5.66

2
00 40 0 69 3

126 6 119 3 174 0 41 2

� = +

= + = + =

. .

. . .

j

jTS S S / 33 3. � VA
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The power triangles and their summation are shown in Fig. 10-18.

Fig. 10-18

Fig. 10-19

10.14. Determine the total power information for three parallel-connected loads: load #1, 250 VA, pf = 0.50 
lagging; load #2, 180 W, pf = 0.80 leading; load #3, 300 VA, 100 var (inductive).

Calculate the average power P and the reactive power Q for each load.
Load #1 Given s = 250 VA, cos q = 0.50 lagging. Then,

P Q= = = − =250 0 50 125 250 125 216 52 2( . ) ( ) ( ) . var (W iiinductive)  

Load #2 Given P = 180 W, cos q = 0.80 leading. Then, q = cos−1 0.80 = −36.87° and

Q = − =180 36 87 135tan( . ) var� (capacitive)

Load #3 Given S = 300 VA, Q = 100 var (inductive). Then,

P = − =( ) ( ) .300 100 282 82 2 W  

Combining componentwise:

P

Q

T

T

= + + =

= − + =

125 180 282 8 587 8

216 5 135 100 18

. .

.

W

111 5

587 8 181 5 615 2 17

. var ( )

. . .

inductive

ST j= + = / ...16�

Therefore, ST = 615.2 VA and pf = cos 17.16° = 0.955 lagging.

10.15. Obtain the complete power triangle and the total current for the parallel circuit shown in Fig. 10-19, 
if for branch 2, S2 = 1490 VA.
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From S I Z2 2
2

2= ,eff ,

 I2
2

2 2

21490

3 6
222,eff A=

+
=  

and, by current division,

 
I
I

1

2
1
2

2 2

2 2 2

3 6
2 3

3 6

2 3
= +

+ = +
+

j
j

I Iwhence eff eff, ,
22 45

13 222 768= =( ) A2  

Then,

 

S Z

S

1 1
2

1

2 2
2

768 2 3 1536 2304= = + = +

=

I j j

I

,

,

( )eff

effZZ

S S S

2

1 2

222 3 6 666 1332

2202 3636

= + = +

= + = +

( )j j

jT

 

That is, PT = 2202 W, QT = 3636 var (inductive),

 ST = + = = =( ) ( ) .2202 3636 4251
2202
4251 02 2 VA and pf 5518 lagging  

Since the phase angle of the voltage is unknown, only the magnitude of IT can be given. By current 
division,

 I I2 2
2

2 2

2 2
22 3

5 9
2 3

5 9

13= +
+ = +

+
=j

j
I IT Tor eff eff, , 1106

2IT , eff  

and so

 I IT T, ,( ) .eff
2

effA or A2 106
13 222 1811 42 6= = =  

10.16. Obtain the complete power triangle for the circuit shown in Fig. 10-20, if the total reactive power is 
2500 var (inductive). Find the branch powers P1 and P2.

Fig. 10-20

The equivalent admittance allows the calculation of the total power triangle.

 Y Y Yeq S= + = −1 2 0 2488 39 57. ./ �  

Then, PT = =2500 39 57 3025cot . � W  

 ST j= + =3025 2500 3924 39 57/ . � VA 
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and pf = PT /ST  = 0.771 lagging.

The current ratio is I1/I2 = Y1/Y2 = 0.177/0.0745.

P
P

I

I
P P1

2

1
2

2
2 1 2

4

12
1 88 3025= = + =

( )

( )
. and W  

from which P1 = 1975 W and P2 = 1050 W.

10.17. A load of 300 kW, with an initial power factor 0.65 lagging, has its power factor improved to 0.90 
lagging by parallel capacitors. How many kvar must these capacitors furnish and what is the resulting 
percent reduction in apparent power?

The angles corresponding to the power factors are first obtained:

cos . . cos . .− −= ° = °1 10 65 49 46 0 90 25 84  

Then (see Fig. 10-21),

Q

Q Qc

= =

− =

300 49 46 350 7

3

tan . . ( )� kvar inductive

0000 25 84 145 3tan . . ( )� = kvar inductive

whence Qc = 205.4 kvar (capacitive). Since

S S= ′ = =300
0 65 461 5

300
0 90 333 3. . . .= kVA kVA  

Fig. 10-21

the reduction is

461.5 333.3
(100%) 27.8%

− =461 5.

10.18. Find the capacitance C necessary to improve the power factor to 0.95 lagging in the circuit shown in 
Fig. 10-22, if the effective voltage of 120 V has a frequency of 60 Hz.

Fig. 10-22
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Use of the admittance provides a good approach.

 Y j C j Ceq S= + = − −ω ω1

20 30
0 0433 0 0250

/ �
. ( . ) ( )  

The admittance diagram, Fig. 10-23, illustrates the next step.

 

θ

ω

= =

− =

−cos . .

. ( . )(tan

1 0 95 18 19

0 0250 0 0433 18

�

C .. )

.

.

19

0 0108

28 6

�

F

ωC

C

=

= µ

 

Fig. 10-23

10.19. A circuit with impedance Z = Ω10 0 60. / �  has its power factor improved by a parallel capacitive 
reactance of 20 Ω. What is the resulting reduction in the current?

Since I = VY, the current reduction can be obtained from the ratio of the admittances before and after 
the addition of the capacitors.

 

Y Ybefore afterS and= − = +0 100 60 0 050 90 0 1. . ./ /� � 000 60 0 062 36 20

0 06

S

after

before

/ /− = −

=

� �. .

.I
I

22
0 100 0 620. .=

 

The current reduction is 38 percent.

10.20. A transformer rated at a maximum of 25 kVA supplies a 12-kW load at power factor 0.60 lagging. 
What percent of the transformer rating does this load represent? How many kW in additional load 
may be added at unity power factor before the transformer exceeds its rated kVA?

For the 12-kW load, S = 12/060 = 20 kVA. The transformer is at (20/25) (100%) = 80% of full rating.
The additional load at unity power factor does not change the reactive power,

 Q = − =( ) ( ) ( )20 12 162 2 kvar inductive  

Then, at full capacity,

 

′ = =

′ = =

−θ sin ( ) .

cos . .

1 16 25 39 79

25 39 79 19 2

/

kW

�

�P

kWaddP = − =19 2 12 0 7 2. . .
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See Fig. 10-24. Note that the full-rated kVA is shown by an arc of radius 25.

Fig. 10-24

10.21. Referring to Problem 10.20, if the additional load has a power factor 0.866 leading, how many kVA 
may be added without exceeding the transformer rating?

The original load is S = 12 + j16 kVA and the added load is

S2 2 2 230 0 866 0 500= − = −S S jS/ � ( . ) ( . ) (kVA)  

The total is St = (12 + 0.866S2) + j(16 − 0.500S2) (kVA). Then,

S S ST
2

2
2

2
2 212 0 866 16 0 500 25= + + − =( . ) ( . ) ( )  

which gives S2 = 12.8 kVA.

10.22. An induction motor with a shaft power output of 1.56 kW has an efficiency of 85 percent. At this 
load, the power factor is 0.80 lagging. Give the complete input power information.

P
P

Pout

in
inor kW= = =0 85

1 5
0 85 1 765.

.
. .  

Then, from the power triangle,

S Qin inkVA and= = = −1 765
0 80 2 206 2 206 1 72.

. . ( . ) ( . 6665 1 3242) . ( ).= kvar inductive  

The equivalent circuit of an induction motor contains a variable resistance which is a function of the shaft 
load. The power factor is, therefore, variable, ranging from values near 0.30 at starting to 0.85 at full load.

SuPPLEMENTARy PRobLEMS

10.23. Given a circuit with an applied voltage u = 14.14 cos w t (V) and a resulting current i = 17.1 cos (w t − 14.05°) (mA), 
determine the complete power triangle.  Ans. P = 117 mW, Q = 29.3 mvar (inductive), pf = 0.970 lagging

10.24. Given a circuit with an applied voltage u  = 340 sin (w t − 60°) (V) and a resulting current i =13.3 sin (w t − 48.7°) (A), 
determine the complete power triangle.  Ans. P = 2217 W, Q = 443 var (capacitive), pf = 0.981 leading

10.25. A two-element series circuit with R = 5.0 Ω and XL = 15.0 Ω, has an effective voltage 31.6 V across the resistance. 
Find the complex power and the power factor.  Ans. 200 + j600 VA, 0.316 lagging

10.26. A circuit with impedance Z = 8.0 −  j6.0 Ω has an applied phasor voltage 70 7 90 0. ./− � V. Obtain the complete 
power triangle.  Ans. P = 200 W, Q = 150 var (capacitive), pf = 0.80 leading
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10.27. Determine the impedance of the circuit which has a complex power S = −5031 26 57/ . � VA given an applied 
phasor voltage 212 1 0. / � V.  Ans. 4.0 − j2.0 Ω

10.28. Determine the impedance corresponding to apparent power 3500 VA, power factor 0.76 lagging, and effective 
current 18.0 A.  Ans. 10.8 40.54/ � Ω  

10.29. A two-branch parallel circuit, with Z1 10 0= Ω/ �  and Z2 8 0 30 0= − Ω. ./ � , has a total current  
i = 7.07 cos (w t − 90°) (A). Obtain the complete power triangle. 

 Ans. P = 110 W, Q = 32.9 var (capacitive), pf = 0.958 leading

10.30. A two-branch parallel circuit has branch impedances Z1 = 2.0 − j5.0 Ω and Z2 = 1.0 + j1.0 Ω. Obtain the complete 
power triangle for the circuit if the 2.0-Ω resistor consumes 20 W.

 Ans. P = 165 W, Q = 95 var (inductive), pf = 0.867 lagging

10.31. A two-branch parallel circuit, with impedances Z1 4 0 30= − Ω. / �  and Z2 5 0 60= Ω. / � , has an applied 
effective voltage of 20 V. Obtain the power triangles for the branches and combine them to obtain the total power 
triangle.  Ans. ST = 128.1 VA, pf = 0.989 lagging

10.32. Obtain the complex power for the complete circuit of Fig. 10-25 if branch 1 takes 8.0 kvar. 

 Ans. S = 8 + j12 kVA, pf = 0.555 lagging

10.33. In the circuit of Fig. 10-26, find Z if ST = 3373 Va, pf = 0.938 leading, and the 3-Ω resistor has an average power 
of 666 W.  Ans. 2 − j2 Ω

Fig. 10-25 Fig. 10-26

10.34. The parallel circuit in Fig. 10-27 has a total average power of 1500 W. Obtain the total power-triangle 
information.  Ans. S = 1500 + j2471 VA, pf = 0.519 lagging

10.35. Determine the average power in the 15-Ω and 8-Ω resistances in Fig. 10-28 if the total average power in the 
circuit is 2000 W.  Ans. 723 W, 1277 W

10.36. A three-branch parallel circuit, with Z1 25 15= Ω/ � , Z2 15= /60� Ω, and Z3 15 90= Ω/ � , has an applied voltage 
V = −339 4 30. / � V. Obtain the total apparent power and the overall power factor.

 Ans. 4291 VA, 0.966 lagging

Fig. 10-27 Fig. 10-28
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10.37. Obtain the complete power triangle for the following parallel-connected loads: load #1, 5 kW, pf = 0.80 lagging; 
load #2, 4 kVA, 2 kvar (capacitive); load #3, 6 kVA, pf = 0.90 lagging.

Ans. 14.535 kVA, pf = 0.954 lagging

10.38. Obtain the complete power triangle for the following parallel-connected loads: load #1, 200 VA, pf = 0.70 
lagging; load #2, 350 VA, pf = 0.50 lagging; load #3, 275 VA, pf = 1.00.

Ans. S = 590 + j444 VA, pf = 0.799 lagging

10.39. A 4500-VA load at power factor 0.75 lagging is supplied by a 60-Hz source with effective voltage 240 V. 
Determine the parallel capacitance in microfarads necessary to improve the power factor to (a) 0.90 lagging,   
(b) 0.90 leading.  Ans. (a) 61.8 µF; (b) 212 µF

10.40. In Problem 10.39, what percent reduction in the line current and total voltamperes is achieved in part (a)? What 
further reduction is achieved in part (b)?  Ans. 16.1 percent, none

10.41. The addition of a 20-kvar capacitor bank improves the power factor of a certain load to 0.90 lagging. Determine 
the complex power before the addition of the capacitors, if the final apparent power is 185 kVA.

Ans. S = 166.5 + j100.6 kVA

10.42. A 25-kVA load with power factor 0.80 lagging has a group of resistive heating units added at unity power factor. 
How many kW do these units take, if the new overall power factor is 0.85 lagging?  Ans. 4.2 kW

10.43. A 500-kVA transformer is at full load and a 0.60 lagging power factor. A capacitor bank is added, improving the 
power factor to 0.90 lagging. After improvement, what percent of rated kVA is the transformer carrying?

Ans. 66.7 percent

10.44. A 100-kVA transformer is at 80 percent of rated load at a power factor 0.85 lagging. How many kVA in additional 
load at 0.60 lagging power factor will bring the transformer to the full rated load?  Ans. 21.2 kVA

10.45. A 250-kVA transformer is at full load with power factor 0.80 lagging. (a) How many kvar of capacitors must be 
added to improve this power factor to 0.90 lagging? (b) After improvement of the power factor, a new load is to be 
added at 0.50 lagging power factor. How many kVA of this new load will bring the transformer back to the rated 
kVA and what is the final power factor?  Ans. (a) 53.1 kvar (capacitive); (b) 33.35 kVA, 0.867 lagging

10.46. A 65-kVA load with a lagging power factor is combined with a 25-kVA synchronous motor load which operates 
at pf = 0.60 leading. Find the power factor of the 65-kVA load, if the overall power factor is 0.85 lagging.

Ans. 0.585 lagging

10.47. An induction motor load of 2000 kVA has power factor 0.80 lagging. Synchronous motors totaling 500 kVA are 
added and operated at a leading power factor. If the overall power factor is then 0.90 lagging, what is the power 
factor of the synchronous motors?  Ans. 0.92 leading

10.48. Find the maximum energy (E) stored in the inductor of Example 10.17(a) and show that it is greater than the sum 
of the maximum stored energies (E1 and E2) when each source is applied alone.

Ans. E = 1.6 mJ, E1 = 306 µJ, E2 = 506 µJ

10.49. The terminal voltage and current of a two-terminal circuit are Vrms = 120 V and Irms = −30 60/ � A at f = 60 Hz, 
respectively. Compute the complex power. Find the impedance of the circuit and its equivalent circuit made of two 
series elements in series.  Ans.  S j VA= +1800 3117 7. , Z = 2 + j3.464 = R + jLw, R = 2 Ω, L = 9.2 mH

10.50. In the circuit of Fig. 10-29 the voltage source has effective value 10 V at w = 1 rad/s and the current source is 
zero. (a) Find the average and reactive powers delivered by the voltage source. (b) Find the effective value of the 
current in the resistor and the average power absorbed by it and the reactive powers in L and C. Show the balance 
sheet for the average and reactive powers between the source and R, L, and C.

Ans. (a) P = 80 W, Q = −60 var, (b) IR = 5 2 A, PR = 80 W, QC = −160 var, QL = 100 var, PR = P and   
QL + QC = Q

10.51. In the circuit of Fig. 10-29, υa t= 10 2 cos  and i tb = 10 2 2cos . (a) Find the average power delivered by each 
source. (b) Find the current in the resistor and the average power absorbed by it.

Ans. (a) Pa = Pb = 80 W, (b) i t t PR R= − + − =2 10 26 5 2 10 2 63 4 160cos( . ) cos ( . ),� � W  
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10.52. A single-phase ac source having effective value 6 kV delivers 100 kW at a power factor 0.8 lagging to two parallel 
loads. The individual power factors of the loads are pf1 = 0.7 lagging and pf2 = 0.1 leading. (a) Find powers P1 
and P2 delivered to each load. (b) Find the impedance of each load and their combination.

 Ans. (a) P1 = 97.54 kW, P2 = 2.46 kW, (b) Z1 0 244 84 26= − Ω. ./ � , Z2 0 043 45 57= Ω. ./ , Z = Ω0 048 36 87. ./  

10.53. A practical voltage source is modeled by an ideal voltage source Vg with an open-circuited effective value of 
320 V in series with an output impedance Z jg = + Ω50 100 . The source feeds a load Z j



= + Ω200 100 . 
See Fig. 10-30. (a) Find the average power and reactive power delivered by Vg. (b) Find the average power and 
reactive power absorbed by the load. (c) A reactive element jX is added in parallel to Z



. Find X such that power 
delivered to Z



 is maximized.

 Ans. (a) Pg = 250 W and Qg = 200 var, (b) P


= 200 W and Q


= 100 var, (c) X = − Ω100  

Fig. 10-29

Fig. 10-30
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CHAPTER 11

Polyphase Circuits

11.1 Introduction
The instantaneous power delivered from a sinusoidal source to an impedance is

p t t i t V I V I tp p p p( ) ( ) ( ) cos cos ( )= = + −υ q ω q2  (1)

where Vp and Ip are the rms values of u and i, respectively, and q is the angle between them. The power oscil-
lates between Vp Ip(1 + cosq) and VpIp(−1 + cosq). In power systems, especially at higher levels, it is desirable 
to have a steady flow of power from source to load. For this reason, polyphase systems are used. Another 
advantage is having more than one voltage value on the lines. In polyphase systems, Vp and Ip indicate volt-
age and current, respectively, in a phase which may be different from voltages and currents in other phases. 
This chapter deals mainly with three-phase circuits which are the industry standard. However, examples of 
two-phase circuits will also be presented.

11.2 Two-Phase Systems
A balanced two-phase generator has two voltage sources producing the same amplitude and frequency but 
90° or 180° out of phase. There are advantages in such a system since it gives the user the option of two 
voltages and two magnetic fields. Power flow may be constant or pulsating.

EXAMPLE 11.1 An ac generator contains two voltage sources with voltages of the same amplitude and frequency, 
but 90° out of phase. The references of the sources are connected together to form the generator’s reference terminal n. 
The system feeds two identical loads [Fig. 11-1(a)]. Find the currents, the voltages, and the instantaneous and average 
powers delivered.

Terminal voltages and currents at the generator’s terminal are

υ ω υ ωa p b p

a p

t V t t V t

i t I

( ) cos ( ) cos ( )

( )

= = −

=

2 2 90

2

�

cccos( ) ( ) cos( )ω q ω qt i t I tb p− = − −2 90�
(2)

In the phasor domain, let Z = | |Z �q  and I V Zp p= / | |. Then,

V V V V V

I

AN = = − = − =

=

V V V

I

p BN p AB AN BN p

A

/ / /0 90 2 45� � �

ppp B p N A B pI I/ / /− = − − = + = − −q q q� � �I I I I90 2 45
(3)

The voltage and current phasors are shown in Fig. 11-1(b).
Instantaneous powers pA(t) and pB(t) delivered by the two sources are

p t t i t V I V I t

p

a a a p p p p

b

( ) ( ) ( ) cos ( )

(

= = + −υ q ω qcos 2

ttt t i t V I V I tb b p p p p) ( ) ( ) cos( )= = − −υ q ω qcos 2
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The total instantaneous power pT (t) delivered by the generator is

 p t p t p t V I V I t VT a b p p p p( ) ( ) ( ) cos cos( )= + = + − +q ω q2 pp p p p p pI V I t V Icos cos( ) cosq ω q q− − =2 2  

Thus,  p t P V IT p p( ) cos= =avg 2 q   (4)

In the system of Fig. 11-1(a), two voltage values Vp and 2 Vp  are available to the load and the power flow is constant. 
In addition, the 90°-phase shift between the two voltages may be used to produce a special rotating magnetic field needed 
in some applications.

11.3 Three-Phase Systems
Three-phase generators contain three sinusoidal voltage sources with voltages of the same frequency but a 
120°-phase shift with respect to one another. This is realized by positioning three coils at 120° electrical 
angle separations on the same rotor. Normally, the amplitudes of the three phases are also equal. The genera-
tor is then balanced. In Fig. 11-2, three coils are equally distributed about the circumference of the rotor; that 
is, the coils are displaced from one another by 120 mechanical degrees.

Coil ends and slip rings are not shown; however, it is evident that counterclockwise rotation results in 
the coil sides A, B, and C passing under the pole pieces in the order … A-B-C-A-B-C… Voltage polarities 

Fig. 11-1
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reverse for each change of pole. Assuming that the pole shape and corresponding magnetic flux density are 
such that the induced voltages are sinusoidal, the result for the three coils is as shown in Fig. 11-3. Voltage B
is 120 electrical degrees later than A, and C is 240° later. This is referred to as the ABC sequence. Changing 
the direction of rotation would result in … A-C-B-A-C-B…, which is called the CBA sequence.

Fig. 11-2

The voltages of a balanced ABC sequence in the time and phasor domains are given in (5) and (6), respec-
tively. The phasor diagram for the voltage is shown in Fig. 11-4.

υ ω υ ω υan p bn p ct V t t V t( ) ( ) cos ( ) ( ) cos ( )= = −2 2 120� nnn pt V t( ) ( ) cos ( )= −2 240ω �  (5)

V V Van p bn p cn pV V V= = − = −/ / /0 120 240� �   (6)

Fig. 11-3

Fig. 11-4

Ch11.indd   268 11/08/17   11:32 AM



CHAPTER 11  Polyphase Circuits 269

11.4 Wye and Delta Systems
The ends of the coils can be connected in wye (also designated Y; see Section 11.8) fashion, with ends ′A , ′B , 
and ′C  joined at a common point designated the neutral, N; the ends A, B, and C are brought out to become 
the lines A, B, and C of the three-phase system. If the neutral point is carried along with the lines, it is a three-
phase, four-wire system. In Fig. 11-5, the lines are designated by lowercase a, b, and c at the supply, which 
could either be a transformer bank or a three-phase alternator, and by uppercase A, B, and C at the load. If 
line impedances must be considered, then the current direction through, for example, line aA would be IaA, 
and the phasor line voltage drop VaA.

Fig. 11-5

The generator coil ends can be connected as shown in Fig. 11-6, making a delta-connected (or ∆-connected) 
three-phase system with lines a, b, and c. A delta-connected set of coils has no neutral point to produce a 
four-wire system, except through the use of ∆-Y transformers.

Fig. 11-6

11.5 Phasor Voltages
The selection of a phase angle for one voltage in a three-phase system fixes the angles of all other voltages. 
This is tantamount to fixing the t = 0 point on the horizontal axis of Fig. 11-3, which can be done quite 
arbitrarily. In this chapter, an angle of zero will always be associated with the phasor voltage of line B with 
respect to line C: VBC ≡ VL 0°.

It is shown in Problem 11.4 that the line-to-line voltage VL is 3 times the line-to-neutral voltage. All 
ABC-sequence voltages are shown in Fig. 11-7(a) and CBA voltages in Fig. 11-7(b). These phasor volt-
ages, in keeping with the previous chapters, reflect maximum values. In the three-phase, four-wire, 480-volt  
system, widely used for industrial loads, and the 208-volt system, common in commercial buildings, effective  
values are specified. In this chapter, a line-to-line voltage in the former system would be VBC = 678.80° V,  
making VBC eff V= =678 8 2 480. / . People who regularly work in this field use effective-valued phasors, 
and would write VBC = 480 0° V.
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11.6 Balanced Delta-Connected Load
Three identical impedances connected as shown in Fig. 11-8 make up a balanced ∆-connected load. The 
currents in the impedances are referred to either as phase currents or load currents, and the three will 
be equal in magnitude and mutually displaced in phase by 120°. The line currents will also be equal in 
magnitude and displaced from one another by 120°; by convention, they are given a direction from the 
source to the load.

Fig. 11-7

Fig. 11-8

EXAMPLE 11.2 A three-phase, three-wire, ABC system, with an effective line voltage of 120 V, has three impedances 
of 5.0 45° Ω in a ∆-connection. Determine the line currents and draw the voltage-current phasor diagram.

The maximum line voltage is 120 2 169 7= . V. Referring to Fig. 11-7(a), the voltages are

V V VAB BC CA= = =169 7 120 169 7 0 169 7 240. . ./ / /� �V V ��� V  

Double subscripts give the phase-current directions; for example, IAB passes through the impedance from line A to line B.
All current directions are shown in Fig. 11-8. Then the phase currents are

I
V

Z

I
V

Z

AB
AB

BC
BC

= = =

=

169 7 120

5 45
33 9 75

.
./

/ /�

�
� A

=== = −

= =

169 7 0

5 45
33 9 45

169 7 2

.
.

.

/
/ /

/

�

�
� A

I
V

ZCA
CA 4440

5 45

�
33 9 195

�
�

/ /= . A
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By Kirchhoff’s Current Law (KCL), line current IA is given by

 I I IA AB AC= + = − =33 9 75 33 9 195 58 7 45. . ./ / /� � � A  

Similarly, IB = 58.7 −75° A and IC = 58.7 165° A.
The line-to-line voltages and all currents are shown on the phasor diagram of Fig. 11-9. Note particularly the balanced 

currents. After one phase current has been computed, all other currents may be obtained through the symmetry of the 
phasor diagram. Note also that 33 9 3 58 7. .× = ; that is, I IL Ph= 3  for a balanced delta load.

Fig. 11-9

11.7 Balanced Four-Wire, Wye-Connected Load
Three identical impedances connected as shown in Fig. 11-10 make up a balanced Y-connected load. The 
currents in the impedances are also the line currents, so the directions are chosen from the source to the load, 
as before.

EXAMPLE 11.3 A three-phase, four-wire, CBA system, with an effective line voltage of 120 V, has three imped-
ances of 20 −30° Ω in a Y-connection (Fig. 11-10). Determine the line currents and draw the voltage-current phasor  
diagram.

Fig. 11-10

The maximum line voltage is 169.7 V, and the line-to-neutral magnitude, 169 7 3 98 0. / .= V. From Fig. 11-7(b),

V V VAN BN CN= − = =98 0 90 98 0 30 98 0 150. . ./ / /� � �V V VV

Then  I
V

ZA
AN= = −

−
= −

98 01 90

20 30
4 90 60

.
./

/ /�

�
� A

and, similarly, IB = 4.90 60 A/ � , IC = 4.90 180 A/ � .
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The voltage-current phasor diagram is shown in Fig. 11-11. Note that with one line current calculated, the other two 
can be obtained through the symmetry of the phasor diagram. All three line currents return through the neutral. Therefore, 
the neutral current is the negative sum of the line currents:

Fig. 11-11

Since the neutral current of a balanced, Y-connected, three-phase load is always zero, the neutral 
conductor may, for computation purposes, be removed, with no change in the results. In actual power 
circuits, it must not be physically removed, since it carries the (small) unbalance of the currents,   
carries short-circuit or fault currents for operation of protective devices, and prevents overvoltages 
on the phases of the load. Since the computation in Example 11.3 proceeded without difficulty, the 
neutral will be included when calculating line currents in balanced loads, even when the system is 
actually three-wire.

11.8 Equivalent Y- and D-Connections
Figure 11-12 shows three impedances connected in a ∆ (delta) configuration, and three impedances con-
nected in a Y (wye) configuration. Let the terminals of the two connections be identified in pairs as indicated 
by the labels a , b, g. Then Z1 is the impedance “adjoining” terminal a in the Y-connection, and ZC is the 
impedance “opposite” terminal a in the ∆-connection, and so on. Looking into any two terminals, the two 
connections will be equivalent if corresponding input, output, and transfer impedances are equal. The criteria 
for equivalence are as follows:

Fig. 11-12
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2
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Z
Z Z

Z Z Z

C

B C

A B C
3 = + +

  

It should be noted that if the three impedances of one connection are equal, so are those of the equivalent 
connection, with Z∆/ZY = 3.

11.9 Single-Line Equivalent Circuit for Balanced Three-Phase Loads
Figure 11-13(a) shows a balanced Y-connected load. In many cases (for instance, in power calculations) only 
the common magnitude, IL, of the three line currents is needed. This may be obtained from the single-line 
equivalent, Fig. 11-13(b), which represents one phase of the original system, with the line-to-neutral voltage 
arbitrarily given a zero phase angle. This makes IL = IL −q, where q is the impedance angle. If the actual 
line currents IA, IB, and IC are desired, their phase angles may be found by adding −q to the phase angles of 
VAN, VBN, and VCN as given in Fig. 11-7. Observe that the angle on IL gives the power factor for each phase, 
pf = cosq.

The method may be applied to a balanced ∆-connected load if the load is replaced by its Y-equivalent, 
where Z ZY = 1

3 ∆ (Section 11.8).

Fig. 11-13

EXAMPLE 11.4 Rework Example 11.3 by the single-line equivalent method.
Referring to Fig. 11-14 (in which the symbol Y indicates the type of connection of the original load),

 I
V

ZL
LN= =

−
=98 0 0

20 30
4 90 30

.
./

/ /�

�
� A  

From Fig. 11-7(b), the phase angles of VAN, VBN, and VCN are −90°, 30°, and 150°, respectively. Hence,

  I I IA B C= − = =4 90 60 4 90 60 4 90 180. . ./ / /� � �A A A   

Fig. 11-14
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11.10 Unbalanced Delta-Connected Load
The solution of the unbalanced delta-connected load consists in computing the phase currents and then 
applying KCL to obtain the line currents. The currents will be unequal and will not have the symmetry of 
the balanced case.

EXAMPLE 11.5 A three-phase, 339.4-V, ABC system [Fig. 11-15(a)] has a ∆-connected load, with

Z Z ZAB BC CA= = = −10 0 10 30 15 30/ / /� � �Ω Ω Ω   

Obtain the phase and line currents and draw the phasor diagram.

IAB
AB

AB
= = =

V
Z

339 4 120

10 0
33 94 120

.
./

/ /�

�
� A   

Similarly, IBC = −33 94 30. / � A and ICA = 22 63 270. / � A. Then,

I I IA AB AC= + = − =33 94 120 22 63 270 54 72 108. . ./ / /� � ...1� A   

Also, IB = −65 56 45. / � A and IC = −29 93 169 1. ./ � A.
The voltage-current phasor diagram is shown in Fig. 11-15(b), with magnitudes and angles drawn to scale.

Fig. 11-15

11.11 Unbalanced Wye-Connected Load

Four-Wire
The neutral conductor carries the unbalanced current of a wye-connected load and maintains the line-to-
neutral voltage magnitude across each phase of the load. The line currents are unequal and the currents on 
the phasor diagram have no symmetry.

EXAMPLE 11.6 A three-phase, four-wire, 150-V, CBA system has a Y-connected load, with

Z Z ZA B C= = =6 0 6 30 5 45/ / /� � �Ω Ω Ω  

Obtain all line currents and draw the phasor diagram. See Figure 11-16(a).

I

I

A
AN

A

B
BN

B

= = − = −

=

V
Z

V
Z

86 6

6 0
14 43 90

90.
./

/ /�

�
� A

=== =

= =

86 6 30

6 30
14 43 0

86 6 15

.
.

.

/
/ /

/

�

�
� A

IC
CN

C

V
Z

000

5 45

�
17 32 105

�
�

/ / A= .

IN = − − + + =( . . . ) .14 43 90 14 43 0 17 32 105 10/ / /� � � 2221 167 0/− . � A  

Figure 11-16(b) gives the phasor diagram.
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Three-Wire
Without the neutral conductor, the Y-connected impedances will have voltages which vary considerably from 
the line-to-neutral magnitude.

EXAMPLE 11.7 Figure 11-17(a) shows the same system as in Example 11.6 except that the neutral wire is no longer 
present. Obtain the line currents and find the displacement neutral voltage, VON.

Fig. 11-16

Fig. 11-17

The circuit is redrawn in Fig. 11-17(b) so as to suggest a single node-voltage equation with VOB as the unknown.

  

V
Z

V
Z

V
Z

V

OB AB

A

OB

B

OB BC

C

OB

−
+ +

+
=

+

V V
0

1

6 0

1

6 30/ /� �
+







= −1

5 45

150 240

6 0

150 0

5 45/
/
/

/
/�

�

�

�

��

  

from which, VOB = 66.76 −152.85° V.  Then,

  IB
OB

B
= − = −

V
Z 11 13 2 85. ./ � A   

From VOA + VAB = VOB, VOA = 100.7 81.08° V, and

  IA
OA

A
= − = −

V
Z 16 78 98 92. ./ � A   

Similarly, VOC = VOB − VCB = 95.58 −18.58° V, and

  IC = 19 12 116 4. ./ � A   
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Point O is displaced from the neutral N by a phasor voltage VON given by

V V VON OA AN= + = + − =100 7 81 08
150

3
90 20 24 39. . ./ / /� � ...53� V   

The phasor diagram, Fig. 11-18, shows the shift of point O from the centroid of the equilateral triangle.
See Problem 11-13 for an alternate method.

Fig. 11-18

11.12 Three-Phase Power
The powers delivered by the three phases of a balanced generator to three identical impedances with phase 
angle q are

p t V I V I t

p t V I

a p p p p

b p p

( ) cos cos ( )

( ) cos

= + −

=

q ω q

q

2

++ − −

= +

V I t

p t V I V I

p p

c p p p p

cos ( )

( ) cos cos

2 240ω q

q

�

(( )2 480ω qt − −�

p t p t p t p t

V I V I

T a b c

p p p p

( ) ( ) ( ) ( )

cos [cos(

= + +

= +3 q 222 2 240 2 480ω q ω q ω qt t t− + − − + − −) cos( ) cos( )]� �

But cos (2w t − q) + cos (2wt − 240° − q) + cos (2wt − 480° − q) = 0 for all t. Therefore,

p t V I PT p p( ) cos= =3 q

The total instantaneous power is the same as the total average power. It may be written in terms of line   
voltage VL and line current IL. Thus,

In the delta system, VL = Vp and I IL p= 3 . Therefore, P V IL L= 3 cosq .

In the wye system, V VL p= 3  and IL = Ip. Therefore, P V IL L= 3 cosq .

The expression 3 V IL L cosq  gives the power in a three-phase balanced system, regardless of the connection 
configuration. The power factor of the three-phase system is cos q. The line voltage VL in industrial systems 
is always known. If the load is balanced, the total power can then be computed from the line current and 
power factor.
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In summary, power, reactive power, apparent power, and power factor in a three-phase system are

 P V I Q V I S V I
P
SL L L L L L= = =3 3 3cos sinq q pf =   

Of course, all voltage and currents are effective values.

11.13 Power Measurement and the Two-Wattmeter Method
An ac wattmeter has a potential coil and a current coil and responds to the product of the effective voltage, 
the effective current, and the cosine of the phase angle between them. Thus, in Fig. 11-19, the wattmeter will 
indicate the average power supplied to the passive network,

  P V I= =eff eff eff effcos Re ( )*q V I   

(see Section 10.7).

Fig. 11-19

Two wattmeters connected in any two lines of a three-phase, three-wire system will correctly indicate 
the total three-phase power by the sum of the two meter readings. A meter will attempt to go downscale if 
the phase angle between the voltage and current exceeds 90°. In this case, the current-coil connections can 
be reversed and the upscale meter reading treated as negative in the sum. In Fig. 11-20 the meters are inserted 
in lines A and C, with the potential-coil reference connections in line B. Their readings will be

 
WA AB A AB AB A= = +Re ( ) Re ( ) Re (* *V I V I Veff eff eff eff BB AC

C CB C CBW

eff eff

eff eff eff

I

V I V I

*

*

)

Re ( ) Re (= = CCA CB ABeff eff eff
* *) Re ( )+ V I

  

Fig. 11-20
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in which the KCL expressions IA = IAB + IAC and IC = ICA + ICB have been used to replace line currents by 
phase currents. The first term in WA is recognized as PAB, the average power in phase AB of the delta load; 
likewise, the second term in WC is PCB. Adding the two equations and recombining the middle terms then 
yields

W W P P PA C AB AB CB AC CB A+ = + − + =Re [( ) ]*V V Ieff eff eff BBB AC CBP P+ +

since, by KVL, VAB − VCB = VAC .
The same reasoning establishes the analogous result for a Y-connected load.

Balanced Loads
When three equal impedances Z∠q are connected in a delta configuration, the phase currents make 30°
angles with their resultant line currents. Figure 11-21 corresponds to Fig. 11-20 under the assumption of 
ABC sequencing. It is seen that VAB leads IA by q  + 30°, while VCB leads IC by q  − 30°. Consequently, the 
two wattmeters will read

W V I W V IA AB A C CB C= + =eff eff eff effcos( ) cos(q q30� −−− 30�)  

or, since in general we do not know the relative order in the voltage sequence of the two lines chosen for the 
wattmeters,

W V I

W V I

L L

L L

1

2

30

3

= +

= −

eff eff

eff eff

cos( )

cos(

q

q

�

000�)
  

These expressions also hold for a balanced Y-connection.

Fig. 11-21

Elimination of VL effIL eff between the two readings leads to

tanq =
−
+







3 2 1

2 1

W W
W W

Thus, from the two wattmeter readings, the magnitude of the impedance angle q can be inferred. The sign 
of tan q suggested by the preceding formula is meaningless, since the arbitrary subscripts 1 and 2 might just 
as well be interchanged. However, in the practical case, the balanced load is usually known to be inductive 
(q > 0).
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SoLVED ProBLEMS

 11.1. The two-phase balanced ac generator of Fig. 11-22 feeds two identical loads. The two voltage 
sources are 180° out of phase. Find (a) the line currents, voltages, and their phase angles, and (b) the 
instantaneous and average powers delivered by the generator.

Fig. 11-22

Let Z = |Z| /q  and Ip = Vp/|Z|.
 (a) The voltages and currents in the phasor domain are

  V V V VAN p BN p p AB AN BN pV V V V V= = − = − = − =/ / / /0 180 0 2 0�  

Now, from Ip and Z given above, we have

  I I I I IA p B p p N A BI I I= − = − − = − − = + =/ / /q q q180 0�  

 (b) The instantaneous powers delivered are

  
p t t i t V I V I t

p

a a a p p p p

b

( ) ( ) ( ) cos cos( )

(

= = + −υ q ω q2

tt t i t V I V I tb b p p p p) ( ) ( ) cos cos( )= = + −υ q ω q2
 

The total instantaneous power pT (t) is

  p t p t p t V I V I tT a b p p p p( ) ( ) ( ) cos cos( )= + = + −2 2 2q ω q  

The average power is Pavg = 2VPIp cosq.

 11.2. Solve Problem 11.1 given Vp = 110 Vrms and Z = 4 + j3 Ω.

(a) In phasor form, Z = 4 + j3 = 5 /36 9. � Ω. Then,

  
V V

V V V

AN BN

AB AN BN

= = −

= − = −

110 0 110 180

110 0 1

/ /
/

V V�

110 180 220 0/ /− =� V
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and  I V I VA AN B BNZ Z= = − = = − = −/ A22 36 9 22 216 9 22/ /. / .� � ///−36 9. � A

I I IN A B= + = 0  

(b) p t ta( ) ( )[cos . cos( . )]= + − =110 22 36 9 2 36 9 1936� �ω +++ −

=

2420 2 36 9

110 22 36

cos( . ) ( )

( ) ( )[cos .

ωt

p tb

� W

999 2 36 9 360 1936 2420 2 3� � �+ − − = + −cos( . )] cos(ω ωt t 666 9

3872 4840 2

. ) ( )

( ) ( ) ( ) cos (

� W

p t p t p t ta b= + = + −ω 3336 9

3872

. ) ( )� W

WavgP =

11.3. Repeat Problem 11.2 but this time with the two voltage sources of Problem 11.1 90° out of phase.
(a) Again, Z = 536.9°. Then,

V V

V V V
AN BN

AB AN BN

= = −

= − = −

110 0 110 90

110 0 11

/ /
/

V V�

000 90 110 2 45 155 6 45/ / /− = − = −� � �( . V

and I V Z I V ZA AN B BN= = − = = −/ . / .22 36 9 22 126 9/ /� �A A

I I IN A B= + = − + − = −22 36 90 22 126 9 22 2 81 9/ / /. . ( . )� � � === −31 1 81 9. ./ � A   

(b) p t ta( ) ( )[cos . cos( . )]= + − =110 22 36 9 2 36 9 1936� �ω +++ −

=

2420 2 36 9

110 22 36

cos( . ) ( )

( ) ( )[cos .

ωt

p tb

� W

999 2 36 9 180 1936 2420 2 3� � �+ − − = − −cos( . )] cos(ω ωt t 666 9

2 1936 3872

3872

. ) ( )

( ) ( )

� W

W

Wavg

p t P P

P

a b= + = =

=

11.4. Show that the line-to-line voltage VL in a three-phase system is 3 times the line-to-neutral 
voltage VPh.

See the voltage phasor diagram (for the ABC sequence), Fig. 11-23.

Fig. 11-23

11.5. A three-phase, ABC system, with an effective voltage 70.7 V, has a balanced ∆-connected load with 
impedances 2045° Ω. Obtain the line currents and draw the voltage-current phasor diagram.
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The circuit is shown in Fig. 11-24. The phasor voltages have magnitudes V Vmax = =2 100eff V. 
Phase angles are obtained from Fig. 11-7(a). Then,

  I
V
ZAB
AB= = =100 120

20 45
5 0 75/

/ /�

�
� A.   

Similarly, IBC = 5.0 −45° A and ICA = 5.0 195° A. The line currents are

  I I IA AB AC= + = − =5 75 5 195 8 65 45/ / /� � �. A  

Fig. 11-24

Fig. 11-25

 11.6. A three-phase, three-wire CBA system, with an effective line voltage 106.1 V, has a balanced 
Y-connected load with impedances 5 −30° Ω (Fig. 11-26). Obtain the currents and draw the voltage-
current phasor diagram.

With balanced Y-loads the neutral conductor carries no current. Even though this system is three-wire, 
the neutral may be added to simplify computation of the line currents. The magnitude of the line voltage 
is VL = =2 106 1 150( . ) V. Then the line-to-neutral magnitude is VLN = =150 3/ 86.6 V.

 I
V

ZA
AN= = −

−
= −86 6 90

5 30
17 32 60

.
./

/ /�

�
� A  

Similarly, IB = 8.65 −75° A, IC = 8.65 165° A.
The voltage-current phasor diagram is shown in Fig. 11-25.
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Similarly, IB = 17.3260° A, IC = 17.32 180° A. See the phasor diagram, Fig. 11-27, in which the 
balanced set of line currents leads the set of line-to-neutral voltages by 30°, the negative of the angle of 
the impedances.

Fig. 11-26

Fig. 11-27

11.7. A three-phase, three-wire CBA system, with an effective line voltage 106.1 V, has a balanced 
∆-connected load with impedances Z = 15 30° Ω. Obtain the line and phase currents by the single-
line equivalent method.

Referring to Fig. 11-28, VLN = =( . )/ .141 4 2 3 115 5 V, and so

IL = = −115 5 0

15 3 30
23 1 30

.

( )
./

/ /�

�
�

/
A   

Fig. 11-28

The line currents lag the ABC-sequence, line-to-neutral voltages by 30°:

I I IA B C= = − =23 1 60 23 1 60 23 1 180. . ./ / /� � �A A A  
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The phase currents, of magnitude I IPh L= =/ .3 13 3 A, lag the corresponding line-to-line voltages by 30°:

 I I IAB BC CA= = − =13 3 90 13 3 30 13 3 210. . ./ / /� � �A A A  

A sketch of the phasor diagram will make all of the foregoing angles evident.

 11.8. A three-phase, three-wire system, with an effective line voltage 176.8 V, supplies two balanced loads, 
one in delta configuration with Z∆ = 15 0° Ω and the other in wye form with ZY = 10 30° Ω. 
Obtain the total power.

First convert the ∆-load to Y, and then use the single-line equivalent circuit, Fig. 11-29, to obtain the 
line current.

Fig. 11-29

  IL = + = −144 3 0

5 0

144 3 0

10 30
42 0 9 9

. .
. ./

/
/

/ /�

�

�

�
� A  

Then P V IL L= = =3 3 176 8 29 7 9 9 895eff eff cos ( . )( . ) cos .q � 99 W  

 11.9. Obtain the readings when the two-wattmeter method is applied to the circuit of Problem 11.8.
The angle on IL, −9.9°, is the negative of the angle on the equivalent impedance of the parallel combina-

tion of 5 0° Ω and 10 30° Ω. Therefore, q = 9.9° in the formulas of Section 11.13.

 
W V IL L1 30 176 8 29 7 39= + =eff eff cos( ) ( . ) ( . ) cos .q � 99 4028

30 176 8 292

�

�

=

= − =

W

eff effW V IL L cos( ) ( . ) (q .. ) cos( . )7 20 1 4931− =� W
 

As a check, W1 + W2 = 8959 W, which is in agreement with Problem 11.8.

11.10. A three-phase supply, with an effective line voltage 240 V, has an unbalanced ∆-connected load 
shown in Fig. 11-30. Obtain the line currents and the total power.

Fig. 11-30
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The power calculations can be performed without knowledge of the sequence of the system. The effec-
tive values of the phase currents are

I I IAB BC CAeff eff effA = A= = = =240
25 9 6

240
15 16

2
.

4440
20 12= A 

Hence, the complex powers in the three phases are

S

S

AB

BC

j= = = +

=

( . ) ( )

( )

9 6 25 90 2304 90 0 2304

16

2 / /� �

222

2

15 30 3840 30 3325 1920

12 20

( )

( ) (

/ /
/

� �= = +

=

j

CAS 000 2880 0 2880 0� �) = = +/ j

and the total complex power is their sum,

ST j= +6205 4224  

That is, PT = 6205 W and QT = 4224 var (inductive).
To obtain the currents, a sequence must be assumed; let it be ABC. Then, using Fig. 11-7(a),

I

I

AB

BC

= =

=

339 4 120

25 90
13 6 30

339 4 0

.
.

.

/
/ /

/

�

�
� A

���

�
�

�

�

A
15 30

22 6 30

339 4 240

20 0
17

/ /

/
/

= −

= =

.

.
ICA ...0 240/ � A

The line currents are obtained by applying KCL at the junctions.

I I I

I

A AB AC

B

= + = − =13 6 30 17 0 240 29 6 46 7. . . ./ / /� � � A

=== + = − − = −I I

I

BC BA

C

22 6 30 13 6 30 19 7 66 7. . . ./ / /� � � A

=== + = − − = −I ICA CB 17 0 240 22 6 30 28 3 173 1. . . ./ / /� � � A

11.11. Obtain the readings of wattmeters placed in lines A and B of the circuit of Problem 11.10. (Line C is 
the potential reference for both meters.)

WA AC A= = −Re ( ) Re ( )
.

.*V Ieff eff 240 60
29 6

2
46 7/ /� �

















= =

=

Re ( . )

Re (

5023 13 3 4888/ � W

WB BCV eeeff effIB
* ) Re ( )

.
.= 











240 0

19 7
2

66 7/ /� �



= =Re ( . )3343 66 7 1322/ � W

Note that WA + WB = 6210 W, which is very close to PT as found in Problem 11.10.

11.12. A three-phase, four-wire, ABC system, with line voltage VBC = 294.2 0° V, has a Y-connected load 
of ZA = 100° Ω, ZB = 1530° Ω, and ZC = 10−30° Ω (Fig. 11-31). Obtain the line and neutral 
currents.
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I

I

A

B

= =

= −

169 9 90

10 0
16 99 90

169 9 30

1

.
.

.

/
/ /

/

�

�
�

�

A

55 30
11 33 60

169 9 150

10 30
16

/ /

/
/

�
�

�

�

= −

= −
−

=

.

.
.

A

IC 999 120

8 04 69 5

/

/

−

= − + + =

�

�

A

AI I I IN A B C( ) . .

 

11.13. The Y-connected load impedances ZA = 100° Ω, ZB = 1530° Ω, and ZC = 10−30° Ω, in Fig. 
11-32, are supplied by a three-phase, three-wire, ABC system in which VBC = 2080° V. Obtain the 
voltages across the impedances and the displacement neutral voltage VON .

Fig. 11-31

Fig. 11-32

The method of Example 11.7 could be applied here and one node-voltage equation solved. However, 
the mesh currents I1 and I2 suggested in Fig. 11-32 provide another approach.

  
10 0 15 30

15 30

15 30

15 30 10 30
/ /

/
/

/ /
� �

�

�

� �

+
−

−
+ −



















 =













I
I

1

2

208 120

208 0
/
/

�

�
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Therefore, I1 = 14.1686.09° A and I2 = 10.2152.41° A. The line currents are then

IA = I1 = 14.1686.09°  A  IB = I2 − I1 = 8.01−48.93°  A  IC = −I2 = 10.21−127.59°  A

Now the phasor voltages at the load may be computed.

V I Z

V I Z

AO A A

BO B B

= =

= = −

141 6 86 09

120 2 18 9

. .

. .

/
/

� V

333

102 1 157 59

1

�

�

V

VV I Z

V V V

CO C C

ON OA AN

= = −

= + =

. ./
4441 6 93 91 120 1 90 23 3 114 53. . . . ./ / /− + = −� � � V

The phasor diagram is given in Fig. 11-33.

Fig. 11-33

11.14. Obtain the total average power for the unbalanced, Y-connected load in Problem 11.13, and compare 
with the readings of wattmeters in lines B and C.

The phase powers are

P I R

P I

A A A

B B

= = 





=

=

eff

ef

W2 14 16
2

10 1002 5
.

( ) .

fff

eff

W2

2

8 01
2

15 30 417 0R

P I

B

C C

= 





=

=

.
( cos ) .�

RRRC = 
 

=10 21
2

10 30 451 4
2

.
( cos ) .� W

and so the total average power is 1870.9 W.
From the results of Problem 11.13, the wattmeter readings are:

WB BA B= = −





Re ( ) Re
.*V Ieff eff

208
2

60
8 01

2/ /� 4448 93 817 1. .

Re (

�














 =

=

W

eff efWC CA CV I fff
* ) Re

.
.= 











208
2

2400
10 21

2
127 59/ /� �









 = 1052 8. W

The total power read by the two wattmeters is 1869.9 W.
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11.15. A three-phase, three-wire, balanced, ∆-connected load yields wattmeter readings of 1154 W and 
557 W. Obtain the load impedance, if the line voltage is 141.4 V.

 ± =
−
+







= 



 =tan .q 3 3

577
1731 0 572 1

2 1

W W
W W

77 30 0q = ± . �

and, using P V IT L L= 3 eff eff cosq ,

 Z
V

I

V

I

V

P
L

Ph

L

L

L

T
∆ = = = =eff

eff

eff

eff

eff3 3 3
2 cos (q 1100 30 0

1154 577 15 0
2) cos .

.
�

+ =Ω Ω

Thus, Z∆ Ω= 15.0 30.0/ ± � .

11.16. A balanced ∆-connected load, with Z∆ = 3030° Ω, is connected to a three-phase, three-wire, 250-V 
system by conductors having impedances Zc = 0.4 + j0.3 Ω. Obtain the line-to-line voltage at the 
load.

The single-line equivalent circuit is shown in Fig. 11-34. By voltage division, the voltage across the 
substitute Y-load is

 VAN j
=

+ +












10 30

0 4 0 3 10 30

250
3

0/
/ /�

�
�

. .  = −137 4 0 33. ./ � V  

whence VL = =( . )( ) .137 4 3 238 0 V.

Fig. 11-34

Considering the magnitudes only, the line voltage at the load, 238.0 V, represents a drop of 12.0 V. The 
wire size and total length control the resistance in Zc, while the enclosing conduit material (e.g., steel, 
aluminum, or fiber), as well as the length, affects the inductive reactance.

SUPPLEMEnTArY ProBLEMS

In the following, the voltage-current phasor diagram will not be included in the answer, even though the problem may 
ask specifically for one. As a general rule, a phasor diagram should be constructed for every polyphase problem.

11.17. Three impedances of 10.053.13° Ω are connected in delta to a three-phase, CBA system with an affective line 
voltage 240 V. Obtain the line currents.

 Ans. IA = 58.8−143.13° A, IB = 58.8−23.13° A, IC = 58.896.87° A

11.18. Three impedances of 4.20−35° Ω are connected in delta to a three-phase, ABC system having VBC = 495.00° V. 
Obtain the line currents.

 Ans. IA = 20.41125° A, IB = 20.415° A, IC = 20.41−115° A
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11.19. A three-phase, three-wire system, with an effective line voltage 100 V, has currents

I I IA B C= − = − =15 41 160 15 41 40 15 41 80. . ./ / /� � �A A A  

What is the sequence of the system and what are the impedances, if the connection is delta?

Ans. CBA, 15.970° Ω

11.20. A balanced Y-connected load, with impedances 6.045° Ω, is connected to a three-phase, four-wire CBA system 
having effective line voltage 208 V. Obtain the four line currents.

Ans. IA = 28.31−135° A, IB = 28.31−15° A, IC = 28.31105° A, IN = 0

11.21. A balanced Y-connected load, with impedances 65.0−20° Ω, is connected to a three-phase, three-wire, CBA
system, where VAB = 678.8−120° V. Obtain the three line currents.

Ans. IA = 6.03−70° A, IB = 6.0350° A, IC = 6.03170° A

11.22. A balanced ∆-connected load, with Z∆ = 9.0−30° , and a balanced Y-connected load, with ZY = 5.045° Ω, 
are supplied by the same three-phase, ABC system, with effective line voltage 480 V. Obtain the line currents, 
using the single-line equivalent method.

Ans. IA = 168.993.36° A, IB = 168.9−26.64° A, IC = 168.9−146.64° A

11.23. A balanced ∆-connected load having impedances 27.0 −25° Ω, and a balanced Y-connected load having 
impedances 10.0 −30° Ω are supplied by the same three-phase, ABC system, with VCN =169.8−150° V. 
Obtain the line currents.

Ans. IA = 35.8117.36° A, IB = 35.8−2.64° A, IC = 35.8−122.64° A

11.24. A balanced ∆-connected load, with impedances 10.0−36.9° Ω, and a balanced Y-connected load are supplied 
by the same three-phase, ABC system having VCA = 141.4240° V. If IB = 40.4413.41° A, what are the 
impedances of the Y-connected load?  Ans. 5.0−53.3°

11.25. A three-phase, ABC system, with effective line voltage 500 V, has a ∆-connected load for which

ZAB = 10.030° Ω   ZBC = 25.00° Ω   ZCA = 20.0−30° Ω

Obtain the line currents.

Ans. IA = 106.190.0° A, IB = 76.15−68.20° A, IC = 45.28−128.65° A

11.26. A three-phase, ABC system, with VBC = 294.20° V, has the ∆-connected load

ZAB = 5.00° Ω   ZBC = 4.030° Ω   ZCA = 6.0−15°

Obtain the line currents.

Ans. IA = 99.799.7° A, IB = 127.9−43.3 A, IC = 77.1−172.1° A

11.27. A three-phase, four-wire, CBA system, with effective line voltage 100 V, has Y-connected impedances

ZA = 3.00° Ω   ZB = 3.6156.31° Ω   ZC = 2.24−26.57° Ω

Obtain the currents IA, IB, IC, and IN .

Ans. 27.2−90° A, 22.6−26.3° A, 36.4176.6° A, 38.665.3° A

11.28. A three-phase, four-wire, ABC system, with VBC = 294.20° V, has Y-connected impedances

ZA = 12.045° Ω   ZB = 10.030° Ω   ZC = 8.00° Ω

Obtain the currents IA, IB, IC, and IN .

Ans. 14.1645° A, 16.99−60° A, 21.24−150° A, 15.3290.4° A
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11.29. A Y-connected load, with ZA = 100° Ω, ZB = 10 60°, and ZC = 10−60° Ω, is connected to a three-phase, 
three-wire, ABC system having effective line voltage 141.4 V. Find the load voltages VAO, VBO, VCO and the 
displacement neutral voltage VON. Construct a phasor diagram similar to Fig. 11-18.

 Ans. 173.290° V, 1000° V, 100180° V, 57.73−90° V

11.30. A Y-connected load, with ZA = 10−60° Ω, ZB = 100° Ω, and ZC = 1060° Ω, is connected to a three-
phase, three-wire, CBA system having effective line voltage 147.1 V. Obtain the line currents IA, IB, and IC.

 Ans. 20.8−60° A, 0, 20.8120° A

11.31. A three-phase, three-wire, ABC system with a balanced load has effective line voltage 200 V and (maximum) 
line current IA = 13.6160° A. Obtain the total power.  Ans. 2887  W

11.32. Two balanced ∆-connected loads, with impedances 20−60° Ω and 1845°, respectively, are connected to a 
three-phase system for which a line voltage is VBC = 212.10° V. Obtain the phase power of each load. After 
using the single-line equivalent method to obtain the total line current, compute the total power, and compare 
with the sum of the phase powers.

 Ans. 562.3 W, 883.6 W, 4337.5 W = 3(562.3 W) + 3(883.6 W)

11.33. In Problem 11.5, a balanced ∆-connected load with Z = 2045° Ω resulted in line currents 8.65 A for line 
voltages 100 V, both maximum values. Find the readings of two wattmeters used to measure the total average 
power.  Ans. 111.9 W, 417.7 W

11.34. Obtain the readings of two wattmeters in a three-phase, three-wire system having effective line voltage 240 V 
and balanced, ∆-connected load impedances 2080° Ω.  Ans. −1706 W, 3206 W

11.35. A three-phase, three-wire, ABC system, with line voltage VBC = 311.10° V, has line currents

  I I IA B C= = − =61 5 116 6 61 2 48 0 16 1 218. . . . .A A/ / /� � �� A  

 Find the readings of wattmeters in lines (a) A and B, (b) B and C, and (c) A and C.

 Ans. (a) 5266 W, 6370 W; (b) 9312 W, 2322 W; (c) 9549 W, 1973 W

11.36. A three-phase, three-wire, ABC system has an effective line voltage 440 V. The line currents are

  I I IA B C= = − =27 9 90 81 0 9 9 81 0 189 9. . . . ./ / /� � �A A AA  

 Obtain the readings of wattmeters in lines (a) A and B, (b) B and C.

 Ans. (a) 7.52 kW, 24.8 kW; (b) 16.16 kW, 16.16 kW

11.37. Two wattmeters in a three-phase, three-wire system with effective line voltage 120 V read 1500 W and 500 W. 
What is the impedance of the balanced ∆-connected load?  Ans. 16.3+ 40.9° Ω

11.38. A three-phase, three-wire, ABC system has effective line voltage 173.2 V. Wattmeters in lines A and B read 
−301 W and 1327 W, respectively. Find the impedance of the balanced Y-connected load. (Since the sequence 
is specified, the sign of the impedance angle can be determined.)

 Ans. 10−70° Ω

11.39. A three-phase, three-wire system, with a line voltage VBC = 339.40° V, has a balanced Y-connected load of ZY = 
1560° Ω. The lines between the system and the load have impedances 2.2426.57° Ω. Find the line-voltage 
magnitude at the load.  Ans. 301.1 V

11.40. Repeat Problem 11.39 with the load impedance ZY = 15−60° Ω. By drawing the voltage phasor diagrams 
for the two cases, illustrate the effect of the load impedance angle on the voltage drop for a given line 
impedance.  Ans. 332.9  V

11.41 A three-phase generator with an effective line voltage of 6000 V supplies the following four balanced loads in 
parallel: 16 kW at pf = 0.8 lagging, 24 kW at pf = 0.6 lagging, 4 kW at pf = 1, and 1 kW at pf = 0.1 leading.  
(a) Find the total average power (P) supplied by the generator, reactive power (Q), apparent power (S), power 
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factor, and effective value of line current. (b) Find the amount of reactive load Qc to be added in parallel to 
produce an overall power factor of 0.9 lagging. Then find apparent power and effective value of line current.

Ans. (a)  P = 45 kW, Q = 21.81 kVAR, S = 52.9 kVA, pf = 0.85 lagging, IL = 5.09 A, (b) QC = −6 kVAR,   
S = 50 kVA, IL = 4.81 A

11.42. A balanced ∆-connected load with impedances Z∆ = 6 + j9 Ω is connected to a three-phase generator with an 
effective line voltage of 400 V. The lines between the load and the generator have resistances of 1 Ω each. Find 
the effective line current, power delivered by the generator, and power absorbed by the load.

Ans. IL = 54.43 A, Pg = 26666 W, Pl = 17777 W

11.43. In Problem 11.42, find the effective line voltage at the load.  Ans. VL = 340 V

11.44. A three-phase generator feeds two balanced loads (9 kW at pf = 0.8 and 12 kW at pf = 0.6, both lagging) through 
three cables (0.1 Ω each). The generator is regulated such that the effective line voltage at the load is 220 V. Find 
the effective line voltage at the generator.  Ans. 230 V

11.45. A balanced ∆-connected load has impedances 45 + j60 Ω. Find the average power delivered to it at an effective 
line voltage of: (a) 400 V, (b) 390 V.  Ans. (a) 3.84  kW, (b) 3.65  kW

11.46. Obtain the change in average power delivered to a three-phase balanced load if the line voltage is multiplied by 
a factor a .  Ans. Power is multiplied by the factor a2

11.47. A three-phase, three-wire source supplies a balanced load rated for 15 kW with pf = 0.8 at an effective line 
voltage of 220 V. Find the power absorbed by the load if the three wires connecting the source to the load 
have resistances of 0.05 Ω each and the effective line voltage at the source is 220 V. Use both a simplified 
approximation and also an exact method.

Ans. 14.67 kW (by an approximate method), 14.54 kW (by an exact method)

11.48. In Problem 11.47 determine the effective value of the line voltage such that the load operates at its rated 
values.  Ans. 222.46 V (by an approximate method), 221.98 V (by an exact method)

11.49. What happens to the quantity of power supplied by a three-phase, three-wire system to a balanced load if one 
phase is disconnected?  Ans. Power is halved.

11.50. A three-phase, three-wire generator with effective line voltage 6000 V is connected to a balanced load by three 
lines with resistances of 1 Ω each, delivering a total of 200 kW. Find the efficiency (the ratio of power absorbed 
by the load to power delivered by the system) if the power factor of the generator is (a) 0.6, (b) 0.9

Ans. (a) 98.5 percent (b) 99.3 percent.

11.51. A 60-Hz three-phase, three-wire system with terminals labeled 1, 2, 3 has an effective line voltage of 220 V. To 
determine if the system is ABC or CBA, the circuit of Fig. 11-35 is tested. Find the effective voltage between 
node 4 and line 2 if the system is (a) ABC, (b) CBA.

Ans. (a) 80.5 V; (b) 300.5 V

Fig. 11-35
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Frequency Response, Filters,  
and Resonance

12.1 Frequency Response
The response of linear circuits to a sinusoidal input is also a sinusoid, with the same frequency but possibly a 
different amplitude and phase angle. This response is a function of the frequency. We have already seen that 
a sinusoid can be represented by a phasor which shows its magnitude and phase. The frequency response is 
defined as the ratio of the output phasor to the input phasor. It is a real function of jw and is given by

 H H H H( ) Re[ ] Im[ ] | |j j e jw θ= + =  (1a)

where Re [H] and Im [H] are the real and imaginary parts of H(jw) and |H| and q are its magnitude and phase 
angle. Re [H], Im [H], |H|, and q are, in general, functions of w . They are related by

 | | | ( )| Re [ ] Im [ ]H H H H2 2 2 2= = +jw  (1b)

 θ w= = −/H H
H

( ) tan
Im[ ]
Re[ ]

j 1
 (1c)

The frequency response, therefore, depends on the choice of input and output variables. For example, if 
a current source is connected across the network of Fig. 12-1(a), the terminal current is the input and the 
terminal voltage may be taken as the output. In this case, the input impedance Z = V1/I1 constitutes the fre-
quency response. Conversely, if a voltage source is applied to the input and the terminal current is measured, 
the input admittance Y = I1/V1 = 1/Z represents the frequency response.

For the two-port network of Fig. 12-1(b), the following frequency responses are defined:

Input impedance Zin( jw) = V1/I1
Input admittance Yin( jw) = 1/Zin ( jw) = I1/V1
Voltage transfer ratio Hu( jw) = V2/V1
Current transfer ratio Hi( jw) = I2/I1
Transfer impedances V2/I1 and V1/I2

CHAPTER 12

Fig. 12-1
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EXAMPLE 12.1 Find the frequency response V2/V1 for the two-port circuit shown in Fig. 12-2.
Let YRC be the admittance of the parallel RC combination. Then, YRC = 10−6 jw + 1/1250. V2/V1 is obtained by   

dividing V1 between ZRC and the 5-kΩ resistor.

H
V
V

Z
Z Y( )

(
j RC

RC RC
w = = + = + =

+ −
2

1
35000

1
1 5000

1

5 1 10 jjjw)
 (2a)

H =
+

= −
−

− −1

5 1 10
10

6 2

1 3

w
θ wtan ( ) (2b)

Alternative solution: First we find the Thévenin equivalent of the resistive part of the circuit, VTh = V1/5 and RTh = 1 kΩ, 
and then divide VTh between RTh and the 1-µF capacitor to obtain (2a).

Fig. 12-2

12.2 High-Pass and Low-Pass Networks
A resistive voltage divider under a no-load condition is shown in Fig. 12-3, with the standard two-port volt-
ages and currents. The voltage transfer function and input impedance are

H Hυ w w∞ ∞= + = +( ) ( )
R

R R
R R2

1 2
1 2z

Fig. 12-3

The ∞ in the subscripts indicates no-load conditions. Both Hu ∞ and Hz∞ are real constants, independent of 
frequency, since no reactive elements are present. If the network contains either an inductance or a capaci-
tance, then Hu ∞ and Hz∞ will be complex and will vary with frequency. If |Hu ∞| decreases as frequency 
increases, the performance is called high-frequency roll-off and the circuit is a low-pass network. On the con-
trary, a high-pass network will have low-frequency roll-off, with |Hu ∞| decreasing as the frequency decreases. 
Four two-element circuits are shown in Fig. 12-4. Two high-pass and two low-pass.

Fig. 12-4
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The RL high-pass circuit shown in Fig. 12-5 is open-circuited or under a no-load condition. The input 
impedance frequency response is determined by plotting the magnitude and phase angle of

H H Hz zR j L∞ = + ≡( )w w θ
1 2 | | �

or, normalizing and setting wx R L≡ 1 2/ .

 
Hz

x x xR
j∞ −= + = +

( )
( ) ( ) tan ( )

w
w w w w w w

1

2 1
1 1/ / /�

Fig. 12-5

Five values of w provide sufficient data to plot |Hz|/R1 and qH, as shown in Fig. 12-6. The magnitude 
approaches infinity with increasing frequency, and so, at very high frequencies, the network current I1 will 
be zero.

In a similar manner, the frequency response of the output-to-input voltage ratio can be obtained. Voltage 
division under a no-load condition gives

 Hυ w
w

w w w∞ = + = −( ) ( )
j L

R j L j x

2

1 2

1
1 /  

so that | |
( )

tan ( )H Hυ
w w

θ w w=
+

= −1

1 2

1

x

x
/

and /  

Fig. 12-6
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The magnitude and angle are plotted in Fig. 12-7. This transfer function approaches unity at high frequency, 
where the output voltage is the same as the input. Hence, the description “low-frequency roll-off ” and the 
name “high-pass.”

Fig. 12-7

A transfer impedance of the RL high-pass circuit under a no-load condition is

H
V
I

H
∞

∞= = =( )
( )

w w
w w

w
2

1
2

1
j L

R
j

x
or

The angle is constant at 90°; the graph of magnitude versus w is a straight line, similar to a reactance plot of 
wL versus w . See Fig. 12-8.

Fig. 12-8

Interchanging the positions of R and L results in a low-pass network with high-frequency roll-off 
(Fig. 12-9). For the open-circuit condition,

Hυ w w w w∞ = + = +( ) ( )
R

R j L j x

2

2 1

1
1 /

Fig. 12-9

with wx R L≡ 2 1/ ; that is,

| |H Hυ
w w

θ w w=
+

= −−1

1 2

1

( )
tan ( )

/
and /

x

x  
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The magnitude and angle plots are shown in Fig. 12-10. The voltage transfer function Hu ∞ approaches zero 
at high frequencies and unity at w = 0. Hence the name “low-pass.”

Fig. 12-10

The other network functions of this low-pass network are obtained in the Solved Problems section.

EXAMPLE 12.2 Obtain the voltage transfer function Hu ∞ for the open circuit shown in Fig. 12-11. At what frequency, 
in hertz, does | |Hυ = 1 2/  if (a) C2 = 10 nF, (b) C2 = 1 nF?

Fig. 12-11

Hυ w
w

w w w w∞ = + = + ≡( ) ( ) ( / )
1

1
1

1
2

1 2

/
/ where

j C
R j C j x

x

11 2 10

1 2

4

2R C C
= × −

( )rad/s

(a) | |Hυ
w w

=
+

1

1 2( )/ x

  and so | |Hυ = 1 2/  when

w w= = ×
×

= ×
−

−x

2 10

10 10
2 10

4

9
4 rad/s

or when f = × =( ) .2 10 2 3 184 / kHz.p

(b) f = =10
1 3 18 31 8( . ) . kHz  

Comparing (a) with (b), it is seen that the greater the value of C2, the lower the frequency at which |Hv| drops 
to 0.707 of its peak value, which is 1; in other words, the more is the graph of |Hv|, shown in Fig. 12-10, shifted 
to the left. Consequently, any stray shunting capacitance, in parallel with C2, serves to reduce the response of 
the circuit.
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12.3 Half-Power Frequencies
The frequency wx calculated in Example 12.2 is the frequency at which

| | | |H Hυ υ= 0 707. max

and is called the half-power frequency. In this case, the name is justified by Problem 12.5, which shows that 
the power input into the circuit of Fig. 12-11 will be at half-maximum when

1

2
1j C

Rw =

that is, when w = wx.
Quite generally, any nonconstant network function H(w) will attain its greatest absolute value at some 

unique frequency wx. We shall call a frequency at which

| | | |H H( ) . ( )w w= 0 707 x

a half-power frequency (or half-power point), whether or not this frequency actually corresponds to   
50 percent power. In most cases, 0 < wx < ∞, so that there are two half-power frequencies, one above and one 
below the peak frequency. These are called the upper and lower half-power frequencies (points), and their 
separation, the bandwidth, serves as a measure of the sharpness of the peak.

12.4 Generalized Two-Port, Two-Element Networks
The basic RL or RC network of the type examined in Section 12.2 can be generalized with Z1 and Z2, as 
shown in Fig. 12-12; the load impedance ZL is connected at the output port.

By voltage division,

V
Z

Z Z V H
V
V

Z
Z Z2

1
1

2

1 1
= ′

+ ′ = = ′
+ ′or υ

where ′ = +Z Z Z Z Z2 2/L L( ) is the equivalent impedance of Z2 and ZL in parallel. The other transfer func-
tions are calculated similarly and are displayed in Table 12-1.

Fig. 12-12

Table 12-1

Network
      Function

Output Condition

H
V
Iz = Ω1

1
( ) H

V
Vυ = 2

1
 H

I
Ii = 2

1
H H

V
Iυ z = Ω2

1
( )

H
H

I
V

i

z
= 2

1
( )S  

Short-circuit, 
ZL = 0 Z1 0    −1 0 − 1

1Z

Open-circuit, 
ZL = ∞ Z1 + Z2

Z
Z Z

2

1 2+   0 Z2 0

Load, 
ZL Z Z1 + ′  + ′

′Z
Z Z1

−
+
Z

Z Z
2

2 L
′Z

− ′Z
+ ′Z Z ZL ( )1
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12.5 The Frequency Response and Network Functions
The frequency response of a network may be found by substituting jw for s in its network function. This 
useful method is illustrated in the following example.

EXAMPLE 12.3 Find (a) the network function H(s) = V2/V1 in the circuit shown in Fig. 12-13, (b) H(jw) for 
LC = 2/w0

2 and L/C = R2, and (c) the magnitude and phase angle of H( jw) in (b) for w0 = 1 rad/s.

(a) Assume V2 is known. Use generalized impedances Ls and 1/Cs and solve for V1.
  From IR = V2/R,

 V s I
s

VA RR L
R L

R
= + = +

( ) 2  (3)

I sV
s s

V I I I
V s s

C A R CC
C R L

R R
C R L= = + = + = + +( ) ( )

2 1
2and

RR
C R L

R
V

s s
V2 2

1= + +( )

   Then, V V I
s

V s s V1 1 2 21= + = + + + +A R
R L

R
C R L[ ( )]

   and H s
V
V s s

( )
( )

= =
+ + +

2

1
2

1

2 L R CR LC/
 (4a)

Fig. 12-13

(b) From LC = 2 0
2/w  and L/C = R2 we get L R= 2 0/w  and C R= 2 0/ w . Substituting L and C into (4a) gives

 H s
s s

H( )
( ) ( )

( )=
+ +









 =1

2
1

1 2

1
2

1

10 0
2/ /w w

wor j
++ −











j 2 0 0
2( ) ( )w w w w/ /

 (4b)

 H 2

0
4

1 0

0
2 2

1
4

1

1

2
=

+









 = −

−

−

( )
tan

w w
θ

w w
w w/

and






  

   Note that H(jw) is independent of R. The network passes the low-frequency sinusoids and rejects, or attenuates, 
the high-frequency sinusoids. It is a low-pass filter with a half-power frequency of w = w0. The magnitude of the 
frequency response is | | | |H H( ) ( )jw0 0 2 2 4= =/ /  and its phase angle is /H( )jw p0 2= − / .

(c) For w0 = 1,

 H s
s s

H( ) ( )=
+ +







=
+ −




1
2

1

1 2

1
2

1

1 22 2or j
j

w
w w




 (4c)

 H 2
4

1
2

1
4

1

1

2

1
=

+
= −

−






−

w
θ w

w
and tan  

The RC network of Fig. 12-4(b) was defined as a first-order low-pass filter with half-power frequency at w0 = 1/R1C2. 
The circuit of Fig. 12-13 is called a second-order Butterworth filter. It has a sharper cutoff.

12.6 Frequency Response from Pole-Zero Location
The frequency response of a network is the value of the network function H(s) at s = jw . This observation 
can be used to evaluate H(jw) graphically. The graphical method can produce a quick sketch of H(jw) and 
bring to our attention its behavior near a pole or a zero without the need for a complete solution.
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EXAMPLE 12.4 Find the poles and zeros of H(s) = 10s/(s2 + 2s + 26). Place them in the s-domain and use the pole-
zero plot to sketch H(jw).

H(s) has a zero at z1 = 0. Its poles p1 and p2 are found from s2 + 2s + 26 = 0 so that p1 = −1 + j5 and p2 = −1 − j5. The 
pole-zero plot is shown in Fig. 12-14(a). The network function can then be written as

H s
s z

s p s p( ) ( ) ( )( )=
−

− −10 1

1 2

For each value of s, the term (s − z1) is a vector originating from the zero z1 and ending at point s in the s-domain. Simi-
larly, s − p1 and s − p2 are vectors drawn from poles p1 and p2, respectively, to the point s. Therefore, for any value of s, 
the network function may be expressed in terms of three vectors A, B, and C as follows:

H s
A

B C A s z B s p C( ) ( ) ( ), ( )= × = − −10 1 1where , and= === −( ).s p2

The magnitude and phase angle of H(s) at any point on the s-plane may be found from:

| | | |
| | | |H s

A
B C( ) ( )= ×10   (5a)

/ / / /H s B CA( ) = − − (5b)

By placing s on the jw axis [Fig. 12-14(a)], varying w from 0 to ∞, and measuring the magnitudes and phase angles of 
vectors A, B, and C, we can use (5a) and (5b) to find the magnitude and phase angle plots. Figure 12-14(b) shows the 
magnitude plot.

Fig. 12-14

12.7 Ideal and Practical Filters
In general, networks are frequency selective. Filters are a class of networks designed to possess specific 
frequency selectivity characteristics. They pass certain frequencies unaffected (the pass-band) and stop 
others (the stop-band). Ideally, in the pass-band, H( jw) = 1 and in the stop-band H( jw) = 0. We, therefore, 
recognize the following classes of filters: low-pass [Fig. 12-15(a)], high-pass [Fig. 12-15(b)], bandpass 
[Fig. 12-15(c)], and bandstop [Fig. 12-15(d)]. Ideal filters are not physically realizable, but we can design 
and build practical filters as close to the ideal one as desired. The closer to the ideal characteristic, the more 
complex the circuit of a practical filter will be.
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Fig. 12-15

The RC or RL circuits of Section 12.2 are first-order filters. They are far from being ideal filters. As illus-
trated in the following example, the frequency response can approach that of the ideal filters if we increase 
the order of the filter.

EXAMPLE 12.5 Three network functions H1, H2, and H3 are given:

(a) H
1

1
1

=
+s

  (b) H
2 2

1

2 1
=

+ +s s
  (c) H

3 3 2

1

2 2 1
=

+ + +s s s
 

Find the magnitude of their frequency responses. Show that all three functions are lowpass with half power frequency 
at wc = 1.

The magnitude-squared of the frequency response is

 
|H H H( )| (s) ( s)|j

s j
w 2 = − = w

(a)
 

| ( )|H
1

2
2

1
1 1

1

1
j

j j
w

w w w
=

( )( )+ −
=

+

(b)

 

| ( )|H
2

2
2 2 4

1

1 2 1 2

1

1
j

j j
w

w w w w w
=

( )( )− + − −
=

+

(c)

 

H
3 3 2 2

1

2 2 1

1

1

1

1
( )

( )
s

s s s (s ) s s
=

+ + +
=

+
⋅

+ +

 

|
( )

H
3
( )|

( )( j )
j

j
w

w w w w w w
2

2 2 2 6

1

1

1

1 1

1

1
= ⋅

− + − −
=

++

For all three functions, at w = 0,1, and ∞, we have |H|2 = 1, 1/2, and 0, respectively. Therefore, the three network 
functions are lowpass with the same half power frequency of wc = 1. They are called first-, second-, and third-order 
 normalized Butterworth filters, respectively. For w >> 1, their magnitudes become |H1| ≈ 1/w, |H2| ≈ 1/w2, and |H3| ≈ 1/w3.  
The higher the order of the filter, the sharper the cutoff region in the frequency response.

12.8 Passive and Active Filters
Filters which contain only resistors, inductors, and capacitors are called passive. Those containing additional 
dependent sources are called active. Passive filters do not require external energy sources and they can last 
longer. Active filters are generally made of RC circuits and amplifiers. The circuit in Fig. 12-16(a) shows 
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a second-order low-pass passive filter. The circuit in Fig. 12-16(b) shows an active filter with a frequency 
response V2/V1 equivalent to that of the circuit in Fig. 12-16(a).

Fig. 12-16

EXAMPLE 12.6 Find the network function V2/V1 in the circuits shown in (a) Fig. 12-16(a) and (b) Fig. 12-16(b).

(a) In Fig. 12-16(a), we find V2 from V1 by voltage division.

V s
V
s s

V

s s

V

s2
1 1

2
1

2
1

1 1

1= + + =
+ +

=
+C R L C LC RC LC R L/ /( ))) ( )s + 1/LC

 Substituting for R L= =1 1 2, ,/  and C = 2, and dividing by V1, we get

V
V s s

2

1
2

1

2 1
=

+ +

(b) In Fig. 12-16(b), we apply KCL at nodes A and B with VB = V2.

Node A: ( ) ( ) ( )V V V V V V sA A A− + − + − =1 2 22 2 2 0 (6a)

Node B: V s V V2 2 2 0+ − =( )A   (6b)

By eliminating VA in (6a) and (6b), the network function H(s) = V2/V1 is obtained. Thus,

V
V s s

2

1
2

1

2 1
=

+ +

Note that the circuits of Figs. 12-16(a) and (b) have identical network functions. They are second-order Butterworth 
low-pass filters with half-power frequencies at w = 1 rad/s.

12.9 Bandpass Filters and Resonance
The following network function is called a bandpass function.

H
s

s s
( ) , , .s

k

a b
a b k=

+ +
> > >2 0 0 0where and  (7)

The name is especially appropriate when the poles are complex, close to the jw axis, and away from the 
origin in the s-domain. The frequency response of the bandpass function is

H H( )
( )

j
kj

b aj

k

b a

k

a
w w

w w
w

w w
=

− +
=

− +
=2

2 2

2 2 2 2

2

2| |2
+++ −( )b w w2 2 2/

 (8)

The maximum of |H| occurs when b b− = =w w2 0 or , which is called the center frequency w0. At the 
center frequency, we have |H|max = |H(w0)| = k/a. The half-power frequencies are at wl and wh, where

| | | | | |2 2 2H H H( ) ( ) ( )w w wl h= = 1
2 0   (9a)
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By applying (8) to (9a), wl and wh are found to be the roots of the following equation:

 
( )b

a
− =w
w

2 2

2
2

 (9b)

Solving, wl a b a= + −2 4 2/ /  (9c)

 wh a b a= + +2 4 2/ /  (9d)

From (9c) and (9d) we have

 w w w w wh l h la b− = = =and 0
2  (10a)

The bandwidth b is defined by

 β w w= − =h l a  (10b)

The quality factor Q is defined by

 Q b a= =w β0 / /  (10c)

The quality factor measures the sharpness of the frequency response around the center frequency. This behavior  
is also called resonance (see Sections 12.11 through 12.15). When the quality factor is high, wl and wh may 
be approximated by w0 − b/2 and w0 + b/2, respectively.

EXAMPLE 12.7 Consider the network function H(s) = 10s/(s2 + 300s + 106). Find the center frequency, the lower and 
upper half-power frequencies, the bandwidth, and the quality factor.

Since w0
2 0= 1 6,  the center frequency is w0 = 1000 rad/s.

The lower and upper half-power frequencies are, respectively,

w

w

l a b a= + − = + − =2 2 64 2 300 4 10 300 2 861 2/ / / / rad/s.

hh a b a= + + = + + =2 2 64 2 300 4 10 300 2 1161 2/ / / / rad/s.

The bandwidth is b = wh − wl = 1161.2 − 861.2 = 300 rad/s.
The quality factor is Q = 1000/300 = 3.3.

EXAMPLE 12.8 Repeat Example 12.7 for H(s) = 10s/(s2 + 30s + 106). 
Again, from w0

2 0= 1 6, w0 = 1000 rad/s. Then,

w

w

l

h

= + − =

= + +

30 4 10 30 2 985 1

30 4 10 3

2 6

2 6

/ / rad/s

/

.

00 2 1015 1

30 100 30

/ rad/s

rad/s and / 33.

=

= = = =

.

β a Q 33

Note that wl and wh can also be approximated with good accuracy by

w w β w w βl h= − = − = = + =0 02 1000 30 2 985 2 1/ / rad/s and / 0000 30 2 1015+ =/ rad/s  
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12.10 Natural Frequency and Damping Ratio
The denominator of the bandpass function given in (7) may be written as

s s s s2 2
0 0

22+ + = +a b ξw w+

where w0 = b  is called the natural frequency and ξ = a b/( )2  is called the damping ratio. For ξ > 1,
the circuit has two distinct poles on the negative real axis and is called overdamped. For ξ = 1,  the circuit 
has a real pole of order two at −w0 and is critically damped. For ξ < 1,  the circuit has a pair of conjugate

poles at − + −ξw w ξ0 0
21j  and − − −ξw w ξ0 0

21j . The poles are positioned on a semicircle in the left
half plane with radius w0. The placement angle of the poles is φ ξ= −sin 1  (see Fig. 12-17). The circuit 
is underdamped and can contain damped oscillations. Note that the damping ratio is equal to half of the 
inverse of the quality factor.

Fig. 12-17

12.11 RLC Series Circuit; Series Resonance
The RLC circuit shown in Fig. 12-18 has, under open-circuit conditions, an input or driving-point impedance

Zin ( )w w w= + −



R j L

C
1

Fig. 12-18

The circuit is said to be in series resonance (or low-impedance resonance) when Zin(w) is real (and so |Zin(w)|
is a minimum); that is, when

w w w wL
C LC

− = = ≡1
0

1
0or
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Figure 12-19 shows the frequency response. The capacitive reactance, inversely proportional to w, is 
higher at low frequencies, while the inductive reactance, directly proportional to w, is greater at the higher 
frequencies. Consequently, the net reactance at frequencies below w0 is capacitive, and the angle on Zin is 
negative. At frequencies above w0, the circuit appears inductive, and the angle on Zin is positive.

Fig. 12-19

By voltage division, the voltage transfer function for Fig. 12-18 is

H Z Yυ w w w∞ = =( ) ( ) ( )
R

R
in

in

The frequency response (magnitude only) is plotted in Fig. 12-20; the curve is just the reciprocal of that in 
Fig. 12-19(a). Note that roll-off occurs both below and above the series resonant frequency w0. The points 
where the response is 0.707, the half-power points (Section 12.3), are at frequencies wl and wh. The band-
width is the width between these two frequencies: b = wh − wl.

A quality factor, Q0 = w0L/R, may be defined for the series RLC circuit at resonance. (See Section 12.12 
for the general development of Q.) The half-power frequencies can be expressed in terms of the circuit ele-
ments, or in terms of w0 and Q0, as follows:

 

w w

w

h

l

R
L

R
L LC Q Q

= + 



 + = + +











=

2 2
1

1
1

4

1
2

2

0
0
2

0

−− + 



 + = + −











R
L

R
L LC Q Q2 2

1
1

1

4

1
2

2

0
0
2

0
w

Fig. 12-20

See Problem 12.5. Subtraction of the expressions gives

β
w

= =R
L Q

0

0

which suggests that the higher the “quality,” the narrower the bandwidth.
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12.12 Quality Factor
A quality factor or figure of merit can be assigned to a component or to a complete circuit. It is defined as

Q ≡ 2p maximum energy stored
energy dissipated ppper cycle







and is a dimensionless number. This definition is in agreement with definitions given in Sections 12.9 and 12.11.
A practical inductor, in which both resistance and inductance are present, is modeled in Fig. 12-21. The 

maximum stored energy is 1
2

2LImax, while the energy dissipated per cycle is

( ) maxI R
I R

eff
2

2
2p
w

p
w





 =

Hence, Q
L

Rind = w
 

Fig. 12-21

A practical capacitor can be modeled by a parallel combination of R and C, as shown in Fig. 12-22. The 
maximum stored energy is 1

2 maxCV 2  and the energy dissipated per cycle is V Rmax .2 p w/  Thus, Qcap = w CR.
The Q of the series RLC circuit is derived in Problem 12.6(a). It is usually applied at resonance, in which 

case it has the equivalent forms

Q
L

R CR R
L
C0

0

0

1 1= = =
w

w

Fig. 12-22

12.13 RLC Parallel Circuit; Parallel Resonance
A parallel RLC network is shown in Fig. 12-23. Observe that V2 = V1. Under the open-circuit condition, the 
input admittance is

Y Zin
in

( ) ( )w w w w= + + =1 1 1
R j L

j C

The network will be in parallel resonance (or high-impedance resonance) when Yin(w), and thus Zin(w), is 
real (and so |Yin(w)| is a minimum and |Zin(w)| is a maximum); that is, when

− + = = ≡1
0w w w w

L
C

LCaor
1
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Fig. 12-23

The symbol wa is now used to denote the quantity 1/ LC  in order to distinguish the resonance from a 
low-impedance resonance. Complex series-parallel networks may have several high-impedance resonant 
frequencies wa and several low-impedance resonant frequencies w0.

The normalized input impedance

Zin ( )w

w w
R

jR C
L

=
+ −





1

1
1

is plotted (magnitude only) in Fig. 12-24. Half-power frequencies wl and wh are indicated on the plot.  
Analogous to series resonance, the bandwidth is given by

β
w

= a

aQ

where Qa, the quality factor of the parallel circuit at w = wa, has the equivalent expressions

Q
R

L
RC R

C
La

a
a= = =w w

See Problem 12.6(b).

Fig. 12-24

12.14 Practical LC Parallel Circuit
A parallel LC “tank” circuit has frequency applications in electronics as a tuning or frequency selection 
device. While the capacitor may often be treated as ideal, the losses in the inductor should be included. 
A reasonable model for the practical tank is shown in Fig. 12-25. The input admittance is

Yin ( )
( ) ( )

w w w w
w w

w
= + + =

+
+ −

+


j C
R j L

R

R L
j C

L

R L

1
2 2 2 2
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Fig. 12-25

For resonance,

w
w

w
wa

a

a
aC

L

R L LC
R C

L
=

+
= −2 2

21
1

( )
or

At the resonant frequency, Yin(wa) = RC/L and, from Section 12.11, the Q of the inductance at wa is

Q
L

R
L

CR
a

ind = = −
w

2 1

If Qind ≥ 10, then wa LC≈ 1/  and

Zin
ind

( )w a
R

Q≈ 2

The frequency response is similar to that of the parallel RLC circuit, except that the high-impedance reso-
nance occurs at a lower frequency for low Qind. This becomes evident when the expression for wa above is 
rewritten as

w a LC Q
= 

  +
1 1

1 1( / )ind
2

12.15 Series-Parallel Conversions
It is often convenient in the analysis of circuits to convert the series RL combination to the parallel form 
(see Fig. 12-26). Given Rs, Ls, and the operating frequency w, the elements Rp, Lp of the equivalent parallel 
circuit are determined by equating the admittances

Y Ys
s s

s s
p

p p

R j L

R L R j L
=

−
+

= +
w

w w2 2
1 1

( )
and

Fig. 12-26
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The results are

R R
L

R
R Q

L L

p s
s

s
s s

p s

= + 

















= +

=

1 1

1

2
2w

( )

++ 

















= +










R
L

L
Q

s

s
s

s
w

2

21
1

If Q R R Qs p s s≥ ≈10 2,  and L Lp s≈ .

There are times when the RC circuit in either form should be converted to the other form (see Fig. 12-27). 
Equating either the impedances or the admittances, one finds

R
R

C R

R

Q

C C
C R

s
p

p p

p

p

s p
p p

=
+

=
+

= +






1 1

1
1

2 2

2

( )

( )

w

w 
 = +





C
Qp

p

1
1

2

 

as the parallel-to-series transformation, and

R R
C R

R Q

C
C

C

p s
s s

s s

p
s

s

= +







 = +

=
+

1
1

1

1

2
2

( )
( )

(

w

w RR

C

Qs

s

s) ( )2 21 1
=

+ /

as the series-to-parallel transformation. Again, the equivalence depends on the operating frequency.

Fig. 12-27

12.16 Polar Plots and Locus Diagrams
Henceforth, the frequency response of a network will be exhibited by plotting the magnitude and the phase 
angle separately against frequency w. This same information can be represented in polar form in a single 
plot: one finds the curve (locus diagram) in the complex plane traced by the point representing the frequency 
response, as w varies from 0 to ∞. The advantage is that the frequency response is exhibited in a single plot. 
The disadvantage is that contributions from individual components to the frequency response are combined 
and not examined separately (as is the case with the Bode plot, shown in the next section). In this section we 
will discuss the locus diagrams for the input impedance, the input admittance, and the transfer function; in 
some cases, the variable will not be w, but another parameter (such as resistance R). We will also revisit the 
frequency response of a lowpass filter and represent it in polar form.

EXAMPLE 12.9 SERIES RL CIRCuIT For the series RL circuit, Fig. 12-28(a) shows the Z-locus when w L is fixed 
and R is variable; Fig. 12-28(b) shows the Z-locus when R is fixed and L or w is variable; and Fig. 12-28(c) 
shows the Y-locus when R is fixed and L or w is variable. This last locus is obtained from

Y =
+

=
+

−−1 1
2 2

1

R j L R L

L R
w w

w
( )

tan ( )/ /
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Fig. 12-28

Note that for wL R= =0 1 0, ( ) ;/Y /   and for wL → ∞, Y → −0 90/ °. When wL = R,

Y = −1

2
45

R
/ °

A few other points will confirm the semicircular locus, with center at 1/2R and radius 1/2R. Either Fig. 12-28(b) or 12-28(c) 
gives the frequency response of the circuit.

EXAMPLE 12.10 PARALLEL RC CIRCuIT A parallel RC circuit has the Y- and Z-loci shown in Fig. 12-29; these 
are derived from

Y Z= + =
+

−−1

1 2

1

R
j C

R

CR
CRw

w
wand

( )
tan ( )/

Fig. 12-29

EXAMPLE 12.11 RLC SERIES CIRCuIT For the RLC series circuit, the Y-locus, with w as the variable, may be 
determined by writing

Y = + =
+

= −
+

G jB
R jX

R jX

R X

1
2 2

whence G
R

R X
B

X

R X
=

+
= −

+2 2 2 2
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Both G and B depend on w via X. Eliminating X between the two expressions yields the equation of the locus in the form

G B
G

R
G

R
B

R
2 2

2
2

2
1

2
1

2
+ = −







+ =






or

which is the circle shown in Fig. 12-30. Note the points on the locus corresponding to w = wl, w = w0, and w = wh.

Fig. 12-30

EXAMPLE 12.12 PRACTICAL “TANk” CIRCuIT For the practical “tank” circuit examined in Section 12.14, the 
Y-locus may be constructed by combining the C-branch locus and the RL-branch locus. To illustrate the addition, 
the points corresponding to frequencies w1 < w2 < w3 are marked on the individual loci and on the sum, shown in 
Fig. 12-31(c). It is seen that |Y|min occurs at a frequency greater than wa; that is, the resonance is high-impedance 
but not maximum-impedance. This comes about because G varies with w (see Section 12.14), and varies in such a 
way that forcing B = 0 does not automatically minimize G2 + B2. The separation of the resonance and minimum-
admittance frequencies is governed by the Q of the coil. Higher Qind corresponds to lower values of R. It is seen 
from Fig. 12-31(b) that low R results in a larger semicircle, which when combined with the YC-locus, gives a higher 
wa and a lower minimum-admittance frequency. When Qind ≥ 10, the two frequencies may be taken as coincident.

The case of the two-branch RC and RL circuit shown in Fig. 12-32(a) can be examined by adding the admit-
tance loci of the two branches. For fixed V = °V /0 , this amounts to adding the loci of the two branch currents. 
Consider the C variable to be without limit, and R1, R2, L, and w as constant. Then current IL is fixed as shown 
in Fig. 12-32(b). The semicircular locus of IC is added to IL to result in the locus of IT .

Resonance of the circuit corresponds to qT = 0. This may occur for two values of the real, positive  
parameter C [the case illustrated in Fig. 12-32(b)], for one value, or for no value—depending on the number of real 
positive roots of the equation Im YT (C) = 0.

Fig. 12-31
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Fig. 12-32

EXAMPLE 12.13 INvERTING LowPASS FILTER. A leaky integrator is made up of an inverting op amp with a 
parallel RfC circuit in the feedback path and R1 in the input. See Fig. 12-33(a), with R1 = Rf = 1 kΩ and C = 1 mF. The 
network function of the circuit and its frequency response are found by applying KCL at the inverting input of the op amp. 
The result is

H
V

V s
H H s

1
2

1
1 1

1000
1000

1
1

( ) ( ) ( ) |s = = −
+

= −
=j

s j
w w=

+++
= −

j T
T

w
, where 10 3

To obtain the polar plot (i.e., the locus of H1 as w varies from 0 to ∞), we find the real and imaginary parts of H1 (to be 
called X and Y, respectively) and eliminate w between them.

X
T

Y
T

T
= −

+
=

+
1

1 12 2 2 2w
w
w

X Y
T

T

T
+







+ = −
+

+






+
+

1
2

1

1

1
2 1

2
2

2 2

2

2 2w
w
w




=
2

1
4

The polar plot of the frequency response for w from 0 to ∞ is the upper half-circle with radius 1/2 and the center on the 
real axis at x = −1/2.

V1

V1 C

R

R

R

C

V2

–1 –1/2

(a)

ω = 0

ω = 0

ω = ∞

ω = ∞

(b)

1/2

Y

Y

|H|

|H|

X

X

–

–

+

+

V2

–

+

Fig. 12-33 Two lowpass circuits and polar plots of their frequency responses. a) Inverting, b) non-inverting.

EXAMPLE 12.14 NoN-INvERTING LowPASS FILTER. The RC circuit shown in Fig. 12-33(b) is a non-inverting 
lowpass filter. With R = 1 kΩ and C = 1 mF, its network function and frequency response are

H s
s

H
2 2

31000
1000

1
1

10( ) ( ) ,=
+

=
+

= −j
j T

Tw
w

where
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The polar plot may be deduced from that of the inverting filter of Example 12.13 by noting that

|H2( jw)| = |H1( jw)| and ∠H2( jw) = ∠H1( jw) + p

The polar plot is the lower half-circle with radius 1/2 and the center on the real axis at x = 1/2. This may be verified by 
direct derivation as in Example 12.13.

12.17 Bode Diagrams
The magnitude of the frequency response (equivalently called the gain) can also be expressed on a loga-
rithmic scale using the decibel (dB), where magnitude in dB = 20 log10 |H( jw)|. (See Section 5.14 for the 
definition of dB.) The Bode diagram displays the magnitude of the frequency response (in dB) and its phase 
vs. log10w (a log scale). The above logarithm operations are with respect to base 10, but for brevity they will 
be represented by log. In this section we illustrate the concept by two examples. We then summarize some 
special features of the Bode diagram that make it an attractive tool in representing the frequency response. 
The following terminology is used.

Frequency response: H( jw) = |H( jw)|e jQ(w)

Gain in linear scale: |H( jw)|
Gain in dB: G = 20 log |H( jw)| = 10 log |H( jw)|2

Attenuation in dB: A = 20 log (l/|H( jw)|) = −20 log |H( jw)| = −G

EXAMPLE 12.15 Plot the frequency response of the network function H(s) = l/(s + 1) in the form of a Bode diagram 
for 0.01 < w < 100 rad/s.

H H s( ) ( )| =
=

j
js j

w
w w

ww=
+

=
+

∠− −1
1

1

1 2

1tan

Magnitude in dB = −20 log 1 2+ w  and phase = −tan−1w.

See Fig. 12-34.
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Fig. 12-34 Bode plots of the magnitude (left) and phase (right) for 1/(s + 1)

We recognize three regions:

(a) Low frequency w << 1, where magnitude ≈ 0 dB and phase ≈ 0

(b) Break-point frequency w = 1, where magnitude = −20 log 2  = −3 dB and phase = −p/4

(c) High frequency w >> 1, where magnitude ≈ −20 log w (dB) and phase ≈ −p/2

The above network function has a unity DC gain (corresponding to 0 dB) and a single pole at w0 = 1. The low-frequency 
asymptote of the Bode plot is the 0-dB line (with zero phase angle). The 3-dB attenuation frequency is at w0, where the 
phase is −p/4. At high frequencies the gain is almost −20 log w (dB), decreasing by 20 dB per each decade of frequency. 
The high-frequency asymptote is a line with a slope of −20 dB per decade. (The abscissa is x = log w, and at high fre-
quencies the ordinate is y ≈ −20 log w + 20 log w0 = −20x, which is a downward straight line with a slope of −20 and an 
x-intersect at w0 = 1.) The phase at w = ∞ is −p/2.
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EXAMPLE 12.16 Plot the frequency response of the network function H(s) = (s + 1) in the form of a Bode diagram 
for 0.01 < w < 100 rad/s.

H( ) tan 1j jw w w w= + = + ∠1 1 2 −

Magnitude in dB = 20 log 1 + w2  and phase = tan−1w.

The transfer function has a zero at 1 and thus provides a mirror image to Example 12.15. Again, we recognize three 
regions:

(a) Low frequency w << 1, where magnitude ≈ 0 dB and phase ≈ 0

(b) Break-point frequency w = 1, where magnitude = 20 log 2  = 3 dB and phase = p/4

(c) High frequency w >> 1, where magnitude ≈ 20 log w (dB) and phase ≈ p/2

The above network function has a unity DC gain (corresponding to 0 dB) and a single zero at w0 = 1. The low-frequency 
asymptote of the Bode plot is the 0-dB line (with zero phase angle). The 3-dB frequency is at w0, where the phase   
is p/4. At high frequencies the gain is almost 20 log w (dB), increasing by 20 dB per each decade of frequency. The 
high-frequency asymptote is a line with a slope of 20 dB per decade, which is an upward straight line with a slope of   
20 and an x-intersect at w0 = 1.) The phase at w = ∞ is p/2. A vertical flip of the magnitude and phase plots of Fig. 12-34 
produces the Bode plot for 1 + jw .

EXAMPLE 12.17 Plot the frequency response of the transfer function H(s) = s/(s + 1) in the form of a Bode diagram 
for 0.01 < w < 100 rad/s.

H H s( ) ( )| /2 tan 1j
j

js j
w w

w
w

w
p ww= =

−=
+

−
1 1 2+

= ∠( )

Magnitude in dB = 20 log w −20 log 1 2+ w  and phase = p/2 − tan−1w.

See Fig. 12-35.
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Fig. 12-35 Bode plots of the magnitude (left) and phase (right) for s/(s + 1).

Again, we recognize three regions:

(a) Low frequency w  << 1, where magnitude ≈ 20 log w (dB) and phase ≈ p/2

(b) Break-point frequency w = 1, where magnitude = −20 1og 2 = −3 dB and phase = p/4

(c) High frequency w  >> 1, where magnitude ≈ 0 dB and phase ≈ 0
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The above network function has a zero at the origin, a single pole at w0 = 1, and unity gain (corresponding to 0 dB) at 
w = ∞. The high-frequency asymptote of the Bode plot is the 0-dB line (with zero phase angle). The 3-dB attenuation 
frequency is at w0 , where the phase is p/4. At low frequencies the gain is almost −20 log w (dB), increasing by 20 dB 
per each decade of frequency. The low-frequency asymptote is a line with a slope of 20 dB per decade. (The abscissa is 
x = log w, and at low frequencies the ordinate is y ≈ 20 1og w = 20x, which is an upward straight line with a slope of 20 
and an x-intersect at w0 = 1.) The phase at w = ∞ is 0.

The network functions in the above examples have a pole, or a zero, at s = 1 that sets the −3 dB break fre-
quency. A pole or a zero at s = w0 will produce a break point at w0 on the frequency axis. A network function 
and its Bode diagram may also be expressed as a function of frequency in Hz. (For an example, see the solution  
to Problem 5.50.)

12.18 Special Features of Bode Plots
There are several (interrelated) advantages in using the Bode plot. These are summarized below.

(a)  Expanded range of variables. The dB scale enlarges the range of the magnitude plot. Here are some 
examples of correspondence between the linear and dB scales:

   

1 dB a factor of 1.12 6 dB a factor of 2 20 dB a factor of 10 100 dB a factor of 105

3 dB a factor of 1.41 10 dB a factor of 6 60 dB a factor of 1000 N dB a factor of 10N/20

 Similarly, a larger frequency range is accommodated by using the log scale.

(b) Additive property of the dB scale. Multiplication of two sub-functions in the frequency response trans-
lates into addition of their dB magnitudes and phases. For example, consider a circuit with the following 
network function:
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(c) Asymptotic approximation. A simple pole of the network function translates into a downward asymp-
tote (with a slope of −20 dB/decade), and a zero translates into an upward one.

(d) Break points. Poles and zeros constitute the break points where two corresponding asymptotes 
 intersect. At a break point the gain deviates from the asymptote values by ±3 dB (for a zero and a 
pole, respectively). The phase is changed by ±p/4 at a break point. Furthermore, it can easily be shown 
that at w0/2 and 2w0 the actual gain deviates from the asymptote by ±1 dB (for a zero and a pole, 
respectively).

(e) Sketching by hand. Based on the above features, one can sketch the Bode plot rather accurately. Or one 
can visualize the general shape of the frequency response without the help of a plot.
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12.19 First-order Filters
A first-order filter has a single pole with a negative real value because its input-output differential equation 
is of order one. The transfer function is

H s
s

s
( )

( )

0

=
+
B

w
,

where w0 is a non-negative real number. B(s) is a polynomial in s of an order not higher than one and whose 
root is the zero of the filter. A possible zero and its location with respect to the pole determines the filter 
type: lowpass, highpass, allpass, lead or lag, and so on. Examples of lowpass and highpass filters were 
given in the previous sections. Lead and lag networks are first-order filters with a single pole and zero. They 
are also called compensator networks because they produce a prescribed phase lead or lag in a sinusoidal 
input. By doing so, when placed in a control loop, they reshape the overall system function to meet desired 
characteristics. The transfer function for a compensator is

H s
s

s
( )

lead ork

lag n

netw
=

+
+

⇒
<

>
H

0
1

2

1 2

1 2

w
w

w w

w w

,

, eeetwork







The constant factor H0 depends on the network’s elements and its configuration. The network can be 
made of passive RLC elements or use operational amplifiers. Examples of lead and lag networks were 
given in Problems 8.48 and 8.49. In this section we briefly describe their transfer functions and frequency 
responses.

Lead Network
Consider a lead network with
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and 1α <

The magnitude and phase of the frequency response are

Magnitude = 20 log |H( jw)| = 20 log w w2
1
2+  − 20 log w w2

2
2+  (dB)

Phase = tan−1(w/w1) − tan−1(w/w2)

On the Bode diagram (i.e., 20 log |H( jw)| and ∠H( jw) vs. log w) for such a lead network, we recognize the 
following two asymptotic regions:

(a) Low frequency w << w1, where magnitude ≈ 20 1og w1 − 20 1og w2 = 20 log a (dB) and phase ≈ 0

(b) High frequency w >> w2, where magnitude ≈ 0 dB and phase ≈ 0

A lead network, the polar plot of its frequency response, and its Bode diagram are shown in Fig. 12-36. The 
low-frequency asymptote of the magnitude plot is the horizontal line at 20 log a (dB), a negative number. 
The high-frequency asymptote is the horizontal line at 0 dB. As the frequency sweeps from low to high, it 
first encounters the zero at w1, which pushes the magnitude plot up with a slope of 20 dB per decade. As 
the frequency increases, it encounters the pole at w2, which pulls the magnitude plot down with a slope of 
−20 dB per decade, neutralizing the upward effect of the zero. The magnitude monotonically increases from 
the negative level toward the 0-dB level and eventually stabilizes at that level at high frequencies. The zero 
and the pole of H(s) constitute the first and second break frequencies, respectively, of the magnitude plot.

The phase of H( jw) varies from 0 (at w = 0) to a maximum and returns back to 0 at w = ∞. The phase 
is always positive. The output leads the input. It may be shown that the maximum phase lead in the output 

is p/2 − 2 tan−1 α . It occurs at wm = w w
1 2

, which is the geometric mean of the two break frequencies.
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Bode Diagram of a Lead Network
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Fig. 12-36 A lead network, the polar plot of its frequency response, and its Bode diagram.

The transfer function of the network is found by applying KCL at the output node:

H s
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The diagrams in this figure are for a circuit with R1 = 10 Ω, R2 = 1 Ω, C = 0.1 F. This results in w1 = 1,  
a = 1/11, w2 = 11, and

H s( ) .= +
+

s
s

1
11

The polar plot shows the locus of H( jw) and demonstrates that the maximum phase occurs at a frequency 
where the vector from the origin becomes tangent to the semicircle.

Lag Network
Consider a lag network with

H s
s

s
( ) , where , and 1.

2
1 2

=
+ w

w
w αw α1

+
= >

Note that w2 < w1. The magnitude and phase of the frequency response are

Magnitude = 20 log |H( jw)| = 20 log w w2
1
2+ − 20 log w w2

2
2+  (dB)

Phase = tan−1(w/w1) − tan−1(w/w2)

We recognize the following two asymptotic regions:

(a) Low frequency w << w2, where magnitude ≈ 20 log w1 − 20 1og w2 = 20 log a (dB) and phase ≈ 0

(b) High frequency w >> w1, where magnitude ≈ 0 dB and phase ≈ 0
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The low-frequency asymptote of the magnitude plot is the horizontal line at 20 log a dB, a   
positive number. The high-frequency asymptote is the horizontal line at 0 dB. As the frequency sweeps 
from low to high, it first encounters the pole at w2, which pushes the magnitude plot down with a slope of 
−20 dB per decade. As the frequency increases, it encounters the zero at w1, which pulls the magnitude 
up with a slope of 20 dB per decade, neutralizing the downward effect of the pole. The magnitude mono-
tonically decreases from the positive level toward the 0 dB level and is eventually stabilized at the 0 dB 
level at high frequencies. The pole and the zero of H(s) constitute the first and second break frequencies, 
respectively, of the magnitude plot.

The phase of H( jw) varies from 0 (at w = 0) to a minimum and returns back to zero at w  = ∞. The phase 
is always negative. The output lags the input. It may be shown that the minimum phase in the output is

p/2 − 2 tan−1 α . It occurs at wm = w w
1 2

, which is the geometric mean of the two break frequencies.

A lag network is shown in Fig. 12-37 along with the polar plot of its frequency response and its Bode 
diagram. By applying KCL at the output node of the circuit, we find

H s( ) where=
+
+

= =
+

w
w

w
w

w w2

1

1

2
1

2
2

1 2

1 1s

s R C R R C
, ,

( )
=== =

+w
α

α1 1 2

2

, .
R R

R

The diagrams in this figure are for a circuit with R1 = 10 Ω, R2 = 1 Ω, C = 0.1 F. This results in w1 = 10, 
a = 11, w2 = 10/11, and 

H s( ) = +
+

1
11

10
10 11

s
s /

The polar plot shows the locus of H( jw) and demonstrates that the minimum phase occurs at a frequency 
where the vector from the origin becomes tangent to the semicircle.
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Fig. 12-37 A lag network, the polar plot of its frequency response, and its Bode diagram.
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Table 12-2 summarizes the transfer functions of several basic first-order filters, along with their asymptotic 
magnitude Bode diagrams.

Table 12-2. Summary of First-Order Filters

Type H(s) Asymptotic Bode Diagram

(a) Integrator
w0
s

(b) Lowpass
w

w
0

0s +  

(c) Highpass
s

s + w0
 

(d) Allpass
w
w

0

0

−
+

s
s  

(e) Lead
w
w w w1

2
1 2

+
+ <

s
s

(f) Lag
w
w w w1

2
1 2

+
+ >

s
s

12.20 Second-order Filters
Second-order filters have a pair of poles in the left-half plane. Possible zeros determine the type of the filter: 
lowpass, highpass, allpass, bandpass, notch, etc. The transfer function is

H s
B s

s as b
( )

( )=
+ +2 2

where a and b are positive real numbers. B(s) is a polynomial in s of an order not higher than 2 and whose 
roots are the zeros of the filter. We first discuss the lowpass filter.
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Lowpass Filters
A second-order lowpass filter has no finite zero. Its transfer function is

H s
b

s as b s
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where Q
b
a

b= =2 0and w

Depending on pole locations, the following three cases are recognized.

(i) a2 > b, (Q < 0.5), the filter has two distinct negative real poles. It is overdamped.

(ii) a2 = b, (Q = 0.5), the filter has a repeated negative real pole. It is critically damped.

(iii)  a2 < b, (Q > 0.5), the filter has a pair of complex conjugate poles in the left-half plane. It is   
underdamped.

Regardless of the value of Q, the low frequency asymptote is a horizontal line at the 0 dB level and the 
high frequency asymptote is a line with a slope of −40 dB per decade. The phase angle ranges from 0°
(at f = 0) to −180° (at f = ∞). The breakdown frequency (where the two asymptotes intersect) is at w0 =   
√b, where the phase is −90°. In the neighborhood of w0, the magnitude response is shaped by Q with 
H(w0) = −jQ. At that frequency, the phase is −90° and the magnitude in dB is 20 log Q. For Q = 0.5   
(a critically damped filter), the gain is 20 log 0.5 = 6 dB and for Q = 20 (a highly underdamped filter) it 
is 20 log 20 = 26 dB.

other Types of Filters
The numerator polynomial B(s) may be anticipated from its type. For a high-pass filter (expected to have a 
double zero at f = 0), B(s) = s2. A bandpass filter will need a simple zero at f = 0 (which, in conjunction with 
the pair of poles, would bring down the gain of the filter at both low and high frequencies), resulting in B(s) = s.
Similarly, an allpass filter needs a pair of zeros located appropriately to cancel the effect of its poles. Finally, 
a notch filter needs a pair of (conjugate) zeros at the notch frequency jw0 (on the jw axis or very near it) to 
block it. The transfer functions of some second-order filters are summarized below.
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12.21 Filter Specifications; Bandwidth, Delay, and Rise Time
A filter is completely specified by its transfer function (or equally, its frequency response). In filter analysis 
and design we begin with lowpass filters as prototypes, from which other types can be derived by methods 
of filter transformations. In many practical situations the performance of a lowpass filter may be summarized 
by three interrelated indexes:

 (i) Bandwidth, often defined as the frequency where the gain is 3 dB below its DC value.

(ii) Delay, defined as the time it takes for the step response to reach 50% of its final value.

(iii)  Rise time, which may be defined as the time required for the step response to go from 10% to 90% of 
its final value. This definition is a convenient one (making it easily measurable), especially for the step 
responses that have no overshoot or oscillations (such as for first-order filters).

Here is an example. For the first-order, lowpass filter H(s) = 1/(1 + ts), the time constant of the step response 
is t, and the 3-dB attenuation bandwidth is w0 = 1/t rad/s (or f0 = 1/(2pt) in Hz). The 50% level delay is 
0.693t, and the 10% to 90% level rise time is 2.2t. The product of rise time (RT in seconds) and the 3-dB 
bandwidth ( f0 in Hz) is RT × f0 = 0.35. This relationship may be used, as a rule of thumb, in many practical 
cases to approximate the bandwidth using the measured rise time. For example, the rise time of a lowpass 
filter is measured as 100 msec. As a first-order approximation, its bandwidth may be estimated by f0 = 0.35/
(100 msec) = 3.5 kHz. The above rule of thumb is not unreasonable, as many filters have a dominant first-order 
pole (as for the 741 op-amp).

12.22 Filter Approximations: Butterworth Filters
The frequency response of an ideal lowpass filter with zero phase and cutoff frequency w0 (also called the 
filter’s bandwidth or passband) is

H( )
lsewheree

jw
w w w

=
≤ ≤
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0

0 0
,

,

−

The impulse response of the filter is a non-causal sinc-shaped1 function with domain –∞ < t < ∞. Such a filter 
may not be constructed using physical elements. Practical analog filters, however, approximate the frequency 
response of ideal filters within a given tolerance. The tolerance is generally prescribed for the magnitude 
function. Some approximation techniques for ideal filters are i) Butterworth, ii) Chebyshev, iii) Elliptic, and 
iv) Bessel filters. In this section and the next we discuss Butterworth filters.

Butterworth Filters
The squared-magnitude response |H( jw)|2 of an nth order lowpass Butterworth filter is given by

| , , , ...H( )|2j n

c

n
w

w
w

=

+










=1

1

1 2 3
2

At w = 0, the gain is at its maximum and is equal to 0 dB. As w increases, the gain is reduced monotonically, 
and the input signal is attenuated. At w = ∞, the gain becomes zero. The 3-dB attenuation occurs at wc. The 
high-frequency asymptote has a slope of −20n dB per decade. The first n − 1 derivatives of |H( jw)| are zero at 
w = 0, resulting in a maximally fíat magnitude response at DC. Hence, such filters are called maximally flat.

As an example, the transfer function of a first-order, lowpass Butterworth filter normalized in frequency by 
wc is H(s) = l/(s + 1), which results in |H( jw)|2 = 1/(1 + w2). The second-order filter is H(s) = l/(s2 + 2s + 1),  

1The sinc function is defined by sinc(t) = 
sin( )p

p
t

t
.
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resulting in |H( jw)|2 = 1/(1 + w4). For the nth order, H(s) can be found by backtracking from |H( jw)|2 = H(s)
H(s*), where s* is the complex conjúgate of s. The results are summarized below for normalized lowpass filters.
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+
1

1s
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s s
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+ +

1

2 12
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+ + +
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The denominators of H(s) are called Butterworth polynomials and are available in several tabulated forms.

EXAMPLE 12.18 Plot the magnitude response of normalized lowpass Butterworth filters for n = 1,…,10. Discuss the 
effect of increasing n on the aecuracy of the approximation.

The squared-magnitude response of a normalized nth order, lowpass Butterworth filter is

|H( )|
1

1

2j
n

w =
w+ 2

| , | ( )| , , , ...H H H(0)| 1, | (1)|
1

2
= = =∞ 0 1 2 3n =

The magnitude decreases with w monotonically for all n. See Fig. 12-38. As n increases, the magnitude plots approach 
that of the ideal filter, with all plots having a 3-dB frequency at w0.
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Fig. 12-38 Magnitude response of nth order, lowpass Butterworth filters, n = 1,…10.

Two implementations of a second-order Butterworth filter by passive and active circuits are given in Example 12.6. 
Problems 12-52 and 12-53 present two implementations of a third-order Butterworth filter.
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12.23 Filter Design
In filter design we seek a rational fraction H(s) that results in a frequency response that satisfies certain 
desired specifications. In this section we address the design of lowpass Butterworth filters as prototypes, 
along with a brief presentation of filter transformations.

The normalized magnitude plot of a realizable lowpass filter is shown in Fig. 12-39. Three frequency 
bands are identified: passband, transition band, and stopband. The passband edge frequency, wp, is specified 
by the maximum attenuation Ap acceptable within the passband. The stopband edge frequency, ws, is speci-
fied by the minimum attenuation As required within the stopband. Designations of wp and ws are contingent 
upon the specified Ap and As. The filter should meet the following conditions:

A A
p p

≤ ≤for w w

A A
s s

≥ ≥for w w

Passband

–As

–Ap

0

20 log|H|
(dB)

Transition Stopband

ωp ωs ω
(rad/s)

Fig. 12-39 Terminology for a lowpass filter.

The squared-magnitude response of a lowpass Butterworth filter with unity DC gain is

|H( )|2j
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w
w

=

+
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2

The attenuation in dB is

G = −20 log |H( jw)| = 10 log {1 + (w /wc)
2n}

In addition to being a function of the frequency, the attenuation in a Butterworth filter is determined by two 
parameters: i) wc, which is the 3-dB attenuation or half power frequency of the filter, and ii) n, which is called 
the order of the filter.

Determination of the order of the Butterworth Filter
If the 3-dB attenuation frequency wc of the filter is given, we only need to specify one more point of the 
magnitude function in order to determine the filter’s order. For example, the additional information of As dB 
attenuation at ws will provide us with the filter’s order from the relation below:

A
s s c

n= +10 2log{1 .}( / )w w

Solving for n (and remembering that n is an integer), we obtain the order in terms of fc, fs, and As:
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Alternate Forms for the order of a Butterworth Filter
The order n may also be found from fp, Ap, fs, and As by solving the equations below:
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Cascade Implementation of Higher-order Filters
The transfer function of a second order, lowpass filter is given by the equation
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The filter is specified by three numbers: H0 (DC gain), Q (quality factor), and w0. It can be implemented 
by one of several circuits, such as those given in Fig. 8-42. An nth-order, lowpass filter may be realized 
by cascading second-order filters (each stage corresponding to a quadratic factor), possibly with a first-
order filter.

12.24 Frequency Scaling and Filter Transformation

Frequency Scaling
The frequency scale of a filter may be changed by adjusting the values of its inductors and capacitors. Here we 
summarize the method (see also Section 8.10). Inductors and capacitors affect the frequency behavior of cir-
cuits through Lw and Cw; i.e., always as a product of element values and the frequency. Dividing inductor and 
capacitor values in a circuit by a factor k will scale up the w-axis of the frequency response by a factor k. For 
example, a 1 mH inductor operating at 1 kHz has the same impedance as a 1 mH inductor operating at 1 MHz. 
Similarly, a 1 mF capacitor at 1 MHz behaves as a 1 nF capacitor at 1 GHz. This is called frequency scaling 
and is a useful property of linear circuits. The following two examples illustrate its application in filter design.

EXAMPLE 12.19 The network function of the circuit of Fig. 8-42 with R = 2 kΩ, C = 10 nF, and R2 = R1 is
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where w0 = 50,000 rad/s (see Examples 8.14 and 8.15). This is a lowpass filter with the cutoff frequency at w0. By using 
a 1 nF capacitor, w0 = 500,000, and the frequency response is scaled up by a factor of 10.

EXAMPLE 12.20 A voltage source is connected to the terminals of a series RLC circuit. The phasor current is  
I = Y × V, where

Y s
s

s s
( )

12
= C

LC RC+ +
.

This is a bandpass function with a peak of the resonance frequency of w0 = 1/ LC . Changing L and C to L/k and C/k  
(a reduction factor of k) changes 1/ LC  to k/ LC , and the new resonance frequency is increased to kw0. You may 
verify the shift in frequency at which the current reaches its maximum by direct evaluation of Y( jw) for the following 
two cases: a) L = l mH, C = 10 nF, w0 = 106 rad/s, and b) L = 10 mH, C = 100 nF, w0 = 105 rad/s.

Filter Transformation
Table 12.3 summarizes mappings in the frequency domain that transform a lowpass filter (with the passband 
frequency given by wp) to other filter types such as highpass (with edge frequencies designated by primed 
symbols). The summary reflects frequency scaling as well as frequency transformations. See Problems 12.59 
through 12.64 at the end of the chapter.

Table 12-3. Filter Transformations

Item Transformation Edge frequencies  
of the new filter

Mapping in the  
frequency domain

(1) Lowpass to lowpass w
p
′ s sp

p

⇒
w

w′

(2) Lowpass to highpass w
p
′ s

s
p p⇒

w w′

(3) Lowpass to bandpass w w
�

′ and
h
' s

s

sp
h

h

⇒ w
w w

w w

2 +

−

′ ′

′ ′
�

�
( )

(4) Lowpass to bandstop w w
�

′ ′and
h

s
s

sp
h

h

⇒
−

w
w w

w w

( )′ ′

′ ′
�

�

2 +

SoLvED PRoBLEMS

 12.1. In the two-port network shown in Fig. 12-40, R1 = 7 kΩ and R2 = 3 kΩ. Obtain the voltage ratio 
V2/V1 (a) at no-load, (b) for RL = 20 kΩ.

Fig. 12-40
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(a) At no-load, voltage division gives

V
V

2

1

2

1 2

3
7 3 0 30= + = + =

R
R R

.

(b) With RL = 20 kΩ,

R
R

R R
p R

L

L
= + = Ω2

2

60
23 k

and 
V
V

2

1 1

60
221 0 27= + = =

R

R R
p

p
.

The voltage ratio is independent of frequency. The load resistance, 20 kΩ, reduces the ratio from 
0.30 to 0.27.

12.2. (a) Find L2 in the high-pass circuit shown in Fig. 12-41, if |Hu(w)| = 0.50 at a frequency of 50 MHz. 
(b) At what frequency is |Hu| = 0.90?

(a) From Section 12.2, with w x R L≡ 1 2/ ,

| |H
/

υ w
w w

( )
( )

=
+

1

1 2
x

Fig. 12-41

Then, 0 50
1

1 50
50 3

2
.

( )
=

+
=

f
f

x

x
/

or MHz  

and L
R

fx
2

1
3

62
50 10

2 50 3 10
91 9= = ×

×
=p p ( )

. Hµ  

(b) 0 90
1

1 50 3
1792.

( )
=

+
=

/
or MHz

f
f

12.3. A voltage divider, useful for high-frequency applications, can be made with two capacitors C1 and 
C2 in the generalized two-port network of Fig. 12-12. Under open-circuit conditions, find C2 if 
C1 = 0.01 µF and |Hu| = 0.20.

From Table 12-1,

H Z Z
Z

υ
w

w w

= + =
+

= +
2

1 2

2

1 2

1

1 2

1/
1 1

j C

j C j C

C
C C

Hence, 0 20
0 01

0 01 0 04
2

2.
.

. .= + =
C

Cor Fµ  

The voltage ratio is seen to be frequency-independent under open-circuit conditions.
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 12.4. Find the frequency at which |Hu| = 0.50 for the low-pass RC network shown in Fig. 12-42.

H
j R Cx

xυ w w w w( ) ( )= + ≡1
1

1

1 2/ where

Fig. 12-42

 Then, ( . )
( )

0 50
1

1
32

2=
+

=
w w

w
w/

from which
x x

 and w = 





= =3
1

8660 1378
1 2R C

frad/s or Hz

 12.5. For the series RLC circuit shown in Fig. 12-43, find the resonant frequency w0 = 2p f0. Also obtain 
the half-power frequencies and the bandwidth b.

Zin ( )w w w= + −



R j L

C
1

Fig. 12-43.

 At resonance, Zin(w) = R and w0 1= / LC .

w
w

p0 6 0
01

0 5 0 4 10
2236 1 2 355=

×
= = =

−. ( . )
. .rad/s f 99 Hz

 The power formula

P I R
V R

= =eff
eff

in

2
2

2Z

 shows that P V Rmax ,= eff
2 /  which is achieved at w = w0, and that P P= 1

2 max when |Zin|
2 = 2R2; that is, when

w w w wL
C

R
R
L LC

− = ± − =1 1
02or 
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Corresponding to the upper sign, there is a single real positive root:

w h h

R
L

R
L LC

f= + 



 + = =2 2

1
2338 3 372

2

. rad/s or ..1 Hz

and corresponding to the lower sign, the single real positive root

w l l

R
L

R
L LC

f= − + 



 + = =2 2

1
2138 3 3

2

rad/s or. 4440 3. Hz  

12.6. Derive the Q of (a) the series RLC circuit, (b) the parallel RLC circuit.

(a) In the time domain, the instantaneous stored energy in the circuit is given by

W Li
q
Cs = +1

2 2
2

2

For a maximum,

dW
dt

Li
di
dt

q
C

dq
dt

i L
di
dt

q
C

is
L C= + = +



 = +(υ υ ))) = 0

Thus, the maximum stored energy is Ws at i = 0 or Ws at uL + uC = 0, whichever is larger. 
Now the capacitor voltage, and therefore the charge, lags the current by 90°; hence, i = 0 implies 
q Q= ± max and

W
Q

C
CV C

I
C

I
s i C| = = = = 





=0

2
2

2

2
1
2

1
2

max
max

max
w

mmmax
2

22Cw

On the other hand, uL + uC = 0 implies uL = uC = 0 and i = ± Imax (see the phasor diagram, Fig. 12-44), so that

W LIs
L C

|υ υ+ = =0
21

2 max

Fig. 12-44

It follows that

W
C

LIs max
max

max

, ( )

, ( )
=

≤

≥







I /

/

2 2
0

2
0

2

2

w w w

w w

The energy dissipated per cycle (in the resistor) is W I Rd = max .2 p w/  Consequently,

Q
W

W
CR

L R
s

d
= =

≤
≥





2
1 0

0
p

w w w
w w w

max
, ( )

, ( )

/

/
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 (b) For the parallel combination with applied voltage u(t),

 W LI
C

qs L C= +1
2

1
2

2 2  

 and 
dW
dt

Li
di
dt

q
C

i i is
L

L C
C L C= + = + =υ( ) 0  

 If u = 0, then qC = 0 and

 i I
V

LL L= ± = ±max
max

w

 giving W
V

Ls |υ w= =0

2

22
max

  If iL + iC = 0, then (see Fig. 12-45) iL = iC = 0 and qC = ±CVmax. Hence,

  W CVs i i
L C

| + = =0
21

2 max  

 Therefore, W
V L

CVs
a

a
max

max

max

, ( )

, ( )
=

≤

≥







2

2 2

/2

/

2w w w

w w

  The energy dissipated per cycle in R is W V Rd = max .2 p w/ Consequently,

Q
W

W
R L

CR
s

d

a

a
= =

≤
≥





2p
w w w

w w w
max

, ( )

, ( )

/

Fig. 12-45

 12.7. A three-element series circuit contains R = 10 Ω, L = 5 mH, and C = 12.5 µF. Plot the magnitude 
and angle of Z as functions of w for values of w from 0.8 w0 through 1.2 w0.

 w w0 01 4000= =/ rad/s AtLC . ,

X XL C= × = Ω =
×

−
−( )( )

( )( . )
4000 5 10 20

1

4000 12 5 10
3

6 == Ω

= + − = + Ω

20

10 10 0Z j X X jL C( )
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The values of the reactances at other frequencies are readily obtained. A tabulation of reactances and 
impedances appear in Fig. 12-46(a) and Fig. 12-46(b) shows the required plots.

Fig. 12-46

12.8. Show that w w w0 = l h  for the series RLC circuit.

  By the results of Problem 12.5,

w wl h

R
L LC

R
L

R
L

= 



 + −















 +2

1
2 2

12 2

LLLC
R
L LC

+










= =2
1

0
2w

12.9. Compute the quality factor of an RLC series circuit, with R = 20 Ω, L = 50 mH, and C = 1 µF, using 
(a) Q = w0L/R, (b) Q = 1/w0CR, and (c) Q = w0 /b.

w

w

0 6

2

1

0 05 10
4472

2 2
1

=
×

=

= − + 



 +

−.
rad/s

l

R
L

R
L LCCC

R
L

R
L LCh= = + 



 + =4276 6 2 2

1
4676 6

2

. .rad/s raw ddd/s

and b = wh − wl = 400 rad/s.

(a) Q
L

R
= = =

w 0 4472 0 050
20 11 2
( . )

.

(b) Q
CR

= = =−
1 1

4472 10 20
11 2

0
6w ( )

.

(c) Q = = =
w
β

0 4472
400 11 2.
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12.10. A coil is represented by a series combination of L = 50 mH and R = 15 Ω. Calculate the quality factor 
at (a) 10 kHz, (b) 50 kHz.

 (a) Q
L

Rcoil = = × × =
−w p2 10 10 50 10

15 209
3 3( )( )

 

 (b) Qcoil = 



 =209

50
10 1047

12.11. Convert the circuit constants of Problem 12.10 to the parallel form. Calculate the quality factor at 
(a) at 10 kHz, (b) at 250 Hz.

 (a) R R
L

R
R Qp s

s

s
s s= + 

















= + = +1 1 15 1
2

2w
[ ] [ (( ) ]209 6552 = Ωk

 or, since Q R R Qs p s s 10 15 209 6552 2, ( ) .k≈ = = Ω

L L
Q

Lp s
s

s= +








 ≈ =1

1
502 mH

 (b) At 250 Hz,

Q

R R Q

s

p s s

= × =

= + =

−2 250 50 10
15 5 24

1 15 1

3

2

p ( )( )
.

[ ] [ ++ = Ω

= +







 = × −

( . ) ] .

(

5 24 426 9

1
1

50 10

2

2L L
Qp s

s

33
21

1

5 24
51 8)

( . )
.+





= mH

 Conversion of the circuit elements from series to parallel form can be carried out at a specific frequency,  
the equivalence holding true only at that frequency. Note that in (b), where Qs < 10, Lp differs significantly 
from Ls.

12.12. For the circuit shown in Fig. 12-47, (a) obtain the voltage transfer function Hu(w) and (b) find the 
frequency at which the function is real.

Fig. 12-47

 (a) Let Z2 and Y2 represent the impedance and admittance, respectively, of the R2LC parallel tank.

H
Z

Z Yυ w

w w
( ) = + = + =

+ + +



2

1 2 1 2
1

2

1
1

1

1
1 1R R

R
R j L

j C


=
+ + −





1

1
11

2
1

R
R

jR C
L

w w
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(b) The transfer function is real when Y2 is real; that is, when

w w= ≡a LC

1

  At w = wa, not only are |Z2| and |Hu| maximized, but |Zin| = |R1 + Z2| also is maximized (because R1
is real and positive—see the locus diagram, Fig. 12-48).

Fig. 12-48

12.13. Obtain the bandwidth b for the circuit of Fig. 12-47 and plot b against the parameter

R
R R

R Rx ≡ +
1 2

1 2

Here, the half-power frequencies are determined by the condition |Hu(w)| = 0.707|Hu|max, or, from 
Problem 12.12(a),

R C
L

R
R

R C
Lx1

1

2

1
1

1w w w w−



 = ± +





−



or  = ±1

But (see Section 12.13) this is just the equation for the half-power frequencies of an RxLC parallel circuit. 
Hence,

β
w

= =a

a xQ CR
1

The hyperbolic graph is shown in Fig. 12-49.

Fig. 12-49
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12.14. In the circuit of Fig. 12-47, let R1 = R2 = 2 kΩ, L = 10 mH, and C = 40 nF. Find the resonant frequency 
and bandwidth, and compare with the results for R1 = 0 (i.e., a pure parallel circuit).

wa =
× ×

= ×
− −

1

10 10 40 10
5 10

3 9

4

( )( )
rad/s

or fa = 7958 Hz. With Rx = 22/4 = 1 kΩ, Problem 12.13 gives

β =
× ×

= ×−
1

40 10 1 10
2 5 109 3

4

( )( )
. rad/s

The results of Problems 12.12 and 12.13 cannot be applied as R1 0→ , for, in the limit, the voltage ratio 
is identically unity and so cannot provide any information about the residual R2LC parallel circuit. (Note 
that β → ∞ →as Rx 0..) Instead, we must go over to the input impedance function, as in Section 12.13, 
whereby

wa LC
= = ×1

5 104 rad/s

as previously, and

β = = ×1
1 25 10

2

4

CR
. rad/s

12.15. For the circuit of Fig. 12-47, R1 = 5 kΩ and C = 10 nF. If V V2 1 0 8 0/ = . /  at 15 kHz, calculate R2, L, 
and the bandwidth.

An angle of zero on the voltage ratio Hu indicates that the circuit as a whole, and the parallel tank by 
itself, is at resonance (see Problem 12.14). Then,

w
w pa

a
LC

L
C

= = =
× ×

=−
1 1 1

2 15 10 10 10
11 262 3 2 9[ ( )] ( )

. mH

From Problem 12.12,

Hυ w( ) . ( ) , .a R R
R

R
= = + = =0 8 0

1
1 0 25 20

1 2
2

1/ �
/ whence kΩ.

Then, Rx = (5)(20)/25 = 4 kΩ ,  and Problem 12.13 gives

β =
× ×

= ×−
1

10 10 4 10
2 5 109 3

4

( )( )
. rad/s

12.16. Compare the resonant frequency of the circuit shown in Fig. 12-50 for R = 0 to that for R = 50 Ω.
For R = 0, the circuit is that of an LC parallel tank, with

wa aLC
f= =

×
= =

−

1 1

0 2 30 10
408 2 65

6( . )( )
. rad/s or Hzz

Fig. 12-50
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For R = 50 Ω,

Yin = + + =
+

+ −
+







j C

R j L
R

R L
j C

L

R L
w w w

w w
w

1
2 2 2 2( ) ( ) 



For resonance, Im Yin is zero, so that

w a LC

R C
L

= −1
1

2

Clearly, as R → 0, this expression reduces to that given for the pure LC tank. Substituting the numerical 
values produces a value of 0.791 for the radical; hence,

w a af= = =408 2 0 791 322 9 51 4. ( . ) . .rad/s or Hz

12.17. Measurements on a practical inductor at 10 MHz give L = 8.0 µH and Qind = 40. (a) Find the ideal 
capacitance C for parallel resonance at 10 MHz and calculate the corresponding bandwidth b. 
(b) Repeat, if a practical capacitor, with a dissipation factor D Q= =−

cap
1 0 005. at 10 MHz, is used 

instead of an ideal capacitance.

(a) From Section 12.14,

w a LC Q
=

+ −

1 1

1 ind
2

 

or C
L Qa

=
+

=
× ×

−
−

1

1

1

2 10 10 8 0 10 1
2 2

6 2 6w p( ) [ ( )] ( . )ind +++





=
1

1600

31 6. pF

Using Section 12.15 to convert the series RL branch of Fig. 12-25 to parallel at the resonant frequency,

R R Q
L

Q
Qp

a= + = +( ) ( )1 1 2
ind
2

ind
ind

w

Then, from Section 12.13,

β
w w w p= = =

+
= ×a

a

a

p

a
Q

L
R

Q

Q

2 62 10 10 40
1

ind

ind
21

( )( )
+++ 1600 rad/s  

or 0.25 MHz.

(b) The circuit is shown in Fig. 12-51; part (a) gives the resistance of the practical inductor as

R
L

Q
a= = Ω

w
p

ind
4

Fig. 12-51
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 Also, from the given dissipation factor, it is known that

1
0 005wa CCR

= .

 The input admittance is

Yin = + + + = +
+









 + −1 1 1

2 2R
j C

R j L R
R

R L
j C

C C
w w w

w
( )

ww
w
L

R L2 2+










( )

which differs from the input admittance for part (a) only in the real part. Since the imaginary part involves the 
same L and R and must vanish at the same frequency, C must be the same as in part (a); namely, C = 31.6 pF.

For fixed C, bandwidth is inversely proportional to resistance. With the practical capacitor, the net  
parallel resistance is

′ = +R
R R

R R
p C

p C

where Rp is as calculated in part (a). Therefore,

β w
0 25 1 1

1
1.

( )( )
MHz

/ ind ind
2

= ′ = + = +
+R

R

R

R
L Q Qp p

C

a
// ( . )

( )( . )

(

waC

Q

Q Q

0 005

1
1 0 005

1
= +

+
+ −

ind
2

ind ind
22 )

( )( . )
.= + +

+





=1
1 1600 0 005

40 1
1

1600

1 2

and so b = 0.30 MHz.
A lossy capacitor has the same effect as any loading resistor placed across the tank; the Qa is reduced 

and the bandwidth increased, while fa is unchanged.

12.18. A lossy capacitor, in the series-circuit model, consists of R = 25 Ω and C = 20 pF. Obtain the 
equivalent parallel model at 50 kHz.

From Section 12.15, or by letting L → 0 in Problem 12.6(a),

Q
C Rs

s s
= =

× ×
=−

1 1

2 50 10 20 10 25
63703 12w p ( )( )( )

For this large Qs value,

R R Q C Cp s s p s≈ = Ω ≈ =2 1010 20M pF

12.19. A variable-frequency source of V = 100 0/ � V  is applied to a series RL circuit having R = 20 Ω and 
L = 10 mH. Compute I for w = 0, 500, 1000, 2000, 5000 rad/s. Plot all currents on the same phasor 
diagram and note the locus of the currents.

Z R jX R j LL= + = + w

Table 12-4 exhibits the required computations. With the phasor voltage at the angle zero, the locus of I as 
w varies is the semicircle shown in Fig. 12-52. Since I = VY, with constant V, Fig. 12-52 is essentially the 
same as Fig. 12-28(c), the admittance locus diagram for the series RL circuit.
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Table 12-4

w, rad/s XL, Ω R, Ω Z, Ω I, A

0 0 20 20/0�  5/0�  

500 5 20 20.6 14.04/ �  4.85 14.04/− �  

1000 10 20 22.4 26.57/ �  4.46 26.57/− �  

2000 20 20 28.3/45�  3.54 45/− �  

5000 50 20 53.9 68.20/ �  1.86 68.20/− �

Fig. 12-52

12.20. The circuit shown in Fig. 12-53 is in resonance for two values of C when the frequency of the driving 
voltage is 5000 rad/s. Find these two values of C and construct the admittance locus diagram which 
illustrates this fact.

At the given frequency, XL = 3 Ω. Then the admittance of this fixed branch is

Y1 5 3 0 147 0 088
1= + = −

j
j. . S

Fig. 12-53

The semicircular admittance locus of branch 2 has the radius r = 1/2R = 0.125 S. The total admittance is 
the sum of the fixed admittance Y1 and the variable admittance Y2. In Fig. 12-54, the semicircular locus 
is added to the fixed complex number Y1. The circuit resonance occurs at points a and b, where YT is real.
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YT
C

j
jX

= − + −0 417 0 088
1

4. .

which is real if

X XC C
2 11 36 16 0− + =.

or X XC C1
= =9 71 1 65

2
. , . .Ω Ω  With w = 5000 rad/s,

C C1 20 6 121= =. µ µF F2

12.21. Show by locus diagrams that the magnitude of the voltage between points A and B in Fig. 12-55 is 
always one-half the magnitude of the applied voltage V as L is varied.

Branch-1 current I1 passes through two equal resistors R. Thus, A is the midpoint on the phasor V, as 
shown in Fig. 12-56.

Fig. 12-55 Fig. 12-56

Branch 2 has a semicircular Y-locus [see Fig. 12-28(c)]. Then the current locus is also semicircular, 
as shown in Fig. 12-57(a). The voltage phasor diagram, Fig. 12-57(b), consists of the voltage across the 
inductance, VBN, and the voltage across R1, VmB. The two voltages add vectorially,

V V V V= = +mN BN mB

Fig. 12-57

Because I2 lags VBN by 90°, VBN and VmB are perpendicular for all values of L in Fig. 12-57(b). As L varies 
from 0 to ∞, point B moves from N toward m along the semicircle. Figures 12-56 and 12-57(b) are super-
imposed in Fig. 12-57(c). It is clear that VAB is a radius of the semicircle and, therefore,

V VAB = 1
2

Furthermore, the angle f by which VAB lags V is equal to 2q, where q = tan−1 wL/R1.
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SuPPLEMENTARy PRoBLEMS

12.22. A high-pass RL circuit has R1 = 50 kΩ and L2 = 0.2 mH. (a) Find w if the magnitude of the voltage transfer 
function is |Hu ∞| = 0.90. (b) With a load R = 1 MΩ across L2, find |Hu| at w  = 7.5 × 108 rad/s.

Ans. (a) 5.16 × 108 rad/s; (b) 0.908

12.23. Obtain Hu∞ for a high-pass RL circuit at w  = 2.5wx, R = 2 kΩ, L = 0.05 H.

Ans. 0 928 21 80. ./ �  

12.24. A low-pass RC circuit under no-load conditions has R1 = 5 kΩ. (a) Find C2 if |Hu| = 0.5 at 10 kHz. (b) Obtain 
Hu at 5 kHz. (c) What value of C2 results in |Hu| = 0.90 at 8 kHz? (d) With C2 as in (a), find a new value for 
R1 to result in |Hu| = 0.90 at 8 kHz.

Ans. (a) 5.51 µF; (b) 0.756 40.89/ − ° ; (c) 1.93 µF; (d) 1749 Ω

12.25. A simple voltage divider would consist of R1 and R2. If stray capacitance Cs is present, then the divider would 
generally be frequency-dependent. Show, however, that V2/V1 is independent of frequency for the circuit of 
Fig. 12-58 if the compensating capacitance C1 has a certain value.  Ans. C1 = (R2/R1)Cs

Fig. 12-58

12.26. Assume that a sinusoidal voltage source with a variable frequency and Vmax = 50 V is applied to the circuit shown 
in Fig. 12-59. (a) At what frequency f is |I| a minimum? (b) Calculate this minimum current. (c) What is |IC| at 
this frequency?  Ans. (a) 2.05 kHz; (b) 2.78 mA; (c) 10.8 mA

Fig. 12-59

12.27. A 20-µF capacitor is in parallel with a practical inductor represented by L = 1 MHz in series with R = 7 Ω. Find 
the resonant frequency, in rad/s and in Hz, of the parallel circuit.  Ans. 1000 rad/s, 159.2 Hz

12.28. What must be the relationship between the values of RL and RC if the network shown in Fig. 12-60 is to be 
resonant at all frequencies?  Ans. RL = RC = 5 Ω

Fig. 12-60
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12.29. For the parallel network shown in Fig. 12-61, (a) find the value of R for resonance; (b) convert the RC branch to 
a parallel equivalent.  Ans. (a) 6.0 Ω; (b) Rp = 6.67 Ω, XCp

= Ω20  

Fig. 12-61

12.30. For the network of Fig. 12-62(a), find R needed for resonance. Obtain the values of ′R , XL, and XC in the parallel 
equivalent of Fig. 12-62(b).  Ans. R = 12.25 Ω, ′ = ΩR 7 75. ,  XL = 25 Ω, XC = 25 Ω

Fig. 12-62

12.31. Branch 1 of a two-branch parallel circuit has an impedance Z1 = 8 + j6 Ω at w = 5000 rad/s. Branch 2 contains 
R = 8.34 Ω in series with a variable capacitance C. (a) Find C for resonance. (b) Sketch the admittance locus 
diagram.  Ans. (a) 24 µF; (b) See Fig. 12-63

Fig. 12-63

12.32. Find R for resonance of the network shown in Fig. 12-64. Sketch the admittance locus diagram.

 Ans. Resonance cannot be achieved by varying R. See Fig. 12-65.

Fig. 12-64 Fig. 12-65

Ch12.indd   337 11/08/17   11:37 AM



CHAPTER 12  Frequency Response, Filters, and Resonance 338

12.33. In Problem 12.32, for what values of the inductive reactance will it be possible to obtain resonance at some value 
of the variable resistance R?  Ans. XL ≤ 8.2 Ω

12.34. (a) Construct the admittance locus diagram for the circuit shown in Fig. 12-66. (b) For what value of resistance 
in the RL branch is resonance possible for only one value of XL?

Ans. (a) See Fig. 12-67; (b) 6.25 Ω

Fig. 12-66 Fig. 12-67

12.35. Determine the value(s) of L for which the circuit shown in Fig. 12-68 is resonant at 5000 rad/s.

Ans. 2.43 mH, 66.0 µH

Fig. 12-68 Fig. 12-69

12.36. A three-branch parallel circuit has fixed elements in two branches; in the third branch, one element is variable. 
The voltage-current phasor diagram is shown in Fig. 12-69. Identify all the elements if w = 5000 rad/s.

Ans. Branch 1: R = 8.05 Ω, L = 0.431 mH
Branch 2: R = 4.16 Ω, C = 27.7 µF
Branch 3: L = 2.74 mH, variable R

12.37. Describe the circuit which corresponds to each locus in Fig. 12-70 if there is only one variable element in 
each circuit.

Ans. (a) A two-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed R and variable XC .
(b)  A three-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed XC; branch 3: fixed R 

and variable XL.
(c) A two-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed XL and variable R.

Fig. 12-70
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12.38. In the circuit of Fig. 12-71, L = 1 mH. Determine R1, R2, and C such that the impedance between the two 
terminals of the circuit is 100 Ω at all frequencies.

 Ans. C = 100 nF, R1 = R2 = 100 Ω

Fig. 12-71

12.39. In the circuit of Fig. 12-72, Z1 = R + 1/(Cs) and Z2 = R, with RC = 0.5 ms and A = ∞ (an ideal op amp). (a) Find 

the frequency response H j
V

V
( ) .w = 2

1

 (b) Determine the order and type of the filter. (c) Specify asymptotic responses 

at low and high frequencies and determine the 3-dB attenuation frequency f1 in Hz. (d) Plot the Bode diagram.

 Ans. (a) H j
Z

Z

j

j
( ) ,w

w
w

w
w

= − =
−

+

2

1

0

0

1
 where w0

1
2000= =

RC
rad/s; (b) First-order highpass; (c) The low

 frequency asymptote is a line with a 20 dB/decade slope. The high frequency asymptote is the 0-dB line. 
They intersect at w1 = 2000 rad/c which is the 3-dB attenuation frequency; (d) See line (c) in Table 12-2.

Fig. 12-72

12.40. Repeat Problem 12.39 for the circuit of Fig. 12-73.

 Ans. (a) H j
Z

Z

j

j
( ) ,w

w
w
w

w

= + =
+

+
1

1 2

1

2

1

0

0

 where w0

1
2000= =

RC
rad/s; (b) First-order lowpass; (c) The low

 frequency asymptote is a horizontal line at 0 dB. The high frequency asymptote is a horizontal line at  
6 dB. The 3-dB break points occur at w0 /2 = 1000 and w0 = 2000 rad/c; (d) See line (b) in Table 12-2.

Fig. 12-73
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12.41. In the circuit of Fig. 12-72, Z1 = Z2 and A j
j

( )w w
p= +



10 1 10

6�  (a 741 op amp model with a single pole

at 5 Hz). (a) Find the frequency response H j
V

V
( ) .w = 2

1

(b) Determine the order and type of the filter. (c) Specify 

asymptotic magnitude (dB) and phase (degree) at low and high frequencies and the 3-dB attenuation frequency 
f1 in Hz. (d) Plot the Bode diagram and compare with the case involving an ideal op amp.

Ans. (a) H j
A j

A j j
( )

( )
( ) ,w w

w w
w

= −
+ ≈ −

+2
1

1
1

 where w p1
65 10= × rad/s; (b) First order lowpass; (c) The low

frequency asymptote is at 0 dB (with −180° phase) and the high frequency asymptote is a line with   
a −20 dB/decade slope (with −270° phase). The 3-dB attenuation occurs at f1 = 500 kHz. (d) See Fig. 5-56 
with the phase plot shifted by −180° (due to sign inversion). The gain is the same as the circuit having an 
ideal op amp, but the 3-dB bandwidth is not infinite. The negative feedback has reduced the open-loop 
gain of the op amp from 106 (60 dB) to 0 dB and increased its 3-dB bandwidth from 5 Hz to 500 kHz.

12.42. Repeat Problem 12.41 for the circuit of Fig. 12-73.

Ans.  (a) H j
A j

A j j
( )

( )
( ) ,w w

w w
w

= + ≈
+

2
1

2

1
1

where w p1
65 10= × rad/s; (b), (c), and (d) The same as in 

Problem 12.40, except that the low-frequency gain is 2 (3 dB).

12.43. In the circuit of Fig. 12-72, assume R = 1 kΩ, C = 100 nF, and A = ∞. For each entry given in the following table, 
derive and verify the listed H( jw) and the magnitude Bode plot. Show that in all cases the filter is of first-order 
with w0 = 1/(RC) = 10000 rad/s.

Case Z1 Z2 H(jw) Type Magnitude plot

(a) R
1

Cs
 

jw
w

0  integrator item (a) in Table 12-2

(b) R
R
RCs1 +  

−

+

1

1
0

jw
w

lowpass item (b) in Table 12-2

(c) 1
Cs

R
RCs1 +  

−

+

j

j

w
w

w
w

0

0
1

highpass item (c) in Table 12-2

12.44. In the circuit of Fig. 12-72, let Z1 = 1 kΩ, Z
s2

710=  (a 100 nF capacitor), and assume A j a
j

( ) ,w w
w= +



0

0
1�  

with a0 = 2 × 105 and w0 = 10p. Find the frequency response H
V
V

( )w = 2

1
 and compare it with the frequency

response of the circuit under an ideal op amp assumption (item a) as given in Problem 12-43.

Ans. H j j a( ) ,w w
w

w
w

= −

+
=1

1
1

1
0

0
 (lowpass filter with a pole at w1).

12.45. In the circuit of Fig. 7-45 (a) let RC = 5 × 10−7 s. Find the transfer function H s
V
V

( ) = 2

1
 and the magnitude and 

phase of the frequency response. Specify the order and type of the filter.

Ans. H s
RCs
RCs

H j
j

j
( ) , ( ) ,= −

+
=

−
+

=1
1

0

0
0

w
w w
w w

wwhere 222 10 1 26 1

0

× = = −





−rad/s. | | /H j H j( ) , ( ) tanw w w
w 

 .

The circuit is an allpass first-order filter. See item (d) in Table 12-2.
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12.46. Given V2/V1 = 10s/(s2 + 2s + 81) and u1(t) = cos (w t), determine w such that the amplitude of u2(t) attains a 
maximum. Find that maximum.  Ans. w  = 9 rad/s; V2 = 5 V

12.47. Given H(s) = s/(s2 + as + b), determine a and b such that the magnitude of the frequency response |H( jw)| has a 
maximum at 100 Hz with a half-power bandwidth of 5 Hz. Then find the quality factor Q.

 Ans. a = 31.416; b = 394784; Q = 20

12.48. Given H(s) = (s + 1)/(s2 + 2s + 82), determine where |H( jw)| is at a maximum, its half-power bandwidth and 
quality factor.  Ans. w w0 82 9 2= ≈ ∆ = =rad/s, rad/s, 4.53Q  

12.49. In a parallel RLC circuit, R = 10 kΩ and L = 20 µH. (a) Find C so that the circuit resonates at 1 MHz. Find the 
quality factor Q and the bandwidth in kHz. (b) Find the terminal voltage of the circuit if an ac current source of 
I = 1 mA is applied to it at: (i) 1 MHz, (ii) 1.01 MHz, (iii) 1.006 MHz

 Ans.  (a)  C = 1.267 nF, Q = 79.6, ∆ f  = 12.56 kHz; (b) V2 = 10 V at 1 MHz, 5.34 V at 1.01 MHz, and 7.24 V at 
1.006 MHz

12.50. A coil is modeled as a 50-µH inductor in series with a 5-Ω resistor. Specify the value of a capacitor to be 
placed in series with the coil so that the circuit would resonate at 600 kHz. Find the quality factor Q and 
bandwidth ∆f in kHz.  Ans. C = 1.4 nF, Q = 37.7, ∆f  = 15.9 kHz

12.51. The coil of Problem 12.50 placed in parallel with a capacitor C resonates at 600 kHz. Find C, quality factor Q, 
and bandwidth ∆f in kHz. Hint: Find the equivalent parallel RLC circuit.

 Ans. C = 1.4 nF, Q = 37.7, ∆f = 15.9 kHz

12.52. The circuit in Fig. 12-74(a) is a third-order Butterworth low-pass filter. Find the network function, the magnitude 
of the frequency response, and the half-power cutoff frequency w0.

 Ans. H(s) = 1/(s3 + 2s2 + 2s + 1), |H( jw)|2 = 1/(1 + w6), w0 = 1 rad/s

Fig. 12-74

12.53. In the circuit of Fig. 12-74(b), let R = 1 Ω, C1 = 1.394 F, C2 = 0.202 F, and C3 = 3.551 F. Find H(s) = V2/V1 and 
show that it approximates the passive third-order Butterworth low-pass filter of Fig. 12-74(a).

 Ans. H(s) = 1/(0.99992s3 + 1.99778s2 + 2s + 1)
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12.54. Plot the magnitude and phase of the frequency response of a circuit with the transfer function H s s
Q

s( ) /= + +



1

1
12

for Q = 0.2, 0.5, 0.707, 5, 10, 20, and 50.  Ans. See Fig. 12-75.

Fig. 12-75. Magnitude and phase plots of the lowpass second-order system H s s
Q

s( ) = + +



1

1
12�  for 

Q = 0.2, 0.5, 0.707, 5, 10, 20, and 50.

12.55. Plot the magnitude and phase of the frequency response of normalized n-th order lowpass Butterworth filters.

Ans. See Fig. 12-76.

n = 7

Fig. 12-76. Magnitude and phase plots of n-th order lowpass Butterworth filters (n = 1, 2, . . . , 7).

12.56. (a) Find the transfer function H(s) = V2/V1 for the filter of Fig. 12-77(a) and determine its type. (b) Assuming   
R = 159 Ω, C = 1 µF, and b ≡ R1/(R1 + R2), find the notch frequency and plot 20 log |H( jf )| vs. log f for b = 0.5, 
0.875, and 0.975.

Ans. (a) 
V

V

s

s

Q

s

2

1

0

2

0

2

0

1

1
1

=









 +









 +









 +

w

w w

, wwwhere , = andw
β

β
0

1

1 2

1 1
4 1

=
−

=
+RC

R

R R
Q

( )
 is the feedback

factor. The circuit is a notch filter; (b) w0 = 6289 rad/s, f0 = w0/(2p) = 1 kHz. See Fig. 12-77(b).
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Fig. 12-77. An equal-component twin-T notch filter and its magnitude Bode plot.

12.57. Show that the half-power cutoff frequency in the circuit of Fig. 8-42 is w0 = 1/(RC) and, therefore, frequency 
scaling may be done by changing the value of C or R.

 Ans. 

V

V R C s RCs s s

2

1
2 2 2

0

2

0

2

1

2

1

=
+ +

=








 +









 +

w w

,ww
0

1=
RC

12.58. Find RLC values in the low-pass filter of Fig. 12-74(a) to move its half-power cutoff frequency to 5 kHz.

 Ans. R = 1 Ω, C = 31.83 µF, L = 63.66 mH

12.59. In a first-order, lowpass Butterworth filter with fc = 1000 Hz, find the attenuation (in dB) at a) 50 Hz, b) 500 Hz, 
c) 1 kHz, d) 5 kHz, and e) 10 kHz.

 Ans. a) 0.01, b) 1, c) 3, d) 14.15, e) 20.04

12.60. Evaluate the magnitude response of the nth order, normalized lowpass Butterworth filter at w = 1/2 and 2 for  
n = 1 through 10. Show that as n goes from 1 to 10, the magnitude approaches that of the ideal filter.

 Ans.

n 1 2 3 4 5 6 7 8 9 10

w = 0.5 0.8165 0.8944 0.9428 0.9701 0.9847 0.9923 0.9961 0.9981 0.9990 0.995

w  = 2 0.5774 0.4472 0.3333 0.2425 0.1741 0.1240 0.0880 0.0624 0.0442 0.0312

12.61. Find the attenuation (in dB) of the lowpass filter with H(s) = 1

20 2 4002 2s + +p ps
 at a) 5 Hz, b) 10 Hz,  

and c) 20 Hz.

 Ans. a) 72.19, b) 74.94, c) 84.23

12.62. Find the order of a lowpass Butterworth filter such that the attenuation at 1180 Hz is 0.5 dB and at 10 kHz is 28 dB.

 Ans n = 2

12.63. Using the method of lowpass-to-highpass transformation, determine H(s) for a second-order, highpass 
Butterworth filter with fc = 1 kHz.

Ans H s

s

s s
hp

c

c c

. ( ) =











+ +










w

w w

2

2

1 2

where ww
c

= 2000p
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Two-Port Networks

13.1 Terminals and Ports
In a two-terminal network, the terminal voltage is related to the terminal current by the impedance Z = V/I.
In a four-terminal network, if each terminal pair (or port) is connected separately to another circuit as in 
Fig. 13-1, the four variables i1, i2, u1, and u2 are related by two equations called the terminal characteristics. 
These two equations, plus the terminal characteristics of the connected circuits, provide the necessary and 
sufficient number of equations to solve for the four variables.

Fig. 13-1

13.2 Z-Parameters
The terminal characteristics of a two-port network, having linear elements and dependent sources, may be 
written in the s-domain as

V Z I Z I

V Z I Z I

1 11

21 1 22 2

= +

= +

1 12 2

2

(1)

The coefficients Zij have the dimension of impedance and are called the Z-parameters of the network. The 
Z-parameters are also called open-circuit impedance parameters since they may be measured at one terminal 
while the other terminal is open. They are

Z
V
I

Z
V
I

Z
V
I

Z
V
I

I

I

I

11
1

1 0

12
1

2 0

21
2

1 0

22
2

=

=

=

=

=

=

=

2

1

2

222 0I1 =

(2)

CHAPTER 13
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EXAMPLE 13.1 Find the Z-parameters of the two-port circuit in Fig. 13-2.
Apply KVL around the two loops in Fig. 13-2 with loop currents I1 and I2 to obtain

 
V I s I I s I sI

V I s I I

1 1 1 2 1 2

2 2 1 2

(

(

= + + = + +

= + + =

2 2

3

) ( )

) ssI s I1 2+ +( )3
 (3)

Fig. 13-2

By comparing (1) and (3), the Z-parameters of the circuit are found to be

 

Z s

Z Z s

Z s

11

12

22

2

3

= +

= =

= +

21  (4)

Note that in this example Z12 = Z21.

Reciprocal and Nonreciprocal Networks
A two-port network is called reciprocal if the open-circuit transfer impedances are equal: Z12 = Z21. Conse-
quently, in a reciprocal two-port network with current I feeding one port, the open-circuit voltage measured 
at the other port is the same, irrespective of the ports. The voltage is equal to V = Z12I = Z21I. Networks 
containing resistors, inductors, and capacitors are generally reciprocal. Networks that additionally have 
dependent sources are generally nonreciprocal (see Example 13.2).

EXAMPLE 13.2 The two-port circuit shown in Fig. 13-3 contains a current-dependent voltage source. Find its 
Z-parameters.

As in Example 13.1, we apply Kirchhoff’s Voltage Law (KVL) around the two loops:

 
V I I s I I s I s I

V I s

1 2

2

2 2

3

= − + + = + + −

= +

1 1 2 1 2

2

( ) 1)

(

) ( (

II I sI s I1 2 1 2)+ = + +) (3
 

Fig. 13-3
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The Z-parameters are

Z s

Z s

Z s

Z s

11

12

21

22

2

1

3

=

= −

=

=

+

+

(5)

With the dependent source in the circuit, Z12 ≠ Z21 and so the two-port circuit is nonreciprocal.

13.3 T-Equivalent of Reciprocal Networks
A reciprocal network may be modeled by its T-equivalent as shown in the circuit of Fig. 13-4. Za, Zb, and Zc
are obtained from the Z-parameters as follows.

Z Z Z

Z Z Z

Z Z Z

a

b

c

= −

= −

= =

11 12

22 21

12 21

(6)

The T-equivalent network is not necessarily realizable.

Fig. 13-4

EXAMPLE 13.3 Find the Z-parameters of Fig. 13-4.
Again we apply KVL to obtain

V Z I Z I I Z Z I Z I

V Z I Z

1 1 1 2 1 2

2 2

= + + = + +

= +

a c a c c

b c

( ) ( )

(III I Z I Z Z I1 2 1 2+ = + +) (c b c )
(7)

By comparing (1) and (7) the Z-parameters are found to be

Z Z Z

Z Z Z

Z Z Z

11

21

22

= +

= =

= +

a c

c

b c

12 (8)

13.4 Y-Parameters
The terminal characteristics may also be written as in (9), where I1 and I2 are expressed in terms of V1 and V2.

I Y V Y V

I Y V Y V

1 1 2

2

= +

= +

11 12

2 21 1 22

(9)

The coefficients Yij have the dimension of admittance and are called the Y-parameters or short-circuit
admittance parameters because they may be measured at one port while the other port is short-circuited. 
The Y-parameters are
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Y
I
V

Y
I
V

Y
I
V

Y
I
V

V

V

V

11
1

1 0

12
1

2 0

21
2

1 0

22
2

=
2

1

2

=

=

=

=

=

=
22 0V1 =

 (10)

EXAMPLE 13.4 Find the Y-parameters of the circuit in Fig. 13-5.

Fig. 13-5

We apply Kirchhoff’s Current Law (KCL) to the input and output nodes (for convenience, we designate the admit-
tances of the three branches of the circuit by Ya, Yb, and Yc as shown in Fig. 13-6). Thus,

 

Y s s

Y s s

Y s
s

a

b

c

= + = +

= + = +

= + =

1
2 5

3
5

1
3 5

2
5

1
5

/3 6

/2 6

6/ 55s + 6

 (11)

Fig. 13-6

The node equations are

 
I V Y V V Y Y Y V Y V

I V Y V

1 1 1 2 1 2

2 2

( ) ( )

(

= + − = + −

= +

a c a c c

b 22 1 1 2) ( )− = − + +V Y Y V Y Y Vc c b c

 (12)
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By comparing (9) with (12), we get

Y Y Y

Y Y Y

Y Y Y

11

12

22

= +

= = −

= +

a c

c

b c

21  (13)

Substituting Ya, Yb, and Yc from (11) into (13), we find

Y
s
s

Y Y
s

s

Y
s
s

11

12 21

22

= +
+

= = −
+

= +
+

3
5 6

5 6

2
5 6

(14)

Since Y12 = Y21, the two-port circuit is reciprocal.

13.5 Pi-Equivalent of Reciprocal Networks
A reciprocal network may be modeled by its Pi-equivalent as shown in Fig. 13-6. The three elements of the 
Pi-equivalent network can be found by reverse solution. We first find the Y-parameters of Fig. 13-6. From 
(10) we have

Y Y Y

Y Y

Y

11

12

Fig. -

Fig. -

= +

= −

a c

c

a

b

[ ( )]

[ ( )]

13 7

13 7

2221

22

Fig. -

Fig. -

= −

= +

Y

Y Y Y

c

b c

a

b

[ ( )]

[ ( )]

13 7

13 7

(15)

from which

Y Y Y Y Y Y Y Y Ya b c= + = + = − = −11 12 22 12 12 21  (16)

The Pi-equivalent network is not necessarily realizable.

Fig. 13-7

13.6 Application of Terminal Characteristics
The four terminal variables I1, I2, V1, and V2 in a two-port network are related by the two equations (1) or (9). By 
connecting the two-port circuit to the outside as shown in Fig. 13-1, two additional equations are obtained. 
The four equations then can determine I1, I2, V1, and V2 without any knowledge of the inside structure of 
the circuit.
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EXAMPLE 13.5 The Z-parameters of a two-port network are given by

 Z s s Z Z s Z s11 12 21 221/= + = = = +2 2 2 4  

The network is connected to a source and a load as shown in Fig. 13-8. Find I1, I2, V1, and V2.

Fig. 13-8

The terminal characteristics are given by

 
V s s I sI

V sI s I

1 1 2

2 1 2

(2 1/ ) 2

2 2 4)

= + +

= + +(
 (17)

The phasor representation of voltage us(t) is Vs = 12 V with s = j. From KVL around the input and output loops we 
obtain the two additional equations

 
V I V

s I V

s = +

= + +

3

0

1 1

2 21( )
 (18)

Substituting s = j and Vs = 12 in (17) and in (18) we get

 

V I I

V I I

I V

1

2

2

2 4 2

12 3

0 1

= +

= + +

= +

= +

j j

j j

j

1 2

1 2

1 1

( )

( )II V2 2+

 

from which

 
I I

V V

1 2

1

= − = −

=

3 29 10 2 1 13 131 2

2 88 37 5

. . . .

. .

/ /

/

� �

� 22 = 1 6 93 8. ./ �
 

13.7 Conversion between Z- and Y-Parameters
The Y-parameters may be obtained from the Z-parameters by solving (1) for I1 and I2. Applying Cramer’s 
rule to (1), we get

  

I
Z
D V

Z
D V

I
Z

D V
Z
D V

ZZ ZZ

ZZ ZZ

1
22

1
12

2

2
21

1
11

2

= −

=
−

+

 (19)
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where DZZ = Z11Z22 − Z12Z21 is the determinant of the coefficient matrix in (1). By comparing (19) with (9) 
we have

Y
Z
D

Y
Z

D

Y
Z

D

Y
Z
D

ZZ

ZZ

ZZ

ZZ

11
22

12
12

21
21

22
11

=

=
−

=
−

=

(20)

Given the Z-parameters, for the Y-parameters to exist, the determinant D
zz

must be nonzero. Conversely, 
given the Y-parameters, the Z-parameters are

Z
Y
D

Z
Y

D

Z
Y

D

Z
Y

D

YY

YY

YY

YY

11
22

12
12

21
21

22
11

=

=
−

=
−

=

(21)

where D
yy

= y11y22 − y12y21 is the determinant of the coefficient matrix in (9). For the Z-parameters of a 
two-port circuit to be derived from its Y-parameters, D

yy
should be nonzero.

EXAMPLE 13.6 Referring to Example 13.4, find the Z-parameters of the circuit of Fig. 13-5 from its Y-parameters.
The Y-parameters of the circuit were found to be [see (14)]

Y
s
s Y Y

s
s Y

s
s11 12 21 226 5 6 6= +

+ = = −
+ = +

+
3

5
2

5  

Substituting into (21), where DYY = 1/(5s + 6), we obtain

Z s

Z Z s

Z s

11

12 21

22

+ 2

+ 3

=

= =

=

(22)

The Z-parameters in (22) are identical to the Z-parameters of the circuit of Fig. 13-2. The two circuits 
are equivalent as far as the terminals are concerned. This was by design. Figure 13-2 is the T-equivalent of 
Fig. 13-5. The equivalence between Fig. 13-2 and Fig. 13-5 may be verified directly by applying (6) to the 
Z-parameters given in (22) to obtain the T-equivalent network.

13.8 h-Parameters
Some two-port circuits or electronic devices are best characterized by the following terminal equations:

V h I h V

I h I h V

1 11 1 12 2

2 21 1 22 2

= +

= +
(23)

where the hij coefficients are called the hybrid or h-parameters.
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EXAMPLE 13.7 Find the h-parameters of Fig. 13-9.
This is the simple model of a bipolar junction transistor in its linear region of operation. By inspection, the terminal 

characteristics of Fig. 13-9 are

 V I I I1 1 2 1and= =50 300  (24)

Fig. 13-9

By comparing (24) and (23) we get

 h h h h11 12 21 22= = = =50 0 300 0 (25)

13.9 g-Parameters
The terminal characteristics of a two-port circuit may also be described by still another set of hybrid 
parameters as given in (26).

 
I g V g I

V g V g I

1 11 1 2

2 21 1 2

= +

= +

12

22

 (26)

where the coefficients gij are called inverse hybrid or g-parameters.

EXAMPLE 13.8 Find the g-parameters in the circuit shown in Fig. 13-10.

Fig. 13-10

This is the simple model of a field effect transistor in its linear region of operation. To find the g-parameters, we first 
derive the terminal equations by applying Kirchhoff’s laws at the terminals:

At the input terminal: V1 = 109 I1

At the output terminal: V2 = 10(I2 − 10−3 V1)

or I V V I V1 1 2 2 1= 10 and = 10 10− −−9 2  (27)

By comparing (27) and (26) we get

 g g g g11 12 21 22= = = − =− −10 0 10 109 2  (28)
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13.10 Transmission Parameters
The transmission parameters A, B, C, and D express the required source variables V1 and I1 in terms of the 
existing destination variables V2 and I2. They are called ABCD or T-parameters and are defined by

V AV BI

I CV DI

1

1

= −

= −

2 2

2 2

(29)

EXAMPLE 13.9 Find the T-parameters of Fig. 13-11 where Za and Zb are nonzero.

Fig. 13-11

This is the simple lumped model of an incremental segment of a transmission line. From (29) we have

A
V
V

Z Z
Z Z Y

B
V
I Z

C
I

I

V

= =
+

= +

= − =

=

=

=

1

2 0

1

2 0

1

1

2

2

a b

b
a b

a

VVV Y

D
I
I

I

V

2 0

1

2 0

1

2

2

=

=

=

= − =

b

(30)

13.11 Interconnecting Two-Port Networks
Two-port networks may be interconnected in various configurations, such as series, parallel, or cascade 
connections, resulting in new two-port networks. For each configuration, a certain set of parameters may be 
more useful than others to describe the network.

Series Connection
Figure 13-12 shows a series connection of two two-port networks a and b with open-circuit impedance 
parameters Za and Zb, respectively. In this configuration, we use the Z-parameters since they are combined as 
a series connection of two impedances. The Z-parameters of the series connection are (see Problem 13.10):

Fig. 13-12
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Z Z Z

Z Z Z

Z Z Z

11 11, 11,

12 12, 12,

21 21, 21

= +

= +

= +

a b

a b

a ,,

22 22, 22,

b

a bZ Z Z= +

 (31a)

or, in the matrix form,

 [ ] [ ] [ ]Z Z Z= a b+  (31b)

Parallel Connection
Figure 13-13 shows a parallel connection of the two-port networks a and b with short-circuit admittance 
parameters Ya and Yb, respectively. In this case, the Y-parameters are convenient to work with. The Y-parameters 
of the parallel connection are (see Problem 13.11):

 

Y Y Y

Y Y Y

Y Y Y

11 11, 11,

12 12, 12,

21 21, 21

= +

= +

= +

a b

a b

a ,,

22 22, 22,

b

a bY Y Y= +

 (32a)

or, in matrix form,

 [ ] [ ] [ ]Y Y Y= +a b  (32b)

Fig. 13-13

Cascade Connection
The cascade connection of the two-port networks a and b is shown in Fig. 13-14. In this case the T-parameters 
are particularly convenient. The T-parameters of the cascade combination are

 

A A A B C

B A B B D

C C A D C

D C B D D

= +

= +

= +

= +

a b a b

a b a b

a b a b

a b a bb

 (33a)

Fig. 13-14
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or, in matrix form,

[ ] [ ][ ]T T T= a b (33b)

13.12 Choice of Parameter Type
What types of parameters are appropriate for and can best describe a given two-port network or device? 
Several factors influence the choice of parameters. (1) It is possible that some types of parameters do not 
exist as they may not be defined at all (see Example 13.10). (2) Some parameters are more convenient to 
work with when the network is connected to other networks, as shown in Section 13.11. In this regard, by 
converting the two-port network to its T- and Pi-equivalents and then applying the familiar analysis tech-
niques, such as element reduction and current division, we can greatly reduce and simplify the overall circuit. 
(3) For some networks or devices, a certain type of parameter produces better computational accuracy and 
better sensitivity when used within the interconnected circuit.

EXAMPLE 13.10 Find the Z- and Y-parameters of Fig. 13-15.

Fig. 13-15

We apply KVL to the input and output loops. Thus,

Input loop: V I I I1 1 1 23 3= + +( )

Output loop: V I I I I2 1 2 1 27 2 3= + + +( )

or V I I V I I1 1 2 2 1 26 3 10 5= + = +and (34)

By comparing (34) and (2) we get

Z Z Z Z11 12 21 226 3 10 5= = = =

The Y-parameters are, however, not defined, since the application of the direct method of (10) or the conversion from 
Z-parameters (19) produces Dzz = 6(5) − 3(10) = 0.

13.13 Summary of Terminal Parameters and Conversion
The various terminal parameters are defined by the following equations:

Z-parameters h-parameters T-parameters
V Z I Z I V h I h V V AV BI

V Z

1 11 1 12 2 1 11 1 12 2 1 2 2

2 2

= + = + = −

= 111 1 22 2 2 21 1 22 2 1 2 2I Z I I h I h V I CV DI

V Z I

+ = + = −

=[ ] [ ][ ]]]

Y-parameters g-parameters
I Y V Y V I g V g I
I Y V Y V V

1 11 1 12 2 1 11 1 12 2

2 21 1 22 2

= + = +
= + 222 21 1 22 2= +
=

g V g I
I Y V[ ] [ ][ ]
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Table 13-1 summarizes the conversion between the Z-, Y-, h-, g-, and T-parameters. For the conversion 
to be possible, the determinant of the source parameters must be nonzero.

Table 13-1

Z Y h g T

Z

Z Z

Z Z

11 12

21 22

Y
D

Y
D

Y
D

Y
D

YY YY

YY YY

22 12

21 11

−

−

D
h

h
h

h
h h

hh

22

12

22

21

22 22

1−

1

11

12

11

21

11 11

g
g

g

g
g

D
g

gg

− A
C

D
C

C
D
C

TT

1

Y

Z
D

Z
D

Z
D

Z
D

zz zz

zz zz

22 12

21 11

−

−

Y Y

Y Y

11 12

21 22

1

11

12

11

21

11 11

h
h

h

h
h

D
h

nn

−

−

D
g

g
g

g
g g

gg

22

12

22

21

22 22

1−

D
B

D
B

B
A
B

−

−

TT

1
 

h

D
Z

Z
Z

Z
Z Z

ZZ

22

12

22

21

22 22

1−

1

11

12

11

21

11 11

Y
Y

Y

Y
Y

D
Y

−

yy

h h

h h

11 12

21 22

g
D

g
D

g
D

g
D

22 12

21 11

gg gg

gg gg

B
D

D
D

D
C
D

TT

−1

 

g

1

11

12

11

21

11 11

Z
Z

Z

Z
Z

D
Z

ZZ

− D
Y

Y
Y

Y
Y Y

YY

22

12

22

21

22 22

1−

h
D

h
D

h
D

h
D

hh hh

hh hh

22 12

21 11

−

−

g g

g g

11 12

21 22

C
A

D
A

A
B
A

− TT

1

 

T

Z
Z

D
Z

Z
Z
Z

ZZ11

21 21

21

22

21

1

− −

− −

Y
Y Y

D
Y

Y
Y

YY

22

21 21

21

11

21

1 − −

− −

D
h

h
h

h
h h

hh

21

11

21

21 21

22 1

1

21

22

21

11

21 21

g
g
g

g
g

D
g

gg

A B

C D

 

D P P P PPP = −11 1222 21  is the determinant of the coefficient matrix for the Z−, Y−, h−, g−, or T-parameters.

SoLvEd PRobLEMS

 13.1. Find the Z-parameters of the circuit in Fig. 13-16(a).
Z11 and Z21 are obtained by connecting a source to port #1 and leaving port #2 open [Fig. 13-16(b)]. 

The parallel and series combination of resistors produces

 Z
V
I Z

V
I

I I
11

0
21

02 2

8
1
3= and =1

1

2

1= =
= =  

Similarly, Z22 and Z12 are obtained by connecting a source to port #2 and leaving port #1 open 
[Fig. 13-16(c)].

 Z
V
I Z

V
I

I I
22

0
12

01 1

8
9

1
3= =2

2

1

2= =
= =  

The circuit is reciprocal, since Z12 = Z21.
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Fig. 13-16

13.2. The Z-parameters of a two-port network N are given by

Z s s Z Z s Z s11 12 21 222 1 2 2 4= + = = = +/

(a) Find the T-equivalent of N. (b) The network N is connected to a source and a load as shown in the 
circuit of Fig. 13-8. Replace N by its T-equivalent and then solve for i1, i2, u1, and u2.

(a) The three branches of the T-equivalent network (Fig. 13-4) are

Z Z Z s s s s

Z Z Z s s

Z

a

b

= − = + − =

= − = + − =

11 12

22 12

2
1

2
1

2 4 2 4

ccc = = =Z Z s12 21 2

(b)  The T-equivalent of N, along with its input and output connections, is shown in the phasor domain 
in Fig. 13-17.

Fig. 13-17
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By applying the familiar analysis techniques, including element reduction and current division, to 
Fig. 13-17 we find i1, i2, u1, and u2.

    In the phasor domain In the time domain:

I

I

V

V

1

2

1

3 29 10 2

1 13 131 2

2 88 37 5

= −

= −

=

. .

. .

. .

/

/

/

�

�

�

22 1 6 93 8= . ./ �

     

i t

i t

1

2

1

3 29 10 2

1 13 131 2

2

= −

= −

=

. cos ( . )

. cos ( . )

�

�

υ .. cos ( . )

. cos ( . )

88 37 5

1 6 93 82

t

t

+

= +

�

�υ

 13.3. Find the Z-parameters of the two-port network in Fig. 13-18.

 

Fig. 13-18

KVL applied to the input and output ports results in the following:

Input port: V1 = 4I1 − 3I2 + (I1 + I2) = 5I1 − 2I2

Output port: V2 = I2 + (I1 + I2) = I1 + 2I2

By applying (1) to the above, Z11 = 5, Z12 = −2, Z21 = 1, and Z22 = 2.

 13.4. Find the Z-parameters of the two-port network in Fig. 13-19 and compare the results with those of 
Problem 13.3.

 

Fig. 13-19

KVL gives

 V I I V I I1 1 2 2 1 25 2 2= − = +and  

The above equations are identical with the terminal characteristics obtained for the network of 
Fig. 13-18. Thus, the two networks are equivalent.

 13.5. Find the Y-parameters of Fig. 13-19 using its Z-parameters.
From Problem 13.4,

 Z Z Z Z11 12 21 225 2 1 2= = − = =, , ,  
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Since D Z Z Z ZZZ = − = − − =11 22 12 21 5 2 2 1 12( )( ) ( )( ) ,  

Y
Z
D Y

Z
D Y

Z

zz
11

22
12

12
21

212
12

1
6

2
12

1
6= = = =

−
= = =

−
zz DDD Y

Z
Dzz zz

= − = =1
12

5
1222

11  

13.6. Find the Y-parameters of the two-port network in Fig. 13-20 and thus show that the networks of 
Figs. 13-19 and 13-20 are equivalent.

Fig. 13-20

Apply KCL at the ports to obtain the terminal characteristics and Y-parameters. Thus,

Input port: I
V V

1
1 2= 6 6+  

Output port: I
V V

2
2 1= 2.4 12−  

and Y Y Y Y11 12 21 22

1
6

1
6

1
12

1
2 4

5
12= = = − = =.  

which are identical with the Y-parameters obtained in Problem 13.5 for Fig. 13-19. Thus, the two networks 
are equivalent.

13.7. Apply the short-circuit equations (10) to find the Y-parameters of the two-port network in 
Fig. 13-21.

Fig. 13-21

I Y V V Y

I Y V

V1 11 1 0 11

1 12

2

1
12

1
12

1
6

= = +








 =

=

= 1
or

222 0
2 2

12

2 2

1 4 12
1
4

1
12

1
6V

V V
V Y

I Y

=
= − = −









 =

=

2
or

111 1 0
1

21

2 22 2 0
2 2

2

1

12
1

12

3

V
V

Y

I Y V
V V

V

V

=

=

= − = −

= = +

or

1112
1
3

1
12

5
1222

= +








 =V Y

2
or
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 13.8. Apply KCL at the nodes of the network in Fig. 13-21 to obtain its terminal characteristics and 
Y-parameters. Show that the two-port networks of Figs. 13-18 to 13-21 are all equivalent.

Input node: I
V V V V

1 = +
−

+1 1 2 2
12 12 4  

Output node: I
V V V

2 = +
−2 2 1

3 12  

 I V V I V V1 1 2 2 1 2= + = − +1
6

1
6

1
12

5
12  

The Y-parameters observed from the above characteristic equations are identical with the Y-parameters of 
the circuits in Figs. 13-18, 13-19, and 13-20. Therefore, the four circuits are equivalent.

 13.9. Z-parameters of the two-port network N in Fig. 13-22(a) are Z11 = 4s, Z12 = Z21 = 3s, and Z22 = 9s. 
(a) Replace N by its T-equivalent. (b) Use part (a) to find input current i1 for us = cos 1000t (V).

(a)  The network is reciprocal. Therefore, its T-equivalent exists. Its elements are found from (6) and 
shown in the circuit of Fig. 13-22(b).

 

Fig. 13-22
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Z Z Z s s s

Z Z Z s s s

Z Z

a

b

c

= − = − =

= − = − =

=

11 12

22 21

12

4 3

9 3 6

=== =Z s21 3

(b)  We repeatedly combine the series and parallel elements of Fig. 13-22(b), with resistors being in kΩ
and s in krad/s, to find Zin in kΩ:

Z s V I s
s s

s s Zin in) / or(
( )( )= = + + +

+ = +s 1

3 6 6 12
9 18 3 4 ((( ) .j j= + =3 4 5 36 9/ � kΩ  

and i1 = 0.2 cos(1000t − 36.9°) (mA).

13.10. Two two-port networks a and b, with open-circuit impedances Za and Zb, respectively, are connected 
in series (see Fig. 13-12). Derive the Z-parameter equations (31a).

From network a we have

V Z I Z I

V Z I Z I

1 11 12

2 21 22

a a a a a

a a a a a

= +

= +

, ,

, ,

1 2

1 2

From network b we have

V Z I Z I

V Z I Z I

1 11 12

2 21 22

b b b b b

b b b b b

= +

= +

, ,

, ,

1 2

1 2

From the connection between a and b we have

I I I V V V

I I I V V V

1 1

2 2

= = = +

= = = +

1 1 1 1

2 2 2 2

a b a b

a b a b

Therefore,

V Z Z I Z Z I

V Z

1 11 11 12 12

2 21

= + + +

=

( ) ( )

(

, , , ,

,

a b a b

a

1 2

+++ + +Z I Z Z I21 22 22, , ,) ( )b a b1 2

from which the Z-parameters (31a) are derived.

13.11. Two two-port networks a and b, with short-circuit admittances Ya and Yb, respectively, are connected 
in parallel (see Fig. 13-13). Derive the Y-parameter equations (32a).

From network a we have

I Y V Y V

I Y V Y V

1 11 1 12 2

2 21 1 22 2

a a a a a

a a a a a

= +

= +

, ,

, ,

and from network b we have

I Y V Y V

I Y V Y V

1 11 1 12 2

2 21 1 22 2

b b b b b

b b b b b

= +

= +

, ,

, ,

From the connection between a and b we have

V V V I I I

V V V I I I

1 1

2 2

= = = +

= = = +

1 1 1 1

2 2 2 2

a b a b

a b a b
Therefore,

I Y Y V Y Y V

I Y

1 1 2

2 21

= + + +

=

( ) ( )

( ,

11, 11, 12, 12,a b a b

a +++ + +Y V Y Y V21, 22,b a b) ( ),1 22 2

from which the Y-parameters of (32a) result.
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13.12. Find (a) the Z-parameters of the circuit of Fig. 13-23(a) and (b) an equivalent model which uses three 
positive-valued resistors and one dependent voltage source.

 
Fig. 13-23

(a)  From application of KVL around the input and output loops we find, respectively,

 
V I I I I I

V I I I I

1 1 2 1 2 1

2 2 1 2 1

2 2 2 4

3 2 2

= − + + =

= + + = +

( )

( ) 55 2I
 

The Z-parameters are Z11 = 4, Z12 = 0, Z21 = 2, and Z22 = 5.

(b)  The circuit of Fig. 13-23(b), with two resistors and a voltage source, has the same Z-parameters as the 
circuit of Fig. 13-23(a). This can be verified by applying KVL around its input and output loops.

13.13. (a) Obtain the Y-parameters of the circuit in Fig. 13-23(a) from its Z-parameters. (b) Find an 
equivalent model which uses two positive-valued resistors and one dependent current source.

(a) From Problem 13.12, Z11 = 4, Z12 = 0, Z21 = 2, Z22 = 5, and so DZZ = Z11Z22 − Z12Z21 = 20. Hence,

             Y
Z
D Y

Z
D Y

Z
DZZ ZZ ZZ

11
22

12
12

21
215

20
1
4 0= = = =

−
= =

−
= −22

20
1

10
4

20
1
522

11= − = = =Y
Z
DZZ

 

(b)  Figure 13-24, with two resistors and a current source, has the same Y-parameters as the circuit in 
Fig.13-23(a). This can be verified by applying KCL to the input and output nodes.

13.14. Referring to the network of Fig. 13-23(b), convert the voltage source and its series resistor to its 
Norton equivalent and show that the resulting network is identical to that in Fig. 13-24.

The Norton equivalent current source is IN = 2I1/5 = 0.4I1. But I1 = V1/4. Therefore, IN = 0.4I1 = 0.1V1. 
The 5-Ω resistor is then placed in parallel with IN . The circuit is shown in Fig. 13-25 which is the same 
as the circuit in Fig. 13-24.

 

Fig. 13-24 Fig. 13-25
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13.15. The h-parameters of a two-port network are given. Show that the network may be modeled by the 
network in Fig. 13-26 where h11 is an impedance, h12 is a voltage gain, h21 is a current gain, and h22
is an admittance.

Fig. 13-26

Apply KVL around the input loop to get

V h I h V1 11 1 12 2= +

Apply KCL at the output node to get

I h I h V2 21 1 22 2= +

These results agree with the definition of h-parameters given in (23).

13.16. Find the h-parameters of the circuit in Fig. 13-25.
By comparing the circuit in Fig. 13-25 with that in Fig. 13-26, we find

h h h h11 12 21 22
14 0 0 4 1 5 0 2= = = − = = −Ω Ω, , . , ./  

13.17. Find the h-parameters of the circuit in Fig. 13-25 from its Z-parameters and compare with the results 
of Problem 13.16.

Refer to Problem 13.13 for the values of the Z-parameters and DZZ. Use Table 13-1 for the conversion 
of the Z-parameters to the h-parameters of the circuit. Thus,

h
D
Z h

Z
Z h

Z
Z

ZZ
11

22
12

12

22
21

21

22

20
5 4 0

2
5= = = = = =

−
= − === − = = =0 4

1 1
5 0 222

22
. .h Z  

The above results agree with the results of Problem 13.16.

13.18. The simplified model of a bipolar junction transistor for small signals is shown in Fig. 13-27. 
Find its h-parameters.

Fig. 13-27

The terminal equations are V1 = 0 and I2 = bI1. By comparing these equations with (23), we conclude 
that h11 = h12 = h22 = 0 and h21 = b.

Ch13.indd   362 11/08/17   11:43 AM



CHAPTER 13  Two-Port Networks 363

13.19. The h-parameters of a two-port device H are given by

 h h h h11 12
4

21 22
6 1500 10 100 2 10= = = =− − −Ω Ω( )  

Draw a circuit model of the device made of two resistors and two dependent sources. Include the values 
of each element.

From a comparison with Fig. 13-26, we draw the model of Fig. 13-28.

 

Fig. 13-28

13.20. The device H of Problem 13-19 is placed in the circuit of Fig. 13-29(a). Replace H by its model of 
Fig. 13-28 and find V2/Vs.

 

Fig. 13-29

The circuit of Fig. 13-29(b) contains the model. With good approximation, we can reduce it to 
Fig. 13-29(c) from which

 I V V I V1 12000 1000 100 1000 100 2000= = − = −s s/ 2 ( ) ( / ) == −50 Vs  

Thus, V2/Vs = −50.
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13.21. A load ZL is connected to the output of a two-port device N (Fig. 13-30) whose terminal characteristics 
are given by V1 = (1/N)V2 and I1 = −NI2. Find (a) the T-parameters of N and (b) the input impedance 
Zin = V1/I1.

Fig. 13-30

(a) The T-parameters are defined by [see (29)]

V AV BI

I CV DI

1 2 2

1 2 2

= −

= −

The terminal characteristics of the device are

V V

I I

1 2

1 2

1=

= −

( )/N

N

By comparing the two pairs of equations we get A = 1/N, B = 0, C = 0, and D = N.

(b)  Three equations relating V1, I1, V2, and I2 are available: two equations are given by the terminal 
characteristics of the device and the third equation comes from the connection to the load,

V Z I2 2= − L  

By eliminating V2 and I2 in these three equations, we get

V Z I Z V I Z1 1
2

1 1
2= = =L LN N/ / /from which in

SuPPLEMENTARY PRobLEMS

13.22. The Z-parameters of the two-port network N in Fig. 13-22(a) are Z11 = 4s, Z12 = Z21 = 3s, and Z22 = 9s. Find 
the input current i1 for us = cos 1000t (V) by using the open circuit impedance terminal characteristic equations 
of N, together with KCL equations at nodes A, B, and C.

Ans. i1 = 0.2 cos (1000t − 36.9°) (A)

13.23. Express the reciprocity criteria in terms of h-, g-, and T-parameters.

Ans. h12 + h21 = 0, g12 + g21 = 0, and AD − BC = 1

13.24. Find the T-parameters of a two-port device whose Z-parameters are Z11 = s, Z12 = Z21 = 10s, and Z22 = 100s.

Ans. A = 0.1, B = 0, C = 10−1/s, and D = 10

13.25. Find the T-parameters of a two-port device whose Z-parameters are Z11 = 106s, Z12 = Z21 = 107s, and Z22 = 108s. 
Compare with the results of Problem 13.21.

Ans. A = 0.1, B = 0, C = 10−7/s and D = 10. For high frequencies, the device is similar to the device of 
Problem 13.21, with N = 10.
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13.26. The Z-parameters of a two-port device N are Z11 = ks, Z12 = Z21 = 10ks, and Z22 = 100ks. A 1-Ω resistor is 
connected across the output port (see Fig. 13-30). (a) Find the input impedance Zin = V1/I1 and construct its 
equivalent circuit. (b) Give the values of the elements for k = 1 and 106.

 Ans. (a) Z
s

s sin /= + = +
k

k k1 100
1

100 1

 The equivalent circuit is a parallel RL circuit with R = 10−2 Ω and L = 1 kH.

 (b)  For k = 1, R = Ω1
100  and L = 1 H. For k = 106, R = Ω1

100  and L = 106 H.

13.27. The device N in Fig. 13-30 is specified by the following Z-parameters: Z22  =  N2Z11 and 
Z Z Z Z Z12 21 11 22 11= = = N . Find Zin = V1/I1 when a load ZL is connected to the output terminal. Show

 that if Z Z11
2

 L N/  we have impedance scaling such that Zin = ZL/N2.

 Ans. Z
Z

Z Zin /
=

+
L

LN 2
11

. For Z Z Z Z
L L

N N

2
11

2, .
in

/=  

13.28. Find the Z-parameters in the circuit of Fig. 13-31. Hint: Use the series connection rule.

 Ans. Z11 = Z22 = s + 3 + 1/s, Z12 = Z21 = s + 1

 

Fig. 13-31

13.29. Find the Y-parameters in the circuit of Fig. 13-32. Hint: Use the parallel connection rule.

 Ans. Y11 = Y22 = 9(s + 2)/16, Y12 = Y21 = −3(s + 2)/16

 

Fig. 13-32

13.30. Two two-port networks a and b with transmission parameters Ta and Tb are connected in cascade (see Fig. 13-14). 
Given I2a = −I1b and V2a = V1b, find the T-parameters of the resulting two-port network.

 Ans. A = AaAb + BaCb, B = AaBb + BaDb, C = CaAb + DaCb, D = CaBb + DaDb
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13.31. Find the T- and Z-parameters of the network in Fig. 13-33. The impedances of the capacitors are given. Hint:
Use the cascade connection rule.

Ans. A = 5j − 4, B = 4j + 2, C = 2j − 4, and D = j3, Z11 = 1.3 − 0.6j, Z22 = 0.3 − 0.6j, Z12 = Z21 = − 0.2 − 0.1j

Fig. 13-33

13.32. Find the Z-parameters of the two-port circuit of Fig. 13-34.

Ans.  Z Z Z Z Z Z Z Z11 22 12 21

1
2

1
2= = + = = −( ), ( )b a b a

Fig. 13-34

13.33. Find the Z-parameters of the two-port circuit of Fig. 13-35.

Ans. Z Z
Z Z Z

Z Z Z Z
Z

Z Z11 22 12 21

2
1
2

2 1
2= = + = = +

+b a b

a b

b

a

( )
,

bbb
 

Fig. 13-35

13.34. Referring to the two-port circuit of Fig. 13-36, find the T-parameters as a function of w and specify their values 
at w = 1, 103, and 106 rad/s.

Ans.  A = 1 − 10−9 w2 + j10−9 w, B = 10−3 (1 + jw), C = 10−6 jw, and D = 1. At w = 1 rad/s, A = 1,   
B = 10−3 (1 + j), C = 10−6 j, and D = 1. At w  = 103 rad/s, A ≈ 1, B ≈ j, C = 10−3j, and D = 1. At w  = 106 rad/s, 
A ≈ −103 , B ≈ 103 j, C = j, and D = 1.
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Fig. 13-36

13.35. A two-port network contains resistors, capacitors, and inductors only. With port #2 open [Fig. 13-37(a)], a unit 
step voltage u1 = u(t) produces i1 = e−tu(t) (µA) and u2 = (1 − e−t) u(t) (V). With port #2 short-circuited 
[Fig. 13-37(b)], a unit step voltage u1 = u(t) delivers a current i1 = 0.5(1 + e−2t)u(t) (µA). Find i2 and the 
T-equivalent network.  Ans. i2 = 0.5(−1 + e−2t)u(t) [see Fig. 13-37(c)]

 

Fig. 13-37

13.36. The two-port network N in Fig. 13-38 is specified by Z11 = 2, Z12 = Z21 = 1, and Z22 = 4. Find I1, I2, and I3.

 Ans. I1 = 24 A, I2 = 1.5 A, and I3 = 6.5 A

 

Fig. 13-38
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Mutual Inductance and 
Transformers

14.1 Mutual Inductance
The total magnetic flux linkage l in a linear inductor made of a coil is proportional to the current passing 
through it; that is, l = Li (see Fig. 14-1). By Faraday’s law, the voltage across the inductor is equal to the 
time derivative of the total influx linkage; that is,

υ λ= =d
dt

L
di
dt

Fig. 14-1

The coefficient L, in H, is called the self-inductance of the coil.
Two conductors from different circuits in close proximity to each other are magnetically coupled to a 

degree that depends upon the physical arrangement and the rates of change of the currents. This coupling is 
increased when one coil is wound over another. If, in addition, a soft-iron core provides a path for the mag-
netic flux, the coupling is maximized. (However, the presence of iron can introduce nonlinearity.)

To find the voltage-current relation at the terminals of the two coupled coils shown in Fig. 14-2, we 
observe that the total magnetic flux linkage in each coil is produced by currents i1 and i2 and the mutual 
linkage effect between the two coils is symmetrical.

λ

λ

1 1 1 2

2 1 2 2

= +

= +

L i Mi

Mi L i
(1)

where M is the mutual inductance (in H).

CHAPTER 14
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The terminal voltages are time derivatives of the flux linkages.

  

υ
λ

υ
λ

1
1

1
1 2

2
2 1

( )

( )

t
d
dt

L
di
dt

M
di
dt

t
d
dt

M
di
d

= = +

= = tt
L

di
dt

+ 2
2

 (2)

The coupled coils constitute a special case of a two-port network discussed in Chapter 13. The terminal 
characteristics (2) may also be expressed in the frequency domain or in the s-domain as follows.

 

Frequency Domain

j L j M

j M j L

V I I

V I

1 1 1 2

2 1

= +

= +

ω ω

ω ω 22 2I

 (3)

 

s

V sI sI

V sI sI

-Domain

L M

M L

1 1 1 2

2 1 2 2

= +

= +
 (4)

The coupling coefficient M is discussed in Section 14.2. The frequency domain equations (3) deal with the 
sinusoidal steady state. The s-domain equations (4) assume exponential sources with complex frequency s.

EXAMPLE 14.1 Given L1 = 0.1 H, L2 = 0.5 H, and i1(t) = i2(t) = sin  w t in the coupled coils of Fig. 14-2. Find u1(t) and 
u2(t) for (a) M = 0.01 H, (b) M = 0.2 H, and (c) M = -0.2 H.

(a)
 

υ ω ω ω ω ω ω

υ

1

2

0 1 0 01 0 11( ) . cos . cos . cos ( )t t t t= + = V

(( ) . cos . cos . cos (t t t t= + =0 01 0 5 0 51ω ω ω ω ω ω V)
 

(b)
 

υ ω ω ω ω ω ω

υ

1

2

0 1 0 2 0 3( ) . cos . cos . cos ( )

(

t t t t

t

= + = V

)) . cos . cos . cos ( )= + =0 2 0 5 0 7ω ω ω ω ω ωt t t V
 

(c)
 

υ ω ω ω ω ω ω

υ

1

2

0 1 0 2 0 1( ) . cos . cos . cos ( )

(

t t t t= - = - V

tt t t t) . cos . cos . cos ( )= - + =0 2 0 5 0 3ω ω ω ω ω ω V
 

Fig. 14-2
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14.2 Coupling Coefficient
A coil containing N turns with magnetic flux f linking each turn has total magnetic flux linkage l = Nf.   
By Faraday’s law, the induced emf (voltage) in the coil is e = dl /dt = N(df /dt). A negative sign is frequently 
included in this equation to signal that the voltage polarity is established according to Lenz’s law. 
By definition of self-inductance this voltage is also given by L(di/dt); hence,

L
di
dt

N
d
dt

L N
d
di

= =φ φ
or (5a)

The unit of f being the weber, where 1 Wb 1 V s,= ⋅  it follows from the above relation that 1 H = 1 Wb/A. 
Throughout this book it has been assumed that f and i are proportional to each other, making

L N
i

= =φ
constant  (5b)

In Fig. 14-3, the total flux f1 resulting from current i1 through the turns N1 consists of leakage flux, f11, 
and coupling or linking flux, f12. The induced emf in the coupled coil is given by N2(df12/dt). This same 
voltage can be written using the mutual inductance M:

e M
di
dt

N
d
dt

M N
d
di

= = =1
2

12
2

12

1

φ φ
or (6)

Fig. 14-3

Also, as the coupling is bilateral,

M N
d
di

= 1
21

2

φ
(7)

The coupling coefficient, k, is defined as the ratio of linking flux to total flux:

k ≡ =
φ
φ

φ
φ

12

1

21

2

where 0 ≤ k ≤ 1. Taking the product of (6) and (7) and assuming that k depends only on the geometry of the 
system,

M N
d
di

N
d
di

N
d k

d
2

2
12

1
1

21

2
2

1= 











=
φ φ φ( )

iii
N

d k
di

k N
d
di1

1
2

2

2
1

1

1













= 





( )φ φ
di

k L LNNN
d

2
2

2

2
1 2

φ





=

from which M k L L X k X XM= =1 2 1 2or (8)

Note that (8) implies that M L L≤ 1 2 , a bound that may be independently derived by an energy 
argument.

If all of the flux links the coils without any leakage flux, then k = 1. On the other extreme, the coil axes 
may be oriented such that no flux from one can induce a voltage in the other, which results in k = 0. The term 
close coupling is used to describe the case where most of the flux links the coils, either by way of a magnetic 
core to contain the flux or by interleaving the turns of the coils directly over one another. Coils placed side 
by side without a core are loosely coupled and have correspondingly low values of k.
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14.3 Analysis of Coupled Coils

Polarities in Close Coupling
In Fig. 14-4, two coils are shown on a common core which channels the magnetic flux f. This arrangement 
results in close coupling, which was mentioned in Section 14.2. To determine the proper signs on the volt-
ages of mutual inductance, apply the right-hand rule to each coil: If the fingers wrap around in the direction 
of the assumed current, the thumb points in the direction of the flux. Resulting positive directions for f1 
and f2 are shown on the figure. If fluxes f1 and f2 aid one another, then the signs on the voltages of mutual 
inductance are the same as the signs on the voltages of self-inductance. Thus, the plus sign would be written 
in all four equations (2) and (3). In Fig. 14-4, f1 and f2 oppose each other; consequently, the equations (2) 
and (3) would be written with the minus sign.

Fig. 14-4

Natural Current
Further understanding of coupled coils is achieved from consideration of a passive second loop as shown 
in Fig. 14-5. Source u1 drives a current i1, with a corresponding flux f1 as shown. Now Lenz’s law implies 
that the polarity of the induced voltage in the second circuit is such that if the circuit is completed, a current 
will pass through the second coil in such a direction as to create a flux opposing the main flux established 
by i1. That is, when the switch is closed in Fig. 14-5, flux f2 will have the direction shown. The right-hand 
rule, with the thumb pointing in the direction of f2, provides the direction of the natural current i2. The 
induced voltage is the driving voltage for the second circuit, as suggested in Fig. 14-6; this voltage is 
present whether or not the circuit is closed. When the switch is closed, current i2 is established, with a 
positive direction as shown.

Fig. 14-5 Fig. 14-6

EXAMPLE 14.2 Suppose the switch in the passive loop to be closed at an instant (t = 0) when i1 = 0. For t > 0, the  
sequence of the passive loop is (see Fig. 14-6)

R i L
di
dt

M
di
dt2 2 2

2 1 0+ - =

while that of the active loop is

R i L
di
dt

M
di
dt1 1 1

1 2
1+ - = υ
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Writing the above equations in the s-domain with the initial conditions i1(0+) = i2(0+) = 0 and eliminating I1(s), 
we find

H s
I
V( )

( )
( ) (

≡ = =
-

response
excitation

2

1 1 2

s
s

sM

L L MMM R L R L R R2
1 2 2 1 1 2) ( )s s2 + + +

and from the poles of H(s) we have the natural frequencies of i2.

14.4 Dot Rule
The sign on a voltage of mutual inductance can be determined if the winding sense is shown on the circuit 
diagram, as in Figs. 14-4 and 14-5. To simplify the problem of obtaining the correct sign, the coils are marked 
with dots at the terminals which are instantaneously of the same polarity.

To assign the dots to a pair of coupled coils, select a current direction in one coil and place a dot at the 
terminal where this current enters the winding. Determine the corresponding flux by application of the 
right-hand rule [see Fig. 14-7(a)]. The flux of the other winding, according to Lenz’s law, opposes the first 
flux. Use the right-hand rule to find the natural current direction corresponding to this second flux [see   
Fig. 14-7(b)]. Now place a dot at the terminal of the second winding where the natural current leaves the 
winding. This terminal is positive simultaneously with the terminal of the first coil where the initial current 
entered. With the instantaneous polarity of the coupled coils given by the dots, the pictorial representa-
tion of the core with its winding sense is no longer needed, and the coupled coils may be illustrated as in   
Fig. 14-7(c). The following dot rule may now be used:

(1)  when the assumed currents both enter or both leave a pair of coupled coils by the dotted terminals, the 
signs on the M-terms will be the same as the signs on the L-terms; but

(2)  if one current enters by a dotted terminal while the other leaves by a dotted terminal, the signs on the 
M-terms will be opposite to the signs on the L-terms.

Fig. 14-7

EXAMPLE 14.3 The current directions chosen in Fig. 14-8(a) are such that the signs on the M-terms are opposite to 
the signs on the L-terms and the dots indicate the terminals with the same instantaneous polarity. Compare this to the 
conductively coupled circuit of Fig. 14-8(b), in which the two mesh currents pass through the common element in 
opposite directions, and in which the polarity markings are the same as the dots in the magnetically coupled circuit. 
The similarity becomes more apparent when we allow the shading to suggest two black boxes.

Fig. 14-8
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14.5 Energy in a Pair of Coupled Coils
The energy stored in a single inductor L carrying current i is 0.5Li2 J. The energy stored in a pair of coupled 
coils is given by

 W L i L i Mi i= + +1
2

1
21 1

2
2 2

2
1 2 (J)  (9)

where L1 and L2 are the inductances of the two coils and M is their mutual inductance. The term Mi1i2 in (9) 
represents the energy due to the effect of the mutual inductance. The sign of this term is (a) positive if both 
currents i1 and i2 enter either at the dotted or undotted terminals, or (b) negative if one of the currents enters 
at the dotted terminal and the other enters the undotted end.

EXAMPLE 14.4 In a pair of coils, with L1 = 0.1 H and L2 = 0.2 H, at a certain moment, i1 = 4 A and i2 = 10 A. Find the 
total energy in the coils if the coupling coefficient M is (a) 0.1 H, (b) 2 10/ H, (c) -0.1 H, and (d ) - 2 10/ H.
From (9),

(a) W = + + =( . )( . ) ( . )( . ) ( . )( )( )0 5 0 1 4 0 5 0 2 10 0 1 10 4 12 2 44 8. J  
(b) W  = 16.46 J
(c)  W  = 6.8 J
(d ) W  = 5.14 J

The maximum and minimum energies occur in conjunction with perfect positive coupling ( )M = 2 10/  and perfect 
negative coupling ( ).M = - 2 10/

14.6 Conductively Coupled Equivalent Circuits
From the mesh current equations written for magnetically coupled coils, a conductively coupled equivalent 
circuit can be constructed. Consider the sinusoidal steady-state circuit of Fig. 14-9(a), with the mesh currents 
as shown. The corresponding equations in matrix form are

R j L j M

j M R j L
1 1

2 2

1

2

1

0

+ -
- +















 = ω ω

ω ω
I
I

V





In Fig. 14-9(b), an inductive reactance, XM = wM, carries the two mesh currents in opposite directions, 
whence

Z Z12 21= = - j Mω

Fig. 14-9

in the Z-matrix. If now an inductance L1 - M is placed in the first loop, the mesh current equation for this 
loop will be

( )R j L j M1 1 1 2 1+ - =ω ωI I V
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Similarly, L2 - M in the second loop results in the same mesh current equation as for the coupled-coil circuit. 
Thus, the two circuits are equivalent. The dot rule is not needed in the conductively coupled circuit of 
Fig. 14-9(b), and familiar circuit techniques can be applied.

14.7 Linear Transformer
A transformer is a device for introducing mutual coupling between two or more electric circuits. The term 
iron-core transformer identifies the coupled coils which are wound on a magnetic core of laminated specialty 
steel to confine the flux and maximize the coupling. Air-core transformers are found in electronic and com-
munications applications. A third group consists of coils wound over one another on a nonmetallic form, with 
a movable slug of magnetic material within the center for varying the coupling.

Attention here is directed to iron-core transformers where the permeability m of the iron is assumed to 
be constant over the operating range of voltage and current. The development is restricted to two-winding 
transformers, although three and more windings on the same core are not uncommon.

In Fig. 14-10, the primary winding, of N1 turns, is connected to the source voltage V1, and the secondary 
winding, of N2 turns, is connected to the load impedance ZL. The coil resistances are shown by lumped 
parameters R1 and R2. Natural current I2 produces flux f2 = f21 + f22, while I1 produces f1 = f12 + f11. In 
terms of the coupling coefficient k,

φ φ φ φ11 1 22 21 1= - = -( ) ( )k k

Fig. 14-10

From these flux relationships, leakage inductances can be related to the self-inductances:

L k L L k L11 1 22 21 1≡ - ≡ -( ) ( )

The corresponding leakage reactances are:

X k X X k X11 1 22 21 1≡ - ≡ -( ) ( )

It can be shown that the inductance L of an N-turn coil is proportional to N2. Hence, for two coils wound 
on the same core,

L
L

N
N

1

2

1

2

2

= 



  

(10)

The flux common to both windings in Fig. 14-10 is the mutual flux, fm = f12 - f21. This flux induces the 
coil emfs by Faraday’s law,

e N
d
dt

e N
d
dt

m m
1 1 2 2= =

φ φ
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Defining the turns ratio, a N N≡ 1 2/ , we obtain from these the basic equation of the linear transformer:

 
e
e

a1

2
=  (11)

In the frequency domain, E1/E2 = a.
The relationship between the mutual flux and the mutual inductance can be developed by analysis of the 

secondary induced emf, as follows:

e N
d
dt

N
d
dt

N
d
dt

N
d
dt

N
d km

2 2 2
12

2
21

2
12

2= = - = -
φ φ φ φ ( φφ2)

dt

By use of (6) and (5a), this may be rewritten as

e M
di
dt

kL
di
dt

M
di
dt

M
a

di
dt2

1
2

2 1 2= - = -

where the last step involved (8) and (10):

M k a L L kaL= =( )( )2
2 2 2

Now, defining the magnetizing current if by the equation

 i
i
a

i
a1

2
1

2= + = +φ φor I
I

I  (12)

we have

 e M
di

dt
jXM2 2= =φ

φor E I  (13)

According to (13), the magnetizing current may be considered to set up the mutual flux fm in the core.
In terms of coil emfs and leakage reactances, an equivalent circuit for the linear transformer may be 

drawn, in which the primary and secondary are effectively decoupled. This is shown in Fig. 14-11(a); for 
comparison, the dotted equivalent circuit is shown in Fig. 14-11(b).

Fig. 14-11

EXAMPLE 14.5 Draw the voltage-current phasor diagram corresponding to Fig. 14-11(a), and from it derive the 
input impedance of the transformer.
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The diagram is given in Fig. 14-12, in which qL denotes the phase angle of ZL. Note that, in accordance with (13),
the induced emfs E1 and E2 lead the magnetizing current If by 90°. The diagram yields the three phasor equations

V I I

I Z I

I

1 1 11 1

2 22 2

1

= + +

= + +

ajX R jX

jX R jX

M

M L

φ

φ

( )

( )

=== +1
2a

I Iφ

Fig. 14-12

Elimination of I2 and If among these equations results in

V
I Z

Z1

1
1 11

2 2 22≡ = + +
+ +

in

/
( )

( )( )
(R jX a

jX a R jX
jX

M L

MM La R jX/ ) ( )+ + +2 22 Z   (14a)

If, instead, the mesh current equations for Fig. 14-11(b) are used to derive Zin, the result is

Z Zin = + + + +R jX
X

R jX
M

L
1 1

2

2 2
 (14b)

The reader may verify the equivalence of (14a) and (14b)—see Problem 14.36.

14.8 Ideal Transformer
An ideal transformer is a hypothetical transformer in which there are no losses and the core has infinite 
permeability, resulting in perfect coupling with no leakage flux. In large power transformers the losses are 
so small relative to the power transferred that the relationships obtained from the ideal transformer can   
be very useful in engineering applications.

Referring to Fig. 14-13, the lossless condition is expressed by

1
2

1
21 1 2 2V I V I* *=

Fig. 14-13
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(see Section 10.7). But

 V E E V1 1 2 2= = =a a

and so, a being real,

  
V
V

I
I

1

2

2

1
= = a  (15)

The input impedance is readily obtained from relations (15):

 
Z

V
I

V
I

V
I Zin /= = = =1

1

2

2

2 2

2

2a
a

a a L
 

(16)

EXAMPLE 14.6 The ideal transformer may be considered as the limiting case of the linear transformer of  
Section 14.7. Thus, in (14a) set

R R X X1 2 11 22 0= = = =

(no losses) and then let XM → ∞ (infinite core permeability), to obtain

Z
Z

Zin

/
/= +







=
→∞

lim
( )( )
( )X

M L

M LM

a
jX a
jX a

a2 2ZZL

in agreement with (16)

Ampere-Turn Dot Rule
Since a = N1/N2 in (15),

N N1 1 2 2I I=

that is, the ampere turns of the primary equal the ampere turns of the secondary. A rule can be formulated 
which extends this result to transformers having more than two windings. A positive sign is applied to an 
ampere-turn product if the current enters the winding by the dotted terminal; a negative sign is applied if 
the current leaves by the dotted terminal. The ampere-turn dot rule then states that the algebraic sum of the 
ampere-turns for a transformer is zero.

EXAMPLE 14.7 The three-winding transformer shown in Fig. 14-14 has turns N1 = 20, N2 = N3 = 10. Find I1 given 
that I I2 310 0 53 13 10 0 45= - = -. . ./ /� �A, A.

With the dots and current directions as shown on the diagram,

Fig. 14-14

 N N N1 1 2 2 3 3 0I I I- - =

from which

20 10 10 0 53 13 10 10 0 45

6 54

1

1

I

I

= - + -

= -

( . . ) ( . )

.

/ /� �

jj7 54 9 98 49 06. . .= -/ � A

Ch14.indd   377 11/08/17   11:45 AM



CHAPTER 14  Mutual Inductance and Transformers378

14.9 Autotransformer
An autotransformer is an electrically continuous winding, with one or more taps, on a magnetic core. One 
circuit is connected to the end terminals, while the other is connected to one end terminal and to a tap, part 
way along the winding.

Referring to Fig. 14-15(a), the transformation ratio is

V
V

1

2

1 2

2
1=

+
≡ +

N N
N

a

which exceeds by unity the transformation ratio of an ideal two-winding transformer having the same turns 
ratio. Current I1 through the upper or series part of the winding, of N1 turns, produces the flux f1. By Lenz’s 
law the natural current in the lower part of the winding produces an opposing flux f2. Therefore, current In
leaves the lower winding by the tap. The dots on the winding are as shown in Fig. 14-15(b). In an ideal 
autotransformer, as in an ideal transformer, the input and output complex powers must be equal.

1
2

1
2

1
21 1 1 2V I V I V I* * *= =ab L

whence 
I
I

L

ab
a= + 1  

Fig. 14-15

That is, the currents also are in the transformation ratio.
Since I

l
= Iab + Icb, the output complex power consists of two parts:

1
2

1
2

1
2

1
2

1
22 2 2 2 2V I V I V I V I V IL ab cb ab aba* = + = +* * * ***( )

The first term on the right is attributed to conduction; the second to induction. Thus, there exist both con-
ductive and magnetic coupling between source and load in an autotransformer.

14.10 Reflected Impedance
A load Z2 connected to the secondary port of a transformer, as shown in Fig. 14-16, contributes to its input 
impedance. This contribution is called reflected impedance. Using the terminal characteristics of the coupled 
coils and applying Kirchhoff’s Voltage Law (KVL) around the secondary loop, we find

V sI sI

sI sI Z I

1 1 1 2

1 2 2 2 20

= +

= + +

L M

M L
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By eliminating I2, we get

 Z
V
I s

s
Z s1

1

1
1

2 2

2 2
= = - +L

M
L  (17)

For the ac steady state where s = jw, we have

 Z Z1 1

2 2

2 2
= + +j L

M
j L

ω ω
ω  (18)

The reflected impedance is

 Z Zreflected = +
M

j L

2 2

2 2

ω
ω  (19)

The load Z2 is seen by the source as M2w2/(Z2 + jwL2). The technique is often used to change an impedance 
to a certain value; for example, to match a load to a source.

EXAMPLE 14.8 Given L1 = 0.2 H, L2 = 0.1 H, M = 0.1 H, and R = 10 Ω in the circuit of Fig. 14-17. Find i1 for 
u1 = 142.3 sin 100t.

Fig. 14-17

The input impedance Z1 at w = 100 is [see (18)]

Z
V
I Z1

1

1
1

2 2

2 2
20

0 01 10 000
10= = + + = + +j L

M
j L

jω ω
ω

. ( )
jj

j10 5 15 5 10 71 6= + = / . �

Then, I V Z1 1 1 9 71 6= = -/ A/ . �  

or i t1 9 100 71 6= -sin( . ) ( )� A  

Fig. 14-16
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EXAMPLE 14.9 Referring to Example 14.8, let u1 = u(t). Find i1,f , the forced response.
The input impedance is [see (17)]

Z s s
s

s1 1

2 2

2
( ) = - +L

M
R L

Substituting the given values for the elements, we get

Z s
s s

s Y s
s

s s1 1

200
10 100

10 100
( )

( )
( ) ( )

( )
(= +

+ =or
+

+++ 200)

For t > 0, the input u1 = 1 V is an exponential est whose exponent s = 0 is a pole of Y1(s). Therefore, i1,f = kt with k =
1/L1 = 5. This result may also be obtained directly by dc analysis of the circuit in Fig. 14-17.

SoLvED PRobLEMS

14.1. When one coil of a magnetically coupled pair has a current 5.0 A the resulting fluxes f11 and f12 are 
0.2 mWb and 0.4 mWb, respectively. If the turns are N1 = 500 and N2 = 1500, find L1, L2, M, and the 
coefficient of coupling k.

φ φ φ
φ

1 mWb mH= + = = = =11 12 1
1 1

1
0 6

500 0 6
5 0 60.
( . )
.L

N
I

MMM
N

I
k= = = = =2 12

1

1500 0 4
5 0 120 0 667

φ φ
φ

( . )
. .mH 12

1

Then, from M k L L L= =1 2 2 540, .mH

14.2. Two coupled coils have self-inductances L1 = 50 mH and L2 = 200 mH, and a coefficient of coupling k 
= 0.50. If coil 2 has 1000 turns, and i1 = 5.0 sin 400t (A), find the voltage at coil 2 and the flux f1.

M k L L

M
di
dt

d
d

= = =

= =

1 2

2
1

0 50 50 200 50

0 05

. ( )( )

.

mH

υ
ttt

t t( . sin ) cos ( )5 0 400 100 400 V=

Assuming, as always, a linear magnetic circuit,

M
N

i
N k

i
M

N k
i= = = 





= ×2 12

1

2 1

1
1

2
1 5 0 10

φ φ
φ

( )
.or ---4 400sin ( )t Wb

14.3. Apply KVL to the series circuit of Fig. 14-18.

Fig. 14-18
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Examination of the winding sense shows that the signs of the M-terms are opposite to the signs on the 
L-terms.

Ri L
di
dt

M
di
dt C

i dt L
di
dt

M
di
dt

+ - + + - =∫1 2

1 υ

or Ri L
di
dt C

i dt+ ′ + =∫1 υ

where ′ ≡ + -L L L M1 2 2 . Because

M L L
L L

≤ ≤
+

1 2
1 2

2

  L′ is nonnegative.

 14.4. In a series aiding connection, two coupled coils have an equivalent inductance LA; in a series opposing 
connection, LB. Obtain an expression for M in terms of LA and LB.

As in Problem 14.3,

L L M L L L M LA B1 2 1 22 2+ + = + - =  

which give

M L LA B= -1
4 ( )

This problem suggests a method by which M can be determined experimentally.

 14.5. (a) Write the mesh current equations for the coupled coils with currents i1 and i2 shown in Fig. 14-19. 
(b) Repeat for i2 as indicated by the dashed arrow.

Fig. 14-19

(a) The winding sense and selected directions result in signs on the M-terms as follows:

R i L
di
dt

M
di
dt

R i L
di
dt

M
di
dt

1 1 1
1 2

2 2 2
2 1

+ + =

+ + =

υ

υ
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(b)
R i i L

d
dt

i i M
di
dt

R i i R

1 1 2 1 1 2
2

1 2 1 2

( ) ( )

( )

- + - + =

- +

υ

iii L
di
dt

M
d
dt

i i L
d
dt

i i M
di
dt2 2

2
2 1 1 2 1

2+ - - + - -( ) ( ) === 0

14.6. Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 14-20, and use it to find the 
voltage V across the 10-Ω capacitive reactance.

Fig. 14-20

To place the dots on the circuit, consider only the coils and their winding sense. Drive a current into the top 
of the left coil and place a dot at this terminal. The corresponding flux is upward. By Lenz’s law, the flux at 
the right coil must be upward-directed to oppose the first flux. Then the natural current leaves this winding by 
the upper terminal, which is marked with a dot. See Fig. 14-21 for the complete dotted equivalent circuit, with 
currents I1 and I2 chosen for calculation of V.

Fig. 14-21

5 5 5 3
5 3 10 6

10 0
10

1

2

- +
+ +













 =

-
j j
j j j

I
I

/ �

1110

10 5 3
10 10 10 6

1 015 113 91











=

+
- +

∆ =I
Z

j
j j

. ./ 666� A

and VV I= - =1 10 10 15 23 96( ) . . .j / �
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 14.7. Obtain the dotted equivalent for the circuit shown in Fig. 14-22 and use the equivalent to find the 
equivalent inductive reactance.

Fig. 14-22

Drive a current into the first coil and place a dot where this current enters. The natural current in both of 
the other windings establishes an opposing flux to that set up by the driven current. Place dots where the 
natural current leaves the windings. (Some confusion is eliminated if the series connections are ignored 
while determining the locations of the dots.) The result is Fig. 14-23.

Z = + + - + - = Ωj j j j j j j3 5 6 2 2 2 4 2 3 12( ) ( ) ( )

that is, an inductive reactance of 12 Ω.

Fig. 14-23

 14.8. (a) Compute the voltage V for the coupled circuit shown in Fig. 14-24. (b) Repeat with the polarity 
of one coil reversed.

Fig. 14-24

(a) XM = = Ω( . ) ( ) . ,0 8 5 10 5 66  and so the Z-matrix is

 [ ]
.

.
Z =

+ - -
- - +







3 1 3 1 66
3 1 66 8 6

j j
j j

 

  Then, I
z

2

3 1 50
3 1 66 0

8 62 24 79=

+
- -

∆ = -

j
j .

. ./ � A

   and V I= = -2 5 43 1 24 79( ) . . ./ � V
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(b)
[ ]

.
.

Z

I

=
+ - +

- + +






=

+

3 1 3 9 66
3 9 66 8 6

3 1 50

2

j j
j j

j
--- +

∆ = -
3 9 66 0

3 82 112 12
j .

. .
z

/ � A

and V I= = -2 5 19 1 112 12( ) . ./ � V.  

14.9. Obtain the equivalent inductance of the parallel-connected, coupled coils shown in Fig. 14-25.
  Currents I1 and I2 are selected as shown on the diagram; then Zin = V1/I1.

[ ]
. .

. .
Z = 





j j
j j

ω ω
ω ω

0 3 0 043
0 043 0 414

 

and Z Z
in =

∆
∆ = -

11

20 3 0 414 0 043
0 41

( . )( . ) ( . )
.

j j j
j

ω ω ω
ω 444 0 296= jω .

or Leq is 0.296 H.

Fig. 14-25

14.10. For the coupled circuit shown in Fig. 14-26, show that dots are not needed so long as the second loop 
is passive.

Fig. 14-26

Currents I1 and I2 are selected as shown.

I
1

50 4
0 5 10

2 5 4
4 5 10

250 500
24

=

±
+

+ ±
± +

= +
- +

j
j

j j
j j

j

j4445
10 96 54 64

2 5 50
4 0

3 92 11

= -

=

+
±

∆
= -

. .

.

/

/

� A

2
I

z

j
j

888 07 90.  � A
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The value of ∆Z is unaffected by the sign on M. Since the numerator determinant for I1 does not involve 
the coupling impedance, I1 is also unaffected. The expression for I2 shows that a change in the coupling 
polarity results in a 180° phase shift. With no other phasor voltage present in the second loop, this change 
in phase is of no consequence.

14.11. For the coupled circuit shown in Fig. 14-27, find the ratio V2/V1 which results in zero current I1.

I

V
V

z
1

1

20

2
2 2

= =
+

∆

j

j
 

 Then, V1(2 + j2) - V2( j2) = 0, from which V2/V1 = 1 - j1.

Fig. 14-27

14.12. In the circuit of Fig. 14-28, find the voltage across the 5 Ω reactance with the polarity shown.
For the choice of mesh currents shown on the diagram,

I1

50 45 8
0 3

3 15 8
8 3

150 45
109 9=

-
+

-

= -
- =

/
/

�

�

j
j

j j
j j

j
11 37 40 28. ./ - � A

Similarly, I2 3 66 40 28= -. ./ � A.

Fig. 14-28

The voltage across the j5 is partly conductive, from the currents I1 and I2, and partly mutual, from 
current I1 in the 4 Ω reactance.

V I I I= + + =( )( ) ( ) . .1 2 15 3 29 27 49 72j j / � V

Of course, the same voltage must exist across the capacitor:

V I= - - =2 8 29 27 49 72( ) . .j / � V
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14.13. Obtain Thévenin and Norton equivalent circuits at terminals ab for the coupled circuit shown in 
Fig. 14-29.

In open circuit, a single clockwise loop current I is driven by the voltage source.

I = + = -10 0
8 3 1 17 20 56/ /�

�
j

. . A

Fig. 14-29

Then ′ = + - = -V I I( ) ( ) . . .j j5 4 6 4 82 34 60/ � V  

To find the short-circuit current ′I , two clockwise mesh currents are assumed, with I I2 = ′.

′

+
- +
+ - +

- + +

= -I =

8 3 10
4 1 0

8 3 4 1
4 1 7 5

0 559 83

j
j

j j
j j

. / ...39� A

and ′ = ′
′ = -

-
=Z

V
I

4 82 34 60

0 559 83 39
8 62 48 7

. .

. .
. ./

/ /�

�
999� Ω

The equivalent circuits are pictured in Fig. 14-30.

Fig. 14-30

14.14. Obtain a conductively coupled equivalent circuit for the magnetically coupled circuit shown 
in Fig. 14-31.

Select mesh currents I1 and I2 as shown on the diagram and write the KVL equations in matrix 
form.

3 1 3 2
3 2 8 6

50 0
0

1

2

+
- - +

- -











 =




j j
j j

I
I

/ �
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Fig. 14-31

The impedances in Fig. 14-32 are selected to give the identical Z-matrix. Thus, since I1 and I2 pass through 
the common impedance, Zb, in opposite directions, Z12 in the matrix is -Zb. Then, Zb = 3 + j2 Ω. Since Z11 
is to include all impedances through which I1 passes,

3 1 3 2+ = + +j jaZ ( )

from which Za = -j1 Ω. Similarly,

Z Z Z22 8 6= + = +j b c

and Zc = 5 + j4 Ω.

Fig. 14-32

14.15. For the transformer circuit of Fig. 14-11(b), k = 0.96, R1 = 1.2 Ω, R2 = 0.3 Ω, X1 = 20 Ω, X2 = 5 Ω, 
ZL = Ω5 0 36 87. . ,/ �  and V2 100 0= / � V. Obtain the coil emfs E1 and E2, and the magnetizing 
current If.

X k X X k X11 1 22 21 1 0 96 20 0 8 1 0= - = - = Ω = - =( ) ( . )( ) . ( ) ..

.

2

2 9 61

2
1 2

Ω

= = = = Ωa
X
X

X k X XM

Now a circuit of the form Fig. 14-11(a) can be constructed, starting from the phasor voltage-current 
relationship at the load, and working back through E2 to E1.

I
V
Z

E I

2
2

2 2

100 0

5 0 36 87
20 36 87= = = -

=

L

/
/ /�

�
�

. .
.

(

A

RR jX j2 22 2 20 36 87 0 3 0 2 100 0+ + = - + + =) ( . )( . . )V / /� � 1107 2 0 4

214 4 0 8

0

1 2

2

. .

. .

-

= = -

= = -

j

a j

jXM

V

VE E

I
E

φ .. .042 11 17- j A
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14.16. For the linear transformer of Problem 14.15, calculate the input impedance at the terminals where V1 
is applied.

Method 1

Completing the construction begun in Problem 14.15,

I I I1 2

1
0 042 11 17 10 36 87 18 9= + = - - + - =φ a

j( . . ) . ./ � 333 65 13

18 93 65 131 1 1 11 1

/

/

-

= - + = -

.

( ) ( . .

� A

V I ER jX ���

�

)( . . ) ( . . )

. .

1 2 0 8 214 4 0 8

238 2 3 62

+ + -

= -

j j

/ V

Therefore,

Z
V
Iin = = -

-
=1

1

238 2 3 62

18 93 65 13
12 58 61

. .

. .
./

/ /�

�
...51� Ω

Method 2

By (14a) of Example 14.5,

Zin = + + + +
( . . )

( . )( . . . .
1 2 0 8 2

4 8 0 3 0 2 5 0 36 872j
j j / �)))

. . . .

. .

.

0 3 5 0 5 0 36 87

114 3 123 25

9 082 6

+ +

=

j /
/
/

�

�

111 75
12 58 61 50

.
. .

�
�= Ω/

Method 3

By (14b) of Example 14.5,

Zin = + +
+ +

= +

( . )
( . )

. . .

( .

1 2 20
9 6

0 3 5 5 0 36 87

1 2

2

j
j / �

jjj j20 4 80 8 94 12 58 61 53) ( . . ) . .+ - = Ω/ �

14.17. In Fig. 14-33, three identical transformers are primary wye-connected and secondary delta-connected. 
A single load impedance carries current IL = 30 0/ � A. Given

I I Ib a c2 2 220 0 10 0= = =/ /� �A A

and N1 = 10N2 = 100, find the primary currents Ia1, Ib1, Ic1.
The ampere-turn dot rule is applied to each transformer:

N N

N

a a a1 1 2 2 1

1

0
10

100 10 0 1 0I I I

I

+ = = - = -or A( )/ /� �

bbb b b

c

N

N N

1 2 2 1

1 1

0
10

100 20 0 2 0- = = =

+

I I

I

or A( )/ /� �

222 2 10
10

100 10 0 1 0I Ic c= = - = -or A( )/ /� �

The sum of the primary currents provides a check:

I I Ia b c1 1 1 0+ + =
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Fig. 14-33

14.18. For the ideal autotransformer shown in Fig. 14-34, find V2, Icb, and the input current I1.

a
N
N

a L
L

≡ =

= + = = = -

1

2

2
1 2

1
2

1 100 0 10 60V
V

I
V
Z/ /� �V A

II I I I
I

cb L ab ab
L

a
= - = - = + = -3 33 60 1 6 67 60. ./ /� �A AA

 

Fig. 14-34

14.19. In Problem 14.18, find the apparent power delivered to the load by transformer action and that 
supplied by conduction.

S V Icond = = =1
2

1
2 100 0 6 67 60 333 602 ab

* ( )( . )/ / /� � � VA

VAtrans condS S= =a 167 60/ �

14.20. In the coupled circuit of Fig. 14-35, find the input admittance Y1 = I1/V1 and determine the current 
i1(t) for υ1 2 2= cos .t
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Fig. 14-35

Apply KVL around loops 1 and 2 in the s-domain.

V sI sI
I I

s

sI s I
I I

s

1 1 2
1 2

1 2
2 10 2 1

= + +
-

= + + +
-

( )

Eliminating I2 in these equations results in

Y
I
V

s s

s s s1
1

1

2

3 2
2 1

5 1
= = + +

+ + +

For s = j, the input admittance is Y1 1 4 2 4 45= + =( ) .j / / / �  Therefore, i1(t) = cos(t + 45°).

14.21. Find the input impedance Z1 = V1/I1 in the coupled circuit of Fig. 14-36.

Fig. 14-36

Apply KVL around loops 1 and 2 in the s-domain.

V sI sI I I

sI sI I I

1 1 2 1 2

1 2 1 2

1
3 2

0
1
3

1
4 2

= + + +

= + + +

( )

( ) +++







 1

12 2sI

or 

V s I s I

s I s I

1 1 2

1 2

2 2
1
3

0 2
1
3 2

1
3

= + + +

= + + +




( ) (

( (

)

) )






The result is

I I Z
V
I s2 1 1

1

1

2
3= - = =and

The current through the resistor is I1 + I2 = 0 and the resistor has no effect on Z1. The input impedance is 
purely inductive.
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SuPPLEMENTARy PRobLEMS

14.22. Two coupled coils, L1 = 0.8 H and L2 = 0.2 H, have a coefficient of coupling k = 0.90. Find the mutual inductance 
M and the turns ratio N1/N2.  Ans. 0.36 H, 2

14.23. Two coupled coils, N1 = 100 and N2 = 800, have a coupling coefficient k = 0.85. With coil 1 open and a current 
of 5.0 A in coil 2, the flux is f2 = 0.35 mWb. Find L1, L2, and M.  Ans. 0.875 mH, 56 mH, 5.95 mH

14.24. Two identical coupled coils have an equivalent inductance of 80 mH when connected series aiding, and 35 mH 
in series opposing. Find L1, L2, M, and k.  Ans. 28.8 mH, 28.8 mH, 11.25 mH, 0.392

14.25. Two coupled coils, with L1 = 20 mH, L2 = 10 mH, and k = 0.50, are connected four different ways: series aiding, 
series opposing, and parallel with both arrangements of winding sense. Obtain the equivalent inductances of the 
four connections.  Ans. 44.1 mH, 15.9 mH, 9.47 mH, 3.39 mH

14.26. Write the mesh current equations for the coupled circuit shown in Fig. 14-37. Obtain the dotted equivalent circuit 
and write the same equations.

 Ans. ( )R R i L
di
dt

R i M
di
dt1 3 1 1

1
3 2

2+ + + + = υ  

  ( )R R i L
di
dt

R i M
di
dt2 3 2 2

2
3 1

1+ + + + = υ  

Fig. 14-37

14.27. Write the phasor equation for the single-loop, coupled circuit shown in Fig. 14-38.

 Ans. ( . )j j j j5 3 5 03 8 10 50 0+ - - + =I / �  

 Fig. 14-38
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14.28. Obtain the dotted equivalent circuit for the coupled circuit of Fig. 14-38.  Ans. See Fig. 14-39.

Fig. 14-39   Fig. 14-40

14.29. The three coupled coils shown in Fig. 14-40 have coupling coefficients of 0.50. Obtain the equivalent inductance 
between the terminals AB.  Ans. 239 mH

14.30. Obtain two forms of the dotted equivalent circuit for the coupled coils shown in Fig. 14-40.

Ans. See Fig. 14-41.

Fig. 14-41

14.31. (a) Obtain the equivalent impedance at terminals AB of the coupled circuit shown in Fig. 14-42. (b) Reverse the 
winding sense of one coil and repeat.  Ans. (a) 3 40 41 66. ./ � Ω; (b) 2 54 5 37. ./ � Ω

Fig. 14-42

14.32. In the coupled circuit shown in Fig. 14-43, find V2 for which I1 = 0. What voltage appears at the 8 Ω inductive 
reactance under this condition?

Ans. 141 4 45 100 0. , ( )/ /- +� �V V at dot  

Fig. 14-43
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14.33. Find the mutual reactance XM for the coupled circuit of Fig. 14-44, if the average power in the 5-Ω resistor is 
45.24 W.  Ans. 4 Ω

Fig. 14-44

14.34. For the coupled circuit shown in Fig. 14-45, find the components of the current I2 resulting from each source V1 
and V2.  Ans. 0.77 112.6 A, A/ /� �1 72 86 05. .

Fig. 14-45

14.35. Determine the coupling coefficient k in the circuit shown in Fig. 14-46, if the power in the 10-Ω resistor is 
32 W.  Ans. 0.791

 Fig. 14-46

14.36. In (14a), replace a, X11, X22, and XM by their expressions in terms of X1, X2, and k, thereby obtaining (14b).

14.37. For the coupled circuit shown in Fig. 14-47, find the input impedance at terminals ab.

 Ans. 3 + j36.3 Ω

Fig. 14-48Fig. 14-47

14.38. Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-48.

 Ans. 1 + j1.5 Ω
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14.39. Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-49.

Ans. 6.22 + j4.65 Ω

Fig. 14-49 Fig. 14-50

14.40. Obtain Thévenin and Norton equivalent circuits at terminals ab of the coupled circuit shown in   
Fig. 14-50.

Ans. ′ = ′ = - ′ =V I Z7 07 45 1 04 27 9 6 80 72. , . . , ./ / /� �V A ...9� Ω  

14.41. For the ideal transformer shown in Fig. 14-51, find I1, given

I I IL L L1 2 310 0 0 10 0 36 87 4 47 26= = - = -. . . ./ / /� �A A ...57� A  

Ans.  16.5 14.04 A/ - �  

Fig. 14-51

14.42. When the secondary of the linear transformer shown in Fig. 14-52 is open-circuited, the primary current is 
I1 4 0 89 69= -. ./ � A. Find the coefficient of coupling k.  Ans. 0.983

Fig. 14-52
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14.43. For the ideal transformer shown in Fig. 14-53, find I1, given I2 50 36 87= / – . � A and I3 16 0= / � A.  

 Ans.  26 6 34 29. – ./ � A  

 Fig. 14-53

14.44. Considering the autotransformer shown in Fig. 14-54 ideal, obtain the currents I1, Icb, and Idc.

 Ans.  3 70 22 5 2 12 86 71 10 34 11 83. . , . . , . ./ / /� � �A A A  

 Fig. 14-54
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Circuit Analysis Using  
Spice and PSpice

15.1 Spice and PSpice
Spice (Simulation Program with Integrated Circuit Emphasis) is a computer program developed in the 1970s 
at the University of California at Berkeley for simulating electronic circuits. It is used as a tool for analysis, 
design, and testing of integrated circuits as well as a wide range of other electronic and electrical circuits. Spice 
is a public domain program. Commercial versions, such as PSpice by MicroSim Corporation, use the same 
algorithm and syntax as Spice but provide the technical support and add-ons that industrial customers need.

This chapter introduces the basic elements of Spice/PSpice and their application to some simple circuits. 
Examples are run on the evaluation version of PSpice which is available free of charge.

15.2 Circuit Description
The circuit description is entered in the computer in the form of a series of statements in a text file prepared 
by any ASCII text editor and called the source file. It may also be entered graphically by constructing the 
circuit on the computer monitor with the Schematic Capture program from MicroSim. In this chapter, we 
use the source file with the generic name SOURCE.CIR. To solve the circuit, we run the circuit solver on the 
source file. The computer puts the solution in a file named SOURCE.OUT.

EXAMPLE 15.1 Use PSpice to find the dc steady-state voltage across the 5-µF capacitor in Fig. 15-1(a).

Fig. 15-1

We first label the nodes by the numbers 0, 1, 2 and the elements by the symbols R1, R2, C, and Vs [Fig. 15-1(b)]. We 
then create in ASCII the source file shown below and give it a name, for instance, EXMP1.CIR.

DC analysis, Fig. 15-1
Vs 1 0 DC 9 V
R1 1 2 3 k
R2 0 2 6 k
C 0 2 5 uF

.END

CHAPTER  15
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Executing the command PSPICE EXMP1, the computer solves the circuit and writes the following results in the file 
EXMP1.OUT.

NODE VOLTAGE NODE VOLTAGE
(1) 9.0000 (2) 6.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -1.000E - 03

TOTAL POWER DISSIPATION 9.00E - 0.3 WATTS

The printed output specifies that the voltage at node 2 with reference to node 0 is 6 V, the current entering the voltage 
source Vs is -10-3 A, and the total power dissipated in the circuit is 9 × 10-3 W.

15.3 Dissecting a Spice Source File
The source file of Example 15.1 is very simple and contains the statements necessary for solving the cir-
cuit of Fig. 15-1 by Spice. Each line in the source file is a statement. In general, if a line is too long (over 
80 characters), it can be continued onto subsequent lines. The continuation lines must begin with a plus (+) 
sign in the first column.

PSpice does not differentiate uppercase and lowercase letters and standard units are implied when not 
specified. We will use both notations.

Title Statement
The first line in the source file of Example 15.1 is called the title statement. This line is used by Spice as a 
label within the output file, and it is not considered in the analysis. Therefore, it is mandatory to allocate the 
first line to the title line, even if it is left blank.

.END Statement
The .END statement is required at the end of the source file. Any statement following the .END will be 
considered a separate source file.

Data Statements
The remaining four data statements in the source file of Example 15.1 completely specify the circuit. The 
second line states that a voltage source named Vs is connected between node 1 (positive end of the source) 
and the reference node 0. The source is a dc source with a value of 9 V. The third line states that a resistor 
named R1, with the value of 3 kΩ, is connected between nodes 1 and 2. Similarly, the fourth and fifth lines 
specify the connection of R2 (6 kΩ) and C (5 µF), respectively, between nodes 0 and 2. In any circuit, one 
node should be numbered 0 to serve as the reference node. The set of data statements describing the topology 
of the circuit and element values is called the netlist. Data statement syntax is described in Section 15.4.

Control and Output Statements
In the absence of any additional commands, and only based on the netlist, Spice automatically computes the 
dc steady state of the following variables:

  (i) Node voltages with respect to node 0.

  (ii) Currents entering each voltage source.

(iii) Power dissipated in the circuit.

However, additional control and output statements may be included in the source file to specify other vari-
ables (see Section 15.5).

15.4 Data Statements and DC Analysis

Passive Elements
Data statements for R, L, and C elements contain a minimum of three segments. The first segment gives the 
name of the element as a string of characters beginning with R, L, or C for resistors, inductors, or capacitors, 
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respectively. The second segment gives the node numbers, separated by a space, between which the element 
is connected. The third segment gives the element value in ohms, henrys, and farads, optionally using the 
scale factors given in Table 15-1.

Possible initial conditions can be given in the fourth segment using the form IC = xx. The syntax of the 
data statement is

	 〈name〉  〈nodes〉  〈value〉  [〈initial conditions〉] 

The brackets indicate optional segments in the statement.

EXAMPLE 15.2 Write the data statements for R, L, and C given in Fig. 15-2.

Fig. 15-2

Element 〈name〉 〈nodes〉 〈value〉 [〈initial conditions〉]
Resistor Rin 1 2 3 k
Inductor L1 5 4 30 uH IC = -2 mA
Capacitor Ceq 6 5 pF IC = -2 V

The third statement for the capacitor connection specifies one node only. The missing node is always taken to be the 
reference node.

Independent Sources
Independent sources are specified by

	 〈name〉  〈nodes〉  〈type〉  〈value〉	

The 〈type〉 for dc and ac sources is DC and AC, respectively. Other time-dependent sources will be described 
in Section 15.12. Names of voltage and current sources begin with V and I, respectively. For voltage sources, 
the first node indicates the positive terminal. The current in the current source flows from the first node to 
the second.

Table 15-1. Scale Factors and Symbols

Name Symbol Value

femto f 10-15 = 1E - 15
pico p 10-12 =	1E - 12
nano n 10-9 = 1E - 9
micro u 10-6 = 1E - 6
milli m 10-3 = 1E - 3
kilo k 103 = 1E3
mega meg 106 = 1E6
giga g 109 = 1E9
tera t 1012 = 1E12
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EXAMPLE 15.3 Write data statements for the sources of Fig. 15-3.

Fig. 15-3

Source 〈name〉 〈nodes〉 〈type〉 〈value〉
Independent Voltage Source Vs 2 1 DC 30 V
Independent Current Source Ibias 3 4 DC 2 A

EXAMPLE 15.4 Write the netlist for the circuit of Fig. 15-4(a) and run PSpice on it for dc analysis.

Fig. 15-4

We first number the nodes and name the elements as in Fig. 15-4(b). The netlist is

DC Analysis, Fig. 15-4
R1 0 1 500
R2 1 2 3 k
R3 2 3 1 k
R4 0 3 1.5 k
Vs 3 1 DC 4 V
Is 0 2 DC 3 mA
.END

The results are written in the output file as follows:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) .1250 (2) 5.3750 (3) 4.1250

VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -1.500E - 03

TOTAL POWER DISSIPATION 6.00E - 03 WATTS

Dependent Sources
Linearly dependent sources are specified by

〈name〉  〈nodes〉  〈control〉  〈gain〉
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Each source name should begin with a certain letter according to the following rule:

Voltage-controlled voltage source  Exx

Current-controlled current source  Fxx

Voltage-controlled current source  Gxx

Current-controlled voltage source  Hxx

The order of nodes is similar to that of independent sources. For the voltage-controlled sources, 〈control〉 is 
the pair of nodes whose voltage difference controls the source, with the first node indicating the + terminal. 
The 〈gain〉 is the proportionality factor.

EXAMPLE 15.5 Write the data statements for the voltage-controlled sources of Fig. 15-5.

Fig. 15-5

Source 〈name〉 〈nodes〉 〈control〉 〈gain〉
VCVS E1 4 3 2 1 k1
VCCS G1 5 6 2 1 k2

In the case of current-controlled sources we first introduce a zero-valued voltage source (or dummy 
voltage Vdmy) on the path of the controlling current and use its name as the control variable.

EXAMPLE 15.6 Write data statements for the current-controlled sources in Fig. 15-6.

Fig. 15-6

Introduce Vdmy (Vdmy) with current i entering it at node 1.

Vdmy  1  7  DC  0

The data statements for the controlled sources are

Source 〈name〉 〈nodes〉 〈control〉 〈gain〉
CCVS H1 4 3 Vdmy k3
CCCS F1 5 6 Vdmy k4
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EXAMPLE 15.7 Write the netlist for the circuit of Fig. 15-7(a) and run PSpice on it for dc analysis.

Fig. 15-7

Number the nodes and name the elements as in Fig. 15-7(b). Then, the netlist is

DC analysis with dependent source, Fig. 15-7
Vs 1 0 DC 12
R1 1 2 1 k
R2 0 3 2 k
R3 0 4 500
Vdmy 2 3 0
F1 4 3 Vdmy 100
.END

The results in the output file are

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 12.0000 (2) 11.9410 (3) 11.9410 (4) -2.9557

VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -5.911E - 05
Vdmy 5.911E - 05

TOTAL POWER DISSIPATION  7.09E - 04 WATTS

15.5 Control and Output Statements in DC Analysis
Certain statements control actions or the output format. Examples are:

.OP prints the dc operating point of all independent sources.

.DC sweeps the value of an independent dc source. The syntax is

 .DC  〈name〉  〈initial value〉  〈final values〉  〈step size〉

.PRINT prints the value of variables. The syntax is

 .PRINT  〈type〉  〈output variables〉

〈type〉 is DC, AC, or TRAN (transient).

.PLOT line-prints variables. The syntax is

 .PLOT  〈type〉  〈output variables〉

.PROBE generates a data file *.DAT which can be plotted in post-analysis by evoking the Probe program. 
The syntax is

 .PROBE [〈output variables〉]
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EXAMPLE 15.8 Find the value of Vs in the circuit in Fig. 15-8 such that the power dissipated in the 1-kΩ resistor 
is zero. Use the .DC command to sweep Vs from 1 to 6 V in steps of 1 V and use .PRINT to show I(Vs), V(1,2), and 
V(2).

Fig. 15-8

The source file is

DC sweep, Fig. 15-8
Vs 1 0 DC 1 V
Is 0 2 DC 1 mA
R1 1 2 1 k
R2 0 2 2 k
.DC Vs 1 6 1
.PRINT DC I(Vs) V(1,2) V(2)
.END

The results in the output file are

DC TRANSFER CURVES
Vs I(Vs) V(1,2) V(2)
1.000E + 00 3.333E - 04 -3.333E - 01 1.333E + 00
2.000E + 00 -1.333E - 12 1.333E - 09 2.000E + 00
3.000E + 00 -3.333E - 04 3.333E - 01 2.667E + 00
4.000E + 00 -6.667E - 04 6.667E - 01 3.333E + 00
5.000E + 00 -1.000E - 03 1.000E + 00 4.000E + 00
6.000E + 00 -1.333E - 03 1.333E + 00 4.667E + 00

The answer is Vs = 2 V.

EXAMPLE 15.9 Write the source file for the circuit in Fig. 15-9(a) using commands .DC, .PLOT, and .PROBE to find 
the I-V characteristic equation for I varying from 0 to -2 A at the terminal AB.

First, we connect a dc current source Iadd at terminal AB, “sweep” its value from 0 to -2 A using the .DC command, 
and plot V versus I. Since the circuit is linear, two points are necessary and sufficient. However, for clarity of the plot, 
ten steps are included in the source file as follows:

Terminal Characteristic, Fig. 15-9
Iadd 0 5 DC  0
Is 0 4 DC  0.6 A
Vs 3 2 DC  5 V
R1 0 1 1
R2 1 2 2
R3 3 4 3
R4 4 5 2
.DC Iadd 0 -2 0.2
.PLOT DC V(5)
.PROBE
.END

The output is shown in Fig. 15-9(b). The I-V equation is V = 8I + 8.6.
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Fig. 15-9

15.6 Thévenin Equivalent

.TF Statement
The .TF command provides the transfer function from an input variable to an output variable and produces the resis-
tances seen by the two sources. It can thus generate the Thévenin equivalent of a resistive circuit. The syntax is

.TF  〈output variable〉  〈input variable〉

EXAMPLE 15.10 Use the command .TF to find the Thévenin equivalent of the circuit seen at terminal AB in 
Fig. 15-10.

Fig. 15-10
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The node numbers and element names are shown in Fig. 15-10. The source file is

Transfer Function in Fig. 15-10
Vs 1 0 DC 12
E1 4 0 2 0 10
R1 1 2 1 k
R2 2 0 2 k
R3 2 3 1 k
R4 3 4 200
.TF V(3) Vs
.END

The output file contains the following results:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 12.0000 (2) -2.0000 (3) -17.0000 (4) -20.000

VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -1.400E - 02

TOTAL POWER DISSIPATION 1.68E - 01 WATTS

SMALL-SIGNAL CHARACTERISTICS
V(3)/Vs = -1.417E + 00
INPUT RESISTANCE AT Vs = 8.571E + 02
OUTPUT RESISTANCE AT V(3) = 6.944E + 01

Therefore, VTh = -1.417(12) = -17 V and RTh = -69.44 Ω	.

15.7 Subcircuit
A circuit may be embedded as a subcircuit within other circuits. The .SUBCKT statement provides this facility. 
A subcircuit is defined by a set of statements beginning with

.SUBCKT  (name)  (external terminals)

and terminating with an .ENDS statement. Within a netlist we refer to a subcircuit by

Xaa  (name)  (nodes)

Hence .SUBCKT statement can assign a name to the model of a device, such as an amplifier or an op-amp, 
for repeated use.

EXAMPLE 15.11 Given the circuit of Fig. 15-11(a), find Is, If, V2, and V6 for Vs = 0.5 to 2 V in 0.5-V steps. Assume 
the amplifier model of Fig. 15-11(b), with Rin = 100 kΩ, Cin= 10 pF, Rout = 10 kΩ, and an open-loop gain of 106.

The source file employs the subcircuit named AMPLIFIER of Fig. 15-11(b) whose description begins with .SUBCKT 
and ends with .ENDS. The X1 and X2 statements describe the two amplifiers by referring to the AMPLIFIER subcircuit. 
Note the correspondence of node connections in the X1 and X2 statements with that of the external terminals specified 
in the .SUBCKT statement. The source file is

Amplifier circuit of Fig. 15-11 using .SUBCKT
* Amplifier Model with an RC input impedance and an open-loop gain of 10E5
* connections:    non-inverting input
* | inverting input
* | | output
* | | | ground
* | | | |

.SUBCKT AMPLIFIER 1 2 3 4
Rin 1 2 10E5  
Cin 1 2 10PF  
Rout 3 5 10k  
Eout 5 4 1 2 10E5  
.ENDS  

Ch15.Indd   404 11/08/17   11:47 AM



CHAPTER 15  Circuit Analysis Using Spice and PSpice 405

Vs 1 0  DC  .5  
Rs 1 2  1k  
R1 2 3  5K  
R2 3 4  9K  
R3 4 5  1.2K  
R4 5 6  6K  
Rf 6 2  40K  
X1 0 3 4 0 AMPLIFIER 
X2 0 5 6 0 AMPLIFIER 
.DC Vs 0.5 2 0.5   
.PRINT DC V(2) V(6) I(Vs) I(R1) I(Rf)
.TF V(6) Vs   
.END     

Fig. 15-11

The output file is

DC TRANSFER CURVES
Vs V(2) V(6) I(Vs) I(R1) I(Rf)
5.000E -	01 5.000E -	01 4.500E + 00 -3.372Ε	-	09 1.000E - 04 9.999E -	0
1.000E +	00 1.000E + 00 9.000E + 00 -6.745E -	09 2.000E - 04 2.000E -	0
1.500E +	00 1.500E + 00 1.350E + 01 -1.012Ε	-	08 3.000E -	04 3.000E -	0
2.000E + 00 2.000E + 00 1.800E +	01 -1.349E -	08 4.000E - 04 4.000E -	0

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) .5000 (2) .5000 (3) 9.400E -	06 (4) -.9000
(5) -13.00E -	06 (6) 4.4998 (X1.5) -9.3996 (X2.5) 12.9990

VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -3.372E -	09

TOTAL POWER DISSIPATION 1.69E - 09 WATTS
SMALL-SIGNAL CHARACTERISTICS 
V(6)/Vs = 9.000E + 00
INPUT RESISTANCE AT Vs = 1.483E + 08
OUTPUT RESISTANCE AT V(6) = 7.357E -	02
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There is no voltage drop across Rs. Therefore, V(2) = Vs and the overall gain is V(6)/Vs = V(2)/Vs = 9. The current drawn 
by R1 is provided through the feedback resistor Rf .

15.8 Op Amp Circuits
Operational amplifiers may be modeled by high input impedance and high gain voltage-controlled voltage 
sources. The model may then be used within a net list repeatedly.

EXAMPLE 15.12 Find the transfer function V3/Vs in the ideal op amp circuit of Fig. 15-12(a).
The op amp is replaced by a voltage-dependent voltage source with a gain of 106 [see Fig. 15-12(b)].The source file is

Fig. 15-12

Inverting op amp circuit, Fig. 15-12
Vs 1 0 DC 12
E1 3 0 0 2 1E6
R1 1 2 1 k
R2 2 3 2 k
.TF V(3) Vs
.END

The transfer function is written in the output file:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 12.0000 (2) 24.00E - 06 (3) -24.0000

VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs -1.200E - 02

TOTAL POWER DISSIPATION 1.44E - 01 WATTS

SMALL-SIGNAL CHARACTERISTICS
V(3)/Vs = -2.000E + 00
INPUT RESISTANCE AT Vs = 1.000E + 03
OUTPUT RESISTANCE AT V(3) = 0.000E + 00

The op amp model used in Fig. 15-12(b) is acceptable at the dc and low frequencies. A more realistic model 
containing a single pole will be used in Problems 15.14 and 15.15.

15.9 AC Steady State and Frequency Response

Independent AC Sources
Independent ac sources are described by a statement with the following syntax:

〈name〉  〈nodes〉  AC  〈magnitude〉  〈phase in degrees〉

Voltage sources begin with V and current sources with I. The convention for direction is the same as that 
for dc sources.
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EXAMPLE 15.13 Write data statements for the sources shown in Fig. 15-13.

Fig. 15-13

 AC Source 〈name〉 〈nodes〉 〈type〉 〈magnitude〉 〈phase〉
 Voltage Vs 2 1 AC 14   45
 Current Is 3 4 AC 2.3 -105

.AC Statement
The .AC command sweeps the frequency of all ac sources in the circuit through a desired range or sets it at 
a desired value. The syntax is

.AC  〈sweep type〉  〈number of points〉  〈starting f 〉   〈ending f 〉

For the ac steady state, 〈sweep type〉 is LIN. In order to have a single frequency, the starting and ending 
frequencies are set to the desired value and the number of points is set to one.

.PRINT AC and .PLOT AC Statements
The .PRINT AC statement prints the magnitude and phase of the steady-state output. The syntax is

.PRINT  AC  〈magnitudes〉  〈phases〉

The magnitudes and phases of voltages are Vm(variable) and Vp(variable), respectively, and the magnitudes 
and phases of currents are Im(variable) and Ip(variable), respectively. The syntax for .PLOT AC is similar 
to that for .PRINT AC.

EXAMPLE 15.14 In the series RLC circuit of Fig. 15-14(a) vary the frequency of the source from 40 to 60 kHz in 
200 steps. Find the magnitude and phase of current I using .PLOT and .PROBE.

The source file is

AC analysis of series RLC, Fig. 15-14
Vs 1 0 AC 1 0
R 1 2 32
L 2 3 2 m
C 3 0 5 n
.AC LIN 200 40 k 60 k
.PLOT AC Im(Vs) Ip(Vs)
.PROBE Vm(1, 2) Vm(2,3) Vm(3) Im(Vs) Ip(Vs)
.END

The graph of the frequency response, plotted by Probe, is shown in Fig. 15-14(b).

15.10 Mutual Inductance and Transformers
The mutual inductance between inductors is modeled by a device whose name begins with K. The data 
statement syntax is

〈name〉  〈inductor 1〉  〈inductor 2〉  〈coupling coefficient〉
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Fig. 15-14

The dot rule, which determines the sign of the mutual inductance term, is observed by making the dotted end 
of each inductor the first node entered in its data statement.

EXAMPLE 15.15 Write the three data statements which describe the coupled coils of Fig. 15-15.

Fig. 15-15

The coupling coefficient is k12 = 1.5/ 2(3) = 0.61. The netlist contains the following:

L1 1 2 2
L2 3 4 3
K12 L1 L2 0.61
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EXAMPLE 15.16 Plot the input impedance Zin = V1/I1 in the circuit of Fig. 15-16(a) for f varying from 0.01 to 1 Hz.
To find Zin, we connect a 1-A ac current source running from node 0 to node 1 and plot the magnitude and phase of 

the voltage V(1) across it. The source file is

AC analysis of coupled coils, Fig. 15-16
IADD 0 1 AC 1 0
C 0 1 1 000 000 uF
R 0 2 3
L1 1 2 2 H
L2 3 2 5 H
K12 L1 L2 0.6325 H
L3 0 3 1 H
.AC LIN 20 .01 1
.PRINT AC Vm(1) Vp(1)
.PROBE
.END   

Vm(1) and Vp(1), which are the magnitude and phase of Zin, are plotted by using Probe and the graph is shown in 
Fig. 15-16(b). Note that the maximum occurs at about 100 MHz.

Fig. 15-16
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15.11 Modeling Devices with Varying Parameters

.MODEL Statement
The parameters of a passive element can be varied by using .MODEL statement. The syntax is

.MODEL  〈name〉  〈type〉  [(〈parameter〉 = 〈value〉)]

where 〈name〉 is the name assigned to the element. For passive linear elements, 〈type〉 is

RES for resistor
IND for inductor
CAP for capacitor 

We can sweep the parameter of the model through a desired range at desired steps by using the .STEP statement:

.STEP LIN  〈name〉  〈initial value〉  〈final value〉  〈step size〉

As an example, the following two statements use .MODEL and .STEP commands to define a resistor called 
heater with the resistance parameter varying from 20 to 40 Ω in 5 steps generating 20, 25, 30, 35, and 40 Ω.

.MODEL heater RES(R = 20)

.STEP RES heater(R) 20 40 5

EXAMPLE 15.17 Use Probe to plot V in the circuit in Fig. 15-17(a) for f varying from 1 to 3 kHz in 100 steps. Also, 
R from 500 Ω to 1 kΩ in steps of 100 Ω.
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Using .MODEL command we create the resistor RLeak and sweep its value by .STEP in the following source file. 
The graph of the frequency response V versus f is plotted by using Probe and it is shown in Fig. 15-17(b).

Parallel resonance with variable R, Fig. 15-17
I 0 1 AC 1 m 0
R 1 0 RLeak 1
L 1 0 10 m
C 1 0 1 u
.MODEL RLeak RES(R = 1)
.STEP LIN RES RLeak(R) 500 1 k 100
.AC LIN 100 1 k 3 k
.PROBE
.END

15.12 Time Response and Transient Analysis

.TRAN statement
Time responses, such as natural responses to initial conditions in a source-free circuit and responses to step, 
pulse, exponential, or other time-dependent inputs, are produced by the .TRAN statement. The response 
begins at t = 0. The increment size and final time value are given in the following statement:

.TRAN  〈increment size〉  〈final time value〉

EXAMPLE 15.18 Use .TRAN and .PROBE to plot the voltage across the parallel RLC combination in Fig. 15-18(a) 
for R = 50 Ω and 150 Ω for 0 < t < 1.4 ms. The initial conditions are I(0) = 0.5 A and V(0) = 0.

The source file is

Source-free parallel RLC with variable R
R 1 0 LOSS 1
L 0 1 10 m IC = .5
C 1 0 1 u IC = 0
.MODEL LOSS RES(R = 6)
.STEP RES LOSS(R) 50 150 100
.TRAN 2.0E - 6 1.4E - 3 UIC
.PROBE
.END

Figure 15-18(b) shows the graph of the voltage plotted by Probe. For R = 50 Ω there are no oscillations.

15.13 Specifying Other Types of Sources
Time-dependent sources which include dc, ac, and transient components are expressed by

〈name〉  〈nodes〉  〈dc comp.〉  〈ac comp.〉  〈transient comp.〉

The default for the unspecified dc or ac component is zero. The transient component appears for t > 0. Several 
transient components are described below.

Exponential Source
The source starts at a constant initial value V0. At t0, it changes exponentially from V0 to a final value V1 with 
a time constant tau1. At t = T, it returns exponentially to V0 with a time constant tau2. Its syntax is

EXP(V0 V1 t0 tau1 T tau2)

EXAMPLE 15.19 A 1-V dc voltage source starts increasing exponentially at t = 5 ms, with a time constant of 5 ms and 
an asymptote of 2 V. After 15 ms, it starts decaying back to 1 V with a time constant of 2 ms. Write the data statement 
for the source and use Probe to plot the waveform.
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Fig. 15-18

The data statement is

Vs 1 0 EXP(1 2 5 m 5 m 20 m 2 m)

The waveform is plotted as shown in Fig. 15-19.

Pulse Source
A periodic pulse waveform which goes from V0 to V1 and back can be represented by

PULSE(V0 V1 delay risetime falltime duration period)

EXAMPLE 15.20 (a) Write the data statement for a pulse waveform which switches 10 times in one second between 
1 V and 2 V, with a rise and fall time of 2 ms. The pulse stays at 2 V for 11 ms. The first pulse starts at t = 5 ms. (b) Using 
Probe, plot the waveform in (a).

(a) The data statement is

Vs 1 0 PULSE(1 2 5 m 2 m 2 m 11 m 100 m)

(b) The waveform is plotted as shown in Fig. 15-20.
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Fig. 15-19

Fig. 15-20
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Sinusoidal Source
The source starts at a constant initial value V0. At t0, the exponentially decaying sinusoidal component with 
frequency f, phase angle, starting amplitude V1, and decay factor alpha is added to it. The syntax for the 
waveform is

SIN(V0 V1 f t0 alpha phase)

EXAMPLE 15.21 (a) Write the mathematical expression and data statement for a dc voltage source of 1 V to which a 
100-Hz sine wave with zero phase is added at t = 5 ms. The amplitude of the sine wave is 2 V and it decays to zero with 
a time constant of 10 ms. (b) Using Probe, plot Vs(t).

(a)  The decay factor is the inverse of the time constant and is equal to alpha = 1/0.01 = 100. For t > 0, the voltage is 
expressed by

V t e t us
t( ) . ( . )( . )= + -- -1 2 sin 628 32 51 500 0 00 0 00 ((( . )t - 0 005

The data statement is

Vs 1 0 SIN(1 2 100 5 m 100)

(b) The waveform is plotted as shown in Fig. 15-21.

Fig. 15-21
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EXAMPLE 15.22 Find the voltage across a 1-µF capacitor, with zero initial charge, which is connected to a voltage 
source through a 1-kΩ resistor as shown in the circuit in Fig. 15-22(a). The voltage source is described by

Vs =






15 819. V

10 V
 

for 0 < < 1 ms

for > 1 ms

t

t

We use the exponential waveform to represent Vs. The file is

Dead-beat Pulse-Step response of RC
Vs 1 0 EXP(10 15.819 0 1.0E - 6 1.0E - 3 1.0E - 6)
R 1 2 1 k
C 2 0 1 uF
.TRAN 1.0E - 6 5.0E - 3 UIC
.PROBE
.END

The graph of the capacitor voltage is shown in Fig. 15-22(b). During 0 < t < 1 ms, the transient response grows exponen-
tially toward a dc steady-state value of 15.819 V. At t = 1 ms, the response reaches the value of 10 V. Also at t = 1 ms, 
the voltage source drops to 10 V. Since the source and capacitor voltages are equal, the current in the resistor becomes 
zero and the steady state is reached. The transient response lasts only 1 ms.

Fig. 15-22
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15.14 Summary
In addition to the linear elements and sources used in the preceding sections, nonlinear devices, such as 
diodes (Dxx), junction field-effect transistors (Jxx), mosfets (Mxx), transmission lines (Txx), voltage con-
trolled switches (Sxx), and current controlled switches (Wxx), may be included in the netlist. Sensitivity 
analysis is done using the .SENS statement. Fourier analysis is done using the .FOUR statement. These can 
be found in books or manuals for PSpice or Spice. The following summarizes the statements used in this 
chapter.

Data Statements:

R, L, C 〈name〉 〈nodes〉 〈value〉 [〈initial conditions〉]
Mutual Inductance kxx 〈ind.a〉 〈ind.b〉 〈coupling coefficient〉
Subcircuit Call Xxx 〈name〉 〈connection nodes〉
DC Voltage source Vxx 〈nodes〉 DC 〈value〉
DC Current source Ixx 〈nodes〉 DC 〈value〉
AC Voltage source Vxx 〈nodes〉 AC 〈magnitude) 〈phase〉
AC Current source Ixx 〈nodes〉 AC 〈magnitude) 〈phase〉
VCVS Exx 〈nodes〉 〈control〉 〈gain〉
CCCS Fxx 〈nodes〉 〈control〉 〈gain〉
VCCS Gxx 〈nodes〉 〈control〉 〈gain〉
CCVS Hxx 〈nodes〉 〈control〉 〈gain〉

Control Statements:

.AC 〈sweep type〉 〈number of points〉 〈starting f〉 〈ending f〉

.DC 〈name〉   〈initial value〉   〈final value〉   〈step size〉

.END

.ENDS

.IC 〈V(node) = value〉

.MODEL 〈name〉 〈type〉 [(〈parameter〉 = 〈value〉)]
  〈type〉 is RES for resistor
  〈type〉 is IND for inductor
  〈type〉 is CAP for capacitor
.LIB [〈file name〉]
.OP
.PRINT DC 〈output variables〉
.PLOT DC 〈output variables〉
.PRINT AC 〈magnitudes〉 〈phases〉
.PLOT AC 〈magnitudes〉 〈phases〉
.PRINT TRAN 〈output variables〉
.PROBE [〈output variables〉]
.STEP LIN 〈type〉 〈name(param.)〉 〈initial value〉 〈final value〉 〈step size〉
.SUBCKT 〈name〉 〈external terminals〉
.TF 〈output variable〉 〈input source〉
.TRAN 〈increment size〉 〈final value〉
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SOLVED PRObLEMS

 15.1. Use PSpice to find V(3, 4) in the circuit of Fig. 15-23.

Fig. 15-23

The source file is

 DC analysis, Fig. 15-23
 Vs 2 0 DC 105 V
 R1 0 1 36
 R2 0 1 12
 R3 1 2 74
 R4 2 3 16.4
 R5 3 4 103.2
 R6 4 0 28.7
 .DC Vs 105 105 1
 .PRINT DC V(1) V(3, 4)
 .END

The output file contains the following:

 DC TRANSFER CURVES
 Vs V(1) V(3, 4)
 1.050E + 02 1.139E + 01 7.307E + 01

Therefore, V(3, 4) = 73.07 V.

 15.2. Write the source file for the circuit of Fig. 15-24 and find I in R4.

Fig. 15-24

The source file is

 DC analysis, Fig. 15-24
 VS 2 0 DC 200 V
 Is 0 3 DC 20 A
 R1 0 1 27 
 R2 1 2 47
 R3 1 3 4
 R4 3 0 23
 .DC Vs 200 200 1
 .PRINT DC I(R4)
 .END
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The output file contains the following results:

DC TRANSFER CURVE
Vs I(R4)
2.000E + 02 1.123E + 01

Current I(R4) = 11.23 A flows from node 3 to node 0 according to the order of nodes in the data state-
ment for R4.

15.3. Find the three loop currents in the circuit of Fig. 15-25 using PSpice and compare your solution with 
the analytical approach.

Fig. 15-25

The source file is

DC analysis, Fig. 15-25
V1 2 0 DC 25
V2 0 4 DC 50
R1 0 1 2
R2 1 2 5
R3 1 3 10
R4 3 0 4
R5 3 4 2
.DC V1 25 25 1
.PRINT DC I(R1) I(R3) I(R5)
.END

The output file includes the following results:

DC TRANSFER CURVES
V1 I(R1) I(R3) I(R5)
2.500E + 01 -1.306E + 00 3.172E + 00 1.045E + 01

The analytical solution requires solving three simultaneous equations.

15.4. Using PSpice, find the value of Vs in Fig. 15-4 such that the voltage source does not supply any power.
We sweep Vs from 1 to 10 V. The source and output files are

DC sweep in the circuit of Fig. 15-4
R1 0 1 500
R2 1 2 3 k
R3 2 3 1 k
R4 0 3 1.5 k
Vs 3 1 DC 4 V
Is 0 2 DC 3 mA
.DC Vs  1 10 1
.PRINT DC I(Vs)
.PROBE
.PLOT DC I(Vs)
.END
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The output file contains the following results:

 DC TRANSFER CURVES
 Vs  I(Vs)
 1.000E + 00  7.500E - 04
 2.000E + 00 -2.188E - 12
 3.000E + 00 -7.500E - 04
 4.000E + 00  -1.500E - 03
 5.000E + 00  -2.250E - 03
 6.000E + 00  -3.000E - 03
 7.000E + 00  -3.750E - 03
 8.000E + 00  -4.500E - 03
 9.000E + 00  -5.250E - 03
 1.000E + 01  -6.000E - 03

The current in Vs is zero for Vs = 2 V.

 15.5. Perform a dc analysis on the circuit of Fig. 15-26 and find its Thévenin equivalent as seen from 
terminal AB.

Fig. 15-26

We include a .TF statement in the following netlist:

 Thévenin equivalent of Fig. 15-26
 Vs 1 0 DC 3
 R1 1 2 10
 Is 0 2 DC 1
 .TF V(2)  Is
 .END

The output file includes the following results:

 NODE VOLTAGE NODE VOLTAGE
 (1) 3.0000 (2) 13.000
 VOLTAGE SOURCE CURRENTS
 NAME CURRENT
 Vs 1.000E + 00

 TOTAL POWER DISSIPATION  -3.00E + 00  WATTS

 SMALL-SIGNAL CHARACTERISTICS
 V(2)/Is = 1.000E + 01
 INPUT RESISTANCE AT Is = 1.000E + 01
 OUTPUT RESISTANCE AT V(2) = 1.000E + 01

The Thévenin equivalent is VTh = V2 = 13 V, RTh = 10 Ω.

 15.6. Perform an ac analysis on the circuit of Fig. 15-27(a). Find the complex magnitude of V2 for f varying 
from 100 Hz to 10 kHz in 10 steps.

We add to the netlist an .AC statement to sweep the frequency and obtain V(2) by any of the commands 
.PRINT, .PLOT, or .PROBE. The source file is

 AC analysis of Fig. 15-27(a).
 Vs 1 0 AC 10 0
 R1 1 2 1 k
 R2 2 0 2 k
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C 2 0 1 uF
.AC LIN 10 100 10000
.PRINT AC Vm(2)  Vp(2)
.PLOT AC Vm(2)  Vp(2)
.PROBE  Vm(2)  Vp(2)
.END

The output file contains the following results:

AC ANALYSIS
FREQ VM(2)    VP(2)
1.000E + 02 6.149E + 00 -2.273E + 01
1.200E + 03 1.301E + 00 -7.875E + 01
2.300E + 03 6.883E - 01 -8.407E + 01
3.400E + 03 4.670E - 01 -8.598E + 01
4.500E + 03 3.532E - 01 -8.696E + 01
5.600E + 03 2.839E - 01 -8.756E + 01
6.700E + 03 2.374E - 01 -8.796E + 01
7.800E + 03 2.039E - 01 -8.825E + 01
8.900E + 03 1.788E - 01 -8.846E + 01
1.000E + 04 1.591E - 01 -8.863E + 01

The magnitude and phase of V2 are plotted with greater detail in Fig. 15-27(b).

  

Fig. 15-27
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 15.7. Perform dc and ac analysis on the circuit in Fig. 15-28. Find the complex magnitude of V2 for f varying 
from 100 Hz to 10 kHz in 100 steps.

Fig. 15-28

The source file is

 DC and AC analysis of Fig. 15-28
 Vs 1 0 AC 10 0
 Is 0 2 DC 1 mA
 R1 1 2 1 k
 R2 2 0 2 k
 C 2 0 1 uF
 .AC LIN 100 100 10000
 .PROBE Vm(2) Vp(2)
 .END

The output file contains the following results:

 SMALL SIGNAL BIAS SOLUTION
 NODE VOLTAGE NODE VOLTAGE
 (1)  0.0000 (2) .6667

 VOLTAGE SOURCE CURRENTS
 NAME CURRENT
 Vs 6.667E - 04

 TOTAL POWER DISSIPATION -0.00E + 00 WATTS

The graph of the ac component of V2 is identical with that of V2 of Problem 15.6 shown in  
Fig. 15-27(b).

 15.8. Plot resonance curves for the circuit of Fig. 15-29(a) for R = 2, 4, 6, 8, and 10 Ω.
We model the resistor as a single-parameter resistor element with a single-parameter R and change the 

value of its parameter R from 2 to 10 in steps of 2 Ω	. We use the .AC command to sweep the frequency 
from 500 Hz to 3 kHz in 100 steps. The source file is

 Parallel resonance of practical coil, Fig. 15-29
 I 0 2 AC 1 m 0
 R 0 2 RLOSS 1
 L 1 2 10 m
 C 0 2 1u
 .MODEL RLOSS RES(R = 1)
 .STEP RES RLOSS(R) 2 10 2
 .AC LIN 100 500 3000
 .PROBE
 .END

The resonance curves are shown in greater detail in Fig. 15-29(b).

 15.9. Use .TRAN and .PROBE to plot VC across the 1-µF capacitor in the source-free circuit of Fig. 15-30(a) 
for R = 100, 600, 1100, 1600, and 2100 Ω. The initial voltage is VC(0) = 10 V.
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Fig. 15-29

The values of the resistor R are changed by using .MODEL and .STEP. The source file is

Natural response of RC, Fig. 15-30(a)
R 0 1 Rshunt 1
C 1 0 1 uF IC = 10
.MODEL Rshunt RES(R = 1)
.STEP LIN RES Rshunt(R) 100 2.1 k 500
.TRAN 1E - 4 50E - 4  UIC
.PLOT TRAN V(1)
.PROBE
.END

The graph of the voltage VC is shown in Fig. 15-30(b).
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Fig. 15-30

15.10. Plot the voltages between the two nodes of Fig. 15-31(a) in response to a 1-mA step current source 
for R = 100, 600, 1100, 1600, and 2100 Ω	.

The source file is

 Step response of RC, Fig. 15-31(a)
 I 0 1 1 m
 R 0 1 Rshunt 1
 C 1 0 1 uF
 .MODEL Rshunt RES(R = 1)
 .STEP LIN RES Rshunt(R) 100 2.1 k 500
 .TRAN 1E - 4 50E - 4 UIC
 .PLOT TRAN V(1)
 .PROBE
 .END

The graphs of the step responses are given in Fig. 15-31(b).
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Fig. 15-31

15.11. Find the Thévenin equivalent of Fig. 15-32 seen at the terminal AB.

Fig. 15-32
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From dc analysis we find the open-circuit voltage at AB. We also use .TF to find the output resistance 
at AB. The source and output files are

 Solution to Fig. 15-32 and Thévenin equivalent at terminal AB
 R1 0 1 2
 R2 0 3 6
 R3 1 3 1
 R4 2 3 5
 R5 4 5 7
 Vs1 2 1 DC 3
 Vs2 3 4 DC 4
 Is 0 5 DC 1
 .TF V(5) Vs1
 .END

The output file contains the following results:

 NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
 (1) 1.2453 (2) 4.2453 (3) 2.2642 (4) -1.7358
 (5) 5.2642

 VOLTAGE SOURCE CURRENTS
 NAME CURRENT
 Vs1 -3.962E - 01
 Vs2 -1.000E + 00

 TOTAL POWER DISSIPATION 5.19E + 00 WATTS

 V(5)/Vs1 = 1.132E - 01
 INPUT RESISTANCE AT Vs1 = 5.889E + 00
 OUTPUT RESISTANCE AT V(5) = 8.925E + 00

The Thévenin equivalent is VTh = V5 = 5.2642 V, RTh = 8.925 Ω.

15.12. Plot the frequency response VAB /Vac of the open-loop amplifier circuit of Fig. 15-33(a).
The following source file chooses 500 points within the frequency varying from 100 Hz to  

10 MHz.

 Open loop frequency response of amplifier, Fig. 15-33
 Rs 1 2 10 k
 Rin 0 2 10 E5
 Cin 0 2 short 1
 Rout 3 4 10 k
 R1 4 0 10 E9
 Eout 3 0 0 2 1 E5
 Vac 1 0 AC 10 u 0
 .MODEL short CAP(C =	1)
 .STEP  LIN CAP short(C) 1 pF 101 pF 25 pF
 .AC LIN 500 10 10000 k
 .PROBE
 .END

The frequency response is plotted by Probe for the frequency varying from 10 kHz to 10 MHz as shown 
in Fig. 15-33(b).
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Fig. 15-33

15.13. Plot the closed-loop frequency response V3/Vac in Fig. 15-34(a) for f as it varies from 1 MHz to 
1 GHz, using the subcircuit model shown in Fig. 15-34(b). Compare with the open-loop frequency 
response obtained in Problem 15.12. The feedback resistor is 1 kΩ < Rf < 801 kΩ, incremented in 
steps of 200 kΩ.

The source file is

Closed loop frequency response of amplifier, Fig. 15-34
.SUBCKT OPAMP 1 2 3 4
* node 1 is the non-inverting input
* node 2 is the inverting input
* node 3 is the output
* node 4 is the output reference (negative end of dependent source)
* node 5 is the positive end of dependent source
Rin 1 2 10 E5
Cin 1 2 100 pF
Rout 3 5 10 k
Eout 5 4 1 2 1 E5
.ENDS
Vac 1 0 AC 10 m 0
R1 1 2 10 k
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 Rf 2 3 Rgain (R) 1
 X1 0 2 3 0 OPAMP
 .MODEL GAIN RES(R = 1)
 .STEP LIN RES  Rgain (R) 1 k  801 k  200 k
 .AC LIN 500  1000 k   1 000 000 k
 .PROBE
 .END

The frequency response is graphed in Fig. 15-34(c). Compared with the open-loop circuit of Fig. 15-33(a), 
the dc gain is reduced and the bandwidth is increased.

Fig. 15-34
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15.14. Plot the open-loop frequency response V6/Vd of the op amp model in Fig. 15-35(a) for f varying from 
1 Hz to 1 kHz. Model parameters are Rin = 100 kΩ, A = 105, Rp= 10 kΩ, Cp = 31.82 µF, and Rout =
100 Ω.

CH15_Problem14.CIR, Fig. 15-35(a)
* Open-loop frequency response of an op amp model

RP 3 4  10K

CP 4 0  3.182 uF

Vac 3 0 AC 1 0

.AC DEC 10 1 1k

.PROBE   

.END   

Figure 15-35(b) shows the magnitude response to a 10 µV sinusoidal input, with a dc gain of 105 V/V 
(or 100 dB). The gain decreases with frequency, reaching 0.707 of its dc value (3 dB below the dc gain) 
at 5 Hz.

Fig. 15-35

15.15. Find the closed-loop frequency response V3/Vac in Fig. 15-34(a) for f varying from 1 kHz to 
1 MHz, using the subcircuit model shown in Fig. 15-35(a). Model parameters are the same as 
in Problem 15-14.

Ch15.Indd   428 11/08/17   11:48 AM



CHAPTER 15  Circuit Analysis Using Spice and PSpice 429

CH15_Problem15.CIR, Fig. 15-34(a) using an op amp model of Fig. 15-35(a)

* OPAMP Model with a single pole at 5 HZ and GBP=10E5
* connections:            non-inverting input

*  |  inverting input

*  |  |  output

*  |  |  |

.SUBCKT OPAMP 1   2   6

RIN 1 2 100k

EGAIN 3 0  1 2 10E5

RP 3 4 10K

CP 4 0 3.182 uF

EBUFFER 5 0  4 0 1

ROUT 5 6 10k

.ENDS

Vac 1 0  AC 10m  0

R1 1 2 10k

Rf 2 3  Rgain 1

X1 0 2 3 OPAMP

.MODEL Rgain  RES(R=1) 

.STEP LIN    RES Rgain(R) 1k 801k 200k

.AC DEC  500 1k 1000k

.PROBE

.END

Fig. 15-36 shows the magnitude response to a 10 mV sinusoidal input. Compared to the open-loop case, 
the dc gain has decreased. This is a trade-off for an increase in the 3-dB bandwidth.

Fig. 15-36

15.16. Find the frequency responses of V3/Vac and V5/Vac in Fig. 15-37(a) for f varying from 1 kHz to 
100 kHz. Model the op amp as the subcircuit given in Problem 15.14.
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(a)

(b)

Fig. 15-37

CH15_Problem16, Fig. 15-37
* Magnitude responses of inverting and non-inverting amplifiers using model of Fig. 15-35(a)
* OPAMP MODEL WITH A SINGLE-POLE AT 5 HZ and GBP=10E5.
* connections:  non-inverting input

*  | inverting input

*  | | output

*  | | |

.SUBCKT OPAMP 1 2 6

RIN 1 2 10E5

EGAIN 3 0 1 2 10E5

RP 3 4 10K

CP 4 0 3.182 uF

EBUFFER 5 0 4 0 1

ROUT 5 6 100

.ENDS
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Vs  1 0 AC 1 0
*Non-inverting

R1  2 0 1k

R2  2 3 4k

X1  1 2 3 OPAMP
*Inverting

R3  1 4 1k

R4  4 5 5k

X2  0 4 5 OPAMP

.AC  DEC 500 1k 100k

.PROBE  Vm(3,0) Vp(3,0) Vm(5,0) Vp(5,0)

.END

15.17. Referring to the RC circuit of Fig. 15-22, choose the height of the initial pulse such that the voltage 
across the capacitor reaches 10 V in 0.5 ms. Verify your answer by plotting Vc for 0 < t < 2 ms.

The pulse amplitude A is computed from

 A(1 - e-1/2) = 10  from which  A = 25.415 V

We describe the voltage source using PULSE syntax. The source file is

 Pulse-Step response of RC, dead beat in RC/2 seconds
 Vs 1 0 PULSE(10 25.415 1.0E - 6 1.0E - 6 0.5 m 3 m)
 R 1 2 1 k
 C 2 0 1 u
 .TRAN 1.0E - 6 2.0E - 3 UIC
 .PROBE
 .END

The response shape is similar to the graph in Fig. 15-22(b). During the transition period of 0 < t < 0.5 ms, 
the voltage increases exponentially toward a dc steady-state value of 25.415 V. However, at t = 0.5 ms, 
when the capacitor voltage reaches 10 V, the source also has 10 V across it. The current in the resistor 
becomes zero and steady state is reached.

15.18. Plot the voltage across the capacitor in the circuit in Fig. 15-38(a) for R = 0.01 Ω and 4.01 Ω. The 
current source is a 1 mA square pulse which lasts 1256.64 µs as shown in the i - t graph.

Model the resistor as a single-parameter resistor element with a single parameter R and change the 
value of R from 0.01 to 4.01 in step of 4. The source file is

 Pulse response of RLC with variable R
 Is 0 1 Pulse(0 1 m 100 u 0.01 u 0.01 u 1256.64 u 5000 u)
 R 1 2 LOSS 1
 C 1 0 2000 n IC = 0
 L 2 0 5 m IC = 0
 .MODEL LOSS RES(R = 1)
 .STEP RES LOSS(R) .01 4.01 4
 .TRAN 10 u 3500 u 0 1 u UIC
 .PROBE
 .END

The result is shown in Fig. 15-38(b).
The transient response is almost zero for R = 0.01 Ω. This is because pulse width is a multiple of the 

period of natural oscillations of the circuit.
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Fig. 15-38

SuPPLEMENTARy PRObLEMS

In the following problems, use Spice to solve the indicated problems and examples.

15.19. Example 5.9 (Fig. 5-12).

15.20. Example 5.11 (Fig. 5-16).

15.21. Example 5.14 (Fig. 5-20).

15.22. Example 5.15 (Fig. 5-21).

15.23. Example 5.20 (Fig. 5-28) for x(t) = 1 V.
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15.24. Problem 5.12 (Fig. 5-38).

15.25. Problem 5.23 (Fig. 5-47).

15.26. Problem 5.25 (Fig. 5-49).

15.27. Problem 5.26 (Fig. 5-50).

15.28. Problem 5.48 (Fig. 5-55) for us1 =	us2 = 1 V.

15.29. Problem 5.49 (Fig. 5-56).

15.30. Example 7.6 (Fig. 7-12).

15.31. Example 7.7 [Fig. 7-13(a)].

15.32. Example 7.11 [Fig. 7-17(a)].

15.33. Problem 8.27 (Fig. 8-31).

15.34. Problem 9.11 (Fig. 9-20).

15.35. Problem 9.18 (Fig. 9-28).

15.36. Problem 9.19 (Fig. 9-29).

15.37. Example 11.5 [Fig. 11-15(a)].

15.38. Example 11.6 [Fig. 11-16(a)].

15.39. Example 11.7 (Fig. 11-17).

15.40. Problem 12.7 (Fig. 12-38).

15.41. Problem 12.12 (Fig. 12-39).

15.42. Problem 12.17 (Fig. 12-43).

15.43. Problem 12.56 [Fig. 12-70(a)].

15.44. Problem 13.28 (Fig. 13-31) for s = j.

15.45. Problem 13.31 (Fig. 13-33).

15.46. Problem 14.8 (Fig. 14-24).

15.47. Problem 14.12 (Fig. 14-28).

15.48. Problem 14.17 (Fig. 14-33).

15.49. Problem 14.20 (Fig. 14-35).

15.50. Problem 14.21 (Fig. 14-36) for s = j.
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The Laplace Transform Method

16.1 Introduction
The relation between the response y(t) and excitation x(t) in RLC circuits is a linear differential equation of 
the form

a y a y a y a y b xn
n

j
j

m
m( ) ( ) ( ) ( ). . . . . . . . .+ + + + + = +1

1
0 +++ + + +b x b x b xi

i( ) ( ). . .
1

1
0  (1)

where y( j) and x(i) are the jth and ith time derivatives of y(t) and x(t), respectively. If the values of the circuit 
elements are constant, the corresponding coefficients aj and bi of the differential equation will also be constants. 
In Chapters 7 and 8 we solved the differential equation by finding the natural and forced responses. We employed 
the complex exponential function x(t) = Xest to extend the solution to the complex frequency s-domain.

The Laplace transform method described in this chapter may be viewed as generalizing the concept of 
the s-domain to a mathematical formulation which would include not only exponential excitations but also 
excitations of many other forms. Through the Laplace transform we represent a large class of excitations as 
an infinite collection of complex exponentials and use superposition to derive the total response.

16.2 The Laplace Transform
Let f (t) be a time function which is zero for t ≤ 0 and which is (subject to some mild conditions) arbitrarily 
defined for t > 0. Then the direct Laplace transform of f(t), denoted [f(t)], is defined by

�[ ( )] ( ) ( )f t f t e dtst= = −∞

+∫F s
0

(2)

Thus, the operation [ ] transforms f(t), which is in the time domain, into F(s), which is in the complex   
frequency domain, or simply the s-domain. The variable s is the complex number s + jw . While it appears 
that the integration could prove difficult, it will soon be apparent that application of the Laplace transform 
method utilizes tables which cover all functions likely to be encountered in elementary circuit theory.

There is a uniqueness to the transform pairs; that is, if f1(t) and f2(t) have the same s-domain image F(s), 
then f1(t) = f2(t). This permits going back in the other direction, from the s-domain to the time domain, a 
process called the inverse Laplace transform, −1[F(s)] = f(t). The inverse Laplace transform can also be 
expressed as an integral, the complex inversion integral:

�−

− ∞

+ ∞
= = ∫1 1

2
0

0

[ ( )] ( ) ( )F s F s ssf t
j

e dt
j

j

π σ

σ
(3)

In (3) the path of integration is a straight line parallel to the jw-axis, such that all the poles of F(s) lie to 
the left of the line. Here again, the integration need not actually be performed unless it is a question of adding 
to existing tables of transform pairs.

It should be remarked that taking the direct Laplace transform of a physical quantity introduces an extra 
time unit in the result. For instance, if i(t) is a current in A, then I(s) has the units A · s (or C). Because the 
extra unit s will be removed in taking the inverse Laplace transform, we shall generally omit to cite units in 
the s-domain. That is, we shall still call I(s) a “current,” indicate it by an arrow, and so on.

CHAPTER 16
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16.3 Selected Laplace Transforms
The Laplace transform of the unit step function is easily obtained:

  �[ ( )] ( ) [ ]u t e dt e= = − =− − ∞∞

∫ 1
1 1

0
st s

s s
t

0
  

From the linearity property of the Laplace transform, it follows that u(t) = Vu(t) in the time domain has the 
s-domain image V(s) = V/s.

The exponential decay function, which appeared often in the transients of Chapter 7, is another time func-
tion which is readily transformed.

  �[ ] ( )Ae Ae e dt
A

A
eat at t a t− − −∞ − + ∞= = −

+∫ s s

s0
0[ ] =

1
ss + a

  

Or, inversely,

   �− −

+






=1 A
a

Ae at

s
  

The transform of a sine function is also easily obtained.

  �[sin ] (sin )
(sin )ω ω ω

t t e dt
t e et

t

= = − −−∞ − −

∫ s
s ss

0

tt tω ω
ω

ω
ω

cos

s s2 2
0

2 2+













=
+

∞

  

It is also useful to obtain the transform of a derivative, df(t)/dt.

  �
df t

dt
df t

dt
e dtt( ) ( )





= −∞

∫ s

0
  

Integrating by parts,

  �
df t

dt
e f t f t e dtt t( )

[ ( )] ( )( )





= − −− ∞ −
+

s ss
0

== − + = − ++∞ − +∞

∫ ∫f f t e dt ft( ) ( ) ( ) ( )0 0s sF ss

0 0
  

A small collection of transform pairs, including those obtained above, is given in Table 16-1. The last five 
entries of the table present some general properties of the Laplace transform.

EXAMPLE 16.1 Consider a series RL circuit, with R = 5 Ω and L = 2.5 mH. At t = 0, when the current in the circuit 
is 2 A, a source of 50 V is applied. The time-domain circuit is shown in Fig. 16-1.

  

Time Domain s Domain

Ri L
di
dt

-

( )i + = υ ii → ( ) (RI ss sI s V s

I s

) [ ( ) ( )] ( )

( ) ( ) ( .

+ − + =

↓

+ ×

+L i 0

5 2 5 10iii −− − + =3 2
50

)[ ( )]

( ) ( ) (

sI s s

I sclassical method iv ))

) ( ) ( )

= + −
+

= − −

10 8
2000

10 8

s s

(vii A2000ti t e
v

(vi)
← 

−
( ) 10

11� ss

s







=

− +






= −




− −

10

8
1
2000 81 2000( )� e t
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Table 16-1. Laplace Transform Pairs

f (t)    F(s)

1. 1
1
s

  

2. t
1
2s

3. e−at 1
s + a

  

4. te−at
1

2(s + a)
  

5. sinw t
ω

ωs2 2+
  

6. cos w t s

s2 2+ ω
  

7. sin (wt + q)
s

s

sin cosθ ω θ
ω

+
+2 2

  

8. cos (wt + q)
s

s

cosθ ω θ
ω

−
+

sin
2 2

  

9. e−at sin w t
ω

ω( )s + +a 2 2
  

10. e−at cos wt
s

s

+
+ +

a

a( )2 2ω
  

11. sinh wt
ω

ωs2 2−
  

12. cosh wt
s

s2 2− ω
  

13.   
df
dt

  sF(s) − f (0+)

14.   f d
t

( )τ τ
0∫   

F s
s
( )

  

15. f (t − t1) e
t−
1sF s( )   

16.
  

c f t c f t1 1 2 2( ) ( )+
  

c1F1(s) + c2F2(s)

17.
  

f f t d
t

1 2( ) ( )τ τ τ−∫0

    F s F s
1 2
( ) ( )

  

Kirchhoff’s voltage law, applied to the circuit for t > 0, yields the familiar differential equation (i). This equation is 
transformed, term by term, into the s-domain equation (ii). The unknown current i(t) becomes I(s), while the known   
voltage u = 50u(t) is transformed to 50/s. Also, di/dt is transformed into −i(0+) + sI(s), in which i(0+) is 2 A. Equation 
(iii) is solved for I(s), and the solution is put in the form (iv) by the techniques of Section 16.6. Then lines 1, 3, and 16 of   
Table 16-1 are applied to obtain the inverse Laplace transform of I(s), which is i(t). A circuit can be drawn in the   
s-domain, as shown in Fig. 16-2. The initial current appears in the circuit as a voltage source, Li(0+). The s-domain current   
establishes the voltage terms RI(s) and sLI(s) in (ii) just as a phasor current I and an impedance Z create a phasor voltage IZ.

Ch16.indd   436 11/08/17   11:48 AM



CHAPTER 16  The Laplace Transform Method 437

16.4 Convergence of the Integral
For the Laplace transform to exist, the integral (2) should converge. This limits the variable s = s + jw to a 
part of the complex plane called the convergence region. As an example, the transform of x(t) = e−atu(t) is  
1/(s + a), provided Re [s] > −a, which defines its region of convergence.

EXAMPLE 16.2 Find the Laplace transform of x(t) = 3e2tu(t) and show the region of convergence.

 X s s
s s s( ) [ ]( ) ( )= = = −

− − − − −3 3
3

2
2 2 2

0e e dt e dt et t t t ∞∞
∞∞

= − >∫∫ 3
2 2s s, Re[ ]

00

  

The region of convergence of X(s) is the right half plane s > 2, shown hatched in Fig. 16-3.

Fig. 16-1 Fig. 16-2

Fig. 16-3

16.5 Initial-Value and Final-Value Theorems
Taking the limit as s → ∞ (through real values) of the direct Laplace transform of the derivative df(t)/dt,

  lim
( )

lim
( )

li
s s

stdf t
dt

df t
dt

e dt
→ →∞ ∞

−





= =� mm ( ) ( )
s

s s f
→∞

∞ +∫ −
0

{ }F 0   

But e−st in the integrand approaches zero as s → ∞. Thus,

  lim { ( ) ( )}
x

s s f
→∞

+− =F 0 0   

Since f(0+) is a constant, we may write

  f s s
s

( ) lim { ( )}0+

∞
=

→
F   

which is the statement of the initial-value theorem.
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EXAMPLE 16.3 In Example 16.1,

lim{ ( )} lim
s s

s s
s

s→ →∞ ∞
= − +





 = − =I 10

8
2000 10 8 222

which is indeed the initial current, i(0+) = 2 A.
The final-value theorem is also developed from the direct Laplace transform of the derivative, but now the limit is 

taken as s → 0 (through real values).

lim
( )

lim
( )

li
s s

stdf t
dt

df t
dt

e dt
→ →

−





= =
0 0

� mmm { ( ) ( )}
s

s s f
→

+
∞

−∫ 0
0F

0

But lim
( )

( ) ( ) ( )
s

stdf t
dt

e dt df t f f
→

−
∞

+
∞

= = ∞ −∫∫0
0

00

and f(0+) is a constant. Therefore,

f f f s s
s

( ) ( ) ( ) lim{ ( )}∞ − = − ++ +

→
0 0

0
F   

or f s s
s

( ) lim{ ( )}∞ =
→0

F   

This is the statement of the final-value theorem. The theorem may be applied only when all poles of sF(s) have 
negative real parts. This excludes the transforms of such functions as et and cos t, which become infinite or indeterminate 
as t → ∞.

16.6 Partial-Fractions Expansions
The unknown quantity in a problem in circuit analysis can be either a current i(t) or a voltage u(t). In the 
s-domain, it is I(s) or V(s); for the circuits considered in this book, this will be a rational function of the 
form

R s
P s
Q s

( )
( )
( )

=   

where the polynomial Q(s) is of higher degree than P(s). Furthermore, R(s) is real for real values of s, so that 
any nonreal poles of R(s), that is, nonreal roots of Q(s) = 0, must occur in complex conjugate pairs.

In a partial-fractions expansion, the function R(s) is broken down into a sum of simpler rational functions, 
its so-called principal parts, with each pole of R(s) contributing a principal part.

Case 1: s = a is a simple pole. When s = a is a nonrepeated root of Q(s) = 0, the corresponding principal 
part of R(s) is

A
s a A s a R s− = −

→
where lim{( ) ( )}

s a

If a is real, so is A; if a is complex, then a* is also a simple pole and the numerator of its principal part is A*. 
Notice that if a = 0, A is the final value of r(t).

Case 2: s = b is a double pole. When s = b is a double root of Q(s) = 0, the corresponding principal part 
of R(s) is

B
s b

B

s b
1 2

2−
+

−( )
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where the constants B2 and B1 may be found from

  B s b R s B s b R s
s b s b2

2
1= − = − −

→ →
lim{( ) ( )} lim ( ) ( )and

BB

s b
2

2( )−





















  

B1 may be zero. Similar to Case 1, B1 and B2 are real if b is real. The constants for the double pole b* (if it 
exists) are the conjugates of those for b.

The principal part of a higher-order pole can be obtained by analogy to Case 2; we shall assume, however, 
that R(s) has no such poles. Once the partial-functions expansion of R(s) is known, Table 16-1 can be used 
to invert each term and thus obtain the time function r(t).

EXAMPLE 16.4 Find the time-domain current i(t) if its Laplace transform is

  I s
s

s s
( ) = −

+
10

4 2
  

Factoring the denominator,  I s
s

s s s
( )

( )( )
= −

− +
10

2 j j
  

we see that the poles of I(s) are s = 0 (double pole) and s = ± j (simple poles).
The principal part at s = 0 is

   
B B

1 2
2 2

1 10
s s s s

+ = −   

since  B
j j2 0

10
10= −

− +






 = −

→
lim

( )( )s

s
s s

 

  B1 0 2 2 2
10

1

10= −
+

+




















→
lim

( )s
s

s

s s s
== +

+






=
→

lim
s

s

s0 2
10 1

1
1   

The principal part at s = + j is

 
A

s s−
= − +

−j
j
j

0 5 5.
  

since  A
s

s s
= −

+








 = − +

→
lim

( )
( . )

s j j
j

10
0 5 52  

It follows at once that the principal part at s = − j is

  − −
+

0 5 5. j
js

  

The partial-fractions expansion of I(s) is, therefore,

  I s
s s s s

( ) ( . ) ( . )= − − +
−

− −
+

1
10

1
0 5 5

1
0 5 5

1
2

j
j

j
j

  

and term-by-term inversion using Table 16-1 gives

  i t t j e j e tjt jt( ) ( . ) ( . ) (= − − + − − = − −−1 10 0 5 5 0 5 5 1 10 ccos sin )t t− 10   

Heaviside Expansion Formula
If all poles of R(s) are simple, the partial-fractions expansion and termwise inversion can be accomplished 
in a single step:

  �−

=







= ′∑1

1

P s
Q s

P a
Q a

a( )
( )

( )
( )

k

k
k

n
t

e k   (4)

where a1, a2, . . ., an are the poles and ′Q a( )
k

 is dQ(s)/ds evaluated at s = ak.
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16.7 Circuits in the s-Domain
In Chapter 8 we introduced and utilized the concept of generalized impedance, admittance, and transfer func-
tion as functions of the complex frequency s. In this section, we extend the use of the complex frequency to 
transform an RLC circuit, containing sources and initial conditions, from the time domain to the s-domain.

Table 16-2

Time Domain s-Domain s-Domain Voltage Term

RI(s)

sLI(s) + Li(0+)

sLI(s) + Li(0+)

I s
s s
( )
C

V
+ 0   

I s
s s
( )
c

V
− 0

Table 16-2 exhibits the elements needed to construct the s-domain image of a given time-domain circuit. 
The first three lines of the table were in effect developed in Example 16.1. As for the capacitor, we have, 
for t > 0,

υ τ τC

t

t V
C

i d( ) ( )= + ∫0
0

1
  

so that, from Table 16-1,

V s
s

I s
sC

V

C
( )

( )= +0   

EXAMPLE 16.5 In the circuit shown in Fig. 16-4(a) an initial current i1 is established while the switch is in position 1. 
At t = 0, it is moved to position 2, introducing both a capacitor with initial charge Q0 and a constant-voltage source V2.

The s-domain circuit is shown in Fig. 16-4(b). The s-domain equation is

R sL Li
C

V

C

V
I s I s

I s
s s s

( ) ( ) ( )
( )+ − + + =+0 0 2  

in which V0 = Q0/C and i(0+) = i1 = V1/R.
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16.8 The Network Function and Laplace Transforms
In Chapter 8 we obtained responses of circuit elements to exponentials est, based on which we introduced the 
concept of complex frequency and generalized impedance. We then developed the network function H(s) as 
the ratio of input-output amplitudes, or equivalently, the input-output differential equation, natural and forced 
responses, and the frequency response.

In the present chapter we used the Laplace transform as an alternative method for solving differential 
equations. More importantly, we introduce Laplace transform models of R, L, and C elements which, con-
trary to generalized impedances, incorporate initial conditions. The input-output relationship is, therefore, 
derived directly in the transform domain.

What is the relationship between the complex frequency and the Laplace transform models? A short 
answer is that the generalized impedance is the special case of the Laplace transform model (i.e., restricted 
to zero state), and the network function is the Laplace transform of the unit-impulse response.

EXAMPLE 16.6 Find the current developed in a series RLC circuit in response to the following two voltage sources 
applied to it at t = 0: (a) a unit-step, (b) a unit-impulse.

The inductor and capacitor contain zero energy at t = 0−. Therefore, the Laplace transform of the current is I(s) = 
V(s)Y(s).

(a) V(s) = 1/s and the unit-step response is

  

I s
s

Cs

LCs RCs L s

i t
L

e

d

d

( )
( )

( )

=
+ +

=
+ +

=

1

1

1 1

1

2 2 2σ ω

ω
−−σ ωt

d
t u tsin ( ) ( )

  

where

  σ ω= = 



 −R

L
R
L LCd2 2

12

, and   

(b) V(s) = 1 and the unit-impulse response is

  

I s
L

s

s

i t
L

e t

d

d

t
d d

( )
( )

( ) [ cos ( )

=
+ +

= −−

1

1

2 2σ ω

ω ω ωσ σσ ωsin ( )] ( )
d
t u t

  

(The unit-impulse response may also be found by taking the time-derivative of the unit-step response.)

Fig. 16-4
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EXAMPLE 16.7 Find the voltage across the terminals of a parallel RLC circuit in response to the following two current 
sources applied at t = 0: (a) a unit-step, (b) a unit-impulse.

Again, the inductor and capacitor contain zero energy at t = 0−. Therefore, the Laplace transform of the current is 
V(s) = I(s)Z(s).

(a) (s) = 1/s and the unit-step response is

V s
s

RLs

RLCs Ls C s

t
C

d

d

( )
( )

( )

=
+ +

=
+ +

=

1

1

1 1

1

2 2 2σ ω

υ ω eee t u tt
d

−σ ωsin ( ) ( )

where

σ ω= = 



 −1 1

2
12

RC RC LCd, and

(b) I(s) = 1 and the unit-impulse response is

V s
C s

t
C

e t

d

d

t
d d

( )
( )

( ) [ cos( )

=
+ +

= −−

1 1

1

2 2σ ω

υ ω ω ωσ σσσ ωsin ( )] ( )dt u t

SoLVED ProbLEMS

16.1. Find the Laplace transform of e−at cosw t, where a is a constant.

Applying the defining equation �[ ( )] ( )f t f t e dtt= −
∞

∫ s

0

 to the given function, we obtain

�[ ]e t te dt

a t

at a t− − +
∞

=

= − +

∫cos cos

( ) cos

( )ω ω

ω

s

0

s eee e t

a

a t a t− + − + ∞
+

+ +










=

( ) ( ) sin

( )

s s

s

s

ω ω
ω2 2

0

+++
+ +

a

a( )s 2 2ω

16.2. If  [f(t)] = F(s), show that  = [e−atf(t)] = F(s + a). Apply this result to Problem 16.1.

By definition, �[ ( )] ( ) ( )f t f t e dtt= =
∞

−∫0

s F s . Then,

�[ ( )] [ ( )] ( ) (e f t e f t e dt f t eat at t a−
∞

− − − += =∫0

s s ))) ( )tdt a= +
∞

∫ F s
0

(5)

Applying (5) to line 6 of Table 16-1 gives

�[ cos ]
( )

e t
a

a

at− = +
+ +

ω
ω

s

s 2 2

as determined in Problem 16.1.
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 16.3. Find the Laplace transform of f(t) = 1 − e−at, where a is a constant.

  

�[ ] ( ) (1 1
00

− = − = −− − − −
∞∞

−∫∫e e e dt e dt eat at st ts s+aa t

t a t

dt

e
a

e

)

+ )

0

0

1 1 1 1

∞

− −
∞

∫
= − +

+






 = −

s s s
s s(

ss s s+
=

+a
a

a( )

  

Alternative Method:

  � a e d a
a a

a
a

t
−∫













= + =
+

τ τ
0

1/( )
( )

s
s s s

  

 16.4. Find

  �−

−









1

2 2

1

s s( )a
  

Using the method of partial fractions,

  
1

2 2s s s s s( )−
= +

+
+

−a

A B
a

C
a

  

and the coefficients are

  A
a a

B
a a

C
a

a

=
−

= − = − = = +
= =−

1 1 1 1

2

1
2 2

0
2 2s s s s s

s s
( ) ( )

ss a a=
= 1

2 2   

Hence,  � � �− − −

−








 = −







 +1

2 2
1

2
1

21 1 1

s s s( )a

a a/ /2
ss s+









 + −











−
a

a
a

� 1
21/2

 

The corresponding time functions are found from Table 16-1:

  

�− −

−









 = − + +

= −

1
2 2 2 2 2

1 1 1

2

1

2

1

s s( )a a s
e

a
eat at

aa a

e e

a
at

at at

2 2 2

1
2

1
1+ +







 = −

−

(cosh )

  

Alternative Method:
According to lines 11 and 14 of Table 16-1,

  �− −







 = = 





1
2 2

2
1/( ) sinh coshs

s
a a

a
d

a

a

τ τ τ
 = −∫ 0

2
0

1
1

tt

a
at(cosh )   

 16.5. Find

  �− +
+ +









1

2

1

4 4

s

s s s( )
  

Using the method of partial fractions, we have

  
s

s s s s s

+
+

= +
+

+
+

1

2 2 22
1 2

2( ) ( )

A B B
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Then     A B= +
+

= = + =
= =−

s

s

s
s

s s

1

2

1
4

1 1
22

0
2

2( )

and B1 2
2

2
2

2 2

1
4= + +

+
= −

=−

( )
( )

s
s

s s s

Hence, � � �− − −+
+ +









 =













+
−1

2
1

1
4 1

11

4 4

s

s s s s( )
444 1

1
2

22 2s s+












+
+













−�
( )

The corresponding time functions are found from Table 16-1:

�− − −+
+ +









 = − +1

2
2 21

4 4

1
4

1
4

1
2

s

s s s( )
e tet t

16.6.  In the series RC circuit of Fig. 16-5, the capacitor has an initial charge of 2.5 mC. At t = 0, the switch 
is closed and a constant-voltage source V = 100 V is applied. Use the Laplace transform method to 
find the current.

The time-domain equation for the given circuit after the switch is closed is

Ri t
C

Q i d V
t

( ) ( )+ +












=∫1
0

0

τ τ   

or 10
1

50 10
2 5 10

6
3

0

i t i d
t

( ) ( . ) ( )+
×

− × +











−
− ∫ τ τ


= V  (6)

Q0 is opposite in polarity to the charge which the source will deposit on the capacitor. Taking the Laplace 
transform of the terms in (6), we obtain the s-domain equation

10
2 5 10

50 10 50 10

1003

6 6
I s

s

I s

s s
( )

. ( )− ×
×

+
×

=
−

− −

or I s
s

( )
( )

=
+ ×

15

2 103
  (7)

The time function is now obtained by taking the inverse Laplace transform of (7):

i t e t( )
( )

( )=
+ ×









 =− − ×� 1

3
2 1015

2 10
15

3

s
A   (8)

16.7. In the RL circuit shown in Fig. 16-6, the switch is in position 1 long enough to establish steady-state 
conditions, and at t = 0 it is switched to position 2. Find the resulting current.

Fig. 16-5 Fig. 16-6

Ch16.indd   444 11/08/17   11:49 AM



CHAPTER 16  The Laplace Transform Method 445

Assume the direction of the current is as shown in the diagram. The initial current is then i0 = −50/25 = −2 A.
The time-domain equation is

  25 0 01 100i
di
dt

+ =.   (9)

Taking the Laplace transform of (9),

  25 0 01 0 01 0 100I s sI s s( ) . ( ) . ( )+ − =+i /   (10)

Substituting for i(0+),

  25 0 01 0 01 2 100I s sI s s( ) . ( ) . ( )+ + = /   (11)

and  I s
s s s s s

( )
( . )

.
. (

=
+

−
+

=
+

100
0 01 25

0 02
0 01 25

10
250

4

00)
−

+
2
2500s

  (12)

Applying the method of partial fractions,

  
10

2500 2500

4

s s s s( )+
= +

+
A B

  (13)

with  A B= + = = = −
= =−

10
2500 4

10
4

4

0

4

2500
s s

s s

and  

Then,  I s
s s s s s

( ) = −
+

−
+

= −
+

4 4
2500

2
2500

4 6
2500

  (14)

Taking the inverse Laplace transform of (14), we obtain i e t= − −4 6 2500 A( ).

 16.8. In the series RL circuit of Fig. 16-7, an exponential voltage υ = −50 100e t ( )V  is applied by closing the 
switch at t = 0. Find the resulting current.

Fig. 16-7

The time-domain equation for the given circuit is

  Ri L
di
dt

+ = υ   (15)

In the s-domain, (15) has the form

  R sL LiI s I s V s( ) ( ) ( ) ( )+ − =+0   (16)

Substituting the circuit constants and the transform of the source, V(s) = 50/(s + 100), in (16), we get

  10 0 2
5
100

250
100I s s I s s I s s( ) ( . ) ( ) ( ) )(+ = + = +or ( ss + 50)   (17)
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By the Heaviside expansion formula,

� �− −= 





 =

′
1 1[ ( )]

( )
( )

( )

( )
I s

P s
Q s

P a

Q a
an

n

t
e n

nnn=
∑

1 2.

Here, P s Q s s s Q s s( ) , ( ) , ( ) ,= = + + ′ = +250 150 5000 2 1502 aa a1 2100 50= − = −, and . Then,

i e e et t= =
−

+ = −− − − −� 1 100 50 100250
50

250
50

5[ ( )]I s tt te+ −5 50 ( )A   

16.9. The series RC circuit of Fig. 16-8 has a sinusoidal voltage source u = 180 sin (2000t + f) (V) and an 
initial charge on the capacitor Q0 = 1.25 mC with polarity as shown. Determine the current if the 
switch is closed at a time corresponding to f = 90°.

Fig. 16-8

The time-domain equation of the circuit is

40
1

25 10
1 25 10

6
3

0

i t i d
t

( ) ( . ) ( )+
×

× +











−
− ∫ τ τ


= 180 2000cos t   (18)

The Laplace transform of (18) gives the s-domain equation

40
1 25 10 4 10 1803 4

2
I s

s s
I s

s

s
( )

.
( )+ ×

×
+ × =

+

−

−25 10 6 444 106×
(19)

or  I s
s

s s s
( )

.

( )( )

.=
+ × +

−
+

4 5

4 10 10

1 25

10

2

2 6 3 3
(20)

Applying the Heaviside expansion formula to the first term on the right in (20), we have P(s) = 4.5s2,   
Q(s) = s3 + 103s2 + 4 × 106s + 4 × 109, ′ = + × + ×Q s s s( ) 3 2 1 4 12 3 60 0 , a1 = −j2 × 103, a2 = j2 × 103, and   
a3 = −103. Then,

i
j

j
e

jj t= − ×
′ − ×

+ ×
′

− ×P

Q

P

Q

( )

( )

( )2 10

10

2 103

3
2 10

3
3

((( )

( )

( )
.

j
e ej t t

2 10

10

10
1 23

2 10
3

3
103 3

×
+ −

′ −
−× −P

Q
555

1 8 0 9 1 8 0 9

10

2 10 2

3

3

e

j e j e

t

j t j

−

− × ×= − + +( . . ) ( . . ) 1110 103 3

0 35

1 8 2000 3 6 2000

t te

t t

−

= − + −

−.

. sin . cos 000 35

4 02 2000 116 6 0 35

10

10

3

3

.

. sin ( . ) .

e

t e

t−

−= + −�
ttt A( )

(21)

At t = 0, the current is given by the instantaneous voltage, consisting of the source voltage and the 
charged capacitor voltage, divided by the resistance. Thus,

i0

3

6180 90
1 25 10

25 10
40 3 25= − ×

×


 
=

− 
−sin

.
.� � AAA   

The same result is obtained if we set t = 0 in (21).
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16.10. In the series RL circuit of Fig. 16-9, the source is u = 100 sin (500t + f) (V). Determine the resulting 
current if the switch is closed at a time corresponding to f = 0°.

Fig. 16-9

 The s-domain equation of the series RL circuit is

  R sL LiI s I s V s( ) ( ) ( ) ( )+ − =+0   (22)

The transform of the source with f = 0° is

  V s
s

( )
( )( )

( )
=

+
100 500

5002 2
 

Since there is no initial current in the inductance, Li(0+) = 0. Substituting the circuit constants into (22),

  5 0 01
5 10

25 10

5 104

2 4

6

I s sI s
s

I s( ) . ( ) ( )
(

+ = ×
+ ×

= ×
or

ss s2 425 10 500+ × +)( )
  (23)

Expanding (23) by partial fractions,

  I s
s s

( ) = − +
+







+ − −
−







+5
1

500
5

1
500

10j
j

j
j ss + 500

  (24)

The inverse Laplace transform of (24) is

  i t t e et t= − + = +− −10 500 10 500 10 10 14500 500sin cos .114 500 45sin ( ) ( )t − � A   

16.11. Rework Problem 16.10 by writing the voltage function as

  υ = 100 500e j t ( )V   (25)

Now V(s) = 100/(s − j500), and the s-domain equation is

   5 0 01
100

500
10

500

4

I s sI s s I s s( ) . ( ) ( ) ( )+ = − = −j j
or (( )s + 500

 

Using partial fractions,

   I s
s s

( ) = −
−

+ − +
+

10 10
500

10 10
500

j
j

j
  

and inverting,

  
i j e j e

e

j t t

j

= − + − +

=

−( ) ( )

. (

10 10 10 10

14 14

500 500

5000 4 50010 10t tj e− −+ − +π / ) ( ) ( )A
  

(26)
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The actual voltage is the imaginary part of (25); hence the actual current is the imaginary part of (26).

i t e t= − + −14 14 500 4 10 500. sin ( ) ( )π / A

16.12. In the series RLC circuit shown in Fig. 16-10, there is no initial charge on the capacitor. If the switch 
is closed at t = 0, determine the resulting current.

The time-domain equation of the given circuit is

Ri L
di
dt C

i d V
t

+ + =∫1

0

( )τ τ   (27)

Because i(0+) = 0, the Laplace transform of (27) is

R sL
C

V
I s I s

s
I s

s
( ) ( ) ( )+ + =1

  (28)

or 2 1
1

0 5
50

I s sI s
s

I s
s

( ) ( )
.

( )+ + =   (29)

Hence, I s
s s s s

( )
( )( )

=
+ +

=
+ + + −

50

2 2

50
1 12 j j

(30)

Expanding (30) by partial fractions,

I s
s s

( )
) ( )

=
+ +

−
+ −

j
j

j
j

25
1

25
1(

(31)

and the inverse Laplace transform of (31) is

i j e e e tj t j t t= − =− − − + −25 501 1{ } sin ( )( ) ( ) A  

Fig. 16-10 Fig. 16-11

16.13. In the two-mesh network of Fig. 16-11, the two loop currents are selected as shown. Write the 
s-domain equations in matrix form and construct the corresponding circuit.

Writing the set of equations in the time domain,

5
1
2 5 10 21 0 1

0
2 2i Q i d i i

dt

+ +












+ = +∫ ( )τ τ υ and
iii

dt
i2
15+ = υ   (32)

Taking the Laplace transform of (32) to obtain the corresponding s-domain equations,

5 2 5 10 21
0

1 2 2I s s s I s I s V s I s sI( ) ( ) ( ) ( ) ( )+ + + = +
Q 1

2 222 2 12 0 5( ) ( ) ( ) ( )s I s V s− + =+i (33)
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When this set of s-domain equations is written in matrix form,

 
5 1 2 5

5 10 2
1

2

+
+













 =

−( ) ( )
( )

( )/ s
s

I s
I s

V s (( )

( ) ( )

Q

i
0

2

2

2 0

/ s

V s +












+   

The required s-domain circuit can be determined by examination of the Z(s), I(s), and V(s) matrices (see 
Fig. 16-12).

Fig. 16-12 Fig. 16-13

16.14. In the two-mesh network of Fig. 16-13, find the currents which result when the switch is closed.
The time-domain equations for the network are

 

10 0 02 0 02 100

0 02 5 0

1
1 2

2
2

i
di
dt

di
dt

di
dt

i

+ − =

+ −

. .

. ..02 01di
dt

=
  (34)

Taking the Laplace transform of set (34),

 ( . ) ( ) . ( ) ( . )10 0 02 0 02 100 5 0 021 2 2+ − = +s I s sI s s s I/ (( ) . ( )s sI s− =0 02 01   (35)

From the second equation in set (35) we find

 I s I s
s

s2 1 250
( ) ( )=

+






  (36)

which when substituted into the first equation gives

 I s
s

s s s s1
6 67

250
166 7

10 3 33
1

( ) .
( . )

.= +
+







 = −

+ 666 7.
  (37)

Inverting (37),

  i e t
1

166 710 3 33= − −. ( ). A   

Finally, substitute (37) into (36) and obtain

  I s s2 2
1666 67

1
166 7 6 67( ) . . . .= +





 = −whence i e 77t (A)   

16.15. Apply the initial- and final-value theorems to Problem 16.14.
The initial value of i1 is given by

  i s s
s

ss s1 10 6 667
250

166( ) lim [ ( )] lim .+

∞ ∞
= = +

+→ →
I .. .7 6 67











= A   
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and the final value is

i s s
s

ss s1 0 1 0
6 67

250
166 7( ) lim [ ( )] lim . .∞ = = +

+→ →
I 











= 10 A   

The initial value of i2 is given by

i s s
s

ss s2 20 6 667 166 7( ) lim [ ( )] lim . .
+

∞ ∞
= = +


→ →

I 









= 6 67. A

and the final value is

i s s
s

ss s2 0 2 0
6 67 166 7( ) lim[ ( )] lim . .∞ = = +





→ →

I 






= 0   

Examination of Fig. 16-13 verifies each of the preceding initial and final values. At the instant of switch 
closing, the inductance presents an infinite impedance and the currents are i1 = i2 = 100/(10 + 5) = 6.67 A. 
Then, in the steady state, the inductance appears as a short circuit; hence, i1 = 10 A, i2 = 0.

16.16. Solve for i1 in Problem 16.14 by determining an equivalent circuit in the s-domain.
In the s-domain, the 0.02-H inductor has impedance Z(s) = 0.02s. Therefore, the equivalent impedance 

of the network as seen from the source is

Z s
s

s
s
s

( )
( . )( )

.
.= +

+
= +

+



10
0 02 5

0 02 5
15

166 7
250




 

and the s-domain equivalent circuit is as shown in Fig. 16-14. The current is then

I s
V s
Z s s

s
s1

250
15 166 7

6( )
( )
( ) ( . )

= = +
+







 =100

...
( . )

67
250
166 7

s
s s

+
+







   

This expression is identical to (37) of Problem 16.14, and so the same time function i1 is obtained.

Fig. 16-14 Fig. 16-15

16.17. In the two-mesh network shown in Fig. 16-15 there is no initial charge on the capacitor. Find the loop 
currents i1 and i2 which result when the switch is closed at t = 0.

The time-domain equations for the circuit are

10 0 2 10 50 50 10 50
1

1 1 2 2 1
0

i i d i i i
t

+ + = + =∫. τ   

The corresponding s-domain equations are

10
1

0 2 10
50

50 101 1 2 2 1I s s I s I s s I s I( ) . ( ) ( ) ( ) (+ + = + sss s) = 50
  

Solving, I s
s

I s
s s1 2

5
0 625

1 1
0 625

( )
.

( )
.

=
+

= −
+
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Therefore,

  i e i et t
1

0 625
2

0 6255 1= = −− −. .( ) ( )A A   

16.18. Referring to Problem 16.17, obtain the equivalent impedance of the s-domain network and determine 
the total current and the branch currents using the current-division rule.

The s-domain impedance as seen by the voltage source is

 Z s
s

s
s
s

s
( )

( . )= +
+

= + = +
10

40 1 0 2 80 50
8 1

10
/

40 1/0.2 +
55 8
1 8

/
/s +







  (38)

The equivalent circuit is shown in Fig. 16-16; the resulting current is

  I s
V s
Z s

s
s s

( )
( )
( ) ( )

= = +
+

5
1 8
5 8
/
/

  (39)

Expanding I(s) by partial fractions,

  I s s s( ) ( )/= + + = + −1 4
5 8 1 4 5 8

/ from which Ai e t  

Now the branch currents I1(s) and I2(s) can be obtained by the current-division rule. Referring to Fig. 16-17, 
we have

  

I s I s s s1 1

40
40 1 0 2

5
5 8 5( ) ( ) .= +





 = + = −

/ / and i e 00 625

2

1 0 2
40 1 0 2

1

. ( )

( ) ( )
.

.

t A

/
/I s I s

s
s= +





 = ss s− + = − −1

5 8 12
0 625

/ and Ai e t. ( )

 

Fig. 16-16 Fig. 16-17

16.19. In the network of Fig. 16-18 the switch is closed at t = 0 and there is no initial charge on either of 
the capacitors. Find the resulting current i.

Fig. 16-18
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The network has an equivalent impedance in the s-domain

Z s
s s

s s
s

( )
( )( . )

.= + + +
+ + =10

5 1 5 1 0 5
10 1 1 0 5

125/ /
/ /

222 45 2
10 3

+
+

s
s s

+
( )

Hence, the current is

  I s
V s
Z s s

s s

s s

s
( )

( )
( )

( )

( )

(= = +
+ +

= +50 10 3

125 45 2

4
2

000 3
0 308 0 052

. )
( . )( . )s s+ +

Expanding I(s) by partial fractions,

I s s s( ) . .
.= + + + = +−1 8

0 308
31 8
0 052

1
8

0 308/ /
and i e t 3331

8
0 052e t− . ( )a   

16.20. Apply the initial- and final-value theorems to the s-domain current of Problem 16.19.

i s s
s

ss s
( ) lim [ ( )] lim .0

1
8 0 308

+

→∞ →∞
= = +





 +I

3331
8 0 052 4

0

s
s

i s s
s

+












=

∞ =
→

.

( ) lim[ (

A

I )))] lim . .= +




 + +





→s

s
s

s
s0

1
8 0 308

31
8 0 052 







= 0

Examination of Fig. 16-18 shows that initially the total circuit resistance is R = 10 + 5(5)/10 = 12.5 Ω, and 
thus, i(0+) = 50/12.5 = 4 A. Then, in the steady state, both capacitors are charged to 50 V and the current 
is zero.

SuPPLEMENTAry ProbLEMS

16.21. Find the Laplace transform of each of the following functions.

(a) f(t) = At   (c) f(t) = e−at sin wt  (e)   f(t) = cosh wt

(b) f(t) = te−at  (d) f(t) = sinh w t    ( f )   f(t) = e−at sinh w t

Ans. (a)–(e) See Table 16-1.

    ( f ) 
ω

ω( )s + −a 2 2

16.22. Find the inverse Laplace transform of each of the following functions.

(a) F s
s

s s
( )

( )( )
=

+ +2 1
(d)  F s

s s s
( )

( )
=

+ +
3

6 92
  (g) F s

s

s s
( )

( )( )
=

+ +
2

4 52

(b) F s
s s

( ) =
+ +

1

7 122
   (e) F s

s
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Ans. (a) 2 2e et t− −−    (d) 
1
3

1
3

3 3− −− −e tet t (g) 
10
29

2
4

29
2

10
29

5cos sint t e t+ − −  

(b) e et t− −−3 4        (e) e t tt− +(cos sin )2 2 2  

(c) 10 52e et t− −−      ( f ) 2 32e tt− cos  

16.23. A series RL circuit, with R = 10 Ω and L = 0.2 H, has a constant voltage V = 50 V applied at t = 0. Find the 
resulting current using the Laplace transform method.  Ans. i = 5 − 5e−50t (A)
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16.24. In the series RL circuit of Fig. 16-19, the switch is in position 1 long enough to establish the steady state and is 
switched to position 2 at t = 0. Find the current.  Ans. i = 5e−50t (A)

16.25. In the circuit shown in Fig. 16-20, switch 1 is closed at t = 0 and then, at t t= ′ = 4 ms, switch 2 is opened. Find 
the current in the intervals 0 < <t t′ and t t> ′.

 Ans. i e i et t t= − =− − − ′2(1 ) A, 1.06 + 0.667500 1500( ) (A) 

16.26. In the series RL circuit shown in Fig. 16-21, the switch is closed at position 1 at t = 0 and then, at t t= ′ = 50 sµ , it 
is moved to position 2. Find the current in the intervals 0 < <t t′ and t t> ′.

 Ans.  i e i et t t= − = −− − − ′0.1(1 ) (A), 0.06 02000 2000( ) ..05 (A)  

Fig. 16-19 Fig. 16-20

16.27. A series RC circuit, with R = 10 Ω and C = 4 µF, has an initial charge Q0 = 800 µC on the capacitor at the time the 
switch is closed, which results in applying a constant-voltage source V = 100 V. Find the resulting current transient 
if the charge is (a) of the same polarity as that deposited by the source, and (b) of the opposite polarity.

 Ans. (a) i e t= − − ×10 25 103

( )A ; (b) i e t= − ×30 25 103

( )A  

16.28. A series RC circuit, with R = 1 kΩ and C = 20 µF, has an initial charge Q0 on the capacitor at the time the switch 
is closed, which results in applying a constant-voltage source V = 50 V. If the resulting current is i = 0.075e−50t 
(A), find the charge Q0 and its polarity.

 Ans. 500 µC, opposite polarity to that deposited by source

16.29. In the RC circuit shown in Fig. 16-22, the switch is closed at position 1 at t = 0 and then, at t t= ′ = τ (the time 
constant), is moved to position 2. Find the transient current in the intervals 0 < <t t′ and t t> ′.

 Ans. i = 0.5e−200t (A), i e t t= − − − ′.0516 (A)200( )  

Fig. 16-21 Fig. 16-22
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16.30. In the circuit of Fig. 16-23, Q0 = 300 µC at the time the switch is closed. Find the resulting current transient.

Ans. i e t= − ×2 5 2 5 104

. ). (A  

Fig. 16-23 Fig. 16-24

16.31. In the circuit shown in Fig. 16-24, the capacitor has an initial charge Q0 = 25 µC and the sinusoidal voltage source 
is u = 100 sin (1000t + f) (V). Find the resulting current if the switch is closed at a time corresponding to f =
30°.

Ans. i = 0.1535e−4000t + 0.0484 sin (1000t + 106°) (A)

16.32. A series RLC circuit, with R = 5 Ω, L = 0.1 H, and C = 500 µF, has a constant voltage V = 10 V applied at   
t = 0. Find the resulting current.  Ans. i = 0.72e−25t sin 139t (A)

16.33. In the series RLC circuit of Fig. 16-25, the capacitor has an initial charge Q0 = 1 mC and the switch is in position 1 
long enough to establish the steady state. Find the transient current which results when the switch is moved from 
position 1 to 2 at t = 0.

Ans. i = e−25t(2 cos 222t − 0.45 sin 222t) (A)

16.34. A series RLC circuit, with R = 5 Ω, L = 0.2 H, and C = 1 F has a voltage source u = 10e−100t (V) applied at   
t = 0. Find the resulting current.

Ans. i = −0.666e−100t + 0.670e−24.8t − 0.004e−0.2t (A)

16.35. A series RLC circuit, with R = 200 Ω, L = 0.5 H, and C = 100 µF has a sinusoidal voltage source u =
300 sin (500t + f) (V). Find the resulting current if the switch is closed at a time corresponding to f = 30°. 

Ans. i = 0.517e−341.4t − 0.197e−58.6t + 0.983 sin (500t − 19°) (A)

16.36. A series RLC circuit, with R = 5 Ω, L = 0.1 H, and C = 500 µF has a sinusoidal voltage source u =
100 sin 250t (V). Find the resulting current if the switch is closed at t = 0.

Ans. i = e−25t(5.42 cos 139t + 1.89 sin 139t) + 5.65 sin(250t − 73.6°) (A)

Fig. 16-25
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16.37. In the two-mesh network of Fig. 16-26, the currents are selected as shown in the diagram. Write the time-domain 
equations, transform them into the corresponding s-domain equations, and obtain the currents i1 and i2.

  Ans.  i e i et t
1

10
2

102 5 1 5
5 5

= + =− −. ( ) ( ), ( )A A  

16.38. For the two-mesh network shown in Fig. 16-27, find the currents i1 and i2 which result when the switch is closed 
at t = 0.  Ans. i1 = 0.101e−100t + 9.899e−9950t (A), i2 = −5.05e−100t + 5 + 0.05e−9950t (A)

16.39. In the network shown in Fig. 16-28, the 100-V source passes a continuous current in the first loop while the 
switch is open. Find the currents after the switch is closed at t = 0.

 Ans. i1 = 1.67e−6.67t + 5 (A), i2 = 0.555e−6.67t + 5 (A)

Fig. 16-26 Fig. 16-27

16.40. The two-mesh network shown in Fig. 16-29 contains a sinusoidal voltage source u = 100 sin (200t + f) (V). The 
switch is closed at an instant when the voltage is increasing at its maximum rate. Find the resulting mesh currents, 
with directions as shown in the diagram.

 Ans. i1 = 3.01e−100t + 8.96 sin (200t − 63.4°) (A), i2 = 1.505e−100t + 4.48 sin (200t − 63.4°) (A)

16.41. In the circuit of Fig. 16-30, u(0) = 1.2 V and i(0) = 0.4 A. Find u and i for t > 0.

 Ans. υ = − >− −1 3334 0 1334 02 5. . ,.e e tt t  

  i e e tt t= − >− −0 66667 0 2667 02 5. . . ,  

Fig. 16-28 Fig. 16-29

Fig. 16-30
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16.42. In the circuit of Fig. 16-31, ig(t) = cos tu(t). Find u and i.

Ans. u = 0.8305 cos (t − 48.4°), t > 0

 i = 0.2626 cos (t − 66.8°), t > 0

Fig. 16-31

16.43. In the circuit of Fig. 16-31, i
t

t tg
=

1A
cos

<
>





0
0

. Find u and i for t > 0 and compare with results of   
Problems 16.41 and 16.42.

Ans. u = 0.6667e−t − 0.0185e−2.5t + 0.8305 cos (t − 48.4°), t > 0

i = 0.3332e−t − 0.0368e−2.5t + 0.2626 cos (t − 66.8°), t > 0

16.44. Find capacitor voltage u(t) in the circuit shown in Fig. 16-32.

Ans. u = 20 − 10.21e−4t cos (4.9t + 11.53°), t > 0

Fig. 16-32

16.45. Find inductor current i(t) in the circuit shown in Fig. 16-32.

Ans. i = 10 − 6.45e−4t cos (4.9t − 39.2°), t > 0

Ch16.indd   456 11/08/17   11:50 AM



457

Fourier Method of  
Waveform Analysis

17.1 Introduction
In the circuits examined previously, the response was obtained for excitations having constant, sinusoidal, or 
exponential forms. In such cases, a single expression described the forcing function for all time; for instance, 
u = constant or u = V sin wt, as shown in Fig. 17-1(a) and (b).

CHAPTER 17

Fig. 17-1

Certain periodic waveforms, of which the sawtooth in Fig. 17-1(c) is an example, can be only locally 
defined by single functions. Thus, the sawtooth is expressed by f (t) = (V/T)t in the interval 0 < t < T and 
by f (t) = (V/T)(t − T) in the interval T < t < 2T. While such piecemeal expressions describe the waveform  
satisfactorily, they do not permit the determination of the circuit response. Now, if a periodic function can be 
expressed as the sum of a finite or infinite number of sinusoidal functions, the responses of linear networks 
to nonsinusoidal excitations can be determined by applying the superposition theorem. The Fourier method 
provides the means for solving this type of problem.

In this chapter we develop tools and conditions for such expansions. Periodic waveforms may be expressed 
in the form of the Fourier series. Nonperiodic waveforms may be expressed by their Fourier transforms. However, 
a piece of a nonperiodic waveform specified over a finite time period may also be expressed by a Fourier series 
valid within that time period. Because of this, the Fourier series analysis is the main concern of this chapter.

17.2 Trigonometric Fourier Series
Any periodic waveform—that is, one for which f (t) = f (t + T)—can be expressed by a Fourier series 
provided that

(1) If it is discontinuous, there are only a finite number of discontinuities in the period T;

(2) It has a finite average value over the period T;

(3) It has a finite number of positive and negative maxima in the period T.
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When these Dirichlet conditions are satisfied, the Fourier series exists and can be written in trigonometric 
form:

f t a a t a t a t

b

( ) cos cos cos . . .

si

= + + + +

+

1
2 2 30 1 2 3

1

ω ω

nnn sin sin . . .ω ω ωt b t b t+ + +2 32 3
(1)

The Fourier coefficients, the a’s and b’s, are determined for a given waveform by the evaluation integrals. 
We obtain the cosine coefficient evaluation integral by multiplying both sides of (1) by cos nw t and integrat-
ing over a full period. The period of the fundamental, 2p /w, is the period of the series since each term in the 
series has a frequency which is an integral multiple of the fundamental frequency.

f t n t dt a n t dt a( ) cos cos cosω ω
π ωπ ω

= +∫∫ 1
2 0

0

2

0

2

1

//

ωωω ω

ω

π ω

π ω

t n t dt

a n t dtn

cos . . .

cos . . .

0

2

2

0

2

/

/

∫ +

+ + +∫∫ ∫
∫+

b t n t dt

b t n

1
0

2

2
0

2

2

sin cos

sin cos

ω ω

ω ω

π ω

π ω

/

/

dddt + . . .

(2)

The definite integrals on the right side of (2) are all zero except that involving cos2 nw t, which has the value 
(p /w)an. Then

a f t n t dt
T

f t
nt

T
dtn

T

= = ∫∫ω
π ω ππ ω

( ) cos ( ) cos
2 2

00

2 /

(3)

Multiplying (1) by sin nwt and integrating as above results in the sine coefficient evaluation integral.

b f t n t dt
T

f t
nt

T
dtn

T

= = ∫∫ω
π ω ππ ω

( ) sin ( )sin
2 2

00

2 /

(4)

An alternate form of the evaluation integrals with the variable y  = wt and the corresponding period 2p
radians is

a F n dn = ∫1

0

2

π ψ ψ ψ
π

( ) cos   (5)

b F n dn = ∫1

0

2

π ψ ψ ψ
π

( ) sin   (6)

where F(y) = f (y/w). The integrations can be carried out from −T/2 to T/2, −p to +p, or over any other 
full period that might simplify the calculation. The constant a0 is obtained from (3) or (5) with n = 0; 
however, since 1

2 0a  is the average value of the function, it can frequently be determined by inspection 
of the waveform. The series with coefficients obtained from the above evaluation integrals converges 
uniformly to the function at all points of continuity and converges to the mean value at points of   
discontinuity.
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EXAMPLE 17.1 Find the Fourier series for the waveform shown in Fig. 17-2.

Fig. 17-2

The waveform is periodic, of period 2p/w in t or 2p in w t. It is continuous for 0 < w t < 2p and given therein 
by f (t) = (10/2p)wt, with discontinuities at wt = n2p where n = 0, 1, 2, . . . . The Dirichlet conditions are satisfied. The 
average value of the function is 5, by inspection, and thus, 1

2 0 5a = . For n > 0, (5) gives

 

a t n t d t
t

n
n tn = 



 =1 10

2
10

2 2π π ω ω ω
π

ω ωcos ( ) sin ++





= −

∫ 1

10

2
2 0

2
0

2

0

2

2 2

n
n t

n
n

cos

cos cos

ω

π
π

ππ

(( ) = 0

  

Thus, the series contains no cosine terms. Using (6), we obtain

 b t n t d t
t

n
nn = 



 = −1 10

2
10

2 2π π ω ω ω
π

ω ωsin ( ) cos tt
n

n t
n

+





= −∫ 1 10
2

0

2

0

2

sin ω π

ππ

  

Using these sine-term coefficients and the average term, the series is

 f t t t t( ) sin sin sin . . .= − − − − =5
10 10

2 2
10
3 3 5π ω π ω π ω −−

=

∞

∑10

1
π

ωsin n t
n

n

  

The sine and cosine terms of like frequency can be combined as a single sine or cosine term with a phase 
angle. Two alternate forms of the trigonometric series result.

 
f t a c n tn n( ) cos( )= + −∑1

2 0 ω θ   
(7)

and f t a c n tn n( ) sin( )= + +∑1
2 0 ω φ   (8)

where c a bn n n= +2 2 , θn n nb a= −tan ( )1 / , and fn = tan−1 (an/bn). In (7) and (8), cn is the harmonic amplitude, 
and the harmonic phase angles are qn or fn.

17.3 Exponential Fourier Series
A periodic waveform f (t) satisfying the Dirichlet conditions can also be written as an exponential Fourier 
series, which is a variation of the trigonometric series. The exponential series is

 f t A en
jn t

n

( ) =
=−∞

∞

∑ ω
  (9)

To obtain the evaluation integral for the An coefficients, we multiply (9) on both sides by e−jnwt and 
integrate over the full period:
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The definite integrals on the right side of (10) are all zero except And t( )ωπ
0

2
∫ , which has the value 2pAn. Then

A An
jn t

n
j ntf t e d t

T
f t e= =− −∫1

2
1

0

2
2

π ωω
π

π( ) ( ) ( )or ///T
T

dt
0∫ (11)

Just as with the an and bn evaluation integrals, the limits of integration in (11) may be the endpoints of 
any convenient full period and not necessarily 0 to 2p or 0 to T. Note that, f (t) being real, A A− =n n

* , so that 
only positive n values need to be considered in (11). Furthermore, we have

a bn n n n= = −2 2Re mA I A    (12)

EXAMPLE 17.2 Derive the exponential series (9) from the trigonometric series (1).
Replace the sine and cosine terms in (1) by their complex exponential equivalents.

sin cosn t
e e

j
n t

e ejn t jn t jn t jn t

ω ω
ω ω ω ω

= − = +− −

2 2

Arranging the exponential terms in order of increasing n from −∞ to +∞, we obtain the infinite sum (9) where  
A0 = a0/2 and

A An n n n n na jb a jb n= − = + =−
1
2

1
2 1 2 3( ) ( ) , , , . . .for

 

EXAMPLE 17.3 Find the exponential Fourier series for the waveform shown in Fig. 17-2. Using the coefficients of 
this exponential series, obtain an and bn of the trigonometric series and compare with Example 17.1.

In the interval 0 < wt < 2p the function is given by f (t) = (10/2p)w t. By inspection, the average value of the function 
is A0 = 5. Substituting f (t) in (11), we obtain the coefficients An.

An
jn t

jn t

te d t
e= 



 =−

−1
2

10
2

10

2 2π π ω ω
π

ω
ω

( )
( ) ((( )

( )
−

− −








 =∫ jn

jn t j
n2

0

2

0

2

1
10
2ω π

ππ

Inserting the coefficients An in (12), the exponential form of the Fourier series for the given waveform is

f t j e j e j ej t j t j t( ) . . .= − − + +− −10
4

10
2 5

10
2

2

π π π
ω ω ω ++ +j e j t10

4
2

π
ω . . .   (13)

The trigonometric series coefficients are, by (12),

a b
nn n= = −0

10
π   

and so f t t t t( ) sin sin sin . . .= − − − −5
10 10

2 2
10
3 3π ω π ω π ω   

which is the same as in Example 17.1.

17.4 Waveform Symmetry
The series obtained in Example 17.1 contained only sine terms in addition to a constant term. Other wave-
forms will have only cosine terms; and sometimes only odd harmonics are present in the series, whether the 
series contains sine, cosine, or both types of terms. This is the result of certain types of symmetry exhibited 

Ch17.indd   460 11/08/17   11:51 AM



CHAPTER 17  Fourier Method of Waveform Analysis 461

by the waveform. Knowledge of such symmetry results in reduced calculations in determining the Fourier 
series. For this reason the following definitions are important.

1. A function f  (x) is said to be even if f (x) = f (−x).
The function f (x) = 2 + x2 + x4 is an example of an even function since the functional values for x and −x 

are equal. The cosine is an even function, since it can be expressed as the power series

 cos ! ! ! !
. . .x

x x x x= − + − + −1 2 4 6 8

2 4 6 8

  

The sum or product of two or more even functions is an even function, and with the addition of a constant 
the even nature of the function is still preserved.

In Fig. 17-3, the waveforms shown represent even functions of x. They are symmetrical with respect to 
the vertical axis, as indicated by the construction in Fig. 17-3(a).

Fig. 17-3

2. A function f (x) is said to be odd if f (x) = −f (−x).
The function f (x) = x + x3 + x5 is an example of an odd function since the values of the function for x and 

−x are of opposite sign. The sine is an odd function, since it can be expressed as the power series

 sin ! ! ! !
. . .x x

x x x x= − + − + −
3 5 7 9

3 5 7 9   

The sum of two or more odd functions is an odd function, but the addition of a constant removes the odd 
nature of the function. The product of two odd functions is an even function.

The waveforms shown in Fig. 17-4 represent odd functions of x. They are symmetrical with respect to the 
origin, as indicated by the construction in Fig. 17-4(a).

Fig. 17-4
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3. A periodic function f (x) is said to have half-wave symmetry if f (x) = −f (x + T/2), where T is the period. 
Two waveforms with half-wave symmetry are shown in Fig. 17-5.

Fig. 17-5

When the type of symmetry of a waveform is established, the following conclusions are reached. If the 
waveform is even, all terms of its Fourier series are cosine terms, including a constant if the waveform has 
a nonzero average value. Hence, there is no need of evaluating the integral for the coefficients bn, since no 
sine terms can be present. If the waveform is odd, the series contains only sine terms. The wave may be odd 
only after its average value is subtracted, in which case its Fourier representation will simply contain that 
constant and a series of sine terms. If the waveform has half-wave symmetry, only odd harmonics are present 
in the series. This series will contain both sine and cosine terms unless the function is also odd or even. In any 
case, an and bn are equal to zero for n = 2, 4, 6, . . . for any waveform with half-wave symmetry. Half-wave 
symmetry, too, may be present only after subtraction of the average value.

Certain waveforms can be odd or even, depending upon the location of the vertical axis. The square wave 
of Fig. 17-6(a) meets the condition of an even function: f (x) = f (−x). A shift of the vertical axis to the position 
shown in Fig. 17-6(b) produces an odd function f (x) = −f (−x). With the vertical axis placed at any points other 
than those shown in Fig. 17-6, the square wave is neither even nor odd, and its series contains both sine and 

Fig. 17-6
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cosine terms. Thus, in the analysis of periodic functions, the vertical axis should be conveniently chosen to 
result in either an even or odd function, if the type of waveform makes this possible.

The shifting of the horizontal axis may simplify the series representation of the function. As an example, 
the waveform of Fig. 17-7(a) does not meet the requirements of an odd function until the average value is 
removed as shown in Fig. 17-7(b). Thus, its series will contain a constant term and only sine terms.

Fig. 17-7

The preceding symmetry considerations can be used to check the coefficients of the exponential Fourier 
series. An even waveform contains only cosine terms in its trigonometric series and, therefore, the exponen-
tial Fourier coefficients must be pure real numbers. Similarly, an odd function whose trigonometric series 
consists of sine terms has pure imaginary coefficients in its exponential series.

17.5 Line Spectrum
A plot showing each of the harmonic amplitudes in the wave is called the line spectrum. The lines decrease 
rapidly for waves with rapidly convergent series. Waves with discontinuities, such as the sawtooth and square 
wave, have spectra with slowly decreasing amplitudes, since their series have strong high harmonics. Their 
10th harmonics will often have amplitudes of significant value as compared to the fundamental. In contrast, 
the series for waveforms without discontinuities and with a generally smooth appearance will converge 
rapidly, and only a few terms are required to generate the wave. Such rapid convergence will be evident 
from the line spectrum where the harmonic amplitudes decrease rapidly, so that any above the 5th or 6th are 
insignificant.

The harmonic content and the line spectrum of a wave are part of the very nature of that wave and never 
change, regardless of the method of analysis. Shifting the origin gives the trigonometric series a completely 
different appearance, and the exponential series coefficients also change greatly. However, the same harmon-
ics always appear in the series, and their amplitudes,

 c a c a b nn n n0 0
2 21

2 1= = + ≥and ( )   (14)

or   c A c nn n n n0 0 2 1= = + = ≥−| | | | | | | | ( )and A A A   (15)

remain the same. Note that when the exponential form is used, the amplitude of the nth harmonic combines 
the contributions of frequencies +nw and −nw.

EXAMPLE 17.4 In Fig. 17-8, the sawtooth wave of Example 17.1 and its line spectrum are shown. Since there were 
only sine terms in the trigonometric series, the harmonic amplitudes are given directly by 1

2 0a  and |bn|. The same line 
spectrum is obtained from the exponential Fourier series, (13).
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17.6 Waveform Synthesis
Synthesis is a combination of parts so as to form a whole. Fourier synthesis is the recombination of the terms 
of the trigonometric series, usually the first four or five, to produce the original wave. Often it is only after 
synthesizing a wave that the student is convinced that the Fourier series does in fact represent the periodic 
wave for which it was obtained.

The trigonometric series for the sawtooth wave of Fig. 17-8 is

f t t t t( ) sin sin sin . . .= − − − −5
10 10

2 2
10
3 3π ω π ω π ω   

These four terms are plotted and added in Fig. 17-9. Although the result is not a perfect sawtooth wave, it 
appears that with more terms included the sketch will more nearly resemble a sawtooth. Since this wave has 
discontinuities, its series is not rapidly convergent, and consequently, the synthesis using only four terms 
does not produce a very good result. The next term, at the frequency 4w, has amplitude 10/4p, which is 
certainly significant compared to the fundamental amplitude, 10/p. As each term is added, the irregularities 
of the resultant are reduced and the approximation to the original wave is improved. This is what was meant 
when we said earlier that the series converges to the function at all points of continuity and to the mean value 
at points of discontinuity. In Fig. 17-9, at 0 and 2p it is clear that a value of 5 will remain, since all sine terms 
are zero at these points. These are the points of discontinuity; and the value of the function when these points 
are approached from the left is 10, and from the right 0, with the mean value being 5.

Fig. 17-8

Fig. 17-9

17.7 Effective Values and Power
The effective or rms value of the function

f t a a t a t b t b( ) cos cos . . . sin si= + + + + +1
2 20 1 2 1 2ω ω ω nnn . . .2ωt +   

is F a a a b brms = 
  + + + + + +1

2
1
2

1
2

1
2

1
20

2

1
2

2
2

1
2

2
2. . . ... . . . . .= + + + +c c c c0

2
1
2

2
2

3
31

2
1
2

1
2

  (16)

where (14) has been used.
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Considering a linear network with an applied voltage which is periodic, we would expect that the resulting 
current would contain the same harmonic terms as the voltage, but with harmonic amplitudes of different 
relative magnitude, since the impedance varies with nw. It is possible that some harmonics would not appear 
in the current; for example, in a pure LC parallel circuit, one of the harmonic frequencies might coincide with 
the resonant frequency, making the impedance at that frequency infinite. In general, we may write

 υ ω φ ω ψ= + + = + +∑ ∑V V n t i I I n tn n n n0 0sin( ) sin( )and   (17)

with corresponding effective values of

 V V V V I I Irms rmsand= + + + = + +0
2

1
2

2
2

0
2

1
21

2
1
2

1
2

1. . .
22 2

2I + . . .   (18)

The average power P follows from integration of the instantaneous power, which is given by the product 
of u and i:

 p i V V n t I I n tn n n n= = + +





+ +∑υ ω φ ω ψ0 0sin ( ) sin ( ))∑





  (19)

Since u and i both have period T, their product must have an integral number of its periods in T. (Recall 
that for a single sine wave of applied voltage, the product ui has a period half that of the voltage wave.) The 
average may therefore be calculated over one period of the voltage wave:

 P
T

V V n t I I n tn n n n= + +





+ +∑1
0 0sin( ) sin( )ω φ ω ψ∑∑∫ 





dt
T

0

  (20)

Examination of the possible terms in the product of the two infinite series shows them to be of the follow-
ing types: the product of two constants, the product of a constant and a sine function, the product of two 
sine functions of different frequencies, and sine functions squared. After integration, the product of the two 
constants is still V0 I0 and the sine functions squared with the limits applied appear as (VnIn/2) cos (fn − yn); 
all other products upon integration over the period T are zero. Then the average power is

 P V I V I V I V I= + + + +0 0 1 1 1 2 2 2 3 3 3

1
2

1
2

1
2cos cos cosθ θ θ .. . .   (21)

where qn = fn − yn is the angle on the equivalent impedance of the network at the angular frequency nw, and 
Vn and In are the maximum values of the respective sine functions.

In the special case of a single-frequency sinusoidal voltage, V0 = V2 = V3 = … = 0, and (21) reduces to 
the familiar

 P V I V I= =1
2 1 1 1cos cosθ θeff eff   

Compare Section 10.2. Also, for a dc voltage, V1 = V2 = V3 = … = 0, and (21) becomes

 P V I VI= =0 0   

Thus, (21) is quite general. Note that on the right-hand side there is no term that involves voltage and current 
of different frequencies. In regard to power, then, each harmonic acts independently, and

 P P P P= + + +0 1 2
. . .   

17.8 Applications in Circuit Analysis
It has already been suggested above that we could apply the terms of a voltage series to a linear network 
and obtain the corresponding harmonic terms of the current series. This result is obtained by superposition. 
Thus we consider each term of the Fourier series representing the voltage as a single source, as shown in 

Ch17.indd   465 11/08/17   11:51 AM



CHAPTER 17  Fourier Method of Waveform Analysis 466

Fig. 17.10. Now the equivalent impedance of the network at each harmonic frequency nw is used to compute 
the current at that harmonic. The sum of these individual responses is the total response i, in series form, to 
the applied voltage.

Fig. 17-10

EXAMPLE 17.5 A series RL circuit in which R = 5 Ω and L = 20 mH (Fig. 17-11) has an applied voltage   
u = 100 + 50 sin wt + 25 sin 3wt (V), with w  = 500 rad/s. Find the current and the average power.

Fig. 17-11

Compute the equivalent impedance of the circuit at each frequency found in the voltage function. Then obtain the 
respective currents.

At w = 0, Z0 = R = 5 Ω and

I
V
R0
0 100

5 20= = = A   

At w = 500 rad/s, Z1 = 5 + j(500)(20 × 10−3) = 5 + j10 = 11.15 ∠63.4° Ω and

i
V

Z
t t1

1

1
1

50
11 15 63 4= − = − =,max sin( ) . sin( . )ω θ ω � 444 48 63 4. sin( . ) ( )ωt − � A   

At 3w  = 1500 rad/s, Z3 = 5 + j30 = 30.4 ∠ 80.54° Ω and

i
V

Z
t t3

3

3
33

25
30 4 3 80 54= − = −,max sin( ) . sin( .ω θ ω �))) . sin ( . ) ( )= −0 823 3 80 54ωt � A  

The sum of the harmonic currents is the required total response; it is a Fourier series of the type (8).

i t t= + − = −20 4 48 63 4 0 823 3 80 54. sin ( . ) . sin ( . )ω ω� � (( )A   

This current has the effective value

Ieff / / A= + + = =20 4 48 2 0 823 2 410 6 20 252 2 2( . ) ( . ) . .
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which results in a power in the 5-Ω resistor of

 P I R= = =eff W2 410 6 5 2053( . )   

As a check, we compute the total average power by calculating first the power contributed by each harmonic and 
then adding the results.

At W

At rad/s

ω

ω

= = = =

=

0 100 20 2000

500

0 0 0: ( )P V I

:: cosP V I1 1 1 1

1
2

1
2 50 4 48 63 4 50 1= = =cos ( )( . ) . .θ � WW

At 3 500 rad/s: cos (25)(03ω θ= = =1
1
2

1
23 3 3P V I ..823) cos 80.54 1.69 W

Then,

� =

= + +P 2000 50 1 1 69. . == 2052 W

  

Another Method
The Fourier series expression for the voltage across the resistor is

 υ ω ωR Ri t t= = + − + −100 22 4 63 4 4 11 3 80. sin( . ) . sin ( .� 554�) ( )V   

and VRe ( . ) ( . ) .ff = + + = =100
1
2 22 4

1
2 4 11 10 259 101 32 2 2 VV   

Then the power delivered by the source is P V RR= = =eff / / W2 10 259 5 2052( ) .

In Example 17.5 the driving voltage was given as a trigonometric Fourier series in t, and the computations 
were in the time domain. (The complex impedance was used only as a shortcut; Zn and qn could have been 
obtained directly from R, L, and nw.) If, instead, the voltage is represented by an exponential Fourier series,

 υ( )t en
jn t=

−∞

+∞

∑V ω
  

then we have to do with a superposition of phasors Vn (rotating counterclockwise if n > 0, clockwise if 
n < 0), and so frequency-domain methods are called for. This is illustrated in Example 17.6.

EXAMPLE 17.6 A voltage represented by the triangular wave shown in Fig. 17-12 is applied to a pure capacitor C. 
Determine the resulting current.

In the interval −p  < wt  <  0 the voltage function is u  = Vmax + (27Vmax /p)wt; and for 0 < wt < p, u  = Vmax − (2Vmax /p)wt. 

Fig. 17-12

Then the coefficients of the exponential series are determined by the evaluation integral

 Vn
jn tV V t e d t V= + +−1

2 2
1

2π π ω ω π
ω[ ( ) ] ( ) [max max ma/ xx max( ) ] ( )−∫∫ −

−
2

0

V t e d tjn t/
0

π ω ω
π

ω

π
  

from which Vn = 4Vmax/p2n2 for odd n, and Vn = 0 for even n.
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The phasor current produced by Vn (n odd) is

I
V
Zn

n

n

V n
jn C

j
V C

n
= = =

4
1

42 2

2
max max/π

ω
ω

π/

with an implicit time factor ejnw t. The resultant current is therefore

i t e j
V C e

nn
jn t

jn t

( ) max= =
−∞

+∞

−∞

+∞

∑ ∑I ω
ωω

π
4

2

where the summation is over odd n only.
The series could be converted to the trigonometric form and then synthesized to show the current waveform. 

However, this series is of the same form as the result in Problem 17.8, where the coefficients are An = −j(2V/np) 
for odd n only. The sign here is negative, indicating that our current wave is the negative of the square wave of 
Problem 17.8 and has a peak value 2V Cmaxω π/ .

17.9 Fourier Transform of Nonperiodic Waveforms
A nonperiod waveform x(t) is said to satisfy the Dirichlet conditions if

(a) x(t) is absolutely integrable, | ( )|x t dt < ∞
−∞
+∞

∫ , and

(b) the number of maxima and minima and the number of discontinuities of x(t) in every finite interval is 
finite.

For such a waveform, we can define the Fourier transform X( f  ) by

X( ) ( )f x t e dtj ft= −

−∞

∞

∫ 2π
  (22a)

where f is the frequency. The above integral is called the Fourier integral. The time function x(t) is called the 
inverse Fourier transform of X( f  ) and is obtained from it by

x t f e dfj ft( ) ( )=
−∞

∞

∫ X 2π
  (22b)

x(t) and X( f ) form a Fourier transform pair. Instead of f, the angular velocity w = 2p f may also be used, in 
which case (22a) and (22b) become, respectively,

X( ) ( )ω ω= −

−∞

∞

∫ x t e dtj t
  (23a)

and x t X e dj t( ) ( )=
−∞

∞

∫1
2π ω ωω

  (23b)

EXAMPLE 17.7 Find the Fourier transform of x(t) = e−atu(t), a > 0. Plot X( f ) for −∞ < f < +∞.
From (22a), the Fourier transform of x(t) is

X( )f e e dt
a j f

at j ft= = +
− −

∞

∫ 2

0

1
2

π
π   (24)

X( f ) is a complex function of a real variable. Its magnitude and phase angle, |X( f  )| and /X( )f , respectively, shown 
in Figs. 17-13(a) and (b), are given by

X( )f
a f

=
+

1

42 2 2π
(25a)

and /X( ) tan ( )f f a= − −1 2π /   (25b)
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Alternatively, X( f ) may be shown by its real and imaginary parts, Re [X( f )] and Im [X( f )], as in Figs. 17-14(a) 
and (b).

 Re ( )[ ]X f
a

a f
=

+2 2 24π
  (26a)

 Im [ )]X( f
f

a f
= −

+
2

42 2 2
π
π

  (26b)

Fig. 17-13

Fig. 17-14

EXAMPLE 17.8 Find the Fourier transform of the square pulse

 x t
T t T

( ) =
− < <{1

0
for
otherwise

  

From (22a),

 X( ) [ ]
sin

f e dt
j f

e
f T

f
j ft j f

T
T

T

= = − =−
−

−

2 21
2

2π π
π

π
π

TT

∫   (27)

Because x(t) is even, X( f ) is real. The transform pairs are plotted in Figs. 17-15(a) and (b) for T = 1
2 s.

EXAMPLE 17.9 Find the Fourier transform of x(t) = eatu(−t), a > 0.

 X( )f e e dt
a j f

at j ft= = −
−

−∞∫ 2
0

1
2

π
π   (28)
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EXAMPLE 17.10 Find the inverse Fourier transform of X( f ) = 2a/(a2 + 4p 2f  2), a > 0.
By partial fraction expansion we have

X( )f
a j f a j f

= + + −
1
2

1
2π π (29)

The inverse of each term in (29) may be derived from (24) and (28) so that

x t e u t e u t e tat at a t( ) ( ) ( ) | |= + − =− − for all   

See Fig. 17-16.

Fig. 17-15

Fig. 17-16

17.10 Properties of the Fourier Transform
Some properties of the Fourier transform are listed in Table 17-1. Several commonly used transform pairs 
are given in Table 17-2.

17.11 Continuous Spectrum
|X( f )|2, as defined in Section 17.9, is called the energy density or the spectrum of the waveform x(t). Unlike 
the periodic functions, the energy content of a nonperiodic waveform x(t) at each frequency is zero. However, 
the energy content within a frequency band from f1 to f2 is

W f df
f

f

= ∫2
2

1

2

x( )   (30)
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Table 17-1. Fourier Transform Properties

Time Domain x t X f e dtj ft( ) ( )=
−∞

∞

∫ 2π  Frequency Domain X( ) ( )f x t e dtj ft= −

−∞

∞

∫ 2π
 

1. x(t) real X( f ) = X*(−f )

2. x(t) even, x(t) = x(−t) X( f ) = X(−f )

3. x(t), odd, x(t) = −x(−t) X( f ) = −X(−f )

4. X(t) x(−f )

5. x X f df( ) ( )0 =
−∞

∞

∫  X x t dt( ) ( )0 =
−∞

∞

∫  

6. y(t) = x(at) Y f
a

X f a( ) | | ( )= 1
/  

7. y(t) = tx(t) Y f
j

dX f
df

( )
( )= − 1

2π  

8. y(t) = x(−t) Y( f ) = X(−f  )

9. y(t) = x(t − t0) Y f e X f
j ft

( ) ( )= − 2 0π
 

Table 17-2. Fourier Transform Pairs

x(t)   X( f )

 1. e−atu(t), a > 0  
1
2a j f+ π  

 2. e−a|t|, a > 0  
2

42 2 2
a

a f+ π
 

 3.  te u t aat− >( ), 0   
1

2 2( )a j f+ π
 

 4.
 
exp( )−π τt2 2/   τ π τexp( )− f 2 2

 

 5.

 
  

 6.

  

 7. 1   d( f )

 8. d(t)   1

 9. sin 2p f0t  
δ δ( ) ( )f f f f

j
− − +0 0

2  

10. cos 2p f0t  
δ δ( ) ( )f f f f− + +0 0

2  
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EXAMPLE 17.11 Find the spectrum of x(t) = e−atu(t) − eatu(−t), a > 0, shown in Fig. 17-17.

Fig. 17-17

We have x(t) = x1(t) − x2(t). Since x1(t) = e−atu(t) and x2(t) = eatu(−t),

X X1 2

1
2

1
2( ) ( )f

a j f
f

a j f
= + = −π π

Then X X X( ) ( ) ( )f f f
j f

a f
= − = −

+1 2 2 2 2
4

4

π
π

 

from which X( )
( )

f
f

a f

2
2 2

2 2 2 2
16

4
=

+
π

π
 

EXAMPLE 17.12 Find and compare the energy contents W1 and W2 of y1(t) = e−|at| and y2(t) = e−atu(t) − eatu(−t), a > 0, 
within the band 0 to 1 Hz. Let a = 200.

From Examples 17.10 and 17.11,

Y Y1

2
2

2 2 2 2 2

2
2 2

2
4

4

16

4
( )

( )
( )

(
f

a

a f
f

f

a
=

+
=

+π
π

π
and 222 2 2f )

  

Within 0 <   f   <  1 Hz, the spectra and energies may be approximated by

Y

Y

1

2 2 4
1

4

2

4 10 2 10 200( ) ( )

(

f a W≈ = = =− −/ J/Hz and J Jµ

fff f W)2 7 2
210 0≈ ≈− and

The preceding results agree with the observation that most of the energy in y1(t) is near the low-frequency region in 
contrast to y2(t).

SoLVEd ProbLEMS

17.1. Find the trigonometric Fourier series for the square wave shown in Fig. 17-18 and plot the line 
spectrum.

In the interval 0 < wt < p, f (t) = V; and for p < wt < 2p, f (t) = −V. The average value of the wave is zero; 
hence, a0/2 = 0. The cosine coefficients are obtained by writing the evaluation integral with the functions 
inserted as follows:
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a V n t d t V n t d tn = + −




 ∫∫1

0
π ω ω ω ω

π

ππ

cos ( ) ( ) cos ( )
2















− 





=
V

n
n t

n
n tπ ω ω

π

π

π1 1

0

2

sin sin












= 0 for all n

 

Thus, the series contains no cosine terms. Proceeding with the evaluation integral for the sine terms,

 

b V n t d t V n t d tn = + −



∫ ∫1

0

2

π ω ω ω ω
π

π

π

sin ( ) ( )sin ( )








= −





+ 





V
n

n t
n

n tπ ω ω
π

π

1 1

0

2

cos cos
ππ

π π π π













= − + + − =V
n

n n n( cos cos cos cos )0 2
22

1
V
n

nπ π( cos )−

  

Then bn = 4V/pn for n = 1, 3, 5, . . ., and bn = 0 for n = 2, 4, 6, . . . . The series for the square wave is

 f t
V

t
V

t
V

t( ) sin sin sin . . .= + + +4 4
3 3

4
5 5π ω π ω π ω   

The line spectrum for this series is shown in Fig. 17-19. This series contains only odd-harmonic sine 
terms, as could have been anticipated by examination of the waveform for symmetry. Since the wave in 
Fig. 17-18 is odd, its series contains only sine terms; and since it also has half-wave symmetry, only odd 
harmonics are present.

Fig. 17-18

Fig. 17-19 Fig. 17-20

 17.2. Find the trigonometric Fourier series for the triangular wave shown in Fig. 17-20 and plot the line 
spectrum.

The wave is an even function, since f (t) = f (−t), and if its average value, V/2, is subtracted, it also has 
half-wave symmetry, that is, f (t) = −f (t + p). For −p  < wt < 0, f (t) = V + (V/p)wt; and for 0 < wt < p, f (t) = 
V − (V/p)wt. Since even waveforms have only cosine terms, all bn = 0. For n ≥ 1,
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a V V t n t d t V V tn = + + −1 1
π π ω ω ω π π ω[ ( ) ]cos ( ) [ ( ) ]co/ / ss ( )

cos ( ) cos (

n t d t

V
n t d t

t
n t d

ω ω

π ω ω ω
π ω

π

π 0

0

∫∫−

= + ωωω ω
π ω ω

π

π

ππ

π

t
t

n t d t

V

) cos ( )−












=

∫∫∫ −− 0

0

2
1

nnn
n t

t
n t

n
n t

t
n2

0

2
1

cos sin cos sω ω
π ω ω ω

π
+





− +
−

iiin

[cos cos(

n t

V

n
n

ω

π
π

π


















= − −

0

2 2 0 ))) cos cos ] ( cos )− + = −n
V

n
nπ

π
π0

2
12 2

As predicted from half-wave symmetry, the series contains only odd terms, since an = 0 for n = 2, 4, 6, . . . . 
For n = 1, 3, 5, . . ., an = 4V/p2n2. Then the required Fourier series is

f t
V V

t
V

t
V

( ) cos
( )

cos
( )

cos= +
−

+ +2
4 4

3
3

4

52 2 2π
ω

π
ω

π
555ωt + . . .

The coefficients decrease as 1/n2, and thus the series converges more rapidly than that of Problem 17.1. This 
fact is evident from the line spectrum shown in Fig. 17-21.

17.3. Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-22 and plot the line 
spectrum.

By inspection, the waveform is odd (and therefore has average value zero). Consequently the series will 
contain only sine terms. A single expression, f(t) = (V/p)wt, describes the wave over the period from −p to 
+p, and we will use these limits on our evaluation integral for bn.

b V t n t d t
V

n
n t

t
nn = = −1 1

2 2π π ω ω ω
π

ω ω
( ) sin ( ) sin cos/ nnn t

V
n

nω π π
π

π

π

π






= −
−−∫

2
(cos )  

As cos np is +1 for even n and −1 for odd n, the signs of the coefficients alternate. The required series is

f t
V

t t t t( ) sin sin sin sin . .= − + − +2 1
2 2

1
3 3

1
4 4π ω ω ω ω ...{ }

The coefficients decrease as 1/n, and thus the series converges slowly, as shown by the spectrum in Fig. 
17-23. Except for the shift in the origin and the average term, this waveform is the same as in Fig. 17-8; 
compare the two spectra.

Fig. 17-21 Fig. 17-22

Ch17.indd   474 11/08/17   11:52 AM



CHAPTER 17  Fourier Method of Waveform Analysis 475

 17.4. Find the trigonometric Fourier series for the waveform shown in Fig. 17-24 and sketch the line 
spectrum.

In the interval 0 < wt < p, f(t) = (V/p)wt; and for p < wt < 2p, f(t) = 0. By inspection, the average value of 
the wave is V/4. Since the wave is neither even nor odd, the series will contain both sine and cosine terms. 
For n > 0, we have

 a V t n t d t
V

n
n t

t
nn = = +∫1 1

0
2 2π π ω ω ω

π
ω ωπ

( ) cos ( ) cos/ ssin (cos )n t
V

n
nω

π
π

π






= −
0

2 2 1   

When n is even, cos np  − 1 = 0 and an = 0. When n is odd, an = −2V/(p2n2). The bn coefficients are

 b V t n t d t
V

n
n t

t
nn = = −∫1 1

0
2 2π π ω ω ω

π
ω ωπ

( ) sin ( ) sin/ ccos (cos ) ( )n t
V
n

n
V
n

nω π π π

π






= − = − +

0

11  

Then the required Fourier series is

 

f t
V V

t
V

t
V

( ) cos
( )

cos
( )

cos= − − −4
2 2

3
3

2

5
52 2 2π

ω
π

ω
π

ωω

π ω π ω π ω

t

V
t

V
t

V
t

−

+ − + −

. . .

sin sin sin . . .
2 2 3 3

 

The even-harmonic amplitudes are given directly by |bn|, since there are no even-harmonic cosine terms.

However, the odd-harmonic amplitudes must be computed using c a bn n n= +2 2 . Thus,

 c V V V c V c V1
2 2 2

3 52 0 377 0 109= + = = =( ) ( ) ( . ) ( . ) (/ /π π 00 064. )   

The line spectrum is shown in Fig. 17-25.

Fig. 17-23 Fig. 17-24

 17.5. Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-26 and 
sketch the line spectrum.

Fig. 17-25 Fig. 17-26
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The wave shows no symmetry and we, therefore, expect the series to contain both sine and cosine terms. 
Since the average value is not obtainable by inspection, we evaluate a0 for use in the term a0/2.

a V t d t
V

t
V

0
0

0

1 2= = − =∫π ω ω π ω π

π
πsin ( ) [ cos ]   

Next we determine an:

a V t n t d t

V n t n t

n =

= − −

∫1

0
π ω ω ω

π
ω ω

π

sin cos ( )

sin sin cooos cos

( )
(cos )

n t t

n

V

n
n

ω ω
π

π
π

− +






=
−

+2
0

21 1
1

With n even, an = 2V/p(1 − n2) and with n odd, an = 0. However, this expression is indeterminate for   
n = 1 and, therefore, we must integrate separately for a1.

a V t t d t
V

t d t1
0 0

1 1
2 2= =∫ ∫π ω ω ω π ω ω

π π

sin cos ( ) sin ( ) === 0   

Now we evaluate bn:

b V t n t d t
V n t n t

n = = −∫1

0
π ω ω ω π

ω ωπ

sin sin ( )
sin cos sinnn cosn t t

n

ω ω π

− +






=2
01

0   

Here again the expression is indeterminate for n = 1 and b1 is evaluated separately.

b V t d t
V t t

1
2

0 0

1
2

2
4= = −





=∫π ω ω π
ω ωπ π

sin ( )
sin VVV

2   

Then the required Fourier series is

f t
V

t t t( ) sin cos cos cos= + − − −π
π ω ω ω1 2

2
3 2

2
15 4

2
35 6ωωωt −





. . .   

The spectrum, Fig. 17-27, shows the strong fundamental term in the series and the rapidly decreasing 
amplitudes of the higher harmonics.

Fig. 17-27 Fig. 17-28

17.6. Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-28, 
where the vertical axis is shifted from its position in Fig. 17-26.

The function is described in the interval −p < wt < 0 by f(t) = −V sin wt. The average value is the same 
as that in Problem 17.5, that is, 1

2 0a V= /π . For the coefficients an, we have

a V t n t d t
V

n
nn = − =

−
+1

1
12π ω ω ω

π
π( sin ) cos ( )

( )
( cos )

−−−∫ π

0
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For n even, an = 2V/p(1 − n2); and for n odd, an = 0, except that n = 1 must be examined separately.

 a V t t d t1

0
1

0= − =
−∫π ω ω ω

π
( sin ) cos ( )   

For the coefficients bn, we obtain

 b V t n t d tn = − =
−∫

1
0

0

π ω ω ω
π

( sin )sin ( )   

except for n = 1.

 b V t d t
V

1
2

0
1

2= − = −
−∫π ω ω

π
( )sin ( )  

Thus, the series is

 f t
V

t t t( ) sin cos cos cos= − − − −π
π ω ω ω1 2

2
3 2

2
15 4

2
35 6ωωt −





. . .   

This series is identical to that of Problem 17.5, except for the fundamental term, which has a negative coef-
ficient in this series. The spectrum would obviously be identical to that of Fig. 17-27.

Another Method
When the sine wave V sin wt is subtracted from the graph of Fig. 17.26, the graph of Fig. 17-28 results.

 17.7. Obtain the trigonometric Fourier series for the repeating rectangular pulse shown in Fig. 17-29 and 
plot the line spectrum.

Fig. 17-29

With the vertical axis positioned as shown, the wave is even and the series will contain only cosine terms 
and a constant term. In the period from −p to +p used for the evaluation integrals, the function is zero except 
from −p/6 to +p /6.

 a V d t
V

a V n t d t
V

nn0
6

6
1

3
1 2= = = =

−∫π ω π ω ω
π

π

( ) cos ( )
/

/

ππ
π

π

π

−∫ /

/

6

6

6sin
n

 

Since sin , , , , , , ,. . .nπ / / / /2 / /6 1 2 3 2 1 3 1 2 0 1 2= −  for n = 1, 2, 3, 4, 5, 6, 7, . . ., respectively, the series 
is

 

f t
V V

t t( ) cos cos= + + 



 + 




6
2 1

2
3

2
1
2 2 1

1
3π ω ω  + 










+ 





cos cos

cos

3
3

2
1
4 4

1
2

1
5

ω ωt t

55
1
2

1
7 7ω ωt t− 



 − 


cos . . .

  

or f t
V V

n
n n t

n

( ) sin( ) cos= +
=

∞

∑6
2 1

6

1
π π ω/  
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The line spectrum, shown in Fig. 17-30, decreases very slowly for this wave, since the series converges 
very slowly to the function. Of particular interest is the fact that the 8th, 9th, and 10th harmonic amplitudes 
exceed the 7th. With the simple waves considered previously, the higher-harmonic amplitudes were progres-
sively lower.

17.8. Find the exponential Fourier series for the square wave shown in Figs. 17-18 and 17-31, and sketch 
the line spectrum. Obtain the trigonometric series coefficients from those of the exponential series 
and compare with Problem 17.1.

In the interval −p < wt < 0, f(t) = −V; and for 0 < wt < p, f(t) = V. The wave is odd; therefore, A0 = 0 and 

the An will be pure imaginaries.

An
jn t jn tV e d t Ve d t= − +





− −

− ∫∫1
2

0

0

π ω ωω ω
π

π
( ) ( ) ( )









= − −

 

+ −
−

−

−V
jn

e
jn

ejn t j

2
1 10

π
ω

π( ) ( )
nnn t

jn jnV
j n

e e e

ω
π

π
π



















= − − + + −

0

0

2 ( ππ π
π− = −e j

V
n

e jn0 1) ( )

For n even, e jnp = +1 and An = 0; for n odd, e jnp = −1 and An = −j(2V/np) (half-wave symmetry). The required 
Fourier series is

f t j
V

e j
V

e j
V

e j
Vj t j t j t( ) . . .= + + − −− −2

3
2 2 23

π π π
ω ω ω

333
3

π
ωe j t − . . .

The graph in Fig. 17-32 shows amplitudes for both positive and negative frequencies. Combining the 
values at +n and −n yields the same line spectrum as plotted in Fig. 17-19.

Fig. 17-30 Fig. 17-31

Fig. 17-32
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The trigonometric-series cosine coefficients are

 an n= =2 0Re A  

and b
V

n
nn n= − =2

4
Im A π for odd only

These agree with the coefficients obtained in Problem 17.1.

 17.9. Find the exponential Fourier series for the triangular wave shown in Figs. 17-20 and 17-33 and sketch 
the line spectrum.

Fig. 17-33

In the interval −p < wt < 0, f(t) = V + (V/p)wt; and for 0 < wt < p, f (t) = V − (V/p)wt. The wave is even 
and, therefore, the An coefficients will be purely real. By inspection, the average value is V/2.

 

An
jn t jV V t e d t V V t e= + + −− −1

2π π ω ω π ωω[ ( ) ] ( ) [ ( ) ]/ / nn t

jn t

d t

V
te d t

ω
π

π

ω

ω

π
ω ω

( )

(

0

0

22

∫∫−

−













= )) ( ) ( ) ( )+ − +− −

−− ∫ ∫∫ ω ω π ωω
π

ω

π

π

π
t e d t e d tjn t jn t

0

0











=
−

− −










−

−

V e

jn
jn t

jn t

2
12 2π

ω
ω

π( )
( )

00

2
0

1−
−

− −





















=

−e

jn
jn t

jn tω π

ω
( )

( )
VV

n
e jn

π
π

2 2 1( )−

 

For even n, ejnp = +1 and An = 0; for odd n, An = 2V/p2n2. Thus the series is

 f t
V

e
V

e
V Vj t j t( ) . . .

( ) ( ) (
= +

−
+

−
+ +− −2

3

2
2

2
2

3
2π π

ω ω

ππ π
ω ω

) ( )
. . .

2 2
32

3
e

V
ej t j t+ +  

The harmonic amplitudes

 c
V

c
n

V n nn n0 2 22 2
0 2 4 6

4 1 3 5
= = =

=
=

| |A
( , , , . . .)

( , ,/π ,, . . .)





are exactly as plotted in Fig. 17-21.

17.10. Find the exponential Fourier series for the half-wave rectified sine wave shown in Figs. 17-26 and 
17-34 and sketch the line spectrum.

Fig. 17-34
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In the interval 0 < wt < p, f (t) = V sin wt; and from p to 2p, f(t) = 0. Then

An
jn t

jn t

V t e d t

V e

n

=

=
−

−

−

∫1
2

2 1

0

2

π ω ω

π

ω
π

ω

sin ( )

( )
(−−− −









 = +

−

−

jn t t
V e

n

jn

sin cos )
( )

( )
ω ω

π

π π

0
2
1

2 1

For even n, An = V/p (1 − n2); for odd n, An = 0. However, for n = 1, the expression for An becomes inde-
terminate. L’Hôpital’s rule may be applied; in other words, the numerator and denominator are separately 
differentiated with respect to n, after which n is allowed to approach 1, with the result that A1 = −j(V/4).

The average value is

A V t d t
V

t
V

0 0
0

1
2 2= = −[ ] =∫π ω ω π ω π

π
π

sin ( ) cos   

Then the exponential Fourier series is

f t
V

e
V

e j
V

e
V

jj t j t j t( ) . . .= − − + + −− − −
15 3 4

4 2

π π π
ω ω ω VVV

e
V

e
V

ej t j t j t

4 3 15
2 4ω ω ω

π− π− − . . .   

The harmonic amplitudes,

c A
V

c
V n n

Vn n0 0

2

2
2 1 2 4 6

= = = =
− =

π

π
| |

( ) ( , , ,. . .)
A

/
/2 (((

( , , ,. . .)
n
n

=
=






1
3 5 70

are exactly as plotted in Fig. 17-27.

17.11. Find the average power in a resistance  R = 10  Ω,  if the current in Fourier series form is 
i = 10 sin wt + 5 sin 3wt + 2 sin 5wt (A).

The current has an effective value Ieff A.= + + = =1
2

2 1
2

2 1
2

210 5 2 64 5 8 03( ) ( ) ( ) . .  Then the aver-
age power is P I R= = =eff

2 W( . ) .64 5 10 645  

Another Method
The total power is the sum of the harmonic powers, which are given by 1

2 V Imax cosmax θ . But the voltage 
across the resistor and the current are in phase for all harmonics and θn = 0. Then,

υ ω ω ωR Ri t t t= = + +100 50 3 20 5sin sin sin   

and P = + + =1
2 100 10

1
2 50 5

1
2 20 2 645( )( ) ( )( ) ( )( ) W.  

17.12. Find the average power supplied to a network if the applied voltage and resulting current are

υ = + × + + ×

=

50 50 5 10 30 10 20 2 103 4 4sin sin sin ( )t t t

i

V

1111 2 5 10 63 4 10 6 10 45 83 4. sin ( . ) . sin ( ) .× + + + +t t� � 9997 2 10 26 64sin ( . ) ( )× +t � A

The total average power is the sum of the harmonic powers:

P = + +( )( ) ( )( . ) cos . ( )( . )50 0
1
2 50 11 2 63 4

1
� 2 30 10 6 cccos ( )( . ) cos . .45 2 20 8 97 26 6 317 7

1
� �+ = W   

17.13. Obtain the constants of the two-element series circuit with the applied voltage and resultant current 
given in Problem 17.12.
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The voltage series contains a constant term 50, but there is no corresponding term in the current series, 
thus indicating that one of the elements is a capacitor. Since power is delivered to the circuit, the other ele-
ment must be a resistor.

 Ieff A= + + =1
2 11 2

1
2 10 6

1
2 8 97 12 62 2 2( . ) ( . ) ( . ) .   

The average power is P I R= eff
2 , from which R P I= = = Ω/ /eff

2 317 7 159 2 2. . .
At w  = 104 rad/s, the current leads the voltage by 45°. Hence,

 1 45
1 1

10 2
504= = = =tan

( )( )
� ωCR

Cor Fµ   

Therefore, the two-element series circuit consists of a resistor of 2 Ω and a capacitor of 50 µF.

17.14. The voltage wave shown in Fig. 17-35 is applied to a series circuit with R = 2 kΩ and L = 10 H. Use 

Fig. 17-35

the trigonometric Fourier series to obtain the voltage across the resistor. Plot the line spectra of the 
applied voltage and uR to show the effect of the inductance on the harmonics. Assume w = 377 rad/s.

The applied voltage has average value Vmax/p, as in Problem 17.5. The wave function is even and hence 
the series contains only cosine terms, with coefficients obtained from the following evaluation integral:

 a t n t d t
n

nn = =
−

1
300

600

1
22π ω ω ω

π
πcos cos ( )

( )
cos / V

−−∫ π

π

/

/

2

2

  

Here, cos np/2 has the value −1 for n = 2, 6, 10, . . . , and +1 for n = 4, 8, 12, . . . . For n odd, cos np/2 = 0. 
However, for n = 1, the expression is indeterminate and must be evaluated separately.

 a t d t
t t

1
21

300
300

2
2
4= = +



−π ω ω π

ω ω
π

cos ( )
sin

//

/

/

/

V
2

2

2

2
300

2

π

π

π

=
−∫   

Thus, υ π
π ω ω ω ω= + + − +300

1 2
2
3 2

2
15 4

2
35 6cos cos cos cost t t tt −





. . . ( )V  

In Table 17-3, the total impedance of the series circuit is computed for each harmonic in the voltage 
expression. The Fourier coefficients of the current series are the voltage series coefficients divided by Zn; 
the current terms lag the voltage terms by the phase angles qn.

Table 17-3

n nw, rad/s R, kΩ nwL, kΩ Zn, kΩ qn

0 0 2 0 2 0°
1 377 2 3.77 4.26 62°
2 754 2 7.54 7.78 75.1°
4 1508 2 15.08 15.2 82.45°
6 2262 2 22.62 22.6 84.92°
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I

i t

i

0

1

2

00

300 2
4 26 62

60

= 3

= −

=

/
2 mA

/
mA

π

ω. cos( ) ( )�

000 3
7 78 2 75 1

/
mA

π ω. cos( . ) ( )t − �



Then the current series is

i t= + − +300
2

300
2 4 26 62

600
3 7 78π ω π( )( . ) cos( ) ( . )� cccos( . )

( . ) cos ( . )

2 75 1

600
15 15 2 4 82 45

ω

π ω

t

t

−

− −

�

� ++ − −600
35 22 6 6 84 92π ω( . ) cos( . ) . . . ( )t � mA

and the voltage across the resistor is

υ ω ωR Ri t t= = + − + −95 5 70 4 62 16 4 2 75 1. . cos ( ) . cos ( .� ���

� �

)

. cos ( . ) . cos ( .− − + −1 67 4 82 45 0 483 6 84 92ω ωt t ))) . . . ( )− V

Figure 17-36 shows clearly how the harmonic amplitudes of the applied voltage have been reduced by 
the 10-H series inductance.

Fig. 17-36

17.15. The current in a 10-mH inductance has the waveform shown in Fig. 17-37. Obtain the trigonometric 
series for the voltage across the inductance, given that w = 500 rad/s.

Fig. 17-37

The derivative of the waveform of Fig. 17-37 is graphed in Fig. 17-38. This is just Fig. 17-18 with   
V = −20/p. Hence, from Problem 17.1,

di
d t

t t t( ) (sin sin sin . . .) (ω π
ω ω ω= − + + +80 1

3 3
1
5 52 AAA)  

and so υ ω ω π
ω ω ωL L

di
d t

t t t= = − + +( ) (sin sin sin
400 1

3 3
1
5 52 +++ . . .) ( )V  
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SuPPLEMENTAry ProbLEMS

17.16. Synthesize the waveform for which the trigonometric Fourier series is

 f t
V

t t t t( ) sin sin sin sin= − + −8 1
9 3

1
25 5

1
49 72π

ω ω ω ω ++{ }. . .   

17.17. Synthesize the waveform if its Fourier series is

 

f t t t t( ) (cos cos cos . . .)= − + + +

+

5
40 1

9 3
1

25 5

2

2π
ω ω ω

00 1
2 2

1
3 3

1
4 4π ω ω ω ω(sin sin sin sin . . .)t t t t− + − +

  

17.18. Synthesize the waveform for the given Fourier series.

 

f t V t t t( ) cos cos cos c= − − + −1
2

1 1
3 2

1
2 3

1
15π π ω π ω π ω π oos cos . . .

sin sin

4
1

6 6

1
4

2
3 2

4

ω π ω

ω π ω

t t

t t

− +


+ − + 115 4π ωsin . . .t − 


 

17.19. Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-39 and plot the line spectrum. 
Compare with Example 17.1.

 Ans. f t
V V

t t t( ) (sin sin sin . . .)= + + + +2
1
2 2

1
3 3π ω ω ω  

Fig. 17-38

Fig. 17-39 Fig. 17-40

17.20. Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-40 and plot the spectrum. Compare 
with the result of Problem 17.3.

 Ans. f t
V

t t t t( ) sin sin sin sin .= − + + + +2 1
2 2

1
3 3

1
4 4π ω ω ω ω .. .{ }  
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17.21. Find the trigonometric Fourier series for the waveform shown in Fig. 17-41 and plot the line spectrum.

Ans. f t
V

t t t
V

( ) cos cos cos . . .= + + +{ } −4 1
9 3

1
25 5

2
2π

ω ω ω π sssin sin sin . . .ω ω ωt t t+ + +{ }1
3 3

1
5 5  

17.22. Find the trigonometric Fourier series of the square wave shown in Fig. 17-42 and plot the line spectrum. Compare 
with the result of Problem 17.1.

Ans. f t
V

t t t t( ) cos cos cos cos . .= − + − +4 1
3 3

1
5 5

1
7 7π ω ω ω ω ...{ }

17.23. Find the trigonometric Fourier series for the waveforms shown in Fig. 17-43. Plot the line spectrum of each and 
compare.

Ans. (a) f t
n

n
n t

n
n

( ) sin cos cos= + 



 + −5

12
10

12
10

1π
π ω π

πππ ω12
1













=

∞

∑ sin n t

n

(b) f t
n

n
n t

n
n

( ) sin cos cos= + 



 + −50

6
10 5

3
10

1π
π ω π

555
3

1

π ω











=

∞

∑ sin n t

n

Fig. 17-41 Fig. 17-42

17.24. Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-44 and plot the line 
spectrum. Compare the answer with the results of Problems 17.5 and 17.6.

Ans. f t
V

t t t( ) cos cos cos cos= + + − +π
π ω ω ω1 2

2
3 2

2
15 4

2
35 6ωωωt −





. . .  

Fig. 17-43

Fig. 17-44
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17.25. Find the trigonometric Fourier series for the full-wave-rectified sine wave shown in Fig. 17-45 and plot the 
spectrum.

 Ans. f t
V

t t t( ) cos cos cos . . .= + − + −2
1

2
3 2

2
15 4

2
35 6π ω ω ω


  

17.26. The waveform in Fig. 17-46 is that of Fig. 17-45 with the origin shifted. Find the Fourier series and show that 
the two spectra are identical.

 Ans. f t
V

t t t( ) cos cos cos . . .= − − − −2
1

2
3 2

2
15 4

2
35 6π ω ω ω


  

17.27. Find the trigonometric Fourier series for the waveform shown in Fig. 17-47.

 Ans. f t
V V

t
V

n
n n n

n

( ) cos
( )

(cos sin )= − +
−

+2 2 1
22π π ω

π
π π /

==

∞

∑
+ + −

−










2

24
2

1

cos

sin
cos

( )

n t

V
t

nV n

n

ω

ω π
π

/
ssin n t

n

ω
=

∞

∑
2

 

Fig. 17-45 Fig. 17-46

Fig. 17-47

Fig. 17-48

17.28. Find the trigonometric Fourier series for the waveform shown in Fig. 17-48. Add this series termwise to that of 
Problem 17.27, and compare the sum with the series obtained in Problem 17.5.

 Ans. f t
V V

t
V n n

n
n( ) cos

( sin )

( )
cos= + + −

−2 2
2 1

12π π ω π
π

ω/
tt

V
t

nV n

n
n t

n n

+ +
−

=

∞

=

∞

∑ ∑4
2

1
2

2

2

sin
cos

( )
sinω π

π
ω/
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17.29 Find the exponential Fourier series for the waveform shown in Fig. 17-49 and plot the line spectrum. Convert the 
coefficients obtained here into the trigonometric series coefficients, write the trigonometric series, and compare 
it with the result of Problem 17.4.

Ans. f t V j e j ej t j t( ) . . .= + −





− −− −1

9

1
6

1
42

3 2

π π π
ω ω 111 1

2
1
4

1 1
2

2

2

π π

π π

ω−





+




− +





−j e

j e

j t

jωωω ω ω
π π π

t j t j tj e j e+ − +





−




1
4

1

9

1
6

2
2

3 . . .

Fig. 17-49 Fig. 17-50

17.30. Find the exponential Fourier series for the waveform shown in Fig. 17-50 and plot the line spectrum.

Ans. f t V j e j ej t j t( ) . . .= + +





+ +− −1

9

1
6

1
42

3 2

π π π
ω ω 111 1

2
1
4

1 1
2

2

2

π π

π π

ω+





+




+ −





−j e

j e

j t

jωωω ω ω
π π π

t j t j tj e j e− + −





+




1
4

1

9

1
6

2
2

3 . . .

17.31. Find the exponential Fourier series for the square wave shown in Fig. 17-51 and plot the line spectrum. Add the 
exponential series of Problems 17.29 and 17.30 and compare the sum to the series obtained here.

Ans. f t V j e j e j e jj t j t j t( ) . . .= + + + − −− −1
3

1 1
2

1 13

π π π
ω ω ω

333
3

π
ωe j t −





. . .  

17.32. Find the exponential Fourier series for the sawtooth waveform shown in Fig. 17-52 and plot the spectrum. 
Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric series, 
and compare the results with the series obtained in Problem 17.19.

Ans. f t V j e j e j ej t j t j t( ) . . .= + + + − −− −1
4

1
2

1
2

1
2

2

π π π
ω ω ω jjj e j t1

4
2

π
ω −





. . .  

Fig. 17-51

Fig. 17-52
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17.33. Find the exponential Fourier series for the waveform shown in Fig. 17-53 and plot the spectrum. Convert the 
trigonometric series coefficients found in Problem 17.20 into exponential series coefficients and compare them 
with the coefficients of the series obtained here.

 Ans. f t V j e j e j e j ej t j t j t( ) . . .= − − + +− −1
2

1 1 1
2

2

π π π π
ω ω ω jj t2ω +





. . .  

Fig. 17-53 Fig. 17-54

17.34. Find the exponential Fourier series for the waveform shown in Fig. 17-54 and plot the spectrum. Convert the 
coefficients to trigonometric series coefficients, write the trigonometric series, and compare it with that obtained 
in Problem 17.21.

 Ans. f t V j e jj t( ) = + −







 + −


−



2

9

1
3

2 1
2

3
2π π π π

ω 


+ +





+ +





−e j e

j

j t j tω ω

π π

π π

2 1

2

9

1
3

2

2 ee j t3ω +




 

17.35. Find the exponential Fourier series for the square wave shown in Fig. 17-55 and plot the line spectrum. Convert 
the trigonometric series coefficients of Problem 17.22 into exponential series coefficients and compare with the 
coefficients in the result obtained here.

 Ans. f t
V

e e e ej t j t j t j t( ) . . .= + − + + −− − −2 1
5

1
3

15 3

π
ω ω ω ω

33
1
5

3 5e ej t j t− + −





ω ω . . .  

Fig. 17-55

Fig. 17-56

17.36. Find the exponential Fourier series for the waveform shown in Fig. 17-56 and plot the line spectrum.

 Ans. f t
V

e
Vj t( ) . . . sin sin= + 



 + 





−
2

2
6 6

2

π
π

π
πω

 + + 





+ 





−e
V V

e

V

j t j tω ω
π

π

π
π

6 6

2
2
6

sin

sin  +e j t2ω . . .
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17.37. Find the exponential Fourier series for the half-wave-rectified sine wave shown in Fig. 17-57. Convert these 
coefficients into the trigonometric series coefficients, write the trigonometric series, and compare it with the 
result of Problem 17.24.

Ans. f t
V

e
V

e
V

e
V Vj t j t j t( ) . . .= − + + + +− − −

15 3 4 4
4 2

π π π
ω ω ω eee

V
e

V
ej t j t j tω ω ω

π+ π− +3 15
2 4 . . .  

Fig. 17-57 Fig. 17-58

17.38. Find the exponential Fourier series for the full-wave rectified sine wave shown in Fig. 17-58 and plot the line 
spectrum.

Ans. f t
V

e
V

e
V V

ej t j t j( ) . . .= − + + +− −2
15

2
3

2 2
3

4 2 2

π π π π
ω ω ωω ω

π
t j tV

e− +2
15

4 . . .  

17.39. Find the effective voltage, effective current, and average power supplied to a passive network if the   
applied voltage is u = 200 + 100 cos (500t + 30°) + 75 cos (1500t + 60°) (V) and the resulting current is 
i = 3.53 cos (500t + 75°) + 3.55 cos (1500t + 78.45°) (A).  Ans. 218.5 V, 3.54 A, 250.8 W

17.40. A voltage u = 50 + 25 sin 500t + 10 sin 1500t + 5 sin 2500t (V) is applied to the terminals of a passive network 
and the resulting current is

i t t= + − + −5 2 23 500 26 6 0 556 1500 56 3. sin ( . ) . sin ( .� �� �) . sin ( . ) ( )+ −0 186 2500 68 2t A

Find the effective voltage, effective current, and the average power.

Ans. 53.6 V, 5.25 A, 276.5 W

17.41. A three-element series circuit, with R = 5 Ω, L = 5 mH, and C = 50 µF, has an applied voltage u = 150 sin 1000t +
100 sin 2000t + 75 sin 3000t (V). Find the effective current and the average power for the circuit. Sketch the line 
spectrum of the voltage and the current, and note the effect of series resonance.

Ans. 16.58 A, 1374 W

17.42. A two-element series circuit, with R = 10 Ω and L = 20 mH, has current

i t t t= + +5 100 3 300 2 500sin sin sin ( )A   

Find the effective applied voltage and the average power.

Ans. 48 V, 190 W

17.43. A pure inductance, L = 10 mH, has the triangular current wave shown in Fig. 17-59, where w = 500 rad/s. Obtain 
the exponential Fourier series for the voltage across the inductance. Compare the answer with the result of 
Problem 17.8.

Ans. υ
π

ω ω ω ω
L

j t j t j t j tj e je je j e= − − + +− −200 1
3

1
32

3(. . . +++ . . .) ( )V  

Fig. 17-59
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17.44. A pure inductance, L = 10 mH, has an applied voltage with the waveform shown in Fig. 17-60, where  
w = 200 rad/s. Obtain the current series in trigonometric form and identify the current waveform.

 Ans. i t t t t= − + − +20 1
9 3

1
25 5

1
49 7π ω ω ω ω(sin sin sin sin . .. .) ( );A triangular  

Fig. 17-60

17.45. Figure 17-61 shows a full-wave-rectified sine wave representing the voltage applied to the terminals of an LC 
series circuit. Use the trigonometric Fourier series to find the voltages across the inductor and the capacitor.

 Ans. υ π
ω

ω ω

ω ω

ω
L

mV L

L
C

t
L

L
=

−





−
−

4 2

3 2
1

2

2
4

15 4
1

4

cos

ωω

ω

υ π

C

t

V
C

m







+



















= −

cos . . .4

4 1
2

1

3(( )
cos

( )2 2
1

2

2
1

15 4 4
1

4ω ω ω

ω
ω ω ωC L

C

t
C L

C
−





+
−





−



















cos . . .4ωt

 

Fig. 17-61

17.46. A three-element circuit consists of R = 5 Ω in series with a parallel combination of L and C. At w  = 500 rad/s,  
XL = 2 Ω, XC = 8 Ω . Find the total current if the applied voltage is given by u = 50 + 20 sin 500t + 10 sin 1000t (V).

 Ans. i = 10 + 3.53 sin (500t − 28.1°) (A)
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APPENDIX A

Complex Number System

A1 Complex Numbers
A complex number z is a number of the form x + jy, where x and y are real numbers and j = −1 . We write 
x = Re z, the real part of z; y = Im z, the imaginary part of z. Two complex numbers are equal if and only if 
their real parts are equal and their imaginary parts are equal.

A2 Complex Plane
A pair of orthogonal axes, with the horizontal axis displaying Re z and the vertical axis j Im z, determine a 
complex plane in which each complex number is a unique point. Refer to Fig. A-1, on which six complex 
numbers are shown. Equivalently, each complex number is represented by a unique vector from the origin 
of the complex plane, as illustrated for the complex number z6 in Fig. A-1.

 
Fig. A-1 Fig. A-2

 

A3 Vector Operator j
In addition to the definition of j given in Section A1, it may be viewed as an operator which rotates any com-
plex number (vector) A 90° in the counterclockwise direction. The case where A is a pure real number, x, is 
illustrated in Fig. A-2. The rotation sends A into jx, on the positive imaginary axis. Continuing, j2 advances 
A 180°; j3, 270°; and j4, 360°. Also shown in Fig. A-2 is a complex number B in the first quadrant, at angle q. 
Note that jB is in the second quadrant, at angle q + 90°.
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A4 Other Representations of Complex Numbers
In Section A1 complex numbers were defined in rectangular form. In Fig. A-3, x = r cos q, y = r sin q, and the 
complex number z can be written in trigonometric form as

z = + = +x jy r j(cos sin )θ θ

where r is the modulus or absolute value (the notation r = |z| is common), given by r x y= +2 2 , and the 
angle q = tan−1 (y/x) is the argument of z.

Fig. A-3
 

Euler’s formula, e jq = cos q + j sin q, permits another representation of a complex number, called the 
exponential form:

z = + =r jr re jcos sinθ θ θ  

A third form, widely used in circuit analysis, is the polar or Steinmetz form, z = r /θ , where q is usually 
in degrees.

A5 Sum and Difference of Complex Numbers
To add two complex numbers, add the real parts and the imaginary parts separately. To subtract two complex 
numbers, subtract the real parts and the imaginary parts separately. From the practical standpoint, addition 
and subtraction of complex numbers can be performed conveniently only when both numbers are in the 
rectangular form.

EXAMPLE A1 Given z1 = 5 − j2 and z2 = −3 − j8,

z z

z z

1 2

2 1

5 3 2 8 2 10

3 5 8

+ = − + − − = −

− = − − + − +

( ) ( )

( ) (

j j

j 222 8 6) = − − j

A6 Multiplication of Complex Numbers
The product of two complex numbers when both are in exponential form follows directly from the laws of 
exponents.

z z1 2 1 2 1 2
1 2 1 2= = +

( )( )
( )

r e r e r r e
j j jθ θ θ θ

The polar or Steinmetz product is evident from reference to the exponential form.

z z1 2 1 1 2 2 1 2 1 2= = +( )( )r r r r� � �θ θ θ θ  

The rectangular product can be found by treating the two complex numbers as binomials.

z z1 2 1 1 2 2 1 2 1 2 1 2
2

1= + + = + + +( )( )x jy x jy x x jx y jy x j y yyy

x x y y j x y y x

2

1 2 1 2 1 2 1 2= − + +( ) ( )
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EXAMPLE A2 If z z1
3

2
65 2= = −e ej jπ π/ /and , then z z1 2

3 6 65 2 10= =−( )( )/ / /e e ej j jπ π π .

EXAMPLE A3 If z z z z1 2 1 22 30 5 45 2 30 5= = =/ / − /� � �and then, ( )( // − / −45 10 15� �) = .

EXAMPLE A4 If z z z z1 2 1 22 3 1 3 2 3 1= + = − − = + − −j j j jand then, ( )( 33 7 9) = − j .

A7 Division of Complex Numbers
For two complex numbers in exponential form, the quotient follows directly from the laws of exponents.

  
z
z
1 1

2

1

2

1

2

1 2= = −r e

r e

r
r

e
j

j
j

θ

θ
θ θ( )

 

Again, the polar or Steinmetz form of division is evident from reference to the exponential form.

  
z
z

1

2

1 1

2 2

1

2
1 2= = −

r

r

r
r

�
� �

θ
θ

θ θ  

Division of two complex numbers in the rectangular form is performed by multiplying the numerator and 
denominator by the conjugate of the denominator (see Section A8).

  
z
z

1

2

1 1

2 2

2 2

2 2

1 2=
+
+

−
−







=
+x jy

x jy
x jy
x jy

x x y( 11 2 1 2 2 1

2
2

2
2

1 2 1 2

2
2

2
2

y j y x y x

x y

x x y y

x y

) ( )+ −
+

=
+
+

+ jj
y x y x

x y
1 2 2 1

2
2

2
2

−
+

 

EXAMPLE A5 Given z1 = 4ejp /3 and z2 = 2e jp/6,

  
z
z

1

2

3
64

2
2= =e

e
e

j

j
j

π

π
π

/

/6
/  

EXAMPLE A6 Given z1 = 8 /− 30� and z2 = 2 /− 60�,

  
z
z

1

2

8 30

2 60
4 30=

−
−

=/
/ /�

�
�  

EXAMPLE A7 Given z1 = 4 − j5 and z2 = 1 + j2,

  
z
z

1

2

4 5
1 2

1 2
1 2

6
5

13
5= −

+
−
−





 = − −j

j
j
j

j   

A8 Conjugate of a Complex Number
The conjugate of the complex number z = x + jy is the complex number z* = x − jy. Thus,

  Re
*

Im
*

*z
z z

z
z z

z zz= + = − =2 2 j
| |  

In the complex plane, the points z and z* are mirror images in the axis of reals.
In exponential form: z = re jq, z* = re−jq.
In polar form: z = r∠q, z* = r∠-q.
In trigonometric form: z = r(cos q + j sin q), z* = r(cos q − j sin q).
Conjugation has the following useful properties:

 (i) ( *)*z z=  (iii) ( )* * *z z z z1 2 = 1 2
 

 (ii) ( )* * *z z z z1 2 1 2± = ±   (iv) 
z
z

z
z

1

2

1

2







=
* *

*
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APPENDIX B

Matrices and Determinants

B1 Simultaneous Equations and the Characteristic Matrix
Many engineering systems are described by a set of linearly independent simultaneous equations of the form

y a x a x a x a x

y a x a x

n n1 11 1 12 2 13 3 1

2 21 1 22 2

= + + + +

= + +



aaa x a x

y a x a

n n

m m m

23 3 2

1 1 2

+ +

= +





xxx a x a xm mn n2 3 3+ + +

where the xj are the independent variables, the yi the dependent variables, and the aij are the coefficients of 
the independent variables. The aij may be constants or functions of some parameter.

A more convenient form may be obtained for the above equations by expressing them in matrix form.

y

y

y

a a a a

a a a

m

n1

2

11 12 13 1

21 22 23

























=
aaa

a a a a

x

x

x

n

m m m mn n

2

1 2 3

1

2

    









































or Y = AX, by a suitable definition of the product AX (see Section B3). Matrix A ≡ [aij] is called the 
characteristic matrix of the system; its order or dimension is denoted as

d m n( )A ≡ ×   

where m is the number of rows and n is the number of columns.

B2 Types of Matrices
Row matrix. A matrix which may contain any number of columns but only one row; d(A) = 1 × n. Also 
called a row vector.

Column matrix. A matrix which may contain any number of rows but only one column; d(A) = m × 1. 
Also called a column vector.

Diagonal matrix. A matrix whose nonzero elements are all on the principal diagonal.
Unit matrix. A diagonal matrix having every diagonal element unity.
Null matrix. A matrix in which every element is zero.
Square matrix. A matrix in which the number of rows is equal to the number of columns; d(A) = n × n.
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Symmetric matrix. Given

 A ≡

a a a a

a a a a

a a a

n

n

m m m

11 12 13 1

21 22 23 2

1 2 3





    

 aa

d m n

mn



















= ×( )A   

the transpose of A is

 AT

m

m

m

a a a a

a a a a

a a a a≡

11 21 31 1

12 22 32 2

13 23 33 3







    

a a a a

d n m

n n n mn

T

1 2 3





















= ×( )A   

Thus, the rows of A are the columns of AT, and vice versa. Matrix A is symmetric if A = AT; a symmetric 
matrix must then be square.

Hermitian matrix. Given

 
A ≡

a a a a

a a a a

a a a

n

n

m m m

11 12 13 1

21 22 23 2

1 2 3





    

 aamn



















  

the conjugate of A is

 
A*

* * * *

* * * *≡

a a a a

a a a a

a

n

n

11 12 13 1

21 22 23 2





    

mm m m mna a a1 2 3* * * *





















  

Matrix A is hermitian if A = (A*)T; that is, a hermitian matrix is a square matrix with real elements on the 
main diagonal and complex conjugate elements occupying positions that are mirror images in the main 
diagonal. Note that (A*)T = (AT)*.

Nonsingular matrix. An n × n square matrix A is nonsingular (or invertible) if there exists an n × n 
square matrix B such that

 AB = BA = I 

where I is the n × n unit matrix. The matrix B is called the inverse of the nonsingular matrix A, and we write 
B = A−1. If A is nonsingular, the matrix equation Y = AX of Section B1 has, for any Y, the unique solution

 X = A−1Y 

B3 Matrix Arithmetic

Addition and Subtraction of Matrices
Two matrices of the same order are conformable for addition or subtraction; two matrices of different orders 
cannot be added or subtracted.

The sum (difference) of two m × n matrices, A = [aij] and B = [bij], is the m × n matrix C of which each 
element is the sum (difference) of the corresponding elements of A and B. Thus, A ± B = [aij  ± bij].
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EXAMPLE B1  If

then 

A B

A B

=












=












+ =
+ +

1 4 0

2 7 3

5 2 6

0 1 1

1 5 4 2 0 +++

+ + +













=












− =
− −

6

2 0 7 1 3 1

6 6 6

2 8 4

4 2
A B

666

2 6 2













The transpose of the sum (difference) of two matrices is the sum (difference) of the two transposes:

( )A B A B± = ±T T T   

Multiplication of Matrices
The product AB, in that order, of a 1 × m matrix A and an m × 1 matrix B is a 1 × 1 matrix C ≡ [c11], 
where

C =















[ ]a a a a

b

b

b

b

m

m

11 12 13 1

11

21

31

1











= + + + =
=

∑[ ]a b a b a b a bm m k k

k

m

11 11 12 21 1 1 1 1

1

















Note that each element of the row matrix is multiplied into the corresponding element of the column matrix 
and then the products are summed. Usually, we identify C with the scalar c11, treating it as an ordinary 
number drawn from the number field to which the elements of A and B belong.

The product AB, in that order, of the m × s matrix A = [aij] and the s × n matrix B = [bij] is the m × n
matrix C = [cij], where

c a b i m j nij ik kj

k

s

= = =
=

∑
1

1 2 1 2( , , , , , , , ) 

EXAMPLE B2

a a

a a

a a

b b

b b

11 12

21 22

31 32

11 12

21 22

























 =

+
+
+

a b a b

a b a b

a b a b

11 11 12 21

21 11 22 21

31 11 32 2111

11 12 12 22

21 12 22 22

31 12 32 22

a b a b

a b a b

a b a b

+
+
+

















−

−





























3 5 8

2 1 6

4 6 7

1

2

3

I

I

I





=
+ −
+ +
− +









3 5 8

2 1 6

4 6 7

1 2 3

1 2 3

1 2 3

I I I

I I I

I I I









−





−





=
+ −5 3

4 2

8 2 6

7 0 9

5 8 3 7( ) ( )( ) 555 2 3 0 5 6 3 9

4 8 2 7 4 2 2

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) (

− + − + −
+ − + 000 4 6 2 9

19 10 3

46 8 42) ( ) ( )+






=
−

−
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Matrix A is conformable to matrix B for multiplication. In other words, the product AB is defined, only when the 
number of columns of A is equal to the number of rows of B. Thus, if A is a 3 × 2 matrix and B is a 2 × 5 matrix, then 
the product AB is defined, but the product BA is not defined. If D and E are 3 × 3 matrices, both products DE and 
ED are defined. However, it is not necessarily true that DE = ED.

The transpose of the product of two matrices is the product of the two transposes taken in reverse order:

 ( )AB B AT T T=   

If A and B are nonsingular matrices of the same dimension, then AB is also nonsingular, with

 ( )AB B A− − −=1 1 1   

Multiplication of a Matrix by a Scalar
The product of a matrix A ≡ [aij] by a scalar k is defined by

 k k kaijA A= ≡ [ ]  

that is, each element of A is multiplied by k. Note the properties

 k k k k k k k kT T( ) ( ) ( ) ( ) ( )A B A B AB A B A B A A+ = + = = =   

B4 Determinant of a Square Matrix
Attached to any n × n matrix A ≡ [aij] is a certain scalar function of the aij, called the determinant of A. This 
number is denoted as

 det A A Aor or or∆

a

a

a

a

a

a

a

a

n n

n

n

11

21

1

12

22

2

1

2

 











ann

 

where the last form puts into evidence the elements of A, upon which the number depends. For determinants 
of order n = 1 and n = 2, we have explicitly

 a a
a a

a a
a a a a11 11

11 12

21 22
11 22 12 21= = −  

For larger n, the analogous expressions become very cumbersome, and they are usually avoided by use of Laplace’s 
expansion theorem (see below). What is important is that the determinant is defined in such a way that

 det (det )(det )   AB A B=  

for any two n × n matrices A and B. Two other basic properties are:

 det det det detA A A AT nk k= =   

Finally, det A ≠ 0 if and only if A is nonsingular.

EXAMPLE B3 Verify the determinant multiplication rule for

 A B=












=
−











1 4

3 2

2 9

1 π
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We have

AB = 





−





=
+

− +






1 4

3 2

2 9

1

2 9 4

4 27 2π
π
π

and             2 9 4

4 27 2
2 27 2 9 4 4 90 20

+
− +

= + − + − = +
π
π

π π π( ) ( )( )   

But 1 4

3 2
1 2 4 3 10

2 9

1
2 9 1 9 2

= − = −

−
= − − = − −

( ) ( )

( ) ( )
π

π π

and indeed 90 + 20p = (−10)(−9 − 2p)

Laplace’s Expansion Theorem
The minor, Mij, of the element aij of a determinant of order n is the determinant of order n − 1 obtained by 
deleting the row and column containing aij . The cofactor, ∆ij , of the element aij is defined as

∆ij
i j

ijM= − +( )1  

Laplace’s theorem states: In the determinant of a square matrix A, multiply each element in the pth row 
(column) by the cofactor of the corresponding element in the qth row (column), and sum the products. Then 
the result is 0, for p ≠ q; and det A, for p = q.

It follows at once from Laplace’s theorem that if A has two rows or two columns the same, then det A = 0 
(and A must be a singular matrix).

Matrix Inversion by Determinants; Cramer’s Rule
Laplace’s expansion theorem can be exhibited as a matrix multiplication, as follows:

a a a a

a a a a

a a a a

n

n

n n n n

11 12 13 1

21 22 23 2

1 2 3





    

 nnn

n

n



















∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

11 21 31 1

12 22 32 2





    





∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

1 2 3

11 21 31

n n n nn

n



















=

111

12 22 32 2

1 2 3

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆



    



n

n n n nn



















a a a a

a a a a

a a a

n

n

n n n

11 12 13 1

21 22 23 2

1 2 3





    







    

ann



















=

det
det

A
A

0 0 0
0 0 0

0 0 0  det A

















or A A A A A I( ) ( ) (det )adj adj  = =

where adj A ≡ [∆ji] is the transposed matrix of the cofactors of the aij in the determinant of A, and I is the n ×
n unit matrix.
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If A is nonsingular, one may divide through by det A ≠ 0, and infer that

 A A A− =1 1
det

adj  

This means that the unique solution of the linear system Y = AX is

 X A A Y= 





1
det

adj   

which is Cramer’s rule in matrix form. The ordinary, determinant form is obtained by considering the rth row 
(r = 1, 2, . . . , n) of the matrix solution. Since the rth row of adj A is

 [ ]∆ ∆ ∆ ∆1 2 3r r r nr   

we have:

 

x

y

y

y

y

r r r r nr

n

= 













1
1 2 3

1

2

3det [ ]A ∆ ∆ ∆ ∆
















= 



 + + + +1

1 1 2 2 3 3det (A y y y yr r r n∆ ∆ ∆  ∆∆nr

r r na a y a a

a

)

det

( ) ( )

= 





− +

1
11 1 1 1 1 1 1

21

A

 

 aa y a a

a a y a

r r n

n n r n n

2 1 2 2 1 2

1 1

( ) ( )

( )

− +

−



      

 (( )r nna+1 

 

The last equality may be verified by applying Laplace’s theorem to the rth column of the given determinant.

B5 Eigenvalues of a Square Matrix
For a linear system Y = AX, with n × n characteristic matrix A, it is of particular importance to investigate 
the “excitations” X that produce a proportionate “response” Y. Thus, letting Y = lX, where l is a scalar,

 λ λX AX I A X O= − =or ( )   

where O is the n × 1 null matrix. Now, if the matrix lI − A were nonsingular, only the trivial solution X = Y = O 
would exist. Hence, for a nontrivial solution, the value of l must be such as to make lI − A a singular matrix; 
that is, we must have

 det ( )λ

λ
λ

I A− =

− − − −
− − − −

a a a a

a a a
n11 12 13 1

21 22 23



 aa

a a a a

n

n n n nn

2

1 2 3

0
    

− − − −

=

λ

  

The n roots of this polynomial equation in l are the eigenvalues of matrix A; the corresponding nontrivial 
solutions X are known as the eigenvectors of A.
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Setting l = 0 in the left side of the above characteristic equation, we see that the constant term in the 
equation must be

det( ) det[( ) ] ( ) (det )− = − = −A A A1 1 n   

Since the coefficient of ln in the equation is obviously unity, the constant term is also equal to (−1)n times the 
product of all the roots. The determinant of a square matrix is the product of all its eigenvalues—an alternate, 
and very useful, definition of the determinant.
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Index

A
ABC sequence/ABC system,  

268–270, 274, 280–282,  
284–285, 287–289

AC generator, 266–267, 279
AC power, 237–265

apparent, 241–242, 244–245,  
250–251, 277, 389

average, 238–240, 243–244, 
251–254, 258–265, 275–279, 
286, 289–290, 293, 465–467, 
480–481, 488

complex, 244–248, 254, 284,  
262–264, 378, 244–245, 248, 
254, 262–264, 378

exchange of energy between 
 inductor and capacitor, 
242–244

in RLC, 241–242
instantaneous, 237–239, 242–243, 

252–253
maximum power transfer, 251–252
parallel-connected networks, 

248–249
power factor improvement,  

250–251
quadrature, 241, 250
reactive, 241–245, 249, 251
real, 239–241
sinusoidal steady state, 238–239

AC wattmeter, 277–278
Active circuits, 159–161, 193–194

first-order, 159–161
higher-order, 193–194

Active elements, 7–8
Active filters, 299–300
Active phase shifter, 161
Admittance, 214–216, 219

combination of, 215
coupling, 219
diagram, 215
in parallel, 215
in series, 215
input, 219
self-, 219
transfer, 219

Admittance parameters, short-circuit 
(see Y-parameters)

Air-core transformers, 374
Ampere, 1–5
Ampere-hours, 5
Ampere-turn dot rule, 377
Ampere-turns, 377

Amplifiers, 64–116
differential/difference, 83–84
feedback in, 73–74, 94
integrator/summer, 85–89
leaky integrator, 86, 89, 310
model of, 72, 404
operational (see Op amps)

Analog computers, 88–89
Analysis methods, 37–63 (see also 

Laws; Theorems)
branch current, 37, 47, 56
determinant, 38–40
Laplace transform, 425–447
matrix/matrices, 50–57
mesh (loop) current, 37–38, 42, 48, 

56–62, 217–219, 226
node voltage, 40–42, 219

Apparent power, 241–242, 244–245, 
250–251, 277, 389

in three-phase system, 389
Attenuator, 31
Autotransformers, 378, 389, 395
Average power, 4, 19–20, 22, 112, 

124, 238–240, 243–244, 
251–254, 258–265, 275–279, 
286, 289–290, 293, 465–467, 
480–481, 488

B
Bandpass filters, 300–301
Bandwidth, 92, 296, 301–305, 319, 

330–333, 340–341, 427
Battery, 5, 102, 145–147
Bode diagram, 311–313

special features, 313
Branch current method, 37
Butterworth polynomials, 320

C
Capacitance/capacitors, 7, 9, 12, 26–27, 

127, 143–146, 150–153, 179, 
181–185, 192, 210, 237–238, 
241–242, 250–251, 292, 299, 
304–306, 322–323, 397–398, 
415–416, 440–442, 467

DC steady state in, 152–153
discharge in a resistor, 143–144
establishing DC voltage across, 

145–146
exchange of energy between 

 inductors, 242–244
in parallel, 26–27, 31
in series, 26, 31
lossy, 333

Capacitive reactance, 214–215, 261, 
303, 382

Capacitive susceptance, 216
CBA sequence/CBA system, 268, 

271, 274, 281, 287–289
Center frequency, 300–301
Centi, 2
Circuit analysis, 396–433, 465–468

circuit description, 396–397
DC analysis, 397–398, 401–403
using Fourier method, 465–468
using Spice and PSpice, 396–433

Circuits:
analysis methods, 37–71
concepts, 7–23
diagrams of, 12–13
differentiator, 85, 88
elements in parallel, 26–27
elements in series, 25–26
first-order, 143–178

active, 159–161
higher-order, 179–208

active, 193–194
integrator, 85–87
inverting, 79
laws regarding, 24–36
locus diagram, 307–311
noninverting, 80–82
noninverting integrators, 207
polar plots, 307–311
polyphase, 266–290
RC (see RC circuits)
RL (see RL circuits)
RLC (see RLC circuits)
series-parallel conversions, 306–307
sign convention, 8
sinusoidal (see Sinusoidal  circuits; 

Sinusoidal steady-state 
 circuits)

summing, 79–80
tank, 305–306, 309
two-mesh, 185–186, 448–450
voltage-current relations, 9

Close coupling, 370–371
Coils, 368–374, 391–392, 408–409

coupled, 371–374, 408–409
energy in a pair of, 373

Column matrix, 494–496
Comparators, 92–93
Complex frequency, 186–188,  

191–192, 440–441
forced response and, 190–191
frequency scaling, 192–193
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Complex frequency (Cont.)
impedance of s-domain circuits, 

187–188
magnitude scaling, 192–193
natural response and, 191–192
network function and, 188–190
pole zero plots, 188–190

Complex frequency domain, 434
Complex inversion integral, 434
Complex number system, 491–493

complex plane, 491
conjugate of, 493
difference of, 492
division of, 493
modulus or absolute value, 492
multiplication of, 492–493
rectangular form, 492
representatives of, 451–452
sum of, 492
trigonometric form, 492
vector operator, 491

Complex plane, 491
Complex power, 244–248, 254, 284, 

262–264, 378
Computers:

analog, 88–89
circuit analysis using, 396–433
PSpice program (see Spice and 

PSpice)
Schematic Capture program, 396
Spice program (see Spice and 

PSpice)
Conductance, 1, 214
Conduction, 2, 378
Constant quantities, 4–5
Convergence region, 407
Cosine wave, 123, 135
Coulomb, 1–3
Coupled coils, 371–374

energy in a pair of, 373
conductively coupled equivalent 

circuits, 373–374
Coupling admittance, 219
Coupling coefficient, 370
Coupling/linking flux, 370
Cramer’s rule, 39, 498–499
Critically damped, 181–182, 302, 318
Current, 1–2, 7–9

branch, 37
constant, 2, 4
DC, 148
Kirchhoff’s laws, 24–25
load, 82, 270
loop, 37–38, 217
magnetizing, 375–376
mesh, 37–39, 185, 216–217, 455
natural, 371–372, 374, 378
Norton equivalent, 46–47, 361
phase, 270–271, 278

Current (Cont.)
phasor, 213–214
relation to voltage, 13, 24
variable, 4

Current dividers, 28–29, 41, 216

D
Damped sinusoids, 131
Damping, 183–184, 302

critically damped, 181, 302, 318
RLC circuits in parallel, 185
RLC circuits in series, 181

overdamped, 180–182, 302, 318
RLC circuits in parallel, 183
RLC circuits in series, 180

underdamped, 182, 184, 302, 318
RLC circuits in parallel, 184
RLC circuits in series, 182

Damping ratio, 302
DC analysis, 396–397

output statements, 397–401
DC current, establishing in an 

inductor, 148
DC steady state in inductors/ 

capacitors, 152
Decibel (dB), 90, 311
Delta system, 269

balanced loads, 271, 278
equivalent wye connections and, 

271–272
unbalanced loads, 274

Determinant method, 38–40
Diagonal matrix, 494
Diagrams,

Bode, 311
locus, 307–311

Differentiator circuit, 85, 88
Diode, 13, 22–23

forward-biased, 13
reverse-biased, 13
ideal, 22, 23
operating point, 23
terminal characteristic, 23

Direct Laplace transform, 434, 437
Dirichlet condition, 457–459, 468
Displacement neutral voltage, 275, 

285
Dissipation factor, 332–333
Dot rule, 377, 378, 408

ampere-turn, 377
Dynamic resistance, 13

E
Eigenvalues, 499
Electric charge, 1, 2–3
Electric current, 2–3
Electric potential, 1, 3–4
Electric power, 4
Electrical units, 1–2, 9, 186
Electrons, 2–3, 5

Elements:
active, 7–8
passive, 7–8
nonlinear, 13, 36

Energy (see also Power)
exchange between inductors and 

capacitors, 242–244
kinetic, 3
potential, 3
work, 1, 3

Energy density, 470
Euler’s formula, 492
Euler’s identity, 213
Exponential function, 128–129, 148, 

186, 434

F
Farad, 1
Faraday’s law, 367, 370, 374
Farads, 9, 398
Feedback in amplifier circuits, 73–74
Femto, 398
Filters, 298–300

active, 299
approximation, 319
bandpass, 300
Butterworth, 319, 321

order of, 321
Design, 321
first-order, 314–317

summary of, 317
higher-order cascades, 322
highpass, 318, 323
ideal, 299
lowpass, 89, 318
notch, 343
passive, 299
practical 298
scaling frequency response of, 322
second-order, 317–318
specifications, 319
transformation, 323

First-order circuits, 143–178
active, 159–161
Forced response, 145, 158–159

Floating source, 83
Flux:

coupling/linkage, 370
leakage, 370, 376
mutual, 374–375

Force, 1, 2
Forced response, 145, 158–159, 

190–191
network function and, 190–191

Fourier integral, 468
Fourier method, 457–489

analysis using computers, 416
applications in circuit analysis, 

465–468
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Fourier method (Cont.)
effective values and power,  

464–465
exponential series, 459–460, 463
line spectrum, 463–464
trigonometric series, 459–460, 463
waveform symmetry, 460–463
waveform synthesis, 464

Fourier transform, 468–471
continuous spectrum, 470
inverse, 468, 470
pairs, 471
properties of, 470–471

Frequency, 1, 119
center, 300–301
complex, 186–187, 434, 440–441
half-power, 296–297
natural, 302
operating, 306–307
scaling, 192, 322–323

Frequency domain, 216, 323, 369,  
434

Frequency response, 291, 297–298, 
311, 319, 321, 406

computer circuit analysis of, 
426–427

from pole-zero location, 297–298
half-power, 296
high-pass networks, 292–294
low-pass networks, 292–294
network functions and, 297
parallel LC circuits, 305–306
series resonance and, 302–303
scaling of, 192, 322–323
two-port/two-element networks, 

296
Frequency scaling, 192, 322–323

G
g-parameters, 351, 354
Gain, open loop, 75, 90–92, 109, 404
Generators:

AC, 266–267, 279
three-phase, 267, 279
two-phase, 266

Giga, 2, 398

H
h-parameters, 350–351, 354, 362–363
Half-power frequency, 296–297
Half-wave symmetry, 462, 472–473, 

478
Harmonics, 134, 252, 460, 462–463, 

465, 473
Heaviside expansion formula, 439, 

446
Henry, 1, 9, 398
Hermitian matrix, 495
Hertz, 1

Higher-order circuits, 179–208
active, 193–194

High-pass filter, 160, 314, 318
Homogeneous solution, 143, 145
Horsepower, 6
hybrid parameters, 351, 355

I
Ideal transformers, 376–378
Impedance, 214–228, 291, 344, 352, 

378, 441
combinations of, 215
diagram, 215
in parallel, 215–216
in s-domain, 188
in series, 215–216
input, 192, 218, 291, 373, 406
reflected, 378–379
sinusoidal steady-state circuits, 

214–216
transfer, 218–219, 272, 291, 294, 

345
Impedance parameters, open-circuit 

(see Z-parameters)
Impulse function:

sifting property, 128
strength, 127
unit, 126–128

Impulse response:
RC circuits and, 156–157
RL circuits and, 156–157

Inductance/inductors, 1, 7–8, 9, 11, 
15, 20

DC steady state in, 152
energy exchange between 

 capacitors, 242–244
establishing DC current in, 148
in parallel, 27, 31
in series, 26
leakage, 374
mutual, 368–373, 407–408
self-, 368, 370–371, 374

Induction motor, 262, 264
Inductive reactance, 214–215, 250, 

303, 373, 383
Inductive susceptance, 214–216
Input admittance, 229, 291, 304–305
Input impedance, 218, 291–293, 404
Input resistance, 43, 404
Instantaneous power, 237–239,  

242–243, 266–267, 276, 465
Integrator circuit, 85–87

initial conditions of, 87
leaky, 86–87
noninverting, 193, 207

International System of Units (SI), 
1–2

Inverse Fourier transform, 468, 470
Inverse hybrid parameters, 351

Inverse Laplace transform, 434, 436
Inverting circuit, 79
Ions, 2
Iron-core transformer, 374

J
Joule, 1, 2, 3, 4

K
Kelvin temperature, 1
Kilo, 2, 398
Kilowatt-hour, 5
Kinetic energy, 3
Kirchhoff’s current law (KCL), 25, 

37, 40
Kirchhoff’s voltage law (KVL), 24, 

38, 436

L
Lag network, 314–316
Laplace transform method, 434–456

circuits in s-domain, 440–441
convergence of the integral, 437
direct, 434
final-value theorem, 437–438
Heaviside expansion formula, 

439–440, 446
initial-value theorem, 437–438
inverse, 434
network function and, 441
partial-fraction expansion, 470
selected transforms, 435

Laplace’s expansion theorem,  
497–498

Laws, 24–36 (see also Theorems)
Kirchhoff’s current, 25, 37, 40
Kirchhoff’s voltage, 24, 38, 436
Lenz’s, 370–372, 378
Ohm’s, 9, 46

LC circuits, parallel, 305–306
LC tank circuit, 305–306, 309
Lead network, 314–315
Leakage flux, 370, 376
Leakage inductance, 374
Length, 1
Lenz’s law, 370–372, 378
Lightning, 22
Line spectrum, 463–464
Linear transformers, 374–375, 377
Linking flux, 370
Load current, 270
Locus diagram, 307–311
Loop current method (see Mesh 

 current method)
Loop currents, 37–38, 217
Lossy capacitors, 333
Low-pass filters, 89, 297

M
Magnetic flux, 1
Magnetic flux density, 1
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Magnetic flux linkage, 368–369
Magnetizing current, 375–376
Magnitude scaling, 192
Mass, 1
Matrix (matrices), 494–500

adding, 295–296
characteristics, 494, 499
column, 494, 496
diagonal, 494
eigenvalues of square, 497, 499
Hermitian, 495
inversion by determinants, 498–499
multiplying, 496–497
nonsingular, 495
null, 494
row, 494
scalar, 497, 499
simultaneous equations, 494
square, 494, 497–500
subtracting, 495–496
symmetric, 494
types of, 494–495
unit, 494
Z-matrix, 217–218

Matrix method, 38–41, 50–51
Maximum power transfer theorem, 47
Mega, 2, 398
Mesh current/mesh current method, 

37–39, 44, 52, 58–60,  
216–219, 234, 373, 391

sinusoidal circuits and, 216–219
Meter, 1
Methods, analysis (see Analysis 

methods)
Micro, 2, 396, 398
Milli, 2, 398
Minimum power, 35
Motors:

induction, 262, 264
Mutual flux, 374–375
Mutual inductance, 368–369

computer circuit analysis of,  
407–408, 416

conductively coupled equivalent 
circuit and, 373

coupled coils and, 371–374
coupling coefficients and, 370, 407
dot-rule and, 372, 377, 408

N
Nano, 2, 398
Natural current, 371–372, 374, 378
Natural frequency, 205, 302
Natural response, 145, 158, 191–192, 

411
network function and, 191–192

Network function, 188–192, 295–296, 
297–301, 311–313, 441

forced response, 190–191

Network function (Cont.)
frequency response and, 297
Laplace transform and, 441
natural response, 191–192
pole zero plots, 188–189

Network reduction, 41, 47
Networks:

conversion between Z- and  
Y-parameters, 349–350

g-parameters, 351, 354
h-parameters, 350, 354, 362–363
high-pass, 292–295
lag, 208, 315–316
lead, 207, 314–315
low-pass, 292–295
nonreciprocal, 345
parallel-connected, 248–249
parameter choices, 354
pi-equivalent, 348, 354
reciprocal, 345, 346, 348
T-equivalent, 346, 356, 359, 367
T-parameters, 352–355, 364–365
terminal characteristics, 344, 

348–349
terminal parameters, 354–355
two-mesh, 448–449, 450
two-port, 344–367, 369
two-port/two-element, 297
Y-parameters, 346–350, 353–354
Z-parameters, 344–346, 349–350, 

352, 354
Newton, 1, 2
Newton-meter, 2
Node, 25–26

principal, 25–26
simple, 25

Node voltage method, 40–41, 42,  
53–54, 59–61, 62, 63–64, 219

sinusoidal circuits and, 219
Noninverting circuits, 80–81
Noninverting integrators, 193, 207
Nonlinear element, 36, 48, 49
Nonlinear resistors, 13–14, 49

static resistance, 13
dynamic resistance, 13–14, 23, 49

Nonperiodic functions, 125
Nonreciprocal networks, 345
Nonsingular matrix, 495
Norton equivalent current, 46–47,  

361
Norton’s theorem, 45–47, 220

sinusoidal circuits and, 202
Null matrix, 494, 499
Number systems, complex 

(see  Complex number system)

O
Ohm, 1, 9, 398
Ohm’s law, 9, 47, 215

Op amps, 78–89
circuit analysis of, 75–78
circuits containing several, 84–85
computer circuit analysis of, 

404–406
voltage follower, 82, 107, 109, 111

Open-loop gain, 75, 90–92
Operating point, diode, 23, 49, 68
Operational amplifiers (see Op amps)
Overdamping, 180, 183, 302, 318

P
Partial-fraction expansion, 470
Particular solution, 143, 145
Passive elements, 7–8
Passive filters, 299–300
Passive phase shifter, 161
Periodic function, 117–118, 457

average/effective RMS values, 
123–124

combination of, 122
Periodic pulse, 117, 412
Periodic tone burst, 118
Phase angle, 1, 119, 187–189,  

211–213, 291
Phase current, 270–271, 278
Phase shift, 119, 121
Phase shifter, 161

active, 161
passive, 161

Phasor voltage, 214, 220
Phasors, 211–215

defining, 211
diagrams, 212
equivalent notations of, 213
phase difference of, 211–212
voltage, 214, 220

Pi-equivalent network, 348, 354
Pico, 2, 398
Plane angle, 1
Polar plots, 307–311
Polarity, 8, 29, 370–372

instantaneous, 372
Pole zero plots (see Zero pole plots)
Polyphase circuits, 266–290

ABC sequence/ABC system,  
268–270, 274, 280–282,  
284–285, 287–289

CBA sequence/CBA system,  
268, 271, 274, 281, 287–289

CBA or ABC, 290
delta system, 269, 276

balanced loads, 270–271,  
278

equivalent wye connections  
and, 271–272

unbalanced loads, 274
instantaneous power, 266, 276
phasor voltages, 269
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Polyphase circuits (Cont.)
power measurement with 

 wattmeters, 277–278
three-phase loads, single-line 

 equivalent for, 273
three-phase power, 276–277
three-phase systems, 267–277
two-phase systems, 266–267
wye system, 276

balanced loads, 271, 278
equivalent delta connections  

and, 272–273
unbalanced four-wire loads, 

274–275
unbalanced three-wire loads, 275

Potential energy, 3
Potentiometer, 31
Power, 1, 2, 4, 18–19, 21, 95  

(see also Energy)
absorbed, 47
AC, 237–265
apparent, 241–242, 244–245, 

250–251, 277
average, 4, 19–20, 22, 112, 124, 

238–240, 243–244, 251–254, 
258–265, 275–279, 465–467

complex, 244–248, 284, 378
effective values and, 464–465
electrical, 4
in sinusoidal steady state,  

238–239
instantaneous, 237–239, 242–243, 

266–267, 276, 465
in three-phase systems, 276–277
minimum, 35
quadrature, 241, 250
reactive, 241–245, 265, 277
real, 239, 245 (see also average 

power)
superposition of, 252–253
three-phase, 276–277

Power factor, 240, 250–251
improving, 250–251
in three-phase systems, 276–277

Power transfer, maximum, 251–252
Power triangle, 244–245, 249–250
Primary winding, 374
Principal node, 25
PSpice (see Spice and PSpice)
Pulse, response of first-order circuits 

to, 155–156

Q
Quadrature power, 241, 250
Quality factor, 301–304

R
Radian, 1
Random signals, 131–132

RC circuit, 151–152, 155–157
complex first-order, 150–151
impulse response of, 156–157
in parallel, 138, 308
in series, 155–157
response to exponential excitations, 

158
response to pulse, 155–156
response to sinusoidal excitations, 

159
step response of, 157
two-branch, 309

Reactance, 214–215
inductive, 214–215, 250, 303,  

373
Reactive power, 241–245, 265, 277

in three-phase systems, 277, 289
Real power, 239, 245 (see also 

 average power)
Reciprocal networks, 345–346

pi-equivalent of, 348
Reflected impedance, 378–379
Resistance/resistors, 1, 9, 10, 13

capacitor discharge in, 143–144
distributed, 7
dynamic, 13–14
in parallel, 26–28, 30–32
in series, 25–26, 28
input, 43, 78–79
nonlinear, 13–14, 49
static, 13
transfer, 43–44

Resonance, 180, 198, 302–306
parallel, 180, 198, 304, 411
series, 302–303, 305, 488

RL circuits, 146–148, 150–151, 
156–159

complex first-order, 150
impulse response of, 156–158
response to exponential excitations, 

158
response to sinusoidal excitations, 

159
source-free, 146–147
step response of, 148, 157

RLC circuits:
AC power in, 241–242
in parallel, 183–185

critically damped, 185
overdamped, 183
underdamped, 184

in series, 179–182
critically damped, 181
overdamped, 180
underdamped, 182

natural frequency and damping 
ratio, 302

natural resonant frequency, 203
quality factor, 304

RLC circuits (Cont.)
resonance:

parallel, 304–306
series, 302–303

s-domain impedance, 187–188
scaled element values, 201

Root-mean-square (RMS), 4
average/effective values, 123–124

Row matrix, 494, 496

S
s-domain circuits, 185, 404

impedance, 187–188
network function, 188–190
passive networks in, 189–190

s-plane plot, 204, 298
Saturation, 76, 94, 114–116,  

177–178
Sawtooth wave, 463–464, 474
Scalar, 496–497, 499
Scaling:

frequency, 192, 322–323, 343
magnitude, 192, 201–202

Second, 1
Secondary winding, 374
Self-admittance, 229
Self-inductance, 368–371, 374
Sensitivity, 109–110

analysis using computers, 416
SI units, 1–2
Siemens, 1
Signals:

nonperiodic, 125
periodic, 117–118, 122, 238
random, 131–132

Simple node, 25
Sine wave, 117, 414, 464
Sinusoidal circuits:

Norton’s theorem and, 220
steady-state node voltage method 

and, 219
Thevenin’s theorem and, 220

Sinusoidal functions, 119
Sinusoidal steady-state circuits, 

209–236
admittance, 214–216
element responses, 210–211
impedance, 214–216
mesh current method and, 216–219
phase angle, 211–213
phasors, 211–216
voltage/current division in 

 frequency domain, 216
Software (see Computers; Spice and 

PSpice)
Spice and PSpice, 396–433

AC steady state, 406–407
AC statement, 407
independent sources, 407
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Spice and PSpice (Cont.)
.PLOT AC statement, 407
.PRINT AC statement, 407

data statements, 397
controlled sources, 398–400
current-controlled sources, 400
dependent sources, 399
independent sources, 398
linearly dependent sources, 398
passive elements, 397
scale factors and symbols, 398
voltage-controlled sources, 400

DC analysis, 397–403
output statements, 401–403
using, 399–401

exponential source, 411
Fourier analysis, 416
frequency response, 406–409
modeling devices, 410–411
mutual inductance, 407–408
op amp circuit analysis, 406
pulse source, 412
sensitivity analysis, 416
sinusoidal source, 414
source file:

control statements, 416
data statements, 416
dissecting, 397
.END statement, 397
output statements, 397
title statement, 397

specifying other sources,  
411–415

.SUBCKT statement, 404–406
Thevenin equivalent, 403
time response, 411
transformers, 407–409
transient analysis, 411

Square matrix, 494–495, 5, 497–500
Static resistance, 13
Steady state:

AC in inductors/capacitors, 209–210
DC in inductors/capacitors, 152–153

Steradian, 1
Summing circuit, 79–80
Superposition, 44–45, 61, 63–65, 220
Superposition of average powers, 

252–253
Susceptance, 214, 216
Switching, 99, 143, 153–154, 178

transition at, 153–154
Symmetric matrix, 495
Symmetry:

half-wave, 462, 473–474
waveforms, 460–463

Synthesis, waveform, 464

T
T-equivalent network, 346
T-parameters, 352, 353, 354

Tank circuit, 305–306
Temperature, kelvin, 1
Tera, 2, 398
Terminal characteristics, 344,  

346–351
Terminal parameters, 354–355
Tesla, 1
Theorems (see also Laws):

final-value, 437–438
initial-value, 437–438
Laplace’s expansion, 498
maximum power transfer, 47
Norton’s, 45–47, 220
Thevenin’s, 45–47, 220

Thevenin equivalent voltage, 45
Thevenin’s theorem, 45–47, 220

sinusoidal circuits and, 220
Three-phase systems (see Polyphase 

circuits)
Time, 1
Time constant, 129–130, 143–249
Time domain, 92, 440
Time function, 117, 434–435

nonperiodic, 125
periodic, 117–118, 122, 238
random, 131–132

Time response:
computer circuit analysis of, 411

Time shift, 119–121
Tone burst, 118, 135, 127
Transducers, 24, 104
Transfer admittance, 219, 229
Transfer function, 75, 292–296, 312, 

314–319, 403
Transfer impedance, 218–219, 291, 

294, 345
Transfer resistance, 40, 43–44, 218
Transformer rating, 261–262
Transformers, 368–395, 407–409

air-core, 374
auto-, 378, 389, 395
computer circuit analysis of, 

407–409
ideal, 376–377, 394–395
iron-core, 374
linear, 374–376, 387–388, 394
reflected impedance of, 378–380

Transients, 143, 149, 181, 183, 186, 
191–192

computer circuit analysis of, 411
Two-mesh circuits, 169, 185–186, 203
Two-mesh networks, 448–450, 455
Two-port networks, 296, 344–367

cascade connection, 353–354
converting between Z- and Y-

parameters, 349–350
g-parameters, 351, 354–355
h-parameters, 350–351, 354–355
interconnecting, 352–354
parallel connection, 353

Two-port networks (Cont.)
series connection, 352–353
T-equivalent of, 346
T-parameters, 352–355
terminals and, 344
Y-parameters, 346–348, 353–355
Z-parameters, 344–346, 352–355

U
Underdamping, 179, 182, 184–185, 

302, 318
Unit delta function, 126–128
Unit impulse function, 126–128
Unit impulse response, 156–157, 175, 

441–442
Unit matrix, 494
Unit step function, 125–126
Unit step response, 145, 156–157, 

160–161, 441–442

V
Vector operator, 491
Volt, 1, 3
Voltage, 3

displacement neutral, 275–276
Kirchhoff’s law, 24, 38, 179, 216, 

345, 378, 436
node, 40–41, 63–64, 183, 219, 227, 

229, 235, 397
phasor, 269–270
polarity, 8–9

Three-phase systems, 267–268
relation to current, 9
Thevenin equivalent, 46

Volt-ampere reactive, 241
Voltage dividers, 28, 31–33, 103,  

115–116, 216, 225, 231, 292,  
324, 336

Voltage drop, 24
Voltage followers, 82, 107–109, 111
Voltage ratio, 235, 323–324, 331

frequency response of, 293
Voltage sources, 7–8

dependent, 7
independent, 7

Voltage transfer function, 199, 204, 
292, 295, 303

W
Watt, 1–2, 4
Wattmeters, 277

power measurement with,  
277–278

Waveforms:
analysis using Fourier method, 

457–489
continuous spectrum of, 470–472
cosine, 119, 457–459
effective values and power,  

464–465
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Waveforms (Cont.)
energy density of, 470
line spectrum, 463–464
nonperiodic, 125  
nonperiodic transforming, 468–470
periodic, 117–119, 122, 457
sawtooth, 457, 463–464
sine, 117, 119, 457–459
symmetry of, 460–463, 473–474
synthesis of, 464, 483

Weber, 1, 370
Winding, 372, 374–378

primary, 374
secondary, 374

Work energy, 1, 2
Wye system, 269

balanced four-wire loads, 271–272
equivalent delta connections and, 

272–273
unbalanced four-wire loads, 

274–275
unbalanced three-wire loads, 

275–276

Y
Y-parameters, 346–348, 353–355

converting between Z-parameters 
and, 349–350

Z
Zero pole plots, 188–191

frequency response from,  
297–298

Z-matrix, 217–218
Z-parameters, 344–346, 352,  

354–355
converting between Y-parameters 

and, 349–350

Index.indd   507 11/08/17   11:54 AM


	Cover
	Title Page
	Copyright Page
	Preface
	About the Authors
	Contents
	CHAPTER 1 Introduction
	CHAPTER 2 Circuit Concepts
	CHAPTER 3 Circuit Laws
	CHAPTER 4 Analysis Methods
	CHAPTER 5 Amplifiers and Operational Amplifier Circuits
	CHAPTER 6 Waveforms and Signals
	CHAPTER 7 First-Order Circuits
	CHAPTER 8 Higher-Order Circuits and Complex Frequency
	CHAPTER 9 Sinusoidal Steady-State Circuit Analysis
	CHAPTER 10 AC Power
	CHAPTER 11 Polyphase Circuits
	CHAPTER 12 Frequency Response, Filters, and Resonance
	CHAPTER 13 Two-Port Networks
	CHAPTER 14 Mutual Inductance and Transformers
	CHAPTER 15 Circuit Analysis Using Spice and PSpice
	CHAPTER 16 The Laplace Transform Method
	CHAPTER 17 Fourier Method of Waveform Analysis
	APPENDIX A Complex Number System
	APPENDIX B Matrices and Determinants
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z


